
Chapter 3
Introduction to Depletion Interaction
and Colloidal Phase Behaviour

Remco Tuinier

Abstract Efforts to explain physical properties of colloidal suspensions in terms of
the forces that act between the colloidal particles go back to the beginning of the
20th century. In the second half of the last century theoretical progress clarified that
the stability of colloidal particles is also affected by non-adsorbing polymers in
solution, as first explained by Asakura and Oosawa in Japan using the excluded and
free volume concepts. Here an introduction to the depletion interaction and
resulting phase behaviour in colloidal suspensions is provided. The theory for the
phase behaviour of colloidal dispersions is developed here starting from the Van der
Waals theory for the as-liquid phase transition. Subsequently, the hard sphere
fluid-solid phase transition is explained. Next, an attractive Yukawa hard-core
model is used to outline the effects of varying the range of attraction on the phase
behaviour of a colloidal suspension of attractive particles. Finally, the phase states
that can be found in a colloidal hard sphere dispersion plus depletants are explained.

3.1 Introduction and Some History

3.1.1 The First Theory on Depletion Interaction

In the early 1950s the legendary Oosawa [1], at that time a young Associate
Professor at Nagoya University in Japan, organized a winter symposium in Nagoya
and invited a multidisciplinary group of Japanese scholars, mainly active in
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biology. Oosawa has a statistical mechanics background and he asked the group to
present work on phenomena in biological systems where statistical physics could be
helpful to understand certain mechanisms. During the meeting the ‘aggregation’ of
particles under the influence of macromolecules was a re-occuring theme. It was
observed in suspensions of red blood cells, bacterial cells, soil powder and gum
latex particles. This inspired Oosawa to start work with Sho Asakura, then a
graduate student, on the influence of polymers on the interaction between particles.

In 1953 P.J. Flory was invited by professor Yukawa to Tokyo and met Oosawa.
Oosawa invited Flory to come to Nagoya University [1]. During Flory’s visit
Asakura and Oosawa explained their theoretical results on two particles immersed
in a solution containing nonadsorbing polymer chains, showing the chains impose
an attractive interaction between the particles. The very positive response of Flory,
at that time Associate Editor of J. Chem. Phys. resulted in submission of this work,
leading to the seminal paper in which Asakura and Oosawa [2] presented a sta-
tistical mechanical derivation of the interaction between two plates immersed in a
solution of ideal nonadsorbing polymers. The theory of Asakura and Oosawa [2] is
the first theoretical prediction of a depletion force. It will be explained in more
detail later on. They showed that adding nonadsorbing polymer chains induce an
effective attraction between particles with a hard core interaction. The attraction
originates from repulsive interactions only, so it is a purely entropic effect.

This led to the discovery of the seminal Asakura-Oosawa depletion potential first
published in their 1954 paper [2]. The term ‘depletion’ was probably introduced by
Napper [3]. Oosawa indicated that the derivations and calculations were performed
within a few weeks [4] and wished to note that he actually does not like the word
‘depletion’.

3.1.2 Origin of the Depletion Force

The origin of the depletion effect is now first explained by regarding colloidal hard
spheres in a solution of nonadsorbing polymer. The fact that polymers do not
adsorb results in an effective depletion layer near the surface of the colloidal par-
ticles due to a loss of configurational entropy of a polymer chain in that region. In
Fig. 3.1 a few colloidal spheres are depicted in a polymer solution. The depletion
layers are indicated by the (dashed) circles around the spheres. When the depletion
layers overlap the volume available for the polymer chains increases. Hence states
in which the colloidal spheres are close together are more favourable. Therefore the
polymers indirectly induce an effective attraction force between the spheres even
though the direct colloid-colloid and colloid-polymer interactions are repulsive [5].
Vrij called this ‘attraction through repulsion’.

At least in the limit of low depletant concentrations the attraction equals minus
the product of the osmotic pressure and the overlap volume, indicated by the
hatched region between the close spheres in Fig. 3.1. The picture sketched above
became first clear in the 1950s through the work of Asakura and Oosawa [2, 6].
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It was hardly noticed in the literature at first, seemed forgotten, but started to gain
attention when Vincent et al. [7] and Vrij [5] started systematic experimental and
theoretical work on colloid-polymer mixtures.

Below the standard expression used for the depletion interaction [2, 5, 6] is
given. Consider two colloidal spheres each with volume vc ¼ 4pR3=3 and diameter
2R, surrounded by a depletion layer with thickness d. In that case the depletion
potential can be calculated from the product of P ¼ nbkBT , the (ideal) osmotic
pressure of depletants with bulk number density nb, times Vov, the overlap volume
of the depletion layers. Hence the Asakura-Oosawa-Vrij (AOV) depletion potential
equals:

WðhÞ ¼
1 h\0
�P VovðhÞ 0� h� 2d
0 h� 2d

8<: ð3:1Þ

with overlap volume VovðhÞ,

VovðhÞ ¼ p
6
ð2d� hÞ2ð3Rþ 2dþ h=2Þ: ð3:2Þ

Fig. 3.1 Schematic picture of a few colloidal spheres in a polymer solution with nonadsorbing
polymers. The depletion layers are indicated by the short dashes. When there is no overlap of
depletion layers (upper two spheres) the osmotic pressure acting upon the spheres due to the
polymers is isotropic. For overlapping depletion layers (lower two spheres) the osmotic pressure
on the spheres is unbalanced; the excess pressure is indicated by the arrows
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In Fig. 3.2 the AOV interaction potential WðhÞ is plotted. The minimum value of
the potential Wdep is achieved when the particles touch (h = 0). Inspection of
Eqs. (3.1) and (3.2) reveals that the range of the depletion attraction is determined
by the size 2d of the depletant, whereas the strength of the attraction increases with
the osmotic pressure of the depletants, hence with the depletant concentration.
Depletion effects offer the possibility to independently modify the range and the
strength of attraction between colloidal particles. In dilute polymer solutions, the
depletion thickness d � 1:1Rg [8–10], so d is close to the polymer’s radius of
gyration Rg.

It is noted that in the original paper of Asakura and Oosawa [6], where
expression Eq. (3.1) was first derived, the polymers were regarded as (dilute) pure
hard spheres. Vrij [5, 11] arrived at the same result by describing the polymer
chains as penetrable hard spheres, see Sect. 3.2.

In a mixture of hard spheres and depletants (which can also be polymers, sur-
factant micelles, rodlike colloidal particles) a phase transition occurs upon
exceeding a certain concentration of colloidal spheres and/or depletants. An
important parameter that is used to describe the phase stability of colloid-polymer
mixtures is the size ratio q,

q ¼ Rg

R
: ð3:3Þ

Phase diagrams of colloid-polymer mixtures are often described in terms of the
volume fraction of colloids g and the relative polymer concentration:

/p ¼
nb
n�b

¼ u
u� ; ð3:4Þ

which is unity at the overlap concentration and can be regarded as the ‘coil volume
fraction’ of polymer coils, exceeding unity in the semidilute concentration regime

h=0

h

h=2
W(h)
kT

W
dep

Fig. 3.2 Sketch of the depletion interaction between two hard spheres
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and beyond.1 Commonly /p is used as the parameter for ‘polymer concentration’.
The overlap concentration in kg=m3 or g=L equals

3Mp

4pR3
gNav

; ð3:5Þ

where Mp is the molar mass of the polymer and Nav is Avogadro’s number. The
osmotic pressure P in Eq. (3.1) can, using Eq. (3.4), be rewritten as
Pvp=kBT ¼ /p. This allows to write the depletion interaction for spheres that touch,
Wdepðh ¼ 0Þ ¼ Wdep as:

Wdep

kBT
¼ � /p 1þ 3

2q

� �
; ð3:6Þ

which for small q boils down to Wdep ¼ �ð3=2qÞkBT/p. This clarifies that at given
/p the depletion force is very strong for small q.

