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Preface

The exploration of materials and their properties has for some time evolved beyond
the Edisonian paradigm, in which one sets about an experimental investigation
of the synthesis and properties of materials. Advances have been experienced by a
collaborative process between theory and experiment to create novel materials
whose properties have been designed to serve many purposes, structural, chemical,
and thermal and electrical transport, to name a few. With the advances of speed and
complexity in computational resources, these collaborations have only increased in
pace and scope.

Modern computing facilities allow for the modeling of large numbers of entities,
whether they be the fundamental constituents of matter, electrons, and nuclei, or the
collections of pieces of matter that might comprise a device, like a turbine or
integrated circuit, for periods of time that could not have been imagined mere
decades ago. These extraordinary capabilities have given rise to a new set of
attainable goals for integrated computational materials science. For the realization
of this potential, computational materials scientist must create new paradigms for
the application of existing and new computational methodologies to problems that
cross spatial and temporal scales.

The goal of this volume is to present the student and practicing computational
materials scientist with a new framework for thinking about multiscale modeling.
Integral to this framework are the concepts of theory, model, and simulation. We
propose that a clear understanding of these concepts is vital for the appropriate
combining of computational techniques across scales. The goal of any such frame-
work is the faithful transmission of information across interfaces so that the modeling
of physical phenomena translates the applicable theory into accurate simulations.

The chapters presented here are self-contained and intended to illustrate the state
of the art in computational materials science for the modeling of the address various
length and time scales. The reader can feel free to read each of these chapters
according to the scales that appeal to their own interests. The final chapter explains
how to create a predictive framework for communicating information across scale
boundaries.
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The work presented here represents not only the contributions of the authors,
themselves, but also those from our mentors, collaborators, and students. Space is
not sufficient here to appropriate, recognize, and thank them all for their contri-
butions, but we hope that this short acknowledgment will begin to pay the debt we
owe them.
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Chapter 1
Introduction

Pierre A. Deymier and Keith Runge

Abstract In this chapter, we present the conceptual framework that motivates the
development of a predictive multiscale approach to Integrated Computational
Materials Science and Engineering. Clear distinction among theories, models, and
simulations allow us to categorize the underlying physical principles used, the
realization of those principles, and their implementation on a computational
architecture. The physical theories that are explored in this volume can be combined
into coherent multi-theory constructs that preserve the fidelity of each theory over
its range of applicability. Similarly, models of these physical theories, which can be
realized in computer simulations, must respect their range of validity over both
spatial and temporal scales. The principles and procedures presented in this book
promote a clear and concise methodological approach for the creation of predictive
multi-theory, multi-model, multiscale simulations.

1.1 Conceptual Framework in Theory, Modeling
and Simulation

Over the past few decades, a variety of computational modeling and simulation
methods have provided powerful insight into the behavior of materials across the
entire process-structure-properties-performance spectrum. These methods have
most commonly been used to address materials phenomena at the level of a single
scale belonging to the range of electronic, atomic, microstructural, mesostructural
and macroscopic scales. However, many materials phenomena are inherently
multiscale in both space and time and often it is making a drastic approximation to
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ignore the coupling between phenomena across multiple scales. While computa-
tional methods based on the most fundamental theoretical principles have the
potential of modeling materials phenomena with a high degree of fidelity at all
scales, the sheer computational cost of simulating materials phenomena at the
largest spatio-temporal scales renders this approach impractical. Novel multiscale
modeling and simulation paradigms are providing the means to bridge different
modeling and simulation methods to achieve modeling and simulation capabilities
of materials behavior from the atom all the way to the components of an engineered
system. The combination of computational materials science and engineering
methods with multiscale paradigms is therefore becoming of continually increasing
importance for the emergence of a robust and predictive approach to materials
design and analysis, namely the approach of Integrated Computational Materials
Science and Engineering (ICMSE). The ICMSE approach can be understood by
focusing on clear distinctions among Theory, Modeling, and Simulation, and their
integration into multiscale methodologies. We address in detail below the
Theory-Modeling-Simulation framework on which chapters in this book are based.

1.1.1 Theory

A Theory is a set of axioms and interpretative procedures that constitute a predictive
mathematical description of the natural world. We will address ICMSE within the
context of the theories of (a) non-relativistic quantum mechanics (QM), (b) classical
mechanics, and continuum mechanics, (c) statistical mechanics and thermody-
namics, (d) classical thermodynamics, etc.

Particles described within the framework of QM obey the time-independent
Schrödinger equation and their behavior can be characterized through a physical
interpretation of its many-particle wave function solutions. The reformulation of
quantum mechanics theory in terms of electron density instead of wave functions
forms the foundation of density functional theory (DFT). DFT is motivated by the
Hohenberg-Kohn theorems [1] which state that the ground state of a many electron
system is uniquely determined by the electron density and that this density mini-
mizes an energy functional (a function of the spatially dependent density). For atom
and molecules which include many electrons, and hence for the general many
electron problem, DFT reduces the search for a three-dimensional wave function for
each electron to that of a single three-dimensional function (electron density) for a
given nuclear configuration or external potential.

Lagrange’s formalism of classical mechanics finds the trajectory of some particle
(position and velocity) in some potential as that which minimizes the action
(a temporal integral of the Lagrangian, the difference between the kinetic and
potential energy functions). Hamilton’s approach replaces, via a Legendre trans-
formation, position and velocities by positions and conjugated momenta as the
canonical variables. The Hamilton’s formalism constitutes a framework that can
provide a deep physical insight into the behavior of dynamical systems.

2 P.A. Deymier and K. Runge



The Hamiltonian expressing the energy of a system plays a central role in this
formalism. The extension of classical mechanics from assemblies of particles to
matter distributions and vector (displacement, force) and tensor (strain, stress) fields
leads to the theory of continuum mechanics. For instance, linear elasticity theory
addresses the deformation of solid continuum materials subjected to stress field that
relate linearly to the strain field.

The formalism of the classical theory of continuum mechanics is based on partial
differential equations (strain defined in terms of the gradient of displacement,
mechanical equilibrium condition expressed in terms of the divergence of the stress
field, etc.). The difficulty of defining partial derivatives at singularities such as
discontinuities in materials (surfaces, interfaces, etc.) limits the direct application of
this theory to materials exhibiting such discontinuous structural features. In con-
trast, the theory of peridynamics is a formulation of continuum mechanics based on
force and displacement fields and integral equations of these fields. The integral
equations of peridynamics are mathematically compatible with the structural dis-
continuities and singularities featured by most materials.

The theories of statistical mechanics and statistical thermodynamics aim at
explaining the physical properties of macroscopic systems based on the knowledge
of the behavior of their microscopic constituents (particles). QM and classical
mechanics provide a framework for the description of systems of particles but have
difficulties addressing large assemblies of interacting particles. Statistical theories
enable the scale up from microscopic to macroscopic systems where only average
values and fluctuations are observed. In the context of the fundamental concept of
ergodicity, at equilibrium, the time average of some quantity that varies along the
temporal trajectory of a dynamical system of particles is equivalent to a statistical
average over a large number of macroscopically identical systems (i.e. a so-called
ensemble). In that framework, one may consider the microcanonical ensemble
(macroscopic systems with same energy, volume and composition), canonical
ensemble (same temperature, volume and composition), and isothermal-isobaric
ensemble (same temperature, pressure, composition) among others.

The theory of classical thermodynamics is based on the principle of maximi-
zation of the entropy of an isolated system. All macroscopic thermodynamics state
variables are related through a fundamental equation. In the entropy representation
of the fundamental equation, the equilibrium state of the system is one that max-
imizes the entropy with respect to the unconstrained state variables. Other repre-
sentations of the fundamental equation are obtained through Legendre
transformations of the entropy form, namely the Helmholtz free energy, Gibbs free
energy, and enthalpy representations. The pertinent choice of these representations
is made depending upon the convenience of the chosen state variables and the
constraint they may be subjected to. The maximum entropy principle translates into
a minimization variational principle for these other representations.

1 Introduction 3



1.1.2 Model

A Model is a prescribed physical description of a real-world system or class of
systems formulated within the concepts of a Theory.

Within the framework of DFT, Kohn and Sham [2] have reduced the problem of
a many interacting electron system to the more tractable problem of a system
composed of non-interacting electrons evolving in an effective potential. This
effective potential includes any external potential (e.g. interactions with nuclei), the
electron-electron Coulomb interactions and the exchange and correlation interac-
tions. The latter two interactions are modeled via simplified exchange-correlation
functionals such as the local density approximation (LDA) that is based on the
exchange energy of the uniform electron gas. The kinetic energy is known for
non-interacting particles as their wave function can be represented as a Slater
determinant of orbitals. In ab initio molecular dynamics the forces acting on a set of
nuclei are calculated from the electron densities determined from DFT combined
with the nuclear (or ionic) repulsions.

In quantum statistical mechanics, all static properties and dynamic properties of
a system of particles in thermal equilibrium are specified from the thermal density
matrix. Using the closure conditions of quantum states, the partition function of this
system may be expressed in terms of very high temperature thermal density
matrices which can be approximated by Gaussian functions of position. This
approach parallels the path integral approach to describing quantum systems.
Approximate classical model Hamiltonian of systems of quantum particles results
from this approach, providing an isomorphism between classical mechanics models
and quantum systems. While the dynamics of the model classical system may not
be realistic, statistical averages (equivalently time averages, provided the ergodic
condition is satisfied) of quantities calculated from the classical Hamiltonian will be
representative of the quantum system.

Classical mechanics models of interacting particles use interatomic potentials to
describe the potential energy part of the classical Hamiltonian. The precision of
atomistic models is dependent on the ability of the governing interatomic
potential/force field to model the atomic interactions accurately, which can be
achieved by parameterizing the potentials to reflect the underlying electronic
effects. While equilibrium properties of materials can be successfully obtained from
empirical potentials they cannot be expected to accurately model systems that are
far away from equilibrium, such as when the systems are subjected to extreme
conditions, where interatomic charge polarization and transfer may become sig-
nificant. Thus potential formulations such as the ones based on chemical potential
equalization and the recently developed charge-transfer embedded atom method
(CT-EAM) and chemical environment dependent dynamic charge (EDD-Q)
potentials have become extremely useful for modeling interatomic forces away
from equilibrium [3]. Of particular interest are the EDD-Q formulations due to their
ability to be parameterized based on quantum chemical data in a straight forward
way.

4 P.A. Deymier and K. Runge



A phase field model represents the non-uniformity of polycrystalline or poly-
phase materials via one or more ad hoc order parameters (phase fields) supple-
mented by other fields such as compositional, stress/strain fields, etc. An order
parameter may model the grain orientation in a polycrystalline material or the
different phases in a polyphase material. In this model, interfaces are not atomically
sharp but modeled as diffuse continuous variations in an order parameter. The
interfacial energy relates to the gradient in the order parameter. The formulation of
the phase field model is then based on a free energy functional of the order
parameter and other state variable fields (a fundamental equation) that may repre-
sent the thermodynamics of the system of interest [4].

The critical difference between the peridynamics approach and other approaches
in classical continuum mechanics is that the former is formulated using integral
equations as opposed to derivatives of the displacement components, allowing for a
straight forward description of properties of materials without resorting to special
boundary conditions to avoid singularities [5, 6]. Displacements in the peridy-
namics formalism are driven by a force which is expressed as a spatial integral of a
force density. This force density is a function of the relative position between two
points in the continuum and of the relative displacement between these points. Solid
bodies in peridynamics are therefore modeled by the pairwise force density function
for the “bond” connecting any two points. Discontinuities are easily handled by
“cutting” the “bond” between two points across the discontinuity. The force density
function requires a small number of materials parameters as input (e.g. elastic
modulus, yield strength, critical interaction cutoff or stretch).

1.1.3 Simulation

A Simulation is the computational realization of a particular model. It consists of a
set of algorithms and rules for reliable, refine-able (in the sense of precision)
calculation of the properties of models. Improvements in the quality and reliability
of computed results are separable in this framework.

Simulation methods enable the sampling of the phase space of Hamiltonian-based
models, whether representing truly classical systems such as collections of particles
interacting via interatomic potentials or a classical model of quantum systems (Path
Integral Classical Isomorphism representation) or a quantum system. Both deter-
ministic and stochastic simulation methods can be used to propagate the system
through phase space. Molecular Dynamics (MD) is an example of a deterministic
approach whereby one investigates the intrinsic dynamics of the system by inte-
grating numerically in time the equations of motion. There exists a variety of
algorithms for the states of the system to march in time. Stochastic methods such as
Monte Carlo (MC) methods do not provide dynamical information but only evaluate
the configurations of the system. Transitions from one configuration to another are
driven by probabilistic evolution schemes such as a Markov process. This approach
is therefore also applicable to model systems that may not have intrinsic dynamics.
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The natural ensemble for the MDmethod is the microcanonical ensemble. Extension
of the microcanonical MD method to simulating the dynamics of a model system in
another ensemble (e.g. such as the canonical ensemble) requires the application of
constraints on its degrees of freedom i.e. on its trajectories (e.g. thermostating). In
that case, the dynamics of the system may be influenced by the constraint and one
may consider that one only evaluates realistically the configurational part of the
problem. Stochastic methods do not suffer from these constraints.

For equilibrium, variational methods are applied to the phase field free energy
functional, which is minimized with respect to its degrees of freedom: order
parameters and other state variable fields. For simulating time-dependent processes,
one establishes dynamical equations relating the rate of change of the order
parameters and state variables to the driving force (variational derivatives of the free
energy functional) through mobility coefficients. Details of these equations may
vary depending on the existence or not of conservation laws for the fields.
Stochastic fluctuations such as thermal fluctuations may be added by introducing
them in the dynamical equations stochastic terms.

The peridynamics model can be suitably discretized to model material proper-
ties, where the particle-to-particle (point-to-point in a continuum) interaction is
represented via the parameterized force density function. Numerical methods to
solve the classical equations of motion of each particle are used to drive the
dynamics of the model solid.

1.1.4 Additional Remarks

The quality and reliability of results obtained within the Theory-Modeling-
Simulation framework can be improved separately. For instance one can adopt a
more refined theory that will include a more realistic description of the physical or
chemical processes taking place in a natural system. This could be illustrated by
employing a quantum mechanical description of a molecular system in place of a
classical mechanics description of molecular forces. Another approach would be to
adopt a more refined model within a theory. For instance, within the context of
classical mechanics description of materials composed of collections of interacting
atoms, the utilization of three-body interatomic potentials may enable a better
prediction of mechanical properties compared to pair-wise additive potentials.
Independently, within a given theory and for a fixed model, one may improve the
simulation in two ways. The first one could involve the application of more accurate
solvers of differential equations or the use of a smaller time step in solving
numerically some equation of motion. The second may concern the adoption of a
better thermostat in a canonical ensemble MD simulation.

In no way should the Theory-Modeling-Simulation framework allow the
exploitation of offsetting errors by one or all of the three categories. What is done in
the simulation must not offset limitations implicit in the choices upstream.

6 P.A. Deymier and K. Runge



The Model must not “fix” the Theory by reintroducing features not in the theory.
The algorithms and rules in the Simulation must not offset the intrinsic limits of the
Model being treated.

Because separability of refinement is coupled with fidelity, the Theory-
Modeling-Simulation framework explicitly supports systematic, quantitative
exploration of the effects of empiricism. Convenient empirical assumptions can be
replaced by more realistic ones and the consequences quantified. Moreover, the
appraisal of computed data by visualization techniques is disciplined by explicit
knowledge of the chain of relationships and assumptions contained in the Model
and the Simulation.

1.2 Multiscale Modeling and Simulation

The Integrated Computational Materials Science and Engineering (ICMSE) para-
digm captured in the Theory, Modeling, and Simulation triad is integrated into
multiscale approaches.

1.2.1 Multiscale Approaches

To this point we have not mentioned the multiscale aspects of the Theory,Modeling
and Simulation paradigm explicitly. For materials science, this is an issue of the
desired level of fundamental understanding. Consider the simulation of a material
from a quantum mechanical perspective. The limitations of computing power
imposed by current computer platforms enable the simulation of systems containing
at most a few hundred atoms. This means that this type of simulation cannot
account for phenomena with long-range characteristics. Newtonian atomistic
models simulated by MD can handle the simulation of systems that may contain
billions of atoms thus permitting the investigation of phenomena at scales larger
than those possible by a quantum description. However, the reliance on classical
interatomic potentials makes the details of the very shortest scale of the atomic bond
and related electronic phenomena inaccessible. Even with billions of atoms, very
long range phenomena are inaccessible to MD simulations. Simulations of con-
tinuum models open a window on very long range scales but distance themselves
from phenomena resulting from the discrete nature of matter. While, our argument
above is based on the inability of some type of simulation or model to address the
complete range of spatial scales that may be needed to truthfully describe a natural
system, similar observations can be made concerning temporal scales. For instance,
current computing power limits the time over which the dynamics of an atomistic
system can be simulated. This makes long-time scale phenomena inaccessible.
Again, simulations of coarser models may permit the investigation of a system over
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much longer periods of time without however providing access to the detailed
processes taking place at very short time scales.

The inability to handle large systems over large periods of time can be viewed as
a Simulation limitation, not a Model limitation. However, as we saw, the adoption
of a different Model, for example a MD simulation using some interatomic potential
versus a quantum level simulation, might be helpful in circumventing the
Simulation limitations. This choice will have a cost though in the inability, for
instance, to handle the electronic phenomena taking place at the level of the bonds.
This is a Model limitation. Development of multiscale models and the corre-
sponding simulations is a direct consequence of these Model limitations.

In the Theory-Modeling-Simulation framework, a multiscale model can be
defined as one in which more than one theory is incorporated, each corresponding
to one of several physically important scales involved in the model.

1.2.2 Serial and Concurrent Multiscale Modeling
and Simulation

Most of the modern simulation methods for coupling length scales can be char-
acterized as either serial or concurrent. Within serial methods, a set of calculations
at a fundamental level (small length scale) is used to evaluate parameters as input
for a more phenomenological model that describes a system at longer length scales.
For example the Quasi-continuum (QC) method is a zero temperature technique
with a formulation based on standard continuum mechanics (e.g. Finite Element
(FE) method) with the additional feature that the constitutive equations are drawn
from calculations at the atomic scale [7–10]. In contrast, concurrent methods build
around the idea of describing the physics of different regions of a material with
different models and linking them via a set of boundary conditions. The archetype
of concurrent methods divides the space into atomistic regions coupled with a
continuum modeled via FE [11, 12]. Coarse graining has been proposed as a mean
to couple seamlessly a molecular dynamics (MD) region to a FE mesh [13].
Coarse-grained MD produces equations of motion for a mean displacement field at
the nodes of a coarse-grained mesh partitioning the atomistic system. Other algo-
rithms that allow the coupling between atomistic and continuum regions have been
proposed [14–17]. The fundamental issue in multiscale modeling and simulation
relates to the nature of the “interface” between the models that are used to bridge
their individual ranges of scales. All models must be connected as seamlessly as
possible. This is the challenge of “scale-parity” simulation. Successful multiscale
modeling and simulation requires treatment of all the relevant scales even-handedly.
Scale-parity requires that no one scale be favored. This has led to the development
of an approach to multiscale modeling called “consistent embedding” [18].

8 P.A. Deymier and K. Runge



1.2.3 Consistent Embedding

The principle of consistent embedding dictates that the information that comprises a
model at a larger spatial or longer time scale be compatible with the model used at a
smaller or shorter scale. This principle is essential to the development of predictive
theory and modeling, as the materials that exist on either side of a multiscale
interface must be physically consistent. For example, if we wish to look at the
phenomenon of fracture, then the stress-strain relationship for the model at the
shorter length scale should, at the very least, display the same small strain behavior,
Young’s modulus, as the model used at the longer length scale. Enforcing this kind
of constraint, that the Young’s modulus of the quantum chemical and atomistic
models be equivalent, up to some controllable error, is an example of consistent
embedding. Other criteria can be developed, based on the physical properties being
modeled, which improve the likelihood that emergent behavior of larger systems is
grounded in the theoretical description of the smaller system.

The consistent embedding requirement has led to the development of techniques
(e.g. based on wavelet analysis) that enable the mathematically rigorous con-
struction of a multiscale model which range of scales is the union of the scales of
the individual models that are integrated [19–25]. These techniques are applicable
to serial and current methods and to bridging not only spatial but also temporal
scales.

1.2.4 Multi-theory and Multi-model Approaches

We have addressed the concept of mulitscale approaches in computational simu-
lations in the previous sections. We wish to clarify this concept in the context of our
Theory-Modeling-Simulation framework by introducing the additional concepts of
multi-theory and multi-model approaches.

The three differing concepts of multi-theory, multi-model, and multiscale
approaches can occur singly or in combination. An example of a multi-theory
approach would be the usual description of quantum chemical theory where the
electrons are taken to behave according to quantum mechanics, while the nuclei, or
ions, are taken to behave according to classical mechanics.

Another example of multi-theory approach results from the dynamical treatment
of some classical mechanics system composed of particles modeled with some
interatomic potential model. Using an ergodic sampling of configuration space, the
system is then being studied under the rubric of statistical mechanics or thermo-
dynamics, at the level of theory, in addition to the classical mechanics theory that
was at the foundation of the model.

Following these examples a little further, we can consider a multi-theory,
multi-model description of a material. If considered in the context of dynamics, the
system can be comprised of (a) quantum mechanical electrons described within the

1 Introduction 9



framework of DFT and modeled with some specific choice of an approximate
density functional, and classical mechanical ions modeled using some interatomic
potential. This system falls into the combined theories of QM, Classical Mechanics
and Statistical Thermodynamics as well as two distinct models.

A single theory but multi-model example would consist of the description of a
system of different particles (say electrons and ions) both in the framework of the
theory of QM but the electrons being modeled with DFT and the ions modeled with
an approximate classical Hamiltonian of systems of quantum particles derived from
the path integral approach.

It is also possible to consider multiscale simulation versions of multi-theory,
multi-model approaches. An example might be the use of atomistic and continuum
mechanical theories to describe the linear mechanical response of a material (i.e.
elastic behavior) in the context of a dynamical simulation. Some portion of the
material may be modeled as a combination of classical ions and quantum electrons
as illustrated in previous examples while another portion of the same system might
be modeled as a set of mesh points using continuum mechanics. The theories used
here include quantum mechanics, classical atomic and continuum classical
mechanics as well as statistical mechanics. This simulation would then be based on
multiple theories captured by multiple models working at distinctive
spatio-temporal scales such as a density functional model of the electrons, a clas-
sical Hamiltonian model of the ions and linear elastic model of the continuum. The
quantum model may be solved statically within the Born-Oppenheimer approxi-
mation (electrons always in their ground state relative to atomic motions), while the
dynamics of the atomistic region is simulated with MD schemes, the elastic medium
is dynamically simulated with a finite difference scheme in the time domain. This
type of multi-theory, multi-model and multiscale simulations will be addressed in
details in Chap. 6.
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Chapter 2
Path Integral Molecular Dynamics
Methods

Pierre A. Deymier, Keith Runge, Ki-Dong Oh and G.E. Jabbour

Abstract We present the aspects of the path integral molecular dynamics (PIMD)
method relative to (a) its theoretical fundamental principles, (b) its applicability to
model quantum systems and (c) its implementation as a simulation tool. The PIMD
method is based on the discretized path integral representation of quantum
mechanics. In this representation, a quantum particle is isomorphic to a closed
polymer chain. The problem of the indistinguishability of quantum particles is
tackled with a non-local exchange potential. When the exact density matrix of the
quantum particles is used, the exchange potential is exact. We use a high tem-
perature approximation to the density matrix leading to an approximate form of the
exchange potential. This quantum molecular dynamics method allows the simula-
tion of collections of quantum particles at finite temperature. Our algorithm can be
made to scale linearly with the number of quantum states on which the density
matrix is projected. Therefore, it can be optimized to run efficiently on parallel
computers. We apply the PIMD method to the electron plasma in 3-dimension. The
kinetic and potential energies are calculated and compared with results for similar
systems simulated with a variational Monte Carlo method. Both results show good
agreements with each other at all the densities studied. The method is then use to
model the thermodynamic behavior of a simple alkali metal. In these simulations,
ions and valence electrons are treated as classical and quantum particles, respec-
tively. The simple metal undergoes a phase transformation upon heating.
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Furthermore, to demonstrate the richness of behaviors that can be studied with the
PIMD method, we also report on the metal to insulator transition in a hydrogenoid
lattice. Finally, in previous studies of alkali metals, electrons interacted with ions
via local pseudo-potentials, an extension of the method to modeling electrons in
non-local pseudo-potentials is also presented with applications.

2.1 Introduction

Modeling and simulation have become a vital part of materials research. Modeling
and simulation techniques are maturing to the point where they offer hope for a
practical and reliable approach for the study of real materials. The development of
materials models has evolved from the infancy of specific empirical descriptions, to
highly accurate and sophisticated representations based on first principle calcula-
tions. In the field of ab initio molecular dynamics method, the method of Car and
Parrinello [1, 2], based on the Density Functional Theory (DFT) has enjoyed a great
popularity over recent years. DFT molecular dynamics has been employed to
investigate a very large number of problems from condensed matter to chemistry to
biology [3]. In contrast, early applications of molecular dynamics simulations using
the discretized path-integral [4] representation of quantum particles have been
limited mostly to the simulation of systems containing a small number of quantum
degree of freedom (such as in the solvation of a single quantum particle in a
classical fluid [5]) or to problems where quantum exchange is not dominant [6]. We
should also mention the path-integral based method of Alavi and Frenkel that
allows for the calculation of the grand canonical partition function of fermion
systems [7]. With this method the fermion sign problem in the evaluation of the
partition function is solved exactly in the case of non-interacting fermions. When
combined with DFT, this method provides a means of doing ab initio molecular
dynamics of systems with interacting high temperature electrons [8].

The modeling and simulation of fermion systems by path-integral Monte Carlo
method [9–14] have opened the way toward the implementation of a path integral
basedfinite temperature ab initiomolecular dynamicsmethod (PIMD). In this chapter,
we describe such a molecular dynamics method applicable to the simulation of
many-fermion systems at finite temperatures. The method is based on (a) the dis-
cretized path integral representation of quantum particles as closed polymeric chains
of classical particles (or beads) coupled throughharmonic springs [4], (b) the treatment
of quantum exchange as crosslinking of the chains [15], (c) the non-locality of
crosslinking (exchange) along the imaginary time chains [9–11], and (d) the restricted
path integral [12, 16, 17] to resolve the problem of negative weights to the partition
function resulting from the crosslinking of even numbers of quantum particles.

The PIMD presented here is applied to the description of one-component
plasma, which consists of the electron gas with a uniform neutralizing background,
at the border of the degenerate and semi-degenerate regimes where the ratio of the
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temperature to the Fermi temperature (TF) * 0.1. The electron plasma is naturally
the first focus of the application of the PIMD method because it is the simplest
many-body fermion system. It has been extensively studied via path-integral,
variational, and diffusion Monte Carlo methods since the calculation of the equation
of states of a Fermi one-component plasma. The behavior of the interacting electron
gas is a problem of fundamental practical importance as one uses its properties in
the density functional theory. The one-component plasma is also a good prototype
system as there exists a large amount of theoretical and numerical data concerning
its equation of state. The zero-temperature perturbative expansion of the energy of a
three-dimensional uniform electron plasma in the high density limit, where rs « 1
(rs = r/ao where r is the electron sphere radius and ao is the Bohr radius; the electron

sphere radius is defined by r ¼ 4
3 p

Nel
V

� ��1=3
where Nel/V is the electron density),

was calculated theoretically quite some time ago [18]. Accurate variational Monte
Carlo calculations have extended the zero-temperature equation of states of the
degenerate Fermi one-component plasma to a wide range of lower densities from
rs = 1 to 500 [19, 20]. The exchange-correlation free energy has been subsequently
calculated to encompass the full range of thermal degeneracy [21–23]. The first
PIMD calculations of the properties of the electron plasma at finite temperature and
metallic density have been reported in [24, 25].

The application of the PIMD method to alkali metals is a natural extension of the
work on the electron plasma. The PIMD method was applied to the study of a
simple alkali metal, namely potassium K [26–28]. An alkali metal was chosen
because (1) it is a prototype free-electron metal, (2) there exist experimental data for
the pair correlation function of a liquid potassium [29] and the power spectrum of
crystalline potassium at 9 K is known [30], (3) DFT molecular dynamics has had
problems with metals when electrons leave the Born Oppenheimer surface and
therefore violate one of the basic assumption of the method. Note that this problem
had been approached technically in an ad hoc manner with the introduction of
appropriate thermostats for the electronic and ionic degrees of freedom [31]. In the
simple metal case, the discretized restricted path integral representation of electron
is the same as that of the electron plasma. Classical ionic degrees of freedom
representing potassium ions are added to the model. The electron degrees of free-
dom interact with the ionic degrees of freedom via empty core pseudo-potentials. It
was shown that the PIMD successfully modeled the body centered crystal structure
of the solid state of potassium at low temperature. The PIMD method had also the
ability of simulating the melting transition of potassium. In particular, the PIMD
method enables the study of the response of the electronic structure to the loss of
long range order in the atomic structure in the form of localization.

Electronic transitions such as the Metal to Insulator (MI) transition are chal-
lenging phenomena for computational methods. The MI transition (MIT) is
important for several materials such as transition metal oxides [32, 33]. The
correlation-induced MI transition, known as Mott transition, is of fundamental
importance in condensed matter theory [34]. The transition results from a compe-
tition between the electrons’ potential energy that tends toward localization and
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kinetic energy that favors delocalization. This competition is captured in a canonical
lattice model for correlated electrons, namely the half-filled Hubbard model [35].
The PIMD method has been utilized to characterize the transition of the correlated
electronic structure of a half-filled expanded three-dimensional hydrogenoid
body-centered cubic lattice at finite temperatures [36]. Starting from a paramagnetic
metallic state with electron gas character, it was found that bound electrons formed
upon expansion of the lattice. The bound electrons were spatially localized with their
center for the motion of gyration located on ionic positions. The region of coexis-
tence of bound and unbound states in the temperature-density plane was reminiscent
of that associated with a first-order transition. At constant temperature, the number of
bound electrons increased monotonously with decreasing density and the width of
the region of coexistence narrowed with increasing temperature.

To complete this introduction concerning the development and applications of
the PIMD method, one should also mention the extension of the path integral
formalism to account for the non-locality of pseudo-potentials [37].

2.2 Theoretical Framework and Model Development

In this section, we establish the theoretical framework for the PIMD method. This
theoretical framework leads to the development of classical-like models of quantum
particles.

2.2.1 Feynman Path Integral

2.2.1.1 Partition Function for a Single Particle

Since Feynman [38] introduced the path integral of a quantum system, it has been
well developed [39–41] and applied to many-body systems [5, 12, 15, 24, 25, 42].
In quantum statistical mechanics, all static properties and dynamic properties of a
system in thermal equilibrium are specified from the thermal density matrix. If we
work in the canonical ensemble, which is a system of fixed number of particles in a
fixed volume in equilibrium with a thermal reservoir, the probability of observing a
state with energy E is proportional to e�E=kBT where kB is Boltzmann’s constant and
T is the temperature. Let us consider a single particle system governed by the
Hamiltonian operator bH . The partition function of this system may be written

Z ¼ Tre�bbH
¼
Z

dr rje�bbH jr� � ð2:1Þ

16 P.A. Deymier et al.



where b is 1=kBT and rj i is the Eigenstate of bH . In the path integral formalism for
many-body systems, we normally represent the matrix element in the partition
function as a density matrix, q ri; rj; b

� �
. The density matrix is defined as

q ri; rj; b
� � ¼ hrije�bbH jrji ð2:2Þ

Then the partition function can be rewritten as the trace of the density matrix

Z ¼ Z
drq r; r; bð Þ ð2:3Þ

Before proceeding with the development of approximate forms for the density
matrix, we will first consider the matrix element in real time, t, for physical clarity.
By substituting i tf � ti

� �
=�h for b, the density matrix q ri; rf ; b

� �
for a particle gov-

erned by the Hamiltonian, bH , becomes

K rf ; tf ; ri; ti
� � ¼ rf je� i

�h
bH tf�tið Þjri

� �
ð2:4Þ

where ti and tf are an initial time and a final time, respectively. The matrix element
in real time, K rf ; tf ; ri; ; ti

� �
, which is the so called Kernel [4], is a solution of the

real time dependent Schrödinger Equation,

�h
i
@K f ; ið Þ

@tf
¼ bHfK f ; ið Þ tf [ ti ð2:5Þ

wherein the Hamiltonian bHf operates on the variables rf and tf only. By analogy, the
density matrix in imaginary time is a solution of an equation of the form

� @q
@b

¼ bHq ð2:6Þ

Equation (2.6) is a diffusion like equation. This fact will become important when
we introduce the restricted path integral and in particular, when we consider
boundary conditions on the density matrix. The kernel or propagator K rf ; tf ; ri; ti

� �
obeys the superposition principle, since it is an exact solution of the Schrödinger
equation in real time. By the superposition principle, we mean that

K rf ; tf ; ri; ti
� � ¼ Z drK rf ; tf ; r; t

� �
K r; t; ri; tið Þ ð2:7Þ

at any time t, where ti < t < tf. The basic idea is to break a finite time interval into
infinitesimal time steps and then evaluate the matrix element of the propagation
operator for each step. Equation (2.7) indicates that one may calculate the matrix
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element to any desired degree of accuracy for infinitesimal time interval, although
the matrix element, or the kernel K rf ; tf ; ri; ti

� �
; cannot be calculated exactly for a

finite time interval, tf – tt In other words, we calculate a matrix element only for
each infinitesimal time interval after breaking a finite time into infinitesimal
intervals. The value for the finite time interval can be obtained from the results of
the evaluations for all infinitesimal time intervals. Similarly, we may evaluate the
thermal density matrix q ri; rj; b

� �
with appropriate accuracy if we divide a finite

temperature term ß in P infinitesimal intervals, where P ! 1:
To evaluate the thermal density matrix, we will consider a set of P different

configurational states, ri [ ; i ¼ 1;Pjf g, where each state is an Eigenstate of bH .
With the relation

e�bbH ¼ e�
bbH
P

� �P

;

or

e�bbH ¼ e��bHe��bH . . .;
where � ¼ b=P, the partition function becomes

Z ¼
Z

dr rje��bHe��bH � � � e��bH jr� �
:

Using the closure relation of the Eigenstates jrii of bH ;Z
drijrii rijh ¼ 1

and projecting the particle on (P-1) intermediate states, the partition function can be
written as

Z ¼
Z

dr1dr2. . .drP r1je��bH jr2� �
r2je��bH jr3� �

. . . rPje��bH jrPþ1

� �
ð2:8Þ

or

Z ¼
Z

dr1dr2. . .drP q r1; r2; �ð Þq r2; r3;�ð Þ. . .q rP; rPþ1; �ð Þ ð2:9Þ

where r1 ¼ rPþ1 indicates complete closure. Figure 2.1 illustrates a complete
necklace of a single particle for P = 4.

Each matrix element or each density matrix in the above relation represents a
propagator from one state to another state for infinitesimal imaginary time. In other
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words, the density matrix of a single particle is connected to look like a polymeric
necklace consisting of P beads. To evaluate the density matrix of a single particle for
infinitesimal imaginary time, we assume PT is very large. Thenwe can adopt Trotter’s
first order approximation [43]. According to the Trotter formula [43–45], we have

e�bbH ¼ e�b bTþbV� �
¼ lim

P!1
e�

bbT
P e�

bbV
P

� �P

ð2:10Þ

and

e�� bTþbV� �
� e��bT e��bV ; for small � ð2:11Þ

where the Hamiltonian bH ¼ bT þ bV . bT and bV are a kinetic energy operator and a
potential energy operator, respectively. With (2.11), we can approximate the exact
density matrix by the product of the density matrix for bT and the density matrix forbV . The error of this approximation is of order of �2.

Now we are going to evaluate the density matrix for infinitesimal imaginary time
step � ¼ b=P. Let us assume that the Hamiltonian bH ¼ bT þ bV , where bT ¼
�bp2=2m and bV is a local potential energy operator. Introducing a complete set of
momentum states, jpni and using (2.11), the density matrix becomes

q rn; rnþ1; �ð Þ ¼ rnje��bH jrnþ1

� �
¼
Z

dpn rnjpnh i pnje��bH jrnþ1

� �
¼
Z

dpn rnjpnh i pnje��bp2=2me��bV jrnþ1

� �
þO �2ð Þ ð2:12Þ

After applying the momentum operator to jpni and the local potential operator to
jrn þ 1i, we then obtain

Fig. 2.1 Necklace
representation of a single
particle for P = 4. The number
labels indicates the different
imaginary times
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q rn; rnþ1; �ð Þ � q0 rn; rnþ1; �ð Þe��V rnþ1ð Þ ð2:13Þ

In (2.13) we define q0 rn; rnþ1; �ð Þ as the density matrix of a free particle (also
called the free particle propagator), as

q0 rn; rnþ1; �ð Þ ¼ rnje��bT jrnþ1

� �
ð2:14Þ

or

q0 rn; rnþ1; �ð Þ ¼
Z

dpn rnjpnh i pnjrnþ1h ie��p2n=2m ð2:15Þ

Using the Gaussian integral, the free particle propagator becomes

q0 rn; rnþ1; �ð Þ ¼ m

2p��h2

� �3
2

exp �m rn � rnþ1ð Þ2
2��h2

 !
ð2:16Þ

We give more details of the derivation of (2.16) in the Appendix 1. From (2.9)
with � ¼ b=P, the partition function of a single particle can be written as

Z ¼
Z YP

n¼1

� drnq rn; rnþ1;
b
P

� �

�
Z YP

n¼1

� drnq0 rn; rnþ1;
b
P

� �
e��V rnþ1ð Þ

ð2:17Þ

or

Z � m

2p��h2

� �3P=2Z YP

n¼1
�drne�bVeff ð2:18Þ

Veff r1; r2; . . .; rPð Þ ¼
XP

n¼1
� Pm

2�h2b2
rn � rnþ1ð Þ2þ 1

P
V rnþ1ð Þ ð2:19Þ

The (*) on the product and the summation indicate that rPþ1 ¼ r1: The partition
function of (2.18) is similar to a classical partition function. The first term of the
effective potential, Veff , originates from the kinetic energy of a particle. We may
interpret this term as a harmonic type interaction between the nearest neighbor
beads in a closed necklace. The coupling constant is C1 ¼ Pm=�h2b2.
Equation (2.19), therefore, established a classical model of a quantum particle.

In the high temperature limit, the necklace of P beads collapses to a single point
so that a quantum particle becomes a classical particle. The classical partition
function is valid in the limit � ¼ b=P ! 0. The classical isomorphism is therefore
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more accurate at high temperature, T, and for a large number of P. At low tem-
perature, the quantum particle possesses some spatial extent associated with its de
Broglie wavelength.

2.2.1.2 Systems of Interacting Particles Obeying Maxwell-Boltzmann
Statistics

In the previous section, we discussed the thermal density matrix and the partition
function of a single particle in a canonical ensemble. Here, we will generalize them
to systems containing many quantum particles. We will attach particular attention to
the contrast between the discretized path integral form of the partition function of
particles obeying Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac statistics.

The partition function for a N-body system may be written as

Z ¼
Z

dr1. . .drN q r1; . . .; rN ; bð Þ ð2:20Þ

where the thermal density matrix of N distinguishable particles, that are obeying
Maxwell Boltzmann statistics, is defined by

q r1; . . .; rN ; bð Þ ¼ r1. . .rN je�bbH jr1. . .rN� �
ð2:21Þ

with jr1 � � � rNi being an Eigenstate of bH . We will assume that the Hamiltonian of
the N-particle system takes the form

bH ¼
XN

i¼1

bp2i
2m

XN

i¼1
b; rið Þ þ 1

2

XN

i[ j
bvij ð2:22Þ

with bvij ¼ bv ri � rj
� �

: b; rið Þ is an external potential acting on the ith particle and bvij
is a pair potential describing the interactions between particles i and j. In order to
evaluate the partition function, let us discretize the density matrix by inserting (P-1)
intermediate states for each particle.

With the property of completeness of the Eigenstates jr1 � � � rNi of bH ; the density
matrix becomes

r1. . .rN je�bbH jr1. . .rN� �
¼ r1. . .rN je��bHe��bH . . .e��bH jr1. . .rN� �
¼
Z YP

v¼1

YN
n¼1

dr vð Þ
n

YP
k¼1

� r kð Þ
1 . . .r kð Þ

N je��bH jr kþ1ð Þ
1 . . .r kþ1ð Þ

N

� �
ð2:23Þ
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In (2.23), the subscript and superscript of r kð Þ
i denote the kth element (or

so-called bead) of the necklace of the ith electron. For the sake of convenience, we

will use a new notation, jRi ¼ jr1 � � � rNi and jR kð Þ�¼ jr kð Þ
1 r kð Þ

2 � � � r kð Þ
N

E
. Using the

Trotter approximation and applying the potential operator, we may write the
infinitesimal density matrix as

RðkÞ e��bH				 				Rðkþ1Þ
� �

� RðkÞ e��bT e��bV				 				Rðkþ1Þ
� �

¼ RðkÞ e��
PN

i¼1

p̂2
i
2me

��
PN

i¼1
b;ðriÞþPN

i¼1
bvðri�rjÞ


 �					
					Rðkþ1Þ

* +

¼ RðkÞ e��
PN

i¼1

p̂2
i 2m

				 				Rðkþ1Þ
� �

exp ��
XN
i¼1

;ðrðkÞi Þ þ
XN
i[ j

v rðkÞi � rðkÞi


 � !( )
ð2:24Þ

The term R kð Þje��
Pbp2i =2mjR kþ1ð Þ

D E
in (2.24) is a free particle propagator of N

distinguishable particles. If we use the expression for the free particle propagator for
a single particle, (2.16), we have

q0 R kð Þ;R kþ1ð Þ; �

 �

� R kð Þje��
PN

i¼1

bp2
i

2mjR kþ1ð Þ
* +

¼
Z YN

n¼1

dp kð Þ
n R kð Þjp kð Þ

1 . . .p kð Þ
N

D E
p kð Þ
1 . . .p kð Þ

N je��
PN

i¼1

bp2
i

2mjR kþ1ð Þ
* +

¼
Z YN

n¼1

dp kð Þ
n R kð Þjp kð Þ

1 . . .p Kð Þ
N

D E
p kð Þ
1 . . .p kð Þ

N jR kþ1ð Þ
D E

e
��
PN

i¼1

p
ðkÞ2
i
2m

¼ m

2p��h2

� �3N=2

exp �
XN
i¼1

m r Kð Þ
i � r kþ1ð Þ

i


 �2
2��h2

0B@
1CA

ð2:25Þ

If we repeat the evaluation of an infinitesimal density matrix over all interme-
diate states, the partition function of the N-body system can be written as

Z � C1

2

� �3NP=2Z YP

i¼1

YN

k¼1
dr kð Þ

i e�b V1þV2ð Þ ð2:26Þ

where
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V1 ¼ C1

2

XP

k¼1
�
XN

i¼1
r kð Þ
i � r kþ1ð Þ

i


 �2
ð2:27Þ

and

V2 ¼ 1
P

XP

k¼1

XN

i¼1
; r kð Þ

i


 �
þ 1
P

XP

k¼1

XN

i[ j
v r kð Þ

i � r kð Þ
j


 �
ð2:28Þ

The effective potential, V1 þ V2, of the N-body system in absence of quantum
exchange is similar to the effective potential of one-quantum particle system. V1

represents the harmonic potential which corresponds to interactions between the
first neighbors in the closed necklaces. V2 is nothing but the potential energy
resulting from the external field and the particle/particle interactions.
Equations (2.27) and (2.28) establish an isomorphism between a system of inter-
acting quantum particles evolving in some external potential field and a classical
system of separate necklaces composed of bead connected via harmonic springs.
Beads with the same label in the different necklaces interact with each other and
evolve in the same external potential.

2.2.1.3 Two-Electron System

In the previous section, we have established an isomorphism between a classical
partition function and a path integral of N distinguishable particles. To extend this
to many-fermion (and many-boson) systems, we first investigate a system of two
electrons.

Subsequently, we will generalize the system to N indistinguishable fermions (or
bosons).

Since identical particles cannot occupy the same state by the Pauli exclusion
principle, the total wave function of a two-electron system should be antisymmetric
upon exchange between electrons. Using this fact, we will introduce a new space in
order to represent a state of two indistinguishable fermions. The new space is
defined as

r1r2gj ¼ 1ffiffiffi
2

p jr1r2ið � jr2r1i ð2:29Þ

with one particle in state r1 and one particle in state r2. The closure relation of this
space is

1
2

Z
dr1dr2jr1r2gfr1r2j ¼ 1 ð2:30Þ

2 Path Integral Molecular Dynamics Methods 23



The density matrix of the 2-electron system can be written as

q r1; r2; r
0
1; r

0
2; b

� � ¼ r1; r2jf e�bbH 				r01; r02
 ð2:31Þ

If we consider an intermediate state r001r
00
2


		 using the closure relation, we have a
convolution relation for two identical particles such that

q r1; r2; r
0
1; r

0
2; b

� � ¼ Z dr001dr
00
2 q r1; r2; r

00
1 ; r

00
2 ; b=2

� �
q r001 ; r

00
2 ; r

0
1; r

0
2; b=2

� � ð2:32Þ

We recall that the partition function is the trace of the density matrix and

Z ¼
Z

dr1dr2q r1; r2; r1; r2; bð Þ ð2:33Þ

Using the convolution relation, (2.32), for (P-1) intermediate states in imaginary
time, the partition function now becomes

Z ¼
Z YP

v¼1
dr vð Þ

1 dr 2ð Þ
2

YP

k¼1
q r kð Þ

1 ; r kð Þ
2 ; r kþ1ð Þ

1 ; r kþ1ð Þ
2 ; �


 �
ð2:34Þ

where ri ¼ r 1ð Þ
i ¼ r Pþ1ð Þ

i with i ¼ 1; 2; that is, each electron forms a closed
necklace with P nodes. Let us evaluate an infinitesimal element of the density
matrix with (2.29).

q r kð Þ
1 ; r kð Þ

2 ; r kþ1ð Þ
1 ; r kþ1ð Þ

2 ; �

 �
¼ 1

2
r kð Þ
1 r kð Þ

2

D
� r kð Þ

2 r kð Þ
1

			D			
 �
e��bH r kþ1ð Þ

1 r kþ1ð Þ
2

E			 � r kþ1ð Þ
2 r kþ1ð Þ

1

E			
 �� �
¼ 1

2
r kð Þ
1 r kð Þ

2

			e��bH r kþ1ð Þ
1 r kþ1ð Þ

2

			� ��
þ r kð Þ

2 r kð Þ
1

			e��bH r kþ1ð Þ
2 r kþ1ð Þ

1

			� �
� r kð Þ

1

D
r kð Þ
2

			e��bH r kþ1ð Þ
2 r kþ1ð Þ

1

E			 � r kð Þ
2 r kð Þ

1

			e��bH r kþ1ð Þ
1 r kþ1ð Þ

2

E			� �
ð2:35Þ

To evaluate the last terms of (2.35) including the cross terms between particles,
we will consider a general case.

r kð Þ
a r kð Þ

b

D 			e��bH 				r kþ1ð Þ
c r kþ1ð Þ

d

E
� r kð Þ

a r kð Þ
b

			D
e��bT e��bV r kþ1ð Þ

c r kþ1ð Þ
d

E			
¼ r kð Þ

a r kð Þ
b

			e��
Pbp2

i =2m
			r kþ1ð Þ

c r kþ1ð Þ
d

E
e��V r kþ1ð Þ

c r kþ1ð Þ
dð Þ

ð2:36Þ
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The term in (2.36), r kð Þ
a r kð Þ

b

D 			e��
Pbp2i =2m			r kþ1ð Þ

c r kþ1ð Þ
d

E
; is a density matrix of a

free particle propagators, which can be evaluated exactly in the same way as for the
classical particles obeying Maxwell-Boltzmann statistics. With the results of
Appendix 1, we have

r kð Þ
a r kð Þ

b

			e��
Pbp2

i =2m
			r kþ1ð Þ

c r kþ1ð Þ
d

D E
¼ C1

2

� �3N=2

e�C2 r kð Þ
a �r kþ1ð Þ

cð Þ2þ r kð Þ
b �r kþ1ð Þ

dð Þ2
�� 

ð2:37Þ

Equation (2.37) shows that

r kð Þ
a r kð Þ

b

			e��
Pbp2

i =2m
			r kþ1ð Þ

c r kþ1ð Þ
d

D E
¼ C1

2

� �3N=2

e�C2 r kð Þ
a �r kþ1ð Þ

cð Þ2þ r kð Þ
b �r kþ1ð Þ

dð Þ2
�� 

ð2:38Þ

If we consider a symmetric potential, such as a pair-wise additive central
potential, (2.35) can be simplified as

q r kð Þ
1 ; r kð Þ

2 ; r kþ1ð Þ
1 ; r kþ1ð Þ

2 ; �

 �

¼ r kð Þ
1 r kð Þ

2 je��bH jr kþ1ð Þ
1 r kþ1ð Þ

2

� �
� r kð Þ

1 r kð Þ
2 je��bH jr kþ1ð Þ

2 r kþ1ð Þ
1

� �
ð2:39Þ

From (2.34–2.39), the partition function of the two electrons finally becomes

Z ¼ C1

2

� �3NP=2Z YP
v¼1

dr vð Þ
1 dr vð Þ

2

YP
k¼1

e�bC0 r kð Þ
1 �r kþ1ð Þ

1ð Þ2þ r kð Þ
2 �r kþ1ð Þ

2ð Þ2
� ��

�e�bC0 r kð Þ
1 �r kþ1ð Þ

2ð Þ2þ r Kð Þ
2 �r kþ1ð Þ

1ð Þ2
� ��

e�b1
PV

kð Þ
2

ð2:40Þ

The term in braces in (2.40) is representative of an exchange process between the
two electrons as shown in the Fig. 2.2.

By factoring the first term out of { } in (2.40), we have

fg ¼ e�bC0 r kð Þ
1 �r kþ1ð Þ

1ð Þ2þ r kð Þ
2 �r kþ1ð Þ

2ð Þ2
� �

� 1� e�bC0 r kð Þ
1 �r kþ1ð Þ

2ð Þ2� r kð Þ
1 �r kþ1ð Þ

1ð Þ2
� �

þ r kð Þ
2 �r kþ1ð Þ

1ð Þ2� r kð Þ
2 �r kþ1ð Þ

2ð Þ2
� �� �

:
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For convenience, we may rewrite this term by considering the product terms as

YP
k¼1

fg ¼
YP
k¼1

e�bC0 r kð Þ
1 �r kþ1ð Þ

1ð Þ2þ r kð Þ
2 �r kþ1ð Þ

2ð Þ2
� �

�
YP
k¼1

det E k;kþ1ð Þ

 �

¼ exp �bC0

X2
i¼1

XP
k¼1

r kð Þ
i � r kþ1ð Þ

i


 �2 !
�
YP
k¼1

det Ek;kþ1
� � ð2:41Þ

with

det E k;kþ1ð Þ

 �

¼ 1 e�bC0 r kð Þ
2 �r kþ1ð Þ

1ð Þ2þ r kð Þ
2 �r kþ1ð Þ

2ð Þ2
� �

e�bC0 r kð Þ
2 �r kþ1ð Þ

1ð Þ2þ r kð Þ
2 �r kþ1ð Þ

2ð Þ2
� �

1

					
					

From (2.40) and (2.41), the partition function of the two-electron system
becomes

Z ¼ C1

2

� �3NP
2 Z YP

v¼1

dr vð Þ
1 dr vð Þ

2 exp �bC0

X2
i¼1

XP
k¼1

r kð Þ
i � r kþ1ð Þ

i


 �2 !

�
YP
k¼1

det E k;kþ1ð Þ

 �

e�bV kð Þ
2 =P ð2:42Þ

We note that the density matrix of two electrons estimated between two infin-
itesimally close imaginary times k and k + 1 is proportional to det E k;kþ1ð Þ� �

so that
the sign of the infinitesimal density matrix can be either a positive number or a
negative number. This is the origin of the so-called sign problem in the simulation
of many-fermion systems. In particular, the partition function (2.42) is an inte-
gration of terms which can be either positive or negative so one can think of the
partition function as the difference between a large positive number and a large

Fig. 2.2 Exchange process
between two electrons
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negative number to give an overall positive value. Therefore the noise level of the
partition function is large and this is the difficulty to overcome during the modeling
and simulation of a many-fermion system. Furthermore since det E k;kþ1ð Þ� �

can be
negative, it is not possible to rewrite Z in the form of a classical partition function.
Thus one cannot establish yet an isomorphism between the fermion system and a
classical one. In order to solve the sign problem, we will adopt the fixed-node path
integral method in our model. The details of the fixed-node path integral method
and its usage in our model of many-electron system will be discussed in Sect. 2.3.

2.2.1.4 Many-Electron System

We may extend the partition function of the two-electron system, (2.42), to that of
an indistinguishable N-body quantum system. Because of the indistinguishability
between particles, we will introduce an orthonormal basis of the indistinguishable
N-body fermion system;

r1r2 � � � rNgj ¼ 1p
N!

X
}

�1ð Þ} r}1r}2 � � � r}N
�		 ð2:43Þ

where r1r2 � � � rNj is an orthonormal basis of an distinguishable N-body system, and
} is the parity of the permutation and �1ð Þ} become +1 and −1 for even and odd
number of the permutations between fermions, respectively. The closure relation of
the new basis becomes

1
N!

XN

i¼1
r1r2 � � � rNg r1r2 � � � rN jfj ¼ 1 ð2:44Þ

With the new basis, we may define the density matrix of the indistinguishable N–
body fermion system as

q R;R0; bð Þ ¼ RjebbH R0gj
�

ð2:45Þ

or

q R;R0; bð Þ ¼ 1
N!

X
}

�1ð Þ} R} eb
bH				 				R0

� �
ð2:46Þ

where Rj g ¼ r1r2 � � � rNg and Ri ¼ r1r2 � � � rNj ijj : If we consider P intermediate
states and the closure relation, (2.44), we may have the following convolution
relation for the density matrix:
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q R;R0; bð Þ ¼
Z YP

i¼1
dR ið Þ q 0ð Þ q 1ð Þ � � � q Pð Þ ð2:47Þ

where q kð Þ ¼ q R kð Þ;R kþ1ð Þ; �
� �

;R 0ð Þ ¼ R;R Pð Þ ¼ R0; and � ¼ b=P, which is the
infinitesimal imaginary time interval.

The partition function, which is the trace of the density matrix, for an indis-
tinguishable N-body quantum system may be written in the form

Z ¼
Z

dRq R;R; bð Þ

¼
Z YP

i¼0

dR ið Þ q 0ð Þ q 1ð Þ � � � q Pð Þ
ð2:48Þ

In order to calculate the partition function, we have to evaluate the infinitesimal
density matrix, q R kð Þ;R kþ1ð Þ; �

� �
: For further development, we will assume that the

Hamiltonian of the system is: bH ¼ bT þ bV2, where again

bT ¼
XN
i¼1

bp2
2m

bV2 ¼
XN
i¼1

b/ rið Þ þ
XN
i;j

bv ri � rj
		 		� �

;

/ rið Þ is an external potential at ri and v ri � rj
		 		� �

is a pair potential between
particles i and j. With the Trotter’s approximation, the infinitesimal density matrix
becomes

q R kð Þ;R kþ1ð Þ; �

 �
¼ 1

N!

X
}

�1ð Þ} r kð Þ
}1 � � � r kð Þ

}N

D
e��bH				 				r kþ1ð Þ

1 � � � r kþ1ð Þ
N

E
� 1

N!

X
}

�1ð Þ} r kð Þ
}1 � � � r kð Þ

}N

D
e��bHe��bV				 				r kþ1ð Þ

1 � � � r kþ1ð Þ
N

E
If we apply the closure relation,

R
dR kð Þ R kð Þ� R kð Þ�		 		 ¼ 1 and the orthonormal

property of the basis R kð Þ		 �
, the infinitesimal density matrix can be written as

q R kð Þ;R kþ1ð Þ; �

 �

¼ q0 R kð Þ;R kþ1ð Þ; �

 �

e��V2 R kð Þð Þ ð2:49Þ
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where the infinitesimal density matrix of free particles is defined as

q0 R kð Þ;R kþ1ð Þ; �

 �

¼ 1
N!

X
}

�1ð Þ} r kð Þ
}1 � � � r kð Þ

}N e��bT				 				r kþ1ð Þ
1 � � � r kþ1ð Þ

N

� �

The infinitesimal density matrix of free particles contains the exchange processes
between identical particles and it can be written in a determinant form (see Fig. 2.3)
From (2.25), the infinitesimal density matrix of free particles becomes

q0 R kð Þ;R kþ1ð Þ; �

 �

¼ 1
N!

X
}

�1ð Þ} C1

2

� �3N=2

exp �C2

XN
i¼1

r kð Þ
}i � r kþ1ð Þ

i


 �2 !
;

with C2 ¼ m=2��h2. If we perform the summation with the permutation operator },
we can simplify the density matrix by using a determinant:

q0 R kð Þ;R kþ1ð Þ; �

 �

¼ C1

2N!

� �3NP=2

det A k;kþ1ð Þ

 �

ð2:50Þ

where the matrix A k;kþ1ð Þ is defined as

A k;kþ1ð Þ

 �

ij
¼ e�bC0 r kð Þ

i �r kþ1ð Þ
jð Þ2

Furthermore, the exchange processes between particles can be illustrated by
writing the infinitesimal density matrix of free particle (3-particle case) as

Fig. 2.3 Exchange process
among three identical
particles. Solid lines and
dashed lines represent two
different exchange processes.
Electrons are labeled “ele” 1,
2, and 3. The time slices are
labeled, k and k + 1
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q0 R kð Þ;R kþ1ð Þ; �

 �

¼ C1

2N!

� �3NP=2

A0 � 1� f12 � f23 � f31 þ g231 þ g312ð Þ ð2:51Þ

where

A0 ¼ e�C2

PN

i¼1
r kð Þ
i �r kþ1ð Þ

ið Þ2

fii ¼ e�C2 r kð Þ
i �r kþ1ð Þ

jð Þ2� r kð Þ
i �r kþ1ð Þ

ið Þ2
� �

� e�C2 r kð Þ
j �r kþ1ð Þ

ið Þ2� r kð Þ
j �r kþ1ð Þ

jð Þ2
� �

gijl ¼ 1
A0

� e�C2 r kð Þ
i �r kþ1ð Þ

jðð Þ2e�C2 r kð Þ
j �r kþ1ð Þ

lðð Þ2e�C2 r kð Þ
l �r kþ1ð Þ

iðð Þ2 ð2:52Þ

The quantities fij and gijl correspond to exchange processes between two parti-
cles (i, j) and exchange processes among three particles (i, j, l), respectively (again
see Fig. 2.3). The determinant of the density matrix of the free particles in absence
of quantum exchange is factored out of (2.50);

det A k;kþ1ð Þ

 �

ij
¼
YN

i¼1
A k;kþ1ð Þ

 �

ii
� det E k;kþ1ð Þ


 �
ð2:53Þ

where all the exchange effects (including the sign of the density matrix) are
included in det E k;kþ1ð Þ� �

which elements are defined as E k;kþ1ð Þ� �
ij¼

A k;kþ1ð Þð� �
ij

.
A k;kþ1ð Þð� �

ii:

Specifically, the matrix element of E k;kþ1ð Þ� �
for the N-particle system is given

by

E k;kþ1ð Þ

 �

ij
¼ exp �bC1 r Kð Þ

i � r kþ1ð Þ
j


 �2
� r kð Þ

i � r kþ1ð Þ
i


 �2� �� �
ð2:54Þ

From (2.48, 2.50, 2.53, 2.54), we finally write the partition function of the N-
fermion system as

Z ¼ C1

2N!

� �3NP=2Z YP
v¼1

YN
j¼1

dr vð Þ
j exp �bC0

XN
i¼1

XP
k¼1

r kð Þ
i � r kþ1ð Þ

i


 �2 !

�
YP
k¼1

det E k;kþ1ð Þ

 �

e�bV2=P ð2:55Þ

where the classical potential energy V2 is the same as in (2.28), i.e.

V2 ¼ 1
P

XP

k¼1

XN

i¼1
; r kð Þ

i


 �
þ 1
P

XP

k¼1

XN

i[ j
v r kð Þ

i � r kð Þ
j


 �
ð2:56Þ
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2.2.2 Path Integral with Non-local Exchange Using
a Mean Field Approximation

In the preceding sections, we have developed a local non-interacting density matrix
which does not describe electron correlation, since the free particle density matrix
has been obtained by using a complete set of states represented by Slater deter-
minants of plane waves and Slater determinant of plane waves are solutions to the
Hartree-Fock equation for free electrons. Although the local non-interacting density
matrix does not include electron correlation, in the limit of high temperature, its
nodes approximate reasonably well those of the exact density matrix [12]. We now
construct an approximate form for the density matrix that includes electron corre-
lation. In order to treat the correlation between like-spin electrons, Hall has pro-
posed a non-local exchange pseudo-potential [9, 10]. In the local form of the
density matrix (2.51), det E k;kþ1ð Þ� �

includes all the exchange effects, although
exchange occurs only between consecutive beads in imaginary time. Furthermore,
in the limit of � ! 0, the matrix E k;kþ1ð Þ converges to the identity matrix and the
system collapses into a boson state. To avoid this undesirable behavior and inspired
by the consideration of quantum chemistry simulation, where exchange is treated as
a non-local interaction in space, Hall has suggested a non-local form of a density
matrix of a two-electron system as follows;

detðE k;kþ1ð Þ
�
!
YP

l¼1
det E k;lð Þ

a


 �
ð2:57Þ

where the matrix element E k;lð Þ
a


 �
ij
is defined as

E k;lð Þ
a


 �
ij
¼ exp � m a

2��h2
r kð Þ
i � r lð Þ

j


 �2
� r kð Þ

i � r lð Þ
i


 �2								� �
ð2:58Þ

In the preceding relations, the superscripts and the subscripts label the beads and
electrons, respectively. We note that a in (2.57 and 2.58) is a system dependent
parameter and the absolute value of the argument of the exponential prevents
negative weights. Because it is not easy to find a proper parameter a for a system
and it is clear that one underestimates the contribution from negative values by
choosing the absolute value, we generalize the non-local density matrix of an N-
fermion system by choosing the following:

det A k;kþ1ð Þ

 �

!
YN

i¼1
A k;kþ1ð Þ

 �

ii
�
YP

l¼1
det Eðk;l

 �1=P

ð2:59Þ
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The non-local form of the infinitesimal density matrix of an N-fermion system
and the corresponding partition function now becomes

q0 R kð Þ;R kþ1ð Þ; �

 �

¼ C1

2N!

� �3NP=2YN

i¼1
A k;kþ1ð Þ

 �

ii
�
YP

l¼1
det E k;lð Þ

 �1=P

�

ð2:60Þ

and

Z ¼ C1

2N!

� �3NP=2Z YP
v¼1

YN
j¼1

dr vð Þ
j exp �bC0

XN
i¼1

XP
k¼1

r kð Þ
i � r kþ1ð Þ

i


 �2 !

�
YP
l¼1

YP
k¼1

det E k;lð Þ

 �

e�bV2=P ð2:61Þ

The non-local form for the density matrix cannot be obtained from simple Slater
determinants of plane waves. Equation (2.60) should therefore represent electrons
beyond the Hartree-Fock approximation. A non-local density matrix would account
for some electron correlation. In Fig. 2.4, we illustrate both the local exchange
process in (a) and the non-local exchange process in (b). In the non-local exchange
model, a bead of an electron interacts with all beads of any other electron.

Fig. 2.4 a Local and
b non-local exchange
processes between two
electrons. The number labels
indicate the imaginary times.
The electrons are denoted
“ele” 1 and 2
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Although the non-local form of the density matrix does not collapse to a boson
state when P ! 1, it still has the sign problem, because the determinant values are
either positive and negative. In the next section, we will discuss and present a
solution to the fermionic sign problem by introducing the restricted path-integral
Monte Carlo method.

