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Abstract This paper provides a tutorial and survey for a specific kind of illustrative
visualization technique: feature lines. We examine different feature line methods.
For this, we provide the differential geometry behind these concepts and adapt
this mathematical field to the discrete differential geometry. All discrete differential
geometry terms are explained for triangulated surface meshes. These utilities serve
as basis for the feature line methods. We provide the reader with all knowledge to
re-implement every feature line method. Furthermore, we summarize the methods
and suggest a guideline for which kind of surface which feature line algorithm is
best suited. Our work is motivated by, but not restricted to, medical and biological
surface models.

1 Introduction

The application of illustrative visualization has increased in recent years. The
principle goal behind the concept of illustrative visualization is a meaningful,
expressive, and simplified depiction of a problem, a scene or a situation. As an
example, running people are represented running stickmans, which can be seen
in the Olympic games, and other objects become simplified line drawings, see
Fig. 1. More complex examples can be found in medical atlases. Most anatomical
structures are painted and illustrated with pencils and pens. Gray’s anatomy is one of
the famous textbooks for medical teaching. Most other textbooks in this area orient
to depict anatomy with art drawing, too.

Other than simplified representation, illustrative visualization is not restricted
to these fields. Illustrative techniques are essential for focus-and-context visual-
izations. Consider a scene with anatomical structures and one specific (important)
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(a) (b) (c) (d)

Fig. 1 Visual abstraction of the four Olympic disciplines: (a) archery, (b) basketball, (c) football
and (d) handball in the style of the pictograms of the Olympic Games 2012 in London

structure. The specific structure may be strongly related to the surrounding objects.
Therefore, hiding the other objects is not a viable option. In contrast, depicting
all structures leads to visual clutter and optical distraction of the most important
structures. Focus-and-context visualization is characterized by a few local regions
that are displayed in detail and with emphasis techniques, such as a saturated
color. Surrounding contextual objects are displayed in a less prominent manner to
avoid distraction from focal regions. Medical examples are vessels with interior
blood flow, livers with inner structures including vascular trees and possible tumors,
proteins with surface representation and interior ribbon visualization. Focus-and-
context visualization is not restricted to medical data. An example is the vehicle
body and the interior devices. The user or engineer needs the opportunity to illustrate
all devices in the same context.

There are numerous methods for different illustration techniques. This survey
is focused on a specific illustrative visualization category: feature lines. Feature
lines are a special group of line drawing techniques. Another class of line drawing
methods is hatching. Hatching tries to convey the shape by drawing a bunch of lines.
Here, the spatial impression of the surface is even more improved. Several methods
exist to hatch the surface mesh, see [15, 20, 30, 39, 53, 56]. In contrast, feature lines
try to generate lines at salient regions only. Not only for illustrative visualization,
feature lines can also be used for rigid registrations of anatomical surfaces [46] or
for image and data analysis in medical applications [12]. The goal of this survey is
to convey the reader to the different feature line methods and offer a tutorial with all
the knowledge to be able to implement each of the methods.

1.1 Organization

We first give an overview of the mathematical background. In Sect. 2, we introduce
the necessary fundamentals of differential geometry. Afterwards, we adapt these
fundamentals to triangulated surface meshes in Sect. 3. Section 4 discusses general
aspects and requirements for feature lines. Next, we present different feature line
methods in Sect. 5 and compare them in Sect. 6. Finally, Sect. 7 holds the conclusion
of this survey.
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2 Differential Geometry Background

This section presents the fundamentals of differential geometry for feature line
generation, which will be crucial for the further sections. We present the basic terms
and properties. This section is inspired by differential geometry books [10, 11, 28].

2.1 Basic Prerequisites

A surface f W I � R
2 ! R

3 is called a parametric surface if f is an immersion.
An immersion means that all partial derivatives @f

@xi
are injective at each point. The

further calculations are mostly based on the tangent space of a surface. The tangent
space Tpf of f is defined as the linear combination of the partial derivatives of f :

Tpf � span
n @f

@x1

ˇ̌
ˇ
xDu

;
@f

@x2

ˇ̌
ˇ
xDu

o
:

Here, span is the space of all linear combinations. Formally: spanfv1; v2g �
f˛v1 C ˇv2 j ˛; ˇ 2 Rg. With the tangent space, we can define a normalized normal
vector n. The (normalized) normal vector n.u/ at p D f .u/ is defined such that
for all elements v 2 Tpf the equation hv; n.u/i D 0 holds, where h:; :i denotes the
canonical Euclidean dot product. Therefore, n.u/ is defined as:

n.u/ D
@f
@x1

ˇ̌
ˇ
xDu

� @f
@x2

ˇ̌
ˇ
xDu�� @f

@x1

ˇ̌
ˇ
xDu

� @f
@x2

ˇ̌
ˇ
xDu

�� :

This map is also called the Gauss map. Figure 2 depicts the domain of a parametric
surface as well as the tangent space Tpf and the normal n.

2.2 Curvature

The curvature is a fundamental property to identify salient regions of a surface that
should be conveyed by feature lines. Colloquially spoken, it is a measure of how far
the surface bends at a certain point. If we consider ourselves to stand on a sphere
at a specific point, it does not matter in which direction we go, the bending will be
the same. If we imagine we stand on a plane at a specific point, we can go in any
direction, there will be no bending. Without knowing any measure of the curvature,
we can state that a plane has zero curvature and that a sphere with a small radius
has a higher curvature than a sphere with a higher radius. This is due to the fact that
a sphere with an increasing radius becomes locally more a plane. Intuitively, the
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Fig. 2 The basic elements for differential geometry. A parametric surface is given and the partial
derivatives create the tangent space

curvature depends also on the direction in which we decide to go. On a cylinder, we
have a bending in one direction but not in the other. Painting the trace of a walk on
the surface and view it in 3D space, we could treat this as a 3D curve. The definition
of the curvature of a curve may be adapted to the curvature of a surface. The adaption
of this concepts is explained in the following. Let cW I � R ! R

3 be a 3D parametric
curve with k dc

dt k D 1 . The property of constant length of the derivative is called arc
length or natural parametrization. One can show that such a parametrization exists
for each continuous, differentiable curve that is an immersion. So, if we want to
measure the size of bending, we can use the norm of the second derivative of the
curve. Therefore, the (absolute) curvature �.t/ at a time point t is defined as:

�.t/ D ��c00.t/
��:

To determine the curvature on a certain point of the surface in a specific direction, we
can employ a curve and calculate its curvature. This approach is imperfect because
curves that lie in a plane can have non-vanishing curvature, e.g., a circle, whereas we
claimed to have zero curvature on a planar surface. Therefore, we have to distinguish
which part of the second derivative of the curve contributes to the tangent space
and which contributes to the normal part of the surface. Decomposing the second
derivative of the curve into tangential and normal part of the surface yields:

c00.t/ D projTpf c00.t/„��������ƒ‚��������…
tangential part

C hc00.t/; nin„������ƒ‚������…
normal part

;

where c.t/ D p and projE x means the projection of the point x onto the space E,
see Fig. 3. The curvature �c.p/ of the surface at p along the curve c is defined as the
coefficient of the normal part:

�c. p/ D hc00.t/; ni: (1)
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Fig. 3 The curve’s second
derivative is decomposed into
the tangential and normal part

Hence, we know that c0.t/ 2 Tpf and hc0.t/; ni D 0. Deriving the last equation
yields:

d

dt
hc0.t/; ni D 0

d

dt
hc0.t/; ni D hc00.t/; ni C hc0.t/;

@n
@t

i:

We obtain

hc00.t/; ni D �hc0.t/;
@n
@t

i:

Combining this equation with Eq. (1) yields

�c0.t/.p/ D �hc0.t/;
@n
@t

i: (2)

Thus, the curvature of a surface at a specific point in a certain direction can be
calculated by a theorem by Meusnier. We call the vectors v; w at p the maximal/
minimal principle curvature directions of the maximal and minimal curvature, if
�v.p/ � �v0.p/; �w.p/ � �v0.p/ for all directions v0 2 Tpf . If such a minimum and
maximum exists, then v and w are perpendicular, see Sect. 2.5 for a proof. If we
want to determine the curvature in direction u, we first need to normalize u; v; w
and can then determine �u.p/ by:

�u.p/ D hu; vi2�v.p/ C hu; wi2�w.p/: (3)

The coefficients of the curvature are the decomposition of the principle curvature
directions with the vector u.
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2.3 Covariant Derivative

The essence of the feature line generation is the analysis of local variations in a
specific direction, i.e., the covariant derivative. Therefore, the covariant derivative is
a crucial concept for feature line methods. We consider a scalar field on a parametric
surface 'W f .I/ ! R. One can imagine this scalar field as a heat or pressure (as well
as a curvature) distribution. The directional derivative of ' in direction v can be
written as Dv' and is defined by:

Dv'.x/ D lim
h!0

'.x C hv/ � '.x/

h
:

If ' is differentiable at x, the directional derivative can be simplified:

Dv'.x/ D hr'.x/; vi;

where r denotes the gradient. The gradient is an operator applied to a scalar
field and results in a vector field. When we want to extend the definition of the
derivative to an arbitrary surface, we first need to define the gradient of surfaces. In
the following, we make use of the covariant derivative. The standard directional
derivative results in a vector which lies somewhere in the 3D space, whereas
the covariant derivative is restricted to stay in the tangent space of the surface.
The gradient is a two-dimensional vector. Actually, we need a three-dimensional
vector in the tangent space of the surface. Here, we employ the gradient and use
it as coefficients of the tangential basis. Unfortunately, this leads to wrong results
because of the distortions of the basis of the tangent space, see Fig. 4. The basis
is not necessarily an orthogonal normalized basis as in the domain space and can
therefore lead to distortions of the gradient on the surface.

Fig. 4 Given: a scalar field in the domain. Determining the gradient and using it as coefficient for
the basis tangent vectors leads to the wrong result (grey). Balancing the distortion with the inverse
of the metric tensor yields the correct gradient on the surface (black)
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One way to calculate this vector is to use the plain scalar field 'WR3 ! R.
Afterwards, we are able to attain the gradient in three-dimensional space and project
it on the tangent space. However, we want to use the gradient of 'WR2 ! R in the
domain of a parametric surface and compensate the length distortion such that we
can use it as coordinates with the basis in the tangent space. One important fact
is when multiplying the gradient with the i-th basis vector, one obtains the partial
derivative of ' with xi. Hence, we know that the three-dimensional gradient r'

lies in the tangent space. Therefore, it can be represented as a linear combination of
@f
@x1

; @f
@x2

with coefficients ˛; ˇ:

r' D ˛ � @f

@x1

C ˇ � @f

@x2

:

Multiplying both sides with the basis vectors and using the relation @'

@xi
D hr'; @f

@xi
i,

we obtain an equation system:

 
@'

@x1
@'

@x2

!
D

 
˛ � h @f

@x1
; @f

@x1
i C ˇ � h @f

@x1
; @f

@x2
i

˛ � h @f
@x1

;
@f
@x2

i C ˇ � h @f
@x2

;
@f
@x2

i

!
D

 
h @f

@x1
; @f

@x1
i h @f

@x1
; @f

@x2
i

h @f
@x1

;
@f
@x2

i h @f
@x2

;
@f
@x2

i

!

„�����������������������ƒ‚�����������������������…
g�

�
˛

ˇ

�
:

The matrix g is called the metric tensor. This tensor describes the length and area
distortion from R

2 to the surface. The last equation yields the coefficients ˛; ˇ when
multiplied with the inverse of g:

�
˛

ˇ

�
D g�1

 
@'

@x1
@'

@x2

!
:

This leads to a general expression of the gradient for a scalar field 'WRn ! R:

r' D
nX

i;jD1

 
gij @'

@xj

!
@

@xi
; (4)

where gij is the i; j-th matrix entry from the inverse of g and @
@xi

means the basis.
Now, we are able to determine the covariant derivative of a scalar field by first
determining its gradient and afterwards using the dot product:

Dw' D hr'; wi:
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2.4 Laplace-Beltrami Operator

The Laplace-Beltrami operator is needed for a specific feature line method and will
therefore be introduced. The Laplace operator is defined as a composition of the
gradient and the divergence. When interpreting the vector field as a flow field, the
divergence is a measure of how much more flow leaves a specific region than flow
enters. In the Euclidean space, the divergence div ˚ of a vector field ˚ WRn ! R

n is
the sum of the partial derivatives of the components ˚i:

div ˚ D
nX

iD1

@

@xi
˚i:

The computation of the divergence for a vector field ˚ WRn ! R
n in Euclidean space

is straightforward. However, for computing the divergence to an arbitrary surface
we have to be aware of the length and area distortions. Without giving a derivation
of the divergence, the components ˚i of the vector field have to be weighted by
the square root of the determinant

pjgj of the metric tensor g before taking the
derivative. The square root of the determinant of g describes the distortion change
from the Euclidean space to the surface. Formally, the divergence of a vector field
˚ WRn ! R

n with a given metric tensor g is given by:

div ˚ D 1pjgj
nX

iD1

@

@xi

 p
jgj ˚i

!
: (5)

Given the definition of the gradient and the divergence, we can compose both
operators to obtain the Laplace-Beltrami operator �' of a scalar field 'WRn ! R

on surfaces:

�' D div r' D 1pjgj
nX

i;jD1

@

@xi

 p
jgj gij @'

@xj

!
: (6)

2.5 Shape Operator

In Sect. 2.2, we noticed that the curvature of a parametric surface at a specific point
p in a certain direction can be determined by Eq. (2):

�c0.t/.p/ D �hc0.t/;
@n
@t

i:

Actually, this means that the curvature in the direction c0.t/ is a measure of how
much the normal changes in this direction, too. Given is v 2 Tpf with p D f .u/ and
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jvj D 1. Then, we determine the coefficients ˛; ˇ of v with the basis @f
@x1

; @f
@x2

:

�
˛

ˇ

�
D g�1

 
hv;

@f
@x1

i
hv;

@f
@x2

i

!
:

We use .˛; ˇ/ to determine the derivative of n along v by using the two-dimensional
curve Qc.t/ D u C t