Next a few examples are discussed where the effects of depletion were already
noted long before Asakura and Oosawa rationalized the attractive interaction caused
by depletants.

3.1.3 Early Observations

The aggregation of red blood cells (RBCs) in blood of human beings is found to be
enhanced in case of for instance pregnancy or a wide range of illnesses, giving
rather pronounced ‘rouleaux’; clustered RBCs with their flat sides facing each other
[12]. Rouleaux were described already more than 2 centuries ago. Enhanced RBC
aggregation is observed for instance by measuring the sedimentation rate which can
increase 100-fold in case of severe illnesses as compared to RBC sedimentation in
healthy blood. The blood sedimentation test, based on monitoring aggregation of
red blood cells, became a standard method for detecting illnesses. The relation
between pathological condition, RBC aggregation and enhanced sedimentation rate
was described for instance long time ago in [12–14]. It has been shown that adding
macromolecules such as dextrans to blood also promotes rouleaux formation.
Asakura and Oosawa [6] suggested that RBC aggregation is caused by depletion
forces between the RBC’s induced by serum proteins. The general picture is that

1The quantity n�b is the bulk polymer number density at which the polymer coils overlap. In terms
of the volume fraction of polymer segments u (0�u� 1), one then uses /p ¼ u=u�, with u�

the segment volume fraction at which the chains start to overlap: u� ¼ Npvs=vp, where Np is the
number of segments per polymer chain, vs is the monomer (segment) volume, and vp ¼
ð4p=3ÞR3

g the coil volume, so u� �Np=R3
g. The overlap number density n�b hence follows as

n�b = 3=ð4pR3
gÞ.
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red blood cells tend to cluster at elevated concentrations of the blood serum pro-
teins, which act as depletants.

Large scale production of binder particles for paint production commenced about
a century ago. In order to lower transport costs there was a significant interest in
concentrating the polymeric latex. Centrifugation is highly energy consuming and
thus expensive. Traube [15] showed that adding plant and seaweed polysaccharides
led to a phase separation between a dilute and a concentrated phase with binder
particles. Since the particles are lighter than the solvent the concentrated phase, with
volume fraction 0:5� g� 0:8, floats on top. The lower phase is clear and hardly
contains particles. Baker [16] and Vester [17] systematically investigated the
mechanism that leads to what they called (enhanced) creaming. From the work of
Baker [16] it can be concluded that the particles aggregate reversibly; upon dilution
the latex particles can be resuspended. This suggests that bridging, which can also
cause creaming [18], is not the driving force for enhanced creaming here.

3.1.4 Onset of Attention for Depletion After 1954

Not long after the publication of the work of Asakura and Oosawa, Sieglaff [19]
demonstrated that a depletion-induced phase transition may occur upon adding
polystyrene to a dispersion of microgel spheres in toluene. This demonstrated that
the attractive depletion force is sufficiently strong to induce a phase separation.
Sieglaff rationalized his findings in terms of the theory of Asakura and Oosawa. It
took more than a decade before subsequent work was published.

Early systematic studies with respect to phase stability for colloid-polymer
mixtures were performed in the 1970s by Vincent and co-workers [7, 20, 21]. They
concentrated on mixtures of colloidal spheres (latex particles) plus nonadsorbing
polymers such as polyethylene oxide (PEO). In the papers of Vincent et al. there is
quite some variation in qualifying the demixing phenomena in colloid-polymer
mixtures [20, 22–24]. These experiments were ahead of a full theoretical under-
standing of the phase behaviour of colloid-polymer mixtures.

Also in the 1970s Hachisu et al. [25] investigated aqueous dispersions of neg-
atively charged polystyrene latex particles that undergo a colloidal fluid-to-solid
phase transition upon lowering the salt concentration using dialysis or increasing
the particle concentration. Under conditions where the latex dispersion is not
ordered (fluid-like), Kose and Hachisu [26] added sodium polyacrylate to poly-
styrene latex particles (both components are negatively charged), and observed
crystallization of the colloidal spheres. The authors suggested that the ordering is
due to ‘some attractive force’. When the polymer concentration is increased crys-
tallization occurs faster. Since polymers and particles repel each other the crys-
tallization process was probably induced by depletion interaction.

Theoretical work on depletion interactions and their effects on macroscopic
properties such as phase stability started with work by Vrij [5] who considered the
depletion interaction between hard spheres due to dilute nonadsorbing polymers
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described as penetrable hard spheres (see Sect. 3.2) and computed the second
osmotic virial coefficient to explain the phase transitions observed by De Hek and
Vrij [11]. By mixing aqueous hydroxyethylcellulose (HEC) with polymeric col-
loidal particles, Sperry [27, 28] and coworkers [29] observed phase separation and
made a study on the effect of the structure of the colloid-rich phase as a function of
the colloidal particle-free polymer size ratio q ¼ Rg=R. Unstable systems at large
q and not too high polymer concentrations are characterized by smooth interfaces,
implying colloidal gas–liquid coexistence. For small q, demixed systems are
characterized by irregular interfaces that indicate (colloidal) fluid-solid coexistence.
This suggests that the width of the region where a colloidal liquid is found in
colloid-polymer mixtures is limited.

The work of Sperry inspired Gast, Hall and Russel to develop a theory which
might explain the experimental phenomena. Gast et al. [30] used thermodynamic
perturbation theory (TPT) [31] to derive the free energy of a mixture of colloidal
particles and polymers (described as phs; penetrable hard spheres), based on
pair-wise additivity of the interactions between the colloids. They calculated the
phase behaviour from the (perturbed) free energy which made it possible to assign
the nature (i.e. colloidal gas, liquid or solid) of the coexisting phases as a function
of size ratio q, the concentration (or formally activity within their approach) of the
polymers, and the volume fraction of colloids. For small values of q, say,
q ¼ Rg=R\0:3, increasing the polymer concentration broadens the hard sphere
fluid-solid coexistence region; a (stable) colloidal fluid-solid coexistence is
expected if the polymer chains are significantly smaller than the colloidal spheres
(low q). Inside the unstable regions a (metastable) colloidal gas–liquid branch is
located. For intermediate values of q, the gas–liquid coexistence curve crosses the
fluid-solid curve and for large q-values mainly gas–liquid coexistence is found for
g\0:49, where g is the volume fraction of colloids. The results are in agreement
with the findings of Sperry [27–29]. Experimentally, Gast et al. [32] later verified
the predicted types of phase coexistence regions for a model colloid-polymer
system. Colloid-polymer phase diagrams are commonly plotted in terms of the
volume fraction of colloids g and the relative polymer concentration /p, defined in
Eq. (3.4).

A semigrand canonical treatment for the phase behaviour of colloidal spheres
plus nonadsorbing polymers was proposed by Lekkerkerker [33], who developed
‘free volume theory’ (also called ‘osmotic equilibrium theory’), see Sect. 3.3.4. The
main difference with TPT [30] is that free volume theory (FVT) accounts for
polymer partitioning between the phases and corrects for multiple overlap of
depletion layers, hence avoids the assumption of pair-wise additivity which
becomes inaccurate for relatively thick depletion layers. These effects are incor-
porated through scaled particle theory (see for instance [34] and references therein).
The resulting free volume theory (FVT) phase diagrams calculated by Lekkerkerker
et al. [35] revealed that for q\0:3 coexisting fluid-solid phases are predicted,
whereas at low colloid volume fractions a gas–liquid coexistence is found for
q[ 0:3, as was predicted by TPT. A coexisting three-phase colloidal gas–
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liquid-solid region, not present in TPT phase diagrams, was predicted by FVT for
q[ 0:3 and gained much attention. Experimental work [36, 37] demonstrated that
this three-phase region indeed exists. Before the basics of phase behaviour of
colloidal dispersions are discussed in more detail the focus is now first on the
depletion interaction where more detailed derivations of the basic results are
provided.

