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Preface

Aqueous interfaces, by which we mean interfaces between an aqueous phase and a
solid, another liquid or a gaseous phase, are ubiquitous in daily life, technological
applications and biological systems. The properties of these interfaces are of crucial
importance for a wide variety of processes, products and biological functions, such
as the formulation of personal care and food products, paints and coatings,
microfluidic and lab-on-a-chip applications, cell membranes, and lung surfactant.
Accordingly, there is a considerable amount of scientific activity on the subject in
academia and in industry. However, research and training in this field appear to be
distributed over a broad variety of disciplines, ranging from theoretical physics,
over engineering science through to biophysics and biology. Consequently, a great
deal of excellent work is performed, but progress may be hampered by a lack of
awareness of the available knowledge in other disciplines.

As exemplified by the more general field of soft matter science, where a similar
situation was prevalent until roughly 25 years ago, a broad interdisciplinary
approach will certainly be beneficial for the scientific understanding of aqueous
interfaces and for the design of systems with desirable properties. Thus, in 2010 the
consortium of SOMATAI was convinced it was the right time to train young
researchers in the field of aqueous interfaces to acquire a high degree of expertise in
their original discipline in addition to gaining the necessary knowledge and sci-
entific contacts to tackle problems using a broad interdisciplinary approach. After
two attempts, the application for a Marie Sklodowska Curie Intitial Training net-
work was granted by the European Commission, which was the starting point of
SOMATAI’s research and training activities.

As part of SOMATAI’s training programme the summer school “Soft Matter at
Aqueous Interfaces” was held in Berlin, hosting forty young researchers from all
over the world. Besides a series of research papers presented by experts in relevant
fields and some lectures dedicated to the specifics of industrial research, the main
objective of this school was to provide lectures and tutorials, covering a wide range
of topics, from the fundamental text-book physics of fluid interfaces, to advanced
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experimental and theoretical methods applied in ongoing research. In this book we
are collecting the lecture notes of the latter courses.

The contents cover a wide variety of topics in two ways. On the one hand, they
span the range of knowledge levels from the basics of physical chemistry to state
of the art experimental and theoretical methods, and on the other the diverse range
of the scientific fields involved include electro chemistry and corrosion protection
right through to colloidal hydrodynamics. This variety offers a fascinating spectrum
of information for the newcomer to the field, regardless of whether they are young
researchers starting their first project, or experienced scientists intending to broaden
their scope of activities. However, despite the editors’ best efforts, it became
impossible to merge all the contributions into a monograph-style text book. Rather,
the individual chapters should be regarded as stand-alone entry points to the
challenging research field of soft matter at aqueous interfaces.

The programme of the school was complemented by a series of research papers,
some lectures dedicated to the specifics of industrial research, and one session on
the ethics of science, which further demonstrated the school’s versatility.
Regrettably, transcripts of these presentations can not be included in this book.
Therefore we especially want to express our gratitude to:

• Kitty van Gruijthuijsen, Firmenich Perfumery—SC, Genève Switzerland
• Katja Hübel Max Planck Institut für Eisenforschung, Düsseldorf, Germany
• Hanne Juling, BASF HR, Ludwigshafen, Germany
• Katharina Kreth, BASF Coatings GmbH, Münster, Germany
• Dominique Langevin, Univerité Paris Sud, Paris, France
• Donald Bruce, Edinethics Ltd, Edinburgh, United Kingdom
• Gerhard Ertl, Fritz-Haber-Institut, Berlin, Germany
• Patrick Keil, BASF Coatings GmbH, Münster, Germany
• Willem Norde, Wageningen UR, Wageningen, The Netherlands
• Gert Strobl, Universität Freiburg, Freiburg, Germany
• Jan Vermant, ETH Zürich, Zürich, Switzerland

for their contributions, which were highly appreciated by the participants.
On behalf of all participants and lecturers we gratefully acknowledge the

financial support of the European Commission through the Seventh Framework
Programme for research, technological development and demonstration under grant
agreements no. 316866 SOMATAI and no. 262348 ESMI as well as
Forschungszentrum Jülich.

Finally we would like to wholeheartedly thank the staff of the Hotel Aquino in
Berlin for their hospitality and assistance while hosting the school, and Ulrike
Nägele whose dedication was of inestimable value for the success of the event.

Jülich Peter R. Lang
June 2015 Yi Liu
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Chapter 1
Introduction to Soft Matter

Neus Vilanova and Ilja Karina Voets

Abstract In this introductory chapter we introduce the basic features and building
blocks of soft matter focusing in particular on the role of interfaces. As the fun-
damentals of the behaviour of particles, surfactants, and polymers at interfaces are
described, several classical physico-chemical concepts are introduced. A very brief
historical overview of the fields of colloid and polymer science is given. Practical
applications of soft matter science in areas like personal care, food technology,
biology and materials science are outlined at the end of the chapter.

1.1 What Is Soft Matter?

Soft matter is a steadily growing field of science and technology dealing with soft
materials, that is, materials that are readily deformable by a small energy input on
the order of the thermal energy. Building blocks of soft matter include man-made
and naturally occurring small molecules, colloids, polymers, surfactants, liquid
crystals, and nanoparticles. Function often arises upon assembly of these units into
hierarchical structures in complex architectures such as micelles, vesicles, fibrils,
(micro)emulsion droplets, thin films, gels, glasses, and crystals. As the terminology
suggests, the key unifying feature is unmistakably that all materials are macro-
scopically ‘soft’—unlike metals for example—due to weak interactions between the
various species which we term ‘surface forces’. These interactions are at room
temperature comparable to thermal energy, which makes that soft materials are
highly adaptive: the properties of soft materials are easily tuneable by small vari-
ations in the local environment (see boxed text by the ‘founding father of soft
matter’, Nobel laureate Prof. Pierre-Gilles de Gennes). Relevant time and length
scales span orders of magnitude from 10−9 s for atomic motion to >109 s for the

N. Vilanova � I.K. Voets (&)
Macromolecular and Organic Chemistry, Physical Chemistry & Institute for Complex
Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
e-mail: i.voets@tue.nl

© Springer International Publishing Switzerland 2016
P.R. Lang and Y. Liu (eds.), Soft Matter at Aqueous Interfaces,
Lecture Notes in Physics 917, DOI 10.1007/978-3-319-24502-7_1
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reconfiguration dynamics of glasses and from 10−10− to 10−9 m for the dimensions
of atoms and small molecules up to >10−3 m for granular matter and macroscopic
materials. Interfaces play a key role since many soft materials are ‘colloids’ com-
posed of multiple phases—such as a liquid and a solid—separated by an interface.

‘What do we mean by soft matter? Americans prefer to call it “complex
fluids”. This is a rather ugly name, which tends to discourage the young
students. But it does indeed bring in two of the major features:

(1) Complexity. We may, in a certain primitive sense, say that modern
biology has proceeded from studies on simple model systems (bacteria) to
complex multicellular organisms (plants, invertebrates, vertebrates…).
Similarly, from the explosion of atomic physics in the first half of this cen-
tury, one of the outgrowths is soft matter, based on polymers, surfactants,
liquid crystals, and also on colloidal grains.

(2) Flexibility. I like to explain this through one early polymer experiment,
which has been initiated by the Indians of the Amazon basin: they collected
the sap from the hevea tree, put it on their foot, let it “dry” for a short time.
And, behold, they have a boot. From a microscopic point of view, the starting
point is a set of independent, flexible polymer chains. The oxygen from the
air builds in a few bridges between the chains, and this brings in a spectacular
change: we shift from a liquid to a network structure which can resist tension
—what we now call a rubber (in French: caoutchouc, a direct transcription of
the Indian word). What is striking in this experiment, is the fact that a very
mild chemical action has induced a drastic change in mechanical properties: a
typical feature of soft matter [1].’

Pierre-Gilles de Gennes, Nobel lecture ‘Soft Matter’, 1991.

1.2 Building Blocks of Soft Matter

‘Science may be described as the art of systematic over-simplification—
the art of discerning what we may with advantage omit.’

Karl Popper in The Open Universe: An Argument for Indeterminism, 1992

As diverse as the plethora of soft materials is, soft matter scientists strive to
elucidate generic features to describe their formation, structure, dynamics, and
mechanics. Chemical details are lumped into a ‘coarse grained’ description of the
materials in an attempt to rationalize the observable behaviour in terms of generic
characteristics such as solvophilicity, surface-activity, thermal motion, connectivity,
and morphology. Clearly, this approach contrasts sharply with the central paradigm

4 N. Vilanova and I.K. Voets



in chemistry and biology which emphasizes the impact of chemical details. And
with good reason, examples evidencing the relevance of tiny details are ubiquitous.
A single point mutation in a protein that changes only one amino acid in a chain of
over hundred monomers may completely abolish its function (Fig. 1.1). Isotopic
substitution of a single hydrogen to deuterium constituting the tiniest chemical
change in a molecule, may alter its solution behaviour entirely. This apparent
contradiction between specificity and generality is the central challenge of soft
matter science: how to identify unifying concepts to describe the behaviour of
materials wherein specific interactions are at play? How to gain insight from coarse
grained approaches and apply it to the very subjects whose chemical and biological
details have been ignored?

A reasonable starting point from which unifying concepts can be developed is to
classify soft materials based on one or more shared characteristic features. An
obvious choice is to distinguish based on constituents (polymers, surfactants, col-
loids) as shown in Table 1.1, yet it is less straightforward than it appears at first
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Fig. 1.1 A single point mutation from threonine to asparagine (T18 N) completely abolishes the
activity of a recombinantly expressed type III antifreeze protein (AFP) from ocean pout (rQAE) as
determined in a sonocrystallization assay of thermal hysteresis activity. Thermal hysteresis is the
difference between freezing and melting temperature, ΔT, induced by adsorption of AFPs at
specific ice crystal planes. While wildtype rQAE generates ΔT = 0.54 °C, T18 N exhibits freezing
and melting at the same temperature as the buffer, i.e., ΔT = 0.0 °C. Reprinted with permission
from ref [2]

Table 1.1 An overview of building blocks of soft materials

Building block Examples

Small molecules Organogelators, discotics (disc-like), calamitics (rod-like)

Surfactants Phospholipids, sodium dodecyl sulphate (SDS), alkyl ethoxylates (CmEn)

Liquid crystals Amphiphiles (lyotropic), cholesterylmyristate (thermotropic)

Nanoparticles CdS quantum dots,

Polymers Poly(tetrafluoroethylene), DNA, poly(dimethylsiloxane), hyaluronic acid

Colloids Silica spheres, polymer latexes, virus capsids

1 Introduction to Soft Matter 5



sight. It has been suggested that the building blocks of soft materials rather
resemble a continuum of molecules and materials bracketed by the three
archetypical examples of spherical colloids, polymers, and surfactants as shown in
Fig. 1.2. [3]. Moreover, the behaviour displayed is often strongly dependent on
external factors, especially of those materials found close to the midpoint of the
axes, such as proteins for example. Most globular enzymes adopt a highly ordered
three-dimensional structure known as their native structure in aqueous solution,
resembling classical spherical colloids in many respects. But, at high temperatures,
in organic solvents, and in the presence of large amounts of denaturants such as
urea, proteins unfold and display behaviour characteristic of (semi-)flexible poly-
mers [4]. In fact, much of the pioneering polymer physics experiments have been
performed on unfolded proteins, since these are abundant and have a well-defined
molecular weight.

An alternative classification originates from colloid science and is based on both
energetic and structural considerations. Herein, colloidal materials are first cate-
gorized as reversible (equilibrium) or irreversible (metastable) colloids, thereafter
they are assigned into subcategories based on the nature of the constituent phases
(Table 1.2). Note that some of these colloids—e.g., solid suspensions—are typi-
cally hard rather than soft materials.

Fig. 1.2 The ‘soft matter triangle’ as proposed by Gompper, Dhont, and Richter [3] displays the
multitude of molecules and materials that span the gap between the archetypical soft matter
building blocks—colloids, polymers, and amphiphiles. The abscissa and ordinate can be viewed as
gradients in amphiphilicity and elongation or flexibility, respectively

6 N. Vilanova and I.K. Voets



1.2.1 Colloids

‘Our freedom to doubt was born out of a struggle against authority in the
early days of science. It was a very deep and strong struggle: permit us to
question—to doubt—to not be sure. I think that it is important that we do not
forget this struggle and thus perhaps lose what we have gained.’

Richard Feynman in The Value of Science, address to the National
Academy of Sciences, 1955

The colloidal domain is loosely defined as heterogeneous systems composed of
at least two phases of which one has at least one dimension in the range from a few
nanometers to a few tens of micrometers (Fig. 1.3). Colloid and soft matter science
are clearly intricately connected, one might say virtually congruent with the
exception of hard colloidal materials—such as wood and pigmented plastic—and
soft materials composed of either very small or large species, such as
sub-nanometer particles and granular matter. Often however, the term colloids is
used in a more restrictive fashion to denote the building blocks of dispersions, such
as e.g. spherical silica beads, polymeric latexes and poly(isopropyl acrylamide)
microgels.

Table 1.2 Overview of reversible and irreversible colloids including their classification

Reversible colloids
Type Examples

Polymer solution Fruit juice, synovial fluid

Network colloids Sephadex, superabsorbent

Association colloids Microemulsions, micelles, vesicles,
liposomes

Irreversible colloids
Dispersed
phase

Continuous
phase

Name Examples

Liquid Gas Liquid aerosol Fog, hairspray

Solid Gas Solid aerosol Smoke, dust

Gas Liquid Foam Beer foam, froth, detergent foam

Liquid Liquid Emulsion Milk, mayonnaise, rubber,
shampoo

Solid Liquid Sol, dispersion,
suspension, paste

Paints, toothpaste, blood, ink

Gas Solid Solid foam Polyurethane foam, bread,
Styrofoam

Liquid Solid Solid emulsion Ice cream, tarmac

Solid Solid Solid suspension Wood, opal, pearl, bone, pigmented
plastic

1 Introduction to Soft Matter 7



The first studies on inorganic colloids date back to 1840s when the Italian
toxicologist Francesco Selmi published on ‘pseudo-solutions’ of silver chloride,
Prussian blue, and sulfur. Some years later Faraday studied colloidal gold, but the
term ‘colloid’—meaning glue-like—was not coined until another 10 years later in
1861 by Graham. He found that colloids could not pass through membranes. Thus,
colloids could be separated from other species in solution utilizing membranes, a
process which he referred to as ‘dialysis’. After some decades of alternating sparse
and intense investigations, colloid science ultimately became firmly established as a
scientific discipline around the turn of the century. In 1903 Siedentopf and
Zsigmondy developed the ultramicroscope which enabled direct visualization of
molecules and colloidal particles, settling the long dispute on the discontinuous
structure of matter and the existence of molecules.

Jean-Baptiste Perrin (1926 Nobel Prize in Physics) realized that both the
structure and dynamics of colloidal suspensions could be examined by microscopy.
In 1908 Perrin and his student Chaudesaigues carried out a series of experiments
and verified Albert Einstein’s (1921 Nobel Prize in Physics) theory that the irregular
motion of pollen observed in 1821 by the English botanist Robert Brown originates
from random collisions with liquid molecules [5, 6]. In the same landmark paper,
Perrin estimated Avogadro’s number from the equilibrium distribution of colloids
in a dispersion wherein sedimentation due to gravity is opposed by thermal energy
favouring redistribution [5]. In the 1930s Hamaker studied the origin of the
attractive interaction between colloids in suspension and in the 1940s Derjaguin,
Landau, Verwey and Overbeek developed a powerful and coherent theoretical
framework to describe the pair potential between electrostatically stabilized colloids
which became known as the ‘DLVO theory’.

Perrin’s idea to use colloidal particles as a model for atoms still resonates
throughout the colloid community today. Indeed, the dimensions and time scales
associated with the colloidal domain make these systems an ideal testing ground for
atomic and molecular models, particularly when individual building blocks can be
visualized in real-time and real-space. Direct imaging of the three-dimensional
structure of micron-sized colloidal suspensions by confocal microscopy became

106             105 104 103 102 10 1 0.1 nm 

COLLOIDAL DOMAIN

emulsions micelles

macromolecules

Human hair Atoms

Cells
Tissues Virusses

Bacteria

DNA

Membranes

ProteinsOrganisms

Casein

Fig. 1.3 An overview of the typical length scales and representative examples of materials within
the ‘colloidal domain’
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possible in the 1990s shortly after the seminal paper by Pusey and van Megen on
the phase diagram of colloidal hard spheres [7], when the synthesis of monodis-
perse, micron-sized fluorescent silica colloids was first realized. Several break-
through publications on the structure and dynamics of hard sphere colloids
appeared [8–11]. More recently, complex colloids—either patchy, asymmetric in
shape, or both (Fig. 1.4)—have been prepared in reasonable quantities which are
now used as models for molecules and polymers [12–14] aiming e.g. to expand the
realm of attainable crystal lattices to non-close packed structures [15, 16].

1.2.2 Polymers

‘Polymers, Italians in miniature: messy, but very flexible.’
Roberto Piazza in Soft Matter—The stuff that dreams are made of, 2010

The distinction between the fields of polymer and colloid science emerged in the
1920s when the German chemist Staudinger (1953 Nobel Prize in Chemistry) first
proposed in a landmark paper that polymers such as starch, cellulose, proteins, and
rubber are long chains of short repeating units—monomers– linked by covalent

2 µm

Branched

(a)

(b)

Colloidal molecules

Faceted polyhedra

Rods and ellipsoids

DNA 
patches

Fig. 1.4 a Examples of asymmetric colloids used as building blocks for soft materials [15] and
b micrographs of particles with shape anisotropy. As the patches are covered with DNA, they
associate with other particles with complementary DNA strands, yielding supracolloidal AB3

molecules [14]
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bonds [17]. In 1924 he posed a precise definition: ‘For such colloid particles, in
which the molecule is identical with the primary particle, and in which the individual
atoms of this colloid molecule are linked together by covalent bonds, we propose for
better differentiation the name macromolecule’ [18]. It was a controversial thought at
the time; many leading chemists—including Fischer, Wieland—believed that the
measured high molecular weights originated from aggregation of small molecules
into larger clusters held together by non-covalent bonds (see boxed text [19]).

Since the pioneering studies of Staudinger and others, the field of polymer
science has continued to flourish. Academic interest was matched with growing
industrial efforts as the use of plastics and synthetic fibres steadily increased.
Various exceptional contributions to further polymer synthesis—including
Ziegler-Natta catalysis and living polymerization methods—enable contemporary
polymer scientists to prepare a multitude of macromolecules of varying composi-
tion, topology, and functionality (Fig. 1.5). Interestingly, polymers in which
monomers are held together by non-covalent bonds as suggested by Wieland—
supramolecular polymers, also known as reversible or living polymers—have
nowadays also found widespread academic and industrial interest as they combine
excellent materials properties with good processability due to low melt viscosities
[20–26].

Homopolymer

(a) Composition/microstructure(tacticity)

(b) Topology

(c) Functionality

Block copolymer Graft copolymer Random/statistical Periodic Gradient/tapered

Linear

Star

Comb/brush
(Hyper)branched

Network/gel

Side-functional polymers
End-functional polymers and macromonomers

Site-specific functional polymers

Telechelic polymers

Multifunctional polymers

Fig. 1.5 Overview of polymeric architectures varying in composition or microstructure (a),
topology (b), and functionality (c). Adapted from [36]
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‘Dear colleague,
Abandon your idea of large molecules, organic molecules with molecular

weights exceeding 5000 do not exist. Purify your products such as rubber,
they will crystallize and turn out to be low molecular weight compounds.’

Heinrich Wieland to Hermann Staudinger, from ‘Arbeitserinnerungen’,
1961

Major contributions by the physicists Flory and de Gennes have been adopted
throughout the field and continue to inspire many soft matter scientists today. For
example, the behaviour of binary and ternary mixtures, such as a single or two
polymers in a solvent, can be rationalized within the framework of Flory-Huggins
theory. Nowadays, this provides an effective handle to achieve a better understanding
of the structure and performance of a great variety of materials ranging from organic
solar cells to the cytoplasm of living cells [27–29]. Scaling approaches to describe the
conformation of macromolecules in solution and at interfaces introduced originally
by de Gennes find widespread application in the description of polymer assembly,
responsive polymer brushes, and the behaviour of polymer melts [30–35].

1.2.3 Surfactants

Whereas the fields of polymer and colloid science grew increasingly distinct since
the early 20th century, surfactant science has remained rather closely connected to
colloid science. Surface-active agents known as surfactants or amphiphiles are
composed of a hydrophobic tail and a hydrophilic head group (Fig. 1.6). They tend
to adsorb at interfaces and form association colloids, such as micelles, above a
threshold concentration which is referred to as the critical micellar concentration
(CMC). At concentrations much higher than the CMC, a phase transition from
micelles to lyotropic liquid crystalline phases takes place. A powerful method to
predict the morphology of either the micelles or liquid crystals formed is based on
the effective surfactant geometry in the aggregate, defined as the critical packing
parameter, Pc, which is the ratio between the space occupied by the surfactant head
and tail, respectively [37]. Spherical micelles form for Pc < 1/3, while (inverse)
cylindrical (or worm-like) micelles, lamellar or bicontinuous liquid crystals and
vesicles require larger values of Pc (Fig. 1.6).

Both adsorption and association are associated with a significant free energy gain.
The solubility of surfactants in bulk phases (aqueous and organic solvents) is limited
due to their amphiphilicity. Since surfactants are composed of a solvophilic and a
solvophobic part, poising them towards interfaces limits the exposure of solvophobic
moieties to the bulk liquid phase. Numerous types of surfactants have been prepared
and characterized; we generally distinguish based on the headgroup type into three
classes: ionics, non-ionics, and zwitterionics or amphoterics (Table 1.3).
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1.3 What Makes Soft Matter ‘Soft’?

From the above it has become clear that soft matter encompasses essentially all
materials with polyatomic species (surfactants, polymers, colloids) that display
behaviour intermediate between that of simple liquids and simple solids. Now that
we know what soft matter is made off, we may understand what makes these
materials soft, and perhaps more importantly, whether it matters.

Pc =1/3 Pc=1Pc >1

Micelle Reverse micelle 

Bicontinuous cubic

Lamellar

Hexagonal Reverse hexagonal

a0

V
lc

Fig. 1.6 The surfactant architecture can be described by a single dimensionless parameter referred
to as the critical or molecular packing parameter Pc = v/a0lc. It is the ratio between the volume
occupied by the hydrophobic surfactant tail, v, and the interfacial area occupied by the surfactant
head group, a0, multiplied by the length of the hydrophobic tail, lc. Surfactant self-assembly leads
to a range of different structures depending on Pc. Adapted from [38]

Table 1.3 Selected examples of common amphiphiles

Type Example Chemical structure

Ionic Sodium bis
(2-ethylhexyl)
sulfosuccinate
(Aerosol OT, AOT)

O

O

SO3
-

Non-ionic Alkyl ethoxylate O
O

O
O

O
OH

Zwitterionic Amidobetaine

N
H

O

N+ O-

O
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Consider as a qualitative measure of the yield stress σy that opposes flow, the
interaction energy density (U/R3) of a material, which is given by the interaction
energy U between its subunits with a radius R. While the interaction energy
between atoms far exceeds the thermal energy, the ‘strength’ of the surface forces
acting between the mesoscopic subunits of soft materials are comparable to thermal
energy (kBT). Consequently, U is relatively small, while R is large, such that the
interaction energy density is low, which makes the materials soft.

Exercise 1
Estimate the yield stress of a colloidal crystal of silica beads of R = 250 nm
and an atomic solid (R = 1 Å) with a bond energy of 100 kBT.

Does soft matter? The answer is simple: definitely. Soft materials are deform-
able, enabling passage through narrow channels, like red blood cells through blood
vessels [39]. When spheres fail to pack into crystalline lattices at high volume
fraction and instead the liquid ‘freezes’ into a glass without apparent change in its
structure, the resultant solid is strong if the original spheres are soft [40]. Local
injection and sustained release of drugs embedded in hydrogels is facilitated by
flow enhancement under load [41–43]. Such ‘shear-thinning’ is a characteristic
feature of many soft materials and often vital for their performance.

1.4 Soft Matter and Interfaces

The importance of interfaces in soft matter is evident once we realize that many soft
materials are colloids in the broad sense of the term, that is, mesoscopically
heterogeneous systems in which one phase is finely dispersed in another phase.
Given the small dimensions of the dispersed phase—typically 10−9–10−4 m—such
systems are associated with a large interfacial area.

Exercise 2
Compute the interfacial area of a 0.1 % dispersion of 2 nm CdS quantum dots
and compare it to the surface of a soccer field (6500 m2).

Clearly, interfaces must play a dominant role in soft matter. Indeed, minimiza-
tion of surface free area and the associated excessive Gibbs energy are a key driving
force for structural evolution and fluctuations. The interactions operating between
individual components of soft materials are termed surface forces, not because they
are volume- or medium-independent, but because surfaces play a crucial role.
Screened electrostatic interactions in aqueous solutions originate predominantly
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from ionization of surface groups and ion adsorption at interfaces. The addition of
polymers to a colloidal suspension may enhance colloidal stability if dense
‘polymer brushes’ form, whereas destabilization occurs if the polymers tend to
avoid the surface instead (known as ‘depletion’ interaction).

1.4.1 Colloids at Interfaces

While adsorption of polymers and surfactants at interfaces has received widespread
attention since decades, particle-laden interfaces only recently regained great
interest throughout the soft matter community when research into Pickering
emulsions was re-popularized [44, 45]. Applied interest for interface stabilization
by particles is also plentiful especially in the technology areas of flotation, emulsion
stabilization, cosmetics, pharmaceutics, and waste water treatment [46].
Amphiphilicity is not the key driving force for adsorption of particles. Instead, we
can understand the tendency to adhere from the perspective of wetting. Thus, let us
start with an explanation of some fundamental considerations to comprehend the
adhesion of colloids at interfaces. The equilibrium balance of in-plane forces acting
on a liquid drop at a solid substrate is described in Young’s equation (Eq. (1.1)).

cLS þ cLVcosh ¼ cVS ð1:1Þ

Each of the three tensions γLS, γLV, and γVS acts on the three-phase contact line
of a sessile liquid droplet (L) at the solid substrate (S) in contact with vapour (V) to
minimize the corresponding LS, LV, and VS contact area (Fig. 1.7). Similarly, we
may use Young’s equation for two immiscible liquids, such as oil and water, in
contact with a solid surface, (Fig. 1.8).

cAS þ cABcosh ¼ cBS ð1:2Þ

With Young’s equation in hand, we may use the contact angle θ to distinguish
between four different types of ‘wetting’ behaviour: perfect wetting (θ = 0°), partial
wetting (0° < θ < 90°), partial non-wetting (90° < θ < 180°), and perfect
non-wetting (θ = 180°) as outlined in Fig. 1.9.

γLV

γLSγVS

LiquidVapour

Solid

θ

Fig. 1.7 Equilibrium balance of in-plane forces acting on a liquid drop at a solid substrate
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It turns out that all colloids bind to liquid-gas interfaces as long as the contact
angle is not zero [47], because the work required to remove the particle from the
interface ΔG far exceeds kBT (Eq. 1.3). Due to gravity and buoyancy, larger par-
ticles (> 100 μm) may deform the liquid interface and detach (Fig. 1.10a).

DG ¼ pR2cLV cosh� 1ð Þ2 ð1:3Þ

Exercise 3
Compute the work in units of thermal energy required to remove a hydro-
philic colloid (θ = 85°) of 500 nm radius from the surface of an air bubble in
water surface (γLV = 0.072 Jm−2).

Adsorption of colloids at interfaces has been exploited extensively to stabilize
emulsions, hereafter referred to as Pickering emulsions. Stabilization of oil-in-water
(O/W) emulsions via particles requires partial wetting (θ < 90°), whilst W/O
emulsions require non-wetting (θ > 90°) as shown in Fig. 1.10b. In other words, the
phase that preferentially wets the colloids gives the external phase. The stability of
the formed emulsions depends on several factors: size, composition, and concen-
tration of the colloids, their contact angle and the interactions between them [45].
Strong adsorption of colloids at the oil-water interface of the emulsion droplets acts
as an efficient mechanical barrier against droplet coalescence. A wide variety of

γAB

γAS
γBS

Liquid ALiquid B

Solid S

θ

Fig. 1.8 Surface tensions for two immiscible liquids on a solid substrate

θ = 0o Perfect wetting 0o  < θ < 90o Partial wetting

90o  < θ < 180o Non-wetting θ = 180o Perfect non-wetting

θ

θ

Fig. 1.9 Overview of four different types of wetting behaviour of a sessile liquid droplet on a flat
solid substrate in the presence of vapour
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solid colloids has been used to stabilize O/W and W/O emulsions, including iron
oxide, hydroxides, metal sulfates, silica, clays, carbon or polymer particles.
Interestingly, the use of colloids as emulsion stabilizers may offer additional
advantages beyond stability, as they may confer additional features to the system
such as magnetic [49] or catalytic properties [50].

