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Preface

Medicine has for a long time been a driving force for the development of
visualization and visual analysis methods. Visualization has become an integral part
of several clinical treatment and planning processes. Still, much more needs to be
done. Many existing state-of-the art visualization approaches have not yet become
part of daily clinical routine. It should be a major interest of the visualization
community to strengthen the role and impact of visualization components in medical
applications and, more generally, in health services. The topics are not limited
to volume visualization, the traditional field of medical visualization, but include
visual analysis of highly complex data and of large databases. With this broader
focus, many challenging visualization problems remain to be solved.

Significant advances in data acquisition and new experimental techniques have
boosted research in the life sciences in recent decades. The huge amount of data
collected made it necessary to include sophisticated computational tools for data
analysis, and a steady stream of new types of data requires continuous development
of analysis tools. An important component to data analysis is provided by visual
means, i.e., by visual encoding for intuitive and effective display of the acquired
data and by interaction mechanisms for user-centered exploration. This lies in the
core of visualization research.

The third international workshop on Visualization in Medicine and Life Sciences
took place in 2013 (VMLS 2013). After two successful events in 2006 and 2009,
VMLS 2013 was, for the first time, colocated with the EuroVis conference. The
goal of the workshop was to discuss novel visualization techniques driven by
the needs in medicine and life sciences as well as new application areas and
challenges for visualization within these fields. VMLS 2013 generated ideas and
concepts for visual analysis of data from scientific studies of living organs or to
the delivery of healthcare services. Target scientific domains include the entire field
of biology at all scales—from genes and proteins to organs and populations—as
well as interdisciplinary research based on technological advances in other fields
such as bioinformatics, biomedicine, biochemistry, and biophysics. Moreover, they
comprise the field of medicine and the application of science and technology to
healthcare problems.

v



vi Preface

Internationally leading experts came together at VMLS 2013 in Leipzig, Ger-
many. This book reflects the outcome of the workshop. It contains research
and survey articles, which were solicited and peer-reviewed after the conference.
The research topics covered by the papers in this book address the following
visualization themes:

• Segmentation and uncertainty
• Visualization of 3D medical images
• Visualization for diffusion-weighted imaging
• Cohort studies and time-varying phenomena
• Visualization in life sciences

The workshop was supported, in part, by the Deutsche Forschungsgemeinschaft
(DFG) and the Eurographics Association. We would like to thank the organizers of
EuroVis 2013 for their cooperation.

Bremen, Germany Lars Linsen
Davis, CA, USA Bernd Hamann
Berlin, Germany Hans-Christian Hege
January 2016
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Part I
Segmentation and Uncertainty



Lung Segmentation of MR Images: A Review

Tatyana Ivanovska, Katrin Hegenscheid, René Laqua, Sven Gläser,
Ralf Ewert, and Henry Völzke

Abstract Magnetic resonance imaging (MRI) is a non-radiation based examination
method, which gains an increasing popularity in research and clinical settings. Man-
ual analysis of large data volumes is a very time-consuming and tedious process.
Therefore, automatic analysis methods are required. This paper reviews different
methods that have been recently proposed for automatic and semi-automatic lung
segmentation from magnetic resonance imaging data. These techniques include
thresholding, region growing, morphological operations, active contours, level sets,
and neural networks. We also discuss the methodologies that have been utilized for
performance and accuracy evaluation of each method.

1 Introduction

Magnetic resonance imaging (MRI) has non-invasive, non-ionizing nature and
provides a superior soft tissue contrast. This technique is rapidly developing over
the last years. For example, continuous technological advances such as parallel
imaging [16, 54] and integrated parallel acquisition techniques (iPAT) [30] signif-
icantly reduce the acquisition time and enable standardized imaging acquisition at
a very high spatial and temporal resolution providing morphological and functional
information of the highest detail. This makes MRI attractive in clinical practice and
research settings.
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Lung imaging is one of the most challenging topics in MRI due to motion
artifacts and low signal. Nevertheless, in recent years lung MRI is becoming increas-
ingly popular in comparison to the pulmo-imaging “gold standard”, computed
tomography (CT). High quality MRI assists in detection of numerous pulmonary
diseases. Moreover, MRI of the lung is important for specific clinical applications.
For instance, it can contribute to decision making the case of such diseases as
lung cancer [67], malignant pleural mesothelioma, and acute pulmonary embolism.
The advantages of MR over CT are not limited to the lack of ionizing radiation,
which is of particular interest for the assessment of lung disease in children,
pregnant women, or in patients, who require frequent follow-up examinations (e.g.,
immunocompromised patients with fever of unknown origin). Chest wall invasion
by a tumor and mediastinal masses are accepted indications benefiting from MRI
superior soft tissue contrast. Dynamic examinations to study respiratory mechanics
and contrast enhanced first pass perfusion imaging reach far beyond the scope of
CT [25].

MRI of the lung has multiple application areas. For example, conventional (so-
called proton or 1H) MRI provides anatomical details and is standardly used for
assessing lung volumes, boundaries, detection of nodules, infiltrates, and masses.
There is a significant number of protocols designed for these purposes [5, 6]. In
Fig. 1, two example slices of anatomical MR images from two different sequences,
namely, T1-weighted VIBE (volume-interpolated breath hold examination) and T2-
weighted HASTE (half-Fourier single shot turbo spin-echo), are shown. The VIBE
sequence has a higher spatial resolution and a smaller slice thickness than the
HASTE sequence (for instance, 1:8� 1:8� 3 mm vs. 2:3� 1:8� 5 mm on 1.5 Tesla
Magnetom Avanto Siemens device) and is preferable for lung volumetry, whereas
lung infiltrates serve as key pathologies for applying the HASTE sequence.

Fig. 1 An example of two slices from two anatomical MR thoracic scans from the same
participant. Left: T2-weighted Half-Fourier Acquisition Single-Shot Turbo Spin-Echo sequence
(HASTE), 256�206�44; Right: T1-weighted volume-interpolated breath hold sequence (VIBE),
axial orientation, 512� 416� 88 . Image courtesy of Study of Health in Pomerania, Germany [18]
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MRI with non-radioactive noble gases, such as hyperpolarized 3He (helium-3)
or 129Xe (xenon-129), is applied for detection and evaluation of functional, e.g.,
ventilation, abnormalities [40, 42, 62]. MR angiography (MRA) gains its popularity
for assessment of pulmonary vascular disease [25].

(Semi-)automatic segmentation is an essential step in medical image analysis,
medical visualization, and computer-aided diagnosis. Since manual segmenta-
tion of large volumes of MR data is a very laborious, observer-dependent, and
time-consuming process, which is prone to inter- and intra-observer variability,
automatized segmentation methods for extraction of different organs and structures
are actively developed.

This paper aims to provide an overview of recently published literature on
automatic and semi-automatic segmentation techniques for MR images of human
lungs. Our main source of references was the Internet: we have searched for
the terms lung, segmentation, volumetry, pulmonary, magnetic resonance imaging
(MRI) on Google Scholar, PubMed, and IEEE-Xplore.

The paper is organized as follows. First, a short introduction to human lung
anatomy is given in Sect. 2. In Sect. 3, we introduce the methods and the data, which
they are applied to. The performance of the methods is discussed in Sect. 4. Section 5
concludes the paper.

2 Pulmonary Anatomy

In this section, we briefly present the human pulmonary system. For a more detailed
description, we refer to specialized medical literature, for example [35].

Human lungs are located in the chest wall, consisting of the rib cage, diaphragm,
and mediastinum, the area between the lungs, which includes all of the organs in the
chest, such as heart, vessels, trachea, except the lungs. The right lung is composed
of three lobes, while the left lung has only two lobes. The lobes are further divided
into sub-lobar segments, which are defined by the branching pattern of the airway
tree. The lobar fissures, space between the surface of the lobes, allow the lobes to
rotate relative to one another to accommodate body posture-related changes in chest
wall geometry.

Air travels into the lungs through the nose or mouth and through the pharynx,
larynx, and into the tracheobronchial (airway) tree (cf. Fig. 2). The pulmonary blood
circulation is provided by pulmonary arteries and veins.
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Fig. 2 A schematic
description of the human
respiratory system

3 Lung Segmentation

Segmentation is the first and essential step in computer analysis of medical
imaging data. Segmentation results are further used, for instance, for volumetric
measurements, visualization, and biomechanical modeling.

In thoracic MR images, various anatomical entities are presented, such as lungs
(including lobes and fissures), bronchial tree, and pulmonary vessels. Whereas
in high-resolution CT images all these structures are clearly visible and can be
distinguished, lung imaging is a challenge in MRI. Here, usually only organ borders
can be identified. Moreover, such fine structures as the complete bronchial tree or
the fissures are hardly visible in anatomical MR images. Therefore, the task of lung
segmentation from MR images usually consists of lung region detection, separation
of the lungs from the large airways, and exclusion or inclusion of the pulmonary
vessel regions.
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Numerous approaches have been proposed for CT data [13, 38, 53], whereas there
are only a few methods for MRI data presented in the literature. Here, we classify
and discuss these methods for automatic and semi-automatic lung segmentation
from MRI data. The literature can be roughly divided into the following categories:
intensity-based, model-based, and active contour-based approaches. A summary of
published works is presented in Table 1. The table rows are ordered as the techniques
are discussed in the paper body. We leave table cells dashed, if the correspondent
information is missing in the original papers.

Table 1 A summary of published works on MR lung segmentation

Authors Main points Data

Resolution Orientation Sequence

Sensakovic et al.
2006 [52]

Intensity-based
2D, slice based,
Histogram thresholding,
Morphological
operations

256 � 256 Axial T1 SPGR

Ivanovska et al.
2012 [22]

Intensity-based
3D, Clustering,
CC Analysis,
Trachea removal,
Lung separation,
Morphological
operations

2:3 � 1:8�
5 mm

Axial T1 VIBE

Kullberg et al.
2009 [27]

Intensity-based
3D, Thresholding,
Distance transform,
Region growing,
CC Analysis

2:1 � 2:1�
8 mm

Coronal Whole body
multigradient

Lui et al.
2013 [33]

Intensity-based
2D, slice based,
Semi-automatic
Histogram thresholding,
Clustering,
Trachea removal,
Morphological
operations

256 � 256,
8–14 slices

Coronal 3He Fast GRE

(continued)
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Table 1 (continued)

Authors Main points Data

Resolution Orientation Sequence

Plathow et al.
2005 [45]

Intensity-based
2D, slice based,
Semi-automatic
Interactive region
growing
Morphological
operations

3:75�3:75�
3:8 mm

Coronal 3D FLASH

2:5� 1:6�
10 mm

Coronal 2D trueFISP

Heydarian et al.
2012 [19]

Intensity-based
2D and 3D
K-Means
Region growing

256� 128,
14 slices

Coronal T1 SPGR

Kirby et al.
2012 [26]

128� 128,
14 slices

Coronal 3He

Tokuda et al.
2009 [58]

Intensity-based
2D, Semi-automatic
Confidence connected-
ness
Fuzzy connectedness
Region growing (ITK)

3:125�
3:125�5 mm

Coronal 3D FLASHC
GRAPPA

Woodhouse
et al. 2005 [66]

Intensity-based
2D,
Semi-automatic
Thresholding

256� 256 Coronal 1H SSFSE

112� 128 Coronal 3He

Virgincar et al.
2012 [64]

Intensity-based
2D,
Semi-automatic
Region Growing
Morphological
operations

192� 192 Coronal SSFP

192� 192 Coronal 3He SPGRE

Lelieveldt et al.
2000 [28, 29]

Model-based
3D,
Multiorgan
Energy potential
Minimization

� Thoracic
scout

�

(continued)
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Table 1 (continued)

Authors Main points Data

Resolution Orientation Sequence

Tustison et al.
2011 [60]

Model-based
3D, Automatic
Multiorgan
Shape prior, PCA
Ventilation-based
defects
N4 correction

80� 128,
19–28 slices

Axial 3He

Ray et al.
2003 [48]

Active contours
2D, Automatic
Contour merging
Snakes
Slice based

� Coronal 1H

Middleton and
Damper,
2004 [39]

Active contours
Neural network
Binary classification
Refinement with Snakes
3D

256� 256 �
35

Axial T1-weighted

Tetzlaff et al.
2010 [57]

Semi-automatic
2D
Graph Cuts

128� 128 Coronal 2D FLASH

Böttger et al.
2007 [9]

Semi-automatic
2D and 3D
Parametric active
contours
Simplex mesh

� Coronal HASTE

The table rows are ordered as the techniques are discussed in the paper body

3.1 Intensity-Based Segmentation

Intensity-based segmentation steps are similar in MR and CT data. Namely,
intensity-based approaches usually consist of the following steps. First, lungs are
extracted and separated from the large airways. Second, if needed, anterior and
posterior lung junctions are corrected. Third, the lung contours are smoothed and
the cavities are filled.

Sensakovic et al. proposed a multi-step approach based on thresholding, shape
descriptors, and morphological operations [50–52]. The method works on a slice-
by-slice basis. In each slice, the thorax is separated from the background using
a histogram-based thresholding and a boundary smoothing [17]. Once the thorax
segmented image is computed, a histogram-based thresholding [17] is applied
to it to create a lung-segmented images. Thereafter, the connected components
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are analyzed, and all regions that fail to satisfy the descriptor thresholds (area,
compactness, center of mass, and perimeter) are classified as non-lung. If no
lung region is detected, the threshold is decreased and the procedure is repeated.
After this procedure, which is referred as the “core stage”, a refinement step (“the
correction stage”) starts. This step is important especially in the presence of disease
and acquisition artifacts. It aims to capture valid lung regions that may have been
obscured by disease or acquisition artifacts. First, a gray scale erosion operator [55]
is applied to the thorax-segmented image. It lowers the intensity values of the
lung regions masked by acquisition artifacts or disease. Second, a thresholding
procedure, similar to the one in the core stage, is applied. A series of rolling ball
filters [2] is applied to the internal boundaries the lungs. Candidate lung regions
from the correction stage lung-segmented image that satisfy the circularity criterion
are combined with lung regions from the core stage, and the final lung-segmented
image is constructed.

Ivanovska et al. implemented a 3D method for lung segmentation [22]. The
approach consists of four steps: the main extraction and three refinement steps.
First, the lung and trachea are segmented. Any automatic clustering technique
(for example, K-Means [34]) is applicable here. Second, the trachea and main
bronchi are found using a 3D connected component analysis [17]. The separation
of the large airways from the lungs is done slice-wise using 2D Watershed [63]
on the inverted distance map [55]. Third, the lungs are separated from each other
using a 3D Watershed procedure on a subimage, which represents an anterior or
posterior junction. The subimage is selected such that the computational costs of
the watershed procedure stay relatively low. Fourth, the lung cavities are corrected
with a morphological closing [55].

Kullberg et al. presented an automatic approach for lung segmentation as a part
of the adipose tissue depots segmentation from the whole-body MRI datasets [27].
Segmentation of lungs is performed with thresholding and morphological opera-
tions [17]. To increase robustness to erroneous inclusion of intestinal gas, the lungs
are segmented one by one. First, the right lung is segmented, since the position
of the liver increases the distance between the right lung and the intestines. The
segmentation is performed as follows. Initial thresholding is followed by a distance
transform [55]. Then, a region growing [17] is applied to the distance transform
image. The condition for the growing process is continuous decrease of the distance
transform values. The result is dilated to ensure inclusion of the whole lung. An
intensity threshold is applied in the dilated lung to determine the final result. The
threshold value is computed from the fitted Gaussian function to the histogram from
the dilated lung region.

Lui et al. proposed a semi-automatic segmentation algorithm to isolate areas of
ventilation from hyperpolarized 3He MRI [33]. First, the background is removed
by determining an optimal threshold from a sampled background noise distribution
located outside of the lung field. Second, the lung mask is refined with a four-class
fuzzy C-Means [56] clustering. Third, the trachea is semi-automatically removed
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with a seeded region growing method [56]. Finally, morphological operators [55]
are used to refine the result.

Plathow et al. applied a semi-automatic method based on an interactive region
growing technique [56] to evaluate lung volumes during the breathing cycles using
dynamic MRI [45]. First, displacement of the chest wall and the diaphragm as a
surrogate of the lung volume and lung surface was measured in dynamic 2D MRI
images during the breathing cycle. Thereafter, vital capacity (VC) was calculated
using a model, consisting of a half ellipse, an ellipsoid cone, and a prisma [44]. An
automatic segmentation in 3D dynamic MRI failed due to intensity inhomogeneities
and motion artifacts. Therefore, the 3D data was segmented in a slice-by-slice
manner using interactive region growing. For each dataset, the 2 segmentation
results were combined into a voxel-based 3D description of the current breathing
state. The voxel-based segmentation results were transformed into triangular meshes
using the marching cubes algorithm [31]. The isosurfaces were then smoothed in a
post-processing step. Total surface lung areas were computed by summing up the
area of each individual triangle.

Heydarian et al. proposed a semi-automated method for generating 3He mea-
surements of individual slice (2D) or whole lung (3D) gas distribution [19].
The same technique was also used by Kirby et al. [26]. The authors applied
hierarchical K-Means [34] clustering for the 3He and a seeded region-growing
algorithm [56] for anatomical MR images. Thereafter, the images were registered
semi-automatically using landmark-based registration [41]. Finally, the segmented
areas were postprocessed with a morphological closing algorithm with a structuring
element disk [55]. The vertical central region was excluded from the processing to
avoid connecting the right and left lung areas.

Tokuda et al. measured lung volumes in dynamic 3D lung images [58]. The
segmentation was performed in a slice-by-slice manner. In each slice, the lung
area was segmented using a combination of confidence-connectedness and fuzzy-
connectedness region growing algorithms, implemented in the Insight Segmentation
and Registration Toolkit [21]. First, a rough segmentation of the lung area was
obtained with the confidence-connectedness region growing method. The algorithm
extracted a connected set of pixels whose pixel intensities are consistent with
the pixel statistics (the mean and variance across a neighborhood) of predefined
seed points. The pixels, connected to the seed points, whose values are within the
confidence intervals are grouped together. The width of the confidence interval is
controlled by a multiplier parameter. Second, the mean and variance of intensities
in the lung area were then used for the fuzzy connectedness algorithm [21] to
compute an affinity map, which represents degrees of adjacency and the similarity of
pairs of nearby voxels. Finally, the refined lung area was extracted by thresholding
the affinity maps. The multiplier and threshold parameters were tuned such the
segmented lung area included the blood vessels.

Woodhouse et al. used a combination of anatomical and 3He MR images to
compare the ventilated and thoracic lung volumes in groups of smokers and never-
smokers [66]. The processing was done manually in a slice-by-slice manner. 3He
images were also segmented semi-automatically with adaptive thresholding [56].
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The threshold value was derived from the signal-to-noise (SNR) [56] value of each
image and the mean signal in a manually selected region of interest in each image.

Virgincar et al. analysed 129Xe and SSFP (steady state free precession) 1H images
in a semi-automatic manner [64]. The anatomical MRI was segmented by a region
growing method [56]. The seeds were placed manually in the lowest intensity areas
of the right and left lung in the central slice of the thoracic cavity. Thereafter,
a threshold range was computed from the intensities of the seeds. Then, the
morphological closing [55] was applied to the extracted lung. The 1H and 129Xe were
acquired over different breath-holds, they required registration. It was performed
using either affine transform [3] or similarity transform [20]. After the registration,
ventilation images were also segmented with the region growing method.

3.2 Model-Based Segmentation

Lelieveldt et al. developed a model-based method to simultaneously segment lungs
as well as some other nearby organs [28, 29]. An anatomical model of thorax
is built by modeling of individual organs with implicit surfaces from manually
delineated training images and subsequent grouping of single organ models into
a tree structure. The whole hierarchical scene is described by a boundary model,
which characterizes the scene volume as a boundary potential (or energy) function.
Thereafter, a model is matched to image data. First, an initial parameter set for
the pose and scale parameters is selected. Second, an automatic thresholding based
on empirical histogram evaluation discriminates air from tissue. A set of target
boundary points is obtained. Third, a model is placed and the energy function is
minimized with Levenberg-Marquardt nonlinear by fitting the minimization [32]
by fitting the target boundary points to the model. The authors reported that their
method was designed for a coarse pre-segmentation and a more accurate local
segmentation process is further required.

Tustison et al. proposed an automated segmentation method for differentiation
of the ventilated lung volumes on 3He MRI [60]. The method consists of two main
steps: template and statistical model construction and individual subject processing.
All images in the database are registered to a normalized space. A normalized
unbiased template is built from seven representative subjects with a symmetric
diffeomorphic registration algorithm [4]. Thereafter, a principal component analysis
(PCA) model [15] from an image database is built. Each image is transformed
to the template using an affine transformation, so that the presence of any global
shape differences in the statistical model is avoided. Then the processing of
individual subjects starts. Each dataset is mapped to the template, the bias field is
corrected [59], and then a shape-based level set procedure [43] starts to extract the
lungs, where the PCA model is used.
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3.3 Active Contours and Neural Network Segmentation

Ray et al. implemented a slice-based active contour approach for automatic segmen-
tation of lungs from 1H MRI [48]. Initial snakes are placed automatically within the
lung cavities that are to be segmented. Then all snakes are evolved independently of
each other. Finally, the union of the regions covered by all snakes is considered as
the final results. For the snake evolution, the authors proposed to apply a modified
gradient vector flow (GVF) with Dirichlet boundary conditions [47].

Middleton and Damper proposed a combined method, consisting of neural
networks and active contours (snakes) to segment lungs in MRI [39]. First, a neural
network was trained for binary classification of each pixel as a “boundary” or a
“non-boundary”. The inputs to the neural network are 7 � 7 image patches of the
pixel to be classified. The weights were determined by training on MR sections with
lung boundary pixels segmented by an expert observer. The resulting edge-point
image was used as the external energy for the snake evolution.

Tetzlaff et al. analysed lung areas on 2D dynamic MR images [57]. The
segmentation was performed semi-automatically, using Graph Cut algorithm [10].
The algorithm was initialized by adapting a bounding box to the size of the region
of interest, and then the areas inside and outside of the lungs were roughly marked.
If the segmentation leaked into the thoracic wall, an additional scribble had to be
drawn at the point of leakage.

Böttger et al. presented a new segmentation approach [8, 9], based on parametric
active contours [24]. Discrete surface meshes [12] were used here. The authors
proposed to use an additional speed term, which was derived from the magnitude of
the Gaussian gradient image. New attractor forces were introduced into the simplex
mesh deformation scheme [7]. These forces were obtained from the user defined
attractor points. To cope with complex surface geometries and avoid oscillating
behavior during the evolution, the mesh was refined during the deformation
automatically after every 50 iterations.

4 Discussion

4.1 Methodical Analysis

There are several aspects that define the relationships between the described
algorithms. As it is shown above, most of the presented techniques are pipelines
consisting of well-known algorithms, such as region growing, intensity clustering
or thresholding, morphological operations [55, 56], combined together for a spe-
cific purpose. The novelty of the presented pipelines is in the application areas.
Therefore, the algorithms are usually designed for a specific data type, i.e., MR
sequence, and would often require substantial changes to be adapted to other data.
Most of the presented techniques are developed for coronal or axial anatomical
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MRI. Unfortunately, often no exact data protocols are given in the papers (cf.
Table 1). Some techniques are designed for detection of ventilation defects in MR
with noble gases (3He and 129Xe). Since 3He images are often acquired concurrent
with the traditional anatomical MR images, some techniques of 3He segmentation
are based on the prior segmentation of 1H images and subsequent image registration,
for instance, [19]. Moreover, some methods were designed only for 2D (slice-
wise) processing [48, 51] and do not consider any 3D object consistency and
connectivity. More complicated approaches, such as presented in [22, 60], were
developed for a 3D organ extraction. Most of the presented techniques consist of one
or two steps and include the user interaction. Usually, the more users are involved
in the processing, the simpler the algorithmic pipeline is, since the complicated
parts are accomplished by the users. For example, for many algorithms [19, 33]
the mediastinum area is manually pre-excluded from the processing, and the user
initiates the computations by placing the initial seed points [33, 58, 64] or adapting
threshold values [66]. Of course, semi-automatic algorithms are less tedious for the
users than the completely manual segmentation, but still can be inappropriate for
processing of thousands of datasets. The fully automated pipelines, such as [22, 60],
have a significant number of algorithmic steps and pre-selected parameters.

Therefore, the practitioners should take into account the following facts, while
selecting, which technique to apply:

• What type of data is available?
• How many datasets need to be processed?
• Is 2D or 3D processing required?
• What level of user interaction is accepted?

For example, if the user interaction and 2D processing are acceptable, then slice-
by-slice algorithmic solutions for 1H or 3He MR data, similar to the ones presented
in [19, 26, 66], can be considered.

4.2 Performance Evaluation

All automatic and semi-automatic methods require some form of quantitative
measure of the accuracy. Usually, ground truth masks are obtained manually and the
results produced by the algorithm are compared to it. Here, region based metrics,
such as DICE coefficient [14] or sensitivity and specificity, are often applied.
Moreover, for certain applications the correlation to the clinical examinations,
such as spirometry, is important. Hence, the correlation coefficients between these
measurements are assessed.

However, there is no unique system of quality measures used in the community,
which complicates the evaluation of the algorithms’ efficiency. This section reviews
the approaches, presented above, from the quantitative and qualitative perspectives.
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A summary of the test sets and details of validation for each method is given in
Table 2. The order of the rows in kept the same, as in Table 1.

Table 2 A summary of performance measurements of the segmentation methods on MR lung
segmentation

Authors Test set Evaluation

Sensakovic et al.
2006 [52]

101 slices Area of overlap (regions)
AOM � 82 %

Ivanovska et al. 2012 [22] 10 datasets Volume fractions (regions)
TPVF � 97 %
Error fractions � 5 %

Kullberg et al. 2009 [27] 24 datasets No evaluation

Lui et al. 2013 [33] 10 datasets DICE’s coefficient (regions)
DICE D 0:96˙ 0:1

Plathow et al. 2005 [45] 20 datasets Correlation with spirometry
Spearman’s correlation r > 0:83

Significance level P < 0:005

Heydarian et al. 2012 [19] 4 datasets Correlation with manual
Pearson’s correlation r > 0:98

Significance level P < 0:0001

DICE > 0:9

Kirby et al. 2012 [26] 15 datasets
3 pathologies

Ventilation Defect Volume (VDV)
Ventilation Volume (VV)
Correlation with manual
Pearson’s correlation r � 0:84

Significance level P < 0:0001

DICE � 0:88

Tokuda et al. 2009 [58] 2 datasets No evaluation

Woodhouse et al.
2005 [66]

18 datasets
Smokers and
never-smokers

Ventilation Volume (VV)
Correlation with manual
ICC � 0:98

Virgincar et al. 2012 [64] 44 datasets Ventilation Defect Percentage
(VDP)
Correlation with manual
Pearson’s r D 0:97; P < 0:0001

Lelieveldt et al.
2000 [28, 29]

15 Datasets No evaluation

(continued)
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Table 2 (continued)

Authors Test set Evaluation

Tustison et al. 2011 [60] 43 datasets for
defect evalua-
tion
18 datasets for
ventilation
based
segmentation

Defect evaluation: ICC D 0:85

Segmentation: STAPLE method
from 4 observers
Sens D 0:898; Spec D 0:905

(regions, no ground truth)

Ray et al. 2003 [48] 10 datasets FOM D 69 % (edges)
Error D 6 % (regions)

Middleton and Damper
2004 [39]

13 datasets Segmentation performance F �
0:84 (regions)

Tetzlaff et al. 2010 [57] 10 datasets Correlation to spirometry
r � 0:97

Böttger et al. 2007 [8, 9] 10 datasets DICE � 0:88

Surface distance � 2 mm
Hausdorff distance � 20 mm

4.2.1 Region-Based and Edge-Based Metrics

Sensakovic et al. [51, 52] and Sensakovic and Armato [50] applied their technique
to a random sample of 101 thoracic MR sections. True lung regions were manually
delineated by two radiologists. 90 % of the patient data included abnormalities,
such as mesothelioma, scarring, enlarged lymph node and others. To measure the
segmentation quality, the authors used an area-of-overlap (AOM) measure, also
known as the Jaccard coefficient [23]. The AOM measure of two regions, A and
B, is defined as the number of pixels contained within the intersection of the regions
divided by the number of the pixels contained within the union of the regions:

AOM D A \ B

A [ B
, AOM 2 Œ0; 1�; (1)

where 0 corresponds to disjoint regions and 1 is the complete overlap. The AOM
is similar to the Dice coefficient [14], but the normalizing part (the denominator)
is different. The reported AOM values were equal to 0:82˙ 0:16 and 0:83˙ 0:13,
when to compared to the first and second observers, respectively.

Ivanovska et al. [22] tested the proposed method on ten randomly selected
participants with normal lungs. The accuracy evaluation was done by the method-
ology proposed by Udupa et al. [61]. Namely, the following volume measures (VF:
volume fractions) were computed: TPVF (true positives is the fraction of voxels
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in the intersection of the automatic and manual segmentation results), FPVF (false
positives is the fraction of voxels falsely identified by the automatic segmentation),
FNVF (false negatives is the fraction of voxels defined in manual segmentation, but
missed by the automatic method). Additionally, TPVE (true positive volume error)
was calculated. Let Cexp and Cauto denote the binary masks produced the expert and
the automatic pipeline, correspondingly. Then, the measures are defined as

TPVF D jCauto \ Cexpj
jCexpj ; (2)

FNVF D jCexp � Cautoj
jCexpj ; (3)

FPVF D jCauto � Cexpj
jCexpj : (4)

Let Vauto and Vexp denote the volumes, computed by the algorithm and the expert,
correspondingly. Then TPVE is defined as

TPVE D jVauto � Vexpj
jVexpj : (5)

The accuracy measures have been computed for left and right lungs separately.
For the left lung: TPVF D 97:06 ˙ 1:36 %; FPVF D 2:97 ˙ 1:08 %; FNVF D
2:94 ˙ 1:36 %; TPVE D 1:58 ˙ 1:16 %. For the right lung: TPVF D 97:33 ˙
1:57 %; FPVF D 3:96˙ 1:69 %; FNVF D 2:66˙ 1:57 %; TPVE D 2:37˙ 1:74 %.
Moreover, the authors acquired the ground truth from two independent experts
and observed that agreement about 93:5 %, which shows that the automatic result
accuracy lies with the variation interval between the experts.

Lui et al. [33] validated their method on four healthy and six asthmatic subjects,
calculating the ventilated lung volume (LVL). To assess the accuracy of the method,
the authors calculated a Dice coefficient [14], comparing their results to the
manually obtained ground truth. The Dice coefficient measures the overlap between
the regions A and B:

DICE D 2jA \ Bj
jAj C jBj , DICE 2 Œ0; 1�; (6)

when 0 there is no overlap, 1 is the perfect match. The reported Dice value is
0:96˙ 0:01. Bland-Altman analysis [36] was used to determine the 95 % limits of
agreement calculated from the mean and standard deviation of the volume difference
between the segmentation results and the ground truth. The authors processed a
total of 109 coronal slice for ten subjects. It showed that the means LVLs of
the semi-automatic approach were 3:88 ˙ 0:75 L and 3:83 ˙ 1:11 L for healthy
and asthmatics subject, respectively. The differences to the manual and standard
spirometric measurements were statistically insignificant.
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Ray et al. [48] applied their approach to ten different datasets. The authors
measured Pratt’s figure of merit (FOM) [1]. FOM 2 Œ0; 1�. The FOM quantifies
the comparison between ideal edges (ground truth) and detected edges of the image.

FOM D 1

max.IA; II/

IAX

iD1

1

1C di˛2
; (7)

where IA and II are the detected and ideal edge images, respectively. di is the distance
between the actual and ideal edge i, and ˛ is a penalty factor for displaced edges. The
average obtained FOM is 0:69. The authors also utilized a region-based measure,
namely, the percentage error , computed as

Error D
P

i jSegm.i/� Ig.i/jP
i Ig.i/

100 %; (8)

where Segm and Ig are the segmentation result and the ground truth, correspond-
ingly. This metric is a combination of FP (false positives) and FN (false negatives)
measures. The mean percentage error for ten datasets was about 6 %.

Tustison et al. [60] used data from seven random subjects to build the unbiased
template. Experimentally, it was seen that such number of datasets provided a
satisfactory compromise between quality of results and required computational
time. For the PCA statistical model 156 images from normal subjects were used.
For the evaluation two comparative analyses were performed. First, the number of
defects scored by two human readers in 43 subjects. Here, the intraclass correlation
coefficient (ICC) [37].This metric is a general measurement of agreement or
consensus, where the measurements used are assumed to be parametric (continuous
and has a Normal distribution). There was a high agreement between the algorithm
and the readers (ICC D 0:85 and ICC D 0:86 for the first and second observers,
correspondingly). Second, the simultaneous truth and performance estimation
(STAPLE) [65] was performed on 18 subjects in which the ventilation defects were
manually segmented by four human readers. Here, the sensitivity and specificity are
defined as

Sens D TP

TPC FN
; (9)

Spec D TN

TN C FP
; (10)

where TP; FN; FP; TN denote the true positives, the false negatives, false positives,
and true negatives, respectively. The STAPLE results yielded the best sensitivity and
specificity combination for the algorithm (Sens D 0:898; Spec D 0:905).

Heydarian et al. [19] tested their method on two healthy subjects and two
subjects with chronic obstructive lung disease (COPD). The results of hierarchical
K-means 2D and 3D segmentation were compared to an expert observer’s manual
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segmentation results using linear regression, Pearson correlations [11] and the
Dice similarity coefficient. 2D hierarchical K-means segmentation of ventilation
volume (VV) and ventilation defect volume (VDV) was strongly and significantly
correlated with manual measurements (VV: r D 0:98; P < 0001; VDV: r D
0:97; P < 0:0001) and mean Dice coefficients were greater than 0:92 for all subjects.
3D hierarchical K-means segmentation of VV and VDV was also strongly and
significantly correlated with manual measurements (VV: r D 0:98; P < 0:0001;
VDV: r D 0:64; P < 0:0001) and the mean Dice coefficients were greater than 0:91

for all subjects.
Kirby et al. [26] applied the same approach for segmentation of ventilation

defect volume (VDV) and ventilation volume (VV) on five patients with asthma,
five patients with chronic obstructive pulmonary disease (COPD), and five patients
with cystic fibrosis (CF). They compared semi-automatic and manual measurements
and observed strong significant correlations between the VDV values generated by
each method (asthma: r D 0:89; P < 0:0001; COPD: r D 0:84; P < 0:0001;
CF:r D 0:89; P < 0:0001). The spatial agreement for VV values was measured
with the Dice coefficient (asthma: 0:95; COPD: 0:88; CF: 0:9).

Middleton and Damper [39] applied their technique to 13 datasets. To evaluate
the performance, they utilized the following region-based measures: precision (P),
recall (R), effectiveness E [49], and segmentation performance F D 1 � E. The
measures are defined as:

P D TP

TPC FP
; (11)

R D TP

TPC FN
; (12)

E D 1 � PR

.1 � ˛/PC ˛R
; (13)

where ˛ D 0:5, i.e., the precision and recall are weighted equally. The mean of F
was 0:866 and 0:844 for the left and right lungs, respectively.

Böttger et al. [9] applied their tool to 10 datasets and compared the semi-
automatically obtained results to two expert readings. For evaluation, the average
surface distance, Hausdorff distance, and the Dice coefficient of two compared
segmentation were computed. For all segmentation, the average surface distance
was significantly lower than 2 mm, and the Hausdorff distance was lower than
20 mm, apart from one outlier. The Dice coefficient was higher than 0:88.

4.2.2 Other Metrics

Plathow et al. [45] measured on a dynamic 2D MRI displacement of the chest wall
and the diaphragm as a surrogate of the lung volume and lung surface in 20 healthy
subjects. Moreover, a 3D volumetric evaluation of the breathing cycle was done,
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using a dynamic 3D MRI. The results were correlated to spirometry and the vital
capacity (VC) [46] was measured. VC using spirometry was 4:3 ˙ 1:0 L; using
the 2D model, VC was 4:9 ˙ 1:2 L. Using the 3D MRI VC was 4:65 ˙ 0:9 L.
Correlation between spirometry and the 2D and 3D models was highly significant:
the Spearman’s correlation coefficient r > 0:83 and significance level P <

0:005 [11]. The differences of absolute VC values between spirometry, 2D and 3D
MRI were insignificant.

Tokuda et al. [58] assessed lung motion sequences from two volunteers, the
quality of segmentation was determined by visual observation of the original
images.

Woodhouse et al. [66] measured the ventilated lung volumes from a combination
of 3He and proton single-shot fast spin echo (SSFSE) coronal MR images in groups
of “healthy” smokers (five subjects), smokers with moderate COPD (five subjects),
and never-smokers (eight subjects). The results (volume values) from slice-wise
semi-automatic segmentation and manual segmentations from two observers were
compared to each other. It showed high agreement (Pearson correlation coefficient
r � 0:94; P < 0:05). The main source of disagreement occurred in the central
five slices of each dataset, with the middle slice centered on the bifurcation of the
trachea.

Virgincar et al. [64] developed their method for 129Xe MR ventilation and
anatomical MR images and tested in on a group of forty four participants: 24
healthy subjects, 10 subjects with COPD, 9 subjects with Global Initiative for
Chronic Obstructive Lung Disease (GOLD), and 10 age-matched control (AMC)
subjects. Ventilation images were quantified by two methods: the ventilation defect
percentage (VDP), as the ratio between the thoracic cavity volume and ventilated
volume, was computed from the semi-automatically segmented images; an expert
computed the ventilation score percentage (VDS%). For the ventilation images,
the intensity histograms from the thoracic cavity volume were analysed, and the
coefficient of variation (CV) was computed there. The study showed that there was a
correlation between VDS% and VDP (r D 0:97; P < 0:0001), and between VDS%
and CV (r D 0:82; P < 0:0001).

Lelieveldt et al. [28, 29] tested their pipeline on 15 MR scans and assessed the
total model matching. However, no separate evaluation of the lung segmentation
results was done.

Kullberg et al. [27] used the segmented lungs only as a marker for further
detection of adipose tissue in the body. No additional evaluation of the lung
segmentation accuracy was done.

Tetzlaff et al. [57] tested their method on 10 datasets from healthy patients and
compared the semi-automatically obtained volumes with the spirometric volumes.
The comparison showed high agreement (mean Pearson correlation coefficient is
� 0:97).
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5 Conclusion

The paper provides a review of existing automatic and semi-automatic methods
for human lung segmentation from MR data. The categorization of the methods
is done according to the main segmentation strategy. The approaches are related and
compared to each other from the application point of view. Namely, such aspects as
data types, which the techniques are designed for, the level of user involvement and
the methods’ complexity are discussed. Accuracy of the segmentation methods is
crucial according to the nature of the work. The review of performance evaluation
approaches is also done. Unfortunately, there is no standardized evaluation system,
which would make the methods really comparable to each other. Moreover, for
certain application areas there is no existing ground truth, which additionally
complicates the evaluation.
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Fast Uncertainty-Guided Fuzzy C-Means
Segmentation of Medical Images

Ahmed Al-Taie, Horst K. Hahn, and Lars Linsen

Abstract Image segmentation is a crucial step of the medical visualization pipeline.
In this paper, we present a novel fast algorithm for modified fuzzy c-means
segmentation of MRI data. The algorithm consists of two steps, which are executed
as two iterations of a fuzzy c-means approach: the first iteration is a standard fuzzy
c-means (FCM) iteration, while the second iteration is our modified FCM iteration
with misclassification correction. In the second iteration, we use the classification
probability vectors (uncertainties) of the neighbor pixels found by the first iteration
to confirm or correct the classification decision of the current pixel. The application
of the proposed algorithm on synthetic data, simulated MRI data, and real MRI data
show that our algorithm is insensitive to different types of noise and outperforms
the standard FCM and several versions of modified FCM algorithms in terms of
accuracy and speed. In fact, our algorithm can easily be combined with many
modified FCM algorithms to improve their segmentation result while reducing
the computation costs (using two FCM iterations only). An optional simple post-
processing step can further improve the segmentation result by correcting isolated
misclassified pixels. We also show that our algorithm reduces the uncertainty in
the segmentation result, by using recently proposed uncertainty estimation and
visualization tools.
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1 Introduction

Image segmentation plays an essential role in a variety of applications such as
pattern recognition, geographical imaging, remote sensing, and medical imaging. In
image segmentation, images are partitioned into disjoint regions of homogeneous
properties. In the medical imaging context, it is an important step in medical
research and clinical applications, e.g., in visualization and analysis of anatomical
structures, multi-modality fusion and registration, pathology detection, and surgical
planning.

Traditionally, domain experts were required to manually segment images. Even
for 2D images, this is a time-consuming process. In recent years, a variety of semi-
and fully automatic techniques have been developed to address the segmentation
problem. Magnetic resonance imaging (MRI) is one of the most used medical
imaging techniques due to its ability to distinguish soft tissues and due to not using
x-rays. However, it suffers from artifacts that make the automatic segmentation task
challenging. MR images of a brain have a particularly complicated structure and
contain artifacts such as noise, intensity in-homogeneity, and partial volume effect.
When segmenting brain images, the regions of interest are typically white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF). Several studies show that
changes in the composition of these tissues in the whole volume or within specific
regions can be used to characterize physiological processes and disease entities [1]
or to characterize disease severity [2].

Fuzzy c-means (FCM) and its modified versions are among the most used
algorithms for image segmentation [3–10]. Their main advantages include the
straightforward implementation, the applicability to multichannel data, its robust-
ness in the absence of prior knowledge about cluster centers, its robustness when
the number of classes is known (as in the problem of segmenting the human brain
image), and the ability to model the uncertainty within the data. FCM algorithms
assign pixels to fuzzy clusters without labels. Unlike the non-probabilistic clustering
methods which classify pixels to belong exclusively to one class, FCM is more
flexible by allowing pixels to belong to multiple cluster with varying degrees
of membership. However, the existence of the different artifacts in MR images
causes problems for the standard FCM approach. Therefore, many attempts have
been made to modify the standard FCM in order to improve the results. These
modification include replacing the Euclidian distance of the standard FCM with
other measures [3, 6, 7], decomposing the observed MRI signal into two components
containing the true values and bias field artifacts [4, 8], and enforcing spatial
constraints on estimating the partition vector of the current pixel to reduce the
effect of noise [5, 6, 9]. Tolias et al. [11] suggest to apply spatial constraints
using fuzzy logic on the probabilistic segmentation. Although the modified FCM
algorithms decrease the sensitivity to noise to some extent, they still lack enough
robustness to noise or outliers (especially in the absence of prior knowledge of the
noise) and require a large number of iterations to converge. Furthermore, recent
studies showed that even the most sophisticated segmentation algorithms require
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further post-segmentation expert editing, which is usually done in a time-consuming
manual process relying largely on visual inspection [12, 13].

In this paper, we present a novel fast modified FCM algorithm for segmenting
brain MRI data. We propose a two-step algorithm that embeds fuzzy logic decisions
with the structure of an FCM algorithm. Each of the two steps executes one FCM
iteration, i.e., the entire algorithm consists of only two FCM iterations. While the
first iteration is a standard FCM step, the second iteration exploits the fuzzy partition
matrix produced by the first step to adaptively correct misclassifications, see Sect. 4.
Hence, we call our variant of FCM fast adaptive FCM (FAFCM). Our approach is
not limited to being based on the standard FCM approach. It can be used to improve
most FCM variants. We combine our approach with several existing variants of the
FCM approach such as the modified fuzzy c-means (mFCM) [3], the spatial FCM
(SFCM) [9], the kernelized FCM (KFCM), and the spatial kernelized FCM approach
(SKFCM) [7], see Sect. 3.

The experimental results of applying the proposed algorithm on synthetic data
corrupted with different types of noise, simulated brain MRI data, and real brain
MRI data show that our methods outperform the standard FCM and its variants in
terms of segmentation accuracy and computational complexity, see Sect. 5 and 6. We
also show that a simple postprocessing step can further improve the results by fixing
misclassifications of the isolated pixels. Since the fuzzy logic we apply is related
to the uncertainty in the classification, we further analyze the uncertainty in our
segmentations. We use uncertainty measures that have recently been shown as being
able to serve as segmentation quality measures in numerical and visual inspections
[14]. We evaluate our segmentation results with respect to the uncertainty estimates
numerically and visually. The latter uses color-coded uncertainty visualization
techniques.

2 Related Work

Many FCM approaches have been proposed recently that tackle the issue of artifacts
in medical imaging to improve the segmentation quality [3–10, 15]. Many of the
paper address segmentation of MRI data, as MR imaging has become very popular.

We can group these FCM variants into the following categories: (1) Approaches
that modify the used distance metric (e.g., [3, 6, 7]). (2) Approaches that modify the
observed image model to compensate for bias field or noise artifacts (e.g., [4, 8]). (3)
Approaches that include spatial constraints to adjust the observed feature (intensity),
the measured distance, or the partition matrix probabilities of the considered pixel by
the involvement of neighbor pixels with fixed or varying weights (e.g., [5, 9, 10, 16–
18]). (4) Approaches that modify the minimization of the objective function domain
by considering the frequencies of observed intensities (e.g., [10, 19]).

Mohammed et al. [3] use a modified version of the Euclidean-distance approach
that involves the membership value and the spatial distance of the neighboring pixels
to make the method less sensitive to noise. Ahmed et al. [4] proposed an algorithm
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to compensate for inhomogeneity and to label a pixel considering its immediate
neighborhood. This algorithm is called bias-corrected fuzzy c-means (BCFCM).
The BCFCM method is a common reference for most of the modified fuzzy c-means
algorithms that were introduced later and its objective function is used as a basis for
their modifications. Yuan et al. [8] enhanced the method by replacing the fixed value
of the alpha parameter that controls the influence of the neighborhood voxels during
optimization with a weighted function that varies according to the closeness of the
intensity of each neighboring pixel to the considered pixel.

We want to point out a few important FCM approaches. Pham [5] generalizes
the FCM objective function by including a spatial penalty term on the membership
function to be more robust against noise and other imaging artifacts. Chuang et al.
[9] follow up in utilizing the spatial information in the image to further improve the
segmentation performance. They use a spatial function in the weighted summation
of membership function of the neighborhood pixels to adjust the membership value
of the considered pixel, which leads to more homogeneous regions and removes
noisy spots.

Zhang and Chen [6] proposed two variants of the algorithm by Ahmed et al. [4]
to simplify its computation and replace the Euclidean distance with a kernel-induced
distance to construct a non-linear version of the linear algorithm [6, 7]. Furthermore,
they added a spatial penalty term to act as regularizer. Szilágyi et al.[19] introduced
the enhanced fuzzy c-means algorithm (EnFCM) that modifies the FCM algorithm
such that the objective function is based on the number of intensity levels available
in the image but not on the number of pixels. This modification led to a very fast
algorithm that slightly improves the segmentation result. Cai et al. [10] proposed
the fast generalized fuzzy c-means algorithm (FGFCM) as an improvement to the
enhanced fuzzy c-means algorithm (EnFCM). They use a new factor Sij as a local
(both spatial and intensity) similarity measure aiming to for noise-immunity while
preserving details. However, the algorithm is still inaccurate at segment boundaries.

Tolias et al. [11] suggest a non-iterative algorithm to apply spatial constraints
using fuzzy logic on top of fuzzy segmentation to improve the segmentation
result. This approach improves the segmentation results to some extent, but still
it has drawbacks: First, it is applied to the fuzzy segmentation results, i.e.,
it introduces additional computations. Second, it inherits the drawbacks of the
fuzzy segmentation. Third, it corrupts the probability vector condition of the
fuzzy partition matrix, as the algorithm updates the membership values according
to the applied constraints, i.e., the resulting probabilities do not sum up to 1
anymore. Recent studies [12, 14, 20, 21] show that this probability vector condition
is important for estimating and visualizing the uncertainty associated with the
probabilistic segmentation result, which is useful for drawing conclusions from the
visualizations.

Li et al. proposed a new energy minimization method based on coherent local
intensity clustering (CLIC) for simultaneous tissue classification and bias field
estimation of MR images [16]. For each pixel, a clustering criterion function is
defined with the clustering centers replaced by the product of the bias within a
neighborhood and the clustering centers. In addition, a weight for each pixel is
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introduced to control its influence on the clustering criterion function. A pixel
at a location far from the neighborhood center should have less influence on the
clustering criterion function than the closer pixels. Integration of the clustering
criterion function leads to an energy, whose minimization leads to simultaneous
tissue classification and bias field estimation. The CLIC algorithm is sensitive to
the choice of the parameter of the weighting function. In addition, the spatially
coherent nature of the CLIC criterion function that omits the local gray level
relationship makes the estimated membership functions inaccurate, and finally cause
misclassifications, especially for the pixels around the boundaries. In order to reduce
the noise effect during segmentation, Wang et al. [17] introduced a method that
incorporates both the local spatial context and the non-local information into the
standard FCM algorithm using a dissimilarity index instead of the usual distance
metric. Ji et al. [18] follow up on Wang et al.’s approach by using the local
spatial context and non-local information to develop the possibilistic fuzzy c-means
clustering algorithm PFCM. Unfortunately, the two methods by Wang et al. and Ji
et al. are computationally expensive, which makes them impractical.

Although the modified FCM algorithms reduce the sensitivity to noise to some
extent, they still lack enough robustness to noise or outliers and they require, at the
same time, a large number of iterations in order to converge. This can have different
reasons: (1) A method is modeled to be robust against one type of noise and omit
the other types. (2) A method treats all neighbor pixels in a similar way, i.e., it
disregards whether some pixels are noisy or outliers with respect to the considered
pixel or its neighbors. (3) A method treats all considered pixels in a similar way, i.e.,
it disregards whether the pixel is affected by noise or an outlier and thereby should
be corrected before being treated.

To overcome such obstacles a method should be adaptive and dynamic to deal
with the different situations of the considered pixels in different ways based on
meaningful (smart) interpretations of the observed spatial information, especially
in the presence of a partition matrix as a measure of the degree of membership
which can be exploited to correct the misclassified decision. In addition to the above
drawbacks, the FCM algorithms with spatial constraints typically require more time
in each iteration for including the neighbor information in their computations and
they may require more iterations to converge. Our proposed method always requires
only two iterations. In the first iteration the normal standard fuzzy c-means iteration
is used to produce an initial estimation of the fuzzy segmentation. Based on the
uncertainty information (stored in the probability vectors of the partition matrix), we
use an adaptive heuristic filter the partition matrix or adjust pixel intensity values.
The heuristic considers spatial information in form of neighborhoods, probability
values of the considered pixel and its neighborhood, and majority consideration
of the classification within the neighborhood. Since our approach is based on the
estimates found by the FCM algorithm, which can be interpreted as probabilities
or uncertainties, respectively, we call our approach uncertainty-guided FCM. The
uncertainties are used to guide the algorithm towards the optimal solution using a
set of heuristic rules. In contrast to other modified FCM approaches, our approach
distinguishes among neighborhood pixels that should be participating in correcting
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the initial decision based on partition matrix probabilities. This is following the ideas
of Tolias et al. [11], but in contrast to them our approach incorporates the fuzzy
logic of applying spatial constraints to work within the FCM algorithm structure
and conditions. Our proposed approach can be easily combined with other modified
FCM approaches for improving them in terms of speed and accuracy, which we
document with our results in this paper.

3 FCM Methods

In this section the standard fuzzy c-means (FCM) algorithm with some related
versions of modified FCM are described. These variants are described in some
detail, as we use them for generating our results. All variants can be used in our
approach to improve their performances.

3.1 Standard FCM

The standard fuzzy c-means (FCM) approach is an iterative, unsupervised algorithm
initially introduced by Bezdek [22]. The FCM objective function for partitioning an
image fxkgNkD1 with N pixels or voxels into c clusters is given by

JFCM D
cX

iD1

NX

kD1

um
ikDik;

where fvigciD1 are the representatives of the clusters, Dik D kxk � vik2 is the squared
distance between vi and the intensity of pixel k (xk), and the matrix Œuik� D U
represents a partition matrix of size c � N with U 2 U and

U D fuik 2 Œ0; 1�j
cX

iD1

uik D 1 8k ^ 0 <

NX

kD1

uik < N 8ig:

The entries uik can be interpreted as the probability that pixel xk belongs to cluster
i. This is referred to as fuzzy membership. The memberships are updated iteratively
based on the distance Dik according to
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The representatives of the clusters are updated using the formula

vi D
Pn

kD1 um
ikxkPn

kD1 um
ik

:

The parameter m is a weighting exponent on each fuzzy membership and determines
the amount of fuzziness of the resulting classification. The algorithm is initialized
with some representatives vi for each cluster and the memberships are updated to
minimize the objective function JFCM.

3.2 Modified FCM (mFCM)

Mohamed et al. [3] proposed a modified FCM algorithm that replace the distance
Dik with one that considers the membership values and the spatial distance of the
neighbor pixels. The modified Dik distance is computed by

D
0

ik D Dik
�
1 � ˛

P
j2neighbors uij � pkjP

j pkj

�
;

where ˛ is a constant that satisfies the condition 0 � ˛ � 1. pkj measures the
proximity of pixel k to its neighbor pixel j. The proximity here is measured with
respect to the relative locations between the two pixels pkj D kk � jk2. This variant
of FCM considers Dik as the resistance of pixel xk to be clustered with class i. The
membership values uij of the neighboring pixels xj with cluster i were incorporated
in the Dik computation to tolerate its resistance.

3.3 Spatial FCM (SFCM)

Chuang et al. [9] proposed a fuzzy c-means algorithm that incorporates spatial
information into the membership function for clustering. To exploit the spatial
information, the spatial function is defined as

hik D
X

j2N.xk/

uij;

where N.xk/ represents a square window centered on pixel xk in the spatial domain.
The spatial function is incorporated into the membership function by

u
0

ik D
up

ikhq
ikPc

jD1 up
ijh

q
ij

;
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where p and q are parameters to control the relative importance of both functions.
Incorporating the spatial information into the membership function aims at generat-
ing segmentations with more homogeneous regions and at removing noisy spots.

3.4 Simplified FCM with Spatial Information

Zhang and Chen [6] proposed two variants of a simplified version of Ahmed et al.’s
[4] objective function (by omitting the log transform and the bias field estimation)

Jm D
cX

iD1

NX

kD1

um
ikkxk � vik2 C ˛

jNkj
cX

iD1

NX

kD1

um
ik

� X

xr2Nk

kxr � vik2
�
:

The two variants FCMS1 and FCMS2 aim to simplify the computation of Jm by
replacing the term 1

jNkj
P

xr2Nk
kxr � vik2 with kNxk � vik2 where Nxk is the mean for

FCMS1 and the median for FCMS2 of neighboring pixels lying within a window
around xk:

JFCMS D
cX
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NX

kD1

um
ikkxk � vik2˛

cX
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NX

kD1

um
ikkNxk � vik2:

3.5 Kernelized FCM (KFCM) and Spatially Constrained
KFCM (SKFCM)

Zhang and Chen [6, 7] proposed another variant that replaced the Euclidean distance
in the standard FCM algorithm by a kernel-induced distance to construct a non-
linear version of the linear algorithm called the Kernelized FCM (KFCM) [6, 7]:

JKFCM D
cX

iD1

NX

kD1

um
ikk˚.xk/ �˚.vi/k2;

where ˚ is an implicit nonlinear map from data space to the mapped feature space,
˚ W X ! F.x ! ˚.x//. Using a Gaussian radial basis function K.x; y/ D
exp
��kx�yk2

�2

�
as kernel, they simplified the objective function to
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and derive
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�
1 � K.xk; vi/

��1=.m�1/
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;

as well as
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as the two necessary but not sufficient conditions for JKFCM to be at its local extrema.
Furthermore, they introduced the spatially constrained KFCM (SKFCM) by adding
a spatial penalty term to act as regularizer and to bias the solution towards piecewise-
homogeneous labeling. The modified objective function is given by

JSKFCM D
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um
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jNkj
cX
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r2Nk

.1 � ur/
m;

where Nk is the set of neighbor pixels in a window around xk.

4 Fast Adaptive FCM (FAFCM)

Although the modified FCM algorithms improve noise handling to some extent,
they still lack enough robustness to noise or outliers and require a large number of
iterations in order to converge. The main conceptual drawback of modified FCM
algorithms with spatial constraints is the similar treatment of all neighbor pixels
even if they belong to different classes than the considered pixel or if they are
outliers. The considered pixel itself may be an outlier and should be corrected to be
ready for accurate classification. Typically, pixel intensities are being adjusted using
the (weighted) mean of neighbor pixels intensities, which in certain constellations
may create even new outlier classes. For example, the mean filter used in [6] when
applied across segment boundaries may generate a new class that does not belong
to any of the classes in the region. This effect is similar to the partial volume effect
(PVE) (and, consequently, we refer to as the artificial PVE). The constellation may
even be worse, if the pixel at the boundary is affected by true PVE artifacts, which
is typically the case.

To overcome these drawbacks of FCM and its variants, we propose a two-step
algorithm that combines FCM steps with fuzzy logic similar to that used by Tolias
et al. [11] but we propose to use it within the framework of the FCM algorithm not
in a post-processing step. This integration into the FCM algorithm keeps the fuzzy
partition matrix condition of FCM uncorrupted (i.e., the membership values sum
up to 1). The first step of the proposed method is the standard FCM iteration. The
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purpose of this iteration is to produce an initial classification and an initial fuzzy
partition matrix to be used as the basis for an adaptive heuristic filter in the second
step. The second step uses the heuristic within an adaptive FCM iteration. Hence, the
entire algorithm only requires the execution of two FCM iterations. The purpose of
the second iteration is to reduce the misclassified pixels or improve the membership
values of the correctly classified pixels. The spatial constraints of our algorithm
differ from others in using neighborhood pixels that are highly correlated to the
considered pixel. If the set of correlated neighbor pixels is empty, the considered
pixel is an outlier pixel and needs to be corrected. We correct it by setting its
intensity to the mean of the neighborhood majority Mj, where the neighborhood
majority is the largest set of pixels in the neighborhood that belong to the same
class (the class with highest probability). If the set of correlated neighbor pixels is
not empty and represents the neighborhood majority with the majority matches the
class of the considered pixel, the correctness of the classification of the considered
pixel is confirmed. However, the intensity of the considered pixel is replaced with
the mean of the correlated set plus the pixel itself for more homogeneity.

Based on the level of degradation (regardless of the reason) on the pixel intensity,
our approach distinguishes three kinds of observed pixels: the outlier, the noisy, and
the normal pixels. Since the classification process of the FCM depends mainly on
the distance Dik D kxk � vik2, our approach adjusts the distance computation when
treating each of the three cases according to an adaptive heuristic filter that applies
fuzzy rules to the pixel and its neighborhood.

• The outlier pixel:We refer to an outlier pixel as a pixel whose intensity differs
significantly from all neighborhood pixels. Such pixels may be produced by salt
and pepper noise. To correct outlier pixels, their intensity is replaced by the mean
of the neighborhood majority (see above).

• The noisy pixel: We refer to noisy pixels as those that are affected by a moderate
level of degradation that deviate from their true cluster centroid towards the
closest cluster centroid. The PVE area is a good example for such pixels. Such
noisy pixels typically have a probability vector with two large entries, i.e., the
uncertainty is high. Depending on which of the two large entries is the largest
one, the pixel may or may not be correctly classified. Our heuristic solution is
as follows: If the considered pixel has a high probability in a class that matches
the neighborhood majority, we replace the intensity of the pixel by the mean
intensity of the pixel itself and the pixels of the neighborhood majority. If the
majority class matches the true class of the pixel, then there are two cases that
can occur: If the pixel was correctly classified, our adjustment creates a higher
homogeneity of the pixel with its neighborhood. If the pixel was misclassified,
the classification will be corrected. If the majority class does not match the true
class of the pixel, there is still the possibility that the pixel is misclassified after
our step, but this happens rarely. Classes with low values in the probability
vector do not affect the pixel. Now, we want to discuss the situation of a
noisy misclassified pixel regarding its position, i.e., whether it lies inside the
segment or at its boundary. For noisy pixels inside the segment, e.g., the ones
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affected by Gaussian noise, we expect the true class to have the second-highest
probability. If the neighborhood majority matches the class ranked second, which
is assumed to be the true class, and if this class has a sufficiently high probability,
our approach corrects the misclassification. For noisy pixels on the segment
boundary, there are two cases. The first case is that the pixel belongs to one class
at the boundary and is misclassified to belong to the class on the other side. If the
majority neighborhood matches the true class, the misclassification is corrected.
Otherwise, the misclassification remains. Hence, on average, about half of the
cases can be fixed. The second case occurs when the pixel is misclassified to
belong to a third class different from the main two classes at the boundary, e.g.,
because of PVE. Here the neighborhood majority belongs to one of the two
classes next to the boundary and the pixel is moved to that class. Hence, on
average, it will be corrected to the true class, again, in about half of the cases.

• The normal pixel: We refer to normal pixels as the one with a low level
of degradation, which is usually surrounded by pixels with similar intensities.
For normal pixels, we apply the same strategy as for the noisy pixels, i.e., we
adjust the intensity to be the mean intensity of the considered pixel and the
neighborhood majority.

In the proposed algorithm, we use two thresholds: the center pixel threshold �C

and the neighbor pixel threshold �Np . The pixel k has a high probability to belong to
class i if its membership value Uik is greater than the center pixel threshold �C. The
neighbor pixel j has a high probability to belong to class i if its membership value
Uij is greater than the neighbor pixel threshold �Np .

The Algorithm In order to improve the performance of FCM segmentation for
outlier, noisy, and normal pixels, we modify the computation of distance Dik by
correcting the observed intensity value xk for pixel k using the following adaptive
rules: Let xk be the observed intensity for pixel k; vi the centroid for cluster i; Np the
set of neighbor pixels, and jNpj its cardinality. Let Np;i D fxj 2 Np W Uij > �Npg. Let
Mj represents the set of pixels that belong to the neighborhood majority, and jMjj is
its cardinality.

The Dik Modification
if (Uik > �C) then

/*rule 1:for outlier pixel */
if (jNp;ij D 0) then

xk D
P

xm2Mj xm

jMjj
/*rule 2:for noisy pixel case1 and normal pixel */
else if (jNp;ij > 1

2
jNpj) then

xk D
P

xj2Np xjCxk

jNp;ijC1

end if
end if

end if
Dik D kxk � vik2.
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As described above, we only need two iterations to compute the overall result.
Of course, we could apply further iterations steps, but those additional computations
would not or only slightly improve the result. This is the case because our heuristic
rules re-compute the membership value of the current pixel based on the mean of
the majority class (or mean of the pixel and the majority class) in the neighborhood
window. Since the majority class is rarely changed and consequently neither is its
mean (because the intensities of pixels are not changed), conducting more iterations
does not improve the solution anymore in most cases. On the other hand, our method
is stable as further iterations do not increase the error. In fact, the method converges
quite quickly to it solution. We can also apply our second iteration (the modified
iteration) on top of any FCM algorithm, but then we inherit the drawback of these
algorithms and consume more time for more iterations.

Furthermore, we combine several modified FCM techniques with our approach
(FAFCM) for further improvements, where the combined algorithms always require
two iterations only. The first iteration is just a modified FCM iteration, while the
second iteration uses our uncertainty-guided heuristics as described above. We
combine the modified fuzzy c-means (mFCM) approach [3] to produce the fast
adaptive modified fuzzy c-means (FAmFCM) algorithm, the spatial FCM (SFCM)
[9] to produce the fast adaptive spatial FCM (FASFCM) algorithm (using p D 1,q D
1), the kernelized FCM (KFCM) to produce the fast adaptive KFCM (FAKFCM),
and the spatial kernelized FCM (SKFCM) [7] to produce the fast adaptive SKFCM
(FASKFCM).

5 Results and Discussions

We present and compare the experimental results when applying the standard FCM,
the proposed methods, and several versions of the modified FCM algorithms on
synthetic images, simulated MRI brain images [23], and real MRI T1 weighted
brain images [24]. The reasons for using simulated images are the knowledge of the
ground truth and the control over image parameters such as mean intensity values,
noise, and intensity inhomogeneities.

To somehow mimic the main brain tissues of MRI T1 and T2 images in a
synthetic image (i.e., background Bg, white matter WM, gray matter GM, and
cerebrospinal fluid CSF), we generate an example of four respective classes with
complex structures as shown in Fig. 1a. We believe that our examples mimic the
structures better than the two-classes synthetic image in [4] or [6] and the four-
classes synthetic image in [9]. We corrupted our synthetic image with different
types of noise that are common in medical data such as Gaussian, salt-and-pepper,
or sinusoidal noise, or a combination of them.
As initialization for clusters’ representatives in the synthetic example, we use
the cluster centroids of the synthetic image before corrupting it with noise. For
the experiments on the simulated and real brain MRI images, we initialize the
representatives of clusters based on the segmentation result of the EnFCM algorithm
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[19] which is very fast and gives good starting points. This choice is suitable for
experiments assuming the absence of ground truth and prior knowledge.
In order to compare the performance of the proposed methods with the other
methods, we employed the segmentation accuracy SA measure to evaluate the
differences among them:

SA D number of correctly classified pixels

total number of pixels
:

In the following experiments, we compare the proposed methods (FAFCM and
its variants) with: the standard FCM [22], the modified fuzzy c-means (MFCM) [3],
the spatial fuzzy c-means (SFCM) [9], the kernelized fuzzy c-means (KFCM) and
its spatial version, the spatial kernelized fuzzy c-means (SKFCM) [6, 7] (using p D
1; q D 1), the two variants of simplified fuzzy c-means methods: the (FCMS1) using
mean filter, and (FCMS2) using median filter [6], the (CLIC) algorithm [16], the
enhanced fuzzy c-means algorithm (EnFCM) [19] and its variant the fast generalized
fuzzy c-means (FGFCM) [10], and finally the fuzzy rule based system (FRBS) [11].
Since the FRBS is applied on top of the FCM result, we consider the number of
iterations of the standard FCM as the number of iterations for FBRS.

In the first experiment, we use the synthetic image of Fig. 1a corrupted by
a mixture of Gaussian noise with mean 0 and variance 64, 5 % of salt-and-
pepper noise, and a sinusoidal noise that models bias field errors. The result of
applying the proposed methods and the other methods to this image shows how our
improvements outperform the standard fuzzy c-means and all other variants, see
Fig. 1 and Table 1.