3.2 Depletion Interaction

In this section the depletion interaction between two flat plates and between two
spherical colloidal particles is considered for penetrable hard spheres (phs). It is
noted that besides polymers (for which PHS are a reasonable model when the
polymers are small and dilute), small colloidal spheres, rods and plates can also act
as depletants, see [38]. The penetrable hard sphere model, implicitly introduced by
Asakura and Oosawa [2] and considered explicitly in detail by Vrij [5], is char-
acterized by the fact that the spheres freely overlap each other but act as hard
spheres with diameter 2d when interacting with a wall or a colloidal particle.

3.2.1 Depletion Interaction Between Two Flat Plates

Consider Fig. 3.3 where two parallel flat plates in a polymer solution are sketched.
The force per unit area, KðhÞ, between two parallel plates separated by a distance h,

K

h

δ2

Fig. 3.3 Schematic picture of
two parallel flat plates in the
presence of penetrable hard
spheres (dashed circles)
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is the difference between the osmotic pressure Pi inside the plates and the outside
pressure Po

K ¼ Pi �Po: ð3:7Þ

Since the penetrable hard spheres behave thermodynamically ideally the osmotic
pressure outside the plates is given by the Van ’t Hoff law Po ¼ nbkBT , where nb is
the bulk number density of the phs. When the plate separation h is equal to or larger
than the diameter r(¼ 2d) of the penetrable hard spheres the osmotic pressure
inside the plates is the same as outside,Pi ¼ Po ¼ nbkBT . On the other hand, when
the plate separation is less than the diameter of the penetrable hard spheres, no
particles can enter the gap and Pi ¼ 0. This means that

KðhÞ ¼ �nbkBT 0� h\2d
0 h[ 2d

�
: ð3:8Þ

Since K ¼ �dW=dh, integration yields the interaction potential WðhÞ per unit
area WðhÞ between the plates

WðhÞ ¼ �nbkBTð2d� hÞ 0� h\2d
0 h� 2d

�
: ð3:9Þ

3.2.2 Depletion Interaction Between Two Spheres

When the depletion zones with thickness d around spherical colloidal particles with
radius R start to overlap, i.e., when the distance rð¼ hþ 2RÞ between the centers of
the colloidal particles is smaller than 2Rþ 2d, a net force arises between the
colloidal particles. It is useful to define an effective depletion radius Rd :

Rd ¼ Rþ d: ð3:10Þ

The (attractive) force originates from an uncompensated (osmotic) pressure due
to the depletion of penetrable hard spheres from the gap between the colloidal
spheres. This is illustrated in Fig. 3.4 from which it can be deduced that the
uncompensated osmotic pressure acts on the surface between h ¼ 0 and
h0 ¼ arc cosðr=2RdÞ. For obvious symmetry reasons only the component along the
line connecting the centers of the colloidal spheres contributes to the total force. For
the angle h this component is Po cos h where the pressure is Po ¼ nbkBT . The
surface on which this force acts between h and hþ dh equals 2pR2

d sin hdh: The
total force between the colloidal spheres is obtained by integration:
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KsðrÞ ¼ �2pnbkBT Rþ dð Þ2
Z h0

0
sin h cos h dh: ð3:11Þ

Hence

KsðrÞ
nbkBT

¼
1 r\2R
�pR2

d½1� r=2Rdð Þ2� 2R� r� 2Rd

0 r[ 2Rd

8<: : ð3:12Þ

The minus sign in the right-hand side of Eq. (3.12) implies that the force is
attractive. The depletion potential is now obtained by integration of the depletion
force Eq. (3.12)

WsðrÞ ¼
Z 2Rd

r
KsðrÞdr

¼ 1 r\2R

¼ �nbkBTVovðrÞ 2R� r� 2Rd

¼ 0 r[ 2Rd

;

ð3:13Þ

with

VovðrÞ ¼ 4p
3
R3
d 1� 3

4
r
Rd

þ 1
16

r
Rd

� �3
" #

ð3:14aÞ

θ0r
R

δ

σ

h

Π0

Fig. 3.4 Two hard spheres in the presence of penetrable hard spheres as depletants. The PHS
impose an unbalanced osmotic pressure P between the hard spheres resulting in an attractive force
between them. The overlap volume of depletion layers between the hard spheres (hatched) has the
shape of a lens with width 2d� h and height 2H ¼ 2Rd sin h0, where h0 is given by cos h0 ¼ r=2Rd
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VovðhÞ ¼ p
6
ð2d� hÞ2ð3Rþ 2dþ h=2Þ ð3:14bÞ

The result of Eq. (3.14a), in which r is the variable, was first obtained by Vrij [5]
with PHS explicitly as depletants. In Eq. (3.14b) the variable is h and was already
given (without explicit derivation) in Eq. (3.2). Both Eqs. (3.14a) and (3.14b) are
frequently used in the literature.2 The expression for WsðrÞ in Eq. (3.13) equals the
osmotic pressure (nbkBT) times overlap volume Vov. In the (Derjaguin) limit d 	 R
the attractive parts of the force (Eq. 3.11) and interaction potential (Eq. 3.13)
between the spheres take on even simpler forms:

KsðhÞ
nbkBT

¼ �pRð2d� hÞ ð3:15Þ

and

WsðhÞ
nbkBT

¼ �2pRðd� h=2Þ2: ð3:16Þ

For the contact potential Wdep ¼ Wsðh ¼ 0Þ the result

Wdep

kBT
¼ �2nbpRd

2 ¼ � 3
2
/d

q
ð3:17Þ

is obtained, where /d is the relative concentration of penetrable hard spheres
4pd3nb=3, see also the definition of Eq. (3.4) for /p.

It is noted that in case of (small) hard spheres as depletants the results are
identical to those above only in the dilute limit. For the minimum attraction between
two spheres at contact the depletion force up to second order in hard sphere
depletant volume fraction gss is [38, 39]:

Ws;min

kBT
¼ � 3

2
R
d

gss þ
1
5
g2ss

� �
; ð3:18Þ

where d now equals the radius of the small hard spheres. For small values of gss
Eq. (3.17) is recovered for gss ¼ /d . At higher volume fractions the depletion
attraction at contact between the big hard spheres by small hard spheres is however
larger than the depletion due to penetrable hard spheres. Besides a depletion

2A smooth transition between these forms is:

VovðrÞ ¼ 2p
3
ðRd � r=2Þ2ð2Rd þ r=2Þ:

.
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attraction, depletion effects of small hard spheres also lead to a repulsive contri-
bution to the interaction between two spheres. Near h ¼ 2d a positive maximum of
the pair interaction is found with a maximum (up to second order in gss)

Ws;max

kBT
¼ 6R

5d
g2ss:

3.3 Phase Behaviour of Colloidal Dispersions

Phase transitions are the result of physical properties of a collection of particles
depending on the colligative properties. In Sect. 3.2 we focused on two-body
interactions. Depletion effects are commonly not pair-wise additive [40–43].
Therefore, the prediction of phase transitions of particles with depletion interaction
is not straightforward. As a starting point the Van der Waals model is recalled and
applied to a collection of colloidal spheres with long-ranged attraction. Then a more
advanced description for the thermodynamic properties of the pure colloidal dis-
persion are given. Subsequently, this is used to describe the phase behaviour of a
collection of hard spheres plus additional Yukawa attraction, with a variable range
of the interaction. Next, the basics of the free volume theory for the phase behaviour
of colloids + depletants is explained. Only the simplest type of depletant, the
penetrable hard sphere, is considered here. For experimental methods that enable
measuring (depletion) interaction potentials between particles I refer to [44].