1.4.2 Polymers at Interfaces

Steric stabilization is one of the key approaches to stabilize colloids in suspension,
often with polymers as key player. Polymer decorated interfaces can be realized
through various means, either chemically via preformed polymers (‘grafting to’)

θ θ

water

oil oil

water

oil

oil

water

water

θ

Large particleSmall particle

h

R

(a)

(b)

θθ

liquid liquid

Fig. 1.10 a Small (left) and large (right) spherical particles adsorbed at a liquid–gas interface.
Large particles may deform the liquid interface, while small particles do not. Adapted from [48].
b The position of colloids at an oil-water interface of emulsion droplets depends on their
wettability: O/W emulsions form for contact angles less than 90o (left), while W/O emulsions
require contact angles greater than 90o (right)
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and in situ polymerization (‘grafting from’), or physically, via adsorption.
Functionalization via chemical routes comprises tethered, i.e., end-attached chains
which need not to have an affinity with the surface. By contrast, polymer layers
formed via adsorption require a sufficiently favourable polymer-substrate interac-
tion, or alternatively, sufficiently unfavourable substrate-solvent interaction.

Effective steric stabilization of colloidal dispersions via polymers is achieved
only if the polymer layer is sufficiently thick and dense, which nowadays still
represents a serious challenge. This is because, what makes a polymer layer an
effective barrier against aggregation, impedes attachment of additional polymer
chains to a partially covered interface: steric hindrance.

To understand the conformation of an adsorbed or tethered macromolecule, let us
first take a closer look at the size and shape of a single polymer far away from an
interface. The conformation of a polymer chain in solution is a balance between
conformational entropy or elasticity (Fel) and osmotic interactions (Fos). The former
is affected by the differential affinity of the monomers for themselves and for solvent
molecules which may be described in terms of the Flory-Huggins interaction
parameter χ. It is related to the binary excluded-volume parameter ν0 (representative
of ‘solvent quality’) according to ν0 = 1 – 2χ. Intuitively, it is easy to understand why
χ largely determines the balance between the tendency of the chains to extend for
entropic reasons and the tendency to contract to minimize energetically unfavourable
(χ > 0.5) and maximize favourable (χ < 0.5) interactions.

Consider the well-known Flory scaling law Rg * N3/5ν0
1/5, which gives the

radius of gyration (Rg) for a homopolymer chain of N monomers dispersed in a
good solvent. How is this affected by the presence of a surface? Naturally, we now
need to account for monomer-surface interactions.

At low grafting densities, the conformation of covalently coupled chains remains
largely but not fully unperturbed if surface affinity is low (‘mushroom’ regime). By
contrast, if the chain has a high surface affinity (χ < 0.5), it adopts a pancake-like
conformation under good solvent conditions, which is a 2D self-avoiding walk
(Fig. 1.11). Therefore, a balance is established between the energetic gain due to
monomer-surface contacts and an entropic loss as the chain flattens upon attachment.

Globule

Coil (mushroom)

Pancake

Fig. 1.11 Schematic representation of three possible chain conformations of tethered polymers at
low grafting density. From left to right a non-adsorbing polymer forms a globule in a bad solvent
and a coil in a good solvent (‘mushroom’ regime), while a pancake conformation persists in a good
solvent for chains with a finite surface affinity
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Polymers that are not tethered but merely adsorbed, require a finite favourable
monomer-substrate interaction. A threshold surface affinity χc separates a regime of
χ values for which adsorption is negligible from a regime where the bound fraction
is high. The longer the polymer chain the sharper the rise in surface coverage
around χc [51]. In case of adsorption, chain attachment may occur at any point
along the polymer backbone and typically only a fraction of the total amount of
monomers is adsorbed at any point in time. Loops are the detached sections of the
polymer chain bracketed by adsorbed monomers (trains), what remains are tails
(free ends) (Fig. 1.12). The balance between the adsorption and the solvation of the
polymer at interfaces can be optimized by using block copolymers, in which one
sort of segments can be strongly adsorbed and poorly solvated at the surface, while
the other kind of segments has the opposite behaviour by means of adopting a
strongly solvent-swollen conformation.

At elevated densities, adjacent tethered polymer chains interact and eventually
‘brush’-like conformations start to appear (Fig. 1.13). Predictions of the thickness
of polymer brushes by scaling theories, self-consistent-field (SCF) and numerical
models agree well. It can be shown that the brush height, δ, of linear brushes scales
linearly with chain length N according to

d ¼ Nr1=3 ð1:4Þ

with the grafting density, σ. Note that this is much stronger than the scaling R ∝
N3/5 for a good polymer in solution. Various groups have tested the predications for
polymer brush thickness experimentally by e.g. small angle neutron reflectivity and
found good agreement with theory [52].

TailLoop

Train

Fig. 1.12 Schematic representation of the three sections of an adsorbed polymer chain. Loops are
detached sections of the polymer backbone bracketed by adsorbed monomers (trains). The
dangling, non-adsorbed chain ends are referred to as tails

Fig. 1.13 As the grafting density of polymer chains at an interface increases from left to right we
observe a ‘mushroom’, ‘overlapping mushroom’, and finally at high densities a ‘brush’ regime
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In summary, isolated polymer chains at interfaces tend to adopt a swollen
coil-like conformation for low surface affinity at temperatures above the theta
temperature (‘mushroom’ regime), which flatten into a ‘pancake-like’ conformation
as surface affinity increases and collapse into a ‘globule’ as solvent quality dete-
riorates. Both, chemical and physical attachment, generate polymer brushes at
sufficiently high surface coverage. Many experimental systems approach but do not
enter this regime, as the polymer chains are either too short or surface coverage is
too low. This is unfortunate, since the polymer interface in this ‘quasi-brush’ or
‘pseudo-brush’ regime provides suboptimal stabilization against coagulation and
antifouling. Considerable effort is therefore devoted to develop innovative
approaches to realize high grafting densities [32, 53].

1.4.3 Surfactants at Interfaces

The adsorption of surfactants at liquid interfaces can be probed by a variety of
methods. Most common perhaps is to record the decrease in surface tension as a
function of surfactant concentration (Fig. 1.14). The surface tension of a pure liquid
is the result of an imbalance in attractive forces between the constituent molecules
at interfaces. At low surfactant concentrations, the surface tension (γLV) decreases
as surfactant molecules adsorb onto the interface. Consequently, the surface excess
of surfactant Γsurf increases until Γmax, at which the available surface is saturated by
a surfactant monolayer. Above this concentration threshold, additional surfactant
molecules assemble into association colloids—micelles—in the bulk phase.

CMC

Turbidity

Osmotic pressure

Surface tension

Equivalent
conductivity

Fig. 1.14 The critical micellar concentration, CMC, of surfactants can be determined from
measurements of surface tension, osmotic pressure, turbidity, and equivalent conductivity as a
function of surfactant concentration. Scheme of the surfactant behavior in a liquid-gas interface
below and above the CMC is also depicted
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This critical micellar concentration, CMC, is evidenced by a marked change of
slope in the surface tension versus concentration profile. Above the CMC,γLV
remains constant. Other methods of CMC determination rely on a similarly clear
break point in the dependence of an experimentally observable physical property
(such as turbidity, osmotic pressure, and equivalent conductivity) on surfactant
concentration.

To compare the effect of different surfactants we need to quantify the adsorbed
amount and the concomitant reduction in surface tension. Note that “the interface”
is not a plane, rather it is a region of few molecules in thickness, where the
molecular concentration changes, see e.g. the chapter B.4 by G. H. Findenegg. Let
us know look at the surface excess Γ defined as the (solvent, surfactant…) con-
centration in a surface plane in the interfacial region relative to the concentration in
a similar plane in bulk. To facilitate computation of the adsorption isotherms that
relate Γ and γ, Gibbs defined a mathematical plane within the interfacial region,
such that the solvent excess in this plane is exactly zero (depicted as x’ in
Fig. 1.15). This became known as the ‘Gibbs dividing surface’. Using this as well
as several other assumptions, Gibbs derived an equation to relate surface tension to
the surfactant surface excess. For non-ionic surfactants the Gibbs equation is

dc ¼ �CRTd ln c; ð1:5Þ

Distance to interface

α

C
o

n
ce

n
tr

at
io

n β

x´

solvent

solute

σ

Fig. 1.15 Schematic representation of the interfacial region (bracketed by dotted lines), with
width σ, separating two bulk phases, a liquid phase α and vapour, β. The Gibbs dividing surface
located at x’ is the plane in which the solvent excess concentration becomes zero. The solvent and
surfactant surface excess concentrations, Γ, as defined in Gibbs’ approach are given by the
difference in the shaded areas on each side of the plane
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while for 1:1 dissociating compounds (such as SDS) without added electrolyte, it is

dc ¼ �C2RTd ln c ð1:6Þ

with c the molar surfactant concentration in the bulk.
Surfactants can now be compared in terms of their efficiency and effectiveness.

By efficiency we mean the surfactant concentration required to reduce the surface
tension by a specific amount (typically 20 mNm−1), which is given by the Frumkin
adsorption equation

c0 � c ¼ p ¼ �2:303RTCm log 1� C
Cm

� �
ð1:7Þ

with Γm the surface excess concentration at surface saturation. For convenience we
introduce pC20 as a quantitative measure, which is the negative logarithm of the
surfactant concentration (in accordance with the definition of pH) required to reduce
γ by 20 mNm−1. At this surface tension, surface is nearly saturated, therefore it is
the minimum concentration needed to produce maximum adsorption at the inter-
face. A larger pC20 indicates more efficient adsorption. Typically, pC20 increases as
the length of the surfactant tail increases, tail branching is limited, and the head
group remains uncharged. By surfactant effectiveness we mean the maximally
attainable surface tension reduction irrespective of surfactant concentration. As this
is typically reached at the CMC, this is the main determinant of effectiveness.

Exercise 4
Demonstrate that the interface is close to saturation for pC20 at 25°C and a
maximum surface excess of 3 × 10−6 molm−2.

The ability of surfactants to decrease the surface tension plays a crucial role in the
emulsion field. Since emulsions are metastable colloids, they tend to phase separate
into bulk oil and water phases. Addition of surfactants into the system decreases, on
the one hand, the required energy to form the emulsion (to break the dispersed phase
into small droplets) and, on the other hand, also promotes emulsion stability mainly
by introduction of mechanical, steric and/or electrostatic barriers that prevent direct
contact between droplets. Note that using two instead of one surfactant species is
reported to further enhance emulsion stability, probably due to synergetic effects as
well as to an increase in interfacial elasticity [54]. Surfactants are hence extremely
important for emulsion preparation, stability and structure. The geometry of the
surfactant is the primary determinant of the emulsion type. Surfactants with a
hydrophilic head larger than the hydrophobic tail are considered hydrophilic. These
have small critical packing parameters, Pc, and curve the interfaces around the oil
resulting in O/W emulsions. Differently, when the surfactant tail is larger than the
head, the surfactant is lipophilic resulting in oil-continuous emulsions.

1 Introduction to Soft Matter 21



Importantly, surfactants may form association colloids, such as liquid crystals,
micelles, and microemulsions. Contrasting markedly with (macro)emulsions,
microemulsions are equilibrium ternary systems composed of oil, water and sur-
factants molecules at the oil/water interface. Alike emulsions, their microstructure
may be W/O or O/W but also bicontinous, depending on the geometry of the
surfactant (Fig. 1.16a). Unlike emulsions however, microemulsions are thermo-
dynamically stable isotropic liquid solutions with extremely low surface tensions,
which leads to remarkably small droplets (1–50 nm) as compared to typical droplet
sizes of emulsions. As a consequence of their equilibrium nature, microemulsions
form spontaneously once appropriate conditions are selected (temperature, volume
fraction of the phases, ionic strength, …). Interestingly, nanostructured colloidal
dispersions can be generated fairly easily when liquid crystalline mesophases are
used instead of simple dispersed or continuous phases. The novelty of using
crystalline mesophases as a dispersed phase lies on their hierarchical structure,
namely with hydrophilic and hydrophobic domains. This may find use as drug
delivery systems, since they enable the solubilization of both, hydrophobic and
hydrophilic active molecules at the same time [55, 56]. Nanostructured continuous
phases have mainly been exploited with emulsions with an internal volume phase
larger than 74 %—known as highly concentrated emulsions—as exemplified in
Fig. 1.16b [57]. The aim of this strategy is to enhance stability [58] or to template
the preparation of solid foams with meso/macroporosity [59].

1.5 Soft Matter Science and Technology

The field of soft matter is a multidisciplinary arena where chemists, (chemical)
engineers, physicists, biologists, and mathematicians interact to tackle open ques-
tions enabling the development of new technologies, some of which address key

oil

water
oil

water

water

(a) (b)

oil

water

oil

Fig. 1.16 a Schematic representation of O/W, bicontinous and W/O microemulsions (from left to
right) emphasizing the orientation of the surfactants at their interfaces. b An O/W highly
concentrated emulsion with a hexagonal liquid crystal as continuous phase. Droplets of highly
concentrated emulsions are polyhedral as the maximal packing ofmonodisperse droplets is exceeded
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societal issues such as sustainable energy, public health, and food safety. The
following sections highlight a few examples which may give you a taste for the
scope and practical applications of soft matter science.

Self-organized cytoplasm. Soft matter is as central to lifeless materials as it is to
living systems. Every cell in our body is a marvellous example of a highly func-
tional, hierarchically structured soft material with fascinating properties. Not sur-
prisingly, many soft matter scientists actively contribute to the growing
understanding of key aspects of life such as replication, folding, differentiation,
signal transduction, active transport, motility, self-healing, tissue re-modelling and
the origin of life. To name but a few examples, the consequences of cellular
crowding have been cast in terms of depletion interactions, the origin of
non-membrane bound organelles has been related to associative and segregative
phase separation in multicomponent mixtures, osmotic pressure has been demon-
strated to passively eject a large portion of bacteriophage DNA during host
infection [60, 61], single point mutations in eye lens proteins were found to reduce
the solubility and raise the critical point of liquid-liquid phase separation with
possible implications for cold cataract [62, 63], and the cortical actin layer has been
described as an active wetting film [64].

Personal care. Control over the wetting properties, colloidal stability, and vis-
coelastic properties of multicomponent mixtures, in particular emulsions, are key
objectives of soft matter scientists active in the field of personal care, detergency, and
pharmaceutical formulations. The differences between interface stabilization by
surfactants, polymers, and colloids are increasingly exploited to retain functionality
of active ingredients without compromising stability [65–67]. Chemical and physical
approaches are routinely combined particularly when evaporation of volatile com-
ponents is a considerable risk [68, 69]. Various soft materials originally developed out
of scientific curiosity have already found their way into commercial products [70–72].

Food technology. Soft matter approaches to understand food are numerous.
Stabilization of emulsions via interfacial protein layers or fat crystals has attracted
great interest, as well as complex coacervation for encapsulation in
protein/polysaccharide mixtures, and arrested phase separation as a route to gelation
[73–79]. Recently, the focus is shifting from systematic studies of macroscopic
properties (e.g., interfacial tension, viscosity, turbidity, and emulsion stability,
shelf-life) to the relation between structure, dynamics, and kinetics at various
length- and timescales in bulk and at interfaces. Moreover, the link between
physico-chemical properties and performance (taste, texture, satiating effect, and
shelf-life) is increasingly investigated, as well as (partial) replacement of animal
proteins by plant proteins [80, 81].

Encapsulation. Protection of active ingredients against chemical and enzymatic
degradation, against aggregation, and against premature release during storage,
processing, or upon diffusive transport through the body are key objectives of
encapsulation strategies for soft materials. Targeted delivery and controlled release
of both hydrophobic and hydrophilic drugs via tailored nano-carriers is amongst the
most widely and intensely investigated topics. Interestingly, the design strategies
for optimal encapsulation and delivery vehicles may be cast in rather general terms.
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Crucial herein—apart from toxicity, renal clearance, endosomal escape, and other
biomedical concerns- is the thin line between sufficiently strong interactions
allowing for efficient encapsulation during storage, transport, and processing and
not too strong interactions, which would compromise prompt release upon delivery
to the target location [82–84]. Insight into the impact of the morphology and
mechanical properties of the carriers is steadily growing [85, 86]. Amongst the most
intensely investigated systems for transport of hydrophobic compounds are lipids
and polymeric amphiphiles, while electrostatically driven complexation gains
ground as an effective means to package hydrophilic and in particular charged
moieties in solution and in hydrogels [87, 88].
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Chapter 2
Fundamentals of Electrochemistry,
Corrosion and Corrosion Protection

Christian D. Fernández-Solis, Ashokanand Vimalanandan,
Abdulrahman Altin, Jesus S. Mondragón-Ochoa, Katharina Kreth,
Patrick Keil and Andreas Erbe

Abstract This chapter introduces the basics of electrochemistry, with a focus on
electron transfer reactions. We will show that the electrode potential formed when a
metal is immersed in a solution is most of the time not an equilibrium potential, but
a mixed potential in a stationary state. This mixed potential formation is the basis of
corrosion of metals in aqueous solutions. Organic coatings are introduced as pro-
tecting agents, and several types of coatings are discussed: classical passive coat-
ings, and active coatings as modern developments. Three electrochemical
techniques, which are commonly used to asses the protecting properties of coatings,
are shortly introduced as well: linear polarisation measurements, electrochemical
impedance spectroscopy, and scanning Kelvin probe measurements.

2.1 Basics of Electrochemistry

Electron transfer reactions are wide-spread in nature, e.g. in the respiratory chain,
they are important technologically, e.g. in electrolysers and for metal plating, and
they contribute to the degradation of materials, in corrosion processes of metals. This
chapter shall serve as an introductory text into the basic concepts, with a special
focus on their importance in the field of corrosion science. Electrochemistry is quite
an old science, and hence a number of good textbooks are available for more detailed
introductions of the fundamental concepts [1–3]. It is worth pointing out that there
are practically important corrosion mechanisms which are not at all based on elec-
trochemical reactions. Details are available in dedicated textbooks [4, 5].

C.D. Fernández-Solis � A. Vimalanandan � A. Altin � J.S. Mondragón-Ochoa � A. Erbe (&)
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1,
40237 Düsseldorf, Germany
e-mail: a.erbe@mpie.de

K. Kreth � P. Keil
BASF Coatings GmbH, 48165 Münster, Germany

© Springer International Publishing Switzerland 2016
P.R. Lang and Y. Liu (eds.), Soft Matter at Aqueous Interfaces,
Lecture Notes in Physics 917, DOI 10.1007/978-3-319-24502-7_2

29



2.1.1 Electrostatic Potentials at Interfaces

Interfaces, in particular aqueous interfaces, are almost always charged, e.g. by
dissociation of surface groups, or adsorption of ions from solution. On conductive
substrates, the charge state of an interface may be actively controlled, as will be
discussed below. Around charged interfaces, a static electric field is present, which
affects the distribution of ions in solution around this interface. The rather complex
multibody-interactions between solvent, mobile charges on both sides of the phase
boundary, and stationary atoms leads to a complicated interfacial structure, which is
schematically shown in Fig. 2.1 [6]. This interface is often referred to by the
misleading term “double layer” (see also Chap. 4 by G. H. Findenegg).

Closest to the interface is a structured layer containing adsorbed molecules of the
solvent and other adsorbed species. The region where the electric charges of the
absorbed ions are allocated is called inner Helmholtz layer; this region is at a
distance d1 (Fig. 2.1). Solvated ions can approach the interface up to a distance d2.
The region where the electric charges of the solvated ions are located is called outer
Helmholtz layer. Due to thermal motion in the system, theses solvated ions are
distributed in a three dimensional region ranging from the outer Helmholtz layer to
the bulk. This region is often referred to as “diffuse layer”. Counter-ion distribution

2d 01d
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Fig. 2.1 Schematic
representation of the layers at
a solid/liquid interface. 1
Inner Helmholtz layer, 2
Outer Helmholtz layer, 3
Solvated ions (cations), 4
Diffuse layer, 5 Electrolyte
solvent, 6 Specifically
adsorbed ions. Drawing
inspired by [7]
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in the diffuse layer is important for some processes at a variety of interfaces (e.g.,
solid electrodes, biomolecules, etc.) and in technological applications as well (e.g.,
corrosion, paints, etc.). A simple quantitative approach to the description of the
diffuse layer, balancing entropy against mean-field electrostatic attraction, is the
Poisson-Boltzmann equation, which is extensively discussed—including its limi-
tations—in [8]. Because deviations from the classic picture are found experimen-
tally (e.g. [9]), modern conceptual works discuss in more detail solvation effects,
fluctuations and ion correlation [10–14].

2.1.2 Electrochemical Potential

As an interface is charged, the work needed for a distribution of charges needs to be
considered when analysing the total free enthalpy or free energy of a system. For
this purpose, in charged systems, the electrochemical potential takes the role of the
chemical potential.

The electrochemical potential �li is defined as the mechanical work required to
bring 1 mol of ions with valency z and hence charge ze from a standard state to a
specified electrical potential and concentration. Thermodynamically, it is a measure
of the chemical potential that takes into account the electrostatic contributions; it is
expressed as energy per mole,

�li ¼ li þ ziFU ð2:1Þ

where li is the chemical potential of species i without considering the charge, F is
the Faraday constant and U the local electrostatic potential. The first term of Eq. 2.1
takes into account the chemical potential of the species i (see Chap. 8 by R. Sigel
for a thorough discussion on the chemical potential in relation to the formation of
mixtures), while the second term includes the free enthalpy change brought by
altering the potential U of the phase in which the charged species is located. U is
also referred to as the inner potential or Galvani potential of the phase. This
approach is analogous to the addition of the interface term to the chemical potential,
described in detail in Chap. 4 by G. H. Findenegg.

Bringing two phases a and b with mobile charges into contact (consider metal/
salt solution as an example) will result in an equilibrium where the electrochemical
potentials of the two phases will equalise in a similar fashion as the chemical
potentials for uncharged systems,

�la ¼ �lb ð2:2Þ

For simplicity, let’s consider a single-valent system, for which we obtain, using
Eq. 2.1,
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Ua � Ub ¼ lb � la

F
: ð2:3Þ

The result is the built-up of an electrostatic potential across the interface. The
electrostatic potential difference between the two phases is the electrode potential,

Ecell ¼ Ua � Ub: ð2:4Þ

We need a certain reference to quantify the potential, which is an arbitrarily
chosen system, for which different choices exist in the literature [15]. In analogy to
the standard term in the chemical potential, to which the concentration dependence
is added, we can “dump” the standard terms into a standard electrode potential E0

for each redox system. These potentials are published in the literature typically as
potential differences against the standard hydrogen electrode. They can be found
e.g. in the Handbook of Chemistry and Physics [16]. The potentials are usually
reported as reduction potentials, and represent the tendency of a certain species to
“obtain” one or more additional electrons. The higher the potential, the higher is
this tendency. The standard electrode potential is therefore a quantity similar to the
free enthalpy of formation of a certain species.

The electrode potential Ecell is actually the potential of a single electrode. When
putting two of these half-cells into electrical contact, electrons can flow through an
external circuit and balance the electrode potential differences which are present. At
the same time, a chemical transformation occurs: one species is reduced and one is
oxidised. In one of the half cells, there will thus occur oxidation, i.e. electron “loss” of
the atoms or molecules, and on the other side, there will be reduction, i.e. “gain” in
electrons for a certain species. As other chemical reactions generate heat or light,
redox reaction can be used to generate an electrical current, and likewise, electrical
current can be used to “drive” redox reactions in a certain direction. The half cell, in
which oxidation occurs, is called the “anode”, and the half-cell, in which reduction
occurs is the “cathode”. Note that these definitions rely on the nature of the reaction
that is occurring, not on the direction of the current flow or the charge. The difference
in standard free enthalpy is related to the difference in standard electrode potentials to

DG� ¼ �zFE�
cell: ð2:5Þ

If E�
cell [ 0, the process is spontaneous, as e.g. in galvanic cells, batteries or

corrosion of metals. On the other hand, if E�
cell\0, the reverse reaction is sponta-

neous, as e.g. in electrolytic cells.
Moving away from the standard standard state, Eq. 2.5 keeps its validity. So, at

each concentration of involved species,

DG ¼ �zFEcell : ð2:6Þ
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For a redox reaction of the type

aOxþ ze� ! cRed ð2:7Þ

the Nernst equation determines the electrode potential for an individual half-cell as

E ¼ E0 � RT
nF

ln
½Red�c
½Ox�a ; ð2:8Þ

where the activities may be approximated as concentrations in dilute solution. Here
we dropped the subscript cell for convenience. Equipped with the Nernst equation,
we can determine electrode potential differences, and hence free enthalpy differ-
ences from equilibrium, from tabulated standard electrode potentials, knowing
activities/concentrations of dissolved species [1].

2.1.3 Currents Are a Measure of Reaction Rates

Electric current is the flow rate of electric charge q through a system, where
t denotes the time,

I ¼ dq
dt

ð2:9Þ

In interface science, normalising the current in Eq. 2.9 by the interface area A is
in general convenient, introducing current density i ¼ I=A, i.e. current per unit area
of electrode. The current through an interface is thus a convenient measure of the
rate of electron transfer. If there is only a single electron transfer going on, the
current density is directly related to the rate of the chemical reaction. It is possible
to relate to the current through Faraday’s law

I ¼ dq
dt

¼ nzF
t

ð2:10Þ

to the total amount n of transformed substance, e.g. in a reaction like in Eq. 2.7. The
magnitude of the current flowing at any potential depends on the kinetics of electron
transfer. (Alternatively, in practise it often depends on the kinetics of transport to
the interface. This case, is, however, not of interest in the understanding of the
mechanistic aspects of reactions, which is why it is not considered here.)

At any electrode potential, the measured current density is given as the sum of an
anodic and a cathodic partial current

i ¼ ia þ ic: ð2:11Þ
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Here, anodic current ia corresponds to the current from reaction in Eq. 2.7, while
the cathodic current ic corresponds to the current of the back reaction to Eq. 2.7. In
equilibrium, i.e. at the potential given by the Nernst equation, no net reaction
occurs, hence no net current flows and ia ¼ �ic, i.e. the rate of forward and back
reaction are equal.

2.1.4 Equilibrium Potential and Open Circuit Potential,
a Mixed Potential

If we immerse a metal plate into a solution of its salt, we expect either the metal to
dissolve (according to the reverse of reaction in Eq. 2.7), or salt ions to deposit as
metal, according to reaction 7, until the equilibrium concentration is reached in the
solution, as given by the Nernst equation, Eq. 2.8. The electrode potential that
forms at the metal/electrolyte interface after immersion of the metal into solution,
the so-called open circuit potential (OCP) is hence the equilibrium potential.

However, if more than one electron transfer reaction takes place at the electrode
surface, the open circuit potential is a mixed potential defined by the kinetics of all
simultaneous electrochemical reactions. (Candidates are, e.g. the decomposition of
the solvent, e.g. through evolution of H2 or less likely O2 from water, or the
reduction of O2, as typically found in corrosion.) At OCP, the anodic and cathodic
current have same magnitude but opposite directions (ia ¼ �ic), resulting in zero
net current through the interface, which is not in equilibrium.

The corrosion of electrode surfaces (see also below) is explained by this theory
of mixed potentials and it is based on the independence of the partial anodic and
cathodic reactions. This theory states that for an electrode on which more than one
electrochemical reaction takes place simultaneously [17], the measurable
current-potential curves can be expressed as

iðEÞ ¼
X
i

jia;iðEÞj �
X
i

jic;iðEÞj ð2:12Þ

where summation is over all partial reactions.
Figure 2.2a shows the ideal situation of an electron transfer reaction, where there

is an exchange current i0 at an equilibrium potential Eeq, that spontaneously forms
when immersing an electrode into a solution. Eeq is a result of the contribution of
the anodic and cathodic half reactions.