2.2.3 Restricted Path Integral Method

There is a fundamental difficulty in the simulation of many-body fermionic systems,
called the sign problem. The sign problem arises from permutations between
identical particles. The contribution to the partition function of even permutations is
almost the same as the contribution from odd permutations. In practical calculations
of thermodynamic properties, one cannot expect accurate results, because of the
large signal to noise ratio. The study of the sign problem and the search for better
conditioned models and simulation algorithm are widely discussed subjects in the
simulation of many-electron systems [8, 12, 16, 46–48]. In more recent studies, a
restricted fixed-node path integral approximation has been suggested to solve the
sign problem of a many-fermion system with path integral Monte Carlo simulation.
In this approximation, the paths of all fermions in imaginary time are restricted to
remain within the region of phase space where the density matrix is positive. This
approximation has been applied to liquid 3He above 1 K [12] and the hydrogen
plasma at high temperature and reasonable agreement to the existing theories was
found.

The main idea of the restricted fixed-node approach was initially proposed by
Metropolis and Ulam [49, 50]. They suggested the extension of the random-walk
process typically used to simulate the diffusion equation for solving Schrodinger
equation. Anderson [46] applied the restricted fixed-node scheme to obtain the
ground state of simple quantum molecular systems. Anderson also solved the
Schrodinger equation using the random-walk methods. We summarize below the
restricted fixed-node path integral idea suggested by Ceperley [12, 16, 17] and then
apply it to the development of models of fermion systems in the framework of the
path- Integral formalism.

The one-dimensional diffusion equation can be written as

@C
@t

¼ D
@2C
@x2

ð2:62Þ

where C = C(x, t) is a concentration, D is a diffusion coefficient and t is a real time.

2 Path Integral Molecular Dynamics Methods 33



The solution of the diffusion equation for an initial delta concentration at xo (i.e.
we assume that the initial condition is C x; t ¼ 0ð Þ ¼ d x� x0ð Þ), is given by the
Gaussian function:

C x; tð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
4pDt

p e�
x�x0ð Þ2
4Dt ð2:63Þ

As we mentioned in Sect. 2.1, the diffusion equation is isomorphic to the
imaginary time-dependent Schrodinger equation of a free particle density matrix;

@q x; tð Þ
@b

¼ �h2

2m
@2q x; tð Þ

@x2
ð2:64Þ

by replacing b by it=�h.
If we assume a boundary condition of the diffusion equation in the form:

C x� x0ð Þ ¼ 0; ð2:65Þ

the solution of (2.62) becomes

C x; tð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
4pDt

p e�
x�x0�x0ð Þ2

4Dt � 1ffiffiffiffiffiffiffiffiffiffi
4pDt

p e�
xþx0�x0ð Þ2

4Dt ð2:66Þ

This solution is completely determined by the boundary condition. The solution
given by (2.66) has an antisymmetric form in space about x′ and we can impose an
infinite potential barrier at the boundary x′ without loss of generality. The locus of
points x′ will be called a fixed node. By virtue of the isomorphism between the
diffusion equation and the imaginary-time Schrodinger equation, we may apply an
infinite potential barrier at the nodes of the density matrix, with the fact that the
trace of the density matrix should be a positive real physical quantity and be
spatially antisymmetric if exchange occurs between like-spin electrons. In the path
integral, the trace of a density matrix q x; x; bð Þ is always positive, but the infini-
tesimal density matrix, q xi; xiþ1; s ¼ b=Pð Þ, where i ¼ 1; . . .;P, can be either
positive or negative. We can choose a configuration of beads of a necklace such that
xi and xiþ1 are on the same side of the boundary node so that q xi; xiþ1; sð Þ for all
i are positive. In the fixed-node Path Integral Monte Carlo method, one begins with
a trial density matrix, which nodes are known. So if the trial density matrix is exact,
the method then becomes exact.

To clarify the meaning of the fixed-node and of the sign problem, we consider
the special case of a two-body system (electrons 1 and 2) in 3-dimensions with an
exchange process between a pair of beads (i) and (j). An element of the infinitesimal
density matrix is
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E i;jð Þ

 �

12
¼ e�C1 x ið Þ�y jð Þð Þ2� x ið Þ�x jð Þð Þ2

� 

where x ið Þ and y jð Þ are the coordinates of the electrons 1 and 2, respectively. Then
the determinant of the matrix is

det E i;jð Þ

 �

12
¼

1 e�C1 x ið Þ�y jð Þð Þ2� x ið Þ�x jð Þð Þ2
� 


e�C1 y ið Þ�x jð Þð Þ2� y ið Þ�y jð Þð Þ2
� 


¼ 1� e�2C1 x ið Þ�y ið Þð Þ� x jð Þ�y jð Þð Þ 1

								
								

With relative coordinates x ¼ x ið Þ � y ið Þ� �
=
ffiffiffiffiffiffiffi
2c1

p
and y ¼ x jð Þ � y jð Þ� �

=
ffiffiffiffiffiffiffi
2c1

p
, the

determinant can be rewritten as

det E i;jð Þ

 �

¼ 1� e�x�y ð2:67Þ

In the relative coordinates, the sign of the determinant now has the same sign as
the dot product (x · y). The boundary between regions with positive or negative sign
is x · y = 0. This is illustrated in Fig. 2.5. Sampling the region of the (x, y) plane

Fig. 2.5 Diagrammatic representation of configuration space for one exchange process between
two electrons (see text for details). The diagonal line is x·y = 0 and is the boundary delimiting the
transition from a positive to a negative sign of the density matrix. All unfilled dots correspond to
configurations with positive density matrices and the filled dot has a density matrix with a negative
value
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with only positive determinants to calculate the corresponding partition function is
equivalent to calculating the partition function by sampling the entire (x, y) plane.
The fixed node restriction based on an assumed form of the density matrix imposes
the necessary boundary condition.

2.2.4 Classical Isomorphism for Many-Body Fermion
System

In establishing a model for a many-body fermion system, we are not evaluating the
partition function directly. Instead we are trying to establish an isomorphism
between the quantum partition function and a classical partition function. With the
restricted path-integral method, we can always constrain the configurations of the
particles in the system to regions of configuration space with positive density
matrices. We therefore can rewrite the partition function of the many-body fermion
system, (2.61), in a form isomorphic to a classical one:

Z � 1
N!

mP

2pb�h2

� �3NP=2Z YN

i¼1

YP

k¼1
dr kð Þ

i e�bVeff � e�b
PV2 ð2:68Þ

where the integration is limited to configurations with det E k;lð Þ� �
[ 0. In (2.68), V2

is a classical potential energy function of position. If the potential V2 represents the
Coulomb interactions between electrons, it can be written as

V2 ¼ V2 r kð Þ
ij


 �
ð2:69Þ

where r kð Þ
ij ¼ r kð Þ

i � r kð Þ
j

			 			 denotes the distance between the kth beads of the electrons
i and j. If the potential V2 arises from interactions between electrons and ions, the

distance between some ion I and the kth beads of the electrons j is r kð Þ
Ij ¼ rI � r kð Þ

j

			 			.
Veff in (2.68) is a quantum effective potential energy. The classical potential func-
tion includes electron/electron Coulomb interactions or electron/ion interactions. In
contrast, Veff includes quantum exchange energy between electrons. From (2.68,
2.61), we can define the effective potential, Veff, as

Veff ¼ Vharm
eff þ Vexch

eff ð2:70Þ

where

Vharm
eff ¼ mP

2b2�h2
XN

i¼1

XP

k¼1
� r kð Þ

j � r kþ1ð Þ
j


 �2
ð2:71Þ
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and

Vexch
eff ¼ � 1

b

XP

k¼1

XP

l¼1

1
Q
ln det E k;lð Þ


 �
 �
ð2:72Þ

where det E k;lð Þ� �
[ 0 and Q is the effective number of paths with det E k;lð Þ� �

[ 0.
Vharm
eff is a non-exchange harmonic potential and Vexch

eff is a non-local quantum
exchange potential. In the non-local form of path-integral dynamics, a quantum
particle is still represented by a necklace of P beads such that a point in the necklace
interacts with its next consecutive neighbor along the chained necklace through a
harmonic potential with a strength mP=2b2�h2. In contrast to the harmonic potential,
the exchanges between different particles are not limited to the nearest neighbors
along the necklaces, but act over all beads (imaginary time slices) of the different
necklaces.

In order to represent Vexch
eff with a more practical form for implementation of a

restricted path-integral molecular dynamics, we introduce a step function hþ. The
function hþkl ensures the path restriction by taking on the values 1 and 0 for paths
with positive and negative det E k;lð Þ� �

; respectively. In addition, for a system con-
taining electrons with two different types of spins (i.e. spin-up and spin-down
electrons), we may use the fact that the density matrix is approximated as the
product of two determinants taking the form of (2.72); one determinant for the
electrons with one type of spin and another determinant for the electrons with the
other type of spin [51]. We now rewrite Vexch

eff as

Vexch
eff ¼ � 1

b

Xdown

s¼up

XP

k¼1

XP

l¼1

1
Qs

ln det E k;lð Þ

 �
 �

hþkls ð2:73Þ

where

Qs ¼
XP
k¼1

XP
l¼1

hþkls

In the previous two equations, s in the summation denotes the spin of the
electrons.

Up to now, we have written the partition function of a quantum fermion system
in the form of a classical partition function. The potential V2 was assumed to local
and independent of angular momentum. In the next section, we derive expressions
for the path integral of a quantum particle in a non-local pseudo-potential.
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2.2.5 Path Integral with Non-local Pseudo-potential

The spherical symmetry of an atomic potential that an electron may experience
makes it easier to derive the path integral in spherical coordinates. Actually, an
expression for the path integral in these coordinates has already been found
[52–54]. The potential that was used in these derivations was of local nature. Also,
the derivation of the path integral using non-local potentials has already been done
[55]. In this section we present a new way of incorporating a non-local
pseudo-potential in the derivation of the path integral in spherical coordinates.

2.2.5.1 Local and Nonlocal Pseudo-potential

A local potential is a function of the spatial coordinates. In other words, a local
operator, COP, operates on a given function of coordinates, Ψ (~r), in the following
manner:

CopW ~rð Þ ¼ C ~rð Þ :W ~rð Þ ð2:74Þ

where C(~r) is the Eigenvalue of the operator corresponding to the physical obser-
vable C (for example, C could be the linear momentum). To clarify this point
further, if the local operator is a potential then the value of the wave function at any
point in space is independent of its value at other points. In general, the coordinates
of the local operator do not have to be only spatial for an operator to be local. An
operator can be a function of both spatial and spin coordinates and still be local
[56].

On the other hand, a non-local potential is not only a function of spatial and/or
spin coordinates, but involves other types of coordinates. In other words, the value
of the wave function at any point in space will depend not only on the potential at
that point, but also on the potential at points other than the one in question. For
example, a non-local potential is equivalent under certain conditions, to a velocity
dependent potential [57]. When nonlocal pseudo-potentials are used, the
Schrödinger equation becomes an integro-differential equation that is not solvable
exactly in a closed form.

In operator language, a non-local operator, COP, operates on a given function, Ψ
(~r), in the following manner:

Cop W ~rð Þ ¼ Z
C ~r; r0

!
 �
W ~r0ð Þ d~r0 ð2:75Þ

With the non-locality one is able to account for the difference in potential felt by
the different angular momentum components of the valence wave function. After
all, the pseudo potential, as originally derived by Phillips and Kleinman [58], is a
non-local operator.
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For a particle evolving in a central potential the representation of the propagator
based on Lagrangian formulation of the path integral is given by [52–54]:

K ~r2; ~r1; sð Þ ¼
X1

‘¼O

X‘

m¼�‘
K‘ r2; r1; sð Þ‘Y�

‘m h2;/2ð ÞY‘m h1;/1ð Þ ð2:76Þ

where s is the time it takes the particle to go from the initial position~r1 to the final
one~r2. The amplitude in the radial direction is given by [35]:

K‘ r2; r1; sð Þ ¼ lim
N!1

4pð ÞN m
2pi 20

� �3N
2

�
Z YN

i¼1
R‘ ri; ri�1ð Þ½ �

YN�1

i�1
r2i dri ð2:77Þ

where R‘(ri; ri�1) is given by:

R‘ ri; ri�1ð Þ ¼ ip 20

2mriri�1

� �1
2

exp
im
2 20

r2i þ r2i�1

� �� i 20 V rið Þ
� �

� I‘þ1
2

m
i 20

riri�1

� �
ð2:78Þ

where V is the central force potential, �0 is s=N; and Ilþ1=2 mriri�1=i�0ð Þ is the
modified Bessel function. The path integral given in (2.76) applies to local
potentials or local pseudo-potentials only. Due to the nature of non-local operators,
one cannot simply add the non-local pseudo-potential to the exponent in the
exponential function of (2.2). Certain measures of caution must be taken in deriving
the expression for the path integral in the case of non-local pseudo potentials.

2.2.5.2 One Electron System

In this section we deal with a one electron system. That is, an atom with one
valence electron. If we decompose the effective potential into a local parts and in
non-local one, then the Hamiltonian operator of our system could be written as
follows:

Hop ¼ Top þ Vloc þ VNL ð2:79Þ

where Top is the kinetic energy operator, Vloc is the local potential operator, and VNL

is the non-local pseudopotential operator.
We substitute (2.79) into the density matrix element expression:
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q ¼ ~rn e�
bHop
P

			 			~rnþ1

D E
ð2:80Þ

to obtain the form:

q ¼ ~rn e�
b
P TopþVlocþVNL½ �			 			~rnþ1

D E
ð2:81Þ

One can now use the Trotter formula, to write:

~rn e��Hop
		 		~rnþ1

� � ¼ ~rn e��Tope��Vloc e��VNL
		 		~rnþ1

� � ð2:82Þ

where � ¼ b=P.
The non-local pseudo potential operator that we use in our derivation is of the

form [59, 60]:

VNL ¼
X1

‘¼0

X‘

m�‘
‘miV‘ rð Þ ‘mh jj ð2:83Þ

This expression carries the fact that each angular momentum
pseudo-valence-orbit feels a different potential. Notice that a different local
potential Vl rð Þ Potential is needed for different l’s. From (2.83) we can see that the
non-local operator could be decomposed into a sum of different operators that have
particular symmetry [61]:

VNL ¼
X1

‘¼0

X‘

m�‘
‘miV‘ rð Þ ‘mjhj ð2:84Þ

VNL ¼ Vs þ Vp þ Vd þ . . . ð2:85Þ

where, for example, the operator versus acts only on orbitals processing an s
symmetry.

Now if we introduced the closure relation in (2.82) we get

q ¼
Z

d~r ~rnje�2Vloc j~r� � Z
d~r0 ~rje�2VNL j~r0� �� ~r0je�2Top j~rnþ1

� � ð2:86Þ

where the q stands for the left-hand side of the (2.82). Using power series
expansion of the exponential it is easy to see that:

q ¼
Z

d~rd ~r �~rnð Þe��Vloc ~rð Þ �
Z

d~r0h~rje��VNL j~r0ih~r0je��Top j~rnþ1i ð2:87Þ

where we have used the orthonormality relation. Note that in this caseVloc ~rð Þ is a
function of the position vector and not an operator anymore. The free particle
density matrix can be evaluated, as shown in Appendix 1 and q becomes:
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q ¼ mP

2pb�h2

� �3
2

e�
b
PVloc ~rnð Þ �

Z
d~r0 ~rn e�

b
PVNL

			 			~r0D E
e
� mp

2b�h2


 �
D~rð Þ2 ð2:88Þ

where the sampling property of the delta function has been used, i.e.:

Z
d ~r �~rnð Þf ~rð Þd~r ¼ f ~rnð Þ ð2:89Þ

and the difference D~r between the two vectors is given by:

D ~rð Þ ¼~r0 �~rnþ1 ð2:90Þ

2.2.5.3 Evaluation of the Non-local Density Matrix Elements

The non-local density matrix elements are those that involve VNL in the exponential
as follows:

GNL ¼ ~rn e�
b
PVNL

			 			~r0D E
ð2:91Þ

Again, using the power series expansion of the exponential function we will
have

GNL ¼ ~rn 1j j~r0h i þ � b
P

� �
~rn VNLj j~r0h i þ 1

2!
� b
P

� �2

~rn VNL � VNLj j~r0h i þ O V3
NL

� �
ð2:92Þ

where the higher orders are not neglected here. The zero order term (the first term
on the RHS of (2.92) is:

~rn 1j j~r0h i ¼ d ~r0 �~rnð Þ ¼ d rn � r0ð Þ
r02

d cos hn � cos h0ð Þd /n � /0ð Þ ð2:93Þ

where the set of spherical harmonics is a complete orthonormal basis set that could
be expressed in the following closure relation:

d cos hn � h0ð Þd /n � /0ð Þ ¼
X1

l¼0

Xm¼l

m¼�l
Y�
lm hn; /nð ÞYlm h0; /0ð Þ ð2:94Þ

The above relation will allow the zero order term (2.93) to take the form

~rn~r0jh i ¼ d rn � r0ð Þ
r02

X
l;m

Y�
lm hn;/nð ÞYlm h0;/0ð Þ ð2:95Þ

where the indices l;m stand for a double sum as appears in (2.94).
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The first order term is given by [40]:

~rn VNLj j~r0h i ¼
X

l

X
m
Y�
lm hn;/nð ÞVl rn; r

0ð ÞYlm h0;/0ð Þ ð2:96Þ

The evaluation of the second order term involves more bookkeeping. We first
introduce the closure relation:

~rn VNL � VNLj j~r0h i ¼ ~rn VNLj
Z

d~r~rj
� �

~r VNLj j~r0h i ð2:97Þ

Taking the integral outside and using (2.96), the second term (2nd) will become:

2nd ¼
Z

d~r
X
l;m

Y�
lm hn; /nð ÞVl rn; rð ÞYlm h; /ð Þ �

X
L;M

Y�
LM h; /ð ÞVL r; r0ð ÞYLM h0;/0ð Þ

ð2:98Þ

where upon using the orthonormality relation:

Z2p
0

d/
Zp
0

sin hdhY�
lm h;/ð ÞYLM h;/ð Þ ¼ dlLdmM ð2:99Þ

Equation (2.98) takes the form:

2nd ¼
Z

r2dr
X

l;m
Y�
lm hn;/nð ÞVl rn; r

0ð ÞYlm h0;/0ð ÞVl r; r
0ð Þ ð2:100Þ

Now if we choose the non-local potential in the form:

Vl rn; rð Þ ¼ Vl rnð Þ
r2n

d rn � rð Þ ð2:101Þ

where there is a different Vl rnð Þ for each value of l. Using this non-local potential in
(2.100) we have:

2nd ¼
Z

r2d~r
X

l;m
Y�
lm hn;/nð ÞYlm h0;/0ð ÞVl rnð Þ

r2n
d rn � rð Þ � Vl rð Þ

r2
d r � r0ð Þ

ð2:102Þ

Using the sampling property of the delta function, as introduced in the (2.89), we
can reduce (2.102) to look like:
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2nd ¼
X

l;m
Y�
lm hn; /nð ÞVl rn; r0ð ÞYlm h0;/0ð ÞVl r0ð Þ ð2:103Þ

The higher order terms could be evaluated in a similar fashion (as done above).
For example, the third order term will be:

~rn V3
LN

		 		~r0� � ¼X
l;m

Y�
lm hn;/nð ÞVl rn; r

0ð ÞYlm h0;/0ð ÞV2
l r0ð Þ ð2:104Þ

The expressions for the various terms are substituted back in expansion of GNL

to get:

GNL ¼
X
l;m

Y�
lm hn;/nð ÞYlm h0;/0ð Þ d rn � r0ð Þ

r02
þ � b

P

� �X
l;m

Y�
lm hn;/nð ÞYlm h0;/0ð ÞVl rn; r

0ð Þ

þ
� b

P


 �2
2!

X
l;m

Y�
lm hn;/nð ÞYlm h0;/0ð ÞVl r

0ð Þ

þ higher order terms

ð2:105Þ

To simplify the above equation, we use the form of the non-local pseudo-
potential as defined in (2.102) to obtain:

GNL ¼
X

l;m
Y�
lm hn;/nð ÞYlm h0;/0ð Þ d rn � r0ð Þ

r02
e�

b
PVl r0ð Þ ð2:106Þ

Let us expand the square of the differences between the two vectors (2.90) as
follows:

~r0 �~rnþ1ð Þ2¼ r02 þ r2nþ1 � 2~r0 �~rnþ1 cos a ð2:107Þ

where the cosine of the angle between the two vectors is given by:

cos a ¼ cos h0 cos hnþ1 þ sin h0 sin hnþ1 cos /0 � /nþ1

� � ð2:108Þ

Using (2.107) we can write the following:

e�bC D~rð Þ2 ¼ e�bC r02þr2nþ1ð Þe2bCr0rnþ1 cos a ð2:109Þ

where

C ¼ Pm

2b2�h2
ð2:110Þ

In order to get the expression for the propagator q we will need to use the
identity [62]:
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en cos a ¼ p
2n

� �1
2X1

l¼0
2lþ 1ð ÞPl cos að ÞIlþ1

2
nð Þ ð2:111Þ

where Pl cos að Þ is the familiar Legendre polynomial, and a is the angle between the
two position vectors. We also need to write the Legendre polynomials in a form that
is helpful in simplifying the expression for GNL. Fortunately, the addition theorem
of spherical harmonics would help in our case. We can write:

Pl cos að Þ ¼ 4p
2lþ 1

Xl

m¼�l
Y�
lm h1;/1ð ÞYlm h2;/2ð Þ ð2:112Þ

which when substituted in (2.111) will yield:

en cos a ¼ 4p
p
2n

� �1
2X

l;m
Y�
lm h1;/1ð ÞYlm h2;/2ð ÞIlþ1

2
nð Þ ð2:113Þ

Now using these relations and (2.105) we can write the short time (if P is large)
propagator in the following manner:

q ¼ 4p
bC
p

� �3
2

e�
b
PVloc ~rnð Þ

Z
r02dr0

Z
sin h0dh0

Z
d/0

�
X
l;m

Y�
lm hn;/nð ÞYlm h0;/0ð Þ d rn � r0ð Þ

r02
e�

b
PVl r0ð Þ

� p
4bCr0rnþ1

� �1
2X
L;M

YLM hnþ1;/nþ1

� �
Y�
LM h0;/0ð Þ

� Ilþ1
2
2bCr0rnþ1ð Þe�bC r02þr2nþ1ð Þ

ð2:114Þ

From the equation above it is easy then to get the final expression for q which
takes the form:

q ¼ 4p
bC
p

� �3
2 p
4bCrnrnþ1

� �1
2X
l;m

Y�
lm hn;/nð ÞYlm hnþ1;/nþ1

� �
� e�

b
P Vloc rnð ÞþVl rnð Þ½ �Ilþ1

2
2bCrnrnþ1ð Þe�bC r2nþr2nþ1ð Þ

ð2:115Þ

where Vloc acts locally in radial coordinates.
We are interested in developing a classical model of an electron in a non-local

pseudo-potential. To that effect, we determine the path integral representation of the
partition function.
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2.2.5.4 One Electron Partition Function

The partition function is given by:

Z ¼
Z

d~r1 ~r1 e�bHop
		 		~r1� � � lim

P!1

Z
d~r1 ~r1 e�

bHop
P


 �P				 				~r1� �
ð2:116Þ

Upon introducing (P-1) intermediate states in Z we will get as seen in previous
sections:

Z �
Z

d~r1 d~r2. . .d~rP ~r1 e��Hop
		 		~r� �

2� ~r2 e��Hop
		 		~r3� �

. . . ~rP e��Hop
		 		~r� �

1 ð2:117Þ

where we have used the periodic boundary condition (cyclic condition):~rPþ1 ¼~r1.
Our one electron system is now transformed to look like a polymeric necklace
consisting of P beads.

We, write the partition function in more compact form:

Z �
Z YP

n¼1
�d~rn ~rn e�

b
PHop

			 			~rnþ1

D E
ð2:118Þ

and using (2.115) we can write the partition function as follows:

Z � bC
p

� �3P
2 Z
d~r1d~r2 . . .d~rp

YP
n¼1

e�
b
PVloc rnð Þ

h
�

X1
l¼0

2lþ 1ð ÞPl cos að Þ :Flþ1
2
vð Þ :e�b

PVl rnð Þ
( )

:e�bC rn�rnþ1ð Þ2
# ð2:119Þ

In the preceding equation, we have defined a modified Bessel function:

Flþ1
2
vð Þ ¼ p

2v

� �1
2

�e�v � Ilþ1
2
vð Þ

where v ¼ 2bCrnrnþ1.
Upon inspecting (2.119) we see that the summation over the angular momenta

runs up to infinity. This is inconvenient in a computational setting. Therefore, there
must be some way that will help to truncate the sum, in order to reduce the
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computational effort, without the loss of accuracy. The truncation is achieved by
observing [63] that the local potential VlðrÞ is almost the same for all values of l that
do not exist in the core region. This could be written as:

Vl ¼ Vlmaxþ1 for l [ lmax

where lmax is the maximum value for l in the core region.
Then, (2.115) can be rewritten in the following fashion:

q ¼ 4p
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Upon further manipulation of the above equation we arrive at:

q ¼ 4p
bC
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� �3
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e�
b
PVloc e�bC rn�rnþ1ð Þ2 Xm¼1

m¼�1
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� �3
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b
P VlocþVlmax rnð Þ½ �e�bC ~rn�~rnþ1ð Þ2

ð2:121Þ

Notice that in the case where the non-local potential is not significant, or not
considered, this equation will lead to the density matrix of a particle in the local
potential Vloc.

2.2.5.5 Model of a Valence Electron in a Sodium Atom

The sodium (Na) ion has the following electronic configuration:

Naþ : 1s22s22p6

which shows a single valence in an angular momentum state of l ¼ 0.
The maximum l that exists in the core is one (the p state). Therefore, we have

lmax ¼ 1.
Using (2.121) we can find q for the sodium ion:
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qNaþ ¼ bC
p
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where the zero order Legendre polynomial P0 cos að Þ ¼ 1.
In order to proceed with the molecular dynamics simulation for our quantum

system, we need an effective potential to describe the interactions of the nodes with
each other, and with the sodium ion. As we did before, this effective potential could
be achieved by writing the partition function as follows:

Z � bC
p

� �3P
2
Z YP

n¼1

d~rn

" #
:e�bVeff ~r1;���;~rPð Þ ð2:123Þ

We proceed from here to find the partition function for Na+, which is:

ZNaþ � bC
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However, such an approximation is valid only if the terms in the <> of (2.124) is
a positive number. We implement here an approach similar to the restricted path
integral method described previously, whereby, we will limit the states to those
with a positive <>. Notice that the above expression contains both an “s” and a “p”
pseudopotentials. This will be enough to study the 3s and the 3p electronic
behavior.

Upon inspecting the partition function we can see that the classical effective
potential is readily obtained as:

Veff ¼ � 1
b

XP
n¼1

Ln e�
b
PVloce�bC rn�rnþ1ð Þ2 � F1

2
2bCrnrnþ1ð Þ e�
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n o
ð2:125Þ
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2.3 Path Integral Molecular Dynamics Simulation Method

In Sect. 2.2, we developed several classical models of quantum systems using the
Path Integral formalism of quantum mechanics. Here, we integrate these classical
models within the framework of the simulation of Molecular Dynamics (MD).

2.3.1 Molecular Dynamics Method

The simulation method of MD computes phase space trajectories of a system of
interacting particles which individually obey the classical Newtonian equations of
motion. Specifically, if a N-particle system is described by a classical Hamiltonian

H ¼Pi
mv2i
2 þPi[ j / rij

� �
, where vi is a velocity of a particle i and / rij

� �
is a

pairwise central potential between particles i and j separated by the distance
rij ¼ ri � rj

		 		, one can analytically specify the phase space trajectories, ri tð Þ; vi tð Þð Þ
by solving the Newtonian equations of motion with certain initial conditions. In
other words, we can find the time evolution trajectories by solving the following
equations;

Fi tð Þ ¼ m
d2ri
dt2

vi tð Þ ¼ dri
dt

where Fi is the total force on the particle i, which is the sum of the forces due to all
the other particles, j, in the system. The force on the particle i due to interactions
with a particle j; fij tð Þ, can be obtained from fij ¼ �rj/ij. To solve the equations of
motion in a numerical MD simulation, one discretizes in time the differential
equations of motion. A variety of numerical schemes can then be used to integrate
the equations of motion and march the system in time. For instance, the simplest
method is based on straightforward finite differences. Since Alder and Wainwright
[44] used MD for simulating an N -body system, this method has been applied to a
large variety of systems [64–67]. In its most basic form the trajectories generated by
the MD algorithm conserve energy (Hamiltonian), volume and number of particles,
i.e. they are representative of the microcanonical ensemble in statistical mechanics.

The MD method developed by Alder and Wainwright is conceptually the sim-
plest to illustrate the concept of MD simulation. To solve the equations of motion
above, for each particle “i”, we apply a finite difference scheme for the
second-order differential equation:
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d2ri tð Þ
dt2

¼ 1

Dtð Þ2 ri t þ Dtð Þ � 2ri tð Þ þ ri t � Dtð Þf g

where Dt is the simulation time step. The discretized equations of motion become:

ri t þ Dtð Þ ¼ 2ri tð Þ � ri t � Dtð Þ þ Fi rið Þ
m Dtð Þ2; for i ¼ 1; 2; . . .; N

With this equation one can obtain a new position at time t þ Dt from the
positions at two consecutively preceding time steps and the force acting at time t.
Provided a set of initial conditions ri t ¼ 0ð Þ and ri Dtð Þ we can obtain the time
evolution of the position of every particle in the system. We can calculate the
velocity of the ith particle with the Euler backward scheme according to
vi tð Þ ¼ 1

Dt ri tð Þ � ri t � Dtð Þf g; for i ¼ 1; 2; . . .; N, thus obtained the trajectory in
phase space of the collection of N particles.

This simplest of the MD simulation algorithm is also called the “leap-frog”
integration algorithm used by Verlet [68]. Note that the trajectories produced by this
method conserve the Hamiltonian and therefore the energy of the system. In this
form the MD method is simulating only a small system of N particles. The number
of particles is limited by the availability of computational resources. It is common
to use Periodic Boundary Conditions (PBC) to mimic the behavior of a small part of
a material embedded into an infinite system. Let us consider a N-particle system
within a physical volume, the basic cell or the MD cell. We assume for the sake of
simplicity that the cell is a rectangular box-like cell with edge lengths,
L ¼ Lx; Ly; Lz

� �
, and a volume X ¼ LxLyLz. To retain a constant number density

and reduce surface effects associated with the small size of the simulation cell we
impose periodic boundary conditions (PBC) [69]. With PBC, the MD simulation
cell is repeated periodically in all directions of space. The repeated cells are called
image cells. There are 26 image cells in three dimensions. Due to the periodicity
imposed by these boundary conditions, we may write a physical quantity A(r) in the
MD-simulation cell in the form of a periodic function:

A rð Þ ¼ A r þ n � Lð Þ

where n ¼ nx; ny; nz
� �

whose components are integers, r is confined within the
cell, i.e. rj j\L. PBC means that if a particle crosses a boundary of the cell as it
evolves along its trajectory, it re-enters through the opposite side of the cell at the
same instant. PBC conserve number density. Furthermore, with PBC the potential
energy is represented by

V ¼
X
i\j

/ rij
� �þX

n

X
i\j

/ ri � rj þ n � Lj		� �
where / rij

� �
is the pair potential, rij ¼ ri � rj

		 		; and ri and rj are restricted with in
the MD-cell. In order to avoid the infinite summation in the last term one typically
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introduces a cut-off range (rc) for the potential [64, 70]. A particle in the basic cell
interacts only with each of the N - 1 other particles in the MD-cell or its image cells.
Effectively we may cut off the potential at a range

rc\L=2

With this cut-off range rc, we rewrite theotential energy as

V ¼
X
i \jð Þ

X
j�MDcell

/ rij \rcð Þ� �
Although we can effectively simulate a system with MD method with PBC and a

truncated potential, such a truncation may have a detrimental effect on systems with
the long range interactions such as systems of particles interacting via the Coulomb
potential. This issue will be discussed specifically in subsequent subsections as our
quantum systems composed of charged particles (electrons).

The simulation of the model quantum systems developed in Sect. 2.2 requires
that we define some classical Hamiltonian from which we will derive dynamical
equations of motion to sample the states of the quantum system.

2.3.2 Molecular Dynamics Classical Hamiltonian
for N-Electron Plasma

In this section, we develop a classical Hamiltonian compatible with MD simulations
based on the restricted path-integral representation of quantum particles. Once we
set up the Hamiltonian of a system, we can calculate the phase space trajectories of
all particles with the MD method.

Let the system consist of Nel unpolarized electrons i.e. an electron plasma. The
number of spin-up electrons is the same as the number of spin-down electrons. If
there is no external force, the total potential for the system is the sum of the
electron-electron Coulomb potential and the effective potentials given by (2.71,
2.73). By considering a kinetic energy term for the Nel electrons, a classical
Hamiltonian can be defined as:

H ¼
XNel

i¼1

XP
k¼1

1
2
m� _r kð Þ

i


 �2
þ
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k¼1

XNel
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0 meP

2b�h2
r kð Þ
i � r kþ1ð Þ

i


 �2

� 1
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Xdown
s¼up

XP
k¼1
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l¼1

1
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s
ln det E k;lð Þ


 �
 �
hþkls

ð2:126Þ
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where

P�
s ¼

XP
k¼1

XP
l¼1

hþkls

In (2.126), m* is an arbitrary mass of a bead (we chose m* = 1 amu) [5] used to
define an artificial kinetic energy for the quantum states in order to explore the
effective potential surface, Veff , and me is an electron mass. We recall that the
subscript and the superscript on the position are for labeling an electron and a bead
in this electron, respectively. The second term in the above equation accounts for
the electron-electron Coulomb potential energy. The forces derived from the
non-local exchange potential, the last term of (2.126), are calculated as means over
the restricted paths with positive determinants. Therefore, an effective force cal-
culation requires a satisfactory sample of such paths. Since the exchange potential
offers a barrier to paths with negative determinants, it biases the sampling of phase
space toward configurations with positive determinants. Although many configu-
rations with negative determinants may exist and evolve, they do not contribute to
the exchange forces.

In the previous Hamiltonian, the Coulomb interactions between electrons are
long range and we use the Ewald summation method (see subsequent sections) to
calculate their contributions to the energy and forces. To satisfy charge neutrality,
the electron plasma system needs to evolve in a uniform positively charged

Fig. 2.6 Coulomb interaction
between two electrons i and
j at different imaginary times.
Note that the electron-electron
Coulomb interactions occur
between all the pairs of beads
in the discretized necklaces
i.e. are not retarded in
imaginary time

2 Path Integral Molecular Dynamics Methods 51



background. As we have seen, in the path-integral MD, each electron is considered
as a necklace of P beads. The Coulomb potential in (2.126) can be written as

V2 ¼
XP

k¼1

1
P

XN

i [ jð Þ
XN�1

j¼1

e2

r kð Þ
ij

where r kð Þ
ij ¼ r kð Þ

i � r kð Þ
j

			 			 is the distance between the bead (k) of the ith electron

necklace and the bead (k) of the jth electron necklace. We illustrate the Coulomb
interactions between beads in Fig. 2.6.

2.3.3 Molecular Dynamics Hamiltonian for N-Alkali Atom
Metal

To extend the restricted PIMD method to a simple metal such as an alkali metal
system (system composed of N monovalent alkali ions and N electrons), we simply
add the potential terms related to the classical ionic degrees of freedom to the
Hamiltonian of the electron plasma system. For a system containing Nel

un-polarized electrons and Nion ions, the Hamiltonian becomes:

H ¼ Hele þ
XNion

I¼1

1
2
MI _R

2
i þ

XNion

I[ Jð Þ

XNion�1

J

/ RIJð Þ

þ
XNel

i¼1

XNion

I¼1

1
P
Vpseudo RI � r kð Þ

i


 � ð2:127Þ

Fig. 2.7 Empty core
pseudo-potential model for
the alkali ion-electron
interaction. The sum of the
potentials b, c, and d is equal
to (a)
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where MI is the ion mass and R is the position of an ion. In (2.127), Hele is the
Hamiltonian of the electron plasma described in (2.126) and the second term is the
kinetic energy of the ions. / RIJð Þ and Vpseudo are the ion-ion potential and the ion-
electron pseudo-potential, respectively. This Hamiltonian assumes that the
electron-ion pseudo-potential is local. To that effect, the electron-ion interaction is
modeled by a local empty core pseudopotential model. In this model, we assume
that a positive ion is a conducting sphere with radius Rc and its total charge is þe.
The local pseudo-potential describing interactions between the Ith ion and the kth
bead of an electron j is defined as

Vpseudo RI � r kð Þ
i


 �
¼ u r kð Þ

Ij


 �
¼ �e=Rc; if r kð Þ

Ij 	 Rc

�e=r kð Þ
Ij ; if r kð Þ

Ij [ Rc

(
ð2:128Þ

where r kð Þ
IJ ¼ RI � r kð Þ

j

			 			 is the distance of the kth bead of the electron j measured

from the center of the Ith ion. Figure (2.7) illustrate this pseudo-potential. In the
figure the pseudo-potential (a) is represented by the sum of a usual coulombic
potential (d), a repulsive 1

r potential inside the core (b) and a constant potential
inside the core (c). The total potential on the Ith ion then becomes

u rIð Þ ¼
XP
k¼1

�eð Þ
P

XNe

j¼1

1
Rc

� 1

r kð Þ
Ij

 !
hIj þ

XNe

j¼1

1

r kð Þ
Ij

( )

where hIj is equal to 1 for rIj 	 Rc, otherwise 0.
The electron-ion potential energy in our Hamiltonian can be calculated by

Ve�ion
2 ¼PI eu rIð Þ:
A variety of inter-ionic potentials can be used for /. In this chapter, the

cation-cation pair potential we use is of the Bohn-Mayer (BM) type and was
proposed by Fumi and Tosi [71] for alkali halides. This potential includes a long
range Coulomb potential term and a short range repulsive term:

Vion�ion
2 ¼

XN

I[ J

XN�1

J¼1

e2

rIJ
þ AIJe

�rIJ=qIJ ð2:129Þ

where rIJ ¼ rI � rJj j is the distance between an ion pair I and J, and AIJ and qIJ are
parameters of the potential.

2.3.4 Molecular Dynamics Hamiltonian for a Single Alkali
Atom with Non-local Pseudo-potential

The single electron classical MD Hamiltonian is:
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H ¼
XP

k¼1

1
2
m� _r kð Þ
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þVeff ð2:130Þ

where the effective potential is that given by (2.125) which we repeat below for
completeness:

Veff ¼ � 1
b
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Ln e�
b
PVloc e�bC rn�rnþ1ð Þ2 � F1

2
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P VlocþV1 rnð Þ½ �e�bC ~rn�~rnþ1ð Þ2

o
Again, m* is the arbitrary mass of a bead “k” in the single electron necklace. We

chose m* = 1 amu. It is convenient to rewrite this effective potential in a more
revealing form:

Veff ¼
XP
n¼1

C ~rn �~rnþ1ð Þ2þV1 rnð Þ
P

� 1
b
Ln 1þ F1

2
2bCrnrnþ1ð Þe2bCrnrnþ! 1�cos að Þ � e�

b
P V0�V1ð Þ � 1

h in o
where we have used the identity:

rn � rnþ1ð Þ2¼ r2n þ r2nþ1 � 2rnrnþ1 þ 2rnrnþ1 cos a� 2rnrnþ1 cos a

2.3.5 Periodic Boundary Conditions

In this section, we address effects associated with periodic boundary conditions
(PBC) that are specific the simulation of the quantum systems described by the
Hamiltonians given by (2.126) (electron plasma) and (2.127) (Alkali metal). These
effects are associated with the electric charge of the particles and their Coulomb
interactions, the representation of quantum particles by a closed necklace, and the
non-local exchange potential associated with the indistinguishability of the quan-
tum particles.

2.3.5.1 Ewald Summation Method

As we have seen MD simulations are often conducted with PBC. That is the system
of interest is composed of a finite size simulation cell of specified shape and volume
containing the particles of interest (here our electron plasma composed of
N-electrons). This simulation cell is repeated periodically in all directions in space
to mimic the behavior of a small element of material embedded into an infinite
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system. If L is the length of the edge of a cubic simulation cell, then, the range of an
interaction between two particles (here, electron-electron Coulomb interaction) is
restricted to no more than half the size of the cell (i.e. rc\1=2L). This restriction is
imposed to avoid unphysical interactions such as one electron interacting with one
of its images or with another electron and simultaneously with an image of that
same electron. Since we may be limited computationally to simulating a small
number of electrons in a small simulation cell, we may neglect a critical amount of
long range interactions. We use the Ewald summation method [72], to accurately
account for the contribution of long range interactions to the Coulomb energy in the
Hamiltonian of (2.126) and (2.127). Following the method, we consider a lattice
made up of charged particles with positive and/or negative charges and we
superpose onto these point charges spherically symmetrical Gaussian distributions
of charges (while maintaining charge neutrality with another set of Gaussian dis-
tributions with opposite charge). The Gaussian charge distributions are proportional
to e�gr2 where r is the radial distance from the center of the Gaussian. The
parameter g is called the Ewald parameter. The calculation procedure has two
distinct but related parts. One is computing the potential from a structure with
Gaussian charge distributions located at the positions of our charged particles. The
other one is the potential of our lattice of point charges with an additional Gaussian
charge distribution of opposite sign superposed upon the point charges. g is chosen
such that both potentials at some reference points converge rapidly.

The original Ewald summation method has been further developed by Nijboer
et al. [73]. They generalized the summation method to interactions having form of
1=rn. This generalized Ewald summation method has been used in the Monte Carlo
simulation of the classical one component plasma by Brush et al. [74] and of the
fermion one component plasma by Ceperley [19]. Brush et al. showed that the
Coulomb potential at some position within a cubic cell with PBC containing an
electron plasma and a charge neutralizing positive background can be written as

u rið Þ ¼ 4p
X

X1
k 6¼0ð Þ

e�k2=4g

k2
XN
j 6¼ið Þ

qje
�ik�rij � 2qi

ffiffiffi
g
p

r

þ
XN
j 6¼ið Þ

qj
rij
erfc grij
� �� qip N � 1ð Þ

Xg2

ð2:131Þ

where qi ¼ �e for all i;X ¼ L3 is the volume of a cell, k is a reciprocal space
vector, and rij ¼ ri � rj

		 		. The wave vector can be written in terms of an integer
vector n ¼ nxnynz

� �
as k ¼ 2p

L n. The usual complementary error function, erfc, is
defined as
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erfc xð Þ ¼ 1� erf xð Þ ¼ 1� 2ffiffiffi
p

p Zx
0

e�y2dy

The last term in (2.131) is the contribution of the positive background. In the
path- Integral MD Hamiltonian, we may write the potential energy corresponding to
electron-electron Coulomb interactions as

V2 ¼
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2

XN
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qiu r kð Þ

i
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ð2:132Þ

where the summations are performed over all beads of the electrons in the simu-
lation cell. Specifically, the electron-electron Coulomb potential energy becomes:
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If we use the relation r kð Þ
ij ¼ r kð Þ

i � r kð Þ
j , the first term in the right-hand side of

(2.133) can be made to take a considerably more efficient form [75]
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i

� �" #29=;
ð2:134Þ

The double sum over i and j in (2.133) converts to two single sums. That is, N2P
calculations are reduced to 
NP calculations.

In many cases reported in this chapter, the long-range Coulomb potentials will
be replaced by a short-range screened potential of the form ð1=rÞerfcðgrÞ based on
the real space part of the potential given by (2.133). With a well-chosen value for
the parameter, η, the reciprocal-space part of the Ewald sum is negligible compared
to the real-space part [76].
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2.3.5.2 Maintaining the Continuity of the Necklace Representation
of Quantum Particles

The electron necklaces does not always remain confined in the basic simulation cell
but may spreads over its neighboring image cells. When some bead of an electron
necklace expands beyond the simulation cell and into an image cell, the continuity
of the necklace is broken by the traditional way of imposing PBC. Let us assume

that two beads belonging to the same necklace of an electron i are at r kð Þ
i and r kþ1ð Þ

i
within the simulation cell. Let us suppose that bead (k + 1) moves outside the
simulation cell in the direction (x, 0, 0), then its coordinates within the simulation

cell becomes r kþ1ð Þ
i � L1; 0; 0ð Þ, where Lx is the length of the cell in the direction

(x). PBC has broken the continuity of the necklace. We cannot calculate the dis-
tance between beads k and k + 1 by standard MD methods. In Fig. 2.8 we show the

Fig. 2.8 Beads of an electron
necklace in the simulation cell
and the image cells. Beads (1
and 4) are in the simulation
cell and beads (2 and 3) which
belong to the same necklace
are in the image cell. In
standard MD methods, we use
the filled circles in (a) to
calculate distances between
beads. In b, the necklace is
reconstructed after translating
beads (2 and 3) by L from the
left
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effect of PBC on the continuity of the necklace for P = 4. We assumed that beads (1,
2, 3, and 4) make a complete necklace.

If we calculate the distance between the beads within the simulation cell, for
instance between the filled circles in (a) of the figure, the calculated distance
between 1 and 2′ is not equal to the true physical distance between beads 1 and 2.
A MD algorithm for necklace representations of quantum particles, requires
bookkeeping of the position of a bead within the simulation cell but also of the
address of the image cell where the bead is actually located in order to allow for the
reconstructing of the complete necklace. In Fig. 2.8b, we reconstruct the necklace
by translating beads 2 and 3 from 2′ and 3′ by −L, respectively.

Practically, in the MD simulation with electron necklaces, the position of the kth

bead of the ith electron is denoted by r kð Þ
i andX kð Þ

i ; where r kð Þ
i is always defined

inside the simulation cell and X kð Þ
i contains the information necessary for recon-

structing the integral necklace of the electron. In other words, a set

r kð Þ
i þ X kð Þ

i ; k ¼ 1; 2; ::;P
n o

represents a complete closed necklace of the electron

i. When we measure the distance between two beads of the same electron i, we
calculate

r kð Þ
i þ X kð Þ

i


 �
� r lð Þ

i þ X lð Þ
i


 �			 			
However if one asks about the distance between two beads in different electrons

with PBC, it does not become an obvious question. The difficulty arises because
there is no reference point for the distance measurement. In Fig. 2.9, we show the

Fig. 2.9 Simulation cell with
PBC containing two
electrons. The smaller filled
dots represent the lth beads of
the electron j and the larger
circles represent the beads of
the electron i
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beads of two electrons i and j, and their images. The larger circles represent the
beads of the electron i and the smaller filled dots the bead l for the electron j. If we

define a reference point as r kð Þ
i þ X kð Þ

i � X lð Þ
i , then we can easily calculate the dis-

tance from this point to the ith bead of any other electrons which can be in any of 27
cells (simulation cell plus image cells). For example, if we want to measure the
minimum distance between the kth bead of the ith electron and the lth bead of the
jth electron in any cell, we have to calculate all the distances

r kð Þ
i þ X kð Þ

i � X lð Þ
i


 �
� r lð Þ

j þ ncellL

 �

where ncell is an integer vector running over the simulation cell (0, 0, 0) and 26
image cells {(1, 0, 0), (0, 1, 0), etc.}.

2.3.5.3 Evaluation of det E p;qð Þ� �
of the Effective Exchange Potential

with PBC

When we evaluate the exchange potential and eventually the exchange forces, we
encounter some practical and fundamental difficulties. One of the difficulties is
associated with the number of operations to calculate the quantum non-local
exchange effective potential. Since PBC are imposed on the system, the size of the
computational problem increases dramatically. For a simulation in 3-dimensional
space, there are actually 26 image cells which are the exact copies of the simulation
cell. In that case the effective potential for N 0-iso-spin electron:

Veff ¼ Vharm
eff þ Vexch

eff ð2:135Þ

where

Vharm
eff ¼

XP

i¼1

XN0
k¼1

Pm

2�h2b2
r ið Þ
k � r iþ1ð Þ

k


 �2
ð2:136Þ

and

Vexch
eff ¼ � 1

b

XP
i¼1

XP
j¼1

1
P� ln det E i;jð Þ


 �
hþij ð2:137Þ

Vharm
eff andVexch

eff are the harmonic potential and the exchange potential functions,

respectively. A matrix element E p;qð Þ� �
ij is given by

E p;qð Þ

 �

ij
¼ exp � Pm

2b�h2
r pð Þ
i � r qð Þ

j


 �2
� r pð Þ

i � r qð Þ
i


 �2� �� �
ð2:138Þ
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In the above equations, the subscripts and the superscripts are indexes for the
Electrons necklaces and nodes of a given electron necklace, respectively. Because
of PBC, exchange processes must include not only electrons in the simulation cell
but electrons in all the image cells. We, therefore, have to expand the size of the
matrix E p;qð Þto a size of 27N 0 � 27N 0ð Þinstead of N 0 � N 0ð Þ. This make the efficient
evaluation of the exchange potential and subsequently of the corresponding forces
practically impossible. To find a good approximation, we expand the determinant in
the following manner:

det E p;qð Þ

 �

¼ 1�
X
cells

XN 0

i¼1

XN 0

j¼1

f p;qð Þ
ij þ

X
cells

XN 0

i¼1

XN 0

j¼1

XN 0

k¼1

g p;qð Þ
ijk

�
X
cells

XN0

i¼1

XN0

j¼1

XN 0

k¼1

XN 0

l¼1

h p;qð Þ
ijkl þ . . .

ð2:139Þ

where the summation
P

cells means that every index of particles (i.e. i, j, k and l, …)
is running over all 27 cells. fij; gijk; and hijkl represent exchange processes involving
two electrons, three electrons, four electrons, respectively. Since we are interested
in calculating the exchange force acting on the electrons within the simulation cell,
we can restrict the ith electron to be within the simulation cell. The size of the
matrix E p;qð Þ is then reduced to 27N 0 � N 0ð Þ. T reduce the computational load
further, we note that the second term of (2.139) which corresponds to exchange
between pairs of electrons may now be written as

X
cells

XN 0

i;j¼1

f p;qð Þ
ij ¼

X
cells

XN 0

i;j¼1

exp � Pm

2�h2b
r pð Þ
i � r qð Þ

j


 �2
� r pð Þ

i � r qð Þ
i


 �2
þ r pð Þ

j � r qð Þ
i


 �2
� r pð Þ

j � r qð Þ
j


 �2� �� �

¼
X
cells

XN 0

i¼1

XN 0

j¼1

e� d2ijþd2ji�d2ii�d2jjð Þ

¼
XN0

i¼1

XN 0

j¼1

e�Lcell1ij þ
XN 0

j¼1

e�Lcell2ij þ . . .þ
XN 0

j¼1

e�Lcell27ij

( )
ð2:140Þ

where

d2ij ¼
Pm

2�h2b
r pð Þ
i � r qð Þ

j


 �2
d2ij ¼

Pm

2�h2b
r pð Þ
j � r qð Þ

i


 �2
and
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LcellKij ¼ d2ij þ d2ji � d2ii � d2jj K ¼ 1; 2; . . .; 27

The index i in the above equations is restricted to electrons within the simulation
cell, but the index j can point to any electron over all neighbor cells including the
simulation cell itself. By choosing a minimum value of LcellKij over all K, we have

X
cells

XN0

i¼1

XN0

j¼1

f p;qð Þ
ij ¼

XN 0

i¼1

XN 0

j¼1

e�Lmin;Koij 1�
X

K 6¼Koð Þ
e�LcellKij =Lmin;Koij

8<:
9=; ð2:141Þ

The second term in the above equation is expected to be much smaller than 1 for
most configurations. Thus we can make the approximation:

X
cells

XN 0

i¼1

XN 0

j¼1

f p;qð Þ
ij ffi

XN 0

i¼1

XN0

j¼1

e�Lminij �
XN0

i¼1

XN 0

j¼1

XN 0

k¼1

XN 0

l¼1

f p;qð Þ
ij;min ð2:142Þ

Furthermore, by applying this approximation to exchange processes that involve
more than two electrons, we reduce the computational load from the evaluation of a
27N′ × 27N′ matrix to a more tractable N′ × N′ matrix:

det E p;qð Þ
27N0�27N 0


 �
ffi 1�

XN 0

i¼1

XN 0

j¼1

f p;qð Þ
ij;min þ

XN0

i¼1

XN0

j¼1

XN 0

k¼1

g p;qð Þ
ijk;min � . . . ð2:143Þ

or

det E p;qð Þ
27N 0�27N 0


 �
ffi det E p;qð Þ

N0�N 0


 �
ð2:144Þ

2.3.6 Calculation of Forces

Up to this point we have not considered the calculation of the forces resulting from
the effective potentials/classical Hamiltonian modeling the various quantum sys-
tems discussed above. These forces are calculated classically as the negative of the
gradient of the effective potentials. Details concerning the derivation of these forces
are given in Appendix 2 for the electron plasma/alkali metal systems and Appendix
3 for the single electron in a non-local pseudo-potential.

For example, the effective force derived from the effective quantum potential of
a N-electron system has two contributions: f eff ¼ f harm þ f exch where f harm and
f exch are the harmonic force and the exchange force, respectively. Let’s consider the
effective force on the bead (k) of an electron (i). The harmonic force may be written
easily as
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f kð Þ
i;harm ¼ mP

b2�h2
r kð Þ
i � r kþ1ð Þ

i


 �
� r k�1ð Þ

i � r kð Þ
i


 �n o
ð2:145Þ

The harmonic force is calculated using the closed necklace condition. The

exchange force can be derived by calculating of f kð Þ
i;exch ¼ �D kð Þ

i Vexch with the fol-
lowing matrix algebra:

detA ¼
Xn
i¼1

aijAij;

@

@x
detA xð Þ ¼

Xn
i¼1

Xn
j¼1

@aij
@x

Aij

where A is an n� nð Þ square matrix, aij is an element of matrix A, and Aij is the
cofactor of the element aij. The exchange force on the bead (k) of an electron (i) is
given by:

f kð Þ
i;exch ¼

1
b

XP

l¼1

XP

v¼1

hþlv=P
�

det E l;vð Þð Þ
XN0

p¼1

XN0
q¼1

@ E l;vð Þ� �
pq

@r kð Þ
i

B l;vð Þ
pq ð2:146Þ

where B l;vð Þ
pq is a cofactor of a matrix element E k;lð Þ� �

pq. Subsequent details of the

calculation are given in Appendix 3. The calculation of the forces during a MD
simulation is restricted to the restricted paths.

2.3.7 Isothermal Molecular Dynamics

In our path integral MD simulations, we adopt the constant temperature MD
method based on three types of thermostating procedures, namely the momentum
rescaling approach [64], the Andersen thermostat [77] and the Nosé chain of
thermostats [78, 79].

With the momentum rescaling constant temperature method, the momenta of the
particles in a simulation cell are rescaled at each time step to maintain the total
kinetic energy at a constant value. Here a particle may be a bead of an electron
necklace and its momentum is dependent on the chosen artificial mass m*. If TI is
an instantaneous temperature of the system, the equi-partition theorem states that:

KE ¼
XN
i¼1

p2i
2mi

¼ 3N
2

kBTI

where KE is the total kinetic energy and pi is the momentum of the ith article. Using
this relation, the momentum can be rescaled such that
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pscaledi ¼
ffiffiffiffiffiffiffiffi
Tref
TI

r
� pi

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tref =TI

p
is the scaling factor and Tref is the desired temperature of the

system.
The momentum rescaling procedure is known to deviate from the canonical

momentum distribution by order of N−1 for a N particles system [78]. The classical
isomorphism we use to model quantum particles results in a representation in the
form of closed necklaces of beads connected via harmonic springs. The stiffness of
the springs depends on the number of beads and the temperature. It is known that
the simulation of stiff harmonic chains suffers from non-ergodicity. To alleviate this
problem, we can thermostat the electron degrees of freedom by coupling every
group of Nelec beads corresponding to the same time slice identical label “n” to a
Nosé chain of thermostats [79]. With this procedure, the first thermostat directly
coupled to the electrons degrees of freedom. This first thermostat is then coupled to
a second thermostat. The second thermostat is coupled to a third one, and so on.
The dynamics of the last thermostat is driven by a force calculated as the difference
between the desired kinetic energy and it actual kinetic energy. In this chapter when
we use a Nosé chain of thermostat composed of five thermostats. Each thermostat
possesses a “mass”. The mass of the first thermostat is taken as 100 amu and that of
the subsequent thermostats to 10 amu. We have observed that thermostating the
electrons with a Nosé chain still yields non-ergodic behavior for low density
quantum systems (weakly interacting) or electrons in quickly varying potentials. To
overcome this difficulty we have also performed simulations by coupling individual
necklace to an Andersen’s thermostat [77]. An Andersen’s thermostat is imple-
mented by assigning random velocities distributed according to a
Maxwell-Boltzmann distribution (corresponding to the desired temperature) to a
necklace selected randomly over some preselected period of time or over a period
of time selected at random.

2.3.8 Calculation of Properties

In this section, we address briefly the calculation of properties with the PIMD
method. Special attention is paid to the calculation of the energy of a quantum
system.
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2.3.8.1 Time Averages

Using the molecular dynamics method, one can obtain the phase space trajectories,
r tð Þ; p tð Þð Þ; and subsequently any microscopic physical quantities, say A r tð Þ; p tð Þð Þ,
as functions of time. If the system is ergodic, we may compute the time average of
A tð Þ to find its corresponding macroscopic property. In other words, the average of
the physical quantity A can be calculated as

\A� lim
T!1

1
T

ZT
0

A r tð Þ; p tð Þð Þdt

2.3.8.2 Energy Estimator

Let us consider the canonical partition function for a many-electron system with
P intermediate states in the imaginary time. To evaluate the mean energy, let’s
rewrite the partition function:

Z ¼ 1
N!

Pm

2pb�h2

� �3NP=2Z YN
i¼1

YP
k¼1

dr kð Þ
i e�bVeff e�bV2

where the potential energy V2 includes all classical potentials such as the short
range interatomic potential and/or local pseudo-potential between an electron and
an ion as well as the long range Coulomb potential. The non-local quantum
effective potential, Veff ; is given as

Veff ¼ Pm

2�h2b2
XN
j¼1

XP
l¼1

r kð Þ
j � r kþ1ð Þ

j


 �2
þVexch

eff ;

where

Vexch
eff ¼ � 1

b

Xdown
s¼up

XP
k¼1

XP
l¼1

1
P� ln det E k;lð Þ


 �
 �
hþkls:

Now we can evaluate the energy estimator by

hEi ¼ � @

@b
ln Z ð2:147Þ

The estimator for large enough P becomes
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hEi ¼ 3PN
2b

� Pm

2�h2b2
XN
j¼1

XP
k¼1

r kð Þ
j � r kþ1ð Þ

j


 �2* +
þ @

@b
bVexch

eff


 �� �
þ hV2i

ð2:148Þ

In (2.148), the angled brackets denote ensemble average and these quantities can
be evaluated by time average calculation. Since the last term of the energy estimator
equation can be interpreted as a potential energy estimator, the kinetic energy
estimator, (KE), becomes

hKEi ¼ 3PN
2b

� Pm

2�h2b2
XN

j¼1

XP

k¼1
r kð Þ
j � r kþ1ð Þ

j


 �2� �
þ KEexchh i ð2:149Þ

where hKEexchi is defined by

hKEexchi ¼ @

@b
bVexch

eff


 �� �
¼ @

@b

Xdown
s¼up

XP
k¼1

XP
l¼1

1
P� ln det E k;lð Þ


 �
hþkls


* + ð2:150Þ

The first term in the left-hand side of (2.149) is a constant for given P, N, and T.
The second term of the equation is the harmonic effective potential contribution to
the kinetic energy estimator. Both terms are easily calculated with minor amount of
computing time during a MD sampling of the systems’ configurations. However,
the third term in the equation, i.e. KEexchh i, which is the exchange potential con-
tribution, cannot be calculated unless we pay a major computing cost, because the
number of required operations is the order of 
N3P2. We give a full derivation
KEexchh i term in Appendix 4 and simply write the result here:

KEexchh i ¼
Xdown

s¼up

XP

k¼1

XP

l¼1

1
P�

1
det E k;lð Þð Þ

XN

i¼1

Pm

2b2�h2
det H k;lð Þ

i


 �
hþkls

ð2:151Þ

where H k;lð Þ
i is an N � N matrix and its element H k;lð Þ

i


 �
st
is given by

H k;lð Þ
i


 �
st
¼

L k;lð Þ
st exp � Pm

2b2�h2
L k;lð Þ
st


 �
if i ¼ t

exp � Pm
2b2�h2

L k;lð Þ
st


 �
if i 6¼ t

8<:
and
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L k;lð Þ
st ¼ r kð Þ

s � r lð Þ
t


 �2
� r kð Þ

s � r lð Þ
s


 �2
:

Because of the prohibitive computational cost of the calculation of this contri-
bution, results reported in this chapter do not account for this kinetic energy. We
will see that in the case of the degenerate electron plasma, neglecting this contri-
bution is justified. In fact Hall has shown that the exchange potential does not
contribute directly to the actual energy estimator but indirectly through the equi-
librium configurations [9–11].

The kinetic energy is therefore estimated using the following:

hKEi ¼ 3PN
2b

� Pm

2�h2b2
XN

j¼1

XP

k¼1
r kð Þ
j � r kþ1ð Þ

j


 �2� �
ð2:152Þ

The main drawback of this estimator is that it is expressed as the difference
between two large quantities. This estimator presents the drawback of a variance
increasing with P. Other forms of energy estimators have been proposed [13], for
instance, we can cite an estimator with a better variance based on the virial method
of Herman et al. [80].

The energy estimator for a single electron in a non-local pseudo-potential is
derived in Appendix 5.

2.3.8.3 Pair Correlation Function

An important structural physical quantity that we can easily compute during a
simulation is the pair correlation function (also called the radial distribution func-
tion), g(r), which tells us the actual spatial distribution of one kind of particles with
respect to another kind of particles. With the pair correlation function, we can
compare simulation results with the experimental structural data, like that obtained
from X-ray diffraction. The pair correlation function between the (i) and (j) types of
particles, gi�j rð Þ; is defined as:

gi�j rð Þ ¼ X
Nj

ni rð Þ
4pr2dr

where X is the volume of a simulation cell, Nj is the number of the type j particles,
and ni rð Þ the number of the type i particles situated at a distance r and r þ dr from a
type j particle. In the case of the unpolarized electron plasma, one can calculate the
partial pair correlation function for iso and heterospin electrons. In the case of the
alkali metals and electrons evolving in some field of ionic pseudopotentials, in
addition to electron-electron pair correlations functions, one may get insight into the
electronic structure of the system by calculating electron-ion pair correlation
functions.

66 P.A. Deymier et al.



2.4 Applications of the Pimd Method

2.4.1 Electron Plasma

We have tested the PIMD method on an unpolarized electron plasma composed of
Nel ¼ 30 electrons (number of electrons with spin up, N" ¼ 15 and number of
electrons with spin down, N# ¼ 15). The simulation cell is a fixed cubic box with
edge length L = 13.3 Å, 19.95 Å or 26.6 Å, which correspond to electronic densities
with rs/ao = 5, 7.5 and 10, respectively. Periodic boundary conditions are used and
the system is constituted of a simulation cell and 26 image cells. Under these
conditions the matrix ½En;m� for each spin should be a ð27N";#x27N";#Þ matrix. To
make the calculation more tractable, as discussed previously, we make the
numerical approximation det½En;m� � C: det½Fn;m� where ½Fn;m� is a N";#xN";# matrix
which off-diagonal elements give the maximum contribution of pair exchange to the
determinant among the possible combinations of exchange between the electrons in

the simulation cell and the electrons in all periodic cells. C � det½F�26 is a constant
representing the mean contribution of the image cells to the overall determinant.
Within this approximation, the constant, C, drops out of the force calculation. In
this form, the computing time for the calculation of the exchange potential scales as
P2N3

";#. This scaling at present limits the applicability of the method to systems with
a fairly small number of fermions. However, one may exploit the natural paral-
lelizability of the approximate effective exchange potential over the number of
beads to reduce the computational cost to a nearly linear scaling with respect to P.

We solve the equation of motion with a leap frog scheme and an integration time
step of*10−16 s. Most simulations were run for an average of 30,000 time steps. In
some cases for the low and intermediate density plasmas, we have ran simulations
up to 50,000 steps for better equilibration, this at low temperature.