3.3.1 Phase Behaviour of a Van der Waals Fluid

The seminal equation of state of van der Waals [45] for the pressure P for
N particles in a volume V reads:

P ¼ NkBT
V � bN

� a
N
V

� �2

: ð3:19Þ

Here b is the excluded volume per particle, which is 4vc for hard spheres. Using
this equation van der Waals could implicitly demonstrate that a fluid can only phase
separate when there is both excluded volume interaction (expressed via the con-
tribution of the bN term) as well as attraction (the aN2=V2 term) between the
molecules. It allows to describe the gas–liquid equilibria for a wide range of atomic
and molecular substances and it revealed that the phase behaviour of low molecular
systems is rather universal.

Let us now describe a colloidal dispersion of hard spheres plus an attraction in a
very simple manner using the van der Waals model of Eq. (3.19). This can be done
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when considering the solvent in a colloidal dispersion as effective background.
When performing computations on phase coexistence it is useful to use normalized
quantities. Hence the normalized Helmholtz energy eF , the dimensionless chemical
potential el and normalized pressure eP are introduced:

eF ¼ Fvc
kBTV

; ~l ¼ l
kBT

g ¼ Nvc
V

; eP ¼ Pvc
kBT

:

ð3:20Þ

For sake of completeness the definition of the volume fraction g is added. Note
that instead of the pressure P of a molecular fluid here the normalized osmotic
pressure P is used because solvent is present.

The van der Waals equation can now be rewritten in dimensionless form:

eP ¼ g
1� 4g

� cg2; ð3:21Þ

with c ¼ a=ðkBTvcÞ. In order to compute phase coexistence the osmotic pressure
and the chemical potential for the van der Waals fluid are required. From ther-
modynamics (P ¼ �ð@F=@VÞN;T ) it follows

eP ¼ � @ðeF=gÞ
@ð1=gÞ

 !
V ;T

¼ g
@eF
@g

 !
V ;T

�eF ¼ g~l� eF : ð3:22Þ

Hence the Helmholtz energy follows as:

eF ¼ g lnðK3=vcÞ þ g ln g� g� g lnð1� 4gÞ � cg2: ð3:23Þ

The last two terms are the result of the integration of Eq. (3.21) using Eq. (3.22).
The other terms are the ideal contributions that follow from the ideal gas reference
state [46]; K is the De Broglie wavelength.3 Using

~l ¼ @eF
@g

 !
N;T

; ð3:24Þ

the chemical potential follows as

~l ¼ ~lþ þ ln
g

1� 4g

� �
þ 4g
1� 4g

� 2cg; ð3:25Þ

3K ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmckBT

p
, with the colloid mass mc and Planck’s constant h.
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with ~lþ ¼ lnK3=vc. Now all ingredients to compute gas–liquid coexistence are
available. The binodal gas–liquid coexistence curve follows from solving the
coexistence conditions

eP ðgGÞ ¼ eP ðgLÞ
~lðgGÞ ¼ ~lðgLÞ

; ð3:26Þ

where gG and gL are the volume fractions of the particles in the gas and liquid
phases, respectively. In Fig. 3.5 the binodal is plotted. The critical point (cp) fol-
lows analytically from Eq. 3.21 as ccp = 27/2 and gcp = 1/12 and is indicated as full
circle. The quantity c�1 can be regarded as effective temperature. It is clear from
Eq. (3.21) that the description of the fluid diverges at g ¼ 0:25, which is in fact
incorrect. Therefore the focus is first on more accurate expressions for the equations
of state for a collection of pure hard spheres in the next section.

3.3.2 Phase Behaviour of a Hard Sphere Dispersion

The focus is first on the equation of state for the fluid phase of hard spheres
interacting through the hard-sphere interaction

WðhÞ ¼ 1 for h\0
0 otherwise

�
; ð3:27Þ

Carnahan and Starling [48] found that the second and higher order virial coeffi-
cients for a collection of hard spheres can, to a good approximation, can be written as

Fig. 3.5 Gas–liquid binodal following the van der Waals equation of state. The full circle is the
critical point
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Bmþ1 ¼ ðm2 þ 3mÞvmc : ð3:28Þ

In Table 3.1 exact [47] virial coefficients are compared with the approximation
given by Eq. (3.28). Inserting Eq. (3.28) into the general definition for the virial
expansion of the (osmotic) pressure4 [49],

P0
f vc

kBT
¼ gþ

X
m¼2

Bm

vm�1
c

gm; ð3:29Þ
yields the Carnahan-Starling equation of state [48] for a fluid of (colloidal) hard
spheres:

eP0
f ¼

P0
f vc

kBT
¼ gþ g2 þ g3 � g4

ð1� gÞ3 : ð3:30Þ

In Fig. 3.6 (left part) the (osmotic) pressure given by the Carnahan-Starling
equation of state is compared to computer simulation data. Obviously, Eq. (3.30) is
indeed very accurate.

From the Gibbs-Duhem relation SdT � VdPþ Ndl ¼ 0 the chemical potential
can be calculated from the pressure. For constant T this relation may be written as

dP ¼ g
vc
dl: ð3:31Þ

Now l follows as

l ¼ kBT ln
K3

vc
þ vc

Z g

0

1
g0
dP
dg0

dg0; ð3:32Þ

where dP=dg can be calculated from Eq. (3.30) for a fluid of hard spheres. The
result for the chemical potential (normalized as ~l ¼ l=kBT) of a hard sphere in a
fluid with volume fraction of hard spheres g follows now as

Table 3.1 Values for the 2nd
up to the 8th virial coefficient
of hard spheres [47] in
comparison with the
Carnahan-Starling result
Eq. (3.28). The numbers in
the second and third column
are Bi=vi�1

c for i = 2, 3,…0.8

i Exact/Numerical CS Eq. (3.28)

2 4 4

3 10 10

4 18.36 18

5 28.22 28

6 39.82 40

7 53.34 54

8 68.53 70

4the ‘0’ refers to hard spheres and the subscript ‘f’ indicates a fluid phase.
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~l0f ¼ ln
K3

vc
þ ln gþ 3� g

ð1� gÞ3 � 3 ð3:33Þ

Using the standard thermodynamic result eP ¼ gel � eF , the resulting canonical
free energy of the pure hard-sphere dispersion of a fluid is:

eF0
f ¼ g lnðgK3=vcÞ � 1

� �þ 4g2 � 3g3

ð1� gÞ2 : ð3:34Þ

The first term on the right-hand side of Eq. (3.34) is the ideal contribution, while
the second hard-sphere interaction term is the Carnahan-Starling equation of state
[48].

To obtain the thermodynamic functions of the hard-sphere crystal one can use
the cell model of Lennard-Jones and Devonshire [52]. For details I refer to our book
[38]. The cell model result for the normalized Helmholtz energy of an fcc crystal is

eF0
s ¼ g ln

27K3

8vc

� �
� 3g ln

gcp
g

� 1
� 	

; ð3:35Þ

where gcp ¼ p=3
ffiffiffi
2

p ’ 0:74 is the volume fraction at close packing. Using
Eqs. (3.22) and (3.24) the dimensionless osmotic pressure and chemical potential
become:

eP0
s ¼

3g
1� g=gcp

; ð3:36Þ

and

~l0s ¼ ln
K3

vc
þ ln

27
8g3cp

" #
þ 3 ln

g
1� g=gcp

" #
þ 3
1� g=gcp

: ð3:37Þ

The pressure given by Eq. (3.36) can be compared to computer simulation data
and, as can be seen in Fig. 3.6 (right part), turns out to be highly accurate. The result
for the chemical potential given by Eq. (3.37) is close to the computer simulation

results. The constant on the right-hand side ln 27=8g3cp
h i

¼ 2:1178 is quite close to

2:1306, which can be abstracted from computer simulations [53]. The full free
energy expression for the hard-sphere solid phase can now also be written as

eF ¼ 2:1178gþ 3g ln
g

1� g=gcp

 !
þ g ln K3=vc


 �
: ð3:38Þ
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Solving the coexistence conditions

eP0
f ðgf Þ ¼ eP0

s ðgsÞ
~l0f ðgf Þ ¼ ~l0s ðgsÞ

; ð3:39Þ

yields coexisting volume fractions gf ¼ 0:491, gs ¼ 0:541 and a coexistence

pressure eP ¼ 6:01. These values are indeed very close to computer simulation
results, first accurately performed by Hoover and Ree [51], see the comparison in
Fig. 3.6.