�
˛
ˇ

�
and calculate:

Dvn �
d

dt
n.Qc.t//:

We define S.v/ � �Dvn. This linear operator is called Shape Operator (also
Weingarten Map or Second Fundamental Tensor). One can see that S. @f

@xi
/ D @n

@xi
holds. Note that this operator can directly operate on the 3D space with a three-
dimensional vector in the tangent space, as well as the 2D space with the coefficients
of the basis. Therefore, it can be represented by a matrix S. Recall Eq. (2), we
substitute c0 with v and @n

@t by Sv:

�v.p/ D hv; Svi:

We want to show that the principle curvature directions are the eigenvectors of S.
Assuming v1; v2 2 R

2 are the normalized eigenvectors with the eigenvalues �1 �
�2. Every normalized vector w can be written as a linear combination of v1; v2:
w D ˛v1 C ˇv2 with kwk D k˛v1 C ˇv2k D ˛2 C ˇ2 C 2˛ˇhv1; v2i D 1.
Therefore, we obtain:

�w.p/ D hw; Swi D 1

2
Œ.˛2 � ˇ2/.�1 � �2/ C �1 C �2�: (7)

One can see from Eq. (7) that �w.p/ reaches a maximum if ˇ D 0; ˛ D 1, and a
minimum is reached if ˛ D 0; ˇ D 1. If the eigenvalues (curvatures) are not equal,
we can show that the principle curvature directions are perpendicular. For this, we
need to show that S is a self-adjoint operator. Thus, the equation hSv; wi D hv; Swi
holds. We show this by using the property hn; @f

@xi
i D 0 and derive this with xj:

h @n
@xj

;
@f

@xi
i C hn;

@2f

@xi@xj
i D 0:

We demonstrate that S is a self-adjoint operator with the basis @f
@xi

:

hS.
@f

@xi
/;

@f

@xj
i D h� @n

@xi
;

@f

@xj
i D hn;

@2f

@xi@xj
i D h� @n

@xj
;

@f

@xi
i D hS.

@f

@xj
/;

@f

@xi
i:
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Now, we show that the eigenvectors (principle curvature directions) are perpendic-
ular if the eigenvalues (curvatures) are different:

�1hv1; v2i D hSv1; v2i D hv1; Sv2i D �2hv1; v2i:

The equation is only true if v1; v2 are perpendicular (and �1 ¤ �2 holds).

3 Discrete Differential Geometry

This section adapts the continuous differential geometry to discrete differential
geometry, the area of polygonal meshes that approximate continuous geometries.
The following notation is used in the remainder of this paper. Let M � R

3

be a triangulated surface mesh. The mesh consists of vertices i 2 V with
associated positions pi 2 R

3, edges E D f.i; j/ j i; j 2 Vg, and triangles T D
f.i; j; k/ j .i; j/; .j; k/; .k; i/ 2 Eg. We write ni as the normalized normal vector
at vertex i. If nothing else is mentioned, we refer to normal vectors at vertices.
Furthermore, N .i/ denotes the neighbors of i. So, for every j 2 N .i/; .i; j/ 2 E
holds. Furthermore, if we use a triangle for calculation, we always use this notation:
given a triangle 4 D .i; j; k/ with vertices pi; pj; pk, and the edges are defined as
e1 D pi � pj; e2 D pj � pk; e3 D pk � pi.

3.1 Voronoi Area

We need to introduce the term Voronoi area, as it is important for the determination
of the curvature. So, given are points in a 2D space. Every point is spread out in
equal speed. If two fronts collide, they stop to spread out further at this region. After
all fronts stopped, every point lies in a region that is surrounded by a front. This
region is called a Voronoi region. Formally, given distinct points xi 2 R

2 in the
plane, the Voronoi region for the point xk is defined as the set of points V.xk/ with

V.xk/ D fx 2 R
2 W kx � xkk � kx � xjk; j ¤ kg:

See Fig. 5a for an example of a Voronoi diagram. To obtain the Voronoi area of a
vertex on a surface mesh, the Voronoi area of each incident triangle is accumulated.
The Voronoi area calculation is based on the method by Meyer et al. [33]. In case
of a non-obtuse triangle, the Voronoi area at pi is determined by the perpendicular
bisector of the edges incident to pi. The point of intersection, the midpoint of the
incident edges and the point itself define the endpoints of the Voronoi area. The
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Points in 2D Points on a surface
mesh

(a) (b)

Fig. 5 The Voronoi diagram of different settings. In (a) Voronoi diagram of a set of points is
determined. In (b) the Voronoi area is calculated. If one of the triangles is obtuse, the area leaves
the triangle

triangle area of the Voronoi region equals:

A4.pi/ D 1

8

�
ke1k2 � cot.e2; e3/ C ke3k2 � cot.e1; e2/

�
:

In case of an obtuse triangle, the Voronoi area is equal half of the triangle area if the
angle at pi is obtuse. Otherwise it is a quarter of the triangle area, see Fig. 5b.

3.2 Discrete Curvature

The calculation of the curvatures as well as the principle curvature directions are
important for a number of feature line techniques. Several approaches exist to
approximate the curvatures. Some methods try to fit an analytic surface (higher order
polynomials) to the mesh and determine the curvatures analytically [5, 17]. Another
approach estimates the normal curvature along edges first and then estimates the
shape operator [6, 18, 33, 38, 48]. Other approaches are based on the calculation of
the shape operator S [1, 8, 42]. We use the curvature estimation according to [42].
After S is determined on a triangle basis, it is adapted to vertices. We already defined
that Sv yields the change of the normal in the direction of v:

Sv D Dvn:

This property is used to assess S for each triangle. When applying S to the edge e1,
it should result in ni � nj because of the change of the normals along the edge. We
need a basis of the tangent space of the triangle:

Qe1 D e1

je1j ; Qe2 D e2

je2j :
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Afterwards, we build the orthogonal normalized basis vectors x4; y4 by:

x4 � Qe1; y4 �
x4 � .Qe2 � x4/

kx4 � .Qe2 � x4/k : (8)

Applying the aforementioned property of the shape operator to all edges
according to the basis leads to the following equation system:

S

�he1; x4i
he1; y4i

�
D
�hni � nj; x4i

hni � nj; y4i
�

S

�he2; x4i
he2; y4i

�
D
�hnj � nk; x4i

hnj � nk; y4i
�

S

�he3; x4i
he3; y4i

�
D
�hnk � ni; x4i

hnk � ni; y4i
�

;

(9)

see Fig. 6 for an illustration. Here, we have three unknowns (the matrix entries of the
symmetric matrix S D �e f

f g

�
) and six linear equations.Thus, a least square method

can be applied to fit the shape operator to approximate curvature for each triangle.
Next, we need to calculate S for each vertex of the mesh. As the triangle basis
normally differs from each vertex tangent space basis, we need to transform the
shape operator according to the new coordinate system. First, we assume that the
normal n4 of the face is equal to the incident vertex normal ni. Hence, the basis
.x4; y4/ of the triangle is coplanar to the basis .xi; yi/ of the incident vertex i.
Assuming we have the shape operator given in the vertex basis, then the entries can