The numbers in Table 1 indicate that the segmentation accuracy is higher for all
the proposed methods when compared to the other methods, although our algorithms
need only two iterations. Figure 2a shows a visual version of the comparison in
Table 1 that combine the segmentation accuracy with the number of iterations in
one plot. To show that this is also true for other combinations of noise, the plots
in Fig. 2b–e show both the segmentation accuracy and the number of iterations
comparison for synthetic image corrupted with individual noise and a combination
of mixed noise. With a few exceptions (when only applying salt-and-pepper noise),
it is clear that the proposed methods outperform all other methods. Furthermore,
the plots show that our methods are more robust against any combinations of mixed
noise than the others and that the other methods almost only perform well when the
FCM already performed well. We can see from this result that the proposed methods
have some difficulties for the synthetic image corrupted by salt and pepper noise
(SaP). For that reason, we developed a simple post-segmentation noise removal
step. This step is applied for post-processing of any segmentation result for further
correcting the remaining isolated noisy spots of pixels (or island pixels) that have
been classified as outlier pixels. For each pixel, the postprocessing step simply
surveys the neighborhood classes and corrects the outlier pixels by setting the
classification of the neighborhood majority. Furthermore, the uncertainty vector (the
partition matrix vector) of the corrected pixel is estimated by using the probabilities
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Fig. 1 Comparison of the synthetic image segmentation result for the proposed methods, the
standard FCM, and several modified FCM methods. (a) The original image; (b) the original image
corrupted with mixed noise (Gaussian(0,64), 5 % salt and pepper, and sinusoidal); (c) the FRBS
result; (d)–(h) the original methods (i.e., the FCM, mFCM, SFCM, KFCM , and SKFCM) results;
(i)–(m) the improved results with our proposed methods; (n)–(r) several other modified FCM
results

of the classes in the neighborhood. The plot Fig. 2f shows how the application of the
proposed post-segmentation step on the proposed methods, results for the synthetic
image corrupted with salt-and-pepper noise improves the segmentation accuracy.
With the postprocessing step, the overall result of our proposed method outperform
the other methods also for the example with salt-and-pepper noise.

In the second group of experiments, we use the simulated MR brain images
of different modalities (T1-, T2-, and PD-weighted) corrupted by different levels
of Gaussian noise (3, 5, or 7 %) with and without 20 % intensity inhomogeneity.
Figure 3 shows a comparison between the segmentation results when applying the
methods on the simulated PD-weighted MR brain images with 5 % Gaussian noise
and 20 % intensity inhomogeneity, while Figs. 4 and 5 show the comparison of the
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Table 1 Segmentation accuracy (SA) in percentage and the number of iterations (Noit.) for
(first column) our proposed methods, (second column) FCM and the original methods of our
proposed variants, and (third column) several modified FCM methods on synthetic image of Fig. 1b
corrupted by mixed noise

Figure 1b SA% Noit. Figure 1b SA% Noit. Figure 1b SA% Noit.

FAFCM 99.8199 2 FCM 97.0963 9 EnFCM 94.5251 10

FAmFCM 99.8413 2 mCFCM 98.7747 8 FGFCM 93.3868 8

FASFCM 99.8322 2 SFCM 98.5367 5 FCMS1 98.5565 9

FAKFCM 99.7314 2 SKFCM 94.0079 50 FCMS2 96.5958 9

FASKFCM 99.7375 2 KFCM 97.0963 11 CLIC 88.8062 120

FRBS 98.5657 9

segmentation accuracies (SA) and the required number of iterations (Noit.) when
applying all the methods to the three modalities corrupted with different levels
of noise. In general, the outcome is similar to the one before, as our improved
algorithms outperform all others in terms of accuracy and number of iterations or,
in a few cases, produce similar accuracies with fewer number of iterations. This
is true for all the given examples independent of noise level or imaging modality.
Furthermore, these plots show that the accuracies of other methods degrade faster
than our methods with increasing level of noise.

In addition to the synthetic images and simulated MRI brain images, we apply
our methods to real T1-weighted MRI images [24]. We evaluate the segmentation
accuracy based on the ground truth from manual segmentation. Figure 6 shows
the comparison of the segmentation results when applying the proposed methods,
the original FCM algorithm and all FCM variants mentioned above to the real
MR image in Fig. 6a. Figure 7 shows the respective comparison of segmentation
accuracy.

All experiments show that our improved methods outperform all other methods
mostly in term of both the segmentation accuracy and the required number of
iterations or, in a few cases, they give similar accuracies with fewer number of
iterations. The experimental results show that the performance of the variants of
our proposed method is approximately equivalent.

In conclusion, the results show that our approach is more robust against different
types of noises and their mixture and reduces the possibilities of failure to a few
cases. Hence, the convergence criterion which is always used by the FCM algorithm
and its variants seems to not be enough to guarantee the improvement in the final
results when compared to the initial or intermediate results. The results of the
proposed approach shows that even the first iteration is informative enough to
make the right decisions with high probability. The main drawback of the different
versions of the modified FCM is in the application of blind filtering such as the
(weighted) mean with spatial constraints, which may lead to the introduction of a
new class that differs from the true classes in the region causing misclassification.
We have shown that our adaptive rules improved results with less computational
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Fig. 2 Comparison of the synthetic image segmentation result for the proposed methods (last five
groups of bars), the standard FCM (first group of bars), and several modified FCM methods (second
to eleventh group of bars). (a) Segmentation accuracy (SA%) and number of iterations (Noit.)
comparison of the synthetic image of Fig. 1a corrupted with mixed noise; (b)–(e) segmentation
accuracy, and number of iterations comparison of synthetic image corrupted with basic and mixed
noise; (b) and (c) corrupted with basic noises (G for Gaussian noise, SaP. for Salt and Pepper
noise, and Sin for Sinusoidal noise) while (d) and (e) corrupted with a combination of mixed
noise; (f) segmentation accuracy comparison similar to the plot in (b) but with applying the post-
segmentation step (PSS) to the proposed methods result of the image with salt and pepper noise

effort. Still, for future work, we suggest to further tune the adaptive rules to cover
more subtle differences in the cases.

We would like to discuss the selection of the two thresholds. The center pixel
threshold �C should be chosen small enough in order to explore the second or even
third highest probability classes, since they may be the true class, e.g., in PVE areas.
Theoretically, the best choice is to use the maximum uncertainty probability level as
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Fig. 3 Comparison of the segmentation result of simulated PD-weighted MR image for the
proposed methods, the standard FCM, and several modified FCM methods; (a) original simulated
PD-weighted MR image corrupted with 5 % Gaussian noise and 20 % intensity inhomogeneity; (b)
The ground truth image; (c) the FRBS result; (d)–(h) the original methods (i.e., the FCM, mFCM,
SFCM, KFCM , and SKFCM) results; (i)–(m) the improved results with our proposed methods;
(n)–(r) several other modified FCM results

threshold when all classes have the probability 1=c where c is the number of classes.
The reasoning behind this choice is that the high probability of a class to be the true
class starts above this level, i.e., when the level of uncertainty starts declining. If we
consider the effect of artifacts on the observed intensity, then 80–90 % of this level
should be considered. For the neighbor threshold �Np , a higher probability level,
such as a probability equal to or higher than 0.5 is recommended to have a high
confidence in the membership. However, in practice, the experimental results (for
c=4) show that the thresholds can range from 1

2c to 1:6
c for the center pixel threshold

�C and from 0:5 to 0:825 for the neighbor threshold �Np with approximately similar
results. The choice depends on the type of modality used and to a lower extent
on the level of noise. For example, the intensities of the different tissues in the
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Fig. 4 Comparison of the simulated PD-weighted MRI segmentation result for the proposed
methods (last five groups of bars), the standard FCM (first group of bars), and several modified
FCM methods (second to eleventh groups of bars). (a) segmentation accuracy (SA), and number
of iterations (Noit.) comparison of simulated PD-weighted MRI corrupted with 7 % Gaussian noise
(G) and 20 % intensity inhomogeneity (IIH.); (b) segmentation accuracy (SA), and (c) number of
iterations (Noit.) comparison of the simulated PD-weighted MR image corrupted with different
level of noise

simulated T2-weighted and PD-weighted MR images are close to each other and
even overlap when adding a small amount of noise. So, the best threshold choices
were �C D 0:16 and �Np D 0:78 for simulated PD-weighted MRI and �C D 0:186

and �Np D 0:82 for simulated T2-weighted MRI. For simulated T1-weighted MRI,
the best threshold choices were �C D 0:31 and �Np D 0:75. For real T1-weighted
MRI, the best thresholds choices were �C D 0:381 and �Np D 0:51. For the synthetic
image, the best thresholds choices were �C D 0:181 and �Np D 0:61.

6 Uncertainty-Based Segmentation Performance
Comparison

In this section we compare the proposed segmentation methods with the other FCM
variants using the uncertainty-based visual and numerical tools recently proposed
by Al-Taie et al. [14]. They showed that the better segmentation algorithm is the
one that produces fewer uncertain decisions (with lower uncertainty level) in the
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Fig. 5 Comparison of the simulated T1- and T2-weighted MRI segmentation result for the
proposed methods (last five groups of bars), the standard FCM (first group of bars), and several
modified FCM methods (second to eleventh groups of bars). Segmentation accuracy (SA), and
number of iterations (Noit.) comparison of the simulated T1-weighted (a and b) and T2-weighted
(c and d) MR images corrupted with different level of Gaussian noise G with or without 20 %
intensity inhomogeneity (IIH.)

uncertain area. Furthermore, the better algorithm tends to concentrate the high
uncertainty decisions inside the problematic area (i.e., the misclassified area). While
the first rule does not require the ground truth for comparison, the second one
requires the ground truth for determining the misclassified area. The second rule
is used as a second level of comparison, if the difference in the first rule is not
large enough to decide for the better algorithm. In the first investigation, we use one
of the visual tools proposed by Al-Taie et al. [14], which visualizes the measured
uncertainty of the segmentation result over the original image after classifying the
pixels into certain and uncertain. The algorithm that produces smaller uncertainty
areas with lower uncertainty values is the better algorithm. Figure 8 shows the
result of this visual comparison, where the color map for uncertainty values is
shown next to the images. It can be observed that our proposed methods FASFCM
and FAmFCM produce the best results and that our methods (third row) inherit
difficulties from their original methods (second row). Moreover, these results show
that the visualization tool is not only useful for comparing the performance of
different algorithms, but it is also able to show how different algorithms differ in
their behavior. For example, while the segmentation accuracy comparison in Fig. 7
shows that SKFCM outperforms KFCM, the uncertainty comparison reveals that
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Fig. 6 Comparison of the segmentation result of real T1-weighted MR image for the proposed
methods, the standard FCM, and several modified FCM methods. (a) original real T1-weighted
MR image; (b) The ground truth image; (c) the FRBS result; (d)–(h) the original methods (i.e.,
the FCM, mFCM, SFCM, KFCM , and SKFCM) results; (i)–(m) the improved results with our
proposed methods; (n)–(r) several other modified FCM results

KFCM performs better in modeling the uncertainty of the segmentation solution. In
addition, the visualizations show how the effect of spatial constraints that are applied
by the kernel of SKFCM (and in FASKFCM correspondingly) can corrupt the
uncertainty model of the FCM algorithm. On the other hand, the spatial constraints
applied by a non-kernelized FCM version (such as SFCM and mFCM) manage
to improve the uncertainty model. Such comparisons can highlight the points of
weaknesses and strengths of each algorithm.

We further investigate the behaviors of the different algorithms by examining
how they distribute the uncertainty over the image. We compare the uncertainty
area and the uncertainty density within the entire image, inside the misclassified
area, and outside the misclassified area. The goal was to explore which algorithm
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Fig. 7 Comparison of the real T1-weighted MRI segmentation result for the proposed methods
(last five bars), the standard FCM (first bar), and several modified FCM methods (second to
eleventh bar). (a) segmentation accuracy (SA%), and (b) number of iterations (Noit.) comparison
of the real T1-weighted MR image of Fig. 6

Fig. 8 Uncertainty-based visual comparison of the segmentation result of real T1-weighted MR
image for the proposed methods, the standard FCM, and several modified FCM methods. (a) FRBS
result (b) FCM result (c)–(f) the results of the other original methods (g)–(k) the results of our
proposed methods, (l)–(p) several other modified FCM results
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Fig. 9 Uncertainty-based numerical comparison. (a) Uncertainty area comparison. (b) Uncer-
tainty density comparison

maximizes the uncertainty area and the uncertainty density inside the misclassified
area, and, at the same time, minimizes the uncertainty area and the uncertainty
density outside the misclassified area. Figure 9 shows that four of our proposed
methods are among the best five algorithms, considering that our methods already
have smaller misclassified areas.

7 Conclusions

In this paper, we propose a fast adaptive fuzzy c-means algorithm that is able
to overcome several of the drawbacks of previous FCM variants with only two
iterations. The first iteration is a standard FCM iteration, which gives the initial
fuzzy segmentation. Based on strong assumptions, the second iteration exploits



Fast Uncertainty-Guided Fuzzy C-Means Segmentation of Medical Images 47

the initial membership value estimations using fuzzy rules for correcting the
possible misclassifications. Moreover, we combine our approach with several
existing modified FCM approaches for further improvements. In addition, we
propose a post-segmentation noise removal step that survey the neighbor pixels’
classes for correcting the outlier classes with the respective majority classes. This
post-segmentation noise removal step is specially designed for pixels affected by
salt-and-pepper noise.

The application of the proposed methods for synthetic images, simulated T1-,
T2-, and PD-weighted brain MR images, and real T1-weighted MR images show
that our methods outperform several FCM variants in term of both the segmentation
accuracy and the number of iterations. Hence, the effect of different kinds of artifacts
is reduced with low effort (i.e., computation time). Finally, the recently proposed
uncertainty-based tools for visual and numerical segmentation algorithms evaluation
[14] are used for further comparison. The uncertainty-based comparison shows that
our methods also perform better than other FCM variants from an uncertainty point
of view.
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muView: A Visual Analysis System
for Exploring Uncertainty in Myocardial
Ischemia Simulations

Paul Rosen, Brett Burton, Kristin Potter, and Chris R. Johnson

Abstract In this paper we describe the Myocardial Uncertainty Viewer (muView
or �View) system for exploring data stemming from the simulation of cardiac
ischemia. The simulation uses a collection of conductivity values to understand how
ischemic regions effect the undamaged anisotropic heart tissue. The data resulting
from the simulation is multi-valued and volumetric, and thus, for every data point,
we have a collection of samples describing cardiac electrical properties. �View
combines a suite of visual analysis methods to explore the area surrounding the
ischemic zone and identify how perturbations of variables change the propagation
of their effects. In addition to presenting a collection of visualization techniques,
which individually highlight different aspects of the data, the coordinated view
system forms a cohesive environment for exploring the simulations. We also
discuss the findings of our study, which are helping to steer further development
of the simulation and strengthening our collaboration with the biomedical engineers
attempting to understand the phenomenon.

1 Introduction

Myocardial ischemic is a disease caused by the restriction of blood flow to a
region of the heart, most frequently due to the narrowing of one or more coronary
vessels. Left untreated, cardiac cells will gradually weaken and die; in many
cases, leading to heart attack. These consequences make ischemic heart disease
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the leading cause of death for men and women in the U.S. and most industrialized
countries [34]. Detection of cardiac ischemia often requires inspecting the results of
an electrocardiogram (ECG) and looking for abnormalities, particularly within the
ST segment of the ECG trace. However, the relationship between cardiac ischemia
and abnormalities in the ST segment is still unclear [7, 52].

To better understand the underlying physiology of cardiac ischemia, mathe-
matical models are created to study the effect of ischemic regions on cardiac
electrical signals, such as the electrical potentials external to the cell. These
models have input parameters whose values cannot be practically obtained, and
thus a series of parameter perturbations are used to cover a range of possible
values. The result of these multi-run simulations is an ensemble of realizations
that explores numerous possibilities within the domain and range of the simulation,
but also introduces uncertainty within the output. We are currently developing the
Myocardial Uncertainty Viewer (muView or �View) tool for visualizing the output
of the cardiac model runs and, more specifically, the uncertainty present within the
ensemble.

The goal of �View is to both directly explore the simulation results, helping
scientists design and troubleshoot experiments, and to help understand the rela-
tionship of conductivity uncertainties to size and shape estimates of the ischemic
zone. The challenges to this goal stem mainly from the complexity of the data;
we are given multiple simulation outputs for each voxel. The structure of the data
is inherently difficult; the spatial domain of the data is 3D, so simply displaying
the data causes occlusion and clutter. Indicating further attributes within the 3D
context is a formidable challenge. To address this issue, we have created �View
to experiment with the collection of visualization techniques, including traditional
two-dimensional and three-dimensional spatial displays, as well as the incorporation
of information visualization approaches, to find a meaningful visual representation.
The broader goal of this work is to develop visualization techniques that can
concisely express the nature of the uncertainty within this type of complex data
for domain scientists and health care professionals alike.

The main contributions of this work stem from the use of multiple visualization
approaches to get a sense of the uncertainty in the data. Due to the complexity of
the data and the domain, multiple views are employed to allow the user to explore
different characteristics of the data. Each visual interface is designed to highlight
specific aspects of the uncertainty within the data display, and interactions within a
specific display are linked, as appropriate, to the other views. While each specific
view is limited in its novelty for displaying this type of uncertainty information, the
strength of our technique lies in the combination of our selected views to extract
aspects of the uncertainty that are complimentary to the other views and appropriate
for the specific needs of our domain scientists. We feel that this approach contributes
knowledge to the field by demonstrating a collection of visualization techniques
appropriate for uncertainty information within a 3D spatial domain that addresses
the needs of scientists working with this specific type of complex data.
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2 Related Work

Interest in uncertainty visualization is steadily increasing [10, 17, 32, 35], and
the topic has been identified as a top research problem [16]. Related to this
work are techniques aimed at incorporating uncertainty information into volume
rendering and isosurfaces, using linked multiple windows, the visual representation
of probability distribution functions (PDFs), and displaying the results of parameter-
space explorations.

Volume rendering and isosurfacing are techniques designed to convey spatial
characteristics of volumetric scalar data. The challenge for these methods is that
uncertainty often accompanies data as a multi-valued attribute and applying volume
rendering and isosurfacing is not straightforward. Approaches to add uncertainty
information to these displays include pseudo-coloring, overlay, transparency, glyphs
and animation [4, 23, 30, 44]. Fout and Ma [8] propose a computational model that
computes a posteriori bounds on uncertainty propagated through the entire volume
rendering algorithm and developed an interactive tool to inspect the resulting
uncertainty. Pfaffelmoser et al. derive a mathematical framework for computing
confidence levels of gradients of uncertainty parameters to allow for analysis such
as the stability of features in an uncertain scalar field [38].

Rather than using isosurfaces to directly convey uncertainty in data, they can
be used to show shape and extent of clusters, for example, in the exploration
of a supervised fuzzy classification of 3D feature space plots [29]. Probabilistic
formulations of marching cubes [40] and isocontours [39] allow for the display of
positional uncertainty of isosurfaces colored by their distance from a mean [37].

While these three-dimensional representations are quite useful for conveying
geometric structure and providing context, the complexity of the data often requires
multiple presentation types to enable full understanding. For this reason multi-
window linked-view systems are popular for addressing uncertainty—uniting a
collection of visualization modes. Examples of such systems for understanding
uncertainty have been used in magnetic resonance spectroscopy (MRS) [5], multi-
dimensional cosmological particle data [11], and weather and climate modeling [41,
49].

Another way to look at uncertainty is to consider the multiple values as PDFs
and to use statistical methods for characterizing them [42, 43]. Initial work in the
area began by extending existing techniques to work with PDFs [31]. Clustering [2]
and slice planes [25] can be used to reduce the dimensionality of the data for
visualization, while colormaps, glyphs, and deformations have been used to express
summaries and clusters [24, 26].

Finally, the type of data we are analyzing can be thought of in terms of
parameter-space exploration in which the effect of perturbations of input parameters
is related visually to outcomes through techniques such as parallel coordinates [1],
preattentive highlighting [6], and high-dimensional boxplots [53].
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3 Background

The electrocardiography forward problem aims to describe torso and cardiac
electrical potentials that result from electrically active sources on or within the
heart [15, 18, 19]. To this end, computational simulations have been developed
to numerically approximate electrical outcomes like cardiac activation times,
epicardial potentials and body surface potentials. However, several parameters are
required for the simulations, many of which cannot be practically obtained through
experimentation or other methods. The estimation of these parameters has the
potential to introduce uncertainty into forward cardiac simulations, thereby reducing
their potential for clinical applications.

Our parameter of interest is the conductivity of cardiac tissue. Cardiac muscle
fibers (known as myocytes) are anisotropic, electrically active cells. Currents pass
preferentially along the longitudinal axis of these fibers, investigating action poten-
tials that ultimately cause contraction of the heart muscle. Experimental approaches
have been used in an effort to extract appropriate conductivity values, but there are
large discrepancies in the literature with regard to these values, which can differ in
magnitude from each other by as much as five times [3, 20, 21, 45, 46]. Table 1
shows the range of conductivity values found in the literature that were used for our
simulation with � i and � e representing intracellular and extracellular conductivities,
respectively. The significance of these conductivity values are explained below.

3.1 Simulation

To solve the forward problem of electrocardiography, three components are linked
together for a complete simulation. We defined an ischemic region with reduced
transmembrane potential to mimic the ischemic condition, an anatomical cardiac
geometry with associated conductivity properties, and a representation of the
electrical activity through the cardiac tissue.

The ischemic region was obtained through experimental methods. Ischemia was
induced in a canine model by restricting blood flow to the left anterior descending
artery (LAD) of the heart. Plunge, or needle, electrodes with a 1.6 mm transmural
resolution were positioned within the LAD vascular bed. Recordings of electrical
potentials through the thickness of the myocardial wall were recorded at 1 KHz

Table 1 Conductivity ranges

Longitudinal Transmural

�i �e �i �e

Min 0.00174 0.0012 0.000193 0.0008

Max 0.0034 0.00625 0.0006 0.00236

Ischemic scaling 1/10 1/2 1/1000 1/4
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and potential values during the ST segment of the cardiac cycle were extracted. As
ischemia progressed, the ST segment potentials were depressed within the ischemic
region. Values that were greater than one standard deviation from baseline values
were extracted and used to define the ischemic region.

The same heart in which ischemia was induced was used to extract accurate,
cardiac geometry and fiber structure by way of MRI and diffusion weighted tensor
imaging (DTI). The heart was scanned in a 7 tesla MRI with 0.31 mm/pixel
resolution. These images were segmented and meshed to represent the cardiac
anatomy. DTI was used to determine the preferred diffusion direction within the
cells, thereby defining the anisotropic direction of the striated cardiac muscle.

Electrical activation of the heart was defined by the bidomain equations [12].
This model was adapted to generate cardiac potentials at a single time step, under
the influence of ischemia, by reducing it to the passive current flow bidomain
(Eq. (1)) [13]. The bidomain equations represent cardiac tissue by defining, on
each node of a simulation, two continuous regions, or domains, that are coupled
together by a membrane. The intracellular domain represents the region within
cardiac myocytes while the extracellular region defines the extracellular space. Both
of these regions are represented by respective conductivity tensors (� i and �e).
The extracellular and transmembrane potentials, Ve and Vm, are also represented
as shown in the equation below. For the purposes of our study, Vm is assumed to
have a constant potential difference of �35 mV.

r � .� i C � e/rVe D �r � � irVm (1)

3.2 Conductivity Values

Given the variability in reported cardiac tissue conductivities [3, 20, 21, 45, 46], we
selected and explored a range of conductivity values determined by the minimum
and maximum values for longitudinal and transmural conductivities for both � i and
�e, as observed in the literature. However, when considering evaluation of high-
dimensional, randomized parameters, it is necessary to consider both parameter
distribution and computational complexity. To address both, we applied generalized
polynomial chaos with stochastic collocation (gPC-SC) [54]. We used the gPC-SC
method to reduce the amount of stochastic collocation points required to accurately
compute statistical measures, thereby reducing computational complexity. We
treated the conductivity ranges as uniformly distributed, stochastic process. Subsets
of values within the range were selected based on Smolyak construction [9, 50],
a linear combination of tensor products that span the subspace, while considered
the four randomized conductivity parameters and the desired level of representative
points. We selected a first level (9 representative conductivity value combinations),
second level (41 representative conductivity value combinations), and a third level
(137 conductivity combinations) Smolyak representations with which to run the
deterministic solutions of the above mentioned bidomain equations.
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4 Visualization System

The data input into the visualization system consists of three required components
and one optional component. The required data components are a set of vertices,
a solid mesh of tetrahedral or hexahedral elements that connect the vertices and
form the geometric anatomy of the heart, and finally, an ensemble of simulation
results attached to each vertex in the mesh. Optionally, a supply of directional tensor
information can be added.

�View is an interactive, 6-way linked visual analysis system consisting of
displays designed to highlight various aspects of the data in two main contexts.
The first context is the anatomic or spatial context. In this context, the first view
is a three-dimensional visualization of the data (Fig. 1 A), while three additional
views contain orthogonal two-dimensional slices through the volume (Fig. 1 B-D).
The second context is the PDF or uncertainty context. To explore this context, a

Fig. 1 K9-2 dataset. Overview of the visualization system, which combines 6-way linked views.
A: Three-dimensional view, B-D: Two-dimensional views, E: Feature space view of the principal
component analysis of the PDFs, F: Parallel coordinates. The data points are colored categorically
using k-means clustering with L2-norm distance metric
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feature space view that depicts the result of principal component analysis (PCA)
applied to the PDFs (Fig. 1 E), and a parallel coordinates view of the PDFs (Fig. 1
F) shows each dimension of the data. Data point colors are held consistent across
all visualizations for visually cross-correlating data between views and contexts (i.e.
points receive the same coloring as their counterparts in other views). The interfaces
are manipulated through mouse interactions and a small menu system (not shown).

4.1 Visual Interfaces

Three-Dimensional View (Fig. 1 A) Anatomic context is important in many
medical applications, and thus we provide a three-dimensional rendering of the
geometry. We extract a surface mesh from the volume by selecting tetrahedral
faces that are not shared. Using the surface mesh, we darken triangle faces that
are near perpendicular to the view direction to help contextualize the data within
the three-dimensional shape, as seen in Fig. 3 left. This method has the advantage
of showing both the surface and cavities of the heart. However, it can be difficult to
determine the orientation and shape of the heart without interacting with it. Other
more illustrative rendering methods [28] could be inserted in its place.

Within this interface, the data can be visualized either through a series of
isosurfaces as discussed in Sect. 4.2 or by rendering the data points colored via a
transfer function as discussed in Sect. 4.3. The three colored planes serve as a cross-
reference mechanism to the two-dimensional views and can be switched on or off
as desired.

Two-Dimensional View (Fig. 1 B-D) For a view of the data without perspective
distortion, two-dimensional visualization slices of the volume are extracted by
intersecting the solid elements with a plane and linearly interpolating vertices,
triangles, and PDFs. The three slice planes, axial, coronal, and sagittal, are a more
natural way for health care professionals to view the data, and are displayed using
transfer functions to color the mesh with isolines to help highlight the variations in
value. Isolines are extracted from the data with their frequency controlled by the user
(i.e. every 0.5 step in data value). The orientation planes, optionally visible in the
three-dimensional visualization, are color coordinated with the borders surrounding
the views. These assist users in identify the three-dimensional spatial location of the
slices and cross-referencing phenomena of interest.

Feature Space View (Fig. 1 E) A wide-variety of dimensionality reduction meth-
ods [27, 36, 48] allow for the conversion from a difficult to visualize and interpret
high-dimensional space, to an easier to understand low-dimensional space. We have
employed this approach in the feature space view with a goal of preserving as many
features as possible.

We treat our PDFs as high-dimensional points and reduce them down to two-
dimensional points. Principle component analysis (PCA) [36] is used as our
dimensionality reduction approach. PCA works by extracting a vector representing
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Fig. 2 K9-2 dataset. Visualization of PCA using the first and second principal components (left)
and the second and third principal components (right). The data points are colored categorically
using k-means clustering with L2-norm distance metric

the strongest component of the dataset. It then finds the next strongest vector which
is orthogonal to the first. This process can continue to any number of dimensions.
Our interface allows selecting any pair of principle components (not just the first
two, see Fig. 2) to generate the display. This allows exploring the high-dimensional
space for features which might not otherwise be visible in the spatial domain.

The coordinate system is placed in the lower left, with the length of the axes
indicating the scaling of that principal component. For example, in Fig. 2 right,
the second principal component (horizontal component) is significantly larger than
the third principal component (vertical component). Therefore, the vertical axis is
stretched, indicating that the natural dimensionality of the data may be reached.

Parallel Coordinate View (Fig. 1 F) Parallel coordinates are an alternative method
for exploring the full high-dimensional space of the data. We supply an interactive
parallel coordinates interface where each dimension represents a single simulation.
Again, the data points (represented as lines in parallel coordinates) are colored using
the same transfer function as in the other linked-views for easy cross-correlation. For
example, in Fig. 1 it can be seen in the parallel coordinates that the yellow colored
clusters are likely enclosing the ischemic zone. Similar observations are true of the
other clusters as well, though some are difficult to see because of their limited size in
the parallel coordinate view. We also enable interactive selection of the data points
and reordering of axes within the parallel coordinates view for further exploration.

4.2 Isosurfaces Over the PDFs

The range of values for an individual data point makes isosurface location
unclear [14]. Each dimension may maintain its own isosurface for a given isovalue,
meaning the isosurface for the PDF could exist anywhere within a range of locations.
To account for this, we reduce the PDF to a single dimension by applying an
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Fig. 3 K9-1 dataset. Left: Isovalue visualization is used to describe the range of potential
isosurfaces of a given value with the minimum operator (in blue) and maximum operator (in
yellow), combined with silhouettes (in black) for anatomic context. Right: Isovalue color mapping
shows regions above (blue), below (red), and in-between (yellow) an isovalue

operator, such as minimum, maximum, or mean, to the data samples at each point.
Isosurfaces are then extracted from the single dimensional field. Figure 3, left, shows
an example where the minimum isosurface is blue and the maximum isosurface is
yellow implying an envelope containing the range of possible surfaces.

4.3 Transfer Functions Over the PDFs

Because of the complexity of the data, we have adopted a number of transfer
functions to color the data, each designed to aid understanding in a unique way.

Value-Based Coloring The first transfer function simply assigns a single value to
each data point and applies an intensity-based sequential color map. The values can
be related to individual dimensions, or derived values such as the mean (Fig. 4 left)
or standard deviation (Fig. 4 right).

Coloring by Isovalue We have also explored coloring points by isovalue. This
method takes each PDF and counts the number of dimensions above and below the
isovalue. In this scheme, we choose solid colors to represent data points where all
dimensions were above (red) or below (blue) the isovalue. The remaining points
are colored using a sequential color map (orange to blue-green) which partially
indicates how many dimensions fall above or below the isovalue. An example is
seen in Fig. 3, right.
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Fig. 4 K9-1 dataset. Single value, sequential color mapping of mean value (left) and standard
deviation (right)

Fig. 5 K9-1 dataset. K-means clustering applied to the data using the L2-norm (left) and Pearson
correlation coefficient (right) as distance metrics

Coloring by Clustering Clustering can reduce the set of data under investigation
by grouping similar data together, such as points that respond similarly to variations
in initial conditions. As points are placed into clusters, they are colored using a
categorical color map. A collection of histograms showing the mean of each cluster
is placed to the right.

We use k-means clustering [33] to exploring this space. We employ multiple
distance metrics for comparing the underlying PDFs. The L2-norm (Fig. 5 left)
groups points that are similar in a Euclidean sense and is defined by d.X; Y/ DpP

.Xi � Yi/2, where X and Y each contain the ensemble of simulation dimensions
of the data points.



Visualization of Uncertainty in Myocardial Ischemia 59

Fig. 6 K9-1 dataset. The result of painting the feature space (right) correlates a structure to
its spatial counterpart (left). In this case, the ischemic zones are identified in the first principal
component

Pearson correlation coefficient [47] (Fig. 5 right) clusters points that respond

similarly to changes in input and is defined as d.X; Y/ D 1 �
P

.Xi�X/.Yi�Y/pP
.Xi�X/

pP
.Yi�Y/

;

where X and Y are the means of the sets.
Selecting the number of clusters is a well known challenge to the k-means

approach. Initially, the number of clusters is selected using an information-theoretic
approach [51] where k D log.n=2/. The user is then given the opportunity to adjust
the number of clusters based upon their intuition about the data.

Painting Over Feature Space We give the user the opportunity to interact
indirectly with the high-dimensional data through a painting interface included in
the feature space view. The interface allows users to select a paint color, brush over
a region of interest, and see the resulting color change in both the feature and other
domain visualizations. An example is seen in Fig. 6, where an interesting structure
in feature space has been selected in various shades of purple. In this case, it turns
out that the structures are related to the ischemic zone of the heart.

Coloring by Fiber Direction To better understand the impact of input versus
output, we have included a common method of visualizing input fiber directions.
In this visualization, red, green, and blue are assigned to x, y, and z, respectively.
This gives the opportunity to correlate fiber directions with structures in either the
feature or spatial domains. Figure 7 shows an example of this visualization.
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Fig. 7 Coloring by fiber directions in the three-dimensional view shows noisy MR diffusion tensor
data used as input for the K9-1 dataset (left). A more atomically realistic model would be expected
to vary more smoothly across the heart such as that of K9-2 dataset (right)

5 Results

Simulations were performed using two separate data sets. The first, “K9-1”, was
created by MRI segmentations of an excised canine heart with atrial tissue removed.
The mesh consists of 1.4 M tetrahedra and 350 K vertices. In like manner, the
second, “K9-2”, was created by using the same imaging techniques from a different
canine dataset. This mesh contains 2.5 M tetrahedra connecting 435 K vertices.
Ischemic regions in both meshes were determined by thresholding measured
potential values observed within the heart under experimental, ischemic conditions.
Thresholds were determined to be within 1 standard deviation of control, baseline
ECG values observed in the ST segment. As part of our experiments, each mesh was
used to calculate first, second, and third order gPC-SC which produced 9, 41, and
137 realizations, respectively.

Performance is reported on Windows-based system with a 3.2GHz Intel Core
i7 CPU, 8 GB of RAM, and an NVIDIA GeForce GTX 580. It is important to
note, we were also able to run all of these experiments on a MacBook Air. The
performance was slightly slower but still respectable. Our software takes a few
moments to load data (15–30 s for smaller data and a few minutes for large data)
and a few seconds to apply some operators (1–60 s; clustering being the slowest).
OpenMP is used where possible to take advantage of the multicore environment.
The individual OpenGL contexts can run at 50–100 frames per second, though there
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is a slowdown when all 6 contexts are rendered simultaneously. Nevertheless, the
system remains interactive.

We developed this tool as part of a collaboration between visualization and
biomedical researchers to better understand the physiology of cardiac ischemia.
�View was actively developed simultaneously with the development of the simu-
lation model, allowing: results from the simulation to be explored within �View;
insights gleaned from �View to be incorporated back into the simulation; and
�View revised and refined based on feedback from collaborators.

5.1 Identifying Ischemic Zones

Identifying the ischemic zones is one of the first tasks we engaged in when exploring
the datasets. Many of the visualizations do not immediately enable access to this
type of information. For example, in Fig. 8 top, the mean and standard deviation
visualizations do not clearly delineate the ischemic zones. However, by exploring
the isovalues of the data we can better understand the location of diseased tissue.
Thresholding is a common approach used by biomedical engineers for capturing
the shape of the ischemic zone. By selecting an isovalue, this visualization performs
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Fig. 8 K9-2 dataset. The mean (top left) and standard deviation (top right) visualizations often
challenge the user searching for ischemic zones, while the isovalue (bottom left) and L2-norm
clustering (bottom right) can enable quick identification
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a pseudo thresholding while providing additional uncertainty information (Fig. 8
bottom left). It turns out that the L2-norm is also very useful in identifying ischemic
zones. Figure 8 bottom right shows an example where the light green cluster
represents the ischemic zones. The clustering approach also has the advantage
of being almost entirely automatic. Finally, feature space painting can be used
to potentially identify the ischemic region. As seen in Fig. 6, the first principal
component primarily encodes a value that when explored, enables selecting the
ischemic region. Our hypothesized ischemic regions can then be confirmed using
the parallel coordinates view to note that the cluster or region has the highest voltage
value, a known indication of the ischemic zone.

5.2 Detecting Noisy Fiber Orientations

The conductivities of the heart are highly dependent on the fiber directions across
the tissue. The fiber direction data can be created any number of ways, such as rule-
based methods or, as in our case, using DTI. Part of our study is understanding the
impact of conductivity to fiber direction.

As we began our study, we noticed a bulge in the K9-1 dataset for many isovalues
(most prominently visible as the yellow area in Fig. 3 right) that we could not easily
explain. We then dove into the data by directly visualizing some of the input, such
as fiber direction. This lead us to discover that the fiber directions from our DTI
imaging were noisy and poorly aligned for the first few millimeters of depth from
the heart surface (see Fig. 7 left).

This finding drove us to obtain a secondary model, the K9-2 dataset, which has
much smoother fiber directional data (see Fig. 7 right). In this new model, no such
irregular bulge is visible, leading us to believe that the feature was caused by the
noisy tensors in the original data.

5.3 Comparing Higher-Order Methods

For our experiments, we ran first- through third-order gPC-SC with the goal of
determining if there were significant advantages in higher-order methods over
lower-order ones. Figure 9 show the results for the K9-1 dataset, and Fig. 10 shows
the results for the K9-2 dataset. Both compare first- and third-order gPC-SC.

Both the first- and third-order versions of the data appear virtually identical. In
K9-1 (Fig. 9), there is a mirroring in the second principal component in the feature
space visualization. However, the shape of the feature space is virtually identical.
Otherwise, only the slightest of differences can be seen with close inspection.

In the K9-2 dataset (Fig. 10), the only easily identifiable difference lies in the L2-
norm clustering (row 3). However, this difference may be attributed as an artifact of
initial mean selection in the k-means clustering algorithm.
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Fig. 9 K9-1 dataset. Comparison of the first- (left) and third-order (right) gPC-SC through mean
(row 1), standard deviation (row 2), L2-norm clustering (row 3), and Pearson correlation clustering
(row 4) visualizations
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Fig. 10 K9-2 dataset. Comparison of the first- (left) and third-order (right) gPC-SC through mean
(row 1), standard deviation (row 2), L2-norm clustering (row 3), and Pearson correlation clustering
(row 4) visualizations
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The results of both of these experiments convinced our team that, for
conductivity-based uncertainty, higher-order gPC-SC does not provide a significant
variation or advantage over the lower-order method. This assertion might not
hold for other ischemia related uncertainties, such as positional uncertainty of the
ischemic zone.

5.4 Uncertainty from Conductivity

The final issue we addressed was whether the uncertainty is in some way meaning-
ful. Our conclusion after exploring the data using many visualization methods over
a significant period of time is that, no, the uncertainty in this data is not particularly
meaningful. We believe that the results can be explained primarily through scale
and bias. This is most apparent in the parallel coordinates view of Fig. 1. The fact
that the clustered colors maintain constant tracks is a clear indicator of the scale
and bias effect. The other indication is that in principal component analysis, the
first principal component almost entirely summarizes the voltage. Additionally, the
secondary principal components are of significantly smaller scale, indicating that
the underlying dimensionality of the data is probably just one or two (see Fig. 2).

6 Discussion and Future Work

The ultimate clinical goal of this work is to be able to assess the uncertainty in
determining the ischemic zone from an inverse simulation linked to ST segment
waveform changes. If we better understand how the uncertainty in the conductivities
affect the size and shape of the ischemic zone, it will help determine what levels
of uncertainty will be of consequence clinically and how much confidence can be
assigned to the understanding of the ischemic zone size, shape, and location.

From a scientific point of view, these studies can also give us a better under-
standing of the relationship of conductivity uncertainty to both forward and inverse
simulations of cardiac ischemia. In the future, we aim to provide confidence criteria
of the simulation results as a function of both conductivity uncertainty and the
problem we are trying to solve. It may be that for some problems, the level of
uncertainty will not greatly effect the results, while the uncertainty may invalidate
other applications. It may also indicate that uncertainty levels in the conductivities
would have to be reduced in order to use such a method for a particular application,
which could then spark research into generating better conductivity values.
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6.1 Sources of Uncertainty

We are able to identify a wide variety of features associated with the location and
magnitude of uncertainty. However, the source of the uncertainty remains largely
a mystery (i.e. the classical correlation vs. causation problem). In Sect. 5.2, we
suspected that the DTI noise was the source of the error, but were only able to find
indirect evidence to validate our suspicion. Such a discovery encourages further
investigation of the importance of fiber direction in simulation, which we plan to do
through techniques such as those proposed by Jones [22] for visualizing uncertainty
in fiber orientation. More generally, visualizations that indicate correlation and
causation of uncertainty features will greatly improve the efficiency of these types
of studies.

6.2 Repeated Features

We have presented a number of visualization approaches, many of which highlight
the same features. Each visualization has its own advantages and disadvantages.
Clustering has the advantage of highlighting multiple features simultaneously.
However, it requires significant effort in visual search to wade through less
important features. Using the isovalue visualization limits the number of features
visible, making concentration easier, but requiring additional interaction. It is
increasingly important to find visualizations which balance these modes of operation
and identify which types of visualizations are most efficient from the perspectives
of speed, accuracy, and cognitive load. Providing users with choice in visualization
is valuable, but too much choice will overwhelm.

6.3 When Have We Found All Features?

The last issue arising from this work that often plagues visualizations is identifying
when all of the data features have been located. We have presented visualizations
that find a wide variety of features, but for a long time we lacked the confidence to
claim the search had been exhaustive and all interesting features had been found.
Making such claims demands further validation of which types of features are and
are not identifiable by each visualization method.
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7 Summary

This work is an initial exploration of uncertainty data obtained from the forward
simulation of cardiac ischemia. We believe our close collaboration with the
biomedical simulation scientists will greatly guide the choices we make regarding
visualization, particularly in light of how our system has, to date, helped improve our
understanding of the simulation. Both clinical problems and scientific exploration
provide opportunities for improvement in uncertainty visualization techniques, and
we look forward to extending �View to have greater research and clinical impact.
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Combined Volume Registration
and Visualization

Arlie G. Capps, Robert J. Zawadzki, John S. Werner, and Bernd Hamann

Abstract We describe a method for combining and visualizing a set of overlapping
volumetric data sets with high resolution but limited spatial extent. Our system
combines the calculation of a registration metric with ray casting for direct volume
rendering on the graphics processing unit (GPU). We use the simulated annealing
algorithm to find a registration close to optimal and allow the user to closely
monitor the optimization progress. The combined calculation reduces memory
traffic, increases rendering frame rate, and makes possible interactive-speed, user-
supervised, semi-automatic combination of many component volumetric data sets.

1 Introduction

Volumetric imaging modalities have become centrally important in biological and
medical applications. These modalities can produce a volumetric data set (“volume
image”) composed of samples or voxels commonly arranged in a 3D Cartesian grid
of resolution I � J � K. Advances in technology and engineering have resulted in
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rapidly increasing image resolution, data acquisition speed, and data set size and
dimensionality. However, with some clinical in vivo imaging techniques such as
optical coherence tomography (OCT) the coverage provided by individual high
resolution volume images is smaller than the extent of the imaged structures.
Multiple volume images that partially overlap must be captured, registered and
combined (“stitched”) to allow a single larger region to be analyzed as a single
data set. Gaps or holes, areas of the larger region not covered by any volume image,
must be easily identifiable as such by the user. Overlaps, areas covered by more than
one volume image, must contain enough information for the stitching operation
to unambiguously determine the volume images’ correct relative position and are
combined through an averaging operation to reduce noise and improve contrast.

We have developed methods and a prototype system for stitching multiple
high-resolution volume data sets which combines on-screen visualization with
registration metric computation. After the user places individual volume images into
rough alignment, our system automatically refines the registration of the component
images (see Fig. 1) using rigid-body transformations. Our system also supports
the combination of scanned data sets in which correction for motion artifacts has
changed a deformed, regular image into a correct image with sampling irregularities
and gaps. Successive motion-corrected scans of the same region contain different

Fig. 1 Overview of the algorithm. (1) Input volumes. (2) User adjusts position. (3) Build a binary
space partition (BSP) tree, cutting volumes into non-overlapping convex polyhedra. (4) Perform
ray casting. (5) Each ray produces a color value for its pixel. The resulting image is displayed on
the screen. (6) Each ray that pierces the intersection of multiple input volumes also produces an
intermediate metric result. The resulting metric image is stored in a texture. (7) The intermediate
metric results are reduced to a single value M. (8) An optimization step adjusts volume positions.
Note that the image texture and the metric intermediate values shown at (5) and (6) represent the
view from the eye point, a quarter turn from the representation at (4)
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motion and hence different sampling gaps, which are filled in when the scans are
properly registered and combined.

The procedures for visualizing multiple overlapping data sets and calculating a
metric for registration are closely linked. Both tasks require sampling throughout the
regions of image space where multiple volumes overlap followed by combination
of the sample values to a summary, either to an image of the combined data or to a
metric for goodness-of-fit. Since both tasks require intensive and wide-ranging data
sampling, an efficient data access pattern directly benefits the speed of the system.
We combine computation of the registration metric with the volume ray casting
algorithm running on a workstation GPU.

We developed our system for use with non-invasive in vivo cellular resolution
human retinal imaging modalities. Specifically, we applied our system to two
varieties of optical coherence tomography, which acquires a series of consecutive
2D cross-sectional tomograms that when stacked define a 3D image. The first
system [12] scans an area of 3 mm�3 mm on the retina in 4 s to produce an image of
375 � 360 steps with an axial resolution of 10 �m. The second system [14, 16]
uses adaptive optics to achieve much finer resolution and scans a retinal patch
of 300 �m � 250 �m in 512 � 100 steps over about 4 s, with an axial resolution
of 3 �m. This fine resolution provides the potential for morphological analysis of
microscopic structure in the human eye. The value of this analysis, already great,
increases with the coverage of the image and provides a powerful motivation for
volume image stitching. However, without some kind of correction, involuntary
eye motion that is a significant nuisance in images from the first system becomes
prohibitive to stitching ultra-high-resolution data sets acquired using adaptive optics
with the second system. Our system should also be applicable to images from other
volumetric modalities such as computed tomography (CT), magnetic resonance
imaging (MRI), and confocal scanning optical microscopy.

In Sect. 2, we discuss work related to visualization and registration of volume
data sets. We discuss volume partitioning, ray casting to produce images and
calculate the registration metric, and optimization using simulated annealing in
Sect. 3. In Sect. 4 we present examples demonstrating our method and the results
of its application to OCT data sets, and we conclude with Sect. 5.

The key contributions made in this paper are (1) an algorithm combining
visualization and computation of a registration metric for overlapping volumes and
(2) a system using that algorithm to assist users in stitching multiple retinal OCT
volumes to extend high-resolution coverage.

2 Related Work

Early work on multiple volume rendering includes that of Jacq and Roux [5], whose
method casts rays through combined volumes and accumulated a derived value (the
minimum, maximum, or average). Cai and Sakas [2] addressed the use of more
general functions for data intermixing and established a useful taxonomy for the
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stage in the pipeline where data from the two volumes are combined. Image-level
combines a 2D rendering of each individual volume, accumulation-level fusion
combines colors from individual volumes’ transfer functions during ray casting,
and illumination-level fusion combines raw data from each volume at each step
into one value which is transformed to color. The choice of data fusion level has
consequences for the design of the rendering system, requiring different levels
of flexibility. Recent work on multi-volume rendering has focused on facilitating
arbitrary alignment and increasing the number of overlapping volumes supported.
Shader programs are kept manageable by splitting up rays into sections that do not
cross volume boundaries. The approach of Rößler et al. [13] treats overlapping
volumes as a scene graph and auto-generates the shader programs necessary to
render homogeneous regions of space. Kainz et al. [6] introduced a system that
transforms the boundary polygons of each input volume to screen space and sorts
the resulting fragments in depth to produce homogeneous ray segments. These
techniques, while powerful, require expensive depth-sorting techniques. To avoid
this cost, solutions suggested by Lindholm et al. [9] and Lux and Fröhlich [10] use
a binary space partitioning (BSP) tree to produce homogeneous volume fragments
which are rendered in depth order provided by traversal of the BSP tree. We base
our system on the approach of Lindholm et al., which is simpler in its treatment of
large volumes. The systems discussed so far and several other recent works [4, 8]
perform multi-volume visualization, requiring registered volumes as input.

Many capable systems have been introduced that accomplish automatic or semi-
automatic registration of volume data. Bria et al. [1] described a system for stitching
3D confocal ultramicroscopy (CU) data sets, with no function for visualization.
Unlike OCT, the CU data sets are sparse; like OCT, the initial position of each
volume is approximately known and is used as the starting point for registration.
Dalvi et al. [3] introduced a multi-step process starting with recorded sensor
position, performing feature extraction using a wavelet transform and finishing with
intensity-based volume registration. This system performs non-interactive stitching
of ultrasound data sets, with no visualization component. Ultrasound, like retinal
OCT, is a coherent detection process and ultrasound data sets contain pervasive
speckle noise. However, the examples in [3] show features that are much larger and
less complicated than the range of feature scales present in retinal OCT images.
Specific to OCT data sets, Zawadzki et al. [15, 16] presented a system that allows
the user stitch multiple high-resolution adaptive optics OCT data sets using axis-
aligned translation in whole-voxel increments. Image combination is accomplished
by choosing the maximum intensity of overlapping voxels.

3 Methods

Our system is summarized in Fig. 1. The user supplies several input volumes (1) and
adjusts their positions (2). The overlapping input volumes are divided using a BSP
tree (3) on the CPU, using the boundaries of the input volumes as partition planes.
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Interior nodes of the BSP tree represent cut planes that divide the overlapping input
volumes; leaf nodes represent the subvolumes or BSP “cells” (4) defined by the cut
planes. We produce a volume rendering by casting rays through the leaf node cells in
order of increasing distance from the eye point. In addition to calculating an image
pixel, each ray also calculates a partial metric value. Image pixels are displayed on
the screen (5), and intermediate metric results (6) are stored in a graphics texture.
The partial metric values are reduced to a final metric value M (7); an optimizer
process uses the final metric to adjust the input volume positions (8). The optimizer
repeatedly runs steps (3) through (8), using the simulated annealing algorithm [7] to
choose successive relative positions.

BSP tree construction (3) and ray casting through the resulting volume fragments
(4) to produce a display image (5) are adopted from the approach of Lindholm et
al. [9] In our system, the ray casting algorithm produces not only an image for
display but also calculates a registration metric. We also integrated the simulated
annealing algorithm as the optimizer for this application.

The oriented plane in 3D space is a concept we use throughout our system. The
plane pl with equation ax C by C cz D d divides 3D space into its positive side,
the open half-space plC with equation axC byC cz > d, and its negative side, pl�,
with equation axC byC cz < d. The vector n D .a; b; c/ is normal to the plane and
points into plC.

3.1 Binary Space Partition

After the user selects and places input volumes, our system partitions the region
occupied by the input volumes into a BSP tree (Fig. 1, step (3)). Algorithm 1
accomplishes the partition. The input to the algorithm is the list of the input volumes,
which must all be convex polyhedra. The algorithm uses the oriented planes of the
polyhedral faces to recursively divide the polyhedra until all the face planes have
been used. Hence, all face planes of all input polyhedra are initially marked unused.
The output is a binary tree whose nodes have the following fields:

• pl, the oriented cut plane (set on interior nodes, unset on leaf nodes),
• polys, a list of polyhedra (empty on interior nodes, populated on leaf nodes),
• left, the left child node, representing plC, the positive side of the cut plane
• right, the right child node, representing pl�, the negative side of the cut plane.

Figure 2 illustrates the first iterations of applying Algorithm 1 to a 2D scene.
Although here we show the application in two dimensions, BSP tree generation is
generalizable to any dimensionality, which for our system is 3D. Implementers of
the BSP tree algorithm must be careful to avoid errors in the geometric operations
at lines 7, 9, and 13, which can result from floating-point inaccuracies.

The binary tree resulting from Algorithm 1 has properties useful for speedy ray
casting. Each leaf node l contains a list of one or more polyhedra p. All p in the
same leaf node have the same boundaries, and each p refers to one of the original
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Algorithm 1 Generate BSP tree
Input: Convex polyhedra v1 : : : vn, empty node r.
Output: BSP tree rooted at node r.
1: r:polys input volumes
2: Node n r
3: Recursive section on n:
4: n:pl an unused face plane from n:polys
5: Mark n:pl as used
6: for all p within p:polys do
7: if p lies entirely in plC then
8: Move p to n:left:polys
9: else if p lies entirely in pl� then

10: Move p to n:right:polys
11: else
12: Remove p from n:polys
13: Cut p with n:pl into pC and p�

14: Add pC to n:left:polys
15: Add p� to n:right:polys
16: end if
17: end for
18: if n:left:polys contains anything then
19: Recur on n:left
20: end if
21: if n:right:polys contains anything then
22: Recur on n:right
23: end if
24: return Node r, root of a new BSP tree

+ − +

−

Fig. 2 First iterations of Algorithm 1 applied to a 2D scene. Left: initial state. Middle: first cut
(top) and resulting partition (bottom). Right: second cut (top) and resulting partition (bottom)
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input volumes. This means that we iterate over the list of p to get the list of input
volumes that l intersects, and also that ray casting only needs to refer to the first p in
each leaf node to determine ray entry and exit points. Since all leaf nodes have been
constructed using cut planes chosen from the face planes of the input volumes, the
interior of no p intersects any input volume boundary. This method of construction
also assures that any ray cast through p must start precisely as it enters and stop
precisely as it exits, and will never re-enter p. Finally, even with arbitrary viewpoints
the Z-ordering of leaf volumes can be obtained without rebuilding the tree.

3.2 Drawing the BSP Tree

After constructing the BSP tree, the system executes the ray casting algorithm on
the volume cells in order of increasing distance from the eye point i (Fig. 1, step (4)).
To determine the depth ordering, the program traverses the BSP tree starting from
its root. At each internal node n, if i lies on the positive side of cut plane n:pl, the
program traverses first the left then the right child node. Otherwise it traverses the
right then the left child. The side of each cut plane that contains i is always visited
first, so that leaf nodes (which contain the cells) are visited in increasing depth order.

The program performs ray casting as it visits each leaf node l. This is done in
several passes, using code on the CPU and several GPU shaders, as described below.
Textures are used to pass intermediate results between rendering steps.

1. Sort faces of l’s first polyhedron into two lists: fronts, with normals pointing
toward i, and backs, with normals pointing away from i.

2. Draw each face in backs using shader RecordDepth, which returns the frag-
ment’s distance from i. We store this in a buffer d. We render computed distance
to a buffer rather than use the depth buffer commonly provided by rendering
toolkits because we need the Euclidean distance from i to the fragment lying on
the back-face, not the Z-buffer distance resulting from the perspective transform.

3. Draw each face in fronts using shader RayCast to perform the ray casting
algorithm:

a. Record the fragment world coordinates as ray start point s.
b. Stop point t is calculated from the value in buffer d, the distance from i to the

ray exit point from l.
c. For each input volume v1 : : : vk that l overlaps, calculate texture-coordinate

step vectors.
d. Step through all input volumes in parallel from s to t. At each step p,

i. Accumulate color from the average of v1Œ p� : : : vkŒ p�

ii. Accumulate metric from the sum of the squares of all pairwise differences

e. On ray termination, output three values: the color accumulated along each
ray, stored in the buffer lc, the ray’s partial metric value, stored in lm, and the
number of sample steps p, stored in lp.
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4. Draw each face in fronts using shader Finalize to accumulate the local color,
metric, and sample count buffers into the overall buffers C; Mbuf , and P.

The heart of the rendering process is line 3d. Shader RayCast runs in parallel
for each pixel of the final image that portrays the polyhedron l, stepping through l
along that pixel’s ray from its entry point s to exit point t. Here we explain line 3(d)i
in more detail. At each step p, the shader finds the average of all k input volumes
overlapping l, then looks up the corresponding color (with r; g; b and a components)
in the transfer function table tf :

raw D 1

k

kX

iD1

viŒ p�

t:rgba D tf Œraw�

The shader accumulates the color into the pixel color lc using the ray casting
formula:

lc:rgb D lc:rgbC lc:a � t:rgb

lc:a D lc:a � t:a

To compute the metric over volume l, we compute the sum of the square of image
differences over all sample points p within P, the set of ray casting sites lying within
l (here vnŒ p� means the value located at world space point p in volume n):

M D 1

jPj
k�1X

iD1

kX

jDiC1

.viŒ p� � vjŒ p�/2: (1)

When a ray traverses a volume l that intersects more than one input volume,
at each ray cast step p the shader RayCast calculates the contribution at p to the
registration metric (line 3(d)ii) and accumulates the partial metric value along the
ray. The subtotal for all p in the ray are stored in that ray’s pixel in metric texture
lm.

After completing RayCast, shader Finalize accumulates color and metric values
into the final buffers (line 4):

C:rgb D C:rgbC C:a � lc:rgb

C:a D C:a � lc:a

Mbuf D Mbuf C lm

P D PC lp
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After visiting all leaf nodes in order of increasing distance from i, the program
displays color buffer C on screen (Fig. 1, (5)). Then the system divides the sum of
the partial metrics stored in Mbuf (Fig. 1, (6)) by the sum of the ray sample counts
stored in P to produce a final registration metric value M (Fig. 1, (7)).

3.3 Optimization

The final metric value (Eq. (1)) has a minimum when pixels from one volume
overlap pixels in other volumes having equal value. In other words, the metric has a
global minimum when volumes are perfectly registered. The position of one volume
relative to another can be expressed by six values, three orthogonal translations
and three orthogonal rotations. Given k input volumes, we use the 6.k � 1/-tuple
� to represent the rigid transformations of volumes 2 : : : k with respect to volume 1.
The metric function can be written as M D f .�/ to emphasize that the value of M
depends on the rigid transformation (rotation and translation) of the input volumes.
In Eq. (1), � was implicit in the statement that overlapping volumes are sampled at
points in world space.

3.3.1 Simulated Annealing

To search for the optimum arrangement of input volumes, we implement an iterative
optimization routine. The optimizer calculates the metric M for a series of � ,
choosing successive � to converge to a global minimum for M. Optimizers exist
which choose new � based on predicted function behavior [11]. Newton and
gradient descent optimization methods use the function value, first and/or second
derivative to predict f .�iC1/ from �i based on the assumption that the derivatives
exist and the function can be predicted over the interval from �i to �iC1. However, the
OCT input volume images are full of high-frequency signal as well as speckle noise,
making the metric function unpredictable even if the derivatives were available. The
optimizer for the metric function must not require derivative information, and should
not rely on function predictions to choose successive values for � .

To satisfy these requirements, we implemented the simulated annealing (SA)
optimizer process which executes a random walk in the parameter space, succes-
sively choosing values for �iC1 that are “close” to �i. The step is “accepted” when
it results in an improvement, and the random walk continues from �iC1. The step is
“rejected” with gradually increasing probability when it results in a worse metric,
and the random walk continues from �i. SA is well-suited to a noisy registration
metric which must be calculated for each new value of � : the possibility to accept
suboptimal steps lets the algorithm escape from local minima, and in contrast to
some other methods SA does not need an estimate of the function first or second
derivative to choose �iC1. SA is modeled on the physical process of annealing,
where a piece of hot metal is cooled slowly. When hot, the chance of random internal
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structure change is high. As the temperature drops, the chance of a random change
in microstructure drops as well. When the temperature drops too quickly, regions of
internal stress and irregular structure remain because the metal is too cold to allow
the shifts that would relieve the weak spot. But in cases where the temperature drops
slowly enough, the internal structure of the metal becomes homogeneous because
regions of stress have a chance to relax in one of the random changes that occurs as
part of the cooling process.

3.3.2 Details of Simulated Annealing

The SA algorithm tracks state with several variables: �i is the current rigid
transformation of all input volumes, Mi is the metric calculated for �i using Eq. (1),
and temperature T controls the likelihood of accepting a step with a worse metric
than Mi. SA uses several parameters: T0, the initial value of T; dT, the factor by
which T periodically diminishes; and freeze, the value of T which determines the
algorithm stopping point. SA has five steps:

1. �iC1 D randstep.�i; T/

2. MiC1 D eval.�iC1/

3. If accept.T; Mi; MiC1/, then let i D iC 1

4. Let T D T � dT
5. If T > freeze, go to line 1.

The randstep function chooses �iC1 to be “not far” from � . This keeps the SA
random walk from jumping far away from the user’s initial placement. The function
randomly chooses to translate a volume transversely or axially or to rotate the
volume around one of its axes, then randomly chooses an amount by which to move
the volume. We rely on the user to place the input volumes close to their desired final
registration, within the diameter of the dominant features in the image, and we want
the optimizer to refine the user’s placement, not to discard it. Thus, we constrain the
translation steps to be on the order of ten pixels and rotation steps to be less than
2 ı at the beginning of the annealing process. We multiply the random translation or
rotation by .T0 C T/=2T0 to decrease the random step along with T.

The eval function renders the superimposed input volumes as described in
Sects. 3.1 and 3.2 to find the metric MiC1 that results from �iC1.

The accept function implements the annealing behavior. It accepts all random
steps that give an improved metric (where Mi > MiC1), and also probabilistically
allows random steps that don’t give an improvement (where Mi � MiC1). The
probability of accepting a step from �i to �iC1 is:

p.step �i ! �iC1/ D min

�
1; exp

�
�MiC1 �Mi

T

��
: (2)

Figure 3 shows a graph of Equation (2). When Mi > MiC1 (to the right of the
origin), the proposed step will improve the registration so accept always returns
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Fig. 3 Graph of Equation (2). The probability of accepting a random step is based on the change
in metric

true. The further to the left of origin, the worse the effect on registration, so the lower
the probability of accepting the step. As T decreases, the exponential curve becomes
sharper and the probability of accepting a bad step decreases. Near freezing, the
curve approaches a step from 0 to 1 at the origin, making the behavior of SA
approximate a gradient-descent random walk.

3.3.3 Parameters and Starting Conditions

Successful optimization with SA requires good starting parameters. Together, the
parameters T0; dT and freeze determine the annealing schedule. The temperature T
is closely linked to the random walk. When T0 is too high, the algorithm will make
many random steps with a very low penalty for a bad step and will tend to wander
away from the user’s specified initial placement, failing to find a registration. So,
prior to starting SA proper, we determine a value for T0 by perturbing the position
of each input volume in turn for several tens of steps by random translation of 10
pixels or less and rotation by 2ı or less. For the set of all bad steps (Mi < MiC1) we
find the average �M D MiC1 �Mi and take this to be the expected value. We then
start SA with T0 D E.�M/= ln 2. This way, the expected probability of accepting a
step that worsens (increases) the metric is initially 0:5, giving the algorithm a chance
to settle down around the correct registration as T decreases.

For some initial volume arrangements, SA will fail to settle down around the true
registration. We have observed this to happen when the initial placement was not
close to the true registration. Since SA is a stochastic process, we cannot guarantee
convergence. However, we have observed that initial registration of OCT data sets
cut into overlapping subsets and given an initial registration within 10 pixels of
displacement tend to succeed. Rotation is much more sensitive; initial misrotation
of 3ı or more tends to cause SA to fail, while correct rotation of less than 1ı tends
to lead to success.

To allow the use of an easy-to-work-with value of dT D 0:95, we repeat line 1, 2
and 3 several (hundred) times for each input volume in turn before line 4, rather than
decreasing T by an infinitesimal amount each time through the loop. Finally, we set
freeze D T0 � 10�5. This results in an annealing schedule which in our experience
results in successful registration after an acceptable computation time.
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Finally, we save the lowest Mi and its �i, and apply that arrangement to the input
volumes at the end of the SA process.

3.4 Effect of View Point

The ray casting algorithm can be implemented with either perspective or orthogonal
projection of the scene to a viewing plane. Orthogonal projection casts parallel rays
normal to the viewing plane through the volume data sets; perspective projection
casts rays that diverge from the eye point, pass through the viewing plane and
volume data. We implemented perspective projection in this project. Since the rays
diverge, ray casting sample points p used for metric calculation are dense close to
the eye point and become sparser in regions farther away. Thus, a change in eye
point will move the region where p is most densely distributed, likely resulting in a
different metric value even with no change in input volume position. This means that
only metric values computed from the same eye point are comparable. Practically
speaking, the simulated annealing registration must restart when a user moves the
global point of view. We have found that repeated experiments with the same initial
placement of the input volumes but differing eye points converge to the same correct
final registration.

Because our system calculates the registration metric by ray casting through
volume overlap regions, we require these regions to be within view, or they will
not contribute to the metric. Likewise, “island” volumes that do not overlap others
cannot affect the metric, and must by registered by means other than our system.

The common technique of early ray termination cannot be applied to our
combined metric and visualization method. Even though a ray may accumulate
enough opacity that its color will not change over further sample steps, metric
calculation must still be done at those sample steps; so all rays must run to volume
exit. However, our algorithm skips all empty space, since it casts rays through BSP
leaf nodes, which by construction always intersect at least one input volume.

4 Examples and Results

We have applied our registration system on several classes of input. To demonstrate
basic functionality, we show samples from synthetic data sets. Overlapping subsets
taken from the aneurism data set (courtesy Viatronix, Inc., USA; available at http://
www.volvis.org) show successful registration of real-world data. For each example,
we show the evolution of the registration metric throughout the optimization run.
For test data sets, a metric value of zero indicates perfect registration. A metric
value of zero is not possible with real OCT data sets because distinct images of the
same area contain random noise. Finally, we show two examples of successfully
stitching OCT data sets. Lacking a ground truth for the in vivo OCT data sets, we

http://www.volvis.org
http://www.volvis.org
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show several cross-sectional slices through the combined volume to demonstrate the
improvement brought to the combined image by our method.