A collection of pure hard spheres is athermal; the thermodynamic properties are
fully determined by entropy. At low densities the configurations of maximum
entropy correspond to disordered arrangements. As the density increases crystalline
arrangements lead to a more efficient packing and make more arrangements pos-
sible above some volume fraction, see Fig. 3.7. The fluid–crystal transition has been
observed for instance in suspensions of sterically stabilized silica particles [54] and
sterically stabilized PMMA particles [55] with low size dispersity. In addition to the
fluid-crystal transition an amorphous glassy phase was observed above a volume
fraction g ¼ 0:58. For such high volume fractions the particles become so tightly
trapped or caged that they do not crystallize but remain in long-lived metastable
states, termed called colloidal glasses.

Accurate expressions for the equation of state of a fluid of hard spheres and for
an fcc crystal of hard spheres have been presented above and will be used further
on. Next it is interesting to account for additional attractions between the particles.
As Boltzmann already pointed out [56] the attractive term of the van der Waals
equation is only valid for long-ranged attractions. In order to investigate the effect

Π

η

Fig. 3.6 The (osmotic) pressure of hard spheres. The curves are the Carnahan-Starling expression
Eq. (3.30) for a fluid (g� 0:494) and the cell model result Eq. (3.36) for an fcc crystal (solid
curves; g� 0:545). The full symbols are Monte Carlo computer simulation results [50]. The two
open symbols correspond to the fluid-solid coexistence from simulation [51], the dotted line
connects these binodal points
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of the range of the attraction on the phase behaviour the focus is therefore now on
particles with a hard-core plus Yukawa5 attraction.

3.3.3 Phase Behaviour of a Dispersion of Hard Cores Plus
Yukawa Attraction

Here a collection of hard-core spheres with hard-core diameter 2R plus a Yukawa
attraction is considered. The hard-core Yukawa pair potential between two spheres
can be written as6

WðhÞ ¼ 1 for h\0
� e

1þh=2R expð�jhÞ otherwise

�
; ð3:40Þ

where h equals r � 2R, with r the centre-to-centre distance. The strength of the
attraction is the contact potential Wð0Þ ¼ e and the range is the screening length
j�1. The relative range of attraction qY (with respect to the particle radius R) is
defined as 1=jR.

For a collection of particles interacting through this pair interaction it is possible to
derive an equation of state. Tang and Lu [57] solved the Ornstein-Zernicke
(OZ) equation using the mean spherical approximation (MSA) closure in Fourier and
Laplace space and found that each perturbation term in the contact potential can be
solved analytically. For the first-order expansion, termed FMSA, this leads to rela-
tively simple and rather accurate solutions for the thermodynamic properties [58, 59].

Fig. 3.7 Schematic pictures of a hard-sphere fluid (left) and hard spheres with ‘crystalline’ order
(right); free volume entropy drives freezing

5The term Yukawa potential originally stems stems from the quantum mechanical theory of
nuclear interactions. In a more general context, it is often used for potentials with a distance profile
of the type expf�jrg=r.
6Although here only Yukawa attractions are considered this description also holds for spheres
interacting through a hard-core repulsive Yukawa interaction.
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Tang et al. [59] derived an analytical expression for eF (see Fig. 3.8 for an
illustration of determining coexistence points from the free energy) that is accurate
and which can be written in the Van der Waals-form, albeit the c term is now
dependent on g (G * γη2). Tuinier and Fleer [60] found that this form can be
simplified even more with almost no loss of accuracy. The final form is

eF ¼ eF0 � beGðgÞ; ð3:41Þ

where b ¼ 1=kBT with a simple volume fraction-dependent function GðgÞ,

GðgÞ ¼ g2
a0 þ a1g

b0 þ b1g þ b2g2
: ð3:42Þ

The coefficients ai and bi depend only on the relative range of the Yukawa
potential qY . They are expressed most easily in its inverse k ¼ 1=qY ¼ jR:

a0 ¼ 4k2 þ 2k

a1 ¼ 2k2 þ 4k
ð3:43Þ

and

b0 ¼ 2k3

3

b1 ¼ v1 �
4k3

3
þ 2k2 � 1

b2 ¼ v2 þ
2k3

3
� 2k2 þ 3k � 2;

ð3:44Þ

where v1 and v2 are defined as:

v1 ¼ 2k þ 1ð Þ expð�2kÞ
v2 ¼ k þ 2ð Þ expð�2kÞ: ð3:45Þ

Note that a volume fraction-independent c survives in the low g-limit, for which
G becomes 3qYð2þ qYÞg2, so c ¼ �3beqYð2þ qYÞ.7 However, in very concen-
trated systems G becomes proportional to g.

An analytical expression for the chemical potential is obtained from ~l ¼ @~F=@g:

~l ¼ ~l0 � beHðgÞ; ð3:46Þ

7This can be regarded as an explicit definition for c within the van der Waals model when the
attraction is described as a long-ranged Yukawa attraction.
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where HðgÞ is given by:

HðgÞ ¼ kg
c0 þ c1g þ c2g2 þ c3g3

ðb0 þ b1g þ b2g2Þ2
; ð3:47Þ

with the following q-dependent coefficients:

c0 ¼ 8k4

3
þ 4k3

3

c1 ¼ ð2k þ 1Þv1 þ
8k4

3
þ 14k3

3
þ 3k2 þ 2k þ 1

c2 ¼ ðk þ 2Þv1 �
4k4

3
� 2k3

3
þ 4k2 þ k þ 1

c3 ¼ ð2k þ 1Þv2 þ
4k4

3
� 10k3

3
þ 4k2 � 3k � 2

ð3:48Þ

The (osmotic) pressure follows from eP ¼ g~l� eF :
eP ¼ eP0 þ beJðgÞ; ð3:49Þ

with JðgÞ given by:

JðgÞ ¼ GðgÞ � gHðgÞ: ð3:50Þ

Now analytical expressions are available for both ~l and eP.
In principle this provides sufficient information to compute the binodal curves.

In Fig. 3.9 gas–liquid binodals for attractive hard core Yukawa spheres are plotted
for various ranges of the attraction jR. As an illustration computer simulation
results are plotted as data points as well. It is clear that the unstable region shifts to

~ ~
(i) (ii)

gas liquid fluid solidgas

F F

η η η η η η

Fig. 3.8 The dimensionless Helmholtz energy eF ¼ g~l� eP as a function of volume fraction g.
Schematic view of the common tangent construction (straight lines) to determine the phase
coexistence in mixtures of colloidal hard spheres and phs. (i): gas–liquid coexistence, (ii):
fluid-solid coexistence. The dashed lines represent the common tangent construction with intercept
� eP and slope ~l
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lower temperatures for shorter ranges of attraction; at identical values of kBT=e ¼
be there is similar attraction at close contact between the spheres but there is an
additional attraction when the spheres are further apart in case of smaller jR.

In order to calculate the gas–liquid binodal e is eliminated from Eqs. (3.46) and
(3.49) to find the analytical coexistence relation:

be ¼ ~l0l ðglÞ � ~l0gðggÞ
HðglÞ � HðggÞ

¼
eP0

l ðglÞ � eP0
gðggÞ

JðggÞ � JðglÞ
: ð3:51Þ

For both l0g and l0l Eq. (3.33) is used and for both P0
g and P0

l Eq. (3.30) is
applied. For a given q the second and third parts of this equation relate the volume
fractions at coexistence. For instance, a value for gg is chosen and the corre-
sponding gl is solved using the second equality of Eq. (3.51). The first equality then
tells to which Yukawa contact potential e those binodal concentrations correspond.
It is noted that the calculation of binodals in the analytical model involve nothing
more than solving one equation in one unknown.