Fig. 6 The shape operator
estimation is based on a local
coordinate system, the edges
and the normals
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be determined by:

ep D �
1 0
� �ep fp

fp gp

��
1

0

�
D xT

i Sxi

fp D �
1 0
� �ep fp

fp gp

��
0

1

�
D xT

i Syi

gp D �
0 1
� �ep fp

fp gp

��
0

1

�
D yT

i Syi:

As we have determined the shape operator in the basis .x4; y4/, we can express
the basis of the vertex by expressing the new coordinate system with the old basis
xi D ˛x4 C ˇy4:

˛ D hxi; x4i
ˇ D hxi; y4i:

The entry ep can be determined by:

ep D �
˛ ˇ

�
S

�
˛

ˇ

�
: (10)

The other entries can be calculated by analogous calculations. For the second case,
we rotate the coordinate system of the triangle around the cross product of the
normal such that the basis of the vertex and the triangle are coplanar. Finally, we
use this to determine the shape operator of the vertices. We determine the shape
operators for all incident triangles of a vertex. Afterwards, we rotate the coordinate
systems of the triangles to be coplanar with the basis of the vertex. Next, we re-
express the shape operator in terms of the basis of the vertex. Then, we weight
the shape operator according to the Voronoi area of the triangle and accumulate
this tensor. Finally, we divide the accumulated shape operator by the sum of the
weights. The eigenvalues provide the principle curvatures, and the eigenvectors
give the principle curvature directions according to the basis. The pseudo-code 1
summarizes the algorithm.

Please note that this algorithm can be generalized to obtain higher-order deriva-
tives. It can be used to determine the derivative of the curvature as it is important for
a specific feature line method. Formally, the derivative of the shape operator has the
form:

C D �
DvS DwS

� D
��

a b
b c

� �
b c
c d

��
: (11)
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Algorithm 1 Pseudo-code for the curvature estimation.

f o r each t r i a n g l e :
Build basis accord. to Eq. (8)
Determine S accord. to Eq. (9)
f o r each v e r t e x i n c i d e n t t o t h e t r i a n g l e :

Rotate the triangle basis to the vertex basis
Determine S in the new basis accord. to Eq. (10)
Add this tensor weighted by the voronoi area

end
end
f o r each v e r t e x :

Divide S by the sum of the weights
Determine the eigenvalues and eigenvectors

end

For the determination of the change of the curvature in direction u, the tensor C has
to be multiplied multiple times:

Du� D hu;
�
DvS � u DwS � u

� � ui: (12)

3.3 Discrete Covariant Derivative

First, we consider a linear 2D scalar field '.x/ D ˛ � x1 Cˇ � x2 C� and its gradient:

r' D
 

@
@x1

'
@

@x2
'

!
D
�

˛

ˇ

�
: (13)

To determine the gradient of a triangle 4 D .i; j; k/ with scalar values 'i �
'.pi/; 'j � '.pj/, and 'k � '.pk/, we build a basis according to Eq. (8) and
transform the points pi; pj; pk 2 R

3 to p0
i; p0

j; p0
k 2 R

2 by:

p0
i D

�
0

0

�
p0

j D
�hpj � pi; x4i

hpj � pi; y4i
�

p0
k D

�hpk � pi; x4i
hpk � pi; y4i

�
:

This transformation describes an isometric and conformal map. The next step is
a linearization of the scalar values 'i; 'j; 'k. We want to determine a scalar field
' 0.x0/ D ˛ � x0

1 C ˇ � x0
2 C � such that

' 0.p0
i/ D 'i ' 0.p0

j/ D 'j ' 0.p0
k/ D 'k
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Fig. 7 A triangle with
different scalar values

holds. These conditions yield the following equation system:

�
˛ ˇ

� �
p0

i p0
j p0

k

�
C �

� � �
� D �

'i 'j 'k

�
:

With p0
i D �

0
0

�
we obtain the following solution:

� D 'i;

�
˛ ˇ

� D �
'j � 'i 'k � 'j

� �
p0

j p0
k

��1

:

According to Eq. (13), the gradient of ' 0 is determined by
�

˛
ˇ

�
. The basis x4; y4

yields the gradient in 3D:

r' D ˛ � x4 C ˇ � y4:

Figure 7 illustrates the gradient of a triangle. To determine the gradient per vertex,
we use the same procedure as for the shape operator estimation. We transform the
basis and weight the triangle gradient according to its proportion of the Voronoi
area.

3.4 Discrete Laplace-Beltrami Operator

Several methods exist to discretize the Laplace-Beltrami operator on surface
meshes. For an overview, we recommend the state of the art report by Sorkine [45].
The operator can be presented by the generalized formula:

�'.pi/ D
X

j

wij

�
'.pj/ � '.pi/

�
:
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Different weights wj give different discrete Laplace-Beltrami operators. For present-
ing different versions of this operator it is preferable that it fulfills some properties
motivated by the smooth Laplace-Beltrami operator:

(Sym) The weights should be symmetric wij D wji.
(Loc) If .i; j/ … E then wij D 0.
(Pos) All weights should be non-negative.
(Lin) If pi is contained in a plane and ' is linear, then �'.pi/ D 0 should hold.

In the following, we introduce different discrete Laplace-Beltrami operators.

Combinatorial For the combinatorial Laplace-Beltrami operator we have:

wij D
(

1; if .i; j/ 2 E

0; otherwise:

This version may result in non-zero values on planar surfaces for linear scalar fields.
Therefore, it violates (Lin).

Uniform Taubin [49] suggested the uniform Laplace-Beltrami operator. The
weights are determined by the number of neighbors of pi:

wij D
(

1
N.i/ ; if .i; j/ 2 E

0; otherwise:

These weights also violate (Lin).

Floater’s Mean Value Floater [14] proposed the mean value weights by the
tangent of the corresponding angles:

wij D
(

tan.ıij=2/Ctan.�ij=2/

kpi�pjk ; if .i; j/ 2 E

0; otherwise:

See Fig. 8 for the angles. These weights violate (Sym).

Cotangent Weights MacNeal [31] suggested the cotangent weights:

wij D
(

cot.˛ij/Ccot.ˇji/

2
; if .i; j/ 2 E

0; otherwise:

See Fig. 8 for the angles. On general meshes the weights can violate (Pos).
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Fig. 8 This figure illustrates the triangles with the angles for the weight calculation

Belkin Weights Belkin [2] suggested to determine weights over the whole surface:

�'.pi/ D 1

4�h2.pi/

X
4k

A.4k/

3

X
j24k

e� kpi�pjk
2

4h.pi/

�
'.pj/ � '.pi/

�
;

where A.4k/ denotes the area of the triangle 4k and h corresponds intuitively to the
size of the neighborhood. This violates the (Loc) property.

