
Chapter 8
Interfaces of Binary Mixtures

Reinhard Sigel

Abstract Methods to derive an interface concentration profile in a two component
system are discussed on the basis of squared gradient theories. Starting point is
the description of soft matter systems, where the correlation length of fluctuations
becomes the relevant length scale. A phase diagramwhich contains bulk and interface
phase transitions is used as a road map to the involved phenomena. The Landau

theory and the Flory-Huggins theory as a typical representative of soft matter mean
field theories are outlined as motivations for the squared gradient approach. A brief
discussion of bulk properties forms the basis for the discussion of the interface profile
of a two component system and the wetting behavior of this system at a substrate.

8.1 Introduction: Soft Matter at Interfaces

This contribution discusses the application of concepts of interface science to a
representative soft matter system. While interface science is based on a statistical
mechanics language, it usually does not specify a palpable formula for the free energy
of a specific system. The concepts thus remain on an abstract and formal level. With
an atomistic length scale in mind with detailed and complicated interactions, it might
be difficult to write down explicitly a system free energy which is simple enough for
further calculations. For soft matter systems, on the other hand, effective statistical
mechanical models of suitable simplicity do exist, and thus it is possible to apply the
interface formulas. It is not the aim of the soft matter models to describe the atomic
length scale, since a description of polymer chains, liquid crystals, or colloids based
on first principles would be evenmore complicated than the description of ensembles
based on atoms or low molecular weight molecules. Instead, only the most relevant
properties are included in a soft matter model, while other molecular details are
summarized as effective parameters. An example are thermotropic nematic liquid
crystals, where anisotropic molecules in a liquid state might either self organize
with a preferential orientation in a nematic phase, or with random orientation in
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the isotropic phase. The typical soft matter approach assumes these molecules as
rod-like entities with only excluded volume interactions. While such a description
simplifies the detailed molecular interactions between the constituent molecules to
a maximum extend, it offers a good description of the nematic to isotropic phase
transition. The correlation length of fluctuations ξ becomes the relevant length scale,
and a description even of microscopic averages and fluctuations down to this length
scale is possible and successful. A second example concerns polymer chains. The
most relevant property is here the connectivity of the molecules in a polymer chain,
while themolecular interactions are otherwise strongly simplified to excludedvolume
interactions. The only local parameters of a polymer chainwhich enter themodels are
a persistence length lps and a molecular friction coefficient. The persistence length of
a polymer coil is small for flexible polymer chains, while it is large for stiff polymer
chains. The molecular friction coefficient is required to access dynamic phenomena
like the relaxation dynamics. On this simplified basis, advanced approaches like the
reptation model are able to describe phenomena which are as complicated as the
visco-elasticity of polymer melts in rheological experiments.

The application of interface science concepts to softmatter system offers traceable
models which describe interfaces on the soft matter length scale ξ . Beside elucidating
the interface concepts on specific examples, another important topic of soft matter
enters the description of interfaces. For soft matter, suitable degrees of freedom show
weak and “soft” restoring forces which are driven by the thermal energy kBT only.
Here, kB is the Boltzmann constant and T the absolute temperature. An example
are again thermotropic liquid crystals. The wide technical use of these systems in
liquid crystalline displays relies on the possibility to change the direction of preferred
alignment in a nematic phase easily by an electric field of moderate strength. The
orientation of this direction which is called liquid crystalline director is a soft degree
of freedom.

A simple second example is a rubber band, i.e. a weakly cross-linked polymer
melt. A rubber band is easily stretched by moderate mechanical forces. Restoring
forces to bring the rubber band back to its original length are caused by entropy
elasticity, not by molecular interactions. The stretching of the rubber band is also
a soft degree of freedom. It can be stated that the technical important properties
of soft matter are mostly due to the soft degrees of freedom in these materials. On
this background, a specific question of the SOMATAI initial training network is to
identify soft degrees of freedom of these materials at the interface. Those degrees of
freedom will react to moderate external forces with a strong response, which might
become the starting point of new technological applications.

Which degrees of freedom at interfaces could be soft? So, for which degrees of
freedom a deviation from the equilibrium position experiences only weak restoring
forces? One can think about a polymer brush, or the two dimensional analog systems
of a nematic phase or a polymer melt. And how could we investigate experimen-
tally the softness of these systems? For an answer, we refer to another consequence
of softness. Since the restoring forces are weak, the thermal energy kBT leads to a
sizable activation of the soft degrees of freedom. Thus, thermal fluctuations have a
significant magnitude in soft matter system. Such fluctuations can be detected by a
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scattering experiment, in case the fluctuations are connected to the scattering contrast
(see Chap. 11 by A. C. Völker et al. and Chap. 12 by J. Daillant). Static scattering
experiments yield the root mean squared thermal amplitude of a fluctuation, while
dynamic scattering experiments (e.g. dynamic light scattering) provide the relax-
ation dynamics of a fluctuation, which in many cases is an exponential decay with a
relaxation time τ . The scattering experiment sets up the scattering vector q, which
defines the wave length 2π/|q| and the geometry of the fluctuations. At an interface,
it is of importance to distinguish the wavelength 2π/q‖ of a fluctuations within the
interface plane, described by the parallel component q‖ of q, and the fluctuation
extend perpendicular to the interface. Interface-bound fluctuations which penetrate
the bulk only to a limited extend are usually not well characterized by the perpen-
dicular component q⊥ of q, even if the complex nature of this parameter in interface
sensitive scattering experiments is taken into account [1]. Still, q⊥ determines the
weighting with which fluctuations with different profiles contribute to a scattering
experiment.

Most interfacial degrees of freedom are not soft and are only weakly excited by
the thermal energy. An example are capillary waves at a liquid-fluid interface. Since
a wave enhances the interface area, capillary waves are suppressed by the interface
tension γ , especially at short wavelengths (large q‖). For large wavelengths, it is the
density difference between the two phases which suppresses capillary waves and
yields a flat, horizontally oriented interface. For extremely low interface tension,
also capillary waves become soft and reach a sizable thermal amplitude [2]. In liquid
crystalline displays, it is the non-soft interface anchoring of the preferred nematic
orientation at the interfaces of a display device which provides the restoring force
for the bulk orientation.

A suitable soft matter system to elucidate and study concepts of interfacial sci-
ence and interfacial fluctuations are mixtures of polymers A and B, described by
the Flory-Huggins theory. Depending on the interaction strength between the two
polymers which form the mixture, there is either a one-phase, mixed system, or a
phase separation into two phases. The theory is usually applied for the description
of bulk phases, or phase de-mixing kinetics in the bulk. Here, we study interface
effects of the theory. The mixture is brought in contact with an interface of a third
material, and the wetting transitions between partial and complete wetting will be
investigated. For partial wetting, a non-zero contact angle is formed, while complete
wetting is characterized by contact angle zero. Furthermore, there are internal inter-
faces between the two phases. Depending on the width of the interface region, one
distinguishes a weak segregation limit (WSL) with a smooth transition, a strong seg-
regation limit (SSL) with a more sharp transition and even a super strong segregation
limit (SSSL) with a step-like concentration change. These cases are also important in
the description of block-copolymer systems, where A and B are not separate polymer
coils, but linked blocks of a common polymer coil.

For a theoretical description of soft matter systems, the application of mean-field
theories offers a first approach. These theories are often based on intuitive arguments.
The implemented physical mechanisms which determine the behavior of a theory
can thus be followed directly. The essential simplification in a mean field theory is
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the introduction of the mean field, which covers the multi-particle interactions of
the constituents on a simplified basis. These interactions are pre-averaged, and form
the mean field. The theoretical description of a complicated many particle system is
reduced in this way to the description of the single particle behavior in the presence
of the mean field. The single particle behavior is dependent on the strength of the
mean field. On the other hand, the strength of the mean field is a suitable average
over the single particle behavior. The combination of these two dependencies leads
to an equation, where the mean field is calculated as an average which depends on
the mean field. This closure of the mean field theory is the essential step, and its
solution is called a self-consistent solution. We can take advantage of the common
background of mean field theories for different soft matter classes and will apply
concepts which were developed for liquid crystals to polymer mixtures described by
the Flory-Huggins theory.

The mean field concept fails when the description by averaged interactions is
not appropriate. This situation happens when there are large fluctuations within a
system, especially very close to a second order phase transition, which is also called
a critical point. Another system known to have large fluctuations is a semi-dilute
polymer solution. Due to the large fluctuations, the concept of an averaged local
mean field is no longer appropriate and no longer successful. Very close to a critical
point, there is interesting physics which can be described by different theoretical
concepts, e.g. scaling arguments. By inverting the failure argument of mean field
theories into a positive criterion it can be stated, that apart from conditions very
close to critical points and other possible situations with strong fluctuations, mean
field theories describe a soft matter system usually rather well. This finding might
be traced back to a coincidence: for technical applications, we are mainly interested
in systems with soft matter properties around room temperature. The temperature of
the critical point Tcp is usually also in this range, let’s say around Tcp ∼ 300 K.When
we perform measurements with a temperature deviation ΔT from the critical point,
the relative deviation ΔT/Tcp typically remains small. A deviation of ΔT ∼ 60K
which would be an impressing range for a nematic phase might appear large at first
sight, however, the correlation length of fluctuations is still enhanced compared to the
molecular length scale by the proximity of the critical point ΔT/Tcp ∼ 0.2. Thus, a
theoretical description on the length scale ξ based on suitable averages of molecular
interactions is sufficient and successful. On this basis, it is expected that soft matter
interfaces can also be described successfully down to a length scale ξ by mean field
theories, as long as one does not approach the critical point too closely. Equivalent to
mean field theories is the Landau theory, or the squared gradient theory introduced
by van der Waals.

The outline of this contribution is as follows: as a start, Sect. 8.2 provides an intro-
duction to wetting transitions, with a general phase diagram of bulk and interface
phase transitions. As a second step, the Landau theory and the Flory-Huggins
theory are briefly introduced in Sect. 8.3, as examples of squared gradient theo-
ries. The Flory-Huggins theory describes a similar phase diagram, where, how-
ever, the temperature is replaced by the interaction parameter χ . For the equivalent
Cahn Hilliard theory, only few literature hints will be provided. Since inter-
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faces are boundaries of a bulk phase, a brief outline of bulk properties in Sect. 8.4
forms the basis of a discussion of interfaces, which will be treated in Sect. 8.5.
A general approach for the calculation of interface properties within the squared
gradient theories is illustrated for the Landau theory.

8.2 Wetting Transitions

The phase diagram of a binary mixture might serve as a roadmap to interfacial
phenomena. Such a mixture is composed of two constituents A and B. Volume
additivity is assumed and the volume V contains the volume fractionφ ofB and 1 − φ

of A. Attractive interactions are usually stronger betweenmolecules of the same kind
[3], and thus the internal energy contributionU to the free energyF = U − TS favors
a de-mixing of the mixture. The entropic contribution S, on the other hand, is higher
in a mixed state. Since the entropy is weighted with the temperature T , it wins at high
T and there is generally a mixed state at high T . At low T , interactions might lead
to a de-mixing. We follow the discussion of Bonn and Ross for the description of
wetting phenomena [4], and combine it with physical arguments provided by Strobl
[5]. The shape of the phase diagram is depicted in Fig. 8.1.
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Fig. 8.1 Phase diagram of a binary mixture. The bulk behavior is illustrated by black lines, while
the interface behavior is drawn in grey. The left two insets illustrate the cases of complete wetting
for a temperature above the wetting temperature Tw and partial wetting for T < Tw. The right inset
displays the difference between a thick and a thin interface layer, which occur at the left and the
right side of the pre-wetting line, respectively
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8.2.1 Bulk Behavior of the Mixture

Wefirst focus on the black lines and labels in Fig. 8.1which indicate the bulk behavior
of themixture. In the shaded one phase region, theA-Bblend is in themixed state. The
border to the de-mixed state is indicated by a line which is called binodal Tbin(φ).
A system prepared at a point (φ, T) which falls into the two phase region is not
thermodynamically stable. Phase separation sets in and two phases are created. One
phase is rich in A and the other rich in B. Entropy effects are still present and no
pure phases are created in general. The resulting compositions of the two phases are
found on the two points of the binodal curve which are at the temperature set by the
experiment. So, for a system prepared at point (φ, T) in the two phase region, one
finds the compositions of the two resulting phases by moving at the same T to the
left and to the right until the binodal is hit. In order to find the volumes occupied by
the A-rich phase and the B-rich phase, one can use the known compositions of the
de-mixed phases and determine the volumes of the A-rich phase and the B-rich phase
in a way so the total content of A and B match the original preparation conditions
(φ, T).

The spinodal line Tspin(φ) in the two phase range separates two regions with dif-
ferent mechanisms of phase separation. In the region between the binodal and the
spinodal, the mixture is meta-stable. It might remain mixed for a while, although
the mixed state is not the thermodynamic equilibrium. Phase separation occurs here
via nucleation and growth. A thermal fluctuation might lead to a large enough vol-
ume element with surplus of one component, let’s say A. This fluctuation acts as
a nucleation point which can initiate a phase separation of the whole system. The
formation of such a nucleus involves the creation of an interface between the A-rich
fluctuation and the remaining system. A small nucleus has an unfavorable interface
to volume ratio and so the fluctuation rather decays than initiates the phase separa-
tion. Only if the fluctuations produce a large enough nucleus it survives and initiates
macroscopic phase separation. Note, that this mechanism of meta-stability involves
interface effects between the nucleus and the surrounding. The meta-stability indi-
cates, that the de-mixing is a first order phase transition.

In the region below the spinodal, a mixture is unstable and decays immediately.
Concentration fluctuations of all wavelengths no longer have restoring forces, but are
even enhanced by thermodynamics which favors de-mixing for these unstable situa-
tions. The interplay of diffusion which requires more time to set up a concentration
fluctuation of large wavelength and thermodynamic driving force which increases
with the wavelength of a fluctuation results in a de-mixing, where the wavelength of
the fastest growing concentration fluctuation sets the length scale where de-mixing
starts. In later stages of de-mixing, there is a coarse graining and building up of better
defined interfaces between A-rich and B-rich regions.

The binodal and the spinodal meet in the phase diagram in the bulk critical point.
In this point, the de-mixing becomes a second order phase transition. It is here that
strong concentration fluctuations occur, since restoring forces are weak. In the region
very close to the critical point, mean-field theories are no longer suitable and scaling
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arguments can predict the right behavior. When approaching the critical point, the
difference in the A-rich phase and the B-rich phase gets smaller and finally vanish
(recall that the de-mixing process leads to an A-rich phase and a B-rich phase which
are the two points of the binodal at the same temperature as the original instablemixed
state; at the critical point, the compositions of these phases become identical). For a
temperature above the critical phase transition temperature, a distinction between the
two phases is no longer possible. The situation is in analogy to the critical point of
a single phase system. When the pressure is varied, the first order boiling transition
becomes second order at the critical pressure, and for higher pressure it is no longer
possible to distinguish liquid and vapor. The bulk critical point is of special interest
for experimentalists. At this value of φ, a T jump starting from the one phase region
to the two phase region directly reaches a composition where spinodal de-mixing
can be observed, without the necessity to cross a region of nucleation and growth in
the T -jump.

8.2.2 Interface Behavior of the Mixture

When the binary mixture gets into contact with a substrate—either the container, a
test sample, a colloidal particle, or a gas phase—either A or B molecules are prefer-
entially absorbed at the interface. The interface behavior of the mixture is included
to Fig. 8.1 in grey color [6], where we assume that the interactions result in a prefer-
able adsorption of A to the interface. The two phase region is split by the horizontal
wetting line, which separates regions of partial and complete wetting. For complete
wetting, a film of macroscopic thickness of one phase covers the interface—for our
assumption of preferential adsorption of A molecules it is the A-rich phase. For
partial wetting, the interface might be covered by a microscopic thin film of the com-
ponent with preferential adsorption, however, no homogeneous film of macroscopic
thickness evolves. Instead, drops of the preferentially adsorbed phase are observed
at the interface. The ‘Cahn argument’ established by Cahn in 1977 indicates, that
close to the bulk critical point there is always complete wetting [6]. The transition
of partial to complete wetting is an interface phase transition. Usually, it is of first
order, which implies a sudden, non-steady change in the thickness of the absorbed
layer from microscopic to macroscopic thickness. A further consequence of the first
order nature of this interface phase transition is the existence of meta-stable states,
so a meta-stable microscopic thin film and partially wetted interface for T > Tw or
a meta-stable macroscopically thick film for T < Tw (as a bulk analogy consider the
first order boiling transition of water, where superheating of water and supercooling
of vapor in the absence of nucleation sites are possible meta-stable states). Also a
thermodynamic contribution (beside pinning) for the difference in advancing and
receding contact angles of a liquid drop on a solid substrate can be discussed on the
basis of meta-stability. The Cahn argument was discussed by Bonn and Ross, who
also reviewed scientific papers describing a continuous wetting transition which can
be achieved under certain, suitable conditions.
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The preferential adsorption of one component to the substrate persists into the one
phase region. The typical size of thermal fluctuations of the local composition defines
the correlation length ξ . This length is small and compares to molecular dimensions
for a location (φ, T) far away from the bulk critical point, however, it increases and
diverges when approaching the bulk critical point. The preferential adsorption of one
component at a substrate can be compared to a bulk fluctuation, and so the thickness
of a resulting interface layer is equal to ξ . More exactly, an exponential concentration
profile is found at the interfacewith a decay length equal to ξ . Close to the bulk critical
point where fluctuations become enhanced, the preferential interface adsorption of
one component can thermodynamically stabilize a fluctuation, and an interface layer
with thickness larger than ξ evolves. For our assumption of preferential A adsorption
to the substrate, such thick layers are found on the B-rich side of the phase diagram
in Fig. 8.1 in case the temperature is larger than the pre-wetting temperature Tpw

and only slightly above Tbin(φ). The interface phase transition within the bulk one-
phase region between a thin film with thickness ξ and a thick film is called pre-
wetting transition. It can be either a first or second order transition, or a supercritical
change. When changing φ, the first order pre-wetting transition occurs for different
temperatures. The trace of these temperatures of first order pre-wetting transitions is
captured by the pre-wetting line. The pre-wetting line ends at the critical pre-wetting
point, where the pre-wetting transition becomes a second order phase transition. For
compositions φ closer to the bulk critical point and higher temperatures, there is a
super-critical continuous change from a thin to a thick layer. In Fig. 8.1, the starting
temperature Tpw of the pre-wetting line is distinguished from Tw. Usually, these two
temperatures coincide, and in this case the wetting transition is of first order. It turns
out, however, that for the Landau theory which is discussed as main example in
Sect. 8.5.2 a different behavior with Tw < Tpw is encountered. For this case, there is
no jump in the contact angle like in a first order wetting transition, but a continuous
change from zero to finite values.