4.1 Test Data Sets

The first test case is two volumes sampled from a data set containing three spherical
solids, with centers at .0:2; 0:4; 0:1/; .1:1; 0:1; 0:1/, and .0:6; 0:7; 0:6/ and radius
0:15; 0:40; 0:25 (arbitrary units), as shown by Fig. 4. Starting from a close but
inexact manual registration, the system was able to produce an accurately-registered
result. The second test case is two volumes sampled from a data set containing three
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Fig. 4 Synthetic example with three blobs. Upper-left: initial placement, before registration.
Upper-right: result of registration. Bottom: registration metric over duration of simulated anneal-
ing. The registration metric value depends on the overlapping volume images and the ray casting
eye point. A metric value is only significant relative to other values in the same optimization run



86 A.G. Capps et al.

0.03

0.025

0.02

0.01

0.005

0.015

0
0

5000

Iteration

R
eg

is
tr

at
io

n 
m

et
ric

10000 15000

Fig. 5 Synthetic example with axis-aligned bars. Upper-left: initial placement, before registration.
Upper-right: result of registration. Bottom: registration metric over duration of simulated annealing

bars, parallel to the X�; Y�, and Z�axes, with a square cross-section 0.2 units on a
side and several other features to help quick visual verification of correct orientation.
See Fig. 5. The second data set was sampled at a rotation of 0.122 radians about the
Z�axis. The registration was successful.

The third example shows the ability of our system to simultaneously register
several data sets. From the aneurism data set, we extracted four overlapping
subimages. We manually positioned the subimages in rough alignment, then ran
our system to refine the initial placement. See Fig. 6 for overall images before and
after registration as well as details of vessels interpenetrating several input volumes.
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Fig. 6 The aneurism volume image. Original image was divided into four overlapping subvol-
umes, which were then re-registered. Upper-left: initial placement, before registration. Upper-
right: result of registration. Middle: registration metric over duration of simulated annealing. Lower
row: before-and-after detail views

4.2 Application to OCT Volumes

We used our technique to stitch OCT volumes of overlapping retinal regions.
A retinal region’s location is described by visual angle off the line of sight, in
degrees, and direction, in terms of temporal or nasal (toward the temple or the nose,
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Fig. 7 Two OCT volumes taken around 6ı superior retina. Upper-left: initial placement, before
registration. Upper-right: result of registration. Middle: registration metric over duration of sim-
ulated annealing. Lower row: before-and-after detail views showing improvement in vasculature
registration

respectively) and superior or inferior (physically above or below the fovea, or center
of gaze). Figure 7 shows two overlapping volumes acquired about 6ı superior retina,
before and after registration. The entire volume is shown, as well as views of various
layers within the retina, to illustrate the effect of registration. Likewise, Fig. 8 shows
the registration of two data sets taken at 6ı temporal, 6ı superior retina. In the detail



Combined Volume Registration and Visualization 89

Iteration

4

2

6

8

0
0 0.5 1 1.5 32 2.5

x 10–3

x 104

R
eg

is
tr

at
io

n 
m

et
ric

Fig. 8 Two OCT volumes taken around 6ı superior, 6ı temporal retina. Upper-left: initial
placement, before registration. Upper-right: result of registration. Middle: registration metric over
duration of simulated annealing. Lower row: before-and-after detail views

views of both data sets the effects on vessels are clearly seen. While it is possible to
register OCT data sets “by hand,” features such as vasculature that guide registration
generally occur in the middle of the dense OCT data set and are accessible to the user
only with some effort. As shown by the detail views of Figs. 7 and 8, the optimizer
gives a major improvement in registration and lets us see and measure detail that
would otherwise be lost in noise.
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The main difficulty of registering OCT data sets is pervasive eye motion in
imaging subjects. Any eye motion will result in distortion in the volume image, and
since different motion is present over the course of successive OCT scans the images
will not match and will be unable to register without correction for this motion.

5 Conclusions and Further Work

We have presented a system for combined visualization and registration of volume
data sets. We perform ray casting through multiple volume data sets. In overlapping
regions, we compute the sum of squared difference between volumes at each ray
casting sample site. Thus, a metric for the quality of the registration within overlap
regions is calculated in real time for each frame displayed by the ray casting engine.
We added an optimizer to incrementally perturb the position of each displayed
volume, using the simulated annealing algorithm to find an optimal registration.
After showing examples using synthetic and example data sets, we successfully
applied our system to two pairs of OCT data sets of the human retina. This
registration produced a volume image of high resolution and wide coverage.

We have found, however, that our technique is impractical if one or more of the
input volumes contain motion distortion in the overlap region. Motion distortion is
present to varying degrees in most OCT volumes. Techniques to mitigate motion
distortion will increase the applicability of our system to OCT and other scanning
image capture modalities.
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Feature Lines for Illustrating Medical Surface
Models: Mathematical Background and Survey

Kai Lawonn and Bernhard Preim

Abstract This paper provides a tutorial and survey for a specific kind of illustrative
visualization technique: feature lines. We examine different feature line methods.
For this, we provide the differential geometry behind these concepts and adapt
this mathematical field to the discrete differential geometry. All discrete differential
geometry terms are explained for triangulated surface meshes. These utilities serve
as basis for the feature line methods. We provide the reader with all knowledge to
re-implement every feature line method. Furthermore, we summarize the methods
and suggest a guideline for which kind of surface which feature line algorithm is
best suited. Our work is motivated by, but not restricted to, medical and biological
surface models.

1 Introduction

The application of illustrative visualization has increased in recent years. The
principle goal behind the concept of illustrative visualization is a meaningful,
expressive, and simplified depiction of a problem, a scene or a situation. As an
example, running people are represented running stickmans, which can be seen
in the Olympic games, and other objects become simplified line drawings, see
Fig. 1. More complex examples can be found in medical atlases. Most anatomical
structures are painted and illustrated with pencils and pens. Gray’s anatomy is one of
the famous textbooks for medical teaching. Most other textbooks in this area orient
to depict anatomy with art drawing, too.

Other than simplified representation, illustrative visualization is not restricted
to these fields. Illustrative techniques are essential for focus-and-context visual-
izations. Consider a scene with anatomical structures and one specific (important)
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(a) (b) (c) (d)

Fig. 1 Visual abstraction of the four Olympic disciplines: (a) archery, (b) basketball, (c) football
and (d) handball in the style of the pictograms of the Olympic Games 2012 in London

structure. The specific structure may be strongly related to the surrounding objects.
Therefore, hiding the other objects is not a viable option. In contrast, depicting
all structures leads to visual clutter and optical distraction of the most important
structures. Focus-and-context visualization is characterized by a few local regions
that are displayed in detail and with emphasis techniques, such as a saturated
color. Surrounding contextual objects are displayed in a less prominent manner to
avoid distraction from focal regions. Medical examples are vessels with interior
blood flow, livers with inner structures including vascular trees and possible tumors,
proteins with surface representation and interior ribbon visualization. Focus-and-
context visualization is not restricted to medical data. An example is the vehicle
body and the interior devices. The user or engineer needs the opportunity to illustrate
all devices in the same context.

There are numerous methods for different illustration techniques. This survey
is focused on a specific illustrative visualization category: feature lines. Feature
lines are a special group of line drawing techniques. Another class of line drawing
methods is hatching. Hatching tries to convey the shape by drawing a bunch of lines.
Here, the spatial impression of the surface is even more improved. Several methods
exist to hatch the surface mesh, see [15, 20, 30, 39, 53, 56]. In contrast, feature lines
try to generate lines at salient regions only. Not only for illustrative visualization,
feature lines can also be used for rigid registrations of anatomical surfaces [46] or
for image and data analysis in medical applications [12]. The goal of this survey is
to convey the reader to the different feature line methods and offer a tutorial with all
the knowledge to be able to implement each of the methods.

1.1 Organization

We first give an overview of the mathematical background. In Sect. 2, we introduce
the necessary fundamentals of differential geometry. Afterwards, we adapt these
fundamentals to triangulated surface meshes in Sect. 3. Section 4 discusses general
aspects and requirements for feature lines. Next, we present different feature line
methods in Sect. 5 and compare them in Sect. 6. Finally, Sect. 7 holds the conclusion
of this survey.
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2 Differential Geometry Background

This section presents the fundamentals of differential geometry for feature line
generation, which will be crucial for the further sections. We present the basic terms
and properties. This section is inspired by differential geometry books [10, 11, 28].

2.1 Basic Prerequisites

A surface f W I � R
2 ! R

3 is called a parametric surface if f is an immersion.
An immersion means that all partial derivatives @f

@xi
are injective at each point. The

further calculations are mostly based on the tangent space of a surface. The tangent
space Tpf of f is defined as the linear combination of the partial derivatives of f :

Tpf � span
n @f

@x1

ˇ̌
ˇ
xDu

;
@f

@x2

ˇ̌
ˇ
xDu

o
:

Here, span is the space of all linear combinations. Formally: spanfv1; v2g �
f˛v1C ˇv2 j ˛; ˇ 2 Rg. With the tangent space, we can define a normalized normal
vector n. The (normalized) normal vector n.u/ at p D f .u/ is defined such that
for all elements v 2 Tpf the equation hv; n.u/i D 0 holds, where h:; :i denotes the
canonical Euclidean dot product. Therefore, n.u/ is defined as:

n.u/ D
@f
@x1

ˇ̌
ˇ
xDu
� @f

@x2

ˇ̌
ˇ
xDu�� @f

@x1

ˇ̌
ˇ
xDu
� @f

@x2

ˇ̌
ˇ
xDu

��
:

This map is also called the Gauss map. Figure 2 depicts the domain of a parametric
surface as well as the tangent space Tpf and the normal n.

2.2 Curvature

The curvature is a fundamental property to identify salient regions of a surface that
should be conveyed by feature lines. Colloquially spoken, it is a measure of how far
the surface bends at a certain point. If we consider ourselves to stand on a sphere
at a specific point, it does not matter in which direction we go, the bending will be
the same. If we imagine we stand on a plane at a specific point, we can go in any
direction, there will be no bending. Without knowing any measure of the curvature,
we can state that a plane has zero curvature and that a sphere with a small radius
has a higher curvature than a sphere with a higher radius. This is due to the fact that
a sphere with an increasing radius becomes locally more a plane. Intuitively, the
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Fig. 2 The basic elements for differential geometry. A parametric surface is given and the partial
derivatives create the tangent space

curvature depends also on the direction in which we decide to go. On a cylinder, we
have a bending in one direction but not in the other. Painting the trace of a walk on
the surface and view it in 3D space, we could treat this as a 3D curve. The definition
of the curvature of a curve may be adapted to the curvature of a surface. The adaption
of this concepts is explained in the following. Let cW I � R! R

3 be a 3D parametric
curve with k dc

dt k D 1 . The property of constant length of the derivative is called arc
length or natural parametrization. One can show that such a parametrization exists
for each continuous, differentiable curve that is an immersion. So, if we want to
measure the size of bending, we can use the norm of the second derivative of the
curve. Therefore, the (absolute) curvature �.t/ at a time point t is defined as:

�.t/ D ��c00.t/
��:

To determine the curvature on a certain point of the surface in a specific direction, we
can employ a curve and calculate its curvature. This approach is imperfect because
curves that lie in a plane can have non-vanishing curvature, e.g., a circle, whereas we
claimed to have zero curvature on a planar surface. Therefore, we have to distinguish
which part of the second derivative of the curve contributes to the tangent space
and which contributes to the normal part of the surface. Decomposing the second
derivative of the curve into tangential and normal part of the surface yields:

c00.t/ D projTpf c00.t/
„��������ƒ‚��������…

tangential part

Chc00.t/; nin„������ƒ‚������…
normal part

;

where c.t/ D p and projE x means the projection of the point x onto the space E,
see Fig. 3. The curvature �c.p/ of the surface at p along the curve c is defined as the
coefficient of the normal part:

�c. p/ D hc00.t/; ni: (1)
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Fig. 3 The curve’s second
derivative is decomposed into
the tangential and normal part

Hence, we know that c0.t/ 2 Tpf and hc0.t/; ni D 0. Deriving the last equation
yields:

d

dt
hc0.t/; ni D 0

d

dt
hc0.t/; ni D hc00.t/; ni C hc0.t/; @n

@t
i:

We obtain

hc00.t/; ni D �hc0.t/; @n
@t
i:

Combining this equation with Eq. (1) yields

�c0.t/.p/ D �hc0.t/; @n
@t
i: (2)

Thus, the curvature of a surface at a specific point in a certain direction can be
calculated by a theorem by Meusnier. We call the vectors v; w at p the maximal/
minimal principle curvature directions of the maximal and minimal curvature, if
�v.p/ � �v0.p/; �w.p/ � �v0.p/ for all directions v0 2 Tpf . If such a minimum and
maximum exists, then v and w are perpendicular, see Sect. 2.5 for a proof. If we
want to determine the curvature in direction u, we first need to normalize u; v; w
and can then determine �u.p/ by:

�u.p/ D hu; vi2�v.p/C hu; wi2�w.p/: (3)

The coefficients of the curvature are the decomposition of the principle curvature
directions with the vector u.
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2.3 Covariant Derivative

The essence of the feature line generation is the analysis of local variations in a
specific direction, i.e., the covariant derivative. Therefore, the covariant derivative is
a crucial concept for feature line methods. We consider a scalar field on a parametric
surface 'W f .I/! R. One can imagine this scalar field as a heat or pressure (as well
as a curvature) distribution. The directional derivative of ' in direction v can be
written as Dv' and is defined by:

Dv'.x/ D lim
h!0

'.xC hv/� '.x/

h
:

If ' is differentiable at x, the directional derivative can be simplified:

Dv'.x/ D hr'.x/; vi;

where r denotes the gradient. The gradient is an operator applied to a scalar
field and results in a vector field. When we want to extend the definition of the
derivative to an arbitrary surface, we first need to define the gradient of surfaces. In
the following, we make use of the covariant derivative. The standard directional
derivative results in a vector which lies somewhere in the 3D space, whereas
the covariant derivative is restricted to stay in the tangent space of the surface.
The gradient is a two-dimensional vector. Actually, we need a three-dimensional
vector in the tangent space of the surface. Here, we employ the gradient and use
it as coefficients of the tangential basis. Unfortunately, this leads to wrong results
because of the distortions of the basis of the tangent space, see Fig. 4. The basis
is not necessarily an orthogonal normalized basis as in the domain space and can
therefore lead to distortions of the gradient on the surface.

Fig. 4 Given: a scalar field in the domain. Determining the gradient and using it as coefficient for
the basis tangent vectors leads to the wrong result (grey). Balancing the distortion with the inverse
of the metric tensor yields the correct gradient on the surface (black)
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One way to calculate this vector is to use the plain scalar field 'WR3 ! R.
Afterwards, we are able to attain the gradient in three-dimensional space and project
it on the tangent space. However, we want to use the gradient of 'WR2 ! R in the
domain of a parametric surface and compensate the length distortion such that we
can use it as coordinates with the basis in the tangent space. One important fact
is when multiplying the gradient with the i-th basis vector, one obtains the partial
derivative of ' with xi. Hence, we know that the three-dimensional gradient r'

lies in the tangent space. Therefore, it can be represented as a linear combination of
@f
@x1

; @f
@x2

with coefficients ˛; ˇ:

r' D ˛ � @f

@x1

C ˇ � @f

@x2

:

Multiplying both sides with the basis vectors and using the relation @'

@xi
D hr'; @f

@xi
i,

we obtain an equation system:

 
@'

@x1
@'

@x2

!
D

 
˛ � h @f

@x1
; @f

@x1
i C ˇ � h @f

@x1
; @f

@x2
i

˛ � h @f
@x1

;
@f
@x2
i C ˇ � h @f

@x2
;

@f
@x2
i

!
D

 
h @f

@x1
; @f

@x1
i h @f

@x1
; @f

@x2
i

h @f
@x1

;
@f
@x2
i h @f

@x2
;

@f
@x2
i

!

„�����������������������ƒ‚�����������������������…
g�

�
˛

ˇ

�
:

The matrix g is called the metric tensor. This tensor describes the length and area
distortion from R

2 to the surface. The last equation yields the coefficients ˛; ˇ when
multiplied with the inverse of g:

�
˛

ˇ

�
D g�1

 
@'

@x1
@'

@x2

!
:

This leads to a general expression of the gradient for a scalar field 'WRn ! R:

r' D
nX

i;jD1

 
gij @'

@xj

!
@

@xi
; (4)

where gij is the i; j-th matrix entry from the inverse of g and @
@xi

means the basis.
Now, we are able to determine the covariant derivative of a scalar field by first
determining its gradient and afterwards using the dot product:

Dw' D hr'; wi:
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2.4 Laplace-Beltrami Operator

The Laplace-Beltrami operator is needed for a specific feature line method and will
therefore be introduced. The Laplace operator is defined as a composition of the
gradient and the divergence. When interpreting the vector field as a flow field, the
divergence is a measure of how much more flow leaves a specific region than flow
enters. In the Euclidean space, the divergence div ˚ of a vector field ˚ WRn ! R

n is
the sum of the partial derivatives of the components ˚i:

div ˚ D
nX

iD1

@

@xi
˚i:

The computation of the divergence for a vector field ˚ WRn ! R
n in Euclidean space

is straightforward. However, for computing the divergence to an arbitrary surface
we have to be aware of the length and area distortions. Without giving a derivation
of the divergence, the components ˚i of the vector field have to be weighted by
the square root of the determinant

pjgj of the metric tensor g before taking the
derivative. The square root of the determinant of g describes the distortion change
from the Euclidean space to the surface. Formally, the divergence of a vector field
˚ WRn ! R

n with a given metric tensor g is given by:

div ˚ D 1
pjgj

nX

iD1

@

@xi

 
p
jgj ˚i

!
: (5)

Given the definition of the gradient and the divergence, we can compose both
operators to obtain the Laplace-Beltrami operator �' of a scalar field 'WRn ! R

on surfaces:

�' D divr' D 1pjgj
nX

i;jD1

@

@xi

 
p
jgj gij @'

@xj

!
: (6)

2.5 Shape Operator

In Sect. 2.2, we noticed that the curvature of a parametric surface at a specific point
p in a certain direction can be determined by Eq. (2):

�c0.t/.p/ D �hc0.t/; @n
@t
i:

Actually, this means that the curvature in the direction c0.t/ is a measure of how
much the normal changes in this direction, too. Given is v 2 Tpf with p D f .u/ and
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jvj D 1. Then, we determine the coefficients ˛; ˇ of v with the basis @f
@x1

; @f
@x2

:

�
˛

ˇ

�
D g�1

 
hv;

@f
@x1
i

hv;
@f
@x2
i

!
:

We use .˛; ˇ/ to determine the derivative of n along v by using the two-dimensional
curve Qc.t/ D uC t

�
˛
ˇ

�
and calculate:

Dvn �
d

dt
n.Qc.t//:

We define S.v/ � �Dvn. This linear operator is called Shape Operator (also
Weingarten Map or Second Fundamental Tensor). One can see that S. @f

@xi
/ D @n

@xi
holds. Note that this operator can directly operate on the 3D space with a three-
dimensional vector in the tangent space, as well as the 2D space with the coefficients
of the basis. Therefore, it can be represented by a matrix S. Recall Eq. (2), we
substitute c0 with v and @n

@t by Sv:

�v.p/ D hv; Svi:

We want to show that the principle curvature directions are the eigenvectors of S.
Assuming v1; v2 2 R

2 are the normalized eigenvectors with the eigenvalues 	1 �
	2. Every normalized vector w can be written as a linear combination of v1; v2:
w D ˛v1 C ˇv2 with kwk D k˛v1 C ˇv2k D ˛2 C ˇ2 C 2˛ˇhv1; v2i D 1.
Therefore, we obtain:

�w.p/ D hw; Swi D 1

2
Œ.˛2 � ˇ2/.	1 � 	2/C 	1 C 	2�: (7)

One can see from Eq. (7) that �w.p/ reaches a maximum if ˇ D 0; ˛ D 1, and a
minimum is reached if ˛ D 0; ˇ D 1. If the eigenvalues (curvatures) are not equal,
we can show that the principle curvature directions are perpendicular. For this, we
need to show that S is a self-adjoint operator. Thus, the equation hSv; wi D hv; Swi
holds. We show this by using the property hn; @f

@xi
i D 0 and derive this with xj:

h @n
@xj

;
@f

@xi
i C hn;

@2f

@xi@xj
i D 0:

We demonstrate that S is a self-adjoint operator with the basis @f
@xi

:

hS.
@f

@xi
/;

@f

@xj
i D h� @n

@xi
;

@f

@xj
i D hn;

@2f

@xi@xj
i D h� @n

@xj
;

@f

@xi
i D hS.

@f

@xj
/;

@f

@xi
i:
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Now, we show that the eigenvectors (principle curvature directions) are perpendic-
ular if the eigenvalues (curvatures) are different:

	1hv1; v2i D hSv1; v2i D hv1; Sv2i D 	2hv1; v2i:

The equation is only true if v1; v2 are perpendicular (and 	1 ¤ 	2 holds).

3 Discrete Differential Geometry

This section adapts the continuous differential geometry to discrete differential
geometry, the area of polygonal meshes that approximate continuous geometries.
The following notation is used in the remainder of this paper. Let M � R

3

be a triangulated surface mesh. The mesh consists of vertices i 2 V with
associated positions pi 2 R

3, edges E D f.i; j/ j i; j 2 Vg, and triangles T D
f.i; j; k/ j .i; j/; .j; k/; .k; i/ 2 Eg. We write ni as the normalized normal vector
at vertex i. If nothing else is mentioned, we refer to normal vectors at vertices.
Furthermore, N .i/ denotes the neighbors of i. So, for every j 2 N .i/; .i; j/ 2 E
holds. Furthermore, if we use a triangle for calculation, we always use this notation:
given a triangle 4 D .i; j; k/ with vertices pi; pj; pk, and the edges are defined as
e1 D pi � pj; e2 D pj � pk; e3 D pk � pi.

3.1 Voronoi Area

We need to introduce the term Voronoi area, as it is important for the determination
of the curvature. So, given are points in a 2D space. Every point is spread out in
equal speed. If two fronts collide, they stop to spread out further at this region. After
all fronts stopped, every point lies in a region that is surrounded by a front. This
region is called a Voronoi region. Formally, given distinct points xi 2 R

2 in the
plane, the Voronoi region for the point xk is defined as the set of points V.xk/ with

V.xk/ D fx 2 R
2 W kx � xkk � kx � xjk; j ¤ kg:

See Fig. 5a for an example of a Voronoi diagram. To obtain the Voronoi area of a
vertex on a surface mesh, the Voronoi area of each incident triangle is accumulated.
The Voronoi area calculation is based on the method by Meyer et al. [33]. In case
of a non-obtuse triangle, the Voronoi area at pi is determined by the perpendicular
bisector of the edges incident to pi. The point of intersection, the midpoint of the
incident edges and the point itself define the endpoints of the Voronoi area. The
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Points in 2D Points on a surface
mesh

(a) (b)

Fig. 5 The Voronoi diagram of different settings. In (a) Voronoi diagram of a set of points is
determined. In (b) the Voronoi area is calculated. If one of the triangles is obtuse, the area leaves
the triangle

triangle area of the Voronoi region equals:

A4.pi/ D 1

8

�
ke1k2 � cot.e2; e3/C ke3k2 � cot.e1; e2/

�
:

In case of an obtuse triangle, the Voronoi area is equal half of the triangle area if the
angle at pi is obtuse. Otherwise it is a quarter of the triangle area, see Fig. 5b.

3.2 Discrete Curvature

The calculation of the curvatures as well as the principle curvature directions are
important for a number of feature line techniques. Several approaches exist to
approximate the curvatures. Some methods try to fit an analytic surface (higher order
polynomials) to the mesh and determine the curvatures analytically [5, 17]. Another
approach estimates the normal curvature along edges first and then estimates the
shape operator [6, 18, 33, 38, 48]. Other approaches are based on the calculation of
the shape operator S [1, 8, 42]. We use the curvature estimation according to [42].
After S is determined on a triangle basis, it is adapted to vertices. We already defined
that Sv yields the change of the normal in the direction of v:

Sv D Dvn:

This property is used to assess S for each triangle. When applying S to the edge e1,
it should result in ni � nj because of the change of the normals along the edge. We
need a basis of the tangent space of the triangle:

Qe1 D e1

je1j ; Qe2 D e2

je2j :
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Afterwards, we build the orthogonal normalized basis vectors x4; y4 by:

x4 � Qe1; y4 �
x4 � .Qe2 � x4/

kx4 � .Qe2 � x4/k : (8)

Applying the aforementioned property of the shape operator to all edges
according to the basis leads to the following equation system:

S

�he1; x4i
he1; y4i

�
D
�hni � nj; x4i
hni � nj; y4i

�

S

�he2; x4i
he2; y4i

�
D
�hnj � nk; x4i
hnj � nk; y4i

�

S

�he3; x4i
he3; y4i

�
D
�hnk � ni; x4i
hnk � ni; y4i

�
;

(9)

see Fig. 6 for an illustration. Here, we have three unknowns (the matrix entries of the
symmetric matrix S D �e f

f g

�
) and six linear equations.Thus, a least square method

can be applied to fit the shape operator to approximate curvature for each triangle.
Next, we need to calculate S for each vertex of the mesh. As the triangle basis
normally differs from each vertex tangent space basis, we need to transform the
shape operator according to the new coordinate system. First, we assume that the
normal n4 of the face is equal to the incident vertex normal ni. Hence, the basis
.x4; y4/ of the triangle is coplanar to the basis .xi; yi/ of the incident vertex i.
Assuming we have the shape operator given in the vertex basis, then the entries can

Fig. 6 The shape operator
estimation is based on a local
coordinate system, the edges
and the normals
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be determined by:

ep D
�
1 0
� �ep fp

fp gp

��
1

0

�
D xT

i Sxi

fp D
�
1 0
� �ep fp

fp gp

��
0

1

�
D xT

i Syi

gp D
�
0 1
� �ep fp

fp gp

��
0

1

�
D yT

i Syi:

As we have determined the shape operator in the basis .x4; y4/, we can express
the basis of the vertex by expressing the new coordinate system with the old basis
xi D ˛x4 C ˇy4:

˛ D hxi; x4i
ˇ D hxi; y4i:

The entry ep can be determined by:

ep D
�
˛ ˇ

�
S

�
˛

ˇ

�
: (10)

The other entries can be calculated by analogous calculations. For the second case,
we rotate the coordinate system of the triangle around the cross product of the
normal such that the basis of the vertex and the triangle are coplanar. Finally, we
use this to determine the shape operator of the vertices. We determine the shape
operators for all incident triangles of a vertex. Afterwards, we rotate the coordinate
systems of the triangles to be coplanar with the basis of the vertex. Next, we re-
express the shape operator in terms of the basis of the vertex. Then, we weight
the shape operator according to the Voronoi area of the triangle and accumulate
this tensor. Finally, we divide the accumulated shape operator by the sum of the
weights. The eigenvalues provide the principle curvatures, and the eigenvectors
give the principle curvature directions according to the basis. The pseudo-code 1
summarizes the algorithm.

Please note that this algorithm can be generalized to obtain higher-order deriva-
tives. It can be used to determine the derivative of the curvature as it is important for
a specific feature line method. Formally, the derivative of the shape operator has the
form:

C D �DvS DwS
� D

��
a b
b c

� �
b c
c d

��
: (11)
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Algorithm 1 Pseudo-code for the curvature estimation.

f o r each t r i a n g l e :
Build basis accord. to Eq. (8)
Determine S accord. to Eq. (9)
f o r each v e r t e x i n c i d e n t t o t h e t r i a n g l e :

Rotate the triangle basis to the vertex basis
Determine S in the new basis accord. to Eq. (10)
Add this tensor weighted by the voronoi area

end
end
f o r each v e r t e x :

Divide S by the sum of the weights
Determine the eigenvalues and eigenvectors

end

For the determination of the change of the curvature in direction u, the tensor C has
to be multiplied multiple times:

Du� D hu;
�
DvS � u DwS � u� � ui: (12)

3.3 Discrete Covariant Derivative

First, we consider a linear 2D scalar field '.x/ D ˛ � x1Cˇ � x2C
 and its gradient:

r' D
 

@
@x1

'
@

@x2
'

!
D
�

˛

ˇ

�
: (13)

To determine the gradient of a triangle 4 D .i; j; k/ with scalar values 'i �
'.pi/; 'j � '.pj/, and 'k � '.pk/, we build a basis according to Eq. (8) and
transform the points pi; pj; pk 2 R

3 to p0i; p0j; p0k 2 R
2 by:

p0i D
�

0

0

�
p0j D

�hpj � pi; x4i
hpj � pi; y4i

�
p0k D

�hpk � pi; x4i
hpk � pi; y4i

�
:

This transformation describes an isometric and conformal map. The next step is
a linearization of the scalar values 'i; 'j; 'k. We want to determine a scalar field
' 0.x0/ D ˛ � x01 C ˇ � x02 C 
 such that

' 0.p0i/ D 'i ' 0.p0j/ D 'j ' 0.p0k/ D 'k
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Fig. 7 A triangle with
different scalar values

holds. These conditions yield the following equation system:

�
˛ ˇ

� �
p0i p0j p0k

�
C �
 
 


� D �'i 'j 'k

�
:

With p0i D
�

0
0

�
we obtain the following solution:


 D 'i;

�
˛ ˇ

� D �'j � 'i 'k � 'j

� �
p0j p0k

��1

:

According to Eq. (13), the gradient of ' 0 is determined by
�

˛
ˇ

�
. The basis x4; y4

yields the gradient in 3D:

r' D ˛ � x4 C ˇ � y4:

Figure 7 illustrates the gradient of a triangle. To determine the gradient per vertex,
we use the same procedure as for the shape operator estimation. We transform the
basis and weight the triangle gradient according to its proportion of the Voronoi
area.

3.4 Discrete Laplace-Beltrami Operator

Several methods exist to discretize the Laplace-Beltrami operator on surface
meshes. For an overview, we recommend the state of the art report by Sorkine [45].
The operator can be presented by the generalized formula:

�'.pi/ D
X

j

wij

�
'.pj/� '.pi/

�
:
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Different weights wj give different discrete Laplace-Beltrami operators. For present-
ing different versions of this operator it is preferable that it fulfills some properties
motivated by the smooth Laplace-Beltrami operator:

(Sym) The weights should be symmetric wij D wji.
(Loc) If .i; j/ … E then wij D 0.
(Pos) All weights should be non-negative.
(Lin) If pi is contained in a plane and ' is linear, then �'.pi/ D 0 should hold.

In the following, we introduce different discrete Laplace-Beltrami operators.

Combinatorial For the combinatorial Laplace-Beltrami operator we have:

wij D
(

1; if .i; j/ 2 E

0; otherwise:

This version may result in non-zero values on planar surfaces for linear scalar fields.
Therefore, it violates (Lin).

Uniform Taubin [49] suggested the uniform Laplace-Beltrami operator. The
weights are determined by the number of neighbors of pi:

wij D
(

1
N.i/ ; if .i; j/ 2 E

0; otherwise:

These weights also violate (Lin).

Floater’s Mean Value Floater [14] proposed the mean value weights by the
tangent of the corresponding angles:

wij D
(

tan.ıij=2/Ctan.
ij=2/

kpi�pjk ; if .i; j/ 2 E

0; otherwise:

See Fig. 8 for the angles. These weights violate (Sym).

Cotangent Weights MacNeal [31] suggested the cotangent weights:

wij D
(

cot.˛ij/Ccot.ˇji/

2
; if .i; j/ 2 E

0; otherwise:

See Fig. 8 for the angles. On general meshes the weights can violate (Pos).
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Fig. 8 This figure illustrates the triangles with the angles for the weight calculation

Belkin Weights Belkin [2] suggested to determine weights over the whole surface:

�'.pi/ D 1

4�h2.pi/

X

4k

A.4k/

3

X

j24k

e�
kpi�pjk

2

4h.pi/

�
'.pj/ � '.pi/

�
;

where A.4k/ denotes the area of the triangle4k and h corresponds intuitively to the
size of the neighborhood. This violates the (Loc) property.

Results The discussion leads to the question if there is any discrete Laplace-
Beltrami operator which fulfills all required properties for an arbitrary surface
mesh and, furthermore, if this operator converges pointwise to the Laplace-Beltrami
operator on smooth surfaces. Wardetzky et al. [52] showed that there is no such
operator. The proof is based on a Schönhardt polytope which demonstrate that
there is no Laplace-Beltrami operator, which does not violate any condition. One
example of a discrete Laplace operator can be obtained using linear finite elements
over the polyhedral surface. Hildebrandt et al. [21] proved that if a sequences of
surface meshes converges to a smooth surface in Hausdorff distance and the normal
fields converge, then the Laplace operators converge in the operator norm. Despite
of convergence, this operator is not perfect in the sense of [52], because for meshes
with obtuse triangles, their weights may be non-positive weights. As a consequence,
a maximum principle for the solutions of the discrete Dirichlet problem cannot be
guaranteed.

3.5 Isolines on Discrete Surfaces

For feature line methods, it is essential not to restrict the lines to the edges, as it
is not desirable to perceive the mesh edges. Given is a surface mesh and a scalar
field, we want to depict the zero crossing of the scalar field. Therefore, we linearize
the scalar values for each triangle according to the values of the incident points.
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(a) (b)

Fig. 9 In (a) the position of the zero crossing is determined and the points are connected. In (b)
the isoline through a mesh is depicted

Afterwards, we look for points on an edge such that the linearized values of the
scalar values of the connecting points are equal to zero. Having two points on two
edges of a triangle, we connect them. Suppose we have a triangle with scalar values
'i > 0; 'j > 0 and 'k < 0. Thus, we know that somewhere on edge e2 and e3

there is a zero crossing. We determine t D 'k
'k�'j

and multiply t with edge e2. This
yields the position of the zero crossing on the edge. The position on the edge e3 is
determined as well. Afterwards, both points will be connected, see Fig. 9.

4 General Requirements of Feature Lines

The generation of feature lines leads to several requirements, which have to be
considered for acquiring appropriate results.

Smoothing Most of the feature line methods use higher order derivatives. There-
fore, the methods assume sufficiently smooth input data. For data acquired with
laser scanners or industrial measurement process, smoothness cannot be expected.
Discontinuities represent high frequencies in the surface mesh and lead to the
generation of distracting (and erroneous) lines. Several algorithms exist, which
smooth the surface by keeping relevant features. Depending on the feature line
method, different smoothing algorithms can be applied. If the algorithm only uses
the surface normals and the view direction, it is sufficient to simply smooth the
surface normals. Geometry-based approaches, however, require to smooth the mesh
completely. Operating only on scalar values, an algorithm which smoothes the scalar
field around a certain region may be applied, too.
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Frame Coherence The application of feature line approaches or in general for
non-photorealistic rendering makes it crucial to provide methods that are frame-
coherent. This means, during the interaction the user should not be distracted by
features that pop out or disappear suddenly. A consistent and continuous depiction
of features should be provided in consecutive frames of animation.

Filtering Feature line algorithms may generate lines on salient regions as well
as lines that result from small local irregularities, which may not be necessary to
convey the surface shape or even annoying and distracting. Filtering of feature
lines to set apart relevant lines from distracting ones is a crucial part of a feature
line generation. User-defined thresholds may control the rate of tolerance for line
generation. Some algorithms use an underlying scalar field for thresholding. Lines
are only drawn if the corresponding scalar value exceeds the user-defined threshold.
Other methods integrate along a feature line, determine the value, and decide to
draw the whole line instead of filtering some parts. We will also mention the filtering
method of each presented feature line generation method.

5 Feature Lines

Line drawings were used extensively for medical visualization tasks, such as
displaying tissue boundaries in volume data [4, 51], vascular structures [41], neck
anatomy [27] and brain data [24, 47]. Furthermore, some higher order feature lines
were qualitatively evaluated on medical surface data [29]. The importance of feature
lines in medical visualization is discussed in [40]. Feature line methods can be
divided into image-based and object-based methods. Image-based approaches are
not in the focus of this survey. These methods are based on an image as input. All
calculations are performed on the image with the pixels containing, for instance,
an RGB or grey value. Usually, the image is convolved with different kernels to
obtain the feature lines. The resulting feature lines are represented by pixels in the
image space. These lines are mostly not frame-coherent. Comprehensive overviews
of different feature line methods in image space are given by Muthukrishnan and
Radha [34], Nadernejad et al. [35], and Senthilkumaran and Rajesh [44]. This
section presents selected object-based feature line methods. We will explain the
methods and limitations. Further information on line drawings can be found in
[40, 43].

5.1 Contours

We refer to a silhouette as a depiction of the outline of an object as this is the original
definition by Étienne de Silhouette. The contour is defined as the loci of points
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Fig. 10 The brain model with contours

where the normal vector and the view vector are mutually perpendicular (Fig. 10):

hn; vi D 0;

where n is the normal vector and v is the view vector which points towards the
camera. For the discrete case, we highlight edges as a contour whenever the sign of
the dot product of the view vector with the normals of the incident triangle normals
changes. The contour yields a first impression of the surface mesh. On the other
hand, it is not sufficient to depict the surface well. The contour is not appropriate to
gain a spatial impression of the object. Furthermore, it cannot depict salient regions,
for instance strong edges.

Summary In the first place, the contour is necessary for gaining a first impression
on the shape of the object. Unfortunately, spatial cues, as for instance strong edges,
are not depicted.

5.2 Crease Lines

Crease lines are a set of edges where incident triangles change strongly. The dihedral
angle, i.e., the angle of the normals of the corresponding incident triangles, along the
edges is calculated. The edge belongs to a crease line if the dihedral angle exceeds
a user-defined threshold � . As the change of the normals is an indicator of the
magnitude of the curvature, one can state that all points contribute to a feature
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Fig. 11 The brain model with crease lines and contours

line if the underlying absolute value of the maximum curvature exceeds a threshold
(Fig. 11):

�i � � or hni; nji � � 0;

for adjacent triangles with corresponding normals ni; nj. Afterwards, all adjacent
vertices which fulfill the property are connected. These feature lines need to be
computed only once, since they are not view-dependent. Furthermore, these lines
are only drawn along edges.

Summary Crease lines display edges where the dihedral angle is large. Strong
edges are appropriately depicted, but if the object has small features, this method is
not able to depict only important edges. This is caused by the local determination of
the dihedral angle without concerning a neighborhood. Even smoothing the surface
mesh would not deliver proper line drawings. Furthermore, this method is only able
to detect features on edges.

5.3 Ridges and Valleys

Ridges and valleys were proposed by Interrante et al. [23] and adapted to triangu-
lated surface meshes by Ohtake et al. [37]. These feature lines are curvature-based
and not view-dependent. The computation is based on the principle curvature �1 as
well as the associated principle curvature direction k1 with j�1j � j�2j. Formally,
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Fig. 12 The brain model with ridges and valleys, and contours

ridges and valleys are defined as the loci of points at which the principle curvatures
assume an extremum in the principle direction:

Dk1 �1 D 0:

According to two constraints, the sets of points are called (Fig. 12)

Dk1 Dk1�1

(
< 0; and �1 > 0: ridges

> 0; and �1 < 0: valleys.
(14)

To determine the ridge and valley lines, we first need to compute the principle
curvatures and their associated principle curvature directions, recall Sect. 3.2.
Afterwards, we determine the gradient of �1 for each vertex, see Sect. 3.3. Finally,
we compute the dot product of the gradient and the associated principle curvature
direction k1. This yields the scalar value of Dk1�1 for each vertex. Next, we
distinguish between ridges and valleys and determine Dk1Dk1 �1 for each vertex.
Here, we need again the gradient of each vertex with the value Dk1 �1 and determine
the dot product of the result with k1. Hence, we gain two scalar values per vertex:
Dk1�1 and Dk1 Dk1�1. Afterwards, we assess the zero-crossing of the first scalar
value, recall Sect. 3.5. We connect the zero crossings in every triangle for which
one condition of Eq. (14) holds. The filtering of the lines is again performed by
employing an user-defined threshold. The integral along each ridge and valley line
is determined according to the underlying curvature. If the magnitude of the integral
exceeds the threshold for ridges or valleys, the line is drawn.
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Summary The calculation is solely based on the curvature and therefore view-
independent. This method is able to detect small features. The filtering depends
on the underlying curvature and the length of the curve. Therefore, a long line
with small curvature has also the chance to be drawn as a small line with high
curvature. This strategy emphasizes also long feature lines. Ridges and valley
lines are very susceptible to noise, since this method is of third order. Therefore,
small discontinuities on the surface mesh lead to erroneous derivatives and this
error propagates for each further derivative. A crucial task for this method is to
guarantee a smoothed mesh to obtain reasonable results. Other approaches use
surface fitting [37, 55] or a combination of discrete curvature approximation and
smoothing techniques [22] to obtain a smoothed surface. From an artist’s point of
view, some features may be more highlighted than others from different points of
view. This is caused by the different perception of an object and by various light
positions. For this, the ridge and valley lines are not appropriate due to the restriction
of view-independent results.

5.4 Suggestive Contours

Suggestive contours are view-dependent feature lines introduced by DeCarlo
et al. [9]. They extend the definition of the contour. These lines are defined as
the set of minima of hn; vi in the direction of w, where n is the surface normal, v
is the view vector which points towards the camera, and w D .Id � nnT/v is the
projection of the view vector on the tangent plane. Formally:

Dw hn; vi D 0 and DwDw hn; vi > 0:

Another equivalent definition of the suggestive contours is given by the radial
curvature �r. It is defined as the curvature in direction of w. As seen in Eq. (3), this
curvature can be determined by knowing the principle curvature directions as well
as the corresponding curvatures. Therefore, the definition of the suggestive contours
is equivalent to the set of points at which the radial curvature �r is equal 0 and the
directional derivative of �r in direction w is positive (Fig. 13):

�r D 0 and Dw�r > 0:

The filtering strategy is to apply a small threshold to eliminate suggestive contour
points where the radial curvature in direction of the projected view vector is very
low. Additionally, a hysteresis threshold is applied to increase granularity.

Summary Suggestive contours extend the normal definition of the contour. This
method depicts zero crossing of the diffuse light in view direction. This can be seen
as inflection points on the surface. This method is of second order only and thus less
susceptible to noise. Unfortunately, suggestive contours are not able to depict some
sorts of sharp edges, which are in fact noticeable features. For instance, a rounded
cube has no suggestive contours.
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Fig. 13 The brain model with suggestive contours and contours

5.5 Apparent Ridges

Apparent ridges were proposed by Judd et al. [25]. These feature lines extend the
definition of ridges by a view-dependent curvature term. Therefore, a projection
operator P is used to map the vertices on a screen plane V . The orthonormal basis
of the screen plane is given by .v1; v2/. Assume we have a parametrized surface
f W I � R

2 ! R
3. Then the projection of f onto V is given by:

P.x/ D
�hv1; f .x/i
hv2; f .x/i

�
:

The Jacobian JP of P can be expressed as:

JP D
 
hv1;

@f
@x1
i hv1;

@f
@x2
i

hv2;
@f
@x1
i hv2;

@f
@x2
i

!
:

In the discrete case with surface meshes, the Jacobian can be expressed by a basis
for the tangent plane .e1; e2/:

JP D
�hv1; e1i hv1; e2i
hv2; e1i hv2; e2i

�
:

If a point p0 on the screen plane is not a contour point, there exists a small
neighborhood where the inverse of P exists. Normal vectors n0 at a point p0 on
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the screen plane are defined as n0.p0/ � n. p�1.p0//. The main idea is to build a
view-dependent shape operator S0 at a point p0 on the screen as

S0.w0/ D Dw0n0

where w0 is a vector in the screen plane. The view-dependent shape operator is
therefore defined as:

S0 D S J�1
P :

Here, the basis of the tangent space expressing S and JP must be the same. In
contrast to the shape operator, the view-dependent shape operator is not a self-
adjoint operator, recall Sect. 2.5. Therefore, it is not guaranteed that S0 has two
eigenvalues, but it has a maximum singular value �01 (Fig. 14):

�01 D max
kwkD1

kS0.w0/k:

This is equivalent to find the maximum eigenvalue of S0TS0 and to take the square
root. The corresponding singular eigenvector t0 is called the maximum view-

Fig. 14 The brain model with apparent ridges
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dependent principle direction. The rest of the method is similar to the ridge and
valley methods. Formally, apparent ridges are defined as the loci of points at which
the view-dependent principle curvature assumes an extremum in the view-dependent
principle direction:

Dt0�
0
1 D 0 and Dt0Dt0�

0
1 < 0:

The sign of �0 is always positive. To distinguish between ridge lines and valley lines,
we may compare the sign of the object-space curvature:

�1

(
< 0; ridges

> 0; valleys.

The calculation of the directional derivative is different from the other methods.
This calculation is performed with finite differences. Therefore, we transform
the singular eigenvector t0 to object space t using the corresponding basis of
the associated vertex i. Furthermore, we need the opposite edges of the vertex
and determine two points w1; w2 on the edges such that t and the edges are
orthogonal and w1; w2 are the dropped perpendiculars of t to the corresponding
edges. The directional derivatives are determined by averaging the finite differences
of the curvatures between pi and w1; w2. The curvature of w1; w2 is assessed by
linear interpolation of the endpoints of the associated edge. Having the principle
view-dependent curvature direction t0, we need to make it consistent over the
mesh because it is not well-defined. Therefore, t0 is flipped in opposite direction
whenever it does not point to the direction where the view-dependent curvature is
increasing. The zero-crossings are determined by checking if the principle view-
dependent curvature directions of the vertices along an edge point are in the same
direction. Only in this case there is no zero-crossing. Pointing in different directions
means that the enclosing angle is greater than 90 degrees. The zero crossing is
determined by interpolating the values of the derivatives. To locate only maxima,
a perpendicular is dropped from each vertex to the zero crossing line. If the
perpendiculars of the vertices of an edge make an acute angle with their principle
view-dependent curvature directions, the zero crossing is a maximum. Otherwise,
the zero crossing is a minimum. To eliminate unimportant lines, a threshold based
on the view-dependent curvature is used.

Summary Apparent ridges incorporate the advantages of the ridges and valley
lines as well as the view dependency. They extend the ridge and valley definition by
introducing view-dependent curvatures. This method is able to depict salient regions
as sharp edges. Unfortunately, the third order computation leads to low frame rates
and to visual clutter if the surface mesh is not sufficiently smoothed.
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Fig. 15 The brain model with photic extremum lines

5.6 Photic Extremum Lines

Photic extremum lines (PELs) were introduced by Xi et al. [54]. These feature lines
depict regions of the surface mesh with significant variations of illuminations. This
method is based on the magnitude of the light gradient. Formally, these lines are
defined as the set of points where the variation of illumination along its gradient
direction reaches a local maximum (Fig. 15):

Dwkrfk D 0 and DwDwkrfk < 0;

with w D rf
krfk . Normally, f is used as the headlight illumination: f � hn; vi with n

as the normal vector and v as the view-vector. PELs have more degrees of freedom
to influence the result by adding more light sources. Thus, the scalar value of f
changes by adding the light values of the vertices by other lights. Noisy photic
extremum lines are filtered by a threshold which is based on the integral of single
connected lines. The strength T of a line with points x0; : : : ; xn is determined by:

T D
Z
krfk D

n�1X

iD0

krf .xi/k C krf .xiC1/k
2

kxi � xiC1k:

If T is less than a user-defined threshold, the line is canceled out.

Summary Photic extremum lines are strongly inspired by edge detection in
image processing and by human perception of a change in luminance. It uses the
variation of illumination. The result may be improved by adding lights. Beside the
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filtering strategy to integrate over the lines and accumulate the magnitude of the
gradient, the noise can also be reduced by adding a spotlight that directs to certain
regions. Nevertheless, smoothing is necessary to gain reasonable results. Here, the
smoothing of the normal is sufficient as the computation is mainly based on the
normals. However, the computation has high performance costs. The original work
was improved by Zhang et al. [57] to significantly increase the runtime.

5.7 Demarcating Curves

Demarcating curves were proposed by Kolomenkin et al. [26]. These feature lines
are defined as the transition of a ridge to a valley line. To determine these lines, the
derivative of the shape operator has to be calculated, recall Eq. (11):

C D �DvS DwS
�

:

The demarcating curves are defined as the set of points where the curvature
derivative is maximal (Fig. 16):

hw; Swi D 0 with w D arg max
kvkD1

Dv�:

Fig. 16 The brain model with demarcating curves and contours
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The values for w can be analytically found as the roots of a third order polynom.
This is obtained by setting v D �sin.�/

cos.�/

�
and combining this with Eq. (12). A user-

defined threshold eliminates demarcating curves, if it exceeds the value of Dw�.

Summary Demarcating curves are view-independent feature lines displaying
regions where the change of the curvature is maximal. Therefore, higher-order
derivatives are used. A 2 � 2 � 2 rank-3 tensor is determined. This method can be
used to illustrate bumps by surrounding curves. The advantage of the method is to
enhance small features. Especially when combined with shading, this approach has
its strength in illustrating archaeology objects where specific details are important,
e.g., old scripts. For this application, view-dependent illustration techniques are
not recommended because details need to be displayed for every camera position.
Contrary, due to higher-order derivatives, the method is sensitive to noise and is not
well suited for illustrative visualization.

5.8 Laplacian Lines

Laplacian lines were proposed by Zhang et al. [58]. The introduction of these lines
was inspired by the Laplacian-of-Gaussian (LoG) edge detector in image processing
and aims at a similar effect for surface meshes. The idea of the LoG method is
to determine the Laplacian of the Gaussian function and to use this kernel as a
convolution kernel for the image. Laplacian lines calculate the Laplacian of an
illumination function f and determine the zero crossing as feature lines. To remove
noisy lines, the lines are only drawn if the magnitude of the illumination gradient
exceeds a user-defined threshold � :

�f D 0 and krfk � �;

where � is the discrete Laplace-Beltrami operator on the surface mesh and f is the
illumination with f � hn; vi. Here, the discrete Laplace-Beltrami operator with the
Belkin weights is used, as introduced in Sect. 3.4. The advantage of this method is
the simplified representation of the Laplacian of the illumination:

�f .p/ D �hn; vi
D h�n; vi:

Here, �n is the vector Laplace operator in the Euclidean space (Fig. 17).
This is just a composite of the Laplacian of the different components. Thus, the

algorithm consists of a preprocessing step to calculate the Laplace-Beltrami operator
with the Belkin weights of the components of the normal �n. During runtime, the
algorithm detects the zero crossings of h�n; vi and checks if the magnitude of krfk
exceeds the user-defined threshold.
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Fig. 17 The brain model with Laplacian lines

Summary The Laplacian lines are strongly inspired by edge detection algorithms
in image processing. This method is based on the Laplacian-of-Gaussian. Basically,
the method searches for zero crossings in the Laplacian of the illumination. The
computational effort can be simplified by a preprocessing step. Thus, interactive
frame rates for geometric models of moderate size are possible during the inter-
action. Similar to other higher order methods, this approach also assumes well
smoothed surface normals. The Belkin weights for the Laplace-Beltrami operator
have a smoothing effect for the Laplacian line generation. This method illustrates
sharp edges well, but is not suitable for round corners.

6 Discussion and Comparison

This section deals with general properties of the different feature line methods.
We discuss the different approaches to derive first recommendations which method
may be used for which kind of geometry. First, we list all feature line methods in
Table 1 and name different properties and the order of the corresponding method.
Furthermore, in Fig. 18 the higher-order feature lines are illustrated on an analytic
function.

The benefit of feature lines is motivated by the visual perception. In [32] it
is stated that the first stage of the assessment of the shape is done by extracting
features, such as contours. These characteristics help to understand the shape.
The illustration of shapes with feature lines cannot be seen as an alternative to
shading. It is rather an additional concept. Kolomenkin et al. [26] showed that their
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Table 1 List of different
feature line methods with
derivative order and view
dependency

Name Order View-dep.

Contours 1 Yes

Crease lines 1 No

Ridges & Valleys 3 No

Suggestive contours 2 Yes

Apparent ridges 3 Yes

Photic extremum lines 3 Yes

Demarcating curves 3 No

Laplacian lines 3 Yes

Ridges and Valleys, Ap-
parent Ridges

Suggestive Contours,
Demarcating Curves

Photic Extremum Lines,
Laplacian Lines

(a) (b) (c)

Fig. 18 Drawing of an analytic function with illustrated feature line positions. In (a) the ridges
are denoted in orange and the valleys are illustrated in cyan. For this function with fixed view
direction, the apparent ridges coincide with ridge and valley lines. In (b) the suggestive contours
and the demarcating curves are the same. In (c) the photic extremum lines and the Laplacian lines
coincide

demarcating lines support the shading and can extract text from archaeology objects.
However, for examining structures where the whole object inherits important
information, feature lines should not be used solely. For data where the scene can
be divided into focus and context objects, feature lines can be applied to the context
objects. Furthermore, feature lines can also be used to enhance focus with additional
shading.

Depending on the underlying model, we may recommend different techniques.
Most of the feature lines are able to depict the contour, but this depends strongly
on the bending of the surface at the contour. Especially apparent ridges and photic
extremum lines are able to draw contour lines, but in our experiments we noticed
that activating the contour enhances the visual impression because some parts of
the contour were missing. If the surface model is an assembly with sharp edges we
recommend to use ridge and valley lines or apparent ridges. These features often
appear in medical models like implants or prostheses. For simple models with only
a few sharp edges, crease lines may be appropriate as well. If the models have a lot
of round edges the answer for the right feature line method is a matter of taste. These
features appear in models like vascular surfaces or organs. For scenarios where it is
important to illustrate details for every camera position, we recommend ridges and
valleys as well as demarcating curves. From an artistic point of view, suggestive
contours, photic extremum lines, and Laplacian lines should be chosen. The reason
for this suggestion is that especially for a rounded cube the photic extremum lines
and Laplacian lines generate double lines around the feature to denote the rounded
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edge. If the user wants to visualize the line along the edge, the ridge and valley lines
or the apparent ridges should be used. For this case, the crease line approach is not
useful because it depicts only edges with specific greater value of the dihedral angle.
Therefore, too many lines may be generated. If the surface has many crevices, we
recommend the suggestive contours. They illustrate the inflection points of valleys.
Round corners are often represented in many organic structures like livers or bones,
see Fig. 20 for a femur model or a skull model.

Table 2 lists all possible features and Fig. 19 shows the different features. Please
note that the assessment of the suitability of a method—marked in the table—
necessarily is a subjective assessment by the authors and two artists. For instance,
regarding the property whether the methods are able to detect round edges, we mean
if it detects the specific round feature. As already mentioned, it does not reflect the
ability to enhance the round edge from an illustrative or artist point of view. This
concerns the ability to depict bumps. In agreement with artist, the bump shown from
a sideway (s.w.) perspective would be illustrated such that it depicts the smooth
transition from the ground to the dent. The drawing of the surrounding circle of
the bump is not desirable as it conveys a sharp transition from the bump to the
ground. For bumps shown from the top perspective it is sufficient if a round circle
is drawn. Bumps can occur as polyps or blebs on a cerebral aneurysm. Especially
blebs are important anatomical features to be detected because they are an indicator
for rupture. Blebs can also occur as polyps in CT colonography.

We also listed the property deformation in the table. This characteristic means if
the corresponding method is able to illustrate the features of deformable surfaces,
e.g., animated objects, in real-time. As an example, Oeltze et al. [36] analyzed
myocardial perfusion data. The focus lies on the examination of the infarction
scarf on the left ventricle. In this paper, the left ventricle is illustrated as context
information. Using the time-dependent data, it would also be possible to illustrate
the context information with some feature line methods during the animation.

For example suggestive contours have two definitions of how to assess the feature
lines. One is curvature-based and the other is light-based. With the second definition,
no preprocessing is needed to assess the curvature and the principle curvature
directions. This is in contrast to ridges and valleys and apparent ridges. Therefore,
these algorithms are not able to compute the feature lines during the deformation.
Photic extremum lines are also able to compute the feature lines during runtime
because of the light and view dependency. The Laplacian lines need to precompute
the Laplacian of the normals. Hence, this method is not suited for deformations.

Furthermore, Fig. 20 shows some exemplary models illustrated with higher order
feature lines. Three typical models in the discrete differential geometry field (cow,
Buddha, Max Planck) as well as three models from the medical image data (brain,
femur, skull) are presented.

In summary, current feature lines are not suitable for the depiction of anatomical
structures directly derived from medical image data because the underlying surfaces
are too noisy. Advanced smoothing algorithms are necessary to reduce artifacts, but
preserve important anatomical structures. For the depiction of a sparse representa-
tion of the model in a context-aware manner, the feature line methods can be used.
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SH SC RV AR PEL DC LL

Fig. 19 Different surface features are illustrated with shading (SH) and in different high-order
feature line methods: suggestive contours (SC), ridge and valley (RV), apparent ridges (AR), photic
extremum lines (PEL), demarcating curves (DC), and Laplacian lines (LL)

6.1 Medical Application

As stated, feature line methods can be seen as an illustrative visualization method
that can enhance shading or as an alternative in the focus-and-context visualization.
In this section, we list different application fields where illustrative visualization
is useful for effectively depicting medical data. At the end, we list possible fields
where feature lines can be used to encode context information.

Fischer et al. [13] proposed to use illustrative visualizing tools to depict structures
of hidden surfaces. The rendering style is tailored for understanding spatial relation-
ships and for visualizing hidden objects. Born et al. [3] used illustrative techniques
to depict stream surfaces. Their techniques are very useful for the visualizing of
complex flow structures. In the area of brain data, Jainek et al. [24] suggested to
use a hybrid visualization method to illustrate mesh and volume rendering. Their
approach is efficient for the exploration in clinical research. Chu et al. [7] proposed
a guideline of various rendering techniques. They combined, e.g., isophote-based
line hatching and silhouette drawing, for illustrative vascular visualization. Different
rendering techniques for medical applications were presented by Tietjen et al. [50].
An example for illustrative visualization for liver surgery can be found in [19].



Feature Lines for Illustrating Medical Surface Models 127

SH SC RV AR PEL DC LL

Fig. 20 Selected models depicted in shading and higher-order feature lines

Glaßer et al. [16] presented an approach to visualize 3D cluster results. Here,
the medical researcher can analyze the whole 3D scene with different cluster
results where he can also select interesting objects. The surrounding objects become
context information. Thus, we propose to illustrate them with feature lines. In
this case, we used the contour because the objects does not inherit much features.
Figure 21a illustrates the main object with unselected objects illustrated with feature
lines.

In the field of endoscopic views, the identification of polyps is necessary. Once
the polyps are detected, they can be illustrated in such a way that the endoscopic
views are used for context information. In Fig. 21b, we used suggestive contours for
the vessel and diffuse shading for the polyps.

In Fig. 21c, we visualized the portal vein and three liver segments. The portal
vein is illustrated in diffuse shading in red. The liver segments are visualized in
diffuse shading with transparency and photic extremum lines.
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Fig. 21 Different medical application fields where feature lines can be used to illustrate surround-
ing objects. In (a) a 3D cluster results is depicted. One cluster is shaded and the others are illustrated
with contour lines. In (b) the vessel is illustrated with suggestive contours and shading is used for
the polyps. In (c), we visualized the portal vein with diffuse shading and three liver segments
visualized in diffuse shading with transparency and photic extremum lines.

7 Conclusion

We have summarized the most common feature line methods for object space-based
presentations of 3D meshes as they are frequently used in medicine and molecular
biology. The presentation of the different methods was also covered by two basic
sections. We did not only list the most common feature line methods and their
calculation in the discrete space, but also provided the mathematical background to
explain the calculation from the differential geometry point of view. Our goal was to
present an extensive list of feature lines on the one hand, and to equip the reader with
basic knowledge of differential geometry on the other hand. The graduated student
may be able to follow the different methods and to implement every feature line
algorithm based on our explanations in the field of discrete differential geometry.
Therefore, our survey and tutorial may also be used by students who are new in
the field of illustrative rendering. Furthermore, this survey may also be used as a
starting point for the development of new feature line methods. The potential of
advanced and recently introduced feature line techniques is currently not exploited
in the display of medical surface models. The careful application of these methods
and perception-based evaluations are left open for future work.
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Abstract There has been a tremendous increase in medical image computing
research and development over the last decade. This trend continues to gain further
speed, driven by the sheer amount of multimodal medical image data but also
by the broad spectrum of computer-assisted applications. At the same time, user
expectations with respect to diagnostic accuracy, robustness, speed, automation,
workflow efficiency, broad availability, as well as intuitive use have reached a high
level already. More recently, cloud computing has entered the field of medical
imaging, providing means for more flexible workflows including the support of
mobile devices and even a medical imaging equivalent of the App Store paradigm.
This paper discusses requirements for modern medical software systems with a
focus on image analysis and visualization. It provides examples from different
areas of application covering collaborative multi-center imaging trials with online
reading and advanced analysis as well as an intraoperative augmented-reality
scenario for translating liver surgery planning data directly into the operating
room through a mobile multi-touch device. A combination of remote rendering
and visualization techniques with an efficient modular development framework
(MeVisLab) is presented as a basis for fast implementation, early evaluation, and
iterative optimization in these applications.
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1 Introduction

The outsourcing of services and applications to an external IT infrastructure
increasingly takes place in various private and professional application areas.
In medical image computing, the introduction of hosted applications and cloud
technologies bears the potential to significantly transform the handling of medical
images in clinics and medical research facilities including the associated workflows:
data storage, quality assurance, integration of data from multiple sources, complex
modeling methods, knowledge-based decision support, as well as visualization and
analysis of medical image data are selected tasks which are no longer required to be
available locally or through complex offline processes. Respective developments are
driven by the ongoing rapid diversification of medical imaging applications, increase
of data volumes, and increased user expectations and requirements regarding both
the availability as well as the quality of specialized tools.

A Medical Image Computing Cloud, implemented as either a private cloud within
the hospital firewall or through secure web technologies, will typically be operable
via browser technologies. The information which is stored in the cloud like original
and derived data, analysis results, treatment plans, study reports, patient history,
and other clinical information can be accessed at any time with multiple (including
mobile) devices. In particular, multi-centric research consortia will greatly benefit
from centralized collaboration services not only for data storage, but also viewing
and automated as well as interactive data analysis. Stored data will often con-
tain highly sensitive information, which requires the implementation of thorough
measures to ensure data privacy and security. An article about cloud computing in
medical imaging highlights various aspects including technical requirements as well
as a discussion about ethical and security issues in a comprehensive manner [13].

Ultimately, an equivalent of the well-known App Store paradigm for specialized
medical software applications appears as an attractive solution for the rapid diver-
sification mentioned above. Currently, medical visualization and analysis research
only rarely find their way into clinical application, because of the high cost and
time involved to transform research results into medical software products. More-
over, initial research results often require iterative development cycles including
intensive end user feedback in order to achieve the level of optimization needed for
routine application. Both issues could be addressed by a functioning, interoperable
Medical Imaging App Store which provides a pay-per-case infrastructure and a user
community. In such a store, users can preview and test new application functionality.

Fraunhofer MEVIS, Institute for Medical Image Computing, has a history in
research and development in the fields of image acquisition, image processing,
modeling, visualization, user interfaces, and application design. Together with
the commercial spin-off MeVis Medical Solutions MeVisLab was developed as a
powerful, modular framework for the development of image processing algorithms,
visualization, and interaction methods, with a special focus on medical imaging.
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In the following, the MeVisLab framework is described with a special focus on
its recently introduced remote visualization capabilities. These new features allow
the deployment of MeVislab-based applications for client-server environments.
Two example applications are presented and discussed in this paper. First, it is
demonstrated how an image viewer is embedded into a cloud infrastructure for
clinical trials and collaborative imaging-based research and made available as web
application via a modern web browser. A second example presents an augmented-
reality application to support liver surgery, which is made available as an iPad App.

2 Remote Image Analysis and Visualization Framework

In the past years, several approaches for remote rendering on digital networks were
proposed. At the same time, advanced medical image analysis and visualization
methods were presented. However, cloud computing has just entered the field of
medical imaging. In this section, the underlying remote rendering technology used
by the concrete applications described in the following chapters is presented. Firstly,
a brief description of MeVisLab, the modular development framework for medical
image processing applications in which the proposed approach was implemented, is
provided. Then, the decision for implementing an approach based on server-based
rendering and asynchronous client-server communication is motivated. After giving
an overview of related work in the field of remote applications, the main part of this
chapter describes the developed methods and their integration into MeVisLab.

2.1 The MeVisLab Framework

Faced by the need for a common foundation for software development projects
in the field of medical image computing, researchers and software engineers
at Fraunhofer MEVIS and MeVis Medical Solutions have developed the R&D
platform MeVisLab [21]. MeVisLab combines a feature-rich, extensible toolbox of
image processing and visualization components with the possibility to add new, self-
developed algorithms and to create prototypical applications that allow an evaluation
of these methods in clinical settings. Originally designed as an internal development
tool, MeVisLab has been made publicly available in 2004 and is used at research and
development sites worldwide. A core features is that it allows efficient development
of all aspects of a medical image analysis and visualization application:

• Powerful DICOM I/O and composition of native DICOM frames into 3D or 4D
volumes.

• Efficient low-level image processing and visualization using C++ modules.
• Graphical programming to combine low-level modules into complex processing

networks.
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Fig. 1 Image processing example network in MeVisLab, implementing a simple edge filter.
Modules are represented as boxes, data flow is visualized by connecting lines. A module’s
operation can be controlled through its user panel (shown for the Morphology module). Viewer
panels can be opened to display the renderings generated by visualization modules

• Application development through python binding and a simple description
language for GUI creation.

To make MeVisLab-based applications available to external users, they can be
conveniently packaged to be deployed as standalone executables, so that, in a
conventional workstation setting, they can be installed on a PC within a clinical
site and locally operated by the physician (Fig. 1).

Including automatically wrapped parts of the open source libraries ITK [12],
VTK [40], and Open Inventor [36], MeVisLab comes with over 2000 C++ modules
plus hundreds of ready-to-use processing networks wrapped in so-called Macro
Modules. Most of them can be classified into the categories image enhancement,
image segmentation, image registration, quantification, visualization, and computer-
aided detection (see [32] for more details).

The visualization of different types of data, including 2D images, 3D image
volumes, dynamic image data, geometric surface models and meshes, as well as
graphical annotations and text overlays, belongs to the core features of MeVisLab.
The visualization engine is based on OpenGL [23] and Open Inventor, comple-
mented by the integration of VTK. Some of its main characteristics include:

• A unified framework for 2D, 3D and 4D rendering.
• Interactive, real-time rendering of image data, surfaces, and contours.
• Utilization of modern GPUs and the OpenGL Shading Language [33].
• An extensible rendering architecture including a modular shader pipeline [31].