In Fig. 2.2b, we can observe that at open circuit conditions, the mixed potential
has an intermediate value between the equilibrium potential of two reactions,
O/R and O0=R0, where O stands for the oxidised and R for the reduced species. This
mixed potential is determine by the kinetics of each partial reaction. (The potential
dependence of the rates will be discussed in the next section.) In this case, the
mixed potential corresponds to two different overpotentials, g1 and g2, where each g
represents the difference between applied potential E and the equilibrium (Nernst)
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potential Eeq , g ¼ E � Eeq. Consequently, the forming potential cannot be related
to either of the equilibrium potentials of the involved reactions [18].

In Fig. 2.2c, one of the partial electrode reaction is the dissolution of the elec-
trode and the other half corresponds to the deposition on the electrode. However,
deposition is not the only counter reaction to dissolution. Especially in corrosion,
we typically have oxygen reduction as cathodic driving reaction for the anodic
reaction. Further, in water we also have hydrogen evolution, which is also in some
cases (e.g. in acidic solution) the important counter reaction. Consequently, the
OCP is a corrosion potential different from an equilibrium potential, and the system
dissolves at a rate given by the corrosion current icorr.

2.1.5 Relation Between Potential and Current—Electron
Transfer Reactions

The partial anodic and cathodic current densities are dependent on the concentration
of the electroactive species at the site of electron transfer as typically encountered in
classical chemical kinetics,

ia ¼ zFjacRed ic ¼ �zFjccOx ð2:13Þ

The rate constants ja and jc vary with the overpotential g in first approximation
in an exponential manner as

ja ¼ ja0 exp
aAnF
RT

g

� �
jc ¼ jc0 exp � aCnF

RT
g

� �
; ð2:14Þ

as according to the laws of thermodynamics of irreversible processes, all rates
depend in first approximation exponentially on the distance of the driving force
from equilibrium. aA and aC are constants between 0 and 1, known as the transfer
coefficients for anodic and cathodic reactions, respectively. Typically,
aA � aC � 0:5, at least on metal surfaces.

b Fig. 2.2 Schematic partial current densities (ordinate) as function of electrode potentials
(abscissa) for different situations. The dashed line shows the macroscopically observed current
density-potential curve for the system. a Formation of equilibrium potential Eeq at an inert
electrode with one redox process. b Formation of mixed potential Emix at an inert electrode with

two simultaneous redox processes, with formal equilibrium potentials EðeqÞ
1 and EðeqÞ

2 . c Formation
of corrosion potential Ecorr by simultaneous occurrence of metal dissolution, hydrogen evolution
and oxygen reduction, each of them with a given equilibrium potential. The two reactions
involving oxygen and hydrogen typically show some overpotential, i.e. are not fully reversible,
which is why their individual exchange current densities have been put to zero
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Noting the definition of the exchange current density, i0 ¼ �ic ¼ ia at g ¼ 0 and
rearranging we have the Butler-Volmer equation for the overall
potential-dependence of the current density

i ¼ i0 exp
aAzF
RT

g

� �
� exp � aCzF

RT
g

� �� �
ð2:15Þ

The Butler-Volmer equation is a fundamental equation of electrode kinetics [19].
In practice, there are often-used limiting forms of Eq. 2.15. At sufficiently high

positive overpotentials (ia�ic) we find Eq. 2.16 and at high negative overpotentials
(ic�ia) Eq. 2.17,

log10ðiÞ ¼ log10ði0Þþ
aAzF

lnð10ÞRT g ð2:16Þ

log10ð�iÞ ¼ log10ði0Þ �
aCzF

lnð10ÞRT g ð2:17Þ

These equations present a simple method to determine exchange current density
and a transfer coefficient from a linear relation and are known as Tafel equations.
A useful plot is shown in idealised form in Fig. 2.3. From this plot, the OCP can be
determined easily, and from the slopes of the linear region, the electron transfer
coefficients aA and aC can be obtained. In the analogue plot with a linear current
axis, the inverse slope around the OCP has the units of a resistance and is called the
polarisation resistance RP.

Fig. 2.3 Schematic representation of Tafel equations. On the left side, the cathodic process and on
the right side the anodic process. In this particular case, the OCP equals the equilibrium potential
where i ¼ 0

2 Fundamentals of Electrochemistry, Corrosion … 37



Linear polarisation experiments, i.e. measurements of curves such as shown in
Fig. 2.3, are widely used to determine corrosion currents. Corrosion currents can be
transformed to corrosion rates, because oxidation at a certain current corresponds to
a certain loss of material, though care must be taken when extrapolating.
Experimentally, a sample is polarised in a range around its corrosion potential and
the current response is measured. The slopes obtained in Fig. 2.3 for Eqs. 2.16 and
2.17 are called ba and bc for the anodic and cathodic processes, respectively.
Extrapolating to the intercept of these linear regions, the exchange current density
can be determined.

The corrosion or exchange current density icorr can then be determined as [20]

icorr ¼ babc
lnð10ÞRpðba þ bcÞ

ð2:18Þ

The validity of the analysis from the Tafel plot critically depends on the
exponential relation between current and overpotential, i.e. more general in
chemical kinetics the relation between driving force of a chemical reaction, and its
rate constant. Such relations can be obtained by the application of transition state
theory. The most famous example for electron transfer reaction is the Marcus
theory, which represents an extension of the Franck-Condon principle to chemical
reactions. (The Franck-Condon principle deals with the relaxation of the electron
configuration after excitation. In electron transfer reactions, one goes one step
further and transfers the electron.) The barrier for electron transfer reactions in this
Marcus picture basically originates from the reorganisation of the solvation shell
around the ions, because even simple ions change their charge during electron
transfer, and the solvation shell needs to adapt to this change. The barrier in this
theory is obtained as an intersection of two parabola (in the simplest case), which
represent the interaction potential of the solvent with a central ion [21]. The central
quantity in the theory is the solvent reorganisation energy, Ere. With a barrier from
the Marcus theory, the relation between current and overpotential becomes

i / exp
zFg
2RT

� �
exp

ðzFgÞ2
2EreRT

 !
� exp � zFg

2RT

� �
exp � ðzFgÞ2

2EreRT

 !" #
; ð2:19Þ

which differs from the Butler-Volmer Eq. 2.15 by the presence of a term that goes
with g2 in the exponent. For sufficiently small overpotentials, the Butler-Volmer
form is obtained as limiting case, but at larger overpotentials the square term may
become dominant.1

1An alternative approach dumps the g2 dependence into the transfer coefficients a c and aa by
making them potential-dependent.
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2.2 Electrochemical Methods in Corrosion Science

In Sect. 2.1.4 we saw that corrosion of metals is often essentially an electrochemical
phenomenon. Hence, electrochemical techniques are used to characterise corrosion
processes. This chapter introduces two important experimental techniques, elec-
trochemical impedance spectroscopy (EIS) and scanning Kelvin probe.

2.2.1 Electrochemical Impedance Spectroscopy (EIS)

In EIS, the system is excited by application of a typically small alternating per-
turbation of the applied electrode potential, typically in a range of frequencies f
between 106 and 10−4 Hz [2]. The frequency-dependent electrical current response
of the system is analysed. (An inverse variant exists, in which an alternating current
is forced upon a system, and the electrode potential response is analysed. This
variant shall not be discussed here.) The measured impedance can be given as a
complex number, with a modulus, and a phase shift between applied potential and
response current. In many cases, the frequency-dependent impedance can be
described by a combination of electrical circuit elements, the so-called equivalent
circuit. Therefore, the impedance of standard passive electrical circuit elements
shall shortly be defined, before discussing electrochemical applications [22].

Ohm’s law describes the proportionality between applied voltage U, and flowing
current I, with resistance R as constant of proportionality,

I ¼ 1
R
U : ð2:20Þ

For Ohmic conductors, this equation is valid also if an alternating voltage U(t),
e.g. with sinusoidal modulation with time t, is applied. If a sinusoidal voltage with a
certain frequency f is applied, the corresponding alternating current has a certain
amplitude and a phase shift / with respect to its exciting current. The resistance in
this situation is called the impedance Z,

Z ¼ UðtÞ
IðtÞ ¼ U0 sinðxtÞ

I0 sinðxtþ/Þ ; ð2:21Þ

with angular frequency x ¼ 2pf .
If an electrical circuit consists only of a resistor, the phase shift between applied

voltage and response current is zero. However, replacing the resistor with a
capacitor or an inductor causes a phase shift of the impedance as schematically
depicted in Fig. 2.4. Most electrochemical systems analysed by EIS can in first
approximation be described by a combination of capacitors and resistors, where the
so-called Randles circuit, depicted in Fig. 2.5, is the most useful circuit.
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As often done in spectroscopy (see also Chap. 14 by A. Erbe et al.), a complex
plane representation of the voltage can be used, in which

UðtÞ ¼ U0eixt; ð2:22Þ

with i ¼ ffiffiffiffiffiffiffi�1
p

. Likewise,

IðtÞ ¼ I0e
iðxt�/Þ; ð2:23Þ

which allows for a simplified description of the ratio in Eq. 2.21 as

Z ¼ U0eixt

I0eiðxt�/Þ ¼ jZjei/ ¼ jZj½cosð/Þþ i sinð/Þ�; ð2:24Þ

where jZj ¼ U0=I0. To analyse and interpret complex impedance measurements, a
graphical depiction of the resulting spectrum is extremely useful. Two frequently
used plots are Nyquist plots and Bode plots, depicted in Fig. 2.5 for the simple
circuit elements. In the Nyquist plot, the real part of the impedance Re(Z) is drawn
at the horizontal axis and the imaginary part IM(Z) at the vertical axis of a Cartesian
coordinate system. The disadvantage of this plot is that the frequencies are not

Sinusoidal voltage

Current response for resistance

Current response for capacitance

Current response for inductance

R

C

L

Fig. 2.4 Schematic depiction of applied sinusoidal voltage and the corresponding current
responses in the case of a resistor, capacitor and inductor
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directly accessible. This disadvantage is circumvented by using the Bode plot,
where the modulus of impedance and the phase shift are plotted as a function of
frequency. Figure 2.5 gives an overview of the Nyquist and Bode plots obtained in
accordance to the electrical circuits. A further variant is the so-called Cole-Cole
plot, where ReðZ�1Þx�1 is plotted against �ImðZ�1Þx�1. In this case the axes have
the unit of capacitance, and hence a capacitance can directly be obtained from the
plots.

All equations mentioned previously are in first approximation also valid for an
electrochemical system. The voltage U is replaced by the electrode potential E and
current I is replaced by the current density i. The analogy to electrical circuit
elements works only if a linear relationship between potential and current density
exists. As discussed in Sect. 2.1.5, this relationship is in general not linear. The
actual exponential relation can be approximated by a linear relation only in a rather
small electrode potential range. Thus, there will be an error in the measurement due
to the fact that the current will not be sinusoidal any more. But in a very narrow
region around a certain applied potential or OCP, typically �10 mV (depending on
application between 5 mV and 30 mV root mean square) the relationship between
potential and current density is approximated as linear. Several possible applica-
tions exist in electrochemistry, e.g. in-depth analysis of reaction rates for corrosion
phenomena, or an analysis of the corrosion resistance and water uptake of a coating,

Nyquist plot Bode plotEquivalent circuits

Resistance

Capacitance

Randles circuit

R1

R1 = 106 Ω

C = 10 F-6

R2

R1

R2 = 106 Ω

C = 10 F-6

R1 = 10 Ω

Re(Z) / Ω

Re(Z) / Ω

Re(Z ) / Ω

Im
(Z

) 
/ Ω

Im
(Z

) 
/ Ω

Im
(Z

) 
/ Ω

Fig. 2.5 Comparison of Nyquist and Bode plots for the respective to the equivalent circuits
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as will be shown in Sect. 2.4.2. More advanced measurement schemes make use of
the non-linearity to access detailed information on electron transfer [23].

The advantage of EIS compared to other electrochemical techniques is the fact
that one can get a relaxation picture of electrochemical systems under quasi steady
state conditions. The reason is that electrochemical reactions especially in corrosion
science involve several electrical and ionic processes at the interface between
substrate and electrolyte and that every reaction has its own relaxation time. While
the rearrangement of water molecules or solvated ions in an electrolyte under
potential control is an extremely fast reaction (e.g. because of the Grotthuss
mechanism) with relaxation times in the range of 1 ms to 10 s, the diffusion
controlled dissolution of a metal, which involves diffusion along the metal elec-
trolyte interface, is a much slower process. Hence, the resistance of an electrolyte
can be measured at high frequencies and the dissolution phenomena at lower
frequencies.

Figure 2.6 shows a typical impedance spectrum of aluminium recorded in an
acetate buffer at OCP. The Randles circuit introduced in Fig. 2.5 is used to extract
data about the aluminium oxide. The circuit consists of a resistance simulating the
electrolyte resistance Rel, and an RC element with Rox as the oxide resistance and
Cox as the oxide capacitance. In the high frequency region, the electrolyte resistance
dominates the spectrum. In the mid-frequency region, jZj increases due to the fact
that more and more the capacitive character of the oxide is contributing to the
impedance, as it can be also seen in the phase shift (note, that the current flow
through a capacitor is frequency dependent—while the capacitor is short circuited at
high frequencies, at lower frequencies it acts as an insulator). At lower frequencies
the current flows completely along the resistances Rel and Rox and the oxide
resistance is the dominating factor. More detailed information on characterizing
aluminium oxides and kinetic of growth with electrochemical techniques can be
found in [24] and in the references cited therein.

Using a Randles circuit is often the starting point for building an equivalent
circuit for describing and simulating more complex phenomena, like coatings. We
shall return to this description and its application to protecting organic coatings in

Fig. 2.6 Electrochemical
impedance spectrum of
aluminium in a 0.1 M acetate
buffer pH = 6 and the values
received by fitting the curve
with a Randles circuit
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Sect. 2.4.2. Nevertheless, the usage of equivalent circuits has its limits, and an
ongoing discussion concerns the validity of separating capacitive from Faradayic
currents [25]. Further in-depth discussion on the use and validity of equivalent
circuits can be found elsewhere [26, 27].

2.2.2 The Scanning Kelvin Probe (SKP)

While it is rather straightforward to obtain the electrode potential of a metal if the
metal is immersed in electrolyte, many practical problems involve corrosion of
samples in contact with an atmosphere. Electrode potentials, and to a certain extend
also currents, can be obtained under atmospheric conditions by Kelvin probe
measurements. Consequently, the scanning Kelvin probe (SKP) has been a valuable
and versatile tool for studying corrosion problems of metals under thin electrolyte
layers [28–33], and at buried interfaces beneath organic coatings [34, 35]. In
principle, the Kelvin probe measures the work function [36] or, for non metallic
surfaces, the surface potential of a sample. The work function itself is extremely
sensitive to changes in the surface conditions and is directly influenced by e.g.
adsorbed layers, charges and functional groups at the surface, surface and bulk
contaminations, and for semiconducting oxides structure, doping and even imper-
fections [37–42].

The SKP permits a non-destructive in situ measurement of electrode potentials at
buried polymer/metal interfaces with certain spatial resolution. The principle of the
Kelvin probe is based on the vibrating capacitor method (see Fig. 2.7): a needle
(that acts as a reference and is often referred to as “the probe”) consisting of an inert
corrosion-resistant metal, like Ni/Cr (80/20 wt%) alloy, is positioned approximately
50–100 μm close to the surface of the sample [43–46].

As soon as the needle and the sample are brought into electrical contact, the
equilibration of the Fermi levels within the two metals will result in the formation of

Fig. 2.7 Working principle
of the Kelvin probe
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a positive charge on the surface of one and a negative charge on the surface of the
other metal. Thus, the needle and the sample form a capacitor and the charging of
the sample with respect to the probe leads to a Volta potential difference DWref

sample

between the two metals (Fig. 2.8). By vibrating the needle, a current will be
induced. If an external bias is applied between sample and the needle in a way that
this current is compensated, surfaces will be uncharged again, the capacitance will
go to zero and the original state will be obtained. Under such conditions the external
bias voltage is identical to the Volta potential difference.

The work function describes the energy required to liberate an electron from an
electrode’s Fermi level to the vacuum level. For a metal in vacuum, the electron
only has to pass the metal surface during this transfer. However, if the metal is
covered by other phases, such as an aqueous electrolyte, a polymer layer or even a
coated metal affected by wet deadhesion, the electron needs to pass additional
interfaces. Thus, the measured Volta potential difference is strongly affected by
additional potential differences across these interfaces. As a consequence, the Volta
potential difference measured by the SKP is determined by the interfacial electrode
potential. Therefore, changes within the interfacial structure can be detected.
Depending on the different interfaces involved in the measurement, the measured
Volta potential difference DWref

sample can be correlated to the corrosion potential of
the underlying metal Ecorr. Practically the following cases can be distinguished.
Metal surface covered by a liquid phase [47]:

Ecorr ¼ Wref

F
� vEl � ERef

1=2

� �
þDWref

sample ð2:25Þ

Metal surface covered polymers with negligible dipole potentials [47]:

Ecorr ¼ Wref

F
� vPol � ERef

1=2

� �
þDW ref

sample ð2:26Þ

Fig. 2.8 Illustration of the Fermi level alignment of the the SKP tip and the sample.
Corresponding measured Volta potential difference DW ref

sample
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Additional liquid phase between the metal and the coating (during deadhesion)
[47]:

Ecorr ¼ Wref

F
� vPol � ERef

1=2

� �
þDW ref

sample þDUD ð2:27Þ

where Wref ; vEl;E
Ref
1=2; vPol;DUD and F denote the work function of the reference

(probe/needle), the surface dipole potential of the electrolyte, the half-cell potential
of the reference (probe/needle), the surface dipole potential of the polymer surface,
the Donnan potential of the polymer and the Faraday constant, respectively. These
equations show two advantages of the SKP: (1) The measured Volta potential
difference DWref

sample is related to the corrosion potential in a linear manner; (2) The
electrode potential of the buried interface can be determined across a dielectric
medium of infinite resistance. Due to the linear nature of the equations, a calibration

Fig. 2.9 Top Typical
potential distribution of a
polymer covered zinc
substrate (as model for
galvanised steel, i.e. steel
covered with a metallic zinc
layer) in humid air for
different delamination times
detected with the SKP
(electrolyte in the defect: 1 M
KCl). Bottom Time
dependence of the
delamination front position

2 Fundamentals of Electrochemistry, Corrosion … 45



constant is required in order to calculate the electrode or corrosion potential from a
Volta potential difference measurement. In practice, this constant can be obtained
for aqueous electrolytes simply by measuring the DWref

sample between the needle used
for the measurements and a metal electrode (as sample) which is exposed to an
electrolyte containing the metal cation in a defined concentration. Commonly, the
calibration is performed against a Cu/CuSO4 electrode [46].

In corrosion science, SKP has been used to study delamination kinetics and
mechanisms of organically coated metals [30, 43–45, 48–50], also with control of
surface chemistry [51], or morphology [52, 53]. In the following, an example for
cathodic delamination will be given. In the presence of moisture and oxygen, the
electrode potential of the buried coating/metal interface is changing in a
well-defined manner with increasing distance from a defect. A defect can be an
artificial scrape or defect, a cut edge, or a coating defect like a blister. For steel
(including galvanized steel that is covered with a zinc layer), basically two potential
levels characterise the SKP profiles measured during delamination. The potential of
the defect, and of the potential of the intact coated area. In most cases, the potential
close to the defect has a very negative value (pointing to cathodic processes),
whereas far away from the defect predominantly positive potentials are observed
(see Fig. 2.9). The progress of cathodic delamination is reflected by the lateral
displacement of steep increase within the repeatedly measured potential profiles.
The order of the delamination kinetics can be seen if the delamination front position
is plotted against the exposure time: A linear relation suggests that the process of
delamination is reaction controlled, whilst a hyperbolic (or square-root) relation
suggests that the interfacial ion mobility is rate-determining. We will return to the
discussion of the actual failure mechanisms in Sect. 2.4.3, after briefly looking at
the chemical composition of the polymer coatings, which are frequently used in
corrosion protection.

2.3 Types of Binder Resins for Passivating Organic
Coatings

From the discussion in Sects. 2.1.4 and 2.1.5, it is clear that simple ways of
protecting a metal against corrosion are to reduce the active area, to reduce the
access of oxygen and finally also to reduce the access of water to the metal. Such
reduction in accessibility is reached by barrier coatings, and organic coatings often
are used as such. If the coating properly wets the substrate surface and shows good
adhesion even in the presence of water and electrolyte, then sufficient protection can
be achieved. To create that effect, the choice of an appropriate binder resin is
crucial. These binder resins are generally organic polymers which can be classified
with respect to their chemical structure. From an industrial point of view, the most
important resins are hereby polymers made from epoxides, polyurethanes, polye-
sters, melamine formaldehyde resins, polyacrylates and phenolic polymers. The
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chemical background and the properties of these classes are described in more detail
in the following paragraphs [54].

2.3.1 Epoxy Based Coatings

Resins for epoxy coatings are derived from compounds that contain one or more
epoxy groups. These are derivatives of the three-membered, heterocyclic oxirane
ring, which is also called ethylene oxide, epoxy ethane, 1,2-epoxide or oxacyclo-
propane. The methyloxirane form is also known as glycidyl group. Due to its high
ring strain, the epoxy group is highly reactive and can therefore be converted with
many different functional groups [55, 56].

The most basic and most frequently used epoxy resin is prepared by the reaction
of bisphenol A with two moles of epichlorohydrine in alkaline medium to form the
diglycidyl ether of Bisphenol A (DGEBA) according to Fig. 2.10. After reaction
with the hydroxyl group, the epoxy ring is reformed by elimination of HCl, and is
then available for further reactions. If it is converted again, a secondary hxdroxy
group is created. By varying the ratio of Bisphenol A to epichlorohydrine, a broad
variety in molecular weight can be obtained. Since the molecular weight of
DGEBA is only 340 g/mol, it is available in liquid state. With a mean molecular
weight of 1000 g/mol, a polymer made from the same reactants is solid at room
temperature. On the one hand, low molecular weight molecules can be used to
obtain thick coatings, because there is only little solvent that needs to evaporate. On
the other hand, high molecular weight epoxy polymers have a higher strength, but
must be dissolved in organic solvent to render them utilisable for manufacturing
and the application processes [55, 56].

In most cases, epoxy polymers are cross-linked to improve the mechanical
properties and the heat resistance of the coating. This process implies the usage of
hardeners, which are agents that can react with the secondary hydroxyl group

Fig. 2.10 Reaction of Bisphenol A with epichlorohydrine
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and/or with the terminal epoxy groups. Examples of substances that can react with
epoxy groups are amines, acids and acid anhydrides, alcohols and mercaptans.
Furthermore, instead of reaction with the hardener, the terminal epoxy groups can
also be used for further modification of the binder resin to tune the properties in a
desired way [55, 56].

2.3.2 Phenol Formaldehyde Resins

Another binder resin can be obtained by the condensation reaction of phenol, or
substituted phenols, with aldehydes, e.g. phenol (P) with formaldehyde (F).
Products are classified as novolacs or resols. The first class is synthesized under
alkaline pH conditions with an excess of F. The latter is produced in acidic medium
with an excess of P. Both reactions are highly exothermic. The different architecture
of the hereby achieved products is shown in Fig. 2.11. If the molar ratio of F and P
is equal to one or higher (as for resol), every phenol is theoretically linked to
another phenol by a methylene bridge and there are also additional aldehyde
moieties available that can be used for later hardening. Having a lower amount of F,
novolac only hardens with addition of a cross-linking agent. Phenol formaldehyde

Fig. 2.11 Reaction of phenol and formaldehyde to resol and novolac
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resin based coatings are utilized for high temperature applications and very humid
and aggressive environments [55, 56].

2.3.3 Polyurethane Resins

Polyurethanes are materials which are traditionally formed by reaction of a com-
pound containing two or more isocyanate groups with a polyol to form urethane
bonds as shown in Fig. 2.12. The broad applicability of polyurethane coatings is
due to the versatility in selection of monomeric materials from a huge list of
diisocyanates, like hexamethylene diisocyanate, toluene diisocyanate or isophorone
diisocyanate, and diols, macrodiols or polyols. Cross-linked polyurethanes provide
hard and dense coatings with a very good chemical and moisture resistance and are
the most versatile group of polymers in industry [55, 56].

2.3.4 Polyacrylate Resins

Polyacrylate resins are synthesized from ethylenically unsaturated monomers which
are esterified derivatives from (meth)acrylic acid. These monomers can be equipped
either hydrophic or hydrophilic and can insert special functionalities into the resin.
The product is usually obtained by emulsion or solution polymerisation started by
initiators that dissociate into free radicals under elevated temperature. In a chain
reaction, an acrylic polymer is build-up in a very short time according to Fig. 2.13
[55, 56].

Commercially available polyacrylic resins are based on monomers like ethyl
acrylate, ethyl acetate, n-butyl acrylate, methyl methacrylate, vinyl acetate, acrylic

Fig. 2.12 Formation reaction of polyurethane from toluene diisocyanate and a macrodiol
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acid and other derivatives thereof. Furthermore, multifunctional acrylic monomers
such as ethylene glycol, dimethacrylate, trymethylolpropane trimethacrylate,
1,4-butanediol dimethacrylate or neopentyl glycol dimethacrylate can be used in
small amounts to act as cross-linkers. Usually, high molecular weight polymers can
be created by this reaction. Chain transfer agents like mercaptans can be incorpo-
rated to control the formation of long chains [55, 56].

2.3.5 Polyester Resins

Polyesters resins are made from di-or polyols and dicarbonic acids or anhydrides
via a step-wise condensation reaction according to Fig. 2.14. This procedure
involves a long reaction time because the produced water has to be constantly
distilled from the often high viscous reaction mixture. Appropriate monomers are
phthalic anhydride, isophthalic anhydride, therephthalic anhydride, trimellithic
anhydride, adipic acid, maleic anhydride, fumaric acid, glycol, 1,4-butane diol,
trimethylolpropane, neopentyl glycol and many other acids or alcohols [55, 56].

Alkyd resins represent a special class of polyester resins, which contain mainly
glycerin and different fatty acids combined with other dicarbonic acids and alcohols
or diols. Hydroxyl functional oligo- or polyesters can also be used as building block
e.g. for the synthesis of polyurethane resins. Polyesters with unsaturated double
bonds can be used for later cross-linking with acrylic monomers [55, 56].

Fig. 2.13 Radical polymerisation of methyl methacrylate as example for the build-up of a
polyacrylate
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Overall, polyesters can be designed with a broad variety of different properties
and can therefore be used in various coating systems [55, 56].

2.3.6 Melamine Formaldehyde Resins

An important class of binders is obtained by the reaction of melamine with
formaldehyde and further etherification to obtain multifunctional hardeners
according to Fig. 2.15. Depending on the amount and character of modification,
these show higher or lower reactivity with alcohols. A faster reaction at lower

Fig. 2.14 Condensation reaction of ethyl glycol and therephthalic acid as example for polyester
formation

Fig. 2.15 Reaction of melamine and formaldehyde to form differently modified melamine
formaldehyde resins
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temperatures is usually achieved with more N-H-groups that are still available and
shorter carbon chains within the ether segments [55, 56].

2.4 Coating Performance and Failure

2.4.1 Multilayer Coatings Are Applied in Real Coating
Applications

In the automotive sector, multi-layer coatings are applied to fulfil corrosion pro-
tection standards [57]. Moreover, the whole spectrum of different and sometimes
contrary properties desired for automotive coatings can be achieved and balanced
only by the interplay of several layers. Usually, the top layer is represented by the
clear coat. It provides not only the scratch resistance and the gloss, but protects also
from all outer influences like humidity, sunlight, chemicals and natural compounds
like bird droppings or tree resins. The colourful appearance and the metallic effects
are delivered by the second layer from top, the base coat. Beneath that more
“superficial” job, it provides adhesion between the upper and lower layer. The
second-named is the filler that serves as a kind of protective shield against damage
from stone chips. This flexible and thick layer also smooths the surface in prepa-
ration for the decorative layers and, to some content, provides protection against
corrosion, owing to its barrier properties. The task of protection is mainly fulfilled
by the lowest layer of a standard automotive coating: the cathodic electrodeposition
coating (e-coat). Whereas all other layers are applied via spray application, this one
is precipitated by an electrochemical approach. The car body is connected as
cathode and the positively charged paint particles are attracted, thereby leading to a
good surface coverage. Together with the pre-treatment and galvanization layer of
the steel, the e-coat gives an appropriate protection against corrosion. The stack of
these four layers is shown in Fig. 2.16, applied according to a standard procedure.
Modern processes try to get rid of single layers to safe time, money and energy. Of
course, the same good overall properties should be maintained [54].