A broad overview over the interface behavior of polymers also from the experi-
mental side is provided by the book of Jones and Richards [7]. Examples of experi-
mental and theoretical results of wetting on colloidal particles are found in references
[8, 9].

8.2.3 The Contact Angle

For completeness, the connection between contact angle and interface tension is
briefly repeated. The interface tension γ between two phases can be expressed either
as specific interface energy with the dimension energy per interface area, or as force
per width. The second option, which indicates the required force to increase the size
of an interface of fixed width is used to motivate the Young Dupre equation

γbS = γaS + γab cos(Θa). (8.1)
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Fig. 8.2 Balance of the
force per length of an A-rich
phase and a B-rich phase at a
solid substrate S

Here, γab, γaS, and γbS are the interface tensions between the A-rich phase and
the B-rich phase, the A-rich phase and the substrate, and the B-rich phase and
the substrate, respectively. For the usage of indices, we generally use capital
letters A and B for the pure A and B phase only, while the A-rich and the
B-rich phases are indicated by the lower case letters a and b. The contact angle
inside the A-rich droplet is denoted as Θa. Figure 8.2 illustrates the acting forces:
the force per width to the left composed of γaS and the component parallel to the
interface γab cos(Θ) is counter balanced by the force per area γbS to the right. Only
for γbS < γaS + γab, (8.1) can be used for the calculation of the contact angle, while
for γbS > γaS + γab complete wetting of the A-rich phase occurs. This relation is the
basis for the spreading coefficient of the A-rich phase

Sa = γbS − γaS − γab. (8.2)

For a positive value of Sa, a drop of A-rich phase will tend to cover the interface to the
substrate. For any contact of the B-rich phase with the substrate, the interface energy
can be reduced by replacing the interface of the substrate to B-rich phase by two
interfaces, one of them substrate to A-rich phase and the other one A-rich phase to
B-rich phase. In analogy to (8.2), a spreading coefficient Sb for the B-rich phase can
be defined in order to decide, if there is complete or partial wetting of the substrate by
theB-rich phase.Here,we always assume that theA-rich phase preferentially adsorbs
to the substrate. Bonn and Ross argue that the spreading coefficient in equilibrium
cannot attain positive values, since any contact of the B-rich phase will have been
eliminated after complete wetting [4]. Such a concept does not fit to the definition
(8.2), but rather an alternate quantity defined as S′

a = min (Sa, 0). We stick to (8.2)
as definition, interpret the spreading coefficient as thermodynamic tendency to wet
an interface, and tolerate positive values of Sa. Meta-stable partial wetting states and
pinning can lead to situations with positive Sa without complete wetting.

8.3 Squared Gradient Theories

There are several approaches to justify the phenomenological description of Sect. 8.2
and the roadmap of Fig. 8.1. On a mean-field level and for short ranged interactions,
they typically lead to an increment of a thermodynamic potential of the form:

ΔΩ[φ] =
∫

V

{
Δω (φ(r), T) + 1

2κ [∇φ(r)]2
}
d3r. (8.3)
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Here, ΔΩ is an increment of the grand canonical potential and Δω is its density,
so the grand canonical potential increment of a volume element divided by the size
of this element. The free energy increment ΔF can be expressed by the free energy
density Δf and the squared gradient of φ similar to (8.3). In the description based on
increments ΔΩ or ΔF it is not required, to consider other contributions which are
independent of φ. Any constant background terms in addition to these increments
do not affect the subsequent calculations which are based on derivatives of ΔΩ or
ΔF. The result of (8.3) depends on the composition profile φ(r), as indicated by the
squared brackets on the left side. A system optimizesφ(r) for aminimal value ofΔΩ

or ΔF. A brief introduction to the mathematical tools to perform this optimization
is provided in the appendix, Sect. 8.8.

Interactions between neighboring volume elements are considered by the second
term in the integral (8.3), which involves a phenomenological elastic constant κ .
In bulk, a system in thermodynamic equilibrium is in a homogeneous state, i.e. a
state with a constant value of φ for all locations r and thus vanishing gradient ∇φ

everywhere. Deviations from a homogeneous φ result in a higher value of ΔΩ . The
increase in ΔΩ for inhomogeneous states is described by the square of ∇φ in (8.3).
The square can be considered as the second term in a Taylor expansion, where
the zero and first order terms vanish in order to match the condition of minimum
bulk value of ΔΩ for a homogeneous state. Since only short range interactions
are assumed in the theory, higher terms in the Taylor series can be neglected.
In different fields, (8.3) is addressed either as Landau-Ginzburg functional [5],
or squared gradient theory [4], which is traced back to van der Waals. This
section provides an overview over two famous approaches which lead to (8.3). A
third approach with very similar arguments is the Cahn Hilliard theory [10–12].
A historical overview and an application to simulations is described by Lamorgese
et al. [13].

8.3.1 Landau Theory

Landau Free Energy Density The canonical approach to statistical mechanics (see
also Chap.7 by W.J. Briels and J.K.G. Dhont) starts with the calculation of the
partition function Z , and the free energy F results as

F = −kBT ln(Z). (8.4)

Here, kB is the Boltzmann constant. When the system is divided to cells, and Ei

denotes the energy contained in cell i, Z reads [14]

Z =
∑

i

exp

{
−Ei(φ)

kBT

}
. (8.5)

http://dx.doi.org/10.1007/978-3-319-24502-7_7
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Instead of the sum over the cells, one can integrate over the distribution ρ of φ values
in the system

Z =
∫

dφ ρ(φ) exp

{
−Ei(φ)

kBT

}
. (8.6)

An improvement of (8.6) takes interactions between the cells into account. Due to the
assumed short range nature of the interactions, it is sufficient to consider interactions
between neighbouring cells. The interaction between two neighboring cells scales
with the difference of their φ values divided by the cell size. For neighboring cells
with identical φ, the interaction is zero, while a deviation in φ leads to a positive
contribution. In the limit of infinitesimal small cell size, this parameter reduces to
the derivative ∇φ of φ(r). The weighted sum over different profiles φ(r) is achieved
by a functional integration Dφ(r) over different profiles φ(r), which leads to

Z[φ] =
∫

Dφ(r) exp
{
− 1

kBT

∫
V
d3r
[
f (φ(r), T) + E′(φ,∇φ, T)

]}
. (8.7)

The function

f (φ, T) = E(φ) − kBT ln(ρ(φ)), (8.8)

which is called Landau free energy density, takes energetic contributions E(φ) and
entropic contributions kBT ln(ρ(φ)) into account. Inhomogeneities are considered
in (8.7) by the gradient term E′(φ,∇φ, T). The latter can be expressed as a Taylor
series in ∇φ. The zero order term of this series vanishes, as the interaction between
neighboring cells with the same φ is zero. The first order term as well as higher odd
order terms can be excluded by a symmetry argument. If they would have a non-zero
value, it could be reverted by mirroring the coordinates. Since the thermodynamic
properties do not depend on the choice of the coordinates, such contributions can be
excluded. For weak gradients, E′(φ,∇φ, T) is usually reduced to the second order
term 1

2κ(∇φ)2, which leads to the squared gradient term in (8.3). The elastic constant
κ might depend on φ and T .

It is now required to show that F in the conventional equation (8.4) and the
integration over f have the same information content. With this equivalence, it is
possible to consider f as a free energy density and to discuss a system based on
f instead of F. The exponential function in (8.7) is at maximum for the value of
φ which yields the minimum value of f . The maximum is very sharp, since the
integration in the exponential function is over V , which can be made very large in
the thermodynamic limit. Any deviation from the minimum of f is multiplied by a
large volume factor and weighted exponentially. For this reason, the sharp maximum
of the exponential function and thus the minimum of f dominate the integration in
(8.7) and thus determine the thermodynamic behavior of the system.

As a quantitative example, we consider the homogeneous mixed bulk state
described by the equilibrium value φeq. It is not required to consider the squared



232 R. Sigel

gradient term in the discussion of the bulk equilibrium, since this term increases f
for inhomogeneous states, which are thus away from the minimum of f . Due to this
simplification, the functional integration in (8.7) is only over constant paths and thus
reduces to a conventional integration. An expansion of f close to the minimum reads

f (φ) ≈ f (φeq) + 1

2

d2f

dφ2

(
φ − φeq

)2
. (8.9)

Since φeq is the equilibrium value, there is no linear term in the expansion (8.9).
Inserting (8.9) into (8.7) results in

Z =
∫

dφ exp

[
− V

kBT

(
f (φeq) + 1

2

d2f

dφ2

(
φ − φeq

)2)]
. (8.10)

The integration in (8.10) contains a Gauss function with maximum at φeq which can
be made arbitrarily narrow in the thermodynamic limit V → ∞. The integration
leads to a constant multiple cf (φeq) of f (φeq), and a combination of (8.4) and (8.10)
results in F = V f (φeq) + ln(c). The effect of c is just a shift of the reference point
of F which has no influence on thermodynamic properties, and thus, F and f have
the same information content.

Landau Assumption Within the Landau approach, the transition between an
ordered, interaction dominated state at low T (here, a state within the two phase
region) and a disordered, entropy dominated state at high T (here, a state in the one
phase region) is considered as an order to disorder transition. In many applications
of the Landau approach, the disordered state has a higher symmetry, since sym-
metry operations like rotations, translations, or reflections leave the homogeneous,
high temperature, disordered phase unchanged. The ordered state, on the other hand,
might be not invariant under one of these symmetry operations. An example are
liquid crystals, where the isotropic phase has complete rotational symmetry, while
the nematic phase has only cylindrical symmetry. The theoretical description of the
phase transition is usually based on an order parameter, which vanishes in the dis-
ordered state and is non-zero in the ordered state. In case of different symmetries of
the two phases, it is possible to construct order parameters based on the symmetry
operations. With the Landau assumption, f (φ) is expressed as a power series in the
order parameter, and predictions for the phase transition and correlation length can
be derived by simple analysis of the behavior of f (φ). We will discuss an example
in Sect. 8.5.2.

8.3.2 Flory-Huggins Theory

The theoretical description of polymer mixtures (also called polymer blends) known
today asFlory-Huggins theorywas developed independently byHuggins and Flory
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VB, FB
VA, FA VA+VB, FAB

Fig. 8.3 Illustration of the Flory-Huggins theory, in which polymers on a lattice are described.
The free energy of mixing is the free energy difference between a configuration where polymers
can mix (right side) and a situation where the two polymers are in separate volumes (left side)

[15, 16]. In its original form, it describes polymers on a lattice, as illustrated in
Fig. 8.3. Strobl presents this theory in the form of a mean field theory with only
limited connections to the lattice background and then transforms it to the form of a
Landau theory [5]. We briefly summarize his approach to provide a second path to
squared gradient theories.

Flory-Huggins as Mean Field Theory The polymer blend is composed of nA
polymer chains of A monomers with chain length NA and nB polymer chains of B
monomers with chain length NB. As a remainder of the original lattice theory, a cell
volume vc and the number of nearest neighbors zeff enter the theory. So, NA and NB

are not necessarily the number of chemical identical repeat units in a polymer chain.
Instead, they are defined as the overall volume of a polymer chain divided by vc.
Since there are no restrictions for the choice of vc, it is possible to set it equal to the
volume of a chemical A monomer vA. With this choice, NA becomes the number of
chemical repeat units in an A chain. With the volume of a chemical B monomer vB
and the number of chemical repeat units in a B chain N ′

B, the adapted number of B
monomers for the Flory-Huggins description results as NB = N ′

BvB/vA. Based on
the assumption of volume additivity in the A B blend, the volumes VA = nANAvc
and VB = nBNBvc occupied by A and B chains, respectively, and the total volume
V = VA + VB are defined. The volume fraction results as 1 − φ = VA/V , with φ =
VB/V . The parameters are not independent, but fulfill the relations

nA = V (1 − φ)

vcNA
and nB = V φ

vcNB
. (8.11)

A prediction of the mixing behavior of the blend is based on the free energy of
mixing.1

1Strobl uses in his book the term free enthalpy instead of free energy, which is employed here. In
order to describe experiments theoretically, the free enthalpy would be more appropriate, since
experiments are in most cases performed at constant pressure, not at constant volume. However, the



234 R. Sigel

ΔFmix = FAB − (FA + FB) . (8.12)

Here, FAB is the free energy when the A and B chains are in a common volume
VA + VB, while FA and FB are the free energies for the states when the A chains are
located in volume VA, separated from the B chains which occupy the volume VB.
The two situations are depicted in Fig. 8.3.

Afirst energetic contribution toΔFmix arises fromA-B contacts, which are formed
in the mixing process. The attraction between unlike monomers is usually weaker
than between the same monomers [3], so the total cohesive energy is weaker in the
mixed state. Since the cohesive binding energy enters the free energy with a negative
sign, the difference of (8.12) results in a positive energy contributions EAB for each
A-B contact. From the point of the lattice theory, there are (1 − φ)V/vc cells which
contain an A monomer. Each of them has zeff neighboring cells, and on average
φzeff neighboring cells which contain a B monomer. Similarly, one can start from the
total number of cells with B monomers φV/vc and determine the average number
of neighbors (1 − φ)zeff of each B cell which contain an A monomer. When both
contributions are added, the number of A-B contacts is counted twice, so we have
to divide by a factor 2. As a result, the total energy contribution from A-B contacts
becomes

ΔU = V

vc
φ(1 − φ)zeffEAB = V

vc
φ(1 − φ)χkBT . (8.13)

The second form of (8.13) introduces the Flory-Huggins interaction parameter χ ,
which expresses the total interaction energy of a cell zeffEAB in units of the thermal
energy kBT . The calculation of the average number of A-B contacts in the derivation
of (8.13) is a typical mean field argument. The presence of A and B monomers
is considered in an averaged way. In case of strong fluctuations, the A monomers
occupy correlated regions in space, as also the B monomers do. For such a case,
(8.13) over estimates the number of A-B contacts, and the mean field description
fails.

A second contribution to ΔFmix stems from the increase of translational entropy
of the chains due to the larger total volume VA + VB in the mixed state, instead of
only VA for the A chains and VB for the B chains before mixing. It is calculated in
the same way as the translational entropy of an ideal gas and reads

TΔS = kBT

(
nA ln

V

VA
+ nB ln

V

VB

)
. (8.14)

(Footnote 1 continued)
Flory-Huggins theory contains the volume V as explicit parameter, not the pressure P. Therefore,
it is formally a free energy, not a free enthalpy. Since the volume change of polymer blends upon
mixing or heating is usually negligible, there is basically no difference between the free energy and
the free enthalpy.
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With VA/V = 1 − φ, VB/V = φ, and (8.11), it is possible to eliminate nA, nB, VA,
and VB for φ, NA and NB. The total free energy of mixing ΔFmix = ΔU − TΔS
results as combination of (8.13) and (8.14)

ΔFmix = kBT
V

vc

[
φ

NB
ln(φ) + 1 − φ

NA
ln(1 − φ) + χφ(1 − φ)

]
. (8.15)

In addition to translational entropy, polymer chains have also configurational entropy.
In the Flory-Huggins theory it is assumed, that the configurations for the polymer
chains are not affected by the surrounding chains and remain the same for the un-
mixed and the mixed state. As a consequence, the configurational entropy cancels
in the difference of (8.12). In experiments on real polymer systems, in contrast,
the mixing might have an effect of the configurational entropy of polymers. It is
considered as an entropic contribution to χ . In (8.13), χ was introduced as a purely
energetic contribution χ = zeffEAB/(kBT). A completely energetically determined
χ thus has a T−1 temperature dependence, while a deviation from this temperature
dependence hints to contributions due to configurational entropy. More details can
be found in [5].