Results The discussion leads to the question if there is any discrete Laplace-
Beltrami operator which fulfills all required properties for an arbitrary surface
mesh and, furthermore, if this operator converges pointwise to the Laplace-Beltrami
operator on smooth surfaces. Wardetzky et al. [52] showed that there is no such
operator. The proof is based on a Schönhardt polytope which demonstrate that
there is no Laplace-Beltrami operator, which does not violate any condition. One
example of a discrete Laplace operator can be obtained using linear finite elements
over the polyhedral surface. Hildebrandt et al. [21] proved that if a sequences of
surface meshes converges to a smooth surface in Hausdorff distance and the normal
fields converge, then the Laplace operators converge in the operator norm. Despite
of convergence, this operator is not perfect in the sense of [52], because for meshes
with obtuse triangles, their weights may be non-positive weights. As a consequence,
a maximum principle for the solutions of the discrete Dirichlet problem cannot be
guaranteed.

3.5 Isolines on Discrete Surfaces

For feature line methods, it is essential not to restrict the lines to the edges, as it
is not desirable to perceive the mesh edges. Given is a surface mesh and a scalar
field, we want to depict the zero crossing of the scalar field. Therefore, we linearize
the scalar values for each triangle according to the values of the incident points.
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(a) (b)

Fig. 9 In (a) the position of the zero crossing is determined and the points are connected. In (b)
the isoline through a mesh is depicted

Afterwards, we look for points on an edge such that the linearized values of the
scalar values of the connecting points are equal to zero. Having two points on two
edges of a triangle, we connect them. Suppose we have a triangle with scalar values
'i > 0; 'j > 0 and 'k < 0. Thus, we know that somewhere on edge e2 and e3

there is a zero crossing. We determine t D 'k
'k�'j

and multiply t with edge e2. This
yields the position of the zero crossing on the edge. The position on the edge e3 is
determined as well. Afterwards, both points will be connected, see Fig. 9.

4 General Requirements of Feature Lines

The generation of feature lines leads to several requirements, which have to be
considered for acquiring appropriate results.

Smoothing Most of the feature line methods use higher order derivatives. There-
fore, the methods assume sufficiently smooth input data. For data acquired with
laser scanners or industrial measurement process, smoothness cannot be expected.
Discontinuities represent high frequencies in the surface mesh and lead to the
generation of distracting (and erroneous) lines. Several algorithms exist, which
smooth the surface by keeping relevant features. Depending on the feature line
method, different smoothing algorithms can be applied. If the algorithm only uses
the surface normals and the view direction, it is sufficient to simply smooth the
surface normals. Geometry-based approaches, however, require to smooth the mesh
completely. Operating only on scalar values, an algorithm which smoothes the scalar
field around a certain region may be applied, too.
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Frame Coherence The application of feature line approaches or in general for
non-photorealistic rendering makes it crucial to provide methods that are frame-
coherent. This means, during the interaction the user should not be distracted by
features that pop out or disappear suddenly. A consistent and continuous depiction
of features should be provided in consecutive frames of animation.

Filtering Feature line algorithms may generate lines on salient regions as well
as lines that result from small local irregularities, which may not be necessary to
convey the surface shape or even annoying and distracting. Filtering of feature
lines to set apart relevant lines from distracting ones is a crucial part of a feature
line generation. User-defined thresholds may control the rate of tolerance for line
generation. Some algorithms use an underlying scalar field for thresholding. Lines
are only drawn if the corresponding scalar value exceeds the user-defined threshold.
Other methods integrate along a feature line, determine the value, and decide to
draw the whole line instead of filtering some parts. We will also mention the filtering
method of each presented feature line generation method.

5 Feature Lines

Line drawings were used extensively for medical visualization tasks, such as
displaying tissue boundaries in volume data [4, 51], vascular structures [41], neck
anatomy [27] and brain data [24, 47]. Furthermore, some higher order feature lines
were qualitatively evaluated on medical surface data [29]. The importance of feature
lines in medical visualization is discussed in [40]. Feature line methods can be
divided into image-based and object-based methods. Image-based approaches are
not in the focus of this survey. These methods are based on an image as input. All
calculations are performed on the image with the pixels containing, for instance,
an RGB or grey value. Usually, the image is convolved with different kernels to
obtain the feature lines. The resulting feature lines are represented by pixels in the
image space. These lines are mostly not frame-coherent. Comprehensive overviews
of different feature line methods in image space are given by Muthukrishnan and
Radha [34], Nadernejad et al. [35], and Senthilkumaran and Rajesh [44]. This
section presents selected object-based feature line methods. We will explain the
methods and limitations. Further information on line drawings can be found in
[40, 43].

5.1 Contours

We refer to a silhouette as a depiction of the outline of an object as this is the original
definition by Étienne de Silhouette. The contour is defined as the loci of points
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Fig. 10 The brain model with contours

where the normal vector and the view vector are mutually perpendicular (Fig. 10):

hn; vi D 0;

where n is the normal vector and v is the view vector which points towards the
camera. For the discrete case, we highlight edges as a contour whenever the sign of
the dot product of the view vector with the normals of the incident triangle normals
changes. The contour yields a first impression of the surface mesh. On the other
hand, it is not sufficient to depict the surface well. The contour is not appropriate to
gain a spatial impression of the object. Furthermore, it cannot depict salient regions,
for instance strong edges.

Summary In the first place, the contour is necessary for gaining a first impression
on the shape of the object. Unfortunately, spatial cues, as for instance strong edges,
are not depicted.

5.2 Crease Lines

Crease lines are a set of edges where incident triangles change strongly. The dihedral
angle, i.e., the angle of the normals of the corresponding incident triangles, along the
edges is calculated. The edge belongs to a crease line if the dihedral angle exceeds
a user-defined threshold � . As the change of the normals is an indicator of the
magnitude of the curvature, one can state that all points contribute to a feature
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Fig. 11 The brain model with crease lines and contours

line if the underlying absolute value of the maximum curvature exceeds a threshold
(Fig. 11):

�i � � or hni; nji � � 0;

for adjacent triangles with corresponding normals ni; nj. Afterwards, all adjacent
vertices which fulfill the property are connected. These feature lines need to be
computed only once, since they are not view-dependent. Furthermore, these lines
are only drawn along edges.

Summary Crease lines display edges where the dihedral angle is large. Strong
edges are appropriately depicted, but if the object has small features, this method is
not able to depict only important edges. This is caused by the local determination of
the dihedral angle without concerning a neighborhood. Even smoothing the surface
mesh would not deliver proper line drawings. Furthermore, this method is only able
to detect features on edges.