Fig. 2.16 Microscopic picture of a crosscut of a standard build-up of an automotive coating
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For industrial coatings, the focus is a bit more on the side of protection than of
decoration. For such applications, the clear coat and base coat functions are com-
bined within a topcoat layer. Below that, the so called primer is responsible for
corrosion resistance and adhesion to the metal. This layer contains inhibitor pig-
ments to actively inhibit the corrosion at a defect.

2.4.2 Accessing Coating Barrier Property with EIS

All organic coatings are to some extent permeable to water and corrosive ions. The
driving forces for water permeation are: (1) a concentration gradient (e.g. during
immersion), (2) osmosis (e.g. from impurities at a coating/coating interface) or
(3) capillary forces (e.g. defects in the coating due to inadequate curing or improper
solvent evaporation). Corrosion underneath organic coatings could be basically
classified in two categories: (1) Delamination and blistering of the coating due to
clustering of water at the interface leading to wet deadhesion or osmotic blistering
and (2) delamination caused by specific corrosion mechanisms like cathodic or
anodic delamination. Often, the formation of blisters is the starting point for
cathodic or anodic delamination processes. Therefore, it is important to study the
barrier properties of organic coatings towards water and ions.

EIS was already introduced in Sect. 2.2.1 as a powerful tool for the electro-
chemical characterisation of interfaces. The final purpose of the EIS characterisation
of protecting organic coatings is to obtain information about system properties, such
as the presence of defects, reactivity of the interface, adhesion, and barrier prop-
erties to water. Practically speaking, EIS can quantitatively measure both the
resistance of the organic coating to aqueous and/or ionic transport, and capacitances
in the electrochemical cell. In this context, a resistance implies a current flow, and
hence the presence of electron transfer reactions, like corrosion. Organic coatings
deteriorate with time during exposure to an electrolyte. Deterioration can be
monitored e.g. as a change in the capacitance of a coating.

During exposure to corrosive electrolytes, metals covered with organic coatings
pass basically through four different stages of deterioration [47, 49, 50, 58]:

• Water uptake within the organic coating.
• Corrosion underneath the coating without any defect in the coating itself.
• Partially damaged coating with cracks, defects or pores reaching the metal

surface.
• Partially damaged coating with corrosive undermining of the coating.

These physical and chemical processes are usually quantified by means of
equivalent circuits, see also Sect. 2.2.1. Each element of the equivalent circuit
depicts one constituent of the specimen that is in contact to the electrolyte [59–61].
Schematic impedance spectra with the corresponding equivalent circuits for the
different stages of deterioration of metal coated with polymers exposed to corrosive
electrolytes are illustrated in Fig. 2.17. The parameters in the equivalent circuits are:
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• Rel: Uncompensated electrolyte resistance of the electrolyte between the
working and reference electrode, which is usually very low.

• CC: The coating capacitance changes e.g. due to water uptake or swelling.
• RC: The pore or coating resistance changes during exposure due to the pene-

tration of the electrolyte into pores and defects of the coating.
• CDL: Interfacial capacitance at the metal/electrolyte interface.
• RP: Polarization resistance of the metal surface that is in contact with ionically

conducting paths through the coating.

The two quantities that dominate the impedance during the initial stages of
immersion are usually CC and RC: Typically, CC * 10 nF cm−2 of an undamaged
pristine coating (e.g. for automotive or coil coating applications) with good barrier
properties. This capacitance corresponds to a modulus of the impedance at 0.1 Hz
of 109 Ω cm2.2 Upon immersion, RC is exceedingly high (1012 Ω cm2 or even
more), which leads to a nearly ideal capacitive response in the impedance.
Capacitance decreases over orders of magnitude with increasing exposure time,
leading to a horizontal plateau in the Bode plot at low frequencies. The pore
resistance of a coating is directly influenced by many parameters like the
crosslinking density or pigment to volume ratio, amongst others.

Fig. 2.17 Bode plots of
typical impedance response of
coatings with and without
defects and the corresponding
equivalent circuits

2In the units here, the electrode area dependence has been removed, which is critical for com-
parison of different coatings. As C / A, a comparison of C/A in F m−2 is independent of
electrode area. Likewise, as R / 1=A, R A with units of X m2 is independent of electrode area.
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One example how structural parameters of a coating can influence the barrier
properties is shown in Fig. 2.18 [49]: The pore resistance of a pigment free
UV-curable chlorinated polyester changes significantly with immersion time and
degree of conversion (which is proportional to the cross-link density). Due to the
formation of the polymer network RC rises with increasing degree of conversion
until the on-going polymerisation of the coating leads to internal stress within the
coating [49]. Consequently the coating resistance drops for higher degree of
conversion.

The water uptake changes the dielectric constant of the polymer and therefore
the impedance and the capacitance of the coating: CC ¼ ee0A=d (with e: dielectric
constant of the coating, e0 ¼ 8:8510�14 F cm−1, A area of exposure, d thickness of
the coating). At ambient conditions, the dielectric constant of a coating ranges
between 2 and 8, whereas that of water is nearly 80. As consequence, the water
uptake by the coating will lead to a significant increase in the effective dielectric
constant of the coating and therefore in CC.

A common approach for evaluating impedance spectra during water uptake is
the determination of the diffusion coefficient D of water diffusion through the
coating based on Fick’s second law by fitting the development of the coating
capacitance CC values with time (see Fig. 2.18) [59, 62]. Theoretically, for ideal

Fig. 2.18 Top Typical time
evolution of a coating
capacitance upon immersion
to 5 % NaCl. Bottom
Dependence of coating
resistance (RC) of the
differently UV-cured
polyester acrylate layers after
1 h of exposure to the
electrolyte (based on [49])
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coatings plotted capacitances show an exponential increase in the initial stage of
water uptake [Fickian (case-I) diffusion of water into the coating] and then result in
a saturation plateau (eventually followed by another raise of inhomogeneous water
accumulation due to polymer breakdown). However, water uptake curves measured
on real polymeric systems (e-coating, coil coating, complete OEM lacquers, powder
coatings, primer layers,) almost never show this ideal behaviour. These films tend to
undergo swelling, degradation or other transport processes during longer exposure
times to an electrolyte. As a result, the polymer capacitance does not reach a
constant value after water saturation with time, but shows an additional increase (or
decrease if the coating just undergoes a swelling transition) in the capacitance (see
Fig. 2.18). Empirically, this additional increase typically shows often a linear
behaviour. To quantify these influences and to improve the accuracy of the cal-
culated diffusion coefficients, this increase can be mathematically compensated by
combining Fickian Diffusion and case-II-sorption, e.g. by adding a slope coefficient
to capacitance values [59]. This model consists of a Fickian-like starting period
where water diffuses in interstitials/pores without interaction with polarizable
groups. This is followed by a case-II-sorption period (linear part) where swelling of
the polymer due to interaction with the penetrant takes place (see Fig. 2.18).
Prerequisite for the applicability of this model is that the penetrant mobility is much
bigger than the polymer segment mobility. This implies that the polymer relaxation
controls the uptake under considerable swelling and as a result, the mass uptake
proceeds linear with time, forming a sharp front.

If the knowledge of the moisture take-up rate by the coating during early stages
of absorption is required, the Brasher-Kingsbury equation [63] is giving a rea-
sonable estimate of the water volume fraction /ðtÞ ¼ log½CðtÞ=Cðt ¼ 0Þ�= logðewÞ,
where ew denotes the dielectric constant of water. Nevertheless, non-Fickian (or
anomalous) sorption is a common behaviour for coating-water systems below the
polymer glass transition temperature Tg [64]. The slow relaxation of the polymer
chains due to the sorption of the water molecules is one reason for the abnormal
sorption kinetic: Motions of the entire or parts of the glassy polymer chains are not
sufficiently fast to completely homogenize the change of environment as water or
other penetrants enter the polymer matrix (see Chap. 5 by Monteux et al. and Chap. 9
by J.-U. Sommer for an introduction into polymer dynamics). Consequently, water
molecules or dissolved ions can find their way into “irregular cavities” with different
intrinsic diffusional mobility. In such cases, more complex models describing the
anomalous diffusion, adapting a suitable effective medium theory for the moisture in
the coating, need to be applied [65, 66].

The determination of polarization resistance and interfacial capacitance for
coated metals without artificial defects like a scratch is only possible if the impe-
dance of the coating is smaller than or equal to the impedance of the interfacial
reaction. For commercial coating systems one can hardly clearly separate the time
constants of the interfacial reaction and the polymer film. Thus, the impedance of
the interface cannot be deduced from the overall impedance of the polymer-coated
metal leaving the analysis of the interface (RP and CDL) limited to very thin
polymers and highly inhibited interfaces or special arrangements by placing the
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reference electrode directly at the interface. Another drawback are for instance
non-linear effects within the coating systems or electrochemical setups. These are
often overcome by using constant phase elements instead of capacitors in equiva-
lent circuits used for fitting of data obtained from industrial coating systems, though
there are intrinsic limitations in the interpretation [25, 67, 68].

2.4.3 Cathodic Delamination

Coatings with good corrosion protection properties prevent the access of hydrated
ions to the coating/metal interface, acting as a barrier. At the interface, such
coatings occupy metal or oxide adsorption sites. Thereby, the water activity at the
interface is reduced. Although the interfacial ingress of water often weakens the
adhesion of the polymer onto the metal therefore reducing the interfacial stability,
such wet de-adhesion mechanisms are significantly accelerated and supported by
electrochemical corrosion processes like cathodic delamination. Cathodic delami-
nation is one of the—if not even the—fastest failure mechanisms of organically
coated metals and a result of an electrochemical cell in which a separation of the
anodic and cathodic reaction site takes place. It is the dominant corrosion mecha-
nism in atmospheres with high humidity for coated metals like iron or zinc, which
are covered by conductive oxide structures. Depending on the nature of the metallic
substrate, the stability of the coating/metal interface against cathodic delamination
is mainly determined by several properties [47, 69–71]:

1. The electron-transfer reaction at the interface between polymer and metal.
2. The redox reaction of the metallic oxide between the metal and the coating.
3. The chemical stability of the interface with respect to the reaction products of

the electron transfer reaction.
4. The oxygen transport through the organic coating or defects.

Taking these four factors into account, distinct differences between the three
most relevant technical surfaces must be expected:

• Steel: Basically iron, with low band-gap oxides which are highly electron
conducting and stable in alkaline media.

• Galvanized Steel (Z, ZE): Basically zinc, with semiconducting oxides, which are
not stable in alkaline media.

• Aluminium: High band-gap semiconducting oxides, which act as insulator and
are not stable in alkaline media.

Cathodic delamination starts with randomly distributed anodes and cathodes in a
blister-like defect or at a delaminated area [72]. It is a type of reaction that dom-
inates on polymer/metal interfaces of metals covered by electron conducting or
semiconducting oxides with a low band-gap in the presence of coating defects. The
determining factors for cathodic delamination are the electrochemical and
pH-stability of the metal oxide, the oxygen permeability and adhesion of the
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organic coating, the kind of electrolyte in the defect, as well as the relative humidity
of the surrounding atmosphere.

As discussed in Sect. 2.2.2, the kinetics of cathodic delamination can be inves-
tigated by means of SKP measurements and basically two potential levels charac-
terise the SKP profiles measured during delamination in the presence of oxygen and
moisture. At and close to the defect, the measured potential is considerably more
negative due to the anodic dissolution of the metal (see Fig. 2.19). When iron is
taken as an example, oxygen will be reduced (O2 + 2H2O + 4e– → 4OH–) in the
defect area until the diffusion limiting current density level is reached. Iron dissolves
as anodic counter reaction in the defect [69, 70].

Initial oxygen reduction also occurs at the intact coating/metal interface, but it is
kinetically strongly inhibited. The intact interface is characterized by a high elec-
tronic conductivity of the oxide-covered iron surface, which allows electron transfer
but due to the presence of the adhering polymer no ion transfer reactions. Therefore,
the oxidation of iron oxide acts as the anodic counter reaction to the oxygen
reduction. Consequently, a fast reduction of donor density within the oxide is
observed, resulting in a decreasing rate of the electron transfer reaction and an
anodic shift of the interfacial potential. As a consequence, above a certain anodic
potential, the rate of oxygen reduction is extremely small, and no further anodic
potential shift is observed. This is the actual potential as measured by the SKP in
the area of an intact coating [43–45].

As discussed above, a distinct potential step between defect area and intact
interface is monitored by SKP measurements. For most coatings, this sudden
change in potential marks the delamination front and is the most interesting feature
because at this location those processes responsible for the loss of adhesion of the
coating occur [43–45]. This steep step in the potential originates from the migration
of hydrated ions: The electrolyte in the defect can penetrate into the adjacent intact
polymer/metal interface. Thereby the kinetic barrier for oxygen reduction at the
intact interface will be bypassed and a galvanic couple between two formerly
isolated electrochemical cells is established. In order to compensate the local charge
(due to the oxygen reduction) at the delamination front, soluble cations of the
electrolyte in the defect are electrostatically attracted. These ions have to be

Fig. 2.19 Schematic illustration of the mechanism of cathodic delamination

58 C.D. Fernández-Solis et al.



transported either by migration or diffusion to the zone of oxygen reduction.
Additionally, in the delamination zone, corrosive anions like chlorides are repelled
by the negative charge of generated hydroxide ions.

During oxygen reduction, a strongly alkaline electrolyte is formed, with several
consequences. Because interfacial iron dissolution is still inhibited, the iron surface
becomes passivated. Further, the oxidative degradation of the polymer at the
interface, either by the generated hydroxide ions, or by highly reactive oxygen
species (in particular radicals or other intermediates evolved in the oxygen reduc-
tion reaction, see e.g. [73, 74] ), results in delamination of the organic coating only
by bond breaking within the organic coating near the interface. It is still an open
questions which bond actually breaks [51].

The nature of cathodic delamination, especially the separation of local anode
(iron dissolution within the defect) and local cathode (oxygen reduction within the
delaminated area) requires a transfer of electrons as well as hydrated cations to the
electrolyte front position. For many coating systems, the interfacial ion transport
represents the slowest process step and therefore is rate-determining. In such cases,
the delamination scales with the square root of time. However, especially in the
presence of novel pre-treatments, highly cross-linked plasma polymers or e-coats,
the rate determining step is reaction controlled, either by limiting the electron
transfer or the oxygen reduction reaction. As a consequence, the delamination
scales are linear with time. Details of analyses of the different regimes are found in
the literature [51, 75].

As pointed out above, a strongly alkaline electrolyte is formed during oxygen
reduction. Compared to iron or cold rolled steel, the oxides of zinc present on
galvanized steel are less stable within such an alkaline environment. Although the
basic mechanisms of cathodic delamination are similar to iron, additional anodic
reactions in the section of interfacial ion transport are present, especially if the defect
consists of iron [75–77]. On the one hand, zinc cathodically protects the underlying
steel. On the other hand, this anodic process is attributed to amphoteric properties of
zinc oxide. Although zinc also gets passivated in alkaline environments, Zn(OH)2
tends to dissolve as zincate as the pH increases [78]. In the defect area, this is hardly
of relevance for the delamination process, but within the section of interfacial ion
transport, distinct oxide growth is reported for ongoing delamination at polymer/zinc
interfaces by dissolution/precipitation of Zn(OH)2 [75–77, 79].

The difference between cathodic delamination on iron or mild steel and corrosive
delamination at zinc or galvanized surfaces can be visually observed: Within the
delaminated area, mild steel remains shiny, whereas galvanized surfaces expose
white colored zinc corrosion products. In summary, cathodic delamination requires
electron conducting oxides, interfaces, which allow electrochemical reactions like
the oxygen reduction reaction, and interfacial transport of hydrated cations.
Therefore, cathodic delamination will dominate for substrates such as steel or
galvanized steel at high relative humidity. At low humidity and in the presence of
insulating oxides like those of magnesium or aluminium alloy grades, cathodic
disbonding cannot occur and anodic driven de-adhesion reactions like filiform
corrosion will prevail.
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2.5 Smart Coatings for Active Corrosion Protection

The mechanism of passive corrosion protection, namely the existence of a diffuse
double layer and blocking of electrochemical reactions at the interface, have been
discussed in Sect. 2.4, together with the mechanism of organic coating failure.
Modern coatings systems may contain layers where the onset of corrosion triggers
release of corrosion inhibitors. In fundamental research, a number of triggering
mechanisms are currently investigated. Examples include a change of pH, ionic
strength or the change of electrode potential. Recent developments in the field of
intelligent coatings for active corrosion protection will be summarised in this
section. Further reading is available in current reviews [80–84].

2.5.1 Ionic Strength and pH Triggered Release

Electrochemically driven corrosion processes need—besides electron-transfer
reactions—also the counterbalance of ionic charges (see Sect. 2.4.3). Therefore,
the corrosion rate is faster if the metal is in contact with an electrolyte with high ion
concentration at equivalent pH and temperature. Furthermore, corrosion of metals is
always accompanied by local pH changes. While the pH in the vicinity of local
anodes is lower due to hydrolysis of solvated metal cations, the pH at local cathodes
is predominantly alkaline. Smart coatings releasing inhibitors due to the environ-
mental ion concentration change or change in pH are actually indirectly responding
to an onset of corrosion.

Interesting concepts using “ion-sensing” materials as a part of a binder coating
system have been introduced. Ion-sensing materials contain naturally existing or
synthesised ion-exchange materials and nano-carriers either modified or made of
layer-by-layer assembled polyelectrolytes [84–89].

Ion-exchange materials can be divided into cation and anion exchange materials
[90, 91]. Cation exchange materials can carry corrosion inhibiting cations, which
are known to inhibit the oxygen reduction reaction (e.g. Ce3+, Zn2+, rare earth
cations). Zeolite and bentonite clays and cross-linked polystyrene-sulphonate are
the materials of choice for storing cationic inhibitors. Excellent corrosion inhibition
and especially cathodic delamination inhibiting properties have been shown, if such
materials have been applied as pigments in a coating matrix. The mechanism of
release is due to the interaction of cations from a corrosive electrolyte with the
pigments, leading to an exchange of the cations from the electrolyte with the
corrosion inhibiting cation in the pigments. The corrosion inhibiting cation can
form insoluble complexes with hydroxide ions, which can precipitate and block
preferentially the cathodic reaction.

The predominantly investigated anion exchange pigment is layered double
hydroxide compounds like hydrotalcite (HT). The structure consists of
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metal-hydroxide layers with excess positive charges, where anions are stored in
between the layers to compensate the positive charges. The mechanism of release is
similar as for the cation exchange pigments, but with the only difference that in this
case aggressive anions like chloride are removed from the electrolyte and are
adsorbed inside the HT, while the inhibitors are released. The use of pigments as
part of a corrosion inhibiting primer coating on aluminium alloys has investigated
in depth [84, 92, 93].

The advantage of ion-exchange materials is their very fast response and release
of inhibitors. However, for a prolonged corrosion protection, fast releasing and slow
releasing nano-carriers are needed in a combination in a coating formulation [94].

There is almost no limit in giving organic polymeric materials desired func-
tionality for the application in corrosion protection. Very successfully applied
polymer classes are polyelectrolytes, which on the one hand have been used for
sensing the change in ionic-strength and on the other hand to sense also pH changes
during corrosion. Three important strategies have been followed [88, 95, 96]:

1. The storage of inhibitors inside polyelectrolyte coatings.
2. Encapsulation and surface modification of hollow nano materials bearing cor-

rosion inhibitors with polyelectrolytes.
3. Preparation of hollow polyelectroylte capsules, with corrosion inhibitors

encapsulated inside the core.

The layer-by-layer polyelectrolyte assembly provides an inexpensive and robust
method to build coatings that are water resistant and stable, even at high ionic
strength and in acidic and basic media over a wide range of temperature, pH and
solvent changes. Polyelectrolyte multilayers built by layer-by-layer assembly can be
deposited on several metal substrates such as gold, stainless steel, iron, aluminium,
titanium, nickel, silver, copper, and zinc.

Examples of a negatively-charged polyelectrolytes include polyelectrolytes
comprising a sulfonate group (—SO�

3 ). Examples include poly(styrenene sulfonic
acid), poly(2-acrylamido-2-methyl-1-propane sulfonic acid), sulfonated poly(ether
ether ketone), polycaboxilates such as poly(acrylic acid), and poly(methacrylic
acid). Examples of positively-charged polyelectrolytes include polyelectrolytes
comprising a quaternary ammonium group such as poly(diallyldimethylammonium
chloride), poly(vinylbenzyltrimethylammoniumhalogenides), 2-dimethylaminoethyl
metacrylate or polyelectrolytes containing a pyridinium group, such as poly
(N-methylvinylpyridine).

By changing the type and number of layer-by-layer deposited polyelectrolytes,
the responsiveness to corrosion stimuli can be adjusted and engineered. In [97] the
surface of inhibitor filled mesoporous silica particles are modified with different
combination of polyelectrolytes. While for example the combination of strong
polyelectrolytes results in a polymer shell which releases the inhibitors due to the
change in ionic strength, the combination of weak polyelectrolytes results in a
polymer shell which is pH responsive and releases the inhibitors at alkaline or
acidic pH.
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Polyelectrolyte complexes have also been used in the development of
self-healing matrix coatings. In this case corrosion inhibitors are incorporated as a
second component in the complex. The general concept of these films is to entrap
the inhibitor into the depot, between one layer and another, from which it can be
released only when the corrosion starts. The inhibitor-loaded depot system is then
impregnated into the standard corrosion protecting film. Corrosion is accompanied
by local changes of the pH, flux of the corrosion products, corrosive species, and of
the electrochemical potential. Hence, if the release properties of the inhibitor depot
can be affected by any of the reactions accompanying the corrosion process, the
release of the entrapped inhibitor is initiated by the corrosion process itself.
Polyelectrolyte coatings and complexes are sensitive to pH changes in a local area
and can influence very effectively the depot of the corrosion inhibitors and their
release due to pH fluctuations during the corrosion process [88].

2.5.2 Electrode Potential Triggered Release

While the change in pH and ionic strength are an indirect indication that corrosion
takes place, the change of the electrode potential of a metal is a direct, reliable and
the most case-selective indicator for a corrosion process. The electrode potential of
every non-inert metal is always and only decreasing when corrosion occurs.

Conducting polymers (CP) are an excellent material of choice for sensing the
corrosion potential change and for storing and releasing inhibitors.

CP consist of conjugated chains containing p-electrons delocalised along the
polymer backbone. In their natural form, conductive polymers are semiconducting
materials that can be doped and converted into electrically conductive forms. The
doping can be either oxidative or reductive, though oxidative doping is more
common. Herein, some part of the polymer backbone is getting positively charged
and counterbalanced by anions (which can be also corrosion inhibitors). There are
generally two states of CP: non-conducting (uncharged/reduced state) and oxidized
(p-doped/oxidized and the most stable state) where electrons are removed from the
backbone [98]. The doping processes are usually reversible and typical conduc-
tivities can be switched between those of insulators (less than 10−10 S cm−1) and
those of metals (105 S cm−1). Almost all of the conductive polymers used in
corrosion protection fall into one of the following classes: polyanilines, polyhete-
rocycles and poly(phenylene vinylenes).

The most widely studied of the intrinsically conducting polymers (ICPs) for
corrosion protection coatings has been polyaniline (PANI). The advantages of this
material are (i) easy chemical and electrochemical polymerisation, (ii) easy doping
and de-doping by treatment with aqueous acids and bases and (iii) its high resis-
tance to environmental degradation [99]. PANI is usually prepared in the emer-
aldine salt form by oxidative polymerisation of aniline in acidic environment. While
there is general agreement that PANI performs well in preventing corrosion, the
mechanism of this process is still under investigation. Several hypotheses have been
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suggested for the mechanism of corrosion protection using conductive polymers,
specifically PANI: (i) PANI contributes to the formation of an electrical field at the
metal surface, restricting the flow of electrons from metal to oxidant; (ii) PANI
forms a dense, strongly adherent, low-porosity film similar to a barrier coating; and
(iii) PANI causes the formation of protective layers of metal oxides on a metal
surface. However, PANI possesses the important disadvantage that it is insoluble in
the majority of solvents, making its processing very difficult [100].

One of the features which makes use of CP attractive for pigment coatings is the
fact that corrosion inhibitor anions can be stored as counter ions in the oxidized
polymer backbone. These anions can be released upon the onset of corrosion and
the subsequent reduction of CP. Considerable research has been conducted on CP
for corrosion protection, however there are four crucial points which have to be
generally taken into consideration for designing potential triggered release systems
based on CP [101–106]:

1. The efficiency of release of anionic inhibitors is based on their ionic mobility
and has to compete with cation incorporation in the CP, which is usually the
preferred situation.

2. Due to fast cation incorporation, electropolymerized CP films with continuous
ionic networks may even enhance corrosion and can lead to a fast breakdown of
the coating system. This means the direct electrochemical synthesis of PANI on
a metal surface has to be ruled out for corrosion protection applications.

3. Only negatively charged molecules with non-oxidizable groups and with high
solubility in acidic environment can be used as dopants for CP. However,
corrosion inhibitors like mercaptobenzothiazole are not soluble in acidic envi-
ronment and the thiol functional group can be easily oxidizied in the oxidative
environment used to synthesise conducting polymers.

4. CPs applied especially on zinc tend to react with the metal. Consequently, metal
and CP are usually electronically decoupled (Fermi-level misalignment) and the
CP looses its capability to sense the potential changes of the metal, due to the
formation of an insulating layer between CP and zinc.

Gold nanoparticles

Polyaniline shell

Corrosion inhibitor

Hydrophobic solvent

Fig. 2.20 Schematic depiction of of the release concept based on PANI capsules and the
corresponding TEM micrograph of a PANI capsule synthesised via miniemulsion technique and
decorated with gold nanoparticles
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In a recent work [107] these challenges in using conducting polymers have been
addressed, and a novel structure for storing and releasing inhibitors has been
introduced (Fig. 2.20). The new structure synthesised by the miniemulsion tech-
nique comprises a redox-sensitive PANI shell and a corrosion inhibitor
(3-nisa/3-nitrosalicylic acid) encapsulated in the hydrophobic (ethylenebenzene/
hexadecane) core. Furthermore, the shell is decorated by gold nanoparticles to
circumvent electronic decoupling of the capsules from the metal surface (Fig. 2.20).

If the capsules are formulated with a non conducting coating and applied as a
composite coating on zinc, they show a self-healing behaviour of a defect. The
corrosion potential has been recorded by SKP and indicates that a scratch can be
passivated by a coating containing the PANI capsules with inhibitors. On the other
hand, the capsules without inhibitors and the binder coating do not show any kind
of passivating effect, Fig. 2.21. Delamination performance measured by SKP
unravels that after passivation of the defect the progress of cathodic delamination is
completely inhibited for the coating containing the PANI capsules with inhibitor.

Fig. 2.21 Top Corrosion
potential monitored by the
SKP in an artificial defect
down to zinc covered with
1 M KCl. Bottom
Delamination progress over
time for non-selfhealing
coatings and the coating
containing PANI capsules
filled with inhibitor
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2.6 Conclusion

Overall, relatively simple electrochemical processes lead to degradation of metals,
also known as corrosion. To combat corrosion on a technological level, several
rather sophisticated methods have been developed. Many of these systems involve
at least in one step a soft matter system at an aqueous interface. Especially the
modern, active systems of corrosion protection are still areas of active research, and
a thorough understanding of polymers at aqueous interfaces is needed for the next
generation of corrosion protection systems to become reality.
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Chapter 3
Introduction to Depletion Interaction
and Colloidal Phase Behaviour

Remco Tuinier

Abstract Efforts to explain physical properties of colloidal suspensions in terms of
the forces that act between the colloidal particles go back to the beginning of the
20th century. In the second half of the last century theoretical progress clarified that
the stability of colloidal particles is also affected by non-adsorbing polymers in
solution, as first explained by Asakura and Oosawa in Japan using the excluded and
free volume concepts. Here an introduction to the depletion interaction and
resulting phase behaviour in colloidal suspensions is provided. The theory for the
phase behaviour of colloidal dispersions is developed here starting from the Van der
Waals theory for the as-liquid phase transition. Subsequently, the hard sphere
fluid-solid phase transition is explained. Next, an attractive Yukawa hard-core
model is used to outline the effects of varying the range of attraction on the phase
behaviour of a colloidal suspension of attractive particles. Finally, the phase states
that can be found in a colloidal hard sphere dispersion plus depletants are explained.