The translational entropy contribution of A and B chains in (8.15) is divided
by the degrees of polymerization NA and NB, respectively. Each chain has only 3
translational degrees of freedom, no matter how many monomers it contains; most
entropy is assigned to conformational entropy of the chains, which, however, does
not enter the free energy increment (8.15). As a consequence, the tendency of trans-
lational entropy to induce mixing is reduced, and energetic interactions dominate
in cases of long chains, leading to a de-mixed blend. Only for polymers with very
similar monomers or specific interactions between A and B like H bridges, mixing
might be favored. A phase diagram similar to Fig. 8.1 can be drawn for polymer
mixtures, with χNA on the y axis instead of T . For χ ∼ T−1, the phase diagram is
inverted, with a mixed state at low values of χNA and a two phase region at high
values. For symmetric polymer mixtures (NA = NB), the critical point is at φ = 0.5
and χNA = 2.

Transformation to a Squared Gradient Theory The resulting mean field formula
(8.15) allows predictions of the behavior of the homogeneous bulk phase and the
transition from a mixed to a de-mixed state. There is, however, no information con-
tained about the spatial behavior. So, it is not possible to calculate from (8.15) the
amplitude of bulk fluctuations with finite wavelength, or the wetting behavior at an
interface. In both cases there are concentration gradients involved. For such kind
of calculations of local properties, it is required to move from the total free energy
(8.15) to a free energy density

Δfmix = ΔFmix

V
= kBT

vc

[
φ

NB
ln(φ) + 1 − φ

NA
ln(1 − φ) + χφ(1 − φ)

]
. (8.16)



236 R. Sigel

Fig. 8.4 Illustration of
interactions between
different volume elements,
where each element is
described by the
Flory-Huggins free
energy density
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This density is not yet sufficient for a description, since also interactions of neigh-
boring volume elements need to be considered. The situation is sketched in Fig. 8.4
with an argument very similar as for the justification of (8.7). The values of the free
energy in cubic volume elements of side length d is calculated on the basis of (8.16),
and interactions between neighboring volume elements i and j are considered by an
additional term dκ/2(φi − φj)

2. This term vanishes if elements i and j have identical
compositions (φi = φj), while for deviations and thus inhomogeneous concentra-
tion profiles it provides a positive free energy penalty. The lattice model free energy
calculation reads

ΔF =
∑

i

⎧⎨
⎩Δfmix (φi, T) d3 +

∑
neighbors j

d

2
κ(φi − φj)

2

⎫⎬
⎭ . (8.17)

In the limit d → 0, the interaction term becomes a squared gradient, and the free
energy can be written as

ΔF =
∫

V

{
Δfmix (φ(r), T) + 1

2κ [∇φ(r)]2
}
d3r. (8.18)

Equation (8.18) shows the structure of the squared gradient equation (8.3), with the
explicit equation2 (8.16) for Δfmix (φ, T).

8.4 Bulk Behavior

A brief discussion of bulk properties provides the foundation for the description of
interfaces. An excellent extended presentation of bulk properties, e.g. phase separa-
tion mechanisms is found in the book of Strobl [5].

2The formal difference between the total free energy density in (8.3) and the free energy increment
to a constant background is of minor importance, as any calculation is based on derivatives of the
free energy, where any constant shift of the energy scale cancels out.
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Fig. 8.5 Free energy (a) and grand canonical potential (b) for the Flory-Huggins theory for
α = 0.5 and average composition φ̄ = 0.55. The filled circles mark the equilibrium compositions

Bulk Phase Behavior Bulk phases in thermodynamic equilibrium are homogeneous.
So, the gradient term in (8.4) vanishes, and the minimum of the free energy reduces
to minF = ∫V min[f (φ(r), T)]d3r = min[f (φ(r), T)]V . Thus, a discussion of the
free energy density allows for the prediction of the bulk behavior. For polymer blends,
we insert the length ratio of the two polymers α = NA/NB and rewrite (8.16) as

Δfmix = kBT

NAvc
[αφ ln(φ) + (1 − φ) ln(1 − φ) + χNAφ(1 − φ)] . (8.19)

While α is set by the choice of the sample polymers, the right hand side of (8.19)
is a function of φ which depends on the parameter χNA which changes with T .
Figure 8.5a shows the behavior of Δfmix for the case α = 0.5 and different values of
χNA. A sample preparation with the average volume fraction φ̄ = 0.55 is illustrated
in the figure. This value of φ̄ does not match the minimum of Δfmix, and it appears
that the system can lower its free energy by a change of φ. However, since the average
volume fraction is fixed to the value φ̄ by sample preparation, a lowering of φ in
one region of space to a value φ1 needs to be compensated by an enhancement of
φ to φ2 in another region of space. In order to find out if such a separation of two
phases in two volumes V1 and V2 is thermodynamically stable or not, its averaged
free energy needs to be calculated and compared with the free energy density of
the mixed system. With V1 + V2 = V and the fixed average φ̄V = φ1V1 + φ2V2,
the averaged free energy density ¯Δfmix = {Δfmix(φ1)V1 + Δfmix(φ2)V2}/V can be
written as

¯Δfmix
(
φ̄
) = Δfmix(φ1) + φ̄ − φ1

φ2 − φ1

[
Δfmix(φ2) − Δfmix(φ1)

]
. (8.20)

This equation describes a straight line which connects the two points (φ1,Δfmix(φ1))

and (φ2,Δfmix(φ2)) which are lying on the graph of Δfmix (φ). For small values of
χNA, Δfmix(φ) in Fig. 8.5a is a convex function and it is not possible to find any
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pair (φ1, φ2) of compositions embracing φ̄ which lead to a connecting line with
¯Δfmix
(
φ̄
)

< Δfmix
(
φ̄
)
. The system is thermodynamically stable as a mixed phase.

For higher values of χNA, on the other hand, Δfmix(φ) becomes a concave function
in the middle of the φ range. The total free energy of the blend is diminished by the
transition from a mixed state to a two phase state.

The reduction of Δfmix by phase separation is illustrated in Fig. 8.5a for the case
χNA = 2.2. Sample preparation for the selected composition φ̄ = 0.55 is marked
by the symbol ×. A separation of two phases of composition φ1 and φ2 has a lower
average free energy density, since the line connecting these two compositions at φ̄ is
below Δfmix. A further reduction of Δfmix is possible until the two phases reach the
compositions φa and φb, where the connecting line is the common tangential line to
Δfmix(φ). The global analysis of the stability of the mixed state for different values
of χ and the resulting values of φa for the A-rich phase and φb for the B-rich phase
can be used to determine the binodal in a phase diagram similar to Fig. 8.1.

A local criterion if Δfmix is convex or concave and thus if a mixed state is stable
or unstable is the second derivative ∂2Δfmix

∂φ2 . This quantity can be considered as a
potential which provides restoring forces to composition fluctuations. Only as long
as ∂2Δfmix

∂φ2 > 0 there is a tendency to restore the previous composition φ. The spinodal

in a phase diagram similar to Fig. 8.1 is determined by the root of ∂2Δfmix

∂φ2 for different
values of χ , so by the point where restoring forces vanish. The binodal and the
spinodal do not match. A composition might be meta-stable and withstand to small
fluctuations, corresponding to the local criterion. Larger fluctuations, however, test
if Δfmix has convex behavior for the whole φ range.

From a thermodynamics point, the identical slopes at φa and φb indicate that the
B polymers have the same chemical potentials μB in both phases. With (8.11), the

definition μB =
(

∂F
∂nB

)
T ,P,nB

can be rewritten as

μB = vcNB
∂Δfmix

∂φ
, (8.21)

which is the slope of the tangential line in Fig. 8.5a. Similarly, the chemical potential

μA of the A chains can be expressed as μA = vcNA

(
∂Δfmix

∂(1−φ)

)
, which can be rewritten

in the fromμA = −αμB. Also the A chains have the same chemical potential in both
phases.

By a subtraction of the common tangential line, φa and φb become the minima of
the resulting function. A graphwith such functions is shown in Fig. 8.5b. For theχNA

values which describemixed states, the tangential line at the preparation composition
φ̄ is used for the subtraction. The subtraction of the tangential line corresponds to the
Legendre transformation Ω = F − μBN of the free energy to the grand canonical
potential Ω . The corresponding Legendre transformation ofΔfmix to the increment
in the grand canonical potential density Δωmix reads

Δωmix = Δfmix − μBφ. (8.22)
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Δωmix can be considered as the starting point for the description of the interface
behavior and of fluctuations. The grand potential allows for a variation in the number
of particles, which is not a constant for the interface. Unfortunately, the calculation
of φa and φb which determine the common tangent to Δfmix require numerical cal-
culations for most cases. So we do not have an explicit formula for the subtraction
in (8.22) and thus Δωmix. An exception is the symmetric case (NA = NB, so α = 1),
whereμA = μB = 0 and thusΔωmix = Δfmix with the explicit formula (8.16). Some
calculations require ∂2Δωmix

∂φ2 , and we can use ∂2Δfmix

∂φ2 instead, since the subtraction of a
linear function in (8.21) does not alter the second derivative. Further, by construction
∂Δωmix

∂φ
= 0 for the equilibrium bulk composition φ. Thus, a second order Taylor

expansion of Δωmix around the equilibrium bulk composition φeq reads

Δωmix(φeq + Δφ) ≈ Δωmix(φeq) + 1

2

∂2Δfmix

∂φ2

∣∣∣∣
φ=φeq

Δφ2. (8.23)

8.4.1 Bulk Fluctuations

Fluctuation Amplitude Fluctuations are often discussed in connection with scat-
tering experiments. These experiments are not restricted to the investigation of the
sample structure, they are also sensitive to fluctuations. Experimental parameters
determine the scattering vector q, and the experiment detects a variation of the scat-
tering contrast with the shape of a sine wave of wavelength 2π/ |q|. Such a contrast
wave is produced by a sine concentration fluctuation in a polymer blend, and we
can use Δωmix to determine the grand potential penalty for such a fluctuation. Based
on the equipartition theorem which states that each degree of freedom is thermally
excited by 1

2kBT , the root mean squared (rms) amplitude of the fluctuation results by
equating this penalty with 1

2kBT . With (8.18) and (8.23), a small wave fluctuation

φ((x)) = φeq + Δφq cos (q · x) . (8.24)

with amplitude Δφq and wave vector q around φeq results in the grand canonical
potential increment

ΔΩ = V Δωmix(φeq) + 1

2
V

[
∂2Δfmix

∂φ2

∣∣∣∣
φ=φeq

+ κq2

] ∣∣Δφq

∣∣2. (8.25)

While the first term on the right side is the grand canonical potential increment with-
out fluctuation, the second term describes the penalty for the fluctuation. Equating
the average of this penalty to kBT/2 yields
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〈∣∣Δφq

∣∣2〉 = kBT

V

[
∂2Δfmix

∂φ2

∣∣∣
φ=φeq

+ κq2

] . (8.26)

The neglecting of higher orders in
∣∣Δφq

∣∣ in (8.26) is usually justified for small
thermal fluctuations, as long as the system is not very close to the conditions of the
critical point. In general, fluctuations at all wavelengths and thus all q values are
present simultaneously with amplitudes Δφq(q). Thus, a modified version of (8.24)
contains a sum3 over all q values. Inserting such a sum into (8.23) results in a double
sum, which looks complicated at first. However, the fluctuations for different q are
orthogonal, so the cross terms vanish in the volume integration, and an equation
similar to (8.26) with a single sum of squared amplitudes for all q values results.

The Bulk Correlation Length of Fluctuations In Sect. 8.1, the correlation length
of bulk fluctuations ξ was discussed as the relevant length scale in the description of
soft matter. For a derivation of ξ , we start from the scattering amplitude Ã [17] (see
Chap. 11 by A. C. Völker et al. and Chap. 12 by J. Daillant)

Ã = 1

V

∫
V

Δφ(r)eiq·rd3r. (8.27)

The scattering intensity is proportional to the time averaged squared modulus〈∣∣Ã∣∣2〉 = 〈ÃÃ∗
〉
, where Ã∗ is the complex conjugate of Ã. An example is a light

scattering experiment, where the scattering amplitude is the scattered electrical field
E, and the scattering intensity results as absolutemodulus |E|2.With (8.27), the inten-

sity
〈
ÃÃ∗
〉
results as a double integration over r and r′. In an integral substitution r′

is replaced by the difference Δr = r′ − r, and the scattering intensity becomes

〈∣∣Ã∣∣2〉 = 1

V

∫
V
d3r

1

V

∫
V
d3Δr 〈Δφ(r)Δφ(r + Δr)〉 eiq·Δr. (8.28)

The integration over d3r is a spatial averagingof the starting point r. It can be absorbed
to the average 〈.〉, which becomes an average over space and time. What is left is a
Fourier transform in Δr of the correlation function 〈Δφ(r)Δφ(r + Δr)〉. Due to
the isotropy of the system, the correlation function does not depend on the direction of
Δr, but only on itsmagnitudeΔr = |Δr|. The change to polar coordinates (θ, ϕ,Δr)
yields

〈∣∣Ã∣∣2〉 = 1

V

∫ π

0
sin(θ)dθ

∫ 2π

0
dϕ
∫ ∞

0
dΔr Δr2 〈Δφ(r)Δφ(r + Δr)〉 eiqΔr cos(θ).

(8.29)

3For a finite scattering volume the fluctuations form a Fourier series, not a Fourier integral
transformation.

http://dx.doi.org/10.1007/978-3-319-24502-7_11
http://dx.doi.org/10.1007/978-3-319-24502-7_12
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Here, q = |q| is used. The integrations over ϕ yields a factor 2π , and the integration
over θ can be performed after the substitution u = cos(θ). With the complex notation
sin(x) = [exp(ix) − exp(−ix)]/(2i) of the sin function, the result reads

〈∣∣Ã∣∣2〉 = 4π

V

∫ ∞

0
dΔr Δr2 〈Δφ(r)Δφ(r + Δr)〉 sin(qΔr)

qΔr
. (8.30)

For a connection betweenΔφq and Ã, we insert (8.24) in the definition of Ã (8.27) and
consider a scattering volume V = LxLyLz with q in x direction. With the Euler rela-
tion exp(iqx) = cos(qx) + i sin(qx) and sin2(qx) = 1

2 [1 − cos(2qx)], the integration
reads

Ã = 1

LyLxLz

∫ Lx

0

∫ Ly

0

∫ Lz

0

[
φeq + Δφq cos (qx)

] [
cos(qx) + i sin(qx)

] = 1

2
Δφq.

(8.31)

Thus
〈∣∣Δφq

∣∣2〉 = 4
〈∣∣Ã∣∣2〉. In order to proceed, we use the correlation function

〈Δφ(r)Δφ(r + Δr)〉 =
〈∣∣Δφr

∣∣2〉 ξ

Δr
exp

[
−Δr

ξ

]
, (8.32)

with the correlation length ξ . The local mean squared fluctuation amplitude
〈∣∣Δφr

∣∣2〉

at a fixed point in space in (8.32) and the mean squared amplitude
〈∣∣Δφq

∣∣2〉 of a not
localized, wave-like fluctuation for selected q in (8.24)–(8.26) are distinguished by
their different index. With (8.31) and (8.32), the integration in (8.30) yields

〈∣∣Δφq

∣∣2〉 = 4
〈∣∣Ã∣∣2〉 = 16πξ 3

〈∣∣Δφr

∣∣2〉

V (1 + q2ξ 2)
. (8.33)

A comparison of (8.33) with (8.25) reveals that these equations have the same q
dependence. From this equivalence in q space one can conclude, that (8.32) has
the correct form for the correlation function in real space for Δωmix described by
(8.23), since the mapping by the Fourier transform is unique. A comparison of the
coefficients connects the thermodynamic description in (8.25) with the scattering
description of (8.33). It yields

ξ =
√√√√ κ

∂2Δfmix

∂φ2

∣∣∣
φ=φeq

(8.34)

〈∣∣Δφr

∣∣2〉 = kBT

16πκ

∂2Δfmix

∂φ2

∣∣∣
φ=φeq

κ
= kBT

16πκξ
. (8.35)
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From (8.32), (8.34), and (8.35), the correlation volume Vc of a localized fluctuation
results as

Vc =
∫

V
d3r 〈Δφ(r)Δφ(r + Δr)〉 =

〈∣∣Δφr

∣∣2〉 ξ 3 = kBT

16π ∂2Δfmix

∂φ2

∣∣∣
φ=φeq

. (8.36)

From a conceptual point, the pole atΔr = 0 in the correlation function (8.32) appears
strange, and might not reflect a physical reality. On the other hand, Vc remains well
defined, so fluctuations remain limited within the squared gradient theory.