The visualization framework includes a GPU-based image volume renderer
specifically designed for the visualization of large volumes and to offer a wide range
of rendering options [17]. Recent developments in MeVisLab’s volume rendering
and 3D visualization library include the addition of multi-volume rendering,
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with applications in medical image visualization [41]. For a more comprehensive
overview of MeVisLab, please refer to [3, 9, 15, 21, 32].

2.2 Concept Discussion

There are many possible ways to distribute the components of a typical medical
image analysis application—image database, image import, image analysis, image
visualization, application logic, and GUI—between server and client. Moreover,
client-server communication can be either synchronous or asynchronous. Following
requirements were considered for the presented approach:

1. According to the cloud paradigm, applications must be ubiquitously accessible
on-demand.

2. There should be no limitations with respect to the visualization capabilities,
including full support for dynamic and interactive visualizations.

3. The same application shall be deployable in different scenarios, including thin
and zero-footprint clients (e.g., web clients), as well as mobile clients for tablet
PCs and smartphones, with little additional development effort.

4. The infrastructure shall support environments with limited bandwidth and notice-
able latencies (e.g., WIFI, DSL, or LTE connections).

5. The user interface shall remain responsive during time-consuming operations.

In the view of the authors, requirements 1–3 can be best fulfilled by a client-
server architecture that does not depend on the specific (and typically uncontrol-
lable) setup of the client platform and leaves almost the entire application including
data handling, processing, and even rendering to the server. Requirements 4 and
5 suggest an asynchronous remote process communication protocol. Requirements
2 and 3 are especially relevant for R&D frameworks like MeVisLab which already
come with a lot of visualization features and are often used as platforms for research
and rapid prototyping. In exploratory situations, neither the final functionality nor
the target platform is fixed in advance. Thus, (re-)implementing a feature that is
often already available on the MeVisLab-based server for a particular client platform
is not desirable. Finally, application development becomes more complex if more
intelligence is distributed between client and server.

A drawback of server-based rendering is poor interactive speed in high-latency
environments, which can be a severe disadvantage in comparison to client-based
solutions with sufficient rendering power. Still, it has to be kept in mind that
instead of only the current view, the entire dataset or rendering scene has to be
downloaded by the client first. Due to this, on top of the extra implementation effort
described in the previous paragraph, the increased responsiveness typically comes
along with longer startup times. Asynchronous client-server communication makes
programming more difficult, because keeping the application state synchronized
between client and server is challenging. This is one more reason for keeping the
client as thin as possible and making the server master of the application state. The
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implementation of the chosen architecture within MeVisLab is described in detail
in the paragraphs following the related work discussion.

2.3 Related Work

The idea of remote desktops and applications is not new. The well-known virtual
network computing (VNC) system introduced by Richardson et al. [30] is a client-
server system, which allows the client to view the entire desktop environment of
the server from anywhere over the Internet. One of the first applications for remote
volume visualization was presented by Lippert et al. [18]. The underlying concept
is especially designed for distributed and networked applications, where a remote
server maintains large scale volume data sets, for being inspected, browsed-through,
and rendered interactively by a local client. Hendin et al. [10] introduced a volume
visualization tool based on the Virtual Reality Modeling Language (VRML), which
uses three stacks of perpendicular slices. A VRML-plugin is controlled by a JAVA
applet which allow the embedding of the tool into HTML. Engel et al. [7] extended
this approach with techniques for fast volume clipping, collaborative work, and
data size reduction. Ma et al. [19] presented a system that allows to explore remote
visualization of time-varying data sets using a web browser. It computes images on
a visualization server, which are transferred to the client and inserted into a graph.
The parallel visualization tool Visapult [2] combines minimized data transfers and
workstation-accelerated rendering. Yoon et al. [42] proposed image-based rendering
acceleration and compression methods to increase efficiency of systems using 3D
graphics on the web. Stegmaier et al. [37] presented a generic solution for hardware-
accelerated remote visualization which works transparently for all OpenGL-based
applications and scene graphs. A distributed architecture where a remote rendering
server is able to manage complex models and to code a MPEG stream to be sent
to the client allowing for interactive visualization on the client was introduced by
Lamberti et al. [16].

Silicon Graphics provides a commercial solution called OpenGL VizServer [24],
which enables lightweight client workstations to access the hardware-accelerated
rendering capabilities of SGI Onyx servers. VirtualGL [39] is an open-source toolkit
that gives any Unix/Linux remote display software the ability to run OpenGL
applications with full 3D hardware acceleration. The Chromium Renderserver [26]
is an open-source software infrastructure which allows one or more users to run
and view image output from unmodified, interactive OpenGL and X11 applications
on a remote parallel computational platform equipped with graphics hardware
accelerators via industry-standard Layer-7 network protocols and client viewers.

In the medical imaging community, several systems allow a combination of
visualization and image processing algorithms. Bitter et al. [3] compared four freely
available frameworks for image processing and visualization which use ITK [12].
A survey of the most successful open-source libraries and prototyping frameworks
for medical application development was presented by Caban et al. [4]. Another
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Fig. 2 The MeVisLab client-server architecture. Multiple MeVisLab-based applications may be
executed on the server (right), each in its own process. GPU-based off-screen rendering is used
for visualization tasks. Communication between client and server process is routed through the
Worker Service background process, which also controls the applications’ life cycle. Different
client platforms are supported, including client applications based on MeVisLab (bottom left) and
web applications implemented using current web standards (top left)

prototyping environment is the eXtensible Imaging Platform (XIP) [27], which has
a comparable functionality as MeVisLab.

2.4 MeVisLab for Client-Server Applications

Based on the reasoning provided in Sect. 2.2, a client-server architecture for
MeVisLab applications was implemented that combines server-based rendering
technology with a proprietary, asynchronous remote process communication pro-
tocol (see Fig. 2). This architecture is described in the subsequent paragraphs.

2.4.1 Remote Rendering

As discussed in Sect. 2.2, the ability to utilize the full extent of the server’s
visualization feature set (in this case MeVisLab’s visualization libraries) as part
of client-server applications was one of the main reasons for the decision to keep
visualization functionality strictly on the server. Therefore, a remote rendering
technology using OpenGL’s frame buffer objects was implemented in MeVisLab.
Using this technique, a visualization scene is rendered off-screen into a buffer in
GPU memory on the server. The rendered image is then encapsulated into a message
and sent to the client. For image encoding, both the PNG and the JPEG format can
be used with different options for lossless and lossy data compression.
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A key factor for the usability of server-based rendering applications is transmis-
sion speed. In order to minimize the amount of data that needs to be transferred from
server to client, two key optimizations were implemented:

• Dynamic compression: The idea is that while the entire scene is changing
rapidly (e.g., during user interaction like slicing through a 3D dataset), the user is
not able to notice the small details lost by using a lossy compression algorithm.
As soon as no new rendering is requested for a certain amount of time (e.g.,
500 ms), a lossless PNG is sent to allow detailed inspection of unmodified data
as required for application in the medical field. For a typical 512� 512� 24 bits
per pixel view of a native CT image with colored annotations, this means that
the compressed size of each transferred image shrinks from 31.3 % (i.e. 240 kB)
for a lossless PNG to 3.8 % (i.e. 29 kB) for a lossy JPEG at the default setting of
75 % quality. Moreover, the JPEG compression is almost three times faster than
JPEG compression (MeVisLab uses libPNG and TurboJPEG, respectively) and
thus better suited for setups where server speed is the limit.

• Tiled rendering: In certain frequent use cases such as placing a marker, or
continuously displaying the value under the mouse cursor, only a small are of
the view changes. These use cases can be optimized substantially by subdividing
the rendered image into N tiles (a typical size is N D 64 for a 512 � 512

view) transmitting only those tiles that differ from their predecessors. While this
will have no effect for global image changes, the above-mentioned use cases will
benefit by a transmission data reduction of a factor N. It can be combined with the
dynamic compression technique, in which compression is performed separately
on each changed tile.

There are further ideas for data reduction. For instance, as a generalization of
the tiled rendering approach, the difference of the rendered image to its predecessor
could be transmitted, assuming that redundancy will result in better compression
ratios. However, as there is currently no native browser support for such delta
encoding, an implementation would have to be implemented in JavaScript on a
per-pixel basis, making the performance of low-end clients the bottleneck. A more
promising improvement might be the utilization of movie codecs which make use of
such heuristics and are already supported by browsers. However, codecs currently
available in browsers are not optimized for providing interactive updates. Further,
they typically require more than just the previous image for efficient encoding which
results in increased latency. Still, these are issues that many remote applications
currently struggle with, so perhaps codec development will address this in the future.
Currently, movie encoding could be used for optimizing certain use-cases where the
scene changes without constant user interaction, such as cine modes, or certain fly-
through visualizations.
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2.4.2 Communication Protocol

MeVisLab’s proprietary remote rendering protocol supports dynamic and interactive
visualizations. A typical message sequence that occurs in an interactive client-server
application can be outlined as follows (see Fig. 3):

1. A user event in the client viewing area is recorded and encoded in an event
message that is sent to the server.

2. The server receives the event and feeds it into the application’s visualization
scene.

3. If the user event results in a visualization update, the application notifies the
client about the pending update.

4. The client responds to the update message by sending a frame request message
to the server (additional update notifications are combined and delayed until the
requested frame was received).

5. The server renders the updated scene and sends the new frame to the client.
6. The client displays the received frame to the user.

Steps 3 and 4 ensure that no frames are sent that the client has not requested
and let the client directly control the update speed. A severe drawback of this
strictly request-driven approach is the fact that two client-server round trips occur
between the original user event and the display of the updated scene at the client.
This can lead to noticeable latency and limitation of the effective frame rate. In
order to overcome both effects, the MeVisLab remote rendering protocol offers a
streaming mode in which update and frame request messages are omitted and the
server responds to the initial event message with a frame message which contains
the updated scene rendering. As an effect, the latency is reduced by 50 % which
allows higher frame rates. However, a fast sequence of user events may now lead to a
frame rate which exceeds the channel’s bandwidth and may yield undesired overload
effects. This is avoided by introducing a special acknowledge message issued by the

Fig. 3 Remote rendering protocol in an interactive visualization scenario. Request driven
mode (a): two round-trip cycles between a user event and the resulting viewer refresh because
an updated frame is only rendered on explicit client request. Streaming mode (b): the server
renders and sends updated frames immediately which reduces the latency to one round-trip cycle.
Acknowledge messages are gathered in order to limit the number of frames that are “on the way”
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client to signal the receipt of a rendered frame message. The server checks incoming
acknowledge messages and delays the rendering of new frames as soon as more
than a specified number (typically 2–5) of previous frame messages have not been
acknowledged (see Fig. 3). Thus, the effective frame rate is automatically adjusted
depending on the channel’s bandwidth and latency.

Using streaming mode and dynamic compression at the default of 75 % quality,
the required bandwidth to slice through a CT volume with a 1024� 1024 client
viewer at 5, 15, or 30 frames per second (fps) is 0.5, 1.5, or 3.0 MB/s, respectively,
so that today’s LAN or WLAN bandwidth is more than sufficient. In this test
setup, the speed at which the server compressed images was the limiting factor,
resulting in a frame rate of 33 fps for both LAN and WLAN connection. Using
an LTE connection from a smartphone, a frame rate of 11 fps was achieved. On
average, 289 ms elapsed between an image request and receiving the mobile client’s
acknowledgment (of which JPEG compression took 24 ms). The tiling optimization
was ineffective for these experiments since the test operation (slicing) always affects
the entire image region.

2.4.3 Remote Module Interfaces

The remote rendering technology and the remote module interface represent the
middleware for server-client communication. For a complete client-server applica-
tion, a user interface has to be added to the client side, to enable user access to the
application’s features and output data. MeVisLab currently offers two options (see
Fig. 4). While the deployment of a MeVisLab-based client is supported, this is

Fig. 4 Client implementation in different deployment scenarios. The server application (right)
communicates with the client through its field interface. In the client implementation (bottom
left) this field interface is replicated through an automatically generated proxy module. The
application UI is generated using standard MeVisLab mechanisms. In web-based clients, the UI is
implemented in HTML and linked to the application’s field interface through JavaScript glue code.
Visualizations are displayed by means of a JavaScript remote rendering client
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mostly used for prototyping. For most end-user applications such as the ones
described in Sects. 3 and 4, a platform-independent deployment via zero-footprint
web clients is preferable.

In a typical zero-footprint deployment scenario, the client is executed in a web
browser. This scenario is supported by the MeVisLab Web Toolkit (MWT), an
extension which is not available in the public MeVisLab distribution. MWT includes
JavaScript implementations of the remote module interface, a remote rendering
client, as well as utility code to connect to the server process and to dynamically
add UI elements in the browser page that are automatically generated from native
MeVisLab GUI descriptions. MWT is based on modern web standards, such as
HTML5 and Websockets [8], supports secure SSL sessions and is compatible with
most current web browsers.

3 Cloud Application for Multi-Center Image-Based Clinical
Trials

A good example to demonstrate the benefits of a cloud application are image-
based clinical studies. They are often performed by research teams at (university)
hospitals, the pharmaceutical industry, or contract research organizations. Different
steps of the studies are increasingly performed in multi-center networks which
might be spread over different countries. Those steps include image acquisition,
quality assurance (QA), reading. Figure 5 illustrates how an image viewer can be
embedded in a cloud infrastructure to interact with a study portal and data storage
entities. Applications and services are made available as web application.

Fig. 5 Embedding of an image viewer into a cloud infrastructure for clinical trials. Different user
groups can access cloud services/applications through a study portal via a modern web browser
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3.1 User Groups

User groups which perform roles with different data access rights in a clinical study
can connect to a study portal via web browser from any location and with different
devices (e.g., PC, notebook, tablet). Roles which are essential in a typical image-
based clinical trial are:

• Study management/administration: study setup which includes the definition
of trial documents such as an eCRF (electronic case report form) and the control
of access rights for the study portal.

• Image acquisition: acquisition of images according to the study protocol.
Acquisition sites upload images via the study portal.

• Image quality assurance: images have to fulfill defined quality criteria. An
image QA manager can access all uploaded images to perform a control step and
to approve or revoke the images for reading. This is typically done by inspecting
the images with the image viewer.

• Image reading: image reading is performed for images which are approved
during the QA step. Those images are loaded with the image viewer to perform
qualitative and quantitative assessments to fill the eCRF with case-specific data.

3.2 Core Elements

The study portal is started via web browser as entry point of the cloud application.
Depending on the user group, different feature sets are available. Study manage-
ment/administration needs access to configuration tools to grant access rights, to
assign roles, and to setup eCRFs. An eCRF is a questionnaire to collect the data
from participating sites. Its complexity depends very much on the specific study but
typically includes text fields which have to be filled out manually (e.g., description
of patient’s health condition, or qualitative findings) and further input controls, such
as checkboxes, radiobuttons, or drop-down lists (e.g. patient’s sex, smoking/drink-
ing habits). In the presented application some input fields are automatically filled by
assessments from the image viewer.

The cloud infrastructure needs storage space for image data and other study-
related data with backup strategies and access control mechanisms. Image data is
stored in a picture archiving and communication system (PACS) which supports
operations to store and retrieve DICOM (Digital Imaging and Communications in
Medicine) images. Non-image data like the structure of the eCRF, trial meta data,
user management, and data generated by the image viewer is stored in an additional
database to submit/retrieve data efficiently.

For simple image viewing of DICOM frames, the image display capabilities of
a cloud PACS which uses remote rendering to generate images on the server and
sends those images to the remote client or endpoint devices (see [13] for more
details) might be sufficient. If advanced image processing/preprocessing, complex
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interaction with the images, or 3D visualization is required, the capabilities of a
cloud PACS are usually not sufficient. A flexible and powerful MeVisLab-based
cloud image viewer is presented in Sect. 3.4.

3.3 Data Flow

Figure 5 illustrates the data streams between core elements. As those application-
s/services might be installed on different virtual machines or different physical
servers, high bandwidth for data transfer has to be available (especially for image
transfer) to ensure high performance of the overall system.

Image data is uploaded from the study portal to the PACS and the image viewer
imports a selection of DICOM images from the PACS. If the image viewer is used
to modify images or image meta data (DICOM tags), e.g., during image QA, or
generates new DICOM images, it stores the images in the PACS. For storage of non-
image data a database management system (DBMS) is available. A database server
to provide database services to other applications is often part of the DBMS. The
portal utilizes the DBMS to store and retrieve all accumulated trial data. Moreover,
the image viewer might need access to the DBMS to store/retrieve information such
as performed image annotations or a current state to suspend/resume an image
viewing session. Finally, an information exchange channel between portal and
viewer has to be established. When the image viewer is started from the portal it
needs information about the images which should be processed and information
about the assessments which have to be performed. The viewer sends back the
results of performed assessments such as measurement results.

3.4 Cloud Image Viewer

This section describes a cloud image viewer implemented with MeVisLab. The
viewer is a zero-footprint web application presented as an interactive website which
can be accessed by any modern web browser. The client’s hardware requirements
do not depend on the complexity of the web application since image processing
and rendering is done on the server (see Sect. 2.4). Versions of this viewer are
part of T-System’s Trial Connect platform [38] and integrated into the e-health
platform SATMED which aims to improve public health in emerging and developing
countries [34].

The viewer is started from a study portal. It has to be set-up for data exchange
with the cloud storage components and requires an interface to exchange informa-
tion with the study portal. A suitable DBMS is the open-source system MySQL [22]
which implements a client-server model for database access. For database access,
the viewer configuration has to contain information about the DBMS (hostname
and port), and information about a specific database which is used for data
storage (database name, username, and password). A suitable open-source PACS is
dcm4che [6]. To store and retrieve images, the viewer configuration has to contain
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information about the PACS (hostname, port, and application entity name) and
calling information which are registered at the PACS (calling application entity
name and calling port). In addition, a workspace path has to be defined which points
to disk space where the viewer can store retrieved and processed images temporarily.

For a specific viewing session, an interface is implemented in JSON (JavaScript
Object Notation) [11] which allows the transfer of information between study portal
and viewer. The image viewer can be configured by the study portal with so-called
viewing requests. Apart from image loading details, a viewing request contains
information about assessments which have to be performed. An assessment request
consists of a description (e.g., aorta cross section), a list of requested values (e.g.,
area, perimeter), and the corresponding list of preferred units (e.g., mm2, mm). This
allows a dynamic configuration of the image viewer for a specific trial. The viewing
response contains results which are used to fill the eCRF with quantitative values
automatically which is highly beneficial compared to error-prone manual transfer
of values.

To move images between viewer and PACS over a network, the DICOM toolkit
DCMTK [5] is used. During viewer initialization, all DICOM frames for the specific
viewing request are retrieved from the PACS and stored in the viewer workspace.
Subsequently, a DICOM importer provided by MeVisLab composes volume cache
files which allow efficient viewer access to DICOM frames which are now logically
sorted into 3D or 4D volumes. Often, such volumes are composed from frames
which belong to a series according to DICOM tag information, but the DICOM
importer allows the definition of custom sorting rules which can be configured for
the requirements of a specific trial.

A screenshot of the cloud image viewer is shown in Fig. 6. Thumbnails represent
volumes which can be loaded per drag-and-drop. A list is presented which shows

Fig. 6 The MeVisLab-based cloud image viewer has access to a rich set of image processing and
visualization components. Image data courtesy of German Heart Institute Berlin
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the assessment requests from the study portal. The viewer offers convenient tools
to navigate to spatial or temporal slices, to zoom and pan images, and to control
the contrast of the images. To perform measurements, line and contour drawing
tools are implemented. The UI offers convenient controls to establish connections
between requests and drawings. After all assessments are performed the session is
finalized and the result values are sent to the study portal for further processing. Due
to the viewer’s suspend/resume and finalize capabilities with respect to the current
viewing session, an audit trail is available which supports an uninterrupted tracing
of user interactions which is a requirement for most clinical studies.

4 Augmented-Reality Application of Mobile Devices in the
Operating Room

Augmented reality (AR) can be seen as a bridge between the virtual and the real
world. It allows to enhance or augment the real world with information from virtual
worlds. It is a widely used technique in various disciplines. In medicine, there
has been also a lot of research in the last decades. Head-mounted displays have
been used, e.g., to provide anesthetist with virtual information about the patient’s
condition during an operation [25]. But these devices are heavy and complicated
to set-up. With the rise of tablets and wearable glasses AR actually becomes more
feasible to be integrated into the clinical workflow. Reitinger et al. [29] used virtual
reality glasses, a tracked helmet, and instruments to interact with liver planning data
to prepare a surgery. Rassweiler et al. [28] demonstrated the use of a tablet with AR
during a percutaneous kidney intervention.

4.1 Medical Background

AR in the operating room (OR) requires virtual models or planning data derived
from pre-existing images of the patient. Typically, radiological data such as CT
or MRI data is used and processed before surgery. After segmentation and further
image analysis steps, 3D models of the individual anatomy showing organs,
pathologies, risk structures, and resection lines can be overlaid with real patient
anatomy.

Planning and risk analysis for liver interventions represents an established
research topic and routine application at Fraunhofer MEVIS and MeVis Medical
Solutions [35]. A service offered by MeVis Distant Services allows liver surgeons
worldwide to send CT or MRI data for analysis and preparation of a patient-
individual resection plan by means of the HepaVision software. The extracted
objects include the liver, tumors, intrahepatic vascular systems, perfusion territories,
and different resection proposals with dedicated risk analysis. 2D and 3D results can
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be downloaded by the physicians via a secure Internet connection and displayed on
a workstation using specialized software (e.g., Liver Viewer or Liver Explorer) or
with a 3D-PDF. With these anatomical models and resection proposals, surgeons
can more easily understand the patient’s anatomy, can compare different resection
proposals, choose an optimal surgical strategy, and finally can perform the surgery
more safely.

However, the transfer of results (e.g., resection plans and risk volumes) into
the OR has been a challenge. Often surgeons assess planning data in the OR by
paper print-outs or transfer them only mentally. The wish to have the planning
data available in the OR becomes apparent if one understands the difficulty of
liver operations. These interventions usually last many hours because the organ is
difficult to resect and the surgeon has to be very careful to avoid a cut into larger
vessels and into tumors in oncological interventions. The liver hosts branching
vessel structures where a cut in an inappropriate place can cause severe blood loss.
In addition, doctors must ensure that the patient retains enough sufficiently perfused
organ volume for survival. To accomplish this, doctors need to know the location of
blood vessels accurately and the depending liver territories both before and during
an operation.

Fraunhofer MEVIS has developed the Mobile Liver Explorer, which runs on a
tablet and allows to interactively access all virtual, patient-individual planning data.
It provides an AR mode, which allows overlaying the virtual planning data onto the
real liver and thus helps to locate critical structures. This app has been developed
during a scientist’s research stay in Japan in close cooperation with surgeons from
Yokohama City University Hospital. Clinical requirements and expert feedback
have been incorporated throughout the development process. Since the stay was
limited to 3 months, the implementation was focused on major clinical demands
and their solutions:

1. Access to all planning data: The requirement with highest priority was the
availability of all planning data in the OR and the possibility to examine it like on
a workstation. This includes 2D slice renderings with orthogonal and multiplanar
reformatting, as well as standard viewing tools like changing contrast/brightness,
zoom level, and slicing. The 3D view should be able to display surface models
of the segmented objects like liver, tumors and other lesions, hepatic vascular
systems, and resection proposals.

2. Augmented reality: The second priority was an AR mode that allows to overlay
the selected 3D models with the video stream from the inbuilt back-facing cam-
era. Alignment was planned to be done manually because automated alignment
has no high priority for the surgeons. Manual interaction is fast (few seconds) and
there is no continuous movement of the device during the intervention that would
require automatic alignment between the real organ and the 3D model position.

3. Tools supporting adaptation and visualization in the OR: Due to the limited
time, only three, more complex tools were implemented and further will follow.
These are a vessel branch dependent perfusion analysis, a vessel length measure-
ment algorithm, and a vessel eraser method (see [14] for more details).
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4.2 System Design

The system is comprised of a server and a mobile client, in this case an Apple iPad.
The server runs the host application, a variant of the Liver Explorer, which has
been adapted to support the remote rendering capabilities described in Sect. 2.4.1.
In addition, it is set-up as a WiFi hotspot. The iPad runs the Mobile Liver Explorer,
which connects to the server using WiFi. For the app, a MeVisLab remote rendering
protocol for iOS was implemented in Objective C. Due to performance issues,
especially when streaming fullscreen images, a native app was implemented instead
of browser-based one. Since a local WLAN connection is used, the bandwidth is
not the issue but rather the render update of the tablet. While 25 fps are achieved
in native mode, the HTML5 canvas-based version delivered only around 10 fps on
an iPad3. An iPad Air offers comparable performance between browser-based and
native apps (40–50 fps).

After having established the connection to the server, the app uses the remote
messaging protocol (see Sect. 2.4.3) to receive the patient list. Thus, without a
connection no patient data can be viewed, which is crucial for patient data security.
After selection of a patient, the app requests so-called collections. A collection
is a predefined view on the planning data, including display objects, their visual
properties, the camera position and orientation. By tapping a collection it gets loaded
by the server and the app switches to the third view which comprises a 2D view, a
3D view, and interaction tools. Communication with the server is required for:

• Rendering: The content of each view is rendered remotely and streamed to
the client. The image is decoded and directly loaded into a UIImage Cocoa UI
element which happens on each open inventor scene change. Remote rendering
was chosen since all needed interaction functionality is already implemented in
MeVisLab and the expected latency is below 50 ms due to the direct WLAN
connection which ensures good response times.

• Gesture processing: Touch interactions are sent to the server where the gesture
recognition is done and processed by dedicated interaction modules. This
approach is more flexible compared to gesture recognition on the device since
generic MeVisLab modules do not have to be adapted to support touch inter-
actions. Only high latency which is not an issue in the presented set-up would
impact server-side gesture recognition in a negative way.

• System state changes: All other commands, such as tool button selection, are
sent using the general remote messaging protocol. The asynchronous nature has
to be incorporated, so a state change is communicated back to the client. The UI
only updates after the server acknowledged a successful state change.
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Fig. 7 Augmented reality with the iPad in the OR showing the virtual hepatic arteries

4.3 Augmented Reality for Liver Surgery

For over 15 years, preoperative planning of liver surgeries helps surgeons to decide
about treatment, enhance the outcome, and even enables surgeries that would not
have been done without 3D planning and risk analysis. The next logical step is to
provide the planning data during surgery and to allow a direct comparison of the
virtual plan and the real resection by using AR techniques. The 3D view of the app
is used to display the live stream of the iPad camera if activated. The virtual camera
is adapted to the intrinsic camera parameters. In addition, a remote message is sent
to the server to enable the transmission of an alpha channel and RGB values of the
remotely rendered image in PNG format. The alpha channel is needed to blend the
rendering of the virtual models with the live image stream. The alignment of the
virtual camera with the real world is done manually by the user. As discussed with
the clinicians this is sufficient for their purpose, since information provided by the
AR already helps to coarsely identify vessel locations (see Fig. 7). Further work
should speed up the initial alignment by taking into account possible iPad positions
in relation to the situs, data from the gyroscope sensor, and image information. A
fixation device to mount the iPad over the patient to allow a stable positioning of the
tablet is already in use in the hospital.

4.4 Clinical Application

The Mobile Liver Explorer was tested during its development at Yokohama Uni-
versity Hospital and is currently evaluated in a clinical study of 50 tumor resections
there. Initial experience from first surgeries showed the practicability and usefulness
of the new software and device. The touch functionality through a sterile sleeve
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works well, and multi-touch gestures allow quick zooming and rotating of the 3D
model. The AR overlay of vascular structures enabled the identification of single
branches, while the vessel length measurements provided valuable information
for vascular anastomoses. Display of hepatic veins over real liver tissue prior to
resection helped to identify single risk vessels and to avoid bleeding. After 13
resections, a comparison with similar liver resections already showed a significantly
reduced operation time and a lower blood loss [20].

The system has been tested in Germany in the OR as well. Prof. Dr. Karl
Oldhafer, Chief of the Department of Surgery at the Asklepios Klinik Barmbek in
Hamburg made a statement about the AR feature of the app: “Using this function,
we can virtually look into the organ and make the tumor and vessel structures
visible. This simplifies comparison to determine whether the intervention has gone
according to plan. With this new technology, we are able to better implement
computer-supported operation planning for tumor removal.”

While it seems that AR on mobile devices will be very helpful in the complex
field of liver surgery, this technique may be useful also for other interventions.
Examples are thorax surgery, where the location of tumors in relation to arteries,
veins, and bronchi may influence the surgical strategy, and pancreas surgery, where
the organ is surrounded by a large number of arteries and veins.

5 Discussion

The client-server architecture implemented in the MeVisLab platform has been
specifically designed to meet requirements for the development of web-based
application prototypes in the field of medical image computing. A main goal
was to reduce the complexity for the developer and to allow high development
efficiency. This led to a design where application logic and state, as well as
visualization engines reside on the server and are clearly separated from the client’s
UI layer. While this approach may show noticeable latency effects when using
interactive applications over slow networks, the remote rendering protocol was
optimized in order to reduce such undesired effects. As an inherent consequence
of the presented client-server architecture, MeVisLab-based server applications are
always stateful. The state of an application is bound to a specific server process,
and when the connection is lost or the server process crashes, the state is lost.
However, this seems to be a reasonable approach for the type of applications
under consideration because a stateless implementation would require continuously
persisting of complex application states associated with large amounts of data in a
server-side database. The automatic code generation facility of the MWT allows
very short development cycles and a high level of reuse between deployment
scenarios. The applicability, however, is currently limited by the set of supported
UI elements, and current development efforts aim to reduce these limitations.

Several applications were already implemented based on the novel remote
rendering capabilities provided by MeVisLab and two of them were discussed in this
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paper. It can be observed that there is a strong demand for such applications from
both industrial and clinical/research partners. The cloud image viewer is already
embedded into a cloud infrastructure for multi-center image-based clinical trials.
This infrastructure very much fits to the requirements of customers from industry
and research which need to manage their scientific data cost- and time-efficiently
with access from all participating sites. Further it was recently embedded into the
SATMED e-health platform. The current viewer implementation provides a basic set
of features for image viewing and measurement tools but has access to the rich set of
modules available in MeVisLab and can be easily extended on demand. This allows
to provide new plugins for trial-specific assessment functionality. For example,
a volume measurement tool including complex segmentation algorithms can be
activated for trials dealing with tumor response evaluation. In addition, MeVisLab-
based web applications are at the core of the German National Cohort MR imaging
sub-study, which proves their reliance and robustness. They are used on a daily basis
to perform visual quality assurance and, most importantly, the distributed incidental
findings reading of currently more than 30 subjects per day reviewed by trained
radiologists at five sites across Germany [1].

For the Mobile Liver Explorer, the new framework enabled fast development of
a mobile device app. Existing features and tools in MeVisLab were used without
need for reimplementation and the remote rendering allowed visualizing the basic
patient data and derived models without need to transfer the data itself to the tablet
computer. With this concept, the specific implementation effort for the client, a
mobile device in this case, is small compared to the capabilities of the resulting
app. It also makes it much easier to offer similar apps for different tablet types.
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Visualization of MRI Diffusion Data
by a Multi-Kernel LIC Approach
with Anisotropic Glyph Samples
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Abstract In diffusion weighted magnetic resonance imaging (DW-MRI), high
angular resolution imaging techniques have become available, allowing a voxel’s
diffusion profile to be measured and represented with high fidelity by a fiber
orientation distribution function (FOD), even in situations of crossing and branching
white matter fibers. Fiber tractography algorithms, such as streamline tracking,
are used for visualizing global relationships between brain regions. However, they
are prone to errors, e.g., may miss to visualize relevant fiber branches or provide
incorrect connections. Line integral convolution (LIC), when applied to diffusion
datasets, yield a more local representation of white matter patterns, and due to
the local restriction of its convolution kernel is less susceptible to visualizing
erroneous structures. In this paper we propose a multi-kernel LIC approach, which
uses anisotropic glyph samples as an input pattern. Derived from FOD functions,
multi-cylindrical glyph samples are generated by analysis of a highly-resolved FOD
field. This provides a new sampling scheme for the anisotropic packing of samples
along integrated fiber lines. Based on this input pattern two- and three-dimensional
LIC maps can be constructed, depicting fiber structures with excellent contrast and
resolving crossing and branching fiber pathways. We evaluate our approach by
simulated DW-MRI data as well as in vivo studies with a healthy volunteer and
a brain tumor patient.
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1 Introduction

Within neural tissue the diffusion of water molecules is not free but rather hindered
by cell membranes and cytoskeleton. Diffusion-weighted magnetic resonance imag-
ing (DW-MRI) uses the application of pulsed field gradients to make the image
contrast sensitive to motion of water. With Diffusion Tensor Imaging (DTI) the
local diffusion profile is modelled by an ellipsoidal tensor with three eigenvectors
and corresponding eigenvalues. But the diffusion tensor model is only capable
of resolving a single anisotropy direction for each voxel. In more complex fiber
architectures, such as crossing, branching and kissing fibers, diffusion tensor
imaging is inadequate and may result in misleading and inaccurate interpretations
[9, 18]. With high angular resolution diffusion imaging (HARDI), the diffusion
profile is acquired with a large number of gradient directions .> 50/ providing a
better angular resolution. From the diffusion profile the fiber orientation distribution
function (FOD) can be derived which is capable of resolving more than one
anisotropy direction (Fig. 1). Diffusion tensor and FOD can be used to visualize
the underlying brain architecture.

In DW-MRI, only a few white matter visualization approaches have gained
clinical relevance. Among these, color-coded FA maps and tractography-based
streamlines and streamtubes have had the widest clinical application. Color-coded
FA maps combine the fractional anisotropy (FA) of each voxel with the color-
coded principal eigenvector of the diffusion tensor [28]. Although from color-coded
slice images the major pathways may be mentally reconstructed, they primarily
reveal only local anisotropic information. Geometric models using streamlines [26]
and streamtubes [42] can be used to visualize results of deterministic and prob-
abilistic tractography algorithms. Furthermore, more complex approaches using
hyperstreamlines [6] and tensorlines [39] have also been explored. Whilst these
methods reveal global relationships, such as connections between brain regions,
they fail to reliably depict uncertainties in the presented fiber anatomy, due to
problems of data acquisition and signal processing. Rather, they represent data
interpretations and depend on processing parameters, including choice of seed

Fig. 1 Surfaces of fiber
orientation distribution
function in a crossing region
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regions, tracking algorithms and track termination criteria. This is also true for
results of feature extraction methods [30], which generate a pathway’s complex
hull e.g. by segmentation or fiber clustering [8, 12, 24, 25]. In order to visualize
the diffusion tensor’s characteristics, such as anisotropic diffusion direction and
magnitude, different types of glyphs are used.

The first glyph to be applied to diffusion tensor imaging (DTI) data was an
ellipsoid [29]. The shape of the diffusion ellipsoid depends on the local diffusion
profile and is determined by three eigenvalues and corresponding eigenvectors.
Other glyphs, constructed from geometric primitives like cuboids and cylinders,
have also been proposed. Kindlmann [19] introduced superquadric glyphs, which
combine symmetry properties of ellipsoids with the shape and orientation of cuboids
and cylinders. This facilitates the distinction between different shapes of the local
diffusion profile. For the visualization of HARDI datasets orientation distribution
function (ODF) glyphs may be used. These are constructed by the deformation of a
sphere surface according to ODF values distributed over a half sphere. Directional
color-coding of ODF glyphs helps to reveal local anisotropy directions [36, 37].
Glyphs can give the full diffusion profile information for each voxel, whereas the
geometry of pathways and thus connectivity information are difficult to identify.
Merging ellipsoids [5] is a technique used to visualize diffusion tensor imaging data
by combining local tensor information with global connectivity features. Ellipsoids
are placed along integral curves, generated by tractography, and merged under the
control of weighted influence functions, derived from tensor properties. Another
method that combines local tensor information with probabilistic tractography is
Fiber Stippling [11]. The shape of line stipples are determined by the principal
diffusion direction. Those line stipples are then projected into a slice.

In visualization theory there is another class of algorithms, visualization by
textures, which may help to bridge the gap between local and global representations
of the diffusion field. Triggered by advances in computer graphics hardware,
texture-based visualization has gained great attention in the scientific community
and various algorithms have been proposed, some of which may be applied to
flow fields. Among these, line integral convolution (LIC), which was originally
proposed by Cabral and Leedom [4], seems to be applicable to DW-MRI datasets.
This technique smoothes a noise input image with a vector field, using a convolution
kernel, which is locally adapted by vector field integration. McGraw et al. applied
the LIC algorithm to a smoothed field of principal eigenvectors to visualize rat
spinal cords [23]. Hsu was one of the first to apply LIC to a diffusion tensor field,
using the tensor’s principal eigenvector to guide the construction of a fixed-length
filter kernel [16]. When using LIC the choice of the input noise texture strongly
influences the resulting image. Kiu and Banks [2] applied a multi-frequency input
noise scheme to visualize flow magnitude and direction. By modifying different
parameters of the input image, Hotz et al. [15] encoded the eigenvalues of a positive-
definite metric with the same topological structure as the tensor field. Wünsche
et al. [41] proposed a three-dimensional LIC volume to be visualized by direct
volume rendering. It is also possible to compute a single LIC-image for each of
the three eigenvectors and overlay the resulting images to get a fabric-like texture
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[15]. In a previous paper we described an adaptation of the LIC method to high
angular resolution diffusion imaging, utilizing orientation distribution functions
as representations of the local diffusion profile. Thus we were able to consider
more than one anisotropy direction and correctly visualize crossing and kissing
fiber pathways [14]. Moreover, we proposed a color-coding scheme for directional
encoding of LIC slices, enhancing fiber continuity perception. In contrast to
streamline tractography methods the LIC approach is easily parametrized, it does
not require the definition of seed or goal regions and it applies tracking only in
a very small region around a voxel, thus avoiding error propagation along longer
integral curves. Therefore, it is less prone to visualizing non-existent tracts or failing
to visualize existing fiber pathways. However, in our previous work, the LIC map
lacked contrast, which made visualization of smaller fiber bundles difficult. In this
paper we introduce a methodology for generating anisotropic glyph samples as an
input pattern for an LIC algorithm. The geometry of glyph samples is derived from
fiber orientation distribution functions (FODs) and according to the local diffusion
profile can represent multiple anisotropy directions. As a glyph sample we use
the three-dimensional geometry of the FOD shape model, rasterized with a super-
resolution voxel grid. We also use the more simple shape of multiple cylinders
which are constructed in line with anisotropy directions. Placement and packing
of samples is controlled by the combination of a stochastic approach with local
fiber line integration. This allows LIC maps to be generated with improved contrast,
in which the viewer may visually track fibers, even through regions of crossing,
branching or kissing fiber pathways.

2 Overview

Originally, the LIC approach was designed for flow visualization by engraving a
vector field’s structure onto a noise texture. LIC is essentially a filtering technique
that blurs an input texture locally along a given vector field, thus providing highly
correlated voxel intensities along field lines. Initially, for each voxel of the input
texture, a field line is integrated over a fixed number of voxels, using the voxel
as a tracking seed. The field line is used as the kernel of a convolution operator,
which averages voxel intensities along the line. With 3D diffusion data the contrast
of the LIC result is not very high when using white noise as input pattern to the LIC
algorithm. Furthermore crossing fibers cannot be resolved adequately (Fig. 2).

In the method described here, a white noise texture is not used as originally
proposed by Cabral and Leedom, rather an anisotropic spot pattern, which is con-
tinuously sampled along integral lines, is implemented. Furthermore, we propose
a multi-kernel approach allowing more than a single anisotropy direction to be
visualized for each voxel. We compute LIC smoothing kernels by integration over
the FOD’s first and (if available) second maximum directions. Then, we average
over all sample values of the LIC input volume covered by the kernels.
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Fig. 2 LIC result of a
coronal slice produced with
white noise as input pattern.
The corpus callosum and the
pyramidal tracts are visible

Figure 3 shows an overview of the approach adopted, depicting the most
relevant processing steps and data elements. From the acquired HARDI diffusion
dataset FODs are computed by spherical deconvolution [35]. The FOD volume
is used to create a high-resolution volume of glyph samples, which are used as
the input pattern to a multiple-kernel LIC algorithm. The resulting LIC volume is
a three-dimensional gray scale texture representing regional anisotropic behavior.
Additionally, a direction volume is generated, in which the averaged anisotropy
direction within the LIC convolution kernel is stored as a direction vector for each
voxel. This is used for directional color encoding of slices through the LIC volume.
By the application of volume rendering techniques, the LIC volume can be three-
dimensionally visualized as a whole or after definition of a volume of interest. The
details of (1) input pattern generation, (2) multi-kernel line integral convolution and
(3) visualization are described in the next chapters.

3 Input Pattern Generation

In order to prepare and structure input data for the LIC algorithm, various
methods have previously been proposed. The most common approaches utilize high
frequency white noise [4] or sparse noise [17, 38] fields. It has been demonstrated
that by applying dot-like structures, the contrast of the LIC output can be enhanced.
Ellipses are structures well suited to this purpose, since they can represent local
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Fig. 3 Pre-processing chain with all data elements used in our method

features of the flow field, such as flow direction and magnitude. As the shape
of elliptical spots is defined by the parameters of the diffusion tensor, difficulties
arise when trying to visualize multiple local fiber orientations. We have previously
demonstrated that by using ODF glyphs, more complex fiber anatomies can be
visualized with the LIC method [14]. Several methods provide a higher angular
resolution of kissing, branching and crossing fibers in a voxel, including sharpening
ODFs by regularization algorithms [7, 27], ODF reconstruction with constant solid
angle (CSA) [1], tensor decomposition [31] or spherical deconvolution, leading
to the fiber orientation distribution (FOD) function [34, 35]. Instead of elliptical
or ODF-based samples, we propose the use of three-dimensional glyph samples
derived from the FOD as the input pattern for the LIC algorithm. We decided to
use the FOD method as it is highly relevant for clinical applications and FODs can
easily be calculated from HARDI signals.

3.1 Glyph Sampling

In order to represent the shape of the FOD in a three-dimensional regular grid, we
construct a super-resolution LIC input grid with a spatial resolution in the order of
0.1–0.2 mm. Sampling of the FOD is performed by marking all voxels in the super-
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Fig. 4 Glyph sampling with different anisotropy direction angles: (a) sampling of FOD glyph with
sampling sizes from 11 � 11 � 11 to 17 � 17 � 17 voxels, (b) sampling of cylindrical glyphs
with sampling sizes from 10 � 10 � 10 to 14 � 14 � 14 voxels and cylinder width 2

resolution grid which are in contact with the FOD shape model, depicted in white
and empty voxels in black (Fig. 4a). The figure shows the results of different glyph
sizes between 10 � 10 � 10 to 17 � 17 � 17 super-resolution voxels. The figure
clearly demonstrates that the accuracy of the representation improves with rising
sampling ratio, which is particularly relevant for multidirectional FODs with smaller
angles between fiber orientations. However, with an increasing sampling ratio we
have to increase the size of the super-resolution grid. This requires more computer
memory and processing power. In evaluation experiments, we found sample sizes
of 9 � 9 � 9 to 13 � 13 � 13 to be an acceptable compromise between accuracy
of representation and computational workload. To place up to eight .D 2 � 2 � 2/

glyph samples within a voxel of the original diffusion dataset, a super-resolution
dataset with a spatial resolution of 1/18 to 1/26 of the voxel length of the original
dataset is required.

Since the binary input pattern for the LIC algorithm should primarily represent
fiber directions, it is sufficient to use the simpler glyph of a cylinder instead of the
FOD. The main axis of the cylinder denotes a fiber direction, which is derived from
a local FOD maximum (see Sect. 4.1). If an FOD has only one local maximum,
a single cylinder is constructed with orientation and length defined by the FOD
maximum. Multiple crossing cylinders represent an FOD with two or more global
maxima, thus making use of multi-cylindrical samples. For each maximum we place
one cylinder into the grid. For better fiber continuity perception after the LIC the
length of the cylinder is always set to 100 % of the sampling size. Since the width
of the cylinder is not determined by signal parameters or the FOD’s shape, it can
be freely chosen depending on the grid resolution. As an extreme, the cylinder
can be represented by a straight line, which is sufficient, particularly when using
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low-resolution grids. Figure 4b shows that for sample sizes of 9–13 the sampled
cylinders do not differ too much from FODs, and fiber orientation angles of 45ı can
be resolved.

3.2 Glyph Placement

Distributing samples over a regular grid as an input to the LIC algorithm can
produce undesirable effects, such as visual artifacts by line shifts and breaks. Feng
et al. constructed a set of non-overlapping ellipses as an input to a generalized
anisotropic Lloyd relaxation process, resulting in textures similar to those generated
by the reaction diffusion approach [10, 22]. Kindlmann and Westin proposed the
distribution of glyphs over a non-regular grid. In this approach, potential energies
between neighboring tensors were calculated and glyphs placed into a dense packing
throughout the field. Glyph packing may be applied either to a slice or to the volume
dataset as a whole [20]. Kindlmann et al. also used the tensor volume to simulate
a reaction-diffusion process of two chemicals in an anisotropic medium in order to
produce a texture of spots, distributed over a non-regular grid [21].

In the context of fiber visualization and diffusion signal processing, placement of
samples for use with LIC should reflect the underlying fiber pattern as represented
by the diffusion data. In order to avoid discontinuities in the fiber texture image
produced by the LIC algorithm, it is useful to place samples along fiber pathways
within the super-resolution grid, so that samples are placed with improved fiber
continuity, rather than on the regular grid of the original diffusion dataset. Therefore
the following algorithm for sample placement is proposed:

1. Create a super-resolution grid.
2. Randomly place seedpoints distributed over the super-resolution grid by a

uniform random technique.
3. To each seedpoint apply deterministic tracking over a short distance.
4. For each tracked streamline: place glyph samples (cylinders/FODs) along the

streamline by tight packing.

Firstly, a super-resolution grid is created. The resolution factor 1/FE relates to
the voxel length of the original diffusion dataset. Each voxel of the diffusion dataset
is divided into FE � FE � FE subvoxels. A diffusion dataset with 2.0 mm voxelsize
typically results in a super-resolution dataset with a subvoxel size of approximately
0.1 mm. For the random placement of seedpoints, iterations are made until 1 %
of the points of the super-resolution grid are filled with seeds. A rate of 1 %
was found to be sufficient to fill the grid with tightly packed glyph samples. The
deterministic tracking uses interpolated FODs and integrates along local maxima,
using a Runge-Kutta integration scheme. Tracking stops after n integration steps,
where n depends on the grid’s resolution and is chosen so that the tracking distance
is in the order of the voxelsize of the original diffusion dataset. This minimizes the
cumulative tracking error ensuring that we do not follow non-existent pathways. A
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Fig. 5 Comparison of different glyph placement approaches: placement on regular grid (left) and
continuous placement (right) with increased fiber continuity

Fig. 6 Comparison of input structures (top) and their LIC results (bottom) of different cylinder
glyph placement approaches: on regular grid (left) and continuous placement (right)

further stopping criterion is an FA threshold of 0.05 to avoid tracking out of the
brain region. To avoid overlapping of glyph samples, samples are rejected, if they
intersect with any previously accepted sample. Figures 5 and 6 compare the sample
placement strategies. In Fig. 5, FOD glyphs were placed within the voxel raster of
the original dataset (left) and alternatively, within the super-resolution grid along
tracked integration lines (right). Figure 6 compares the two placement strategies
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Fig. 7 LIC results from (a) HyperLIC and (b) multiple-kernel LIC

with cylindrical glyphs with an example of a fiber crossing situation, generated by
our diffusion simulation approach. The upper row shows the LIC input patterns,
whereas the corresponding LIC results are depicted in the lower row. The parameters
used are FE D 20, a FOD length of 12, FOD width of 2 and n D 20 integration
steps.

For Figs. 6 and 7 we generated synthetic diffusion datasets using a partial
volume model similar to the one described in [3]. We chose a gradient b-value
of 2000 s=mm2, a diffusivity of 0:0015 mm2=s and a baseline signal S0 of 100.
Furthermore, we used a free volume fraction of 0.35 in voxels completely occupied
by fiber segments. We generated datasets with two fibers of 5 mm thickness crossing
at an angle of 60ı.

4 Multiple-Kernel Line Integral Convolution

The LIC algorithm proposed by Cabral applies a one-dimensional filter kernel with
a single flow direction per pixel. In order to take into account more than a single
direction the standard LIC method must be adapted. Hotz et. al. [15] suggested
generating one LIC result for every eigenvector field, integrating over the field’s
eigenvalues. All resulting images are overlaid to get a fabric-like texture. With
HyperLIC Zeng and Pang proposed a multipass approach, where the LIC algorithm
is applied to the principal eigenvector. In a first pass a noise texture is used as
the input image to create an intermediate LIC image [43]. In the second pass, the
intermediate LIC image is used as the input for LIC of the second eigenvector. Our
experiments with an adapted HyperLIC algorithm yielded poor results, particularly
in regions of crossing or branching fibers, which could not be clearly depicted
(Fig. 7a). In our method, a multi-directional LIC kernel depending on the global and
local maxima of the FOD is used. A first integration is carried out along global FOD
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maxima over the input pattern as described above. This yields the first smoothing
result. In a second step, integration is performed along the second local maximum
of the candidate voxel, if there is a valid second FOD maximum (see Sect. 4.1).

The resulting value is then combined with that from the first step. Combination
of the two values can be performed by averaging. However, it was found that better
contrast is achieved by setting the maximum of the two as the voxel’s final LIC
result. Our multi-kernel approach can be implemented by generating a primary LIC
image by application of a deterministic streamline tracking along the start voxel’s
global FOD maximum, and generation of a second image with the second FOD
maximum. The two images are subsequently combined by selecting the maximum
of each pixel’s two values. In our experiments we used a maximum of two kernels
per voxel. The algorithm may be generalized to more than two kernels, if the local
FOD maxima can reliably be detected. For tracking a streamline length L of 12
voxels for each direction and a FA threshold of 0.1 was used.

Our method was implemented with the FastLIC algorithm [33], making the
process up to 5 times faster. However, since FastLIC exploits redundancies from
integration over longer field lines, cumulative integration errors may be introduced
and pathways used may be inexact or non-existent.

4.1 FOD Maxima Identification

The global and local maxima of the FOD are used in different steps of the algorithm.
To determine the maxima of the FOD we reconstructed the FOD using 606
reconstruction directions, distributed over a hemisphere. A local maximum of the
FOD is valid if (1) it reaches at least 50 % of the global maximum, (2) its direction
does not deviate less than an angle of 30ı from all previously found peaks and (3)
all neighboring values on the FOD surface are smaller. This method is used for the
definition of the glyphs and the initial tracking directions. During the streamline
tracking for every integration step the maximum of the FOD, that fits best with the
direction from the previous step, has to be computed. First, we interpolate the 45
spherical harmonics coefficients. Then, we use a Newton-Raphson gradient ascent
algorithm. This is the most time-consuming part of the algorithm.

5 Visualization

When applied to a diffusion dataset, the LIC-based approach presented above,
results in two highly-resolved volume datasets: the gray-scale LIC volume and the
direction volume of averaged anisotropy directions. For visualization of volume
data, several approaches could be implemented. In the first method, data is projected
into an image plane, for example by volume rendering. In order to generate
visualizations with sufficient contrast, the voxel’s color and opacity have to be
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determined by suitable data characteristics. Examples include barycentric opacity
mapping [21], threads and halos representations [40] and fiber tract coherence
[13]. The second approach involves the generation of slice images, where slices
orthogonal to the volume’s main axes, oblique slices or even curved slices are
defined. Curved slices may be freely defined by the user or by anatomic structures,
such as fiber pathways [32].

5.1 Volume Rendering

Since the LIC volume produced by our method depicts fiber structures with good
contrast, direct volume rendering by texture mapping is possible. For this purpose
the LIC volume, which can be resampled to a lower resolution or clipped to a volume
of interest, is loaded to the texture memory of the computer’s GPU and rendered by
texture mapping. The user can then interactively change the voxel transparency and
color in order to highlight structures of interest.

5.2 Directional Color Coding

The easiest way to visualize LIC results is to present them as gray scale slice images
depicting the structure of the underlying diffusion field (Fig. 9 left). However,
these gray scale texture images do not exactly convey the direction of anisotropic
diffusion in a pixel. In DTI, directional encoding is usually provided by color-
coded FA maps, which combine the voxel’s fractional anisotropy with the principal
eigenvector direction of the diffusion tensor. Pajevic and Pierpaoli [28] proposed
to assign the components of the eigenvector (x, y, z) to color channels red, green
and blue. Using this color model in LIC images results in blocked fiber continuity
perception due to abrupt color changes (Fig. 9 middle). Since the in-plane fiber
direction is visualized by the structure of the LIC texture, no encoding of left-to-
right or up-to-down directions is necessary. As a more appropriate alternative we use
a color-coding scheme based on the hue-saturation-brightness (HSB) color model
to encode different diffusion properties. HSB is a color representation with a cone-
shaped color space. The hue channel is represented by a rotation angle with the
main axis of the cone as the rotation axis, spanning from red (0/360) through green
(120) to blue (240). The saturation channel is encoded as the fractional distance
from the cone’s center to its surface and defines the intensity of a color in a value
range from 0 to 100. Brightness is measured from the cone’s base (0 = black) to its
tip (100 = white).

In our color coding scheme the LIC value is scaled from 0 to 100 and it defines
the brightness channel. The direction is encoded as follows: when tracking along
a streamline we compute the resulting direction vector vRN as the sum of all the
vectors v used for LIC tracking. The angle 
 between the vector vRN and the normal
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Fig. 8 Determination of hue
value by the angle 
 between
the slice normal r and the
resulting vector vRN

vector r, orthogonal to the image slice, determines the hue value. j
 j is mapped from
the Œ90; 0� interval to the Œ120; 240� color range (Fig. 8). As a result, all streamlines
within the slice are green in color and all streamlines orthogonal to the slice are
colored in blue, thus avoiding continuity breaks (Fig. 9 right). We only use these
two parameters and always set the saturation to 100.

5.3 Slicing

Since the LIC result is a three-dimensional texture, slicing is a major application of
the visualization. Orthogonal slices can be visualized separately. But when using a
slice thicknesses in the order of the resolution of the LIC volume, e.g. < 0:2 mm
within one slice, the amount of information is low (Fig. 10 left). Therefore it is
useful to combine adjacent slices (Fig. 10 middle and right). This is carried out by
computing the average of the LIC values of adjacent pixels or, with even better
contrast, by selecting the maximum value. The resulting slice thickness should be
in the order of the resolution of the original diffusion dataset (2 mm). The choice of
lower slice thickness leads to visualization results with fiber discontinuity, because
only few fibers touch the slice over longer distances.

6 Results

For the in vivo studies two different diffusion data sets were used. The diffusion data
set from the brain of a healthy 24 year old human male which was acquired on a
3-T Trio MR scanner (Siemens Healthcare, Erlangen) using a spin-echo echo-planar
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Fig. 9 From top to bottom: section of a sagittal LIC slice image with gray scaling (top), and
directional encoding with RGB (middle) and with our HSB color model (bottom)

diffusion-weighted sequence (TR D 8000 ms; TE D 105 ms) with 64 diffusion-
encoding gradients, a b-value of 2000 s=mm2 and an isotropic spatial resolution of
2 mm. A data matrix of 108 � 108 was obtained measuring 56 slices. A second
dataset from a clinical study of a 6-year old child with a brain tumor in the left
central region was acquired on a 1.5 T Vision Scanner using a spin-echo echoplanar
diffusion-weighted sequence (TR D 11500 ms; TE D 122 ms) with 60 diffusion-
encoding gradients, a b-value of 3000 s=mm2 and an isotropic spatial resolution of
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Fig. 10 Combination of adjacent slices (zoomed detail on a sagittal slice of a human brain): single
slice (left), 5 slices (middle) and 10 slices (right) of the super-resolution LIC dataset

2.5 mm. A data matrix of 96 � 96 was obtained measuring 60 slices. The child
suffered from focal seizures due to this tumor and was scanned as part of a pre-
surgical assessment.
We applied a data pre-processing chain on both datasets. First we used a mutual
information-based retrospective motion correction scheme in order to remove
motion that occurred during the scan. We then computed the diffusion tensor for
each voxel and additionally reconstructed the FOD with the constrained spherical
deconvolution algorithm using a maximum spherical harmonic order lmax D 8.
We determined one or two main directions for each voxel by detecting the FOD’s
local maxima. The proposed approaches of input pattern generation, multi-kernel
LIC and color-coding were applied to the datasets. For the input pattern generation
a resolution factor of FE of 1/20 and a cylinder length of 12 subvoxels was used.
Multi-kernel LIC was performed with a box filter and a maximum length L of 12
integration steps for each direction.

Figure 11 shows the results of all three steps of a coronal slice from the healthy
volunteer dataset. The slice thickness used was 1.0 mm. The input structure in
Fig. 11 top shows the overall distribution of the glyphs. The placement result
already depicts crossing regions. Major fiber pathways, such as pyramidal tract and
corpus callosum were depicted with good contrast, including the crossing of callosal
projections with pyramidal fibers (Fig. 11 middle). The blue structures in the color
coded LIC result represent fibers running orthogonal to the slice plane, such as the
cingulum (Fig. 11 bottom).
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Fig. 11 Coronal slice from healthy volunteer dataset: input pattern (top), LIC result (middle) and
color coded LIC map (bottom)
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Fig. 12 Combined volume
rendering of the LIC result
from patient dataset with
surface rendering of tumor
(blue) clearly depicts
infiltration of left branch of
pyramidal tract (arrow)

The LIC result from processing the tumor patient dataset was volume rendered.
Additionally the tumor was segmented. LIC and segmented tumor were visualized
using the AMIRA software (Fig. 12). The figure indicates a region in which
tumorous tissue evidently infiltrated the left branch of the pyramidal tract, without
having destroyed anisotropic behavior. Volume rendering of the LIC result was
restricted to a subvolume slice of approx. 100 mm thickness with its center in the
center of the tumor. By interactive rotation of the 3D visualization the assessment
of the relationship between the tumor and the neighboring fiber pathways can
be enhanced. This information was of great value for surgeons during operation
planning. In addition, the intraoperative electric stimulation confirmed that the
fibers within the solid part of this dysembryoblastic neuroepithelial tumor (WHO
grade 1) were in fact pyramidal tract fibers. Consequently, a subtotal resection
was performed, with only a small part of the tumor remaining. The patient had
no postoperative sensorimotor deficit.

The processing and visualization was performed on a Linux (Ubuntu 12.04)
workstation with the following specifications: Intel Core i7-3630QM (8 MB cache,
2 GHz� 8 cores with hyperthreading), 8 GB RAM(DDR3, 1333 MHz), NVIDIA
GeForce GT425 (with 1 GByte memory) graphics card. All processing steps were
performed using the modular software platform OpenPDT developed by our group.

Since we apply LIC to a highly resolved 3D sample pattern with a grid resolution
that surpasses the spatial resolution of the original diffusion dataset by an order of
magnitude, the computational workload of the LIC step of our method is quite high.
With a typical whole brain diffusion dataset consisting of more than 50 slices and
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a spatial resolution of approximately 2.0 mm, resulting processing times are of the
magnitude of several hours on standard desktop computers.

7 Discussion and Conclusions

We have presented an approach for fiber visualization by application of the
LIC algorithm. To generate meaningful LIC maps which reliably represent fiber
structures, novel pre- and post-processing methods were proposed. Firstly, the tensor
model was dismissed and instead an FOD representation of the local diffusion
profile was used, due to its capability of describing multiple anisotropy directions.
We used FOD or alternatively multi-cylindrical glyph samples, rasterized by a
super-resolution grid, and thus were able to impress anisotropy characteristics into
the LIC input pattern and substantially improve the contrast of LIC maps. Secondly,
we proposed a sample placement strategy, which uses a uniform random technique
to distribute seeds over the data volume and sets samples along integration lines that
were produced by deterministic tracking over very short distances. This allowed
the continuity of fiber lines in LIC maps to be enhanced. Thirdly, a color-encoding
scheme for the directional encoding of LIC maps was presented. The method was
applied to synthetic datsets as well as in-vivo datasets of a healthy volunteer and
a tumor patient. Results were presented to neuroradiologist and neurosurgeons
and were in concordance with their findings. However, our preliminary evaluation
results need critical verification by further clinical studies.

7.1 Future Work

As explained above, the method’s computational workload might be an obstacle to
its integration with clinical protocols. Therefore, algorithmical optimizations, e.g.
by exploitation of spatial coherence, as well as usage of computation parallelization
have to be implemented. We are already working on the parallelization strategy
by transferring the LIC processing to graphic processing units (GPUs). The usage
of their high memory bandwidth and high degree of parallelism can substantially
reduce the processing time. Since for each voxel of the super-resolution grid the
same processing steps have to be performed it is possible to parallelize the algorithm
and exploit a GPU’s parallel processing architecture. Our preliminary results show
that an increase of the processing speed by factors of 100–150 becomes possible,
depending on the graphics hardware used.

The visualization strategy of presenting LIC maps has not been widely used in
DW-MRI. Therefore, we cannot rely on previous practical experience with this kind
of methodology and we are aware of the fact that the method may generate visual
stimuli that lead to erroneous interpretations of the diffusion data. With respect to
a thorough clinical evaluation we currently focus on diseases which are associated
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with white matter demyelinization, e.g. multiple sclerosis. Another focus is on the
pre-operative assessment of tumor datasets. Application of the method to other 2D
and 3D flow fields, e.g. from air or fluid simulations, is another topic of further
research.
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Exploring Crossing Fibers of the Brain’s White
Matter Using Directional Regions of Interest

Andreas Graumann, Mirco Richter, Christopher Nimsky, and Dorit Merhof

Abstract Diffusion magnetic resonance imaging (dMRI) is a medical imaging
method that can be used to acquire local information about the structure of white
matter pathways within the human brain. By applying computational methods
termed fiber tractography on dMRI data, it is possible to estimate the location
and extent of respective nerve bundles (white matter pathways). Visualizing these
complex white matter pathways for neuro applications is still an open issue. Hence,
interactive visualization techniques to explore and better understand tractography
data are required. In this paper, we propose a new interaction technique to support
exploration and interpretation of white matter pathways. Our application empowers
the user to interactively manipulate manually segmented, box- or ellipsoid-shaped
regions of interest (ROIs) to selectively display pathways that pass through specific
anatomical areas. To further support flexible ROI design, each ROI can be assigned
a Boolean logic operator and a fiber direction. The latter is particularly relevant
for kissing, crossing or fanning regions, as it allows the neuroscientists to filter
fibers according to their direction within the ROI. By precomputing all white matter
pathways in the whole brain, interactive ROI placement and adjustment are possible.
The proposed fiber selection tool provides ultimate flexibility and is an excellent
approach for fiber tract selection, as shown for some real-world examples.

1 Introduction

The human brain is a highly interconnected organ comprising about 100 billion
neurons and 150 trillion synapses. In order to gain insight into the complex archi-
tecture, diffusion magnetic resonance imaging (dMRI) and suitable reconstruction
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techniques have emerged (see [1] for an overview). dMRI measures the diffusion
of water, which originates from the random motion of molecules due to thermal
energy. In fibrous tissue such as the white matter of the nervous system, diffusion is
restricted to a preferred direction. Therefore, conclusions about the underlying tissue
structure can be drawn from the diffusion measurements. This makes it possible to
analyze the structure of the human brain in vivo, which is of interest for different
areas in medical research and applications.

The acquired diffusion characteristics support the diagnosis of certain pathologi-
cal disorders, e.g. acute ischemic stroke, degenerative diseases such as Alzheimer’s
disease or psychiatric disorders such as schizophrenia. In neuroanatomy and
neurosurgery, the diffusion measurements serve as a basis for the reconstruction
of white matter structures.

However, the processing and visualization of dMRI data is a non-trivial task
due to the complexity of the acquired data, which comprehensively describes the
local diffusion properties. The inherent complexity of the diffusion imaging data
has triggered research efforts towards the reconstruction and visualization of white
matter tracts, which comprise the design of meaningful scalar metrics, adequate
reconstruction algorithms, as well as comprehensive visualization techniques.

In recent years, there has been a steady progress, both on the imaging side as
well as on the fiber reconstruction side. The advent of more sophisticated diffusion
models based on high angular resolution diffusion imaging (HARDI) has led to
more detailed information regarding the underlying diffusion profiles. This is of
particular interest in case of regions with a complex white matter architecture, such
as fanning, kissing or crossing fibers. Based on this imaging data, fiber tractography
algorithms have emerged that are able to address such complex fiber configurations.
The pathways produced by tractography are abstract representations of possible
routes through the white matter of the brain.

Recent tractography approaches comprise global and probabilistic methods, as
well as approaches that are designed to resolve fiber crossings by regularized
HARDI tractography. In Reisert et al. [2], a global approach to generate optimally
distributed fibers along the white matter structures is proposed. The probabilistic
approach proposed in Jeurissen et al. [3] uses a residual bootstrap tractography
to account for orientations of multiple intravoxel fiber populations. An approach
to simultaneously estimate the local fiber orientations and perform multi-fiber
tractography is introduced in Malcolm et al. [4], which proved to significantly
improve the angular resolution at crossings and branchings. Jeong et al. [5] combine
independent component analysis tractography with a ball-stick model to isolate
intravoxel crossing fibers even for small numbers of fibers with the same orientation.
In order to better resolve complex fiber configurations, Rowe et al. [6] propose
a tractography approach that takes into account fiber dispersion which aids their
approach in finding connectivity commonly missed by other methods.

However, visualizing these complex white matter pathways for neuro appli-
cations is still a non-trivial task, especially in the light of recent developments
in tractography for complex fiber configurations. Hence, interactive visualization
techniques to explore and better understand tractography data are required.
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First attempts for selecting fiber tracts comprise filtering [7] and regions of
interest (ROIs) [8]. However, since these approaches do not provide any direct user
control, interactive fiber selection techniques have been proposed [9–11] which
make it possible to interactively create and modify ROIs and associated proper-
ties. However, these interactive approaches do not specifically address complex
fiber configurations which are of increasing interest in advanced fiber tracking
approaches.