Fluid–solid coexistence is obtained analogously:

e ¼ l0s ðgsÞ � l0f ðgf Þ
HðgsÞ � Hðgf Þ

¼ P0
s ðgsÞv�P0

f ðgf Þv
Jðgf Þ � JðgsÞ

: ð3:52Þ

In this case l0s is used from Eq. (3.37) and P0
s from Eq. (3.36). As in Eq. (3.51),

the fluid parts are obtained from Eqs. (3.30) and (3.33).
In Fig. 3.10 a full phase diagram (gas–liquid and fluid–solid) is presented for

jR ¼ 2 and compared to computer simulation results. It follows that there is a
region where there is a stable fluid (low g, high T), a region where the fluid phase
separates into a gas and a liquid below the critical point, a region where fluid and
solid coexist (near 0.45 . g. 0:6), a region where there is a solid phase (high g)
and a gas–solid coexistence region (low T).

kT/ε

η

Fig. 3.9 Gas–liquid
coexistences of a collection of
hard-core attractive Yukawa
spheres for three values of jR
as indicated. Symbols are
simulation results [61], the
solid curves are the analytical
expressions for the binodals.
Crosses represent the
theoretical critical points
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For large values of jR the gas–liquid region becomes metastable with respect to
fluid-solid coexistence. See Fig. 3.11 where the fluid-solid binodals are plotted for
jR ¼ 12:5. Stable liquid configurations require that the particles still attract one
another when their interparticle distance fluctuates. Hence for short-ranged attrac-
tions the gas–liquid coexistence gets metastable.

3.4 Phase Behaviour of a Colloid-Polymer Mixture

Several theories have been developed that enable calculations of phase transitions
in systems with depletion interactions. The first successful treatment accounting
for the colligative thermodynamic properties mediated by depletion interactions

Fig. 3.10 Phase behavior of a dispersion of spherical hard-core attractive Yukawa particles with
jR = 2. Symbols are simulation results [62], the solid curves are the analytical results. Cross is the
theoretical critical point, plusses identify the three coexisting phases of the triple points; the three
plusses are connected through a thin line

Fig. 3.11 As Fig. 3.10 but
for jR ¼ 12:5. The GL
coexistence is now
metastable, and there is no
triple point
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[24, 30] is thermodynamic perturbation theory [46, 49]. In this classical approach
depletion effects can be treated as a perturbation to the hard-sphere free energy, as
was done by Gast et al. [30]. Their work predicted that for a sufficient depletant
concentration, the depletion interaction leads to a phase diagram with stable col-
loidal gas, liquid and solid phases for d=R� 0:3. For small depletants with
d=R� 0:3 only colloidal fluid and solid phases are thermodynamically stable, and
the gas–liquid transition is meta-stable. Although implementation of this theory is
straightforward, it has the drawback that it does not account for depletant parti-
tioning over the coexisting phases. Subsequent developments originate from liquid
state approaches. Examples are density functional theory [63], PRISM [64] and the
Gaussian core model [65].

3.4.1 Free Volume Theory

In the early nineties of the last century a theory that accounts for depletant parti-
tioning over the coexisting phases was developed [35], which nowadays is com-
monly referred to as free volume theory (FVT) [66]. This theory is based upon
considering the osmotic equilibrium between a (hypothetical) depletant and the
colloid + depletant system. The depletants were simplified as penetrable hard
spheres. See the sketch in Fig. 3.12.

This theory has the advantage that the depletant concentrations in the coexisting
phases follow directly from the (semi)grand potential which describes the colloid
plus depletant system. As illustrated in Fig. 3.13, the system can arrange itself such
as to provide a larger free volume for the depletants by overlap of two depletion

Fig. 3.12 A system (right) that contains colloids and penetrable hard spheres (phs) in osmotic
equilibrium with a reservoir (left) only consisting of phs. A hypothetical membrane that allows
permeation of solvent and phs but not of colloids is indicated by the dashed line. Solvent is
considered as ‘background’
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zones. This (entropic) physical origin of the phase transitions induced by depletion
interactions is incorporated into the theory via the available volume for the
depletants.

In FVT multiple overlap of depletion zones with thickness d, see Fig. 3.14, is
taken into account. Multiple overlap occurs for

d
R
[

2
3

ffiffiffi
3

p
� 1’ 0:15;

where three depletion zones start to overlap, see Fig. 3.14. Only for d=R\0:15 is a
colloid/depletant mixture pair-wise additive. For large d=R a mixture of hard spheres
plus penetrable hard spheres differs fundamentally from a mixture of hard-core
spheres that directly attract one another [67]. This has a considerable influence on the

Fig. 3.13 Illustration of the free volume Vfree: it is the unshaded volume not occupied by the
colloids plus (partially overlapping) depletion layers

Fig. 3.14 Three hard spheres surrounded by depletion layers (hatched areas). When the depletion
layers are thin (left) there is no multiple overlap of depletion layers; the system is pair-wise
additive. For thicker depletion layers (right) multiple overlap of depletion layers occurs and
depends on more than two-body contributions. The lowest value for d=R where multiple overlap
occurs follows from considering the triangle formed by the 3 particle centres; its edge is 2Rþ h at
particle separation h. Multiple overlap starts when the centre of the triangle is a distance Rþ d
from the corners
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topology of the phase diagram [68]. Multiple overlap of depletion layers widens the
liquid window, which is the parameter range with phase transitions that include a
stable liquid, in comparison with a pair-wise additive system [66].

The starting point of FVT is the calculation of the semigrand potential X
describing the system of Nc colloidal spheres plus Nd depletants as depicted in
Fig. 3.12.

XðNc;V ; T ; ldÞ ¼ FðNc;Nd ;V ; TÞ � ldNd: ð3:53Þ

Using the thermodynamic relation

@X
@ld

� �
Nc;V ;T

¼ �Nd; ð3:54Þ

one can write

XðNc;V ; T ; ldÞ ¼ F0ðNc;V ; TÞ �
Z ld

�1
Ndðl0dÞdl0d: ð3:55Þ

Here F0ðNc;V ; TÞ is the (Helmholtz) free energy of the colloidal hard sphere
suspension without added depletant as given by Eq. (3.34) (fluid) or Eq. (3.38)
(solid). Note that Eq. (3.55) is still exact and can be used (with approximations) to
compute the phase behaviour of hard spheres plus interacting depletants (small hard
spheres, interacting polymers, hard rods) [38, 66, 69]. Below only the case of
non-interacting depletants is treated.

The essential step within FVT is the calculation of the number of depletants in
the system of hard spheres + depletants as a function of the chemical potential ld
imposed by the depletants in the reservoir. In the calculations presented below the
colloidal hard spheres have a radius R and the depletants are described as penetrable
hard spheres with radius d.