The Correlation Length for the Flory Huggins Theory In order to relate the
previous paragraph to the example of polymer blends, we follow the discussion of
Strobl for the connection of κ to the sizes of the A and B polymer chains [5]. In
scattering experiments, the overall size of an object is determined in the range of
small q. This limit is called the Guinier range, and the evaluation of the size of
an object is based on either a Zimm plot or a Guinier plot. We use here the Zimm
presentation of the small q limit, which reads4

〈∣∣Ã∣∣2〉−1
(q2) ≈

〈∣∣Ã∣∣2〉−1
(q2 = 0)

[
1 + 1

3
q2R2

g + O(q4)

}
. (8.37)

Here, Rg is the radius of gyration of an object. For an ideal polymer chain with N
segments, it reads R2

g = 2
3 l2psN [5]. The persistence length lps describes the decay

exp(−l/lps) of directional correlation when following a polymer coil. While for stiff
chains lps is large, it is small for flexible polymers. For very small φ, a polymer blend
contains only a few B chains in a background of mainly A chains. The scattering
contrast to the background is thus given by the B chains, and the size of B chains RgB

is detected. With similar arguments the detection of the size of the A chains RgA for
φ values close to 1 is justified. So, we need to evaluate (8.37) for the Flory Huggins
case, then consider the limits of vanishing B and A content and match the resulting

R2
g values with R2

gB and R2
gA, respectively. With (8.31) we can replace

〈∣∣Ã∣∣2〉−1
by〈∣∣Δφq

∣∣2〉−1
and apply (8.26), which can be evaluated for the Flory Huggins case with

(8.19):

〈∣∣Ã∣∣2〉−1 = 4
〈∣∣Δφq

∣∣2〉−1 = 4V

kBT

{
kBT

vc

[
1

φNB
+ 1

(1 − φ)NA
− 2χ

]
+ κq2

}
.

(8.38)

Beside the χ term, the q independent first part has a φ−1 contribution which diverges
and thus dominates in the limit of small φ, and a (1 − φ)−1 contribution which

4For data gained from a real experiment, the measured intensity needs to be corrected by subtracting
the background scattering of the solvent.
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diverges and dominates in the limit φ → 1. In order to realize the required R2
g values

in the two limits, κ is also composed of two terms with the same divergences:

κ = kBT

vc

[
1

φNB

R2
gB

3
+ 1

(1 − φ)NA

R2
gA

3
− 2χ

r20
3

]
. (8.39)

The interaction term −2χr20/3 is added in a similar way as in (8.38), since for high
values of NA and NB it exceeds the non-divergent term in the two limits φ → 0 and
φ → 1, and thus becomes the major correction term. Strobl and Jones provide an
additional justification of (8.39) based on the random phase approximation [5, 7].
Jones ascribes r0 to the range of interactions. For a symmetric blend with NA = NB

and RgA = RgB, the only length scale to define ξ is RgA = RgB. Thus, ξ needs to
become φ independent in this case, which is achieved for r0 = RgA = RgB. It appears
that a φ dependent average of RgA and RgB is a more suitable value for r0.

The random phase approximation is not restricted to the small q limit, but also
predicts the high q behavior, where the internal structure of a chain is resolved. We
do not follow this route, since the involved higher powers in q2 in the scattering
description correspond in the real space equations either to higher powers of the gra-
dient in φ or to higher order derivatives,5 which are no longer compatible with the
squared gradient approach discussed here. The restriction indicates a limitation of
calculations based on the squared gradient theory: the predicted width of an interface
profile scales with ξ and thus remains comparable to RgA and RgB. Such a situation
corresponds to the weak segregation limit, discussed in the introduction. Sharper
interface profiles would require higher order powers of the gradient or higher deriva-
tives. For other systems different from polymer blends, where no additional structure
is expected on a scale smaller than ξ , the limitation of the squared gradient theory
might be less severe.

8.4.2 Simple Dynamics

The description of the fluctuation amplitude by (8.26) has the same form as a ther-
mally excited harmonic oscillator, where the potential is formed by the second order
approximation (8.23) of Δωmix and an additional q2 dependent contribution due to
the elastic constant κ . The discussion in Sect. 8.4.1 thus is a q dependent version
of simple harmonic oscillator physics. The analogy can be extended to the effect of
external fields h, which is considered by adding a linear term hφ to Δωmix in (8.23).
As long as the second order approximation (8.23) holds and thus the potential of
the equivalent oscillator remains harmonic, the shift of the new minimum position
which describes the thermal equilibrium in the presence of h away from the origi-
nal minimum position is linear in h. This description of external fields is the basis

5See the transition from (8.23) to (8.25), where the squared gradient in the real space description
(8.23) transforms to the factor q2 in the q space picture (8.25).
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of the linear response theory (see e.g. [18]). It is often useful for the description
of experimental results by linear response coefficients, which might be set up on a
phenomenological basis.

In this brief section, the harmonic oscillator analogy is used for a simple descrip-
tion of the relaxation dynamics. The differential equation of an equivalent damped
harmonic oscillator reads

m
d2x

dt2
+ b

dx

dt
+ Kx = 0. (8.40)

Here, m is the mass of a particle, b > 0 its friction, and K > 0 the constant of the
spring which forms the harmonic potential U = 1

2Kx2. Thermal fluctuations in soft
matter systems are usually over-damped and inertia effects are negligible. Thus we
can cancel the m term. The remaining differential equation is of first order and the
solution is an exponential decay:

x(t) = x0 exp

[
−K

b
t

]
. (8.41)

When we apply the analogy to a soft matter system, x corresponds to the amplitude
Δφq of a bulk mode with fixed wave vector q or an eigen-mode of an interface
fluctuation. It is excited thermally6 and decays exponentially. Beside the equivalent
spring constant which is twice the prefactor of

∣∣Δφq

∣∣2 in (8.25), we need a friction
factor b, which might also have a q dependence in general. One technique to follow
the relaxation of a fluctuation is dynamic light scattering, where the exponential
decay of a fluctuation turns up in the time auto correlation function as

〈
Δφq(t)Δφq(t + Δt)

〉 = 〈∣∣Δφq

∣∣2〉 exp
{

− V

b

[
∂2Δfmix

∂φ2

∣∣∣∣
φ=φeq

+ κq2

]
Δt

}
.

(8.42)

A simple example are particles with no interactions under highly dilute conditions,

so the thermodynamic restoring force ∂2Δfmix

∂φ2

∣∣∣
φ=φeq

vanishes. With a q independent

friction b the resulting correlation function exp[−q2Δtκ/b] describes the charac-
teristic q2 dependence of diffusion with the diffusion constant D = κ/b. Generally,

the effective spring constant ∂2Δfmix

∂φ2

∣∣∣
φ=φeq

and the friction factor are complemen-

tary information of a system. While a static scattering experiment detects the mean
squared excitation of a fluctuation for selected q and thus yields the effective spring
constant as the static characteristic of a system, the relaxation time is extracted from
a dynamic experiment. The combination of both allows the calculation of the friction
coefficient. The procedures introduced in this section can be also applied to interface

6An excellent discussion of thermal excitation and time correlation function as described by a
Langevin equation is found in the book of Doi and Edwards [19].
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fluctuations, where fluctuation eigen-modes need to be considered instead of wave
like fluctuations φq.

8.4.3 Bulk Fluctuations Revisited

Role of the Translational Symmetry The discussion of fluctuations in the context
of a scattering experiment over emphasizes the experimental scattering technique in
the role of fluctuations. It appears fortuitous that the squared gradient in (8.18) is
replaced by the simpler factor q2, and the scattering amplitude (8.26) is calculated
by simple algebraic operations, without the need to solve a differential equation. A
deeper reason for this simple behavior can be traced back to the translational sym-
metry of the bulk system. This symmetry can be addressed by theNoether theorem
which is introduced in mechanics, but which is usually not mentioned in connection
with statistical mechanics or scattering theory. The Noether theorem establishes a
connection between a continuous symmetry and a corresponding preserved quantity.
The translational symmetry is connected to the preservation of the linear momentum.
Thus, fluctuations in a homogeneous, translational invariant bulk system are neces-
sarily eigen-modes of the momentum operator, so sine waves. The scattering vector
q = ki − ks results as difference of the wave vectors of the incident light ki and
the scattered light ks. Since both modes ki and ks have well defined momenta, the
difference of the two is connected to a single value of momentum transfer and thus
also a sine wave. Since the eigen-modes to different momentum values or directions
are orthogonal, the scattering experiment picks one eigen-mode of fluctuation with
the eigen-value q. This step is formally done by an overlap integration between the
wave set by the momentum transfer of the scattering experiment and the spectrum of
fluctuations. The overlap integration looks like a Fourier transform, and selection
of the mode follows directly.

For a planar interface, a similar reasoning can be set up for any direction within
a plane parallel to the interface. In a direction parallel to the interface, there is trans-
lational symmetry. So any fluctuation mode is an eigen-function of the momentum
operator for the direction parallel to the interface, described by the wave vector
component q‖. For the direction perpendicular to the interface, in contrast, the trans-
lational symmetry is broken. Thus there is no longer the simplifying concept of
momentum conservation, and the calculation of a fluctuation mode requires the solu-
tion of a differential equation. The spectrum of interface fluctuation modes should
still be orthogonal in general, since different modes have different eigen-values for
the excitation energies. An interface sensitive scattering experiment, e.g. evanescent
wave dynamic light scattering (EWDLS, see Chap. 13 by B. Loppinet and e.g. [1])
has a sensitivity profile different from the sine wave of a bulk scattering experiment.
The overlap integration in order to calculate the sensitivity of EWDLS is now more
complex than a Fourier transform, and in general there might be overlap to different
modes.

http://dx.doi.org/10.1007/978-3-319-24502-7_13
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8.5 Interface Structure

Interfaces between the A-rich phase and the B-rich phase of a de-mixed state are
often not a sharp transition. Instead, a concentration profile is formed. Similarly, a
concentration profile also builds up when the mixture is in contact with a substrate.
The squared gradient theory provides predictions for these profile. Differential equa-
tions and expressions for the interface tension for a φ independent elastic constant
κ are derived in Sect. 8.5.1. Analytical solutions exist for the Landau theory, and
they are discussed in Sect. 8.5.2. For the Flory Huggins case, the φ dependence of
κ leads to an additional term in the differential equation for the interface profile. It
appears that this term is silently neglected in the literature [7]. The effect of this term
requires additional investigations, which will not be performed here.

8.5.1 Interface Tensions and Differential Equations

Internal Interfaces. A polymer blend in the two phase region consists of an A-
rich phase of composition φa and a B-rich phase of composition φb. The discussion
of the interface profile between these two phases starts with Δωmix as depicted in
Fig. 8.5b. The A-rich and the B-rich phase have the common value Δωmix(φa) =
Δωmix(φb) = Δωbulk, so the minimum value of Fig. 8.5b. For an interface profile
φ(z) which describes a smooth transition from the A-rich to the B-rich phase, the φ

values in the interface interpolate between φa and φb, and thus lead to contributions to
the grand potential with Δωmix(φ) > Δωbulk. The ΔΩ penalty of volume elements
in the interface is thus Δωmix(φ) − Δωbulk. The interface energy is the sum over
these contributions. Within a squared gradient theory (8.3), the interface energy for
a given profile φ(z) is calculated as

γab[φ] =
∫ +∞

−∞
dz

[
Δωmix (φ(z)) − Δωbulk + κ

2

(
dφ

dz

)2]
. (8.43)

A system will minimize the interfacial energy (8.43) and build up φ(z) accordingly.
The interface tension results as γab = min(γab[φ]). Without the gradient term, so for
κ = 0, the profile minimizing (8.43) is a step profile, with a sharp transition from φa

in theA-rich phase toφb in theB-rich phase. For this case, (8.43) yields γab = 0, since
Δωmix(φa) = Δωmix(φb) = Δωbulk. The contribution of the gradient term for κ > 0
modifies this picture, as the step profile has an infinite gradient and thus a step profile
would have infinite interface tension. The resultingφ(z) is a compromise between the
penalties inΔωmix(φ(z)) and the cost for a high gradient. The discussion is restricted
to the case of a φ independent value of κ .
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The calculus of variations for a minimization of (8.43) is briefly summarized in
the appendix (Sect. 8.8). The Lagrange function in (8.43) reads

L

(
φ,

dφ

dz

)
= Δωmix (φ) − Δωbulk + κ

2

(
dφ

dz

)2
, (8.44)

and the Euler-Lagrange equation
∂L

∂φ
− d

dz

∂L

∂(dφ/dz)
= 0 becomes7

dΔωmix

dφ
= κ

d2φ

dz2
. (8.45)

An integration of (8.45) with respect to z is possible after multiplying it by dφ
dz . The

result reads

Δωmix(φ) − Δωbulk = κ

2

(
dφ

dz

)2
. (8.46)

As a cross-check of this step, it might be reverted by differentiating (8.46) with
respect to z to find (8.45). The integration constant is identified in (8.46) already
with Δωbulk. Formally, one can first write (8.46) with an integration constant, and
then determine its value at a position z which is far away from the interface in the
bulk, where dφ

dz = 0. Re-writing (8.46) leads to a first order differential equation for
the interface profile:

dφ

dz
= ±
√
2

κ
[Δωmix(φ) − Δωbulk]. (8.47)

Separation of variables in (8.47) and integration leads to an implicit formula for the
interface profile

z =
∫ φ(z)

φa

√
κ

2 [Δωmix(φ) − Δωbulk]
dφ, (8.48)

with φa as starting point within the A-rich phase. With (8.47) which describes the
minimum of (8.43), the interface tension is written as:

γab =
∫ +∞

−∞

[
κ

2

(
dφ

dz

)2
+ κ

2

(
dφ

dz

)2]
dz =

∫ φb

φa

κ
dφ

dz
dφ

=
∫ φb

φa

√
2κ [Δωmix(φ) − Δωbulk] dφ. (8.49)

7In this step, a φ dependence of the elastic constant κ would lead to an additional term, which does
not fit to the following manipulations in a simple way.
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(8.46) indicates, that the Δωmix penalty and the cost for building up a gradient at the
interface have the same magnitude, similar to the same magnitudes of kinetic and
potential energy for a harmonic oscillator, or the same size of electric and magnetic
energy in an electromagnetic wave. Thus, it is possible to express γab by integrating
(8.49) over the square root of the Δωmix-hump in Fig. 8.5b alone, with the gradient
terms eliminated.

Interface between the Mixture and a Substrate. For a discussion of the wetting
properties, the variation of the interface tension between themixture and the substrate
with composition is required. Starting point are the interface energies γAS between
the pureA phase (φ = 0) and the substrate, and γBS between the pureB phase (φ = 1)
and the substrate. For a composition φ in between 0 and 1, the resulting interface
energy to the substrate results by linear interpolation

γS(φ) = (1 − φ)γAS + φγBS = γAS + φ[γBS − γAS]. (8.50)

This approach is based on an addition of interactions of Amolecules and Bmolecules
which are at the interface to the substrate. So, γS has themeaning of a contact potential
at the interface. For a calculation of interface tensions, the penalties to build up
concentration gradients in interface profiles need to be considered in addition.

We use results of Sheng [20] for liquid crystals and re-write them for binary mix-
tures. The assumed preferential absorption of A to the interface requires8 γBS > γAS,
and γS in (8.50) increases with φ. Thus, the effect of γS alone would result in a com-
plete coverage of the interface by A molecules with φ = 0. Such a pure composition
at the interface, however, deviates from the bulk composition, as defined by prepa-
ration for the mixed phase and φa or φb in the de-mixed state. The system thus has
to form a concentration profile at the interface which minimizes the total interface
energy, which is composed by the interface potential γS(φ), the thermodynamic con-
tributionΔωmix(φ), and the penalty for a concentration gradient, as considered by the
squared gradient term. For an interface located at z = 0, the resulting formula reads

γ [φ] =
∫ +∞

0
dz

[
Δωmix (φ(z)) − Δωbulk + κ

2

(
dφ

dz

)2

+φ(z)[γBS − γAS]δ(z)
]

+ γAS. (8.51)

The boundary term with the interface potential γS(φ) is taken into account by the
delta-function9 δ(z). In the same way as the transformations from (8.43) to (8.45),
the differential equation for the minimum profile results as

8For a neutral substrate with γAS = γBS and thus no preferential adsorption, the substrate would
have no effect on the sample. This boring case does not need further discussion.
9The delta function is also briefly discussed in the appendix.
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dΔωmix

dφ
= κ

d2φ

dz2
− δ(z)

(
φ[γBS − γAS] + κ

dφ

dz

)
. (8.52)

For z > 0, there is no contribution from the interface potential and (8.52) is identi-
cal to (8.45). Thus the integration of (8.46) and the differential equation (8.47) are
derived as before. With (8.46) and (8.47) and the same integration by substitution as
in (8.49), the interface tension (8.51) results as

γ =
∫ φeq

φ0

√
2κ [Δωmix(φ) − Δωbulk] dφ + [γBS − γAS]φ0 + γAS. (8.53)

For the mixed state φeq = φ̄. In the de-mixed phase, wetting droplets at the substrate
are usually macroscopic, so their thickness is much larger than the extension of an
interfacial profile, which is comparable to the bulk fluctuation length ξ . So, we can
use φa or φb as bulk composition φeq for this case. The contact composition directly
at the substrate is denoted by φ0. With the assumed preferential adsorption of A to
the interface, the A concentration (1 − φ) is generally enhanced compared to the
bulk phase, so φ0 < φeq. Thus the integral in (8.53) is positive. The composition at
the substrate φ0 is determined as the minimum10 of (8.53):

0 = dγ

dφ0
= −√2κ [Δωmix(φ0) − Δωbulk] + [γBS − γAS]. (8.54)

The minimum condition can be transformed to

Δωmix(φ0) − Δωbulk = [γBS − γAS]2
2κ

. (8.55)

There might be several values for φ0 which fulfill (8.54) and (8.55), and it is required
to find the value which corresponds to the absolute minimum. A distinction between
minima and maxima is based on the second derivative of (8.53):

d2γ

dφ2
0

= − κ√
2κ [Δωmix(φ) − Δωbulk]

dΔωmix

dφ

∣∣∣∣
φ=φ0

. (8.56)

Thus, a positive second derivative (8.56) of (8.53) which indicates a minimum
requires a negative slope of Δωmix(φ) at φ = φ0. With a known value of φ0, the
interface profile results from the implicit formula (8.48).