5.3 Ridges and Valleys

Ridges and valleys were proposed by Interrante et al. [23] and adapted to triangu-
lated surface meshes by Ohtake et al. [37]. These feature lines are curvature-based
and not view-dependent. The computation is based on the principle curvature �1 as
well as the associated principle curvature direction k1 with j�1j � j�2j. Formally,
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Fig. 12 The brain model with ridges and valleys, and contours

ridges and valleys are defined as the loci of points at which the principle curvatures
assume an extremum in the principle direction:

Dk1 �1 D 0:

According to two constraints, the sets of points are called (Fig. 12)

Dk1 Dk1�1

(
< 0; and �1 > 0: ridges

> 0; and �1 < 0: valleys.
(14)

To determine the ridge and valley lines, we first need to compute the principle
curvatures and their associated principle curvature directions, recall Sect. 3.2.
Afterwards, we determine the gradient of �1 for each vertex, see Sect. 3.3. Finally,
we compute the dot product of the gradient and the associated principle curvature
direction k1. This yields the scalar value of Dk1�1 for each vertex. Next, we
distinguish between ridges and valleys and determine Dk1Dk1 �1 for each vertex.
Here, we need again the gradient of each vertex with the value Dk1 �1 and determine
the dot product of the result with k1. Hence, we gain two scalar values per vertex:
Dk1�1 and Dk1 Dk1�1. Afterwards, we assess the zero-crossing of the first scalar
value, recall Sect. 3.5. We connect the zero crossings in every triangle for which
one condition of Eq. (14) holds. The filtering of the lines is again performed by
employing an user-defined threshold. The integral along each ridge and valley line
is determined according to the underlying curvature. If the magnitude of the integral
exceeds the threshold for ridges or valleys, the line is drawn.
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Summary The calculation is solely based on the curvature and therefore view-
independent. This method is able to detect small features. The filtering depends
on the underlying curvature and the length of the curve. Therefore, a long line
with small curvature has also the chance to be drawn as a small line with high
curvature. This strategy emphasizes also long feature lines. Ridges and valley
lines are very susceptible to noise, since this method is of third order. Therefore,
small discontinuities on the surface mesh lead to erroneous derivatives and this
error propagates for each further derivative. A crucial task for this method is to
guarantee a smoothed mesh to obtain reasonable results. Other approaches use
surface fitting [37, 55] or a combination of discrete curvature approximation and
smoothing techniques [22] to obtain a smoothed surface. From an artist’s point of
view, some features may be more highlighted than others from different points of
view. This is caused by the different perception of an object and by various light
positions. For this, the ridge and valley lines are not appropriate due to the restriction
of view-independent results.

5.4 Suggestive Contours

Suggestive contours are view-dependent feature lines introduced by DeCarlo
et al. [9]. They extend the definition of the contour. These lines are defined as
the set of minima of hn; vi in the direction of w, where n is the surface normal, v
is the view vector which points towards the camera, and w D .Id � nnT/v is the
projection of the view vector on the tangent plane. Formally:

Dw hn; vi D 0 and DwDw hn; vi > 0:

Another equivalent definition of the suggestive contours is given by the radial
curvature �r. It is defined as the curvature in direction of w. As seen in Eq. (3), this
curvature can be determined by knowing the principle curvature directions as well
as the corresponding curvatures. Therefore, the definition of the suggestive contours
is equivalent to the set of points at which the radial curvature �r is equal 0 and the
directional derivative of �r in direction w is positive (Fig. 13):

�r D 0 and Dw�r > 0:

The filtering strategy is to apply a small threshold to eliminate suggestive contour
points where the radial curvature in direction of the projected view vector is very
low. Additionally, a hysteresis threshold is applied to increase granularity.

Summary Suggestive contours extend the normal definition of the contour. This
method depicts zero crossing of the diffuse light in view direction. This can be seen
as inflection points on the surface. This method is of second order only and thus less
susceptible to noise. Unfortunately, suggestive contours are not able to depict some
sorts of sharp edges, which are in fact noticeable features. For instance, a rounded
cube has no suggestive contours.
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Fig. 13 The brain model with suggestive contours and contours

5.5 Apparent Ridges

Apparent ridges were proposed by Judd et al. [25]. These feature lines extend the
definition of ridges by a view-dependent curvature term. Therefore, a projection
operator P is used to map the vertices on a screen plane V . The orthonormal basis
of the screen plane is given by .v1; v2/. Assume we have a parametrized surface
f W I � R

2 ! R
3. Then the projection of f onto V is given by:

P.x/ D
�hv1; f .x/i

hv2; f .x/i
�

:

The Jacobian JP of P can be expressed as:

JP D
 

hv1;
@f
@x1

i hv1;
@f
@x2

i
hv2;

@f
@x1

i hv2;
@f
@x2

i

!
:

In the discrete case with surface meshes, the Jacobian can be expressed by a basis
for the tangent plane .e1; e2/:

JP D
�hv1; e1i hv1; e2i

hv2; e1i hv2; e2i
�

:

If a point p0 on the screen plane is not a contour point, there exists a small
neighborhood where the inverse of P exists. Normal vectors n0 at a point p0 on
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the screen plane are defined as n0.p0/ � n. p�1.p0//. The main idea is to build a
view-dependent shape operator S0 at a point p0 on the screen as

S0.w0/ D Dw0n0

where w0 is a vector in the screen plane. The view-dependent shape operator is
therefore defined as:

S0 D S J�1
P :

Here, the basis of the tangent space expressing S and JP must be the same. In
contrast to the shape operator, the view-dependent shape operator is not a self-
adjoint operator, recall Sect. 2.5. Therefore, it is not guaranteed that S0 has two
eigenvalues, but it has a maximum singular value �0

1 (Fig. 14):

�0
1 D max

kwkD1
kS0.w0/k:

This is equivalent to find the maximum eigenvalue of S0TS0 and to take the square
root. The corresponding singular eigenvector t0 is called the maximum view-

Fig. 14 The brain model with apparent ridges
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dependent principle direction. The rest of the method is similar to the ridge and
valley methods. Formally, apparent ridges are defined as the loci of points at which
the view-dependent principle curvature assumes an extremum in the view-dependent
principle direction:

Dt0�
0
1 D 0 and Dt0Dt0�

0
1 < 0:

The sign of �0 is always positive. To distinguish between ridge lines and valley lines,
we may compare the sign of the object-space curvature:

�1

(
< 0; ridges

> 0; valleys.

The calculation of the directional derivative is different from the other methods.
This calculation is performed with finite differences. Therefore, we transform
the singular eigenvector t0 to object space t using the corresponding basis of
the associated vertex i. Furthermore, we need the opposite edges of the vertex
and determine two points w1; w2 on the edges such that t and the edges are
orthogonal and w1; w2 are the dropped perpendiculars of t to the corresponding
edges. The directional derivatives are determined by averaging the finite differences
of the curvatures between pi and w1; w2. The curvature of w1; w2 is assessed by
linear interpolation of the endpoints of the associated edge. Having the principle
view-dependent curvature direction t0, we need to make it consistent over the
mesh because it is not well-defined. Therefore, t0 is flipped in opposite direction
whenever it does not point to the direction where the view-dependent curvature is
increasing. The zero-crossings are determined by checking if the principle view-
dependent curvature directions of the vertices along an edge point are in the same
direction. Only in this case there is no zero-crossing. Pointing in different directions
means that the enclosing angle is greater than 90 degrees. The zero crossing is
determined by interpolating the values of the derivatives. To locate only maxima,
a perpendicular is dropped from each vertex to the zero crossing line. If the
perpendiculars of the vertices of an edge make an acute angle with their principle
view-dependent curvature directions, the zero crossing is a maximum. Otherwise,
the zero crossing is a minimum. To eliminate unimportant lines, a threshold based
on the view-dependent curvature is used.