In this paper, we propose a new interaction technique to support exploration
and interpretation of white matter pathways, particularly in regions with complex
fiber configurations. Our application makes it possible to interactively manipulate
manually segmented, box- or ellipsoid-shaped ROIs to selectively display pathways
that pass through specific anatomical areas. To further support flexible ROI design,
each ROI can be assigned a Boolean logic operator. Our key contribution is a
new interaction technique which allows specifying a fiber direction to assist in the
exploration and identification of fiber tracts from dMRI tractography. This technique
is particularly relevant for kissing, crossing or fanning regions, as it allows the
neuroscientist to filter fibers according to their direction within the ROI in order
to resolve complex fiber configurations.

2 Related Work

Tractography algorithms are commonly used to reconstruct fibers from dMRI data
for further visualization. However, due to the vast amount of generated fibers,
selection techniques are required in order to make this information accessible.

To further process dMRI tractography results, Zhang et al. [7] proposed to
filter reconstructed fibers based on length, average linear anisotropy, and distance
separating neighboring fibers. In Conturo et al. [8], ROIs are introduced to select
fiber bundles that connect anatomically or functionally predefined regions. A
combination of ROIs with Boolean AND, OR, and NOT operations to isolate
particular fiber tracts is proposed in Wakana et al. [12]. Although these groups
anticipated the potential value of selection techniques for dMRI tractography, the
aforementioned approaches do not comprise any interactive filtering technique.

Interactive fiber selection by placing and interactively manipulating box- or
ellipsoid-shaped regions to selectively display pathways was initially proposed
in [9, 10]. Apart from specifying ROIs, their user interface makes it possible
to assign a Boolean operator to a ROI as well as to further specify pathway
properties such as length or average fractional anisotropy. In Blaas et al. [11],
a similar technique is presented which is computationally more efficient due to
dedicated data structures for speed-up. The box- or ellipsoid-shaped ROIs are
overcome in Akers et al. [13], where arbitrarily shaped ROIs are generated using
a special bimanual interface for 3D pathway selection which employs a pen and
a trackball. In merhof10, a segmentation user interface is provided in order to
generate user-defined ROIs, and the ROI behaviour can be further specified using
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Boolean operators. The approach proposed in Cai et al. [14] extends the previously
presented box- and sphere-shaped ROI selectors by a multi-view interface to enable
comparative visualizations. In [15], a 2D embedding of the fiber tracts is displayed
along with the 3D view, with the aim of removing visual clutter which can be helpful
when selecting fiber tracts.

New interaction mechanisms were explored in [16], where a framework for real-
time selection of neuronal fiber bundles using a Wii remote control (a wireless
controller for Nintendo’s gaming console) is employed. In order to achieve a smooth
interaction, a novel space partitioning data structure is proposed, which allows for
queries that are much faster than previous state-of-the-art approaches.

An automated approach for fiber tract selection is presented in [17]. Given a ROI,
the approach locates the point on the fiber that is closest to the centroid of the ROI
and the fiber direction at this point and performs a k-means fiber clustering based on
these parameters. In this way, a delineation of major tract systems can be achieved
without user interaction (e.g. by using ROIs from an atlas).

A broad overview addressing some of these approaches but also covering related
fields such as streamline clustering, edge detection and segmentation, topological
methods, and extraction of anisotropy creases is provided in [18].

However, none of these approaches is specifically dedicated towards complex
fiber configurations such as kissing, crossing or fanning fibers, which may emerge
when using state-of-the-art fiber tracking algorithms (Figs. 1 and 2).

Fig. 1 Illustration of filtering method based on directional regions of interest (ROIs). Left:
Deactivated directional filtering yields an imperfect result for motor pathway which also comprises
lateral fibers in green (a). Optimal result after directional filtering, providing the motor pathway
without any confounding fibers (b). Right: Fiber selection based on ROI (directional filtering
deactivated) yields imperfect result containing fibers of both the cingulum and the corpus callosum
(c). Activation of directional filtering allows to either extract the corpus callosum (d) or the
cingulum (not shown here)
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Fig. 2 (a) Fiber tractography result of the whole brain showing a view across the corpus callosum.
(b) Positioning of ROI (wireframe representation) with the aim to segment the cingulum (green
tract). (c) Voxel representation of ROI to clearly see where ROI intersects the fibers. (d) Fiber
selection based on ROI (directional filtering deactivated) yields imperfect result containing fibers
of both the cingulum and the corpus callosum. Activation of directional filtering allows to either
extract the corpus callosum (e) or the cingulum (f)

3 Data Acquisition and Preprocessing

3.1 Data Acquisition

dMRI and anatomical MRI data was acquired on a 3T MRI scanner Tim Trio
(Siemens, Erlangen, Germany). For anatomical reference, T1-weighted 3D images
were acquired (3D magnetization-prepared rapid gradient echo; repetition time,
1900 ms; echo time, 2.26 ms; field of view, 256 mm; matrix, 256 � 256; slice
thickness, 1 mm; 176 slices, sagittal).

dMRI data was acquired using a single shot echo-planar imaging sequence with
30 noncollinear diffusion-encoding gradients (repetition time, 7800 ms; echo time,
90 ms; field of view, 256 mm; matrix, 128 � 128; slice thickness, 2 mm; numbers
of excitations, 1; b D 1000 s=mm2; voxel size 2 � 2 � 2 mm3).

Acquisition of all data sets took about 15 minutes per subject.
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3.2 Precomputing Pathways

For fiber tractography, a selection of different methods is available in our toolbox,
which comprise both standard tractography algorithms for diffusion tensor imaging
(DTI) data as well as more advanced techniques for HARDI data. The following
methods can be selected:

STT: Streamline tracking (STT) [8, 19, 20] is a common method for fiber
tracking based on DTI data. This method follows the principal diffusion direction
throughout the volume, where the integration is typically performed numerically
with Runge-Kutta schemes of order 1 to 4. A user-defined threshold based on
fractional anisotropy (FA) [21] is applied to stop fiber propagation if the direction
of dominant diffusion is not well defined.

TEND: Tensor deflection (TEND) [22–24] takes advantage of the whole dif-
fusion tensor and computes the new fiber direction as a product of the local
diffusion tensor and the incoming fiber direction. Similarly to STT, a termination
threshold based on FA is used in order to stop propagation if the fiber leaves
regions with anisotropic diffusion.

Maximum tracking: For fiber reconstruction based on HARDI data, a determin-
istic multidirectional tracking proposed by Descoteaux et al. [25] is used, with
the generalized fractional anisotropy (GFA) index [26] as the anisotropy measure
to terminate fiber propagation. This tractography approach is able to describe
crossing and splitting fiber bundles based on the fiber orientation distribution
function (ODF). It extends the classical STT approach by taking into account
multiple ODF maxima in every integration step.

GFT: A global fiber tracking (GFT) approach with acceptable computing times
for a broad class of practical applications was proposed [2]. The approach
generates optimally distributed fibers along the white matter structures and is
able to model noise in diffusion data through global optimization with particle
simulation.

The first three methods are local approaches which have several steps such as
seed point selection, fiber propagation and fiber termination in common. Starting
from predefined seed points, fibers are propagated until a termination criterion (FA
or GFA) is reached. Other commonly applied criteria for streamline termination are
a predefined maximum length in order to assure termination of the algorithm after
a finite number of steps, or a maximum bending angle [20] which assumes that
anatomical fibers do not take sharp turns.

In order to interactively select fiber bundles for exploring fiber tracts, a tracking
of the entire white matter region of the brain needs to be generated in the first place.
For this purpose, the first three tractography approaches (STT, TEND and maximum
tracking) require seed points to initialize fiber tracking. Accordingly, seed points
are generated for all voxels above a user-defined FA or GFA threshold similarly to
Conturo et al. [8].
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To summarize, in our tool the neuroscientist can make different selections to
control the outcome of the initial tractography result: choice of different tracking
algorithms, FA/GFA-based threshold for seed point generation, FA/GFA-based
threshold for fiber termination, maximum bending angle, threshold for minimum
and maximum fiber length.

4 Method

In order to extract individual fiber tracts, the neuroscientist needs to define ROIs that
are employed in the fiber selection process. In the following sections, all features
of the proposed ROI tool are outlined in detail, which comprise functionality to
define the ROI (Sect. 4.1), to assign a Boolean operator to the ROI (Sect. 4.2) and
functionality to control and filter the direction of fibers within a ROI (Sect. 4.3).
Implementation details are provided in Sect. 4.4.

4.1 Definition of ROI

User-defined ROIs based on manual segmentation—For manually segmented
ROIs, a voxel-based segmentation tool is used which makes it possible to create
ROIs of arbitrary shape and extent. For this purpose, the dMRI dataset that is mea-
sured without diffusion gradient is loaded into the segmentation ROI tool and used
as anatomical reference. The user-defined ROI based on manual segmentation is
drawn manually on axial, sagittal or coronal slices based on anatomical knowledge
and is finally imported into the fiber tracking tool for further processing. In this way,
it is possible to define non-trivial ROI shapes, e.g. in the vicinity of a tumor.

Box-shaped ROIs—Box-shaped ROIs can be either created by using a control
widget where the user can manually specify the position according to the axial,
sagittal and coronal slice number and the desired size of the box, or by dragging the
cursor directly within the dataset displayed in the 3D viewer to the desired position.
After creating such a ROI, it is possible to adjust the size of the ROI interactively by
dragging the edges of the ROI (see Sect. 4.4 for details). This provides the possibility
to edit the ROI directly and interactively within the 3D viewer according to the user’s
needs.

Sphere-shaped ROIs—Analogously to box-shaped ROIs, sphere-shaped ROIs
can be created in the two same ways, i.e. by defining the ROI position and size
within a control widget or by dragging the cursor to the desired ROI position within
the 3D viewer. The size of a sphere-shaped ROI is defined by its radius, which can
also be adjusted interactively by dragging the displayed transformer nodes besides
the sphere (see Sect. 4.4 for details).

Furthermore, each ROI can be visualized in two different ways: wire frame view
and voxel view, as illustrated in Fig. 3. The wire frame view allows to better position
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Fig. 3 Sphere-shaped ROI and Open Inventor manipulators. The ROI can either be displayed as
wireframe (left) or as voxels (right)

the ROI in space but is less suitable to determine whether individual fibers are
crossing the ROI or not, whereas the voxel view allows to exactly estimate all fibers
which are crossing the ROI.

4.2 Assigning Boolean Operators to ROIs

Boolean logic has many applications and is generally used in order to define
conditions on sets to retrieve specific elements. Combining ROIs with Boolean
operations to isolate particular fiber tracts was first proposed by Wakana et al. [12]
and proved to be of great value in several interactive ROI selection tools [9, 10, 14].
In our tool, the three basic Boolean operators are implemented, which comprise
logical OR and logical AND to perform the union and intersection of sets of fibers,
and logical NOT to exclude fibers.

More specifically, a ROI with associated Boolean operator AND requires any
fibers to cross this ROI, i.e. multiple AND ROIs result in a fiber bundle that traverses
all AND ROIs. A ROI with assigned Boolean operator OR requires all fibers to
traverse either this ROI or any other OR ROI. In order to exclude fibers from the
extracted fiber tract, a NOT ROI may be defined which deletes any fibers that cross
the ROI. Effectively, the functionality of the NOT ROI is identical to the sculpture-
based removal proposed in Cai et al. [14], where a box or sphere-shaped sculpture
widget is used to sculpt away undesirable fibers.

As already demonstrated [9, 10, 12, 14], more flexibility for tract selection can be
achieved by combining ROIs with different associated Boolean operators. For this
reason, this approach has also been integrated into our tool for ROI based selection
of fiber tracts.
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4.3 Assigning Directions to ROIs

In addition to the assignment of Boolean operators to ROIs, we further propose to
assign directions to ROIs. This allows to only extract fibers with a given direction
within the ROI. Especially when exploring regions with kissing, crossing or fanning
fibers, this gives the user the possibility to extract only those fibers which are
relevant and important for a given purpose.

For this purpose, each ROI has two direction manipulators that can be separately
activated and deactivated, respectively. These manipulators allow to visually adjust
two different user-defined directions. For each fiber, the average direction of all
fiber segments within the ROI is used to compare it to the desired user-defined
direction given by the directional manipulators. Furthermore, the user can define
a parameter to control the allowed deviation between the user-defined and actual
average direction of the fiber.

The implementation of the box- and sphere-shaped ROIs with direction selection
is performed in Open Inventor Version 2.1.5-10-16 and is described in detail in
Sect. 4.4.

4.4 Implementation

In this section, the implementation of the ROIs and the directional filtering of the
fibers is described. The box- and sphere-shaped ROIs are constructed with an Open
Inventor scene graph which is outlined in detail in Sect. 4.4.1. The implementation
of the filtering of fibers according to a user-defined direction is explained in
Sect. 4.4.2. Details about an efficient implementation of real-time filtering are
provided in Sect. 4.4.3.

4.4.1 Open Inventor Scene Graph

Open Inventor provides a large library of objects, including geometric primitives
and interactive manipulators, which can be modified and extended according to own
requirements [27]. All objects are represented as nodes and can be connected with
each other. The resulting graph is called Open Inventor scene graph.

In Fig. 4 (left), the basic scene graph for a sphere-shaped ROI is displayed. The
node SoSphere represents the sphere. To adjust the size of the sphere interactively,
the manipulator SoTransformBoxDragger is added to the scene graph. The trans-
formation node SoTransform applies the scaling caused by the manipulator to the
sphere.

In addition to the manipulator for adjusting the size, each ROI provides two
arrows to assign a direction to the ROI, which can be activated and deactivated
via the user interface and appear or disappear in the 3D view accordingly. For this
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Fig. 4 Left: Open Inventor scene graph for sphere-shaped ROI. Right: Open Inventor scene graph
to define a ROI direction

purpose, the basic scene graph is extended with an arrow represented as a long
cylinder. The manipulation node SoTrackballManip enables to rotate the cylinder in
each direction to define a direction associated to the ROI. Figure 4 (right) shows this
extension of the basic scene graph.

The resulting sphere-shaped ROI is shown in Fig. 3. The radius of the ROI can be
adjusted by dragging one of the manipulator nodes besides the sphere. Furthermore,
the user can also activate and adjust up to two directional manipulators (yellow and
red arrow), which have their own trackball for manipulation. A ROI can be displayed
in two different ways: Fig. 3a shows the wireframe representation of a sphere-shaped
ROI, whereas in Fig. 3b the ROI voxels are displayed.

Box-shaped ROIs are implemented analogously to sphere-shaped ROIs. In case
of box-shaped ROIs, width and length can be adjusted with the Open Inventor
manipulator (rather than the radius as in sphere-shaped ROIs).

4.4.2 Implementation of Directional Filtering

After creating or adjusting a ROI, all fibers are filtered automatically according to
the position and size of the ROI and its assigned Boolean operator. If the directional
filtering option is also activated, the given directions are taken into account as well
to extract fibers with a desired direction.

For this purpose, a callback method is invoked directly after adjusting the ROI.
This callback method updates the ROI voxels automatically and calls a function to
filter the fibers with the given ROIs and fiber directions.

When filtering the fibers with a direction, this callback method calculates for
each fiber the average direction of all fiber segments within the ROI, and compares
this average direction with the user-defined direction given by the manipulator. All
fibers with a direction close to the desired direction (the user can define a maximum
deviation from the initially defined direction) are extracted and visualized.



Exploring Crossing Fibers Using Directional Regions of Interest 189

4.4.3 Real-Time Fiber Selection

For efficiency reasons, the process of filtering fibers is accelerated by an octree
implementation, similarly to Blaas et al. [11]. For this purpose, each ROI is
encompassed by a cube which is subdivided into eight child cubes of equal size.
This subdivision is recursively applied to each child cube until the smallest cube
comprises a pre-defined amount of voxels (256 voxels in our case). Each leaf cube
contains a list of those voxels within the boundaries of the leaf cube that are marked
by the ROI. With this method, each point of a fiber can be efficiently checked for
containment in the ROI by recursively searching through the octree based on the
coordinate of the fiber point.

5 Results and Discussion

For benchmarking, a PC equipped with an Intel Core i7 8� 3.4 GHz processor,
32 GB RAM and an NVidia Geforce GTX 660 Ti graphics card with 2 GB graphics
memory was used. The fiber tracking results within the whole brain consisted of
approximately 10,000 fibers comprising about 2,000,000 fiber segments in total.

Table 1 gives a detailed overview of the performance results of the presented
fiber selection tool. For each of the use-case scenarios presented in Figs. 2, 5 and 6,
the number of fibers of the whole-brain tracking is provided as well as the timings
for extracting individual white matter tracts based on the ROIs displayed in the
respective subfigures.

In order to illustrate the functionality of our tool, different use-case scenarios are
shown in Figs. 2, 5 and 6, which are discussed in the following:

Scenario 1: The cingulum is a thin, arching fiber bundle that forms the white
matter core of the cingulate gyrus, following it from the subcallosal gyrus of
the frontal lobe beneath the rostrum of corpus callosum, to the parahippocampal
gyrus and uncus of the temporal lobe. As one of the connecting parts of the limbic

Table 1 Timings in seconds
for filtering fibers of the
whole brain in the use-case
scenarios presented in
Figs. 2, 5 and 6

Figure Number of fibers to filter Time

2 d 4050 0:07 s

2 e 4050 0:22 s

2 f 4050 0:20 s

3 a 10,687 0:05 s

3 b 10,687 0:05 s

3 c 10,687 0:05 s

3 d 10,687 0:70 s

4 b 10,017 0:04 s

4 c 10,017 0:05 s

4 d 10,017 0:80 s
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Fig. 5 (a) Corona radiata of the left hemisphere after tractography with a box ROI located in the
brainstem. (b) Positioning of ROI in region that refers to the motor pathway. (c) Without directional
filtering, the motor pathway is displayed with some remaining lateral fibers (green). ( d) Directional
filtering provides optimal result for the motor pathway, without any confounding fibers as in (c)

system, its anterior part is linked to emotion, whereas the posterior section is
involved in cognitive functions. In Fig. 2, a fiber tractography result of the whole
brain is provided that shows a view across the corpus callosum (red) with the
cingulum in green (a). In (b,c), a ROI is positioned that fully encompasses the
cingulum with the aim to segment this fiber tract. In this scenario, fiber selection
of the cingulum based on standard ROI tools would be challenging and would
require multiple ROIs in order to reliably extract this structure. This can be seen
in (d), where fiber selection based on a standard ROI without any directional
filtering yields an imperfect result containing fibers of both the cingulum and
the corpus callosum. However, after activating the directional filtering, either the
corpus callosum (e) or the cingulum (f) can be easily extracted.

Scenario 2: The corona radiata comprises both descending and ascending
neuronal fibers that carry almost all of the neural traffic from and to the cerebral
cortex. The corona radiata can be depicted by positioning a ROI in the brainstem
as shown in Fig. 5a. In order to select the fraction of fibers of the corona radiata



Exploring Crossing Fibers Using Directional Regions of Interest 191

Fig. 6 Brain tumor patient (tumor delineated in red). (a) Tractography result of the whole brain.
(b) Corona radiata of the right hemisphere after tractography with a box ROI located in the
brainstem, with projection fibers passing nearby the tumor. (c) Filtering with ROI in region that
refers to the motor pathway. Without directional filtering, the motor pathway is displayed with
some remaining lateral fibers (green). (d) Directional filtering provides optimal result for the motor
pathway, without any confounding fibers as in (c)

which refers to the motor tract, another ROI is positioned in that respective
region (b). In this scenario, fiber selection based on standard ROI tools would
provide an imperfect filtering for the motor pathway with remaining lateral fibers
(green), as illustrated in (c). However, with the directional filtering tool proposed
in this work, an optimal result can be achieved as shown in (d) without any
confounding fibers.

Scenario 3: Fiber tractography results are of interest for different neuro
applications, which also comprises planning for brain tumor surgery as illustrated
in Fig. 6. In order to provide an anatomical reference, the anatomical MRI dataset
is rendered together with the fibers. The tumor which has been segmented by a
medical expert is delineated in red. In order to interactively explore the fibers
in the vicinity of the tumor, ROI-based tools are of great interest. Starting with
a tractography result of the whole brain (a), the corona radiata of the right



192 A. Graumann et al.

hemisphere can be displayed by filtering with a box ROI located in the brainstem
(b). Note the projection fibers passing nearby the tumor. Filtering with a spherical
ROI in the region that refers to the motor pathway provides an imperfect result
with remaining lateral fibers (green) if directional filtering is deactivated (c), and
an optimal result if directional filtering is used (d).

According to the experience of the neuroscientists who have explored our tool,
the wireframe representation is preferable in order to position a ROI, as this rather
transparent representation of the ROI provides better spatial orientation and more
accurate positioning with respect to a target white matter structure. The voxel view
on the other hand was preferred in order to exactly see and cross-check which fibers
are actually intersected by the ROI.

As regards the directional manipulators, either one manipulator (possibly with
a greater directional tolerance) or two manipulators were used. In general, two
directional manipulators provide more flexibility, e.g. for crossing fibers or in case
of fiber branchings, and were preferably used in regions with more diverging fibers
such as in Fig. 1 (left).

Considering practical application in neurosciences, a flexible and interactive tool
for white matter fiber bundle selection is an important prerequisite to explore and
interact with the tractography data. However, in order to explore and view fibers
within their anatomical context, a multimodal visualization combining function
and surrounding anatomy is required as shown in Fig. 6. By investigating such a
multimodal representation, the neuroscientist is able to e.g. verify whether important
tract systems are located in the vicinity of the tumor. Our software application
including the newly developed tool for directional ROIs provides interaction and
visualizations of high quality and at interactive frame rates.

In comparison to previously presented techniques that do not aim at interactive
manipulation [7, 8, 12] or that are intended to operate fully automatically [17],
interactive adjustment of ROIs offers high flexibility and makes it possible to extract
fiber bundles with a complex architecture. This can be essential in many medical
applications related to neurosciences or neurosurgery, e.g. for selection of displaced
fiber bundles in the presence of a brain tumor, or in case of crossing fiber bundles
in the area of the centrum semiovale. For this reason, previous research focused
on interactive ROI-based techniques [9–11, 13, 14, 28]. In addition to dedicated
data structures that enable interactive processing times, these approaches share the
idea of supporting user control by means of automated ROI placement, flexible ROI
design and Boolean operators assigned to ROIs. The directional ROIs proposed in
this paper add an additional degree of freedom by providing a means of filtering
fibers within the ROI according to a user-defined fiber direction. The presented
approach could potentially also combined with advanced user interfaces, such as
the framework presented in [16].
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6 Conclusion

In light of recent advances in diffusion imaging and tractography to better capture
the complex architecture of white matter fiber tracts, appropriate tools for selecting
fiber structures are required likewise, as proposed in this work. For this purpose, we
have presented an interface to interactively explore dMRI fiber tractography results.
As opposed to previous applications, our interface allows to interactively manipulate
ROIs to selectively display pathways with dragging operations directly in the 3D
viewer. Our key contribution, a new interaction technique which allows to specify a
fiber direction to assist the exploration and identification of fiber tracts, proved to be
of great value in case of complex fiber configuration. By assigning a fiber direction
to a ROI, it becomes possible to resolve kissing, crossing or fanning regions as
illustrated by several real-world examples. Overall, the presented tool overcomes
the limitations of current tract selection tools and offers ultimate flexibility in tract
selection.
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Multi-Modal Visualization of Probabilistic
Tractography

Mathias Goldau and Mario Hlawitschka

Abstract Neuroscientists use visualizations of diffusion data to analyze neural
tracts of the brain. More specifically, probabilistic tractography algorithms are a
group of methods that reconstruct tract information in diffusion data and need
proper visualization. One problem neuroscientists are facing with probabilistic data
is putting this information into context. Neuroscience experts already successfully
utilized several techniques together with structural MRI to detect neural tracts in
the living human brain which were previously only known from tracer studies in
macaque monkeys. Whereas the combination with structural MRI, i.e., T1 and T2
images, has been important for these studies, new challenges ask for an integration
of other imaging modalities. First, we provide an overview of the currently used
visualization techniques. Then, we show how probabilistic tractography can be
combined with other techniques, trying to find new and useful visualizations for
multi-modal data.

1 Introduction

The human connectome and its visualization are one of the hottest topics in the field
of neuroscience and medical scientific visualization [35, 51, 58]. Hereby, the term
connectome describes the entirety of all neural connections of the brain, addressed at
different types [57] and scales. We focus on anatomical connectivity analysis at the
scale of millimeters within the living brain, for which magnetic resonance imaging
(MRI) and diffusion-weighted MRI (dMRI) are excellent imaging techniques. dMRI
measures the strength of the diffusion of water molecules along multiple orientations
and allows to estimate major white matter tracts, as diffusion is directed along
cell structures defining those tracts. The process of reconstructing such tracts is
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called tractography and became an important tool in neuroscience over the past
years. Many approaches have been proposed to extract neural tracts at high accuracy
from dMRI data [32]. In addition, neuroscience experts need anatomical context to
evaluate tractography data.

Among tractography algorithms, probabilistic diffusion tractography is a widely
used and promising tool to probe for white matter tracts in diffusion data [32, 50].
Probabilistic tracts are volumetric scalar maps of connectivity scores ranging from
zero to one, which relate a seed region or seed point to other areas in the brain. If
the score is close to one there is good evidence that there is a physical connection
of this point to the seed region. Otherwise, if the score is close to zero, there is high
evidence that there is no physical connection between this point and the seed region.
Therefore, the existence of a physical connection between every point of the brain to
this seed region is expressed by this connectivity score. For a review on tractography
and probabilistic tractography, including its limitations, see [6, 32].

Margulies et al. recently presented a very valuable overview of visualization
techniques currently used in the neuroscience community for connectome visu-
alization [39]. He state that there is a serious lack of visualizations combining
image modalities. To fill this gap, we analyze the combination of various imaging
modalities and probabilistic tractography data. Therefore, we survey typical datasets
neuroscientists are working with and typical visualization techniques used in
anatomical space. We conclude by giving recommendations on how to combine
techniques to better analyze structural connectivity data.

2 Background and Related Work

We first want to provide an overview of visualization techniques for probabilistic
tracts. Then, we relate our aim to recent survey articles and discuss techniques in
terms of perception useful for our analysis. Finally, we discuss recent work based
on the different data types, which is the basis for our classification and provides the
structure of this paper.

2.1 Visualizing Probabilistic Tracts

The most complete and up to date overview of visualization techniques for
probabilistic tractography data is given by Margulies [39]. The techniques work-
ing in anatomical space can be classified into two groups: three-dimensional
or slice-based. Three-dimensional techniques typically employ three-dimensional
structures, such as surface estimations, and slice-based techniques, such as axis
planar cutting planes, using only two dimensions for representation.

Slice based techniques typically superimpose some texture or colormap of the
tract over anatomical context. A common technique is the heat-map (also known
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Fig. 1 Overview of visualization techniques used for visualizing probabilistic diffusion tractog-
raphy data. All figures render the same tract using the same camera position. (a) Heat-map of the
probabilistic tract over T1 image. (b) LIC of major diffusion orientation filtered by the probabilistic
tract. (c) Same as (b) but with T1 background and colored LIC with heat-map. (d) Red Fiber-
Stipples with boundary curves as context. (e) DVR of the tract, with transfer function mapping low
scores to white shadow and the core of the tract to opaque red. (f) Isosurface, with isovalue set to
50 %. (g) Three nested isosurfaces. (h) Probabilistic fibers defining the connectivity scores

as hot-iron colormap), which can be used as overlay over structural MRI data [49],
see Fig. 1a. There, the color is made transparent in case of no connectivity, to dark
red for low connectivity and then gradually to bright yellow for highest connectivity.

Line integral convolution (LIC) [11], generates a texture from a vector field by
smearing a noise texture along integral lines. This can be used to depict major
diffusion directions in regions of the tract (Fig. 1b and c). Tract density imaging
(TDI) [12] produces similar results by partially projecting fibers onto a slice.

Fiber-Stippling [26, 29], generates small line stipples to depict diffusion direc-
tion. The connectivity score is encoded in stipple density and opacity. Anatomical
context is given as contours as well as usual structural MRI underlay, see Fig. 1d.
We consider Fiber-Stipples an important tool because it was used in a Technical
Spotlight in the European Journal of Neuroscience to reveal the structural bases
of cerebellar networks within the basal ganglia which were previously only known
from studies using transneuronal virus tracers in macaque monkeys [50].

In the category of three-dimensional techniques, direct volume rendering (DVR)
assigns a certain color and opacity to each volume sample which are then compiled
into one image. Hereby, the color mapping is modeled by a transfer function [60],
see Fig. 1e for an example. Another three-dimensional technique uses isosurfaces to
show outlines of the volumetric connectivity score. The isosurfaces are typically
represented as triangle meshes and depict only a particular connectivity score
(isovalue) of the tract, see Fig. 1f. Berres et al. [7] proposed nested isosurfaces to
display multiple values, see Fig. 1g. Brecheisen et al. [10] propose similar results,
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but with an illustrative rendering. Some probabilistic tracking algorithms repeatedly
start a randomized deterministic tracking from the seed region. The number of tracts
hitting a voxel is similar to the connectivity score. Polylines from such trackings are
called probabilistic fibers [16], see Fig. 1h.

2.2 Surveys

For identifying important image modalities and most commonly used visualization
techniques we consulted recent surveys [1, 38, 39, 55]. As probabilistic diffusion
tractography originates from dMRI and structural MRI, especially other MRI
modalities, such as functional MRI (fMRI) or magnetic resonance angiography
(MRA) [59], might be of interest. While fMRI gives information about functional
activity and connectivity, MRA data provides structural information of blood
vessels. Each image acquisition technique generates different raw data from which
additional data might be derived. The surveys state that most common visualization
techniques in anatomical space use textured (axis planar) slices, glyphs, polylines,
or surfaces.

2.3 Color and Perception

When combining different techniques, the perception of shape and color plays an
important role. Ware [61] provides a good overview on the use and perception of
colors. In addition, he also provides useful guidelines on choosing colors in various
settings. For example, Ware suggests to use Bauer’s method [5] to compute the most
discriminative color to a given set of fixed colors, cf. Paragraph “Fixed Colors”.
Additionally Ware propose to enhance luminescence when chromatic contrast is
exhaused, cf. Sect. 4.1.1, or outlining glyphs, cf. Fig. 6, to further increase visual
contrast. Additionally, Kapri et al. [60] evaluates optimal coloring for probabilistic
tract in virtual environment regarding uncertainty.

2.4 Data

For a systematic investigation, we first need an overview of what data is available
and of which visualization techniques are typically applied. In the following
paragraphs we briefly introduce various imaging modalities and types of data neu-
roscientists are working with. We then collect information on typical visualization
techniques and summarize the information in Table 1 which serves as basis for
our study. Even though they have proven to be very helpful to neuroscientists,
to focus this paper, we exclude visualization techniques outside of anatomical
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Table 1 Each row corresponds to a specific data type, named in the first column. The remaining
columns then identify common visualization techniques used for this data type

Common visualization techniques

Textured slices

Data Monochrome Color Glyph Contours Lines Surface

CT x x

Structural MRI: T1,T2, x x

Diffusion images x

DTI x

Complex diff. models x

Major diff. orientation x x

Diffusion indices x

Probabilistic tracts x x

Deterministic tracts x

Functional activity x

Functional connectivity x x

Segmentation x x x

PET/SPECT x

Surface data x

space such as dendrograms for hierarchical agglomerative clusterings, colored
matrices depicting functional correlation, and radial graphs with force-directed edge
bundling, cf. [9, 34, 39].

2.4.1 CT and Structural MRI

Usually computed tomography (CT) [36] and structural MRI data (T1,T2) [14] are
displayed on axis-aligned slices (coronal, sagittal, or axial) using a monochrome
texture representing the measured data. Since small nuances of gray are important
(see Fig. 2), contrast and brightness manipulators are often used for contrast
enhancement. Besides monochrome textures, different tissues (e.g. gray matter)
or structures (e.g. lesions, tumors, blood vessels, ventricular system) need to be
highlighted. Contrast improvement can be done using contrast agents during the
measurement, but some structures that are visible in the raw data can be extracted
in a postprocessing step. T1 data, for example, is also rendered on inflated cortical
surface maps or used to segment brain structures such as the ventricular system.
Furthermore, MRA data is used to reconstruct three-dimensional surfaces as well.
As segmentations and surfaces are derived data, we will discuss them separately
in Sects. 2.4.6 and 2.4.8.
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Fig. 2 These figures show the difficulty of reading structural MRI data at the example of the
internal capsule (IC) which consists of mainly three parts: Its anterior limb, posterior limb, and
the genu. In (a) red labels indicate their positions on an axial slice of a T2 image. (b) Same subject,
same axial slice position but with T1 data textured. With prior knowledge from (a) you hopefully
grasp the IC in (b) as well

2.4.2 Diffusion Images

Diffusion imaging measures diffusion strength along multiple orientations, also
called gradients or angles. For a typical high angular diffusion image (HARDI),
there are more than 30 different gradients, each resulting in a three-dimensional
scalar image representing the diffusion strength along its orientation [67]. Such
data is rarely visualized directly (if so, then on slices) and is typically used for
image registration processes, artifact reduction schemes, and, most importantly, to
construct data representing some model of the diffusion process.

The diffusion tensor is one of the oldest and most popular diffusion models [4,
32] and founded the diffusion tensor imaging (DTI). Although there are limitations
to this model, for example not being able to resolve crossings of even major white
matter bundles, it still has a very big (clinical) importance [1]. Compared to other
diffusion models, this model is a rather simplistic approach, which also might be
a reason for its ongoing success. The most common visualization of all diffusion
models is using glyphs [3, 30], often placed on axis-aligned slices. One of the
biggest limitations of DTI is that it is not able to resolve fiber crossings locally.
Even worse, Wedeen found white matter organization to be highly affected by fiber
crossings [63]. This triggered a new demand of more complex diffusion models such
as diffusion spectrum imaging (DSI) or q-ball imaging (QBI), cf. [32]. Nonetheless
their direct visualizations remain glyph centric.
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One of the most important parts of DTI is the major diffusion orientation
computed from the eigensystem of the second order tensor. A straight-forward
visualization technique is to map orientations into a color space. The most popular
coloring technique is the RGB-coloring scheme [48]. It maps a three-dimensional
orientation vector to RGB color space, so superior–inferior orientations mapped
to blue, left–right to red and finally anterior–posterior orientations are mapped
to green. Besides this, other coloring schemes have been developed [15]. Other
approaches depict the major diffusion orientation using gray-scale textures gener-
ated from LIC or by a small line per voxel, which is called vector-plot [24].

Diffusion indices or biomarkers are important scalar values generally derived
from diffusion models. They have been successfully used for certain diagnoses and
brain development studies and hence are important for brain analysis. The most
popular diffusion indices are derived from the rather simplistic diffusion tensor and
have been used in various clinical studies to study specific diseases, aging, and
developmental processes, e.g. [17, 53]. For example the fractional anisotropy (FA),
apparent diffusion coefficient (ADC), mean diffusivity (MD) or radial diffusivity
(RD). Beside DTI based diffusion indices, new generalized diffusion indices, such
as peak fractional anisotropy (PFA), generalized anisotropy (GA), and generalized
fractional anisotropy (GFA), have been conceived [23].

2.4.3 Tractography

As described earlier, tractography is the process of reconstructing neural tracts out
of diffusion data. The algorithms can be classified as follows: Deterministic tractog-
raphy methods generate polylines [21] whereas probabilistic tractography methods
often generate volumetric data. For an overview on probabilistic tractography, we
refer to Sects. 1 and 2.1. In the following we focus on deterministic tractography.

Deterministic tracts are often visualized as pure lines or tubes [39] and might
be colored globally or locally. Global coloring assigns the color of its main
orientation to a polyline, while local coloring schemes assign individual colors to
each line segment. Typical coloring schemes are the same as for directional color
coding mentioned earlier in Sect. 2.4.2. To increase depth-perception, polylines
may be enhanced with illumination and shadows [20]. Besides rendering the lines
directly, there are also techniques super-sampling the density of deterministic tracts
producing LIC-like textures such as TDI.

2.4.4 Functional Activity

Functional MRI (fMRI) is used to locate neural activity indirectly through
metabolism activity measured by the blood oxygen level dependent (BOLD)
factor [52]. The resulting data are scalar maps indicating regions of brain activity.
This activity is often rendered in the same way as probabilistic tracts by using
heat-map or rainbow colormaps on slices with structural MRI background.
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Electroencephalography (EEG) [47] and Magnetoencephalography (MEG) [2]
are other very popular techniques for measuring brain activity. These techniques
capture time-dependent electric or magnetic field strengths, respectively, with
sensors placed along the scalp. The measurement delivers plots of electric or
magnetic activity over time, induced by neural activity inside of the brain. The
spatial location of the activation areas at a time can be computed by so-called
source reconstruction. This reconstruction leads to scalar activation maps that, from
a visualization point of view, can be treated similarly to fMRI activation maps and
are therefore not listed separately in Table 1.

2.4.5 Functional Connectivity

Functional connectivity typically refers to a statistical concept of the correlation
between spatially distinct units e.g. between cortex areas. The most common
visualization within anatomical space is to connect cortex regions with a strong
correlation by a straight line or splines. Other approaches try to sample glyphs on
the gray matter–white matter interface denoting the anatomical direction of their
functional correlations [9].

2.4.6 Segmentation

One of the big goals of neuroscience is to classify brain regions based on functional
units, which are important on the cortex as well as in white matter tissues. For
example finding a cortex parcellation that decomposes the cortex into functional
units or finding white matter clustering schemes that decompose white matter
tracts into major white matter fiber bundles are both hot topics in the community.
The visualization techniques labeling different brain regions are usually limited to
employ most discriminative colors to each single unit [27, 66]. Besides coloring, the
visualization of segmentation data uses three-dimensional surfaces [25, 31] as well
as slice-based techniques [62]. For highlighting segmentation results sometimes also
contours are used to outline cortex areas or the gray matter–white matter interface.

2.4.7 PET and SPECT

Positron emission tomography (PET) or single-photon emission computed tomog-
raphy (SPECT) measures photons from the radioactive decay of an injected
radionuclide, which has been aggregated by different metabolic systems. Other
applications are the analysis of brain hemodynamics by tracking chemicals in blood
flow [13] or so called amyloid imaging, which visualizes the presence of senile
plaques linked to Alzheimer’s disease (AD) [45]. The so gained three-dimensional
images localize areas of high tracer presence and are typically visualized in
anatomical space on slices using rainbow colormaps [56].
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2.4.8 Surface Data

Neuroscientists frequently use surface data, ranging from cortex estimations [22,
65], over boundaries of lesions or tumors, the ventricular system, or the blood
system [46] to boundary surfaces on brain segmentations. Most visualization
systems represent these surfaces using triangular mesh structures or solid surface
renderings using colored and illuminated facets.

3 Methods

The data and visualization techniques we are working with in this paper are
summarized in Table 1. Even though the list of data types might be incomplete
and might lack data used to answer specific questions, to the best of our knowledge,
it lists the most popular data types. Other imaging techniques may fall into a similar
category as one of the listed modalities. Also please note that this table only lists
common visualization techniques, not all possible techniques. This is also why there
is no column for direct volume rendering, as it is rarely used in the neuroscience
community. We compiled the table based on recent publications, which have been
already discussed in the related work.

We implemented methods for the combined visualization of probabilistic trac-
tography (as seen in Fig. 1) with state-of-the-art visualization techniques for other
modalities as shown in Table 1 and compared the results.

4 Results and Discussion

In this section, we discuss possible combinations of probabilistic tractography with
data from Table 1. For each column in this table we will discuss the scenarios in
separate subsections. This groups similar data and simplify the overview on how
can it combined with probabilistic tractography data. Please note, other data not
listed in Table 1 may also be assigned to one of the columns and thus may be
threatened similarly.

4.1 Textured Slices

Textures are very often used with slice based visualization techniques. Although
other geometry may be used for texturing, for example inflated cortical surface
maps textured with T1 data, slices are still very prominent. One reason for that
is, that slices deliver detailed context. This does not imply that three-dimensional
visualizations are useless, other visualizations may still profit from their strength
in communicating the overall structure. However, most multi-modal visualizations



204 M. Goldau and M. Hlawitschka

using textures on slices, destroy this valuable context by using opaque overlays.
Also semi-transparent renderings introduce the problem of color mixture, which
may lead to wrong interpretation of both foreground and background color. All
techniques for probabilistic tract visualization share the same problem: Rendering
the tracts along with other data will occlude it more or less. Fiber-Stipples is a
(slice-based) technique for rendering probabilistic tracts, which tries to minimize
exactly this occlusion and hence is in that point superior to all other techniques.
This is the reason why we suggest Fiber-Stipples for visualizing probabilistic tracts
in combination with other textures on slices, except for directional textures as
discussed in Sect. 4.1.3.

4.1.1 Monochrome Backgrounds

There are many monochrome images providing important information for neurosci-
entists. CT, structural MRI, angiography data, diffusion MRI, and diffusion indices
are data sources for such images. As mentioned earlier (cf. Sect. 2.4.2), direct
visualization of the diffusion gradients is rare and neuroscientists so far focus on
providing gray-scale images as anatomical context to their technique, either taking
measured data (such as T1 or T2 images) or by projecting their data into a reference
frame and using reference data as context [60]. Axis aligned slices of T1 and T2
images are the most commonly used reference data for all techniques displaying
probabilistic tracts. This is mainly because probabilistic tractography and T1 and
T2 images are MRI based techniques.

A problem when using such underlays, and especially with monochrome under-
lays, is, that they typically have bright and dark regions. Hence the luminescence of
the background conflicts with the luminescence of the foreground color. Ware [61]
(pp. 111–112) states that fine details may then be hard to perceive and proposes to
increase luminance contrast. This is of special importance to Fiber-Stipples, which
encode most information in such fine details of the texture. This can be solved by
controlling (i.e., reducing) brightness and contrast of the background image. Of
course this will have the drawback of loosing detailed features in the background.
Another possibility is to adapt the luminescence of the stipples depending on the
local background. This removes the possibly of using quantitative color-coding.
Fortunately, Fiber-Stipples provides two channels to communicate the connectivity
score: the stipple coloring, typically by controlling opacity, and secondly, the
stipple density, which remains unchanged. An example of such a contrast enhanced
stipple coloring is given in Fig. 3. However, such an adaptive color coding may
lead to misinterpretation of the data and needs further investigation. In addition,
fully opaque stipples might distract the user in regions of low connectivity scores.
The problem is less severe when the background data provides sufficient contrast
along the probabilistic tract. As an example, fractional anisotropy (FA) which is a
prominent scalar value derived from diffusion information (diffusion index), is also
used as termination criteria for many tractography algorithms or as a indicator on
bundle integrity [41]. While major white matter bundles will often follow regions
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Fig. 3 Fiber-Stipples on T1 images. (a) Close up view of original Fiber-Stipples. (b) Full opaque
stipples with fixed maximal luminescence. (c) Adaptive luminescence with full opacity. This way,
the stipples have higher contrast

Fig. 4 Fiber-Stipples over diffusion indices: axial diffusivity (a) and fractional anisotropy (b).
Other prominent indices such as radial diffusivity or mean diffusivity look very similar and are not
depicted here

of high FA, most of the stipples will pass bright regions and the color can be chosen
accordingly. When white matter tracts also project into cortex, which is a region of
low FA and thus rendered in dark colors, a uniform coloring might be suboptimal
then, see Fig. 4 for images dealing with diffusion indices.

Beside, the combination of structural MRI or diffusion indices with probabilistic
tracts, we think angiography data (from CT or MR) might be worth to combine
with probabilistic tracts. An application might be surgical planning, where the
location of important blood vessels and white matter tracts may become critical.
On the other side, pure CT data might not provide enough soft tissue contrast
for probabilistic tracts. The optimal visualization of probabilistic tracts in such a
scenario is not known and needs further investigation. Contextual information from
angiography data can be represented in slices as contours or colormaps, as well as
three dimensional surfaces or volume renderings.
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Fig. 5 Fiber-Stipples on colored background representing RGB-coloring scheme of the major
diffusion direction filtered by FA. In all images the stipples are fully opaque. (a) White stipples on
unmodified RGB-colored FA background. (b) Outlined white stipples with decreased background
luminance from 100 % to 80 %

4.1.2 Colored Background

Beside monochrome textures, neuroscientists are also working with colored textures
for superimposed data. As an example, fMRI data is colored with the heat-map as
overlay for T1 data as context. Another example is the RGB-coloring of diffusion
orientations (cf. Sect. 2.4.2) which may be used directly as texture, but also with
additional filters such as the fractional anisotropy (FA), see Fig. 5.

Some colored textures may use the whole color space (e.g. rainbow colormap)
and some are limited to a fixed number of colors or transitions between only
two or three colors (e.g. heat-map). As visualization techniques for probabilistic
tracts usually use some color, a combination with colored background generally
depends on whether there are unused colors left which also provide discernible
contrast. Techniques not using color but texture are LIC or TDI, which are discussed
separately in Sect. 4.1.3. Due to the same motivation as given in Sect. 4.1 regarding
the occlusion, Fiber-Stipples are suggested for combinations of probabilistic tracts
with colored backgrounds as well. However, the encoding of connectivity score in
stipple opacity may be of no use, as the color blending might change colors and
hence lead to misinterpretation.

Arbitrary Colored Backgrounds

When a texture is arbitrarily colored it may use almost the whole colorspace and any
color used for rendering the probabilistic tract might fail. Prominent examples are
the rainbow colormap [8] or directional color codings [15, 48] (filtered or unfiltered).
With disabling the opacity, black or white may sound as a good choice then for
coloring the stipples, see Fig. 5. While the luminescence of the background may
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Fig. 6 White Fiber Stipples over arbitrary colored background. To ease the perception of
directionality of Fiber-Stipples, a small outline around each stipple is used. In (a) no such outline
is present on fully opaque white Fiber-Stipples, while in (b) the outline substantially improves
the shape. This outlining technique can also be applied to Fiber-Stipples with variable opacity
encoding the connectivity score (c)

still influence the visualization, we further suggest to limit or increase (depending
on data) the background luminescence as well, see Fig. 5b. To further increase
contrast we propose to outline (cf. also Ware [61] page 123) the stipples as
depicted in Figs. 5b and 6. This way the combination of probabilistic tract data with
underlying colored texture may still be perceived well.

Colormaps Defined by Few Colors

When working with colormaps defined by only two or three colors and their
continuous transitions, a most complementary color may be practical for coloring
the probabilistic tract. For example we believe, when working with the heat-map,
used e.g. for indicating BOLD activity in fMRI, blue might be a good choice as it
provides good chromatic contrast, see Fig. 7. The combination of fMRI data with
probabilistic tracts is a very interesting one, as fMRI data communicates functional
connectivity and the probabilistic tract communicates structural connectivity. This
contributes to the visualization of effective connectivity [19, 57]. Other combina-
tions with PET data are possible as well [44], but, from a visualization point of
view, the combinations are then very much the same as for fMRI data, due to the
same type of data.

Another possibility to combine visualizations of probabilistic tracts with col-
ormap overlays using only few colors, is to apply the colormap directly on
Fiber-Stipples, see Fig. 8 for an example. Although it seems a natural solution for
combining Fiber-Stipples with such colormaps, important topological information
may not be rendered. A tract not crossing a center of neural activation may then need
additional topological information for better interpretation. Another solution would
be to combine two three-dimensional techniques, e.g. use nested isosurfaces [7] to
combine the modalities. One surface highlights the probabilistic tract while another
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Fig. 7 FMRI Activation Maps are often visualized as colormap overlay onto T1 images as in (a),
and (b) shows a close up view. For such activation maps the so called heat-map is very common

Fig. 8 Fiber-Stipples color coded with the fMRI BOLD activity signal. (a)—bright yellow stipples
indicate not high connectivity score, as this is encoded in stipple density, but a high BOLD signal
activity. In (b), the BOLD signal is thresholded, so blue colored stipples represent stipples below
this BOLD threshold

may highlight the fMRI activity region. However, when anatomical context is very
important we suggest Fiber-Stipples again for visualization.

Fixed Colors

Finally, textures with few fixed colors are very common in neuroscience to label
segmented structures. For example several white matter atlases label segmented
structures with different colors, see Fig. 9. As same as in the previous section, it
would be practical to have a most discriminative color, used for Fiber-Stipples repre-
senting the probabilistic tract. Bauer et al. [5] revealed, that the most discriminative
colors should lie outside of the convex hull defined by the given colors in CIE color
space [64]. Unfortunately, the more colors are used, the more difficult it is, to find
such a color. Furthermore, it is also important to adapt luminescence contrast as
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Fig. 9 Segmentation from
the JHU white matter
tractography atlas [42]
labeling certain white matter
regions. Here parts of the
forceps minor, internal
capsule, external capsule and
parts of the corpus callosum
in the frontal lobe are labeled
with different colors

well for better color discrimination, as the colors used for labeling structures might
have very high or low luminance as well. Although it sound possible to change color
labels of white matter structures, so that the set of fixed colors allows a better choice
for the stipple color, we do not encourage such a change, as scientists may be used
to the given colors for specific atlases. Last but not least, the visualization technique
depicting the probabilistic tract may also employ the given set of colors as labels for
the structures (the very same way as outlined in Paragraph “Colormaps Defined by
Few Colors”) which imposes the same problem of missing topological information.
This would be important to answer specific questions such as, to determine if a given
tract just barley hits the structure or if it is projecting right into its center.

4.1.3 Directional Textures

A special case of textures are textures indicating directional information using fine
patterns, with line integral convolution (LIC) being the best known representative
of this group, cf. Fig. 1b. Beside LIC, tract density imaging (TDI) [12] and other
fabric-like visualizations have been proposed to display tensor information.

In order to combine such textures with probabilistic tracts we think semi-
transparent colormaps are most useful here, see Fig. 1c. The directional textures are
rather versatile when it comes to applying the pattern to different planes or surfaces.
Their main disadvantage is the restless pattern that makes it harder to see small
structures in front of it (cf. [61]). These disadvantages are depicted in Fig. 10c.

However, these textures transport some directionality (from vector field) and
eventually also some density (cf. TDI). Both properties may be depicted with Fiber-
Stipples again, leaving room for anatomical context which would be occluded by
such textures otherwise, see Fig. 10d. There, two crossing tracts are depicted by
the major diffusion orientation. The FSL software package offers a technique to
estimate a second diffusion direction out of DTI data by using Bayesian estimators
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Fig. 10 Combinations of Fiber-Stipples with directional textures. (a) shows red Fiber-Stipples
over LIC background computed from DTI’s major diffusion orientation. (b) shows two different
tracts which cross. The red tract is part of the corpus callosum while the blue is part of the cortico
spinal tract. T1 is used as background. (c) Close up view of (b) but with LIC of the second diffusion
orientation (computed by FSL BedpostX) as background instead of T1. (d) Same as (c) but LIC
replaced with (yellow) Fiber-Stipples

implemented in BedpostX [33], which helps to better understand crossings. Such a
second direction is then depicted as LIC in Fig. 10c and with yellow Fiber-Stipples
instead in Fig. 10d. Please note that, other visualization techniques, such as the
vector-plot, cannot communicate density.

4.2 Glyphs

Glyphs have been used in many settings before, and can be combined with surface
and volume representations [40]. Special care has to be taken when glyphs are
not sampled along a plane or surface, but express volumetric information. Then,
occlusion leading to a perceived change in glyph density may distract the viewer.

So, combining glyphs with probabilistic diffusion tractography would be best on
a plane or surface. When placing glyphs on an arbitrary surface, e.g. on cortex [9]
or on an isosurface of a probabilistic tract, glyph placement should be performed
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as proposed by Kratz et al. [37] to get optimal results. In short, they employ
an anisotropic Voronoi cell rendering to obtain best packaging on two-manifold
domains.

When combining glyphs with slice based techniques, they will typically occlude
some visualization parts. As there are also slice based techniques using glyphs for
the visualization of the probabilistic tract (Fiber-Stipples), mixing different glyph
types might be very confusing, especially when they need to maintain a density
property. On the other hand, glyphs of the same type might be combined. For
example, Fiber-Stipples can also be regarded as a specific glyph-based technique to
render probabilistic tract information. As the technique resembles manual drawings
of stipples [54], they may be safety combined (up to a certain extend) with other
Fiber-Stipples, as long as they have discernible colors.

Last but not least, integrating the tract into the given glyph might also be
an option. To summarize this, it is hard to tell from which combination such a
visualization would benefit and we vote for keeping it simple and use either Fiber-
Stipples or a plain colormap to communicate the tract as an underlay for the glyphs.

4.3 Line Data

Neuroscientists use various line data in their visualizations. Examples are, polylines
or tubes representing white matter fiber tracts, outlines of structures, splines as
connections between regions and so on.

4.3.1 Contours

Contours outline specific parts of T1 data, such as cortex parcellations, white matter
segmentations, or lesions. Often only one or two contour lines are used, e.g. Fiber-
Stipples uses one contour line for outlining the gray matter and another for outlining
the gray matter–white matter interface, see Fig. 11a.

As contours are often used on surfaces we focus on combinations of slice based
techniques for probabilistic tracts with contours. Such combinations might be useful
to see if a tract is affected by a lesion, or if it projects into outlined regions.
The combination of colormaps as overlays and contours would clearly lead to
desired results, although the overlays occlude anatomical context. On the other
hand, contours might be hard to perceive along with directional patterns such as
LIC or TDI. Likewise, Fiber-Stipples with boundary curves have problems (to many
contours with different meaning), see Fig. 11b. If we could find a way to depict
contours, probabilistic tract and context at once, this would then be the optimal
combination for such data. As an example we look back at the combination of Fiber-
Stipples with fMRI data, where stipples are colored with the heat-map of BOLD
activity data (cf. Paragraph “Colormaps Defined by Few Colors” and Fig. 8). There
was a lack of topological information, which could be closed by using additional
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Fig. 11 All images render the same probabilistic tract at the same slice with same density. (a)
shows the original Fiber-Stipples technique with enabled opacity encoding which is disabled in
(b)–(d) (b) combines the fMRI activation from Fig. 7 with Fiber-Stipples and renders contour lines
(90 %, 80 %, 70 %, 60 %, and 50 %) of the activity field in blue. (c) same as (b) but with T1
background and contours colormapped from light blue (90 %) to dark blue (50 %). (d) same as (c)
but using the heat-map for contours as well
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Fig. 12 Probabilistic tract
rendered with contour lines,
100 %, 85 %, 70 %, etc. using
the heat-map

information, such as contours. This leads to a visualization of Fiber-Stipples without
boundary curves over T1 background, where the Fiber-Stipples are colored with
fMRI texture (heat-map) and additional contours, for the fMRI data, provide the
missing topological information. We must admit, it is not easy to select the right
colors to avoid the whole scene to become visually cluttered. Examples of such
visualizations are given in Fig. 11. Please note that this introduces a new and
alternative visualization for probabilistic tracts as well, see Fig. 12. In summary,
we would here for Fiber-Stipples again, as it preserves valuable context on slices
while still being able to work with contour data arising from other modalities.

4.3.2 3D Polylines

In neuroscience, three-dimensional polylines are often used for representing neural
tract data, cf. deterministic tractography [32, 43]. As such polylines visualize
a three-dimensional course through the brain, we believe it best to use three-
dimensional visualizations of probabilistic tracts to combine them. Solutions are
semi-transparent isosurfaces Fig. 13a, or illustrative techniques for confidence
intervals [10].

Other applications of such polylines or splines are representations of functional
connectivity [9]. However, such a combination should be considered carefully as
though the line’s endpoints reside in anatomical space, their course does not have
an anatomical foundation.

4.4 Surfaces

Neuroscientists work a lot with surfaces from brain structures, blood vessels but
most importantly, cortex estimations. Due to the same fact, that those surfaces typ-
ically represent three-dimensional objects we recommend to use three-dimensional
tract representations as well. As an example see Fig. 13b with a semi-transparent iso-
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Fig. 13 Combinations of probabilistic tractography with three-dimensional visualizations. (a) 3D
polylines (rendered as tubes) from deterministic tractography representing left cingulum (CNG)
bundle, partially enclosed by an isosurface. (b) Cortex approximation surface (semi-transparent
gray) and probabilistic tract (red) with seed region in gray matter–white matter interface of the
precentral gyrus. (c) The same white matter atlas [42] as used for segmentation as in Fig. 9 but
using a different viewing perspective, (d) with the segmentation represented by surfaces, some of
them are opaque and some are semi-transparent, and (e) a close up view of (d)

surface for the cortex and an opaque isosurface for the tract. Although, it is possible
to combine slice based visualizations, such as Fiber-Stipples (Fig. 13c–e), the inter-
pretation of the data will remain very difficult. For example the stipple orientation
and density might not be perceived correctly from different viewing perspectives. A
better slice based communication of the tract with the surface is to use cutting planes
with colormaps, see Gorbach [28] (Fig. 1). Please note, in case of using those cutting
planes the three-dimensional course might be lost. As an example, the fornix tract
is mostly diagonal to all three (sagittal, axial and coronal) cutting planes.

5 Conclusion

In this work we gave an overview of current visualization techniques for probabilis-
tic diffusion tractography data and its combination with other image modalities from
the neuroscience domain. We summarized common data types and visualization
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techniques from the neuroscience community to systematically investigate multi-
modal visualization with probabilistic tractography data.

In Fig. 2, we pointed out why anatomical context is of utmost importance
when analysing white matter tracts. It turned out, that the Fiber-Stipples technique
is a very flexible visualization technique for probabilistic tracts as it supports
various superimposed data while still maintaining precise and detailed context. The
resulting images typically incorporate a lot of information, thus, often the simple
sparse and effective visualizations will stand out from their competitors. We showed
that a combination of Fiber-Stipples with contour lines may communicate complex
multi-modal visualizations. As an example we show the combination with fMRI
activation regions. Additionally, we showed, that contour lines serve as simplistic
visualizations of probabilistic tracts as well. Furthermore, we observed that color
plays an important role when combining modalities and gave certain guidelines
regarding contrast and color as well as improvements such as outlining to enhance
the resulting visualization.

However, slice-based visualization techniques have drawbacks when three-
dimensional objects, such as cortex surface approximations, demand for a combined
visualization. In such cases we believe that three-dimensional techniques, e.g.
isosurface renderings, may be superior to slice-based visualizations.

6 Future Work

The presented techniques should be considered a guideline for the creation of
meaningful and useful visualizations focusing on probabilistic tractography data.
With improved or new acquisition techniques arising daily, this list should not be
considered complete but should be enhanced in the future. Whereas we focus on
probabilistic data, an overview including other specific tasks would be beneficial.
Although we reasoned design decisions wherever possible, we will evaluate them in
a user study.
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Visual Analytics of Image-Centric Cohort
Studies in Epidemiology

Bernhard Preim, Paul Klemm, Helwig Hauser, Katrin Hegenscheid,
Steffen Oeltze, Klaus Toennies, and Henry Völzke

Abstract Epidemiology characterizes the influence of causes to disease and health
conditions of defined populations. Cohort studies are population-based studies
involving usually large numbers of randomly selected individuals and comprising
numerous attributes, ranging from self-reported interview data to results from
various medical examinations, e.g., blood and urine samples. Since recently,
medical imaging has been used as an additional instrument to assess risk factors
and potential prognostic information. In this chapter, we discuss such studies and
how the evaluation may benefit from visual analytics. Cluster analysis to define
groups, reliable image analysis of organs in medical imaging data and shape space
exploration to characterize anatomical shapes are among the visual analytics tools
that may enable epidemiologists to fully exploit the potential of their huge and
complex data. To gain acceptance, visual analytics tools need to complement more
classical epidemiologic tools, primarily hypothesis-driven statistical analysis.

1 Introduction

Epidemiology is a scientific discipline that provides reliable knowledge for clinical
medicine focusing on prevention, diagnosis and treatment of diseases [14]. Research
in epidemiology aims at characterizing risk factors for the outbreak of diseases
and at evaluating the efficiency of certain treatment strategies, e.g., to compare
a new treatment with an established gold standard. This research is strongly
hypothesis-driven and statistical analysis is the major tool for epidemiologists so
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far. Correlations between genetic factors, environmental factors, life style-related
parameters, age and diseases are analyzed. The data are acquired by a mixture
of interviews (self-reported data, e.g., about nutrition and previous infections)
and clinical examinations, such as measurement of blood pressure. Statistical
correlations, even if they are strong, may be misleading because they do not
represent causal relations. As an example, the slightly reduced risk of heart infarct
and cardiac mortality for elderly people reporting to drink one glass of wine every
evening (compared to people drinking no alcohol at all) may be due to the involved
low level of alcohol but may also be a consequence of a very regular and stress-free
lifestyle [14]. When something happened before an event, it is an indicator for a
causal relationship. However, care is necessary, since many things happen in the life
of an individual before, e.g., a heart attack, but do not cause it.

Thus, statistical correlations are the starting point for investigating why certain
factors increase the risk of getting diseases. Epidemiology is not a purely academic
endeavor but has huge consequences for establishing and evaluating preventive
measures even outside of medicine. The protection of people from passive smoking,
recommendations for various vaccinations and the introduction of early cancer
detection strategies, e.g., mammography screening, are all based on large-scale
epidemiological studies. Also the official guidelines for the treatment of widespread
diseases, such as diabetes, are based on evidence from epidemiological studies [14].
While this all may sound obvious, it is a rather recent development. Evidence-based
medicine often still has to “fight” against recommendations of a few opinion leaders
arguing based on their personal experience only.

The analysis techniques used so far are limited to investigating hypotheses based
on known or suspected relations, e.g. hypotheses related to observations or previous
publications. The available tools support the analysis of a few dimensions, but
not of the hundreds of attributes acquired per individual in a cohort study. Both
typical visualization techniques as well as analysis techniques, e.g., support vector
machines, do not scale well for hundreds of attributes [41]. While we are not able
to describe solutions for these challenging problems, we give a survey on recent
approaches aiming also at hypothesis generation.

Organization This chapter is organized as follows. In Sect. 2 we describe impor-
tant concepts and terms of epidemiology including observations from epidemiologic
workflows. This discussion is restricted to those terms that are crucial for com-
municating with epidemiologists, understanding requirements and for designing
solutions that fit in their process. In Sect. 3, we discuss how (general) information
visualization and data analysis techniques may be used for epidemiologic data.
Section 4 describes the analysis of image data from cohort studies and how this
analysis is combined with the exploration of non-image attribute data. This section
represents the core of the chapter and employs a case study where MRI data of the
lumbar spine are analyzed along with attributes characterizing life-style, working
habits, and back pain history.
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2 Background in Epidemiology

Population-Based Studies Epidemiological studies are based on a sample of the
population. The reliability of the results obviously depends on the size of that sample
but also strongly on the selection criteria. Often, data from patients treated in one
hospital are analyzed. While this may be a large number of patients, the selection
may be heavily biased, e.g., since the hospital is highly specialized and diseases are
often more severe or in a later stage compared to the general population.

Population-based studies, where representative portions of a population (without
known diseases) are examined, have the potential to yield highly reliable results.
The source population may be from a city, a region or a country. Individuals are
randomly selected, e.g., approaching data bases of population registries. The higher
the percentage of people who accept the invitation and actually take part in the study,
the more reliable the results are.

In this chapter, we focus on longitudinal population-based studies. The sheer
amount and diversity in terms of type of data makes it difficult to fully identify
and analyze interesting relations. We will show that information visualization and
visual analytics techniques may provide substantial support that complements the
statistical tools with their rather simple statistical graphics. Most epidemiological
studies were restricted to nominal (often called categorical) and scalar data, e.g.,
related to alcohol consumption, and body mass index as one measure of obesity.

Image-Centric Epidemiological Studies More recently, for example, in the Rot-
terdam study [22], also non-invasive imaging data, primarily ultrasound and MRI
data, are employed. Petersen and colleagues [32] report on six studies involving
cardiac MRI from at least 1000 individuals in population-based studies. These high-
dimensional data enable to answer analysis questions, e.g., how does the shape of
the spine changes as a consequence of age, life style and diseases? We focus on such
image-centric epidemiological studies.

Epidemiology and Public Health There are different branches of epidemiology.
One branch deals with predictions to inform public health activities. These include
measures in case of an epidemic—an acute public health problem, mostly related
to infectious diseases. The recent article “computational epidemiology” [29] was
focussed on this branch of epidemiology. Another branch of epidemiology aims at
long-term studies and at findings primarily essential for prevention. Image-centric
cohort studies, the focus of this article, belong to this second branch. The target
user group consists of epidemiologists who can be expected to have a high level of
expertise in statistics. Thus, their findings involve statistical significance, confidence
intervals and other measures of statistical power.

Healthy Aging and Pathologic Changes An essential problem in the daily clinical
routine is the discrimination between healthy age-related modifications (that may
not be reversed by treatment) and early stage diseases (that may benefit from
immediate treatment). As a consequence, elderly people are often not adequately
treated. As a general goal for epidemiological studies, better and more reliable
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markers for early stage diseases are searched for. The cardiovascular branch of the
Rotterdam study, for example, aims at an understanding of atherosclerosis, coronary
heart disease and “cardiovascular conditions at older age” [22].

Modern Epidemiology Epidemiology faces new challenges due to the rapid
progress, e.g., in genetics and sequencing technology as well as medical imaging.
Acquisition of health data thus becomes cheaper and more precise. In cohort studies,
as much potentially relevant data as possible are acquired as a basis for an as broad
as possible spectrum of analysis questions. This includes blood, urine and tissue
samples, information about environmental conditions and the social milieu.

Visual Analytics for Modern Epidemiology In the past, epidemiology primarily
dealt with hypotheses aiming to prove them, e.g., the efficiency of early cancer
detection programs in terms of mortality and long term survival [14]. Since recently,
more and more data mining is performed to identify correlations. Results of such
analyses, however, need to be very carefully interpreted. If thousands of potential
correlations are analyzed automatically, just by chance some of them will reach a
high level of statistical significance.

An essential support for epidemiology research is to define relevant subgroups.
To perform separate analyses for women and men as well as for different age
groups is a common practice in epidemiology. However, relevant subgroups may
be defined by a non-obvious combination of several attributes that may be detected
by a combination of cluster analysis and appropriate visualization.

Since the information space is growing with each examination cycle, Pearce
and Merletti [31] pointed out in 2006 that methods are needed which can cope
with this complexity and enable the analysis of underlying causes of a certain
disease. Visual analytics (VA) methods can support epidemiological data assessment
in different ways, e.g. by defining subgroups based on a multitude of attributes
that exhibit a certain characteristic. For the analysis of scalar and categorical
data, established information visualization techniques combined with clustering and
dimension reduction are a good starting point, but need to be tightly integrated with
statistic tools epidemiologists that are more familiar with. For image-centric studies,
however, new visualization, (image) analysis and interaction techniques are needed.