3.1 Introduction and Some History

3.1.1 The First Theory on Depletion Interaction

In the early 1950s the legendary Oosawa [1], at that time a young Associate
Professor at Nagoya University in Japan, organized a winter symposium in Nagoya
and invited a multidisciplinary group of Japanese scholars, mainly active in
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biology. Oosawa has a statistical mechanics background and he asked the group to
present work on phenomena in biological systems where statistical physics could be
helpful to understand certain mechanisms. During the meeting the ‘aggregation’ of
particles under the influence of macromolecules was a re-occuring theme. It was
observed in suspensions of red blood cells, bacterial cells, soil powder and gum
latex particles. This inspired Oosawa to start work with Sho Asakura, then a
graduate student, on the influence of polymers on the interaction between particles.

In 1953 P.J. Flory was invited by professor Yukawa to Tokyo and met Oosawa.
Oosawa invited Flory to come to Nagoya University [1]. During Flory’s visit
Asakura and Oosawa explained their theoretical results on two particles immersed
in a solution containing nonadsorbing polymer chains, showing the chains impose
an attractive interaction between the particles. The very positive response of Flory,
at that time Associate Editor of J. Chem. Phys. resulted in submission of this work,
leading to the seminal paper in which Asakura and Oosawa [2] presented a sta-
tistical mechanical derivation of the interaction between two plates immersed in a
solution of ideal nonadsorbing polymers. The theory of Asakura and Oosawa [2] is
the first theoretical prediction of a depletion force. It will be explained in more
detail later on. They showed that adding nonadsorbing polymer chains induce an
effective attraction between particles with a hard core interaction. The attraction
originates from repulsive interactions only, so it is a purely entropic effect.

This led to the discovery of the seminal Asakura-Oosawa depletion potential first
published in their 1954 paper [2]. The term ‘depletion’ was probably introduced by
Napper [3]. Oosawa indicated that the derivations and calculations were performed
within a few weeks [4] and wished to note that he actually does not like the word
‘depletion’.

3.1.2 Origin of the Depletion Force

The origin of the depletion effect is now first explained by regarding colloidal hard
spheres in a solution of nonadsorbing polymer. The fact that polymers do not
adsorb results in an effective depletion layer near the surface of the colloidal par-
ticles due to a loss of configurational entropy of a polymer chain in that region. In
Fig. 3.1 a few colloidal spheres are depicted in a polymer solution. The depletion
layers are indicated by the (dashed) circles around the spheres. When the depletion
layers overlap the volume available for the polymer chains increases. Hence states
in which the colloidal spheres are close together are more favourable. Therefore the
polymers indirectly induce an effective attraction force between the spheres even
though the direct colloid-colloid and colloid-polymer interactions are repulsive [5].
Vrij called this ‘attraction through repulsion’.

At least in the limit of low depletant concentrations the attraction equals minus
the product of the osmotic pressure and the overlap volume, indicated by the
hatched region between the close spheres in Fig. 3.1. The picture sketched above
became first clear in the 1950s through the work of Asakura and Oosawa [2, 6].
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It was hardly noticed in the literature at first, seemed forgotten, but started to gain
attention when Vincent et al. [7] and Vrij [5] started systematic experimental and
theoretical work on colloid-polymer mixtures.

Below the standard expression used for the depletion interaction [2, 5, 6] is
given. Consider two colloidal spheres each with volume vc ¼ 4pR3=3 and diameter
2R, surrounded by a depletion layer with thickness d. In that case the depletion
potential can be calculated from the product of P ¼ nbkBT , the (ideal) osmotic
pressure of depletants with bulk number density nb, times Vov, the overlap volume
of the depletion layers. Hence the Asakura-Oosawa-Vrij (AOV) depletion potential
equals:

WðhÞ ¼
1 h\0
�P VovðhÞ 0� h� 2d
0 h� 2d

8<
: ð3:1Þ

with overlap volume VovðhÞ,

VovðhÞ ¼ p
6
ð2d� hÞ2ð3Rþ 2dþ h=2Þ: ð3:2Þ

Fig. 3.1 Schematic picture of a few colloidal spheres in a polymer solution with nonadsorbing
polymers. The depletion layers are indicated by the short dashes. When there is no overlap of
depletion layers (upper two spheres) the osmotic pressure acting upon the spheres due to the
polymers is isotropic. For overlapping depletion layers (lower two spheres) the osmotic pressure
on the spheres is unbalanced; the excess pressure is indicated by the arrows
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In Fig. 3.2 the AOV interaction potential WðhÞ is plotted. The minimum value of
the potential Wdep is achieved when the particles touch (h = 0). Inspection of
Eqs. (3.1) and (3.2) reveals that the range of the depletion attraction is determined
by the size 2d of the depletant, whereas the strength of the attraction increases with
the osmotic pressure of the depletants, hence with the depletant concentration.
Depletion effects offer the possibility to independently modify the range and the
strength of attraction between colloidal particles. In dilute polymer solutions, the
depletion thickness d � 1:1Rg [8–10], so d is close to the polymer’s radius of
gyration Rg.

It is noted that in the original paper of Asakura and Oosawa [6], where
expression Eq. (3.1) was first derived, the polymers were regarded as (dilute) pure
hard spheres. Vrij [5, 11] arrived at the same result by describing the polymer
chains as penetrable hard spheres, see Sect. 3.2.

In a mixture of hard spheres and depletants (which can also be polymers, sur-
factant micelles, rodlike colloidal particles) a phase transition occurs upon
exceeding a certain concentration of colloidal spheres and/or depletants. An
important parameter that is used to describe the phase stability of colloid-polymer
mixtures is the size ratio q,

q ¼ Rg

R
: ð3:3Þ

Phase diagrams of colloid-polymer mixtures are often described in terms of the
volume fraction of colloids g and the relative polymer concentration:

/p ¼
nb
n�b

¼ u
u� ; ð3:4Þ

which is unity at the overlap concentration and can be regarded as the ‘coil volume
fraction’ of polymer coils, exceeding unity in the semidilute concentration regime

h=0

h

h=2
W(h)
kT

W
dep

Fig. 3.2 Sketch of the depletion interaction between two hard spheres
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and beyond.1 Commonly /p is used as the parameter for ‘polymer concentration’.
The overlap concentration in kg=m3 or g=L equals

3Mp

4pR3
gNav

; ð3:5Þ

where Mp is the molar mass of the polymer and Nav is Avogadro’s number. The
osmotic pressure P in Eq. (3.1) can, using Eq. (3.4), be rewritten as
Pvp=kBT ¼ /p. This allows to write the depletion interaction for spheres that touch,
Wdepðh ¼ 0Þ ¼ Wdep as:

Wdep

kBT
¼ � /p 1þ 3

2q

� �
; ð3:6Þ

which for small q boils down to Wdep ¼ �ð3=2qÞkBT/p. This clarifies that at given
/p the depletion force is very strong for small q.

Next a few examples are discussed where the effects of depletion were already
noted long before Asakura and Oosawa rationalized the attractive interaction caused
by depletants.

3.1.3 Early Observations

The aggregation of red blood cells (RBCs) in blood of human beings is found to be
enhanced in case of for instance pregnancy or a wide range of illnesses, giving
rather pronounced ‘rouleaux’; clustered RBCs with their flat sides facing each other
[12]. Rouleaux were described already more than 2 centuries ago. Enhanced RBC
aggregation is observed for instance by measuring the sedimentation rate which can
increase 100-fold in case of severe illnesses as compared to RBC sedimentation in
healthy blood. The blood sedimentation test, based on monitoring aggregation of
red blood cells, became a standard method for detecting illnesses. The relation
between pathological condition, RBC aggregation and enhanced sedimentation rate
was described for instance long time ago in [12–14]. It has been shown that adding
macromolecules such as dextrans to blood also promotes rouleaux formation.
Asakura and Oosawa [6] suggested that RBC aggregation is caused by depletion
forces between the RBC’s induced by serum proteins. The general picture is that

1The quantity n�b is the bulk polymer number density at which the polymer coils overlap. In terms
of the volume fraction of polymer segments u (0�u� 1), one then uses /p ¼ u=u�, with u�

the segment volume fraction at which the chains start to overlap: u� ¼ Npvs=vp, where Np is the
number of segments per polymer chain, vs is the monomer (segment) volume, and vp ¼
ð4p=3ÞR3

g the coil volume, so u� �Np=R3
g. The overlap number density n�b hence follows as

n�b = 3=ð4pR3
gÞ.
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red blood cells tend to cluster at elevated concentrations of the blood serum pro-
teins, which act as depletants.

Large scale production of binder particles for paint production commenced about
a century ago. In order to lower transport costs there was a significant interest in
concentrating the polymeric latex. Centrifugation is highly energy consuming and
thus expensive. Traube [15] showed that adding plant and seaweed polysaccharides
led to a phase separation between a dilute and a concentrated phase with binder
particles. Since the particles are lighter than the solvent the concentrated phase, with
volume fraction 0:5� g� 0:8, floats on top. The lower phase is clear and hardly
contains particles. Baker [16] and Vester [17] systematically investigated the
mechanism that leads to what they called (enhanced) creaming. From the work of
Baker [16] it can be concluded that the particles aggregate reversibly; upon dilution
the latex particles can be resuspended. This suggests that bridging, which can also
cause creaming [18], is not the driving force for enhanced creaming here.

3.1.4 Onset of Attention for Depletion After 1954

Not long after the publication of the work of Asakura and Oosawa, Sieglaff [19]
demonstrated that a depletion-induced phase transition may occur upon adding
polystyrene to a dispersion of microgel spheres in toluene. This demonstrated that
the attractive depletion force is sufficiently strong to induce a phase separation.
Sieglaff rationalized his findings in terms of the theory of Asakura and Oosawa. It
took more than a decade before subsequent work was published.

Early systematic studies with respect to phase stability for colloid-polymer
mixtures were performed in the 1970s by Vincent and co-workers [7, 20, 21]. They
concentrated on mixtures of colloidal spheres (latex particles) plus nonadsorbing
polymers such as polyethylene oxide (PEO). In the papers of Vincent et al. there is
quite some variation in qualifying the demixing phenomena in colloid-polymer
mixtures [20, 22–24]. These experiments were ahead of a full theoretical under-
standing of the phase behaviour of colloid-polymer mixtures.

Also in the 1970s Hachisu et al. [25] investigated aqueous dispersions of neg-
atively charged polystyrene latex particles that undergo a colloidal fluid-to-solid
phase transition upon lowering the salt concentration using dialysis or increasing
the particle concentration. Under conditions where the latex dispersion is not
ordered (fluid-like), Kose and Hachisu [26] added sodium polyacrylate to poly-
styrene latex particles (both components are negatively charged), and observed
crystallization of the colloidal spheres. The authors suggested that the ordering is
due to ‘some attractive force’. When the polymer concentration is increased crys-
tallization occurs faster. Since polymers and particles repel each other the crys-
tallization process was probably induced by depletion interaction.

Theoretical work on depletion interactions and their effects on macroscopic
properties such as phase stability started with work by Vrij [5] who considered the
depletion interaction between hard spheres due to dilute nonadsorbing polymers
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described as penetrable hard spheres (see Sect. 3.2) and computed the second
osmotic virial coefficient to explain the phase transitions observed by De Hek and
Vrij [11]. By mixing aqueous hydroxyethylcellulose (HEC) with polymeric col-
loidal particles, Sperry [27, 28] and coworkers [29] observed phase separation and
made a study on the effect of the structure of the colloid-rich phase as a function of
the colloidal particle-free polymer size ratio q ¼ Rg=R. Unstable systems at large
q and not too high polymer concentrations are characterized by smooth interfaces,
implying colloidal gas–liquid coexistence. For small q, demixed systems are
characterized by irregular interfaces that indicate (colloidal) fluid-solid coexistence.
This suggests that the width of the region where a colloidal liquid is found in
colloid-polymer mixtures is limited.

The work of Sperry inspired Gast, Hall and Russel to develop a theory which
might explain the experimental phenomena. Gast et al. [30] used thermodynamic
perturbation theory (TPT) [31] to derive the free energy of a mixture of colloidal
particles and polymers (described as phs; penetrable hard spheres), based on
pair-wise additivity of the interactions between the colloids. They calculated the
phase behaviour from the (perturbed) free energy which made it possible to assign
the nature (i.e. colloidal gas, liquid or solid) of the coexisting phases as a function
of size ratio q, the concentration (or formally activity within their approach) of the
polymers, and the volume fraction of colloids. For small values of q, say,
q ¼ Rg=R\0:3, increasing the polymer concentration broadens the hard sphere
fluid-solid coexistence region; a (stable) colloidal fluid-solid coexistence is
expected if the polymer chains are significantly smaller than the colloidal spheres
(low q). Inside the unstable regions a (metastable) colloidal gas–liquid branch is
located. For intermediate values of q, the gas–liquid coexistence curve crosses the
fluid-solid curve and for large q-values mainly gas–liquid coexistence is found for
g\0:49, where g is the volume fraction of colloids. The results are in agreement
with the findings of Sperry [27–29]. Experimentally, Gast et al. [32] later verified
the predicted types of phase coexistence regions for a model colloid-polymer
system. Colloid-polymer phase diagrams are commonly plotted in terms of the
volume fraction of colloids g and the relative polymer concentration /p, defined in
Eq. (3.4).

A semigrand canonical treatment for the phase behaviour of colloidal spheres
plus nonadsorbing polymers was proposed by Lekkerkerker [33], who developed
‘free volume theory’ (also called ‘osmotic equilibrium theory’), see Sect. 3.3.4. The
main difference with TPT [30] is that free volume theory (FVT) accounts for
polymer partitioning between the phases and corrects for multiple overlap of
depletion layers, hence avoids the assumption of pair-wise additivity which
becomes inaccurate for relatively thick depletion layers. These effects are incor-
porated through scaled particle theory (see for instance [34] and references therein).
The resulting free volume theory (FVT) phase diagrams calculated by Lekkerkerker
et al. [35] revealed that for q\0:3 coexisting fluid-solid phases are predicted,
whereas at low colloid volume fractions a gas–liquid coexistence is found for
q[ 0:3, as was predicted by TPT. A coexisting three-phase colloidal gas–
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liquid-solid region, not present in TPT phase diagrams, was predicted by FVT for
q[ 0:3 and gained much attention. Experimental work [36, 37] demonstrated that
this three-phase region indeed exists. Before the basics of phase behaviour of
colloidal dispersions are discussed in more detail the focus is now first on the
depletion interaction where more detailed derivations of the basic results are
provided.

3.2 Depletion Interaction

In this section the depletion interaction between two flat plates and between two
spherical colloidal particles is considered for penetrable hard spheres (phs). It is
noted that besides polymers (for which PHS are a reasonable model when the
polymers are small and dilute), small colloidal spheres, rods and plates can also act
as depletants, see [38]. The penetrable hard sphere model, implicitly introduced by
Asakura and Oosawa [2] and considered explicitly in detail by Vrij [5], is char-
acterized by the fact that the spheres freely overlap each other but act as hard
spheres with diameter 2d when interacting with a wall or a colloidal particle.

3.2.1 Depletion Interaction Between Two Flat Plates

Consider Fig. 3.3 where two parallel flat plates in a polymer solution are sketched.
The force per unit area, KðhÞ, between two parallel plates separated by a distance h,

K

h

δ2

Fig. 3.3 Schematic picture of
two parallel flat plates in the
presence of penetrable hard
spheres (dashed circles)

78 R. Tuinier



is the difference between the osmotic pressure Pi inside the plates and the outside
pressure Po

K ¼ Pi �Po: ð3:7Þ

Since the penetrable hard spheres behave thermodynamically ideally the osmotic
pressure outside the plates is given by the Van ’t Hoff law Po ¼ nbkBT , where nb is
the bulk number density of the phs. When the plate separation h is equal to or larger
than the diameter r(¼ 2d) of the penetrable hard spheres the osmotic pressure
inside the plates is the same as outside, Pi ¼ Po ¼ nbkBT . On the other hand, when
the plate separation is less than the diameter of the penetrable hard spheres, no
particles can enter the gap and Pi ¼ 0. This means that

KðhÞ ¼ �nbkBT 0� h\2d
0 h[ 2d

�
: ð3:8Þ

Since K ¼ �dW=dh, integration yields the interaction potential WðhÞ per unit
area WðhÞ between the plates

WðhÞ ¼ �nbkBTð2d� hÞ 0� h\2d
0 h� 2d

�
: ð3:9Þ

3.2.2 Depletion Interaction Between Two Spheres

When the depletion zones with thickness d around spherical colloidal particles with
radius R start to overlap, i.e., when the distance rð¼ hþ 2RÞ between the centers of
the colloidal particles is smaller than 2Rþ 2d, a net force arises between the
colloidal particles. It is useful to define an effective depletion radius Rd :

Rd ¼ Rþ d: ð3:10Þ

The (attractive) force originates from an uncompensated (osmotic) pressure due
to the depletion of penetrable hard spheres from the gap between the colloidal
spheres. This is illustrated in Fig. 3.4 from which it can be deduced that the
uncompensated osmotic pressure acts on the surface between h ¼ 0 and
h0 ¼ arc cosðr=2RdÞ. For obvious symmetry reasons only the component along the
line connecting the centers of the colloidal spheres contributes to the total force. For
the angle h this component is Po cos h where the pressure is Po ¼ nbkBT . The
surface on which this force acts between h and hþ dh equals 2pR2

d sin hdh: The
total force between the colloidal spheres is obtained by integration:
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KsðrÞ ¼ �2pnbkBT Rþ dð Þ2
Z h0

0
sin h cos h dh: ð3:11Þ

Hence

KsðrÞ
nbkBT

¼
1 r\2R
�pR2

d½1� r=2Rdð Þ2� 2R� r� 2Rd

0 r[ 2Rd

8<
: : ð3:12Þ

The minus sign in the right-hand side of Eq. (3.12) implies that the force is
attractive. The depletion potential is now obtained by integration of the depletion
force Eq. (3.12)

WsðrÞ ¼
Z 2Rd

r
KsðrÞdr

¼ 1 r\2R

¼ �nbkBTVovðrÞ 2R� r� 2Rd

¼ 0 r[ 2Rd

;

ð3:13Þ

with

VovðrÞ ¼ 4p
3
R3
d 1� 3

4
r
Rd

þ 1
16

r
Rd

� �3
" #

ð3:14aÞ

θ0r
R

δ

σ

h

Π0

Fig. 3.4 Two hard spheres in the presence of penetrable hard spheres as depletants. The PHS
impose an unbalanced osmotic pressure P between the hard spheres resulting in an attractive force
between them. The overlap volume of depletion layers between the hard spheres (hatched) has the
shape of a lens with width 2d� h and height 2H ¼ 2Rd sin h0, where h0 is given by cos h0 ¼ r=2Rd
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VovðhÞ ¼ p
6
ð2d� hÞ2ð3Rþ 2dþ h=2Þ ð3:14bÞ

The result of Eq. (3.14a), in which r is the variable, was first obtained by Vrij [5]
with PHS explicitly as depletants. In Eq. (3.14b) the variable is h and was already
given (without explicit derivation) in Eq. (3.2). Both Eqs. (3.14a) and (3.14b) are
frequently used in the literature.2 The expression for WsðrÞ in Eq. (3.13) equals the
osmotic pressure (nbkBT) times overlap volume Vov. In the (Derjaguin) limit d 	 R
the attractive parts of the force (Eq. 3.11) and interaction potential (Eq. 3.13)
between the spheres take on even simpler forms:

KsðhÞ
nbkBT

¼ �pRð2d� hÞ ð3:15Þ

and

WsðhÞ
nbkBT

¼ �2pRðd� h=2Þ2: ð3:16Þ

For the contact potential Wdep ¼ Wsðh ¼ 0Þ the result

Wdep

kBT
¼ �2nbpRd

2 ¼ � 3
2
/d

q
ð3:17Þ

is obtained, where /d is the relative concentration of penetrable hard spheres
4pd3nb=3, see also the definition of Eq. (3.4) for /p.

It is noted that in case of (small) hard spheres as depletants the results are
identical to those above only in the dilute limit. For the minimum attraction between
two spheres at contact the depletion force up to second order in hard sphere
depletant volume fraction gss is [38, 39]:

Ws;min

kBT
¼ � 3

2
R
d

gss þ
1
5
g2ss

� �
; ð3:18Þ

where d now equals the radius of the small hard spheres. For small values of gss
Eq. (3.17) is recovered for gss ¼ /d . At higher volume fractions the depletion
attraction at contact between the big hard spheres by small hard spheres is however
larger than the depletion due to penetrable hard spheres. Besides a depletion

2A smooth transition between these forms is:

VovðrÞ ¼ 2p
3
ðRd � r=2Þ2ð2Rd þ r=2Þ:

.
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attraction, depletion effects of small hard spheres also lead to a repulsive contri-
bution to the interaction between two spheres. Near h ¼ 2d a positive maximum of
the pair interaction is found with a maximum (up to second order in gss)

Ws;max

kBT
¼ 6R

5d
g2ss:

3.3 Phase Behaviour of Colloidal Dispersions

Phase transitions are the result of physical properties of a collection of particles
depending on the colligative properties. In Sect. 3.2 we focused on two-body
interactions. Depletion effects are commonly not pair-wise additive [40–43].
Therefore, the prediction of phase transitions of particles with depletion interaction
is not straightforward. As a starting point the Van der Waals model is recalled and
applied to a collection of colloidal spheres with long-ranged attraction. Then a more
advanced description for the thermodynamic properties of the pure colloidal dis-
persion are given. Subsequently, this is used to describe the phase behaviour of a
collection of hard spheres plus additional Yukawa attraction, with a variable range
of the interaction. Next, the basics of the free volume theory for the phase behaviour
of colloids + depletants is explained. Only the simplest type of depletant, the
penetrable hard sphere, is considered here. For experimental methods that enable
measuring (depletion) interaction potentials between particles I refer to [44].

3.3.1 Phase Behaviour of a Van der Waals Fluid

The seminal equation of state of van der Waals [45] for the pressure P for
N particles in a volume V reads:

P ¼ NkBT
V � bN

� a
N
V

� �2

: ð3:19Þ

Here b is the excluded volume per particle, which is 4vc for hard spheres. Using
this equation van der Waals could implicitly demonstrate that a fluid can only phase
separate when there is both excluded volume interaction (expressed via the con-
tribution of the bN term) as well as attraction (the aN2=V2 term) between the
molecules. It allows to describe the gas–liquid equilibria for a wide range of atomic
and molecular substances and it revealed that the phase behaviour of low molecular
systems is rather universal.

Let us now describe a colloidal dispersion of hard spheres plus an attraction in a
very simple manner using the van der Waals model of Eq. (3.19). This can be done
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when considering the solvent in a colloidal dispersion as effective background.
When performing computations on phase coexistence it is useful to use normalized
quantities. Hence the normalized Helmholtz energy eF , the dimensionless chemical
potential el and normalized pressure eP are introduced:

eF ¼ Fvc
kBTV

; ~l ¼ l
kBT

g ¼ Nvc
V

; eP ¼ Pvc
kBT

:

ð3:20Þ

For sake of completeness the definition of the volume fraction g is added. Note
that instead of the pressure P of a molecular fluid here the normalized osmotic
pressure P is used because solvent is present.

The van der Waals equation can now be rewritten in dimensionless form:

eP ¼ g
1� 4g

� cg2; ð3:21Þ

with c ¼ a=ðkBTvcÞ. In order to compute phase coexistence the osmotic pressure
and the chemical potential for the van der Waals fluid are required. From ther-
modynamics (P ¼ �ð@F=@VÞN;T ) it follows

eP ¼ � @ðeF=gÞ
@ð1=gÞ

 !
V ;T

¼ g
@eF
@g

 !
V ;T

�eF ¼ g~l� eF : ð3:22Þ

Hence the Helmholtz energy follows as:

eF ¼ g lnðK3=vcÞ þ g ln g� g� g lnð1� 4gÞ � cg2: ð3:23Þ

The last two terms are the result of the integration of Eq. (3.21) using Eq. (3.22).
The other terms are the ideal contributions that follow from the ideal gas reference
state [46]; K is the De Broglie wavelength.3 Using

~l ¼ @eF
@g

 !
N;T

; ð3:24Þ

the chemical potential follows as

~l ¼ ~lþ þ ln
g

1� 4g

� �
þ 4g
1� 4g

� 2cg; ð3:25Þ

3K ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmckBT

p
, with the colloid mass mc and Planck’s constant h.
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with ~lþ ¼ lnK3=vc. Now all ingredients to compute gas–liquid coexistence are
available. The binodal gas–liquid coexistence curve follows from solving the
coexistence conditions

eP ðgGÞ ¼ eP ðgLÞ
~lðgGÞ ¼ ~lðgLÞ

; ð3:26Þ

where gG and gL are the volume fractions of the particles in the gas and liquid
phases, respectively. In Fig. 3.5 the binodal is plotted. The critical point (cp) fol-
lows analytically from Eq. 3.21 as ccp = 27/2 and gcp = 1/12 and is indicated as full
circle. The quantity c�1 can be regarded as effective temperature. It is clear from
Eq. (3.21) that the description of the fluid diverges at g ¼ 0:25, which is in fact
incorrect. Therefore the focus is first on more accurate expressions for the equations
of state for a collection of pure hard spheres in the next section.

3.3.2 Phase Behaviour of a Hard Sphere Dispersion

The focus is first on the equation of state for the fluid phase of hard spheres
interacting through the hard-sphere interaction

WðhÞ ¼ 1 for h\0
0 otherwise

�
; ð3:27Þ

Carnahan and Starling [48] found that the second and higher order virial coeffi-
cients for a collection of hard spheres can, to a good approximation, can be written as

Fig. 3.5 Gas–liquid binodal following the van der Waals equation of state. The full circle is the
critical point
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Bmþ1 ¼ ðm2 þ 3mÞvmc : ð3:28Þ

In Table 3.1 exact [47] virial coefficients are compared with the approximation
given by Eq. (3.28). Inserting Eq. (3.28) into the general definition for the virial
expansion of the (osmotic) pressure4 [49],

P0
f vc

kBT
¼ gþ

X
m¼2

Bm

vm�1
c

gm; ð3:29Þ
yields the Carnahan-Starling equation of state [48] for a fluid of (colloidal) hard
spheres:

eP0
f ¼

P0
f vc

kBT
¼ gþ g2 þ g3 � g4

ð1� gÞ3 : ð3:30Þ

In Fig. 3.6 (left part) the (osmotic) pressure given by the Carnahan-Starling
equation of state is compared to computer simulation data. Obviously, Eq. (3.30) is
indeed very accurate.

From the Gibbs-Duhem relation SdT � VdPþ Ndl ¼ 0 the chemical potential
can be calculated from the pressure. For constant T this relation may be written as

dP ¼ g
vc
dl: ð3:31Þ

Now l follows as

l ¼ kBT ln
K3

vc
þ vc

Z g

0

1
g0
dP
dg0

dg0; ð3:32Þ

where dP=dg can be calculated from Eq. (3.30) for a fluid of hard spheres. The
result for the chemical potential (normalized as ~l ¼ l=kBT) of a hard sphere in a
fluid with volume fraction of hard spheres g follows now as

Table 3.1 Values for the 2nd
up to the 8th virial coefficient
of hard spheres [47] in
comparison with the
Carnahan-Starling result
Eq. (3.28). The numbers in
the second and third column
are Bi=vi�1

c for i = 2, 3,…0.8

i Exact/Numerical CS Eq. (3.28)

2 4 4

3 10 10

4 18.36 18

5 28.22 28

6 39.82 40

7 53.34 54

8 68.53 70

4the ‘0’ refers to hard spheres and the subscript ‘f’ indicates a fluid phase.
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~l0f ¼ ln
K3

vc
þ ln gþ 3� g

ð1� gÞ3 � 3 ð3:33Þ

Using the standard thermodynamic result eP ¼ gel � eF , the resulting canonical
free energy of the pure hard-sphere dispersion of a fluid is:

eF0
f ¼ g lnðgK3=vcÞ � 1

� �þ 4g2 � 3g3

ð1� gÞ2 : ð3:34Þ

The first term on the right-hand side of Eq. (3.34) is the ideal contribution, while
the second hard-sphere interaction term is the Carnahan-Starling equation of state
[48].