Summary Apparent ridges incorporate the advantages of the ridges and valley
lines as well as the view dependency. They extend the ridge and valley definition by
introducing view-dependent curvatures. This method is able to depict salient regions
as sharp edges. Unfortunately, the third order computation leads to low frame rates
and to visual clutter if the surface mesh is not sufficiently smoothed.
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Fig. 15 The brain model with photic extremum lines

5.6 Photic Extremum Lines

Photic extremum lines (PELs) were introduced by Xi et al. [54]. These feature lines
depict regions of the surface mesh with significant variations of illuminations. This
method is based on the magnitude of the light gradient. Formally, these lines are
defined as the set of points where the variation of illumination along its gradient
direction reaches a local maximum (Fig. 15):

Dwkrf k D 0 and DwDwkrf k < 0;

with w D rf
krf k . Normally, f is used as the headlight illumination: f � hn; vi with n

as the normal vector and v as the view-vector. PELs have more degrees of freedom
to influence the result by adding more light sources. Thus, the scalar value of f
changes by adding the light values of the vertices by other lights. Noisy photic
extremum lines are filtered by a threshold which is based on the integral of single
connected lines. The strength T of a line with points x0; : : : ; xn is determined by:

T D
Z

krf k D
n�1X
iD0

krf .xi/k C krf .xiC1/k
2

kxi � xiC1k:

If T is less than a user-defined threshold, the line is canceled out.

Summary Photic extremum lines are strongly inspired by edge detection in
image processing and by human perception of a change in luminance. It uses the
variation of illumination. The result may be improved by adding lights. Beside the
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filtering strategy to integrate over the lines and accumulate the magnitude of the
gradient, the noise can also be reduced by adding a spotlight that directs to certain
regions. Nevertheless, smoothing is necessary to gain reasonable results. Here, the
smoothing of the normal is sufficient as the computation is mainly based on the
normals. However, the computation has high performance costs. The original work
was improved by Zhang et al. [57] to significantly increase the runtime.

5.7 Demarcating Curves

Demarcating curves were proposed by Kolomenkin et al. [26]. These feature lines
are defined as the transition of a ridge to a valley line. To determine these lines, the
derivative of the shape operator has to be calculated, recall Eq. (11):

C D �
DvS DwS

�
:

The demarcating curves are defined as the set of points where the curvature
derivative is maximal (Fig. 16):

hw; Swi D 0 with w D arg max
kvkD1

Dv�:

Fig. 16 The brain model with demarcating curves and contours
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The values for w can be analytically found as the roots of a third order polynom.
This is obtained by setting v D �sin.	/

cos.	/

�
and combining this with Eq. (12). A user-

defined threshold eliminates demarcating curves, if it exceeds the value of Dw�.

Summary Demarcating curves are view-independent feature lines displaying
regions where the change of the curvature is maximal. Therefore, higher-order
derivatives are used. A 2 � 2 � 2 rank-3 tensor is determined. This method can be
used to illustrate bumps by surrounding curves. The advantage of the method is to
enhance small features. Especially when combined with shading, this approach has
its strength in illustrating archaeology objects where specific details are important,
e.g., old scripts. For this application, view-dependent illustration techniques are
not recommended because details need to be displayed for every camera position.
Contrary, due to higher-order derivatives, the method is sensitive to noise and is not
well suited for illustrative visualization.

5.8 Laplacian Lines

Laplacian lines were proposed by Zhang et al. [58]. The introduction of these lines
was inspired by the Laplacian-of-Gaussian (LoG) edge detector in image processing
and aims at a similar effect for surface meshes. The idea of the LoG method is
to determine the Laplacian of the Gaussian function and to use this kernel as a
convolution kernel for the image. Laplacian lines calculate the Laplacian of an
illumination function f and determine the zero crossing as feature lines. To remove
noisy lines, the lines are only drawn if the magnitude of the illumination gradient
exceeds a user-defined threshold � :

�f D 0 and krf k � �;

where � is the discrete Laplace-Beltrami operator on the surface mesh and f is the
illumination with f � hn; vi. Here, the discrete Laplace-Beltrami operator with the
Belkin weights is used, as introduced in Sect. 3.4. The advantage of this method is
the simplified representation of the Laplacian of the illumination:

�f .p/ D �hn; vi
D h�n; vi:

Here, �n is the vector Laplace operator in the Euclidean space (Fig. 17).
This is just a composite of the Laplacian of the different components. Thus, the

algorithm consists of a preprocessing step to calculate the Laplace-Beltrami operator
with the Belkin weights of the components of the normal �n. During runtime, the
algorithm detects the zero crossings of h�n; vi and checks if the magnitude of krf k
exceeds the user-defined threshold.
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Fig. 17 The brain model with Laplacian lines

Summary The Laplacian lines are strongly inspired by edge detection algorithms
in image processing. This method is based on the Laplacian-of-Gaussian. Basically,
the method searches for zero crossings in the Laplacian of the illumination. The
computational effort can be simplified by a preprocessing step. Thus, interactive
frame rates for geometric models of moderate size are possible during the inter-
action. Similar to other higher order methods, this approach also assumes well
smoothed surface normals. The Belkin weights for the Laplace-Beltrami operator
have a smoothing effect for the Laplacian line generation. This method illustrates
sharp edges well, but is not suitable for round corners.

6 Discussion and Comparison

This section deals with general properties of the different feature line methods.
We discuss the different approaches to derive first recommendations which method
may be used for which kind of geometry. First, we list all feature line methods in
Table 1 and name different properties and the order of the corresponding method.
Furthermore, in Fig. 18 the higher-order feature lines are illustrated on an analytic
function.

The benefit of feature lines is motivated by the visual perception. In [32] it
is stated that the first stage of the assessment of the shape is done by extracting
features, such as contours. These characteristics help to understand the shape.
The illustration of shapes with feature lines cannot be seen as an alternative to
shading. It is rather an additional concept. Kolomenkin et al. [26] showed that their
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Table 1 List of different
feature line methods with
derivative order and view
dependency

Name Order View-dep.

Contours 1 Yes

Crease lines 1 No

Ridges & Valleys 3 No

Suggestive contours 2 Yes

Apparent ridges 3 Yes

Photic extremum lines 3 Yes

Demarcating curves 3 No

Laplacian lines 3 Yes

Ridges and Valleys, Ap-
parent Ridges

Suggestive Contours,
Demarcating Curves

Photic Extremum Lines,
Laplacian Lines

(a) (b) (c)

Fig. 18 Drawing of an analytic function with illustrated feature line positions. In (a) the ridges
are denoted in orange and the valleys are illustrated in cyan. For this function with fixed view
direction, the apparent ridges coincide with ridge and valley lines. In (b) the suggestive contours
and the demarcating curves are the same. In (c) the photic extremum lines and the Laplacian lines
coincide

demarcating lines support the shading and can extract text from archaeology objects.
However, for examining structures where the whole object inherits important
information, feature lines should not be used solely. For data where the scene can
be divided into focus and context objects, feature lines can be applied to the context
objects. Furthermore, feature lines can also be used to enhance focus with additional
shading.