In the following, we define essential terms in epidemiology and give an overview
on cohort studies that employ medical image data as an essential element. Finally,
we describe how image data, derived information and other data complement each
other to identify and characterize risks.

2.1 Important Terms

Prevalence and Incidence Epidemiology investigates how often certain diseases
or clinical events, such as a cerebral stroke or sudden heart death, occur in the
population. Two terms are important to characterize this frequency. The prevalence
indicates the portion of people suffering from a disease at a given point in time. The
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incidence represents how many people suffer from a disease or event in a certain
interval, usually one year. High prevalence is usually associated with high economic
costs. Population-based studies focus on diseases with a high prevalence, such as
diabetes, coronary heart disease or neurodegenerative diseases. Even these diseases
do not occur frequently in a random population including many younger people
(where the prevalence of these diseases is low). A rare disease, such as amyotrophic
lateral sclerosis, may have a prevalence of 5 from 100,000. Thus, even in a large
population-based study probably no individual suffers from this disease.

Absolute and Relative Risks Another essential epidemiological term is the risk
for a clinical event, such as outbreak of a certain disease, severity (stage) or death.
As an example, a study related to cardiac risk may investigate angina pectoris,
myocardial infarction, atrial fibrillation depending on attributes such as age and
sex. The absolute risk characterizes the likelihood of getting a disease in life time.
The absolute risk for a woman to develop breast cancer in the Western world is
particularly high for women aged 50–60 (2.6 %) and 60–70 (3.7 %). Therefore,
for these age groups, mammography screening—aiming at early detection and thus
optimal treatment—was introduced.

The relative risk (RR) characterizes the increased risk if an individual is exposed
to a certain risk factor, e.g., smoking, excessive weight, or alcohol abuse. It is based
on a comparison with a control group not exposed to that risk factor. A value of
RR < 1 represents a factor that protects, e.g., moderate physical activity. Exciting
observations are often the combined effects of several parameters. A certain factor
may be protective for some people (younger, slim women) and is involved with an
increased risk for others. The combined risk may be significantly smaller or larger
than could be expected from individual factors.

Moreover, relationships are often distinctly non-linear or even non-monotonic.
Dose-response relationships are often non-linear. RR increases slowly (almost no
effect for a small dose) and increases much faster for higher levels of a dose, e.g.,
exposure to toxicity. A typical non-monotonic relation is U-shaped, that is both
very low and very high instances of an attribute involve an increased risk, whereas
values in between are associated with a reduced risk. Examples are weight (both
very low and very high weight are associated with an increased risk for mortality)
and sleeping time (both very short and very long sleepers have an increased risk for
developing psychiatric disorders [22]). Such relations cannot be characterized by a
global RR value. Instead, tools are necessary that support the hypothesis of a U-
shaped relation by estimating their parameters with some kind of best-fit algorithm.

2.2 Image-Centric Cohort Studies

Image Data in Epidemiology The acquisition of image data is determined by
the available time, by financial resources, by the epidemiological importance and
by ethic considerations. Epidemiological studies require approval by a local ethics
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committee. As a consequence, healthy individuals in a cohort study should not be
exhibited to a risk associated to the examinations carried out. Thus, MRI should
be preferred over X-ray or CT imaging for its non-radiation nature. Petersen and
colleagues [32] explain why cardiac CT is less feasible in a cohort study and
even MR is only used without a contrast agent in their study due to ethical
reasons. MRI data and ultrasound data are the prevailing modalities in both the
SHIP as well as the Rotterdam study. Unfortunately, MRI and ultrasound data
do not exhibit standardized intensity values (in contrast to CT data). Moreover,
MRI and ultrasound data suffer from inhomogeneities and various artifacts. Thus,
they are more difficult to interpret for humans and more difficult to analyze with
computational means. These data are used to measure, e.g., the thickness of vessel
walls, the abdominal aorta diameter and plaque vulnerability in the coronary vessels
[22]. The intensive use of MRI in epidemiological research also explains to some
extent which questions are analyzed: MRI is the best modality for the analysis of
brain structures and thus serves to explore early signs of Parkinson’s, Alzheimer’s
and other neurodegenerative diseases. Epidemiological research aims at identifying
such brain pathologies in a pre-symptomatic stage. Among the sources for such
investigations are MR Diffusion Tensor Imaging data that enable an assessment of
white matter integrity [22].

The selection of imaging parameters is always a trade-off between conflicting
goals related to quality, e.g., image resolution, signal-to-noise ratio, patient comfort,
e.g., examination time and associated costs. As a consequence, to shorten overall
examination times in cohort study examinations, not the highest possible quality is
available, i.e., a slice distance of 4 mm is more typical than 1 mm. A great advantage
of MRI is that this method is very flexible and enables to display different structures
in different sequences, such as T1-, T2- and proton density-weighted imaging. MRI
data in cohort studies often comprise more than ten different sequences.

Standardization in Image Acquisition Due to the rapid progress in medical
imaging, sequences, protocols and even (MR) scanners are frequently updated in
clinical routine (similar to the update frequency on a computer). These updates
would severely hamper the comparison of imaging results and thus the assessment
of natural changes and disease outbreak. Thus, differences in acquisition parameters
are essential confounding variables. Therefore, for one cohort and examination
cycle that may last up to several years, no updates are allowed. Moreover, all
involved physicians and radiology technicians are carefully instructed to use the
same standardized imaging parameters. This point is even more important for
longitudinal studies with repeated imaging examinations. Even if MR scanners and
protocols are not updated, the life cycle of MR coils leads to changes of image
quality that need to be monitored and compensated.
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2.3 Examples for Image-Centric Cohort Study Data

In the following, we describe selected comprehensive and on-going longitudinal
cohort studies. Both use a number of (epidemiologic) instruments that are innovative
in cohort studies and thus lead already to a large number of insights documented in
hundreds of (medical) publications. A considerable portion of these publications
employ results from imaging data. However, the full potential of analyzing organ
shapes, textures and spatial relations quantitatively is not exploited so far.

The Rotterdam Study A prominent example is the Rotterdam Study,1 initiated in
1990 in the city of Rotterdam, in the Netherlands. Similar to later studies, it was
motivated by the demographic change with more and more elderly people suffering
from different diseases and their interactions. After the initial study involving almost
8000 men and women, follow-ups at four points in time were performed—the most
recent examinations took place in the 2009–2011 period. In the later examination
cycles, also new individuals were involved leading to datasets from almost 15,000
patients [22].

The original focus of the Rotterdam Study was on neurological diseases, but
meanwhile it has been extended to other common diseases including cardiovascular
and metabolic diseases. The study has an enormous impact on epidemiological
and related medical research, documented in 797 journal publications registered in
the pubmed database (search with keyword “Rotterdam Study”, January 30, 2014).
Among them are predictions for the future prevalence of heart diseases and many
studies on potential risk factors for neurodegenerative diseases. For a comprehensive
overview of the findings, see [22] that summarizes the findings of more than 240
papers related to the Rotterdam Study. In a similar way, [23] is a significant update
of these findings with more recent data.

Norwegian Aging Study A long-term study in Norway investigates the relations
between brain anatomy (as well as brain function), cognitive function, and genetics
in normally aging people.2 In total 170 individuals (120 of them female), aged
between 46 and 77 (mean 62), were examined in Bergen and Oslo in by now
three waves (first wave in 2004/2005, next in 2008/2009, and most recently in
2011/2012) [47]. While naturally not all of these subjects could be followed through
all three waves, still most of them were subjected to an extensive combination of

1. neuropsychological tests, including tests of the intellectual, language (memory),
sensory/motor, and attention/executive function,

2. MRI data, including co-registered T1-weighted anatomical imaging, diffusion
tensor imaging, and—from the second wave on—also resting-state functional
MRI, as well as

3. genotyping (first wave only) [46].

1http://www.erasmus-epidemiology.nl/research/ergo.htm, accessed: 1/31/2016.
2http://org.UiB.no/aldringsprosjektet/, accessed: 1/31/2016.

http://www.erasmus-epidemiology.nl/research/ergo.htm
http://org.UiB.no/aldringsprosjektet/
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The substantially heterogeneous imaging and test data are used to study aging-
related questions about the modern Norwegian population, for example, how
anatomical and functional changes in the human brain possibly relate to the later
development of Alzheimer and dementia. Important findings include the relation
between hippocampal volumes and memory function in elderly women [47] and the
relation between subcortical functional connectivity and verbal episodic memory
function in healthy elderly [48].

SHIP The Study of Health in Pommerania (SHIP) is another cohort study broadly
investigating findings and their potential prognostic value for a wide range of
diseases. The SHIP tries to explain health-related differences after the German
reunion between East and West Germany. It was initiated in the extreme northeast
of Germany, a region with high unemployment and a relatively low life expectancy.

In the first examination cycle (1997–2001) 4308 adults of all age groups were
examined, followed by a second and a third cycle that was finished at the end
of 2012. The instruments used changed over time with some initial image data
(liver and gallbladder ultrasound) available already in the first cycle and others,
in particular whole body MRI, added later. The use of whole body MRI was
unique in 2008 when the third examination cycle started. Breast MRI for women
is performed, whereas for men MR angiography data are acquired, since men suffer
from cardiovascular diseases significantly earlier than women [43]. In addition, a
second cohort (SHIP-Trend) was established comprising 4420 adult participants.

Diagnostic reports are created by two independent radiologists who follow strict
guidelines to report their findings in a standardized manner. The pilot study to
discuss the viability and potential of such a comprehensive MR exam is described
by Hegenscheid and colleagues [20]. The overall time for the investigation is
two (complete) days with 90 min for the MR exam. The SHIP helped to reliably
determine the prevalence of risk factors, such as obesity, and diseases. Major
findings of the SHIP are increased levels of obesity and high blood pressure
(compared to the German population) in the cohort. The MR exams alone identified
pathological findings in 35 % of the sample population. More than 400 publications
in peer-reviewed journals are based on SHIP data (January 2014).

UK Biobank The UK Biobank represents a comprehensive approach to study
diseases with a high prevalence in an aging society, such as hearing loss, diabetes
and lung diseases. Half a million individuals will be investigated in one examination
cycle from which 100,000 receive an MRI from 2014 onwards. The rationale for the
number of individuals to be included is explained by Peterson and colleagues [32]:
they aim at a reliable identification of even moderate risk factors (RR between 1,3
and 1,5) for diseases with a prevalence of 5 %. The prospective study should have
a comprehensive protocol of cardiac MRI, brain MRI and abdominal MRI. This
prospective cohort study also involves genetic information.3

3http://www.ukbiobank.ac.uk, accessed: 1/31/2016.

http://www.ukbiobank.ac.uk
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The German National Cohort The recently started “German National Cohort”
in Germany is based on experiences with a number of moderate-size studies, such
as SHIP, and examines some 200,000 individuals over a period of 10–20 years.
Individuals will be invited in three waves to characterize changes. Due to the large-
scale character, imaging is distributed over five cities. Thus, the subtle differences
in imaging within different scanners have to be considered.4 It explicitly aims at
improvements in the treatment of chronic diseases and involves a variety of tissue
samples, e.g., lymphocytes. Imaging in 30,000 individuals is again performed with
MRI, comprising whole body, brain and heart.

2.4 Epidemiological Data

Epidemiological data are huge and very heterogeneous. As an example, in the UK
biobank 329 attributes relate to physical measures, such as pulse rate, systolic and
diastolic blood pressure, and various measures relate to vision or hearing. 471
attributes relate to interviews (socio-demographics, health history, lifestyle, : : :).

The data that are stored per individual is standardized but not completely
the same, e.g., childbirth status and menstrual period are available for women
only. Image data and derived information, e.g., segmentation results, significantly
increased both the amount and complexity of data. Longitudinal cohort study data
are time-dependent. While some instruments, such as blood pressure measurements,
are available for all examination cycles, others were added later or removed.
Individuals drop out, because they move, die or just do not accept the invitation to a
second or third examination cycle. It is important to consider also such incomplete
data but to be aware of potentially misleading conclusions.

The great potential of image-centric studies is that image data and associated
laboratory data as well as data from interviews are available. An epidemiological
study, such as the SHIP, has a large data dictionary that precisely defines all
attributes and their ranges. While laboratory data are scalar values, most data from
interviews are nominal or ordinal values. In particular, data from interviews exhibit
an essential amount of uncertainty. Self-reports with respect to alcohol and drug
use, cigarette smoking and sexual practices may be biased towards “expected or
socially accepted” answers. Epidemiologists are not only aware of these problems
but developed strategies to minimize the negative effects, e.g., by asking redundant
questions. After data collection, experts spend a lot of effort to improve the quality
of the data. Despite these efforts, visual analytics techniques have to consider
outliers, missing and erroneous data.

Geographic Data Geographic data play a central role in public health where
the dynamics of local infections are visualized and analyzed (disease mapping).

4http://www.nationale-kohorte.de/, accessed: 1/31/2016.

http://www.nationale-kohorte.de/
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Chui and colleagues [8] presented a visual analytics solution directly addressing
this problem by combining three dedicated views. Also in cohort study data,
geographic data are potentially interesting to understand local differences in the
frequency and severity of diseases as an interaction between environmental factors
and genetic differences. This branch of epidemiology is referred to as spatial
epidemiology. Beale and colleagues [4] investigated differences between rural
and urban populations. In their comprehensive survey, Jerrett and colleagues [24]
considered spatial epidemiology as an emerging area. However, we do not focus
on spatial epidemiology since cohort study data typically comprise rather narrow
regions and thus may not fully support such analysis questions.

2.5 Analysis of Epidemiological Workflow

The following discussion of observations and requirements for computer support
is largely based on discussions with epidemiologists as well as the inspiring
publication by Thew and colleagues. According to [40]

• epidemiological hypotheses are mostly observations made by physicians in
clinical routine,

• corresponding attributes are chosen based on the observations and further
experience, and

• regression analysis is frequently used to determine whether the investigated
attribute is a risk factor or not.

Major requirements for an epidemiological workflow (again based on [40])
are:

• Results have to be reproducible. Due to the iterative data assessment, methods
need to be applied to new data sets as well and the results need to be comparable
between different assessment times to characterize the change. User input needs
to be monitored all the time to enable reproducible results.

• A major result of an epidemiological analysis is whether certain factors influence
a disease significantly. Relative risk (as a measure of effect size) and p-values as
statistical significance level are particularly important.

Although these requirements neither consider image data nor visual analytics,
they have to be considered also in these more innovative settings. Reproducibility,
for example, means that clustering with random initialization is not feasible.
Moreover, reports must be generated that clearly reveal all settings, e.g., parameters
of clustering algorithms that were used for generating the results.
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Fig. 1 A Kaplan-Meier
curve indicates how many
patients survive at least a
certain time. The more
patients pass away, the larger
is the confidence interval
indicated by the dotted lines.
The crosses mark each time a
patient dies to further provide
information on the reliability
of the data that decreases over
time (courtesy of Petra
Specht, University of
Magdeburg)

Fig. 2 The relative risk for
cholelithiasis in men
associated with a high level of
a certain type of cholesterol
slightly increases with a low
BMI, but decreases for
individuals with high or very
high BMI. This multifactorial
situation is depicted in an
interaction term (inspired by
[42])

Since statistical analysis plays such an important role, statistics packages, such as
SPSS,5 R6 and STATA7 dominate in epidemiology. They provide various statistical
tests also in cases where assumptions, such as a normal distribution, are not valid.
Also the peculiarities of categorical data are considered. Visual analysis, so far, plays
a minor role. As an example, Figs. 1 and 2 illustrate two graphical representations
frequently used in epidemiology: Kaplan-Meier curves and interaction terms.

5http://www-01.ibm.com/software/analytics/spss/products/statistics/, accessed: 1/31/2016.
6http://www.r-project.org/ accessed: 1/31/2016.
7http://www.stata.com/, accessed: 1/31/2016.

http://www-01.ibm.com/software/analytics/spss/products/statistics/
http://www.r-project.org/
http://www.stata.com/


232 B. Preim et al.

A Kaplan-Meier curve shows the survival of patients, often as a comparison between
different treatment options.

3 Visual Analytics in Epidemiology

The visualization of correlations in the epidemiological routine is largely restricted
to scatterplots with regression lines and box plots to convey a distribution. Scatter-
plots may be enhanced, e.g., by coloring items according to certain characteristics,
e.g., a diagnosis or by adding results from cluster or Principal Component Analysis
(PCA) [38]. The frequency related to a particular combination of values is often
encoded by adapting saturation or darkness of colors.

Visual analytics methods can complement the statistical analysis and provide
methods to explore the data. Efficient methods are essential to cope with the large
amount of data and provide rapid feedback that is essential for any exploration
process.

One of the first attempts to employ information visualization techniques for
medical (image and non-image) data was realized in the WEAVE system [19].
The system incorporated parallel coordinates as well as real time synchronization
between different views. Another essential tool, inspired by the WEAVE system,
was presented by Blaas and colleagues [6]. They enabled feature derivation tech-
niques and incorporated segmentation techniques providing a powerful framework
for heterogeneous medical data. Later work by Steenwijk and colleagues was
more focussed on epidemiology. They provided an exploratory approach to analyze
heterogeneous epidemiological data sets, including MRI [38]. They consider param-
eters on normalized and not normalized domains, while only normalized domains
are comparable between subjects. Normalization means, for example, to register
MRI brain data to an atlas to compare individual differences.

Mappers are used to project data into normalized domains. As an example, in
brain analysis, a mapper defines the relation between an individual brain and a
brain atlas that contains normalized and averaged information derived from many
individual data. Feature extraction pipelines can be build visually by using a pipeline
of mappers. The visualization is realized through multiple coordinated views which
either represent scalar data or volumetric images. Different techniques to color
code data, to align them and add further information are provided to enhance
scatterplots. Steenwijk and colleagues evaluated their tools with specific examples
from neuroimaging and questions related to a neurological disease where relations
between clinical data (anxiety-depression scales, mental state scales) and MR-
related data are analyzed (Fig. 3). Normalized data domains are represented using
scatterplots and parallel coordinated views. Dynamic changes are visualized using
a time plot. The selection is linked between views and allows for multi-parameter
comparison of clusters.

Zhang and colleagues [49] build a web-based information visualization frame-
work for epidemiological analysis through different views. They divide the analytics
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Fig. 3 Left: A scatterplot relates magnetic transfer ratios to age. Items relating to the same patient
(over time) are connected via a line. Colors indicate a diagnosis. Right: An enhanced scatterplot
with PCA results for three subgroups overlaid (courtesy of Martijn Steenwijk, VU University
Medical Center Amsterdam)

process in batch analytics and on-demand analytics. Batch analytics steps are
performed automatically as a new subject is added to the data set and aim to create
groups by means of a certain condition. On-demand analytics are performed by user
requests. Subjects are visualized using treemaps, histograms, radial visualizations
and list views. However, neither filtering and grouping nor the interaction between
the views are explained.

Recently, Turkay and colleagues [41] described a framework to analyze the data
of the Norwegian aging study, aiming particularly at hypothesis generation. For
this purpose, they give an overview on the dimensions in their dataset that conveys
statistical properties, such as mean, standard deviation, skewness and kurtosis.
The two latter measures characterize how asymmetric the data distribution is.
Scatterplots display pairwise measures related to all dimensions. Deviation plots,
a new technique, enables grouping and supports a comparison of measures for a
subgroup to the whole cohort.

The possibilities of VA tools can be summarized as follows:

• Manual/automatic definition (brushing) of interesting parameters and ranges of
values in attribute views,

• Linking of attribute views for identifying relations,
• Analysis across aggregation levels, parameters and subjects,
• Definition of groups either interactively by means of (complex) brushes, or semi-

automatically by means of clustering, and
• Visual queries and direct feedback enable easy exploration

While having different applications in mind, the Polaris system of Stolte and col-
leagues also employs multiple coordinated views to validate hypotheses [39]. It uses
a variety of different information visualization techniques to map ordinal/nominal
or quantitative data of a relational data base. The system itself formulates data base
queries and the mapping to create visualizations for the requested attributes. They
choose the visualization mapping automatically based on the attribute types that are
viewed in context with each other. This allows for a fast visualization of different
attribute combinations in order to drill down to the information of interest. General
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visual analytics tools, such as Polaris and Weaver, in principle support some of the
requirements for epidemiology. The use of coordinated views, brushes and switches
is advantageous [44]. However, they are not designed to cope with the special
requirements of cohort study data and do not directly support epidemiological
workflows. In particular, no support for a combined assessment of image data and
other epidemiological data is available.

Commercial Visual Analytics Systems There are a number of commercial soft-
ware tools specialized on data visualization. As an example, Tableau [28] provides
an interface for creating different visualizations based on attribute drag-and-drop.8

These approaches deliver fast results with respect to visualizing different attributes.
However, it is not supported to derive new data, such as scores for diseases,
body mass index and other data that is relevant in epidemiology. QLikView is
a similar tool for visualizing data associations. The user can design a frontend
where associations can be assessed using multiple information visualizations. Thus,
the user can drill down to the desired information. Statistics features regarding
epidemiological key figures are limited.

Spotfire/IVEE [1] is able to handle more complex analysis of data sets and
allows for interactive filtering of attributes. It can be linked to the statistical
computing programming language R, which makes it versatile in comparison with
its competitors. However, users need to be familiar with the R syntax.

Commercial systems cannot be enhanced or embedded in another system with
hassle-free data exchange. The focus of commercial data visualization tools is
business intelligence yielding a focus on quantitative data sources. At the same time
they excel at incorporating user collaboration by including comment sections and
share filters or entire setups of a dashboard.

4 Analysis of Medical Image Data for Epidemiology

Medical images are not by themselves useful for epidemiological analysis, since the
semantics of image elements (pixel, voxels) is too low. The resulting extremely high-
dimensional feature space would be unsuitable for visual analysis. Hence, image
data is sequentially aggregated and reduced. The different steps of this process
i.e. image analysis, shape analysis of extracted objects and subsequent clustering
are characterized and discussed in this section. Throughout the section, we often
refer to one case study, where MRI data from the lumbar spine is analyzed. The
representation of assumptions on the lumbar spine shape and location as well as the
object detection scheme used are examples of viable and common approaches. We
do not claim that these techniques are better than any other approaches.

8http://www.tableausoftware.com/, accessed: 1/31/2016.

http://www.tableausoftware.com/
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4.1 Medical Image Analysis

One of the major purposes of image analysis for a cohort study is to quantify
anatomy, e.g., by volume, shape or spatial relations between structures. Quantifi-
cation may be used to establish a range of normal values for different age groups
and to characterize variations. Such variations may also confirm a disease and thus
add to data derived from clinical tests. Thus, the use of image data enables more
reliable conclusions w.r.t. the incidence and prevalence of diseases. As discussed
in Sect. 2.2, MRI is particularly interesting because of the wide range of different
information represented in these data. Thus, the examples discussed in the following
relate to MRI data although the principles are more general.

Due to the wide range of image analysis tasks, the techniques should be adaptable
to different analysis goals. The parameterization of an image analysis technique
should be intuitive and the interaction should be kept to a minimum. The latter
aspect is particularly important, since often several thousand datasets need to be
analyzed. While largely manual approaches are acceptable in some clinical settings,
such as radiation treatment planning, they are not feasible in the evaluation of cohort
study data. The reduction of interactivity is not only a matter of effort, but also to
meet the essential goal of reproducible approaches.

Detection and Segmentation of Anatomical Structures A modular system is
a possible means to meet the central requirement of image analysis in cohort
study data. An example of a cohort study is the liver segmentation of [17],
where concurrent detection and localization processes are combined for initial
segmentation that is then fine-tuned in a model-driven segmentation step and
finalized by a data-driven correction process. It has been shown that processes can
be re-used and re-combined to solve a different segmentation task on similar data
(kidney segmentation in MRI [18]). Alternatively, the necessary domain knowledge,
related to expected size, basic shape, position and grey values, can be separated
from the detection and segmentation module. This strategy is attractive, since the
user has not to care about the detection process when changing the application. Two
problems have to be addressed in this case:

• What is the expectation about the data support integrated to fit a model?
• How is the with-class variation of the object in search separated from the

between-class variation?

Point distribution models (PDM) [30] address the second question by training on
sample segmentations. Model fitting is realized by a registration step. When training
is not feasible, a prototypical model may be used instead. It is associated with
restricted input about variation (a few parameters only) and qualitative knowledge
about configuration or part-relationship.

In the following, we describe the linear elastic deformation of a finite element
model (FEM) as a common method to model shape variation. The user specifies the
average shape and two elasticity parameters: Young’s modulus defines how much
external force is needed for a deformation and Poisson’s ratio describes how the
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deformation is transferred orthogonal to the direction of an incident force [35]. The
decomposition of the prototypical shape into finite elements bounded by nodes and
specification of the elasticity parameters results in a stiffness matrix K that relates
the node displacement u to incident forces f [Eq. (1)]:

Ku D f (1)

Different kinds of nodes may be specified that are attracted by different kinds of
forces. Boundary nodes are attracted by the intensity gradient and inner nodes are
attracted from expected intensity or texture. For letting an FEM move and deform
into an object in an image, deformation is made dependent on time t. Behavior then
also depends on mass M of the FEM and object-specific damping D [Eq. (2)].

M Ru.t/C DPu.t/C Ku.t/ D f .t/ (2)

M represents the resistance of the moving FEM to external forces and allows
the model to move over spurious image detail (e.g., gradients caused by noise).
Damping D avoids oscillation of the FEM. The system of differential equations is
decoupled by solving the following generalized eigenproblem.

KE D ME with ETKE D  and ETME D I

where  is the diagonal matrix with real-valued eigenvalues and I is the identity
matrix.

After projecting the data on the eigenvector matrix, the differential equations can
be solved fast and in a stable manner. Moreover, the projection on the eigenvectors
(called modes of vibration, see Fig. 4) separates deformation into components
representing rigid transformation, major deformation modes and remaining minor
deformation modes. The vibration modes can be used similar to the variation modes
of an ASM to derive a quality-of-fit formulation for a fitted model instance. Since
only a few anatomical objects have such a specific shape that it can be described by
a simple deformation model and since training of additional information should
be avoided, it is useful to complement simple deformation with pre-specified
information on part-relationships. Part-relationships may describe the configuration
of the object of interest w.r.t neighboring structures or may represent decomposition
into parts (see [33]).

Extending the FEM to a hierarchical model requires the introduction of a second
layer FEM. Each sub-shape is represented by an FEM on the first layer and sub-
shape FEMs are connected to the second layer. The type of connection regulates
dependencies between sub-shapes and may range from distance constraints to co-
deformation. FEMs for the first and second layer are created and assembled in the
same fashion than elements are assembled for the sub-shape FEM [35].
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Fig. 4 Vibration modes 7–9 of a lower spine model. Vibration modes 1–6 represent rigid
transformations (courtesy of Marko Rak, University of Magdeburg)

Case Study: Analysis of Vertebrae Back pain and related diseases exhibit a high
prevalence and are thus a focus of the SHIP (recall [43]). Specific goals are

• to define the prevalence of degenerative changes of the spine,
• to identify risk factors for these changes,
• to correlate degenerative changes with actual symptoms, and
• to better understand the progress from minor disease to a severe problem that

requires medical treatment.

Epidemiologists hypothesize that smoking, heavy physical activity and a number
of drugs that are frequently used are risk factors for back pain. Based on clinical
observations, epidemiologists suggested to focus on the lumbar spine—the lowest
part of the spine comprising five vertebrae. As a first step, the spine and lumbar
vertebrae should be detected in T1-weighted and T2-weighted MRI data from SHIP.

Although local optimization could be complemented by stochastic global opti-
mization [11], Rak and colleagues used only local optimization, since the initializa-
tion is simple for the given data. The user places a model instance in a sagittal view
on the middle slice of the image sequence which is then transformed based on local
image attributes. The model is constructed according to the appearance of vertebrae
and spine in a sample image sequence. Vertebra sub-shapes were connected with a
spine sub-shape by a structural model on the second level.

The spine model supported proper localization of the vertebrae. Since its most
discriminate aspect was the cylindrical shape, it was represented by a deformable
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Fig. 5 Examples for initialization and convergence of model instances applied to the MRI data
(courtesy of Marko Rak, University of Magdeburg)

cylinder consisting of inner nodes only. The vertebrae shape was represented
indirectly by inner nodes as well, since reliability of the intensity gradient was
low. For each of the two shape models, the vertebra and the spine, a weighted
combination of the T1-weighted and the T2-weighted image was computed as
appearance input. Weights for each of the two models were determined a priori and
produced a clearly recognizable local minimum for vertebra and spine appearance,
respectively. The user placed a model instance in the vicinity of the object on a
sagittal slice. Computation time until convergence was between 1.1 and 2.6 s per
case. The method was evaluated on 49 data sets from the SHIP. The detection
was considered successful if the center of each vertebra sub-shape was in the
corresponding vertebra in the image data, which was achieved in 48 of the 49 cases
(see Fig. 5 for examples and [35] for further details).
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4.2 Shape Analysis

Epidemiologists are used to work with numerical and categorical data which then is
tested for statistic validity. Medical image data also allows to consider characteristic
object shapes. As an example, the shape of the liver may depend in a characteristic
manner on infections (hepatitis), alcohol consumption, or obesity. Eventually, shape
characteristics may change even before a disease becomes symptomatic. If this turns
out, shape changes may be employed as an early stage indicator.

While the quantitative analysis of shapes or parts thereof (morphometrics) is a
recent trend in epidemiology due to the availability of image data, it is established
in anatomy and evolutionary biology.

Shape analysis requires that different shapes are transformed in a common space,
typically by a rigid transformation (translation and rotation). The parameters of
this rigid transformation are determined in an optimization process that minimizes
the distances of corresponding points. A major challenge is to determine these
corresponding points that serve as landmarks. In particular for soft tissue structures
there are not sufficient recognizable landmarks and therefore a parameterization
is necessary to define these points. Without going into detail, we assume that this
process is applied to many individual shapes Si, say livers in a cohort study. Then,
for each Si an optimal non-rigid transformation to a reference shape R defines a
deformation with displacement vectors for each landmark.

For use in epidemiology, a large set of displacement vectors is not the right
level of granularity. Instead, a few dimensions are desirable that characterize major
differences. Thus, typically a dimension reduction technique, such as PCA, is
employed to characterize the directions that represent the major differences. This
process may be adapted to specific analysis questions by assigning individual
weights to the landmarks expressing a strong interest in particular displacements
[21]. Thus, epidemiological hypotheses may be incorporated.

While the establishment of point correspondences is often a major challenge,
recently alternative approaches were developed. The GAMES algorithm (Growing
and adaptive meshes) [13] creates a data structure to represent the shape variance
if no pairwise correspondence between points is given. However, it can be prone to
errors since it requires a prior registration of segmentation masks.

Shape analysis, of course, may also be supported by appropriate visualizations
that enable pairwise comparisons and emphasize differences. In this vein, [7]
presented a system for shape space exploration based on carefully designed multiple
coordinated views.

4.3 Analysis of Lumbar Spine Canal Variability

In Sect. 4.1, we introduced a case study related to the analysis of the lumbar spine
in cohort data and explained how the spine and the vertebrae are detected in MRI
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data from the SHIP. Here, we extend this discussion by the analysis of the spinal
canal and non-imaging attributes related to back pain. In the SHIP, attributes related
to back pain history, e.g., working habits, physical activities, size and weight, are
available to identify and analyze potential correlations with findings from the MRI
data. After careful discussions, we selected 77 attributes (60 are ordinal or nominal
and 17 scalar) to investigate back pain [26]. Ordinal data are primarily results of
multiple choice questions. The epidemiologists suggested to focus on the overall
shape and curvature of the spine in that region instead of individual vertebrae. This
overall shape is well characterized by the lumbar canal. Thus, correlations between
the shape of the lumbar spine, attributes of back pain history and activities both in
leisure and working time may be analyzed.

Klemm and colleagues [25] extracted, clustered and visualized spine canal
centerlines. Image segmentation of 493 MRI data sets was carried out automatically
using tetrahedron-based finite element models of vertebrae and spinal canal [35].
Using barycentric coordinates of the tetrahedrons, a centerline consisting of 93
discrete points was extracted for each segmentation, as seen in Fig. 6 (left, middle).
They served as input for an agglomerative hierarchical clustering which created
groups of subjects based on differences in shape. This special clustering technique
was chosen, since it produces meaningful results in the clustering of similar
structures, such as fiber tracts derived from MR-Diffusion Tensor Imaging data [25].

The cluster visualization in Fig. 6 (right) displays each cluster representative as
ribbon in a sagittal plane. The representative is the centerline with the smallest sum

Fig. 6 Lumbar spine visualization of 243 female subjects. Left: Tetrahedron-based finite element
model from Rak and colleagues [35]. The dashed purple line indicates the lumbar spine canal
centerline Middle: Model used to detect lumbar spine canal in an MRI scan Right: Agglomerative
hierarchical clustering of 243 centerlines yields seven clusters. Their representatives are visualized
as ribbons mapping cluster size to width. The ribbon color encodes the distance to the semi-
transparent plane orthogonal to the view direction (lower inset). Shadow projections (upper inset)
provide an additional visual hint on the curvature extent [25]
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of distances to all other centerlines, i.e., the centroid line of the cluster. The width
of the ribbon encodes the cluster count and the color encodes the distance to the
sagittal plane. Shadow projections also (redundantly) convey the distance to the
sagittal plane. This allows to assess the 3D shape in a 2D projection. The results of
the clustering can be used in different ways.

• Outlier detection: Extraordinary shapes yield clusters of small size that differ
strongly from the global mean shape. This can point to pathologies or errors in
the segmentation process.

• Hypothesis generation: Shape groups serve as a starting point for an exploratory
analysis to analyze disease-related correlations. The usual workflow requires
epidemiologists to define groups, e.g., age ranges. Groups calculated solely using
shape information can be analyzed to detect statistically relevant associations in
other expositions which can lead to new hypotheses.

• Hypothesis validation: Clustering based on non-image related features can be
used to analyze if these clusters are correlated to characteristic shapes, e.g., a
strongly bent spine canal representative.

Calculating curvature on groups created according to body height starting from
150 cm in 10 cm steps was performed. Klemm and colleagues found that taller
people have a more straight spine compared to small people. They also found
multiple clusters of people 10 years above average age across all groups that exhibit
a strong “S” shape of the spine, which was the starting point for new investigations
using expert chosen spine-related attributes. This method was extended to integrate
the relevant information for identifying correlations. Thus, for a selected cluster,
information related to the distribution of attributes, such as the back pain history
(frequency and intensity of back pain), may be displayed as a tool tip. The initial
observations show, that a box plot summarizing the distribution is more suitable than
the full histogram. For routine use in epidemiology, the lumbar spine visualization
(Fig. 6) has to be complemented with at least simple statistics to answer questions,
such as: Is there a statistically significant difference between the curvature of the
lumbar spine canal and back pain frequency? If so, what is the effect size?

4.4 Cluster Analysis and Information Space Reduction

A crucial task in epidemiology is the definition of groups of subjects. Differences
and similarities among groups are investigated and control groups are defined to
detect and assess the impact and interaction of risk factors to define the relative risk.
A straightforward approach is the manual definition based on study variables and
ranges of interest. A data-driven extension is the automatic detection of potentially
relevant subgroups in the often high-dimensional data by means of clustering
algorithms [26]. In particular, the generation of new hypotheses, which may be
tightly connected to the identification of new groups, benefits from the latter.
In clustering, subjects, being similar with respect to a certain similarity metric,
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are grouped in clusters with a low intra-cluster and a high inter-cluster variance.
Particular challenges in the cluster analysis of cohort study data are:

• Missing data, e.g., denied answers to inconvenient questions [10]
• Mixture of scala and categorical study variables [2]
• Time-varying variables in longitudinal studies [15]

As a consequence of the first problem, it should be reported to the user how many
datasets were actually used for clustering. Depending on the chosen attributes, this
may be a subset of the overall amount of data. Incomplete datasets may and should
be used when the relevant data is available. It is essential to use similarity metrics
that consider also ordinal or categorical data. Usually, the following convention is
used: The distance between datasets equals 1 if their categorical data is different
and 0 if it is the same. With ordinal data, more care is necessary. The difference
between “strongly agree” and “strongly disagree” on a Likert scale is larger than
the difference between “agree” and “disagree”. However, the precise quantification
is not straightforward. As a first step to explore the SHIP data, a parallel coordinate
view is combined with scatterplots and clustering (Fig. 7).

With respect to clustering algorithms, it is essential that the number of resulting
groups has not to be specified in advance. Moreover, algorithms are preferred
that allow outliers instead of forcing all elements to be part of a cluster. Outliers
may be particularly interesting and thus serve as a starting point for further
investigation. Of course, they may also indicate a bad quality of some data. In
our experiments, density-based clustering with DBSCAN [12] produced plausible
results when applied to non-image data of the SHIP study. The DBSCAN result
is sensitive to the minPoints parameter that determines the minimum size of a
cluster. Some cycles of clustering are necessary to make a suitable choice. In this
process, an appropriate visualization is essential to easily understand the results. A
visualization that conveys the location, size and shape of clusters is difficult in case
that clustering is applied to more than two-dimensional data. A recently developed

Fig. 7 A parallel coordinate view enables the selection of a relevant subset (here persons with a
weight larger than 120 kg). The scatterplots represent correlations between age, size and weight.
The elements are color-coded according to a clustering result that yields three clusters. The
encircled elements correspond to the selection in the parallel coordinates view
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approach enables 3D visualizations of clustering results with very low levels of
occlusion [16].

The majority of cohort-studies are restricted to non-image data, i.e., categorical
and scalar data, which may directly serve as input for a clustering algorithm. In
[3], 176 patients with lower back pain have been monitored over six months via
text messages describing their bothersomeness. All patients received chiropractic
treatment. A hierarchical clustering of the individual temporal courses of bother-
someness revealed groups of patients who responded differently to the therapy,
which may improve the optimal individual treatment selection. Hypotheses about
the differences between paternal age-related schizophrenia (PARS) and other cases
of schizophrenia were generated in [27]. A k-means clustering of demographic
variables, symptoms, cognitive tests and olfaction for 136 subjects (34 with PARS)
delivered clusters containing a high concentration of PARS cases. Significant
characteristics of these clusters may give a hint on features of PARS improving
its dissociation of other cases of schizophrenia.

In analyzing image-centric cohort study data, besides categorical and scalar
data, images may be clustered for group definition. Image intensities, segmentation
results, e.g., the surface of the segmented liver or the centerline of the spinal canal
(recall Sect. 4.3) and derived information, e.g., liver tissue texture, liver volume
and spinal canal centerline geometry, may serve as input. In [37], the anatomical
variation of the mandibles is assessed across a population. For treating mandible
fractures, subjects with similar characteristics are grouped in clusters and a suitable
implant is designed per cluster. The clustering algorithm k-means is applied to
transformation parameters of a locally affine registration between all mandible
surfaces segmented in CT data. A cohort of 50 patients with suspicious breast
lesions was investigated by means of dynamic contrast enhanced MRI (DCE-MRI)
in [34]. Each lesion was clustered according to its perfusion characteristics by means
of a region merging approach. Perfusion is represented by the temporal course of
the DCE-MRI signal intensities. The clustering itself did not generate groups of
patients here, but based on each individual number of clusters and their perfusion
characteristics, two groups of lesions could be defined: benign and malignant. These
groups were then compared to histological results from core needle biopsy.

Investigating high-dimensional non-image cohort study data often benefits from
an information space reduction, e.g., by means of PCA. Plotting the data for
inspection in a lower dimensional space while capturing the greatest level of
variation, e.g., a scatterplot of the first two principal components, as well as
detecting trends in the data and ordering them according to the variance they
describe are important applications of PCA. In [36], symptom data gathered in
interviews of 410 people with Turret syndrome was investigated in order to specify
homogeneous symptom categories for a better characterization of the disease’s
phenotype. First, clusters of symptom variables were generated using agglomerative
hierarchical clustering. Then, for each cluster and each participant a score was
computed equal to the sum of present symptom variables in the cluster. These
scores were the input for PCA, which produced homogeneous symptom categories,
sorted according to their percentage of represented symptomatic variance. In [38],
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scatterplots of variables from cohort study data are extended by superimposing
PCA ellipses. The ellipses are computed per group of subjects and illustrate its
global distribution with respect to the two opposed variables. They are spanned by
the principal component axes of a groups data points and centered at their mean.
Optionally, their transparency is adjusted with respect to the groups confidence, i.e.
the number of contained subjects.

4.5 Categorical Data

Cohort study data sets comprise many categorical data such as answers to ques-
tionnaires or categorizations that may result from binning continuous data, such as
intervals of income or age groups. These data are discrete and exhibit a low range.
While data resulting from binning or from answers marked at a Likert scale have an
inherent order (ordinal data), often no inherent order exists. Standard information
visualization methods like scatterplots and parallel coordinates are designed for
continuous data and thus not ideal for displaying categorical data, since many data
points occlude each other.

Categorical data are often visualized using boxes where the width is scaled to
frequency [45]. These approaches use much space and are also not well suited for
encoding multidimensional relationships. Parallel sets, introduced by Bendix and
colleagues, comprise the same layout as parallel coordinates, “but the continuous
axes were replaced with sets of boxes : : : scaled to the frequency of the category”
[5] (see Fig. 8). Selecting an attribute will map each category to a distinct color so
that they can be traced through all visualized dimensions. Highlighting a category
may be realized by drawing the selected category in a higher saturation leading to
a pop-out effect. It is also useful to display a histogram for the selected category
annotated with statistical information. Selecting a category will only display the
particular box on an axis and make more room for connections to other axes. This
is especially helpful if the number of categories for one dimension is large. In
case of data without inherent order, reordering of axes is possible and supports the
exploration by providing more comprehensible layouts.

5 Concluding Remarks

A variety of large prospective cohort studies are established and ongoing. They
generate a wealth of potentially relevant information for assessing risks, for
estimating costs involved in treatment and thus inform health policy makers with
respect to potentially preventive measures or cost-limiting initiatives. Despite the
great potential of data mining and interactive visualization, none of these studies
included such activities in their original planning. The role of computer science,
so far, was limited to database management and data security. Visual analytics has
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a great potential for exploring complex health-related data, as recently shown by
Zhang and colleagues [50] for clinical applications, such as treatment planning.
Similar techniques may be employed to address epidemiology research. In contrast
to clinical applications, where a severe time pressure leads to strongly guided
workflows, epidemiology research benefits from powerful and flexible tools that
enable and support exploration. Currently, existing and widespread information
visualization and analytics techniques are employed and adapted to epidemiologic
data. The high-dimensional nature of these data, however, also requires to develop
new techniques.

The specific and new aspect discussed in this paper was the integration of
image data, information derived from image data, such as spine curvature-related
measures, and more traditional socio-demographics data.

Future Work So far, visual analytics research and software was rarely focused
on epidemiology. Thus, to adapt visual analytics to epidemiology and to integrate
the solutions with tools familiar to epidemiologists is necessary. In epidemiology,
national studies are prevailing, which is due to the large amount of legislative
conditions to be considered. International studies would enable to explore diseases
with lower prevalence, subtypes of diseases that occur rarely, e.g., cancer in early
age, and specific questions of spatial epidemiology. The SHIP Brazil study will
provide such information. It was recently initiated to perform a study in Brazil

Fig. 8 Parallel sets are designed to explore categorical data. Parallel sets are based on the parallel
coordinates layout, but it maps frequency of the data instead of rendering them just as data points.
The user can interactively remap the data to new categorizations as well as highlight entries
to examine their distribution along other mapped dimensions. The displayed data set shows the
distribution of passengers of the RMS Titanic and whether they survived the sinking of the ship [9]
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according to the standards and experiences gained in the German SHIP study.
A nasty but essential problem of image-based epidemiologic study is quality
control. Research efforts are necessary to automatically check whether image
data fully cover the target region, whether the alignment of slices, e.g., in heart
imaging, is correct and whether severe artifacts appear, e.g., motion artifacts. This
chapter discussed exciting developments related to the combined use of radiologic
image and more classical epidemiological data. The next wave is already clearly
recognizable: genetics information will be integrated in the search for early markers
associated with risks for diseases.
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Three Dimensional Visualisation of Microscope
Imaging to Improve Understanding of Human
Embryo Development
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Abstract The analysis of processes on a cellular and sub-cellular level plays a
crucial role in life sciences. Commonly microscopic assays make use of stains and
cellular markers in order to enhance image contrast, but in many cases, cell imaging
requires the sample to be undisturbed during the imaging process, making staining,
dying and fixing impractical. Non-destructive techniques are especially useful in
long term imaging or in the study of sensitive cell types, such as stem cells, embryos
or nerve cells. Novel advances in computation, imaging and incubator technology
have recently made it possible to prolong the imaging time, reduced the cost of
storing data and opened a door to the development of new computer aided analytical
tools based on microscopic image data.

Here we illustrate how Hoffman Modulation Contrast imaging and Confocal
Microscopy can be combined with visual computing and present results from
determination of cell number, volume, spatial location and blastomere connectivity,
using examples from embryos grown for in vitro fertilisation. We give examples
of how knowledge of the imaging technique can be used to further improve the
computer analysis and also how visually guided tools may aid in the diagnostic
interpretation of image data and improve the result. Finally we discuss how the use
of microscopic data as a basis for embryo modelling may help in both research
and educational purposes. The aim of this chapter is to give an example of how
microscopic imaging can be combined with standard computer vision techniques to
aid in the interpretation of microscopic data, and demonstrate how visual computing
techniques can make an essential difference in terms of scientific output and
understanding.
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1 Introduction

Microscopic methodologies can roughly be divided into destructive or non-
destructive techniques. Non-destructive techniques are preferable in many cases,
where there is a need to keep interference with the sample at a minimum. In
in vitro fertilisation (IVF), the embryo under observation cannot normally be
manipulated or disturbed in any way, but must be observed “as is”, if it is to be used
for implantation. For research purposes, destructive techniques can sometimes be
necessary in order to perform a particular measurement. Two destructive techniques
commonly used in the study of embryos are fluorescence microscopy [17] and
confocal microscopy [18]. Microscopic techniques which can be counted as non-
destructive include bright- and dark-field microscopy, phase-contrast microscopy
(PC) [4], Hoffman Modulation Contrast (HMC) microscopy [13], Differential
Interference Contrast (DIC) [20] microscopy and Digital Holography (DH) [2].
Of these, bright- and dark-field microscopy produce an image of the amplitude
of the transmitted (or reflected) light. However, cellular material is usually highly
transparent, and for such objects, a better sample-to-background contrast can be
obtained by recording the phase of light instead of the amplitude. PC microscopy
and HMC imaging are techniques where the phase information of diffracted light
is optically converted to amplitude information. Techniques such as these are very
good for visualisation, but the image grey scale cannot be directly translated to
quantitative data. DIC and DH are techniques where the sample phase-shift is
imaged directly, yielding information on sample thickness and refractive index.

An increasing amount of image material available due to lower cost of hardware
and increased ease of data storage has made it more and more cumbersome to
perform image analysis manually. An increasing amount of work has been done
in both open source and commercial projects, developing computational solutions
for bioimaging problems. Generalised software, with a large number of tools as
well as plugins for specific tasks include ImageJ [1], Icy [5], BioImage XD [15],
CellProfiler [16] and Fiji [25]. Each imaging modality often requires its own compu-
tational approach, demanding high technical skills from the user, in order to choose
the correct algorithm for the analytical problem at hand. In addition to the multi-
purpose solutions, there exists a variety of software solutions, particularly designed
for a narrower purpose [24, 31]. A majority of the available computational tools
for microscopic imaging focus on fluorescent microscopy imaging - a reflection of
its common use in research. However, for stem cell research, when working with
tissues intended for transplantation or in IVF, non-destructive imaging modalities
are the only option. Interesting work has been done in modelling fixed embryos
[3, 12, 29], but little has been done so far on modelling and analysing growing
embryos in the early stages after fertilisation using non-destructive imaging.
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1.1 The Embryo Selection Process

When selecting an embryo suitable for implantation, the embryologist may look at
a number of criteria, such as pronuclear appearance and orientation [6, 27], number,
size, shape of blastomeres, degree of fragmentation [10], degree of blastocoelic
expansion, cellular composition and compactness of the inner cell mass and
trophectoderm [26]. Discussions concerning the relevance of embryo morphology
in quality assessment exist [11], but it is likely that such evaluations will continue to
play a large part in IVF embryo evaluation also in the future. Traditionally, embryos
have been studied using a microscope (commonly HMC) only at certain time points
during the course of their development. It has been shown in time-lapse studies
that the timing of key occurrences can vary greatly between individual embryos
with similar morphologic appearance at the conclusion of the recording period, and
correlation has been shown between the timing of key developmental events and
embryo quality [21]. Such indications, in combination with new possibilities for
time-lapse imaging of human embryos for an extended period of time with fewer
negative effects to their health, make it likely that the use of time-lapse recordings
will continue to increase in the future.

1.2 Embryo Imaging Using Hoffman Modulation Contrast

HMC imaging is a popular optical set-up for non-destructive microscopic imaging,
routinely used in embryology. Here, light is passed through a pair of off-axis slits,
converting gradients in sample optical path to bands of light and dark appearance,
depending on the spatial sample direction (Fig. 1). This effect is most apparent when
performing any kind of non-symmetrical image operations. Compare for instance
the output of a derivative of the raw image taken along the horizontal and vertical
axis, respectively (Fig. 2). In computer vision, a common approach is the application
of an edge finding filter. Here too, the anti-symmetry of the HMC must be taken into
account, because the angle of incident light produces a shift in edges in the upper
half of the image compared to the lower half. In Fig. 2c), a Canny edge detection
filter has been applied to the raw image. It is clear that the filter may find edges on
both sides of the lighter and darker bands, resulting in an uncertainty when trying
to determine the location of the border of the embryo, or of a single blastomere.
However, since the direction of light depends on the azimuthal angle between splits
and sample, this effect can be reduced by rotating the sample around a vertical axis,
and combining information from several images along the rotation.

Long-term imaging of sensitive material requires the process of capture to be
non-destructive, but also requires that the sample can be kept undisturbed in a
favourable atmosphere for an extended period of time. Novel construction of incu-
bators and cultivation chambers has recently made it possible to monitor embryos
over the course of several days, without any known consequences to their health.
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Fig. 1 (a) Layout of Hoffman Modulation Contrast optical set-up. Undiffracted light falls on the
grey portion of the modulator (c), and the background of the image appears light grey. Refractive
index gradients in the sample result in deflection of the light to either the black (b) or the white
(d) section of the modulator, so that variations are imaged darker on one side, and brighter on the
other, producing a pseudo three dimensional shadowing effect

Fig. 2 Gradient of Hoffman Modulation Contrast image in X-direction (a) and Y-direction (b),
respectively, and the direction invariant Canny Edge transformation (c). Note that the contrast of
these images have been reversed for display purposes

However, there are difficulties other than the purely technical when combining
automatic long term time-lapse imaging and microscopy. When examining embryos
under the microscope, the three dimensional structure is very much of interest. In
a traditional, manually handled microscope, much information can be gained by
making proper use of the microscope controls: moving the sample around, scanning
the focus, adjusting strength of illumination or making use of various filters and
apertures in order to scan the three dimensional object in real time. In an automated
time-lapse set-up, the possibility to manipulate optics is reduced when the optical
set-up must incorporate a climate chamber to accommodate the living cellular
material. If the microscope is instead meant to sit inside an incubator or other
external chamber, the possibility of manipulating the optics is equally reduced,
either because its operation requires the doors of the chamber to be opened, or
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because the optics are shielded to protect them from the high humidity of the
chamber. In many time-lapse set-ups, the possibility of adjusting image quality in
real time has vanished, and the user is now limited to studying the images some time
after they are captured. This calls for new techniques to visualise this previously
captured data in creative ways, possibly of regaining some of the interactivity lost
to the user.

2 Materials and Methods

The anonymised embryos used in these studies were donated by consenting
patients and the study of them was approved by Coventry Research Ethics Com-
mittee (04/Q2802/26) and the Human Fertilisation and Embryology Authority
(R0155). Fresh embryos unsuitable for transfer or cryopreservation and frozen
stored embryos no longer required for treatment were cultured using Medicult media
(Origio, Redhill, UK) for up to 7 days and incubated in 37 ıC CO2 in air. Embryos
were otherwise untreated or undisturbed during culture, while some were fixed and
stained at the end of culture in preparation for the imaging process.

For confocal imaging, embryo nuclei were marked with DAPI, fixed on micro-
scope slides and images were captured using the LSM510 confocal system (Zeiss,
Hertfordshire, UK), using 400�magnification, with 1 �m between scans. Confocal
images were segmented using a combination of region growing segmentation filters
(Neighbourhood Connected Thresholding and Confidence Connected Threshold-
ing) and Watershed segmentation [23]. A Delauney triangulation was used to
compute the surfaces from the segmented outlines, and the body of each nucleus
was then put together in a three dimensional representation of the complete embryo.

For HMC imaging, time-lapse series were captured using the Embryoscoper
system (Fertilitech, Copenhagen, Denmark), with a 20 min interval between images.
The embryos were mounted in wells in an EmbryoSlider (Fertilitech, Copenhagen,
Denmark), one embryo per well, and the imaging used a 635 nm LED, and a Hoff-
man Modulation Contrast Microscope. Up to seven focal planes, 20 �m apart, were
captured simultaneously, resulting in an image stack, where the image in optimal
focus was selected for each embryo using a variation of contrast detection adapted
to Hoffman Modulation Contrast microscopy. Blastomere outlines were carefully
selected manually using the software EmbryoSegmenter, as shown in Fig. 3, and
then further processed using Python scripting, where a spherical model was adjusted
to the segmentation outline as described in [8], assuming the segmentation to be at
the waist, i.e. on the widest part of the blastomere. The spherical shape represents a
first order simplification of the true blastomere shape, and can readily be extended
to a more complex model, if information from several focal planes is considered.
However, due to the longer field of view in HMC imaging, compared to confocal
microscopy, in combination with a short depth of field, there is often bleed-through
from objects out-of-focus and a higher uncertainty in the extension of objects in the
focal (z) direction, compared to the xy-direction.
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Fig. 3 EmbryoSegmenter for annotation, selection of focus level and blastomere outlines

The image at each focal distance can be described by the two dimensional
function I(x,y). Prior to handling, captured images were filtered with a Gaussian
filter to remove speckle noise. To detect image sharpness, i. e. the focus, a Laplace
filter L(I) was used,

L.I/ D r
2I

4
D 1

4
� . d2I

dx2
C d2I

dy2
/; (1)

where the Laplacian has been applied to a 4-connected neighbourhood,

li;j D 1

4
.IiC1;j C Ii� 1; jC Ii; jC 1C Ii; j � 1/� Ii;j: (2)

Note that due to the asymmetrical nature of Hoffman Modulation Contrast Imaging
(Fig. 2), the symmetrical Laplace was chosen, rather than the direction-dependent
gradient.

To detect areas of high sharpness, an H-maxima transform, H, was applied to the
result L(I), using an 8-connected neighbourhood. The H-maxima transform consists
of a morphological grey-scale reconstruction of a marker image using the original
image as mask, followed by a subtraction of the result from the original image
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Fig. 4 The H-maxima transform extracts peaks higher than h. (a) Original image I, subtracted
by a scalar h. (b) Greyscale reconstruction of I using I-h as marker. (c) Subtraction of grey scale
reconstruction from original image

(Fig. 4). The marker image is obtained from the original image, subtracted with a
constant value h. The result is a set of regional maximas lower than h. For this study,
h D 15% of the image max was chosen. The detected maxima were extended using a
Close transform with a 7 pixel diameter circular structure element, and the resulting
image was thresholded at 99% of maximum image amplitude and converted to a
binary mask. Holes were removed from the mask using a filling function, and the
mask was then used to extract the corresponding region from the original image, I.

3 Modelling Using Confocal Microscopy

The short field of view of a confocal microscope makes it possible to section
a sample volume into image slices and several scans may be used to compile
a complete three dimensional visualisation of embryo structure. In Fig. 5, semi-
automatically segmented outlines of nuclei from several slices have been combined
to show the complete nuclear shape. Figure 6 shows the three dimensional layout
of a human blastocyst, consisting of 121 blastomere nuclei. The nuclei along the
perimeter form the trophectoderm. A denser pack of nuclei to the right of the top
view image form the inner cell mass. A flattening effect due to the mounting of the
embryo between microslides is clearly visible in the side view image. The accuracy
of the 3D model depends on the amount of available data, the xy-resolution and
the number of scans in the z-direction. Confocal microscopy has been chosen here
because the low depth of field allows us to separate the signal between images in the
stack, thus obtaining cleaner data. Optical sectioning is to some extent also possible
in some non-destructive techniques, in particular in HMC, which has a relatively
low depth of field compared to other types of light microscopy.
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Fig. 5 Confocal image of blastocyst stage human embryo. Nuclei stained with DAPI have been
segmented. Line plot of eleven segmented outlines, forming the body of a single blastomere
nucleus; top view

Fig. 6 Nuclei of blastocyst stage embryo, modelled after confocal microscope image scans. Front
view and side view, respectively. A flattening effect is visible, where the embryo has been deformed
between the microscope slide and cover slip [19]

4 Three Dimensional Modelling of Hoffman Modulation
Contrast Images

When images are unsuited for automatic segmentation, or when the clinical nature
of the material calls for manual methods to be applied, creative visualisation can
still add value to the analysis. Figure 7 shows a basic spherical model of a 4-cell
stage embryo, using 4 selected outlines, and a more detailed model, including the
zona pellucida, and internal structures of the embryo. Blastomeres may be located
at different positions along the focal axis and the selection of the correct position
must be performed separately for each individual blastomere (Fig. 8). The crucial
step in the modelling is the selection of the appropriate focal plane from the stack
of available images.
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Fig. 7 (a) Segmentation outlines at blastomere waist are used to guide spherical cell models. (b)
All structures present in the original image can be visualised. Here showing nuclei and nucleoli, as
well as a large fragment (visible to the right of image centre). The different structures have been
artificially coloured for clarity

Fig. 8 6 cell stage embryo, with blastomeres modelled as spheres, rotated about its central axis.
Bounding box added for clarity. Connected regions between blastomeres differ depending on
blastomere size and location
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4.1 Focal Selection

The most critical property of quality for an image is its focus. Without good
sharpness, the image will be meaningless for both human eyes and for computerised
analysis. As the use of camera recordings increases around us, both in our daily life,
for the purpose of documentation, communication, surveillance or for recreational
purposes, so it also increases in the laboratory. More and more often, images are
captured as part of the scientific process, as a method of documentation or as a part
of the analytical process itself. The number and complexity of available algorithms
for image segmentation, computer vision or pattern recognition continues to grow
and is likely to play a large role in how we handle data in the future. When we hand
over more of medical surveillance and diagnostic tasks to automation, it is crucial
that we can rely on the accuracy of these automatic procedures. One way to assure a
level of quality, and to make sure we do not waste time trying to analyse material of
poor standard, is to make sure that the images introduced to an analytical pipeline
are captured at an optimal focus.

Many algorithms for automatic focus rely on computation of the power spec-
trum [30]. In cameras with moving lenses, it is also possible to adjust the focus
based on the image contrast, a method referred to as contrast detection autofocus.
Several images are then captured in sequence, while searching for local maxima of
the image contrast or the gradient of the image contrast. This is usually not done
for the entire image but for a selected area of interest. Several autofocus algorithms
have also been evaluated for microscopy [7, 9, 22, 28]. In optical microscopy, where
the depth of field is usually very short, the entire embryo is rarely in focus at one
optical setting.

Figures 9 and 10 illustrates the extraction of regions in focus, based on the
contrast detection algorithm, from the image stack of a human embryo. The embryo
is at the blastocyst stage and has the shape of a hollow sphere with cells covering its
walls. Due to the varying distribution of cells, the spherical shell of the embryo may
vary in tissue content. The stack moves from slightly above the horizontal embryo
central plane and downwards until it reaches the embryo base, where also structures
on the bottom of the embryo container are encountered.

4.2 Calculation of Blastomere Connectivity

During the cleavage stage, as the blastomeres undergo mitosis, contact regions
between them often increase, as cellular communications are initiated. At the onset
of the compaction stage and at the following cavitation, the blastomeres adhere
together more closely and start to form a single interacting multicellular organism.
In this way, the developing embryo eventually transforms into a complete entity,
rather than a package of loosely aggregated cells.
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Fig. 9 Hoffman Modulation Contrast image of blastocyst stage embryo at 136.2 h, showing one
original image (a) and seven images, captured at separate focal planes, with extracted regions in
optimal focus (b–h). Focal planes cover the embryo from slightly above the embryo waist (b),
down to bottom of the containing well (h). The inner cell mass is in focus on the first slide (b).
The original image corresponds to the fifth image in the series (f). Images (b)–(h) have reversed
contrast for display purposes

Fig. 10 7-image stack of Hoffman Modulation Contrast images of blastocyst stage embryo at
136.2 h, and the extracted focused regions. The extracted regions have reversed contrast for display
purposes
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Fig. 11 Cleavage stage embryo observed during development from 0 to 34 h, showing 1, 2, 4, 5,
6 and 7 cell embryos, respectively. The boundary of the zona pellucida is indicated in grey

Fig. 12 The intersection plane between two spheres is described by a circle, definitions

In Fig. 11, six steps of development from one to seven blastomere stages of a
cleavage stage embryo have been modelled.

When modelling each blastomere as a sphere, it is possible to compute an
estimate of the blastomere connectivity, C. Let R1 and R2 be the radius of two
intersecting model spheres, located a distance d � R1 C R2 from each other
(Fig. 12). We assume the two spheres follow the physics of a double bubble [14].
Let a be the distance from the centre of the sphere with radius R1 to the central
point of intersection between the two bodies. The intersection will take the shape of
a circle, with radius r, giving the contact area,

Acon D �r2: (3)
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The connectivity

C D Acon

.Acon C Auncon/
(4)

where the part of the spherical surface outside the intersection, Auncon can be
calculated numerically from the model;

Auncon D 4p�R2 (5)

where p is the part of the spherical surface of the model not contained within the
neighbouring sphere. The value p is given by integrating over the surface of the
sphere across an angle ' and dividing with the total area of the sphere,

p D 1

4�r2
�

�Z

��

'Z

0

r2sin.�/ı� � ı'; (6)

where

sin.'/ D r

R1;2

: (7)

In Fig. 13, the blastomere volume and connectivity have been calculated for the
embryo in Fig.11.

Blastomere volume

1.4

1.2

1

0.8

0.6

0.4

0.2

0

1 2 3 4 5 6 7

Nbr of blastomeres

V
ol

um
e/

zy
go

te
 v

ol
um

e

Mean
St dev

Blastomere connectivity

40

35

30

25

20

10

15

5

0

1 2 3 4 5 6 7

Nbr of blastomeres

C
on

ne
ct

iv
ity

 (
%

)

Mean
St dev

Fig. 13 Blastomere volume and connectivity for the embryo in Fig. 11. Blastomere volume has
been normalised to the volume of the zygote and to number of cells in the embryo. The connectivity
is displayed as percentage of surface area. Bars show both mean and standard deviation, calculated
for each number of blastomeres. Apart from the 4 cell stage, which differs in both volume and
connectivity, the total volume is constant, whereas the connectivity increases
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5 Conclusion

We have shown how two dimensional image data can be used to construct a simple
three dimensional model, which in turn can be used to extract additional data from
embryological data sets and also how computer analysis may be used to supplement
two dimensional imaging. With a three dimensional display, it is possible to view
the sample from different directions, thus getting a clearer view of its spatial layout,
and improving interaction with the sample. Using 3D plotting, not only can we get
a much more intuitive understanding of the embryo structure and the positioning
of blastomeres relative to each other, it is also possible to take measurements of
cellular or nuclear volume and blastomere connectivity, which are not possible with
a single scan.

When optically sectioning microscopy data, it is not always possible to rely
on a short illumination path along the focus axis, as is possible in confocal
microscopy, and the image will always suffer bleed-through from out-of-focus areas.
We illustrate here how this problem to some extent may be overcome using pattern
recognition and image treatment. A reliable and robust algorithm for focus level
detection may be useful not only as a pre-processing step for image analysis, but
also as a method for automatic focus of microscope hardware, when the images are
being captured during long periods of time, when the capturing process is automatic,
or when the microscope is placed in a climate chamber, as is often the case in time-
lapse sequencing.

It is a challenging task for future developers, researchers and entrepreneurs to
emulate real life events and actions by visualisation tools used to carry out analytical
medical tasks. Generally speaking, the more technical, detailed and descriptive
a function is, the longer, harder and more time consuming it is to replicate.
Microscopic images are among the most detailed to be found, and the implications
of making wrong decisions in a clinical environment are potentially severe. Hence,
any software solution must be implemented with great care. However, it is not
always necessary to simulate every aspect of reality, and a healthy scepticism for
technology must not prevent us from embracing it in areas where it can increase
knowledge and help reduce human suffering. The task of designing a model which
simulates all the relevant features of a growing human embryo in a realistic manner
will without doubt require a high degree of future cooperation between software
developers and clinical scientists active in the field.
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Quantitative Analysis of Knee Movement
Patterns Through Comparative Visualization

Khoa Tan Nguyen, Håkan Gauffin, Anders Ynnerman, and Timo Ropinski

Abstract In this paper, we present a novel visualization approach for the quanti-
tative analysis of knee movement patterns in time-varying data sets. The presented
approach has been developed for the analysis of patellofemoral instability, which is a
common knee problem, caused by the abnormal movement of the patella (kneecap).
Manual kinematic parameter calculations across time steps in a dynamic volumetric
data set are time-consuming and prone to errors as well as inconsistencies. To
overcome these limitations, the proposed approach supports automatic tracking
of identified features of interest (FOIs) in the time domain and, thus, facilitates
quantitative analysis processes in a semiautomatic manner. Moreover, it allows us
to visualize the movement of the patella in the femoral groove during an active
flexion and extension movement, which is essential to assess kinematics with respect
to knee flexions. To further support quantitative analysis, we propose kinematic
plots and time-angle profiles, which enable comparative dynamics visualization.
As a result, our proposed visualization approach facilitates better understanding of
the effects of surgical interventions by quantifying and comparing the dynamics
before and after the operations. We demonstrate our approach using clinical time-
varying patellofemoral data, discuss its benefits with respect to quantification as
well as medical reporting, and describe how to generalize it to other complex joint
movements.