Because of the large computational cost of the calculation of the exchange
effective potential and forces, the exchange forces are calculated and updated every
10 MD time steps. The values for the exchange forces are used subsequently during
the 10 steps following their calculation. We have compared the calculated average
energies during a simulation where the exchange forces were calculated every step
and the more efficient scheme described above and found no significant statistical
difference in their values.

The chosen time step is small enough to resolve the high frequency oscillations
of the harmonic springs. We have elected to rescale the temperature of each chain of
P beads independently of each other via a simple momentum rescaling thermostat.
With this procedure we do not obtain a true canonical distribution, but most thermal
averages will be accurate to orders N−1. We have also verified that with this
approach over the length of our simulations the chains would sample a large region
of configuration space and therefore resolve not only the fast but also the slow
dynamical scale.
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The calculation of the Coulomb energy is handled by the usual Ewald method of
summation. The Coulomb potential energy of the electron plasma is made con-
vergent by the introduction of a positively charged background of density �30e=X
where Ω is the cell volume. The discretized nature of the quantum particle intro-
duces some pecularity in the calculation of the Coulomb potential. The potential at
a bead n of an electron i is therefore given by:

ui;n ¼ 1
4pe0

ð�eÞ
P

XNel

j 6¼ i

if j incell

1
rij;n

erfc grij;n
� �� 2

gffiffiffi
p

p

8>>>>><>>>>>:

þ
X1
k 6¼0

4p
X

e�k2=4g2

k2
XNel

j 6¼ i

j incell

ei
~k:ð~rj;n�~ri;nÞ � pðNel � 1Þ

Xg2

9>>>>>=>>>>>;
where k is a reciprocal space vector associated with the periodicity of the simulated
and image systems. erfc stands for the usual complementary error function. The first
three terms in equation are the usual real and reciprocal space contributions to the
potential. The last term is the contribution of the background. We chose an Ewald
parameter g ¼ 5:741

L for which satisfactory convergence is obtained with truncation
of the real space sum at 1

2 L and truncation of the reciprocal sum at k2 	 49.
We calculate the kinetic energy with the usual energy estimator derived from

@ ln Z=@b (2.149) and neglecting the exchange contribution to the kineric energy).
With this estimator, the kinetic energy is given as a small quantity, difference
between two larger quantities, with a variance growing with P. This estimator,
therefore, introduces an error on the calculated values of the kinetic energy which
we have estimated to be on the order of 0.1 eV.

Every simulation reported starts with a different initial configuration obtained
from randomly generated bead position in every electron chain. The initial
bead-bead distance is determined by the temperature. In order to reduce the time for
the system to reach equilibrium from its initial configuration, we have taken some
care as to construct initial configurations closely related to the anticipated equi-
librium state. Specifically, we have found that localized compact necklaces take
more time to reach equilibrium compared to more open necklaces which beads are
distributed uniformly throughout the simulation cell. This observation is more
important for low density systems where the extent of space to sample is large.

In Fig. 2.10, we present results on the convergence of the discretized restricted
path integral molecular dynamics. The kinetic energy (Fig. 2.10a) and potential
energy (Fig. 2.10b) of the high density plasma (rs = 5ao) at T = 1800 K and the
intermediate density plasma (rs = 7.5ao) at a temperature of 700 K are reported as a
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function of the number of beads, P. We note that the energies converge to some
asymptotic value for necklaces containing as few as 200–300 beads even for the
electron plasma near metallic density. In addition, to PIMD energies, we have also
indicated the 0 K kinetic and potential energies of electron plasma with same
density of [12, 13]. At the temperatures of 1800 and 700 K, the high and inter-
mediate density systems are in the degenerate regime and the electronic energies
should be comparable to the 0 K values. The kinetic energies are in very good
agreement but some discrepencies exist between the potential energies as the
restricted PIMD appears to over-estimate them. In order to further the validation of
the restricted PIMD, we have conducted a series of calculations at several tem-
peratures for the three densities. For the high and medium density systems we have
used 450 and 300 beads, respectively. These number of beads fall within the region
of convergence. Electrons in the low density electron plasma are discretized over
360, 380, 450, 680, 720, 780 for the temperatures 1100, 900, 450, 575 and 550, 500
and 450, 400 and 350 K.

Fig. 2.10 Kinetic energy
(a) and potential energy (b) as
functions of number of beads
in the necklace representation
of quantum particles. The
circles and squares refer to
the high density (rs = 5ao,
T = 1800 K) and medium
density (rs = 7.5ao, T = 700 K)
electron plasma, respectively
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The calculated kinetic energies of Fig. 2.11a are in excellent agreement with the
variational Monte Carlo results of Ceperley [12, 13] for correlated plasma. We note
that the kinetic energy is not varying significantly over the range of temperature
studied as is expected for these plasma at the border of the degenerate and the
semi-degenerate regimes. At low temperature, the low density system with large
numbers of beads takes a very long time to equilibrate and sampling of phase space
is not very efficient. In this case, calculation of reliable energies require very long
simulations. Another difficulty in calculating reliable energies when large number
of beads are used results from the fact, as was noted before, that the variance of the
kinetic energy increases with P. We did not need to use so many nodes for the low
density plasma even at low temperature, however, these simulations illustrate the
need to use as few beads as possible within the interval of convergence. In addition
to the 0 K correlated energies, we have indicated the Hartree kinetic energy (2.21/rs

2

in Rydberg) with a dotted line. Figure 2.11a shows that the non-local form of the
density matrix introduces some electron correlation. This is also apparent in the
results for the temperature dependence of the potential energy. The calculated

Fig. 2.11 Kinetic energy
(a) and potential energy (b) as
functions of temperature. The
electron plasma with rs = 5,
rs = 7.5 and rs = 10 Bohr
radius are refered to by
circles, squares and triangles,
respectively. The horizontal
lines correspond to the
correlated energies of
Ceperley [16]. The dotted
lines indicate the
Hartree-Fock energies
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potential energy falls between the fully correlated results of Ceperley and the
electron/electron interaction contribution to the Hartree-Fock energy (given by –

0.916/rs in Rydberg). We also note that the potential energy increases weakly with
temperature and that extrapolation toward 0 K should result in potential energies in
better agreement with the correlated potential energies than the uncorrelated ones.
In the present model, however, the non-local effective potential introduces electron
correlation between electrons with identical spins only. The present potential
energies are over-estimated as correlations between electrons with opposite spins
are not accounted for.

Finally as a demonstration of the effectivenes of the exchange potential, the pair
correlation for iso-spin and hetero-spin electrons is reported in Fig. 2.12 in the case
of the high density plasma at the three temperatures studied.

The difference between iso- and hetero-spin radial distributions is striking. In
order to satisfy Pauli exclusion principle, the non-local exchange potential keeps the
electrons with identical spin away from each other while electrons with different
spins can approach each other quite closely. The Coulomb repulsive force is the
only force keeping electrons with different spins from approaching. The non-local
exchange potential is quite short range as it does not appear to affect the electron
distribution beyond 5 Å. The exclusion is particularly important in the interval
[0.3 Å]. The major effect of a rising temperature is the increase in pair correlation at
shorter distance or in other words, the shrinkage of the exchange-correlation hole.

Fig. 2.12 Iso-spin and
hetero-spin electron-electron
pair distributions for the high
density electron plasma at
T = 1300 K (thick solid line),
T = 1800 K (dotted line), and
T = 2300 K (thin solid line)
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2.4.2 Alkali Metal

After showing that the non-local restricted PIMD can simulate with reasonable
accuracy electron plasma near metal density, we apply the method to the simulation
of an alkali metal from first-principle. We show that the simple metal undergoes a
phase transformation upon heating. Calculated dynamic properties indicate that the
atomic motion changes from a vibrational to a diffusive character identifying the
transformation as melting. Calculated structural properties further confirm the
transformation. Ionic vibrations in the crystal state and the loss of long-range order
during melting modify the electronic structure and in particular localize the elec-
trons inside and at the border of the ion core.

We have chosen potassium because (1) it is a prototype free-electron metal
which has been studied previously using semi-empirical pair potentials, (2) there
exist experimental data for the pair-correlation function of the liquid state, ther-
modynamic, and vibrational properties. The simulation cell contains 54 K+ and 54
non-polarized electrons. The number of electrons with spin up and spin down is 27,
respectively. In the crystal structure, the potassium ions and electrons are arranged
on a body-centered-cubic (BCC) lattice. Electrons necklaces with spin up are placed
on the lattice with nearest neighbors of opposite spin. Every simulation reported
starts with a different initial necklace configuration obtained from randomly
generated-bead positions in every electron chain. The initial bead-bead distance is
chosen according to the temperature. However, in order to reduce the time for the
system to reach equilibrium from its initial configuration, we have taken some care
as to construct necklace initial configurations, i.e., necklace spatial extent closely
related to the anticipated equilibrium state.

As temperature is varied, the dimensions of the cell are adjusted to match the
experimental density of the K crystal, this over the entire range of temperature
studied. Unexpectedly, our simulations have shown that the potassium model
system melts at a temperature below the experimental value of the melting point,
thus the density of the liquid system reported below conforms to the value of the
density of the crystal at the corresponding temperature. Periodic boundary condi-
tions (PBC) are applied to the simulation cell.

In the model, the ions K+ are dealt with in a purely classical manner and interact
through a Born-Mayer potential and the parameters of the potential are those fixed
by Sangster and Atwood [81]. As to the electron/ion interaction, we have used a
simple empty core local pseudopotential with a core radius Rc = 2.22 Å [82]. To
optimize the calculation of the long-range Coulomb energy and forces, we do not
use the Ewald summation but simply replace the long-range Coulomb potential and
by a shorter range effective potential of the form ð1=rÞerfcðgrÞ where g ¼ 5:741=L0
and L0 ¼ 16 Å. The physical potassium ion mass is MI = 71 830 me, leading to an
extreme disparity in electronic and ionic time scales. For practical reasons, we use a
ratio of the ion mass, MI, to the electron’s bead artificial mass, m*, of 39.1:1. The
dynamics of the electrons is still significantly faster than the dynamics of the ions.
We solve the equation of motion with a leapfrog scheme and an integration time
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step of 2.8 × 10−16 s. Most simulations were run for a minimum of 70,000 time
steps or 20 ps. In some cases for the calculation of vibrational properties, we have
run simulations up to 120,000 steps. Because of the large computational cost of the
calculation of the exchange effective potential and forces, the exchange forces are
calculated and updated every 10 MD time steps. The values for the exchange forces
are used subsequently during the 10 steps following their calculation. We have
chosen to rescale the temperature of each chain of P beads independently of each
other via a simple momentum rescaling thermostat.

We have studied the potassium model system at temperatures in the interval [10,
298] K. The simulation of the electronic degrees of freedom as discrete necklaces at
these low temperatures would necessitate a prohibitively large number of beads for
convergence with respect to P. The PIMD simulations of the electron plasma have
shown that at metallic density the electron system conserves a nearly degenerate
character up to a temperature of 2300 K. Since temperature does not affect sig-
nificantly the electronic states at the metal density, we have thermally decoupled the
classical ionic degrees of freedom and the quantum electronic degrees of freedom.
The electronic necklaces are attached to a thermostat set at a temperature of 1300 K,
while the ionic temperature is adjusted independently with another thermostat. At
the electron temperature of 1300 K, it is sufficient to employ a reasonably small
number of beads for convergence of the algorithm. We calculate the kinetic energy
of the electrons with the standard estimator (P dependent variance). We have
estimated the error on the calculated kinetic energy by calculating the standard
deviation on the running cumulative average over the last 30,000 time steps of the
simulations. This error is estimated to be on the order of 0.01 eV per electron.

In a first stage, we have investigated the convergence of the algorithm with
respect to the number of beads in the electron necklaces, namely, P. For this we
have calculated the electron kinetic energy at an ion temperature of 273 K for
systems with varying values of P. It is important to note again that each simulation
starts from different initial necklace configurations. Figure 2.13 presents the results
of these calculations.

It is clearly seen that the electron kinetic energy converges to an asymptotic
value of approximately 1.23 eV/electron. The algorithm appears to have nearly
converged for number of beads exceeding 240. As a trade-off between accuracy and
efficiency, we have chosen P = 260 for all subsequent simulations. The total energy
of the potassium system as a function of temperature is reported in Fig. 2.14. The
energy shows two regions separated by an apparent discontinuity of approximately
0.025 eV/atom. In Fig. 2.14, we have also drawn as a guide for the eyes best
second-order and first-order polynomial fits to the low-temperature and
high-temperature energies, respectively. The slope of the fitted curves increases
from the low- to the high-temperature region indicative of larger energy fluctuations
in the high-temperature systems.

The dotted line in the low-temperature region is constructed from the experi-
mental value of the constant pressure heat capacity with the constraint that it gives
the calculated energy at 76 K. In view of the error on the energy, the simulated
metal is in reasonable agreement with its experimental counterpart.
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We recall that the density of the simulated potassium system varies continuously
as a function of temperature as it is set to the temperature-dependent density of the
solid. Therefore, the discontinuity is not associated with any discontinuous change
in the volume of the system but can only result from a structural transformation.
This structural transformation takes place around 210 K. As we will see later from
structural data, this is a solid to liquid transformation. The calculated transforma-
tion, therefore, underestimates the melting point by nearly 120 K as potassium
melts at 333 K under atmospheric pressure. This difference cannot be assigned to

Fig. 2.13 Electron kinetic
energy as a function of the
number of necklace beads
P. The ion temperature is
273 K and the electron
temperature is 1300 K

Fig. 2.14 Total energy
versus temperature. The solid
lines are fits to the data in the
low- and high-temperature
regions. The dotted line is
constructed from the
experimental constant
pressure heat capacity such
that it intersects the calculated
energy at 76 K
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the fact that the density of the simulated system is constrained since such a con-
straint should have the opposite effect of raising the melting point. The difference
between experimental and simulation melting point can only result from the
computer model that underestimates the strength of the K–K bond and in particular
we believe that it is a consequence in part of the approximation made to reduce the
range of the Coulomb interaction. In that respect it is predominantly a size effect.

To gain further insight into the energetics of the transformation, we have
graphed in Fig. 2.15 some of the contributions to the energy of the system.

The only energy that is not plotted is the classical kinetic energy of the ions.
Since the temperature of the ions is maintained constant by a thermostat, the ion
kinetic energy is a simple linear function of temperature and cannot account for the
discontinuity in the total energy. Apart from an isolated point at 200 K, the potential

Fig. 2.15 Various
contributions to the total
energy of the potassium
system as functions of
temperature
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energies vary reasonably continuously with temperature. In contrast, it appears that
the electron kinetic energy data is separable in two groups, namely, a
low-temperature group and a high-temperature group. Since the electrons in the
potassium system are nearly degenerate, their kinetic energy should not be tem-
perature dependent provided the atomic structure remains the same. Within each
group the kinetic energy does not show any systematic variation. We should
remember that the standard deviation on the electron kinetic energy is approxi-
mately 0.01 eV/electron. The difference between the energies of the two groups
amounts to approximately 0.015–0.02 eV electron and appears to be a significant
contribution to the total-energy discontinuity. The rise in kinetic energy as one
crosses the discontinuity from the low-temperature to the high temperature is
indicative of a change to an electronic state of higher localization in the
high-temperature metal. This observation is consistent with the expected behavior
of electrons in a liquid structure in contrast to a crystalline solid. As the structure
disorders from crystalline to liquid, one anticipates a narrowing of the electronic
band. However, since the short-range local atomic environment does not change
drastically between the liquid and the solid above and below the transformation
temperature, the extent of the electronic localization should be small. We charac-
terize the atomic structure of the simulated system via the K–K pair-distribution
function. The distributions calculated at several temperatures are drawn in Fig. 2.16.

The very low-temperature ion pair-distribution function shows a first
nearest-neighbor peak at approximately 4.6 Å and a well-defined second-nearest
shoulder at 5.2 Å. This second distance represents the lattice parameter of the
crystal phase. The third-nearest-neighbor peak occurs near 7.4 Å. These features are
characteristic of the body-centered-cubic structure of crystalline potassium.

Fig. 2.16 Ion
pair-distribution functions at
the temperatures of 10 K
(thick solid line), 76 K (thin
solid line), 150 K (dashed
line), 248 K (thick dotted
line), and 273 K (thin dotted
line)
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As temperature increases, the second-nearest-neighbor shoulder fades away and
merges with the first-nearest-neighbor peak forming a broad asymmetric peak
because of the larger amplitude of atomic motion. At the temperature of 76 K, the
third-nearest-neighbor peak retains its identity. At 150 K, this peak consists only of
a vague shoulder part of a much broader peak that should encompass higher-order
nearest neighbors. However, due to the size of our simulation cell, we cannot
resolve with much confidence the pair-distribution function beyond one half the
length of the edge of the simulation cell. On the same figure, we have also plotted
the K–K pair distribution functions at the temperatures of 248 and 273 K. We have
not represented the distribution at 298 K since it is practically identical to the one at
273 K. The maximum of the first-nearest-neighbor peak shifts toward lower values
as temperature increases. At 273 K, this maximum occurs at a distance of
approximately 4.3 Å. This distance is an underestimation of the experimental K–K
first-nearest-neighbor distance [83] but the calculated liquid distribution is in good
qualitative accord with available experimental data. To supplement the structural
information provided by the ion pair-distribution functions, we report in Fig. 2.17
two-dimensional projections of the trajectories of the K ions at several
temperatures.

Figure 2.17a, b correspond to the crystalline state. The ionic species vibrate
about clearly well-defined equilibrium lattice positions. At the two high

Fig. 2.17 Trajectories of the K ions at a T = 10 K, b T = 76 K, c T = 248 K and d T = 298 K
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temperatures, Fig. 2.17c, d, one cannot identify lattice positions anymore. Although
one may still identify some vibrational component to the ionic motion in the form
of some localization in the trajectories, ionic motion is not predominantly oscilla-
tory but also possesses a diffusive character.

More quantitative information concerning ionic motion is available from the
analysis of the mean-square displacement (MSD).

The MSD is defined as

MSD sð Þ ¼ lim
T!1

ZT
0

r t þ sð Þ � r sðð ÞÞÞ2

with s being a correlation time and r being the position of a particle. By calculating
the MSD from the trajectories of particles, we may determine whether they behave
according to diffusion processes or vibrational ones. For normal diffusion processes,
i.e. one that occurs slowly with respect to microscopic times and for which spatial
variations are smooth, we have D ¼ 1

6s �MSD tð Þ where D is the diffusion
coefficient.

Figure 2.18 shows the mean-square displacement (MSD) of K ions as a function
of time and temperature. In terms of the MSD, diffusive motion is identified by
linear variation with time in the limit of large time. Vibrational motion is charac-
terized by a time-independent MSD. At the three lowest temperatures (10, 76, and
150 K), the MSD indicates that ionic motion is vibrational. At the highest tem-
peratures of 248, 273, and 298 K, the ions exhibit diffusive motion. It is somewhat
more difficult with the present data to identify on the basis of the MSD only the

Fig. 2.18 Mean-square
displacement (MSD) as a
function of time and
temperature
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nature of atomic motion at the temperature of 223 K. However, because the density
of the system is constrained to conform to that of the solid, it is not surprising that at
223 K, atoms in this liquid may display essentially vibrational motion.

Further information on the ionic motion is obtained from the calculation of the
normalized velocity autocorrelation function (NVAF).

The NVAF is defined as NVAF sð Þ ¼ VAF sð Þ
VAF 0ð Þ where the velocity autocorrelation

function (VAF) is given by VAF sð Þ ¼ lim
T!1

RT
0

v t þ sð Þ � v sð ÞÞð Þ2. v in that equation

is the velocity of a particle. Using the velocity autocorrelation function, we can also
calculate the power spectrum or spectral density G fð Þ of the NVAF. By the
Wiener-Khintchine theorem [84], the power spectrum is the Fourier cosine trans-
form of NVAF, i.e.

G fð Þ ¼ limT!1 4
Z T

0
NVAF sð Þ cos 2pf sð Þds

where f is the frequency of a vibrating particle. The power spectrum is nothing but
the vibrational density of states of a collective ionic motion.

We therefore also consider the power spectrum of the NVAF, defined as its
Fourier transform. The NAVF’s and the associated power spectra have to be ana-
lyzed in a qualitative manner because the time over which they are calculated is not
long enough for quantitative characterization. In Fig. 2.19, the NVAF’s at the two
high temperatures of 273 and 298 K show features of the crystalline state (10 K),
with oscillations representative of thermally excited phonons in crystal lattices. The
contrast in ionic motion between the liquid and the crystal is also quite apparent in
the power spectrum and in particular in the low-frequency modes. At 10 K, the
power spectrum drops to zero at zero frequency. The liquid systems at 273 and
more evidently at 298 K, exhibit nonzero values of the power spectrum at zero
frequency. This observation is in accord with a diffusive ionic motion [85]. The
peaks in the power spectra of the liquid metal are consequences of the oscillations
in the NVAF’s and may thus be regarded as remnants of the phonon structure
observed in the crystal state. The fact that the density of the liquid is constrained to
that of the crystal may accentuate this effect. As temperature increases or density
decreases, these peaks should disappear with the decay of the oscillations. It is not
possible to extract detailed information from the fine structure of the power spectra
because of the finite time used in their calculation. However, one may compare
qualitatively the calculated power spectrum at 10 K with that deduced from
experimental measurements at 9 K [85]. The experimental phonon density of states
possesses a major peak near 2.1 × 1012 Hz. Vibrations in the PIMD model of the
crystal potassium have lower frequencies in the range 0.8–1.3 × 1012 Hz suggestive
of weaker bonds. This observation correlates closely with the observation of a
calculated melting temperature underestimating the experimental melting point.

Finally, we consider the change in the electronic structure of the metal upon
melting. This change is associated with an increase in electronic kinetic energy of
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approximately 0.02 eV/electron. This energy is small and thus one expects only a
slight modification of the electronic structure. Such a variation is observable in the
electron pair-distribution functions of Fig. 2.20.

The partial distribution functions show that the major difference between the
low-temperature crystal and the liquid is an increase of the maximum in the het-
erospin pair correlation between 3 and 4 Å and an expansion of the
exchange-correlation hole as seen in the isospin distribution. In our previous study
of the effect of temperature on the electron density of an electron plasma with
density near that of the present potassium system, we had shown that increasing
temperature shrinks the exchange-correlation hole. However, the direct effect of
temperature on the electronic structure cannot be a factor as it is maintained con-
stant by a thermostat. Here, the expansion in the parallel-spin electron correlation
may thus simply be a result of volume expansion. On the other hand, upon melting
the first-nearest-neighbor and second-nearest-neighbor shells of the crystal structure

Fig. 2.19 Normalized velocity autocorrelation function (NVAF) and associated power spectrum
for crystalline potassium (T = 10 K) and liquid metal (T = 273, 298 K). The inset in the T = 10 K
power spectrum is the experimentally deduced phonon density of states at 9 K of [85]
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collapse and the ion coordination number in the liquid increases. The
exchange-correlation force between neighboring isospin electrons may then induce
further localization. The resulting localization within and at the border of the ionic
core is seen best in the electron-ion radial distribution of Fig. 2.21.

Fig. 2.20 Partial electron
pair-correlation functions.
The solid line and dotted line
refer to the crystal at
T = 510 K and the liquid at
273 K, respectively

Fig. 2.21 Electron-ion
pair-distribution functions at
several temperatures
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At low temperature the ion-electron pair distribution shows a significant first
maximum at a distance of 2.2 Å. This distance corresponds to approximately one
half the first-nearest-neighbor interatomic distance. The ion-electron correlation
reaches a minimum between 4.3 and 4.5 Å followed by a second maximum near
6.5 Å. The ion-electron pair distribution is therefore complementary of the ion-ion
distribution. In other words, high electron-ion correlation is expected where there is
low ion-ion correlation. The high electron density between ions is indicative of
bonding. Considering now the midpoints between ionic sites as consisting of
electronic sites, we can estimate the electron-electron distance in the potassium
body-centered-cubic structure to be on the order of 1=

ffiffiffi
2

p
times the lattice

parameter. The electron-electron distance thus calculated amounts to approximately
3.67 Å. This number is in excellent accord with the observed maximum in the
heterospin electron-electron pair distribution. With this information, we may con-
struct a simplified picture of the electronic structure in the crystal phase. The
electron density is the highest between the ions thus leading to bonding and the
electronic sites are occupied alternatively by electrons with differing spin. An
increase in electron localization at the electron sites occurs even in the solid state at
the higher temperature of 150 K. This shows that atomic vibrations have a sig-
nificant effect on the nature of the electronic states in crystalline potassium.
Vibrations tend to localize the electron density. Similar observations by other
investigators were made for the case of sodium clusters [9–11]. The electron density
localizes further with disordering of the structure at even higher temperature. In the
liquid, the electron density increases near 2.2 Å. This increase is compensated by a
reduction in the electron-ion pair correlation at longer range as seen by the loss of
electron-ion correlation near 6.5 Å. Since the calculated dynamical properties
support the retention of vibrational motion in addition to diffusive motion in the
liquid state, it is unclear at this stage which of the two processes: vibration versus
disorder, contributes principally to the localization. The electron localization at the
edge of the ionic cores should lead to an increase in heterospin correlation between
3 and 4 Å which is observed in Fig. 2.20. Finally, we note that the larger electron
density between nearest-neighbor ions is consistent with the shorter K–K bond
length in the liquid structure.

2.4.3 Expanded Body Centered Cubic (BCC) Hydrogenoid
Crystal

We have also used the restricted path integral molecular dynamics method to study
the correlated electronic structure of a half-filled expanded three-dimensional hy-
drogenoid body-centered cubic (BCC) lattice at finite temperatures. Starting from a
paramagnetic metallic state with electron gas character, we explore the formation of
bound electron states form upon expansion of the lattice.
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The cubic simulation cell contains NI = 54 ions arranged on a BCC lattice (27
unit cells) and Nel = 54 non-polarized electrons (Ns¼" ¼ 27 and Ns¼# ¼ 27).
Periodic boundary conditions are applied. The long-range Coulomb potentials are
replaced by a shorter-range screened potential of the form ð1=rÞerfcðgrÞ where
g ¼ 0:382 Å−1. With the chosen value for η, the reciprocal-space part of the Ewald
sum is negligible compared to the real-space parts. For a fixed value of η, the point
self-energy in the Ewald sum is independent of density and is not presented here.
All potentials are truncated at half the length of the edge of the simulation cell.

We solve the equations of motion with a leap-frog scheme and an integration
time step of 2.8 × 10−16 s. For the electron-ion pseudopotential, we employ an
empty core local pseudopotential with core radius, Rc = 1.5 Å. As will be seen in
this section, Rc is small enough to lead to a significant electronic density inside the
ionic core providing the on-site electron-electron interaction necessary to observe
the formation of bound states. We use P = 400 beads for the electron necklaces in
order to ensure convergence of the path integral at the temperatures and densities
studied. We eliminate all phonons by holding the ions at fixed positions. The
temperature of the electrons is maintained at high enough values such that for the
high densities paramagnetic metal state studied the electrons are in a nearly
degenerate regime. We thermostat the electrons with a Nosé-Hoover chain of five
thermostats. We have also coupled each necklace to an Andersen’s thermostat to
ensure ergodicity and satisfactory exploration of the potential surface (especially at
low densities). We calculate the kinetic energy with the standard kinetic energy
estimator (with P dependent variance) and Heerman et al.’s estimator.

Note that in the present model, the spin state is permanently attached to an
electron. Frustration in magnetic ordering will arise from the small difference in the
distance between first and second nearest neighbors in the BCC lattice compared to
the deBroglie wavelength of electrons. Under the conditions of our simulations, a
thermodynamic transition associated with magnetic ordering of the entire simula-
tions cell is unlikely. Considering the spatial extend of bound electrons, the BCC
lattice cannot accommodate a periodic antiferromagnetic structure with identical
spin states on the first and second nearest neighbors of each site. However, the
formation of small antiferromagnetic clusters is not precluded.

We conducted series of simulations of the electronic structure of the hydroge-
noid BCC lattice at several temperatures with lattice parameter ranging from 5.3 to
13.3 Å. Every simulation uses as starting configuration the final equilibrated con-
figuration from a preceding simulation at either a lower temperature and identical
density or same temperature but lower or higher density. For numerical reasons
associated with arithmetic limitations on the magnitude of det[E], we could not
simulate expanded systems beyond rs = 12.41. The total number of MD integration
time steps for the simulations ranges from 25,000 for the highest densities where
equilibrium is reached fairly rapidly and up to an excess of 200,000 steps at lower
density. Because of limits in computational resources, each simulation is a sequence
of shorter runs of approximately 10,000–20,000 steps. Consequently, we estimate
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the standard deviation of the average energies from the set of individual average
energies obtained from the short runs constituting each simulation.

To verify that our simulations had indeed reached thermodynamics equilibrium,
we simulated a low-density systems, at rs = 11.17, starting from a randomly gen-
erated paramagnetic insulator with only singly occupied lattice sites. The temper-
ature was T = 1000 K. After the system reached equilibrium, structural and
thermodynamics properties approached those of the expanded systems at the same
density providing evidence that the simulations reported in this paper correspond to
stable thermodynamic equilibrium.

The electron kinetic energies, electron-ion potential energy and electron-electron
coulomb energy for two temperatures, T = 950 and 1100 K, are presented as
functions of the electron sphere radius, rs, in Fig. 2.22.

The kinetic energies calculated with the two estimators agree well with each
other indicating that ergodicity is satisfied. The kinetic energy is U-shaped. At high
density, the calculated kinetic energy follows the trend of the unpolarized uniform
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Fig. 2.22 a Average electron kinetic (circles) and electron-ion potential energy (squares) versus
the electron sphere radius, rs, at two temperatures. The open and closed circles are calculated with
the energy estimators of [32, 38]. The solid lines are simple polynomial fits to serve as guides to
the eye. The thin dashed line is the kinetic energy of the unpolarized electron plasma [19].
b Electron-electron (e-e) coulomb potential energy as a function of rs
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electron gas. As density decreases i.e. rs increases, the electrons in the hydrogenoid
lattice deviate from the electron gas behavior. The rise in kinetic energy at low
density is associated with the formation of compact electrons i.e. highly localized
electron necklaces. Figure 2.22a clearly shows that beyond rs = 10, electron
localization results from a competition between the rising kinetic energy and the
decreasing electron-ion potential energy. The compact electrons with high kinetic
energy are localizing inside the core of the ions to minimize their potential energy.
The electron-electron coulomb energy (Fig. 2.22b) decays monotonously over the
range of densities studied. Beyond rs = 10, the electron-electron potential energy
decreases only slightly (or even appears to have reached a minimum for
T = 1100 K) indicating that the localized electrons have effectively excluded other
electrons from the ion cores.

The formation of compact electronic states is also clearly seen in Fig. 2.23 where
we report the distribution of electrons’ radius of gyration (RG) at several densities
and two temperatures. The radius of gyration of an electron (k) is calculated with
the following expression:
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Fig. 2.23 Distributions of electron radius of gyration (see text for definition) for several densities
at two temperatures

2 Path Integral Molecular Dynamics Methods 85



RGðkÞ ¼ 1
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXP
i¼1

rðkÞi � �rðkÞ

 �2vuut

where �rðkÞ is the position of the center of mass of the electron. Parrinello and

Rahman [5] have shown that RG2
� � ¼ �h2=2me

kBT
C. For a free particle, C is equal to 1

and <RG2> is interpreted as the square of the average de Broglie wavelength for
electrons with average momentum square, mekBT.

At high density, the RG distribution takes a nearly Gaussian form with a mean
RG * 4 Å. For T = 1100 K and rs = 6.82, the value of C is estimated to be *0.45
which is nearly half that of a free particle. The electrons have some free particle
character but this value for C reflects some compactness due to electron correlation
as well as the interaction with the lattice. Upon a decrease in density, compact
electrons form a shoulder in the RG distribution transforming into a narrow peak
centered around RG * 2 Å. At fixed density, the weight of bound states increases
as temperature rises from 950 to 1100 K. At T = 1100 K, the value of C for the
bound electrons is now one order of magnitude less than the free electron value.
This value is comparable to that of a single F-center studied by Parrinello and
Rahman with PIMD [5]. The compact electrons are representative of bound states
since their center for the motion of gyration is located on ionic positions as illus-
trated by the electron-ion pair correlation functions (PCF)/radial distribution
functions (RDF) of Fig. 2.24.

In Fig. 2.24a we show that at the highest density studied, rs * 4.96, decreasing
the pseudo-potential core radius from Rc = 2.2–1.5 Å converts our system from a
simple metal to an atomic lattice with overlapping atomic wave functions. In a
simple metal like potassium the e-ion RDF exhibits oscillations that have an inverse
phase to the ion-ion RDF. Note that the smaller amplitude of our e-ion RDF is
probably due to the erfc screening of the Coulomb interactions. At Rc = 2.2 Å, the
e-ion RDF shows a minimum at r/rs * 1.9 corresponding to the closely related first
and second nearest neighbor distances of the BCC lattice, r/rs = 1.76 and 2.03,
respectively. For Rc = 1.5 Å, the e-ion RDF fills the ion core and shows a maximum
in phase with the ion-ion distances. The minimum near r/rs = 1, indicates that the
electrons occupying atomic sites start to exclude other electrons. We have also
included in Fig. 2.24a, the electron-proton RDF for a hot dense partially ionized
atomic hydrogen fluid that also shows exclusion outside the atomic radius [88, 89].
Figure 2.24b demonstrates strong electron localization within the ion cores as
density decreases. The growing depression at a radius of 1 is evidence for a
reduction in the number of itinerant electrons. A pictorial representation of the
spatial arrangement of the localized electrons and of the free carriers within the
BCC lattice is given in Fig. 2.25. This figure provides information somewhat
similar to that of Fig. 2.24 but supplements it by showing that at low density, the
lattice is composed of separate regions rich in bound electrons and regions rich in
free carriers.
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The evolution of the electronic structure of the expanded system at fixed tem-
perature is also clearly seen in the heterospin, g↑↓, and homospin, g↑↑and↓↓,
electron-electron RDF reported in Fig. 2.26.

The pair correlations are between beads of necklaces with the same label, that is,
the same time slices along the discretized path representation. At high density, the
electron-electron RDF calculated with the RPIMD method are characteristic of the
uniform electron gas with a correlation hole in the heterospin RDF and a wider
exchange-correlation hole in the homospin RDF. The inset of Fig. 2.26, compares
our results at rs = 4.96 with the RDF of the unpolarized uniform electron gas of
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Fig. 2.24 a Electron-ion
RDF at rs = 4.96 for several
values of the local
pseudo-potential core radii at
T = 1100 K. The dotted line is
the RDF for potassium
(rs = 5.024) extracted from
[86] (inner-core structure is
omitted). The dashed line is a
proton-electron RDF for the
partially ionized hydrogen
atomic fluid of [87] (rs = 2).
b Electron-ion RDF at
T = 1100 K for several
electron densities.
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complete distributions for
radii less than the electron
sphere radius
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reference [90] at a similar density calculated with variational Monte Carlo
(VMC) and diffusion Monte Carlo (DMC) methods. The agreement is quite good
except near the origin. The PIMD heterospin RDF falls essentially between the
VMC and DMC curves for most radial distances. At very short distance, the PIMD
heterospin RDF does not take on the expected non-zero value at the origin but
rapidly changes slope and dives toward 0. The discretized path integral represen-
tation of a quantum particle becomes exact as P → 1. In that limit the
electron-electron Coulomb interaction, allows heterospin electrons to overlap to
some extent. At finite P, this quantum effect is lost and the PIMD method over-
estimates the Coulomb force between electrons at very short distance. For P = 400
and rs * 5, the RPIMD method does not represent the electron-electron RDF
properly for radial distances shorter than *0.1 Å. This problem will not affect
significantly the results presented in this paper since most of the simulations
reported here are at low density for which g↑↓ is very small at the origin.

As density decreases to rs = 8.69, the heterospin RDF exhibits a shoulder at
radial distances, r/rs * 0.4. This shoulder corresponds to doubly occupied lattice

Fig. 2.25 Snapshot
projections of the position of
the nodes of all the electron
necklaces on the (100) plane
of the BCC lattice for two
densities. The temperature is
T = 1100 K. The electron
sphere radius is a rs = 7.44
and b rs = 11.17
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sites (i.e. singlet). This shoulder converts into a peak for lower densities indicating
further spatial localization of the electrons participating in doubly occupied sites. It
is worth noting that the number of electrons in double occupancy calculated by
integrating g↑↓(r) over the interval 0 < r/rs < 1 does not amount to more than a
fraction of an electron. The homospin RDF shows also a shoulder at r/rs * 0.7 that
results from a non-zero but very small number of doubly occupied triplet sites.
Upon dilation of the lattice the increasing number of singly occupied lattice sites
yields a sharper peaks in the PCF encompassing both the nearest neighbor distance
of the BCC lattice and the second-nearest neighbor distance.

The transfer of spectral weight from the free carrier states to the bound electron
states as temperature is increased at fixed density (rs = 8.69) is unambiguously
confirmed in Fig. 2.27.

We note that there exists a similarity between the distribution at T = 1300,
rs = 8.69 and the distribution of Fig. 2.23 at T = 950 and rs = 9.93. This similarity
shows that the relevant energy scale for the formation of bound states upon
expansion is the Fermi temperature TF. Indeed, despite their different temperatures
and densities, these two systems have very similar values of T/TF. The inset of
Fig. 2.27 summarizes the spectral reweighing between unbound and bound states.
We calculated the number of bound electrons by integrating a Gaussian fit to the
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first peak in the distribution of RG. The number of free carriers is the difference
between the total number of electrons (i.e. 54) and the number of bound electrons.
At a constant density, the % of unbound electron decreases as T increases. This
implies that for rs = 8.69, the single particle density of state at the Fermi energy is
non-zero and that it decreases as temperature increases.

Our observations are compatible with the predictions of the Hubbard model
concerning the single particle excitation spectrum (SPES) [91, 92]. In the Hubbard
model [35], a metal-insulator transition results from a competition between the
electrons’ potential energy that tends toward localization and kinetic energy that
favors delocalization. On a lattice, the competition between the electron kinetic
energy (quantified by a band width, W) and the intra-atomic energy of two electrons
with antiparallel spins on a given site (interaction strength, U) may open a gap in
the electronic energy spectrum leading to the formation of the so-called lower and
upper Hubbard bands. At low values of U/W, the Hubbard model leads to a metallic
state. At high values of U/W, the stable state is insulating. Upon increase of U/W
(our simulations correspond to a fixed U and a W decreasing with increasing rs)
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from the paramagnetic metal, the SPES develops a central peak flanked by Mott’s
sidebands. The central peak is located at the Fermi liquid value. At equilibrium,
electrons occupying the central peak are free carriers, while electrons occupying
states in the lower sideband exhibit more bound-like behavior. Rare doubly
occupied sites correspond to the electrons in the upper sideband. As temperature
increases the spectral weight of the free-carrier central peak diminishes rapidly.
This results in a transfer of spectral weight to the side bands.

Finally, we report in Fig. 2.28 the calculated number of bound and unbound
electrons at the three temperatures (950, 1100, and 1900 K) at which density was
varied systematically over a wide range of values.

The number of bound electrons is estimated from the first peak in the distri-
butions of RG as mentioned before. At all three temperatures, the number of bound
electrons increases with decreasing density, i.e. increasing rs. Independently of
temperature, at least to the level of resolution of our calculations, bound electronic
states appear at rs * 6 corresponding to an electron density n = 6.75 × 10−3 Å−3.
This density is in good agreement with Mott’s criterion for the formation of bound
states: n1=3rH [ 0:4 [93].

The PIMD method did not allow us to expand the BCC lattice beyond rs * 12.
However, we can estimate the density at which all the electrons ought to be
localized on ionic sites, that is, the density for completion of the transition from a
paramagnetic metal to a paramagnetic insulator. For this, we fit the calculated
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number of bound electrons at the three temperatures to monotonously increasing
functions that reach the value 0 at rs = 6.2. The choice of a continuous function for
this fit is motivated by the observation of Kohn and Majumdar that the transition
from unbound to bound states in a non-interacting Fermi gas occurs with contin-
uous change of the properties [94]. These authors conclude, however, that the
properties may not vary continuously if one has strong interaction between the
electrons as is the case here. The inset of Fig. 2.28 summarizes our findings in
the form of a temperature-density phase diagram. This diagram shows two
phase-boundaries. A boundary, nearly independent of temperature, separates the
paramagnetic metallic state (PM) from the region where bound and free carriers
coexist. The second boundary separates the coexistence region and the paramag-
netic insulting state (PI). The width of the coexistence region narrows as temper-
ature increases suggesting that the transition may be of first-order in accord with
several studies of the Hubbard model [91, 95–99]. Indeed, a cross over transition
would imply that the width of the coexistence region increases with temperature
[100]. The temperature dependence of the phase boundaries in our T versus rs phase
diagram shows similar trends observed in T versus U/W phase diagrams for the
Hubbard model in infinite dimensions [98, 99]; namely a significantly weaker
temperature dependence of the PM-coexistence region boundary compared to the
boundary between the PI and the coexistence regions.

2.4.4 Electron in Non-local Pseudo-potential

Using the discretized path integral with non-local pseudopotential, we simulated
using MD method the behavior of the valence electron in the field of a sodium ion.
We considered the two cases: the 3s state, and the 3p state. The MD simulations
were conducted at a constant temperature of 1006 K using a momentum rescaling
thermostat. The electron was represented by a set of 384 nodes. The reason for
picking this number of nodes was based on the work of Li and Broughton’s [101].
In their work, they used 400 nodes to represent a 2s electron in the field of a lithium
ion. The simulation method employed was based on path integral molecular
dynamics with a high order correction to the Trotter expansion. The pseudopo-
tential used in their case was of the BHS type [102]. One of the reasons why Li and
Broughton’s used the higher order correction to the Trotter expansion was to reduce
the computational time by decreasing the number of nodes. The equations of
motion were solved using the leapfrog algorithm with a time integration step of
1.3 × 10−17 s. Each simulation run was carried on for 4,00,000 time steps.

In Fig. 2.29 we show the pseudopotentials for sodium. We generated these
potentials based on BHS work [102]. The steep barrier in the l = 0 pseudopotential
represents the effect of Pauli exclusion due to the core electrons. In other words, this
barrier prevents the 3s electron from staying in the core region. The pseudopotential
for l = 1 is also shown in Fig. 2.29.
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Figure 2.30 shows the pseudo-density for the 3s state, and the pure 3p state. In
this case, the effects of the 3s pseudopotentials were filtered out to prevent the 3p
state from acquiring any local 3s character. The centrifugal effects are very pro-
nounced here and help to keep the 3p electron away from the core region.

Fig. 2.30 The
pseudo-density of the valence
electron for two cases: a 3s
state, and b pure 3p state

Fig. 2.29 Non-local
pseudopotentials for Na that
were generated using BHS
method [102]. The l = 0, and
l = 1 pseudo-potentials are
shown
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The difference in the pseudo-density curves between the 3s and the 3p is to be
expected. This difference can be explained if we remember that the 3p orbit in
non-hydrogenic atoms is more shielded from the nucleus attraction than the 3s
orbit. Therefore, we expect the 3p electron in sodium to stay at larger distances

Fig. 2.31 The
pseudo-amplitude for: a the 3s
state, b the hybrid 3s-3p state,
c the 3p state using local
pseudo-potential only

Fig. 2.32 The
pseudo-amplitude for: a 3s
state, b 3p state in non-local
pseudo-potential
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from the nucleus than the 3s. This can also be seen from the amplitude plots in
Fig. 2.31.

The 3p pseudo-amplitude in the non-local pseudopotential is shown, along with
the 3s state, in Fig. 2.32. The relative shift between the 3p and the 3s state is
obvious in the figure. Comparison of the 3s amplitude generated using our PIMD
method with the 3s amplitude in Fig. 2.33 [63, 103], which was generated by
Melius et al. using the coreless Hartree-Fock method, shows a very good agreement
between the two approaches. Figure 2.34 depicts the 3p orbit. As shown in this
figure, our 3p orbit matches well with Melius’ result up to a radius of 1.7 Å. The
reason for the divergence of our results from Melius’ beyond 1.7 Å is due to the

Fig. 2.33 The 3s amplitude
using PIMD method with
non-local pseudo-potential
(solid line). The 3s amplitude
in Na based on Melius’ work
(dashed line) [63, 103]

Fig. 2.34 The 3p amplitude
using PIMD method using
non-local pseudo-potential
(solid line). Melius’ result for
the 3p amplitude (dashed line)
[63, 103]
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artificial constraint that we put on our system. The constraint allows a longer radius
(20 Å) for non-locality. This is not physical, of course. But in any case, the cen-
trifugal effect is still there. In order to more accurately include non-local effects, the
mentioned radius must be shortened. In this case we used 3 Å (this is the point
where the two pseudopotentials converge to the same curve). The amplitude in this
case is shown in Fig. 2.35. We can see the enhancement in our data as compared to
Melius’.

2.4.5 Conclusions

The PIMD method described in this chapter is made possible by the
following features:

(a) the discretized path integral representation of quantum particles as closed
“polymeric” chains (necklaces) of classical particles (beads) coupled through
harmonic springs,

(b) the treatment of quantum exchange as crosslinking of the chains,
(c) the non-locality of crosslinking (exchange/correlation) along the chains (in

imaginary time),
(d) the restricted path integral to resolve the problem of negative weights to the

partition function resulting from the crosslinking of even numbers of quantum
particles,

(e) the extension of the path integral to account for non-local pseudo-potentials.

The real space representation of quantum particles within the PIMD enables easy
incorporation of quantum degrees of freedom in existing classical molecular
dynamics. This ability may be particularly useful in the simulation of materials

Fig. 2.35 Effect of the
correction on the non-locality
radius. The solid line is the
amplitude obtained via PIMD
method. The dashed line is
due to Melius’ [63, 103]
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from a concurrent multiscale point of view whereby a small quantum model of a
material or chemical process may be embedded locally within a classical model.
Furthermore, MD is a dynamical simulation method. Therefore, it allows for the
calculation of dynamical properties (such as vibrational and transport properties).
The PIMD method may enable simulation of a wide range of important materials
problems previously unaccessible with conventional methods. For instance, new
areas for advancement of knowledge include materials problems where structural
and electronic behavior are intimately related at finite temperatures. More specifi-
cally, the PIMD method does not rely on the Born-Oppenheimer approximation that
decouples the ionic and electronic degrees of freedom and can therefore shed light
on dynamical coupling between electrons and ions.

The PIMD algorithm is ideally suited for parallel computation, because we can
independently evaluate the exchange forces between electrons on P different nodes.
This parallelizability makes it well suited for use on massively parallel computer
platforms. With the speed of supercomputers and the accuracy of a first principle
technique, the PIMD method may be used to shed light on even more complex
problems and larger systems than those illustrated in this chapter.

Improvements to the PIMD method could be achieved by considering higher–
order expansions of the density matrix. Good convergence of the path integral
representation of the density matrix with a smaller number of beads, P, can be
achieved by using better forms of the density matrix such as a higher-order cor-
rection to Trotter expression [101].

In the form presented in this chapter, the computing time for the computation of
the exchange forces between electrons scales as P2N3 where N is the number of
isospin electrons and P is the number of beads. This scaling restricts the current
applicability of the method to small systems (small N) and high temperature (small
P). It is possible, however, to improve significantly on the computational cost of the
technique. One can take advantage of the short-range nature of exchange to achieve
a better scaling with respect to N. For instance, a large simulation cell may be
divided up into subcells which size is determined by some appropriate cut-off
length. Consequently the number of operations would reduce to P2M3 N where M is
the number of isospin electrons in a subcell.

In its present form, the PIMD method is not able to calculate dynamical and
transport properties of the quantum electrons. This drawback can be overcome by
using the path integral centroid MD method (CMD). Cao and Voth have first
proposed this approach to semi-classical dynamics simulation of quantum systems
as an alternative to solving the time-dependent Schrödinger equation [104–108].
The CMD is the real-time dynamical evolution of the centroid (the path integral
averaged coordinate) of a quantum particle. The centroid moves on an effective
potential surface of centroid mean force that reflects the effect of quantum fluctu-
ations. This provides extensive applicability to semi-classical simulations of
many-body quantum dynamics.
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Another approach to the use of path-integral inspired algorithms for MD has
frequently been applied to polymer simulations. In these approaches, the exchange
forces are neglected and the MD is driven from the bead locations, velocities, and
forces that may be supplied from empirical potentials. (see Chap. 3) The forces may
also arise, as in the previous chapter, from DFT calculations, however it should be
clear that the quantum statistics of the entities represented by the PI beads is neither
fermionic nor bosonic in these simulations. Various computer codes are available
for implementing these type of calculations including a python script [109].

Appendix 1: Free Particle Propagator

In this Appendix, we will prove equation (2.16)

q0 rn; rnþ1; �ð Þ ¼ m

2p��h2

� �3=2

exp �m rn � rnþ1ð Þ2
2��h2

 !
ð2:153Þ

We assume that every state is defined by a set of plane waves. The free particle
propagator in the position representation can be written as

q0ðri; rj; �Þ ¼ ri e
��bT				 				rj� �

¼
Z

dp ri pjh i p e��bp2=2m
			 			rjD E

¼
Z

dp ri pjh i p rj
		� �e��bp2=2m

ð2:154Þ

We used a completeness of momentum states, 1 ¼ R dp pi phj j, in (2.154). If we
use a plane wave basis rijph i ¼ 1

2p�hð Þ3=2 exp ip � ri=�hð Þ, (2.154) becomes

q0 ri; rj; �
� � ¼ Z dp

2p�hð Þ3 e
ip� ri�rjð Þ=�he��p2=2m

¼ 4p

2p�hð Þ3
Z1
0

dp p
sin prij=�h
� �
rij=�h

e��p2=2m
ð2:155Þ

where rij ¼ ri � rj
		 		. From an integral table, we have

Z1
0

x sin txð Þe�ax2dx ¼ 1
4a

ffiffiffi
p
a

r
te�t2=4a

Thus if we set a ¼ �=2m and t ¼ rij=�h, we obtain (2.153).
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Appendix 2: Exchange Force Calculation

Here we calculate the exchange force resulting from the effective exchange
potential in the Hamiltonian given by (2.146)

f kð Þ
i;exch ¼

1
b

XP
l¼1

XP
v¼1

hþlv=P
�

det E l;vð Þð Þ
XN 0

p¼1

XN 0

q¼1

@ E l;vð Þ� �
pq

@r kð Þ
i

B l;vð Þ

 �

pq
ð2:156Þ

where

E l;vð Þ

 �

pq
¼ exp �C0 r lð Þ

p � r vð Þ
q


 �2
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p � r vð Þ
p


 �2� �� �
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 �2
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 �2
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with C0 ¼ Pm
2b�h2

: B l;vð Þ� �
pq is a cofactor of a matrix element E l;vð Þ� �

pq. Using (2.157),

we obtain
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The first two terms of the left-hand side of (2.158) with (2.156) become

f kð Þ;1st;2nd
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In (2.159), we used the relation det E k;lð Þ� � ¼ det E l;kð Þ� �
and the matrix algebra

detA ¼
XN
i¼1

aijAij ¼
XN
j¼1

aijAij

From the third and the fifth terms of equation (2.158), we obtain:
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f kð Þ;3rd;5th
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Similarly from the fourth and sixth terms, we get
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From the above equations, the exchange force felt by the kth bead of the ith
electron becomes

f kð Þ
i;exch ¼

Pm

b2�h2
XP
l¼1

hþkl=P
�

det E k;lð Þð Þ det f k;lð Þ
i


 �
þ det G l;kð Þ

i


 �n o
ð2:162Þ

where the elements of matrix f k;vð Þ
i and G v;kð Þ

i are defined as

F k;lð Þ
i


 �
pq
¼ r lð Þ

q � r lð Þ
i


 �
E k;lð Þ� �

pq if p ¼ 1

E k;lð Þ� �
pq if p 6¼ 1

8<: ð2:163Þ

and

G l;kð Þ
i


 �
pq
¼ r lð Þ

p � r lð Þ
i


 �
E l;kð Þ� �

pq if q ¼ i

E l;kð Þ� �
pq if q 6¼ i

8<: ð2:164Þ
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Appendix 3: Derivation of the Force on an Electron
in a Non-local Pseudo-potential

We start with the expression for the effective potential of the electron necklace in a
non-local pseudo-potential given by (2.125) which is repeated below

Veff ¼ � 1
b

XP
n¼1

Ln e�
b
PVloc e�bC rn�rnþ1ð Þ2 � F1

2
2bCrnrnþ1ð Þ e�

b
PV0 rnð Þ � e�

b
PV1 rnð Þ

h in
þe�

b
P VlocþV1 rnð Þ½ �e�bC ~rn�~rnþ1ð Þ2

o
ð2:165Þ

The total effective force on the electron is the vector sum of all the forces acting
on the nodes. The force on the nth node of the electron is given by:

~Fn ¼ � @Veff

@~rn
ð2:166Þ

Using x ¼ 2bCrnrnþ1 and absorbing Vloc in the angular momentum, dependent
potentials will help us to simplify the bookkeeping. The force on the nth node is the
given by:

~Fn ¼ 1
\. . .[

�2C rn � rnþ1ð Þ~rn
rn
e�bC rn�rnþ1ð Þ2 � F1

2
vð Þ e�

b
PV0 rnð Þ � e�

b
PV1 rnð Þ

h i�
þ 2Crnþ1

~rn
rn

e�v

v
cosh v� sinh v 1þ 1

v

� �� �
� e�bC rn�rnþ1ð Þ2 e�

b
PV0 rnð Þ � e�

b
PV1 rnð Þ

h i
�~rn
rn
e�bC rn�rnþ1ð Þ2F1

2
vð Þ 1

P
e�

b
PV0 rnð Þ @V0 rnð Þ

@rn
� 1
P
e�

b
PV1 rnð Þ @V1 rnð Þ

@rn

� �
þ e�bC ~rn�~rnþ1ð Þ2e�

b
PV1 rnð Þ � �2C ~rn �~rnþ1ð Þ � 1

P
@V1 rnð Þ
@rn

� ��
ð2:167Þ

Where < … > is the argument of the Logarithmic function in the expression of Veff .
We would like to note that in deriving the above expression the modified Bessel
function was used in its integral form [62]:

Is vð Þ ¼
v
2

� �s
C sþ 1

2

� �
C 1

2

� � Z1
�1

1� y2
� �s�1

2e
vydy
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where C is the familiar Gamma function. In our case this form could be simplified
to become: F1

2
vð Þ ¼ e�v

v sin hv where we use the fact that C 1=2ð Þ ¼ ffiffiffi
p

p
and

C 1ð Þ ¼ 1.
The force on the nþ 1ð Þth node is calculated in a similar manner and given by:

~Fnþ1 ¼ 1
\. . .[

2C rn � rnþ1ð Þ~rnþ1

rnþ1
e�bC rn�rnþ1ð Þ2 � F1

2
vð Þ e�

b
PV0 rnð Þ � e�

b
PV1rn

h i�
þ 2Ce�bC rn�rnþ1ð Þ2~rnþ1

rnþ1
rn
e�v

v
cos hv� sin hv 1þ 1

v

� �� �
e�

b
PV0 rnð Þ � e�

b
PV1 rnð Þ

h i
þ2Ce�bC ~rn�~rnþ1ð Þ2e�

b
PV1 rnð Þ ~rn �~rnþ1ð Þ

o
ð2:168Þ

Appendix 4: Exchange Kinetic Energy Estimator
for N-Electron System

In this section, we will calculate the exchange kinetic estimator, hKEexchi, which is
given

KEexch ¼ @

@b
bVexch

eff


 �� �
¼ @

@b

Xdown
s¼up

XP
k¼1

XP
l¼1

1
P� ln det E k;lð Þ


 �
 �
hþkls

* +

¼
Xdown
s¼up

1
P�
XP
k¼1

XP
l¼1

1
det E k;lð Þð Þ

@

@b
det E k;lð Þ

 �

hþkls

* + ð2:169Þ

In order to differentiate a determinant, we use the following matrix algebra: if a
N � N square matrix A is function of X, we have

detA ¼PN
i¼1

aijAij ¼
PN
j¼1

aijAij

ð6:143Þ
@
@X detA ¼PN

i¼1

PN
j¼1

@aij
@XAij

ð2:170Þ

where aij is an element of the matrix A and Aij is a cofactor of the element aij. Thus
if we differentiate det E k;lð Þ� �

with respect to b, we have
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@

@b
det E k;lð Þ

 �

¼
XN
i¼1

XN
j¼1

@

@b
E k;lð Þ

 �

ij
�Aij

¼
XN
i¼1

XN
j¼1

@

@b
exp � Pm

2b�h2
r kð Þ
i � r lð Þ

j


 �2
� r kð Þ

i � r lð Þ
i


 �2� �� �� �
� Aij

¼ Pm

2b2�h2
XN
i¼1

XN
j¼1

r kð Þ
i � r lð Þ

j


 �2
� r kð Þ

i � r lð Þ
i


 �2� �
E k;lð Þ

 �

ij
�Aij

ð2:171Þ

If we apply (2.170) to the left-hand side of the last term of (2.171), we can write
that equation in a simpler form:

@

@b
det E k;lð Þ

 �

¼ Pm

2b2�h2
XN
i¼1

det H k;lð Þ
i


 �
ð2:172Þ

where H k;lð Þ
i is an N � N matrix and its element H k;lð Þ

i


 �
st
is given by

H k;lð Þ
i


 �
st
¼

L k;lð Þ
st exp � Pm

2b2�h2
L k;lð Þ
st


 �
if i ¼ t

exp � Pm
2b2�h2

L k;lð Þ
st


 �
if i 6¼ t

8><>:
ð6:147Þ

and

L k;lð Þ
st ¼ r kð Þ

s � r lð Þ
t


 �2
� r kð Þ

s � r lð Þ
s


 �2
From (2.170) and (2.172), the exchange kinetic estimator can be written as

hKEexchi ¼
Xdown
s¼up

1
P�
XP
k¼1

XP
l¼1

1
det E k;lð Þð Þ

XN
i¼1

Pm

2b2�h2
det H k;lð Þ

i


 �
hþkls

* +
ð2:173Þ

Appendix 5: Energy Estimator for Electron in Non-local
Pseudo-potential

The energy could be calculated easily using the canonical ensemble. In this case the
energy is given by:
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hEi ¼ � 1
Z
@Z
@b

ð2:174Þ

Using the partition function given by (2.124) the ensemble average of the energy is:

Eh i ¼ 3P
2b

� �
�

XP
n¼1

1
. . .h i

@ . . .h i
@b

* +
ð2:175Þ

Where < … > is the argument of the Ln function in the effective potential of an
electron in the non-local pseudo-potential. For the sodium ion, the average energy is
then given by the following equation:

hEi ¼ 3P
2b

� �
�

XP
n¼1

1
\. . .[

C rn � rnþ1ð Þ2�e�bC rn�rnþ1ð Þ2F1
2
vð Þ e�

b
PV0 rnð Þ � e�

b
PV1 rnð Þ

h in*

þ e�bC rn�rnþ1ð Þ2F1
2
vð Þ V1 rnð Þ

P
e�

b
PV1 rnð Þ � V0 rnð Þ

P
e�

b
PV0 rnð Þ

� �
� e�bC rn�rnþ1ð Þ2 e�

b
PV0 rnð Þ � e�

b
PV1 rnð Þ

h i v
b

� �
e�2v

v
1þ 1

2v

� �
� 1
2v2

� �
þC ~rn �~rnþ1ð Þ2e�b

PV1 rnð Þe�bC ~rn�~rnþ1ð Þ2 � V1 rnð Þ
P

e�
b
PV1 rnð Þe�bC ~rn�~rnþ1ð Þ2

��
ð2:176Þ
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Chapter 3
Interatomic Potentials Including
Chemistry

S.M. Valone, Krishna Muralidharan and Keith Runge

Abstract Beginning from two theories, classical and quantum mechanical, as
realized in terms of Newton’s second law and the time-independent Schrödinger
equation, we put forth a framework for understanding the development of atomistic
potentials that include chemistry. Our analysis introduces, explains, and exploits the
Fragment Hamiltonian approach to the electronic structure of molecular and con-
densed matter systems. Illustrations of the Fragment Hamiltionian display the roles
of various physical concepts in the formation of these atomistic potentials. Electron
density fluctuations are clearly seen as essential to the realistic description of
interatomic interactions over a large range of nuclear (ionic) configurations. Finally,
we present a novel approach to the parameterization of interatomic potentials that
explicitly include the effect of charge fluctuations, the environment-dependent
dynamic charge potential.

3.1 Background

Molecular dynamics (MD) methods, as mentioned in Chap. 2, have seen numerous
applications to the atomistic simulations. Two theoretical concepts that have guided
the modeling of atomistic simulation are quantum materials theory and Newtonian
dynamics. In quantum theory, the Born-Oppenheimer (B-O) approximation is
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frequently chosen as a developmental framework. This approximation, sometimes
called the ‘clamped nuclei’ approximation, takes the electronic wave function to
depend parametrically on the nuclear configuration at any given time. The B-O
approximation decouples the quantum degrees of freedom (the electrons) from the
(largely) classical degrees of freedom (the nuclei). Another approach to under-
standing the B-O approximation will be described later in which distinguishing
quantum electrons and classical nuclei can be done without approximation using the
eikonal representation. In this representation, the B-O approximation results from
the neglect of some terms in the full electron-nuclear coupling.

Why do we need an atomic scale theory? The reason is that one is often
interested in the larger scale phenomena associated with that scale. Resolution of
the changing states of the electrons with the dynamics is not always necessary.
Frequently, at the atomistic scale, the dynamics is classical and can be described by
Newton’s equations.

In Newtonian dynamics, the atoms, now considered nuclei with associated
electrons, interact with one another through interatomic potentials, that is the
ground-state E’s from (3.4). The gradient of the interatomic potential provides

forces F
!¼ �rE that accelerate the atoms by Newton’s second law, ~F ¼ m~a,

where m is the mass of some atom and ~a is its acceleration. Modeling of the
interatomic potential is the challenge for realizing Newtonian dynamics in the
context of MD simulations. Simple potentials, like the Lennard-Jones 6–12
potential, incorporate knowledge of long-range and short-range interactions, but are
seldom appropriate for the description of chemical or material interactions.

More broadly, an interatomic potential describes the set of interactions among
the atoms in a molecule or material. However, at the heart of an interatomic
potential are the electronic states of the atoms. These states are not the same as the
ground states of these same atoms when isolated. It is the interactions among these
atoms in their altered electronic states that hold our central focus at this theoretical
scale. It is this point of view—electronic states of atoms—that makes the present
approach to interatomic potentials unique and a tuned to chemical environment.

The importance of the states of atoms is brought out in the common practice of
discussing states of atoms in a material or molecule. Take for instance the use of
oxidation states or valence states. One example of among many is captured in an
STM-EELS spectrum in Fig. 3.1. An Fe crystallite contacts a TiO2 crystallite. The
spectra indicate that the valence state of the Ti is being modulated by the presence
of the Fe crystallite [1] in the mixed region of the interface and for some distance
away from the mixed region.

While we may often talk about states of atoms, the way that atomistic properties
are computed from first principles is quite different. Most often, in the present day
and age, electronic properties of electrons are calculated from an effective
one-electron Hamiltonian and then the properties of atoms are deduced through a
variety of methods. In another usage, the states of atoms are often translated into the
properties of its highest occupied orbital, again a one-electron property. This pro-
gression and the alternative presented here are detailed in this chapter.
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Consequently, our plan for the development of this chapter is a top-down one.
We start with some basic quantum mechanics related to materials, develop our
general notion of interatomic potentials, and then look back at the vast literature of
interatomic potentials to see how many of these concepts can be understood within
the general notion advanced here. The more common approach of developing
atomistic models from one-electron, electronic structure methods, such as DFT or
tight binding (TB), is not pursued here. A many-electron approach is enlisted
instead. After all, atoms are many-electron entities.

To reiterate from the earlier chapters, the full Hamiltonian bH for the material or
chemical system in a spatial representation can be written as the decomposition:

bH ¼
X

i
�Di

2
�
X

A

ZA
ri � RAj j þ

1
2

X
j 6¼i

1
ri � rj
�� ��

 !