To obtain the thermodynamic functions of the hard-sphere crystal one can use
the cell model of Lennard-Jones and Devonshire [52]. For details I refer to our book
[38]. The cell model result for the normalized Helmholtz energy of an fcc crystal is

eF0
s ¼ g ln

27K3

8vc

� �
� 3g ln

gcp
g

� 1
� 	

; ð3:35Þ

where gcp ¼ p=3
ffiffiffi
2

p ’ 0:74 is the volume fraction at close packing. Using
Eqs. (3.22) and (3.24) the dimensionless osmotic pressure and chemical potential
become:

eP0
s ¼

3g
1� g=gcp

; ð3:36Þ

and

~l0s ¼ ln
K3

vc
þ ln

27
8g3cp

" #
þ 3 ln

g
1� g=gcp

" #
þ 3
1� g=gcp

: ð3:37Þ

The pressure given by Eq. (3.36) can be compared to computer simulation data
and, as can be seen in Fig. 3.6 (right part), turns out to be highly accurate. The result
for the chemical potential given by Eq. (3.37) is close to the computer simulation

results. The constant on the right-hand side ln 27=8g3cp
h i

¼ 2:1178 is quite close to

2:1306, which can be abstracted from computer simulations [53]. The full free
energy expression for the hard-sphere solid phase can now also be written as

eF ¼ 2:1178gþ 3g ln
g

1� g=gcp

 !
þ g ln K3=vc


 �
: ð3:38Þ
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Solving the coexistence conditions

eP0
f ðgf Þ ¼ eP0

s ðgsÞ
~l0f ðgf Þ ¼ ~l0s ðgsÞ

; ð3:39Þ

yields coexisting volume fractions gf ¼ 0:491, gs ¼ 0:541 and a coexistence

pressure eP ¼ 6:01. These values are indeed very close to computer simulation
results, first accurately performed by Hoover and Ree [51], see the comparison in
Fig. 3.6.

A collection of pure hard spheres is athermal; the thermodynamic properties are
fully determined by entropy. At low densities the configurations of maximum
entropy correspond to disordered arrangements. As the density increases crystalline
arrangements lead to a more efficient packing and make more arrangements pos-
sible above some volume fraction, see Fig. 3.7. The fluid–crystal transition has been
observed for instance in suspensions of sterically stabilized silica particles [54] and
sterically stabilized PMMA particles [55] with low size dispersity. In addition to the
fluid-crystal transition an amorphous glassy phase was observed above a volume
fraction g ¼ 0:58. For such high volume fractions the particles become so tightly
trapped or caged that they do not crystallize but remain in long-lived metastable
states, termed called colloidal glasses.

Accurate expressions for the equation of state of a fluid of hard spheres and for
an fcc crystal of hard spheres have been presented above and will be used further
on. Next it is interesting to account for additional attractions between the particles.
As Boltzmann already pointed out [56] the attractive term of the van der Waals
equation is only valid for long-ranged attractions. In order to investigate the effect

Π

η

Fig. 3.6 The (osmotic) pressure of hard spheres. The curves are the Carnahan-Starling expression
Eq. (3.30) for a fluid (g� 0:494) and the cell model result Eq. (3.36) for an fcc crystal (solid
curves; g� 0:545). The full symbols are Monte Carlo computer simulation results [50]. The two
open symbols correspond to the fluid-solid coexistence from simulation [51], the dotted line
connects these binodal points
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of the range of the attraction on the phase behaviour the focus is therefore now on
particles with a hard-core plus Yukawa5 attraction.

3.3.3 Phase Behaviour of a Dispersion of Hard Cores Plus
Yukawa Attraction

Here a collection of hard-core spheres with hard-core diameter 2R plus a Yukawa
attraction is considered. The hard-core Yukawa pair potential between two spheres
can be written as6

WðhÞ ¼ 1 for h\0
� e

1þh=2R expð�jhÞ otherwise

�
; ð3:40Þ

where h equals r � 2R, with r the centre-to-centre distance. The strength of the
attraction is the contact potential Wð0Þ ¼ e and the range is the screening length
j�1. The relative range of attraction qY (with respect to the particle radius R) is
defined as 1=jR.

For a collection of particles interacting through this pair interaction it is possible to
derive an equation of state. Tang and Lu [57] solved the Ornstein-Zernicke
(OZ) equation using the mean spherical approximation (MSA) closure in Fourier and
Laplace space and found that each perturbation term in the contact potential can be
solved analytically. For the first-order expansion, termed FMSA, this leads to rela-
tively simple and rather accurate solutions for the thermodynamic properties [58, 59].

Fig. 3.7 Schematic pictures of a hard-sphere fluid (left) and hard spheres with ‘crystalline’ order
(right); free volume entropy drives freezing

5The term Yukawa potential originally stems stems from the quantum mechanical theory of
nuclear interactions. In a more general context, it is often used for potentials with a distance profile
of the type expf�jrg=r.
6Although here only Yukawa attractions are considered this description also holds for spheres
interacting through a hard-core repulsive Yukawa interaction.
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Tang et al. [59] derived an analytical expression for eF (see Fig. 3.8 for an
illustration of determining coexistence points from the free energy) that is accurate
and which can be written in the Van der Waals-form, albeit the c term is now
dependent on g (G * γη2). Tuinier and Fleer [60] found that this form can be
simplified even more with almost no loss of accuracy. The final form is

eF ¼ eF0 � beGðgÞ; ð3:41Þ

where b ¼ 1=kBT with a simple volume fraction-dependent function GðgÞ,

GðgÞ ¼ g2
a0 þ a1g

b0 þ b1g þ b2g2
: ð3:42Þ

The coefficients ai and bi depend only on the relative range of the Yukawa
potential qY . They are expressed most easily in its inverse k ¼ 1=qY ¼ jR:

a0 ¼ 4k2 þ 2k

a1 ¼ 2k2 þ 4k
ð3:43Þ

and

b0 ¼ 2k3

3

b1 ¼ v1 �
4k3

3
þ 2k2 � 1

b2 ¼ v2 þ
2k3

3
� 2k2 þ 3k � 2;

ð3:44Þ

where v1 and v2 are defined as:

v1 ¼ 2k þ 1ð Þ expð�2kÞ
v2 ¼ k þ 2ð Þ expð�2kÞ: ð3:45Þ

Note that a volume fraction-independent c survives in the low g-limit, for which
G becomes 3qYð2þ qYÞg2, so c ¼ �3beqYð2þ qYÞ.7 However, in very concen-
trated systems G becomes proportional to g.

An analytical expression for the chemical potential is obtained from ~l ¼ @~F=@g:

~l ¼ ~l0 � beHðgÞ; ð3:46Þ

7This can be regarded as an explicit definition for c within the van der Waals model when the
attraction is described as a long-ranged Yukawa attraction.
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where HðgÞ is given by:

HðgÞ ¼ kg
c0 þ c1g þ c2g2 þ c3g3

ðb0 þ b1g þ b2g2Þ2
; ð3:47Þ

with the following q-dependent coefficients:

c0 ¼ 8k4

3
þ 4k3

3

c1 ¼ ð2k þ 1Þv1 þ
8k4

3
þ 14k3

3
þ 3k2 þ 2k þ 1

c2 ¼ ðk þ 2Þv1 �
4k4

3
� 2k3

3
þ 4k2 þ k þ 1

c3 ¼ ð2k þ 1Þv2 þ
4k4

3
� 10k3

3
þ 4k2 � 3k � 2

ð3:48Þ

The (osmotic) pressure follows from eP ¼ g~l� eF :
eP ¼ eP0 þ beJðgÞ; ð3:49Þ

with JðgÞ given by:

JðgÞ ¼ GðgÞ � gHðgÞ: ð3:50Þ

Now analytical expressions are available for both ~l and eP.
In principle this provides sufficient information to compute the binodal curves.

In Fig. 3.9 gas–liquid binodals for attractive hard core Yukawa spheres are plotted
for various ranges of the attraction jR. As an illustration computer simulation
results are plotted as data points as well. It is clear that the unstable region shifts to

~ ~
(i) (ii)

gas liquid fluid solidgas

F F

η η η η η η

Fig. 3.8 The dimensionless Helmholtz energy eF ¼ g~l� eP as a function of volume fraction g.
Schematic view of the common tangent construction (straight lines) to determine the phase
coexistence in mixtures of colloidal hard spheres and phs. (i): gas–liquid coexistence, (ii):
fluid-solid coexistence. The dashed lines represent the common tangent construction with intercept
� eP and slope ~l
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lower temperatures for shorter ranges of attraction; at identical values of kBT=e ¼
be there is similar attraction at close contact between the spheres but there is an
additional attraction when the spheres are further apart in case of smaller jR.

In order to calculate the gas–liquid binodal e is eliminated from Eqs. (3.46) and
(3.49) to find the analytical coexistence relation:

be ¼ ~l0l ðglÞ � ~l0gðggÞ
HðglÞ � HðggÞ

¼
eP0

l ðglÞ � eP0
gðggÞ

JðggÞ � JðglÞ
: ð3:51Þ

For both l0g and l0l Eq. (3.33) is used and for both P0
g and P0

l Eq. (3.30) is
applied. For a given q the second and third parts of this equation relate the volume
fractions at coexistence. For instance, a value for gg is chosen and the corre-
sponding gl is solved using the second equality of Eq. (3.51). The first equality then
tells to which Yukawa contact potential e those binodal concentrations correspond.
It is noted that the calculation of binodals in the analytical model involve nothing
more than solving one equation in one unknown.

Fluid–solid coexistence is obtained analogously:

e ¼ l0s ðgsÞ � l0f ðgf Þ
HðgsÞ � Hðgf Þ

¼ P0
s ðgsÞv�P0

f ðgf Þv
Jðgf Þ � JðgsÞ

: ð3:52Þ

In this case l0s is used from Eq. (3.37) and P0
s from Eq. (3.36). As in Eq. (3.51),

the fluid parts are obtained from Eqs. (3.30) and (3.33).
In Fig. 3.10 a full phase diagram (gas–liquid and fluid–solid) is presented for

jR ¼ 2 and compared to computer simulation results. It follows that there is a
region where there is a stable fluid (low g, high T), a region where the fluid phase
separates into a gas and a liquid below the critical point, a region where fluid and
solid coexist (near 0.45 . g. 0:6), a region where there is a solid phase (high g)
and a gas–solid coexistence region (low T).

kT/ε

η

Fig. 3.9 Gas–liquid
coexistences of a collection of
hard-core attractive Yukawa
spheres for three values of jR
as indicated. Symbols are
simulation results [61], the
solid curves are the analytical
expressions for the binodals.
Crosses represent the
theoretical critical points
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For large values of jR the gas–liquid region becomes metastable with respect to
fluid-solid coexistence. See Fig. 3.11 where the fluid-solid binodals are plotted for
jR ¼ 12:5. Stable liquid configurations require that the particles still attract one
another when their interparticle distance fluctuates. Hence for short-ranged attrac-
tions the gas–liquid coexistence gets metastable.

3.4 Phase Behaviour of a Colloid-Polymer Mixture

Several theories have been developed that enable calculations of phase transitions
in systems with depletion interactions. The first successful treatment accounting
for the colligative thermodynamic properties mediated by depletion interactions

Fig. 3.10 Phase behavior of a dispersion of spherical hard-core attractive Yukawa particles with
jR = 2. Symbols are simulation results [62], the solid curves are the analytical results. Cross is the
theoretical critical point, plusses identify the three coexisting phases of the triple points; the three
plusses are connected through a thin line

Fig. 3.11 As Fig. 3.10 but
for jR ¼ 12:5. The GL
coexistence is now
metastable, and there is no
triple point
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[24, 30] is thermodynamic perturbation theory [46, 49]. In this classical approach
depletion effects can be treated as a perturbation to the hard-sphere free energy, as
was done by Gast et al. [30]. Their work predicted that for a sufficient depletant
concentration, the depletion interaction leads to a phase diagram with stable col-
loidal gas, liquid and solid phases for d=R� 0:3. For small depletants with
d=R� 0:3 only colloidal fluid and solid phases are thermodynamically stable, and
the gas–liquid transition is meta-stable. Although implementation of this theory is
straightforward, it has the drawback that it does not account for depletant parti-
tioning over the coexisting phases. Subsequent developments originate from liquid
state approaches. Examples are density functional theory [63], PRISM [64] and the
Gaussian core model [65].

3.4.1 Free Volume Theory

In the early nineties of the last century a theory that accounts for depletant parti-
tioning over the coexisting phases was developed [35], which nowadays is com-
monly referred to as free volume theory (FVT) [66]. This theory is based upon
considering the osmotic equilibrium between a (hypothetical) depletant and the
colloid + depletant system. The depletants were simplified as penetrable hard
spheres. See the sketch in Fig. 3.12.

This theory has the advantage that the depletant concentrations in the coexisting
phases follow directly from the (semi)grand potential which describes the colloid
plus depletant system. As illustrated in Fig. 3.13, the system can arrange itself such
as to provide a larger free volume for the depletants by overlap of two depletion

Fig. 3.12 A system (right) that contains colloids and penetrable hard spheres (phs) in osmotic
equilibrium with a reservoir (left) only consisting of phs. A hypothetical membrane that allows
permeation of solvent and phs but not of colloids is indicated by the dashed line. Solvent is
considered as ‘background’
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zones. This (entropic) physical origin of the phase transitions induced by depletion
interactions is incorporated into the theory via the available volume for the
depletants.

In FVT multiple overlap of depletion zones with thickness d, see Fig. 3.14, is
taken into account. Multiple overlap occurs for

d
R
[

2
3

ffiffiffi
3

p
� 1’ 0:15;

where three depletion zones start to overlap, see Fig. 3.14. Only for d=R\0:15 is a
colloid/depletant mixture pair-wise additive. For large d=R a mixture of hard spheres
plus penetrable hard spheres differs fundamentally from a mixture of hard-core
spheres that directly attract one another [67]. This has a considerable influence on the

Fig. 3.13 Illustration of the free volume Vfree: it is the unshaded volume not occupied by the
colloids plus (partially overlapping) depletion layers

Fig. 3.14 Three hard spheres surrounded by depletion layers (hatched areas). When the depletion
layers are thin (left) there is no multiple overlap of depletion layers; the system is pair-wise
additive. For thicker depletion layers (right) multiple overlap of depletion layers occurs and
depends on more than two-body contributions. The lowest value for d=R where multiple overlap
occurs follows from considering the triangle formed by the 3 particle centres; its edge is 2Rþ h at
particle separation h. Multiple overlap starts when the centre of the triangle is a distance Rþ d
from the corners
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topology of the phase diagram [68]. Multiple overlap of depletion layers widens the
liquid window, which is the parameter range with phase transitions that include a
stable liquid, in comparison with a pair-wise additive system [66].

The starting point of FVT is the calculation of the semigrand potential X
describing the system of Nc colloidal spheres plus Nd depletants as depicted in
Fig. 3.12.

XðNc;V ; T ; ldÞ ¼ FðNc;Nd ;V ; TÞ � ldNd: ð3:53Þ

Using the thermodynamic relation

@X
@ld

� �
Nc;V ;T

¼ �Nd; ð3:54Þ

one can write

XðNc;V ; T ; ldÞ ¼ F0ðNc;V ; TÞ �
Z ld

�1
Ndðl0dÞdl0d: ð3:55Þ

Here F0ðNc;V ; TÞ is the (Helmholtz) free energy of the colloidal hard sphere
suspension without added depletant as given by Eq. (3.34) (fluid) or Eq. (3.38)
(solid). Note that Eq. (3.55) is still exact and can be used (with approximations) to
compute the phase behaviour of hard spheres plus interacting depletants (small hard
spheres, interacting polymers, hard rods) [38, 66, 69]. Below only the case of
non-interacting depletants is treated.

The essential step within FVT is the calculation of the number of depletants in
the system of hard spheres + depletants as a function of the chemical potential ld
imposed by the depletants in the reservoir. In the calculations presented below the
colloidal hard spheres have a radius R and the depletants are described as penetrable
hard spheres with radius d.

For the calculation of Nd the Widom insertion theorem [70] is used according to
which the chemical potential of the depletants in the mixture of hard spheres and
depletants can be written as

lSd ¼ constþ kBT ln
Nd

hVfreei : ð3:56Þ

Here hVfreei is the ensemble-averaged free volume for the depletants in the
system ‘S’ of hard spheres, illustrated in Fig. 3.13. The chemical potential of the
depletants in the reservoir is simply

lRd ¼ constþ kBT ln nRd ; ð3:57Þ

where nRd is the number density of the depletants in the reservoir ‘R’. By equating
the depletant chemical potentials Eqs. (3.56) and (3.57) the result
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Nd ¼ nRd hVfreei ð3:58Þ

is obtained. The average free volume obviously depends on the volume fraction of
the hard spheres in the system but also on the chemical potential of the depletants.
The activity of the depletants affects the average configuration of the hard spheres.
Now the key approximation is made to replace hVfreei by the free volume in the pure
hard sphere dispersion hVfreei0:

Nd ¼ nRd hVfreei0: ð3:59Þ

This expression is correct in the limit of low depletant activity but is only an
approximation for higher depletant concentrations. Substituting the approximate
Eq. (3.59) into Eq. (3.55) and using the Gibbs-Duhem relation,

nRddld ¼ dPR; ð3:60Þ

gives

XðNc;V ; T ; ldÞ ¼ F0ðNc;V ; TÞ �PRhVfreei0; ð3:61Þ

where PR ¼ ndkBT is the (osmotic) pressure of the depletants in the reservoir.
As expressions are available for the free energy of the hard sphere system (both

in the fluid and solid state, see Sect. 3.3.2) and for the pressure of the reservoir, the
only remaining quantity to calculate is hVfreei0. According to the Widom insertion
theorem expressed in Eq. (3.56):

ld ¼ constþ kBT ln
Nd

hVfreei0
: ð3:62Þ

The chemical potential ld can however also be written in terms of the reversible
work W required for inserting a depletant into the hard sphere dispersion:

ld ¼ constþ kBT ln
Nd

V
þW : ð3:63Þ

The free volume fraction a now follows from combining Eqs. (3.62) and (3.63):

a ¼ hVfreei0
V

¼ e�W=kBT : ð3:64Þ

3.4.2 Scaled Particle Theory

An expression for the work of insertion W can be obtained from scaled particle
theory (SPT) [71]. The work W is calculated is by expanding (scaling) the size of

96 R. Tuinier



the sphere to be inserted from zero to its final size: the radius of the scaled particle is
kd, with k running from 0 to 1. In the limit k ! 0, the inserted sphere approaches a
point particle. In this limiting case it is very unlikely that the depletion layers
overlap. The free volume fraction in this limit can therefore be written as

a ¼ 1� g 1þ kd
R

� �3

; ð3:65Þ

It then follows from Eq. (3.64) that

W ¼ �kBT ln 1� g 1þ k
d
R

� �3
" #

for k	1: ð3:66Þ

In the opposite limit of a large inserted scaled particle k 
 1 the work of
insertion W can be approximated as the volume work needed to create a cavity
4p
3 ðkdÞ3 and is given by

W ¼ 4p
3
ðkdÞ3P0 for k 
 1; ð3:67Þ

where P0 is the (osmotic) pressure of the hard sphere dispersion. In SPT the above
two limiting cases are connected by expanding W as a series in k:

WðkÞ ¼ Wð0Þ þ @W
@k

� �
k¼0

kþ 1
2

@2W

@k2

� �
k¼0

k2 þ 4p
3
ðkdÞ3P0: ð3:68Þ

This yields

Wðk ¼ 1Þ
kBT

¼ � ln½1� g� þ 3qg
1� g

þ 1
2

6q2g
1� g

þ 9q2g2

ð1� gÞ2
" #

;

þ
4p
3 q

3R3P0

kBT

ð3:69Þ

where q is the size ratio between the depletant with radius d and the hard sphere
with radius R

q ¼ d
R
: ð3:70Þ
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In Appendix, the result for the SPT osmotic pressure is derived:

P0vc
kBT

¼ gþ g2 þ g3

ð1� gÞ3 : ð3:71Þ

Inserting Eq. (3.71) into Eq. (3.69) and using Eq. (3.64) yields

a ¼ ð1� gÞ exp �QðgÞ½ �; ð3:72Þ

where

QðgÞ ¼ ayþ by2 þ cy3; ð3:73Þ

with a ¼ 3qþ 3q2 þ q3, b ¼ 9
2 q

2 þ 3q3 and c ¼ 3q3 and y ¼ g=ð1� gÞ. In
Fig. 3.15 the free volume fraction a predicted by SPT (Eq. 3.72) is compared to
computer simulation results on hard spheres plus penetrable hard spheres for q ¼
0:1 as a function of g. As can be seen the agreement is very good, as for other
q values [72]. Now all ingredients are available to compile the semigrand potential
X given by Eq. (3.61).

From X the total pressure of the hard spheres + phs and the chemical potential of
the hard spheres in the hard sphere + depletant system at given l0d are obtained:

Ptot ¼ � @X
@V

� �
Nc;T ;ld

¼ P0 þPR a� nc
@a
@nc

� �
ð3:74Þ

Fig. 3.15 Free volume fraction for penetrable hard spheres in a hard sphere dispersion for q ¼
d=R ¼ 0:1 as function of the hard sphere concentration. Data points are redrawn from Fortini et al.
[50]. Curve is the SPT prediction of Eq. (3.72)
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lc ¼
@X
@Nc

� �
V ;T ;ld

¼ lþc �PR @a
@nc

: ð3:75Þ

For non-interacting depletants PR is simply given by Van ’t Hoff’s law PR ¼
nRdkBT or

ePR ¼ PRvc
kBT

¼ nRdvdq
�3 ¼ /R

dq
�3 ; ð3:76Þ

with /R
d the relative reservoir depletant concentration nRdvd , where vd is the volume

of a depletant sphere. These penetrable hard spheres can, by definition, freely
interpenetrate each other. It is useful to define the overlap condition of phs by
n�vd ¼ 1. At n� ¼ 1=vd the spheres fill the available space but (on average) do not
yet interpenetrate; this happens only for n[ n�. Hence one may write eP ¼ /dq

�3,
where /d is the concentration of penetrable hard spheres relative to overlap.

3.4.3 Phase Diagrams

The phase behaviour of a system of hard spheres and depletants can now be
calculated by solving the coexistence equations for a phase I in equilibrium with a
phase II

lIcðnIc; ldÞ ¼ lIIc ðnIIc ; ldÞ; ð3:77Þ

PIðnIc; ldÞ ¼ PIIðnIIc ; ldÞ: ð3:78Þ

For numerical computations of phase coexistence, it is convenient to work with
dimensionless quantities. The dimensionless version of the free volume expression
Eq. (3.61) for the (semi) grand potential is

eX ¼ eF0 � a ePR; ð3:79Þ

where eX ¼ Xvc=kBTV .
The sketch of Fig. 3.8 can also be drawn for the semigrand potential (eX instead

of eF ) as a function of the colloid volume fraction for given depletant reservoir
concentration and size ratio q. A first criterion for two coexisting binodal compo-
sitions is equality of the slope because it corresponds to the chemical potential. The
chemical potential of the colloids elc can generally be expressed using the standard
thermodynamic relation
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elc ¼
@ eX
@g

 !
ePR;T ;V

: ð3:80Þ

The (total) pressure is found from

ePtot ¼ gelc � eX: ð3:81Þ

When two compositions can be connected through the common tangent (the thin
straight lines in Fig. 3.8 connecting these compositions), binodal points are found;
the intercepts of the extrapolated lines correspond to the total pressure ePtot, see
examples of scenarios for gas–liquid and fluid–solid coexistences in Fig. 3.8. For
each depletant concentration the binodal compositions can be found in this manner;
full phase diagrams can be constructed from such binodals.

For non-interacting depletants such as penetrable hard spheres the l0s and P0s in
the phase coexistence Eqs. (3.77) and (3.78) can be written such that binodal colloid
concentrations follow from solving one equation with a single unknown [66] as for
the hard-core Yukawa spheres discussed earlier. Equations (3.74) and (3.75) can be
rewritten as

~l ¼ ~l0 þ ePR gðgÞ ð3:82Þ

ePtot ¼ eP0 þ ePR hðgÞ; ð3:83Þ

where g ¼ �@a=@g and h ¼ aþ gg, giving the following explicit expressions for g
and h:

gðgÞ ¼ e�QðgÞ 1þ ½1þ y�½aþ 2byþ 3cy2�� 
; ð3:84Þ

hðgÞ ¼ e�QðgÞ 1þ ayþ 2by2 þ 3cy3
� 

: ð3:85Þ

The gas–liquid binodal can be solved from the second and third parts of

ePR ¼ ~l0f ðglÞ � ~l0f ðggÞ
gðggÞ � gðglÞ

¼
eP0

f ðglÞ � eP0
f ðggÞ

hðggÞ � hðglÞ
; ð3:86Þ

where ~l0f and eP0
f are only a function of g, see Eqs. (3.30) and (3.33). Hence,

Eq. (3.86) gives a unique relation gl(gg) at given q. For some value of gg, within the
region of gg values where a colloidal gas coexists with a colloidal liquid, the
corresponding value of gl follows from the second equality of Eq. (3.86). The
corresponding binodal depletant reservoir pressure ePR then follows from the first
equality.
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Similarly, the fluid-solid binodal can be obtained from

ePR ¼ ~l0s ðgsÞ � ~l0f ðgf Þ
gðgf Þ � gðgsÞ

¼
eP0

s ðgsÞ � eP0
f ðgf Þ

hðgf Þ � hðgsÞ
; ð3:87Þ

where again ~l0f is given by Eq. (3.33) and eP0
f by Eq. (3.30); these are the fluid

contributions. For colloidal dispersions in the solid state (fcc crystal) eP0
s ðgÞ and

~l0s ðgÞ are given by Eqs. (3.36) and (3.37), respectively.
Triple points have equal pressures and chemical potentials at colloidal gas, liquid

and solid compositions. At the triple point expressions Eqs. (3.86) and (3.87) are
connected through equal values for ePR and, in principle, form a set of four
equations from which the four coordinates of the triple point ðgg; gl; gs; ePRÞ follow.

For large q ðq� 0:6Þ the triple point can be approximated easily from Eqs. (3.82)
and (3.83). The fluid-solid coexistence of the triple point occurs at nearly similar
colloid concentrations as the pure hard sphere phase transition. For large q values,
Eqs. (3.82) and (3.83) can be written as elf ¼ el0

f ¼ el0
s and ePf ¼ eP0

f ¼ eP0
s ,

because gðgÞ and hðgÞ vanish for large q. In the coexisting colloidal gas phase the
colloid concentration is then extremely small so ePg ¼ ePR, since hðgÞ ! 1,

η

η ηη

η η

Fig. 3.16 Free volume theory predictions for the phase diagrams for hard spheres as depletants
following Lekkerkerker et al. 1992 [35]. The left diagrams are for q ¼ 0:1, middle q ¼ 0:4, and
right diagrams q ¼ 1:0. Upper diagrams have depletant reservoir concentrations /R

d as ordinates,
lower diagrams are in system depletant concentrations. Triple lines and triangles are indicated as
thick lines. TP = triple point; CP = critical point (asterisks refer to the critical points). A few
representative tie-lines are plotted as thin lines
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implying ePR ¼ eP0
f ¼ eP0

s ¼ 6:01 at the triple point. Hence, for large q the
fluid-solid coexistence of the triple point occurs at nearly the same colloid con-
centrations as for the pure hard-sphere phase transition. The relative depletant
concentration at the triple point now follows as /R

d ’ ePRq3 ¼ 6:01q3. As can be
seen in Figs. 3.16 ðq ¼ 1:0Þ and 17 (q ¼ 0:6) this is rather accurate.

The critical point can be found also as one equation in one unknown, for details,
see [66]. The same applies to the critical endpoint (CEP), which corresponds to the
q value where CP and TP coincide; it is the lowest q where a stable liquid is
possible. See the extended discussions on liquid windows as related to the CEP in
[66, 68].

In Fig. 3.16 phase diagrams are presented for q ¼ 0:1, q ¼ 0:4 and q ¼ 1:0. As
was already found by Gast et al. [30], for q ¼ 0:1 there is only a fluid-crystal
transition. For /d ¼ 0 the demixing gap is 0:491\g\0:541 (see Sect. 3.3.2); with
increasing depletant concentration this gap widens. For q ¼ 0:4 there are a critical
point (CP) and a triple point (TP) in the phase diagram, analogous to those found in
simple atomic systems. At high depletant concentrations in the reservoir (above TP)
a very dilute fluid (colloidal gas), coexists with a highly concentrated colloidal
solid. Between TP and CP a colloidal gas (dilute fluid) coexists with a colloidal
liquid (more concentrated fluid). At high volume fractions below the triple line, a
colloidal liquid coexists with a colloidal solid phase. In the absence of depletant
only the fluid-solid phase transition of a pure hard sphere dispersion remains.
Increasing the depletant activity now plays a role similar to lowering the temper-
ature in atomic systems. For larger q (see q ¼ 1:0) the qualitative picture remains
the same while the liquid window expands.