10The negative sign in (8.54) occurs since φ0 is the lower limit in (8.53).
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The Wetting Transition Triggered by the Contact CompositionsThecontact angle
in (8.1) and the spreading coefficient Sa in (8.2) are defined by interface tensions,
which are integrations with the same integrand. Inserting (8.49) and (8.53) in (8.1)
and (8.2) results in

cos(Θa) = 1 −
∫ φ0b

φ0a

∣∣√2κ [Δωmix(φ) − Δωbulk]
∣∣ dφ − [γBS − γAS](φ0b − φ0a)∫ φb

φa

∣∣√2κ [Δωmix(φ) − Δωbulk]
∣∣ dφ

(8.57)

Sa = [γBS − γAS](φ0b − φ0a) −
∫ φ0b

φ0a

∣∣∣√2κ [Δωmix(φ) − Δωbulk]
∣∣∣ dφ.

(8.58)

Here, φ0a and φ0b are the contact compositions for the A-rich phase and the B-rich
phase, respectively. In order to emphasize the requirement that square roots with
a positive sign are used, the integrants in (8.57) and (8.58) are written as absolute
magnitudes. A direct consequence of (8.57) and (8.58) is that for identical contact
compositionsφ0a = φ0b forA-rich andB-rich phases one getsΘa = 0 and Sa = 0 and
thus complete wetting, irrespectively of the detailed shape of Δωmix(φ). As we will
see below the condition φ0a = φ0b is fulfilled for T ≥ Tpw. On the other hand φ0a <

φ0b, which occurs for T < Tpw, implies in general cos(Θa) �= 1 in (8.57) and Sa �= 0
in (8.58), as long as the integrand does not vanish. The case φ0a > φ0b is excluded
for the assumed preferential adsorption of A to the substrate. For | cos(Θa)| < 1
corresponding to a negative value of Sa, a transition of the contact compositions φ0a

and φ0b from an equal value φ0a = φ0b to different values φ0a < φ0b directly induces
the first order wetting transition from complete wetting Sa = 0 to partial wetting
Sa < 0. For this case we have Tw = Tpw (see Fig. 8.1).

It is also possible that (8.57) yields a value | cos(Θa)| > 1. This case corresponds
to Sa > 0, so complete wetting with no contact angle defined. Since, however, we
are discussing the case φ0a �= φ0b, the temperature is below Tpw. So there is no
pre-wetting for the same temperature and a composition in the one-phase region of
the phase diagram. It turns out that the Landau grand canonical potential density
ΔωL discussed in the next Sect. 8.5.2 produces such a behavior. In (8.57) and (8.58),
the integration term has a stronger temperature dependency than the differences’
product [γBS − γAS](φ0b − φ0a). Roughly speaking, the integration is proportinal
to the width of the integration interval (φ0b − φ0a), which essentially covers the
temperature dependence of the differences’ product, multiplied with the average
height of the integrand, which contains an additional temperature dependency. At
a temperature lower than Tpw, the integration term and the differences’ product in
(8.57) and (8.58) become equal, so Sa = 0 and | cos(Θa)| = 1. This temperature is
thus the wetting temperature smaller than Tpw (see Fig. 8.1). Since cos(Θa) and Sa
depend steadily on φ0a, φ0b, and T in the absence of a bulk phase transition, the
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wetting transition is now continuous,11 and so the contact angle changes steadily
from 0 to a finite value.

8.5.2 Interfaces Based on the Landau Assumption

Analytical solutions for the integrations of 8.5.1 are available for the Landau theory
(Sect. 8.3.1). It is convenient to switch to a description, where the composition is
expressed by the deviation φ′ from the critical composition φc:

φ′ = φ − φc. (8.59)

Here, φ′ plays the role of the order parameter in the Landau theory, although it
does not vanish in the disordered phase (the mixed phase) like a classical order
parameter. Alternately, equations can be expanded in the difference to the equilibrium
composition φeq:

φ′′ = φ − φeq = φ′ − φ′
eq. (8.60)

In the mixed state, φeq = φ̄ is set by the sample preparation, while in the de-mixed
state φeq = φa in the A-rich phase and φeq = φb in the B-rich phase. It turns out that a
discussion basedonφ′ is suitable for the two-phase region,while the one-phase region
is described easierwithφ′′. The equations of Sect. 8.5.1 remain basically valid12 when
φ is replaced by φ′, only the boundary terms in (8.51) and (8.53), φ[γBS − γAS]
have to be replaced by (φc + φ′)[γBS − γAS] according to the transform (8.59). The
same holds true when φ is replaced in these equations by φ′′, with the boundary
term (φc + φ′

eq + φ′′)[γBS − γAS] in (8.51) and (8.53). Since these modifications are
constant additional terms, they vanish after derivations or differences in (8.52) and
(8.54)–(8.58).

LandauFree Energy Density.Within theLandau assumption, a simple free energy
density is a power series in φ for the phase separated state:

11The mechanism of such a continuous transition is different from the discussion of Bonn and
Ross [4]. They investigate conditions for the contact composition which could lead to a continuous
transition based on a graphical method eqivalent to (8.55) with an additional, φ dependent term
on the right side. Based on a discussion of this slope of the right side, they identify conditions for
the contact composition where the wetting transition becomes continuous. They find continuous
transitions at a higher temperature than Tpw. In the discussion here, in contrast, the reason for
continuous wetting is a calculated value | cos(Θa)| > 1 at Tpw, which leads to continuous wetting
at lower temperature than Tpw. The discussion of Bonn and Ross does not include a test of the
magnitude of | cos(Θa)| resulting from their derived boundary values.
12Due to the linearity of (8.59),φ′ can simply replaceφ in all derivatives, e.g. dφdz = dφ′

dz or dω
dφ = dω

dφ′ .
In order to apply the equations in Sect. 8.5.1 with φ′ instead of φ, one could write (8.43) with a new
function ω̃(φ′) = ω(φc + φ′), and repeat all derivations of Sect. 8.5.1 with ω̃(φ′) instead of ω(φ).
In order to keep the notation traceable, we use the same symbol and write sloppily ω(φ′) for ω̃(φ′).
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ΔfL(φ) = C

4
(φ − φa)

2(φ − φb)
2. (8.61)

By construction,ΔfL has a minimum at φa and a second minimum at φb, correspond-
ing to the bulk compositions of the two phases. In between, ΔfL has a maximum
at

φc = φa + φb

2
. (8.62)

With the transformation (8.59), (8.61) becomes

ΔfL(φ
′) = C

4
φ4
c − C

2
φ2
cφ

′2 + C

4
φ′4. (8.63)

The important second order term in (8.63) determines the second derivative at the
critical composition φ′ = 0. For a temperature below the critical temperature Tc, in
the de-mixed state, there is a maximum of ΔfL at φ′ = 0. The concave behavior of
ΔfL(φ′) at φ′ = 0 indicates a negative second derivative. In order to describe the
phase transition to a mixed state which requires a convex shape of ΔfL(φ′) with
positive second derivative at φ′ = 0, a replacement Cφ2

c = −A(T − Tc) is inserted
in (8.63):

ΔfL(φ
′) = A2

4C
(T − Tc)

2 + A

2
(T − Tc)φ

′2 + C

4
φ′4, (8.64)

The linear temperature dependence of the second order term is usually motivated as
the lowest order of a Taylor series which vanishes at T = Tc. For a temperature
close to Tc, the contribution of higher orders is small, and thus the linear description
provides reasonable predictions. As discussed in Sect. 8.1, for a Tc at room temper-
ature or higher, which is typical for soft matter systems, the relative temperature
deviation (T − Tc)/Tc from the critical point remains small even for several tens of
degrees temperature difference. So, the description by a linear temperature depen-
dence usually provides a suitable description of experimental results. The coefficient
C > 0 determines the 4th order term, which guarantees the existence of a minimum,
even for 1

2A(T − Tc) < 0. The typical argument to neglect any temperature depen-
dence of C is the weakness of its relative temperature dependence ΔC(T)/C, since
no change of sign in C is to be expected.

By construction, the two minima of ΔfL in (8.64) have the same depth and thus a
horizontal common tangential line. As a consequence, the chemical potential μB of
(8.21) is zero in the de-mixed state T ≤ Tbin(φ). The transformation (8.22) indicates
that the Landau free energy density ΔfL(φ′) is identical to the Landau density of
the grand canonical potential ΔωL for the de-mixed phase.

ΔωL(φ
′) = ΔfL(φ

′) for T ≤ Tbin(φ
′). (8.65)
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Bulk Phase Behavior. As a first application of (8.65) with (8.64), the bulk phase
behavior whichwas discussed in Sect. 8.2 and illustrated in Fig. 8.1 is calculated. The
binodal line Tbin(φ

′), which is given by the equilibrium volume fractions φa and φb

of the A-rich and the B-rich phases for T < Tc, results from the minimum condition
dΔωL
dφ = 0:

φ′
a,b = ∓

√
A(Tc − Tbin)

C
, (8.66)

The sign is negative for φ′
a and positive for φ′

b. An equivalent form of (8.66) is:

Tbin(φ
′) = Tc − C

A
φ′2
a,b. (8.67)

For later use, we re-write (8.65) with (8.64) inserted by using (8.67):

ΔωL(φ
′) = C

4
(φ′2 − φ′2

a,b)
2 for T ≤ Tbin(φ

′). (8.68)

The spinodal line Tspin(φ
′) indicates the locations within the two phase region for

T < Tc where the restoring forces for fluctuations vanish, as described by the condi-
tion d2ΔωL

dφ2 = 0. This condition leads to φ′ = ±√A(Tc − Tspin)/(3C), or alternately

Tspin(φ
′) = Tc − 3

C

A
φ′2. (8.69)

Bulk Fluctuations. Based on (8.64), the amplitude of the fluctuations and the cor-
relation length result from (8.26) and (8.34), respectively. With (8.69), the resulting
expressions can be written in a form which is often used in the presentation of exper-
imental results in the mixed phase:

〈|Δφ|2〉−1 = V A

kBT

[
T − Tspin + κ

A
q2
]

(8.70)

ξ−2 = A

κ

[
T − Tspin

]
. (8.71)

The inverse mean squared amplitude which is proportional to the inverse intensity in
a scattering experiment as well as the inverse squared correlation length follow both
a linear temperature dependence. The extensions of these lines become zero at the
location of the spinodal temperature, which thus can be determined experimentally
by such a plot. The roots of the inverse quantities correspond to poles of

〈|Δφ|2〉
and ξ . However, in most cases these poles on the spinodal cannot be approached
closely, since the system undergoes the phase transition to the de-mixed state when
the binodal temperature (8.67) is reached. Thus, the increase in intensity and ξ remain
limited. An exception occurs for φ′ = 0, so the critical composition. Here, directly
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at the critical point, the divergence can be observed, which is addressed as critical
behavior. This increase in fluctuation amplitude and fluctuation size is the basis of
the discussion of the introduction. The mean field critical exponents for

〈|Δφ|2〉 and
ξ according to (8.70) and (8.71) are 1 and 1

2 , respectively.
In the de-mixed phase, the compositions of the A-rich phase and the B-rich phase

are set by the binodal line (8.67). Inserting T = Tbin in (8.70) and (8.71) yields

〈|Δφ|2〉 = kBT

V
[
2Cφ′2

b,a + κq2
] (8.72)

ξ =
√

κ

2C

1

|φ′
b,a|

. (8.73)

Within the Landau assumption, the fluctuation amplitudes and the correlation
lengths in the two phases are the same.

Density of the Grand Canonical Potential. For the mixed phase for T > Tbin(φ),
ΔωL should have a minimum for the average composition φ̄′ set by the sample
preparation. With (8.22), this condition is achieved by subtracting the tangential line
at φ̄′ from ΔfL

ΔωL(φ
′′) − Δωbulk = ΔfL(φ

′
eq + φ′′) −

[
ΔfL(φ

′
eq) + dΔfL

dφ′

∣∣∣∣
φ′=φ′

eq

φ′′
]

. (8.74)

Here,ΔωL iswritten in terms of the deviationφ′′ (8.60) from the average composition
φeq. Starting from (8.64) and with (8.69) inserted, the resulting expansion

ΔωL(φ
′′) − Δωbulk = A

2
(T − Tspin)φ

′′2 + Cφ′
eqφ

′′3 + C

4
φ′′4 (8.75)

is valid in the mixed state T ≥ Tbin(φ) with φeq = φ̄, as well as in the A-rich and
B-rich phases for T ≤ Tbin(φ) with φeq = φa and φeq = φb, respectively. For later
use, we re-write (8.75) by adding and subtracting a term Cφ′2

eqφ
′′2. The added term

is completing the square with the 3rd and 4th order term, while the subtracted term
is absorbed into the temperature dependence using (8.67) and (8.69), so Tspin is
eliminated for Tbin. The result reads

ΔωL(φ
′′) − Δωbulk = A

2
(T − Tbin)φ

′′2 + Cφ′′2
(

φ′
eq + 1

2
φ′′
)2

. (8.76)

Contact Values and Pre-wetting Temperature. In order to use (8.53) for the cal-
culation of the interface tension between the mixture and a substrate, we first need
to discuss the contact composition φ0. The condition of (8.55) is illustrated in Fig.
8.6. The value of φ0 results from the intersection point of the horizontal line with
ΔωL − Δωbulk. For aminimumof the resulting interface tension, (8.56) indicates that
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Fig. 8.6 Landau free
energy density ΔωL versus
composition φ for several
temperatures. The horizontal
line indicates the effect of
the interface potential. For
intersection points φ0 with
negative slope of ΔωL the
resulting interface tension
has a minimum value
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the slope of ΔωL − Δωbulk at the intersection has to be negative. For temperatures
above and slightly below Tc, there is only one intersection point φ′

0,1 with negative
slope. The negative value of φ′

0,1 corresponds to an A-rich composition, consistent
with our assumption of preferred A adsorption to the substrate. The common value
of the contact composition for an A-rich phase and a B-rich phase slightly below
Tc leads to complete wetting, as discussed in connection with (8.57) and (8.58).
The general occurrence of complete wetting slightly below Tc is the content of the
Cahn argument [6]. Cahn argued further, that γab vanishes with a higher power than
the difference γbS − γaS when T approaches Tc from below, and thus the spreading
coefficient (8.2) necessarily becomes non-negative close to Tc, indicating complete
wetting.

When T becomes lower, the bump in themiddle ofΔωL(φ
′) in Fig. 8.6 grows, and

at a certain temperature a second intersection point φ0,3 of negative slope is created.
An analysis of (8.65) with (8.64) based on the roots of quadratic equations shows
that 4 real valued intersection points are realized for T ≤ Tpw with

Tpw = Tc −
√
2C

κ

[γBS − γAS]
A

. (8.77)

Since φb > φ′
0,3 > φ′

0,1, the integration over a positive integrand in (8.53) for the
B-rich phase (upper limit φeq = φb) becomes smaller with the lower limit φ′

0 = φ′
0,3

compared to the case φ′
0 = φ′

0,1. So, for T ≤ Tpw, the contact composition of the
B-rich phase at the substrate increases to φ′

0,3, in order to minimize the interfacial
energy. The deviation of φ′

0,3 for the B-rich phase from the contact composition
φ′
0,1 of the A-rich phase could directly lead to partial wetting for T ≤ Tpw, in case

(8.57) yields | cos(Θa)| < 1. In this case, Tpw = Tw is the temperature of the wetting
transition. The equilibrium volume fractions±φ′

pw of the A-rich and the B-rich phase
at T = Tbin = Tpw are calculated from (8.66) with (8.77), or from (8.67) with (8.77):

φ′
pw =

√
A(Tc − Tpw)

C
=
√√

2

κC
[γBS − γAS]. (8.78)
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Apart from the detailed values (8.77) for Tpw and (8.78) for φ′
pw, the arguments

for wetting do not relie on shape details of Δωmix but apply in general. For ΔωL

as special case, analytical solutions for the de-mixed state are possible. The contact
compositions at the substrate result from (8.55) with (8.68) inserted. The correct
choice of signs for the square roots in the solutions can be extracted from Fig.
8.6. For an A-rich region at the substrate for T ≤ Tc, the most negative solution
φ′
0a = φ′

0,1 indicates the contact composition. B-rich regions at the substrate occur
only for T ≤ Tpw. Here, φ′

0b = φ′
0,3 is the right choice as contact composition. The

results read

φ′
0a,b = ∓

√
φ′2
a,b ±

√
2

κC
[γBS − γAS]. (8.79)

In (8.79) and the following equations of this section, the upper signs apply to the A-
rich phase, while the lower signs describe the B-rich phase. With (8.78), it is possible
to rewrite (8.79) as

φ′
0a,b = ∓

√
φ′2
a,b ± φ′2

pw. (8.80)

Interface Tensions in the Two Phase Region. The interface tension between the
A-rich phase and the B-rich phase in the two phase region results from (8.49) with
(8.68) inserted, where the compositions φ′

b and φ′
a = −φ′

b are the binodal values
(8.66):

γab = 4

3

√
κC

2
φ′3
b . (8.81)

The interface tensions γaS and γbS between the A-rich phase or the B-rich phase
and a substrate are expressed as incrementsΔγaS andΔγbS to a constant background
contribution γAS + [γBS − γAS]φc:

Δγa,bS = γa,bS − γAS − [γBS − γAS]φc. (8.82)

Due to the differences γbS − γaS in (8.1) and (8.2), the constant background does
not affect the contact angle and the spreading coefficient, so a discussion based on
Δγa,bS is sufficient. The integration of (8.53) with (8.68) inserted leads to

Δγa,bS − [γBS − γAS]φ′
0a,b = ±

√
κC

2

[
φ′3
a,b − φ′3

0a,b

3
− φ′2

a,b(φ
′
a,b − φ′

0a,b)

]
.