þ
X

A
� DA

2mA
þ ZA

2

X
B 6¼A

ZB
RA � RBj j

� � ð3:1Þ

The first term in the sum over i is the kinetic energy operator for electron i. The
next term is the Coulombic operator between electron i at position ~ri and each
nucleus A at position~RA. The third term is the Coulombic operator between electron
i and another electron j. The second line of (3.1) is composed of the kinetic energy
and Coulomb operators for nucleus A and interactions between A and another
nucleus B.
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Fig. 3.1 STM-EELS spectrum of a Fe–TiO2 interface. The spectra are interpreted with the help of
electronic structure theory into valence states for Ti (red) and Fe (blue)
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It will often be more convenient to use a representation-free notation for these
operators. One can also write, in the same order as in (3.1),

bH ¼ bTe þ bVeN þ bVee þ bTN þ bVNN ð3:2Þ

bH ¼ bHel þ bTN ð3:3Þ

where the five terms in the Hamiltonian represent the electronic kinetic energy, the
nuclear-electron electrostatic attraction, the electron-electron electrostatic repulsion,
the nuclear kinetic energy and the electrostatic nuclear repulsion, respectively. For
convenience of notation, Planck’s constant, ħ, and the electron charge have been set
equal to unity (i.e. this and all other equations in this chapter are written in atomic
units). bHel is defined to contain all of the terms other than the nuclear kinetic
energy.

Over the last 40 years, a number of researchers and groups have established an
approach to factoring the wavefunction of the full chemical system, that is including
both nuclei and electrons, to elucidate those terms in the electronic potential for the
nuclei which are neglected in the Born-Oppenheimer approximation [2–6]. While
each of these groups has their own approaches and purposes, the resulting potential
takes on the same form. To obtain the result, let us consider eigenvalue problem
from (3.3) using the full Hamiltonian bH

bHW ~RN ;~ri
� �� � ¼ EW ~RN ;~ri

� �� � ð3:4Þ

and choose a total wavefunction of the form;

W ~RN ;~ri
� �� � ¼ exp iS ~RN

� �� �	 

w ~rif g; ~RN

� �� � ð3:5Þ

where {…} indicates the collection of all coordinates of the nuclei or electrons. This
has been referred to as the ‘eikonal’ representation in [4]. Substituting (3.5) into
(3.4), we obtain

XNn

N¼1

1
2MN

1
i

@

@~RN þ @S
@~RN

 !2

þ bHel � E

24 35w ¼ 0 ð3:6Þ

where MN is the mass of the Nth nucleus and Nn is the total number of nuclei.
Taking S to be real and projecting (3.6) on ψ and taking the real part, we arrive at an
equation for S

XNn

N¼1

1
2MN

@S

@~RN

� �2
þ Vqu

@S

@~RN
;~R

� �
¼ E; Vqu ¼ V þV 0 þV 00 ð3:7Þ
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V ¼ hwjbHeljwi
hwjwi ð3:7aÞ

V 0 ¼
XNn

N¼1

1
2MN

@S

@~RN

�
h @w
@~RN

jwi � hwj @w
@~RN

i
� �

=hwjwi ð3:7bÞ

V 00 ¼
XNn

N¼1

�1
2MN

1
2

h@
2w

@~R2
N

jwiþ hwj @
2w

@~R2
N

i
" #

=hwjwi ð3:7cÞ

If we were to set V 0 and V 00 to zero, we would recover the potential that comes
from the B-O approximation. In this sense, these two pieces of the quantum
potential, Vqu, represent non-Born-Oppenheimer contributions.

It is the quantum potential Vqu, that interatomic potentials are approximating,
and we note that for any configuration of the nuclei, there is a solution to (3.7a),
while the contributions to the quantum potential from (3.7b) and (3.7c) are
dependent on the details of the nuclear trajectories. For simplicity, in the remainder
of this chapter we will examine the characteristics of the electronic Hamiltonian bHel

which relates to the nuclear potential in the B-O approximation. The set of
ground-state energy solutions of bHel for all nuclear configurations is often called an
energy landscape or an interatomic potential.

The field of quantum chemistry can be understood as a series of modeling efforts
that allow one to find approximate eigensolutions (i.e. eigenvalues plus eigenvectors
or eigenfunctions) to the time-independent Schrödinger equation with the electronic
Hamiltonian bHel. Quantum chemical models can be characterized broadly as either
‘wave function’ methods or ‘density functional’ methods. This chapter is framed in
terms of wave function methods, but can also be related to the density functional
theory (DFT). Of course, one does not know exactly what the interatomic potential is
for any material, much less materials undergoing some change through a chemical
process. This chapter presents considerations that should be taken into account when
approximating the interatomic potential for any material.

Consider (3.7a) and let |ψ > be treated as a trial state instead of an eigenfunction.
This approach further simplifies the problem of estimating ground-state values for
E. This is useful for atomistic potentials because ordinarily one takes information or
properties from specific ground-state configurations of the system of interest to
build an interatomic potential. One then interpolates or extrapolates from these
known configurations to estimates for E in configurations of the system for which
no direct information is known from other sources. In this strategy, one does not
possess the ground-state eigenfunctions for the vast majority of atomic
configurations.

The Fragment Hamiltonian, presented here, serves as a theoretical route toward
informing interatomic potentials for atomistic models. This is quite different from
the empirical considerations that have frequently been used in the development of
potentials, such as the Lennard-Jones 6–12 for various materials.
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3.2 The Fragment View of Hamiltonians for Materials
and Molecules

To provide a unified framework for most interatomic potentials, we need to adopt a
starting point that differs somewhat from the traditional one embodied in (3.7a),
DFT methods, or state decomposition methods. Any of these points of view are
based on operators that treat a system of interest as a single entity. Equation (3.4)
poses the very general problem of many-electron physics and chemistry, although a
decomposition that separates kinetic, external potential, and electron repulsion
operators is invoked. This approach is far too complex for even the simplest
chemical and materials problems that we wish to address.

Any implementation of DFT or Hartree-Fock theory simplifies the problem by
decomposing or “fragmenting” a system into individual electrons. There is a
one-electron Hamiltonian for each electron. These one-electron approximations
generally introduce nonlinearities and discontinuities that do NOT appear in either
(3.4) or (3.7a). In spite of the nonlinearities, one-electron approximations do
achieve a satisfactory level of simplification in many, many instances. With modern
computers, one can often determine forces needed in solving Newton’s equations of
motion directly from the one-electron methods. These sorts of compromises seem to
be a common feature of describing a total system/material in terms of the properties
of its constituents—we shall see that, in the approach to interatomic potentials to be
pursued here, nonlinearities and discontinuities also appear. However, if a
one-electron view is taken as a starting point for an atomistic model, then the
one-electron theory or model has to be coarsened back to the atomic scale. The
nonlinearities of the one-electron theory present a problem to any coarsening
procedure as a result.

The third strategy focuses on decomposing the state or states of a system into
constituents for each fragment. By “state decomposition,” we mean that the state of
the total system is decomposed into states pertaining to each atom. Most often the
state of a system is adequately represented by its total electron density (or “density”
for brevity), and it is ρ that is decomposed [7–9]. That is, one assumes that one can
find ρA for each fragment A such that ρ = ΣA ρA. One popular strategy for decom-
posing a total density scales that density by the Hirshfeld partition [10–12] to gen-
erate densities ρA for each fragment A. In the Hirshfeld decomposition, the density ρ
is scaled by the ratio of the isolated fragment A density ρA

(0) to the, sum of the isolated
fragment densities for all of the fragments in the system ρ0 = ΣB ρB

(0), with the sum
being over all fragments in the system. Thus, ρA is defined as ρA = (ρ/ρ0)ρA

(0). While
important and completely legitimate, this strategy presupposes knowledge of ρ.

Still some simplification or other is most certainly required. A better choice, in
our minds, for atomistic modeling is based on atoms-in-molecules (AIM) theory,
developed by Moffitt [13] and others [14–17]. We will call our broad framework the
Fragment Hamiltonian (FH) approach [18]. The approach requires unification of

112 S.M. Valone et al.



three essential components: (1) certain characteristics of many-electron wave
functions, (2) decomposition of many-electron Hamiltonians into fragments, and
(3) variables for the charge states of each fragment. The charge-state variables
pertain to the states of the fragments and create the connection back to the
many-electron wave functions and Hamiltonian from which the FH originates.
Before developing the FH, a series of topics are reviewed briefly: Subsystems,
electron indistinguishability, averages over fragments, and the concept of
atoms-in-molecules for interacting systems.

To address these issues, imagine two or more atoms infinitely separated from
one another. The many-electron Hamiltonian for each atom is agreed upon.
Coulombic interactions among the atoms are not considered important. No one
would include these terms in the Hamiltonian of (3.1). Instead we choose one of the
atoms, say atom A, and write its Hamiltonian as

bHA ¼
X

iA
� DiA

2
� ZA

~riA �~RA

�� �� þ 1
2

X
jA 6¼iA

1
~riA �~rjA
�� ��

 !
ð3:8Þ

where now the sums are just over some number of electrons NA that we have
assigned to A. It is not necessary to specify which of the electrons is assigned to A,
just the number. We will say more about NA later. Thus, what is meant by an
“atom” is broadly agreed upon. A similar argument applies to a very dilute gas of
molecules, where the atoms in a single molecule interact among one another, but
not with the atoms from any other molecule. If we have just two,
infinitely-separated atoms in our system, the total electron Hamiltonian bH1

AB is just

bH1
AB ¼ bHA þ bHB ð3:9Þ

where each component Hamiltonian has the structure of (3.8). Next we amplify on
the issue of electron indistinguishability. The idea of identifying atoms or groups of
atoms in a material might seem to clash with the indistinguishability of electrons.
Indistinguishability of electron is not an issue because expectation values over all of
the electrons are all that is needed in the present approach. For instance, it is
common practice to recognize that the electron kinetic energy and electron-nuclear
interactions are one-electron operators. For a single electron-nuclear interaction,
one may write the expectation value,

� ZA
~r �~RA

�� ��
�����q ~rð Þ

* +
ð3:10Þ

as a contribution to the external potential energy for an atom A with nuclear charge
ZA at position ~RA, and where ~r is an electron coordinate and q ~rð Þ is the electron
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density for the system. Of course, one can retreat to the N-electron state w Nð Þj i
from which q ~rð Þ is derived and express the same quantity as

N w Nð Þ � ZA
~r �~RA

�� ��
�����

�����w Nð Þ
* +

ð3:11Þ

which is also

XN

i¼1
w Nð Þ � ZA

~ri �~RA

�� ��
�����

�����w Nð Þ
* +

ð3:12Þ

where the sum is over all electrons in the system. Indistinguishability of electrons is
not an issue. The same arguments apply to other subsystem averages for the kinetic
energy of an electron and external potential. By extension, one can also calculate
expectation values for the two electron operators needed for bVee in (3.2). Similar
statements hold for the kinetic and electron-electron repulsion integrals.
Consequently, one can assemble the energy for a subsystem or fragment from
combinations of these quantities and indistinguishability is not an issue.

To this end, suppose that some subsystem S has Hamiltonian bHS with NS

electrons. Further suppose that S is part of a larger system of N electrons. Again
denote an admissible, anti-symmetric, normalized state of the total system as
w Nð Þj i. Generalizing Rychlewski and Parr [19], the corresponding energy of S with
respect to the state w Nð Þj i may be taken as the expectation value of subsystem
Hamiltonian bHS,

ES NSð Þ ¼ w Nð Þ bHS

��� ���w Nð Þ
D E

ð3:13Þ

This type of subsystem average will be applied extensively. Clearly bHS could be
a Hamiltonian for an atom or it could be some collection of atoms.

Finally, understanding interactions between atoms can be approached again by
considering atoms infinitely separated from each other. Now let just two of those
atoms, A and B, form a diatomic molecule. None of the other atoms are allowed to
interact with each other or with the diatomic. The diatomic Hamiltonian bHAB is a
special case of (3.1), but with two nuclei, A and B, in the sum. Compared to the sum
of Hamiltonians for separated A and B in (3.9), bHAB now has a Coulombic inter-
action between atoms A and B and their electrons,

bVAB ¼ bHAB � bH1
AB ð3:14Þ

an interaction operator to be explained in more detail later. All of the other atoms
have Hamiltonians like (3.8). Everything about the FH is comprised of simple
expansions of these basic ideas.
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3.3 A Different Way to Decompose a System

The present point of view focuses on decomposing bHel into atomic-scale compo-
nents. The basis for choosing this strategy is that, in atomistic models, the electronic
states of the atoms hold the position of central importance. This view was for-
malized in the (AIM) theory of Moffitt [13]. The essential observation behind this
point of view is that the Hamiltonians of atoms in the gas phase substantially
survive when the same atoms appear in a molecule or solid. We say “substantially”
because there are some caveats to this statement, as will be explained shortly.

More generally, arbitrary groupings of atoms can be regarded as the basic units
or building blocks for a particular system, and we will call these fragments. This
decomposition of bHel is what we will mean by the Fragment Hamiltonian (FH).
There are several reasons for choosing a different term than “AIM” to describe the
approach. One reason is to recognize the generality of the decomposition. Another
reason is that the states of the system are specified somewhat differently. Still
another is that we want to construct a general form of potential energy surface from
the underlying theory, rather than a route to molecular scale calculations. Finally,
the traditional properties of electron affinity and chemical hardness or Hubbard
U are recovered in the model, providing a link to many other models.

In AIM theory, Moffitt and others [13–17] recognize that atoms can be in various
charge states. As a result the number of electrons associated with each atom can
vary. That variation should be tied to the state that is acting on bHel. Olson and
Garrison [17], for instance, use this flexibility to introduce an anionic state for the
W2 pair in their treatment of sodium scattering from tungsten surfaces.

In the FH, these notions are carried further in a several ways, to produce a point
of view with several novel features. At the current state of development in the FH
approach, only a few key properties of each possible state of the system are
specified. Other properties are not. In particular, the electronic states of the electrons
(i.e. the orbitals) are not resolved as in most other AIM-based efforts.

To understand the underlying observation of decomposability of bHel, first con-
sider two neutral atoms, A and B, in the gas phase, well separated from each other,
so that there is no interaction. See top panel of Fig. 3.1. To simplify further, the two
atoms are allowed to be the same kind of atom. With the two atoms neutral by
assumption, the number of electrons, NA, on any one atom equals ZA, the nuclear
charge of A. Each atom is described by their gas-phase Hamiltonian, bHA and bHB,
respectively, each being a copy of (3.8). Without any interactions, the total
Hamiltonian for these two atoms is the sum of the Hamiltonians for the isolated
atoms, bHA NA ¼ ZAð Þþ bHB NB ¼ ZBð Þ.
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The same picture holds for an arbitrary number of isolated atoms. The total
Hamiltonian bH ðf Þ is just the sum of the Hamiltonians for all of atoms:

bH ðf Þ ¼
X

A
bHA NA ¼ ZAð Þ ð3:15Þ

where NA is the number of electrons on A with nuclear charge ZA. No approxi-
mations have been made at this point, given the stipulation that the atoms are not
interacting with each other.

Each Hamiltonian fragment is the same operator as that of the fragment in
isolation, with one exception to be explained below. Each Hamiltonian fragmentbHA has the same structure as bHel. It is the sum of kinetic energy, electron-nuclear,
and electron-electron operators for its electrons,

bHA ¼ bTA þ bV en
A þ bV ee

A ð3:16Þ

where

bTA ¼
X

j2electrons of A
bTj ð3:17aÞ

bV en
A ¼

X
j2electrons of A

X
K2nuclei in A

bV en
jK ð3:17bÞ

and

bV ee
A ¼ 1

2

X
j2electrons of A

X
k2electrons of A6¼j

bV ee
jk ð3:18Þ

It would seem that electron indistinguishability would pose a problem for the FH
method. However, it does not. Electron indistinguishability is accounted for
through the properties of the wave functions or states in (3.4). For Fragment
Hamiltonians, it is perfectly acceptable to order the number of electrons such that
electrons 1 through NA to A and electrons NA þ 1 through N to B. Taking the kinetic
energy operators as an example, for A,

bTA NAð Þ ¼
XNA

j¼1
bTj ð3:19Þ

and, for B,

bTB NBð Þ ¼
XN

j¼NA þ 1
bTj ð3:20Þ

Similar expressions can be constructed for the other operators in the fragment
Hamiltonian. The details of the numbering are not important here. What is
important is the number of electrons assigned to a given fragment.
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To illustrate (3.15), consider two, well-separated hydrogen atoms. The
Hamiltonian fragments can be written out explicitly for this case. The Hamiltonian
decomposition, using the notation from Fig. 3.2 is

bH fð Þ ¼ bHA NA ¼ 1ð Þþ bHB NB ¼ 1ð Þ ð3:21Þ

where NA and NB are the number of electrons assigned to the two atoms, respec-
tively. The individual contributions consist of Hamiltonian fragments

bHA NA ¼ 1ð Þ ¼ � 1
2
D~r0 � 1

~r0 �~dA
��� ��� ð3:22Þ

and

bHB NB ¼ 1ð Þ ¼ � 1
2
D~r00 � 1

~r00 �~dB
��� ��� ð3:23Þ

where~r0 and~r00 are the electronic coordinates of the two electrons, and the ~dA and
~dB are the positions of to the two atoms, respectively. The assignment of the

Fig. 3.2 Two isolated atoms labeled “A” and “B”. In the text we call them Ni atoms for
specificity. The pictures represent the Hamiltonians, bHA and bHB, for the atoms as well. Electrons
require large amounts of energy (relative to the energies of chemical bonds) to transfer (or hop)
from one atom to the other. Top In the gas phase, transfer of charge would produce a type of
plasma state between the two atoms. Middle Two atoms, beginning to approach each other,
interact. All three components of the total Hamiltonian become important, two Hamiltonian
fragments bHA and bHB, as well as the Coulombic interactions between the two fragments bVAB.
Bottom Two atoms in close enough proximity to begin interacting strongly with each other.
Electrons begin to hop from atom center to atom center. The number of electrons on each atom is
undefined, but we will limit the range
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electrons with spatial position designated by~r0 to the left-hand atom and~r00 to the
right-hand atom, respectively, is arbitrary. The assignments could be revised. Only
the number of electrons is important: Each atom is neutral at this point in the
development.

To motivate this next step, let us return to our two-atom example. If the two
atoms are allowed to approach each other (middle panel, Fig. 3.2), the electrons of
one atom start to interact with the electrons and nucleus of the other through
Coulombic forces. The opposite interactions occur as well. The Hamiltonians of the
isolated atoms are preserved at this stage, but new interactions begin to contribute
appreciably as the result of the approach of the atoms to each other. These inter-
actions are captured in the Coulombic operator bVAB ZA; ZBð Þ. The numbers of
electrons for the two interacting atoms are designated in parenthesis. All of the
kinetic energy operators are retained in bHA and bHB.

Again the picture holds for an arbitrary number of atoms beginning to interact
with each other. Based on this picture, the total Hamiltonian of (3.3) can be
reformulated as

bH fð Þ �
X

A
bHA ZAð Þ þ 1

2

X
B6¼A

bVAB ZA; ZBð Þ
� �

ð3:24Þ

where A is the index for the nuclear positions, just as in (3.15). This decompositionbH fð Þ is the Fragment Hamiltonian or FH form. It has the bHA for each atom A, which
is the same Hamiltonian as in the gas phase. Each of these atoms interacts with all
of the other atoms, as represented by the operators bVAB. The Coulombic interactions
in bVAB are only those that occur between electrons of A and the nuclei of B and
electrons of B, between electrons of B and electrons and nuclei of A, and between
the nuclei of A and B. These Coulombic terms account for all of the interaction
operators not appearing in the Hamiltonians of the fragment themselves. In the end,
formulation of the FH model is a bookkeeping exercise. All of the expressions to
this point are exact.

We again illustrate the above with the H2 molecule. The total Hamiltonian has
the form

bH fð Þ ¼ bHA NA ¼ 1ð Þþ bHB NB ¼ 1ð Þþ bVAB NA ¼ 1;NB ¼ 1ð Þ ð3:25Þ

The expressions for the Hamiltonian fragments bHA and bHB from (3.21) remain
valid. Now the Coulombic interaction must be added. Under our assumption that
the two fragments are neutral, the fragment-fragment interaction may be written as

bVAB NA ¼ 1;NB ¼ 1ð Þ ¼ � 1

~r0 �~dB
��� ���� 1

~r00 �~dA
��� ��� þ 1

~r0 �~r00j j þ
1

~dA �~dB
��� ��� ð3:26Þ

118 S.M. Valone et al.



Notice that the electron labeled ~r0 interacts with nucleus B, while the electron
labeled~r00 interacts with nucleus A.

The example of a dimer, with the two atoms interacting, begs the question of
how many electrons to assign to each fragment. Let us return one more time to our
two-atom example, but now these two atoms are allowed to approach closely
enough to interact strongly and form a dimer (bottom panel, Fig. 3.1). By
“strongly” we mean that the interaction between the two atoms can promote
electrons from one atom to hop to the other and vice versa. Now the number of
electrons on each atom need not be equal to its nuclear charge.

The hops of electrons between atomic centers initiate two effects. First, at the
level of the Hamiltonians for the two atoms, the number of electrons on one atom
NA is not always equal to ZA. That is, the number of electrons on each atom
fluctuates from time to time at the level of the Hamiltonians (see Fig. 3.3). We will
say more about what we mean by this in a little while. Second, new ionic states of
the dimer of A atoms, that were not accessible when the atoms were isolated or
weakly interacting, now contribute to the energy. These states will be defined and
described in the next subsection.

As a more general example, suppose the total system consists of two fragments,
A and B. The total Hamiltonian is bH fð Þ ¼ bHA þ bHB þ bVAB. Assume that the system
is neutral, so that N ¼ ZA þ ZB, where N is the total number of electrons and ZA
and ZB are the total nuclear charges on fragments A and B, respectively. Even
though our immediate interests in this Chapter are atomistic in nature, the ideas
behind the FH approach apply to arbitrary decompositions of molecules or mate-
rials into substituent pieces or fragments. The two fragments here might be two
coins, a bicrystal, or a water molecule and a semiconductor surface. Since there are
only two fragments in this example, bVAB always involves all of the electrons and
nuclei. However, bVAB has only the those Coulombic interactions not already
accounted for in either bHA NAð Þ or bHB NBð Þ. As in the earlier examples, bHA NAð Þ is
the Hamiltonian for isolated A with NA electrons and bHB NBð Þ is the Hamiltonian for
isolated B with NB electrons. To maintain neutrality, it is only necessary that
N ¼ NA þ NB. It is not necessary that NA ¼ ZA at all times.

Fig. 3.3 A pair of atoms reacting to form a cation-anion pair by a charge-transfer process. The
process is identified in different disciplines as a charge-separation reaction in some areas of
materials science and in chemistry, or electron-hole production in other areas of materials science
and in condensed-matter physics
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As a very specific example, we again appeal to the H2 molecule, with the atomic
sites labeled by A and B, as in the bottom panel of Fig. 3.2. Suppose that a charge
fluctuation occurs so that both electrons are associated with atom A. In that case, the
Fragment Hamiltonian reads

bH fð Þ ¼ bHA NA ¼ 2ð Þþ bHB NB ¼ 0ð Þþ bVAB NA ¼ 2;NB ¼ 0ð Þ ð3:27Þ

Now the Hamiltonian fragments are:

bHA NA ¼ 2ð Þ ¼ � 1
2
D~r0 � 1

2
D~r00 � 1

~r0 �~dA
��� ���� 1

~r00 �~dA
��� ��� þ 1

~r0 �~r00j j ð3:28Þ

for the left-hand atom and

bHB NB ¼ 0ð Þ ¼ 0 ð3:29Þ

for the right-hand atom, while the Coulombic interaction changes to

bVAB NA ¼ 2;NB ¼ 0ð Þ ¼ � 1

~r0 �~dB
��� ���� 1

~r00 �~dB
��� ��� þ 1

~dA �~dB
��� ��� ð3:30Þ

Note that, in bVAB, both electrons are interacting with the nucleus of the
right-hand atom, while in bHA, the electrons are interacting with each other.

The same argument applies to the case where both electrons are associated with
the Hamiltonian fragment for the right-hand atom. Only the indices are changed.
The form of (3.30) still consists of a two-electron fragment H, a zero-electron
fragment H, and the electrons on the two-electron fragment interacting with the
nucleus of the zero-electron fragment.

Once again the same picture holds for an arbitrary number of atoms interacting
strongly with each other. Equation (3.15) must be modified so that the number of
electrons on the different Hamiltonian fragments can vary. This is the key step that
does not appear in the atoms-in-molecules and diatomics-in-molecules approaches.
Thus, in the general case, bH ðf Þ must be rendered as

bH ðf Þ �
X

A
bHA NAð Þþ 1

2

X
B6¼A

bVAB NA;NBð Þ
� �

ð3:31Þ

However, this expression for does not tell how to deal with the variation in the
numbers of electrons on each fragment, only that it is undetermined. This variation
is dealt with next.
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3.4 Selected Many-Electron, Valence Basis States

Electrons may or may not fluctuate among atomic sites in a molecule or solid,
depending on the environment provided by other atoms or by external fields. Both
types of events need to be included, in order that a given atom (or fragment) be
allowed to adapt to that environment. This requirement places a minimal set of
demands on the wave functions that are employed in the development of the FH
approach.

There are two major categories of minimal, many-electron wave functions. (Note
that we very much mean many-electron wave functions, rather than one-electron
orbitals.) One category is the very simplest kind of valence bond wave function. By
this we mean the analogs of the Heitler-London wave function for an H2 molecule.
The key feature of this kind of wave function is that the atoms are individually
neutral or nearly so. The other category is the single-determinant/LCAO1-based
state, most commonly associated with molecular orbitals. Neither of these minimal
categories is adequate for the FH approach. The valence state category is most
successful in describing systems where the electrons are highly localized on atomic
centers, but fails for systems that require delocalized states. The LCAO-based states
can describe delocalized states well, but fails when atoms dissociate from a
molecule or solid, or when electrons are strongly correlated.

For these reasons, a broader set of valence states is sought that forms a hybrid
between these two minimal sets. The basic motivation for our choice is apparent
again from the neutral H2 molecule. First, assume that a definition of charge on each
atom has been chosen. One distribution of the electrons conforms to the
Heitler-London or covalent state, which places one electron on each atom. For
example,

00j i ¼ uA 1ð ÞuB 2ð ÞþuA 2ð ÞuB 1ð Þð Þ=
ffiffiffi
2

p
ð3:32Þ

where φ is an arbitrarily chosen orbital and A and B label the hydrogen nuclei of the
molecule, respectively. The labels “1” and “2” signify the spatial coordinates of
electrons 1 and 2, respectively. Spin dependencies are neglected for the time being.
Alternatively, either of two ionic states places both electrons on one atom and none
on the other. For example, when A is anionic and B is cationic,

�þj i ¼ uA 1ð ÞuA 2ð Þ ð3:33Þ

There is another ionic state, þ�j i ¼ uB ð1ÞuBð2Þ, where both electrons are on the
opposite nucleus.

1LCAO stand for ‘linear combination of atomic orbitals’ which is commonly used in wave
function calculations.
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An arbitrary combination of these three states comprises a trial state, wj i, for a
diatomic molecule or, more generally, a two-fragment system. Using coefficients
with indices that mimic the basis states,

wj i ¼ C00 00j i þCþ� þ�j iþC�þ �þj i ð3:34Þ

Normalization, C2
00 þC2

þ� þC2
�þ ¼ 1, is assumed. For conciseness, we will call

this form of wave function a “Mulliken state”. This state forms the basis for
Mulliken electronegativity [20].

Applying this example to the identification of the fragment states, one makes the
identifications A0

�� � ¼ B0
�� � ¼ 00j i for the neutral state, Aþj i ¼ B�j i ¼ þ�j i, and

A�j i ¼ Bþj i ¼ �þj i for the cation-anion and anion-cation combinations of the
two atomic centers.

From this state, four extensions are possible. First, note that the state 00ij
corresponds to the covalent state and has been used, since the inception of valence
bond theory, to define of the notion of covalency. That is, if C00j j ¼ 1, the bond is
completely covalent. Second, note that we have not restricted the orbitals in (3.33)
and (3.34) to be 1s orbitals. They could be any combination of, say for H atoms, 1s
and 2p orbitals. For early transition metal centers, 3p and 3d orbitals might play the
dominant role.

Third, any of these states may be augmented with factors that include explicit
electron correlation without changing the basics of the assignment to fragment
wave functions. Two prominent candidates for explicit correlation functions would
be Jastrow factors [21] or Kutzelnigg forms [22]. The latter kind of wave function
played a central role in the development of the Lee-Yang-Parr correlation functional
in DFT [23–25]. As one explicit example, Rychlewski and Parr [19] apply very
sophisticated James-Coolidge wave functions to the neutral H2 molecule in their
calculation of their definition of fragment energies. This remark pertains only to
their (3.22) and (3.23).

Fourth and finally, Mulliken electronegativity can be defined from a combination
of the isolated-atom Hamiltonian in (3.15) and the Mulliken state. When AB is
dissociated, each of the three states contributing to the Mulliken state factor into a
product of wave functions for each atom. In the dissociation limit, only the wave
function of one atom needs to be applied to the corresponding Hamiltonian for that
atom. Thus, one can define the atom energies

EA fð Þ ¼ Af NAð Þ bHA NA ¼ ZA � fð Þ
��� ���Af NAð Þ

D E
ð3:35Þ

where ζ is the charge state of A and NA is the number of electrons on A.
From these atom energies, the ionization energy for the neutral A atom may be

defined as IA ¼ EA f ¼ þ 1ð Þ � EA f ¼ 0ð Þ, while the electron affinity for the
neutral A atom may be defined as EA ¼ EA f ¼ þ 1ð Þ � EA f ¼ 0ð Þ. Now the
Mulliken electronegativity is defined as the average of these two energies [20],
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vA ¼ IA þEAð Þ=2 ð3:36Þ

Similarly, the Parr-Pearson hardness [26] is defined as the difference

gA ¼ IA � EAð Þ=2 ð3:37Þ

These two energies scales have played a central role in any number of interatomic
potentials.

From these arguments, one can distill the essential requirements for the allowed
valence states in the FH model. Besides being suitable for bound states of systems
of fermions [27], the three immediate requirements for wave functions within the
FH approach are that (1) integer charges for each fragment can be defined from
each many-electron wave function, (2) the integer charges allowed in the set of
many-electron wave functions must span the range of charge states considered
important for a particular problem of interest, and (3) variables appropriate to the
charge states of each fragment can be defined. The charge-state variables pertain to
the states of the fragments, rather than the states of the electrons, and create the
connection back to the original electronic Hamiltonian problem in (3.4), from
which the FH approach originates.

First, we consider those essential characteristics of many-electron wave func-
tions that allow us to compose the basic features of the FH approach. Begin with an
arbitrary, trial wave function wj i, with N electrons in the system. It is expanded in a
basis set of many-electron valence states ij i, with the properties that they be nor-
malized, antisymmetric, and assign an integer number of electrons to each and
every fragment in the system of interest. Each of these valence states involves all
N electrons in the system. These are our only requirements at this point. The trial
wave function is then expressed as

wj i ¼
X

i
ci ij i ð3:38Þ

where the ci are expansion coefficients. The individual states are assumed to be
orthonormal, i j jh i ¼ dij. This assumption is adopted for convenience, not out of
necessity. Requiring normalization of wj i yields

w j wh i ¼
X

i
c2i ¼ 1 ð3:39Þ

In traditional quantum mechanics, the coefficients in (3.38) would be determined
by solving the linear eigenvalue problem. We are going to take a different path
though. Instead choose some fragment A, and define a set of states that describes its
essential properties. The states for A will be derived from the chosen basis states ij i.
The essential property to be applied here to select which ij i are to be associated with
a given state of A will be based on the allowed integer charge states of
A. Specifying charge states for each fragment is sufficient for the present purposes.
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In what follows, we will further assume that these states become factorable into
products of wave functions for the isolated fragments. This stipulation ensures that
exact energies are obtained at dissociation. In essence, the basis states change with
bond lengths and/or volume. For this reason, they are neither adiabatic or diabatic
states, but are referred to simply as valence bond states. If refinement of a model
beyond the charge states and dissociation behavior is required, then other properties
of the valence basis states will need to be specified.

With regard to charges on atoms or fragments, there are numerous definitions
that might be adopted. The FH approach does not say anything about which def-
inition should be adopted. That choice poses a separate issue. For modeling the FH,
it is only necessary to choose one definition and to apply it consistently in con-
structing the valence states. It is important that the integer charges be defined for the
chosen definition, since these charges provide input for the model.

As for which charge states are to be included, that is a problem- or
system-dependent question. The majority of this chapter only requires that two or
three charge states to be allowed for each fragment. If three states are allowed, most
often they will be the cation (+), neutral (0), and anion (–) states, or in other words,
a Mulliken state for each fragment. However, there is no theoretical restriction on
the allowed number of charge states for a given fragment coming from the FH itself.
Strictly speaking, one could include all cation states up to the nuclear charge of any
fragment, plus the bound anion states. One example where this level of inclusion
was applied appears in Gyftopoulos and Hatsopoulos [28].

Using the index ζ to indicate a chosen charge state, a trial state of A, Aj i, is
expanded as

Aj i ¼
X

f
CAf Af
�� � ð3:40Þ

where the sum runs over the allowed charge states of A and the CAf are a new set of
coefficients to be defined shortly. By Af

�� �
we mean the wave function describing

the state of A when it has integer charge ζ. The coefficients CAf contain the
information about how much the ζ charge state of A contributes to its wave
function.

Because we have stipulated that each ij i assigns a specific number of electrons
on each fragment, Af

�� �
may be represented by the projection

Af
�� � ¼X

i
dffAi ci jii=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C�
AfCAf

q
ð3:41Þ

The index fAi denotes the charge state of A in state ij i. The Kronecker delta func-
tions dffAi select the valence electronic states contributing to the ζ charge state of

A. For any set of fragments comprising the total system, one has available the
identities wj i ¼ Aj i, for any fragment A.
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The new expansion coefficients CAf are defined in relation to the expansion
coefficients of the original trial wave function by

C�
AfCAf ¼

X
i
d ffAi

c�i ci ð3:42Þ

It is essential to understand that the products C�
AfCAf or the moduli CAfj j can be

defined, but not the individual expansion coefficients CAf and C�
Af . Because all of

the original coefficients ci appear in one charge state of A or another, we have the
normalization condition, X

f
C�
AfCAf ¼ 1 ð3:43Þ

for any fragment A. This is equivalent to saying that A must to been in one of its
allowed charge states. C�

AfCAf must then be the probability for A to occupy charge
state ζ.

Equation (3.40) for Aj i will be referred to as a projection because the multiplicity
of valence states ij i have been transformed into a few states characterizing A, rather
than the individual electrons. The individual charge states of A retain all of the
residual detail in the original valence states. One may or may not want to account
for these additional details, depending on the materials problem to be solved.
Ignoring the detail results in the simplest models of the FH.

What are most important to the atomistic models of the FH are the products
C�
AfCAf . These products could be identified as occupations numbers for the different

charge states of A by the relationship

nAf ¼ C�
AfCAf ð3:44Þ

The occupation numbers nAf quantify the probability for finding A in the ζ-charge
state, that is, the probability for occupying the state Af

�� �
. As an outcome of these

definitions, the fractional number of electrons assigned to A, NA, can be written as

NA ¼
X

f
NAfnAf ð3:45Þ

where NAf is the integer number of electrons for the ζ charge state. This definition is
essential for later development of models.

For convenience, density matrices for the fragment states CA composed of the
matrix elements C�

AfCAf are introduced. In vector notation, let the set of coefficients
for the states of A be the column vector CA. Then CA is defined as the vector (outer)
product

CA ¼ CAC
y
A ð3:46Þ

3 Interatomic Potentials Including Chemistry 125



Notice that the column vector is first in the product while the row vector (transpose)
is second. This order is the opposite of what applies to a dot (inner) product.

Again focus on one fragment A with the usual three charge states. Suppose that
we have constructed the principal charge states for A, A0

�� �
; Aþj i, and A�j i, pro-

ducing a trial state

Aj i ¼ cA0 A0
�� �þ cAþ Aþj iþ cA� A�j i ð3:47Þ

This expression will be referred to as the Mulliken state for fragment A. The
occupation numbers are obtained from the fragment expansion coefficients as
defined in (3.44). From these occupation numbers, the corresponding three-state
version of ΓA is

CA nAþ ; nA�ð Þ ¼
nAþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nAþ nA0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nAþ nA�

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nAþ nA0

p
nA0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nA�nA0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nAþ nA�

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
nA�nA0

p
nA�

0@ 1A
A

ð3:48Þ

By normalization nA0 ¼ 1� nAþ � nA� . For notational convenience, the substitu-
tion is not made in the previous equation. Strictly speaking, the square roots should
have ± signs in front of them, or more generally, a phase factor. This stage of
development has not yet been pursued.

3.4.1 The Fragment Hamiltonian Approach

The crucial and unique notion of the present approach is that each state ij i defines
an electron distribution on bH fð Þ. Symbolically,

bH ðf Þ ij i ¼ bH ðf Þ
i ij i ð3:49Þ

with the meaning that bH fð Þ
i (more explicitly each bHAfi ) assigns NAfi electrons, the

number of electrons appropriate to A, for state i. The contracted representation of
the wave function for any fragment A leads to its energy �EA being expressed as

�EA �
X

f
0
f
C�
Af

0 CAfHf
0
f

A ð3:50Þ

where the energy matrix element is

Hf0f
A ¼ Af0 Nð Þ bH f0f

A NAf0 ;NAf

� ���� ���Af Nð Þ
D E

ð3:51Þ
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with

bH f
0
f

A N
Af

0 ;NAf

� �
¼ bH

Af
0 N

Af
0

� �
þ bHAf NAfð Þ

� �
=2 ð3:52Þ

It is essential to recognize that each fragment wave function is still a function of
all N electrons in the system. The fragment operators are functions of the number of
electrons on the fragment being operated on. To maintain hermiticity in the matrix
elements, we symmetrize the definition of the fragment operator for two different

charge-state wave functions, Af Nð Þ�� �
and Af0 Nð Þ�� E

, where ζ and f
0
are not nec-

essarily equal. Such a situation appears in the off-diagonal matrix elements. These
matrix elements play an essential role in the behavior of the FH approach.

It is convenient to convert this expression for �EA into density matrix form. That is,

�EA ¼ tr HACAð Þ ð3:53Þ

where tr is the matrix trace operator, the density matrix CA has elements C�
Af

0 CAf

[29], and trCA ¼ 1 is assumed. Averaging the fragment Hamiltonians in the energy
matrix elements ensures that they are hermitian. The fragment-fragment interactions
can be brought to an analogous form, namely

VAB ¼ tr VABCABð Þ ð3:54Þ

Summing these contributions leads to the general form of the FH total energy,

�E ¼
X
A

�EA þ 1
2

X
A

X
B6¼A

�VAB ð3:55Þ

Let us return once more to the diatomic example. In the definition of bH f0f
A , the

kinetic energy for the fragment Hamiltonian of A becomes

bT f0f
A ¼ 1

2

XZA�fA

j¼1

bTj þ
XZA�f0A

j¼1

bTj

 !
ð3:56Þ

It depends explicitly on the values of fA and f
0
A. The kinetic energy operators for B are

balanced with those ofA so that charge neutrality is maintained at all times. As before,

analogous expressionsmay be constructed for the other operators contributing to bH f0f
A .

The Coulombic operators for the A-B atom interaction may be expressed as

bV f0f
AB ¼ 1

2

XZA�f

j¼1
bVjB þ

XZA�f0

j¼1
bVjB

� �
þ
XN

j¼ZA�fþ 1
bVjA þ

XN

j¼ZA�f0 þ 1
bVjA

� �h
þ
XZA�f

j¼1

XN

k¼ZA�fþ 1
bV ee
jk þ

XZA�f0

j¼1

XN

k¼ZA�f0 þ 1
bV ee
jk

� �i
ð3:57Þ
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Thus, VAB itself (3.54) is determined by the matrix of distributions of electrons

between A and B, reflected in the bV f
0
f

AB operators, even though AB is neutral by
assumption. Only the charge state of A is needed, because of the neutrality
assumption. In the more general, multi-fragment case, more complex notation is
required. Summing the fragment contributions for a given distribution of electrons
recovers the total system Hamiltonian.

More elaborate examples of the valence states may be found elsewhere [30–36].
Notice that when there are more than two fragments, then the identifications of the
contracted states is not so trivial. In addition, these examples from the literature
show extensions of the ideas to arbitrary systems and numbers of valence states.

For our canonical, three-charge state example, the Hamiltonian energy matrix for
fragment A can be written as

HA ¼
H þ þ H þ 0 H þ�

H0þ H00 H0�

H�þ H�0 H��

0@ 1A
A

ð3:58Þ

The matrix elements have been organized so that the number of electrons on atom
A is increasing along the diagonal. For the sake of familiarity, we express the
diagonal matrix elements by the notation

EA fAð Þ ¼ Hff
A ð3:59Þ

where fA is any one of the integer charge states that fragment A can occupy. These
last equations will be central to the discussion in the rest of the chapter.

3.4.2 New Variables for the Charge States of Each
Fragment

The preferred variables used to describe the states of atoms in a material are net
charge and background density. The net charge q appears in many models of ionic
materials, and understanding how this is to be done on a physically sound basis has
been the subject of many theoretical studies [26, 37–45]. These models begin with
simple pair potentials such as simple electrostatic potentials, the Buckingham po-
tential, and the like. More sophisticated models, such as EEM [46], QEq [47],
ReaxFF [48], COMB [49], split charge potentials [50–54], and others, introduce
many-body effects that account for the changes in the atomic site (a.k.a. fragment)
energies. The basic notion of how q appears in the fragment energy was first
advanced formally by Iczkowski and Margrave [55]. Values of q from an electronic
structure calculation or X-Ray measurement of electron density are equally appli-
cable, as long as one is consistent—choose a definition and apply it throughout the
development of an FH model.

The second variable, background density �q appears in models of metal and alloy
materials. The fragment energies of the atoms in these materials, called the
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embedding energy in these models, are regulated by changes in the local back-
ground density defined for each atom for any configuration of its neighbors. The
actual identity of the background density in terms of electronic structure informa-
tion is not known.

This situation with the choice of variables presents a problem for modeling the
FH. At this point in the development of the model, the principle variables are the
occupancies nAf for various integer charges ζ of the allowed charge states of the
different fragments. In the case where cation, neutral, and anion states are allowed
on fragment A, the occupation numbers are nAþ , nA0 , and nA� . To proceed, these
variables must be related to the preferred variables q and �q.

First, the nAf are not independent because of the normalization condition (3.43).
Second the charge qA on A may be defined as qA ¼ ZA � NA [18, 39, 40, 44, 45].
Applying (3.43)—normalization—and (3.45)—the definition of NA—to the defi-
nition of qA, leads to the general relationship in any model of the FH,

qA ¼ ZA
X

f
nAf �

X
f
NAfnAf ¼

X
f
ZA � NAfð ÞnAf ð3:60Þ

For the case of our usual three charge states being accessible to fragment A,
ZA � NAþ ¼ þ 1, ZA � NA0 ¼ 0, and ZA � NA� ¼ �1. Thus qA reduces to

qA ¼ nAþ � nA� ð3:61Þ

That is, the net charge is the difference between cation and anion occupation
numbers. If the charges pertain to a metal oxide, one might want to expand the
charge range to say [−2, +2], or more generally to [−ζ, ζ]. One then simply scales
(3.60) by ζ to obtain

qA ¼ f nAþ f � nA�fð Þ ð3:62Þ

Still more generally, but still with in a three-state model, suppose that atom can
takes on charges states f�, 0, and fþ . The net charge becomes

qA ¼ fþ nAfþ þ f�nAf� ð3:63Þ

Here the sign of f� is assumed to be negative. Note that the occupation numbers
pertain to the charges states fþ and f�. Any of these variations can be obtained by
application of (3.60).

Third, we must define variable besides net charge that we called the ionicity sA
[56]. The simplest and most obvious choice for ionicity is that it is orthogonal to the
net charge qA in the three-state model. The general definition of sA is taken as the
sum of the occupation numbers,

sA ¼
X

f
nAf ð3:64Þ
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Other definitions are certainly possible, but this definition is the simplest and
suits our present needs. For ionicity in the three-state model, it reduces to

sA ¼ nAþ þ nA� ð3:65Þ

With the definition in (3.63), sA in (3.65) is indeed orthogonal to qA in the
“coordinates” of the occupation numbers.

Transforming the occupation numbers into charges and ionicities requires the
relations

nA� ¼ sA � qAð Þ=2 ð3:66Þ

Substituting these relations into (3.46) transforms the occupancy density matrix
from CA nAþ ; nA�ð Þ into CA qA; sAð Þ,

CA qA; sAð Þ ¼
sþ qð Þ=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sð Þ sþ qð Þ=2p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � q2ð Þp

=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sð Þ sþ qð Þ=2p

1� s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sð Þ s� qð Þ=2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � q2ð Þp
=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sð Þ s� qð Þ=2p

s� qð Þ=2

0B@
1CA
A

ð3:67Þ

In the present context, these two variables account for different properties of the
fragment. Further details are available elsewhere [18]. Like (3.58), (3.67) will play a
central role in the discussion for the remainder of the chapter.

To this point, four sets of variables have been defined, starting with the coeffi-
cients for the valence states in (3.38) and there have been three variable transfor-
mations. The first one contracts the coefficients of the valence states into coefficients
for the states of the fragments CAf . The second converts the fragment state coef-
ficients into occupation numbers, and the third transforms occupation numbers into
net charge and ionicity. It is important to understand how the normalization con-
straint is transformed with these variable changes. Within the three-state model, the
second and third transformations can be visualized. In Fig. 3.4 (left) the CAf appear
for ζ = +1, 0, or −1. Their rms value is unity so that all allowed values of these

Fig. 3.4 Transformations among variable sets for charge states of fragments, (left) expansion
coefficients, (middle) occupation numbers, and (right) charge and ionicity
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coefficients must fall on a unit sphere. The occupation numbers transform the entire
unit sphere into a triangle (Fig. 3.4 (middle)), defined by the points for unit
occupancy for any one charge-state. Finally, Fig. 3.4 (right) shows the same tri-
angle, with the cation and anion occupancies, nAþ and nA� , rotated by 45° around
the nA0 axis. This outcome makes sense, since (3.61) and (3.65) constitute a unitary
transformation. The net charge must remain within the range �sA � qA � sA, sA
itself must always equal 1� nA0 in (3.65), regardless of the value of qA.

Ionicity is much less well understood than net charge. However, it is evident that
another variable is required to maintain correspondence with the underlying
occupation numbers. Indeed, one can observe this need all the way back in the
original paper where Mulliken proposes his definition of electronegativity [20].
That definition is based exactly on the same three states that motivated the FH
model, þ�j i, 00j i, and �þj i. The relationship of the FH model to the Mulliken
charge will be discussed in Application II below.

Moreover, while the definition of ionicity is no more unique than the definition
of net charge, it is at least consistent with the qualitative notion of ionicity given by
others [57], especially Phillips. That is, ionicity is some fractional character of the
bonding environment, associated with the total charge fluctuations. The corre-
spondence between our definition and Phillips’ use of the term is not perfect. He
develops the notion based on a two-state model, whereas we are developing the
notion from a three-state model. For better or for worse, the distinction matters.

In the present development of our three-state FH model, the net charge appears
very naturally. It will be seen to play the same role that it does in other models. The
role of ionicity is yet to be defined and has not previously appeared in atomistic
models. It will be the variable associated with the EAM background density �q.
Taking this step has important implications for how time-honored concepts of
electronegativity and hardness appear and operate in chemically-attuned atomistic
models.

3.4.3 Three-State Fragment Energies

Before proceeding with some applications, we need to combine the results from the
previous two subsections, and derive other essential quantities that will be used for
the remainder of the chapter. The Mulliken state is applied exclusively here.
Starting then with HA from (3.58), the energy of the neutral state of A is separated
from the other energies to yield

HA ¼ EA0 þ
I H þ 0 H þ�

H0þ 0 H0�

H�þ H�0 �E

0@ 1A
A

ð3:68Þ
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where EA0 ¼ EA fA ¼ 0ð Þ. The negative of EA appears in HA because EA fA ¼ 0ð Þ is
subtracted from the diagonal matrix elements, and the definition of EA is designed
to yield an electron affinity that is positive for isolated atoms.

Both of these energies, ionization and electron affinity, are generalizations of the
conventional quantities found in textbooks and in the literature. See the definition of
these matrix elements in (3.51), for f

0 ¼ f. One can recover additional detail within
the FH definitions of ionization potential and electron affinity by substituting the
appropriate matrix elements into the definitions and expanding the fragment wave
functions in the original valence basis states.

Moreover, the present definitions apply equally to situations where an atom is
interacting with a whole environment of say water, dissolved salts, and proteins.
Thus, the number of electrons entering into the valence states can be vast, while the
number of electrons on a fragment operator will typically be very limited to a range
of a few electrons on either side of the nuclear charge.

Next we transform the total energy for �EA from (3.50), using CA from (3.67) and
HA from (3.68) into a form that looks more like a typical atomistic model. In a first
step, recognize that the reference energy EA0 multiplies an identity matrix IA that
has the same dimensions as the density matrix CA In essence, HA has been
decomposed into

HA ¼ EA0IA þDHA ð3:69Þ

where DHA is the difference between HA and EA0IA. The density matrix is nor-
malized by construction so that trCA ¼ 1 and IACA ¼ CA.

The second step is to calculate the trace of the matrix product DHACA. The
fragment energy is rendered as

�EA qA; sAð Þ � EA0 þIA
sA þ qAð Þ

2
� EA

sA � qAð Þ
2

þH�þ
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2A � q2A

q
þ 2 H0þ

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sAð Þ sA þ qAð Þ=2

p
þH�0

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sAð Þ sA � qAð Þ=2

ph i
ð3:70Þ

This expression is central to the remainder of the chapter.
A particular implementation of the three-state FH model pertains to any

two-fragment system AB. The system can be any number of structures, such as two
atoms, two molecules, two crystals, an impurity in contact with a reservoir, or an
inclusion in a matrix. With just two fragments, the density matrix for A and the
density matrix for B are completely correlated, because one always has qB ¼ �qA
and sB ¼ sA when system-wide charge neutrality is enforced. For the same reason
of system neutrality, only the neutral state of the AB is occupied in this example.
Under this condition, only one occupation density matrix is required. The density
matrix CA can be applied since
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CA qA; sAð Þ ¼ CA �qA; sAð Þ ¼ C ABð Þ0 qA; sAð Þ ð3:71Þ

The last equality comes from the fact that the system is neutral.
From the correlation, the total energy for the two-fragment system �EAB can be

expressed as the sum

�EAB ¼ �EA þ �EB þ �VAB

¼ tr HACA qA; sAð ÞþHBCB �qA; sAð ÞþV ABð Þ0C ABð Þ0 qA; sAð Þ
� �

ð3:72Þ

where �EA and �EB are the fragment energies from (3.70) and �VAB is the interaction
energy between A and B.

The interaction matrix can be brought to the same form as �EA. That is,

V ABð Þ0 ¼ VA0B0 þ
VAþ B� � VA0B0 VAþ

0 B�
0

VAþ� B�
þ

VAþ
0 B�

0
0 VAþ

0 B�
0

VAþ� B�
þ VA�

0 B
þ
0

VA�Bþ � VA0B0

0@ 1A
A

ð3:73Þ

In this expression VA0B0 is the pair interaction for the case where both A and B are
individually neutral. The functions VAþ B� and VA�Bþ are also diagonal contribu-
tions, whereas the functions VAþ

0 B�
0
, VA�

0 B
þ
0
, and VAþ� B�

þ are transitional interactions

among various combinations of charge states.
Making the appropriate substitutions into (3.72), the total energy of AB may be

expressed as the sum

�EAB qA; sAð Þ ¼ EA0 þEB0 þV ABð Þ0

þ IA � EB þVAþ B� � VA0B0ð Þ sA þ qAð Þ
2

þ IB � EA þVA�Bþ � VA0B0ð Þ sA � qAð Þ
2

þ H�þ
A þH þ�

B þVAþ� B�
þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2A � q2A

q
þ 2 H0þ

A þH�0
B � VAþ

0 B�
0

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sAð Þ sA þ qAð Þ

2

r
þ 2 H�0

A þH0þ
B � VA�

0 B
þ
0

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sAð Þ sA � qAð Þ=2

p

ð3:74Þ

Note that the pair interactions are modifying the values of the ionization and
electron affinity energy scales, yielding effective values for these quantities. These
effective energies are defined as

I�
A � IA þ VAþ B� � VA0B0

2
ð3:75Þ
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and

E�
A � EA � VA�Bþ � VA0B0

2
ð3:76Þ

First note the change of sign in the definition of the effective electron affinity.
Second note the factor of ½ in both definitions. This factor of ½ is the same as the
one appearing in (3.31) and comes from dividing the pair contributions evenly
between the two fragments. They will be utilized in the coming applications.

Consequently, the basic results of the embedding energy for the fragments also
apply to the energy for pairs of fragments. For instance, as noted above, CA can be
employed for the composite pair interactions as well. Beyond that though, one can
also say what the difference in the pair interactions is for different values of ionicity.
In turn, this distinction advances a qualitative difference between metallic and
covalent bonding (see Fig. 3.4). As sA gets larger, a greater fraction of the atom-ion
type interactions (equal proportions of the resonances A0B��� �þ A�B0

�� �
and

A0Bþ�� �þ AþB0
�� �

) enter the pair energy compared to the resonance A0B0
�� �

frac-
tion. This assertion applies to each pair contributing to �V�

A. Importantly, A and

B being neural on average does not mean that only the ABð Þ0�� E
resonance con-

tributes to the pair interaction.
The many-body effects captured in CA 0; sAð Þ assign an occupancy emanating

from the other charge states of each AB pair, available from the neighboring atoms.
Collecting terms yields

h�A � W1e
A þW1e

	 � VAþ
0
þVA�

0

� �
ð3:77Þ

and

�g�A � Ueff
A þUeff

	 þ 1
2

VAþ þVA�ð Þ � VA0 þVA�
þ ð3:78Þ

Thus, with interacting fragments, there are many variations on the basic definitions
of electronegativity and charge-transfer gap.

3.4.4 Applications

In the following, five applications are explained to illustrate the different features of
the three-state FH model. These applications cover the H2 molecule, the general-
izations of the Mulliken electronegativity and Parr-Pearson hardness, the concept of
“metallic character” in this FH model, charge-flow regulation in a two-fragment,
two-state model, and chemical potential equalization.
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3.4.4.1 Application I: H2 Molecule

In this application we want to bring together the three basic ideas introduced in the
immediately previous sections, (1) Hamiltonian decomposition, (2) specific valence
states, and (3) charge fluctuations on the Hamiltonian fragments. For this purpose,
consider yet again the neutral H2 molecule.

The specific behavior that we want to illustrate here is how the FH approach
intertwines the different distributions of electrons on the Hamiltonian fragments
with the valence states. The electron distributions appear in (3.25) and (3.27). The
corresponding valence states appear in (3.32) and (3.33). When bH fð Þ H2ð Þ operates
on the covalent state 00j i, the Hamiltonian decomposition corresponds to that of
(3.15), whereas when bH fð Þ H2ð Þ operates on the anion-cation state �þj i, the
Hamiltonian decomposition corresponds to that of (3.25). Operation of bH fð Þ H2ð Þ on
the cation-anion state þ�j i simply interchanges the values of NA and NB from 2
and 0, to 0 and 2.

In the present example, the matrix elements come from a two-electron wave
function for the molecule operating a 0-, 1-, or 2-electron operator. These wave
functions need not, and in general will not, be the eigenfunctions for the isolated
atoms or ions. These generalizations will be expanded upon in the next Application.

The net charge qA is also assumed to be zero, as it must for the ground state of
the H2 molecule (This distribution is not necessary for charge-polarized excited
states. See for instance [58]). Applying qA ¼ 0 to (3.70), along with collecting
terms, leads to the expression

�EA 0; sAð Þ ¼ EA 0ð Þþ IA � EAð ÞsA
2

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sAð ÞsA=2

p
H0þ

A þH0�
A

� � ð3:79Þ

It is now apparent that the leading terms constitute a generalized, Fragment
Hamiltonian definition of hardness that is analogous to Parr-Pearson chemical
hardness [26]. Borrowing the standard notation for this quantity, even though there
are differences in the detailed meanings, define the fragment hardness of A as

gA ¼ IA � EAð Þ=2 ð3:80Þ

Substituting gives the final expression for �EA as

�EA ¼ EA 0ð Þþ gAsA þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sAð ÞsA=2

p
H0þ

A þH0�
A

� � ð3:81Þ

Specific values for the neutral-atom energy, fragment hardness, and hopping
energies, as functions of bond length, d, in a system of interest yields �EA as a
function bond length, for selected values of ionicity sA. In terms of established
literature, see the classic results of Coulson and Fischer where their value of mixing
coefficient can be converted into an optimum value of sA using (3.65) with
gAþ ¼ gA� .
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There are several important features to notice in the last equation. One is that the
variable multiplying gA is the ionicity [56], not net charge [55]. The other is that
there are new contributions that do not appear in any other atomistic model. These
terms correspond to various kinds of one- and two-electron hopping processes. The
hops are of a charge-transfer variety. They do not entirely comply with the hopping
processes described in single-band tight-binding models. Finally, the two-electron
hopping contribution is rarely discussed outside of superconductivity theory. Each
of these features arises naturally from the FH approach and will be considered in
more depth below.

3.4.4.2 Application II: Mulliken Electronegativity, Parr-Pearson
Hardness, and Their FH Counterparts

The whole analysis in the previous example applies to any two-fragment (or
two-component system). It is only when actual numerical values are needed that the
true identity of the molecule is required. In this next application, we further gen-
eralize the analysis of (3.70) to a generic diatomic molecule AB. FH counterparts to
Mulliken electronegativity and Parr-Pearson hardness come to the fore.

For this applications, recall that the Mulliken electronegativity [20] begins with a
mixture of the states, þ�j i, 00j i, and �þj i, for AB (3.47). With three states, there
must be three energies and two independent coefficients. The third coefficient can
be eliminated by application of the normalization condition on the total wave
function. One is a zero of energy chosen for convenience. We have chosen EA 0ð Þ
for that purpose and there is no separate variable associated with it.

A second energy level can be related closely to the Mulliken electronegativity, χ.
It is half of the difference between energies of the cation and anion states of an
atom,

vA � EA f ¼ þ 1ð Þ � EA f ¼ �1ð Þð Þ=2 ð3:82Þ

The contributing energy levels are expectation values of fragment Hamiltonian
operators over wave functions for all electrons in the system. See (3.51). To be
strictly identical to the Mulliken definition, the wave functions would have to be
applied to isolated atoms, as we did in (3.34), and the Coulombic interaction
operators between fragments would need to be negligible. In contrast, the FH
definition retains the same fragment Hamiltonian operators, but averages over more
general states of the interacting system. The factor of two comes about because
electronegativity is also an average of the ionization potential and electron affinity,

vA � IA þEAð Þ=2 ð3:83Þ

Both definitions can be obtained from (3.70) by collecting the terms linear in qA.
In this context, recall that net charge is a proxy for particle number. Thus, this
energy level is directly related to local chemical potential. This association is
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explored more fully when the differential treatment of electronegativity is intro-
duced shortly.

A third energy needs to be identified and one more variable accounted for.
Collecting terms linear in sA, (3.70) we find an energy scale that is a generalization
of the finite-difference version of the Parr-Pearson hardness η, or a charge-transfer
gap in other disciplines, defined for A as

gA � EA f ¼ þ 1ð ÞþEA f ¼ �1ð Þ � 2EA f ¼ 0ð Þ=2 ð3:84Þ

Mulliken never discussed this energy scale. It was only years later that Pearson [59]
and then Parr and Pearson [26] provided a physical basis and identification for the
scale. In the FH approach, though, the variable associated with (or conjugate to)
hardness is the ionicity sA, rather than the square of an electron number as in the
I-M model.

The same generalization for hardness appears here as in the generalization of
electronegativity above. The energy expectation values involved employ averages
of states for the total system over fragment Hamiltonian operators, rather than states
appropriate to the isolated fragments.

As has long been recognized, the Parr-Pearson hardness (finite-difference form)
is closely related to the Hubbard U parameter (U ¼ 2g). These ideas can be used
interchangeably if one applies the concept of the Hubbard U in the sense of its
qualitative, but intended, definition. The description of the Hubbard U as “on-site
electron-electron repulsion” is an approximation based on Hartree-Fock theory that
Hubbard found necessary to apply at the time of his ground-breaking work on the
subject.

With these definitions it is natural to rearrange (3.70) to the form

�EA qA; sAð Þ � EA 0ð Þþ vAqA þ gAsA þH�þ
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2A � q2A

q
þ 2 H0þ

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sAð Þ sA þ qAð Þ=2

p
þH�0

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sAð Þ sA � qAð Þ=2

ph i
ð3:85Þ

Herein both the generalized electronegativity and hardness appear, multiplied by
net charge and ionicity, respectively. One expects these quantities to persist in the
next step of the analysis.

To determine or estimate ground-state energies, our original goal in the pursuit
of interatomic potentials, it will be necessary to use (3.85) in an optimization
procedure. Practically speaking, this means differentiating this equation with respect
to both variables. Since both vA and gA appear in (3.85), they will also appear in any
differentiated expressions. For this reason, it will be natural to refer to the quantities
in (3.83) and (3.84) as “static” electronegativity and hardness, and the differential
analogs, to be defined presently, as “dynamic” electronegativity and hardness. This
nomenclature is chosen in analogy to the terminology of “static” and “dynamic”
Born charges [60].

3 Interatomic Potentials Including Chemistry 137



The differential, or dynamic, form for fragment electronegativity v�A brings in an
influence from hopping processes. One can anticipate this influence within the
structure of �EA. Taking the derivative of �EA in (3.85) with respect to qA at constant
sA yields

v�A � @�EA

@qA

� �
sA

¼ tr HA
@CA

@qA

� �
sA

" #

¼ vA � H�þ
A

qAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2A � q2A

p !
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sA

2

r
H0þ

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sA þ qA

p � H�0
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sA � qA
p

� �
ð3:86Þ

Moreover the static electronegativity vA appears as an explicit contribution to v�A
as anticipated. One can describe the relationship between these two energy levels as
a modulation of vA. Besides modulation by one-electron hopping processes, vA is
also modulated by a contribution from two-electron hopping processes. Very
importantly, dynamic electronegativity is conjugate to net charge. When fragment
A is neutral, qA ¼ 0, the local Fermi level is not shifted from its static value by
two-electron hopping processes. The shift of the Fermi level from one-electron
hopping processes will generally be muted because the cation and anion hopping
integrals appear with opposite signs. See Fig. 3.6 (left).

Of course, either the static or dynamic fragment electronegativity must be related
to a local chemical potential or Fermi level. Specifically the relationship is

l�A ¼ �v�A ¼ @�EA

@NA
¼ � @�EA

@qA
ð3:87Þ

for the dynamic quantities. The relationships among the PPLB, I-M, and FH models
for l�A are illustrated in Fig. 3.5 in the dissociation limit.

By analogy with Parr-Pearson hardness, one can also define a differential or
“dynamic” hardness. This time, taking the derivative of �EA with respect to sA at
constant qA yields the dynamic hardness g�A

g�A � @�EA

@sA

� �
qA

¼ trHA
@CA

@sA

� �
qA

¼ gA þH�þ
A

sAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2A � q2A

p !
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1� sAð Þp H0þ
A

1� 2sA þ qAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sA þ qA

p
� �

þH�0
A

1� 2sA � qAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sA � qA

p
� �� �

ð3:88Þ

Our definition of sA requires that ionicity always be positive. Consequently
two-electron hopping can either narrow ðH�þ

A \ 0Þ or widen ðH�þ
A [ 0Þ the gap

embodied within the static hardness. The one-electron hopping contributions, H0þ
A

and H�0
A , generally decrease the gap. This topic of gap behavior will be explored

more fully in Application III below.
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Parr and Pearson thought that they were making an approximation by using the
static hardness as a proxy for the dynamic hardness [26]. From the FH perspective
though, this is not the case. The static contributions for both the fragment elec-
tronegativity and hardness appear within the corresponding dynamic definitions.