In the top diagrams of Fig. 3.16 the ordinate axis is the depletant concentration in
the reservoir. The depletant concentrations in the system of coexisting phases can
be obtained by using the relation

/d ¼ a/R
d :

Coexisting phases of course have the same ld and hence the same nRd but since
the volume fractions of hard spheres and, hence, the free volume fractions a are
different, nd in the two (or three) phases are not the same, so the tie-lines are no
longer horizontal. This is illustrated in the bottom diagrams of Fig. 3.16; now the
ordinate axis gives the relative ‘internal’ or system concentrations /d . A few
selected tie-lines are drawn to give an impression of depletant partitioning over the
phases. Interestingly, the horizontal triple line in the presentation of the phase
diagram at constant chemical potential ld (field-density representation) is now
converted into a three-phase triangle system representation. The triple line connects
three coexisting colloid concentrations at one fugacity (reservoir concentration).
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In the system representation there are now three compositions (/1
d; gg), (/

2
d ; gl) and

(/3
d ; gs). These three points in a (/d; g) plot form a triangle, within which there is

three phase gas–liquid–solid coexistence.
As discussed in Sect. 3.3.2, the free volume theory is approximate in the sense

that hVfreei is replaced by hVfreei0. To get an idea of the accuracy of the phase
diagrams calculated with free volume theory the results for q ¼ 0:6 are compared to
computer simulations [73] in Fig. 3.17. The agreement is, given the fact that the free
volume theory is approximate, very good. Also for q = 0.1 − 1.0 [73] and large
q values [43] the agreement with simulations is striking. As a final illustration of the
accuracy of FVT, colloidal gas–liquid binodals are plotted for q = 1, 3 and 5 in
Fig. 3.18 and are compared to Monte Carlo computer simulation results.
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Fig. 3.17 Comparison of free
volume theory (curves) with
Monte Carlo computer
simulations (data; [73]) for
q ¼ 0:6. Open
circle = theoretical critical
point

Fig. 3.18 Gas–liquid
binodals for mixtures of
HS + phs for large q values.
Curves FVT; Data points: MC
simulations by Dijkstra et al.
[73] (q = 1) and
Moncho-Jordá et al. [43]
(q = 3 and q = 5)
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Appendix

As was the original objective of SPT [71], the pressure P0 of the hard sphere
system can be obtained from the reversible work of inserting an identical sphere
ðq ¼ 1Þ

W
kBT

¼ � ln½1� g� þ 6g
1� g

þ 9g2

2ð1� gÞ2 þ
4pR3P0

3kBT
; ð3:88Þ

to obtain the chemical potential of the hard spheres

l0c ¼ constþ kBT ln
Nc

V
þW : ð3:89Þ

Applying the Gibbs-Duhem relation

@P0

@nc
¼ nc

@l0c
@nc

one obtains

P0vc
kBT

¼ gþ g2 þ g3

ð1� gÞ3 ; ð3:90Þ

the SPT expression for the pressure of a hard sphere fluid [71], which preceded the
slightly more accurate Carnahan-Starling equation Eq. (3.30), which contains an
additional g4-term.
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General Physics of Aqueous

Interfaces



Chapter 4
Thermodynamics of Interfaces
in Soft-Matter Systems

Gerhard H. Findenegg

Abstract Thermodynamics of interfaces provides a framework to relate measur-
able quantities to other important yet not directly accessible equilibrium properties
of interfacial systems. For liquid/gas and liquid/liquid interfaces (fluid interfaces)
the interfacial tension and its dependence on temperature and composition can be
measured, while the adsorbed amounts of the components are not accessible.
Conversely, for solid/fluid interfaces the adsorbed amount can be measured but the
interfacial tension (free energy) is not accessible. For both cases the Gibbs equation
represents a bridge between the two kinds of quantities. In this chapter we explain
the application of the Gibbs equation with a focus on soft matter systems. We also
discuss the meaning of surface excess amounts and their relation to (absolute)
surface concentrations which appear in adsorbate equations of state. Finally we
briefly touch the additional features of charged interfaces and of ionic equilibria at
interfaces.

4.1 Thermodynamic Quantities and Relations

4.1.1 Introduction

Interfaces represent thin regions between macroscopic phases in which the prop-
erties gradually change from those of one adjacent phase to those of the other.
Because of this inhomogeneous nature of interfaces, a thermodynamic treatment of
their properties has been a challenge to generations of scientists. Different for-
malisms have been developed to cope with this problem. One intuitively appealing
way of treating a surface is to consider it as a distinct phase of finite thickness and
volume, so that adsorption and related phenomena can be treated analogous to
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phase equilibria. This approach was pursued, among others, by Bakker [1] and
Guggenheim [2]. However, the clarity of the surface phase formalism is deceptive,
as there is no way to define unambiguously the thermodynamic properties of this
surface phase. An alternative formalism for defining the thermodynamic properties
was proposed by Gibbs in 1878 [3]. In this treatment the surface is regarded as a
mathematical dividing plane between the two macroscopic phases, and the prop-
erties of the interface are defined as a surface excess relative to a hypothetical
reference system in which all properties remain uniform up to the dividing plane.
Surface excess quantities often have no intuitively simple interpretation, but their
importance lies in the fact that they represent measurable quantities.

In this short review we focus on adsorption phenomena from liquid phases at
different types of interfaces (liquid/gas, liquid/liquid and liquid/solid). The treat-
ment is limited to interfaces at which specific curvature effects can be neglected. We
show how surface excess quantities suitably defined for these types of interfaces
can be determined experimentally and interpreted in terms of physical models. The
examples chosen are related to soft matter at aqueous interfaces.

4.1.2 Surface Tension

The liquid/vapour interface of fluids represents an inhomogeneous region in which
the local density changes from high to low values at a length scale of a few
molecular diameters. We consider a flat interface in the plane xy as sketched in
Fig. 4.1. When neglecting gravity, a force balance on an infinitesimal cube centred
at point x, y, z in the system gives [4]

@pxxðx; y; zÞ
@x

¼ @pyyðx; y; zÞ
@y

¼ @pzzðx; y; zÞ
@z

¼ 0 ð4:1Þ

where pxx, pyy, and pzz, are the pressures exerted on surfaces normal to the x, y, and
z axis, respectively. Since the local density depends only on z, the coordinate
normal to the interface, but not on the position in the xy plane, the pressure com-
ponents pxx, pyy, and pzz can be only functions of z. Also, because of the condition
of isotropy in the xy plane, pxx = pyy. Equation 4.1 can therefore be written as

@pzzðzÞ
@z

¼ 0 or pzz ¼ const � pN

pxx ¼ pyy ¼ pTðzÞ
ð4:2Þ

Hence in a two-phase system with planar interface the conditions for hydrostatic
equilibrium are: (i) the normal pressure pN is constant and equal to the pressure p of
the coexistent bulk phases; (ii) sufficiently far from the interface, the transverse
pressure pT is also equal to p, but in the interfacial region pTðzÞ 6¼ pN . It can be
shown that the interfacial tension γ is given by [1]
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c ¼ Z1

�1
p� pTðzÞ½ �dz ð4:3Þ

The integration can be taken from −∞ to +∞ because pT(z) differs from p only
near the interface. Equation 4.1 can be taken as a mechanical definition of the
interfacial tension. An idea of the magnitude of the stress acting within the interface
is obtained by the following elementary calculation. The width of the surface of
simple liquids at their normal boiling point is about 1 nm and a typical value of the
surface tension is 30 mN m−1. Since p = 1 bar this means that the average value of
pT(z) in the interface is about −300 bar. This large value makes it plausible that the
surface tension can dominate phenomena at the mesoscopic and even at a macro-
scopic level. The expression for γ in Eq. (4.3) is obtained by considering the
isothermal reversible work δW for increasing the surface area of the interface by an
increment δA at constant volume, i.e., γ = δW/δA. Hence in the language of ther-
modynamics the surface tension represents the change in free energy F of the
two-phase system with an infinitesimal change of the surface area at constant
temperature T and volume V, viz., c ¼ @F=@Að ÞT ;V , expressed in SI units in J m−2.

4.1.3 Adsorption as a Surface Excess

Adsorption generally stands for the enrichment of substances at an interface, but
different situations prevail at different types of interface. For example, gas
adsorption leads to a higher density of the gas near the surface. At liquid/solid

Fig. 4.1 Components of the pressure tensor across the interface of phases α and β: The normal
component pN is independent of the position, the transverse component pT is a function of z and
assumes negative values in the interfacial region. Accordingly, the pressure difference pN − pT has
positive values in this region but is zero elsewhere
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interfaces, on the other hand, enrichment of one component of a mixture goes at the
expense of the other component(s), causing changes in composition near the sur-
face, and adsorption may be viewed as a displacement of solvent by the solute in
the surface layer of the liquid.

The solid phase often represents a more or less inert external medium. This is
different in the case of fluid interfaces (liquid/gas or liquid/liquid), where all com-
ponents may be present at significant concentrations in both phases. In this latter
situation it is conceptually difficult to define the adsorbed amount of a component.
This problem was solved by Gibbs by introducing the concept of surface excess
quantities and relative adsorption. To rationalize this concept consider the con-
centration profiles ck(z) of the components of a binary mixture (k = 1, 2) across a
liquid/vapour interface, where the local concentration ck(z) changes from clk to cgk in
a monotonic or nonmonotonic manner (Fig. 4.2). The surface excess amount of
component k is now defined as the difference between the known total amount nk
and the amount in a hypothetical reference system in which the two phases would
extend up to a mathematical dividing plane located at some position z0. The surface
excess amount of component k is then given by

nrk ¼ nk � ðclkVl þ cgkV
gÞ ð4:4Þ

For given values of nk and total volume V ¼ Vl þVg, and known concentrations
clk and cgk , the value of the surface excess n

r
k is not yet defined in a singular way but

depends on precisely how the volume V is divided into the volumes Vl and Vg. For a
geometric interpretation of the surface excess nrk consider a cylindrical volume with
the concentration profile ck(z) along the cylinder axis. The overall amount nk of
component k in this cylinder is obtained by integration of ckdV ¼ ckðzÞAdz, where
A represents the basal area of the cylinder (and thus the area of the interface).

Fig. 4.2 Sketch of the concentration profiles c(z) of solvent (left) and solute (right) across the
liquid/vapour interface. In the Gibbs convention the dividing plane (position z0) is chosen such that
for the solvent (component 1) the two integrals on the right-hand side of Eq. (4.5) become equal in
magnitude with opposite sign, so that Cr

1 ¼ 0: With this choice of z0, Eq. (4.5) yields a

well-defined surface excess Cr
2 for the solute, called the relative adsorption Cð1Þ

2
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For the surface excess amount per unit area, i.e., the surface excess concentration
Cr
k ¼ nrk=A (units: mol/m2) of a binary mixture we thus obtain:

Cr
k ¼

Zz0

�1
ck zð Þ � clk
� �

dzþ Z1

z0

ck zð Þ � cgk
� �

dz ð4:5Þ

The superscript σ on nrk and Cr
k indicates ‘surface excess’ but, as explained

above, these quantities need to be specified by choosing a suitable location of the
dividing plane (z0). The following specifications are important for the different
kinds of interfaces:

Relative adsorption (Gibbs prescription): This is mostly adopted to quantify
the adsorption at the liquid/gas interface of solutions (solute components k) in a
solvent (component 1): In a geometric way the relative adsorption of the solutes can
be rationalized by placing the dividing surface at a position z0 such that Cr

1 ¼ 0
(‘equimolar’ dividing surface for the solvent). Relative surface excess concentra-

tions are denoted as Cð1Þ
k , where the superscript (1) indicates “relative to the sol-

vent”. Depending on the concentration profiles of solvent and solute the relative
surface excess of a solute can be positive or negative. Experimentally, the relative

adsorption Cð1Þ
k of solutes adsorbed at the liquid/air interface can be obtained by

surface tension measurements as a function of solute concentration (see Eq. (4.17)).
Reduced adsorption: This is used to quantify adsorption from mixtures in

which no component is distinguished as the solvent. In a geometric way the reduced
adsorption of the components can be imagined by placing the dividing surface at a
position z0 such that

Pn
k¼1 C

r
k ¼ 0. Reduced surface excess concentrations are

denoted as CðnÞ
k , where the superscript (n) indicates that the sum of the surface

excess amounts of all n components is zero. Hence for a binary system,

CðnÞ
2 ¼ �CðnÞ

1 . The reduced surface excess CðnÞ
k and similar specifications are mostly

used to characterize adsorption at solid/liquid interfaces, where CðnÞ
k can be mea-

sured from the change in concentration before and after equilibration with the
adsorbent (see Eq. 4.42). Relative adsorption and reduced adsorption are interre-

lated by Cð1Þ
2 ¼CðnÞ

2 =ð1�xl2Þ, where xl2 is the mole fraction of component 2 in the
liquid phase.

Two-solvent relative adsorption: Adsorption of solutes at liquid/liquid inter-
faces is usually defined relative to the solvents of both phases. Denoting the two
solvents as components 1 and 2, then according to this prescription Cr

1 ¼ 0 and
Cr
2 ¼ 0. The surface excess concentration of solutes (k = 3, 4,…) relative to the two

solvents is denoted as Cð1;2Þ
k . This definition, which goes beyond the original Gibbs

formalism, implies that we are placing two ‘equimolar’ dividing surfaces, one for
each solvent. Hence the volume of the system is no longer the sum of the two bulk
phases α and β, but now given by V ¼ Va þVb þVr; where the excess volume Vr

may be positive or negative. The surface excess concentrations Cð1;2Þ
k can be
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obtained from measurements of the interfacial tension as a function of concentration
(see Eq. 4.18).

As mentioned above, the surface excess concentrations Cð1Þ
k , CðnÞ

k , and Cð1;2Þ
k are

measurable quantities based on clear operational definitions. Working with these
quantities has the disadvantage, however, that they lack a simple physical inter-
pretation. To overcome this problem, physical models of the interfacial layer have
been introduced. Usually it is assumed that the surface layer has a uniform com-
position with concentrations Cs

k of the individual components k. Such a surface
phase model will be introduced in Sect. 4.2.3, where it will be shown how the
surface concentrations can be calculated from the experimentally accessible surface
excess concentrations.

4.1.4 Gibbs Adsorption Equation

The Gibbs formalism of surface excess quantities outlined above can be applied to
all extensive thermodynamic quantities of the system (internal energy U, enthalpy
H, entropy S, Helmholtz free energy F, Gibbs free energy G, etc.) except the
volume V. The surface excess Xr of a quantity X is defined as [5]

Xr ¼ X � Xa � Xb ð4:6Þ

where X represents the value for the entire two-phase system, while Xa and Xb

relate to the homogeneous phases α and β, when their volumes extend up to the
dividing surface. Vr ¼ 0 is implicit in the Gibbs formalism, because the bulk
phases extend up to the dividing surface. Remarkably, thermodynamic relations
between the excess quantities can be formulated just as if it was a separate phase.
The most important relation between the surface excess quantities is the Gibbs
equation, which has the general form

dc ¼ �srdT �
Xn

k¼1
Cr
k dlk ð4:7Þ

Here, sr ¼ Sr=A is the surface excess entropy per unit area, Cr
k is the surface

excess concentration of component k defined relative to the same convention for the
Gibbs dividing surface as sr, and lk is the chemical potential of component k at the
given temperature T and composition of the system. According to Eq. (4.7) the
Gibbs equation relates changes in surface tension to changes in temperature and the
chemical potential of the solutes.

The chemical potential of component k in the surface can be defined by [5]

lsk ¼ @F=@nrk
� �

T ;V ;A;nrj
ð4:8Þ
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Here F is the Helmholtz free energy (F = U − TS) of the whole system and A is
the area of the interface. The condition of equilibrium with respect to diffusion of
component k to the interface from the adjacent phases α and β can be shown to be

lak ¼ lsk ¼ lbk ¼ lk ð4:9Þ

where lak and lbk are the chemical potentials in the adjacent bulk phases. Hence lk
in Eq. (4.7) is the common value of the chemical potential throughout the system.
Alternatively, the chemical potential can be defined by

lak ¼ @F=@nrk
� �

T ;V ;c;nrj
ð4:10Þ

Here the superscript a is used to differentiate this chemical potential from that
defined by Eq. (4.8). Equilibrium between a liquid phase and the interface is then
shown to exist when

llk ¼ lsk ¼ lak � cak ð4:11Þ

where ak ¼ @A=@nrk
� �

T ;V ;c;nrj
is the partial molar area of component k in the surface.

Equation 4.11 expresses the fact that when the derivative @F=@nrk is taken at
constant interfacial tension γ rather than constant surface area A, the dependence on
γ must be added by the term cak.

4.2 Fluid Interfaces

4.2.1 Surface of Pure Liquids and Liquid/Liquid Interface
of Partially Miscible Binary Systems

For the liquid/vapour interface of a pure fluid, when choosing the ‘equimolar’
dividing surface (Cr ¼ 0), the Gibbs equation (Eq. 4.7) reduces to sr ¼ �ðdc=dTÞ.
For simple liquids both γ and �ðdc=dTÞ decrease monotonically with increasing
temperature from the triple point to the critical point. Water is not a simple liquid. It
has a high surface tension (72.0 mN m−1 at 25 °C) and �ðdc=dTÞ exhibits a
maximum near 200 °C. When the critical temperature Tc of a fluid is approached
along the vapour/liquid coexistence line, the densities of the liquid and vapour
phase become equal and the interface vanishes at the critical point. Close to Tc the
vanishing of the surface tension follows a universal law [6]

cðTÞ ¼ c0ðTc � TÞm ð4:12Þ
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where c0 is a material constant and the index m has a universal value (m ≈ 1.25).
From Eqs. (4.7) and (4.12) the surface excess entropy as a function of temperature
then becomes

srðTÞ ¼ mc0ðTc � TÞm�1 ð4:13Þ

This relation tells us that pure liquids have a positive excess entropy that
decreases progressively as the critical point is approached. Physically, sr [ 0
means that molecules in the topmost layers of the liquid phase have a higher free
volume and thus a higher translational entropy than those in the interior of the
liquid.

From a thermodynamic point of view, the liquid/liquid interface of binary sys-
tems with a lower miscibility gap behaves similar to the liquid/vapour interface of a
pure fluid. The interfacial tension cðTÞ again follows Eq. (4.12) as the critical
temperature (consolute temperature) Tc is approached, and with sð1;2Þ ¼ �ð@c=@TÞp
we find a positive surface excess entropy which falls off steeply near Tc, as shown
in the graphs at the left-hand side of Fig. 4.3. Systems with an upper miscibility gap
exhibit a different behaviour, as shown on the right-hand side of Fig. 4.3. In this
case phase separation starts at a lower critical point and the interfacial tension
increases with temperature. The temperature dependence of γ and s(1,2) can again be
described by Eqs. (4.12) and (4.13) when replacing ðTc � TÞm by ðT � TcÞm and
introducing a minus sign on the r.h.s. of Eq. (4.13). Hence the liquid/liquid interface
of systems with an upper miscibility gap exhibits a negative surface excess entropy
s(1,2). Examples of systems with an upper miscibility gap are aqueous systems of
proton acceptors (e.g., ethers or polyethers). Such systems typically have negative
values of the excess enthalpy and excess entropy of mixing in the bulk liquid state
(HE\0; SE\0) [7].

Does the generic behaviour of liquid surfaces also apply to complex liquids? In
the past decades interesting model systems have been studied, in which colloidal
particles dispersed in a solvent replace the molecules of a simple fluid, and a
non-adsorbed polymer is added to tune the interaction between the colloid particles
(see Chap. 3 by R. Tuinier). In a certain range of polymer concentrations phase
separation into a colloidal liquid (rich in colloid and poor in polymer) and a col-
loidal gas (poor in colloid and rich in polymer) occurs (Fig. 4.4) [8, 9]. Experiments
and theoretical work have shown that in such systems, at states well away from the
critical point, the interfacial tension scales as the thermal energy (kBT) divided by
the square of the particle diameter d, i.e., [10]

c� kBT
d2

ð4:14Þ

For particles of diameter 25 nm this factor is of order 1 µN/m, i.e., about 4 orders
of magnitude lower than the surface tension of molecular liquids. Theoretical and
experimental studies also indicate a rapid decrease of the interfacial tension with
decreasing difference in the particle number density in the two phases,
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c� ql � qg
� �4, as the critical point is approached. This again is in agreement with

the behaviour of simple liquids.

4.2.2 Adsorption at Fluid Interfaces

Adsorption at the liquid/vapour interface of a solvent (component 1) is expressed

commonly by the relative surface excess concentrations Cð1Þ
k of the solutes (k = 2,

3…). Hence at constant temperature the Gibbs adsorption equation takes the form

Fig. 4.3 Liquid/liquid interface in binary systems of partial miscibility in the liquid state: Systems
with an upper critical solution temperature (left) or a lower critical solution temperature (right).
The graphs show the liquid/liquid coexistence curve (top), the temperature dependence of the
interfacial tension γ (middle), and the temperature dependence of the surface excess entropy s(1,2)

(bottom) in the vicinity of the critical temperature Tc
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dc ¼ �
Xn
k¼2

Cð1Þ
k dlk ð4:15Þ

The chemical potential of solutes in the bulk solution is given by

llk ¼ lok þRT ln ak ð4:16Þ

The standard chemical potential lok refers to the hypothetical state of an ideal
dilute solution. The activity ak can be expressed either as ak = ck fk or ak = xkfk,
where ck is the concentration, xk the mole fraction and fk the appropriate activity
coefficient of component k in the unsymmetrical (Henry) convention (fk ! 1 as
xk ! 0Þ. Using the differential form of Eq. (4.16) at constant temperature,
dlk ¼ RTdlnak, the Gibbs equation for a single nonionic solute (2) may be written

Fig. 4.4 A colloid–polymer suspension separated into a ‘colloidal gas’ and a ‘colloidal liquid’
phase: a sketch of the two-phase system; b phase diagram (polymer concentration cP versus
colloid volume fraction uC) showing coexistent colloid-rich (liquid-like) and polymer-rich (gas-
like) phases and the critical point of the binodal curve (Reproduced from Ref. [8] with permission.
Copyright 1999, American Chemical Society); c interfacial tension γ versus colloid volume
fraction uC near the critical point showing analogy with the behaviour of simple liquids near their
liquid/vapour critical point (Reproduced from Ref. [9] with permission. Copyright 2004, American
Association for the Advancement of Science)
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Cð1Þ
2 ¼ � 1

RT
@c

@lna2

� �
T

ð4:17Þ

According to this relation the relative surface excess Cð1Þ
2 can be determined

from the experimentally well accessible dependence of the surface tension on the
activity of the solute. Because of the logarithmic activity scale, the choice of the
concentration units (mol/L or mol/kg, etc.) is irrelevant, as long as the corre-
sponding activity coefficient is used. The necessity of using activities in the Gibbs
equation has been discussed in the literature [11]. For qualitative considerations the
activity may be replaced by concentration. Equation 4.17 then indicates that solutes

which lower the surface tension (dc=dc2\0) are positively adsorbed (Cð1Þ
2 [ 0Þ;

while solutes causing an increase in surface tension (dc=dc2 [ 0) are negatively

adsorbed (Cð1Þ
2 \0). At the surface of water, hydrophilic and well-hydrated solutes

(inorganic salts, but also glycerine, glycine, etc.) are negatively adsorbed, while
hydrophobic solutes (hexane, benzene) and amphiphilic substances (surfactants,
etc.) are positively adsorbed.

For the adsorption of solutes at liquid/liquid interfaces it is convenient to express
the Gibbs equation in terms of surface excess concentrations relative to the two

solvents, Cð1;2Þ
k (see Sect. 4.1.3). For a single solute (component 3) this gives by

analogy with Eq. (4.17)

Cð1;2Þ
3 ¼ � 1

RT
@c

@lna3

� �
T ;p

ð4:18Þ

According to this relation it is the relative adsorption Cð1;2Þ
k that is directly

accessible from measurements of the interfacial tension as a function of the activity
ak. Note that at equilibrium the concentration of a solute k in the two coexistent
liquid phases a and β can be grossly different, but the thermodynamic activity is
equal, i.e., ak ¼ cak f

a
k ¼ cbk f

b
k .

Adsorption of surfactants from aqueous solutions: As a case study we con-
sider the determination of the adsorption of surfactants at the air/water interface
[12–15]. Nonionic surfactants of alkyl chain length C12 or greater are strongly
adsorbed at the air/water and oil/water interface. The surface tension derivative
(dc=dlnc2) reaches a high negative limiting value, indicating a high limiting
adsorption at bulk concentrations well below the critical micelle concentration
(cmc). Above the cmc no further decrease in surface tension occurs (dc=dlnc2 = 0).
This can be explained by the formation of micellar aggregates, so that the con-
centration of monomeric surfactant—and hence its activity a2—remains constant
above the cmc [16].
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For an ionic surfactant, R–Na+, the general Gibbs equation (Eq. 4.7) takes the
form (T = const) [12]

�dc ¼ Cr
Naþ dlNaþ þCr

R�dlR� þCr
H þ dlH þ þCr

OH�dlOH� þCr
H2OdlH2O ð4:19Þ

where we consider all ionic species and the solvent. In the bulk solution the
chemical potentials are interrelated by the Gibbs-Duhem relation

nNaþ dlNaþ þ nR�dlR� þ nH þ dlH þ þ nOH�dlOH� þ nH2OdlH2O ¼ 0 ð4:20Þ

Combining these two relations and neglecting the terms in H+ and OH− against
the concentration of the surfactant ions leads to

�dc ¼ Cr
Naþ � Cr

H2O
nNaþ

nH2O

� �
dlNaþ þ Cr

R� � Cr
H2O

nR�

nH2O

� �
dlR� ð4:21Þ

For electrical neutrality in the solution and the surface we also have nNaþ ¼
nR� ¼ nNaR and Cr

Naþ ¼ Cr
R� ¼ Cr

NaR, so that

�dc=RT ¼ Cr
NaR � Cr

H2O
nNaR
nH2O

� �
dln aNaþ aR�ð Þ ð4:22Þ

Introducing the mean activity a� ¼ aNaþ aR�ð Þ1=2 and noting that the expression
in brackets is the surface excess concentration of the surfactant relative to water,

CðH2OÞ
NaR ¼ Cð1Þ

NaR, we find

�dc=RT ¼ 2Cð1Þ
NaRdln a�ð Þ ð4:23Þ

The factor 2 in this relation arises because both the surfactant ion R− and
counterion Na+ must be adsorbed to maintain electroneutrality. Accordingly,
dc=dln a� is twice as large as for a nonionic surfactant. The mean ion activity
coefficient needed to evaluate the Gibbs relation can be taken from the extended
Debye-Hückel equation in the form [15]

logf� ¼ �0:5115 zþ z�j j ffiffi
I

p

1þ 1:316
ffiffi
I

p þ 0:055I ð4:24Þ

where z+ and z− are the charge numbers of cation and anion, I is the ionic strength
of the solution expressed in molar units, and the numerical constants apply for a
temperature of 25 °C.

Is the adsorption of the ionic surfactant at the air/water interface affected by the
addition of an inert electrolyte? If a non-adsorbed electrolyte (say, NaCl) is present
in large excess, an increase in the concentration of R−Na+ causes a negligible
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increase of the Na+ concentration, so that dlNaþ is negligible. Consideration of the
Gibbs-Duhem equation then shows that dlCl� is also negligible, and thus

�dc=RT ¼ C 1ð Þ
R�dln aR�ð Þ ð4:25Þ

The activity coefficient fR� depends on the ionic strength which is determined by
the excess of NaCl and is therefore constant, so that

�dc=RT ¼ C 1ð Þ
R�dln cNaRð Þ ð4:26Þ

where C 1ð Þ
R� is again the surface excess of the surfactant relative to water and cNaR is

its concentration in solution. Hence the factor 2 in the Gibbs equation has disap-
peared and the ionic surfactant in excess electrolyte is adsorbed as if it was a
nonionic surfactant.