(8.83)
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With (8.78), the prefactor can be expressed in terms of (γBS − γAS). The sign choice
in (8.83) originates from the square root in (8.53). It is important to select the sign
so the right side of (8.83) is positive: the formation of a concentration profile at a
substrate has a positive contribution to the interfacial energy. In order to find the right
sign, (8.83) is re-written as

Δγa,bS − (γBS − γAS)φ
′
0a,b = ± (γBS − γAS)

3φ′2
pw

[−(φ′
0a,b + 2φ′

a,b)(φ
′
0a,b − φ′

a,b)
2
]
.

(8.84)
On the A-rich side of the binodal, φ′

eq = φ′
a ≤ 0 and φ′

0a < 0. The bracket on the
right side is positive, and the upper positive sign applies to the A-rich side. The
B-rich phase neighboring the substrate is found only for φ′

eq = φ′
b ≥ φ′

pw > 0 below
the pre-wetting transition. For this case, φ′

0b ≥ 0, the bracket becomes negative, and
we have to use the lower negative sign for the B-rich side of the binodal. With (8.80)
inserted into (8.84), Δγa,bS is calculated as

Δγa,bS = −2(γBS − γAS)

3φ′2
pw

[(
φ′2
a,b ± φ′2

pw

) 3
2 ± φ′3

a,b

]
. (8.85)

For themixed state, an analytical integration of (8.53) with (8.76) inserted is possible.
For better clarity, the mixed phase is treated with reduced variables below.

Contact Angle and Wetting Transition. An overview over the behavior of con-
tact compositions and interface tensions is depicted in Fig. 8.7. The composition
φ′
b = −φ′

a on the x axismoves along the binodal line and thuswith (8.67) implies also
a change in temperature.With the chosen scaling of the y-axes, φ′

0a and φ′
0b calculated
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Fig. 8.7 Interface tensions (black) and contact compositions (grey) around the bulk pre-wetting
composition φpw for the Landau grand canonical potential density
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from (8.80) mark the contributions (γBS − γAS)φ
′
0a,b of the contact compositions to

the interface tensions. Because of additional interfacial energy needed to build up
the interfacial concentration profile, the actual interface tension increments ΔγaS
and ΔγbS from (8.85) are slightly higher. The difference ΔγbS − ΔγaS = γbS − γaS
exceeds the interface tension γab from (8.81) at φ′

b/φ
′
pw = 1. Thus, there is no real

solution for the contact angle Θa from (8.1) and the change of contact composition
for a B-rich phase is not accompanied by a first order wetting transition. A continu-
ous transition of Θa occurs at the intersection point of ΔγbS − ΔγaS and γab. When
(8.81), (8.85), and (8.78) are inserted into ΔγbS − ΔγaS − γab = 0, the square roots
can be ellminated by two successive squaring steps. The resulting quadratic equation
for (φ′

b/φ
′
pw)4 leads to the solution for the wetting transition

φ′
w

φ′
pw

=
[
1 +
√
4

3

] 1
4

. (8.86)

Since φ′
w and φ′

pw are both on the binodal, (8.67) can be employed to transfer (8.86)
to an equation for the temperatures:

Tc − Tw

Tc − Tpw
=
√
1 +
√
4

3
. (8.87)

For a different ω, the morphology of a plot like Fig. 8.7 can change. With higher
values of γab an intersection point with ΔγbS − ΔγaS can be avoided. In this case, a
first order pre-wetting transition occurs right at φ′

b/φ
′
pw = 1. The distinction of the

two morphologies illustrates the discussion of first order and continuous wetting at
the end of Sect. 8.5.1.

Shape of the Interface Profile. The form of (8.75) as a power series in φ′ with
only 2nd to 4th powers reminds of the shape of the Landau-de Gennes theory for
liquid crystals [14, 21], and so we can borrow an analytical solution from there [20].
The integration in (8.48) with the expansion (8.75) and the correlation length (8.71)
inserted can be re-written as

z

ξ
=
∫ φ(z)

φ0

√
A(T − Tspin)

A(T − Tspin) + 2Cφ′
eqφ

′′3 + 1
2Cφ′′4 dφ

′′. (8.88)

The scaling of z with ξ shows, that it is in fact the bulk correlation length ξ which
determines the length scale of the interfacial profile. A solution of (8.88) is provided
by Tarczon and Miyano [22]:
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z

ξ
= ln

[
R(φ′′)
R(φ′′

0 )

]
(8.89)

R(φ′′) = 1

φ′′

√
A(T − Tspin)

[
A(T − Tspin) + 2Cφ′

eqφ
′′ + 1

2
Cφ′′2

]

+ 1

φ′′ A(T − Tspin) + Cφ′
eq. (8.90)

Solving for φ′′ yields the profile

φ′′
(

z

ξ

)
= 2A(T − Tspin)Z

Z2 − 2Cφ′
eqZ + C2φ′2

eq − 1
2CA(T − Tspin)

= 2A(T − Tspin)Z

Z2 − 2Cφ′
eqZ − 1

2CA(T − Tbin)
(8.91)

Z = R(φ′′
0 ) exp

[
z

ξ

]
. (8.92)

While for z � ξ the profile approaches an exponential decay, there are deviations
from an exponential for smaller z.

Profiles in the De-Mixed State. A first application of the solution (8.91) are the
interface profiles in the de-mixed state. The equilibrium compositions of the A-rich
and B-rich phases are on the binodal Tbin (8.67), and with (8.69) we get for this case
A(Tbin − Tspin) = 2Cφ′

eq. This simplification reduces (8.90) and (8.92) substantially,
and the profiles result as

φ′′(z) = 2φ′
eqφ

′′
0

[2φ′
eq + φ′′

0 ] exp
[

z
ξ

]
− φ′′

0

. (8.93)

The bulk equilibrium composition φa or φb enters via φ′
eq as the deviation (8.59)

from the critical composition φc. Based on (8.66) this deviation is negative for the
A-rich phase and positive for the B-rich phase. The contact value φ′′

0 is expressed
as deviation from the bulk equilibrium composition. This deviation is negative for
all cases due to the assumed preferential interface adsorption of A. A plot of the A
enrichment −φ′′(z) at the interface shows,13 that the interface profile of an A-rich
region is below the exponential decay exp(−z/ξ), while the profile of a meta-stable
B-rich region is above exp(−z/ξ).

We can use (8.93) for a construction of the profile at internal flat interfaces between
A-rich and B-rich phases. Based on (8.60), the deviations from the bulk equilibrium
compositions φ′′

0 = φ′
0 − φ′

eq and φ′′(z) = φ′(z) − φ′
eq in (8.93) are eliminated for

the deviations from the critical composition φ′
0 and φ′(z), respectively. From an

13For a quick and dirty check, one can plot (8.93) with example values φ′
a = −1, φ′

b = +1, and
φ′′
0 = −1.
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imaginary interface at z = 0 the B-rich phase with φ′
eq = φ′

b expands to positive z,
while the A-rich phase with φ′

eq = φ′
a = −φ′

b is found at negative z values. These
transformations result in

φ′(z) = ∓φ′
b

[∓φ′
b + φ′

0] exp
(
∓ z

ξ

)
− [∓φ′

b − φ′
0]

[∓φ′
b + φ′

0] exp
(
∓ z

ξ

)
+ [∓φ′

b − φ′
0]

. (8.94)

The upper signs apply for the A-rich phase at z < 0, while the lower ones are for
z > 0, where the B-rich phase is located. With the choice φ′

0 = 0, so the critical
composition in the middle between φ′

b and φ′
a = −φ′

b, (8.94) can be transformed to

φ′(z) = φ′
b

exp
(
+ z

2ξ

)
− exp

(
− z

2ξ

)

exp
(
+ z

2ξ

)
+ exp

(
− z

2ξ

) = φ′
b tanh

(
z

2ξ

)
. (8.95)

The interface extends a the distance ξ/2 in positive z direction and also the distance
ξ/2 in negative direction, so the total interfacial width is again ξ . For any other choice
ofφ′

0 in (8.94)with |φ′
0| < φ′

b, a similar transformation to a hyperbolic tangents profile
with shifted z-location can be performed with the substitution

exp

(
Δz

ξ

)
= ±φ′

b + φ′
0

±φ′
b − φ′

0

. (8.96)

Reduced Variables. As a preparation for the discussion of pre-wetting, we rewrite
the important equations in reduced variables. Only for the critical composition φc

we have Tbin = Tspin. For other compositions, the difference Tbin − Tspin = 2Cφ′2
eq/A

resulting from (8.67) and (8.69) defines a suitable temperature unit which is used for
the reduced temperature scale

ϑ = T − Tbin

Tbin − Tspin
. (8.97)

A frequent combination of variables in the equations is reduced as A(T − Tspin)/

(2C) = (ϑ + 1)φ′2
eq. A suitable length scale is the correlation length ξbin at the binodal

T = Tbin. From (8.67), (8.69), and (8.71) we get

ξbin =
√

κ

2C

1

φ′
eq

(8.98)

ξ = ξbin√
ϑ + 1

. (8.99)
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The deviation φ′′ from φ′
eq is also transformed to the reduced variable

φ′′
red = φ′′

φ′
eq

, (8.100)

and the reduced density of the grand canonical density (8.75) becomes

ΔωL,red(φ
′′
red) − Δωbulk,red = ΔωL − Δωbulk

Cφ′4
eq

= (ϑ + 1)φ′′2
red + φ′′3

red + 1

4
φ′′4
red.

(8.101)

When used in the squared gradient expression (8.3), it needs to be combined with
a reduced elastic constant κ

Cφ′
eq

= 2ξ 2
bin. Let’s get to the interface equations. The

reduced form of (8.55) for the calculation of the reduced contact composition φ′′
red,0

results with (8.98)–(8.101) and (8.78)

ΔωL,red(φ
′′
red,0) − Δωbulk,red = 1

4
φ′′4
red,0 + φ′′3

red,0 + (ϑ + 1)φ′′2
red,0 = 1

4

φ′4
pw

φ′4
eq

.

(8.102)

Finally, the composition profile at the interface (8.90)–(8.92) is transformed to the
reduced form

φ′′
red

(
z

ξ

)
= 2(ϑ + 1)Zred

Z2
red − Zred − ϑ/4

(8.103)

Zred = Z

2Cφ′
eq

=
⎡
⎣ 1

φ′′
red,0

√√√√(ϑ + 1)

[
ϑ +
[
1 + 1

2
φ′′
red,0

]2]
+ ϑ + 1

φ′′
red,0

+ 1

2

⎤
⎦ exp

[
z

ξ

]
.

(8.104)

With reduced variables, the only remaining free parameters are ϑ and φ′
eq. The latter

will be discussed as a multiple of a scale defined by φ′′
pw. These two parameters are

suitable coordinates in the two dimensional phase diagram.

Pre-Wetting Profiles. The reduced equations for the interface structure show the
same separation as before. The contact value φ′′

red,0 depending on φ′
eq and φ′

pw result
from (8.102), without reference to the actual interface structure. The concentration
profile, on the other hand, is calculated for known φ′′

red,0 based on (8.103) and (8.104),
where φ′

eq and φ′
pw do not enter explicitly. The temperature enters in both cases.

Examples of interface profiles for different temperatures and two contact values
φ′′
red,0 are displayed in Fig. 8.8. For φ′′

red,0 = −2.25, the thickness of the adsorbed
interface layer depends strongly onϑ . Starting from the interface z = 0, there is first a
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Fig. 8.8 Interface concentration profiles of the mixed phase at a substrate. Profiles with contact
value φ′′

red,0 = −2.25 are drawn in black, while profiles for φ′′
red,0 = −1.5 are shown in grey. The

numbers indicate the reduced temperatures ϑ at which the profiles were calculated

decay toφ′′
red = −2within the length scale ξ . The profile then remains almost flat until

a certain thickness depending on ϑ , with a subsequent decay to the bulk composition
withφ′′

red = 0within a characteristic distance 2ξ . The occurrence of an interface layer
of thickness larger than ξ within the mixed phase is called pre-wetting. Note that ξ

for the variation of ϑ in the range of small ϑ changes only marginally. While the
layer thickness diverges for ϑ → 0 corresponding to T → Tbin, the apparent point
of divergence for ξ with (8.99) is ϑ → −1, or T = Tspin.

For the example profileswithφ′′
red,0 = −1.5 in Fig. 8.8, the interface is not able any

more to stabilize an interface film of A enrichment −φ′′
red > 2, which could increase

in thickness. The effect of a temperature change approaching ϑ = 0 is small, and the
thickness of the interface profile remains comparable to ξ . The qualitative difference
of an interface layer with diverging thickness for ϑ → 0 on one hand and a layer
which almost indifferent thickness for ϑ → 0 on the other hand indicates, that two
different interface states are possible.

The thickness of the interface layer is calculatedby an integrationover the interface
profile

d = −1

2

∫ ∞

0
φ′′
red dz. (8.105)

The factor − 1
2 is introduced in order to compensate the composition φ′′

red = −2 in a
thick layer (see Fig. 8.8). Integration14 of (8.103) yields [23]

d

ξ
= √

1 + ϑ ln

⎡
⎣
√

ϑ + [1 + 1
2φ

′′
red,0

]2 + √
ϑ + 1 + 1

2φ
′′
red,0√

ϑ + [1 + 1
2φ

′′
red,0

]2 + √
ϑ + 1 − 1

2φ
′′
red,0

⎤
⎦ . (8.106)

14For the integration of the profile, use a partial fraction decomposition of (8.103)

2(ϑ + 1)Zred

Z2
red − Zred − ϑ/4

=
√

ϑ + 1(1 + √
ϑ + 1)

Zred − 1
2 − 1

2

√
ϑ + 1

−
√

ϑ + 1(1 − √
ϑ + 1)

Zred − 1
2 + 1

2

√
ϑ + 1

.

.
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Fig. 8.9 Thickness d of the pre-wetting layer as function of the reduced temperature ϑ for several
contact compositions φ′′

red,0 (a), and as function of ϑ for several φ′′
red,0 (b). The numbers indicate

the value of the fixed parameter in the calculations

The temperature dependence of d is depicted in Fig. 8.9a. While for values φ′′
red,0 >

−2 the layer thickness becomes constant at small ϑ , there is a logarithmic divergence
for φ′′

red,0 ≤ −2. The critical value φ′′
red,0 = −2 can be deduced from (8.106) with

the limiting temperature ϑ = 0 inserted. Only for φ′′
red,0 > −2 the fraction in the

logarithm is positive and a solution exists. Figure 8.9b shows the change of d with
φ′′
red,0. At φ

′′
red,0 = −2 there is a transition from a thin to a thick layer, which is most

pronounced for small ϑ .

Pre-Wetting Contact Composition. The construction of the contact composition
according to (8.102) is illustrated inFig. 8.10.The left side of (8.102) is drawn inblack
for several temperatures ϑ . The right side of (8.102) indicated by the grey horizontal
lines is proportional to φ′−4

eq . Thus, in order to approach the critical composition φc

from large φ′
eq to small φ′

eq, we have to discuss first the lower grey lines and then
move upwards. As an orientation, the inset displays a part of the phase diagram
Fig. 8.1, with the example compositions marked by round dots. Like in Fig. 8.6,
an intersection point in the main figure with negative slope of a black curve with
a grey line corresponds to a minimum of interface energy. Since the x-axis is the
deviation from the bulk composition, the rightmost intersection point of negative
slope is the correct one: it is the first one with increased A content relative to φ′

eq
whichmatches theminimumcondition.All intersectionpoints of negative slopeoccur
for φ′′

red,0 < 0. With (8.100), the reduced variable is negative for an A enrichment
φ′′
0 < 0 at the interface and a positive bulk composition above the critical composition

φ′
eq > 0. Thus, pre-wetting occurs at the B-rich side of the phase diagram (see Fig.

8.1). The other negative combination φ′′
0 > 0 and φ′

eq < 0 does not fit to the assumed
preferential A adsorption, since it would correspond to a reduced A content at the
interface. It can be excluded as an equilibrium state, however it might describe a
meta-stable state.