Finally, note that there is no dependence of net charge and ionicity in the
fragment energy matrix. This is because the discussion in this Application is
predicated on a two-fragment system. In the more general application of an atomic
model operating under nonequilibrium conditions, there are other contributions to
the dynamical definitions of both fragment electronegativity and hardness. These
are not discussed in this volume.

For a homo-nuclear diatomic molecule, where qA ¼ 0 for the ground state, both
dynamic quantities simplify considerable and are therefore more amenable to
analysis. The dynamic electronegativity reduces to

v�A ¼ vA þ H0þ
A � H0�

A

	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sA
2sA

r
ð3:89Þ

or

v�A
vA

¼ 1þ H0þ
A � H0�

A

vA

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sA
2sA

r
ð3:90Þ

for a neutral fragment. Whenever the energies for cation and anion hopping are
equal, then v�A ¼ vA.

Fig. 3.5 Three-state models of the atom chemical potential (3.85) underlying I-M (blue, dash),
PPLB (black, solid) models of chemical potential, and separate two-state FH models for the cation
(purple, dot-dash) and anion (red, dot-dash) states [18]. One parameter for the two-state model is
given an approximate value to aid in visualizing its differences with the PPLB model. Fragment
hardness appears as components of lA in both the I-M and PPLB models
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One the other hand, the differential hardness g�A reduces to

g�A ¼ gA þH�þ
A þ H0þ

A � H0�
Affiffiffi

2
p

� �
1� 2sAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sAð ÞsA

p ð3:91Þ

or

g�A � H�þ
A

gA
¼ 1þ H0þ

A � H0�
Affiffiffi

2
p

gA

� �
1� 2sAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sAð ÞsA

p ð3:92Þ

The two-electron hopping integral remains an influence. The scaled form is shown
in the right-hand panel of Fig. 3.6.

3.4.4.3 Application III: Metallic Character in an Atomistic Model

Even though the FH approach is an atomistic one, a notion long associated with
metallic character has been retained. That is, a differential charge-excitation gap for
each fragment g�A is defined in (3.91) and evidently changes its values as the result
of three distinguishable effects. For this reason, FH ionicity is put forth as a measure
of metallic character. A first effect comes from η in (3.84) being defined by
expectation values for wave functions of the total, interacting system, rather than
for changes in the number of electrons of an isolated fragment. A second effect
comes from the differential charge-excitation gap that brings in electron hopping

Fig. 3.6 Illustrations of (scaled) differential fragment electronegativity (left) and hardness (right)
versus ionicity, for various values of scaled one-electron hopping. The scaling factor for fragment
electronegativity is the static electronegativity and the one-electron hopping pertains to difference
between cation and anion hopping. The scaling factor for the fragment hardness is the static
hardness. One proposed definition of absolute hardness as a function of N is most closely
approximated, in this illustration, by the curve labeled “−0.01”
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influences. The third and final effect is new compared to what has been presented to
this point. That effect originates from the fragment-fragment interactions. It is
emphasized here as a first example of metallic character in any interatomic
potential.

By the term “metallic character” we mean a qualitative concept in analogy with
the term “metallicity” defined in molecular orbital theory [61]. This term needs to
be distinguished from the term “metallic behavior” in the sense of electron con-
duction. While measures of metallic character or metallicity are helpful, they are not
rigorous proof of actual conductivity.

To illustrate the qualitative relationship between ionicity and metallic character,
we solve a simple impurity model. The system is divided into two parts, a central
fragment A or impurity of interest and ‘a reservoir’ denoted by a bullet •, and
constituting the remainder of the system. Obviously the impurity-reservoir problem
fits the paradigm of all the other two-fragment systems considered here already. We
opt for the notational change to demarcate the difference between this example and
the prior, molecular examples.

Charge neutrality of A is assumed and its ionicity sA is to be optimized. The
solution for the optimum ionicity of A is

sA ¼ 1
2

1� �g�A=gAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�A=gA
� �2 þ h�A=gA

� �2q
264

375 ð3:93Þ

where

h�A � Wie
A þWie

	 � VAþ
0
þVA�

0

� �
ð3:94Þ

and

�g�A � Ueff
A þUeff

	 þ 1
2

VAþ þVA�ð Þ � VA0 þVA�
þ ð3:95Þ

The energies appearing in these definitions have been given above. The ground
state ionicity corresponds to the negative root if �g�A is positive. The total charge
fluctuations are thus minimized, as one might expect. In contrast, the excited state
maximizes the total charge fluctuations, driving A toward a plasma state. As the
one-electron hopping energies become larger, both the ground- and excited-state
ionicities converge to a value of 1/2, consistent with the qualitative notion of
delocalization. See Fig. 3.7.

If, on the other hand, �g�A becomes negative, the optimized value of sA can
become greasster than 1/2. However, even if �g�A is negative, as h�A increases, the
optimized sA still tends to 1/2. Thus, the behavior of the optimized ionicities in this
more general case follows the same pattern as in the specific case discussed in [56].
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It must be made clear here that the present result, being more general, supports the
contention that the FH, when applied to metals, can be interpreted as estimating the
degree of metallic character (Fig. 3.8).

Fig. 3.7 Optimized ionicities from (3.93) versus scaled effective hopping. The hopping integral
from (3.94) is scaled by the fragment hardness gA, for different values of the hardness ratio �g�A=gA,
with �g�A defined in (3.95). The negative roots approaches 1/2 from below, at very large, effective
charge-transfer hopping, while the positive roots approach 1/2 from above

Fig. 3.8 Characteristic behavior of CT model with comparison to I-M model. Slope of black line
corresponds to electrostatic interaction at 10 Å. The points where the variously colored curves
cross the black line correspond to the optimized charges. Characteristic CT behavior of I-M model
is the dashed, gray line
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3.4.4.4 Application IV: Charge-Flow Regulation in a Two-State,
Two-Fragment Model

For this model of the FH (3.70) for a diatomic molecule is again the simplest to
consider. This example is intended to aid in understanding chemical potential
equalization [18, 46, 62]. When A and B differ significantly from each other in
electronegativity, the diatomic molecule AB may be described by just two states
0j i ¼ A0B0

�� �
and þj i ¼ AþB�j i. Here we are assuming that A is going to play the

role of the cation.
Choosing CA� ¼ 0, one arrives at the relations CAþ ¼ ffiffiffi

q
p

and

CA0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

Aþ

q
¼ ffiffiffiffiffiffiffiffiffiffiffi

1� q
p

. The iconicity τ equals q in this example. See (3.60)

and (3.61). The coefficients for B have the same values as for A in this case, which
is to say that the states of A and B completely correlated with each other. The
subscript A is dropped from q since only one charge is needed to define the system.
Thus its density matrix, as a function of q, reduces to

CA ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q 1� qð Þpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q 1� qð Þp
q

� �
A

ð3:96Þ

Clearly, since there are only two states, the resulting model and the I-M model
cannot be compatible. Neither electronegativity nor hardness as defined by the finite
difference relations associated with (3.87) can play a role in this simplest appli-
cation of the model’s FH. On the other hand, new second- and higher-order con-
tributions in the charge-dependence play a vital role in regulating charge flow.

The essential charge dependence of EA qð Þ ¼ tr HACð Þ differs considerably from
the I-M model. These differences can be brought to light by expanding the fragment
energy EA qð Þ,

EA qð Þ ¼ HA
00 þ HA

þ þ � HA
00

� �
qþ 2HA

0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q 1� qð Þ

p
ð3:97Þ

where the energy matrix elements are defined in (3.58). The asterisk indicates that
these energies come from the system states, rather than the properties of the isolated
atoms. One term that is linear in q appears with an energy scale determined by a
generalized ionization potential I�

A � HA
þ þ � HA

00. The associated chemical
potential l�A may be identified as

l�A qð Þ ¼ I�
A þHA

0þ
1� 2qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q 1� qð Þp ð3:98Þ

It is evident from this expression that a Taylor series representation of l�A qð Þ
cannot be centered on either q = 0 or q = 1. Furthermore, neither the Mulliken
electronegativity nor the chemical hardness appears in this model. Instead, first- and
higher-order terms appear that have nothing to do with the finite-difference
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definition of chemical hardness. Whether or not a constant term appears, depends
on the expansion point used to determine this contribution. At q = 1/2, no constant
is definable to combine with the ionization potential. At any other permissible
expansion point, a nonzero constant does appear.

Thus, the square-root dependence from the transition matrix elements constitutes
a unique facet of the model [39, 44, 45]. These dependencies correspond to rigorous
density-functional [38] and perturbative [63] analyses of nonlinear behavior in the
fragment chemical potentials. This model of transitional or hopping contributions to
the fragment energies provides a physical basis for the nonlinearities in recently
proposed models of chemical potential [49, 54].

3.4.4.5 Application V: Chemical Potential Equalization

Given the environmental dependencies of these fragment energy matrix elements,
chemical potential equilibration takes on a new dimension. Equilibration is achieved
by optimizing (3.55), subject to the constraint of charge neutrality, 0 ¼P

A
qA. We

use μ as the Lagrange multiplier associated with enforcing that neutrality and
optimize with respect to each charge, so that l ¼ � @�E

@qK
. Expanding @�E

@qK
, one obtains

@�E
@qK

¼ tr
X

A
HA

@CA

@qK
þ @HA

@qK
CA þ 1

2

X
B6¼A

@ VABCABð Þ
@qK

� �
ð3:99Þ

In defining @�E
@qK

, one has two choices. In one choice, not only are the other net

charges held constant, but also the total ionic character variables of each fragment
are held constant. Then, a separate optimization process is required to determine
those variables. In the other choice, one could assume that the τ are functions of
their respective q. The first term is conventional as far as its physical content goes,
being directly analogous to the I-M model. For either definition of @�E

@qK
, each frag-

ment density matrix CA will depend only on its qA. Consequently, the K term is the
sole survivor in the sum over the fragment energies.

The second term,
P

A tr
@HA
@qK

CA, is unprecedented. Ordinarily, it is simply set to

zero, for lack of a more complete model. Physically @HA
@qK

describes how excitations

of A influence the chemical potential of fragment K, an effect originating from the
many-body effects introduced here. These and other effects described in this section
are unknown and unavailable in the I-M model. The present approach both
describes a physical origin to new effects and allows for systematically incorpo-
rating them as needed for a particular application. One is then able to select the
appropriate level of approximation for a particular problem. Extensions to more
complex systems proceed along parallel lines of reasoning.
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3.5 Informing the Embedded-Atom Method from FH:
Two-Variable Embedding Energy

In this section and the next, the FH is cast into forms recognizable as atomistic
models for metals and for ceramics as special cases. After these two cases are
explored, a number of the existing atomistic models are derived starting from the
FH point of view [64].

3.5.1 General Form of the Model Potential from FH

To recap, the general form of the fragment, or embedding, energy �EA in the
three-state model (3.85) may be expressed as a function of qA and sA through the
density matrix CA qA; sAð Þ for each fragment and energies more familiar from EAM
models. We have recognized that H þ 0

A and H0�
A represent one-electron,

charge-excitation hopping integrals [65], associated with transitions between cation
and neutral states of the embedded atom, respectively. These charge-excitation hops
occur between anion and neutral states of a fragment. The two-electron hopping is a
unique feature of the FH approach. The two-electron hopping energy might also be
thought of as an electron-hole-pair hopping energy. In the FH view, electrons are
changing which atoms they are associated with, leading to changes in the
charge-states of the atoms. The situation here differs from that of the established
tight-binding view, where electrons are changing the local atomic orbitals that they
occupy. However, as the crystal dissociates, FH hopping energies all tend to zero,
the energy assigned to the ground state of each atom.

Previously we defined ionization potential IA, electron affinity EA, electroneg-
ativity vA, and charge-transfer gap UA for each fragment in a system. In addition,
we adopt the notation W1eþ ¼ H þ 0, W1e� ¼ H0�, and W2e ¼ H þ� to make the
physical significance of these quantities more explicit. Applying these definitions to
(3.85), �EA qA; sAð Þ is rewritten as the sum of three embedding functions,

�EA qA; sAð Þ ¼ Egap
A qA; sAð Þ � 2 W1eþ f 1eþ qA; sAð ÞþW1e�f 1e� qA; sAð Þ	 
 ð3:100Þ

where the two one-electron-hopping embedding functions are

f 1e� q; sð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sð Þ s� qð Þ=2

p
ð3:101Þ

and

Egap q; sð Þ � E�
0 þ v�qþ U�s

2
�W2ef 2e q; sð Þ ð3:102Þ
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with the two-electron-hopping embedding function f 2e as

f 2e q; sð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � q2

p
=2 ð3:103Þ

This is the fundamental form of the embedding energy that we will examine in
the remainder of the chapter.

For a normal elemental, all of the net charges are zero for the ground state. As a
result, the energies Df gapA and v�A are eliminated. If one wanted to determine the
effective chemical potential, then these terms would have to be included in the
optimization process. The optimization of the net charge must yield charges of zero.
This fuller generality would also be required in more general materials modeling
situations, but is not investigated further here.

3.5.2 Many-Body Interactions

The proposition in this model of the FH approach is that the state of each atom can
be described sufficiently by three charge states. The process of contracting the
many-electron, valence wave functions into fragment wave functions yields sub-
structure in the fragment energy matrix elements. When the matrix elements in
(3.51) are expanded, one finds

Hff0
A ¼

P
ij dffAi df0fAj c

�
i cj i bH ff0

A

��� ���jD E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i dffAi c
�
i ci

� � P
j df0fAj c

�
j cj

� �r ð3:104Þ

with f ¼ �1 or 0. Some substructure results from the number of states contributing
to any single charge state of a fragment. Other substructure comes simply from
decomposing the system into more than two fragments. In either case, substructure
should be understood as originating from many-body effects. Note though that,
even when the number of fragments exceeds two, the fragment energy has the same
structure as (3.55). The energy matrix elements therein are functions of expansion
coefficients. Specifically, how the effects of multiple neighbors can be cast as
functions of charge and ionicity of those neighbors is the subject of this subsection.

One insightful prototype is a three-fragment, linear chain B–A–Bʹ, where B and Bʹ
need not be equivalent atoms. If all three states for three atoms are included, there are
a total of seven states. In this prototype, charge exchange between the end atoms is
neglected. The approximation is analogous to neglecting neighbor shells beyond the
first in an ordered crystal. Under this approximation, the unnormalized, trial wave
function of BABʹ involves the five valence states, 000j i; þ � 0j i; �þ 0j i; 0þ�j i,
and 0� þj i. The coefficients are labeled similarly.
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The total Hamiltonian operator expressed in fragment form for BABʹ is

bHBAB0 
 bHB þ bHA þ bHB0 þ bVAB þ bVAB0 ð3:105Þ

where bHa is the Hamiltonian fragment for each a 2 B;A;B0f g, and bVab is a
Coulombic interaction operator for the pair αβ. The B-Bʹ interaction is neglected in
keeping with our “nearest-neighbors only” approximation. For A in its many-body
environment, it has two neighbors. The neutral state of A has only one component
A0
�� � ¼ 000j i. The cation and anion states each have two contributing states,
namely Aþj i ¼ �þ 0j i; 0þ�j if g and A�j i ¼ þ � 0j i; 0� þj if g. For these
states, and taking H0�

A as the primary example, (3.104) reduces to

H0�
A ¼

c�þ�0c000 þ � 0 bH0�
A

��� ���000D E
þ c�0�þ c000 0� þ bH0�

A

��� ���000D E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�þ�0cþ�0 þ c�0�þ c0�þ
� �

c�000c000
q ð3:106Þ

Through two factorizations, this expression reduces to

H0�
A ¼

c�þ�0 þ � 0 bH0�
A

��� ���000D E
þ c�0�þ 0� þ bH0�

A

��� ���000D E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�þ�0cþ�0 þ c�0�þ c0�þ

p ð3:107Þ

Now we translate for the expansion coefficients into ionicity and charge.
Because the two charge-fluctuation resonances between B and Bʹ have been
neglected, it is possible to find a mapping between the expansion coefficients and
fragment occupation numbers. Each charge state of each end fragment has only one
resonance, and so its occupation number maps to a single expansion coefficient. For
this reason, it is simplest to use this mapping: nþ�0 ¼ nBþ , n�þ 0 ¼ nB� ,
n0�þ ¼ nB0 þ , and n0þ� ¼ nB0� .

From (3.66), one finds that

nB� ¼ sB � qBð Þ=2 ð3:108Þ

and similarly for nB0 þ . Applied to (3.105), one finds

H0�
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sB � qBð Þ=2p þ � 0 bH 0�

A

��� ���000D E
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sB0 � qB0ð Þ=2p
0� þ bH0�

A

��� ���000D E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sB � qBð Þ=2þ sB0 � qB0ð Þ=2p

ð3:109Þ

Similar relationships are found for the other energy matrix elements in the embed-
ding energies, including the diagonal energies H þ þ

A and H��
A . That is, both the

states of A and transitions among them depend on the state of its environment,
defined by the end fragments in this case. However, we were able to arrive at these

3 Interatomic Potentials Including Chemistry 147



relationships because of the great simplicity of the three-fragment chain. In the
general case needed for atomistic simulations, the relationships are much more
complex and will need to be approximated in some way. This is because there are
ordinarily far more expansion coefficients than fragments and charge-states of
fragments.

Next consider the embedding energy of one of the end atoms, say B. The neutral
state of B is composed of three contributions, B0

�� � ¼ 000j i; 0� þj i; 0þ�j if g.
Each of its ionic states involves only one resonance. Recall that, in contrast, the
middle fragment A has only one resonance contributing to its neutral state, while the
other four states contribute to its total ionic character. Thus, in terms of the number
of contributions, the neutral state of B0 is being excited by the other two resonances
that come from polarization of the ABʹ pair. For this reason, we expect the FH in
this model system to differentiate atoms on a surface from those in the bulk, as well
as from differences in numbers of neighbors.

The pairs of fragments are just other kinds of fragments. However, only the
Coulombic interactions between them are needed instead of the full diatomic
Hamiltonian. For the AB pair interaction, again consider the three-fragment, linear
chain B–A–Bʹ, with the same five states as adopted previously.

To understand the structure of the interaction, we only need to investigate bVAB as
a representative case. Because of the chosen prototype, the pair interaction may be
expressed as

VBA ¼ trVBACBA ð3:110Þ

just as in (3.54), but for a three-fragment system. To understand the components of
VBA, recognize that the charge states of BA are the same as those of Bʹ.
Consequently, the matrix is VBA is 3 × 3, the two ionic states only have a single
contribution, but three states contribute to BAð Þ0.

Using the BAð Þ0 matrix element as the main example, it can itself be represented
as the trace over a product

V BAð Þ0 ¼ trV BAð Þ0C BAð Þ0 ð3:111Þ

For the AB neutral pair, its density matrix has the environmental dependencies

C ABð Þ0 ¼
nBþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nA0nBþ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nBþ nB�

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nA0nBþ

p
nA0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nA0nB�

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nBþ nB�

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
nA0nB�

p
nB�

0@ 1A ð3:112Þ

However, nA0 is a function of all of the ionic-state occupation numbers for both
end fragments. The occupation number representation can be transformed into
charge and ionicity variables as well. The occupancy density matrix and its cor-
responding fragment energy matrix act substantially as the embedding function for
the AB pair.
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3.5.3 Structure of the FH Embedding Energy for Metals

From the general definition of embedding energy, setting qA ¼ 0 reduces �EA in
(3.100) to a one-variable function FA sAð Þ ¼ EA qA ¼ 0; sAð Þ with the explicit form

FA sAð Þ ¼ �EA qA ¼ 0; sAð Þ ð3:113Þ

where W1e
A � W1eþ

A þW1e�
A and Fgap

A sAð Þ � E�
A0 þ 1

2U
eff
A sA. The hopping functions

in F1e
A reduce to f 1eþ ¼ f 1e� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sAð ÞsA=2
p

, and f 2eA ¼ sA=2. For purposes of

fitting below, W2e
A has been grouped into the effective, local gap Ueff

A ¼ U�
A �W2e

A
since both are linear in sA when local charge neutrality is assumed. The fragment
electronegativity v�A also falls out of the model because of the assumed charge
neutrality of each atom (i.e. qA ¼ 0 in (3.100)). This outcome is to be expected
because the average number of electrons on each atom is not allowed to vary.
Consequently, one is not able to determine the fragment electronegativity, or
equivalently, a local Fermi level.

The FH-impurity pair potential is then identified as VA0 , the component of the
potential interaction that is independent of ionicity. From (3.31),

VA0 ¼ 1
2

X
B
VA0B0 ð3:114Þ

Therefore, we view it as the analog of the sum of pair interactions in (3.100)

FA sAð Þ ¼ E�
A0 þUeff

A sA � 2 W1e
A � VAþ

0
þVA�

0

� �
f 1e sAð Þ ð3:115Þ

A longstanding problem in EAM-related models is that there is no direct
functional relationship between the background density �qA and iconicity sA. The
actual physical identity of �q has never been established in the existing EAM-based
models [66–69], although an identity has been posited from an analogy between
N-body potentials and the second-moment approximation to tight-binding models
[70]. To proceed from here requires that such a relationship. By necessity, a rela-
tionship will have to be postulated, and then justified a posteriori.

To this end, note that the ionicity, as defined above, is a sum of occupation
numbers, and therefore must not be larger than one. Background densities, on the
other hand, are unbounded. One possibility that suggests itself from these two
observations can be obtained from the basic expressions for a fragment wave
function. In terms of unnormalized mixing parameters, suppose that Aj i, for the
special case of equal occupancy of the cation and anion states, can be expanded as

Aj i ¼ A0
�� �þ kA Aþj iþ A�j ið Þ= ffiffiffi

2
pffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2A

q ð3:116Þ
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The corresponding ionicity is just

sA ¼ k2A
1þ k2A

ð3:117Þ

This argument suggests that we relate the background density to the unnor-
malized mixing coefficients, rather than to sA itself. That is, assume a functional
relationship

kA ¼ k �qAð Þ ð3:118Þ

Performing the appropriate substitutions transforms the two embedding func-
tions to

F1e
A �qAð Þ ¼ 1ffiffiffi

2
p k �qAð Þ

1þ k2 �qAð Þ ð3:119Þ

and

F gapð Þ
A �qAð Þ ¼ 1ffiffiffi

2
p k2 �qAð Þ

1þ k2 �qAð Þ ð3:120Þ

For the present purposes, we accept the approximation k �qAð Þ 
 �qA. Combining
these contributions, we obtain the embedding energy

FFH
A �qAð Þ 


1
2U

�
A �W2e

A

� �
�q2A �

ffiffiffi
2

p
W1e

A �qA
1þ �q2A

ð3:121Þ

It is interesting to note the qualitative similarity of (3.121) to the Mishin
embedding energy in (3.115), which is also a rational function. In addition, E�

A0 has
been absorbed into the pair potential, or may be regarded as being approximated by
E�
A0 
 EA0 ¼ 0, the value of energy for any isolated, neutral atom A. For

high-symmetry, single component structures, in the limit of first-nearest-neighbor
interactions, the total cohesive energy per atom reduces to the usual EAM
expression

�EA �qA;RAAð Þ ¼ FFH
A �qAð Þþ LA/AA RAAð Þ=2 ð3:122Þ

In this expression, LA is the number of first-nearest neighbors, �qA itself depends on
RAA, the first-nearest neighbor distance.
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3.5.4 Coordination Dependencies of Energy Scales

Next we deduce the coordination dependencies of the fragment energy matrix
elements. This dependence pertains only to single-component materials. Once
again, the letter B will label neighboring lattice sites of A, but are of the same atom
type as A. Only charge fluctuations between A and its first nearest neighbors are
presently accounted for, but each atom is still constrained to be neutral. The
one-electron hopping integral was defined above to be the expectation value

W1ef
A ¼ � A0 bH0f

A

��� ���Af
D E

ð3:123Þ

For each nearest-neighbor interaction in perfect lattice structures, the individual

matrix elements i bH0f
A

��� ���jD E
are equal. From the nearest-neighbor count, one deter-

mines that

W1ef
A � LAfffiffiffiffiffiffiffi

LAf

p W1ef
A ¼

ffiffiffiffiffiffiffi
LAf

p
W1ef

A ð3:124Þ

whereW1ef
A is a representative value of i bH0f

A

��� ���jD E
and LAf is the number of resonances

comprising Af
�� �

. In the example of Fig. 3.9, LAþ ¼ 4. Clearly, in the present context,
there are an equal number of resonances associated with A� as with Aþ , so that
LA� ¼ LAþ . There may be charge fluctuations around A that do not involve the charge
state of A directly. In Fig. 3.9, such fluctuations have been excluded. This is the
rationale for attributing only one structure to A0. Observe that the

ffiffiffi
L

p
-dependence in

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 3.9 2D square lattice around atom A with first-nearest neighbors marked as B. Fluctuations
involving single charges are accounted for here between A and its first-nearest neighbors, for
neutral, cationic and anionic states of A. The valence states shown are: a 00000j i, b þ � 000j i,
c þ 0� 00j i, d þ 00� 0j i, and e þ 000�j i, f �þ 000j i, g �0þ 00j i, h �00þ 0j i, and
i �000þj i. From [64]
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the one-electron hopping energy also appears in a second-moment treatment of
tight-binding theory of embedded-atom methods [71].

Concerning the effective fragment gap Ueff
A , it is simpler to analyze its individual

components, U�
A and W2e

A . The structures of the energy expectation values associ-
ated with both U�

A and W2e
A are more complex than for the one-electron hopping

energies. Because there are two electrons involved in the hopping processes, triplets
of atoms enter into their counting arguments. These triplets are comprised of the
embedded atom and any two of its first-nearest neighbors. The effect is to multiply
the anion and cation coordinations together to produce a value of W2e

A ¼ LAw2e
A ,

where LA is the number of neighbors of A. This also holds for U�
A itself. The

coordination dependencies have two- and three-body components. The two-body,
two-electron hopping events involve only one nearest neighbor instead of two
distinct neighbors. The neighbor-count dependence scales out of these energies.
The three-body contributions require that the two neighbors be distinct from one
another. Thus, we may decompose U�

A into two- and three-body contributions with
differing neighbor-count arguments: U�

A ¼ U�d
A þ LA � 1ð ÞU�t

A .

3.5.5 Background Densities

Before proceeding with more general expressions for the energy scales, it is nec-
essary to make a choice about the relationships among expansion coefficients and
the background density. Our choice needs to be guided by two requirements. One is
that consistency is required by the general definition of the fragment occupancies
and expansion coefficients. For fragment A, the occupancies of its various charge
states are given by (3.41). That is, whatever choice is made has to be applicable to
coefficients appearing in definition of the background density of A and the coeffi-
cients that are to appear in the energy scales.

The second requirement is the assumption that the state of each fragment in a
material be determined by its charge and ionicity. It is required because of our
desire to describe each fragment as a function of just two variables, net charge and
ionicity. Contracting the description of a fragment in this way assumes that the
model remains viable in a physical sense. The viability has not yet been assessed.

In the present model, the background densities are not determined through an
optimization process. The optimum values for these coefficients that are available
through an explicit quantum mechanical treatment acquire a global character in the
process. Specifically, we adopt an association between valence expansion coeffi-
cients and neighboring background densities that reflects the consistency
requirement.

With these two requirements in mind, we make the choice that background
densities are estimated from the background densities (or ionicities) of neighboring
atoms. For some coefficient ki ¼ ci=c0 in the neighbor list of A,
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ki 
 kBffiffiffiffiffiffiffiffiffiffi
L refð Þ
A

q ¼ �qBffiffiffiffiffiffiffiffiffiffi
L refð Þ
A

q ð3:125Þ

for neighbor B of A in an appropriate charge-state given the charge-state of A, with

the other neighbors neutral, and L refð Þ
A as the first-neighbor count for the reference

state of A. The situation for A in its anion state is completely analogous, except for
the reversal of the charges on A and one of its neighbors. Combining these con-
tributions, we obtain

�qA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

B2LA �q
2
B

q
ð3:126Þ

The expression for �qA is a requirement for self-consistency.

3.5.5.1 Generalized Energy Scales

The general form of environmental dependencies for the key energy scales of this
model of the FH are now developed. The generalizations require us to consider the
background density dependencies at the same time. To this end, consider a
three-atom, linear-chain prototype B–A–Bʹ, where B and Bʹ need not be equivalent
[35]. The charge-state occupancies for the central atom A may be expressed in terms
of the occupancies of the neighbors. Thus, the anionic state of A is

A�j i ¼ ffiffiffiffiffiffiffiffiffiffiffi
nþ�0

p þ � 0j i þ ffiffiffiffiffiffiffiffiffiffiffi
n0�þ

p
0� þj i� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ�0 þ n0�þ

p ð3:127Þ

while the cationic state is

Aþj i ¼ ffiffiffiffiffiffiffiffiffiffiffi
n�þ 0

p �þ 0j i þ ffiffiffiffiffiffiffiffiffiffiffi
n0þ�

p
0þ�j i� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�þ 0 þ n0þ�

p ð3:128Þ

These occupancies may be related to the ionicities of the neighbors of A through the
expressions nþ�0 ¼ n�þ 0 ¼ nB� ¼ sB=2 and n0þ� ¼ n0�þ ¼ nB0� ¼ sB0=2. The
factor of two in these expressions come from the equality of valence occupancies
and there being two neighbors. As above, the ionicities themselves should be
expressed as functions of their corresponding �q, given in (3.117).

The general form of environmental dependence for the key energy scales of the
FH model is developed next. As a preliminary step, consider the known,
three-atom, linear-chain prototype B–A–Bʹ, where B and Bʹ again need not be
equivalent, the anion state occupancies for the central atom A may be expressed in
terms of the occupancies of the neighbors. The anion state of A is

A�j i ¼ cþ�0 þ � 0j i þ c0�þ 0� þj ið Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2þ�0 þ c20�þ

q
ð3:129Þ
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while the cation state is

Aþj i ¼ c�þ 0 �þ 0j i þ c0þ� 0þ�j ið Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2�þ 0 þ c20þ�

q
ð3:130Þ

These occupancies may be related to the unscaled ionicities (λ’s) of the neighbors of
A through the expressions kþ�0 ¼ k�þ 0 ¼ kB=

ffiffiffi
2

p
and k0þ� ¼ k0�þ ¼ kB0=

ffiffiffi
2

p
.

The factor of the square root of two in these expressions come from the equality of
valence occupancies.

This prototype suggests fashioning a similar approximation that accommodates
the multiplicity of neighbors normally contributing to the ionic states of A. The
states of interest are determined purely by the nearest neighbors of the atom or
fragment of interest. The quantities that we wish to apply are the background
densities. The approximation adopted here is that each site is characterized only by
its background density. The background density contribution of the neighbors is
scaled by a number of first-neighbors that appear in a reference state used to
determine the properties of A. The neighbor count scaling comes from the fact that
each valence state coefficient is shared among multiple atoms. In the example
above, the count is two for each atom.

While for the single-component structures, the neighbor scaling does factor out
of the energy expressions, it will not do so in more general circumstances. For this
reason, in more general configurations, the neighbor-count scaling dependence of
(3.124) will have to be retained. For elemental materials of interest here, applying
these choices for either the f ¼ �1 values of W1ef

A yields

W1ef
A RABð Þ 


P
B2LAf W

1ef
AB RABð Þ�qB RABð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
B2LAf �q

2
B RABð Þ

q ð3:131Þ

Because metals have special properties, the total, one-electron hopping energy
combines W1eþ

A and W1e�
A . During the fitting exercise to follow, we will keep both

energies.
Under the special circumstances where the two sums of the cation and anion

neighbors have comparable background densities, the combination lends itself to
defining the average energy

W1eþ
A þW1e�

A

� �ffiffiffi
2

p ¼ W1e
AB ð3:132Þ

for pairs of neighbors.
Both W1e

AB and �qB are volume-dependent by construction. This property is
consistent with standard EAM-based models, where the RAB distance is employed
to capture the local volume dependence. If the �qB were all positive, then one could
interpret (3.131) as a weighted average. However, there is no such restriction on �qB,
as these quantities are related to wave function expansion parameters rather than to
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occupation numbers. On the other hand, it is essential that background densities
appearing in W1e�

AB , as well as for other energy matrix elements, be consistent with
the definition of background density for A itself. That is, the formalism requires that
the denominator of (3.131) reduce to �qA.

The two-electron hopping energies have a similar form, but are complicated by
the presence of both ionic states for each fragment. Recall that both cationic and
anionic states are composed of contributions from multiple charge fluctuations with
the neighbors of a fragment. Retaining all of the same assumptions for W2e

A , about
how the fragment ionicities enter these states, as for the one-electron hopping
energies, one obtains the expression

W2e
A RABð Þ 


P
B2LAf

P
B02LAf W

2e
BAB0 RABð Þ�qB RABð Þ�qB0 RAB0ð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

B2LAf �q
2
B RABð Þ

� � P
B02LAf �q

2
B0 RAB0ð Þ

� �r ð3:133Þ

The coordinate dependence of W2e
BAB0 is more complex and is not stated explicitly

here. The neighbors B and B0 have been arbitrarily assigned coordinations for
opposite charge states. For metals, this assignment is of no consequence, as noted
above. When all of the W1e�

AB are equal among themselves, the diagonal
two-electron hopping integrals W2e

BAB B0 ¼ Bð Þ are equal, and the two-electron
transition energies W2e

BAB0 B0 6¼ Bð Þ are equal, then the simpler relations derived
above are recovered. Note also that, as discussed above, the diagonal energy
contributions U�d

A are independent of the neighbor scaling, while the off-diagonal
contributions U�t

A scale as LA � 1.
The fragment charge state energies all comply with a single form. Then, just as

for the expressions in (3.133) for two-electron hopping energy, one are obtains for
either the f ¼ �1 state of A the expressions

Hff
A 


P
B2LAf

P
B02LAf h

f
BAB0�qB�qB0P

B2LAf �q
2
B

ð3:134Þ

The energies hfBAB0 ¼ i bH ff
A

��� ���i0D E
are the appropriate energy expectation values for

the substates of Af, and for particular resonances contributing to these charge states
of A. If more than one state contributes to A0, then H00

A would take on an analogous
substructure.

The behavior of the effective fundamental gap is somewhat more complex
though, than H þ þ

A and H��
A themselves, because of the aforementioned assump-

tion that A0
�� �

is comprised of only one resonance. Thus, the generalization for U�
A

becomes, after some rearrangement,
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U�
A ¼

P
B2LA

P
B02LA hþ

BAB0 þ h�BAB0 � 2h0AdBB0
� �

�qB�qB0P
B2LA �q

2
B

ð3:135Þ

The neutral species energy h0A is defined implicitly for the correct neighbor scaling
so thatH00

A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LAþ LA�

p
h0A is assumed to hold. We have included only one resonance

for the covalent state. That is the reason behind the dBB0 factor multiplying h0A.
The signs on the charge states of A have been dropped because of the equivalence of
the neighbor lists in this application. If this equivalence is not assumed, then (3.88)
would need to be generalized further. Obviously this definition depends on the
specific resonances allowed in each component of the effective fundamental
gap. A further generalization including two-electron hopping is also possible, under
the same assumption that the cation and anion neighbor lists are equivalent. In that
variant, hþ

BAB0 þ h�BAB0 is simply replaced by hþ
BAB0 þ h�BAB0 �W2e

BAB0 .

Note that the BABʹ indices on the component energies in Ueff
A allows for angular

dependencies to appear naturally in the formulation. Angular dependencies of this
kind are reminiscent of those in MEAM [66, 67] and A-EAM [68]. However, in
practice, the A-EAM angular dependencies really come into refinements to H00

A that
arise from orbital hybridization.

3.5.6 FH Model for Elemental Ni

The FH embedding energy is applied to the Ni system in various crystalline
structures and over a range of lattice constants. To construct the model we rely first
and foremost on an equation of state (EOS) for a “reference structure”. A reference
structure is a lattice or molecule whose cold equation of state is known, and is used
to calibrate the model for the material of interest. For instance, we will us the fcc
structure of Ni as a reference structure from which we calculate properties of all
other structures of Ni.

The EOS is used to determine an effective pair interaction for a material. To
construct an EOS for fcc Ni, we determine the energy-volume curve from
DFT GGA calculations with the PW91 functional [72]. For convenience, these data
are fit to a third-order, Rose EOS plus an energy offset,

ERose a�ð Þ ¼ �E0 1þ a� þ d
a�ð Þ3

aþ a�
exp �a�ð Þ

 !
þEoff ð3:136Þ
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with the scaled radial strain variable a� defined as

a� ¼ a� Rð Þ ð3:137Þ

where α as an exponential decay factor. The volume dependence of this model is
carried through a radial strain variable

� Rð Þ ¼ R
R refð Þ � 1 ð3:138Þ

With R being the distance between the embedded atom of interest and one of its
neighbors. The scaling distance R refð Þ is usually the equilibrium first-nearest
neighbor distance for the reference structure associated with L refð Þ.

Other parameters include E0 the cohesive energy and d an expansion coefficient
for the third-order term. Values for each of these parameters are deduced from fits
to electronic structure calculations, are reported in Table 3.1. The offset Eoff is
provided to account for a nonzero energy of the isolated atoms in the electronic
structure calculations. In a molecular dynamics simulation, this offset is discarded.

When other structures are added to the database, Eoff is allowed to vary from one
lattice structure to another because of (1) small differences in the energies of the
dissociated atoms reported from the electronic structure calculations for each lattice
structure, and (2) differences in the range of lattice constants included in these fits.
The differences in structures and dimensionality exercise the two most fundamental
features of the model developed in the formalism in the previous section, volume
dependence and coordination.

In addition to the EOS, other properties are required to generate a modest
database for the purpose of constructing the model using the VASP code [73, 74].
The database consists of energy-nearest neighbor distance curves for several crystal
structures of different spatial dimensions.

For the database, we calculate the cold curves for the face-centered cubic (fcc),
simple cubic (sc), 2d-square, and 1d-linear chain structures, as functions of first
nearest neighbor distances. The fcc and sc cold curves are used in the fit. The cold
curves 2d-square and 1d-chain are used to assess the quality of the fit.

Commensurate with normal practice on constructing MEAM potentials, the pair
interaction is determined from a reference structure, chosen by convenience and

Table 3.1 Rose equation of state for lattice structures used to construct FH model of Ni

Lattice Face-centered cubic Simple cubic 2d square 1d linear chain

E0(eV) 4.9165 4.2942 3.4962 2.0865

α 4.8858 4.8365 4.5289 4.2220

δ 0.22119 0.4041 0.3150 0.0874

R0(Å) 2.4953 2.3292 2.2591 2.1793

Eoff (eV) −0.53803 −0.49792 −0.46425 −0.59421

The equation of state used (3.136) has an offset energy Eoff to accommodate small differences in
the dissociation limits for the various lattices. From [64]
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efficacy. For this purpose, we choose the fcc lattice as a function of volume. From
(3.122), the pair potential is given by

u ¼ 2 Efcc Rð Þ � F �qfcc Rð Þð Þð Þ=Lfcc ð3:139Þ

where Efcc Rð Þ is the cold curve for the fcc structure (for Ni in this case), Lfcc ¼ 12 is
the number of first nearest neighbors.

Substituting the fcc cold curve into (3.122) yields, for structure α,

DEa R; Lað Þ ¼ Ea R; Lað Þ � La
Lfcc

Efcc R; Lfccð Þ ð3:140Þ

These differences are shown in Fig. 3.10. It is evident that the simple cubic (sc) and
2d-square lattices provide the same information in the region of the fcc equilibrium
1NN distances. Consequently only one of these structures can be used for fitting.
The sc structure will be used for this purpose.

The model of �q adopted for the present purposes consists of a single exponential
decay,

�q R; Lð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=L refð Þ

q
q 0ð Þexp� b 0ð Þ� Rð Þ

� �
ð3:141Þ

for an embedded atom with L first-nearest neighbors, assuming that they are all the
same kind of atom. It depends parametrically on L refð Þ

first-nearest neighbors in a
reference state, a constant prefactor q 0ð Þ, and decay constant b 0ð Þ.

Fig. 3.10 Fitting and
evaluation curves for
elemental Ni, with limited
coordination effects
accounted for, using the fcc
structure as the reference
state. Values of the constants
are given in the text. The
2d-square lattice and 1d-linear
chain are used for evaluation
purposes. From [64]
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For Ni, the strain variable is then defined as �Ni Rð Þ ¼ R
R eqð Þ
Ni�fcc

� 1, with

as the equilibrium first-nearest neighbor distance for the fcc ref-

erence structure. The prefactor q 0ð Þ
Ni ¼ 1:30943 and the exponent, b 0ð Þ

Ni ¼ 3:0460, are
both dimensionless. More elaborate models of �q may be adopted as needed. We
chose one of the simplest for purposes of illustration.

The key pair-wise hopping function W1e
ij is modeled as a single, exponentially

decaying function,

W1e Rð Þ ¼ W1eexp �c1e� Rð Þ� � ð3:142Þ

where W1e and c1e are constants. For Ni, Ueff
Ni�Ni ¼ 3:24 eV is assigned the same

value as the chemical hardness for atomic Ni [26]. No volume dependence was
applied to this function. W2e has been set to zero, as no dependence could be
detected for these structures. For this work we accept coordination dependencies in
the hopping and gap energies from (3.121) (Table 3.2).

3.5.7 Metallic Character of Ni Structures

With this result at hand, consider the ionicities for various lattice structures of Ni
and, by extension, the metallic character of those structures, calculated in the model
for Ni. Ionicities as defined in (3.117) can be assessed from the background den-
sities for the different structures in the Ni database. Figure 3.11 shows that antic-
ipated trends and analysis of (3.64). When the 1NN distance of a given structure is
increased to large values the ionicity drops as expected. For the fcc structure, the
ionicity is above 1/2 up to 5 Å. The sc and 2d structures possess smaller ranges of
ionicity above 1/2, while the 1d chain possesses no range above that value. This
trend is also consistent with the qualitative notion that structures with increased
coordination should tend toward higher ionicities because of increased electron
hopping that is one essential component for metallic behavior. Similarly, as the
structures are compressed, ionicities tend to increase and many real materials
undergo a metal-insulator transition of some variety.

For comparison with these general notions, the electronic densities of states are
plotted for these structures different lattice constants in Fig. 3.12.

Table 3.2 Primary FH
parameters for elemental Ni

q 0ð Þ b 0ð Þ W1e (eV) c1e U� (eV)†

2.50 1.55 2.625 2.6 6.48

W2e ¼ c2e ¼ 0 has been assumed in these fits. From [64]
†From [26]
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As for establishing actual conductivity in an atomistic-scale model, much more
is required that the optimized ionicity. The concepts of charge conduction, gaps,
bandwidths, and gap closure are all required. Nevertheless, this model for the FH
represents one step in that direction.

Fig. 3.11 For Ni lattices, general trend normally associated with metallic behavior is observed by
differences in the point at which the difference between the chemical hardness and charge-transfer
hopping determined by fitting. From [64]

Fig. 3.12 For Ni lattices, general trend in ionicity with lattice dimensionality and nearest neighbor
distance tracks with that of the difference in gap and hopping, as illustrated in Fig. 3.11. From [64]
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3.6 FH Model as a Variable Charge Model

The concept of embedding a fragment in a larger system or reservoir permeates
everyday scientific thinking. The most common scenario consists of a single
fragment embedded in a reservoir, that is an immutable portion of the system. More
generally a system may be viewed as being composed of multiple, interacting,
mutable fragments. Examples cover such diverse situations as atoms in crystalline
or amorphous materials, functional groups constituting a polymeric material, a
molecular wire between a source and sink, or proteins in aqueous solution. At the
nanoscale, the fragment interactions may be described by a potential energy surface.
Virtually every atomistic potential energy surface is built upon some concept of
embedding. Here we construct a general framework of embedding, based on very
few assumptions about the electronic structure of the system, and examine the
nature of the charge flow that it implies.

Governance of charge transfer among fragments is embodied in the concept of
the chemical potential, the change in energy of a fragment with the number of
electrons attached to it. The charge, or the time-averaged number of electrons, on a
fragment is determined by the condition of chemical potential equalization among
fragments [20, 37, 75, 76]. When interactions among fragments are strong, the
equilibrated charges on the fragments are typically fractional. Fractional charges
may be thought of as originating from a superposition of states representing the
different integer charge states that the fragments can assume. However, when
fragment interactions are weak, the charges on the fragments are most often integer.
This is always true for isolated atoms [28].

When a fragment is in contact with a reservoir of electrons, transfer of electrons
between them can be described by an open statistical ensemble. If the fragment is
an atom, then it is energetically advantageous for it to acquire as many electrons
from the reservoir as it can bind. At the electronic structure level, for atoms at least,
Perdew et al. [38] also showed that the chemical potential is constant over intervals
of integer numbers of electrons. The chemical potential jumps discontinuously at
the integer electron numbers. This model for the limiting case of extremely weak
interactions between fragments, or between fragment and reservoir, is highly
nonlinear.

At the atomistic level at least, it has been customary, although not exclusively so,
to use a model of chemical potential that is linear in the amount of charge trans-
ferred. One prominent model is that of Iczkowski and Margrave (I-M) [55] which
has been adopted in many molecular and materials models [41, 46, 47, 53, 77, 78].
For concreteness, consider fragment A with chemical potential lA, and hardness gA
[26]. Define the I-M fragment energy as

EI�M
A qð Þ ¼ E0

A � lAqþ
1
2
gAq

2 ð3:143Þ
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with q being the fractional charge state of A and E0
A its energy in the neutral state.

Then

lI�M ¼ � @EI�M qð Þ
@q

¼ lA � gAq ð3:144Þ

is manifestly linear in q.
The physical motivation behind (3.143) is often associated with the energies of

the neutral atoms, and its cation and anion states, formed by adding or removing one
electron, respectively. A three-state model is necessary [20]. The energy difference
between the cation and the neutral is the ionization energy I , while the energy
difference between the neutral and the anion is the electron affinity E. With these
three points, one can fit a quadratic. When the coefficients in (3.143) are determined
in this way, one finds that the chemical potential is the negative of the average of the
ionization potential and electron affinity lA ¼ � IA þEAð Þ=2 and gA ¼ IA � EAð Þ=2.

Because the basic inputs in the I-M model are properties of isolated atoms,
neither lA nor gA can be zero. However, if a linear model of chemical potential with
these sorts of inputs is applied to weakly interacting fragments or a fragment in
contact with a reservoir, unphysical transfer of charge occurs, a problematic situ-
ation. Consequently, more physically-sound models of chemical potential are
needed for general atomistic modeling purposes.

Numerous efforts and strategies have been put forth to overcome the deficiencies
of the linear model [79–84]. Nevertheless most modifications stay within a linear
chemical potential framework, modified to produce desired behaviors. Typically the
lA are forced unphysically to zero at dissociation, so that optimized charges go to
zero in that limit. From Perdew et al. (PPLB) [38], we know that this is incorrect:
The quadratic term in EI�M must go to zero and the chemical potential becomes
piecewise constant at dissociation. In this limit,

EPPLB qð Þ ¼ EA0 þIAq ð3:145Þ

and

lPPLB qð Þ ¼ �IA ð3:146Þ

for all q between zero and one, where IA the ionization potential of A is EAþ � EA0 .
Notably, several models recognize the importance of nonlinearity in the chemical
potential [49, 54, 85, 86].

A key hurdle in all of this lies in defining fragment charges and energies. There
is always an element of arbitrariness in each of these definitions. However, without
these definitions, it is difficult to establish the underlying, fundamental behavior of
the chemical potential that one wishes to retain at the atomistic level. In the case of
charge, we will assume that the practitioner has chosen a definition of fragment
charge and that it is applied consistently. Substantially all of the results presented
here are independent of the details of the charge definition. The fragment energy is
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a different matter. Its definition and how it relates to a chosen charge definition is
central to the discussion and results.

Here one possible framework for the definition of fragment energies as functions
of charges is put forth that respects known physical limits, connects to earlier
models, and naturally regulates charge transfer at the atomistic level. The frame-
work was inspired by the work of Morales and Martînez [44, 45], where charges are
directly associated with expansion parameters in a wave function. Most critically
for the present model, the focus is on decomposing of a system Hamiltonian into
fragment contributions and its variational energy, rather than on decomposition of a
ground state energy [48, 82, 87–89]. In particular, the number of electrons on the
fragment Hamiltonians must be allowed to fluctuate. In the end, the framework falls
squarely into the realm of model Hamiltonians. The framework requires a combi-
nation of three essential elements: Wave function characteristics, Hamiltonian
decomposition, and charge variables.

3.6.1 Charge-Dependent Functional Forms as Embedding
Energies

Potential energy surfaces with explicit charge dependence are in widespread use in
atomistic simulations of systems with ionic character, including oxide ceramics.
Considerable success has been achieved for structural properties and point defects
in ionic materials in single phases. More sophisticated applications that require
charge transfer in chemical, defect, or phase reactions pose additional difficulties for
potential energy surfaces. For instance, one may be interested in a ceramic material
where the cation is polyvalent. Characteristically, these processes require a physical
model where the charges vary with local composition and/or defect structure.

The empirical valence bond approach (EVB) is one of the more successful
methods in this regard [90], although the charge dependencies are implicit and
developed only for molecular systems. Notable progress has been made through
successful, mixed methodologies such as the QM/MM (quantum
mechanical/molecular mechanical) methods [91], linearized tight-binding [92],
Fragment Molecular Orbital method, Fragment Potential Method, and other
methods that calculate forces directly through ab initio estimates.

The most common charge dependent models consistent of the fixed charge
variety. A typical form in wide use for oxide ceramics is the pairwise Buckingham
potential. For atomic sites designated by A and B, the total binding energy of the
system is

E ¼ 1
2

X
A

X
B6¼A

uAB RABð Þ ð3:147Þ
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where

uAB RABð Þ ¼ qAqB
RAB

þAABexp
�RAB

qAB

� �
� C 6ð Þ

AB=R
6
AB ð3:148Þ

In this expression, RAB is the atomic distance between A and B, AAB is a scaling

constant with dimensions of energy, qAB is a length scale, C 6ð Þ
AB is the dispersion

energy constant, and qA and qB are the respective charges on the atoms. These
models have been very valuable for structural studies and explorations of simple
defects. The limitations of the fixed charge approximation led to the advent of
variable charge models.

For variable charge models, we begin with what we will refer to as the
Iczkowski-Margrave model [55]. This model says that the atomic contributions to
the energy EI�M

A as a function of charge q are quadratic in the charge. For each atom
A with chemical potential lA, and hardness gA,

EI�M
A qð Þ ¼ E 0ð Þ

A � lAqA þ
1
2
gAq

2
A ð3:149Þ

where the sign of qA is the negative of the difference between the number of
electrons on A in isolation and in the dimer. These atomic energies are added to a
pairwise coulombic interaction.

Thus, for just two, well-separated atoms A and B of opposite charge q, there
would only be the coulombic interaction �q2=RAB. That is,

EAB RAB; qð Þ ¼ EI�M
A qð ÞþEI�M

B �qð Þ � q2=RAB ð3:150Þ

If one optimizes q from dEAB
dq ¼ 0, one obtains the unphysical result for atoms in the

gas phase of

q ¼ lA � lB
gA þ gB � 2=RAB

ð3:151Þ

The properties µ and η belong to the isolated atoms, and so obviously do not
disappear at dissociation. According to this model the AB dimer does not dissociate
to neutrals as it should. The equilibration process is represented graphically in
Fig. 3.8, where the gray, short-dashed line is the charge-derivative of the I-M terms
and the solid black line is the negative of the charge-derivative of the coulombic
term. PPLB explained the problems with this model for weakly interacting system
[38]. Although the I-M model is fairly reasonable for through-bond interactions, it
is not appropriate for more distant interactions (Fig. 3.13).

More advanced models have overcome some of the limitations of the original I-M
model [55]. These approaches attain dissociation of atoms in the gas phase to neutral
states [38] by either turning off the charge dependence in (3.149) or eliminating the
linear term at dissociation. The latter route thus achieves charge neutrality, but in fact
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does so by eliminating the very term, the linear one, that should survive according to
PPLB. Moreover, many models of the charge dependence cannot actually allow the
valence state of the ions to change dynamically with the environment.

For these reasons, we have been developing a class of potentials that are founded
on a combination of atom-in-molecule representations of the electronic Hamiltonian
and the variational energies that come from those representations [39, 40, 93, 94].
The initial impetus for this approach was the work of Morales and Martìnez [44, 45],
where charges were directly related VB expansion coefficients. These surfaces can
be designed to retain multiple charge states of the constituent atoms. At the level of a
2-state model, a pair potential can be expressed in the form of a spectral model

E R; qð Þ ¼ E0 Rð Þþx R; qð Þ E1 Rð Þ � E0 Rð Þð Þ ð3:152Þ

where E0 Rð Þ and E1 Rð Þ are the ground- and ionic excited-state energies as functions
of R, and

x R; qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q0 Rð Þð Þq

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 Rð Þ 1� qð Þ

p� �2
ð3:153Þ

Fig. 3.13 Top Isolated atom releasing an electron to the “environment” (lightning bolt) or a
reservoir to become a cation, a process requiring expenditure of the first ionization energy. Middle
Isolated atom receiving an electron from the environment corresponding to the first electron
affinity energy. Bottom A pair of atoms reacting to form a cation-anion pair. The processes is
identified in different disciplines as a charge-separation reaction in some areas of materials science
and in chemistry or electron-hole production in other areas of materials science and in
condensed-matter physics
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is the occupation number for the excitation. It depends explicitly on q0 Rð Þ, the
ground-state charge, as a function of R. The essential functional dependence on
charge differs considerably from the electrostatic form, but is consistent with more
rigorous quantum mechanical reasoning [38] and numerical results [63]. Moreover
the origin of the classical-electrostatic 1/R dependence can be identified from
E1 Rð Þ, but its limits of applicability, namely large R, are clearly defined. When the
electron distributions begin to overlap, the natural core-core repulsion takes over.
At the same time, E0 Rð Þ can be thought of as being analogous to the short-range
and dispersion terms of the Buckingham potential.

The present model is consistent with PPLB [38], and its extensions to subsystem
interactions of finite strength [39]. Consequently, differentiating ω is fraught with
difficulties. For instance, in the context of (3.145), q0 � 0, corresponding to a
neutral H atom as the reference. At q0 ¼ 0, (3.153) collapses to x R; qð Þ ¼ q, for
q[ 0. If one simply takes x ¼ q, then x0 � @x

@q ¼ 1, but one does not get the right

minimum energy E0. Instead one gets E1 1ð Þ � E0 1ð Þ ¼ 0, an unphysical result in
the present study.

The issue can be addressed in the following way. Fully expanded,

x0 ¼ 1� 2q0 � 1� 2qð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 1� q0ð Þ
q 1� qð Þ

s
ð3:154Þ

and covers the full range from �1, with a plateau in the middle region, if q0 is
small. See the curves labeled with different values of q0 in Fig. 3.14 for an illus-
tration. In this figure, x0 was scaled by a nominal gap energy of 0.5 EH. If (3.154) is

Fig. 3.14 Piecewise linear
and quadratic appropriate at
different material densities
[38]
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evaluated at q0 ¼ 0, one recovers the prior, incorrect result x0 ¼ 1 for all q. If
instead x0 is evaluated at q ¼ q0, one achieves the correct result x0 ¼ 0, for all q.
Thus the order of operations is important in evaluating these quantities.

In fact, the sensitivity of the charge equilibration to the details of the model is in
evidence here. The present quantum-based models shed considerable clarity on how
this transition should occur. Expanding (3.153) one finds that

x R; qð Þ ¼ q0 Rð Þþ 1� 2q0 Rð Þð Þq� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 Rð Þ 1� q0 Rð Þð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q 1� qð Þ

p
ð3:155Þ

The surviving linear contribution which equals the chemical potential contributions
in the I-M model behaves exactly the same. However, the gap term which equals
hardness terms in (3.149) are scaled by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 Rð Þ 1� q0 Rð Þð Þp

. As R ! 1; q0 ! 0 as
the square root of q0. Thus, transitional behavior of the model between linear and
locally quadratic is controlled in a well-defined way by the reference charge.

3.6.2 Embedded Atom (EAM), Modified Embedded Atom
(MEAM), and N-Body Methods

Not all metals are equally “metallic” in character. This well-known observation
applies to different phases of a single-component material such as nickel. At the
atomistic modeling level, it is difficult to distinguish differences in metallic quality,
which must, by extension, influence material properties of the different phases,
beyond basic symmetry or geometric considerations.

Certainly several forms of atomistic models have been developed that are fairly
successful at modeling at least some phases of some metals. Among these are the
embedded atom method EAM [66, 67], modified embedded atom method (MEAM)
[66, 67], Finnis-Sinclair (FS) [70], bond-order [95–97], A-EAM [68], and related
potentials. Several of these share certain characteristics, and can even be traced in
origin to one-electron theories, such as tight-binding or density functional theory.
However, once an atomistic model is derived from a one-electron theory, one
inherits whatever limitations are applicable to that theory.

In the EAM, FS, tight-binding (TB), and many other approaches, the total energy
of a metal is partitioned between site energies and interactions between pairs of
sites. The sum of the site energies is referred to as an embedding energy. The energy
of each site is thought of as an atom interacting with an electron density provided
by the remaining atoms in the system. The pair interactions occur between sites.
With the sites labeled by Roman letters, the total system energy is expressed, in
analogy with (3.55), as

�E ¼
X

A
FA �qAð Þþ 1

2

X
B 6¼A

/AB RABð Þ
� �

ð3:156Þ
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where FA is the embedding, or site, energy for atom A, uAB is the pair interaction
between atoms A and B, and RAB is the corresponding distance between them. In
methods such as EAM and FS, the embedding energy is a function of a quantity
called the background electron density �qA. It may be approximated by, for instance,
a superposition of atomic electron densities from the neighboring atoms

�qA ¼
X

B 6¼A
qaB RABð Þ ð3:157Þ

where qaB is an atomic electron density being contributed by neighboring atom
B. For the embedding energy, EAM often encodes this quantity in tabular form.

Finnis and Sinclair [70] proposed a similar approach to EAM, the “N-body
Potential”, where the embedding energy for a chosen atom is given by the analytical
form

FFS �qð Þ ¼ �AFS ffiffiffi
�q

p ð3:158Þ

This form is motivated by arguments from a one-band tight-binding model. The
constant AFS can depend on pairs of elements, as opposed to depending only on the
element A. MEAM takes F as an analytical expression as well,

FMEAM �qð Þ ¼ AMEAM�q ln �q ð3:159Þ

based on coordination-dependency arguments [66, 67]. By assumption, AMEAM

depends only on the type of the embedded atom. One EAM model for Cu is cast in
the form of the rational function [69]

FMishin �qð Þ ¼
P

j Tj �q� 1ð Þ jP
j Qj �q� 1ð Þ j ð3:160Þ

where the range of the sums are left undefined here, and the constants Tj and Qj are
material-dependent expansion coefficients. None of the energies scales implied in
(3.160) have been identified in terms of established physical concepts. Finally, the
embedding energy for angular EAM (A-EAM) [66, 67] is equivalent to

FA�EAM �qð Þ ¼ AA�EAM�q2 ð3:161Þ

In each instance, AA�EAM is an energy scale and assumes a different value for the
embedding energy of each element.

The FS embedding energy follows most directly from a more fundamental
theory, tight-binding [98]. Generally, speaking though, according to the foundation
for the FS N-body potential, it is accepted that the embedding energy represents
electron hopping [99]. This interpretation is consistent with the relative success of
these methods for good metals. The correct physical identity of the background
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density remains nebulous though. In the FS interpretation, the background density
is related to the hopping energies themselves, which are, in turn, related to a
second-moment, density-of-states estimate of some bandwidth for a material.
In MEAM, on the other hand, the background density is thought of as an actual
electron density [66, 67], or electron density differences [100].

For both the background density �q and the embedding energy, the lack of more
definitive physical identification hampers further development of these concepts.
Furthermore, the lack of deeper connections to first-principles concepts limits how
many energy scales within the embedding energy can be given some physical
identity. For instance, one might wonder if and how a “Hubbard-U” parameter
[101] enters atomistic models for metals. We note at this point that this kind of
parameter does appear in atomistic models for ceramics in the form of the
Parr-Pearson hardness [26, 42, 43, 47–49, 52–54, 102].

The embedding energies for elemental materials, where typically all atoms are
neutral, are the focus of this investigation. These embedding energies follow
directly from the general FH embedding energy of (3.100), by setting the net charge
of each atom or fragment equal to zero. The environmental dependencies for the
different energies appearing in (3.100) are developed in progressive stages of
complexity, ranging from high crystal-symmetry configurations to general config-
urations with no particular symmetry.

Graphically one can depict the embedding energies in the EAM and I-M models
as limiting cases of the three-state FH embedding energy in (3.85). The two cuts are
the s ¼ 0 and the s ¼ q curves in Fig. 3.15. A final model for comparison combines
the EAM and I-M models into a single model. The Streitz-Mintmire model [77, 78]
approximates the combination by a direct sum of the EAM and I-M embedding
energies, as also noted in Fig. 3.15. The FH model provides for an entire surface for
the embedding energy as a function of both charge and ionicity.

Fig. 3.15 Three-state fragment energy schematic shown as a function of charge and ionicity or
occupation numbers. Elemental models fall on the nþ ¼ n� cut, so that EAM appears along the
q ¼ 0 axis. Ionic models appear along the s ¼ q cuts and are labeled as “I-M”. The
Streitz-Mintmire model [77, 78] corresponds to approximating the entire surface by the sum of
the EAM cut plus I-M cut
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3.7 FH View of Bonding

The general outcome of the Fragment Hamiltonian view of materials is the possi-
bility of capturing all three major categories of bonding, covalent, metallic and
ionic, in a single model. These categories are shown in Fig. 3.16 as they relate to net
charge and ionicity. Broadly speaking, covalent materials occupy the neutral state,
and so have both low net charge and ionicity. Ionic materials occupy states where
the ionicity is high, but occupancy of the cation or anion states dominates, leading
high net charge as well. Metallic materials occupy a low net charge state, but still
possess high ionicity because of the charge fluctuations in the system. In this effort,
metallic bonding within the context of embedded atom methods is the subject of
primary interest. With the foundation of the Fragment Hamiltonian approach, dif-
ferent components of the embedding energy can be derived and examined.

3.8 Environment-Dependent Dynamic Charge (EDD-Q)
Model Potentials

As we have previously noted, if we wish to capture the insights gained from the FH
approach in MD simulations some interatomic potential must be provided. Recall
that in our examination of the FH approach we have restricted ourselves to exami-
nation of the so-called Ehrenfest potential of (3.7a). In the development of inter-
atomic potentials, we will continue to neglect the non-B.-O. terms in the
electron-nuclear potential while concentrating on the electronic Hamiltonian con-
tribution to the nuclear forces for a given nuclear configuration. Recalling from (3.21)
that a system can be broken into an arbitrary number of fragments each associated

Fig. 3.16 Schematic of a three-state model indicating regions of different kinds of bonding
according to different mixtures of net charge and ionicity
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with some number of electrons, we are lead to conceive of a model interatomic
potential that has a varying charge. When this insight from the FH is combined with
an AIM perspective, it becomes clear that the varying charge must be affected by the
local bonding networks in which a given atom engages. We think of this bonding
network as the local ‘environment’ for an atom. Again, in the FH framework, an atom
itself, whether in a molecule or not, can be considered as a ‘fragment’.

However, for an interatomic potential it is not practical to consider multiple
charge states and potentials for each, but rather the charge on a given atom is better
described by a partial charge that reflects the molecular, or periodic, environment in
which the atom is situated. It is also necessary to choose some fiduciary quantity
that will represent to atomic charge on the atom and some functional form, or
forms, that will be used to capture the behavior of the atomic charge as a function of
its environment. It is this set of choices that define the environment-dependent
dynamic charge (EDD-Q) potential models that will be explored in this section.