Depending on the underlying model, we may recommend different techniques.
Most of the feature lines are able to depict the contour, but this depends strongly
on the bending of the surface at the contour. Especially apparent ridges and photic
extremum lines are able to draw contour lines, but in our experiments we noticed
that activating the contour enhances the visual impression because some parts of
the contour were missing. If the surface model is an assembly with sharp edges we
recommend to use ridge and valley lines or apparent ridges. These features often
appear in medical models like implants or prostheses. For simple models with only
a few sharp edges, crease lines may be appropriate as well. If the models have a lot
of round edges the answer for the right feature line method is a matter of taste. These
features appear in models like vascular surfaces or organs. For scenarios where it is
important to illustrate details for every camera position, we recommend ridges and
valleys as well as demarcating curves. From an artistic point of view, suggestive
contours, photic extremum lines, and Laplacian lines should be chosen. The reason
for this suggestion is that especially for a rounded cube the photic extremum lines
and Laplacian lines generate double lines around the feature to denote the rounded
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edge. If the user wants to visualize the line along the edge, the ridge and valley lines
or the apparent ridges should be used. For this case, the crease line approach is not
useful because it depicts only edges with specific greater value of the dihedral angle.
Therefore, too many lines may be generated. If the surface has many crevices, we
recommend the suggestive contours. They illustrate the inflection points of valleys.
Round corners are often represented in many organic structures like livers or bones,
see Fig. 20 for a femur model or a skull model.

Table 2 lists all possible features and Fig. 19 shows the different features. Please
note that the assessment of the suitability of a method—marked in the table—
necessarily is a subjective assessment by the authors and two artists. For instance,
regarding the property whether the methods are able to detect round edges, we mean
if it detects the specific round feature. As already mentioned, it does not reflect the
ability to enhance the round edge from an illustrative or artist point of view. This
concerns the ability to depict bumps. In agreement with artist, the bump shown from
a sideway (s.w.) perspective would be illustrated such that it depicts the smooth
transition from the ground to the dent. The drawing of the surrounding circle of
the bump is not desirable as it conveys a sharp transition from the bump to the
ground. For bumps shown from the top perspective it is sufficient if a round circle
is drawn. Bumps can occur as polyps or blebs on a cerebral aneurysm. Especially
blebs are important anatomical features to be detected because they are an indicator
for rupture. Blebs can also occur as polyps in CT colonography.

We also listed the property deformation in the table. This characteristic means if
the corresponding method is able to illustrate the features of deformable surfaces,
e.g., animated objects, in real-time. As an example, Oeltze et al. [36] analyzed
myocardial perfusion data. The focus lies on the examination of the infarction
scarf on the left ventricle. In this paper, the left ventricle is illustrated as context
information. Using the time-dependent data, it would also be possible to illustrate
the context information with some feature line methods during the animation.

For example suggestive contours have two definitions of how to assess the feature
lines. One is curvature-based and the other is light-based. With the second definition,
no preprocessing is needed to assess the curvature and the principle curvature
directions. This is in contrast to ridges and valleys and apparent ridges. Therefore,
these algorithms are not able to compute the feature lines during the deformation.
Photic extremum lines are also able to compute the feature lines during runtime
because of the light and view dependency. The Laplacian lines need to precompute
the Laplacian of the normals. Hence, this method is not suited for deformations.

Furthermore, Fig. 20 shows some exemplary models illustrated with higher order
feature lines. Three typical models in the discrete differential geometry field (cow,
Buddha, Max Planck) as well as three models from the medical image data (brain,
femur, skull) are presented.

In summary, current feature lines are not suitable for the depiction of anatomical
structures directly derived from medical image data because the underlying surfaces
are too noisy. Advanced smoothing algorithms are necessary to reduce artifacts, but
preserve important anatomical structures. For the depiction of a sparse representa-
tion of the model in a context-aware manner, the feature line methods can be used.
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SH SC RV AR PEL DC LL

Fig. 19 Different surface features are illustrated with shading (SH) and in different high-order
feature line methods: suggestive contours (SC), ridge and valley (RV), apparent ridges (AR), photic
extremum lines (PEL), demarcating curves (DC), and Laplacian lines (LL)

6.1 Medical Application

As stated, feature line methods can be seen as an illustrative visualization method
that can enhance shading or as an alternative in the focus-and-context visualization.
In this section, we list different application fields where illustrative visualization
is useful for effectively depicting medical data. At the end, we list possible fields
where feature lines can be used to encode context information.

Fischer et al. [13] proposed to use illustrative visualizing tools to depict structures
of hidden surfaces. The rendering style is tailored for understanding spatial relation-
ships and for visualizing hidden objects. Born et al. [3] used illustrative techniques
to depict stream surfaces. Their techniques are very useful for the visualizing of
complex flow structures. In the area of brain data, Jainek et al. [24] suggested to
use a hybrid visualization method to illustrate mesh and volume rendering. Their
approach is efficient for the exploration in clinical research. Chu et al. [7] proposed
a guideline of various rendering techniques. They combined, e.g., isophote-based
line hatching and silhouette drawing, for illustrative vascular visualization. Different
rendering techniques for medical applications were presented by Tietjen et al. [50].
An example for illustrative visualization for liver surgery can be found in [19].
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SH SC RV AR PEL DC LL

Fig. 20 Selected models depicted in shading and higher-order feature lines

Glaßer et al. [16] presented an approach to visualize 3D cluster results. Here,
the medical researcher can analyze the whole 3D scene with different cluster
results where he can also select interesting objects. The surrounding objects become
context information. Thus, we propose to illustrate them with feature lines. In
this case, we used the contour because the objects does not inherit much features.
Figure 21a illustrates the main object with unselected objects illustrated with feature
lines.

In the field of endoscopic views, the identification of polyps is necessary. Once
the polyps are detected, they can be illustrated in such a way that the endoscopic
views are used for context information. In Fig. 21b, we used suggestive contours for
the vessel and diffuse shading for the polyps.

In Fig. 21c, we visualized the portal vein and three liver segments. The portal
vein is illustrated in diffuse shading in red. The liver segments are visualized in
diffuse shading with transparency and photic extremum lines.
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Fig. 21 Different medical application fields where feature lines can be used to illustrate surround-
ing objects. In (a) a 3D cluster results is depicted. One cluster is shaded and the others are illustrated
with contour lines. In (b) the vessel is illustrated with suggestive contours and shading is used for
the polyps. In (c), we visualized the portal vein with diffuse shading and three liver segments
visualized in diffuse shading with transparency and photic extremum lines.

7 Conclusion

We have summarized the most common feature line methods for object space-based
presentations of 3D meshes as they are frequently used in medicine and molecular
biology. The presentation of the different methods was also covered by two basic
sections. We did not only list the most common feature line methods and their
calculation in the discrete space, but also provided the mathematical background to
explain the calculation from the differential geometry point of view. Our goal was to
present an extensive list of feature lines on the one hand, and to equip the reader with
basic knowledge of differential geometry on the other hand. The graduated student
may be able to follow the different methods and to implement every feature line
algorithm based on our explanations in the field of discrete differential geometry.
Therefore, our survey and tutorial may also be used by students who are new in
the field of illustrative rendering. Furthermore, this survey may also be used as a
starting point for the development of new feature line methods. The potential of
advanced and recently introduced feature line techniques is currently not exploited
in the display of medical surface models. The careful application of these methods
and perception-based evaluations are left open for future work.
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