The lowest two grey lines in Fig. 8.10φ′
eq/φ

′
pw = 1.1 andφ′

eq/φ
′
pw = 1 correspond

to compositions on the binodal below the pre-wetting temperature and directly at the
pre-wetting temperature, respectively. The rightmost intersection point of negative
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Fig. 8.10 Reduced density ΔωL,red(φ
′′
red,0) − Δωbulk,red of the grand canonical potential for sev-

eral reduced temperatures ϑ , as indicated by the black tilted numbers. The contact composition
φ′′
red,0 at the interface results as the rightmost negative intersection of ΔωL,red(φ

′′
red,0) − Δωbulk,red

with the grey horizontal lines. These lines are drawn for different ratios of the bulk composition
φ′
eq and the composition at the start of the pre-wetting line φ′

pw, as indicated by the grey numbers
on the right. The pre-wetting line P marks the points where the interface phase transition to higher
A contact value −φ′′

red,0 on the line Q occurs. The pre-wetting line ends at the critical pre-wetting
point, marked by ×. For the grey area φ′′

red,0 ≤ 2 on the left, the logarithmic divergence of the
thickness of the interface layer (see Fig. 8.9a) occurs in the limit ϑ → 0. The first part of line Q
and line L mark the trace of conditions, where this logarithmic divergence starts. The black dotted
line marks the traces of one inflection point of ΔωL,red(φ

′′
red,0) − Δωbulk,red. The inset shows a

magnified section of the phase diagram Fig. 8.1. Beside the binodal, the pre-wetting temperature,
the pre-wetting line P and the grey area of logarithmic divergence of layer thickness, the example
compositions of the main figure are marked by round points and grey lines

slope moves only slightly when the temperature is increased: the contact compo-
sition φ′′

red,0 is only weakly temperature dependent. The lower value of φ′′
red,0 for

φ′
eq/φ

′
pw = 1.1 compared to the value for φ′

eq/φ
′
pw = 1 is due to difference in φ′

eq in
the normalization (8.100).

For the next two grey lines φ′
eq/φ

′
pw = 0.95 and φ′

eq/φ
′
pw = 0.9, the same weak

temperature dependence of the rightmost negative intersection pointφ′′
red,0 as before is

observed for the high temperature examples ϑ = 0.16, 0.125, as well as at ϑ = 0.08
for φ′

eq/φ
′
pw = 0.95. While for these temperatures there are two intersection points

with negative slope of the black curves, there is only one such intersection point for
each curve for the lower temperatures. As a consequence, there is a jump of the right-
most intersection point for φ′

eq/φ
′
pw = 0.95 between ϑ = 0.08 and ϑ = 0.04. The

contact composition jumps discontinuously from φ′′
red,0 ≈ −1.1 to φ′′

red,0 ≈ −2.2.
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For φ′
eq/φ

′
pw = 0.9, a similar jump occurs between ϑ = 0.125 and ϑ = 0.08. These

jumps indicate the first order interface phase transition, the pre-wetting transition.
The starting and the end points of the jump for different ϑ are marked in Fig. 8.10
by the two branches P and Q of the pre-wetting line, respectively. A qualitative dif-
ference between φ′

eq/φ
′
pw = 0.95 and φ′

eq/φ
′
pw = 0.9 is the location of the end-point

of the jump. While for φ′
eq/φ

′
pw = 0.95 it is located below φ′′

red,0 = −2 and thus in a
range with logarithmic thickness growth of the interface layer with ϑ , the jump for
φ′
eq/φ

′
pw = 0.9 ends with φ′′

red,0 > −2, and thus further cooling is required until the
logarithmic growth of the interface layer sets in. The range where values φ′′

red,0 ≤ −2
are realized is grey shaded in Fig. 8.10.

The grey line for φ′
eq/φ

′
pw = [16/27] 1

4 passes through the critical pre-wetting
point. In this point, the lines P and Q meet, so the jumping distance in φ′′

red,0 has
become zero. The remainder of the jump is an infinite slope of φ′′

red,0 with ϑ . It
indicates the critical pre-wetting transition which is now a second order interface
phase transition at the end of the pre-wetting line. For lower values of φ′

eq/φ
′
pw,

there is a steady super-critical change of φ′′
red,0 with temperature. The curve for

φ′
eq/φ

′
pw = 0.85 is an example for this case.

The first section of curve Q combined with curve L in Fig. 8.10 indicates the
locations where the logarithmic thickness divergence for small ϑ starts. Note, that
such a divergence is possible for any choice 0 ≤ φ′

eq ≤ φ′
pw, so any composition φ

above φc and below the composition of the B-rich phase at the wetting line.
It remains to determine the lines P andQ and discuss the transformation of P to the

phase diagram. For a selected temperatureϑ , the jumpoccurs at the localmaximumof
ΔωL,red(φ

′′
red) − Δωbulk,red in Fig. 8.10. Thus, the abscissa value φ′′

red,0,P is calculated
as the location of the local maximum of (8.101):

φ′′
red,0,P(ϑ) = −−3 + √

1 − 8ϑ

2
. (8.107)

The temperature range 0 ≤ ϑ ≤ 1
8 where (8.107) has a real solution defines the

range of the pre-wetting line. The ordinate at the maximum position results after
inserting (8.107) in (8.101). With (8.102), the ordinate can be transformed to the
bulk composition φ′

eq. After simplification, it becomes

1

4

φ′4
pw

φ′4
eq

= 1

8

[
1 + 20ϑ − 8ϑ2 + (1 − 8ϑ)

3
2

]
. (8.108)

The combination of (8.107) and (8.108) is a parametric representation of the P line in
Fig. 8.10. The end-point ϑ = 1

8 inserted in (8.107) and (8.108) yields the coordinates

of the critical pre-wetting point φ′′
red,0 = − 3

2 and φ′
eq/φ

′
pw = [16/27] 1

4 . In order to
calculate also the Q line, we subtract the height of the local maximum (8.108) from
(8.101). Since the compositions at the start and the end of the jump have the same
φ′
eq, they have the same height in Fig. 8.10. So, the Q line results as a root of the
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equation after substraction. By construction, the fourth order polynomial resulting
from the subtraction has a double root at the maximum position (8.107). A polynom
division allows to separate these known roots, and the Q line can be determined as
root of the resulting second order polynomial. These calculations require tedious
book keeping of terms, but otherwise are straight forward. The abscissa φ′′

red,0,Q of
the Q line reads

φ′′
red,0,Q(ϑ) = −1

2
− 1

2

√
1 − 8ϑ −

√
1 + √

1 − 8ϑ. (8.109)

By construction, the ordinate of the Q line is the same as for the P line (constant
value of φ′

eq on both sides of the jump) and thus results also from (8.108). It can
be cross-checked numerically by inserting (8.109) into (8.101). In a similar way, all
relevant points in Fig. 8.10 can be assigned to values of ϑ through the temperature
curve passing through the point and φ′

eq by identifying the height of a point with
1
4

φ′4
pw

φ′4
eq
according to (8.102).

For a transfer of the pre-wetting line P or Q to the phase diagram as in the inset

of Fig. 8.10, one might first draw the binodal as Tbin = Tc − (Tc − Tpw)
(

φ′
eq

φ′
pw

)2
.

According to (8.67) and (8.69), the curvature of the spinodal is 3 times the curva-

ture of the binodal, so Tspin = Tc − 3(Tc − Tpw)
(

φ′
eq

φ′
pw

)2
. With Tbin − Tspin = 2(Tc −

Tpw)
(

φ′
eq

φ′
pw

)2
a connection to the reduced temperature scale ϑ (8.97) is established:

ϑ = 1

2

T − Tc

Tc − Tpw

(
φ′
pw

φ′
eq

)2

+ 1

2
. (8.110)

The ordinate of the pre-wetting line
φ′
eq

φ′
pw

(ϑ) is calculated from (8.108), and it can be

used to evaluate the inversion of (8.110) T
(

φ′
eq

φ′
pw

, ϑ
)
. Again the combination of these

two equations is a parametric representation of the pre-wetting line in terms of ϑ in
the range 0 ≤ ϑ ≤ 1

8 .

Interface Tension in the Mixed State. The integral (8.53) for the calculation of γ

with the reduced grand canonical potential density (8.101) inserted reads

γ = γAS + [γBS − γAS][φc + φ′
eq(1 + φ′′

red,0)]

±
∫ 0

φ′′
red,0

φ′2
eq

√
κC

2

√
4ϑφ′′2

red + (φ′′
red + 2)2φ′′2

red (φ′
eqdφ

′′
red). (8.111)
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A substitution based on (8.100) to the reduced composition deviation φ′′
red from φ′

eq is
already performed, which has resulted in a differential dφ′ = φ′

eqdφ
′′
red and the upper

limit equal to 0. As before, it is important to select the sign of the integral in a way
to keep it positive. The not reduced deviation φ′′ from φ′

eq is generally non positive
for preferential adsorption of A to a substrate. The extension of the relevant range to
negative values can also be seen in Fig. 8.10. For φeq < φc, on the A-rich side relative
to the critical composition, φ′

eq is negative and so with (8.100) φ
′′
red > 0. The positive

lower limit φ′′
red,0 > 0 results in a factor (−1), which is compensated by the negative

prefactor in the differential (φ′
eqdφ

′′
red). For φ′

eq > φc, on the B-rich side relative to
φc, φ′

eq > 0, so the differential prefactor is positive. With φ′′
red < 0, the lower limit is

smaller than the upper limit 0, so there is also no sign contribution from the integral.

A first transformation is the extraction of a factor
√

φ′′2
red = ±φ′′

red from the square

root. Based on the discussed signs of φ′′
red, we have to select the upper positive sign

for the A-rich side φ′
eq < 0, and the negative lower sign for the B-rich side φ′

eq > 0.
Another substitution u = φ′′

red + 2 leads to a sumof two integrals which are Bronstein
integrable [23]. With (8.78) and (8.82), the result is expressed as increment to the
constant background in terms of (γBS − γAS):

Δγ = (γBS − γAS)φ
′
eq(1 + φ′′

red,0)

± 4(γBS − γAS)φ
′3
eq

3φ′2
pw

⎧⎨
⎩
[
1 − 2ϑ − φ′′

red,0

2
− φ′′2

red,0

2

]√[
1 + φ′′

red,0

2

]2
+ ϑ

−[1 − 2ϑ]√1 + ϑ + 3ϑ ln

⎡
⎣1 + 1

2φ
′′
red,0 +

√[
1 + 1

2φ
′′
red,0

]2 + ϑ

1 + √
1 + ϑ

⎤
⎦
⎫⎬
⎭ . (8.112)

The sign choice cancels with the sign of φ′
eq, so ±φ′3

eq = −|φ′
eq|3.

Comparison of Binodal Values. The binodal line Tbin(φ) marks the boundary
between the two-phase region and the one phase region. We can cross-check the
equations for φ′

0 and γ for these two regions by a comparison on the binodal line,
where the results should match. For the binodal as limiting case of the one phase
region, φ′′

0 results from (8.101) for ϑ = 0. The resulting curve in Fig. 8.10 is sym-
metric relative to φ′′

red,0 = −1. So, the transformation of (8.101) in terms of a variable
(φ′′

red,0 + 1) results in a fourth order polynomial with only even powers. The roots
are found by double application of the formula for quadratic equations, and φ′′

red,0 for
ϑ = 0 is calculated as:

φ′′
red,0 = −1(∓)2

√
1(±)1

φ′2
pw

φ′2
eq

. (8.113)



268 R. Sigel

(a)

(b)

(c)

Fig. 8.11 Reduced contact composition φ′′
red,0 (a), layer thickness d/ξ (b), and reduced interface

tension incrementΔγ/([γBS − γAS]φ′
pw) (c) plotted against reduced temperatureϑ . The black lines

are calculated for the same compositions φ′
eq/φ

′
pw ∈ {0.85, [16/27] 1

4 , 0.9, 0.95, 1, 1.1} as in Fig.
8.10. In (a) and (c), φ′

eq/φ
′
pw decreases when going from upper lines to the lower lines, while in

(b) it increases. The shaded regions limited by the lines Q and L indicate the areas of logarithmic
divergence of layer thickness. The grey thick lines P and Q mark start and end of the jump in a first
order pre-wetting transition

Here, (±)1 and (∓)2 indicate the sign choices in the first and second application of
the formula for quadratic equations. For |φ′

eq| < φ′
pw, there are only two real solutions

of (8.113), and we have to select the negative one for preferential A adsorption to the
substrate: (±)1 = +, (∓)2 = −. For |φ′

eq| ≥ φ′
pw, there are four real solutions. For an

A-rich region close to the substrate the previous solution remains valid. For a B-rich
region at the substrate, the right choice of signs in (8.113) is (±)1 = −, (∓)2 = +, in
order to obtain the negative solution of smallestmagnitude. This solution corresponds
to the selection of intersection point φ0,3 in Fig. 8.10 for φ′

eq/φ
′
pw > 1. The signs in

(8.113) are again written in a form where the upper signs describe the A-rich side,
while the lower signs stand for the B-rich side of the phase diagram. As a result, the
limit of (8.113) for ϑ = 0 from the side of the mixed phase is the reduced form of
(8.80), which indicates the contact values in the two phase region.

When (8.113) is inserted into (8.112) for the one-phase limiting case ϑ = 0 and
the prefactor expressed in terms of (γBS − γAS) based on (8.78), one recovers the
two-phase formula (8.85). The consistent and steady behavior of φ′

0 and γ at the
binodal has been used as a cross check of signs for the formulas.

How to see the Pre-Wetting Transition in an Experiment? Experimental parame-
ters which might serve for the detection of the pre-wetting transition are the layer
thickness d and the interface tension γ . A direct experimental access to the con-



8 Interfaces of Binary Mixtures 269

tact composition φ′′
red,0 appears more difficult. The temperature dependence of these

three parameters is shown in Fig. 8.11 for the same selection of bulk compositions
φ′
red/φ

′
pw as in Fig. 8.10. The contact composition in Fig. 8.11a was determined

from (8.102) by a simple numeric Newton-RaphsonMethod [24]. The behavior is
already discussed in connection with Fig. 8.10: for φ′

eq/φ
′
pw = 1.1 and φ′

eq/φ
′
pw = 1

in the upper two lines, there is only a marginal increase of φ′′
red,0 when ϑ is decreased.

For φ′
eq/φ

′
pw = 1, the critical composition φ′′

red,0 = −1 is reached for ϑ = 0. The two
examplesφ′

eq/φ
′
pw = 0.95 andφ′

eq/φ
′
pw = 0.9 show the jump inφ′′

red,0 at the first order

pre-wetting transition. For φ′
eq/φ

′
pw = [16/27] 1

4 , the pre-wetting transition becomes
second order: there is no longer a jump, but an infinite slope of φ′′

red,0(ϑ). In the
supercritical example φ′

eq/φ
′
pw = 0.85, there is a continuous transition from strongly

to a moderately negative values of φ′′
red,0.

Based on the numerical solution forφ′′
red,0, the temperature dependencies of d (Fig.

8.11b) and γ (Fig. 8.11c) are calculated with (8.106) and (8.112), respectively. Also
the P, Q, and L lines were transferred to lines in Figs. 8.11b, c. Similar to the behavior
of φ′′

red,0, γ and d have jumps in the first order pre-wetting transition. For γ , the jumps
become very small at higher ϑ . The infinite slopes in the second order pre-wetting
critical point is found only for d. The interface tension is thus less suitable for a
determination of the pre-wetting transition. With the known contact compositions on
the P line (8.107) and the Q line (8.109) before and after the jump, on can use (8.106)
and (8.112) to determine the mean field cirtical exponents when ϑ approaches the the
critical pre-wetting value ϑ = 1

8 . As a result, [φ′′
red,0,P − φ′′

red,0,Q] and [d(φ′′
red,0,Q) −

d(φ′′
red,0,P)] vanish with an exponent 1

2 , while [γ (φ′′
red,0,P) − γ (φ′′

red,0,Q)] approaches
zero with an exponent 2.

The occurrence of a thick pre-wetting layer is accompanied by a reduction of the
interface tension. So, the A component acts like a surfactant on the B-rich side of
the one phase region. The possibility to switch this surfactant in the first order pre-
wetting transition by a small temperature change might be of technological interest.
Due to the scaling with the interface tension difference [γBS − γAS], this surfactant
has different strength on different substrates, which might be used for selectivity. An
example could be a separation of a mixture of colloids or nano-particles of different
material as substrates within a binary mixture as dispersion medium.

Interface Fluctuations A discussion of interface fluctuations for a binary system
similar to the treatment of interface fluctuations in liquid crystals [25], which is
an interesting field of study in its own right, needs to be postponed to a separate
publication. Experimental results for the fluctuation amplitude and the fluctuation
dynamics of a liquid crystalline pre-wetting layer are found in [26, 27], respectively.