The general form of an EDD-Q potential between two atoms A and B is:

VAB ¼ qA ~RN
� �� �

qB ~RN
� �� �

~RAB

�� �� þU ~RAB
� � ð3:162Þ

where the partial charges q are explicit functions of position and the Coulomb
interaction is coupled with a supplementary potential (U). That supplementary
potential can take on a number of forms as can the functions that capture the
environment dependence of the charge. Further, an embedding term defined in
terms of the environmental dependent charge is included in the EDD-Q functional
form thereby ensuring consistency with the metallicity and ionicity requirements of
a FH-AIM approach towards potential parameterization. Thus, within the EDD-Q
framework and by analogy with (3.159), the energy of an atom A is given by

�E ¼ F qAð Þþ 1
2

XN

B 6¼A
U RABð Þþ 1

2

XN

B6¼A

qAqB
RAB

ð3:163Þ

where qA is the charge of atom A, and is an explicit function of the chemical
environment (coordination, bond distances, bond angles) of A. The ability to
accurately incorporate chemical dependent variation in partial atomic charges is a
fundamental requirement for the parameterization of the EDD-Q potential. In this
regard, Mulliken or Lowdin populations or Bader charges that are obtained from
quantum chemical calculations can serve as worthy proxies for atomic charges,
provided these are obtained from appropriate underlying training-sets that allow for
a significant sampling of different chemical environments that the constituent atoms
will experience when in a gas-phase cluster or in a liquid or solid-state. Equally
importantly and in addition to parameterizing the atomic-charges as a function of
chemical environment, the potential must reflect an underlying energy landscape
that is characteristic of the phase-space that will be sampled by the atoms/molecules
at different thermodynamic conditions. Towards this end, the following strategy for
developing a framework for EDD-Q parameterization is provided below:
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1. Selection of suitable gas-phase molecules/clusters that represent the simplest
building blocks of the systems to be modeled.

2. A Hartree-Fock/DFT based investigation of the normal modes of vibrations of
the chosen molecules.

3. Deformation of the molecules along their respective normal modes and cata-
loging the change in partial atomic charge of the constituent atoms as a function
of chemical environment. Alternately, depending on the size of the
molecule/cluster, the charge-catalog can be generated based on affine transfor-
mations of the molecule.

4. Simultaneous catalog of the change in energy of the molecules as a function of
respective deformation.

5. Parameterization of the atomic charges based on the charge-catalog; concur-
rently, using the obtained energies (in step 4), parameterize the embedding
function as well as the supplementary potential term (Φ).

In the EDD-Q formulation, as noted earlier, the charge on an atom is a function
of its coordination-i.e. the number of bonds it forms. In particular, the total
atomic-charge is decomposed into ‘bond’ charges and the net charge on an atom is
given by the sum over all bond-charges. The bond-charge is a function of the
chemical environment of both participating atoms. The bond cutoff distance is
obtained based on the distance at which the atom-charge saturates. For a bond
formed between atoms A and B, the bond-charge (qbondAB ) is a function of the number
of nearest neighbors of A(LA) and B(LB), the interatomic distance (RAB), and the
bond-angles that arise due to the remaining nearest neighbors of A and B(hBAC and
hABC0 ), where C and C′ represent the neighbors of A and B respectively. The
embedding term is defined in terms of atomic charge rather than electronic density,
though the corresponding functional form is similar to the original EAM descrip-
tion. The functional forms of the charge variation and the Hamiltonian describing
the interatomic interactions are given in the Appendix.

The variations in atomic-charges are fitted to a functional form that is expressed
in terms of bond-distances and bond-angles. The other potential parameters are
obtained with respect to the variation in the energies of the different molecules. In
particular, both charge as well as the potential parameters represents best-fit values
that can faithfully reproduce the underlying variations for all considered molecules
within 5 % error.

The above procedure represents a hierarchical approach to developing predictive
interatomic potentials, where first-principles information derived from the smallest
structural units that are representative of the modeled system is only used for
parameterization. To illustrate the EDD-Q potential development, we focus on two
distinct materials-systems namely water and silica (SiO2). In Table 3.3, we present a
summary of the parameterization procedure adopted for each of the above systems.

First we start off by examining the development of EDD-Q for water, and then
follow with silica.
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3.8.1 EDD-Q Potential for Water

In this study we present the implementation of the EDD-Q formulation for water.
Specifically, we apply it to the structure and energetics of neutral water clusters
(H2O)k, k = 3, −20. Importantly, we focus on water as a paradigmatic small
molecule system of immense practical applications to biomolecular and materials
applications. Water also represents an extremely challenging test system for any
interatomic potential due to its strong polar effects arising from underlying charge
transfer and charge polarization and associated many body effects. Many ‘water
potentials’ are available in literature, of which the best known empirical potentials
include SPC [103, 104], TIP3P [105, 106], TIP5P [107] while potentials such as
MCDHO [108], NCC [109], MCY [110], NEMO [111] and POL5 [112] rely on
first-principles data for developing parameters. In almost all the potentials, the
parameterizations were carried out with the implicit assumption that the basic
structural unit consists of the water monomer/molecule (notable exceptions being
Halley et al. [113], Corrales et al. [114], Voth et al. [115, 116]). Typically, the
molecule is represented by a collection of point charges to yield the right dipole
moment and minimum energy structures. Simpler potentials hold the geometry of
the water molecules rigid [103–107], while more realistic potentials allow for OH
bond flexibility [41, 117–120] modeled as harmonic and/or anharmonic oscillators.
Further, polarization effects are also introduced via a polarizable term as incorpo-
rated in the diffuse charge potential model [121, 122].

In contrast to the above described potentials, using water monomers and dimers
(Fig. 3.17) as the training set molecules, the EDD-Q potential is parameterized with
respect to Lowdin charges (as obtained from ab initio calculations) that vary as a
function of the atoms’ chemical environment. Figure 3.18a shows a comparison
between UHF obtained Lowdin charges and the EDD-Q charges for a representa-
tive atom within the water monomer and the dimer when deformed along respective
normal modes. Note the EDD-Q fits emulate the UHF data very well. The charge
and potential parameters are provided in the appendix. Table 3.4 provides a com-
parison in the EDD-Q predicted properties of the monomer and dimer with the
corresponding UHF values, while Fig. 3.18b represents the variation in the energy

Table 3.3 Summary of the parameterization training sets and the level of theory in developing
EDD-Q for water and silica

Training set Deformation
procedure

Level of theory Basis set Population
analysis

Cutoff
(Å)

Water (H2O)k;
k = 1, 2

Normal modes Unrestricted
Hartree Fock
(UHF)

6-31G** Lowdin 1.5

Silica H2Si2O7,
(SiO2)k;
k = 2, 4

Affine
transformation,
normal modes

DFT-B3LYP 6-31G** Mulliken 3.2
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Fig. 3.17 Illustration of a water monomer (left) and a dimer (right). For the monomer Req, θeq
represent the equilibrium bond distance (0.945 Å) and bond angle (105.5°) respectively. For the
dimer, rHB represents the hydrogen bond between the ‘donor’ and the ‘acceptor’ molecules that
constitute the dimer

Fig. 3.18 Left Oxygen charge as a function of OH distance for a symmetric variation at the
equilibrium angle (θeq) = 105.5° of the water monomer. Right UHF and predicted energies for a
water monomer for the symmetric mode at the equilibrium angle. In the above figures ‘fitted’ refers
to the EDD-Q data

Table 3.4 Equilibrium
properties of the monomer
and dimer

Monomer

Predicted (EDD-Q) UHF

Req (Å) 0.943 0.943

θeq (deg) 105.5 106.0

Eeq (eV) −6.51 −6.52

Dimer

rHB (Å) 1.94 2.04

rOO (Å) 2.89 2.98

U (kcal/mol) −5.86 −5.50

U refers to the interaction energy of the dimer, which is obtained
by subtracting the two monomer equilibrium energies from the
total energy of the dimer
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of the monomer for the symmetric mode deformation as obtained from EDD-Q and
the underlying UHF calculation.

Having demonstrated the ability to accurately emulate the properties of the
training sets, we turn our attention to larger water clusters. It has been shown that
the most stable structures of small water clusters correspond to 2-D cyclic struc-
tures, where each molecule serves as both an acceptor and a donor, while 3-D
structures are energetically favorable for larger clusters. This crossover is seen for
the water hexamer and larger clusters. In this regard, in the following section, we
present EDD-Q predictions of the energetics and geometry of water clusters and
compare them with the underlying UHF calculations. Note that for locating the
energy minimum structures, the modified BFGS routine was used [123].

Trimer-Pentamer Table 3.5 provides the properties of the three clusters as
predicted by EDD-Q; EDD-Q predicts the cyclic structure to be the most stable
structure for all three clusters (i.e. trimer, tetramer and pentamer). For comparison
we provide relevant data corresponding to other potentials as well as
first-principles/ab initio data. The notation <> in Table 3.5 reflects the fact that all
quoted distances are averaged over the cluster structure. Figure 3.19 depicts the
energy minimized structures of the trimer, tetramer and the pentamer molecules.
Note that the trimer chain structure as shown in Fig. 3.19b is a metastable structure.
Also, the reported interaction energy Ufor all molecules in Table 3.4 (and following
tables) is obtained by the difference between the total energy of the molecule and
the sum of the energy of the monomers that constitute the given molecule.

Water Hexmer Ab initio calculations [124] have established that the (i) 3-D
structures are energetically more stable than 2-D structures and (ii) the 3-D cage,
prism and book structures (Fig. 3.20) corresponding to the water hexamer are

Table 3.5 Equilibrium
properties of water clusters
(k = 3, −5). H is the angle
among three water molecules

EDD-Q TIP5P TIP4P/FQ UHF

Trimer-cyclic

U −13.74 −14.99 −12.58 −17.10

<rOO> 2.72 2.77 2.91 2.78

\HHOH [ 105.3 105

<rOH> 0.95 0.95

Tetramer-cyclic

U −27.31 −28.43 −23.64 −29.1

<rOO> 2.83 2.67 2.76 2.79

\HHOH [ 105.3 105.3

<rOH> 0.95 0.95

Pentamer-cyclic

U −36.03 −38.12 −32.96 −37.7

<rOO> 2.85 2.66 2.77 2.87

\HHOH [ 105.3 105

<rOH> 0.95 0.96

All distances in Å, angles in degrees, energy ðUÞ in kcal/mol
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energetically degenerate. EDD-Q successfully predicts both trends and further also
predicts the structural properties (bond length, bond angles) accurately. This ability
to correctly predict the crossover from 2-D to 3-D structures for the hexamer

Fig. 3.19 Equilibrium geometries of the different energy minimized (H2O)k molecules when
k = 3, 4, 5. Interatomic distances in Å

Fig. 3.20 Equilibrium geometries of the different water hexamers. Interatomic distances in Å
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distinguishes EDD-Q from other interatomic potentials available for water.
A comparison of EDD-Q energetics and relevant data from previous investigations
is given in Table 3.6.

Beyond the Hexamer Table 3.7 provides equilibrium properties of water clusters
for k = 7–9 as obtained by using EDD-Q. The most stable energy minimum
heptamer ((H2O)k=7) structures are shown in Fig. 3.21. The EDD-Q obtained
energetics for these two structures agree with ab initio data [124]; specifically,
EDD-Q predicts heptamer-a (see Fig. 3.21) to be more stable than heptamer-b by
1 kcal/mol, consistent with UHF predictions.

Table 3.6 Interaction energy
(kcal/mol) of the different
hexamer polymorphs

EDD-Q TIP5P TIP4P/FQ UHF

Cage −46.50 −45.39 −45.38 −48.60

Book −46.49 −46.68 −40.15 −48.51

Prism −46.47 −45.59 −39.30 −48.56

Chair −44.07 −47.93

Cyclic −43.92 −47.31 −41.37 −47.34

Table 3.7 Interaction energy
(kcal/mol) of water clusters
(k = 7, −9)

EDD-Q TIP5P TIP4P UHF

Heptamer (a) −58.26 −57.91 −58.27 −60.53

Octamer (D2d) −74.32 −72.54 −73.09 −76.01

Nanomer (a) −84.12 −83.62 −82.40 −85.05

Fig. 3.21 Equilibrium geometries of the different energy minimized (H2O)k molecules when
k = 7, −9. Interatomic distances in Å
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The two most stable octamer structures in our work correspond to a cubic
structure with D2d symmetry and a cubic structure with S4 symmetry. This agrees
well with other ab initio predictions [124] as well as UHF data.

The global minimum water nanometer structure can be described in terms of a
pentamer and a tetramer ring connected by hydrogen bonds (nanomer-a in
Fig. 3.21) [124]. EDD-Q predicts this structure to be the most energetically
favorable too. Another structure, namely nanomer-b is also shown to be energeti-
cally stable, but metastable with respect to nanomer-a.

For locating the energy minimum structures for larger clusters (k > 9), we use
geometries predicted by ab initio calculations [124] or the classical potential TIP5P
[107] as starting configurations. The energies of the resulting energy-minimum
structures for k = 10–20 agrees well with ab initio data, unequivocally demon-
strating the efficacy of the EDD-Q parameterization method. A summary compar-
ison of EDD-Q and ab initio data [124] is given in Fig. 3.22. As evident from the
figure, the alternation in stability of the cluster depending on n is captured by
EDD-Q, consistent with ab initio predictions. In particular, the enhanced stability of
even n-mers relative to odd n-mers is described well by EDD-Q.

3.8.2 EDD-Q Potential for Silica

In this section, we present a potential for silica that is developed in a fashion similar
to the EDD-Q potential for water. We assess its capabilities, by examining its ability
to describe silica nanoclusters with respect to DFT calculations. Specifically we
study global-energy minimum structures of small silica nanoclusters ((SiO2)k, k = 1,
−27) as identified by [125]. In addition, we also compare EDD-Q to select
potentials that were also developed for silica. These potentials include (i) the BKS
potential [81], (ii) the TTAM potential [126] and the (iii) FB potential [127], all of
which are two-body potentials (with fixed atomic charges) of the Buckingham
form,

Fig. 3.22 Incremental
interaction energies of water
clusters (ΔE = Ek+1 − Ek −
E1) as a function of cluster
size k
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VAB ¼ AAB expð�bABRABÞ � CAB
R6
AB

þ qAqB
rAB

ð3:164Þ

The BKS and TTAM potentials were primarily parameterized with respect to
bulk silica polymorphs while FB parameters were chosen to yield the energetics and
geometries of small silica nanoclusters as predicted by DFT with the B3LYP
functional and a 6-31G* basis set.

In order to obtain ‘environment-dependent’ charges of the constituent atoms, we
use pyrosilicic acid (H6Si2O7) as our training system. Pyrosilicic acid (Fig. 3.23)
consists of a central-bridging oxygen, two 4-coordinated silicon atoms, and six end
oxygen atoms that are hydrogen terminated. One could think of the central oxygen
and the two silicon atoms as being representative of ‘bulk’ atoms in their normal
coordinated states. Using the Mulliken population as a surrogate for atomic charges,
we obtained the charge on the central oxygen atom (Oc) for some select geometries
at the restricted Hartree-Fock (RHF) 6-31G** level of theory. Specifically, fixing
one half of the molecule with respect to Oc, we varied the other Si1–Oc distance
between 1.25–2.4 Å and the Oc–Si1–O(1,2,3) angles from 60° to 150°. Next, we
defined a Si–O bond-charge, which was a function of its bond distance and the bond
angles with respect to the other oxygen neighbors of the silicon atom. In our case,
the neighbor cut-off distance was defined to be rc = 2.4 Å. More information on the
charge functional forms is given in the appendix. Figure 3.24 depicts the Mulliken
population on the central oxygen atom obtained as a function of Si–O distance
when the O–Si–O angles equal the equilibrium angle of 106° and clearly indicates
the accuracy of our fitting procedure.

In order to obtain the potential parameters, we use the energetics and structures
of small SiO2 clusters ((SiO2)k, k = 2–4) clusters (Fig. 3.25) as our training sets.
Specifically, we use DFT with the B3LYP exchange-correlation functional and the
6-31G* basis set, same as that of FB, to calculate the ground-state structure and
binding energy of the above clusters, as well as the energies for isotropic and
uniaxial (along the primary axis) deformations of the above clusters (90–120 % of
the energy-minimized structure). The binding energy was calculated with respect to
the triplet-state isolated oxygen and silicon atoms.

Fig. 3.23 Geometry of the
pyrosilicic acid molecule
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We need to point out that the reason for using two different training sets for our
charge and potential parameterizations was merely to combine two different sets of
information. In other words, we use the charge fluctuations for atoms that were
representative of the bulk, while the energy parameterizations are carried out on
small clusters. Also, we use RHF level of theory to calculate the charges and DFT
to calculate the energetics, to maintain a certain level of consistency with the FB
approach, where the (fixed) charges that they used were obtained from a RHF-level
calculation performed on the geometry optimized of the pyrosilicic acid, while
using DFT for energy parameterization.

Table 3.8 lists the ground state energy and structural properties of the three
model clusters as obtained by DFT and EDD-Q. In our work, we use the modified
BFGS procedure to obtain energy-minimum structures. As is obvious from the
above table, EDD-Q does a good job of matching both the DFT binding energies as

Fig. 3.24 Variation of the
Mulliken charge on the
central oxygen atom as a
function of Si–O distance

Fig. 3.25 Geometries of
a (SiO2)2, b (SiO2)3, c (SiO2)4
molecules. Black and grey
spheres represent silicon and
oxygen atoms respectively.
R1 and R2 represent the
corresponding Si–O distances
respectively
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well as structural quantities R1 and R2 as defined in Fig. 3.25 (within 1 %). Note
that the potential parameters are given in the appendix.

Next, we examine larger silica clusters. Bromley and co-workers [125, 127, 128]
have systematically examined the energy-minimum structures of silica nanoclusters
via painstaking scanning of the potential energy surface (PES) using DFT. In
addition, a wide variety of nanostructures including nanorings, nanochains and
nanotubes were shown to be energetically stable structures, though not necessarily
the ground-state structures. In this regard, as a first step towards validating our
procedure, we check the ability of EDD-Q to match DFT results in obtaining the
energetics and structural properties of the reported ground-state structures as well as
some select nanostructures, rather than attempting to do a full-blown computa-
tionally intensive global optimization search for the energy-minimum structures of
silica. For comparison, we later present the energetics and structural properties of
the ground-state structures when optimized with other silica potentials (BKS,
TTAM and FB).

For very small cluster sizes (k ≤ 6 SiO2 units), it has been shown that the
nanochains are the energetically preferred structures, while for slightly larger
clusters (7 ≤ n ≤ 12), the ground-state structures do not follow any consistent
growth pattern as discussed by Flikkema and Bromley [128]. For k > 13, a distinct
pattern emerges, such that for 13 < k < 23, columnar structures are preferred, while
for 23 ≤ k < 27, the ground-state structures are disk-like and much more compact in
comparison. The columnar structures are characterized by four-membered Si4O4

rings (Fig. 3.26a), while the disk-like structures (Fig. 3.26b) are characterized by
five-membered Si5O5 ring cages, and all the above structures characterized by the
presence of some singly-coordinated oxygen and tri-coordinated silicon defect
states (for more structural details refer Bromley [125]). Further, an odd-even
alternation in the relative energy stability is seen for the columnar structures as
reflected in the sequential energetic change ΔE = BEk − BEk−1, (BE is the binding
energy of the given cluster expressed in eV/SiO2) in adding a SiO2 unit to each
cluster. Greater increments in binding energy are realized by adding a unit to odd
numbered structures than to even numbered structures (see Fig. 3.27a). In contrast,
for the disk-like structures, (i) alternation is insignificant, (ii) for k = 26, ΔE is
higher than the corresponding odd-structures.

Using the above ground-state structures as our initial starting structures, we
energy-minimized them using the EDD-Q potential; the variation in binding energy
as well as ΔE with n is given in Fig. 3.27b. As evident from Fig. 3.26b, the

Table 3.8 Energies and
structural properties of the
training sets when
energy-minimized using DFT
and the EDD-Q potential

Binding energy
(eV/SiO2)

R1 distance
(Å)

R2 distance
(Å)

DFT EDDQ DFT EDDQ DFT EDDQ

(SiO2)2 −13.97 −14.00 1.51 1.50 1.68 1.69

(SiO2)3 −14.82 −14.81 1.51 1.50 1.68 1.69

(SiO2)4 −15.23 −15.18 1.51 1.50 1.68 1.69
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odd-even alternation in ΔE of the columnar structures is also observed; it has to be
pointed out that with EDD-Q, the columnar and disk-like structures are isoenergetic
for k = 24 and 25 (differences in binding energies <0.01 eV/SiO2), and the disk-like
structures are more stable when k > 25. Though DFT results show that the structural
transition occurs at k = 23, our results are still consistent with the discussions in
[115], which point out that structural transition from an elongated to a more
compact form in silica as well as silicon clusters occur in the range k = 23–25.

Bromley et al. had fitted the variations in binding energies using a polynomial of
the form (EðkÞ ¼ Eres þ ak�b) for the smaller (k < 13) and larger (k ≥ 14) clusters
separately and noticed that for the larger clusters, b equaled 0.333, while it was
larger for the smaller clusters. We noticed a similar trend as given in Fig. 3.27b,

Fig. 3.26 Geometries of
a columnar structure (k = 18),
b disk-like structure (k = 23),
c nanotube (k = 36),
d nanorings (k = 12). Black
and grey spheres represent
silicon and oxygen atoms
respectively
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with the predicted Eres for the larger-sized clusters similar to the experimentally
measured energy of α-quartz as well as that obtained by Bromley et al. [115].

In order to characterize the structural details of our energy-minimized structures,
we compared the (i) Si–O bond distances, (ii) O–Si–O angles and (ii) Si–O–Si
angles with the DFT-optimized structures. Specifically, for each cluster size, we
tabulated the various bond-distances and bond-angles in each structure and calcu-
lated the mean unsigned error (MUE) with respect to the DFT structures for the
above quantities (Fig. 3.27c). For all n, the errors in Si–O bond distances and Si–O–

Fig. 3.27 Variation (as a function of n) of a DFT BE and ΔE of the ground state structures
(14 ≤ k ≤ 27), b EDD-Q BE and ΔE of the ground state structures, c structural mean unsigned
error (MUE) of the EDD-Q ground state structures, d ΔE of the ground state structures
(14 ≤ 1k ≤ 27), e EDD-Q BE of nanochains and nanorings, and f BE of the nanotubes and select
nano-cage structures (given in inset)
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Si bond angles are below 2 and 3 % respectively, while the deviation in O–Si–O
bond angles are slightly larger. Also, for the intermediately-sized clusters
(14 ≤ k ≤ 22), the errors seem to be larger for the odd-structures, while for the large
clusters, the errors relatively diminish and do not seem to fluctuate.

In order to compare the performance of EDD-Q with other silica potentials, we
calculated the ground-state energies of the clusters using BKS, FB, and TTAM
potentials. For BKS and TTAM, the columnar structures were always more stable
than the disk-like structures for 14 ≤ k ≤ 27, while FB exhibited the correct
structural transition. The odd-even alternation in the columnar structure energies
was reversed for all three potentials as shown in Fig. 3.27d.

Next, we looked at some of the interesting meta-stable nanostructures that were
previously examined by Bromley and co-workers. Nanochains, which were used as
our training set structures, consist of planar two-membered silica rings (Si2O2) that
are roughly perpendicular to their neighboring rings, with non-bonding terminal
oxygens (NBO) at the end of chains, while nanorings (Fig. 3.26c) are fully coor-
dinated structures that can be constructed by joining the NBO ends of the nano-
chain. Bromley et al. [129] using DFT with B3LYP and the 6-31+G* basis set
examined the nanochain and nanorings structures as a function of cluster size
(k < 15) and noticed that (i) the nanochains were relatively more stable for k < 12,
(ii) nanorings structures were slightly more stable for k ≥ 12. EDD-Q yields a
similar trend, as shown in Fig. 3.27e, with the crossover occurring at k = 12, though
odd-membered ring structures seem to be less stable than either their
even-membered counterparts or odd-membered chain structures.

Nanotubes are quasi one-dimensional structures that have generated a lot of
interest due to their structural similarity to carbon nanotubes [130]. These consisted
of a repeated six-membered silica ring structure, with bridging oxygens connecting
neighboring rings. The ends are oxygen terminated to ensure the proper coordi-
nation of atoms, with the two sets of terminal oxygens anti-aligned to obtain lower
energy tubular structures (Fig. 3.26d). Though higher in energy than the
ground-state counterparts, given the relative ease with which these structures could
be constructed, we examined the minimized energies of these structures as a
function of k for k ≤ 216. Figure 3.27f shows the variation in energy as a function
of k. We repeated the fitting procedure previously applied to the ground-state
structures (Fig. 3.27c) and found that the fitted Eres was comparable to the corre-
sponding value for the small clusters (k ≤ 12). In addition, we also calculated the
ground-state energies of other meta-stable nano-cages for k = 12, 18, 24 as dis-
cussed by Bromley [131], and given in Fig. 3.27d as an inset. Specifically, we
examined the truncated tetrahedron and the hexagonal prism structures for k = 12,
the fully coordinated polyhedron for k = 18, and the fullerene and truncated cube
structures for k = 24. The calculated energies of the nanotubes, and nano-cages for
k = 12, and 18 compare well with the reported DFT energies and are within a few
hundredths of an eV/SiO2 of the DFT energies, while for k = 24, though the
calculated energy of the nanotube is similar to DFT, it is lower than that for the
fullerene contrary to the DFT results of Bromley [131].
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In summary, the EDD-Q potential successfully matches DFT results in the
prediction of energetics and structures of many silica nanoclusters and performs
significantly better than some select silica potentials (BKS, FB, and TTAM) in its
ability to predict trends observed by DFT results. When viewed in conjunction with
the work on water, it is clear that the charge fluctuation and polarization effects are
crucial to the success of interatomic potentials, and the EDD-Q parameterization
philosophy ensures accuracy and the ability to naturally capture environment
dependent fluctuation in atomic charges.

Appendix

The functional forms for the environment dependent charges as well as the EDD-Q
potential form for water and silica are given below:

Silica
The charge on a silica atom is obtained as follows:

qSi ¼ qSires þ
XNO

B¼1

eB dqSiOB ; where eB ¼ 1;RSiO � rc
0; otherwise

� �
ð3:165Þ

where the bond charge is defined by

dqSiOB ¼ Dq 1� tan h3
RAB � rc1

r0

� �� �
þ
XLO
C 6¼B

eCdq
OSiO
BC ð3:166Þ

and

dqOSiOBC ¼ b1 sin2 hBAC exp �hBACð Þþ b2
	 


tan h4
RAB � rc2

r0

� �
þ p1 exp �h2BAC sin

2 hBAC
� �	 


tan h2
RAB � rc3

r0

� � ð3:167Þ

In the above equations, r0 equals unity and has dimensions of Å, RAB and RAC

are the distances of the Si atom A from oxygens B and C respectively, and θBAC is
the angle formed by those three atoms; the various parameters are given in
Table 3.9.

Table 3.9 Charge parameters for the EDD-Q potential

qresSi ðeÞ qreso ðeÞ Δq(e) b1(e) b2(e) P1(e) rc1(Å) rc2(Å) rc3(Å)

2.34 �qressi
2

0.333 0.3 −0.01 0.2 1.46 1.65 1.3
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Similarly, the net charge on an oxygen atom having LSi silicon neighbors is
given by

qO ¼ qOres �
XLSi
A¼1

eAdq
SiO
A ; ð3:168Þ

where we have used the definition of bond charge from (3.166). As is obvious from
(3.165) and (3.168), a net residual charge qres is associated with isolated silicon or
oxygen atoms.

Equations (3.169) and (3.170) was used as the basis for our potential function
with the functional form and the parameters of ϕAB and AA chosen to yield the
ground state (as well as the deformed) geometry and energetics of the model
clusters as predicted by DFT. The effective charges on atoms were scaled by a
constant multiplicative factor while evaluating the Coulombic term in the energy
expression. In other words, we use a screened value for the charge rather than the
Mulliken populations, such that the ratio of the effective atomic charge and the
Mulliken population is a constant.

�EA ¼ FðqAÞþ 1
2

XN
B 6¼A

/AB þ
1
2

XN
B 6¼A

qAqB
RAB

ð3:169Þ

where RAB was the distance of separation between atoms A and B and F(qA) was
expressed as

F qAð Þ ¼ AAqA ln q2A ð3:170Þ

The functional forms of ϕAB, AA, F(qA) and the total energy expression are given
below in (3.171)–(3.176), and Table 3.10 contains the values of the various
parameters. ϕ is given by

/SiSi ¼
aSiSi
r12SiSi

ð3:171Þ

/OO ¼ aOO
r12OO

ð3:172Þ

/SiO ¼ aSiO
r20SiO

� cSiO
r6SiO

ð3:173Þ

and

F qAð Þ ¼ qAres � qA
� � A1

A ln
qAres � qA

dA

� �2
" #

ð3:174Þ
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where for silicon atom A,

A1
A ¼ AC

Si 1þ
XLO
B¼1

eBf
Si 1� tan hg

rAB � rae
r0

� �� �( )
ð3:175Þ

and for oxygen atom B,

A1
B ¼ AC

O: ð3:176Þ

A0
Si, A0

O, AC
Si, and AC

Si are parameters given in Table 3.10. The potential energy of
atom A is

�EA ¼ FðqAÞþ 1
2

XN
B6¼A

/AB þ
1
2

XN
B6¼A

qeffA qeffB
RAB

ð3:177Þ

where qA is the charge as obtained from (A3.1) to (A3.4) and qeffA is given by

qeffA ¼ qA
�
sq ð3:178Þ

with sq given in Table 3.10.
Water
Water polymorphs are characterized by the formation of hydrogen bonds

between neighboring water molecules. In this regard, in the EDD-Q formulation,
the net atomic charge on oxygen and hydrogen atoms constituting a water monomer
depends both on the two underlying OH bond distance(s) and HOH bond angle as
well as the hydrogen bond distance between neighboring water monomers.

First, we consider the functional form for calculating atomic charges within a
monomer (H1OH2) that consists of two OH bonds (rOH1 and rOH2) and a bond angle
(θ) expressed in radians.

The charge (expressed in e) on the hydrogen atom (qH1) is given by

qH1 ¼ aðhÞ expð�2rOH1Þþ bðhÞrOH1 expð�rOH1Þþ cðhÞrOH1½ � sin2ðhÞ
þ ðrOH1 � rOH2ÞdðhÞ sin2ðhÞ;

ð3:179Þ

where α, β, c, d are functions of θ (given below in (3.180)). The charge on the other
hydrogen atom within a water monomer can also be obtained in a similar fashion.

Table 3.10 Potential parameters for the EDD-Q potential

aSiSi
(eV/Å12)

aOO
(eV/Å12)

aSiO
(eV/Å20)

cSiO
(eV/Å6)

AC
Si

ðeV=eÞ
AC
O

ðeV=eÞ
η dSi

(e)
dO
(e)

fSi
(eV/e)

rae
(Å)

sq

2.133 × 104 2.05 × 104 275.0 12.75 0.465 −0.1642 5.25 2.8 1.63 1.86
ffiffiffiffiffiffiffi
qSires

p
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aðhÞ ¼ a1 expðhÞþ a2 expðh2=4Þþ a3h

bðhÞ ¼ b1h expð�hÞþ b2h expð�2hÞþ b3h
2

cðhÞ ¼ c1h expð�hÞþ c2h expð�2hÞþ c3

dðhÞ ¼ d1ðh� h2Þþ d2h
3

ð3:180Þ

To prevent energy discontinuities at the neighbor cutoff distance (=1.5 Å), a
switching function S(t) is used for modulating the calculated hydrogen charge as
given below:

qH1 ¼ qH1SðrOH1 � tcutÞ
SðtÞ ¼ 0:5ð1� tan hðt=t1ÞÞ

ð3:181Þ

The charge on the oxygen atom in the water monomer is given by

qO ¼ �ðqH1 þ qH2Þ: ð3:182Þ

The corresponding parameters for the water monomer charges are given in
Table 3.11.

To account for charge transfer between neighboring monomers, a net inter-
molecular charge transfer (dq) between two monomers is obtained as follows:

dq ¼ a expð�brHBÞ; ð3:183Þ

where rHB is the hydrogen bond distance between donor hydrogen atom and
acceptor oxygen atoms belong to neighboring monomers respectively. The neigh-
bor cutoff distance scut between two monomers is set to 2.5 Å and thus dq is
modulated by the switching function S as defined before.

dq ¼ dqSðrHB � rimÞ: ð3:184Þ

Further, dq is partitioned among the respective monomer atoms as follows:

dqOdonor ¼ �0:5dq

dqOacceptor ¼ 0:75dq

dqHdonor ¼ �0:4dq

ð3:185Þ

Table 3.11 Charge parameters for the water monomer

α1 α2 α3 β1 β2 β3 c1 c2 c3 d1 d2 t1 tcut

0.816 −3.22 0.573 −14.01 61.82 1.319 12.235 −15.78 −3.593 0.443 0.115 0.03
(Å)

1.41
(Å)
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In addition, for the acceptor molecule, dqHacceptor is obtained by partitioning
[dq� dqOacceptor ] equally among the two hydrogen atoms, while within the donor
molecule the other hydrogen atom acquires an additional charge equaling
[dqOdonor þ dqHdonor � dq�.

Thus the total charge for any atom is given by a sum of its ‘monomer’ charge
plus additional charge transfer that is acquired due to hydrogen bonding with
neighboring monomers. Note that an equivalent dq arises for every hydrogen
bonded interaction a monomer participates in Table 3.12.

Similar to the Hamiltonian defined for silica, the energy of an atom i is given by

�EA ¼ FðqAÞþ 1
2

X
B6¼A

UAB þ 1
2

X
B6¼A

qAqB
RAB

ð3:186Þ

Here,

FðqAÞ ¼ Am
AqA lnðq2AÞþAd

AdqA lnðdq2AÞ ð3:187Þ

For an oxygen atom, Am
A is defined in terms of the monomer bond angle and

bond distances as follows:

Am
O ¼ �2AEO sin2ðhÞ exp � r20

2
ðrOH1 � rOH2Þ2 sin2ðhÞ

� �
; ð3:188Þ

while for a hydrogen atom, Am
A depends on the number of hydrogen bonds (LOH)

that the hydrogen atom (H) is involved with. Further, the index ‘s’ in (3.189) refers
to the oxygen atom in the monomer to which H is associated with. huHs refers to the
angle between the Os–H bond (within the monomer) and the respective hydrogen
bonds that H forms with other Ou atoms that belong to neighboring monomers.

Am
H ¼ AEH 1þ g

XLOH
u¼1

 !
exp �2 1þ cos huHsð Þð Þ2
� �� �

1� tan h
ruH � rD

t2

� �� �� �
:

ð3:189Þ

Table 3.12 Water dimer
charge parameters

a b rim scut
1.581 1.822 2.35 (Å) 2.5 (Å)
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Finally, Uij is given below:

UOO ¼ aOO expð�4rOOÞ

UOH ¼ 2 aOHrOH þ bOH expð�rOHÞþ COH

r24OH

� �
SðrOH � rcutÞ

UHH ¼ 2aHH expð�2rHHÞSðrHH � HcutÞ:

ð3:190Þ

Tables 3.13 and 3.14 provides the corresponding potential parameters.
For the two systems, the charge and the other potential parameters, while

parameterized with respect to ab initio data, were selected in an ad hoc fashion. In
order to provide a more streamlined approach, a more systematic approach leading
to a more intuitive functional form is proposed as noted below. Future development
of EDD-Q potentials will be based on these functional forms (3.191–3.199).

As discussed before, for a bond formed between atoms A and B, the bond-charge
(qbondAB ) is a function of the number of nearest neighbors of A(LA) and B(LB), the
interatomic distance (RAB), and the bond-angles that arise due to the remaining
nearest neighbors of A and B (hBAC and hABC0 ), where C and C′ represent the
neighbors of A and B respectively. Note the qualitative similarity of the functional
forms for charges (3.191–3.198) to the multipole expansion used commonly to
express the electrostatic potentials that arise from a distribution of charges.

qA ¼
XLA
B¼1

qbondAB ð3:191Þ

qbondAB ¼ qAB þ qBA½ � ð3:192Þ

qAB ¼ 1
2

1
LA

qSABðRABÞþ
XLA
C 6¼B

DqðRAB; hBACÞ
" #

ð3:193Þ

if LA ¼ 1; qAB ¼ qBA

Table 3.13 Potential parameters (part I)

aOO aOH aHH bOH cOH AEO AO
d AEH Ad

H η

25.0 3.011 25 −2.405 2.5 × 10−6 −11.429 0.0 4.762 −0.5 0.051

Table 3.14 Potential
parameters (part II)

Hcut rD t2 rcut
2.43 2.1 0.1 2.5
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qSABðRABÞ ¼
X
p

Ap

Rp
AB
; p[ 2 ð3:194Þ

DqðRAB; hBACÞ ¼ f AðhBAC;RABÞþ gAðRABÞ ð3:195Þ

f Aðh; rÞ ¼ wAðhÞyðrÞ ð3:196Þ

wAðhÞ ¼ u f
A þ

X
p

CA
p cos

pðphÞ; p[ 0

" #
ð3:197Þ

yðRÞ ¼ ueA þ
X
p

Bp

Rp
AB

; p[ 2

" #

gAðrÞ ¼ ugA þ
X
p

DA
p

Rp
AB

; p[ 2 ð3:198Þ

The EDD-Q Hamiltonian which consists of a Coulombic term, a 2-body term (ɸ)
and an embedding term (F(q)) are given below. F(q) consists of three contributions;
the most important of the three terms is the second term, which can be correlated to
the ‘energy-cost’ for embedding a bond that is formed between pairs of atoms.

�E ¼
X
A

�EA

�EA ¼ 1
2

X
B 6¼A

qAqB
RAB

þFðqAÞþ 1
2

X
B 6¼A

/ABðRABÞ

FðqAÞ ¼ M1q
2
A lnðq2AÞþM2

X
B 6¼A

qAB lnðq2ABÞþM3

X
B 6¼A

hABq
2
AB lnðq2ABÞ

hAB ¼
XLA
C 6¼B

1� hð1Þ cosðhBACÞþ hð2Þ cosð2hBACÞþ hð3Þ cosð3hBACÞ
� �h i

/AB ¼ TAB
R12
AB

� SAB
R6
AB

ð3:199Þ
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Chapter 4
Phase Field Methods

Nan Wang and Long-Qing Chen

Abstract The phase-field method to modeling microstructure evolution in
materials is introduced in this chapter. It can be employed to model, understand,
and predict complex material behaviors at meso-scale (on the order of nano- to
micro-meter size), and it covers application-relevant time scales (on the order of
seconds to years). Coarse-grained from the underlying atomic-level physics, it is an
established approach to fill the length-scale gap between atomic/electronic scale
calculations and the macroscopic continuum method, ignoring the underlying
material’s inhomogeneity. Employing energy functionals and nonlinear partial
differential equations, the general formulation of phase-field models is outlined.
Several applications of the phase-field model are presented.

4.1 Introduction

The phase-field (PF) method has been applied to various problems in materials
science and has received significant attention in the last 20 years [1–7]. It has
established itself as one of the classical approaches in multiscale materials modeling
in parallel to Density Functional Theory (DFT), Molecular Dynamics (MD), and
Monte-Carlo (MC) methods. While the majority of applications focused on
understanding the formation and evolution of meso-scale complex microstructures,
the phase-field method is very useful in connecting atomic/electronic scale models
to large-scale continuum models.

In a phase-field model, phase-field variables are employed to distinguish dif-
ferent spatial domains of the system, and they are continuous across a boundary
separating different domains. By tracking the evolution of the phase-field variables,
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complex interface motions can be captured. There are mainly two categories of PF
models. The first one uses a set of physical order parameters as the phase-fields and
evolves them by minimizing a free energy functional constructed from the ther-
modynamics that govern the transition between different phases. The other model
uses phase-field as a pure mathematical tool to simplify the otherwise impossible
task of tracking complex interface evolution, and asymptotically reduces the model
to a sharp-interface theory at the level of differential equations. Recently, a new
class of phase-field related models has emerged, namely, the phase-field-crystal
(PFC) model and the amplitude equation (AE) approach. Based on a partial dif-
ferential equation (PDE) that produces spatially periodic peaks, the PFC model
reinterprets these peaks as time-averaged atoms and links the interaction of these
peaks to the atom pair correlation function. Some interesting diffusion time-scale
physics have been captured with atomic-level details using this model. The AE
approach is rather similar to the conventional PF model in terms of the governing
equations. The idea is to capture the change in the amplitude of different atomic
density waves as a system undergoes a transition from one state to another. By
deriving AEs from microscopic models (based on classical Density Functional
Theory or the Phase-field-crystal model), this approach connects the underlying
materials physics directly to a set of continuous PDEs without the need for justi-
fication using either the energy argument or deriving the sharp-interface limit.

In this section, we first introduce the common mathematical formulations of
conventional PF models and also briefly cover the PFC and the AE approach.
Several applications of the conventional PF model are then discussed in the fol-
lowing section. Finally, perspectives of the PF methods are discussed in the final
concluding section.

4.2 Methods

4.2.1 Conventional PF Methods

A widely used approach of formulating a PF model starts from a free energy
functional which describes the total energy of the system in terms of a volume
integral

F ¼
Z

½Kjr/j2 þ Hf /; T ; c. . .ð Þ þ Hfothers�dv: ð4:1Þ

Here, / is the phase-field variable, K and H are dimensional coefficients, f is a
local potential function which couples the phase-field variable to other physical
quantities such as temperature T or concentration c, and fothers is used to account for
elastic, electric or other contributions to the total free energy. In one bulk phase (A
phase) the PF variable is / ¼ /A, while in the other phase (B phase) the PF variable
is / ¼ /B. Since either of these two phases must be independently stable, the
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potential function f /; . . .ð Þ must have a minimum in each of the two bulk phase
states, i.e. f /; . . .ð Þ is minimized at / ¼ /A or / ¼ /B. While this potential term
favors a sharp transition from /A to /B, the gradient term jr/j2 by itself ener-
getically favors a slow varying interface between A phase and B phase. As a result,
the PF variable goes smoothly from /A to /B (or vice versa) at the phase boundary
as shown in Fig. 4.1. The width of this diffused transition region is then decided by
the relative magnitude of jr/j2 and f. We will see this point again at the differential
equation level once the evolution equations of the PF variables are introduced.

To derive evolution equation of the PF variable from the free energy functional
F, the variational principle is generally used to guarantee that F decreases mono-
tonically in time. However, the detailed dynamics for energy minimization are not
unique. Depending on the nature of the PF variable, there are two types of dynamics
commonly used in PF models, conserved and non-conserved. The conserved
dynamics model leads to an equation

@/
@t

¼ r �Mr dF
d/

; ð4:2Þ

which is better known as the Cahn-Hilliard equation [8], and the non-conserved
equation is

@/
@t

¼ �L
dF
d/

; ð4:3Þ

which is known as the Allen-Cahn equation [9]. The conserved equation is used for
PF variables that can only be rearranged in the energy minimization process (like a
density or solute concentration) since it is basically a generalized diffusion equation
with flux J ¼ �MrdF=d/. The non-conserved equation is used when the PF
variable is related to crystal orientation, polarization, or a mere math notion to
distinguish two phases. Coefficients M and L, which are commonly referred as
mobilities in the PF literature, connect the driving force dF=d/ to the time evo-
lution of the PF variables. Using the non-conserved equation as an example, an

Fig. 4.1 Schematic plot of
the PF variable across an A-B
interface. x is the surface
normal coordinate
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evolution equation for the PF variables derived from the free energy functional in
(4.1) is

1
H
@/
@t

¼ L w2r2/� @f
@/

� @fothers
@/

� �
: ð4:4Þ

Here, the factor w ¼ ffiffiffiffiffiffiffiffiffiffi
K=H

p
is the relative importance of the potential and the

gradient term in the free energy functional, and therefore a measure of the interface
width in the model.

The finite width of the PF interface also leads to another important feature in the
general PF formulation, the surface energy. Since the gradient term and the
potential term are competing at the interface region, the non-zero energy density
localized at this region gives the surface energy in the PF model. One can calculate
this surface energy c by integrating the free energy density (both the potential part
and the gradient part) across the interface.

To solve the evolution of the PF variables in (4.4), numerical methods are
employed. The simplest approach is to discretize the Laplacian operator with a
finite difference scheme and apply the forward Euler method for time integration.
More sophisticated approaches for solving PF equations can be found in [10, 11].
By tracking the motion of the PF variables, complex interface evolution can be
easily captured.

4.2.2 PFC and AE Method

The basic PFC model uses an energy functional [12]

Fpfc ¼
Z

u
2

�eþ q2 þr2� �2h i
uþ u4

4

� �
dv; ð4:5Þ

with atomic density field u and model parameter e. The PFC equation is then
derived following the typical conserved PF dynamics

@u
@t

¼ r2 dFpfc

du
: ð4:6Þ

Depending on the choice of e and the average density of the system �u, this
equation (with proper boundary conditions) gives a density field that is either
uniform or spatially periodic, which can be then reintepreted as the liquid or the
solid phase, respectively. In Fig. 4.2, a typical PFC density field is shown.

The periodic nature in the PFC model is generated by the q2 þr2
� �2

term. By
looking at this term in the Fourier space, it is easy to identify q as the frequency
factor for atom density peaks since it applies an additional energy penalty for any
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deviation of the wave number k from the given q. Using a one-mode approximation
of the periodic state, one can demonstrate analytically that any deformation to the
PFC solid (the spatially periodic state) can be treated as an elastic deformation to
the first order. For the basic 2D hexagonal PFC model, the elastic constants are

C11

3
¼ C12 ¼ C44 � q0A0ð Þ2;

with atomic spacing a; q0 ¼ 2p=a and density peak amplitude A0. Dislocations exist
naturally in this model at the boundary of periodic states with different lattice
orientations; a situation resembling a grain boundary. By calculating the energy cost
for forming such a boundary, one can also demonstrate that the boundary energy
can be characterized by the well-known Read-Shockley relation at low
mis-orientation angles and can be further fitted to grain-boundary energies at high
mis-orientaiton angles [12].

A slightly different PFC model can be derived directly from the classical density
functional theory (CDFT). The energy for a CDFT system is typically [13]

F nð Þ ¼
Z

1þ n rð Þ½ �ln 1þ n rð Þ½ � � n rð Þf gdr �
Z

drn rð Þ
Z

C2 r; r0ð Þn r0ð Þdr þ high order;

with the scaled density field n rð Þ ¼ q=q0 � 1 and pair correlation function
C2 r; r0ð Þ. The first term can be expanded as

1þ nð Þ ln 1þ nð Þ � n � n rð Þ2
2

� n rð Þ3
6

þ n rð Þ4
12

þ . . .; ð4:7Þ

Fig. 4.2 PFC density field showing a circular grain embedded in a matrix. Dark dots in the figure
can be seen as “atoms” while a “grain-boundary” can be identified by following the lattice
orientation
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while the pair interaction part can be expanded as

C2 � C0
2 � C2

2r2 þ C4
2r4 þ . . .;

with expansion coefficients C0
2, C

2
2 and C4

2. This expansion of pair correlation
function is better explained in Fourier space since

bC kð Þ � C0
2 þ C2

2k
2 þ C4

2k
4; ð4:8Þ

can be used to fit the first peak of bC kð Þ. A PFC-type energy functional is then
recovered by combining the right-hand side of (4.7) and (4.8).

AE is a classical method that was first developed in the study of hydrodynamic
convection patterns in the Navier-Stokes equation. When applying the method to
the PFC model, it separates the short wavelength atomic details from the long
wavelength component of the density waves. As a result, equations that govern the
long-range variation of the density waves in the PFC model can be extracted [14–
17].

Since the formulations of the PFC and AE models are rather general, discussion
of these approaches are limited here and no examples of application will be given in
the next section. For further reading, we refer to the book by Provatas et al. [7] and
other reviews [18].

4.3 Applications

4.3.1 Solid-State Phase Transformations

Complex microstructures formed from solid-state phase transformation are com-
monly observed in alloy materials. Based on the basic physical process involved,
there are mainly two categories of solid-state phase transformations, diffusional and
diffusionless. The first one is made possible by thermally activated long-range atom
transport while the second one is a result of small cooperative motion of local
atoms. Using the energy argument, the solid-state transformation can be understood
by quantum DFT calculations at the atomic-level. However, at the micron scale,
modeling the solid-state transformation and the complex evolution of the resulting
microstructures requires a very different approach. By smoothing out the
atomic-level details while keeping the essential physics in the solid-state phase
transformation, PF models have been widely used to study this phenomenon at the
microstructure scale.

To demonstrate the formulation of the PF solid-state phase transformation
model, a simple model for diffusionless transformation will be constructed from the
very basics. The solid-state phase transformation can be described in Landau’s
phenomenological theory using long-range order parameter g, which takes one
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value in the parent phase and another value in the transformed phase. In this theory,
the free energy density f can be written as an even function of the order parameter

f ¼ Ag2 þ Bg4 þ . . .; ð4:9Þ

with Landau coefficients A and B. If a system is cooled down from a high tem-
perature, several less symmetric variants with equivalent crystal structure form from
the more symmetric parent phase below a critical temperature. Such a transfor-
mation can be described by (4.9) using a temperature-dependent coefficient A that
changes sign from positive to negative at the critical temperature Tc. This is a
well-known textbook example of spontaneous symmetry breaking where two
equivalent states with (g ¼ �g0) form from the matrix (g ¼ 0) state (Fig. 4.3).

In order to describe a spatial mixture of the parent phase and the transformed
phase, other terms need to be included in the expression of f. The first approach is to
expand the energy not only as a function of local order parameters but also as a
function of order parameter gradient [8]. To the lowest order, a phase-field type free
energy density is then recovered

f ¼ K
2
jrgj2 þ Ag2 þ Bg4: ð4:10Þ

Another important contribution to the free energy density is the elastic energy
generated from the change of crystal structure in the transformed phase since it has
a lattice mismatch with the parent phase. This elastic energy density e can be
generally expressed as

e ¼ 1
2
rij�ij; ð4:11Þ

with stress tensor rij, strain tensor �ij and Hooke’s law

rij ¼ k�kkdij þ 2l�ij: ð4:12Þ

Fig. 4.3 Symmetry breaking
as one moves from T[ Tc
(dashed line) to T\Tc (solid
line)
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Here, k and l are standard elastic constant (Lamé’s first parameter and shear
modulus), Kronecker delta dij, and Einstein summation is also used. If the trans-
formed phase is not confined by the surrounding parent phase, there is no elastic
energy generated and even the system is deformed by the transformation-induced
strain �0ij (from the change of crystal structure). This indicates that when calculating
the elastic energy, contribution from the transformation-induced strain should be
removed from the total strain

�ij ¼ �totalij � �0ijg
2: ð4:13Þ

For g0 ¼ 1, this form of coupling between g and �0ij ensures that all the
transformation-induced strain is removed in the transformed phase when evaluating
the elastic energy. By introducing a displacement field u* ¼ uibxi, the total strain is

then �totalij ¼ 1
2

@ui
@xj

þ @uj
@xi

	 

. As the transformed phase develops, the displacement field

also evolves such that the mechanical equilibrium condition

@rij
@xj

¼ 0; ð4:14Þ

is satisfied since the transformation is much slower compared with elastic relax-
ation. Now, to summarize this simple model, the final form of the free energy
functional is

F ¼
Z

K
2
jrgj2 þ Ag2 þ Bg4 þ e

� �
dv: ð4:15Þ

From here, one can derive the equation of motion for g based on the
non-conserved dynamics in (4.3). Evolution of the transformed phase in the parent
phase is then governed by the g equation together with the elastic condition (4.14).

The model introduced above is a very simplified version of real world examples
[19–22]. When applied to interested materials, several parts in the model can be
modified accordingly. For example, more variants can be included by introducing
more order parameters g1; g2; . . .gn. In case of three variants, the potential part of
the Landau expansion can be written as

fp g1; g2; g3ð Þ ¼ 1
2
A1 g21 þ g22 þ g23
� �� 1

4
A2 g41 þ g42 þ g43
� �þ 1

6
A3 g61 þ g62 þ g63
� �

;

with the parent phase given by

g1 ¼ g2 ¼ g3 ¼ 0;
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and three variants at

g1 ¼ �g0; g2 ¼ g3 ¼ 0

g2 ¼ �g0; g1 ¼ g3 ¼ 0

g3 ¼ �g0; g1 ¼ g2 ¼ 0:

The stress-strain relation (4.12) is only valid for isotropic media. When applying
to anisotropic materials, a more general relation

rij ¼ Cijkl�kl; ð4:16Þ

with stiffness tensor Cijkl takes over. Anisotropy on the variant-variant surface
energy and the variant-matrix surface energy can be introduced into the model by
generalizing the expression of the g gradient term in (4.15)

K
2
jrgj2 ! 1

2

X3
p¼1

bij pð Þrigprjgp:

Using a carefully designed Landau potential, many features in the
austenite-martensite transformation in shape-memory alloys can also be captured
[22].

For the diffusional solid-state transformation, in addition to the order parameters
(and the elastic field) in the previous example, a long-range diffusion field c has to
be considered since this category of transformation involves long-range transport of
atoms, and the composition of the transformed phase is different from the matrix.
The spirit of the Landau theory still applies to the formulation of PF models in this
case, but the free energy density form has to be modified such that the effect of
concentration is included.

An example in [23] is

f ¼ a
2
rcj j2b

2
rgj j2þ 1

2
Aðc� c0Þ2 � 1

2
Bg2 � 1

4
Cg4 þ 1

6
Dg6 þ 1

2
Gcg2: ð4:17Þ

This expression has the order parameter expansion up to 6th order, 2nd order
c expansion, and an additional gradient c term. c0 is the equilibrium concentration in
the matrix. The last term in this energy density is a coupling between the con-
centration and the order parameter which indicates a very simple dependence
between the transformed phase and the concentration. For a specific system, the
coefficients in (4.17) can be obtained from other atomistic methods as demonstrated
in the multiscale modeling approach [24]. In addition to these modifications of the
Landau energy term, a coupling between the transformation-induced strain and the
concentration field has to be added to the formulation of the elastic energy.
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Considering the simple linear relation given by Vegard’s law (lattice parameter is a
linear function of concentration), the strain relation in (4.13) becomes

�ij ¼ �totalij � �cijc� �0ijg
2: ð4:18Þ

This equation indicates that there are two parts in the total strain that need to be
excluded in the elastic energy: one is �0ij which comes from the change of lattice
parameter during the formation of the transformed phase; another comes from the
dependency of the lattice parameter on the concentration of constituent elements
(�cijc gives the linear relation in Vegard’s law).

Based on (4.17) and (4.18), the equation of motion for g can be readily derived
from the free energy functional. However, another equation is required to describe
the evolution of the concentration field c during the phase transformation. Since the
free energy functional is also a function of c, the same variational method can be
applied to derive a conserved equation for the concentration field

@c
@t

¼ r � D
KT

r dF
dc

: ð4:19Þ

In the case of the single order parameter equation, the kinetic coefficient L in the
non-conserved dynamics is not very important since it only changes the rate of
transformation and can be scaled out using a proper time constant. Once the dif-
fusion is added, there are now two independent time scales: transformation time
(given by L) and diffusion time (given by D). The effect of these two time scales on
the system evolution must be evaluated [24].

Other forms of the Landau energy term are possible, such as the one that directly
uses the CALPHAD database [25–29]. Recently, another form of the Landau free
energy theory, where model parameters can be uniquely determined from interface
width and surface energy, starts to appear in solid-state phase transformation PF
models. In the study of h0 precipitates in Al–Cu alloy [29], f takes the form

f ¼
X3
i¼1

k2 uið Þ
2

jrgij2 þ wg g1; g2; g3ð Þ þ 1� h g1; g2; g3ð Þ½ �f a þ h g1; g2; g3ð Þf h0 :

ð4:20Þ

k uið Þ can be related to the surface energy and the interface width, and it depends
on the local surface orientation angle ui. w is a pre-factor, f a and f h

0
are free

energies of a and h0 phase which can be obtained by fitting to a phase diagram [30].
g g1; g2; g3ð Þ is a double-well potential and h g1; g2; g3ð Þ is a monotonous interpo-
lation function. In this form, it not only describes the phase transformation but also
correctly incorporates the bulk free energy in the a and h0 phases.
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4.3.2 Ferroelectric Materials

Study of ferroelectric materials is an active field due to potential applications in
electromechanical systems and electronic devices. Paraelectic-ferroelectric transition
happens at Curie temperature, below which spontaneous electric polarization appears
as the result of structural transformation. Similar to the formation of different variants
in solid-state phase transformation, several crystallographically-equivalent polarized
states can appear from the paraelectric phase and form complex domain structures.
These polarized states can then be switched from one to another by an external electric
field. When deposited on a substrate, ferroelectric thin films are subject to an addi-
tional constraint due to lattice mismatch between the substrate material and the film
material. The strain energy arising from this constraint applies to the crystal structure
of ferroelectric materials and modifies the paraelectic-ferroelectric transition
temperature.

Similar to the previously discussed solid-state phase transformation models, one
can formulate a PF model to capture the paraelectic-ferroelectric transition. Using
polarization Pi as the order parameter, the free energy functional can be written as
[31–36]

F ¼
Z

fbulk þ fgrad þ felas þ felec

 �

dv:

According to the phenomenological theory of Devonshire [37], the bulk energy
part is

fbulk ¼ 1
2
aijPiPj þ 1

4
cijklPiPjPkPl þ 1

6
wijklmnPiPjPkPlPmPn þ . . .;

with coefficients a, c and w. The gradient part is

fgrad ¼ 1
2
Gijkl

@Pi

@xj

@Pk

@xl
;

with gradient coefficient Gijkl. The elastic part is

felas ¼ 1
2
cijkl�ij�kl � 1

2
qijkl�ijPkPl:

Clearly, the first term in felas is the standard strain energy, while the second term
is the energy contribution from polarization-induced strain (with electro-restrictive
constant qijkl) and should be removed from the total energy (similar to the case of
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transformation-induced strain in the solid state phase transformation). The last
electric part is

felec ¼ �Pi Ei þ 1
2
Ed
i

� �
;

with applied electric field Ei and depolarization field Ed
i . Ferroelectric domains can

evolve to minimize the total energy according to the non-conserved dynamics for
the polarization order parameter gi.

During the microstructure evolution, the force equilibrium condition (4.14)
should be satisfied. Assuming no space charge in the film, the electric field should
also satisfy electrostatic condition r � D ¼ 0. When subject to the thin film
boundary condition (constraint from the substrate lattice mismatch), one can, in
principle, solve these two equilibrium equations with the relaxation method for each
time step of the order parameter equation; however, the high computational cost in
this straightforward approach makes experiment-relevant space and time scales
difficult to reach in simulations. An efficient Fourier space approach for solving
these two boundary value problems was developed [31] based on the elasticity
theory of Khachaturyan and Stroh, and has been widely applied in other works in
this field. For more details on this topic, we refer readers to the review article [38].

4.3.3 Dislocation

The PF dislocation model was developed based on the free energy scheme similar
to the solid-state transformation models [39–42]. By utilizing the fact that dislo-
cations can be described as a set of coherent platelet inclusions [39, 40], contri-
bution of the dislocations to the total elastic energy was expressed through a
stress-free strain e0ij (similar to the transformation strain in the solid-state transfor-
mation model) which was related to the Burgers vector b by

e0ij ¼
binj
d

;

where n is the slip plane normal and d is the plate thickness. Using the dislocation
density g as the PF parameter, the stress-free strain is then

e0ij rð Þ ¼ 1
d

X
a

X
ma

b a;mað Þin að Þjg a;ma; rð Þ
" #

;

with spatial coordinate r, slip plane index a, and Burgers vector index ma.
Minimization of the elastic energy gives a dislocation density g that is
non-vanishing only within the thin plate; however, this does not put any constraint
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on the value of g which should be an integer in case of perfect dislocations. To
correctly incorporate this condition, a periodic potential which gives energy minima
only at integer values of g was used in the model to replace the multi-well Landau
potential in the solid-state transformation model. A simple form of the periodic
potential is [39]

Eperiodic ¼
Z X

a

X
ma

A sin2 pg a;ma; rð Þdv;

where the barrier height is given by A. This periodic potential form is similar to the
Peierls-Nabarro barrier of dislocation motion, and the amplitude A can be related to
shear modulus. From here, evolution equations can be derived following the
variational approach in the methods section.

4.3.4 Grain Growth

Grain growth is a well-known phenomenon that happens at high temperature in
polycrystalline materials. Associated with an interfacial energy, once thermally
activated, grain-boundaries move to minimize the total area and thus the total
surface energy in grain growth. Since most materials have a higher yield stress at
smaller average grain size, understanding the evolution of average grain size in
grain growth is very important in materials design. Due to the complex grain
geometry in polycrystalline materials, tracking the grain growth of a statistically
significant number of grains is not an easy task in general. Before the PF model
appeared, the Monte Carlo Potts model was widely used in the study of grain
growth [43].

The first PF grain growth model [44] used multiple order parameters to account
for the polycrystalline structure, i.e. each grain was associated with a specific order
parameter gi. The PF free energy functional for this model is

F ¼
Z

1
2

Xp
i¼1

Ki rgið Þ2þ
Xp
i¼1

�a
g2i
2
þ b

g4i
4

� �
þ c

Xp
i¼1

X
j\i

g2i g
2
j

" #
; ð4:21Þ

with model parameters Ki, a, b, c and grain index i ¼ 1 to p. Evolution equations of
the order parameter are then derived using the non-conserved dynamics. This free
energy functional can be seen as the total surface energy which is then reduced in
grain growth through the non-conserved equation. For each grain, the evolution
equation is

� @gi
@t

¼ Li �Kir2gi � agi þ bg3i þ 2cgi
Xp
j6¼i

g2j

 !
: ð4:22Þ
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Compared to the basic PF model in the method section, this one has an addi-
tional coupling term between different order parameters. Without this coupling
term, the equation has three solutions: two stable solutions at gi ¼ �1 with mini-
mum energy and one unstable solution at g ¼ 0 with maximum energy. With the
coupling, linear stability analysis shows that, with a ¼ b and c� a=2, this equation
has three stable states at gi ¼ 0 and �1. For the purpose of grain growth modeling,
one can set gi ¼ 1 or −1 for the interior of grain i and set gi ¼ 0 outside.

By solving (4.22) for a polycrystalline system with p grains, complex grain
structure (Fig. 4.4) evolution can be obtained [45]. Very similar grain structure
evolutions were obtained in a detailed comparison with the Monte Carlo Potts
model [46].

In the PF grain growth model proposed by Steinbach et al. [47], a similar
multi-order-parameter approach was used. Rather than adding a coupling term to
the standard single PF model, they re-write the free energy based on the coupling
between neighboring grains. Detailed numerical analysis of this model was carried
out in [48]. Large scale 3-dimensional grain growth simulation based on this model
demonstrated a good agreement with predictions from statistical theory [49].
Kobayashi et al. [50, 51] proposed a different approach for this problem. Instead of
labeling different grains with different order parameters, they formulated the model
with only two order parameters; one was used to distinguish the solid and the liquid
state while another parameter took different values based on grain orientation. Such
a model reduces the computational cost significantly (2 equations v.s. p equations)
but also introduces a time scale from the relaxation of the orientation parameter.
Moelans et al. [52] extended PF grain growth models by including surface energy
anisotropy and mobility anisotropy in the equation. With a carefully controlled
interface width, this model can simulate grain growth in anisotropic systems effi-
ciently. A recent review on this topic can be found in [53].

Fig. 4.4 Grain structure from
3-dimensional PF grain
growth simulation. Different
colors represent different
grains
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At application level, grain growth is often associated with plastic deformation
and re-crystallization. Since the elastic moduli depend on crystal orientation, under
applied stress, the stress distribution inside the polycrystalline materials depends
strongly on the grain structure and can significantly affect the grain growth. Stress
hot spots produced in the evolution can be preferred nucleation sites for further
plastic deformation. To understand the internal stress evolution and its effect on
grain growth, elasticity has to be added into the PF grain growth model. The effect
of strain energy on grain-boundary migration was studied using the PF model [54]
in simple bicrystal geometry. For complex polycrystalline materials, the effect of
strain energy was studied in [55] by taking into account the difference of elastic
moduli in different grains based on Khachaturian’s theory for inhomogeneous
solids [56] and an efficient spectral iterative method [57].

4.3.5 Dendrite Solidification

The appearance of complex dendrite structures in the solidification process and the
sensitive shape dependence of these structures on external conditions have puzzled
scientists for a long time (Fig. 4.5). The basic physics of crystal growth can be
found in many excellent reviews [58, 59] and is out of the scope of this chapter.
Here, we will mainly focus on the application of the PF model to dendrite solidi-
fication, discuss its formulation and demonstrate how the PF model reproduces the
correct physics in the sharp-interface limit, with only a brief introduction to the
underlying physics.