For the calculation of Nd the Widom insertion theorem [70] is used according to
which the chemical potential of the depletants in the mixture of hard spheres and
depletants can be written as

lSd ¼ constþ kBT ln
Nd

hVfreei : ð3:56Þ

Here hVfreei is the ensemble-averaged free volume for the depletants in the
system ‘S’ of hard spheres, illustrated in Fig. 3.13. The chemical potential of the
depletants in the reservoir is simply

lRd ¼ constþ kBT ln nRd ; ð3:57Þ

where nRd is the number density of the depletants in the reservoir ‘R’. By equating
the depletant chemical potentials Eqs. (3.56) and (3.57) the result
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Nd ¼ nRd hVfreei ð3:58Þ

is obtained. The average free volume obviously depends on the volume fraction of
the hard spheres in the system but also on the chemical potential of the depletants.
The activity of the depletants affects the average configuration of the hard spheres.
Now the key approximation is made to replace hVfreei by the free volume in the pure
hard sphere dispersion hVfreei0:

Nd ¼ nRd hVfreei0: ð3:59Þ

This expression is correct in the limit of low depletant activity but is only an
approximation for higher depletant concentrations. Substituting the approximate
Eq. (3.59) into Eq. (3.55) and using the Gibbs-Duhem relation,

nRddld ¼ dPR; ð3:60Þ

gives

XðNc;V ; T ; ldÞ ¼ F0ðNc;V ; TÞ �PRhVfreei0; ð3:61Þ

where PR ¼ ndkBT is the (osmotic) pressure of the depletants in the reservoir.
As expressions are available for the free energy of the hard sphere system (both

in the fluid and solid state, see Sect. 3.3.2) and for the pressure of the reservoir, the
only remaining quantity to calculate is hVfreei0. According to the Widom insertion
theorem expressed in Eq. (3.56):

ld ¼ constþ kBT ln
Nd

hVfreei0
: ð3:62Þ

The chemical potential ld can however also be written in terms of the reversible
work W required for inserting a depletant into the hard sphere dispersion:

ld ¼ constþ kBT ln
Nd

V
þW : ð3:63Þ

The free volume fraction a now follows from combining Eqs. (3.62) and (3.63):

a ¼ hVfreei0
V

¼ e�W=kBT : ð3:64Þ

3.4.2 Scaled Particle Theory

An expression for the work of insertion W can be obtained from scaled particle
theory (SPT) [71]. The work W is calculated is by expanding (scaling) the size of
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the sphere to be inserted from zero to its final size: the radius of the scaled particle is
kd, with k running from 0 to 1. In the limit k ! 0, the inserted sphere approaches a
point particle. In this limiting case it is very unlikely that the depletion layers
overlap. The free volume fraction in this limit can therefore be written as

a ¼ 1� g 1þ kd
R

� �3

; ð3:65Þ

It then follows from Eq. (3.64) that

W ¼ �kBT ln 1� g 1þ k
d
R

� �3
" #

for k	1: ð3:66Þ

In the opposite limit of a large inserted scaled particle k 
 1 the work of
insertion W can be approximated as the volume work needed to create a cavity
4p
3 ðkdÞ3 and is given by

W ¼ 4p
3
ðkdÞ3P0 for k 
 1; ð3:67Þ

where P0 is the (osmotic) pressure of the hard sphere dispersion. In SPT the above
two limiting cases are connected by expanding W as a series in k:

WðkÞ ¼ Wð0Þ þ @W
@k

� �
k¼0

kþ 1
2

@2W

@k2

� �
k¼0

k2 þ 4p
3
ðkdÞ3P0: ð3:68Þ

This yields

Wðk ¼ 1Þ
kBT

¼ � ln½1� g� þ 3qg
1� g

þ 1
2

6q2g
1� g

þ 9q2g2

ð1� gÞ2
" #

;

þ
4p
3 q

3R3P0

kBT

ð3:69Þ

where q is the size ratio between the depletant with radius d and the hard sphere
with radius R

q ¼ d
R
: ð3:70Þ
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In Appendix, the result for the SPT osmotic pressure is derived:

P0vc
kBT

¼ gþ g2 þ g3

ð1� gÞ3 : ð3:71Þ

Inserting Eq. (3.71) into Eq. (3.69) and using Eq. (3.64) yields

a ¼ ð1� gÞ exp �QðgÞ½ �; ð3:72Þ

where

QðgÞ ¼ ayþ by2 þ cy3; ð3:73Þ

with a ¼ 3qþ 3q2 þ q3, b ¼ 9
2 q

2 þ 3q3 and c ¼ 3q3 and y ¼ g=ð1� gÞ. In
Fig. 3.15 the free volume fraction a predicted by SPT (Eq. 3.72) is compared to
computer simulation results on hard spheres plus penetrable hard spheres for q ¼
0:1 as a function of g. As can be seen the agreement is very good, as for other
q values [72]. Now all ingredients are available to compile the semigrand potential
X given by Eq. (3.61).

From X the total pressure of the hard spheres + phs and the chemical potential of
the hard spheres in the hard sphere + depletant system at given l0d are obtained:

Ptot ¼ � @X
@V

� �
Nc;T ;ld

¼ P0 þPR a� nc
@a
@nc

� �
ð3:74Þ

Fig. 3.15 Free volume fraction for penetrable hard spheres in a hard sphere dispersion for q ¼
d=R ¼ 0:1 as function of the hard sphere concentration. Data points are redrawn from Fortini et al.
[50]. Curve is the SPT prediction of Eq. (3.72)
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lc ¼
@X
@Nc

� �
V ;T ;ld

¼ lþc �PR @a
@nc

: ð3:75Þ

For non-interacting depletants PR is simply given by Van ’t Hoff’s law PR ¼
nRdkBT or

ePR ¼ PRvc
kBT

¼ nRdvdq
�3 ¼ /R

dq
�3 ; ð3:76Þ

with /R
d the relative reservoir depletant concentration nRdvd , where vd is the volume

of a depletant sphere. These penetrable hard spheres can, by definition, freely
interpenetrate each other. It is useful to define the overlap condition of phs by
n�vd ¼ 1. At n� ¼ 1=vd the spheres fill the available space but (on average) do not
yet interpenetrate; this happens only for n[ n�. Hence one may write eP ¼ /dq

�3,
where /d is the concentration of penetrable hard spheres relative to overlap.

3.4.3 Phase Diagrams

The phase behaviour of a system of hard spheres and depletants can now be
calculated by solving the coexistence equations for a phase I in equilibrium with a
phase II

lIcðnIc; ldÞ ¼ lIIc ðnIIc ; ldÞ; ð3:77Þ

PIðnIc; ldÞ ¼ PIIðnIIc ; ldÞ: ð3:78Þ

For numerical computations of phase coexistence, it is convenient to work with
dimensionless quantities. The dimensionless version of the free volume expression
Eq. (3.61) for the (semi) grand potential is

eX ¼ eF0 � a ePR; ð3:79Þ

where eX ¼ Xvc=kBTV .
The sketch of Fig. 3.8 can also be drawn for the semigrand potential (eX instead

of eF ) as a function of the colloid volume fraction for given depletant reservoir
concentration and size ratio q. A first criterion for two coexisting binodal compo-
sitions is equality of the slope because it corresponds to the chemical potential. The
chemical potential of the colloids elc can generally be expressed using the standard
thermodynamic relation
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elc ¼
@ eX
@g

 !
ePR;T ;V

: ð3:80Þ

The (total) pressure is found from

ePtot ¼ gelc � eX: ð3:81Þ

When two compositions can be connected through the common tangent (the thin
straight lines in Fig. 3.8 connecting these compositions), binodal points are found;
the intercepts of the extrapolated lines correspond to the total pressure ePtot, see
examples of scenarios for gas–liquid and fluid–solid coexistences in Fig. 3.8. For
each depletant concentration the binodal compositions can be found in this manner;
full phase diagrams can be constructed from such binodals.