1 Introduction

Recent advances in medical imaging technologies enable the acquisition of organ
functions. This leads to many possible clinical applications, such as studies of activ-
ities in the brain using functional magnetic resonance imaging (fMRI), or studies
of the dynamics of a beating heart through dynamic computed tomography (CT)
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Fig. 1 2D and 3D views of a knee joint. While the conventionally used Skyline view captured
at 30–45ı of knee flexion looks normal based on X-ray (a) as well as 3D CT (b), only the joint
movement pattern imaged through 4D CT [(c) and (d)] reveals the patella dislocation issue at the
full extension. (a) Skyline view. (b) Rendering of 3D CT. (c) Rendering of a knee at active flexion.
(d) Rendering of a knee at full extension

scans. Another potential clinical application is dynamic image-based orthopedics.
Although, static 3D CT and magnetic resonance (MR) imaging data have been
used to support the analysis of joints, they cannot capture the dynamics of joint
movement patterns. As illustrated in Fig. 1, while the renderings from the static data
indicate no patellofemoral instability (see Fig. 1a, b), the renderings of data captured
in the dynamic CT scan reveal patellofemoral instability at extreme positions (see
Fig. 1c, d).

There are three main challenges that arise from 4D CT imaging-based orthope-
dics. The first challenge is the quantification of complex joint movements based on
dynamic CT data. While inspecting an animation of the dynamic data might help the
medical doctor to get a first impression about underlying conditions, quantification
is necessary to support a proper categorization. Since dynamic CT scans contain
a vast amount of information, manual calculation of kinematic parameters is time-
consuming and can lead to inconsistent results. The second challenge lies in the
comparative analysis of joint movement patterns. When detected conditions require
a surgical intervention, a follow up scan is often performed to measure the success
of the operation. However, measuring surgical success requires a comparison of
the status before and after the intervention, which makes a comparative analysis
necessary. Finally, as medical reporting is required in all medical disciplines,
sufficient techniques are required to be able to report on detected conditions.

To meet the challenges in 4D CT image-based orthopedics, we propose novel
visualization metaphors, which enable quantification, comparison, and reporting of
joint movements in 4D CT data. We propose radial plot, which not only conveys
the relations between angles but also helps to emphasize the changes and implicitly
incorporates spatial information into the rendering of the plot. The time-angle profile
presents different kinematic parameters and the joint movement patterns in a single
image in such a way, that both quantitative and comparative visual analysis are
supported. The proposed visual metaphors have been developed in close collabora-
tion with medical experts who wish to investigate patellofemoral instabilities using
time-varying CT acquisitions. In addition, we propose a semiautomatic GPU-based
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feature tracking technique that allows the manually selected features of interest
(FOIs) to be tracked automatically across volumes in dynamic CT data. This enables
automatic and consistent quantitative measurements of kinematic parameters from
the selected FOIs. The main contributions of the paper can be summarized as
follows:

• Visualization metaphors for the quantitative assessment and comparison of joint
movement patterns.

• Component separation and visualization to enable medical reporting of joint
movement patterns.

• Interactive visual inspection of joint movement data based on an enhanced GPU-
based feature identification and tracking technique based on the SIFT algorithm.

2 Medical Background

The patella (kneecap) is a bone that is incorporated into the tendon of the quadriceps
muscles of the thigh and moves within a groove at the lower end of the femur (thigh
bone). When the knee bends, the patella engages the groove and is fixed to the center
of the groove by muscle forces. On the other hand, the patella moves to the upper
shallower end of the groove when the knee is straightened. Consequently, the patella
will be more loose, and may move somewhat more lateral (to the outside) [1]. The
medial patellofemoral ligament (MPFL) is the primary medial restraining structure
against lateralization of the patella when the knee is straight or mildly flexed, and
contributes up to 80 % of the medial restraining forces to the patella [2].

A dislocation of the patella occurs when the patella comes completely out of
its groove, gets fixed to the outside of the knee joint, which causes significant
pains. This problem commonly happens during sporting activities to young and
physically active people. The annual incidence of primary patella dislocations
has been estimated to 43 per 100,000 in children under the age of 15 [3]. The
first dislocation usually occurs as a significant injury with the knee in near full
extension, but the patella may dislocate much more easily thereafter. Recurrent
patella dislocations eventuate in 15–45 % of primary dislocation cases and can
cause significant problems that not only prevent sport activity but also be a hin-
drance in daily activity [4].

There are more than hundred surgical options for patients with repeated dis-
locations [5]. It is possible to restore the normal anatomy by repairing the torn
ligaments on the inner aspect of the knee, to deepen the groove, or to realign the
patella tendon to stabilize the patella in a more medial (inner) position [1]. In the
last decade, it has been increasingly popular to reconstruct the MPFL, often as an
isolated procedure [6]. However, the lack of accurate follow-up methods to assess
the movement of the patella in relation to the groove after rehabilitation or surgical
intervention has led to the multitude of operations.
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Ordinary radiographic methods are inadequate for the assessment of patello-
femoral malalignment. The most commonly used technique for visualization of the
patellofemoral joint requires 30–45ı of knee flexion (see Fig. 1a) [5, 7, 8]. This is
a static examination and the images are not obtained near full extension where the
groove is most shallow and the patella is unstable. While conventional CT and MRI
scans can image a straight knee, they are static and will not display patella tracking
under functional movements [5]. With the use of 4D CT, it becomes possible to get
a 3D visualization of the patella’s tracking in the femoral groove during a functional
active flexion and extension movement with normal muscular forces. However, it is
difficult to describe 3D motion in a distinct way. Fixed body axes in either the patella
or femur can give confusing results [5]. Thus, there is a great need for quantitative
analysis of joint movements through apparent visualization methods to give a better
understanding and also to get quantifiable results.

3 Related Work

Over past years, many visual representations have been proposed to convey the
relation between angles, which is the major question in the analysis of joint
movements [9]. The angle-angle plot, in which each axis represents a kinematic
or kinetic signal, is commonly used. By plotting one signal against the others, an
angle-angle plot illustrates the coordinated motion of the two segments or joints.
Manal et al. [10] used an advanced color-coding scheme to incorporate additional
parameters into the standard angle-angle plot. Later, the authors proposed the use
of an additional dimension within the plot so that additional parameters can be
visualized [11]. Côté et al. [12] presented 2D projected stick figures to show the
kinematic results of continuous hammering performed by different patient groups.
While the proposed approach was sufficient when looking at joint height, it failed
to reveal the kinematic relationships. Keefe et al. [13] proposed a visualization
system based on multiple views to show relationship within sequential kinematic
data. Krekel et al. [14] focused on the visualization of the relationships between
multiple connected joints by combining interactive filtering with visualization. The
approach probably most relevant to our research is that of Krekel et al. [15], in which
a technique for visualizing the range of motion of the shoulder joint is presented.

Scale-invariant feature transform (SIFT) algorithm was first proposed to match
features between 2D images [16, 17]. Later, SIFT algorithm has been extended to
handle n-dimensional data [18, 19] and successfully applied to different application
scenarios [20–23]. Yu et al. [24] have shown that SIFT algorithm provides high
performance and stable result in comparison to other techniques. Recently, Nguyen
and Ropinski proposed an enhanced GPU-based implementation of SIFT algorithm
that improves both performance and feature matching accuracy when dealing with
dynamic volumetric datasets [25].

While other research has been conducted on the visualization of complex joints
[14, 26], to our knowledge, the work in this paper is the first to tackle time-varying
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volumetric CT data in order to support the quantitative analysis of joint movement
patterns. By directly deriving the kinematic parameters from the volumetric data in
a semiautomatic manner, we can avoid patient instrumentation of markers.

4 Method

Figure 2 presents the workflow of the proposed approach. First, the dynamic CT
scan is pre-processed. Particularly, stable feature locations are identified, extracted
and matched between scans. In the interactive visual analysis stage, users can
interactively select FOIs and the system automatically tracks these features between
scans using the information from the pre-processing stage. Depending on the
application in mind, different quantitative measurements of kinematic parameters
based on the selected features are performed. The results are then visualized using
the proposed visual metaphors, which we describe in detail in Sect. 5, to support
quantitative and comparative analysis of the underlying kinematic information.

In the following subsections, we first describe the proposed feature identification
and tracking technique. We then describe in detail a geometry setup that facilitates
robust calculations of different kinematic parameters applied to the investigation of
patellofemoral instability.

4.1 Enhanced GPU-Based Feature Identification and Tracking

The proposed feature tracking technique is based on the GPU-based implementation
of the SIFT algorithm proposed by Nguyen and Ropinski [25]. To further improve
the accuracy of the feature matching process, we propose a novel feature descriptor
construction technique called ring descriptor. The algorithm is performed in three
successive stages: feature location detection, feature descriptor construction, and
feature matching.

Fig. 2 The workflow of the proposed approach. In the pre-processing stage, features in a dynamic
CT data set are extracted and matched between scans. In the second stage, user can interactively
select FOIs. Based on the information from the pre-processing stage, selected FOIs are tracked
automatically in the time domain. Depending on the application in mind, different quantitative
measurements can be performed and visualized for assessment
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Feature Location Detection In the first stage, stable features in the input image
are identified through a scale-based analysis approach. The input volumetric data is
convoluted with variable-scale Gaussian functions to generate a scale space. The
local extrema of the difference-of-Gaussian functions applied to the constructed
scale space represent the potential local features in the original data. Lindeberg [27]
shows that these local extrema are close approximations to the scale normalized
Laplacian-of-Gaussian, which are the most stable features in the input image [28].

The construction of the scale space from the input data and the detection of local
extrema are computation-demanding processes. Fortunately, the calculations at each
voxel are independent of the calculations at the others. As a result, by parallelizing
the computation using the GPUs, a higher performance can be achieved.

Feature Descriptor Construction The aim of the second stage is to construct a
unique descriptor to represent the detected feature location in such a way that is
most invariant with respect to rotation, scaling, and translation. The construction of
such a descriptor is based on the gradient orientations in the neighborhood of the
detected feature location and presented as a histogram of gradient orientations. In
3D, a gradient orientation comprises three components: azimuth, elevation, and tilt
angle. While the elevation and azimuth components can be derived directly from the
gradient itself, the tilt angle can only be derived through a more complex analysis
of the neighborhood [29].

In the first step of constructing a descriptor, the dominant orientation in the
neighborhood around the detected feature location is identified. The other gradients
are then re-oriented to the identified dominant orientation to achieve rotation
invariant property. In addition, the neighborhood is subdivided into sub-regions
to avoid disruptive changes of the gradient orientations and, thus, improve the
uniqueness of the constructed descriptor. As a result, a descriptor is basically a
concatenation of histograms of gradient orientations from sub-regions.

Previous research has shown that the size of the neighborhood can have a large
impact on the uniqueness of the constructed descriptors, which affects the accuracy
of the feature matching process [29, 30]. This is due to the fact that the size of the
neighborhood is a global setting and is dependent on the input data. While a large
size neighborhood (e.g., greater than 16 � 16 � 16 voxels) might fail to capture the
local characteristic of the detected feature, a small size neighborhood (e.g., less than
or equal to 8 � 8 � 8 voxels) might put too much emphasis on the local property.

To overcome this limitation, we propose a novel descriptor construction approach
called ring descriptor. The neighborhood is divided into non-overlapping sub-
regions centered at the detected feature location. For each non-overlapping sub-
region, the dominant gradient orientation is identified. This allows us to capture not
only the local characteristic of the detected features but also reduce the impact of the
neighborhood size setting on the uniqueness of the final descriptor. The gradients in
the neighborhood are re-oriented to the identified dominant gradient orientation of
each non-overlapping ring before the construction of the descriptor.

One obvious advantage of the proposed technique is the ability to introduce
a weighting factor into the construction process, which helps to emphasize or
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de-emphasize the local property of the detected feature depending on the input
data. For instance, even with large neighborhood size settings, users can increase the
weighting factor for the dominant orientation identified in the inner non-overlapping
ring thus emphasize the local property of the feature and regard the property of the
whole neighborhood at the same time. As a result, the size of the neighborhood
has less impact on the result, which makes the proposed approach more flexible in
handling different type of dynamic volumetric data.

It is a challenge to transform a standard CPU-based implementation of SIFT to a
GPU-based one. Due to the limitation of the memory architecture on the GPU, i.e. a
large histogram cannot be fit into local/share memory, the size of the histogram has
a big impact on the performance. Since the proposed technique allows us to reduce
the size of the constructed descriptors, and improve the uniqueness at the same time
by subdividing the neighborhood into non-overlapping ring, we can fully exploit
the computing power of the GPU to achieve high performance and, thus, support
interactive visual analysis.

It is worth mentioning that a smoothing operator is usually applied to the
constructed descriptor to reduce the impact of disruptive changes of gradient
orientations in a standard implementation of SIFT [17]. As the type and the bounds
of the smoothing operator are abstracted from the original input data, it is difficult
to identify a good smoothing operator to improve the quality of the constructed
descriptor. In the proposed technique, by moving the computing from CPU to
GPU, we do not only achieve a higher performance but also implicitly achieve the
interpolation supported by the hardware. Particularly, the GPU hardware enables
us to achieve a bi-linear interpolation without any cost. Moreover, instead of
re-orienting gradient orientations in the neighborhood around a detected feature
location, the whole neighborhood is re-oriented to the dominant orientation. Hence,
gradient orientations are updated accordingly. This allows us to minimize the
effect of different interpolation scheme applied to the constructed descriptors. More
importantly, the uniqueness of the constructed descriptors are improved as the
interpolation in our approach is directly based on the underlying information from
the input data.

Feature Matching Once the features descriptors have been constructed for two
data sets to be compared, they can be used to identify matching features using
different techniques such as RANSAC [31], Best-Bin-First (BBF) [32]. The min-
imum Euclidean distance between descriptors is commonly used as an indicator for
a possible match. Consequently, to identify possible matches between two data sets,
the minimum Euclidean distance between each descriptor in the first data set and
all descriptors in the second data set must be identified. We refer to the work of
Nguyen and Ropinski [25] for further detail on the GPU-based implementation of
SIFT algorithm.
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Fig. 3 Congruence and tilt angle measurement. (a) is the visualization of the knee overlain with
a FOI (green), which marks the widest part of the on the left knee. (b) and (c) are the illustrations
of the congruence and tilt angle measurement through a clip plane setup. (a) Knee overlain with a
FOI (green). (b) Congruence angle measurement. (c) Tilt angle measurement

4.2 Kinematic Parameters Measurement

Over past years, many researches focusing on the methods to describe patello-
femoral joint motion have been made. The results can be classified into two groups:
those that describe motion of the patella in relation to the femoral groove and those
that describe the motion of the patella in relation to a fixed-body axis [5]. The former
are primarily image-based studies [33–35]. One significant drawback of previous
results is the inability to describe the patella motion in three-dimensional space.

The congruence and tilt angles between the patella and the femoral groove are
two commonly used kinematic parameters in quantitative analysis of the patello-
femoral issue. As the congruence and tilt angles reflect the relation between the
patella and the femoral groove, we propose a geometry setup, in which the patella
and the clip plane cut through its widest part serve as the reference, for quantitative
kinematic measurement (see Fig. 3). The congruence angle is then defined by the
angle between the bisected femoral trochlea (dashed line in Fig. 3b) and the vector
connecting the apex of sulcus angle, ABC, to the lowest point of the articular ridge
of the patella (BD in Fig. 3b). By using the same geometry setup, the tilt angle, � , is
defined as the angle subtended by a line joining the lateral edge and the lowest point
of the articular ridge of the patella and the posterior condylar line as illustrated in
Fig. 3c.

Besides the ability to describe the patella motion in three-dimensional space,
the combination of the proposed kinematic parameters measurement approach
and the feature identification and tracking allows us to have a semi-automatic
measurement of kinematic parameters. Through an interactive visualization setup,
users can manually select FOIs as illustrated in Fig. 3a. These selected FOIs are
then automatically tracked across scans in the input dynamic volumetric data set
based on the information derived in the pre-processing stage. Particularly, based
on matched features in the pre-processing stage, affine transformations can be
derived and applied to the selected FOIs to identify the corresponding positions
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across scans. The results can be further refined by taking a small neighborhood, i.e.,
5�5�5 neighborhood, around the calculated locations into consideration. Then, for
each voxel in the neighborhood, a descriptor is constructed and matched with the
corresponding element in the selected FOIs to refine the tracking result.

It is worth pointing out that when the patella moves out of the femoral groove,
there is no intersection between the clip plane and the femoral groove, thus
the congruence angle cannot be calculated. Consequently, the proposed approach
reflects the fact that there is no congruence between the patella and the femoral
groove, which the previous research results failed to capture and present.

In addition to the measurement of the congruence and tilt angle, we propose the
measurement of the distance, dG, from the lowest point of the articular ridge of the
patella, R, to the femoral groove to convey the translation of the patella in relation
to the femoral groove as follows

dG D min
1�i�N

d.R; pi/ (1)

where N is the number of point on the femoral groove, and d is the Euclidean
distance function. In this approach, the femoral groove is approximated by a set
of discrete points in order to reduce the computation demand. The presented feature
tracking technique allows us to track the identified points, which approximate the
femoral groove, in the time domain to facilitate the calculation and reduce the
time-consuming process of manually select features through out all the scans in
a dynamic data set. By applying the same approach, the distance between the drill
holes on the patella and the drill hole on the femoral can also be calculated. The
quantitative results enable doctors to assess the success of the surgical intervention
in comparison to the pre-surgical intervention as well as the effect after the surgical
intervention.

5 Comparative Visualization

In Sect. 4, we describe the proposed feature identification and tracking algorithm
and the geometry setup that facilitates robust calculations of different kinematic
parameters for the quantitative analysis of the patellofemoral instability. In this
section, we describe in detail the proposed visual metaphors to visualize the derived
kinematic information.

5.1 Radial Angle Plot

The angle-angle plot is one of the most commonly used visual metaphor for
depicting kinematic parameters [10]. In a traditional set up, each axis of the plot
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Fig. 4 The relations between the abduction angle and the axial rotation of two subjects. The
standard angle-angle plot allows quantification of the relation but makes mental registration with
the spatial context difficult (a). The proposed radial angle plot represents the same data in a joint
centered way, while at the same time exaggerating the differences for critical abduction angles (b).
(a) Angle-angle plot. (b) Radial angle plot

represents a kinematic parameter, whereby the plot reveals the relation of the
individual parameters to each other. Figure 4a shows an example of the angle-angle
plot depicting the relations between the abduction angle and the axial rotation of
two subjects. Although the angle-angle plots help to reveal the relations between
the two kinematic parameters, its representation does not reflect the visual mapping
of the presented angular values within the context of the joint. Consequently, the
interpretation as well as the mental linking of the plot to the actual movement
patterns requires a lot of experience and time. This becomes especially apparent
when observing the comparative qualities of the angle-angle plot. When comparing
the plotted data for Patient 1 (orange) and Patient 2 (blue), it becomes clear that
the movement of Patient 1 includes a lower degree of axial rotation for abduction
levels 40–130. However, as the spatial reference of the joint is missing, the rotation
difference with respect to the joint is not immediately visible.

To address these shortcomings, we present radial angle plots as a joint-centered
visualization metaphor to depict kinematic parameter relations. The radial angle
plots have been designed in such a way that they can be easily applied to various
joint types. Instead of using linear mappings for the x and the y-axis as illustrated
in Fig. 4a, we combine linear and polar mappings of the angular values. While the
x-axis and, thus, the corresponding concentric circles, is the linear representation of
one kinematic parameter, the y-axis is converted into a polar representation as shown
in Fig. 4b. This enables the visual mapping of the plotted values to the actual angular
changes, as given within the frame of reference of the joint under investigation. The
concentric layout of the angular relations between kinematic parameters provides
an implicit exaggeration of the most interesting kinematic parameter range, i.e., an
angle representing full abduction or flexion. When dealing with joint issues, these
extreme angles are the most problematic, even small changes need to be considered
and should thus be emphasized by the used visualization metaphor.

Figure 4 compares the traditional angle-angle plot to the proposed radial angle
plot. In Fig. 4b, the x-axis represents the abduction angle while the axial rotations
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Fig. 5 A radial angle plot of
the congruence angles from
pre-operation (red) and
post-operation (blue)

are placed on the corresponding shaded concentric half-circle (from �90 degrees to
C90 degrees, from left to right). The gray scale gradient has been chosen to allow an
intuitive quantification of the polar angle coordinates, as well as an emphasis of the
joint center, which is located in the middle at 0 degrees. While the angle-angle plot
also depicts the relations between the two kinematic parameters for both patients,
the radial angle plot reflects the actual angular changes directly through its visual
mapping.

When dealing with the patellofemoral analysis, which is addressed in Sect. 6,
an additional benefit of radial angle plots is the fact, that they can be directly co-
registered with the 2D Skyline view representation. As illustrated in Fig. 5, the
concentric layout and the polar representation of the congruence values not only
enables us to emphasize the difference between pre- and post-operation result at
extreme position (53 degrees flexion) but also implicitly co-registers the rotation of
the kneecap to the femoral groove (center of the radial angle plot). Moreover, the
radial angle plot also reflects the medial and lateral patella angles corresponding to
the negative and positive halves of the rendering. It is worth pointing out that in the
design of the radial angle plot, the range of the angular value can be normalized
accordingly to emphasize the changes.

5.2 Time-Angle Profile

Although the 3D visualization of a full scan in a time-varying data set can provide
both the visual context and the detail information to support visual analysis, there
is a large amount of data presented to the user, especially in the case of 4D CT.
In addition, the occlusions in the 3D visualization of volumetric data can change
drastically in the time domain, and affect the visual access to areas of interest.
Consequently, this can cause distractions when a user changes from one time frame
to another. As the kinematic analysis process usually focuses on a defined organ
and derive its movement patterns over time, an abstract visualization focusing on
the organ and its kinematic characteristic can help to improve the visual analysis
process. We propose an abstract visualization of a defined organ in the time domain
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called time-angle profiles. The proposed visual metaphor is designed in such a way
that it helps to filter out unnecessary information while maintaining the kinematic
parameters of the organ under investigation. At the same time, it captures the whole
movement within a single picture and, thus, supports medical reporting and pattern
comparison.

To generate this representation, the organ must be identified in all time frames
before all instances are combined into a single visualization. In a standard approach,
the extraction of the organ under investigation in all scans of a dynamic data set
is very time-consuming. Fortunately, based on the proposed feature identification
and matching technique, affine transformations can be derived using the matched
features contained in the identified organ. As a result, a single extraction of the organ
is enough for the generation of the proposed visual representation. The combination
of all instances of the organ in all time frames is then visualized through a 3D sweep
structure. This sweep representation provides an overview of the whole kinematic
changes in the time domain. However, it does not facilitate visual assessment of
kinematic parameters due to the fact that a complex movement pattern is usually
a combination of different components such as rotations, translations, and tilting.
Inspired by the magic mirror metaphor introduced by König et al. [36], we exploit
the use of projection techniques to decompose the movement patterns for the
extracted organ. By projecting the whole movement pattern onto a multi-planar
plane geometry, we can reveal the underlying components of the kinetic parameters.
For instance, a projection from the top view can reflect the rotation, and a projection
from the side view can shows the translation over time. In addition, the semi-
transparent sweep structure is color coded to depict the various degrees of kinematic
parameter changes.

Figure 6 illustrates the proposed visual metaphor applied to the visualization of
the movement pattern of the patella. At the center of the image is the extracted
movement pattern of the patella over time. The transition from a lighter to a darker
color depicts the degree of kinematic parameter changes. For instance, as the patella
rotates, tilts and translates more at the extreme position in comparison to the initial
relaxed one, the color goes from a dark to a light shade of blue. By projecting
the movement pattern using different viewing angles, the proposed visualization
approach can achieve the decomposition of the complex kinematic characteristics.
The orthographic projection of the trajectory onto the side plane reveals the shifting
of the patella out of its groove. The projection onto the bottom plane reflects the
changes in congruence angles, while the projection onto the back plane shows the
degree of tilting. Although the proposed technique does not provide the contextual
information by focusing only on the movement pattern, it can be used as an adjunct
to the 3D visualization of the time-varying data in a multiple linked view setup. As
a result, contextual information and an overview of the kinematic changes over time
can be visualized in an integrated manner.
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Fig. 6 Visualization of the proposed time-angle profile metaphor. The extracted movement pattern
of the patella over time is rendered at the center of the image. Kinematic parameters are
incorporated through projection technique onto the bottom, side, and back plane

6 Results and Discussion

We applied to proposed approach to two real clinical data sets to verify the ability to
facilitate quantitative analysis of the patella movements. The first subject, patient A,
is a 19 years old female with bilateral pronounced instability problems without any
significant injury since she was 13 years old. The left and right side of patient A
were operated in 2011 and 2012 respectively. The left side has been stable since
the operations and is now asymptomatic. However, patient A had an injury on the
right side after the operation. The situation makes it hard to assess the reconstructed
tendon with CT scan on the right side on which patient A still has some instability
symptoms. As a result, a re-rupture or an elongation of the reconstruction is under
suspicion. The second subject, patient B, is a 23 years old male with distinct
problems after an injury on the left side. Patient B also has minor instability
problems on the right side. In 2013, patient B had a successful operation on the
left side. Figure 7a illustrates an overview of the patellofemoral issue in both cases,
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Fig. 7 Visualization of straight knees before the operation (a), and the reconstruction of MPFL
with a gracilis tendon (b) (permitted by Storz)

in which the kneecaps are far out and tilted on the lateral side. The operations were
performed with a reconstruction of the MPFL with a gracilis tendon as illustrated in
Fig. 7b.

Data Preparation About a month before the operation, a dynamic CT scan is
performed. The patient is supine with both legs resting on a radiolucent knee-
support. The maximal knee angle is about 40–50 ı when the heels are touching
the bed. The patient performs bilateral active knee extensions until full extension,
referenced as 0 degrees, and then flexions. The acquired dynamic CT scans were
pre-processed using the GPU-based enhanced feature identification and tracking
approach proposed in Sect. 4.1. In the interactive visual analysis stage, the domain
experts interactively select FOIs (see Fig. 3a) in one time frame. Based on the
information from the pre-processing stage, selected FOIs are tracked automatically
through the whole dynamic CT scan. Kinematic parameters are then calculated in an
automatic manner. The results are then presented using the proposed visualization
metaphors to convey the underlying kinematic parameters of interest.

Quantitative Visual Analysis In the following paragraphs, we report quantitative
measurement results as well as the comparative visualization facilitated by the
proposed approach. Besides the commonly used kinematic parameters such as the
congruence and tilt angles, we also calculate the distance from the lowest point on
the articulate ridge to the femoral groove, the distance between the drill holes on the
kneecap to the drill hole on the femur, which are useful for the investigation of the
patellofemoral instability.

Figure 8 presents the quantitative measurements of the distance from the lowest
point of the articular ridge of the patella to the femoral groove. Patient A had
subluxations of both kneecaps when straightening the knees before the operation.
On the postoperatively asymptomatic left side, the distance to the groove has
decreased from about 60–25 mm with straight knees. On the right side, patient A
still has some instability symptoms; however, it is less than before the operation,
the distance to the groove has decreased from about 53–28 mm. The result of the
facilitated the measurement of the distance from the two drill holes on the kneecap
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Fig. 8 Quantitative measurement of the distance from the lowest point on the articulate ridge to
the femoral groove before operation (a), and post operation (b) from patient A

Fig. 9 Distance between the drill holes on the kneecap to the drill hole on the femur 3 months
after the operation (a), and 1 year after the operation (b) for patient A. The measurements showed
that the distances are stable between 3 and 12 months postoperatively

Fig. 10 Quantitative measurement of tilt angles of the kneecap 3 months (a) and 12 months after
operation (b) for patient A

to the one on the femur for patient A is presented in Fig. 9. The measurement shows
that the distances are stable between the 3 months post-operation and 12 months
post-operation.

Figure 10 reports the measurements of tilt angles using the technique proposed
in Sect. 4.2. The proposed radial angle plot presents not only the movement patterns
of the kneecap but also present them with respect to the reference frame, which
is the femoral groove. Figure 10a shows that the tilting pattern of the left and the
right kneecap are similar. Due to the injury happened after the operation in 2012,
patient A still has instability issue on the right side. Although the tilt angles are
similar between the left and right side at full extension, the patterns are different
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Fig. 11 Visualization of the movement pattern of the left kneecap of patient B using the time-
angle profile visual metaphor. (a) and (b) present the measurements of kinematic parameters from
pre- and post-operation stage respectively

when the functional movement comes to 45ı flexion, which is emphasized through
the radial angle plot in Fig. 10b.

The movement patterns of the left kneecap of patient B are reported in Fig. 11.
The decomposition of the complex kinematic properties are done through the
projection technique. Particularly, the projection onto the side presents the shifting
of the kneecap out of its groove. The projection onto the bottom plane reflects the
congruence angle changes, and the projection onto the back plane conveys the tilting
of the kneecap with respect to the femoral groove. From Fig. 11a, b, it can be seen
that the kneecap shifts out of the femoral groove less after operation. In addition,
the changes of tilt angles as well as the congruence angles are also less than before.
In addition to the detail rendering of the transformation of the kneecap, the color-
coding scheme also quickly provides the information about the kinematic changes.
For instance, the color transition from dark to light between the 48ı and 35ı flexions
in the rendering on the back plane indicates that the tilt angle reduces rapidly. On
the other hand, the small color transition from 44 to 46ı flexion in the rendering on
the bottom plane indicates that the congruence angle stays almost unchanged. This
reflects the fact that the operation on the left side of patient B was successful.

It is worth pointing out that the proposed approach not only helps to significantly
reduce the time required for the calculation of different kinematic parameters but
also produces consistent results. According to the feedback from domain experts,
the quantitative measurements facilitated by our proposed approach support the
suspicion of the doctor about the instability of the right knee of patient A. For
instance, patient A had a more pronounced decrease of the groove distance for
the asymptomatic left knee postoperatively compared to the right one, but both
legs of the ligament reconstruction were unchanged according to the distances
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between the drill holes between 3 months and 12 months postoperatively. This
indicates that the injury happened after the operation could have elongated the
reconstructed ligaments on the right side, but there were no further elongation the
rest of the first postoperative year. Moreover, we also receive positive feedback
from domain experts about the time-angle profiles. This visual metaphor is very
useful in providing an overview of the movement pattern of the patella under
investigation. Besides the ability to decompose a complex movement pattern into
several kinematic parameters through projection technique, the combination with
the facilitated automatic kinematic parameters measurement enables the transition
from an overview into a detail quantitative analysis. In addition, the design of the
proposed time-angle profiles and radial angle plots can facilitate the communication
between domain experts and patients about the result of the surgical intervention.

7 Generalization

Although the data analyzed and visualized in this work has been extracted from
the patellofemoral analysis scans, the presented techniques can be extended and
applied to different kind of joint movement analysis. The proposed GPU-based
feature identification and tracking can be applied to dynamic CT scans in general.
Depending on the application in mind, different criteria for FOIs selection and
different kinematic parameter calculations can be implemented based on the
tracking results.

The time-angle profile visual metaphor was designed in such a way that it can
be easily extended through the use of different projecting criteria. By deploying
different projection criteria, the time-angle profile visual metaphor can be used
for visual analysis of different underlying kinematic parameters. Moreover, these
projections can be co-related through a multiple linked-views setup to facilitate both
the overview of the whole movement pattern as well as detail decomposition of the
kinematic behavior under investigation.

Figure 4 shows the application of the radial angle plot to visualize the kinematics
of a ball joint. The joint-centered nature of the radial angle plot is clearly an
advantage, as it allows a quantified interpretation of the rotational angle without
hindering the embedding into the spatial context. To incorporate the additional
degrees of freedom, either the plot can convey several kinematic properties, or
multiple radial angle plots can be combined. As an alternative to these two variants,
also parallel coordinate views could be integrated to show the correlation between
different angles [14]. Finally, while the current radial angle plot supports a angle
domain of Œ�90IC90�, increasing the arc length can be used to represent larger
angle domains.
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8 Conclusions and Future Work

In this paper, we have presented new visual metaphors for the interpretation
kinematic information derived from dynamic CT data sets. In addition, we proposed
an enhanced GPU-based feature identification and tracking based on the SIFT
algorithm. Besides the performance improvement, thus allows interactive feature
identification and tracking, the proposed technique also achieve a higher accuracy in
the process of feature matching based on the novel descriptor construction approach.
As a result, the proposed approach facilitate the ability to automatically track FOIs
across scans in a dynamic CT data set which helps to significantly reduce the
time required for quantitative measurements of kinematic parameters and provide
consistent results. We have applied the introduced techniques to the analysis of
the patellofemoral issue. Integrating the presented techniques into the analysis
process of 4D CT scans has shown great potential as the quantitative measurement
results from the system reflect the real clinical situation of the patients. Moreover,
the presented visual metaphor enables medical doctors to have not only a quick
overview of the movement pattern of feature under investigation in the dynamic CT
scans but also the underlying kinematic information.

In the future, we would like to acquire 4D CT data of the shoulder joint and
verify the application of the proposed visualizations. Furthermore, we plan to use
our approach to derive a normal collective, which would allow us to automatically
emphasize abnormal movement patterns. When dealing with a system of multiple
joints for each patient, we would also like to combine multiple radial angle plots into
a single view. Finally, we would like to investigate how time-angle profiles could be
extended to support an embedding of several individuals.
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Visualization in Life Sciences



Interactive Similarity Analysis and Error
Detection in Large Tree Collections

Jens Fangerau, Burkhard Höckendorf, Bastian Rieck, Christian Heine,
Joachim Wittbrodt, and Heike Leitte

Abstract Automatic feature tracking is widely used for the analysis of time-
dependent data. If the features exhibit splitting behavior, it is best characterized
by tree-like tracks. For a large number of time steps, each with numerous features,
these data become increasingly difficult to analyze. In this paper, we focus on the
problem of comparing and contrasting hundreds to thousands of trees to support
developmental biologists in their study of cell division patterns in embryos. To
this end, we propose a new visual analytics method called structure map. This
two-dimensional, color-coded map arranges trees into tiles along a Hilbert curve,
preserving a tree similarity measure, which we define via graph Laplacians. The
structure map supports both global and local analysis based on user-selected
tree descriptors. It helps analysts identify similar trees, observe clustering and
sizes of clusters within the forest, and detect outliers in a compact and uniform
representation. We apply the structure map for analyzing 3D cell tracking from
two periods of zebrafish embryogenesis: blastulation to early epiboly and tailbud
extension. In both cases, we show how the structure map supported biologists to
find systematic differences in the data set as well as detect erroneous cell behaviors.

1 Introduction

Developmental biologists analyze the process of how embryos develop from
single cells into complete organisms. During this embryogenesis, patterns in cell
movements and divisions are believed to play a crucial role to determine cell orga-
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Fig. 1 Maximum intensity projections (MIPs) of zebrafish data sets. Left: Each quadrant shows a
different time step (0, 25, 75, and 99) of blastulation to early epiboly. Note the increase in cells.
Right: MIP of one time step showing tailbud extension

nization into tissue and organs. Light sheet microscopy enables the non-destructive
observation of organisms at subcellular resolution. Its use for developmental biology
was demonstrated by Keller et al. [11], who used digitally scanned laser light
sheet microscopy to observe zebrafish (danio rerio) embryos. A survey of selective
plane illumination microscopy for developmental biology is given by Huisken and
Stainier [9]. Figure 1 shows maximum intensity projections of selected time steps
in two different phases of zebrafish development.

Light sheet microscopy is a technique for producing the 3D intensity image
sequences that can be processed by tracking algorithms (e.g. Lou et al. [14]) to
determine so-called cell lineages. Each lineage encodes, in a tree, the developmental
history of a cell such as its movements and divisions. Analyzing local tree structures
is believed to yield insights into the corresponding cell division patterns and thus
help unveil the blueprint of how organisms develop. Lineage trees have a simple
structure: Nodes either have two or one descendants. In the former case, a cell
divides, and in the latter case, a cell goes through its cell cycle, i.e. the time
period between divisions. Stem cell divisions are commonly classified as symmetric,
resulting in two identical stem cells, or asymmetric, resulting in one stem cell
and one progenitor cell. Progenitor cells divide faster than stem cells, and their
descendants stop dividing after a short period and change behavior. Of particular
interest is the detection of asymmetric cell division.

Unfortunately, the obtained cell lineage information is imperfect in three aspects.
First, due to technical reasons [11], observations cannot start before embryos
comprise multiple dozen to few hundred cells. Second, noise in the images makes
some cells vanish and appear again, leaving the automatic segmentation and tracking
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algorithm no choice but to start one new tree for each later cell found. However,
the cell division patterns we are interested in manifest themselves locally. Hence,
we can detect them regardless of the global tracking quality. By analyzing a
sufficient number of trees, our analysis thus results in a good approximation of
the global tracking quality. Third, some trees imply cells dividing faster than it is
biologically plausible. This is another processing error, but can be detected reliably
using structural tree motifs. Such errors have only a local effect on the lineage, but
hamper automatic analysis severely. Fortunately, the largest part of the trees remains
available for visual inspection.

In this paper, we present a new visual analytics approach, called the structure
map. It visualizes a large number of trees highlighting structural motifs. In the
spirit of Ware, who claims that a core property of visualization is not only the
finding of patterns in the data but also the ability to indicate problems of data
acquisition [24, p. 3], our method serves two purposes: On the one hand, to spot
processing errors so that developers of the cell tracking algorithm can improve it
and on the other hand, to explore motifs in trees so that biologists can search for
cell division patterns masking parts affected by processing errors or ascertaining
confidence in the analysis of imperfect data.

This approach requires a global overview of trees as well as local details of
individual tree substructures. The structure map employs spectral analysis to sort
trees globally based on their structural similarity. It then uses this order to render
trees into tiles along a Hilbert curve, positioning similar trees close together. To
aid exploration, numeric descriptors that characterize the structure of trees and
subtrees are used to highlight globally which trees are strong matches and locally
where matches manifest. This enables comparing different tree structures as well as
detecting outliers and anomalous structures. We demonstrate our approach on two
real-world data sets from developmental biology and provide a supplemental video
showing the results [6]. In an epiboly data set, homogeneous, largely symmetric
cell divisions could be identified, while in the tailbud data set, longer cell cycles
throughout the data could be recognized.

The contributions of this paper are:

• A new visualization method, the structure map, that supports the interactive
analysis of thousands of trees, especially from developmental biology. The
structure map arranges unique tree structures in a compact and uniform design,
using a Hilbert curve and spectral differences of trees.

• Both a global analysis based on user-defined descriptors and a local detailed
indication of these descriptors in each individual tree structure.

• A similarity analysis and application-based error detection by steering cell-based
descriptor parameters with an immediate visual feedback.
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2 Related Work

Schulz [19] and Landesberger et al. [23] illustrate multiple existing tree visualiza-
tions. These visualizations are commonly divided into three groups: Space-filling,
node-link-based, and hybrid approaches. Space-filling techniques use the complete
area of a display in order to illustrate hierarchies in a tree, e.g. treemaps [20]
or beamtrees [21]. Node-link-based techniques use links between vertices to
represent their relationships. Trees can be layered horizontally, radially, or in balloon
layouts in 2D [8], for example. However, simple layouts often do not scale to
larger sets of trees, making user interaction more complex. Hybrid approaches
combine node-link-based techniques with treemaps and visualize subsets of the
hierarchy information [27]. Wong et al. introduce GreenCurve [26] for the compact
visualization of large graphs with small-world properties. Their method arranges
nodes on a space-filling curve using the Fiedler vector of the graph Laplacian. The
method results in a compact visualization with little node overlaps. GreenCurve is
unsuitable for visualizing similarities between multiple graphs, though.

Graham and Kennedy [7] review visualizations for tree collections. For cal-
culating similarities between trees, the most common technique is the tree edit
distance [2]. The distance between two trees is defined as the minimum number
of edit operations, i.e. insertions, deletions, and modifications, that are required to
transform one tree into another. Calculating the tree edit distance requires labeled
ordered trees, though, which makes this method inapplicable to cell lineage trees.
The maximum agreement subtree (MAST) problem [13] is also often used to define
a distance between trees. Here, the distance is defined by the largest subtree that two
trees have in common. However, MAST only works for leaf-labeled trees, making it
also unsuitable for cell lineage trees. Munzner et al. [16] presented TreeJuxtaposer,
a method that is geared towards comparing phylogenetic trees. TreeJuxtaposer
combines visual analysis with interactive leaf similarity highlighting, but does
not scale to the comparison of larger amounts of trees. A different approach
employs methods from algebraic graph theory. Here, graph descriptors and graph
invariants, i.e. measures that aim to define graphs up to isomorphism, are used
to quantify similarities. Navigli and Lapata [17] survey common descriptors for
developing unsupervised algorithms for graph analysis. Landesberger et al. [22]
use graph motifs to partition graphs into weakly-connected components. The
components are subsequently clustered using a self-organizing map [12]. While
this approach scales well to larger data sets, it does not indicate local descriptor
properties for individual tree structures, which is required when analyzing erroneous
cell division behavior, for example.

When working with larger data sets, interactivity is paramount for similarity
analysis. Bremm et al. [3] work in a similar setting than this paper. They present
a system for comparing phylogenetic trees and providing interactive visual analysis
on multiple levels of detail. Using a set of similarity scores that are geared towards
phylogenetic trees, their visualization employs a color-coded matrix for representing
similarities. However, this matrix does not scale to data sets in developmental
biology.
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Fig. 2 Workflow chart. A: A large set of trees are selected as input data. B: Spectral analysis of the
tree data is used to derive structural similarity and to merge isomorphic trees. C: To transform the
spectral similarity matrix to a lower dimension, we apply principal component analysis. D: The
intrinsically 1D data is laid out in the plane along a Hilbert curve. E: The visual analysis is a loop
consisting of the visualization of color-coded tree descriptors in the structure map (Sect. 3.2), the
analysis and interpretation of the result (Sect. 4.3)

3 The Structure Map

In the following, we describe our workflow for generating the structure map of a set
of trees. The structure map is an interactive matrix-based visualization that groups
trees according to their structural similarity. Additional information can be derived
using interactive color-coding and user interaction. Figure 2 illustrates the steps of
our analysis pipeline: (A) The input data consists of a large tree set. (B) We use
spectral analysis to derive a structural similarity measure of these trees. (C) In order
to obtain an ordering from the similarity matrix, we apply principal component
analysis. (D) We then arrange the trees into tiles of the plane using a Hilbert curve.
(E) We color tiles using a set of biologically relevant tree descriptors.

3.1 Layout

We aim to support the analyst’s investigation of large tree collections by grouping
trees. As a prerequisite, we need to quantifying their similarities.

Spectral Analysis A generic and powerful set of methods for analyzing graphs
is given by spectral analysis, which analyzes a graph through the spectrum of
an associated matrix such as the adjacency matrix. The spectrum, i.e. the set of
eigenvalues, is a graph invariant. It only depends on the graph structure and not
on any labels or layouts. In particular, isomorphic graphs have the same spectrum.
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Furthermore, so-called interlacing theorems prove that small changes to a graph
result in small differences in its spectrum.

The literature describes multiple matrices that may be associated to a graph. A
popular choice of matrix is the normalized graph Laplacian. Arsić et al. [1] give
an overview of the properties of its eigensystem. Although there are upper bounds
for the uniqueness of a tree spectrum, it has proven to be robust with respect to
cospectrality [25] in practice, i.e. it is unlikely that trees with the same spectrum are
non-isomorphic.

The normalized Laplacian matrix L of a graph .N; E/ is defined as

Lij D

8
ˆ̂<

ˆ̂:

1 if i D j and di ¤ 0

�.didj/
� 1

2 if fi; jg 2 E and di; dj ¤ 0

0 otherwise

; (1)

where di and dj denote the degree of node i and j. The set of eigenvalues, sorted in
descending order, yields the spectrum sk of the kth tree. The eigenvalues 	i of L are
known to satisfy 0 � 	i � 2 and to sum up to the number of non-isolated nodes.

If we encounter cospectral trees, i.e. trees i; j with si D sj, we apply a tree
isomorphism test [5]. We then partition isomorphic trees (i.e. trees that are identical
up to symmetry) into equivalence classes. This amounts to a lossless compression
of the input data set, in practice providing a significant reduction in tree structures
that need to be displayed. For our data sets, we observed compression rates between
80 % and 95 %.

We define the similarity between two trees as the Euclidean distance of their
spectra. Because spectra typically differ in their number of eigenvalues, we pad the
smaller spectrum with zeros. Wilson and Zhu [25] showed that adding an isolated
node in the graph gives an additional zero eigenvalue, but preserves the other
eigenvalues. The connectivity information, which is relevant for similarity analysis,
is encoded by all nonzero eigenvalues, and thus remains unchanged.

Principal Component Analysis Prior to assigning the set of trees to the structure
map, we need to sort them such that they are grouped according to their similarity.
We require a linear ordering of the lineage trees to have a high discriminatory power.
More precisely, the notion of size needs to be respected such that larger trees (many
nodes) are clearly separated from smaller trees (few nodes). For obtaining this
ordering, we apply a 1-dimensional principal component analysis (PCA) [10] to the
spectral matrix. We observed that this 1-dimensional embedding already accounts
for more than 90 % of the variance, thereby indicating that the ordering is well-
suited for sorting our lineages.

Hilbert Curve Layout The structure map is defined by a grid of tiles, each of
which represents one isomorphism class of trees (i.e. trees that are identical up
to symmetry). Having obtained a 1-dimensional embedding of the trees, we use
a space-filling Hilbert curve to determine the assignment of trees to tiles of the
structure map. The Hilbert curve is a fractal curve whose range is a 2-dimensional
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Fig. 3 The first six iterations of the Hilbert curve

square. The curve preserves locality very well, i.e. points that are near when
traversing the curve are also likely to be close in the space the curve is embedded
in. This property makes the curve suitable for generating an arrangement of trees.
The Hilbert curve is usually calculated iteratively (see Fig. 3 for several iterations).
In practice, we choose the number of iterations such that the curve contains all
trees in a data set. In contrast to a simple linear arrangement of trees according to
their similarity values, the Hilbert curve layout yields a compact visualization of
the complete data set while preserving locality. The trade-off, however, is that the
structure map cannot use the complete screen space in general. For example, the
layout of 212 C 1 D 4097 trees requires a Hilbert curve with 213 D 8192 nodes,
resulting in almost 50 % empty tiles. The empty tiles do not impede the visual
analysis of tree structures in any way, though.

To make screen space usage more efficient, we plan to employ squarified tree
maps [4] in conjunction with the structure map. This will enable us to scale different
parts of the map according to user-defined criteria, such as the prevalence of
biologically-implausible cell tracking behavior.

Tile Design A tile is drawn as a colored square that represents a single isomorphism
class of trees. We draw a representative tree on top of the tile using the Reingold-
Tilford tree drawing algorithm [18]. We chose this layout algorithm because it
draws isomorphic subtrees congruently, and detecting symmetric and asymmetric
cell division patterns is imperative for the domain experts. For each tree, we apply
an adaptive anisotropic scaling method such that the tree fits completely into the tile.
Parts of the tree that match a given tree descriptor are highlighted. Furthermore, a
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label in each tile states the number of isomorphic trees this tile represents. The tiles
are also colored based on that value.

3.2 Tree Descriptors

In discussions with domain experts from developmental biology, we arrived at a set
of tree descriptors well-suited for the tasks of similarity analysis and error detection.
Each tree descriptor yields quantitative information about a tree. The tiles of the
structure map encode this information through different colors. Tree descriptors
augment the spectral analysis by incorporating additional domain knowledge to
uncover both similarities and errors in a data set.

Number of Nodes and Leaves The number of nodes is positively correlated with
the overall size and depth of a tree. If a tree has n nodes, we know that it must have
exactly n�1 edges. For biological data sets, the number of nodes corresponds to the
number of tracked cells. Even without any further biological analysis, trees with a
comparatively small number of nodes are more likely to contain erroneously tracked
cells. Moreover, the number of leaves also measures the number of cell divisions.

Mean Path Length The lengths of different paths within a cell lineage tree turned
out to be an essential quantity for similarity analysis. We define a path p of length
l as a sequence of l connected nodes in a tree, i.e. p D fn1; : : : ; nlg. In addition,
we require p to start at the root of the tree or at a division node, and end at such a
division node or at a leaf (see Fig. 4). By this definition, the path length corresponds
to a cell cycle phase during which the cell changes its position. We hence use this
information as a descriptor to find outliers or incorrect cell behavior. Since a tree
commonly consists of multiple paths of different lengths, we compute its mean path

Fig. 4 Path and branch
definitions in a cell lineage
tree. Note that time is running
from top to bottom instead of
running from left to right.
Paths start at the root or at a
division node and end at such
a node or at a leaf (examples
marked in red). Inner paths
neither start at the root nor
end in a leaf node (examples
marked in dark blue).
Branches are defined by two
paths starting at a common
node (examples marked
orange)

t

T
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length p as

p D 1

jpj
jpjX

iD1

pi; (2)

where jpj is the number of paths in the tree k and pi denotes the ith path in the tree.

Mean Inner Path Length By ignoring all paths that start at the root node or end at
a leaf node (see Fig. 4), we obtain the mean inner path length q, which is a variant
of the previous measure p. The mean inner path length only counts cell cycles that
have been fully captured. Thus, this length can be used as a measure to identify two
cell divisions that occur in quick succession, for example.

Mean Branch Asymmetry The length of a cell cycle also describes a biologically
important substructure within a cell lineage tree. We define a branch bn by a starting
node n with two successors, i.e. a cell division node, and by the length of its left
path ln and its right path rn. These paths contain all nodes between two cell division
nodes (see Fig. 4). We call a branch symmetric if the lengths of ln and rn are equal.
For each branch bn, we calculate the branch asymmetry as the difference in lengths
of its two paths: �bn D jln � rnj. From this, we derive the mean branch asymmetry
b of a tree as

b D 1

jbj
X

n

�bn; (3)

where jbj denotes the number of branches in the tree and the sum ranges over all
cell division nodes. If a tree does not have any branches, we assign it b D �1.
Since Eq. (3) always results in positive numbers, we can easily identify trees without
branches. We use red color to encode such trees in the structure map, in order to
signify that they have maximum dissimilarity to all other trees.

4 Visual Analysis

The GUI used in our application is depicted in Fig. 5, left. The structure map is
displayed in an interactive 2D window which supports standard camera navigations
like panning and zooming (see Fig. 5A). A second widget controls the descriptor
settings (see Fig. 5B).

4.1 Structure Map Widget

The structure map is the interface to the collection of trees. It supports the rapid
analysis of large collections of trees in a compact representation. Each set of
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Fig. 5 Left: Workspace for visual analysis. The GUI consists of the structure map displayed in a
2D window (A) and a widget (B) for descriptor settings. We use a diverging color map described by
Moreland [15] (C). Right: Magnified version of a common tile in the structure map. Local features
in the tree are colored red (D) based on the selected descriptor type. The frequency of the unique
tree structure in relation to the complete data set is shown in the top left label (E). The frequency of
local features in the tree based on the selected descriptor (here: symmetric branches) is displayed
at the bottom left (F). The descriptor value for the whole tree (here: mean branch asymmetry) is
shown at the bottom right (G)

isomorphic trees is represented in a colored tile whose color represents the value
of the currently selected tree descriptor. For coloring tiles, we use the color map of
Moreland [15] that is well-suited for scientific visualization (see Fig. 5C). Each tile
shows one representative tree structure colored in black to allow for rapid overview
and orientation of the user. Figure 5, right, shows an example of such a tile with an
assigned tree structure. Local features of the tree are highlighted in red (see Fig. 5D)
based on user-selected parameters that are set in the descriptor widget (Fig. 5B).
Here, a specific descriptor can be selected. For an explanation of its user-definable
range parameters, please see Sect. 4.3.

4.2 Semantic Zooming

In order to improve the visual analysis as well as the performance for interaction,
the structure map features semantic zooming. By this, relevant objects are displayed
in different levels of detail depending on the zooming level. This affects both the
tree structure and the tile colors. If the distance between the virtual camera and
the structure map is large, no trees are rendered at all. The structure map focuses
on the overall color of the tiles such that they can be compared to each other (see
Fig. 6A). Upon zooming in, only parts of a tree structure (half the lines and no nodes)
are rendered (see Fig. 6B). With decreasing distance, each tile color fades from its
original color (set by a tree descriptor) to a white background, while all lines and
no nodes are rendered for each tree (see Fig. 6C). At this stage, also the tile labels
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Fig. 6 Different levels of semantic zooming: The different levels emerge in the order from left to
right when zooming in while same rectangle colors represent the same area. For large distances
between camera and structure map, only the tile colors and no trees are rendered (A). In the next
level, half the lines and no nodes of the tree structures are displayed (B). Further zooming starts
fading from the original color to white and all lines and tile labels are drawn (C). The highest zoom
level displays all details of the tree structure in a white tile (D)

as explained in Fig. 5 are displayed. Finally, for very small distances, all details of
a tree are rendered while each tile becomes completely white (see Fig. 6D). The
color change guarantees that the red color of the color map does not interfere with
the red color used for highlighting local features. The functionality of the semantic
zooming is also shown in our supplemental video [6].

4.3 Interactive Analysis

The structure map supports the following analysis strategies:

1. Users can investigate similarities and differences within the tree collection by
investigating the spatial layout of the trees. This reveals structural differences
encoded in the graph spectrum, such as the number of leaf nodes or division
nodes, as well as the total number of nodes.

2. The tiles of the map can be colored according to the tree descriptors. Each
tile is assigned a color depending on the value of the descriptor. The colors
provide additional domain-specific information. By analyzing color patterns in
the structure map, structural descriptions are combined with local tree features.

3. The color code can be adjusted to represent the difference to a predefined
scalar descriptor parameter P that can be specified in the descriptor widget.
For example, users can highlight tree structures with a specific mean branch
asymmetry that are smaller or larger than P.

4. The last analysis method colors tiles according to the frequency of a certain
feature. For example, users can search for cell cycles that are shorter than ten
time steps. Each tile is now colored according to the number of such short
cycles occurring in the tree. Simultaneously, the respective parts of the tree are
highlighted in the small tree structure represented inside the tile (red color in
Fig. 5D).



298 J. Fangerau et al.

The descriptor widget (see Fig. 5B) can be used to choose a specific tree
descriptor and its corresponding parameter. The descriptor type can be selected in
a combo box. For analysis tasks such as descriptor depiction (see item 2), the user
simply selects the appropriate descriptor from the drop down menu and the color
map is instantly updated.

The analysis tasks for coloring the tiles require additional information and
parameters. Upon selection of a descriptor, two ranges are updated. The descriptor
range indicates the smallest and largest descriptor value for the current data set. The
element range lists the smallest and largest value for the mean value computation
of the descriptors. For example, if the mean path length descriptor is used, the
descriptor range gives the shortest and longest mean path length over all trees. The
element range gives the length of the shortest and longest path occurring in any of
the trees.

As explained in item 3, users specify a descriptor parameter P to highlight all
trees that have either a smaller or larger value than the given one. The color of
the tiles is changed to represent distances to the given value, making outliers and
patterns readily visible. Range limitation is realized with a check box that specifies
that either features above or below the given threshold are to be highlighted in
the tree (red coding in the tree) (see Fig. 8B, D). To simplify the identification of
outliers, colors can be toggled between distance and frequency mode using the
last check box. The distance mode was used for all previous tasks. In frequency
mode (see item 4), the color indicates the number of occurrences of a given feature
within the tree represented in the tile. Figure 8 gives an example of a frequency-
based structure map. Here, the mean branch asymmetry is chosen with a descriptor
parameter of P D 0. Thus, all symmetric (see Fig. 8A) or asymmetric (see Fig. 8C)
branches are highlighted based on their number of appearances.

5 Results

We used the structure map to analyze two real-world data sets of segmented
3D videos showing the development of a zebrafish embryo. Our visual analysis
approach works on a standard desktop computer, providing near-instantaneous
visual feedback (see also the supplemental video [6]).

In the following, we focus on the visual analysis of similarities and errors in the
tree structures. The workflow begins with the selection of a specific descriptor and
the setting of the descriptor parameter P using the descriptor widget. The analysis
is then further augmented by switching between the distance-based and frequency-
based coloring of the structure map.
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5.1 Lineage Tree Data

From now on, we will refer to the data sets as epiboly and tailbud data. The
epiboly data set (Fig. 1A) shows early events from blastula to early epiboly stages
(� 3.5–4.5 hours post fertilization, hpf), while in the tailbud data set (Fig. 1B), the
tail extension (� 15–16 hpf) is recorded. For the epiboly data set, we thus expect
homogeneous cell behavior and numerous stem cell divisions. Stem cell divisions
are commonly classified as being symmetric or asymmetric. A symmetric division
results in two identical stem cells whereas an asymmetric division generates one
stem cell and one progenitor cell. Progenitor cells divide faster than stem cells.
Furthermore, their daughter cells stop dividing after a short period and change their
behavior. In contrast, cell division in the tailbud data set is much slower so that
different division behaviors are expected to occur.

The epiboly data set starts with 90 cells and ends with 3253 cells covering 100

time steps in total. The complete data set includes 4896 lineage trees. The tailbud
data has 9961 cells at the beginning and ends after 50 time steps with 10; 173

tracked cells. Here, 58; 048 lineage trees are generated. Spectral analysis uncovers
that both data sets contain a large amount of isomorphic trees. Partitioning trees
into equivalence classes enables us to significantly reduce the number of unique
trees that need to be displayed by the structure map.

5.2 Preliminary Observations

Figure 7 shows the structure map for both data sets based on the number of nodes
(A, C) and leaves (B, D). In the epiboly data set, merging isomorphic trees reduces
their number from 4896 to 875. The remaining trees are arranged in a Hilbert curve
of level 5, resulting in a structure map of 25 � 25 D 1024 tiles, 149 of which are
empty. Since we are interested in analyzing the complete structure of all trees, we
assign each tree to a tile regardless of the time step in which it was tracked. For
the tailbud data set, 3221 of originally 58; 048 trees remain after merging. We thus
generate a Hilbert curve of level 6, resulting in a structure map of 26 � 26 D 4096

tiles, 875 of which remain empty.
Both data sets contain numerous small trees with few nodes. However, the

epiboly data set features several large trees with 2000 nodes on average, while the
largest tree in the tailbud data set has a mere 190 nodes.

The number of nodes and the connectivity information of a tree is encoded by
its Laplacian matrix. In Fig. 7A, C, we observe that the structure map thus tends to
group trees according to the number of their nodes. A similar grouping according
to the number of leaves can be identified in Fig. 7B. In contrast, the tailbud data set
contains multiple smaller trees with approximately the same number of leaves. The
structure map thus does not group them by the number of their leaves (see Fig. 7D).



300 J. Fangerau et al.

Fig. 7 Distance-based coloring of structure maps for both data sets: Left: Structure map of the
epiboly data based on the number of nodes (A) and leaves (B). Right: Structure map of the tailbud
data based on the number of nodes (C) and leaves (D)

5.3 Similarity Analysis and Error Detection

Since we expect the epiboly data set to contain homogeneous cell division patterns,
we first analyze this data based on the mean branch asymmetry in order to identify
symmetric and asymmetric cell division behavior. We set an initial parameter of
P D 0 that represents symmetric branches. Figure 9A shows the resulting structure
map with a distance-based coloring, while Fig. 8A uses a frequency-based coloring.
The majority of blue tiles in Fig. 9A illustrate structures that have a small mean
branch asymmetry. Red and orange tiles correspond to trees without branches or
with large differences between their mean branch asymmetry value and P.

A further analysis of blue tiles with red substructures reveals several symmetric
branches. For the most part, these are situated in the top left corner where the
large trees are located (see Fig. 9B). These lineage trees exhibit the correct cell
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Fig. 8 Frequency-based coloring of the structure map applied to the epiboly data, based on mean
branch asymmetry and P D 0. Structure map of symmetric (A) and asymmetric branches (C). A
pair of trees with few symmetric (B) and many asymmetric branches (D) highlighted in red

Fig. 9 Distance-based coloring of the structure map applied on the epiboly data based on mean
branch asymmetry and P D 0: A: Structure map with focus on symmetric branches. B: Extraction
of lineage trees with the most node numbers and their symmetric branches

division behavior and they are very similar with respect to the frequencies of
symmetric branches. We also observe that large trees with many branches tend
to have more symmetric branches than small trees with few branches. However,
this does not apply to all large trees, as illustrated in Fig. 8B. Although the two
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Fig. 10 Structure map of the epiboly data based on mean branch asymmetry and P D 25. A:
Frequency-based structure map. B: Examples of trees with asymmetric branches. C: Distance-
based structure map

lineage trees depicted in this figure have many branches, they both exhibit erroneous
connectivities as well as biologically-incorrect cell division behavior. For these
trees, we thus only identify a small number of symmetric branches (lower-left
label: 1 and 5). We can easily switch between showing asymmetric and symmetric
branches. Figure 8C shows the resulting structure map and all asymmetric branches.
Using this visualization, we are able to identify the two lineage trees in Fig. 8D
as outliers because their tile colors indicate a comparatively large number of
asymmetric branches.

We now set the input parameter to P D 25 in order to detect large branch
asymmetry values, i.e. outliers. For branch asymmetry values larger than 25, cell
division has not been tracked correctly for the longer path in the branch. The
occurrence of such branches is thus a certain indicator for errors. Figure 10A shows
the structure map with frequency-based coloring using the mean branch asymmetry
descriptor. The large amount of blue tiles indicates that the majority of trees have
few occurrences of branches with large asymmetry values. Outliers can easily be
identified by the tile colors, while the local highlighting of substructures serves
to enable a more detailed investigation of the errors. Similar to the analysis of
symmetric branches, we observe that large trees also tend to have large branch
asymmetries (see Fig. 10B). Note that we cannot identify such a behavior in trees
whose depth is smaller than P. Since the data set contains many of these small trees,
the structure map consists primarily of blue tiles (see Fig. 10A).

The structure map in Fig. 10C shows a distance-based coloring for the mean
branch asymmetry and P D 25. We observe numerous red tiles showing the large
difference between their mean branch asymmetry and P. This also states that most
of these tiles have a smaller mean branch asymmetry or no branches at all. The tree
structures in the blue tiles indicate their small distance to the descriptor parameter
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Fig. 11 Frequency-based coloring of structure map for the epiboly data based on mean inner path
length and P D 4. A: Frequency-based structure map. B: Example of trees with short cell cycles

P D 25 and the highlighted branches have a branch length difference larger than
25. In both cases, tree structures in blue tiles represent biologically-incorrect cell
division behavior that biologists consider as an outlier.

Another implausible biological behavior in the epiboly data set is the occurrence
of two cell divisions within a small time frame. We thus select the mean inner path
length descriptor and set P D 4 in order to identify inner paths with less than 4

nodes. Figure 11A shows the frequency-based coloring of the structure map. Again,
we observe a majority of blue tiles (implying that these trees do not contain many
short paths) but also some outlier tree structures highlighted in Fig. 11B. A detailed
local investigation of these outliers reveals a multitude of apparent cell division
errors. Moreover, we observe many small inner paths across the whole data set. The
data set thus includes many outliers caused by erroneously-tracked cells.

We hypothesize that the tailbud data set contains fewer cell divisions, longer cell
cycles, and more variety with respect to cell development. For the initial analysis,
we select the mean inner path descriptor and a parameter of P D 4 in order to find
implausible cell cycle phases. Figure 12A shows the frequency-based coloring of
the tailbud data. We observe that blue and light-blue are the prevailing tile colors,
meaning that there are few trees with very short inner paths. This substantiates the
assumption that, by and large, the data set contains longer cell cycles. In contrast to
Fig. 11A, tiles with light-blue colors are more evenly-distributed across the structure
map. Furthermore, we can identify some red tiles that indicate trees with many short
cell cycles (see Fig. 12B, C). In order to analyze the cell division behavior, we select
the mean branch asymmetry descriptor and a parameter value of P D 25. We then
proceed to highlight all branch asymmetries larger than 25. In the frequency-based
structure map in Fig. 13A, we identify numerous asymmetric branches and thus a
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Fig. 12 Frequency-based coloring of structure map of the tailbud data based on mean inner path
length and P D 4. A: Frequency-based structure map. B, C: Examples of trees with short cell
cycles in relation to all short paths

Fig. 13 Frequency-based coloring of structure map of the tailbud data based on mean branch
asymmetry and P D 25. A: Frequency-based structure map. B: Example of trees with high branch
asymmetries

variety of different cell division behaviors (Fig. 13B shows some examples of these
trees). These large differences are most likely based on tracking errors missing the
track for a cell movement in the smaller path.
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In comparison, both structure maps differ significantly in the frequency of
identified errors because of the different biological developments of the data sets.
For example, consider the frequency of the local features in the tiles in Figs. 11A
and 12A.

6 Conclusions and Future Work

We have shown that the structure map is well-suited for interactive visual analysis on
large tree data, especially on data from developmental biology. The structure map
yields a simple and compact overview of several thousands of cell developments.
These developments are depicted in the form of cell lineage trees that are arranged
such that local neighborhood similarity is maintained as much as possible. The
structure map permits both global analysis based on color-coding, as well as local
investigation of substructures in trees based on multiple cell descriptors. Moreover,
it enables finding similarities and detecting both erroneous and outlying biological
events. The structure map supports biological analysis in two ways: First, it yields
immediate feedback about the overall tracking quality through the investigation of
biological events such as cell division patterns and cell cycle lengths. Second, biol-
ogists may backtrack implausible cell behavior, thereby analyzing and improving
both data processing and data acquisition.

Using the structure map for two different data sets, biologists were able to
formulate and validate hypotheses about markedly different biological development
processes. We also showed how to use the structure map as a tool for ascertaining the
quality of cell lineages in different input data sets. Comparing epiboly and tailbud
data sets uncovered significant differences in tracking quality.

A drawback of our method is the runtime required for the computation of
eigensystems for spectral analysis (ca. 3 h for the epiboly data set and 92 s for the
tailbud data set). Our current implementation precomputes them and stores them on
the disk. In the future, we plan to use the multiscale approach of Wong et al. [26],
who calculate converging approximations of the graph Laplacian, for speeding up
eigensystem calculations.