As another major application, the PF solidification model was developed along a
different path from its cousins in the solid-state transformation model. Although the
equations of motion for PF variables are similar in these two models, the physics
behind them are quite different. As we outlined in the introduction and demon-
strated in earlier sections, the PF model for solid-state phase transformation and its
variants use physical order parameters as the PF variable and evolve the system by
minimizing the total free energy, which is written as a function of order parameters
based on a Landau-type potential. In the PF solidification model, the reason for

Fig. 4.5 A typical dendrite
crystal captured in PF model
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introducing a PF variable is rather mathematical. The PF variable, in this case, is
nothing but a regularized field to track the evolution of the complex surface shape
developed during the solidification process. Therefore, the goal of the PF solidifi-
cation model is to accurately reproduce the corresponding sharp-interface physics
using a diffuse-interface approach. Such a goal is accomplished by carrying out a
multiscale analysis of the PF model in the limit of vanishing interface thickness and
match the resulting equation to the original sharp-interface problem.

Before discussing the details of PF solidification model, it is important to
understand some basic physics in crystal growth and dendrite formation. There are
mainly two regimes in growth phenomenon: reaction-limited and diffusion-limited.
The first one occurs when the growth is controlled by the attachment barrier of
liquid atoms to a solid structure, i.e. the probability of attachment (which is pro-
portional to e�DG=KT with attachment barrier DG). The second one happens when
the growth is controlled by the availability of atoms, i.e. diffusion transport of atoms
from bulk to the interface area. The solidification problem often falls into the
diffusion-limited category.

Now, considering a flat solid-liquid interface with a small shape perturbation
caused by a local fluctuation of atom availability (Fig. 4.6), an increased diffusion
gradient due to this shape perturbation will further enhance the transport to this area
through the diffusion equation

@c
@t

¼ @

@y
D
@c
@y

:

On the other hand, such a shape perturbation increases the surface energy of this
solid-liquid interface and thus tends to be eliminated by energy minimization. In
case of dendrite formation, the competition of these two mechanisms causes the
growth of the main branch initially, and then of the side branches later as the same
mechanism works again on the side walls of the main branch.

Fig. 4.6 Schematic plot of
the concentration profile in
response to a surface shape
perturbation. Dashed lines are
concentration contours
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The interface stability problem described above is known as Mullins-Sekerka
instability [60] and is the fundamental reason for dendrite formation in crystal
growth. Here we have an equation set of solidification

with u as a dimensionless diffusion field, interface position yi, surface normal n,
surface curvature j and capillary length d0. Equation (4.23a) simply describes the
diffusion of u. Equation (4.23b) states that the interface motion velocity is deter-
mined by the normal flux of u. Equation (4.23c) is the Gibbs-Thompson condition
at the interface with subscript i for interface.

With a small shape perturbation, the interface profile can be written as

yi x; tð Þ ¼ yi tð Þ þ Ake
ikxþxt;

with perturbation amplitude Ak , decay factorx and wave number k. One can demon-
strate that such a perturbation will decay or grow based on the following condition

x ¼ vk � d0Dk
3: ð4:24Þ

Equation (4.24) indicates that there exists a critical wavelength 2p=kc ¼
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dd0=v

p
beyond which flat interface motion described by equation set (4.23)

becomes unstable.
The goal of the PF dendrite solidification model is to recover (4.23) (and the

associated interface instability) at the sharp-interface limit. In a generalized form,
(4.23) is written as

Comparing (4.25) with (4.23), the interface motion described in the 2nd equation
is now due to the difference of diffusion transport into and out of the interface area.
The 3rd equation is a generalized Gibbs-Thomson condition with a kinetic effect
term bv. The PF solidification model with PF variable / is typically written in two
equations [61–64]
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The 2nd equation is the standard one shown in the general formulation in the
method section. The potential function f gives two minima at the solid and the liquid
state, and an energy bias function g, coupled with the diffusion field, drives the
solidification process by lowering the free energy of the solid phase. The 1st equation
handles the diffusion of u in the bulk phase and the consumption/generation of u due to
the interface motion (@h@t term). PF models for polycrystalline and multi-component
solidification can be found in [50, 65, 66].

The relation between (4.25) and (4.26) is established by carrying out a
sharp-interface expansion of the PF equation (4.26). To do that, one needs to look at
(4.26) and pattern scale lc where the interface width is small, i.e. w=lc ! 0. With
expansions of the u and u fields

u ¼ u0 þ pu1 þ . . .
u ¼ u0 þ pu1 þ . . .

�
Equation (4.26b) can be exactly reduced to the sharp-interface equation for the

Gibbs-Thomson relation (4.25c) while (4.26a) recovers (4.25a) in the bulk and
(4.25b) at the solid-liquid interface [61, 62]. Therefore the method of
sharp-interface expansion gives a rigorous mathematical background for using the
PF method to solve the original sharp-interface solidification problem. However,
convergence of computational results using (4.26) to the sharp-interface limit was
only achieved under rather stringent conditions [64]. The problem lies at the
analysis of the PF diffusion field. Coupled with the PF parameter, it can be deemed
as a constant at the interface only when w=lc ! 0 is strictly satisfied. However, in a
computational model, with limited grid points (a few hundred) along each
dimension, one generally sets the diffused interface region to be a small fraction of
the pattern scale (w=lc � 1 but remains finite) such that the length scale required to
track the complex dendrite evolution can be reached. In this case, the variation of
the diffusion field is proportional to wv=D, which is the ratio of interface width
w over diffusion length D=v. Such a variation of the diffusion field across the
interface region produces additional contributions in PF numerics which are not
captured in the sharp-interface expansion [64, 67]. Therefore, (4.26) is only an
approximation of the original sharp-interface problem (4.25). Since dendrite growth
is quite sensitive to growth conditions, the small contribution introduced in the PF
approximation may cause very different growth behavior in numerical simulations.
Quantitative PF numerical results are only possible in the limit of very fast diffusion
across the interface scale where wv=D becomes very small.

In order to remove this constraint, an improved sharp-interface analysis
(so-called thin interface analysis) which takes into account the variation of the
diffusion field within the interface region was obtained for pure materials [64] and
alloys [68, 69]. The corrections due to the finite interface width are explicitly
derived in this limit. The refined PF model based on this analysis can therefore
exactly recover the sharp-interface problem (4.25), capture the dendrite formation
quantitatively in 3-dimensions, and make experiment-relevant predictions [70].
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4.3.6 Fracture

The fundamental physics involved in fracture propagation include the releasing of
elastic energy and the increasing of crack surface energy. A commonly agreed upon
criterion for crack propagation goes back to the work of Griffith and Irwen based on
a crack extension force (for plane strain)

G ¼ a K2
I þ K2

II

� �þ K2
III

2l
;

where KI;II;III is the stress intensity factor for three standard modes of fracture, l is
the shear modulus, m is Poisson’s ratio and a ¼ 1� mð Þ=2l. The propagation is
possible only for G larger than a critical Gc which is then given by the cost of
creating two new surfaces (Gc ¼ 2c). From this point of view, the phase-field
model coupled with elasticity should be a good approach for this class of problems.
Several PF models have been proposed to study the propagation of fracture in brittle
materials [71–73]. The basic idea is to treat the fracture propagation as a phase
transition process from the solid phase to a “broken” fracture phase. Similar to the
solid-state phase transformation models where the elastic energy played an essential
role in determining the morphologies of solid-state precipitates, fracture models
also use a phase-field energy with both the surface and the elastic contributions as
the starting point and produce equations of motion from the minimization of this
energy. In the work of Hakim et al. [52], this phase-field energy takes a simple form

F ¼ Epf þ g /ð Þ Estrain � Ecð Þ þ Ec;

where the surface part takes the commonly seen form Epf ¼ k
2 r/ð Þ2; the elastic

part is Estrain ¼ k
2 eiið Þ2 þ leijeij; and g /ð Þ is a smooth interpolation function which

describes the softening of elastic energy in the “broken” state. Ec is the threshold for
the broken state, above which fracture is favored energetically.

The relation between the phase-field approaches and classic sharp-interface frac-
ture mechanics have been explained in detail and demonstrated numerically in many
works. Using asymptotic expansion, Hakim et al. [52] showed that the crack propa-
gation velocity in their PF model is proportional to the departure from the classic
Griffith criterion. Spatschek et al. [53] also analyzed the sharp-interface limit of their
PF fracture model and showed that the crack propagation can be described as a result
of the Asaro-Tiller-Grinfeld (ATG) instability of crack surface under applied stress.

4.3.7 Vesicle Morphology

Most applications of the PF model are within the community of materials sciences;
however, the model also garners significant attention from applied mathematicians.
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Biben et al. [74] and Du et al. [75] demonstrated its potential in bioscience by
developing PF models for the morphology of vesicle blood cells. In their models,
by minimizing a membrane bending energy, different experimentally observed
morphologies of vesicle cells are successfully constructed using the PF method.
Since the energy form they used in the model is different from most other PF
models, it is worthwhile to discuss this application in further detail. The elastic
bending energy of a vesicle membrane is generally given by

eH ¼
Z

b
2

H � c0ð Þ2 þ cK þ r

� �
ds;

where b and c are bending rigidities, H and K are the mean and Gaussian curvatures,
c0 is the spontaneous curvature of the system and r is the orientation-dependent
surface energy. The integral is over the entire surface area. This energy form is
different from most PF models we introduced earlier, and Biben et al. and Du et al.
successfully constructed a simplified version of eH by noticing the fact that the mean
curvature H can be easily written in terms of the PF parameters.

It is well know that the variational dynamics based on the classic PF energy

F ¼ R �
2 rwj j2þ 1

4 w2 � 1
� �	 


dv are reduced to a surface motion driven by the mean

curvature in the sharp-interface limit. To construct the bending energy with only the
mean curvature part using PF parameter w, one can make a connection by writing

Sharp� interface: eH ¼
Z

H2ds

Phase� field: ePFH ¼
Z

dF
dw

� �2

ds

With the PF form of elastic bending energy, the vesicle membrane shape is then
given by the minimization of ePFH , i.e. dePFH =dw ¼ 0. Further asymptotic analysis
showed that such a minimization of ePFH recovered the correct Willmore stress
relation in the sharp-interface limit. Later, this vesicle membrane model was gen-
eralized to include the Gaussian curvature term in the bending energy, and the effect
of an external fluid field was also studied since it is relevant to many biological
applications. We recommend [76] for a detailed review on this topic.

4.4 Perspectives

Through the basic PF formulation and its several applications, the strength of the PF
model as a powerful approach for complex interface evolution problems has been
demonstrated. Its role in multiscale materials modeling is to connect the funda-
mental properties one gets from atomistic/electronic models to large-scale
application-level materials behavior. With naturally incorporated surface energy
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and the flexibility to include other physics, this modeling method by itself has also
received significant attention from physicists, materials scientists and applied
mathematicians. New applications of the PF method are continually being devel-
oped in modern society, and a fast increasing category of problems can now be
treated using this approach. To conclude this chapter, we summarize a few
important points one should keep in mind when adopting the PF method to solve a
specific problem of interest. First, one must ensure that the PF method is the correct
approach for the problem. The PF method should either offer a length/time scale
advantage that other methods cannot reach or should result in improved compu-
tational efficiency. Second, the connection between underlying physics and the PF
model must be established, typically by using a physics-based energy functional or
sharp-interface asymptotics. Third, additional effects introduced by the diffuse
interface should be kept in mind. When using the phase-field variable only, the
interaction distance between diffuse interfaces could be much longer than the
interaction distance between sharp interfaces. When coupled with other fields,
additional steps (i.e., a thin-interface analysis) are needed to treat the variation
within the diffuse interface region. Additionally, application of the PF model with
dynamics other than the two classical variational dynamics (Allen-Cahn or
Cahn-Hilliard equation) is possible.
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Chapter 5
Peridynamics

Ibrahim Guven

Abstract In this chapter, we present an integral representation of continuum
mechanics which serves as the underlying theory for the peridynamics model.
Practical implementation of this model into simulations illustrate the power of this
approach. In particular, mechanical deformation from impact and external strain
display that the peridynamic model captures failure processes that are difficult, if
not impossible, to obtain from other continuum models.

5.1 Introduction

The applied materials science is closely linked with engineering design through the
common interest in properties of materials. The mechanical engineers are concerned
with functionality and reliability of engineered products while materials scientists
explore the link between the macro-scale properties and atomistic/molecular level
structure of the constituent materials. Considerations surrounding damage and
failure of materials are important parts of the design process. While an engineered
part must be practical and functional, it must also serve reliably for a predictable
amount of time. Analyses that simulate the response under real physical conditions
are commonly utilized during the design of engineering systems, which include,
among others, stress analysis with the purpose of identifying concentrations of
stress. The interest in finding locations of high stress concentrations is almost
exclusively due to concerns of fracture and failure, which is directly related to
reliability of an engineering system.

Traditionally, the prediction of deformations and stresses have been performed
using the finite element method (FEM), which is a well-established and robust
method. While providing accurate predictions for stress components, traditional
FEM’s capability of capturing realistic material response in modeling and
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predicting failure is questionable. This is due to the underlying assumption that the
material remains continuous during deformation; there is no inherent mathematical
formulation accounting for possibility of discontinuities arising, which is the case
when a crack initiates. One possibility is to include the crack geometry in the
analysis. However, since FEM is formulated based on partial differential equations,
computations at/near the geometric discontinuities defined by crack faces and crack
tips break down due to spatial derivatives being undefined. While a number of
remedies are proposed to address this shortcoming, they involve cumbersome
special techniques that treat fracture as a special case rather than including it as an
inherent material behavior.

In addition to the difficulties of handling discontinuities mathematically, one
must be aware that fracture is almost always a dynamic phenomenon which
involves propagation of cracks. In engineered systems with complex
three-dimensional geometries, cracks rarely propagate along a flat plane; they often
turn, branch, oscillate and stop. A predictive computational approach must be able
to address this variable nature of fracture in three-dimensions and in a dynamic
sense. This task has proven to be most challenging in traditional FEM approaches.
In recent past, a number of enhancements have been proposed; two such methods
that gained general acceptance in the fracture prediction community are (i) XFEM
[1] and (ii) cohesive zone methods [2]. Both of these methods made significant
improvements to FEM’s handling of problems involving fracture, they require
externally supplied kinetic relations for crack growth without providing a damage
model as part of the constitutive relations.

Silling [3, 4] introduced a new theory, peridynamic (PD) theory, that represents
the continuum mechanics in integral form, which removes the mathematical arti-
facts present in classical formulations involving spatial derivatives. In the PD
theory, internal forces are expressed through nonlocal interactions between the
material points within a continuous body, and damage is part of the constitutive
model. Additionally, interfaces between dissimilar materials have their own prop-
erties and damage can propagate when and where it is energetically favorable for it
to do so. The integral equation representation allows crack initiation and growth
simultaneously at multiple sites with arbitrary paths.

In this chapter, first, peridynamic theory formulation and its numerical imple-
mentation are presented briefly. A number of applications are considered in order to
demonstrate the capabilities of the theory.

5.2 Integral Representation of Continuum Mechanics

In PD theory, a point in a solid body interacts with all points within its range as
illustrated in Fig. 5.1. Even though the discretization considers material points (as
opposed to elements), the body is assumed continuous. The PD theory reformulates
the deformation of a continuous body in terms of integral equations without the
spatial derivative terms of the classical continuum theory. This feature allows PD
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theory formulation to apply everywhere in the solid body even when geometric and
material discontinuities are present.

In peridynamic theory, motion of a material point x is evaluated through analysis
of its interactions with other material points x0 in the body. There exists a distance
beyond which the influence of x0 on motion of x become negligible. This distance is
termed horizon and the region defined by the horizon is called the neighborhood of
x. For example, the circular region in the initial configuration shown in Fig. 5.1 is
the neighborhood of x. The equations describing the motion of x at the deformed
configuration at time t is written as

q
@2u
@t2

¼
Z
H

T x; t; x� x0ð Þ � T x0; t; x0 � xð Þf gdH þ bðx; tÞ ð5:1Þ

in which ρ is the mass density, u is the displacement vector of material point x, and
bðx; tÞ is the body load vector. The integral is the vector summation of internal
forces between the material points x and x0, and is taken over the volume sur-
rounding the material point, H, which defines the neighborhood of x. The initial
distance between x and x0 is denoted by the vector ξ shown in Fig. 5.1, initial
configuration. At time t, the body is deformed with x and x0 moving to new
positions with corresponding displacement vectors u and u0, respectively. The
initially spherical (circular in 2-D) neighborhood of x becomes, in general, an
irregularly shaped domain. The force vectors between x and x0 are described for-
mally by force state vectors Tðx; t; nÞ and Tðx0; t; nÞ, former belonging to x and

Fig. 5.1 Kinematic description of a pair of PD material points
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latter to x0, then the corresponding deformed configuration is described by the
deformation state vector Y. It should be noted that the force state vectors are
functions of time t, initial positions x and x0, and the relative position ξ, rendering
the PD formulation Lagrangian. Detailed derivations related to force and defor-
mation state vectors can be found in Silling et al. [1] and Madenci and Oterkus [2].

In this chapter, the force state vectors, Tðx; t; nÞ and Tðx0; t; nÞ, describing the
interaction between the material points x and x0 will be assumed to have same
magnitude and opposite directions. This assumption leads to the so-called
“bond-based” peridynamic formulation with the following PD equation of motion

q
@2u
@t2

¼
Z
H

fðx; x0; t; nÞdH þ bðx; tÞ ð5:2Þ

where the interaction between x and x0 is described by the response function f. It is
explicitly written for an isotropic material as

fðg; nÞ ¼ nþ g
nþ gj j lcs ð5:3Þ

in which ξ is the relative position ðn ¼ x� x0Þ and η is the relative displacement
ðg ¼ u0 � uÞ. Based on the relative position and displacements, the stretch between
x and x0 can be defined as

s ¼ nþ gj j � nj j
nj j ð5:4Þ

The stretch in Peridynamic theory is analogous to the strain in classical con-
tinuum theory. The relationship between the force and stretch, (5.3), involves a
material parameter, c, which is commonly referred to as the bond constant. Its value
is evaluated by calculating the strain energy of a PD domain and equating it to the
corresponding strain energy that is found under classical continuum mechanics
formulation; Silling and Askari [3] used isotropic extension as the loading for this
operation to find c as

c ¼ 18j

ðpd4Þ ð5:5Þ

Finally, the binary function μ is utilized for introducing failure between two
material points as follows

lðt; nÞ ¼ 1 if sðt0; nÞ\ s0 for all 0 � t0 � t
0 otherwise

�
ð5:6Þ
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where s0 is the critical stretch. When the stretch between a material point pair
exceeds the critical stretch, the interaction between the material points is perma-
nently terminated. During the simulation, each interaction is checked against this
criterion ðs\s0Þ at each time step and number of broken interactions emanating
from each material point is recorded. Thus, damage at a material point is defined as
the ratio of broken interactions to the original number of interactions; damage is a
value between zero (no damage) and one (completely detached from other material
points). Therefore, damage at a material point along a well-defined crack face in a
brittle fracture problem is expected to be around 0.5.

5.3 Practical Implementation

Solution of peridynamic equations of motion (5.1) or (5.2) is achieved through
numerical means. This involves discretization of the solution domain into small and
simple sub-volumes. These sub-volumes should be simple 3-D shapes as they are
used in numerical volume integration of PD equations; the simplest sub-volume that
enables the easiest numerical handling of PD analysis is a cubic sub-volume. In this
case, a peridynamic material point is placed at the center of the cubic sub-volume.
After discretization, the volume integral of (5.2) can be written for material point
i in terms of summations as

q€uni ¼
X
j

f uni ; u
n
j ; x

n
i ; x

n
j

� �
Vj þ b xni

� � ð5:7Þ

in which Vj represents the volume of the sub-volume represented by material point
j, and the superscript n denotes the time step. This equation is written at each
material point i to calculate the acceleration vector at point i by equating its product
with the mass density to the forces acting on point i within its horizon.

The numerical implementation of the PD theory involves a number of practical
issues surrounding the volume integration, time marching and convergence. Each of
these issues have been addressed in varying levels of detail in literature; a com-
prehensive discussion of these topics and further considerations can be found in [2].
A brief summary is provided herein.

The summation of (5.7) approximately represents the volume integral of (5.2)
where the volume is the neighborhood of point i defined by a sphere with a certain
radius (horizon). In the summation representation, each sub-volume is lumped in a
material point located at the mass center of the sub-volume. Thus, if the material
point j who belongs to the neighborhood of material point i is within this radius, its
whole volume is included in the summation. As it can be foreseen, this situation
may pose inaccuracies for material points j that are near the boundary of the sphere
where part of the volume may fall outside of the sphere. A similar situation arises
when the material point j narrowly falls outside the horizon while a non-trivial
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portion of its volume is still inside the horizon. These two scenarios should be
addressed in order to increase the accuracy of the computations. The remedy may
involve a simple algorithm that estimates the amount of volume that falls within the
horizon and adjust the contribution accordingly; this is implemented by [4].

Another common issue related to numerical implementation is the effect of free
surfaces that exist within the horizon of material the material point i. Evaluation of
the material parameters of PD model (5.5) involves comparison of energy quantities
between classical continuum mechanics and PD theory; this is performed based on
the assumption that the sphere defining the neighborhood of a material point is
completely populated (whole sphere). However, as with every finite geometry,
existence of physical boundaries will contradict this assumption and a correction
must be made. Silling [4] describes this operation as the surface correction. The
computed material parameters of PD must be corrected according to the local
geometry of the material point i. Detailed discussion on surface corrections is given
in [2].

The peridynamic equation of motion, while not having spatial derivatives,
contains time derivative term (acceleration of material point i). In the numerical
implementation of PD, a time marching scheme must be employed. The PD sim-
ulation starts with complete list of known positions, velocities and accelerations
(initial conditions). The acceleration term on the left hand side of (5.7) is expressed
in terms of a combination of displacements and velocities belonging to current
(known) and next (unknown) time steps such that a complete list of displacements,
velocities and accelerations in the next time step is calculated. This is a rather
routine operation common to many transient problems of continuum mechanics;
any traditional method can be employed (e.g., finite difference, Runge-Kutta,
Adams-Bashforth). The well-known error considerations apply; a stability criterion
for each of these methods can be constructed to find a suitable time step size.

The peridynamic theory works with the equations of motion, and thus a dynamic
formulation by nature. However, in many problems of mechanics, a static (or
steady-state) solution is sought after. Kilic [5] addressed this issue by implementing
an adaptive dynamic relaxation method based on the work of Underwood [6]. The
method is based on introduction of damping to the equations of motion, towards
finding the equilibrium state much quicker than solving the problem dynamically.
The adaptive dynamic relaxation method used by Kilic [5] leads to calculation of
damping coefficients for each material point at each time step.

5.4 Applications

The peridynamic theory has been used for simulation of numerous problems of
applied mechanics. A few applications are presented in this section: First, fracture
performance of an advanced ceramic layer under impact by a sand particle is
discussed. Next, investigation of fracture patterns in glass is presented followed
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by anodized aluminum thin film cracking. Finally, preliminary work on
three-dimensional fracture observed in polycrystalline materials is shown.

5.4.1 Damage in a Ceramic Layer Due to Small Particle
Impact

Materials that transmit Long Wave InfraRed (LWIR) are inherently softer and
weaker than their Mid-Wave Infrared (MWIR) counterparts because the price paid
for extending transparency to longer wavelengths is a reduction in lattice bond
strength. Zinc selenide has excellent transmittance in the LWIR but is too soft for
use in mechanically harsh environments, as are the many chalcogenide-based
LWIR transmitting glasses. The semiconducting materials, Ge and Si, are
mechanically strong and hard but do not transmit into the visible. Diamond has
excellent optical and mechanical properties but the cost for diamond optics will
likely remain prohibitive for many years. Consequently, most LWIR systems
exposed to mechanical stresses use Zinc Sulfide (ZnS) for windows and domes, as it
represents the best compromise between strength, hardness, and transparency. Over
the last three decades much effort has gone into developing coating materials to
improve the modest erosion resistance of ZnS to both rain and sand impacts
damage, including sputtered ZnS with an over-layer of Y2O3 (Raytheon’s
DAR-REP system), amorphous boron phosphide based glasses, diamond-like car-
bon, and germanium (see [7] for thorough review through 1999). Much of this
effort is empirical in nature due to the lack of predictive tools for characterizing
impact damage.

To date, most theoretical models of particle impact damage in brittle materials
seek to define the stress fields caused by the elastic/plastic nature of an impact event
so that crack propagation can be predicted (see [8–12]). Unfortunately, the inherent
continuum nature of these models prevents them from properly accounting for
crack initiation/introduction. In addition, most of the models focus on character-
izing hardness indentation damage as a surrogate for particle impact damage,
addressing impact damage largely by generalization, in a semi-quantitative manner.
Also, most of the current models are based on an idealized geometry of a single
impact event that has difficulty accommodating complexities such as irregularly
shaped, frangible, tumbling particles, non-normal incidence, multiple impacts, and
the use of protective coatings with variable surface adhesion and internal stresses.

In this subsection, we present an application of the peridynamic theory for
accurate quantification of damage/failure in a ceramic layer. A new methodology
for extraction of critical stretch parameter and yield strength based on indentation
experiments is also given. These material parameters are subsequently used in
simulation of sand impact of ZnS.

Vickers indentation testing produces an impression that is square in cross-section
with cracks visible on the surface emanating from the corners (see Fig. 5.2).
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The lengths of these cracks, c, are measured from the center of the indent out to the
crack tip. However, it is common to report crack lengths in terms of 2c, the distance
from one crack tip through the impression to the tip of the crack emanating from the
opposite corner. The measurements in this study were made on multispectral grade
ZnS using a Leco model M-400-H1 Micro Hardness Tester. Dead weight loads of
100, 200, 300 and 500 g (equivalent to about 1, 2, 3 and 5 N) were applied using a
dashpot-controlled descent taking about 5 s. Dwell time was 10 s. The resulting
indents were characterized in the SEM and the values of 2c are reported in
Table 5.1.

Peridynamic simulations of Vickers indentation tests were performed next.
The PD model is comprised of two material regions corresponding to the indenter
and the ceramic substrate. The indenter is modeled as the pyramid shape of a
standard Vickers hardness apparatus while for the substrate a cylindrical shape
having a 120 μm height and radius is considered. Total number of material points in

Fig. 5.2 Schematic of
Vickers indentation and
definition of 2c

Table 5.1 Hardness test data
for multispectral grade ZnS

Load (N) Crack length, 2c (μm)

0.98 57

0.98 45

1.96 74

1.96 82

2.94 82

2.94 101

2.94 97

4.90 139

4.90 116

4.90 128
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the PD model including both the indenter and the substrate is 148,550. Figure 5.3
shows the PD models of the indenter and ceramic substrate prior to indentation. The
bottom surface of the substrate is constrained from displacement in all directions.
The magnitude of the indenter velocity is held constant during the entire simulation.
During the “loading” phase, it is directed downward, into the substrate, and during
the “unloading” phase it is directed upward or away from the substrate. The con-
stant velocity condition imposed on the indenter implies that no damage occurs in
the indenter as it moves down (or up) as a rigid body. Specified velocity conditions
combined with specified loading/unloading times dictate the indentation depth for
each simulation; this is in contrast to test conditions where maximum force is
controlled. A preliminary study was conducted to identify an approximate rela-
tionship between the indentation depth versus the maximum force. This relationship
is in turn utilized to decide on four distinct cases to simulate with specified
indentation depths. The damage developed in the ceramic substrate is analyzed and
the crack length 2c is measured for each simulated case. An example of the damage
pattern visible on the substrate surface is shown in Fig. 5.4. The shape of the high
damage region matches the surface cracks observed in the experiments. However,
PD simulations do not produce clearly defined crack faces, rather concentration of
high damage at sites cracks are expected to form. This is likely due to the PD grid
density and that a more refined grid is expected to lead to a better defined fracture;
in this study, the damage pattern is used as approximation to fracture. The total
force in the vertical direction, F3 is also calculated in PD simulations. A typical
indentation force versus indentation depth response calculated by the PD simula-
tions is shown in Fig. 5.5. Several simulations were performed with a range of
values for fy and s0 in search of the values which produce the best match of F3 and

Fig. 5.3 The PD model of
the indenter and the ceramic
substrate used in Vickers
indentation simulations
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2c to the data in Table 5.1. In this study, for ZnS, the optimum material parameters
are found to be ry ¼ 525 MPa and s0 ¼ 0:0007. Figure 5.6 shows the good
agreement between the PD simulated force versus crack length response of the four
cases when the optimal parameters are used and the experimental measurements.

The dynamic fracture of a zinc sulfide layer due to a rigid impactor is considered in
order to demonstrate the effectiveness of the use of peridynamic theory for
high-fidelity simulation of impact events experienced by electromagnetic windows,
The experimental guidelines listed in Harris [7] for testing IR windows and domes
under sand impact are taken as the starting point for peridynamic simulation model

Fig. 5.4 Damage pattern
consistent with hardness test
fracture visible on the surface
of the substrate

Fig. 5.5 A typical force
versus indentation response
simulated by PD
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parameters. The sand particle is represented by a rigid impactor having a cylindrical
geometry with 160 μm diameter and 60 μm height; the mass of the impactor is
calculated based on a density of 3300 kg/m3. The impactor is given an impact velocity
of 75 m/s. The ZnS layer is a cylinder with 3 mm diameter and 1.5 mm height. The
peridynamic model parameters governing ZnS behavior (deformation and failure) are
calculated based on the following properties: density of 4070 kg/m3, bulk modulus of
87.38 GPa and critical stretch value of 0.0007 as extracted from hardness tests. The
model uses a grid spacing of 8 μm, and the time-step size is 0.68 ns.

Figure 5.7 shows the evolution of damage due to sand impact as predicted by the
peridynamic model; only half of the solution domain is shown so that the damage
through the thickness can be clearly observed. In these plots, the damage varies
from zero (purple, no damage) to unity (red, maximum damage). The impactor is

Fig. 5.6 PD simulated force versus crack length response compared against experimental
measurements

Fig. 5.7 Damage evolution in ZnS substrate at times, a 27 ns, b 47 ns, c 68 ns, d 99 ns, e 102 ns
and f 136 ns
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not show in order to provide a better view of the surfaces. The damage progresses
straight down early in the process (Fig. 5.7a, b) with increasing impact load. As
unloading from the impact begins, lateral cracks below the surface and shallow
radial cracks start to emanate from the center radially (Fig. 5.7c) curving upwards
towards the free surface (Fig. 5.7d). Simultaneous with lateral and radial crack
initiation, completely damaged material directly below the impactor rebounds
upward and separates from the ZnS layer as it forms a conical impact impression,
clearly visible in Fig. 5.7f. The crack formation visible on the top surface of the
substrate exhibits a combination of short and long radial cracks. The overall fracture
pattern from the peridynamic simulation matches well the morphology observed
during experimental testing of sand impact damage in ZnS. Such damage is shown
in Fig. 5.8a, where the lateral and radial cracks caused by impact of a 149–177 μm
sand particle traveling at 75 m/s are clearly evident. For comparison, a top view of
the PD simulated crack pattern is shown in Fig. 5.8b, which exhibits striking
similarity.

As noted earlier, many researchers have recognized the strong correlation in
fracture behavior between particle impact damage and indentation damage.
Figure 5.9, taken from Evans [8] documents crack formation and growth in ZnS
during the loading and unloading stages of an elastic/plastic spherical indentation
test. While the sequence of events, as outlined in Fig. 5.9, do not exactly match
those observed from the PD simulation, where radial crack formation lags that of
lateral cracks, the similarity in the phenomenology of the two fracture events is
striking, despite differences in load conditions. In both cases, radial cracks, lateral
cracks, extensive damage below the impact site (median crack in Fig. 5.9) and
impact crater formation occurs.

Fig. 5.8 a Top view of experimentally observed fracture pattern on multi-spectral ZnS caused by
impact of 144–177 μm sand particle at velocity of 75 m/s, b simulated fracture pattern of ZnS
under impact by 160 μm diameter sand particle at velocity of 75 m/s
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In order to further highlight PD theory’s ability to simulate 3-D, non-planar
multiple fracture surfaces, the results are presented in Fig. 5.10, for material points
with damage greater than 0.2; i.e., material points with less damage is removed
from view. Four different views (left to right: oblique, side, top and front) at five
different times (top to bottom: 47, 61, 88, 95 and 102 ns) are shown. The selection
of 0.2 as the cut-off damage parameter for these figures ensures viewing of all
regions with any significant damage, including localized regions that do not have
fully developed cracks.

These results clearly demonstrate the utility of peridynamic theory to model
mechanical damage, especially for those situations where continuum mechanics has
difficulty capturing the complexities of the evolving stress fields and crack for-
mation. Future work to improve and expand the capabilities of this model include
investigation of various coating materials with varying thicknesses, simulations
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Fig. 5.9 Schematic showing the sequence of crack formation and growth during spherical
indentation studies of ZnS (after evans [8])
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involving deformable and friable impactors to better understand the physics of
“soft” particle impact on “hard” substrates, and investigation of raindrop impact.

5.4.2 Fracture Patterns in Anodized Aluminum

Plasma etching is an important step of wafer manufacturing in integrated circuit
industry. The process aims to precisely engineer the surface features of the wafer. It
involves generation of plasma, which requires a sealed chamber. The plasma is
exposed to the target (wafer) and any other material surface inside the chamber
including the plasma chamber walls. Anodized aluminum is a common plasma
chamber and component material in the IC industry; an oxide coating (alumina) is
produced on the aluminum surface leading to strong anodic polarization, signifi-
cantly reducing reactivity. A common problem is the landing of foreign particles on
the wafer while it is being etched rendering part of the wafer with zero yielding die.
These particles are believed to originate from the plasma chamber components
surrounding the wafers. One of the models is mechanical failure in the form of

Fig. 5.10 PD simulated damage evolution from different angles with material points with damage
less than 0.2 removed from view
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fracturing of the coating and flaking off. There are two main reasons for the coating
failure [13]: (i) the difference between the coefficients of thermal expansion of the
coating and the underlying metal, and (ii) change of surface chemistry due to
plasma environment. These two mechanisms may or may not work together. Very
few studies have been conducted to address the problems associated with integrity
of anodized aluminum parts used in plasma chambers; most focus on cleaning and
conditioning of the surface [14, 15]. A physics based understanding of the failure
mechanisms at play is essential for improving the surface integrity of anodized
aluminum parts.

This study aims to investigate the underlying physics of the failure modes
observed in anodized aluminum parts used in plasma chambers. Experimental
investigation involves mechanical property characterization and clear identification
of failure modes examination through SEM. Simulations of aluminum substrate
with alumina coating under expansion loading conditions are performed.
Computational investigation also explores the potential effect of an additional thin
layer between the coating and the substrate.

Ground electrodes encase wafers processed in a plasma chamber. These elec-
trodes are exposed to plasma and corrosive gases used during the etching process.
The chamber temperature varies a few tens of degrees from room temperature
during the etch process. Commercially available ground electrode after use was
cross sectioned for this study. The images were taken under bright field conditions
at 15 kV with both the interior and exterior surfaces showing similar sized crazing
(Fig. 5.11). The mean crack-free area for the inside surface was 3952 μm2 while
that for the exterior was 3521 μm2. The thicknesses of exterior and interior coatings
were approximately 22 and 19 μm, respectively (Fig. 5.12). EDS mapping of the
interior surface showed the same elements common in the top-down spectra but
without the F signal. No morphological or compositional layering was evident.

The fracture due to coefficient of thermal expansion mismatch between the
alumina coating and the aluminum substrate is simulated using the peridynamic
theory. Results for the material system with a single alumina layer are presented

Fig. 5.11 Fracture pattern
observed along the inside
surface of the plasma chamber
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first, followed by the investigation of effect of adding a compliant layer between the
aluminum and the alumina.

The geometry of the material system (two-layer system) is shown in Fig. 5.13.
The problem domain is a rectangular prism with length l = 400 μm, width
w = 400 μm, and a total height of ht = 220 μm. The thickness of the alumina film is
taken as hf = 20 μm. The grid spacing in the model is taken as 3.33 μm leading to
approximately 950,000 grid points.

The material properties for the aluminum substrate are: elastic modulus of
68 GPa and density of 2,700 kg/m3. Similarly, for the alumina film, the elastic
modulus is taken as 370 GPa while its density is kg/m3. The critical stretch for the
thin alumina coating is calculated to be around 5 % while aluminum is about 20 %
owing to its ductile nature.

In order to simulate the deformation field due to the mismatch between coeffi-
cients of thermal expansion values of the constituent materials, a large portion of
the substrate in the depth direction (80 %) was subjected to isotropic expansion in

Fig. 5.12 Cross-sectional
view of the alumina coating
and aluminum substrate.
Fracturing of alumina coating
is observed

Fig. 5.13 Geometry of the
anodized aluminum material
system
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the planar directions (length and width as defined earlier). The expansion is then
transferred to the film through deformation. The loading is applied in a ramped
fashion gradually so as to prevent premature fracture near the boundary regions.

Figure 5.14 shows the top view of the damage progression along the surface of
the coating. Four different time steps are shown, with time increasing from top to
bottom. Fracture starts at one edge and propagates as the expansion of the substrate
continues. Due to the nature of the isotropic extension, a number of branches
emerge leading to the final fracture configuration, shown in the bottom segment of
Fig. 5.14. However, there is further fracture beneath the surface that is of interest. In
order to examine the fracture morphology inside the coating, damage contours are
plotted such that only those material points with damage values ranging between
0.2 and 1.0 are shown in Fig. 5.15 from top view. Same set of results are shown
from an oblique angle in Fig. 5.16 in order to clarify the extent and geometric
distribution of the damage in 3-D. Examination of Figs. 5.15 and 5.16 and their
comparison to Fig. 5.14 reveal that a considerable damage is accumulated along the
interface between the aluminum substrate and the alumina coating. This is con-
sistent with the failure mode observed in experiments, where part of the crazed
coating peels/flakes off, suggesting interface delamination. Peridynamic simulations
appear to capture the correct failure modes observed in experimental setup.

Additionally, the top surface fracture pattern predicted by peridynamic theory is
compared to the micrographs of the crazed coating inside the plasma chamber in
Fig. 5.17. A scale bar of 300 μm is included; it applies to both the SEM micro-
graphs (left) and the peridynamic results (right). The size and shape of the surface
fracture predicted by peridynamic theory closely resemble those observed experi-
mentally. The “cellular” characteristic of the fracture is prominent on both sides.
Peridynamic theory is able to predict the shape and size of the fractured-coating
pieces with satisfactory accuracy.

Modification of the anodization process may allow a layered coating system with
intention of designing a layer sequence to alleviate or eliminate cracking in the
exposed surfaces. The anodized coatings are inherently porous; depending on the
durations and concentrations of acid bath process, different porosity values are
attained. Therefore, there may be configurations of layered anodized coatings that
might lead to better fracture performance of the chamber interior coating. With this
hypothesis, the same problem is considered with an added thin layer between the
alumina coating and the aluminum substrate (leasing to a three-material system) as
sketched in Fig. 5.18. This intermediate layer has the same thickness as the alumina
coating but with different material properties. The relationship between the
mechanical properties and porosity is well-documented for alumina [16–18]. As the
porosity increases, elastic modulus decreases, which makes the material more
compliant allowing the material to deform more before fracturing. By making the
intermediate layer compliant, the effect of the mismatch between the substrate and
the original coating will be lessened, leading to less cracks and flaking off. This
added layer will serve as a buffer layer.

Therefore, in this hypothetical test case, the intermediate layer elastic modulus
was decreased to half of the original value while the critical stretch was increased to
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Fig. 5.14 Damage
progression along the top
surface of the alumina layer
predicted by peridynamic
theory for the two-layer
system
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Fig. 5.15 Damage
progression in the alumina
layer through the thickness
from top view predicted by
peridynamic theory for the
two-layer system
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Fig. 5.16 Damage
progression in the alumina
layer through the thickness
from oblique view predicted
by peridynamic theory for the
two-layer system
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about 7.5 % (compared to 5 %). The remaining parameters of the model is identical
to the previous problem.

The damage progression along the top surface of the exposed coating is shown
in Fig. 5.19. The amount and distribution of the damage in the three-material
system are less than those of the two-layer system. Further, similar to the previous
case, the damage contours for the current configuration are plotted for values
between 0.2 and 1.0 in order to examine the damages in the thickness direction as
shown in Fig. 5.20. In order to make the comparison easier, side-by-side com-
parison of damage patterns for the two-layer and three-layer systems are shown in
Fig. 5.21. The two-layer system results are shown in the left column while the right
column is shows the three-layer system damages. Top row in Fig. 5.21 shows only
the top surface while bottom row shows damages greater than 0.2 through the
thickness. It is clear that the interface delamination problem is significantly reduced;
the predicted cracks have vertical faces. This prediction suggests that the

Fig. 5.17 Comparison of experimentally observed fracture patterns (left) against those predicted
by peridynamic theory for the two-layer system

Fig. 5.18 Geometry of the
anodized aluminum material
system with the compliant
intermediate layer

5 Peridynamics 239



Fig. 5.19 Damage
progression along the top
surface of the alumina layer
predicted by peridynamic
theory for the three-layer
system
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Fig. 5.20 Damage
progression in the alumina
layer through the thickness
from top view predicted by
peridynamic theory for the
three-layer system
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peeling/flaking off phenomena could be significantly reduced or eliminated by
carefully engineering an anodization process leading to a desired layered system.

In this study, a common problem in IC manufacturing, which involves
peeling/flaking off of fractured coating of anodized aluminum plasma chamber
walls, is described. A computational approach, peridynamic theory, is used to
simulate the surface fracturing due to uniform expansion is demonstrated. It was
shown that the peridynamic theory captures the correct failure modes observed in
experiments. Also, it is able to predict the shape and size of the fractured-coating
pieces with satisfactory accuracy.

In order to reduce or eliminate the peeling/flaking off problem, incorporation of
an intermediate layer between the coating and substrate is considered. Peridynamic
simulation of this hypothetical structure under the identical expansion conditions
suggests that a compliant intermediate layer between the coating and substrate has
potential to reduce the problem through eliminating interface fracture (delamina-
tion) and reducing the surface fracture.

Further study would explore the effects a range of elastic properties and critical
stretch values as well as geometry parameters (e.g. thickness).

Fig. 5.21 Side-by-side comparison of damage patterns for the two-layer (left) and three-layer
(right) systems. Top row shows only the top surface while bottom row shows damages greater than
0.2 through the thickness
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5.4.3 Dynamic Fracture of Glass

Glass has been used as engineering material over a long period of time. Due to their
amorphous micro/nano structure, their behavior under mechanical loading has not
been fully understood. Currently, glass materials are ubiquitous in electronic,
automotive and aerospace industries; methods with high fidelity fracture predictions
would pave the way to components with increased reliability and durability.

In this study, we demonstrate use of peridynamic theory to simulate mechanical
response of brittle glass materials under impact loading. The material system
involve polymethyl methacrylate (PMMA) plates of 18 mm radius with different
thicknesses: 0.5, 1.0, and 3.0 mm. The plates are impacted by a steel ball of radius
1.8 mm and a mass of 16 g. The experimental results are taken from [19]. The
impact velocity varies between 10 and 120 m/s.

Peridynamic models for the PMMA plates were generated to have approximately
2.2, 2.6 and 3.2 million material points for thicknesses 0.5, 1.0 and 3.0 mm,
respectively. Elastic moduli of 2.42 and 180 GPa were used for PMMA and
stainless steel, respectively. In all cases, the peridynamic grid was generated using
arbitrarily oriented concentric rings layered orthogonally to the direction of impact
in order to eliminate the potential bias in fracture morphology that might be
introduced by using a regular rectangular grid. Figure 5.22 demonstrates such a bias
introduced when using a rectangular grid (Fig. 5.22a), and a more realistic fracture
morphology when circular grid is used (Fig. 5.22b) for a 1.0 mm plate impacted by
the projectile with velocity of 80 m/s.

The experimental observations focused on correlating the number of cracks and
impact velocity [19]. The cracks counted mostly consisted of radial cracks ema-
nating from the impact site, but the circumferential cracks were also counted when
present. For example, Fig. 5.23 shows the progression of the fracture pattern pre-
dicted by the peridynamic simulation for a 1 mm thick plate impacted at 20 m/s.

Fig. 5.22 Comparison of fracture morphologies in a 1.0 mm thick plate impacted at 80 m/s,
modeled with a rectangular grid, and b circular grid
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Four radial cracks emanate from the impact point and continue to grow as time
progresses. As the velocity of the impactor increases, the number of radial cracks
that form increases. After a critical velocity is reached, circumferential cracks form
allowing the impactor to break through the plate. Figure 5.24 shows formation of a
circumferential crack for a 1 mm plate is impacted at 80 m/s.

Comparisons to the experimental work was done both qualitatively and quan-
titatively. Figures 5.25 and 5.26 compare the peridynamic simulations performed at
20 and 60 m/s impact velocities against the experiments for 1 mm thick PMMA
plate with impact velocities measured at 22.2 and 66.2 m/s, respectively. In the case
of 22.2 m/s impact velocity, in experiments four radial cracks are observed with no
circumferential cracking. The peridynamic simulation with 20 m/s captures the
morphology and the number of radial cracks exactly (Fig. 5.25). Similarly, the
comparison of higher velocity impact response is shown in Fig. 5.26; it is worth

Fig. 5.23 Time progression of fracture for a 1 mm thick plate impacted at 20 m/s

Fig. 5.24 Time progression of fracture for a 1 mm thick plate impacted at 80 m/s

Fig. 5.25 Comparison of peridynamic simulation fracture morphology against experimental
observations for a plate with a thickness of 1 mm impacted at 20 m/s
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noting that peridynamic simulation accurately captures both the radial and cir-
cumferential cracks.

The quantitative study involved 10 distinct peridynamic simulations involving
the three different plate thicknesses and impact velocities ranging from 20 to
80 m/s. Results of the peridynamic simulations are compared against the experi-
mental results in Figs. 5.27 through 5.29. In these figures, the circular symbols are
the experimental observations while the square symbols are the peridynamic sim-
ulation results. In both experimental and peridynamic results presentations, solid
symbols indicate that only radial cracks formed and open symbols indicate that
circumferential cracks were present. The lines in the plots are least-squares linear fit
of the experimental observations to guide the eye. In all three thickness cases

Fig. 5.26 Comparison of peridynamic simulation fracture morphology against experimental
observations for a plate with a thickness of 1 mm impacted at 60 m/s

Fig. 5.27 Quantitative
comparison of number of
radial cracks observed
experimentally against
captured through peridynamic
simulations for a plate with a
thickness of 0.5 mm impacted
at various velocities
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peridynamic predictions of number of radial cracks are close to experimentally
observed ones.

The qualitative (Figs. 5.25 and 5.26) and quantitative (Figs. 5.27, 5.28 and 5.29)
comparisons clearly illustrate that peridynamic theory is able to capture specific
fracture morphology (radial vs. circumferential) as well as the number of radial
cracks under dynamic fracture conditions due to impact in PMMA.

Fig. 5.28 Quantitative
comparison of number of
radial cracks observed
experimentally against
captured through peridynamic
simulations for a plate with a
thickness of 1.0 mm impacted
at various velocities

Fig. 5.29 Quantitative
comparison of number of
radial cracks observed
experimentally against
captured through peridynamic
simulations for a plate with a
thickness of 3.0 mm impacted
at various velocities
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Chapter 6
Consistent Embedding Frameworks
for Predictive Multi-theory Multiscale
Simulations

Krishna Muralidharan, Keith Runge and Pierre A. Deymier

Abstract In this chapter, we present the predictive multi-theory multiscale
framework called consistent embedding. The characteristics of a consistently
embedded set of theories is defined and illustrated by four examples. These
examples show the coupling between quantum mechanical and atomistic scales,
short and long time microstructural evolution, and chemical reactivity and flow
dynamics. A final example carries a cautionary message in that all embedding are
not necessarily consistent. Overlapping tests are essential to the establishment of a
predictive multi-theory multiscale simulation.

6.1 Introduction

The ability to predict and characterize the complex structure-property relations of
condensed matter embodies the central objective of the field of computational
materials science and engineering. Material properties are collectively governed by
phenomena that occur over a broad span of temporal and spatial scales, and an
accurate predictive description of the underlying processes cannot be achieved by
solely relying on traditional materials modeling methods. Such methods include
quantum mechanics based wave-function techniques or density functional theory
(DFT), Newtonian mechanics based atomistic molecular dynamics (MD) and finite
element methods (FEM), as well as statistical mechanical phase-field models (PF).
Each of the above-listed methods address distinct spatial and temporal scales
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(see Fig. 6.1), and importantly, represent models based on different theories. This
necessitates the implementation of multi-theory, multiscale computational para-
digms for which the following are required: (i) compatibility between the employed
scale-specific and theory-specific models as well as (ii) seamless exchange of
information across scales. Compatibility between the scale-specific methods can be
ensured, if and only if the overarching multiscale paradigm conforms to the prin-
ciples of consistent embedding. Specifically, consistent embedding requires that the
parameters for a coarser-scale model be derived exclusively from an underlying
finer-scale method that corresponds to a more rigorous level of theory. An equally
important requirement is to ensure that the coarser-scale method emulates the
behavior of the finer-scale model, albeit in an average fashion, at the spatial and
temporal scales accessible to the finer-scale model.

Multiscale models can be classified as serial or concurrent. In serial methods, a
set of calculations at a fundamental level (fine length scale) is used for evaluating
constitutive relations for coarser-scale models that describe a phenomenon of
interest at longer length scales. For example, atomistic simulations can be used to
obtain the constitutive behavior of finite elements, which are then used to simulate
larger scale problems [1, 2]. Other examples include the coarse-grained molecular
dynamics methods (CGMD) [3] as well as the parameterization of interatomic
potentials based on ab initio/first principles data as demonstrated in Chap. 3.
Concurrent methods represent dynamical extensions of serial multiscaling and rely

Fig. 6.1 The temporal and spatial domains corresponding to the traditional materials modeling
tools
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on real-time coupling of different computational methodologies applied to different
spatial regions of the material [4, 5]. A relevant example is the problem of crack
propagation that was tackled early on by multiscale methods. Atomistic simulation
techniques were used to model the crack tip where large deformations (even bond
breakage) occur and continuum approaches (finite element methods) were used to
model the region far away from the crack tip. Broughton and co-workers [5]
proposed an algorithm involving hand shaking between Finite Elements (FE),
molecular dynamics (MD) and simplified quantum chemical Tight-Binding
(TB) regions. This algorithm was able to dynamically track a crack propagating
through silicon. The handshaking between the MD and FE regions was achieved by
drawing an imaginary surface between them. Within the range of the MD inter-
atomic potential from this surface, FE mesh points were located at equilibrium
atomic sites. Moving away from this overlapping region into the FE region, the
mesh spacing was made larger. Any FE element that crosses the interface con-
tributed half its weight to a conservative Hamiltonian. Similarly any MD interaction
that crossed the interface also contributed half its weight. Kohlhoff et al. [6]
introduced a similar transition region between the atomic and continuous regions.
They also scaled down the finite element size to the atomic scale in this transition
region. Unlike Broughton et al.’s work, the interface was of finite size and not
sharp. Abraham et al. [7] combined the above two techniques by constructing an
explicit Hamiltonian for the atoms and the FE nodes in the transition region by
weighing their contributions with respect to their distance away from the middle of
the interface. Ogata and co-workers [8] used a similar algorithm to study chemical
reactions and their interplay with mechanical phenomena in materials, such as in the
oxidation of Si(111) surface.

The principles of consistent embedding represent a necessary condition for
robust predictive multiscale modeling, but does not guarantee seamless transfer of
information across scales. Specifically, in serial multiscaling, upscaling of infor-
mation results in homogenization of the underlying finer-scale data and conse-
quently, fluctuations inherent to the finer-scales cannot be captured. In concurrent
multiscale paradigms, the utilization of different modeling techniques to represent
different spatial segments of the material gives rise to ‘interfaces’ that are merely an
artifact of the implementation method. In the case of multiscale simulations that
examined crack-propagation as described above, interfaces are a consequence of
‘elastic impedance-mismatches’ between the chosen methods, resulting in spurious
scattering of stress waves that emanate from the crack-tip. Thus, steps to minimize
possible systematic errors that arise due to the artificial interfaces within the mul-
tiscale implementation are necessary. Further, from a computational cost point of
view, there is a need for the judicious use of the finer-scale methods without
compromising the accuracy of the concurrent multiscale simulation framework. In
this context, a discussion of available methods that facilitate the seamless coupling
of information derived from scale-specific methods, while limiting the use of
computationally expensive methods without loss in accuracy, will serve as the basis
for this chapter. In particular, using relevant examples, we illustrate multiscale
methods that adhere to the consistent embedding philosophy and when necessary
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invoke wavelet based scale-decomposition methods to glean spatial and temporal
information at all relevant scales, in order to develop comprehensive, accurate
representations of multiscale materials phenomena.

As a first step towards characterizing multiscale simulations involving coupling
between atomistic and continuum methods, we examine elastic wave propagation in
such ‘coupled’ media.

6.2 Example 1: The Consistent Embedding Framework
for Quantum-Classical Coupling

In this section, we demonstrate the successful implementation of a concurrent
multiscale methodology that couples classical atomistic simulations with quantum
mechanical methods, in tune with the consistent embedding principles. In partic-
ular, the choice of quantum chemical theory will be made subject to consistent
embedding constraints, where higher level quantum chemical theory will be used to
train less computationally demanding semi-empirical quantum chemical forms as
well as classical interatomic potentials. Here it is important to note that the form of
the quantum chemical Hamiltonian used is known as ‘semi-empirical’, but our
training will be based solely on computed results from correlated calculations. The
successful development of the semi-empirical Hamiltonian or the Transfer
Hamiltonian (TH) and the classical potentials will enable a concurrent multiscale
methodology capable of modeling the mechanical deformation of silica-based
systems. The interface between TH modeled region and the classical region will be
handled by ‘pseudo atoms’ that are appropriately trained to enable a seamless
coupling between the regions.

6.2.1 Transfer Hamiltonian

For our higher level of quantum chemical theory we choose a method that includes
the effects of electron correlation, known as coupled cluster theory including single
and double excitations (CCSD). This highly accurate level of quantum chemical
theory is also, of necessity, very computationally demanding. Hence it is necessary
to choose a training molecule which exhibits the chemical bonding characteristic of
silica, but is limited to a relatively small number of atoms. We choose pyrosilicic
acid (H6Si2O7) to create a CCSD training set for the ‘semi-empirical’ Hamiltonian.
As seen in Fig. 6.2 [9], the Si–O bond length is varied through compressions and
stretches to generate a training set for the Transfer Hamiltonian. In this case, we
have chosen to use a neglect of diatomic differential overlap (NDDO) Hamiltonian
as our less computationally demanding quantum chemical model. NDDO is one of
a set of approximations collectively referred to as zero differential overlap methods
[10]. When computers were much less powerful than they are today, these methods
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were developed to be computationally tractable and used mathematical forms
derived from theory. These forms were parameterized to reproduce certain empir-
ical data, e.g. heats of fusion, for simple molecules and the resulting parameterized
Hamiltonians were applied to more complex problems with some success. The
empirical parameterization of theoretically derived forms came to be known as
‘semi-empirical’ theory. By choosing to parameterize the NDDO Hamiltonian
based on high accuracy, ab initio quantum chemistry, CCSD, we remove the
empirical information from the procedure and replace it with a more detailed the-
oretical model. This substitution of theoretical for empirical information charac-
terizes one possible implementation of the consistent embedding framework for the
development of predictive modeling. The training of the Transfer Hamiltonian is
accomplished using genetic algorithms, which are tuned to reproduce CCSD forces
for the training set of molecular geometries. The choice of training on forces is
motivated by our interest in stress-strain relations. In the next section, the impli-
cations of this Transfer Hamiltonian will be examined in a somewhat larger system.

6.2.2 Classical Interatomic Potential

The proposed method for constructing a classical pair potential for use in multiscale
modeling has several components: (1) it should be constructed for accuracy of the
specific properties to be studied, (2) it should be “trained” on quantum data generated
in the same way as for the quantum domain at its interface (i.e. the TH), (3) it should
predict accurate equilibrium structure, but include training on appropriate near
equilibrium states as well, and (4) simplicity of form for parameterization and
implementation in MD codes should be maintained. The steps in constructing a
potential are the following. First the specific quantum method to be used in the

Fig. 6.2 Pyrosilicic acid is
used to create a training set of
forces from CCSD for the
Transfer Hamiltonian
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multiscale modeling (NDDO) is applied to a large cluster or representative sample of
the solid to be modeled. The forces on atoms for both equilibrium and near equi-
librium states are then calculated quantum mechanically. Next, a simple functional
form for the pair potentials with the correct physical shape (e.g., one of the existing
phenomenological forms) is chosen and the parameters controlling that shape
selected for optimization. The forces on the ions are calculated for these chosen
potentials at the configurations used in the quantum force calculations, and compared
with those quantum forces. The parameters are adjusted for a good fit to the quantum
force data. When a good fit has been obtained, the potential energy at equilibrium is
tested for stability using a gradient algorithm to establish that a local minimum of the
potential has been obtained. Finally, the property of interest (e.g., elastic response) is
tested by comparing its calculation usingMD simulation with the fitted potentials and
that with the quantum forces. If necessary, the fitting procedure can be repeated with
differing weights for the quantum force data in equilibrium and near equilibrium
states, or other additional input from the quantum calculations.

Following the above enumerated strategy, an interatomic potential for silica with a
functional form as given in (6.1) is developed (the parameter-set is available in [11]).
The training set for this potential consists of using force data corresponding to small
strain configurations as well as the equilibrium configuration of a silica nanorod as
shown in Fig. 6.3 [11]. Fitting a set of the ten potential parameters, constrained by
charge neutrality, from hundreds of data points requires an optimization approach that
is capable of exploring a large parameter space efficiently without being trapped in
local minima. For this task, a genetic algorithm (GA) in conjunction with standard
geometry optimization techniques is used as discussed in [11].

U ¼
X
i\j

VijðrÞ;VijðrÞ ¼ qiqj
rij

þ aijexp �bijrij
� �� cij

r6ij
ð6:1Þ

6.2.3 Pseudo Atoms

The Link Atommethod (LA) is a commonly used method to spatially couple ‘quantum
mechanics (QM)’ and ‘classical mechanics (CM)’ regions [12]. In this method,
hydrogen atoms are added to the CM side to satisfy the valency of the QM system.
There are many variations within the implementation of the LA method, for example,
the double Link Atom method [13], the Add-Remove Link Atom method [14] or the
Scaled-Position-Link-AtomMethod (SPLAM) [15]. Other termination schemes for the
QM/CM boundary include the ‘pseudobond’ scheme [16], ‘IMOMM’ [17, 18] and
‘ONIOM’ [19, 20] procedures, and the ‘effective group potential (EGP)’ [21].

In this work, to ensure adherence to the consistent embedding principles, we
have developed the “pseudo-atom” method as applicable to silica. The pseudo-atom
serves as the QM-CM interfacial atom that provides the appropriate boundary
conditions (chemical environment) for the QM region. In our formulations, we have
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chosen to have silicon atoms as the terminal atoms of the QM region, while the
pseudo-atom corresponds to terminal oxygen atoms within the CM region. The
training cluster is a pyrosilicic acid molecule (Fig. 6.4). The part of the molecule
within the dotted lines is replaced by an effective fluorine (F) atom whose NDDO
parameters are then adjusted to give the correct QM forces (which implies correct
geometry as well) and charge density in other parts of the molecule (outside the
dotted lines). The specific NDDO parameters modified are: one-center-one-electron
integrals, Coulomb integrals, exchange integral, and two-center-one-electron reso-
nance integrals [10]. The primary advantage of using pseudo-atoms is that they are
trained to give the correct QM forces and charge densities for the QM-CM inter-
facial Si–O bonds. This allows use of the pseudo-atoms while studying dynamics in
the system and enables embedding a QM region within a CM system. In addition,
the surrounding CM region is effectively represented as a dipolar field, which is
taken into account by the NDDO Hamiltonian that treats the QM region.

6.2.4 Quantum-Classical Multiscale Framework

As a first step towards examining the QM-CM interface, we characterize the ability
of the multiscale representation to accurately model a silica nanorod as shown in

Fig. 6.3 Structure of the
SiO2 nanorod; red spheres
represent Si atoms while
blue spheres represent
oxygen
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Fig. 6.5. The two CM regions are represented as two dipoles for the top and bottom
portions of the rod (Fig. 6.5). The values of the dipole have been calculated using
the TH-NDDO charge density for these two portions of the rod. These domains are
taken to be charge neutral, but are polarized by the presence of the QM domain. The
validity of the approximation by dipoles has been checked by comparing the force
on a silicon atom within the central ring (see Fig. 6.6) that arises due to all charges
and that due to the dipole. Clearly the CM-QM is able to match the full QM
representation, which is not the case when link atoms are used instead of the pseudo
atoms. Further, it is found that the normalized difference of charge density is
reproduced to within 0.1 % in the plane of the ring in the coupled QM-CM rep-
resentation. This scheme was found to be applicable to both equilibrium and
strained configurations, as illustrated in Fig. 6.6 for the following cases: (a) equi-
librium, (b) the ring of the QM domain radially expanded by 5 %, and (c) a dis-
torted ring in which one Si atom is radially pushed out and one Si pushed in. Also
shown are the corresponding results for a longer 10 ring rod (cases (d), (e), and (f)).

In order to determine the efficacy of the CM-QM coupling, we next determine
the elastic response of the ‘composite’ nanorod and compare it with QM-only and
classical potential-only simulations. Here, the forces on the atoms in the CM region
are calculated from the pair potential, while the forces on the atoms in the QM
domain are provided by the TH-NDDO method. It has to be noted that CM atoms
interact with atoms in the QM region via the interatomic potential, while the QM
atoms ‘see’ the CM atoms via the dipolar field(s) that are calculated based on the
positions of the atoms in the CM region. Figure 6.7 shows the stress-strain behavior
of the nanorod obtained from three different methods: (i) TH method for the entire
rod, (ii) pair potentials for the entire rod, and (iii) the composite rod constructed as
described above. The three overlaying curves indicate that the composite rod is
identical to the rod obtained from TH and the pair potential nanorod in terms of
small strain elastic properties and structure. The stress-strain results show the
success of our multiscale method indicating that the composite rod is indistin-
guishable from the underlying quantum mechanics for small-strains. But, at higher
strains (>10 %), there is deviation in the respective responses. This is because the
pseudo-atoms, trained at regions only close to the equilibrium configuration, fail to

Fig. 6.4 Pseudoatoms (labeled Modified F) are trained to reproduce local effects in the electron
density
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give the correct charge densities at such high strains. This diagnosis was checked by
comparing the charge density in the QM domain of the 12 % strained rod with that
of equilibrium configuration and a difference of 6 % was found. Retraining of the
pseudo-atoms improve the stress-strain performance of the composite rod beyond a
strain of 10 % is possible, however real systems have many inherent defects. These
defects act as stress concentrators that cause the material to break at much lower
strains than observed for the pristine nanorod, so retraining of the pseudo-atoms
was deferred while the behavior of a defective rod was examined.

Fig. 6.5 Embedding scheme: approximating the CM region by pseudo-atoms and dipoles

Fig. 6.6 Forces on Si nuclei for various cases studied
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Towards this end, a defect notch was placed in the 108 atom nanorod by removal
of an oxygen atom as shown in Fig. 6.8. The MD stress-strain curves for this
notched rod were found using TH quantum mechanics, the trained classical
potential, and the composite. We note that the presence of only a small defect can
significantly reduce the yield stress of the material and make it more prone to
fracture. The TH curve for the defect-free rod is plotted in the same figure to
contrast the value of the yield stress. As can be seen there is a reduction of
*60 GPa in the yield stress. For the composite rod in this case, the QM domain
was chosen to consist of 2 silica planes and the intermediate 5 oxygen atoms (see
Fig. 6.8), so that the defect could be located in the QM region. The stress-strain
curve for this composite notched rod agrees well with that for the TH quantum
calculation up to 10 % strain. Above 4 % strain the curve for the composite notched

Fig. 6.8 The notched nanorod and corresponding stress-strain curve

Fig. 6.7 Stress-strain curve
for the TH (quantum), new
potential (classical), and
composite rods

258 K. Muralidharan et al.



nanorod follows that of the TH instead that of the trained classical potential
nanorod, showing that the composite rod is representing the “real” material. This is
exactly what is required of multiscale modeling.