Landau Theory: Summary. The Landau theory, where all quantities except the
contact composition in the mixed phase can be calculated analytically, is a very
well suited didactic tool for an illustration of the interface calculations based on the
squared gradient approach. For a grand canonical density different from ΔωL, the
same calculations can be performed numerically. The general morphology of the
phase diagram should remain similar in this case.
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8.6 Summary and Outlook

The squared gradient approach allows a description of interfaces and the bulk phases
with a common set of parameters. A combination of interactions and entropy contri-
bution determines the phase behavior of the bulk, as well as the contact composition
at a substrate. The correlation length of concentration fluctuations in the bulk phase
sets the length scale of an interfacial concentration profile. A number of parameters
for the description of interfaces can be extracted already from bulk results. Thus,
interfaces are no longer exceptionally complicated exotic objects in an otherwise
perfect bulk world. The complication in real interface experiments stems to a large
part from the highly demanding purity requirements in preparation.

The squared gradient theory is limited, since interfaces with a too steep profile
cannot be described. This limitation is less severe for truly soft systems, where struc-
tural changes expand over a correlation length. So, the theory is well adapted to the
focus of SOMATAI. Beside the derivation of the equilibrium state, the theory allows
the calculation of fluctuation amplitudes and restoring forces, which give access
to a basic understanding of relaxation dynamics, if a suitable friction constant is
known. We touched the distinction between meta-stable states and thermodynami-
cally stable states in the two phase region of the bulk between the binodal and the
spinodal only briefly here. An access to meta-stable states at the interface could be
constructed on similar grounds. Such meta-stable states appear to be highly rele-
vant for interface rheology, where often the interface structure is frozen and not at
all in a thermodynamic equilibrium. In a recent workshop “Dynamics of complex
fluid-fluid interfaces” organized by Peter Fischer and others from ETH Zürich at
Monte Verita in Ascona, a majority of interface rheology contributions appeared to
have frozen non equilibrium structures. It might be even speculated, that modern
applications of interface science, e.g. the creation of new food products with low fat
and sugar content in food science require frozen non-equilibrium structures at the
internal interfaces of the product. Here, the squared gradient approach could provide
an access to a theoretical description of meta-stable states, which might be able to
predict food live-times based on breakdown of frozen structures at internal interfaces
by relaxation processes.

8.7 Exercises

The SOMATAI initial training network and also its summer school to which this
contribution was delivered intend to train young researchers. An essential point of
training is to practice the concepts under study. Exercises of the tutorial during the
SOMATAI summer school are listed below.

1. Consider the Figure showing partial and complete wetting of the vapor phase
by the A-rich phase, which has a higher density than the B-rich phase and thus
mainly is at the bottom of the container.
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ab

bSaS

B rich
A rich

γ γ
γ

(a)

(b)

a. Which phase has the higher interface tension against the container wall?
Hint: look at the contact angle at the container wall.

b. Write down the force balance for the three phase contact line for partial
wetting and express the interface energies of A and B against the vapor
phase by the contact angles and the interface tension γAB of the A-rich
phase versus the B-rich phase.

2. Assume that the binodal Tbin(φ) of an A and B mixture is characterized by the
equation

Tbin(φ)

K
= 1600φ2 − 1600

a. Determine the critical point.
b. A mixture 20mL of A and 40mL of B is prepared at the temperature 300K.

Is the mixture in a one phase state, or in a two phase state?
c. Determine the compositions of the two phases.
d. Determine the volumes of the two phases.

3. Consider a blend of polystyrene PS (C8H8, ρ = 1.04 g/cm3) of molecular mass
Mw = 25 000 g/mol and polyisoprene PI (C5H8, ρ = 0.93 g/cm3) of molecular
massMw = 20 000 g/mol. Use the polystyrenemonomer volume as cell volume
vc.

a. Determine the degrees of polymerization NPS and N ′
PI, and the effective

degree of polymerization forNPI to beused in aFlory-Hugginsdescription.
b. For an interaction parameter χ = 0.1, do you expect a mixed (one phase)

or a de-mixed (two phase) state at the temperature T = 150 ◦C?

4. Derive (8.36).
5. Linear response theory: start from the quadratic approximation (8.23) forΔωmix

and consider the effect of an external field h by an additional linear term
hφ. Determine the new equilibrium position φeq(h) = φeq + Δφ with h and
show that the responseΔφ = φeq(h) − φeq(h = 0) is linear in h. Determine the

response coefficient dφeq

dh .
6. Derive (8.70) and (8.71) starting from (8.75).
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8.8 Appendix

8.8.1 Calculus of Variations

Abrief summary of functionals and their derivatives clearly remains insufficient from
a mathematical point of view. However, it provides the techniques to perform the
calculus of variations employed in this contribution. We follow the presentation of
Großmann, and recommend his book for a detailed discussion on solid mathematical
grounds [28].

Starting point is a space F of functions f : M �→ R, which can be chosen with
sufficiently tame properties. Here M ⊂ R

n is the space of arguments for the func-
tions, for our purposes the real axis M = R, the 3D space M = R

3 for bulk prob-
lems, or M = R

2 × R+ for interface problems. The latter describes the half space
with only non-negative z values. The tame functions f , g ∈ F are assumed to be
steady and sufficiently often differentiable. For two functions f , g ∈ F the inte-
gration of the product fg over M is considered as scalar product 〈f |g〉 over F . A
functional

F : F → R (8.114)

f �→ r ∈ R

maps F to the real numbers R and assigns to each f ∈ F a real number r.
As a first example, a fixed function g ∈ F can be chosen, which forms the kernel

in an integral

F[f ] =
∫
M

g(x)f (x) dnx = 〈g|f 〉 . (8.115)

So, f (x) is mapped by the functional F to the real number calculated as the inte-
gral over the product g(x)f (x), so the scalar product mentioned above. The squared
brakets of F[.] which were used in (8.3), (8.7), (8.43), and (8.51) indicate the depen-
dence of the functional F on the function f . A more general functional can take
also derivatives of f (x) into account, and the squared gradient theories in the form
(8.3) are examples for such functionals. A second example to assign a real value to
a function f (x) defined over an intervalI is to select a specific point x0 ∈ I and to
evaluate f (x0). Formally, the corresponding functional δx0 [f ] = f (x0) can be written
in a similar form as in (8.115):

δx0 [f ] =
∫
I

δ(x − x0)f (x) dx. (8.116)

The kernel δ(x − x0) of δx0 [.] is usually called a delta function, although it cannot
be defined in a mathematically consistent way as a function. The interpretation of
(8.116) as a formal notation for the functional which assigns to each f ∈ F its value
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f (x0) gives a more consistent picture. The concept of a distribution which forms the
basis for δ(x − x0) is also discussed by Großmann [28].

The calculation of an equilibrium interface profile is traced back to aminimization
of a functional (8.43) which yields the interfacial energy for arbitrary interfacial pro-
files. Similar to a discussion of the minimum of a function, the minimum is found by
setting the derivative equal to zero. However, now we have to use a functional deriv-
ative, not the normal derivative. The derivative of the functional F at the ‘position’
f ∈ F in the ‘direction’ h ∈ F is calculated as:

∂F

∂f
[h] = lim

ε→0

F[f + εh] − F[f ]
ε

. (8.117)

Under suitable conditions for a steady behavior of ∂F
∂f [h] in f and h, the existence of

functional derivations in specific directions (8.117) implies the existence of a unique
functional derivative

δF

δf
[h] =

∫
M

δF

δf (x)
h(x) dnx =

〈
δF

δf

∣∣∣∣ h
〉
. (8.118)

The resulting functional derivative δF
δf is again a functional in h. It can bewritten as an

integral over the kernel δF
δf (x) , whichmight be either a regular integration, as in (8.115),

or a formal integral similar to (8.116). While F[h] might contain also derivatives of
h, they can be removed by partial integration in order to reach the representation of
δF
δf [.] as an integral which contains h only and no derivatives of h. In this way, it
can be expressed as a scalar product in the second form of (8.118). Removing any
derivative of h is important when the first functional derivative is set equal to zero
in order to find a function with an extremal value. For the mathematically sloppy
discussion we are bound to in this brief appendix, we can assume the existence of
the functional derivative δF

δf of (8.118), if the limit in (8.117) leads to an expression
which is linear in h, so a presentation as scalar product in (8.118) is possible with a
kernel δF

δf (x) independent of h.
A well known example in physics is the functional derivative of the action

F[x] =
∫ t2

t1

L (x, ẋ, t) dt. (8.119)

of the differentiable trace x(t) with speed ẋ = dx
dt of a particle which starts at time t1

and ends at time t2. Here, L(x, v, t) is a two times differentiable Lagrange-function.
For the potential energy V (x) it reads L(x, v, t) = 1

2mv2 − V (x). The functional
derivative in the ‘direction’ h(t) is now calculated according to (8.117) as
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∂F

∂x
[h] = lim

ε→0

1

ε

{∫ t2

t1

L(x(t) + εh(t), ẋ(t) + εḣ(t), t) dt −
∫ t2

t1

L(x(t), ẋ(t), t) dt

}

=
∫ t2

t1

[
∂L

∂x
h(t) + ∂L

∂v
ḣ(t)

]
dt. (8.120)

The arguments of theLagrange-function L(x(t), ẋ(t), t) are not written explicitly in
(8.120) and will also be omitted in the following equations, for facility of inspection.
The time derivative ḣ(t) can be removed by integration by parts, which leads to the
form

∂F

∂x
[h] =

∫ t2

t1

[
∂L

∂x
− d

dt

∂L

∂v

]
h(t) dt +

[
h(t)

∂L

∂v

]t2

t1

=
∫ t2

t1

[
∂L

∂x
− d

dt

∂L

∂v
+ ∂L

∂v
[δ(t − t2) − δ(t − t1)]

]
h(t) dt. (8.121)

Since (8.121) is linear in h, the functional derivative in the direction h, ∂F
∂x , represents

the functional derivative δF
δx , which does not depend on the choice of h. Its kernel can

be extracted from the integral of (8.121) and reads

δF

δx(t)
= ∂L

∂x
− d

dt

∂L

∂v
+ [δ(t − t2) − δ(t − t1)]

∂L

∂v
. (8.122)

The test function h(t) describes the variation of the path x(t), see (8.117). For fixed
starting and end points of a path only variations with h(t1) = h(t2) = 0 are con-
sidered, and the boundary terms in (8.122) indicated by the delta functions do not
contribute. For a path of extremal action, the functional derivative (8.121) needs to
vanish for any such variation h. Thus, the kernel (8.122) needs to vanish, and we
arrive at the Euler- Lagrange equation

0 = δF

δx(t)
= ∂L

∂x
− d

dt

∂L

∂v
. (8.123)

Inserting the arguments of L(x(t), ẋ(t), t) into (8.123) leads to a differential equation,
the solution of which is the path of the particle.

A second example adapted to interface problems starts from the functional

F[φ] =
∫ +∞

−∞
dx
∫ +∞

−∞
dy
∫ +∞

0
dz

[
ω(φ) + κ

2

[[
∂φ

∂x

]2
+
[
∂φ

∂y

]2
+
[
∂φ

∂z

]2]]
.

(8.124)
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While x and y range from −∞ to +∞, z extends only from 0 which is the location
of the interface to +∞. The Lagrange function is extracted from (8.124):

L

(
φ,

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
= ω(φ) + κ

2

[[
∂φ

∂x

]2
+
[
∂φ

∂y

]2
+
[
∂φ

∂z

]2]
. (8.125)

We consider only variations h which vanish for x, y → ±∞ and z → +∞. A cal-
culation similar to (8.120) leads to the kernel of δF

δφ
:

δF

δφ(x, y, z)
= ∂ω

∂φ
− κ

[
∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
− δ(z)

∂φ

∂z

]
. (8.126)

Since the squared gradients in x and y in (8.124) give positive contributions, they
need to vanish for the equilibrium interface profile. So (8.124) and (8.126) effectively
depend on the gradient in z direction only and thus the problem becomes a one
dimensional. Apart from the contact potential, (8.124) corresponds to (8.51), and
(8.126) is similar to (8.52). Also bulk fluctuations are described by (8.126), if the
kernel is integrated over the full R3. The boundary term at the interface with δ(z)
vanishes, if we consider variations with h(z) = 0, so for a profile with fixed value at
the interface.Whenφ(z = 0) is not fixed but determined by an interface potential, the
gradient in the boundary term affects the boundary condition for fluctuation modes
in the second functional derivative.

For the calculation of the second functional derivative δ2F
δf 2 , one considers the first

derivative δF
δf [h] as a functional in f for fixed ‘direction’ h. For this functional in

f , the functional derivative is calculated with the same rules. The second derivative
can be written either as an integral, or as a bi-linear mapping, similar to the scalar
product (8.115):

δ2F

δf 2
[h, k] =

∫
M

h(x)
δ2F

δ2f (x)
k(x) dx =

〈
h

∣∣∣∣δ
2F

δf 2

∣∣∣∣ k
〉
. (8.127)

We do not look for an extremum with the second derivative, and so we do not set
the kernel (8.127) equal to zero, as we did in (8.123). So, it is not required and
often not possible to remove the derivatives of k by partial integration, and thus δ2F

δ2f (x)
might contain derivative operators acting on k. In case the derivative of a product of
a term included in δ2F

δ2f (x) and k(x) is encountered, it can be resolved with the product
rule of derivation for improved clarity. A function f which results in an extremum
as determined by the first functional derivative and its derivative can be inserted
to the Lagrange Function of (8.127), in order to build up a bi-linear form for
fluctuations around the equilibrium profile. This bi-linear form allows the definition
of orthogonality of fluctuation modes. Eigen-fluctuations are the eigen-modes of the
bi-linear form, and if these eigen-fluctuations have different eigen-values they are
necessarily orthogonal. Higher derivatives can be calculated along the same lines,
and a Taylor expansion for a functional reads
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F[f + h] ≈ F[f ] + δF

δf
[h] + 1

2

δ2F

δf 2
[h, h] + . . . + 1

n!
δnF

δf n
[h, h, . . . , h]. (8.128)

As an illustration of the second derivative, we use the second example (8.124), start
from the first derivative (8.118) with (8.126) inserted, and perform a limit calculation
with a second variation with respect to k(t) similar to (8.120). The kernel operator
of the resulting bilinear form (8.127) results as

δ2F

δf 2
[h, k] = ∂2L

∂x2
−
(

d

dt

∂2L

∂x∂v

)
−
(

d

dt

∂2L

∂v2

)
d

dt
− ∂2L

∂v2
d2

dt2

+ [δ(t − t2) − δ(t − t1)]

[
∂2L

∂x∂v
+ ∂2L

∂v2
d

dt

]
. (8.129)

8.8.2 List of Important Symbols

Symbol First Occurrence Meaning

Ã (8.27) scattering amplitude
α (8.19) length ratio of the polymers of a blend
χ (8.13) Flory-Huggins interaction parameter
F, ΔF, Δf (8.4), (8.3), (8.8) free energy, free energy increment and its density
ΔFmix, Δfmix (8.12), (8.16) Free energy of mixing and its density, Flory-

Huggins theory
ΔfL (8.61) free energy density Landau theory
ΔΩ , Δωmix (8.3), (8.22) grand canonical potential increment and its density
ΔωL, ΔωL,red (8.65), (8.101) density grand canonical potential Landau theory,

reduced form
Δωbulk, Δωbulk,red (8.43), (8.101) minimum density grand canonical potential, reduced

form
φ, φ′, φ′′ Fig. 8.1, (8.59), (8.60) volume fraction of B, deviation from φc, deviation

from φeq
φa, φb (8.20) compositions on the A-rich and B-rich side on the

binodal line
φ0, φ0a, φ0b (8.53), (8.57) contact compositions at a substrate, for A-rich and

B-rich phases
φc (8.59) critical composition
φ̄ Fig. 8.5, (8.20) average composition set by sample preparation
φeq (8.23) equilibrium composition
φpw (8.78) bulk composition at the start of the pre-wetting line
φred, φred,0 (8.100), (8.102) reduced composition, contact value of it
φred,0,P, φred,0,Q (8.107), (8.109) reduced contact composition on the P line and the

Q line

(continued)
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(continued)

Symbol First Occurrence Meaning
φw Fig. 8.7 bulk composition at the wetting transition
κ (8.3) elastic constant of a squared gradient theory
μA, μB (8.21) chemical potential of A polymers and B polymers
NA, NB, N ′

B (8.11) degree of polymerization of the A and of the B molecules
nA, nB (8.11) number of A polymers and number of B polymers in the volume
Rg, RgA, RgB (8.37) radius of gyration, for A and B chains
Sa (8.2) spreading coefficient of the A-rich phase
γab (8.1) interface tension between the A-rich phase and the B-rich phase
γAS, γBS (8.50) interface tensions between the pure A phase or the pure B phase

and a substrate
γaS, γbS (8.1) interface tensions between the A-rich phase or the B-rich phase

and a substrate
γS(φ) (8.50) contact potential at a substrate
Tbin, Tspin (8.66), (8.69) binodal and spinodal temperature
Θa (8.1) contact angle of the A-rich phase
Tpw Fig. 8.1, (8.77) temperatures at the start of the pre-wetting line
Tw Fig. 8.1, (8.87) bulk composition at the wetting transition
Tc (8.64) temperature of the bulk critical point
VA, VB (8.11) total volumes of A and B
vA, vB (8.11) volumes of an A monomer and a B monomer
vc (8.11) cell volume in the Flory-Huggins theory
ξ , ξbin (8.32), (8.98) correlation length of fluctuations, ξ on the binodal line
zeff (8.11) number of neighboring cells in the Flory-Huggins theory
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