The structure map has several potential extensions. As the similarity analysis
presented in this paper does not require information about time steps, our current
implementation ignores them. However, this information might be valuable for
some analysis scenarios, so future implementations could incorporate it into the tree
similarity measure in order to yield more biologically robust results. We furthermore
note that the graph Laplacians we used for spectral analysis can be trivially extended
to accommodate weighted edges. This could be used to integrate more information
about cell movements, e.g. their velocity. We did not exhaust the possibilities for
tree descriptors and finding local structural features in trees. Other applications of
visualizing large tree collections may find different tree descriptors useful. Note that
since the graph Laplacians and the associated similarity measure are not constrained
to trees, our method can be extended to visualize large graph collections as well.
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The next step is the integration of our method into a larger system where
the structure map is used to mark interesting cell lineages. Prominent discoveries
could then be highlighted and juxtaposed using, for instance, a maximum intensity
projection or a volume rendering of the raw data. We expect that the focused
observation of spatial cell migration and division will support the biologists in
their investigation and interpretation of different cell development phenomena,
e.g. learning more about the physical conditions that determine asymmetric cell
divisions.
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Efficient Reordering of Parallel Coordinates
and Its Application to Multidimensional
Biological Data Visualization

Tran Van Long and Lars Linsen

Abstract Multidimensional data visualization is a challenging research field with
many applications in various fields of sciences. Parallel coordinate plots are one of
the most common information visualization techniques for visualizing multidimen-
sional data. Unfortunately, the effectiveness of parallel coordinates depends heavily
on the order of the data dimensions and different orders exhibit different information
about the structures in the multidimensional data. In this paper, we propose a method
that supports an automatic dimension reordering and spacing of the axes in parallel
coordinate plots. The underlying idea of our method is to find an asymptotic for
the optimization of the permutation based on data dimension similarity. We present
our method with two kinds of similarities, namely, Pearson’s correlation similarity
for unclassified data and class distance consistency for classified data. We present
results on well-known multidimensional data sets to show how our method improves
the parallel coordinate plots and to prove its efficiency. Finally, we demonstrate how
our approach can be applied to the visualization of bivariate structures in biological
data.

1 Introduction

Multidimensional data are acquired in many fields of research and applications
such as transactions in business, numerical simulations in physics, and network
security in computer sciences. In the context of biological data analysis, they
have gained increasing importance, e.g., when considering gene expression data
or when describing biological cells or structures with multiple attribute values.
Data set sizes and data collections are constantly growing. The challenge is to
detect valuable information in these complex data sets. Multidimensional data
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visualization techniques have proven to effectively support the exploration and
analysis of the data in an intuitive manner.

The order of data dimensions is crucial for the effectiveness of a large number
of multidimensional data visualization techniques [4] such as parallel coordinate
plots [18], star coordinate plots [19], radial visualization (Radviz) [17], scatterplot
matrices [13, 24], circle segments [3], and pixel recursive patterns [20]. The data
dimensions have to be positioned in some one- or two- dimensional arrangement
on the screen. This chosen arrangement of dimensions can have a major impact
on the expressiveness of the visualization, as the relationships between adjacent
dimensions are significantly easier to detect than relationships between dimensions
positioned far from each other. Dimension ordering aims at improving the effective-
ness of the visualization by giving suitable orders to the dimensions. Good orders
are such that users can easily detect relationships or pay more attention to more
important dimensions.

In many commonly used multidimensional data visualization techniques like
most of the ones mentioned above (parallel coordinates, star coordinates, Radviz,
and scatterplot matrix), uniform spacing and/or angles are placed evenly between
two adjacent axes in the display. We presume that non-uniform spacing could help
to convey information about dimensions, such as similarity between adjacent data
dimensions or structure of a subspace.

In this paper, we propose a general approach to data dimension ordering for
multidimensional visualization techniques and, exemplarily, demonstrate how to
apply it to parallel coordinate plots. It can easily be applied in the context of
other multidimensional visualization methods. Our approach is based on the ideas
of Belkin and Niyogi [7] and Ding and He [12] that find positions of data
dimensions according to their similarity. Inspired by Laplacian eigenmaps, we can
find layouts of the data dimensions based on a similarity matrix. Our approach
is applied to automatically find a dimension reordering and dimension spacing
in parallel coordinates. The dimension reordering emphasizes the high similarity
of adjacent axes. The dimension spacing emphasizes the pairwise relationships
between adjacent data dimensions. Our approach supports data dimension ordering
and data dimension spacing to enhance bivariate structures of multidimensional data
sets.

After discussing previous related work on parallel coordinates and dimension
reordering in multidimensional data visualization techniques in Sect. 2, we present
the data dimensions similarity measurement in Sect. 3. In Sect. 4, we describe an
asymptotic to finding the data dimension reordering and data dimension spacing in
parallel coordinates. In Sect. 5, we show the effectiveness of our methods with well-
known multidimensional data sets in the context of both classified and unclassified
data, before we apply them to biological data. In Sect. 6, we further discuss and
evaluate our approach, also in comparison to the literature.
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2 Related Work

Dimension ordering is an important issue in multidimensional data visualization.
Suitable dimension ordering supports the display of important structures such as
relationships between dimensions. An effective way to improve the quality of
multidimensional data visualizations is to reorder the dimension axes based on
similarity of data attributes [4]. This is particularly evident in parallel coordinate
plots.

The general problem of dimension ordering is presented by Ankerst et al. [4].
They describe the effectiveness of dimension ordering for many multidimensional
visualization techniques, define the concept of similarity between data dimensions,
and formulate the optimization problems. The optimization problems are presented
based on the idea of dimension ordering such that the layout of data dimensions is
optimized to place dimensions next to another based on their similarity. The task is
to place axes of highly similar dimensions next to each other. The authors prove that
the optimizations are NP-hard problems and equivalent to the traveling salesman
problem. The authors also propose an automatic heuristic approach to generate a
solution. We propose a method for dimension reordering based on their similarity
that is not heuristics-based and, nevertheless, has polynomial time complexity.

Dimension ordering of matrices has been introduced by Bertin [8]. Bertin [8]
proposed a display and an analysis approach for multidimensional data that is based
on a matrix called the Bertin matrix. The Bertin matrix allows for reordering both
rows and columns simultaneously to generate a homogeneous structure. Siirtola [26]
proposed some algorithms for computing a reorderable matrix and integrating it
with parallel coordinates. The reorderable matrix can be implemented with moving
rows or columns, sorting the matrix, reorganizing it, and automatic permutation
of the matrix. The linked views between the reorderable matrix and the parallel
coordinates allow for operations such as selecting a single data item, selecting a
subset of data items, selecting a dimension, permutation of dimensions, and forming
a classification. These operators can help users to view the data structure on some
interesting subspace. The spectral methods is introduced for seriation problem [6,
10]. The permutation is defined based on the Fiedler vector of the Laplacian matrix
of the similarity matrix. The spectral method is also proposed for dimensionality
reduction with many variation of principal component analysis [21].

Dimension reordering for the Radviz method was investigated by Di Caro et
al. [11]. They proposed two methods for dimension arrangement on Radviz based on
the optimization problem formulated using a similarity matrix and a neighborhood
matrix between data dimensions on a unit circle [11]. Recently, Albuquerque et
al. [2] used the cluster density measure to find good layouts of Radviz. They
proposed a greedy incremental algorithm to successively add data dimensions to
a Radviz layout to determine a suitable order.

Dimension reordering for star coordinates was introduced by Artero et al. [5].
They proposed the SBAA (Similarity Based Attribute Arrangement) algorithms for
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sorting data dimensions in the star coordinates. The SBAA is based on the nearest
neighbor heuristic method of data dimensions.

In the context of dimension ordering for parallel coordinates, Dasgupta et al. [9]
applied the branch-and-bound algorithm to optimize the dimension’s order. They
introduce many criteria for optimality such as optimal line crossings, optimal angles
of crossing, and optimal parallelism, and also combine their optimizations with
axes inversions of the parallel coordinates. Wang et al. [29] proposed an interactive
hierarchical dimension reordering, spacing, and filtering in parallel coordinates. The
similarities among data dimensions are determined as done by Ankerst et al. [4],
but they construct a similarity hierarchy of data dimensions based on a bottom-up
clustering. They also introduced the concept of automatic data dimension spacing.
The default spacing between all adjacent axes is an equidistant spacing of the
parallel coordinates. Their algorithm of adjusting the spacing of data dimensions is
derived from the hierarchical structure of the dimensions. McDonnell and Mueller
introduce illustrative parallel coordinates (IPC) [23]. The IPC method improve
parallel coordinate visualization for large scale data set and clustering visualization.

Seo and Shneiderman [25] proposed the rank-by-feature framework for ranking
with respect to a criterion of interest and sorting scatterplots according to that
criterion. Dimension reordering is achieved by testing all permutations. Albu-
querque et al. [1] proposed a method for ranking data dimensions by summing
other data dimensions. Then, the permutation of data dimensions is obtained by
sorting according to the quality of the data dimensions. Similarly, Tatu et al. [28]
introduced some methods for measuring the quality of scatterplot matrix and
parallel coordinates for both classified and unclassified data. The authors proposed
the Rotating Variance Measure (RVM) for finding linear and nonlinear pairwise
correlations between the data dimensions. The RVM is applied to unclassified
data on scatterplot matrices. The class density measure is used to measure overlap
between classes and is, then, applied for scatterplot matrices with unclassified
data. For the measurements on parallel coordinates, they introduced a Hough-
space measure for the number of accumulator cells that have a higher value
than a threshold. The Hough-space measure is applied for unclassified data. They
also proposed to use the overlap measure for classified data. They apply it to
each class and compute the sum of the quality measures over all classes. The
dimension order optimization, then, uses a heuristic algorithm. Recently, Ferdosi et
al. [14] proposed a method for finding clusters structures in subspaces. The authors
introduced a dimension ordering based on ranking sequential orthogonal subspaces.
The subspace that has the highest quality is chosen and the full space provides the
ordering of all dimensions. Lehmann et al. [22] introduced a method for sorting the
data dimension in scatterplot matrices. For each scatterplot, they measure the quality
and obtain the quality measurement of the scatterplot matrix. The authors use a hill-
climbing algorithm to find the best permutation with three local cost functions for
the matrix quality of scatterplot matrices.
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3 Data Dimension Similarity

In this section, we introduce the similarity measures between dimensions of a
multidimensional data set. The similarity measures are defined pairwise between
any two dimensions. Given two-dimensional data .xi; yi/; i D 1; 2; : : : ; n, from the
random vector .X; Y/. We present the data dimension similarity between X and Y for
both cases unclassified data and classified data. We denote the similarity between
X and Y by similar.X; Y/. We normalize the similarity of data dimension to the
interval Œ0; 1�. Thus, similar.X; Y/ � 1 means that X and Y have high similarity,
while similar.X; Y/ � 0 means that X and Y are dissimilar.

3.1 Unclassified Data

For unclassified data, we base our similarity measure on Pearson’s correlation.
Pearson’s correlation coefficient for a pair of variables .X; Y/ is defined by

� D �XY D EŒ.X � E.X//.Y � E.Y///�p
Var.X/

p
Var.Y/

:;

where E.:/ denotes the expected value and Var.:/ denotes the variance. Pearson’s
sample correlation coefficient of a sample .xi; yi/; i D 1; 2; : : : ; n, can be determined
by

r D rxy D
n

nP
iD1

xiyi �
nP

iD1

xi

nP
iD1

yi

s
n

nP
iD1

x2
i � .

nP
iD1

xi/2

s
n

nP
iD1

y2
i � .

nP
iD1

yi/2

:

The range of values of Pearson’s correlation coefficient is given by the interval
Œ�1; 1�, which represents the linear relationship of the two variables. If the absolute
value of Pearson’s correlation coefficient is close to 1, it indicates a strong linear
correlation, whereas, if it is close to 0, it indicates a weak relationship between the
two variables.

For the application to parallel coordinates, we emphasize the linear relationship
between two adjacent variables. Dimension spacing should also display the impor-
tance of the linear relationship. Therefore, we define the similarity between data
dimensions X and Y in case of unclassified data as

similar.X; Y/ D jrj:
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3.2 Classified Data

For classified data, we use the Class Distance Consistency (CDC) [27] to measure
the similarity between data dimensions. Suppose we are given a data set fpi D
.xi; yi/ W 1 � i � ng, which is classified into m class, where the classes are labeled by
f1; 2; : : : ; mg. We denote the class label of data point p by label.p/ 2 f1; 2; : : : ; mg.
For each class, we denote as ci the centroid of the ith class. A data point p belongs
to a class i, if the distance from the data point p to the centroid ci of that class is
smallest. Hence, we denote

class.p/ D arg min1�i�mdistance.p; ci/:

A data point p is correctly classified, if its label matches the class with smallest
distance to the centroid. Otherwise. the data point p is misclassified.

The CDC of the data set fpi D .xi; yi/ W 1 � i � ng, is defined as the number of
correctly classified data points. Using this criterion, we define

similar.X; Y/ D jpi D .xi; yi/ W label.pi/ D class.pi/j
n

:

In parallel coordinates, two data dimensions shall be adjacent, if they are suitable
for representing the class structures of the given data set. The dimension spacing
shows the importance of the class structures in parallel coordinates.

4 Data Dimension Reordering

Given a p-dimensional data set X with dimensions X1; X2; : : : ; Xp. We compute the
similarity matrix S D .sij/p�p, where the entries are the pairwise similarities of the
data dimensions as introduced in Sect. 3, i.e., sij D similar.Xi; Xj/.

Let yi denote the coordinates of the ith data dimension Xi, i D 1; 2; : : : ; p. The
distance between two data dimensions is defined by .yi � yj/

2 and when weighted
by its similarity is given as .yi � yj/

2sij. We define our objective function as the
summation of weighted distances of all pairwise data dimensions, i.e., the objective
function is given by

X

i¤j

.yi � yj/
2sij:

The task is to find the minimum of this objective functions. The minimization of the
objective function ensures that, if sij is close to 1, then yi is close to yj. Hence, if two
data dimensions have higher similarity, they are placed closer to each other. If all yi
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are equal, the objective function reaches its minimum. To avoid the trivial solution,

we postulate
pP

iD1

yi D 0 and
pP

iD1

y2
i D 1.

In parallel coordinates, the positions of the data dimensions X1; X2; : : : ; Xp are
fixed to locations 1; 2; : : : ; p on a line, e.g., yi D i. The dimension reordering
can be determined by computing the index permutation � D f�1; �2; : : : ; �pg that
minimizes the objective function

J.�/ D
X

i¤j

.i � j/2s�i ;�j :

For a vector y D .y1; y2; : : : ; yp/, the vector permutation of y is denoted by �.y/ D
.y�1 ; y�2 ; : : : ; y�p/, and we denote ��1 as the inverse of the permutation � . Then,
the objective function can be written as

J.�/ D
X

i¤j

.��1
i � ��1

j /2sij: (1)

The optimization of the objective function in Eq. (1) is not affected by a linear
transformation. Assume yi D a��1

i C b, where the two parameters a and b are

determined such that
pP

iD1

yi D 0 and
pP

iD1

y2
i D 1. Thus, we obtain

8
ˆ̂<

ˆ̂:

a
pP

iD1

��1
i C pb D 0

a2
pP

iD1

.��1
i /2 C 2ab

pP
iD1

��1
i C pb2 D 1

or, equivalently,

8
ˆ̂<

ˆ̂:

a
pP

iD1

iC pb D 0

a2
pP

iD1

i2 � pb2 D 1

From these equations, we can easily derive that a2 D 12

p2 � 1
and b D �pC 1

2a
.

Instead of finding the best permutation � of the data dimensions by an exhaustive
search or based on a heuristic, we introduce an asymptotically optimal algo-
rithm to find the permutation � based on finding the continuous vector y D
.y1; y2; : : : ; yp/. The permutation � is determined by the values of the continuous
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values y1; y2; : : : ; yp with

yi < yj , ��1
i < ��1

j :

Therefore, the permutation � is uniquely defined by the vector y.
We compute a Laplace matrix L of the similarities matrix S [7], which is defined

by L D D � S, where D D .dij/ is a diagonal matrix with entries

dij D

8
<̂

:̂

nP
jD1

sij i D j

0 i ¤ j:

Hence, the Laplacian matrix L D .lij/ has the entries

lij D

8
<̂

:̂

nP
jD1

sij i D j

�sij i ¤ j:

Based on this definition, the objective function J.y/ DP
i¤j

.yi�yj/
2sij can be rewritten

as

J.y/ D
X

i¤j

.yi � yj/
2sij

D
X

i¤j

.y2
i C y2

j � 2yiyj/sij

D 2

nX

iD1

.
X

j¤i

sij/y
2
i � 2

X

i¤j

yiyjsij

D 2

nX

iD1

diiy
2
i � 2

X

i¤j

yiyjsij

D 2yTDy � 2yTSy

D 2yTLy:

Moreover, we know that the Laplace matrix L is a semi-definite and symmetric
matrix. The matrix L always has the smallest eigenvalue 	 D 0 and a corresponding
eigenvector 1 D .1; 1; : : : ; 1/. To avoid the trivial solution, we find the second
smallest eigenvalue 	 and the corresponding eigenvector, which is called the Fiedler
vector [15].
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The Fiedler vector y can be determined as a solution to the optimization problem

J1.y/ D yTLy D yT.D � S/y �! min; (2)

under constraints yT1 D 0; yTy D 1: Assuming that L has a unique eigenvalue 0,
we find the Fiedler vector y and eigenvalue 	 ¤ 0 such that Ly D 	y or

	 D yTLy
yTy

is minimal, respectively. To avoid the matrix L to be singular, we find y and 	 such
that

	C 1 D yT.LC I/y
yTy

is minimal or, equivalently, that

� D 1

	C 1
D yTy

yT.LC I/y

is maximal. We assume that the matrix L C I has a Cholesky decomposition [16]
L C I D UTU, where U is an upper triangular matrix. Let z D Uy or y D U�1z,
respectively, then we obtain

� D zT.U�1/TU�1z
zTz

:

We apply the Power method [16] to find the largest eigenvalue � and the
corresponding eigenvector z of the matrix .U�1/TU�1. Hence, we have derived an
algorithm for finding the Fiedler vector of the Laplacian matrix L. The algorithm is
given as follows:

Algorithm 1

• Compute the Cholesky decomposition LC I D UTU.
• Compute the inverse matrix for the upper triangular matrix U.
• Compute the largest eigenvalue � and the corresponding eigenvector z of the

matrix .U�1/TU�1 by the Power method.
• Compute y D U�1z.

• Compute the Fiedler vector y � y
jjyjj .

The constraints to avoid a trivial solution as defined above are not the only
feasible solution. We also want to investigate a second choice of constraints.
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Consequently, we propose an alternative optimal solution

J2.y/ D yTLy D yT.D � S/y �! min; (3)

for new constraints yTD1 D 0; yTDy D 1: In the Algorithm 1, we consider all data
dimensions equally. We propose a new constraint yTDy D 1 for more emphasizing
data dimensions more similarity with other data dimensions. To solve this, we
compute eigenvalue 	 and eigenvector y from Ly D 	Dy or, equivalently, from
.LCD/y D .1C 	/Dy. Again, instead of finding the minimal

	 D yTLy
yTDy

we find the maximal

� D 1

	C 1
D yTDy

yT.LC D/y
:

Analogously to Algorithm 1, we find the Cholesky decomposition [16] of the matrix
LC D D UTU where U is an upper triangular matrix. Again, we define z D Uy or
y D U�1z, respectively, and obtain

� D zT.U�1/TDU�1z
zTz

:

We apply the Power method [16] to find the largest eigenvalue � and the corre-
sponding eigenvector z of the matrix .U�1/TU�1. This leads to a second algorithm,
where we find the Fiedler vector according to the changed set-up. The algorithm is
given as follows:

Algorithm 2

• Compute the Cholesky decomposition LC D D UTU.
• Compute the inverse matrix for the upper triangle matrix U.
• Compute the largest eigenvalue � and the corresponding eigenvector z of the

matrix .U�1/TDU�1 by the Power method.
• Compute y D U�1z.

• Compute the Fiedler vector y � y
jjyjj .

The asymptotic time complexity of the two algorithms is governed by the
computation of the Cholesky decomposition and by the execution of the Power
method. Both computations have complexity O.p3/. Hence, the overall asymptotic
time complexity of our algorithms is O.p3/.
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5 Experimental Results

First, we test our approach on some well-known data sets. The data set is the so-
called Iris data set.1 The Iris data set contains 150 data points, four attributes X1

(sepal length), X2 (sepal width), X3 (petal length), and X4 (petal width), and three
classes Setosa (50 data points), Versicolour (50 data points), and Virginica (50 data
points). Figure 1 shows the Iris data with original ordering of data dimensions. Each
class is encoded by a different color.

First, we look into results when neglecting the classification, i.e., we treat the
data as unclassified. The matrix of Pearson’s correlation coefficient of the data
dimensions for the Iris data set is given by

P D

0
BB@

1 �0:1093 0:8717 0:8179

�0:1093 1 �0:4205 �0:3565

0:8717 �0:4205 1 0:9627

0:8179 �0:3565 0:96275 1

1
CCA

The respective similarity matrix with Pearson’s correlation coefficients for the Iris
data set is then

S D

0
BB@

0 0:1093 0:8717 0:8179

0:1093 0 0:4205 0:3565

0:8717 0:4205 0 0:9627

0:8179 0:3565 0:96275 0

1
CCA

Fig. 1 Visualizing the Iris data set on parallel coordinates with original data dimension ordering

1http://archive.ics.uci.edu/ml/datasets/Iris.

http://archive.ics.uci.edu/ml/datasets/Iris
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Fig. 2 Visualizing the Iris data set on parallel coordinates with Pearson’s correlation similarity.
(Left) The position of data dimensions are equidistant. (Right) The position of data dimensions are
placed proportional to their similarity

Figure 2 shows the ordering of dimensions according to the Pearson’s correlation
similarities. Both, Algorithm 1 and Algorithm 2 produce the same order of data
dimension. Figure 2 (left) shows the data dimensions placed equidistantly on the
parallel coordinates. The pairwise correlations between the re-ordered adjacent
dimensions is clearly higher than with the original ordering, which allows for
immediate and intuitive interpretations. Figure 2 (right) shows the data dimensions
place proportional to the values of vector y. It can easily be observed that the data
dimensions X3 and X4 have highest similarity.

Next, we look into the results when considering the classification, i.e., we treat
the data as classified. The similarity matrix based on CDC for the Iris data set is
given by

S D

0
BB@

0 0:48 0:55 0:51

0:48 0 0:61 0:61

0:55 0:61 0 0:63

0:51 0:61 0:63 0

1
CCA :

Figure 3 shows the ordering of data dimensions based on the CDC similarity.
Figure 3 (left) shows the order of data dimensions obtained by Algorithm 1, while
Fig. 3 (right) shows the order obtained by Algorithm 2.

The optimal dimension ordering obtained by Algorithm 1 is X3, X1, X2, and X4.
Hence, the three classes of the Iris data set is well classified in pairwise dimensions
X3 vs. X1, X1 vs. X2, and X2 vs. X4 as displayed in Fig. 3 (left). Figure 3 (right)
shows another optimal dimension ordering by Algorithm 2. Algorithm 1 only
emphasizes the similarity between two pairwise data dimensions, while Algorithm 2
also emphasizes the similarity of each data dimension with other data dimensions.
The weighted matrix has diagonal entries d11 D 1:54, d22 D 1:70, d33 D 1:79,
and d44 D 1:75. Thus, the order of relationship degree is X3, X4, X2, and X1.
Therefore, the optimal dimension ordering by Algorithm 2 is slightly better than
that of Algorithm 1.
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Fig. 3 The optimal dimension ordering based on class distance consistency (CDC) similarity.
(Left) The optimal dimension ordering by Algorithm 1. (Right) The optimal dimension ordering
by Algorithm 2

Fig. 4 Parallel coordinates of the Wine data set with original dimension ordering

The second well-known data set that we tested is the so-called Wine data
set.2 The Wine data includes 178 data points with 13 attributes X1(Alcohol), X2

(Malic acid), X3 (Ash), X4 (Alcalinity of ash), X5 (Magnesium), X6 (Total phenols),
X7 (Flavanoids), X8 (Nonflavanoid phenols), X8 (Proanthocyanins), X10 (Color
intensity), X11 (Hue), X12 (OD280 / OD315 of diluted wines), and X13 (Proline).
The Wine data set is classified into three classes: class 1 (59 data points), class 2
(71 data points), and class 3 (48 data points). Figure 4 shows the Wine data set with
original dimension ordering. The different colors represent different classes of the
Wine data set.

For the Wine data set, we use Algorithm 2 assuming both unclassified and
classified data. For the exploration of the pairwise linear relationships of data
dimensions, we use Pearson’s correlation coefficient for measuring similarity.
Figure 5 shows the optimal ordering with respect to the pairwise linear relationship
in parallel coordinates. One can observe more consistent polygonal line directions
between adjacent axes. Figure 6 shows the optimal dimension ordering assuming

2http://archive.ics.uci.edu/ml/datasets/Wine.

http://archive.ics.uci.edu/ml/datasets/Wine
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Fig. 5 Optimal dimension ordering for the Wine data set in the parallel coordinates assuming
unclassified data

Fig. 6 Optimal dimension ordering for the Wine data set in the parallel coordinates assuming
classified data

classified data. One can observe that there is a higher tendency to separating the
classes.

The third data set we used for our experiments is a synthetic data set that is
referred to as Sint data set. The Sint data set contains 14,831 data points with 20
attributes. It contains eight clusters. We add 20 noise attributes by using a uniform
random noise distribution. Hence, we are dealing with 40 dimensions in total. The
reasoning behind the adding of random noise dimensions is to test whether our
algorithm is capable to identify clusters in a subspace. In this experiment, we only
use the class distance consistency (CDC) similarity. Figure 7 shows the Sint data set
without ordering dimensions. Each cluster is encoded by assigning a unique color.
With the given order, it is not possible to visually detect a subspace that contains
clusters. We emphasize the pairwise relationship of data dimensions that exhibit
good clusters by replacing the CDC similarity sij by sk

ij, where k is a control power
parameter. Figure 8 shows the optimal ordering by Algorithm 2 with k D 4 and
Fig. 9 shows the optimal ordering by Algorithm 2 with k D 8. When the parameter
k increases, the noise attributes tend to group together (first 20 attributes in Fig. 9)
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Fig. 7 Parallel coordinate plot for Sint data set without reordering dimensions

Fig. 8 Optimal ordering of dimensions in parallel coordinates with control parameter k D 4

Fig. 9 Optimal ordering of dimensions in parallel coordinates with control parameter k D 8

and the subspace that contains the clusters of the data set (last 20 attributes in Fig. 9)
becomes visible. Now, the structure that was hidden in Fig. 7 is visible.

Finally, we apply our method to the biological data referred to as Wisconsin
Diagnostic Breast Cancer data set3 (WDBC for short). Features are computed from

3http://archive.ics.uci.edu/ml/datasets.

http://archive.ics.uci.edu/ml/datasets
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Fig. 10 Parallel coordinate plot of the WDBC data set without reordering dimension

Fig. 11 Optimal ordering of dimensions in parallel coordinates for the WDBC data set based on
Pearson’s correlation coefficient with Algorithm 2

a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe
characteristics of the cell nuclei present in the image. Ten features are computed
for each nucleus. The WDBC data set contains 569 data points and 30 attributes.
The data set consists of the two classes malignant and benign. Figure 10 shows
a parallel coordinate plot with original data dimension ordering. Color encodes
the two classes. Figure 11 shows the parallel coordinate plot of the WDBC data
set with an optimal reordering of data dimensions based on Pearson’s correlation
coefficient computed by Algorithm 2. Figure 12 shows the parallel coordinate plot
of the WDBC data set with an optimal reordering of data dimensions based on
CDC, again, computed by Algorithm 2. We observe again that Pearson’s correlation
coefficient strives for grouping pairs of dimensions with similar values, while the
CDC produces higher visual separability of the classes.
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Fig. 12 Optimal ordering of dimensions in parallel coordinates for the WDBC data set based on
class distance consistency with Algorithm 2

6 Comparison and Discussion

While the previous section showed results for visual inspection, this section aims at
evaluating our results with respect to numerical quality measures and to compare our
results to the literature. We compare our approach to the recently presented work by
Albuquerque et al. [1]. They propose a method for dimension reordering in parallel
coordinates based on sorting with respect to a quality metric for dimensions. The
quality of the ith dimension is calculated by

Qi D
nX

jD1

n � i

n
sij:

To quantify the quality of our reordering in comparison to the results by
Albuquerque et al., we use the cost function introduced by Ankerst [4]. It computes
the cost by summing the similarities of adjacent dimensions, i.e., the cost function
is calculated by

S.�/ D
nX

iD1

s�i;�iC1
:

Consequently, the higher the cost function, the higher is the quality of the parallel
coordinate plot.

We evaluate and compare our approach for six data sets including the ones
presented in the previous section (Iris, Wine, Sint, and WDBC) plus two additional
data sets4 (Breast Tissue, Yeast). Yeast is another well-known multi-dimensional
data set, while Breast Tissue represents impedance measurements of freshly excised

4http://archive.ics.uci.edu/ml/datasets.

http://archive.ics.uci.edu/ml/datasets
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Table 1 The cost function of dimension reordering based on CDC (higher values indicate higher
quality)

Data set Iris Wine Sint WDBC Breast tissue Yeast

Algorithm in [1] 1.67 5.56 17.38 7.95 3.32 1.26

Algorithm 1 1.77 5.65 18.48 7.97 3.22 1.33

Algorithm 1 1.70 5.93 18.39 7.98 3.42 1.46

Table 2 The cost function of dimension reordering based on Pearson’s correlation coefficient
(higher values indicate higher quality)

Data set Iris Wine Sint WDBC Breast tissue Yeast

Algorithm in [1] 1.94 4.31 7.66 17.66 5.38 1.10

Algorithm 1 1.59 4.75 7.62 16.23 5.64 0.53

Algorithm 2 2.20 4.58 6.42 16.27 5.67 0.98

breast tissue taken at seven different frequencies (the six classes are carcinoma,
fibro-adenoma, mastopathy, glandular, connective, and adipose).

Table 1 shows the quality of the parallel coordinate plots with different dimension
reordering methods based on CDC similarity. We compare our two algorithms to
the one by Albuquerque et al. [1]. In all six data set, the quality of our approach
is rated higher than that of the algorithm in [1]. Only for the Breast Tissue data
set the algorithm in [1] produced better results than our Algorithm 1. However, our
Algorithm 2 always outperformed the algorithm in [1].

Table 2 shows the quality of the parallel coordinate plots with different dimension
reordering methods based on Pearson’s correlation coefficient. Here, our approaches
were both better than the approach in [1] for the Iris, Wine, and Breast Tissue data
sets, while we obtained lower quality for the Sint, WDBC, and Yeast data sets.

7 Conclusion and Future Work

We have presented a method for dimension reordering and dimension spacing in par-
allel coordinates based on data dimension similarity. For the dimension reordering
we present two cost functions for measuring similarity, one for unclassified and one
for classified data. We derived a scheme for solving the optimization problem with
low computational complexity. We document the effectiveness of our method with
various well-known data sets as well as biological data sets. We showed that our
methods can improve the results and, therefore, support the detection of structures
in multidimensional data sets. We also compared our method to a state-of-the-art
approach in terms of a numerical quality measure. We showed that our approach
outperforms the state-of-the-art approach for classified data and produces similar
results for unclassified data.
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For future work, we want to improve the display of our parallel coordinate
plots to reduce clutter in the renderings. In particular, we would like to further
enhance cluster structures in subspaces based on automatic dimension reordering
and spacing in the parallel coordinates. Moreover, we want to use our approach for
other multidimensional data visualization methods.
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Extraction of Robust Voids and Pockets in
Proteins

Raghavendra Sridharamurthy, Talha Bin Masood, Harish Doraiswamy,
Siddharth Patel, Raghavan Varadarajan, and Vijay Natarajan

Abstract Voids and pockets in a protein, collectively called as cavities, refer
to empty spaces that are enclosed by the protein molecule. Existing methods to
compute, measure, and visualize the cavities in a protein molecule are sensitive
to inaccuracies in the empirically determined atomic radii. This paper presents a
topological framework that enables robust computation and visualization of these
structures. Given a fixed set of atoms, cavities are represented as subsets of the
weighted Delaunay triangulation of atom centres. A novel notion of ."; �/-stable
cavities helps identify cavities that are stable even after perturbing the atom radii by
a small value. An efficient method is described to compute these stable cavities for a
given input pair of values ."; �/. This approach is used to identify potential pockets
and channels in protein structures.

1 Introduction

A cavity in a protein molecule refers to both voids (without openings) and pockets
(with openings). These cavities play a key role in determining the stability and
function of proteins. From the biologist’s point of view, obtaining a stable protein
is the starting point of many applications, from in-vitro studies of binding and
interactions, to using the protein as an antigen or vaccine. Whereas surface pockets
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often form part of the active site of enzymes or interacting sites for other proteins,
internal voids are often relevant structurally as features that affect the overall
thermodynamic stability of the protein. It is established that filling up internal
voids improves the packing of the protein thus increasing stability. In this respect,
detecting and visualizing structurally robust cavities inside the protein informs the
biologist on which mutations to perform to improve internal packing and get a stable
protein.

Related Work Several methods have been proposed to locate cavities in protein
molecules. In this paper, we focus our attention on geometric methods. Edelsbrunner
et al. [9, 10] and Liang et al. [20, 21] proposed a definition that is based on the theory
of alpha shapes and discrete flows in Delaunay triangulations. Kim et al. [15, 16]
proposes a definition of cavities based on an alternate representation of a set of
atoms called beta shapes that faithfully captures proximity. Tools based on the above
approach are available and widely used [5, 17, 18]. Till and Ullmann [31] employed
a graph theoretic algorithm to identify cavities and compute their volume. Parulek
et al. [27] used graph based methods on the implicit representation of molecular
surfaces to identify pockets and potential binding sites. Varadarajan et al. [2]
employed a Monte Carlo procedure to position water molecules together with a
Voronoi region-based method to locate empty space. They discussed the importance
of accurate identification of cavities for the study of protein structure and stability.
Novel Voronoi diagram-based techniques for the extraction and visualization of
cavities have also been developed from the viewpoint of studying and interactively
exploring access paths to active sites [22, 23, 28, 29]. Krone et al. [19] presented a
visualization tool for interactive exploration of protein cavities in dynamic data.

Motivation The input in the above-mentioned methods are protein structures
determined from x-ray crystallography data or other lower resolution data. These
cavity detection methods are sensitive to inaccuracies that are inherent in the crystal-
lographic measurements. While the measurements may guarantee high resolution,
it is important to note that even small inaccuracies may cause a difference in
the reported number of cavities. Inaccuracies may also arise due to fundamental
limitations such as the notion of radii of atoms, which is determined empirically.
For example, as illustrated in Fig. 1, presence of such inaccuracies may result in a
cavity detection method to report two distinct but large cavities in place of one, or
report very small volume cavities. Figure 2 illustrates the problem as it occurs in a
lysozyme protein.

Fig. 1 Left: Two cavities that are apparently very near to each other may be a single cavity.
Right: A very small cavity may be reported whereas no such cavity may exist
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Fig. 2 Left: Two cavities that appear very near to each other in a lysozyme protein (PDB ID:
200L). The solid surface represents cavities while the protein is shown as cartoon for context.
Right: The two cavities may be a single cavity

Contributions In this work, we aim to develop an interactive method to compute
robust cavities in proteins. Our goal is to enable the user to reduce, if not completely
eliminate, the inaccuracies mentioned earlier. In order to achieve this, we first
provide a novel definition for robustness in the presence of inaccuracies in the
measured radii.

We then propose a method for computing robust and stable cavities in proteins.1

This is accomplished through the use of a simple and succinct structure called the
alpha complex to represent protein molecules. The alpha complex is a simplicial
complex that can be stored as a filtration, a series of simplicial complexes Ki with
Ki � KiC1. In order to identify the set of cavities that are stable with respect to
small perturbations in the atom radii, our method symbolically modifies the radii
of a select set of atoms by systematically processing and modifying the filtration.
We show that this modification results in controlled changes in the number and
properties of cavities and does not violate key properties of the filtration. The
method is efficient in terms of running time performance and also supports the
elimination of very small or insignificant voids as measured by the notion of
topological persistence [11].

We develop software to visualize the stable cavities together with the molecule,
and to calculate cavity volumes and surface areas. This software provides an
interactive framework that a biologist can use to decide which cavities are more
relevant and what mutations to perform. The software also supports exporting the
detected cavities with the relevant biochemical context to enable their visualization
in PyMOL [4].

Finally, we use this software to demonstrate the applicability of the notion of
robust voids and pockets and apply it to detect potential channels and pockets in
several proteins.

1A preliminary version of this work appeared as a short paper in the Proceedings of Eurographics
Conference on Visualization [30].
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2 Geometry Representation of Biomolecules

In this section, we briefly introduce the mathematical background required to define
and represent the structure of biomolecules [7, 8, 26].

Simplicial Complex A k-simplex � is the convex hull of kC1 affinely independent
points. A vertex, edge, triangle, and tetrahedron are k-simplices of dimension 0� 3.
A simplex � is a face of � , � � � , if it is the convex hull of a non-empty subset of
the k C 1 points. A simplicial complex K is used to represent a topological space
and is a finite collection of simplices such that (a) � 2 K and � � � implies � 2 K,
and (b) �1; �2 2 K implies �1

T
�2 is either empty or a face of both �1 and �2. A

subcomplex of K is a simplicial complex L 	 K.

Voronoi Diagram and Delaunay Triangulation Let S 	 R
d be a finite set of

points. The Voronoi cell Vp, of a point p 2 S, is the set of points in R
d whose

Euclidean distance to p is smaller than or equal to any other point in S. The collection
of Voronoi cells of all the points in S partitions Rd, and is called the Voronoi diagram
(Fig. 3a). The Delaunay triangulation D of S is the dual of the Voronoi diagram
and partitions the convex hull of S, see Fig. 3b. The weighted Voronoi diagram and
weighted Delaunay triangulation are similarly defined for a set of balls, which is
considered as a set of weighted points. The weight is equal to the square of the

Fig. 3 (a) Voronoi diagram of a weighted point set in R
2, Voronoi edges are in green. (b) The

Delaunay complex is the dual of the Voronoi diagram. (c) Intersection of the weighted Voronoi
diagram and the union of balls. (d) The dual complex is the dual of this partition of the union of
balls that captures the incidence relationship. In this particular case, ˛ D 0. (e) Void and pocket in
a collection of 2D balls. Void is shown in yellow and pocket is shown in blue. (f) Void and pocket
shown as the connected components of the complement of alpha complex i.e., D�K. (g) The dual
complex shown for some ˛ > 0 where the void has been filled up and original pocket has become
a void. (h) The new void is highlighted using blue, Delaunay edges (in black) and alpha complex
(in red) are also shown to provide context
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radius of the ball, and the distance between a weighted point p with weight wp and
a point x 2 R

d is given by the power distance kx � pk2 � wp.

Alpha Complex Molecules are often represented using a space-filling model such
as a union of balls. The weighted Voronoi diagram helps represent the contribution
from each atom to the union of balls. Consider an atom p. Define Bp as an open ball
having the radius of the atom p. Let Vp be the weighted Voronoi cell corresponding
to p. The contribution from each atom p is equal to Bp \ Vp, the intersection
between the ball corresponding to the atom and the weighted Voronoi cell of p, see
Fig. 3c. The corresponding dual structure is a subcomplex of the weighted Delaunay
triangulation and called the dual complex, see Fig. 3d.

Edelsbrunner et al. [6, 12, 13] consider a growth model, where the ball weights
grow, and track the changes in the dual complex. The growth parameter, ˛,

corresponds to a radius
q

r2
p ˙ ˛2 for a ball centered at p with radius rp. Positive

values of ˛ correspond to growing the balls and negative values correspond to
shrinking the balls. The weight of the point w.p/ increases or decreases by ˛2 and
hence ranges between �1 and 1. A negative weight corresponds to imaginary
radius. Note that ˛ D 0 corresponds to no growth. The dual complex corresponding
to a set of balls after they are grown by ˛ is called the alpha complex.

Given a simplicial complex K, a finite sequence ; D K0; K1; : : : ; Km D K of
subcomplexes of K is a filtration if K0 � K1 � � � � � Km. Figure 3d, g show
two subcomplexes (in red) which are part of a filtration. The rank of a subcomplex
refers to its position in the filtration. The set of alpha complexes obtained by varying
˛ from �1 to 1 is a filtration of the Delaunay triangulation. In particular, we
consider the filtration that is generated by inserting the simplices one at a time and
if more than one simplex appear at the same value of ˛, we order them based on
their dimension .0 < 1 < 2 < 3/. A vertex is inserted into the filtration when the
weight of the ball becomes positive.

Voids and Pockets Let the alpha complex K represent a molecule at a given value
˛ and D be the Delaunay complex of the weighted point set. A cavity is a maximally
connected component of the complement D�K. Voids and pockets are cavities that
are, respectively, bounded and not bounded by the union of balls [14]. Figure 3e, f
illustrate a void and a pocket in 2D. Figure 3g, h show how they are affected by the
growth model.

Topological Persistence The boundary of a triangle consists of its edge faces.
The boundary of a collection of triangles is the formal sum of boundary edges of
the individual triangles, where addition is performed modulo 2. A 2-cycle (two-
dimensional cycle) is a collection of triangles whose boundary is empty. Cycles
of other dimensions are defined similarly. A void is represented by a 2-cycle.
The alpha complex K helps represent and track voids via the growth process. A
void is said to be created when the last triangle in the 2-cycle is inserted into the
filtration and it is destroyed when the volume that it occupies is filled by the last
tetrahedron. Topological persistence of a 2-cycle measures its lifetime (k � 0/ in a
filtration [11]. It is equal to the difference between the ˛-values when the cycle is
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Fig. 4 A filtration generated by inserting simplices in a particular order. A k-simplex corresponds
to an overlap of k C 1 balls. For each simplex, the box in the bottom left shows the rank/arrival
time of the simplex, the box in the bottom right shows the simplex along with it’s behaviour. The
‘C’ implies that it is a positive simplex (creator) and the ‘�’ implies that it is a negative simplex
(destroyer). For example, the triangle ‘tuvC’ creates a void and tetrahedron ‘stuv�’ destroys it.
The persistence of this void is therefore 1

created and destroyed. Given a filtration, the persistence of cycles can be computed
efficiently [11]. The insertion of every simplex either creates a cycle or destroys a
lower dimensional cycle. The persistence value associated with a simplex is equal to
the topological persistence of the corresponding cycle. Figure 4 illustrates creation
and destruction of cycles in a filtration of a small simplicial complex.

A void is represented by a 2-cycle and hence it has a well-defined creator and
destroyer. However, this is not the case for a pocket, which may not necessarily be
created as a result of a simplex insertion. This is because, initially K D ; and hence
D � K D D is a single connected component. This component corresponds to a
pocket and has no creator. Hence, we cannot directly apply the notion of persistence
to measure pockets. The notion of persistence of a void intuitively captures the
volume of the void in terms of the range of ˛-values. To be consistent, we use a
similar notion for pockets as well. We fix a value of ˛ D ˛0 and define the birth time
of a pocket that has no creator to be equal to ˛0. The ˛-value when the pocket interior
is filled corresponds to its destruction time. Thus, similar to voids, the persistence of
a pocket is equal to its lifetime and approximates the volume of the pocket in terms
of the range of ˛-values.

3 Robust Cavities and Their Computation

We introduce a notion of robust cavities based on two parameters, one local and
another global. The local parameter is referred to as stability and the global param-
eter is specified by topological persistence. In order to simplify the description, we
assume that the cavities are computed for the ˛-complex corresponding to ˛ D 0.
However, the proposed definitions, methods, and subsequent analysis are valid for
all values of ˛.
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3.1 "-Stable and �-Persistent Cavities

Consider the interval Œ�"; "� of ˛ values, where " � 0. A cavity is called an "-
stable cavity if it remains a single connected cavity within all ˛-complexes for ˛

values in the range Œ�"; "�. In other words, using the lifetime terminology, the cavity
is born, possibly split into multiple components, and destroyed at ˛-values that lie
strictly outside of this interval. A cavity is �-persistent if its topological persistence
is greater than � i.e., the cavity size measured in terms of its lifetime is greater than
� . The persistence of pockets is defined in this case by setting ˛0 D �". Combining
the two notions of robustness, we call a cavity to be ."; �/-stable if it is both "-stable
and �-persistent.

The above definitions help measure the stability of the cavities when the atom
radii are perturbed by a small value. The local parameter considers perturbation
within a small interval centered at the ˛-value of interest whereas the global
parameter measures the size of the cavity in terms of its lifetime in the filtration.
Cavities of interest may often not be stable with respect to both notions. For
example, a large sized cavity (�-persistent for some large �) may be born within
the interval Œ�"; "�. However, note that a small perturbation in the radii of atoms that
line the surface of the cavity could result in an earlier birth time, hence making the
cavity to be "-stable. We aim to extract all cavities that are either stable as is or can
be made stable via a small perturbation.

3.2 Computing ."; �/-Cavities

The location of the atoms that constitute a protein molecule together with their van
der Waals radii is obtained from the protein data bank in pdb format. Given " and
� , we compute the set of ."; �/-stable cavities as follows.

1. Compute the weighted Delaunay triangulation of the input [18]. The atom centres
form the set of points that are weighted using their van der Waals radii.

2. Build the alpha complex [6], which is a filtration of the weighted Delaunay
triangulation.

3. Modify the filtration based on the value of ".
4. Compute the set of ."; �/-stable cavities by identifying all cavities [14, 20] of

the modified filtration at ˛ D 0, and retaining only those cavities that have
persistence greater than � .

The key idea in our proposed method is a modification of the filtration (Step 3) in
order to compute the set of stable cavities. The filtration of the weighted Delaunay
triangulation as defined by the ˛-value provides an explicit representation of the
birth/death times of each cavity and its evolution. We propose to alter the birth/death
times of the cavities by modifying the filtration instead of directly modifying the
radii of atoms that line the surface of the cavity. While the latter approach follows
directly from the definition, it is cumbersome and computationally inefficient. For
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example, varying the radii without explicit control may lead to changes in the
triangulation and the alpha complex. These changes need to be explicitly tracked,
else they may lead to inconsistencies between the alpha complex that represents the
molecule and the space-fill model. Resolving such inconsistencies would necessitate
the re-computation of all representations. On the other hand, the former approach is
simpler and computationally efficient.

Modifying the Filtration We now describe this step in detail. One or more
simplices are inserted to obtain a rank i C 1 simplicial complex from a rank i
simplicial complex in the filtration. Higher ranks correspond to higher values of
˛. The topology of voids and pockets may change when the simplices are inserted.
In particular, consider a triangle whose insertion changes the topology of a cavity.
When this cavity is a void, the triangle splits the void into two voids (C1). In case
of pockets, the insertion of the triangle could cause one of the following:

(C2) split the pocket into two pockets,
(C3) close one mouth of the pocket (for pockets with more than one mouth),
(C4) split the pocket into a pocket and a void, or
(C5) destroy the pocket and create a new void.

On the other hand, the insertion of a tetrahedron always destroys a void. These
topology changes may be avoided by delaying the insertion of the simplices that
cause a change in the topology of the cavities.

Let Kj and Kl be the alpha complexes corresponding to ˛ D �" and ˛ D "

respectively. Consider the set of simplices, ˙ , inserted into the filtration for values
of ˛ in the range Œ�"; "�. Let ˙t � ˙ be a subset of the set of triangles that modifies
the topology of a cavity and ˙T � ˙ be the set of all tetrahedra in ˙ . As mentioned
earlier, our goal is to selectively alter the radii of atoms by altering the birth/death
times of a cavity. In order to accomplish this, we delay the insertion of a select few
simplices �i 2 ˙t and all simplices in ˙T such that �i … Kj but �i 2 Kl, where
Kj � Kl � D. This delay corresponds to change in radii of the corresponding atoms
enclosing the cavity.

Identifying the Set ˙t The set ˙t consists of all triangles that satisfies conditions
C1, C2 and C3, while triangles that satisfy conditions C4 or C5 are optionally
inserted into ˙t. This is because a triangle that satisfies condition C4 or C5 creates
a new void destroying the existing pocket. Depending on whether the perturbation
decreases or increases the radii of the corresponding atoms, both the original pocket
and the new void can be considered to be stable respectively.

Delayed Simplex Insertion Simplicial complexes in the filtration of the weighted
Delaunay triangulation and the order of simplices that are inserted to generate the
filtration satisfy several containment and incidence properties. These properties
should be satisfied for the modified filtration as well. Towards this, we propose a
conservative but computationally efficient approach to modify the filtration:

1. Move all tetrahedra in ˙T to the end of the filtration. All such tetrahedra are
present in D but not in any Ki � D.
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(a) (b)

Fig. 5 2D illustration of simplex insertion causing a void to split. (a) Voids occur near to each
other and the edge that splits the single void into two. (b) The two voids merge into one if the
simplex insertion is delayed. The modified radii corresponding to the delay is highlighted in red

2. For each triangle in ˙t, find its incident tetrahedra �1, �2.
3. Delay the insertion of the triangle and the two tetrahedra, �1 and �2, to the end of

the filtration.

The above modification is illustrated using a 2D analogue in Fig. 5. Consider a void
split into two as shown in Fig. 5a. Assume that the highlighted edge (triangle in 3D)
is inserted into the alpha complex for ˛ lying in the interval Œ�"; "�. Further, it also
satisfies the criterion that it bounds two different voids. So it becomes a candidate
for delayed insertion. We move the edge to the end of the filtration, which means that
it does not belong to the alpha complex as shown in Fig. 5b. Also the radii of atoms
centered at the end points of the edge (triangle in 3D) are decreased accordingly.
Selective modification of the radii of a specific set of atoms is hence achieved in a
controlled manner.

After the filtration is modified, we recompute the set of cavities at ˛ D 0, which
correspond to the set of "-stable cavities. From this set, we retain cavities having
persistence greater than � to obtain the set of ."; �/-stable cavities. Note that the
persistence is computed with respect to the original filtration.

Discussion While computing stable cavities, our technique creates a single large
stable cavity from two nearby smaller cavities. Larger cavities are more relevant
for the study of stability of the molecules than smaller cavities. Biologists are
therefore interested in identifying such structures in order to fill them. Therefore,
in the presence of uncertainty, we choose to create a single large cavity instead of
retaining the two smaller cavities.

Time Complexity Let m be the number of simplices in the Delaunay triangulation
of the input protein having n atoms, m D O.n2/. Computing the set of cavities
takes O.m˛.m// time using the union-find data structure. Here, ˛ is the inverse
Ackermann function. Given ", ˙t and ˙T are computed in O.m/ time using a
sequential search over the filtration. Identifying the set of tetrahedra incident on
triangles in ˙t, and moving all the simplices to the end of the filtration takes O.m/

time. Thus the time required to modify the filtration is O.m˛.m//.
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3.3 Implementation Notes

The filtration obtained from the alpha complex (Step 2) is stored as a list. The
index of each simplex in this list represents the rank of that simplex. For each
triangle, we additionally store the indices of the incident tetrahedra. For a given
", we first compute the ranks k1 and k2 of the alpha complex at ˛ D �" and ˛ D ",
respectively, and then we compute the set of pockets at rank k2 [14]. Each pocket is
stored as a set of tetrahedra and each tetrahedron has an entry that stores its parent
pocket index.

Next, the set ˙t and ˙T are computed. The set ˙T is simply the set of all
tetrahedra �k having rank k1 � k � k2. In order to identify triangles that splits a
void into two, it is sufficient to track the connected components of the complement
of the ˛-complex. This is however not true for triangles that modify the topology of
a pocket. The addition of such a triangle may not change the number of components
present in the complement of the ˛-complex. In order to identify such triangles,
starting from the set of pockets computed at rank k2, we traverse the filtration in
reverse from rank k2 to rank k1, and explicitly track the change in topology of the
set of pockets. We also create and store the set ˙

0

T , which consists of the incident
tetrahedra of all triangles present in ˙t.

Let ˙S D ˙t
S

˙T
S

˙
0

T . The simplices in ˙S are sorted in the increasing
order of their ranks. Instead of explicitly moving these simplices to the end of
the filtration, we perform an implicit move. These simplicies are marked as invalid
within the list that represents the original filtration. The new filtration is obtained
by traversing the original filtration, ignoring the invalid simplicies, followed by
traversing the simplices in ˙S. An advantage of using this approach is that, when
the value of " is changed, it is easy to revert to the original filtration and recompute
the new filtration.

4 Experimental Results

We have developed a software tool ROBUSTCAVITIES that interactively computes
the set of stable cavities. The values of � and � can be specified interactively by the
user using a slider widget present in the tool. Following is a brief list of features
supported in ROBUSTCAVITIES:

• Computation of stable cavities in a protein for specified values of �, � and ˛.
• Computation of volume and surface area of cavities.
• Visualization and interactive exploration of cavities with support for multiple

rendering modes and colormaps.
• Export cavities with the relevant biochemical context in order to be used

in PyMOL [4]. In particular, we support skin mesh [3], union of balls, and
tetrahedral representation of the detected cavities. We also provide Python scripts
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which allow users to load these representations using different colormaps in
PyMOL.

We first report experimental results that demonstrate the efficiency of our
technique. We then present various examples of stable cavities present in different
protein molecules. Finally, we demonstrate the utility of our technique in identi-
fying potential channels and pockets in protein molecules. All experiments were
performed on a workstation with a 8-core 2 GHz Intel Xeon processor, 16 GB RAM,
and an NVidia GTX 600Ti graphics card.

4.1 Performance and Validation

Efficiency In order to test the efficiency of our technique, we computed the set of
robust cavities of over 200 proteins having number of atoms ranging from 184 to
40,026. The value of ˛ D 0, � D 1 and � D 0:01 was used in these experiments.

We first measure the interaction time, which is equal to the time taken to modify
the filtration and to identify the set of cavities from this modified filtration.This is
essentially the time taken to update the set of cavities once the user changes the
parameter values. Figure 6a plots the interaction time against the number of atoms
in the protein. Note that even for very large proteins having 40,000 atoms, the set of
robust cavities are computed within a second. Also note the near-linear behaviour
of the interaction time.

Next, we measure the total time taken to compute the set of robust cavities. This
includes time to compute the original filtration in addition to the interaction time.

Fig. 6 (a) Graph showing variations in the interaction time with respect to varying number of
atoms. (b) Graph showing variations in the total time with respect to varying number of atoms
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Fig. 7 (a) Plot of the computed and actual volumes of the artificial voids that were generated
using mutant models. (b) Comparison of normalized volumes computed using ROBUSTCAVITIES

and MCCAVITY

Figure 6b plots the variation of total time taken against the number of atoms in the
protein. Even though the total time is significantly greater than the interaction time,
it still requires only around 50 seconds for a protein with 40,000 atoms. Also, this
performance is acceptable since the computation of the original filtration is a one-
time operation done when loading the protein. Among the pre-processing steps,
computing alpha complex is the most time consuming step, which can be improved
further by employing the method proposed by Mach and Koehl [24].

Validation of Computed Volumes As mentioned earlier, ROBUSTCAVITIES also
reports the volume and surface area of the cavities identified. Proteins adopt a variety
of structures and it is known that the extent of packing of protein chain differs within
the same structure as well as between different structures. Because of this reason the
volume of the cavity which is created by converting a large residue to a small residue
may not always be the same in different protein structures. To mitigate this problem
we only examine completely buried cavities where it is known that proteins take up
a close packed structure.

Different cavity volume computation methods may employ different molecular
models resulting in a variation in the volumes that they report. We perform an
additional normalization of the computed volumes using model mutants [2] to
eliminate such variations. We use 28 different model mutants to create a set of
artificial voids. We use the resulting volumes to compute a linear normalization
function, as shown in Fig. 7a. The volumes computed using our computation are
normalized as follows:

Volume D 0:8 � ComputedVolumeC 32:4
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Fig. 8 Visualization of cavities in the protein 2CI2. (a) Cavities in the protein. (b) The set of
.1:0; 0:01/-stable cavities. (c) Two of the nearby voids in the protein. (d) These cavities merge
together resulting in a single stable void. Figures (c) and (d) are zoomed in for better context

The expected volume against which we compare our observed volume is the
Voronoi volume of the cavity, which is created on a large to small residue
substitution, averaged over many examples. Since we compare a specific large to
small substitution in a protein with an averaged ideal value, there is a difference in
the volumes, which is reflected as the constant in the above linear transformation.

In order to verify the correctness of the volumes computed by our software,
we compare volume for some of these mutants to the volumes computed using
MCCAVITY [2], see Fig. 7b. The graph shows normalized volumes and we observe
that there is high correlation between the two sets of volumes. In the absence of
an ideal normalizing function, the correlation coefficient helps determine if the
volumes computed are consistent with data available from other methods.

4.2 Stable Cavities and Their Properties

We now illustrate different examples of robust cavities identified using our software.
Unless otherwise specified, we use values ˛ D 0, � D 1 and � D 0:01 in following
examples. Note that a value of " D 1 is equivalent to a change of the radius of
an atom by at most 0:2 Å, which is within the resolution at which the input data is
available and hence within the tolerance threshold. In the following, we refer to a
protein by specifying its PDB ID from the Protein Data Bank [1].

Figure 8 shows protein 2CI2, which has three cavities. Two of the cavities are
voids, and are quite close as can be seen in the Fig. 8a. After modification, these two
voids are detected as a single void as shown in Fig. 8b. Figure 8c, d show a close-
up view of the two merging voids. Similarly, Figures 9 and 10 show stable cavities
for proteins 4B87 and 1DKF, respectively. In both these proteins, we observe two
significant pockets merging into a single stable pocket after filtration modification.

Properties of Stable Cavities Figures 11 and 12 plot the number and volume of
."; �/-stable cavities for various values of ". Note that increasing the value of "

implies that cavities from a wider range of ˛-values are considered. This could
potentially increase the number of "-stable cavities. However, such cavities usually
have low persistence and are therefore not ."; �/-stable. The total volume of all
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Fig. 9 Visualization of cavities in the protein 4B87. The molecular surface is shown for context.
(a) The set of cavities in the protein. Number of cavities = 72. (b) The set of .1:0; 0:01/-stable
cavities. Number of stable cavities = 70. (c) Two of the nearby pockets in the protein. (d) These
pockets merge together resulting in a single stable pocket

stable cavities increases marginally (< 1 %) with increasing ". The merging of two
nearby cavities into a single stable cavity does not effect the total volume. However,
volumes of individual cavities could change drastically. We have observed that the
volume of a stable void is approximately equal to the sum of the volumes of the
original voids.

Robustness of ."; �/-Stable Cavities Figure 13 plots the number of ."; �/-stable
cavities and �-persistent cavities for various values of ˛ for " D 1:0 in case of
4HHB and 4B87 and " D 0:3 in case of 2CI2. Note that the number of ."; �/-stable
cavities is mostly constant, while there is a significant variation in the number of �-
persistent cavities. This is because, when using only persistence, even though small
(noisy) voids are removed, a small change in the radius could change the number
of voids. On the other hand, since our method adds in the additional constraint of
stability, only the robust voids are retained.
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Fig. 10 Visualization of cavities in the protein 1DKF. A cartoon representation of the secondary
structure is shown for context. (a) All cavities in the protein. Number of cavities = 56. (b) The set
of .1:0; 0:01/-stable cavities. Number of stable cavities = 39. (c) Two of the nearby pockets in the
protein. (d) These pockets merge together resulting in a single stable pocket

4.3 Detecting Potential Channels and Pockets in Proteins

Due to experimental errors or changed protein conformation, a true pocket could be
labelled as a void, or a pore (also referred to as through-channels) may be labelled
as a disconnected pocket by a cavity detection algorithm. Existing software used
for finding cavities in proteins fail to identify such cavities. However, since our
technique is robust to errors (specified using �), it is possible to detect such potential
pockets and pores.

While the case of identifying potential pores (or potential channels) is taken
care of by conditions C2 and C3 (refer Sect. 3.2), in order to identify pockets that
appear as voids, we additionally delay insertion of triangles satisfying conditions C4
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Fig. 11 Graphs showing the variation of the number of cavities with varying ". Note that there is
an increase in the number of "-stable cavities as we consider a larger interval. But, the number of
."; �/ cavities is less than or equal to the original number of cavities. (a) Protein 4HHB. (b) Protein
2CI2. (c) Protein 4B87

Fig. 12 Graphs showing the variation of the total volume of cavities with varying ". The increase
in total volume is insignificant. (a) Protein 4HHB. (b) Protein 2CI2. (c) Protein 4B87

and C5. Thus stability of pockets is given preference over stability of voids, since
pockets usually correspond to functionally important regions of proteins as they are
accessible from the outside environment.

Figure 14 illustrates an example where we detect a potential channel in protein
2OAR. This is a trans-membrane protein with a known ion-channel going though
it. By default, two pockets and a small void are detected instead of the ion-channel.
Using ROBUSTCAVITIES with � D 1:4 (which corresponds to maximum change of
0:41 Å in atomic radius), the void merges together with the two pockets to correctly
identify this channel.

We now demonstrate the utility of our potential channel detection technique
using the example of translocase SecY protein [32]. We consider three of its
structures—1RHZ, 2YXQ and 2YXR. This unique transporter protein has its trans-
membrane channel plugged in its wild type conformation (1RHZ). This plug only
opens when specific molecules need to be transported. We tried detecting a channel
through the wild type 1RHZ structure. Even after modifying the filtration, all
cavities remained stably disconnected as shown in Fig. 15b. To probe the mechanics
and regulation of this transporter, researchers created a half and full plug deletion
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Fig. 13 Graphs showing the variation of the number of cavities for constant " and varying ˛. The
number of ."; �/-stable cavities does not vary much but there is significant variation in the number
of �-persistent cavities. (a) Protein 4HHB. (b) Protein 2CI2. (c) Protein 4B87

Fig. 14 Detection of potential channel in trans-membrane protein 2OAR. (a) At ˛ D 0, two
pockets and a small void is detected. (b) After modification, these cavities merge together revealing
the pore present in this trans-membrane protein

mutants of the same protein, labelled as 2YXQ and 2YXR respectively [25]. In
2YXQ, half of the plug region was deleted while in 2YXR the plug was deleted
completely. Even after plug deletions, the protein compensates for the deletion
and attains a tightly packed structure due to its dynamic nature; other methods
still fail to detect a channel in this plug deletion mutant. However, after using
ROBUSTCAVITIES with � D 1:5 (which corresponds to maximum change of 0:48 Å
in atomic radius) to modify filtration, we are able to identify the potential channels
in these mutants as is shown in Fig. 15d, f. In summary, we find that the trans-
membrane pore is not present in the wild type structure but becomes progressively
larger in the half plug and full plug deletions mutants. This is consistent with
experimental data which show that plug deletion leads to increased translocation
of proteins with defective signal sequences as well as small molecules and increase
the propensity for the channel to adopt an open state.

In our final example shown in Fig. 16, we study cavity structures in low and
high affinity states of the protein Hemoglobin. As shown in Fig. 16a, c, both low
and high affinity structures consist of four heme sites surrounding a central cavity.



346 R. Sridharamurthy et al.

Fig. 15 The case study of protein translocase SecY. We show results for three structures of
this protein viz. 1RHZ, 2YXQ and 2YXR. 1RHZ is the closed structure of this protein, while
2YXQ and 2YXR are mutants with half and full plug deletions respectively. In all the figures the
membrane is shown as blue and red planes, where blue plane corresponds to intra-cellular region
while red plane denotes extra-cellular region. (a) The two pockets in 1RHZ at ˛ D 0. (b) These
two pockets remain disconnected even after modifying filtration. (c) The two pockets of interest
in 2YXQ at ˛ D 0. Please note that these pockets are slightly larger than the pockets in closed
structure 1RHZ. (d) The pockets merge to reveal transmembrane pore in this mutant. (e) The two
relevant pockets of in 2YXR at ˛ D 0. It can be observed that these pockets are larger than the
pockets detected in both 1RHZ and 2YXQ. (f) In this mutant too, the two pockets merge to reveal
transmembrane connection

Also, all these cavities are disconnected at ˛ D 0 in both the structures. However,
after modifying filtration, while the topology of cavities in low affinity structure
remains unchanged (Fig. 16b), two heme sites in chains B and D of high affinity
structure merge with central cavity (Fig. 16d). It is known that Oxygen binding to
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Fig. 16 Cavity structures in two states of Hemoglobin. In all the images, central cavity is shown
in blue color, while red, cyan, green and magenta colors are used for heme sites in chains A, B,
C and D, respectively. The first row in the figure is for 1HGA which is low affinity T state, while
second row corresponds to high affinity R state (1BBB) of Hemoglobin. (a) The central cavity and
four heme cavities in low affinity state of Hemoglobin. (b) Even after applying modification, the
heme sites don’t merge with central cavity. (c) The central cavity and four heme cavities in high
affinity state of Hemoglobin. (d) The heme sites in chains B and D merge with the central cavity
after application of ROBUSTCAVITIES

heme in hemoglobin causes a conformational change in the rest of the structure
which leads to an increase in oxygen binding affinity. The binding results in the
conformation transition from tense form (low affinity T state) to relaxed form (high
affinity R state). This important conformational change is being correctly captured
by the change in topology of the cavities of the R state (Fig. 16d).

5 Conclusions

We have defined a novel notion of robust cavities that is insensitive to the
perturbation of the atomic radii. Robust cavities are computed via a controlled
modification of the filtration that represents the molecule and its cavities. Identifying
robust cavities is important so that the biologist only targets these cavities in
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tedious mutation-based experiments. The method addresses the inaccuracies in the
measurements of the radii by selectively varying the radii for a specific set of atoms.
However the positional uncertainties which arise due to the motion of the molecules
is not addressed.

We show several examples which demonstrates using visual evidence that
small perturbations in the radii results in a larger and robust cavities. The value
of " used in these experiments is lower than the typical experimental error in
crystallographic measurements. We also show the efficiency of our method which
allows for interactive exploration of robust cavities with varying �. Finally, we
use our technique to identify robust pockets and pores in different trans-membrane
proteins.

In future, we plan to further investigate the relationship between the perturbation
in the atom radii corresponding to the delayed simplex insertion and the structural
and functional properties of the protein. Future work also includes generalizing the
framework to use empirically determined intervals of radii for each atom type and
addressing the issue of biological implications of the method.
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