For non-interacting depletants such as penetrable hard spheres the l0s and P0s in
the phase coexistence Eqs. (3.77) and (3.78) can be written such that binodal colloid
concentrations follow from solving one equation with a single unknown [66] as for
the hard-core Yukawa spheres discussed earlier. Equations (3.74) and (3.75) can be
rewritten as

~l ¼ ~l0 þ ePR gðgÞ ð3:82Þ

ePtot ¼ eP0 þ ePR hðgÞ; ð3:83Þ

where g ¼ �@a=@g and h ¼ aþ gg, giving the following explicit expressions for g
and h:

gðgÞ ¼ e�QðgÞ 1þ ½1þ y�½aþ 2byþ 3cy2�� 

; ð3:84Þ

hðgÞ ¼ e�QðgÞ 1þ ayþ 2by2 þ 3cy3
� 


: ð3:85Þ

The gas–liquid binodal can be solved from the second and third parts of

ePR ¼ ~l0f ðglÞ � ~l0f ðggÞ
gðggÞ � gðglÞ

¼
eP0

f ðglÞ � eP0
f ðggÞ

hðggÞ � hðglÞ
; ð3:86Þ

where ~l0f and eP0
f are only a function of g, see Eqs. (3.30) and (3.33). Hence,

Eq. (3.86) gives a unique relation gl(gg) at given q. For some value of gg, within the
region of gg values where a colloidal gas coexists with a colloidal liquid, the
corresponding value of gl follows from the second equality of Eq. (3.86). The
corresponding binodal depletant reservoir pressure ePR then follows from the first
equality.
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Similarly, the fluid-solid binodal can be obtained from

ePR ¼ ~l0s ðgsÞ � ~l0f ðgf Þ
gðgf Þ � gðgsÞ

¼
eP0

s ðgsÞ � eP0
f ðgf Þ

hðgf Þ � hðgsÞ
; ð3:87Þ

where again ~l0f is given by Eq. (3.33) and eP0
f by Eq. (3.30); these are the fluid

contributions. For colloidal dispersions in the solid state (fcc crystal) eP0
s ðgÞ and

~l0s ðgÞ are given by Eqs. (3.36) and (3.37), respectively.
Triple points have equal pressures and chemical potentials at colloidal gas, liquid

and solid compositions. At the triple point expressions Eqs. (3.86) and (3.87) are
connected through equal values for ePR and, in principle, form a set of four
equations from which the four coordinates of the triple point ðgg; gl; gs; ePRÞ follow.

For large q ðq� 0:6Þ the triple point can be approximated easily from Eqs. (3.82)
and (3.83). The fluid-solid coexistence of the triple point occurs at nearly similar
colloid concentrations as the pure hard sphere phase transition. For large q values,
Eqs. (3.82) and (3.83) can be written as elf ¼ el0

f ¼ el0
s and ePf ¼ eP0

f ¼ eP0
s ,

because gðgÞ and hðgÞ vanish for large q. In the coexisting colloidal gas phase the
colloid concentration is then extremely small so ePg ¼ ePR, since hðgÞ ! 1,

η

η ηη

η η

Fig. 3.16 Free volume theory predictions for the phase diagrams for hard spheres as depletants
following Lekkerkerker et al. 1992 [35]. The left diagrams are for q ¼ 0:1, middle q ¼ 0:4, and
right diagrams q ¼ 1:0. Upper diagrams have depletant reservoir concentrations /R

d as ordinates,
lower diagrams are in system depletant concentrations. Triple lines and triangles are indicated as
thick lines. TP = triple point; CP = critical point (asterisks refer to the critical points). A few
representative tie-lines are plotted as thin lines

3 Introduction to Depletion Interaction … 101



implying ePR ¼ eP0
f ¼ eP0

s ¼ 6:01 at the triple point. Hence, for large q the
fluid-solid coexistence of the triple point occurs at nearly the same colloid con-
centrations as for the pure hard-sphere phase transition. The relative depletant
concentration at the triple point now follows as /R

d ’ ePRq3 ¼ 6:01q3. As can be
seen in Figs. 3.16 ðq ¼ 1:0Þ and 17 (q ¼ 0:6) this is rather accurate.

The critical point can be found also as one equation in one unknown, for details,
see [66]. The same applies to the critical endpoint (CEP), which corresponds to the
q value where CP and TP coincide; it is the lowest q where a stable liquid is
possible. See the extended discussions on liquid windows as related to the CEP in
[66, 68].

In Fig. 3.16 phase diagrams are presented for q ¼ 0:1, q ¼ 0:4 and q ¼ 1:0. As
was already found by Gast et al. [30], for q ¼ 0:1 there is only a fluid-crystal
transition. For /d ¼ 0 the demixing gap is 0:491\g\0:541 (see Sect. 3.3.2); with
increasing depletant concentration this gap widens. For q ¼ 0:4 there are a critical
point (CP) and a triple point (TP) in the phase diagram, analogous to those found in
simple atomic systems. At high depletant concentrations in the reservoir (above TP)
a very dilute fluid (colloidal gas), coexists with a highly concentrated colloidal
solid. Between TP and CP a colloidal gas (dilute fluid) coexists with a colloidal
liquid (more concentrated fluid). At high volume fractions below the triple line, a
colloidal liquid coexists with a colloidal solid phase. In the absence of depletant
only the fluid-solid phase transition of a pure hard sphere dispersion remains.
Increasing the depletant activity now plays a role similar to lowering the temper-
ature in atomic systems. For larger q (see q ¼ 1:0) the qualitative picture remains
the same while the liquid window expands.

In the top diagrams of Fig. 3.16 the ordinate axis is the depletant concentration in
the reservoir. The depletant concentrations in the system of coexisting phases can
be obtained by using the relation

/d ¼ a/R
d :

Coexisting phases of course have the same ld and hence the same nRd but since
the volume fractions of hard spheres and, hence, the free volume fractions a are
different, nd in the two (or three) phases are not the same, so the tie-lines are no
longer horizontal. This is illustrated in the bottom diagrams of Fig. 3.16; now the
ordinate axis gives the relative ‘internal’ or system concentrations /d . A few
selected tie-lines are drawn to give an impression of depletant partitioning over the
phases. Interestingly, the horizontal triple line in the presentation of the phase
diagram at constant chemical potential ld (field-density representation) is now
converted into a three-phase triangle system representation. The triple line connects
three coexisting colloid concentrations at one fugacity (reservoir concentration).
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In the system representation there are now three compositions (/1
d; gg), (/

2
d ; gl) and

(/3
d ; gs). These three points in a (/d; g) plot form a triangle, within which there is

three phase gas–liquid–solid coexistence.
As discussed in Sect. 3.3.2, the free volume theory is approximate in the sense

that hVfreei is replaced by hVfreei0. To get an idea of the accuracy of the phase
diagrams calculated with free volume theory the results for q ¼ 0:6 are compared to
computer simulations [73] in Fig. 3.17. The agreement is, given the fact that the free
volume theory is approximate, very good. Also for q = 0.1 − 1.0 [73] and large
q values [43] the agreement with simulations is striking. As a final illustration of the
accuracy of FVT, colloidal gas–liquid binodals are plotted for q = 1, 3 and 5 in
Fig. 3.18 and are compared to Monte Carlo computer simulation results.

Acknowledgments This text is highly inspired by several parts of the book I wrote with Henk
Lekkerkerker and I thank him for the wonderful collaborations. I also acknowledge Agienus Vrij,
Alvaro Gonzalez Garcia and Maartje S. Feenstra for useful discussions.

Fig. 3.17 Comparison of free
volume theory (curves) with
Monte Carlo computer
simulations (data; [73]) for
q ¼ 0:6. Open
circle = theoretical critical
point

Fig. 3.18 Gas–liquid
binodals for mixtures of
HS + phs for large q values.
Curves FVT; Data points: MC
simulations by Dijkstra et al.
[73] (q = 1) and
Moncho-Jordá et al. [43]
(q = 3 and q = 5)
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Appendix

As was the original objective of SPT [71], the pressure P0 of the hard sphere
system can be obtained from the reversible work of inserting an identical sphere
ðq ¼ 1Þ

W
kBT

¼ � ln½1� g� þ 6g
1� g

þ 9g2

2ð1� gÞ2 þ
4pR3P0

3kBT
; ð3:88Þ

to obtain the chemical potential of the hard spheres

l0c ¼ constþ kBT ln
Nc

V
þW : ð3:89Þ

Applying the Gibbs-Duhem relation

@P0

@nc
¼ nc

@l0c
@nc

one obtains

P0vc
kBT

¼ gþ g2 þ g3

ð1� gÞ3 ; ð3:90Þ

the SPT expression for the pressure of a hard sphere fluid [71], which preceded the
slightly more accurate Carnahan-Starling equation Eq. (3.30), which contains an
additional g4-term.
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