So far, we examined the role of the interface when methods that correspond to
different scales and theories are spatially coupled. Now we turn our attention to
multiscale simulations where the scale-specific and/or the theory-specific methods
are not spatially coupled in an explicit and dynamic fashion; rather the method of
wavelets is invoked to enable coupling of different methods. The method called the
compound wavelet matrix (CWM) method is given below and examples that
demonstrate its use are then discussed.

6.3 The Compound Wavelet Matrix Method

The ability of wavelets to separate scale information effectively through the con-
struction of local orthogonal basis functions makes them invaluable in the exami-
nation of local, global and scale-wise properties of any data set (or signal) that
requires multiresolution analysis. As examples, such data could represent fractals,
multifractals, turbulence patterns, or earthquakes [22–24]. In such applications,
typically, wavelets operate on a signal obtained from a method restricted to a single
discretization in time and/or space. CWM differs from such multiresolution tech-
niques in that it bridges solutions obtained from multiple methods operating on
different discretizations in time and space to yield a composite multiscale repre-
sentation, while using wavelets as the basis. Utilizing wavelets as a multiscale tool
rather than a pure multiresolution tool makes the CWM approach a unique as well
as a powerful technique for coupling disparate simulation methods that address the
same process, albeit at different levels of accuracy, or, equivalently different levels
of theory. CWM also differs from up-scaling techniques [25, 26] used in adaptive
bridging of scales, given that in the CWM framework, physical phenomena are
examined using two or more different methods at their respective scales not nec-
essarily based on the same variables or in the same mathematical form.

CWM is capable of combining short-time (and/or small spatial domain) fluc-
tuations that could only be obtained from computationally expensive fine-scale
methods, with the large-scale long-time (and/or large spatial domain) mean
behavior of coarse-scale method(s), while assuming the overall trajectory fluctu-
ations are stationary. It has been applied to various multiscale phenomena such as
grain-growth and microstructure evolution [27], heterogeneous porosity/inclusions
[28], dispersion problems [29], and diffusion from a reactive boundary [30]. In
these studies, the fine-scale and coarse-scale information were combined via a
compound wavelet matrix to yield the coupled multiscale behavior of the system
over the entire extent of space/time. In other words, CWM was used as a corrective
tool, involving the transfer of fine-scale fluctuations of the accurate method on to
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the coarse-scale trajectory. In this paper, the CWM is further generalized to serve as
an accurate predictive tool, by extending it to take into account the interaction of the
fine- and coarse-scale methods as the simulated system evolves in phase space.
Later in this chapter, we will explore some of these applications.

A discrete function can be hierarchically transformed into wavelet space by
using discrete wavelet transforms (DWT) [31–35] via a series of
‘scale-decompositions’ with each stage of decomposition representing a level of
description of the function specific to that scale. The transforms involving a set of
wavelet filters in the form of linear convolution operators are applied hierarchically
first to the full data vector (assuming the discrete function to be a 1-D data vector of
length 2N), then to a smoother vector of length 2N−1, then to a vector of length 2N−2

and so on and so forth (as shown in Fig. 6.9a) until only a trivial number of smooth
components (scaling or mother-function coefficients) remain; the number of scaling
coefficients depend on the number of wavelet filters chosen. At any scale, the ‘hi’
components of the transformed vector (Fig. 6.9b), which are essentially decorre-
lated, represent the wavelet coefficients corresponding to that scale, and characterize
the scale-specific fluctuations inherent to the original function. The inverse trans-
form is the exact reverse of the above process, with the wavelet operator (analysis
operator) replaced by its inverse (synthesis operator). Different boundary conditions
(e.g. periodic, fixed, zero, or on the interval), are implemented by modifications of
the appropriate operator terms [35].

Every scale decomposition stage results in two sets of components: the smooth
(or coarse) and the fine components, each representing a localized ‘moving’ average
of the function (in wavelet space) with the fine components being regarded as the
‘true’ wavelet coefficients corresponding to the given scale. For convenience, at
each stage, the data are rearranged as shown in Fig. 6.9b. Since the hierarchical
decomposition at each stage acts only on the smoother components of the previous
stage, only very ‘coarse’ information is available at the final stages of the wavelet
transform procedure.

The given function (or signal) can be examined at any given range of scales
simply by retaining the wavelet transform (WT) coefficients corresponding to the
chosen scales and setting all other coefficients equal to zero and then sequentially
reconstructing via the inverse transform to obtain a modified signal; this method is
sometimes referred to as the padding technique. Extending these concepts, coupling
of two different signals in wavelet space can be done by first identifying their
overlapping scales (spatial/temporal) and then substituting corresponding wavelet
coefficients from each signal into a compound wavelet matrix (CWM) that can be
inverted to provide a hybrid signal that has the desired characteristics of both
signals over the union of scales of the two signals. The identification of the overlap
is critical to the CWM method and the extent of overlap decides the relative
accuracy of the hybrid signal as explained below.
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6.3.1 Compounding Methodology for Coupling Scales:
Forming the CWM

Without the loss of generality, the methodology will be described based on two
temporally varying 1-D signals, one representing the high-resolution, short-time

Fig. 6.9 a Stage by stage wavelet decomposition of a 2N vector. At each stage, the data vector is
convolved with two kinds of wavelet filters low-pass and high-pass resulting in two sets of
wavelet-transformed data. b Illustration of the first stage of wavelet decomposition. The initial
convolution operation is followed by rearrangement. Here h and l represent the high-pass and
low-pass components, respectively
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trajectory—the fine signal, while the other corresponds to a coarse-resolution
approximation obtained over a much longer time interval—the coarse signal. Let
R denote the ratio of the size of the coarse (Δtc) over the fine (Δtf) time steps, and Nc

and Nf represent the number of coarse and fine data points respectively. The fol-
lowing steps result in a compound signal that contains essential information from
both signals:

1. Coarse signal interpolation: Depending on R, the coarse signal is interpolated in
order to obtain a new signal with a larger set of data points (Ic), with the time
interval between successive data points equaling Δtf. Note that Ic equals the
product of R and Nc.

2. Wavelet decomposition: The wavelet transforms of the coarse and fine signals
are performed until a trivial number of mother wavelet or scaling coefficients
(SN) are left. If SN = 8 (23), then, pc−3, and pf−3 scale decompositions are
carried out on the coarse and fine signal, yielding Ic−8 and Nf−8 WT coefficients
respectively, where pf and pc are defined in (6.2).

Ic ¼ 2pc

Nf ¼ 2pf
ð6:2Þ

3. Selection/identification of overlapping scales: Overlapping scales refer to
common or equivalent scales between the two signals; given that 2pc coarse data
points and 2pf fine data points are sampled at the same rate (i.e. size of
respective time-steps are equal), the first pf�3 scale-decompositions for each

signal are equivalent and yield 2 pc�nð Þ and 2 pf�nð Þ coefficients respectively at the
nth scale decomposition (see Fig. 6.10).

4. Prolongation: At all overlapping scales, the fine WT coefficients are replicated to
ensure consistency in the number of coarse and fine WT coefficients. The
number of replications Mp at a specific scale is given by Mp ¼ Ic=Nf and rep-
resents periodic repetitions of the fine fluctuations at every scale with the
inherent assumption that the fluctuations are quasi-stationary over the period of
coupling. The primary role of this step is to set the stage for replacement of a
majority of the coarse coefficients by the repeated fine coefficients to enable the
transferability of all fine information at every overlapping scale.

5. Multiscaling via mixing and scaling of coefficients: This stage enables an
‘intelligent’ extension of the fine signal via appropriate selection of relevant
wavelet coefficients at all scales from both signals to form a compound wavelet
matrix (or vector in this case): in order to facilitate explaining the merging of
coefficients, we will use for the coarse signal a smooth logarithmic function
consisting of 1024 points (Fig. 6.11), while the shorter fine signal is comprised
of the first 256 data points of the coarse signal with added white noise (via
random numbers). Figure 6.12 presents (i) the WT of the coarse signal, (ii) WT
of the first 256 points of same coarse signal, and (iii) WT of the fine signal; the
above transforms use the symmetry-preserving bi-orthogonal CDF(4,6) wavelet
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filters with on-the-interval boundary conditions [35]. Specifically, in Fig. 6.12,
the values of the various coefficients at all scales of decomposition are given
(except the first scale).

The following are clearly evident from Fig. 6.12: (i) the initial few and the final
few coefficients at every scale are significantly different in magnitude from the rest
of the coefficients, (ii) excluding the final few coefficients, the 2ðpf�nÞ coefficients of
the shorter coarse signal and the first 2ðpf�nÞ coefficients of the larger coarse signal
(where n refers to the nth scale decomposition, and 2pf ¼ 256) at equivalent scales

Fig. 6.10 Tabulation of the
number of overlapping scales
and “coarse-only” scales for
fine and coarse functions
consisting of Nf and Ic data
points
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are identical, and (iii) the fine coefficients are slightly larger in magnitude than the
corresponding short coarse coefficients at every scale.

The difference in magnitude between the initial (or final) few coefficients and the
rest is due to the imposition of boundary conditions, which contribute significantly
to the net magnitude of the boundary (i.e. the initial and final few) coefficients [35].
The fact that there is a one-to-one match between the short coarse and the corre-
sponding long coarse coefficients (barring the final few coefficients) at every
equivalent scale is a consequence of the moving average representation charac-
teristic of wavelets. The deviations between corresponding short coarse and fine
coefficients are a measure of the fluctuations (in this case, the white noise) inherent
to the fine signal as also any possible deviations in the overall trajectories of the
coarse and fine trajectories (in this case the overall trajectory is the same).

While boundary conditions do change the initial and final coefficients at each
scale significantly, it has to be noted that when both short and long coarse signals
are wavelet transformed, the initial coefficients are the same, while it is only the
final coefficients that differ; this is due to the fact that the same domain is sampled
via the convolution operation to yield the initial coefficients while the longer time
data is not available to the shorter signal resulting in differences in the magnitudes
of the final boundary coefficients. The repetition of fine coefficients at overlapping
scales, replicates the essentially uncorrelated fluctuations associated with the fine
signal over the entire domain of the long, coarse signal. This repetition has to be
done with care to (i) prevent any unphysical behavior that could arise due to the
periodic appearance of the boundary coefficients at each scale, while (ii) ensuring
appropriate boundary conditions are still imposed. One could identify these

Fig. 6.11 Coarse and fine logarithmic signals used for explaining the CWM process. The inset
figure represents the entire coarse signal
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Fig. 6.12 Magnitude of WT coefficients at different stages (excluding the first stage) of
decomposition of a 1024 data-set logarithmic signal as given in Fig. 7.11. Except for the initial and
final three coefficients, note that the short-coarse coefficients coincide with the long-coarse coef-
ficients and are always found right on top of the impulses that represent the long-coarse coefficients
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boundary coefficients either from the knowledge of the extent (length) of the
boundary elements in the analysis/synthesis matrix or by adopting an empirical
procedure: at each scale, the deviation in magnitude between corresponding short
coarse and short fine coefficients averaged over all coefficients (except for the first
and last) is calculated. The number of boundary coefficients is identified as the
number of successive coefficients greater in magnitude than the average deviation
calculated for that given scale. Typically, for the interval boundary conditions used
herein, the first three and the last three coefficients represent the boundary
coefficients.

After replication, any fine coefficient that is greater in magnitude than the
average deviation is replaced by the corresponding long coarse coefficient, except at
certain locations, as explained below:

For clarity, consider the second equivalent scale decomposition of the long
coarse (i.e. coarse) and short coarse signal (Fig. 6.12g). Only the first 61 (=64 − 3)
coefficients are identical, while the 62nd, 63rd, and 64th coefficients are obviously
different, though, in fact, the ratios of the respective boundary coefficients (i.e. ratio
of 254–256 of long coarse to the 62–64 of short coarse) are very similar (analogous
trends are true for all other equivalent scales too). In order to transfer the entire
spectrum of fine information available at this scale, and to ensure that only the true
fine signal fluctuations and trends are periodically replicated, an initial repetition of
all (in this case Mp = 4) fine coefficients; next, the 62–67, 126–131, 190–195 of the
repeated fine coefficients (corresponding to the boundary coefficients) are replaced
by the equivalent coarse coefficients that are scaled by a multiplicative factor; this
factor equals the ratio of the sum of absolute magnitudes of the short-fine coeffi-
cients to the sum of absolute magnitudes of the short coarse coefficients, with the
boundary coefficients being excluded in the respective sums.

Keeping in mind that the ratio of the end boundary conditions of the respective
signals at each scale are comparable, the 254th, 255th and 256th fine coefficients are
scaled by a factor Es(1,2,3), where Es(1,2,3) are the ratios of 254th long-coarse to
62nd short coarse, 255th to 63rd and 256th long-coarse to 64th short coarse
coefficients respectively. In a similar fashion, the above algorithm is repeated for all
other overlapping scales too.

After appropriate repetitions and replacements at every overlapping scale, 32
remaining coarse coefficients are available (out of which, the first 8 represent the
scaling coefficients) in addition to the 8 remaining scaling coefficients of the fine
signal. Since no equivalent scales are available, the remaining 24 (9–32) of the 32
coarse coefficients are retained; in contrast, the first eight coefficients of the com-
pound matrix are chosen to equal scaled values of the corresponding eight scaling
coefficients of the fine signal, with the scaling factor similar to the definition of Es
in the previous paragraph.

This method of repetition, scaling and replacement of the coefficients, enforces
transferability of almost all fine information (excepting the repeated boundary
coefficients), while ensuring an ‘informed’ modification of the end boundary
coefficients and the scaling coefficients, which combine in tandem to enable the
suitable extension of trends exhibited by the short time fine trajectory.
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6. Compounding: The selected WT coefficients are assembled to form a com-
pounded matrix (vector in this case) that has both coarse and fine WT coeffi-
cients, ready for inversion.

7. Reconstruction: The hybrid signal is now obtained via a series of convolution
operations involving the compound matrix (vector) and the synthesis matrix.

The relative number of overlapping scales affects the quality of the com-
pounding; a larger number of overlap scales leads to a better description of the
fine-signal features, while a decrease in the number of overlap scales with respect to
the total number of scales leads to reduction in the accuracy of the description of
fine signal features. The rescaling of the eight mother-wavelet coefficients by the
respective Es ensures that the resultant compounded trajectory represents a logical
projection of the shorter fine trajectory extended in time.

6.4 Example 2: Microstructural Evolution of Materials
Using the Compound Wavelet Matrix Method

In this example, we illustrate a simple yet powerful application of the CWM
framework for bridging an atomistic model with a lattice Q-states Potts model to
describe grain growth in nanocrystalline materials over different ranges of spatial
and time scales. The primary advantage of this method is that the simulation time of
the coarsest methodology is not controlled by the methodology with the slowest
dynamics.

The polycrystalline state of matter is multilevel with information at several
scales, Point defects, dislocations, grain boundaries, grain boundary junctions and
iso-orientation aggregates of grains span a very wide range of scales from the
atomic to the mesoscopic to the macroscopic. The geometric complexity is com-
plicated further by the interactions among structural features at different scales. To
cite only a few: grain boundaries which may act as source or sink for point defects;
grain boundary/dislocation (from bulk to primary to secondary grain boundary
dislocations) interactions and their effect on grain boundary migration; grain
boundary/grain boundary interactions during grain annihilation or topological
transitions such as grain switching; and low energy/high energy grain boundary
interaction in anisotropic polycrystals. In addition to the structural hierarchy of
polycrystalline materials it is essential to also recognize their dynamical nature [36].
Processes at various length scales usually possess different relaxation times sug-
gesting that in addition to the spatial hierarchy a temporal one exists as well. For
instance, although point defects may exist at equilibrium, dislocations and grain
boundaries may never be at equilibrium. Microstructures and the underlying grain
distribution are therefore only a reflection of the fact that a polycrystalline material
has not had enough time to reach equilibrium (lowest energy corresponds to the
single crystal state).

6 Consistent Embedding Frameworks for Predictive Multi-theory … 267



While it is well known that normal grain growth achieves a quasi-stationary
distribution of grain sizes after a transient period, a complete picture of grain
growth of polycrystalline materials is still to be achieved, the main reason being that
the overall kinetics are controlled by geometrical features and relaxation times at
largely different scales. In particular, grain growth kinetics with anisotropic grain
boundaries is governed by physics at three different scales, namely atomic scale at
the level of individual grain boundaries, a larger scale associated with the grain size
and the even larger scale of clusters of grains with similar grain boundary energy.

Atomistic computer simulation techniques such as MD can capture the physics
of the phenomenon from the atomic scale and up. However, to study grain growth
at the scale associated with clusters of grains as well as its interplay with processes
at the two other smaller scales, one would need to simulate an excessively large
number of atoms for an excessively long time unachievable with present and
foreseeable computer capabilities. On the other hand, several mesoscopic compu-
tational techniques such as Monte Carlo (MC) simulations based Q-states Potts
model [37], continuous models [38], Vertex model [39] have been developed to
simulate the evolution of microstructure in polycrystalline materials, but all these
techniques are usually limited in their inability to include atomic scale features.
Thus, given the hierarchy of spatial scales and time scales associated with grain
growth, it is important to couple simulation techniques such as MD and mesoscopic
models to study grain growth over the complete spectrum of scales. Towards this
end, MD simulations of Lennard-Jones (L-J) systems and MC simulations based on
the Q-states Potts model are employed within the CWM framework to capture the
multiscale physics of grain growth in materials. Specifically, a 2-D grain growth is
modeled and both MD and MC are applied simultaneously at the coarse and fine
spatial scales.

The two-dimensional simulated system is modeled at the atomic scales using the
6–12 Lennard-Jones potential [40] with parameters ε = 119.79 K and σ = 3.405 Å.
This atomic system consists of 22,500 particles in a cell with edge
length *0.0503 μm. Interactions between atoms are extended up to third nearest
neighbors. A polycrystalline microstructure with fine grains is initially obtained by
quenching a liquid. This initial microstructure is then evolved with a constant
temperature-constant volume (NVT) MD algorithm. The temperature is maintained
at approximately 70 % of the melting point. Periodic boundary conditions are used
for about 400,000 MD integration time steps or nearly 1.7 ns, after which a coarser
microstructure and a 63 % drop in energy are obtained. This microstructure is then
characterized by calculating the excess atomic potential energy of each individual
atom (relative to the potential energy of an atom in a perfect lattice at the same
temperature). The excess atomic energy is then normalized by the total excess
energy of the microstructure at t = 0. The spatial distribution of the normalized
excess atomic energy is then mapped onto a 256 × 256 square matrix to obtain what
will be referred to in the rest of the discussion as an energy map. We note that the
L-J system includes grain boundary anisotropy, that is, the grain boundary energy
may vary depending upon the degree of misorientation between adjacent grains.
A microstructure may therefore contain low-energy low-angle grain boundaries and
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high-energy high-angle grain boundaries. Moreover, the anisotropy in grain
boundary energy also results at fixed misorientation from the inclination of the
grain boundary plane.

In addition, MD simulations of a system four times larger are carried out. The
same conditions are imposed and as a result a microstructure that was 63 % less
than the initial structure was obtained, similar to the smaller MD system. The spatial
variation in energy for this system is mapped onto a 512 × 512 square matrix. This
large MD system serves as the yardstick to assess the CWM based coupling of
smaller MD system with the Potts model.

Next, a Monte Carlo (MC) simulation of grain growth with the Potts model is
carried out. In general, the Potts model maps the microstructure onto a discrete
lattice coarser than the atomic scale, and the “spin” state S = 1,…,Q of each lattice
site represents the orientation of the grain in which it is embedded [37]. A grain
boundary exists between two adjacent lattice sites with different orientations. For
the sake of simplicity, the Potts model we use here does not include orientational
anisotropy; the energy associated with two neighboring sites with different spin
orientations does not vary with the magnitude of the difference in spin.

The system size of the Potts model used here is the same size as that of the
bigger MD system or equivalently four times that of the smaller MD system
described above. Periodic boundary conditions are imposed and only nearest
neighbor interactions are considered. The spatial discretization corresponds to
128 × 128 sites. In the MC algorithm, the thermal energy, kBT, (where T is the
temperature and kB is Boltzmann constant) is 0.2 J with J being the energy asso-
ciated with two misoriented neighboring sites. This temperature is sufficient to
alleviate the pathological problem of growth on first nearest neighbor square lattices
at low temperature. Indeed it is known that for the square lattice with nearest
neighbor interaction, domain grain growth at zero temperature stops when the
domain vertices absorb all initial wall curvature [41]. However, Anderson et al. [42]
have shown that at finite temperature the square lattice with nearest neighbor
interaction and Q > 3 exhibits significant coarsening, grain boundary curvature and
microstructure resembling that obtained with a triangular lattice. In this work, we
chose Q = 10, to ensure the consistent embedding requirements are met.
Specifically, it was seen that this choice yielded a similar (as compared to MD) time
evolution in the potential energy (averaged over four trajectories) of the Potts model
as shown in Fig. 6.13. Note that the potential energy in the Potts model represents
an excess energy relative to a perfectly ordered system (perfect crystal). In this
context, it is worth pointing out that the conversion from the MC time to real time
relies on a scheme, which is based on grain boundary migration [43].

Figure 6.14a, b represents the normalized energy maps as obtained at the end of
the large MD and MC simulations respectively. From these figures it is evident that
fine-scale features that characterize the MD energy map are not present in the Potts
model maps. Thus a true multiscale representation of the microstructure can be
obtained as a union between the smaller MD system and Potts model microstruc-
tures. Towards this end, the CWM method in 2-D is implemented as follows. In
2-D, given an energy map of 512 × 512 points such as that generated in the large
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MD simulation, the wavelet transform consists of three 256 × 256 matrices (cor-
responding to x, y, xy directions), three 128 × 128 matrices, and so on; each
decomposition level is at half the resolution from the previous one. The final level
of decomposition represents the map at the coarsest resolution. Wavelet analysis of
a MD energy map provides its wavelet transform coefficients from the atomic to its
coarsest scale (corresponding to the physical dimensions of the system). Similarly
the wavelet coefficients of an MC energy map extend over scales ranging from the
lattice spacing of the grid to the system size.

Note that the Potts model system is four times larger than the smaller MD system
and the corresponding number of scales is 7 (27 = 128). In contrast the larger MD
system of comparable size has 9 (29 = 512) scales, while the smaller MD system has
8 scales though its size is a quarter of the Potts model/large MD. Thus to ensure
appropriate comparisons, a 512 × 512 CWM matrix is formed by compounding the
wavelet coefficients from the smaller MD and Potts representations as per the
strategies elucidated earlier. Only the coefficients from the Potts model corre-
sponding to the coarsest scales (1–2) are retained while the wavelet coefficients
corresponding to scales 2–8 of the smaller MD system are used for representing the
finer scales of the CWM (i.e. 3–9 scales of the CWM). We have used biorthogonal
symmetric wavelets with four vanishing moments and the corresponding so-called
scaling functions [33] as our wavelet basis sets in this work.

In order to carry out a scale-by-scale comparison of the MD/Potts representation
with the larger MD system, the energy corresponding to each scale is calculated.
We have used energy maps from frozen microstructures in order to minimize the
contribution of thermal vibration to the energy of the small and large L-J systems.
Figure 6.15 shows the energy of the small and large MD systems, the MC Potts

Fig. 6.13 Excess energy
versus time obtained with the
MD simulation of a L-J
system and average of MC
simulations of four Potts
models with different initial
configurations. The excess
energy relative to the perfect
crystal at the same
temperature is normalized to
the excess energy of the initial
microstructure. The MC time
is scaled to match the MD
time (see text for details)

270 K. Muralidharan et al.



model and CWM coupled MD/Potts model, with respect to scale. The energy
associated with a given scale is evaluated from the wavelet representation of the
energy maps at that same scale. For the wavelet representation of the energy map at
scale n, the wavelet coefficients at all scales except those at n are set equal to zero;
with this set of coefficients, the inverse wavelet transform is performed. This
inverse wavelet transform represents the spatial distribution of the contribution of
scale n to the energy map. The total energy associated with scale n is then calcu-
lated as the sum of the energies in the representation at scale n. Figure 6.15 points
out to the fact that the Potts model deviates significantly from the larger MD model
especially at finer scales as expected. But, by implementing the CWM to integrate
the smaller MD and MC together, the ability to emulate variation in energy of the
more accurate larger MD system is significantly enhanced leading to good agree-
ment between the CWM based MD/Potts model and larger MD system.

Fig. 6.14 Gray scale
representation of the energy
maps (see text for definition)
for: a L-J system. b Potts
system. The energy increases
from black to white
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Using the above example,we have illustrated how themathematical tool ofwavelet
transformation can be used to analyze the microstructure of two-dimensional poly-
crystalline systems as well as their evolution during normal grain growth. The CWM
basedmethod presented here enables characterization of structural features at different
spatial scales and their respective contribution to the energy of amicrostructure.More
generally, using an illustrative example, we have demonstrated the potential of using
wavelet analysis to bridge computer simulation techniques that model a given phe-
nomenon at different scales.

6.5 Example 3: The Dynamic-CWM (dCWM) Approach
Applied to Reactive Flows

The dCWM method extends the CWM approach to enable the concurrent coupling
of different scale-specific methods by dynamically combining the fine and coarse
simulation methods over successive sub-intervals (dynamic updates) to obtain the
compound trajectory. At each dynamic step, the fine and coarse trajectories are
coupled via CWM, and the resulting end point of the compound signal in trajectory
space becomes the starting point (initial condition) for computing the next set of
trajectories respectively; this procedure is then repeated for the desired number of
intervals as illustrated in Fig. 6.16. dCWM has the advantage of inherently coupling
the dynamics of each method, in addition to lending further stochasticity to the
compound trajectory, which could lead to a better exploration of the trajectory
space. Furthermore, in the ‘static’ CWM formulations, it was implicitly assumed
that the fluctuations obtained from the fine signal, which was evaluated over much
shorter time, was representative of fluctuations occurring over a much longer
duration. This is not necessarily true as the magnitude as well as the nature of

Fig. 6.15 A scale-by-scale
representation of the energy
of the small and large LJ
system and the Potts system.
Note that the red-line
represents the energy of the
CWM-combined MD-Potts
system (Colour figure online)
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fluctuations can and in general does change as the system evolves. This is overcome
in the dCWM approach, since the fine method is employed at various stages of the
evolution of the system. At the same time, the advantages of the CWM method are
retained, without any measurable increase in computational expense. Thus dCWM
can be viewed as a predictor-corrector method, while the CWM is simply a cor-
rector method. In order to illustrate the dCWM approach, we examine a model
system, consisting of two species A and B that participate in a first-order reversible
reaction occurring at a surface as given in (6.3). As discussed later in this section,
this problem demonstrates consistent embedding in the time domain.

A$kab
kba

B ð6:3Þ

The surface represents the boundary of a semi-infinite positive half space, with
the half space suitably discretized to handle diffusion of both species to (from) the
reactive surface. For convenience, the two reaction rates kab and kba are set to equal
unity, and the initial concentration of A at the reactive surface is chosen to be much
larger in order to bias the forward reaction to be more active at the initial stages of
the diffusion-reaction process. Further, initial concentration of both species is set to
zero everywhere other than at the reactive surface. Our numerical model of the
system is 1-D in space, such that the diffusion domain is discretized into line
increments and nodes, and the reactive surface is represented by a single boundary
node. The infinite extent of the diffusion domain is approximated by choosing a
sufficiently large length and large number of nodes such that for the duration of the
simulations, there is no change in concentration of species at nodes far from the
reactive boundary and that concentration remains equal to zero.

Two levels of description (coarse and fine) are used. The accurate ‘fine’ method
employs the stochastic kinetic Monte Carlo (KMC) method [44] in conjunction
with finite differences to simulate the chemical reaction at the reactive boundary and
diffusion respectively, while using relatively smaller time increments as dictated by
KMC. In contrast, the coarse method models both reaction and diffusion deter-
ministically using much larger time increments, thereby addressing much larger
temporal dimensions, in a less precise fashion. For simplicity, both coarse and fine
spatial dimensions as well as spatial discretizations are taken to be the same.

Fig. 6.16 Illustration of the
dCWM algorithm
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Using an explicit Euler scheme, the diffusion equation (6.4) for species diffusion
is solved numerically, where Cs and Ds represent the species concentration ([A] and
[B]) and their respective diffusion constants. The size of the time step for the fine
method is obtained from KMC calculations (described below), while the coarse
time step is chosen to be a multiple of the fine time step size. The flux of the
diffusing species is set to zero at the boundary node (i.e. at the reactive site).

@Cs

@t
� DSr2CS ¼ 0 ð6:4Þ

In the fine model, the occurrence of the two reactions (6.3) at the reaction site is
determined stochastically via KMC based on Gillespie’s stochastic simulation
algorithm [44]. The reaction times for both reactions are given by

dtab ¼ �log 1� R1ð Þ= A½ �kab ð6:5Þ

dtba ¼ �log 1� R2ð Þ= B½ �kba ð6:6Þ

where R1, and R2 are distinct numbers obtained from a uniform random number
distribution and [A] and [B] represent the atomic/molecular concentrations of the
respective species. The occurrence of either one of the reactions is decided by the
minimum of the two reaction times as given by the following equations.

If

dtab\dtba;
½A� ¼ ½A� � 1
½B� ¼ ½B� þ 1

ð6:7Þ

while if

dtab [ dtba;
½A� ¼ ½A� þ 1
½B� ¼ ½B� � 1

ð6:8Þ

Next, the smaller of the two times is chosen to be the size of the time step for
solving the diffusion equation. If the resultant time step size (Δt) is found to be
incompatible with the Courant condition for numerical stability of the diffusion
equation i.e. if Dt[Dx2=2DS, where Δx is the size of the finite difference element,
Δt is then sub-divided into smaller time steps as follows:

Dt ¼ ntDt
0 þ dt

nt ¼ int
Dt
Dt0

� � ð6:9Þ

where Dt0 ¼ Dx2=2DS.
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At every dynamic step, the fine simulation is propagated for Nf time steps and a
resultant variation in concentration of the two species at all nodes is obtained as a
function of time. Keeping in mind that KMC results in unequal spacings in time, a
spline interpolation routine is invoked to get the concentration variation as a
function of equally spaced time steps (Δtf). Once Δtf is obtained, Δtc is evaluated
(=RΔtf) and the coarse signal is propagated for Nc time steps.

In the coarse simulation, the concentration of each species at the reaction site is
obtained deterministically in a straightforward fashion from the respective reaction
rates (6.10) using a finite difference scheme. Once the coarse and fine responses are
obtained, the steps enumerated in the section on CWM is used to form the com-
pounded matrix (vector), with which the compound trajectory for the given
dynamic step is obtained, with the final concentrations of each species at all nodes
being the starting concentrations for the next set of coarse and fine calculations.
Since both kMC as well as the deterministic method model the same reaction, the
consistent embedding principles are satisfied; interestingly, this work demonstrates
consistent embedding multiscaling in the time domain.

Aðt þ DtÞ ¼ AðtÞ � kabAðtÞDt þ kbaBðtÞDt
Bðt þ DtÞ ¼ BðtÞ þ kabAðtÞDt � kbaBðtÞDt

ð6:10Þ

In order to present the advantages of using the dCWM framework for multiscale
simulations such as the 1-D reaction-diffusion problem described above, we chose a
model system that is simple enough, so that a stochastic ‘fine’ simulation of the
reaction-diffusion process (i.e. until the system attains chemical equilibrium), is
possible. Thus one can benchmark and quantify the ability of the dCWM frame-
work to emulate the multi-scale behavior of the system. In this context, in addition
to a coupled fine-coarse representation, the problem is also modeled using the
(i) stochastic fine method and the (ii) deterministic coarse method. In each case, the
number of nodes (i.e. extent of spatial discretization) equaled 1000 and the size of
each node was 0.0625 in arbitrary units of length (l); note that in addition, time was
also expressed in arbitrary units (t). Thus the units of concentration are expressed as
atoms/l, while the units of the diffusion constant are expressed as l2/t. The initial
concentration of [A] and [B] at the reactive site was set to 2500 and zero respec-
tively, while the respective concentrations at all other sites were identically set to
zero. The diffusion constant of both species was chosen to be the same and equaled
0.01. Figure 6.17a, b present the long-time variation in concentration of [A] and
[B] at the reactive site as obtained from the fine method (KMC + finite differences);
the simulation was carried out until there was a net saturation in the respective
concentrations, though there was still the persistent presence of fluctuations in both
trajectories. To achieve equilibrium 65,536 time steps were used, with the spline
interpolated time step size equaling 5.66 × 10−3 t (total time = 371.0t). The overall
trend (i.e. the mean trajectory) was independent of the choice of the random number
seed, while there were very minor differences in the occurrence of fluctuations for
different random number seeds. Also, the amount of fluctuations greatly diminished
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with distance from the reaction site (Fig. 6.17c, d) and in addition, far away from
the reactive site, the concentrations essentially remained zero. As a study in con-
trast, a full deterministic simulation was carried out for the same number of time
steps and the same time-step size as that of the fine method. Clearly, as evident from
Fig. 6.18a, b, the fluctuations characteristic of the fine method were absent from the
respective coarse trajectories.

Having the results at both ends of the scale spectrum, i.e., the results as obtained
using the accurate stochastic fine method and the purely deterministic coarse
method, attention is turned to examining the ability of the dCWM approach to
model the reaction-diffusion process accurately. The dCWM method depends
critically on the choice of Nf and the number of dynamic updates (Ndyn). Ideally, as
the system evolves in time, the fine simulation has to be invoked as frequently as
possible to enable sampling at various points in phase space, while Nf has to be
large enough to capture the stationary fine-scale fluctuations as and when the fine
simulation is invoked. Since Nf × Ndyn represents the total number of fine com-
putations, it would be judicious to maximize Ndyn and reduce Nf as much as possible
to limit any redundancy in the fine computations, while still being able to capture all
essential physics inherent to the fine simulation at different stages of the simulation
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Fig. 6.17 a and b represent the fine-method variation in concentration of species A and B,
respectively, with time. Note the fluctuations in the fine signal. c and d represent the time variation
in concentration of species A at nodes 50 and 100, respectively. The insets illustrate the variation in
concentration within a much narrower period of time. Note y-axis scale is not constant across the
plots
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for a given number of fine computations. Equally important choices are that of Mp

in tandem with Nc, as implicitly, it is assumed that the fluctuations captured over Nf

time steps are stationary over the time equaling Mp × Nc. In order to comprehen-
sively characterize the importance of the different simulation parameters as well as
also to aid comparison between the dCWM and the above-discussed stochastic and
deterministic results, the following were investigated: (i) the interplay between Nf

and Ndyn for a given number of total fine (Nf × Ndyn) and coarse (Nc × Ndyn)
computation steps, and (ii) the importance of the relative number of scales beyond
overlap (or equivalently Mp) for a given Nf. Note that for all investigations, the
compound trajectory obtained via the dCWM method consisted of 65,536 points—
the same as the pure coarse and fine trajectories.

As a first part to this study, the interplay between Nf and Ndyn for a fixed value of
Mp and a given number of fine computation steps (Nf × Ndyn) is investigated.
Obviously, Nc equals Mp × Nf. Figures 6.19 and 6.20 illustrate the variation of the
two concentrations at the reactive site for the specific value of Mp = 8 and different

 0

 500

 1000

 1500

 2000

 2500

 0  50  100  150  200  250  300  350

A
(t

)

Time (reduced units)

(a)

 100

 120

 140

 40  50  60  70

 0

 100

 200

 300

 400

 500

 600

 0  50  100  150  200  250  300  350

B
(t

)

Time (reduced units)

(b)

 90

 120

 150

 40  50  60  70

Fig. 6.18 a and b represent
the coarse-method variation in
concentration of species A and
B, respectively, with time.
The insets illustrate the
variation in concentration
within a much narrower
period of time
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combinations of Nf and Ndyn, while Table 6.1 gives the list of values of Nf, Ndyn and
Nc used in Figs. 6.19 and 6.20. It has to be pointed out that the time step size for the
coarse method was set to equal that of the spline interpolated fine method time step
size at each dynamic step, thereby avoiding the need for interpolation of the coarse
information at each dynamic step.

A central observation regarding the effect of Ndyn and Nc emerges; for a given
number of coarse-computation steps (i.e. 65,536 points) and fine computation steps
(=Ndyn × Nf), the amount of time addressed in each case increases with increasing
Ndyn (or decreasing Nf) as noted in Table 6.1. The fact that during the initial stages
of each case, there is a monotonic and a relatively rapid decrease (or increase) in the
concentration of A (or B) at the reactive site, indicates that, initially, the forward
reaction is selectively preferred by KMC. More importantly, at the initial stages,
relatively much smaller time step sizes are selected by KMC due to the higher
concentration of [A] (see (6.5) and (6.6)), while in the later stages, the probability of
occurrence of larger time steps is much higher. This fact is reflected in Fig. 6.21,
which depicts the variation in the time step size (evaluated at the end of every Nf

fine computations), as a function of the number of dynamic steps. Thus, for cases
involving large Nf (and therefore large Nc, for a given Mp), where the dynamic
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Fig. 6.19 Time-variation in concentration of species A for Mp = 8 and different values of Nf and
Ndyn such that their product is constant. The insets illustrate the variation in concentration within a
much narrower period of time
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updates occur less frequently, smaller time step sizes are used over much larger
chunks of computational steps, leading to much smaller time coverage. In fact, for
the Ndyn = 1 case, which represents the original CWM approach, the least time
coverage can be seen. Also, the dependence of total-time coverage was very weakly
dependent on the choice of the random number seed (for KMC), and any difference
in the times were negligible for all practical purposes.

The importance of Ndyn is shown by the insets of Figs. 6.19 and 6.20. One can
observe clear differences in the overall shape of the concentration variation as a
function of Ndyn. Particularly, for larger Ndyn, there are distinct oscillatory features
(as pointed out in the inset figures), similar in nature to those present in the fine
trajectories (Fig. 6.17), that are noticeably absent in the other cases; in other words,
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Fig. 6.20 Time variation in concentration of species B for Mp = 8 and different values of Nf and
Ndyn such that their product is constant. The insets illustrate the variation in concentration within a
much narrower period of time

Table 6.1 Values of various
simulation parameters used
for the case when Mp = 8 and
Nf × Ndyn are constant

Mp = 8 Ndyn Nf Nc Total
time (t)

Nf × Ndyn = 8192 32 256 2048 341.3

Nc × Ndyn = 65,536 8 1024 8192 264.0

2 4096 32,768 120.2

1 8192 65,536 66.8
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if one were to compare the CWM (Figs. 6.19d, and 6.20d) and the dCWM results, it
is obvious that in addition to larger time coverage, trends characteristic of the
concentration variations which were not captured by the CWM approach are
described by the dCWM method.

Next, the role of non-overlapping scales (SB) and Mp (for a given Nf) in con-
trolling the accuracy of the resulting trajectories is examined. Table 6.2 lists the
values ofMp, SB, Ndyn and Nc used in investigations for a specific value of Nf (=256)
as well as the number of overlapping scales (SO). As expected, there was a
noticeable dependence of the total time coverage on Ndyn (and Mp) as given in
Table 6.2. For smaller values of Ndyn the dependence was much stronger and, for
large values of Ndyn (≥32), the total time coverage approached that of the full fine
simulation.

The variations in dCWM with respect to the amount of very fine-scale fluctu-
ations and coarser-scale oscillatory trends were examined for different Nc (therefore
different SB), Ndyn andMp. Recognizing the effectiveness of wavelets as scale filters,
the contributions of different scales to the composition of each trajectory can be
examined via the padding technique discussed previously. For instance, the mean
trend of each trajectory can be filtered out by removing the coarsest-scale
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contributions, enabling the quantification of the fluctuations corresponding to the
finer scales, or in contrast, the fine-scale fluctuations could be filtered out, while
retaining the larger-scale oscillatory contributions to the overall trajectory. The
following steps were used to examine the effect of the various scales:

1. Interpolating all trajectories using splines to ensure equivalent time step sizes.
This is done since each trajectory corresponds to different time coverages and
consequently different time step sizes. All resulting trajectories are now
resampled at the time step size as that of the ‘Ndyn = 1’ case, and leads to a
one-to-one comparison between each dCWM trajectory and the benchmark, for
the time coverage of the given dCWM trajectory.

2. Next, the padding technique is invoked to scale separate the finer and coarser
information available for each trajectory. For extracting ‘coarse’ information, all
coefficients beyond a cutoff scale are set to zero, while the opposite is done to
obtain ‘fine’ information. This allows the ability to clearly demarcate the dif-
ferent scale contributions.

As an example of the above method, consider Fig. 6.22a, b, which present the
‘Ndyn = 128’ trajectory of species [A] when reconstructed selectively by inclusion of
specific scales. Clearly, the resultant coarse trajectory (Fig. 6.22a) obtained by
excluding all scales greater than 4 (24 = 16) is (almost) devoid of any fluctuations,
while the frequency and magnitude of fluctuations increase with inclusion of
additional finer scales. The exact opposite behavior is seen for the corresponding
fine components (Fig. 6.22b), with maximum stationary fluctuations present when
scale filter (i.e. number of excluded scales) equals 4. Thus, in order to characterize
the quality of each dCWM trajectory, the respective fine components obtained at
very small values of the scale filter (4–6), were examined and the ‘energy’ corre-
sponding to the transferred fine fluctuations was evaluated by calculating the
average intensity of the fluctuations for each case. The average intensity was in
turn, evaluated by calculating the square root of the sum of squares of the mag-
nitudes of fluctuations over the time domain of each trajectory and then averaging it
over the total number of time steps.

Table 6.2 Values of various simulation parameters used for the case of Nf = 256

Total time steps = 65,536 Ndyn Mp Nc SB Total time (t)

128 2 512 1 365.2

64 4 1024 2 350.0

Nf = 256 32 8 2048 3 341.3

SO = 5(8 − 3) 16 16 4096 4 308.0

8 32 8192 5 250.4

4 64 16,384 6 180.9

2 128 32,768 7 83.6

1 256 65,536 8 27.5
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Depending on the time coverage of the different dCWM trajectories, the cor-
responding average intensity of the benchmark trajectory was evaluated, thereby
enabling the quantification of energy transfer expressed as a ratio of the corre-
sponding dCWM intensity to the benchmark intensity (see Fig. 6.23a). In
Fig. 6.23a, for trajectories with Ndyn ≥ 8, the energy was evaluated over 524,288
(219) points resampled at the Ndyn = 1 time step size, while, 262144, 131072 and
65536 points were used for Ndyn = 4, 2, and 1 respectively. Also, note that for a
given choice of Ndyn (and other related parameters), and a given value of the scale
filter, the calculated energies were very similar for different values of the random
number seed (5 different trajectories for each case were considered), and the
standard deviation in the scale energy was less than 1.0 %. Figure 6.23b provides
information on the energy contained in each scale for the benchmark trajectory
evaluated over 524,288 points; this can be used for the purposes of estimation of
scale energy for the different dCWM trajectories when used in conjunction with
Fig. 6.23a.
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As expected, Fig. 6.23a shows a strong correlation between the energy ratio and
Ndyn, such that with increasing Ndyn, there is a parallel increase in the energy of the
corresponding trajectories; in fact the energy of the Ndyn = 128 trajectory is
remarkably similar to the benchmark for the three different scale filters given. Since
the computational cost for the fine method is the most expensive, one can relate Mp

(and Ndyn) in tandem with the ability of the corresponding trajectories to emulate the
benchmark, to be a measure of the computational efficiency of the dCWM method.
Obviously, the benchmark stochastic simulation is the most computationally
expensive calculation, while at the other end is the non-dynamic CWM simulation
where Ndyn = 1 (Mp = 256).

Figure 6.23a in conjunction with Table 6.2, show that 65 % of the benchmark
energy is replicated with a time coverage of 90 % of the benchmark time for one
eighth of the computational cost (Mp = 8, Ndyn = 32). With a computational savings
of a factor of 4, i.e. Mp = 4, Ndyn = 64, 85 % of the benchmark energy is captured
with a corresponding 92 % time coverage, while for Ndyn = 2 or equivalently for
half the computational cost of the benchmark, there is almost 100 % efficiency.
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These results accentuate the fact that the quality of the trajectories depends inti-
mately on the choice of Ndyn, SB, and Mp; an increase in fine computations
(Ndyn × Nf) leads to a marked improvement in the quality of the trajectory as
evidenced in Fig. 6.23a as well as in Fig. 6.24, which depicts select dCWM
‘coarsened’ trajectories devoid of the very fine ‘white noise’ components, and
evaluated at scale filter = 10.

For large SB (i.e. scales beyond overlap), the deterministic coarse behavior
dominates, thereby suppressing the coarser-scale contributions of the fine method
towards shaping the trends of the dCWM trajectory. An equally important reason
for the dominance (suppression) of either method is the fact that there are
(Mp − 1) × 6 replacements of the fine method coefficients by the scaled coarse
method coefficients at each scale, and at larger Mp, this effect is more pronounced
leading to considerable loss in transfer of the fine-method information.

The above results clearly indicate that the dCWM method is capable of repro-
ducing many aspects of the true behavior of the simulated system for a lower
computational cost. The dCWM method can be readily extended in a non-trivial yet
a straightforward way to model far more complex multiscale phenomena in a
computationally efficient fashion by combining different levels of spatio-temporal
description of the constituent degrees of freedom. In addition, combining dCWM
with other multiscale methods such as parallel-in-time PIT [45] has led to further
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Fig. 6.24 Time variation in the coarse components of concentration of species A for different
values of Ndyn and Mp for a fixed value of Nf = 256 as obtained for scale filter equal to 10
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reduction in computational overhead as demonstrated by the time-parallel CWM
(tp-CWM) method. Here, the system is initially modeled by the coarse method;
next, the coarse trajectory of the system is broken up into a series of smaller
segments, with the initial conditions of each segment serving as starting points for
the fine method. Computing the more accurate trajectories (by the fine method)
from these starting points are then done in parallel, until the respective end points
are reached. We refer the reader to [46] for more details on tp-CWM.

6.6 Example 4: A Cautionary Tale: Multiscale Models
for Elastic Wave Propagation in Materials

In linear elasticity the fundamental properties such as stress, strain and elastic
moduli are thermo-mechanical quantities. These quantities are defined such that
they satisfy the thermodynamic and the long time limit. That is, these quantities
represent averages over a large enough number of microscopic constituents and
nearly infinite time. Calculating some of these quantities from atomistic models
does not present significant difficulties as long as large enough systems and long
enough times are used. This constitutes the basis for coarse graining that enables the
extension of atomistic systems into the realm of continuous models with seamless
coupling between length scales [3]. Problems in bridging continuum and atomistic
regions may arise when the continuum or part of the continuum region is pushed
outside the thermodynamic and long time limit. This is the case in many of the
multiscale methodologies that examined crack propagation where the finite ele-
ments coupled to an MD region are reduced to “atomic” dimensions as discussed
above. The spatial coupling between unphysically small FE and atoms implies also
that the long time limit may not be satisfied. In addition, an elastic continuum does
not obey the same physics over all possible wavelengths as that of a discrete atomic
system. This physical mismatch is easily noted in the dispersion relations of both
systems that overlap only in the long wavelength limit [47]. Based on the above
observations, one can expect an elastic impedance mismatch between a continuum
and atomic simulation when an attempt is made to couple them.

In this regard, we have undertaken a study to examine and quantify the
impedance mismatch between an elastic continuum and an atomistic region as the
continuum spatial and temporal scales are forced toward atomic scales. We have
coupled dynamically an elastic continuum modeled with the finite difference time
domain (FDTD) method and an atomistic system modeled with MD. The imped-
ance mismatch at the interface between the MD and the FDTD systems is probed
with an incoming elastic wave packet with broadband spectral characteristics
centered on a predetermined central frequency. Reflection of part of the probe wave
packet is a sign of impedance mismatch between the two systems. This reflection is
characterized in the time and frequency domains over spatial and time scales
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ranging from atomic scales, nanometers (nm) and picoseconds (ps), to the
thermodynamic/long time limit scales, millimeters (mm) and seconds (s).

The FDTD method solves numerically the elastic wave equation in homoge-
neous or inhomogeneous media. The elastic wave equations are integrated by
means of discretization in both the spatial and the time domains [48, 49]. More
specifically, real space is discretized into a grid on which all the variables and
parameters are defined. The main variables are the acoustic displacement and the
stress field at every site on the grid. The relevant parameters of the system are the
densities and elastic constants for each constitutive element. The relevant param-
eters of the simulation are the grid spacing and the size of the time step. Appropriate
boundary conditions such as periodic boundary conditions or absorbing boundary
conditions are applied.

The FDTD scheme discretizes the wave equation @2ui
@t2 ¼ 1

q
@Tij
@xj

in both the spatial

and time domains and explicitly calculates the evolution of the displacement ‘u’ in
the time domain (Tij is the stress tensor, ρ is the density, and ui is the displacement
of the ith element). For the sake of simplicity, we limit the system to
one-dimensional propagation. The FDTD region is discretized into N 1-D elements.
We assume that the FDTD region to be infinitely stiff in the other two directions.
The elastic wave equations are approximated using forward differences in both time
and space. The displacement un of any element ‘n’ at each time step is a function of
the stress gradient r0nðtÞ across that element. The displacement and the stress
evolution of the system is given by

enðt þ DtÞ ¼ unþ1ðtÞ � unðtÞ
Dx

rnðt þ DtÞ ¼ C11nenðt þ DtÞ

r0nðt þ DtÞ ¼ rnþ1ðt þ DtÞ � rnðt þ DtÞ
Dx

unðt þ DtÞ ¼ 2unðtÞ � unðt � DtÞ þ Dt2

qnðtÞ
½rnðtÞ�

ð6:11Þ

where Δx is the length of each element, Δt is the size of the FDTD time step, and
en; C11n, and qn are the strain, stiffness and the density of the nth element. Thus in
this technique we can predict the displacement of every element knowing the stress
on that element. We assume that the stress on any element is uniform. Absorbing
boundary conditions [48] are implemented in order to prevent reflection from the
end elements of the FDTD mesh. The following relations denote the boundary
condition

unðt þ DtÞ ¼ un�1ðtÞ þ c0Dt � Dx
c0Dt þ Dx

un�1ðt þ DtÞ � unðtÞ

u1ðt þ DtÞ ¼ u2ðtÞ þ c0Dt � Dx
c0Dt þ Dx

u2ðt þ DtÞ � u1ðtÞ
ð6:12Þ
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where c0 ¼
ffiffiffiffiffi
C11
q

q
and corresponds to the longitudinal velocity of the elastic wave

through the medium.
While we assume that the reader is familiar with MD (see Chap. 2), for the sake

of clarity we provide some basic concepts of MD. The essence of MD methods
involves solving the N-body problem of classical mechanics [50]. In other words, it
involves solving Newton’s equations of motion for a given set of particles, the
interactions between particles governed by an interatomic potential, enabling one to
keep track of the evolution of the system in phase space. The equations of motions
are solved using standard finite difference schemes at each time step of the simu-
lation. An MD simulation can be carried out under a variety of constant thermo-
dynamic conditions. Here we use the macroscopic conditions of constant strain,
number of molecules and temperature. In our studies, the MD system is propagated
through phase space by solving for the equations of motion at each time step using
the Verlet integrator. Temperature is maintained constant via a momentum rescaling
procedure. Periodic boundary conditions are employed.

The elastic system to be probed is chosen to be Argon. The elastic constant C11

was found from a series of MD simulations carried out under the following con-
ditions: The model for the atomic system was a three-dimensional face centered
cubic (FCC) crystal with periodic boundary conditions containing 500 particles
interacting through a 6–12 Lennard-Jones potential with parameters chosen to
simulate argon. The interatomic potential was truncated at a distance of 8.51 Å. The
one-dimensional long-time limit stress (σ)-strain (ε) curve for that crystal (Fig. 6.25)
was obtained at 46 K with the temperature maintained via a velocity-rescaling
scheme. For these calculations, a strain was applied in one direction while main-
taining the length of the other edges of the simulation cell rigid. The strain was
applied in increments of 2 × 10−4 in the interval [−0.1 to 0.1] and the resulting
stress was then calculated from a virial-like equation [51] by averaging over 5000
MD time steps. An MD time step (dt) equals 10.0394 fs. The curve was then fitted
to a third degree polynomial (6.13).

Fig. 6.25 Stress-strain curve
for the LJ-MD system
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r ¼ 4:304� 1010e3 � 1:54� 1010e2 þ 3:045� 109e ð6:13Þ

The handshaking between FDTD and MD is handled by replacing one FDTD by
a 3-D MD cell, the MD cell parameters chosen to exactly match the ‘model MD
system’. As shown in (6.11), the equations of motion for the propagation of the
wave through the medium involves solving for the displacement as well as the
stress fields for every FDTD element at every FDTD time step. The stress and the
strain for every element are assumed to be uniform over its length. Thus, when an
FDTD element is replaced by an MD cell, the equivalent displacement and stress
for the element is calculated by uniaxially straining the MD cell along the direction
of the wave propagation (the strain is obtained from (6.11)). The condition of
rigidity in the other two-directions is satisfied by keeping the length of the edges of
the MD cell constant in these directions. The average value of the MD stress is
evaluated for every FDTD time step with the final configuration of the MD atoms
obtained at the previous FDTD time step serving as the initial state for the current
MD calculation.

Since the continuum is assumed to be perfectly elastic, the elastic constant (C11)
of the FDTD region was chosen to be 3.045 GPa, which corresponds to the linear
term of (6.12). This ensures a coarse serial coupling between the MD and FDTD
region satisfying the consistent embedding requirement.

A preliminary study of the wave propagation characteristics indicated that the
FDTD time step (Δtcrit) had to be smaller than ðDx=2coÞ for a stable algorithm. Thus
at every FDTD time step, the MD stress is calculated by averaging over Nmdð¼
Dt=dtÞ time steps, with Dt � Dtcrit. A reduction in Δt automatically leads to a
decrease in the number of MD time steps over which stress is averaged (for every
FDTD time step). It is therefore possible to push the time coupling between the two
simulation techniques in such a way that one achieves in the smallest limit, a one to
one correspondence between the two time steps. The FDTD/MD hybrid method,
therefore, allows us to test a range of time scaling conditions from coarse graining
to time matching between a continuum and an atomic system.

The number of FDTD elements is chosen to be 10,000. The length of each
FDTD element (Δx) was chosen to equal the zero pressure box length of the MD
cell (26.67 Å). The central wavelength of the wave packet was chosen to be an
integral multiple of Δx, to ensure stability of the FDTD algorithm.

The probing wave packet is a one-dimensional wave packet and is of the form

a0cos(� kxÞexp �ðkxÞ2
2

� �
, where k is the wave vector, and a0 the maximum ampli-

tude of the wave. The wave is propagated through the medium with an initial
longitudinal velocity c0. The signal’s frequency spectrum is broadband and the
central frequency of the wave packet ν equals c0k. The impedance mismatch
between the two systems (FDTD and MD) was probed as a function of the central
frequency of the wave packet (ν). Simulations were carried out for two values of ν
namely 0.393 and 3.93 GHz with a0 equaling 50 and 5 Å respectively. Though, the
maximum displacement a0 equals 50 Å (which is greater than the length of the
FDTD element), the strain on any element is only a fraction of its length (refer
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(6.11) for the definition of strain). At every frequency, the size of the FDTD time
step (Δt) was systematically decreased, and the impedance mismatch was studied as
a function of Nmd , with Nmd equaling (94, 47, 23, 12, 8, 4).

The signal is initially centered about the 5000th element and is propagated along
the positive X direction. The MD cell is located at element #6000 (see Fig. 6.26).
The coupling is examined by analyzing the reflected signal at an element some
distance away from the MD cell. This signal is compared and contrasted with the
signal that is reflected in the case when the MD cell behaves as an FDTD element
with a non-linear C11 as determined previously from the third-order (σ) versus (ε)
relationship. The latter case will be referred to as the ‘pseudo MD-FDTD coupling
(PC)’ while the former will be referred to as ‘real-time MD-FDTD coupling
(RTC)’. Discrete fast Fourier transforms (FFT) [52] are used in obtaining the fre-
quency spectrum of all the signals.

Case 1: (ν = 0.393 GHz)

Figure 6.27 represents the signal as it propagates (for the case when Nmd = 94) as
well as its frequency spectrum. Even though a cursory glance at Fig. 6.27 may
appear to indicate to the naked eye that the signal propagates through the medium
without any loss, there is a fraction of the initial signal that is reflected from the
MD-FDTD interface. The reflected signals (both RTC and PC) were obtained as a
function of Nmd (Fig. 6.27). The magnitude of the reflected signals does not change
significantly as a function of Nmd. Therefore in this paper we discuss the signals for
some representative cases (Nmd = 94, 23 and 4). As obvious from Fig. 6.27, the
magnitude of the ‘PC’ signal is always smaller than the ‘RTC’ signal, though the
general shapes of the signals are identical.

The frequency spectra of these signals are shown in Fig. 6.28. One notices the
fact that for every value of Nmd, the lower end of the frequency spectrum for both
the ‘RTC’ and the ‘PC’ signals are pretty similar, with the number of features
(humps) in the signals increasing with decreasing Nmd. In addition, for every Nmd,
the ‘PC’ signal has an upper cutoff at around 3 × 109 Hz, while the ‘RTC’ signal has
a cutoff at around 150 GHz.
Case 2: (ν = 3.930 GHz)

As in the previous case, though the signal appears to propagate without any visible
loss (Fig. 6.29), there is a small amount of reflection. Similar to the previous case,
the amount of reflection does not depend significantly on Nmd. But unlike the
previous case, the ‘RTC’ signals are not similar to the ‘PC’ signals. There is a clear
mismatch in the frequency spectrum of the two signals, with the intensity of the

100000

MD Cell

Fig. 6.26 An illustrative representation of the system consisting of 10,000 elements; the open
boxes represent FDTD elements and the darkened box corresponds to the MD cell
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frequencies being significantly higher for the ‘RTC’ signals (Fig. 6.30). The cutoff
for the ‘PC’ signals is around 30 GHz (Fig. 6.31), which is an order of magnitude
greater than the cutoff for case 1. This corresponds exactly to the fact that ν for case
2 is an order of magnitude greater than ν for case 1. Interestingly, the cutoff for the
‘RTC’ signals is still around 150 GHz.

Based on the signal propagation characteristics for the above two cases, the
following can be inferred: The amount of reflection (both RTC and PC signals) is
independent of Nmd. The ‘PC’ and the ‘RTC’ spectra are comparable at the lower
probing frequency, and the mismatch significantly increases for the higher probing
frequency. The ‘RTC’ and the ‘PC’ signals have distinct cutoffs, with the cutoff for
the ‘PC’ signals being much smaller than that of the ‘RTC’ signals. This can be
explained on the basis that the ‘PC’ signal represents the long-time limit of the
coupling, where the high frequency (short wavelength) modes are averaged out,
while the abrupt cutoff for the ‘RTC’ signal represents an upper-limit in the fre-
quencies that can be supported by the FDTD system. The discretization of the
continuum into small elements modifies its dispersion relation by introducing an
upper limit on the frequencies (a Debye-like frequency) that can be resolved. This
upper limit on frequency for traveling waves depends on the extent of discretization

Fig. 6.27 a Time evolution
of the wave packet @
0.393 GHz for Nmd = 94.
b Frequency Spectrum of the
wave packet
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of the continuum i.e. the size of the element. The effect of this frequency cut-off will
be illustrated further below.

Consider the case of a stand-alone MD simulation at zero external pressure. The
internal stress of the MD cell will typically oscillate about zero such that the
average stress equals zero if the simulation is run for many MD time steps. The
frequency spectrum of the stress for the model stand-alone MD system used in our
simulations was determined and is shown in Fig. 6.32. The frequency spectrum of
the stand-alone MD cell spans frequencies up to several 1012 Hz. As a next step we
carried out an FDTD-MD multiscale simulation (with the same conditions used for
the wave propagation studies when Nmd = 4), except for the fact that there was no
probing wave packet. The frequency spectrum of the coupled MD cell was obtained
and is shown in Fig. 6.33a. The spectrum shows a distinct peak at 160 GHz; the
mode of vibration associated with a feedback resonance between the thermalized
MD and the FDTD region. This resonant mode of vibration arises because of the
way the two regions are coupled (refer to the definition of strain and stress on any
element in (6.11)). Here the FDTD cells neighboring the MD cell respond to its
stress fluctuation in the form of a non-zero displacement; this displacement in turn
strains the MD cell with a subsequent change in internal stress. The resonant
frequency is a characteristic of the size of the MD cell and corresponds to a
wavelength of about 80 Å, which is about three times the size of an FDTD element.
In addition, frequency spectrums of the displacements of elements away from the
MD cell were also obtained (Fig. 6.33b). Figure 6.34 clearly shows the fact that as

Fig. 6.28 Amplitude of the reflected signals @ 0.393 GHz when Nmd = a 94, b 47, c 23, d 4

6 Consistent Embedding Frameworks for Predictive Multi-theory … 291



Fig. 6.29 Frequency spectrum of the reflected signals @ 0.393 GHz; a Nmd = 94, b Nmd = 47,
c Nmd = 23, d Nmd = 4. For each case the figure on the left represents the low frequency range of
the signal, while the figure on the right represents the high frequency range of the signal. Here
‘RTC’ corresponds to a real time coupling between the FDTD and the MD region and ‘PC’
corresponds to a pseudo coupling between the two regions
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once moves away from the MD cell, the cut-off moves to lower frequencies sug-
gesting that the discretized FDTD system possesses a Debye-like frequency below
160 GHz. The resonant FDTD-MD vibrational mode appears therefore as a

Fig. 6.30 Time evolution of the wave packet @ 3.930 GHz for Nmd = 94

Fig. 6.31 Frequency spectrum of the reflected signals @ 3.930 GHz; a Nmd = 94, b Nmd = 23. For
(a) and (b) the figure on the left represents the low frequency range of the signal, while the figure
on the right represents the high frequency range of the signal. Here ‘RTC’ corresponds to a real
time coupling between the FDTD and the MD region and ‘PC’ corresponds to a pseudo coupling
between the two regions
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‘localized’ mode in the vicinity of the MD cell which amplitude decays as one
moves away from the MD cell.

Thus, it is clear that during the coupling of atomistic and continuum methods,
there exists an elastic impedance mismatch between the two methods. This gives
rise to an unavoidable reflection of the probing signal at the atomistic-continuum
interface, which is minimized only if the parameters derived from the atomistic
methods are obtained at the thermodynamic limit. Further intrinsic thermal effects
associated with the atomistic region are always present, leading to localized reso-
nant effects that are dependent on the size of the atomistic region.

Fig. 6.32 The complete ‘PC’ frequency spectrum of the reflected signal @ 3.930 GHz for
Nmd = 94. ‘PC’ corresponds to a pseudo coupling between the FDTD and the MD regions. Since
the ‘PC’ signals for every Nmd are very similar, only a representative case is shown

Fig. 6.33 Frequency
spectrum of the stress for the
model stand-alone MD
system
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In conclusion, using simple illustrative examples, we have examined the con-
sistent embedding computational framework to couple scale-specific and
theory-specific methods. In particular we have identified the necessary conditions
that have to be satisfied in order to carry out multiscale multi-theory simulations to
model properties of materials. Artificial interfaces arise when multi-theory models
are spatially coupled in an explicit fashion, and precautionary measures are nec-
essary to minimize the role of these interfaces, in order to ensure the fidelity of the
multiscale simulation frameworks. In this context, the compound wavelet matrix
(CWM) method offers an attractive route to couple multi-theory methods as long as
there are overlapping spatial and temporal scales between the different methods
invoked within the multiscale framework. When used with compatible simulation
techniques, the consistent embedding framework can balance the demands of
physical realism, system size, and computational resource to produce highly
accurate simulations for large systems over long times.

Fig. 6.34 a Frequency
spectrum of the MD cell
(element # 6000) when
coupled with FDTD elements.
b Frequency spectra of FDTD
elements at various distances
away from the MD cell. The
inset of the respective figures
refers to the location of the
elements
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