4.2.3 Surface Phase Model

A concept adopted explicitly or implicitly in many treatments of adsorption from
solution is that of a distinct surface phase, i.e., a layer of finite thickness located
between the two bulk phases and affected by the interfacial tension [17, 18]. The
surface phase is usually supposed to be of uniform composition. On the basis of
such a model the measured surface excess concentrations can be expressed by the
concentration or mole fraction difference between the surface phase (superscript s)
and bulk liquid phase (superscript l). Specifically, if the surface phase consists of an
amount ns of solvent plus solute, with a mole fraction xs2 of the solute, then the

reduced surface excess CðnÞ
2 and the relative surface excess Cð1Þ

2 of the solute can be
expressed as

CðnÞ
2 ¼ 1� xl2

� �
Cð1Þ
2 ¼ xs2 � xl2

� �
ns=A ð4:27Þ

where A is the surface area and xl2 is the mole fraction of solute in the bulk solution.
If ns is known, Eq. (4.27) may be used to calculate xs2 from the measured surface
excess concentration. However, the value of ns depends on what assumptions are
made about the nature of the surface phase. In practice, meaningful results can be
obtained by this approach only if there is independent evidence that the surface
phase consists of a single monolayer of molecules. For adsorption from binary
mixtures the condition that this surface layer is completely covered is then that

Cs
1a1;0 þCs

2a2;0 ¼ 1 ð4:28Þ

Here, Cs
1 and Cs

2 represent the (absolute) surface concentrations (amount per unit
area), given by Cs

k ¼ nsk=A ¼ xskn
s=A, and the quantities ak;0 denote the partial molar
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areas of solvent and solute in the surface phase. These cross-sectional areas may be
estimated from molecular models. By combining Eqs. (4.27) and (4.28) we obtain

an explicit expression to convert surface excess concentrations CðnÞ
2 to absolute

surface concentrations Cs
2 of the solute in the monolayer surface phase:

Cs
2 ¼

xl2 þ a1;0C
ðnÞ
2

1� ða2;0 � a1;0ÞCðnÞ
2

ns

A
ð4:29Þ

In the particular case when the two components have the same size
(a1;0 ¼ a2;0 ¼ a0), then ns ¼ A=a0 and Eq. (4.29) leads to

a0C
s
2 ¼ xl2 þ a0C

ðnÞ
2 ð4:30Þ

This relation shows that in the case of strong adsorption from dilute solutions,

when a0C
ðnÞ
2 � xl2, the surface excess concentration becomes nearly equal to the

absolute concentration of the solute in the surface phase, i.e., CðnÞ
2 ffi Cð1Þ

2 ffi Cs
2.

Hence in such cases it is justified to treat surface excess concentrations as true
concentrations of the solute in the topmost layer of the liquid phase. If the condition

a0C
ðnÞ
2 � xl2 does not apply, Eq. (4.29) may be used to calculate Cs

2 from the
measured surface excess concentration.

4.2.4 Surface Equation of State and Adsorption Isotherm

Monolayers of strongly adsorbed substances have some resemblance with insoluble
monolayers of lipids at the water surface [17]. The decrease in surface tension from
the value of pure water, c0, to a value c corresponding to a given surface con-
centration Cs, can be interpreted as a lateral pressure P ¼ c0 � c exerted by the
monolayer film. In the case of water-insoluble monolayers (so-called Langmuir
films) a certain amount of lipid, commonly expressed by the number of molecules
N) is placed on a well-defined surface area A, and the surface concentration Cs ¼
N=A of the lipid can be varied by increasing or decreasing A using suitable barriers
to keep all the lipid molecules within the area A. The dependence of the film
pressure Π on the area A at constant temperature and constant number of lipid
molecules (P� A isotherm) has a formal analogy with the pressure-volume dia-
gram of a given amount of gas at constant temperature (P − V isotherm). In the case
of water-soluble substances (e.g., surfactants) the surface concentration of the
substance is independent of the surface area but can be controlled via the adsorption
isotherm Cs ¼ Cs cð Þ, i.e., by changing its concentration c in the subphase. Surface
films of this kind are called Gibbs films. In this section we explore the functional
dependence P ¼ PðaÞ, where a ¼ A=N ¼ 1=Cs is the mean area per adsorbed
molecule in the Gibbs film at the given concentration c in the subphase. The relation
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P ¼ Pða; TÞ is called the monolayer equation of state or two-dimensional (2D)
equation of state of the adsorbed substance [19], by analogy with the equation of
state p = p(V, T) of a fluid in the bulk (3D) state.

Experimentally, the monolayer equation of state is obtained by the following
sequence of steps:

(i) Determination of the film pressure isotherm P ¼ Pðc; TÞ by surface tension
measurements as a function of the concentration c.

(ii) Calculation of the appropriate surface excess concentration isotherm, e.g.,
Cð1Þ ¼ Cð1Þ c; Tð Þ from the surface tension data by application of the Gibbs
equation.

(iii) Choice of a surface phase model and conversion of the surface excess con-
centrations to the model-based surface concentrations Cs c; Tð Þ.

(iv) Determination of the monolayer equation of state P ¼ Pða; TÞ by correlating
film pressurePðc; TÞ and surface concentration Cs c; Tð Þ data corresponding to
the same bulk concentration c, noting that a ¼ 1=Cs.

Model equations of state and adsorption isotherms: Drawing on the analogy
between ‘two-dimensional’ (2D) monolayers and three-dimensional (3D) bulk
fluids, monolayer equations of state of increasing complexity have been proposed:

Pa ¼ kBT 2D perfect gas
Pða� a0Þ ¼ kBT 2D Volmer

Pþ a
a2

	 

ða� a0Þ ¼ kBT 2D van�der�Waals

ð4:31Þ

In these relations kB is the Boltzmann constant, a0 represents the cross-sectional
area of a molecule in the monolayer (analogous to the ‘co-volume’ in the 3D
equation of state), and α is a measure of attractive lateral interaction between
adsorbed molecules. Each of these equations of state can be converted to a corre-
sponding adsorption isotherm with the Gibbs adsorption equation. For ideal solu-
tion behaviour of the bulk phase all model adsorption isotherm equations can be
expressed in the form Kc ¼ f Csð Þ ¼ ~f ðaÞ, where K is a constant which depends on
the units in which the equilibrium concentration c of the solute in the bulk phase is
expressed (molar concentration, mole fraction, etc.). Specifically, at low surface
concentration, when the surface film behaves as a 2D perfect gas, the adsorption
isotherm becomes

Kc ¼ Cs ¼ 1
a

ð4:32Þ

Low surface concentration means that 1=Cs ¼ a � a0. If this condition is no
longer met, deviations from linear adsorption isotherms occur. In this regime it is
convenient to express the adsorption isotherm and monolayer equation of state in
terms of h ¼ a0=a, the fraction of surface occupied by the adsorbed molecules.
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For mobile monolayer films without long-range lateral interactions (2D Volmer) the
adsorption isotherm and equation of state are

KVc ¼ h
1� h

exp
h

1� h

Pa0 ¼ kBT
h

1� h

ð4:33Þ

For monolayer films with long-range interactions (2D van-der-Waals or
Hill-deBoer) these relations are modified to

KVc ¼ h
1� h

exp
h

1� h
� 2a
a0kBT

h

� �

Pa0 ¼ kBT
h

1� h
� a
a0

h2
ð4:34Þ

The following important conclusions emerge from these model isotherms:
(1) An adsorbate conforming to the 2D perfect gas exhibits a linear adsorption

isotherm. This is a generic behaviour at very low surface concentrations (a � a0).
Accordingly, all adsorption systems must exhibit a linear adsorption isotherm at
sufficiently low concentrations c. If the surface concentration Cs and bulk con-
centration c are both expressed on a molar basis, then the adsorption constant K has
the dimension of a length. The adsorption constant KV appearing in Eqs. (4.33) and
(4.34) can be converted to K by K ¼ KV=a0.

(2) At higher surface concentrations the interaction between the adsorbed
molecules comes into play. The Volmer equation applies when the adsorbed
molecules interact only by short-range repulsive forces. This can be tested exper-
imentally by writing the Volmer equation of state in the form, kBT=P ¼ a� a0.
Hence, a graph of kBT=P versus a should be linear down to the lowest values of a
and the extrapolation to kBT=P = 0 gives the co-area a0 of the adsorbed molecules.

(3) In the absence of attractive lateral interactions the film pressure at a given
surface coverage θ is inversely proportional to the size of the adsorbed molecules
(co-area a0):

P ¼ kBT
a0

h
1� h

ð4:35Þ

Figure 4.5 shows the film pressure as a function of surface coverage for two
different values of the co-area: a0 ¼ 0:2 nm2 (typical of amphiphiles with small
head groups, e.g. alkanols), and a0 ¼ 20 nm2 (typical for globular proteins) [20]. It
can be seen that at half-coverage of the surface (h ¼ 0:5) the film pressure of the
small amphiphile is already high (20 mN m−1), while for the protein it is still very
low (0.2 mN m−1), and a marked increase of Π occurs only at very high surface
coverage. This example shows that for proteins and other large adsorbate molecules
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it can be dangerous to draw conclusions about the adsorbed amount from film
pressure measurements.

(4) The 2D van-der-Waals equation can be used to represent systems in which
attractive lateral interactions between adsorbed molecules cannot be neglected.
Figure 4.6 shows results for the surface pressure P cð Þ, the surface equation of state
P að Þ, and the adsorption isotherm hðcÞ for the 2D vdW model (Eq. 4.34), com-
puted for several values of the reduced interaction parameter a	 ¼ a=a0kBT . The
isotherms for α* = 0 represent the 2D Volmer model. Positive values of α* corre-
spond to attractive lateral interactions between the molecules in the film. It can be
seen that increasing α* causes higher values of the surface pressure P and
adsorption (surface coverage θ) at given concentration c	 ¼ c 	 KV . On the other
hand, at a given mean area per adsorbed molecule (a), increasing lateral interaction
between the molecules (increasing α*) causes a decrease in the surface pressure Π,
as can be seen in the graphs showing the surface equation of state P að Þ. Attractive
lateral interactions are commonly observed for amphiphilic substances (e.g., fatty
alcohols) adsorbed at the air/water interface. These molecules are adsorbed even
more strongly at oil/water interfaces, but in that case the adsorbed film can be
represented by the Volmer equation [21]. This remarkable behaviour is attributed to
the fact that the attractive interactions between the alkanol chains are screened when
they are surrounded by hydrocarbon molecules of the oil phase.

Models of localized monolayer adsorption: In many cases adsorption involves
some sort of binding to specific adsorption sites. Hence adsorbed molecules are no
longer free to move (“mobile”) but “localized”. The Langmuir equation is the
prototype of isotherms for localized monolayer adsorption. It assumes that the
surface constitutes M equivalent adsorption sites, each of which can accommodate
one adsorbed molecule. If Ns molecules are adsorbed, the surface coverage is
h ¼ Ns=M: The Langmuir model assumes that no lateral interactions between
adsorbed moleculesexist. For this reason it is also called 2D ideal lattice gas model.

Fig. 4.5 Surface pressure P as a function of surface coverage θ for adsorbed films of molecules
with small or large cross-sectional area a0. When a0 is small (0.2 nm2), P rises steeply with θ;
when a0 is large (20 nm2), P stays very low up to high surface coverage θ (results for the Volmer
model, Eq. (4.35), for 20 °C)
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The adsorption isotherm and monolayer equation of state of the Langmuir model
are [14, 19]

KLc ¼ h
1� h

Pa0 ¼ �kBTlnð1� hÞ
ð4:36Þ

When lateral interactions are introduced in this model on a mean-field basis, the
Frumkin-Fowler-Guggenheim (FFG) isotherm is obtained:

KLc ¼ h
1� h

exp � 2a
kBT

h

� �

Pa0 ¼ �kBT ln 1� hð Þþ a
kBT

h2
� � ð4:37Þ

As in the van-der-Waals equation (Eq. 4.34), positive values of the interaction
parameter α correspond to attractive lateral interactions, negative α to repulsive

Fig. 4.6 Behaviour of adsorbed surface films according to the van der Waals model (Eq. 4.34):
surface pressure PðcÞ (upper left), surface equation of state PðaÞ (upper right), and adsorption
isotherm hðcÞ (lower left and right; where the graph at the left shows the low concentrations region
enlarged). All results refer to 20 °C and a molecular co-area a0 ¼ 0:5 nm2. The values of the
interaction parameter α are given in reduced units (a	 ¼ a=a0kBT), the bulk concentration is
expressed in dimensionless units (c	 ¼ KVc)
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lateral interactions. Repulsive interactions can be significant in the adsorption of
polyions (proteins, etc.). Attractive lateral interactions can play a role, for example,
in the adsorption of ionic surfactants to an oppositely charged surface, when the
hydrophobic tails tend to aggregate due to the hydrophobic effect. Like the
van-der-Waals isotherm, the Frumkin isotherm indicates that a phase separation into
a dilute and a dense 2D phase occurs at low temperatures, when a=kBTj j exceeds
some critical value. This phase separation causes a step-wise increase of the surface
coverage.

4.2.5 Standard Free Energy of Adsorption

Standard free energies of adsorption are used to characterize the strength of
adsorption to interfaces. Of particular interest are values for very dilute systems,
when interactions between adsorbed solute molecules are absent. From the Gibbs
equation we obtain for 1 mol of adsorbate

�dc ¼ dP ¼ Cð1Þ
2 dl2 ffi

1
NAa

dl2 ð4:38Þ

where the last relation applies only to the regime of the 2D perfect gas (NA is the
Avogadro constant). Inserting the equation of state, NAa ¼ RT=P, gives after
integration

la2 ¼ lo;a2 þRTlnP ð4:39Þ

At equilibrium la2 is equal to the chemical potential of the component in the bulk
solution (Eq. 4.16). For highly dilute solutions the activity can be replaced by the
concentration and we obtain the following expression for the standard free energy
of adsorption

DaGo � lo;a2 � lo;l2 ¼ �RTln P=c2ð Þc2!0
P=c2ð Þc2!0¼ expð�DaGo=RTÞ ð4:40Þ

where lo;a2 and lo;l2 represent the standard chemical potential of the solute in the
surface and bulk solution. The standard enthalpy and standard entropy of adsorption
can be obtained from the temperature dependence of DaGo, viz.

DaHo ¼ dðDaGo=TÞ
dð1=TÞ

TDaSo ¼ DaHo � DaGo
ð4:41Þ

Experimentally this is achieved by measuring the initial slope of film pressure
isotherms P=c2ð Þc2!0 at a number of temperatures T and using Eq. (4.40) to
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determine DaGoðTÞ. Care must be taken to ascertain that all film pressure data
correspond to the initial linear regime of the film pressure isotherm.

Table 4.1 shows results for the adsorption of carboxylic acids at the free water
surface [12]. It can be seen that �DaGo increases nearly linearly with the chain
length (n) of the hydrophobic tail, with an average increment DDaGo of ca.
−3 kJ mol−1 per CH2 group. DaHo is negative, indicating that adsorption of a
carboxylic acid molecule at the water surface is an exothermic process, but the
values become less exothermic with increasing chain length. TDaSo shows a most
interesting dependence on the chain length: It is negative for short chains, indicating
a loss of degrees of freedom upon adsorption. With increasing chain length TDaSo

becomes less negative and assumes high positive values for hexanoic and heptanoic
acid. This is attributed to the hydrophobic effect: Highly oriented water molecules
forming a hydrogen-bonded ‘cage’ around the hydrophobic tails of the solute
molecule in solution are released when the hydrocarbon tail leaves the aqueous
medium on adsorption. The average increment in entropy DDaSo is about 23
JK−1mol−1 per CH2 group. If two water molecules are oriented at each CH2 group,
the entropy of orientation per water molecule ðDorS=R ffi 1:3Þ is about half the
entropy of melting of ice (DslS=R ffi 2:6). The results of Table 4.1 suggest that for
longer chain lengths n the entropy term TDaSo becomes larger in magnitude than
the enthalpy term DaHo. Hence, there is a predominantly entropic driving force for
adsorption of the higher alkanoic acids at the water surface, due to the release of
2n oriented water molecules on adsorption.

4.3 Liquid/Solid Interfaces

Adsorption of surfactants and polymers to solid/liquid interfaces is a broad field
with a diversity of applications, from controlling the wettability of macroscopic
surfaces to the stabilization of colloidal dispersions. Adsorption of biomolecules

Table 4.1 Standard free energies DaGo, enthalpies DaHo (in units of J mol−1), and entropies
TDaSo(in units of J K

−1 mol−1) of adsorption of n-carboxylic acids at the air/water interface (20 °C);
n is the number of carbon atoms in the tail group (from Ref. [12])

acid n �DaG0 DDaG0 �DaH0 TDaS

propionic 2 6.8 24.4 −17.6

butyric 3 10.1 3.3 17.8 −7.7

pentanoic 4 13.4 3.3 12.1 1.3

hexanoic 5 15.6 2.1 7.5 8.1

heptanoic 6 19.0 3.4 10.1 8.9

octanoic 7 22.7 3.7

nonanoic 8 25.6 2.9

decanoic 9 29.7 4.1
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onto micron- or nano-sized particles is used to immobilize biomarkers and drugs
and many recent studies deal with methods to control the release of adsorbed drugs
for applications in the pharmaceutical field. Traditionally, solid surfaces have been
classified into hydrophilic and hydrophobic, or ‘high-energy’ (inorganic) and
‘low-energy’ (organic), but many surfaces are heterogeneous and combine hydro-
philic and hydrophobic behaviour. For example, carbons or organic polymer sur-
faces may contain ionizable surface groups (like –COOH) which at higher pH will
be ionized and form a hydrophilic site. In this short article only a few aspects of
adsorption of soft matter from aqueous solutions to solid surfaces can be touched.

4.3.1 Measurement of Adsorption

A wide variety of experimental methods is available to study adsorption at
solid/liquid interfaces [22]. Adsorption onto flat macroscopic surfaces can be
measured by ellipsometry and optical reflectometry (also by neutron or X-ray
reflectometry in favourable cases, see chapter D.12 by J. Daillat), surface spec-
troscopic methods (see chapter D.15 by M. Hoffmann et al.) and quartz
microbalance techniques. Adsorption onto particulate solids (powders and colloids)
with high specific surface area can be determined directly from the
adsorption-induced change in composition of the liquid phase. The reduced surface

excess concentration CðnÞ
k of a component k (defined in Sect. 4.1.3) is directly

related to the change in composition and given in terms of the mole fraction before
and after equilibration, x0k and xlk, by [18]

CðnÞ
k ¼ nlðx0k � xlkÞ

msas
ð4:42Þ

where nl is the amount of solution, ms is the mass and as the specific surface area of
the adsorbent. For solutions of polymers and other large molecules it is more
convenient to express adsorption by the volume-reduced surface excess concen-

tration CðvÞ
k which is defined operationally by

CðvÞ
k ¼ Vlðc0k � clkÞ

msas
ð4:43Þ

where Vl is the volume of a given amount of solution, c0k and clk are the concen-
trations of component k before and after equilibration with the adsorbent. With
some simplification (additivity of the volumes of the components on mixing, no

adsorption-induced volume changes), CðvÞ
k is related to the volume fraction profile

uk zð Þ of the component in the boundary layer

4 Thermodynamics of Interfaces in Soft-Matter Systems 129



CðvÞ
k ¼ 1

V	
k

Z1

0

uk zð Þ � ul
k

� �
dz ð4:44Þ

where V	
k is the molar volume of component k. For a two-component system of

solvent (1) and solute (2) this implies that V	
1C

ðvÞ
1 ¼ �V	

2C
ðvÞ
2 ; i.e., the ratio of the

volume-reduced surface excess concentrations of solvent and solute is inversely
proportional to the ratio of their molar volumes. This conforms to the intuitive
picture of adsorption as a displacement of solvent molecules by the solute. For
example, a protein molecule of a volume 1000 times the volume of water molecules
will displace 1000 water molecules from the surface region, and

CðvÞ
water ¼ �1000CðvÞ

protein.

4.3.2 Thermodynamic Relations

We have seen that for fluid interfaces the interfacial tension γ and its dependence on
temperature and concentration of the components represents the primary experi-
mental source of information on the interface. The interfacial tension of a liquid
phase against a solid, which in the following will also be denoted by γ, is experi-
mentally not accessible. However, the Gibbs equation forms a basis to determine γ
from the measured adsorption. For a binary mixture at constant temperature we
have

�dc ¼ CðnÞ
1 dl1 þCðnÞ

2 dl2 ¼ C nð Þ
2 ðdl2 � dl1Þ ð4:45Þ

because CðnÞ
1 ¼ �CðnÞ

2 . With the Gibbs-Duhem relation xl1dl1 þ xl2dl2 ¼ 0 this
yields

�dc ¼ C nð Þ
2 dl2ð1þ xl2=x

l
1Þ ¼

C nð Þ
2

1� xl2
dl2 ð4:46Þ

Integration of this relation over the composition range from pure solvent
(component 1) to a solution of mole fraction xl2 then yields

c	1 � cðxl2Þ ¼ RT
Zxl2
0

CðnÞ
2

1� xl2
dlnðxl2f l2Þ ð4:47Þ

In this relation, c	1 is the interfacial tension of the solid against pure liquid 1 and
c xl2
� �

the tension against the solution of composition xl2: It can be shown [18] that
c	1 � c xl2

� �
is equivalent to the difference in Gibbs free energies of wetting of the
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solid by pure solvent and a solution of composition xl2. This difference, in turn,
corresponds to the free energy change of displacement of pure solvent by the

solution that causes the adsorption C nð Þ
2 . Accordingly, the left-hand side of

Eq. (4.47) is called the Gibbs free energy of displacement and is denoted by D12G
(J m−2). An equivalent relation for D12G can be derived when the adsorption is
expressed by the volume-reduced surface excess. In the limit of ideal dilute solu-
tions (when xl2 
 1) this relation simplifies to

D12Gðc2Þ ¼ �RT
Zc2

0

C vð Þ
2

cl2
dcl2 ð4:48Þ

This relation can be used to determine Gibbs free energies of displacement from
measured surface excess isotherms. When such isotherm measurements have been
performed for several temperatures, the enthalpy and entropy of displacement,
D12H and D12S, can be determined by relations analogous to Eq. (4.41). However,
for solid/liquid interfaces the enthalpies of wetting and enthalpies of displacement
can also be determined directly by isothermal titration calorimetry (ITC) or
isothermal flow calorimetry (IFC). By combining adsorption measurement with
calorimetric studies the thermodynamics of the adsorption system can be fully
characterized.

As an example, Fig. 4.7 shows the thermodynamic functions D12G, D12H and
TD12S for the displacement of water by a short-chain nonionic surfactant (C8E4) at a
hydrophilic glass surface [23]. The Gibbs free energy D12G decreases with
increasing concentration (i.e., with increasing adsorption) of the surfactant.

Fig. 4.7 Thermodynamic characterization of the adsorption of the surfactant C8E4 from aqueous
solutions onto CPG silica: enthalpy (D12H), entropy (TD12S), and Gibbs free energy (D12G) as
functions of the displacement of water (2) by surfactant (1) at 25 °C. The inset shows the
behaviour at low concentrations c1on an enlarged scale (Reproduced from Ref. [23] with
permission. Copyright 1997, American Chemical Society)
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However, the overall change in D12G is rather small, due to enthalpy/entropy
compensation. In the low-concentration region (shown by the inset in Fig. 4.7) the
displacement of water by the surfactant is dominated by the exothermic enthalpy of
displacement, which is attributed to a direct contact of the head groups with the
hydrophilic surface. This initial adsorption step is connected with a decrease in
entropy. At higher concentrations the enthalpy and entropy both change sign and
the displacement of water by surfactant becomes entropy-controlled. This is a
signature of the hydrophobic aggregation of the surfactant tails at the surface [23].

4.3.3 Electrical Nature of Solid/Aqueous Solution Interfaces

Electrostatic interactions between surface charges and oppositely charged ionic
groups of solute molecules are often determinant for the adsorption from aqueous
media. For instance, in ionic solids (e.g., silver halides) ions of one charge dissolve
preferentially, leaving behind a surface of opposite charge. Alternatively, one type
of ions of the solution may be adsorbed preferentially, again causing a charge
separation at the surface. Many inorganic oxide surfaces (Al2O3, SiO2, TiO2, etc.),
exhibit a pH dependent surface charge according to the scheme

MOH þ
2 $H

þ
MOH $H

þ
MO�

In all cases the charge on the solid surface (characterized by a charge density r0Þ
must be neutralized by oppositely charged counterions in the nearby solution, thus
creating an electric double layer. The structure of this layer is sketched in Fig. 4.8.
According to the classical Stern model [24, 25] the solution side of the double layer
is subdivided somewhat artificially into two parts: the inner part (Stern layer) and
the outer part (Gouy layer or diffuse layer). The Stern layer, in the words of
J. Lyklema [25], is ‘where all the complications regarding finite ion size, specific
adsorption, discrete charge, surface heterogeneity etc. reside’, while the diffuse
layer is by definition ideal, obeying Poisson-Boltzmann statistics. The border line
between the Stern layer (thickness d) and the diffuse layer is called the outer
Helmholtz (oH) plane. The net charge per unit area of this diffuse layer is rd . In
modern treatments the Stern layer is further subdivided into an inner and an outer
region. The centres of specifically adsorbed ions (i.e., ions adsorbed by
non-electrostatic interactions) are located in the inner Helmholtz plane (iH), with a
charge density ri. Ions which are not specifically adsorbed and remain hydrated can
approach the surface no closer than the outer Helmholtz plane. In some cases,
super-equivalent specific adsorption can lead to a change in sign of the potential wi

at the iH plane, connected with a charge reversal of the diffuse ion layer (see
Fig. 4.8c). This can occur, for instance, in the adsorption of highly charged
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polymers to an oppositely charged surface. In any case, however, charge neutrality
requires that

r0 þ ri þ rd ¼ 0 ð4:49Þ

The situation when r0 ¼ 0 is called the point of zero charge (pzc), and when the
solid surface plus specifically adsorbed ions has zero net charge (i.e., when
r0
  ¼ rij j) is called isoelectric point (iep). At the isoelectric point the potential wd

(Fig. 4.8) is zero. The potential at the slip plane (zeta-potential fÞ is very similar to
wd and also zero at the iep.

A central part of the Stern theory is to determine the specifically adsorbed charge
ri as a function of the surface charge r0. For the adsorption of small ions i, the
Langmuir adsorption equation can be adopted for this purpose, i.e.,
Kici ¼ hi=ð1� hiÞ, where hi ¼ Ni=Ns is the fraction of adsorption sites occupied by
the ions and ci is the concentration in the solution. For a charged adsorbate the

electrostatic contribution to the free energy of adsorption, ziFw
i, has to be

Fig. 4.8 Examples of Gouy-Stern layers: a only finite counterion size (upper left); b ion size and
specific adsorption (upper right); c ion size and super-equivalent specific adsorption. All double
layers have the same surface potential w0, while the surface charge σ increases from (a) to (c) (after
Ref. [25])
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introduced, so that instead of Ki we have Ki exp �ziFw
i=RT

� �
: Writing the

Langmuir equation explicit in hi and introducing ri ¼ zieNi, we obtain the Stern
equation

ri ¼ zieNs
ciKiexpð�ziyiÞ

1þ ciKiexpð�ziyiÞ ð4:50Þ

where e is the elementary charge, F is the Faraday constant, and yi ¼ Fwi=RT .
Hence it is possible to calculate ri once the surface potential wi is known. This,
however, generally requires some model assumptions [25], and is beyond the scope
of this article.

As an example of super-equivalent specific adsorption, Fig. 4.9 shows results for
the binding of the basic protein lysozyme to silica nanoparticles [26]. The silica
surface is nearly uncharged below pH 4, but becomes negatively charged at higher
pH due to the deprotonation of silanol groups. Lysozyme has a positive net charge
up to its isoelectric point at pH 11. Figure 4.9a shows that binding of the protein
starts when the silica surface becomes negatively charged, and it leads to an
over-charging of the surface, as indicated by the positive zeta-potential of the silica

Fig. 4.9 Binding of
lysozyme to silica
nanoparticles for a fixed
overall amount of protein
(corresponding to 50
molecules per particle), and
the effect on the zeta potential
of the particles, as a function
of pH: a adsorbed amount
expressed as protein mass per
unit area and number of
protein molecules per particle;
b zeta potential of the
particles in the absence and
presence of lysozyme
(Reproduced from Ref. [26]
with permission. Copyright
2011, American Chemical
Society)
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particles in the presence of the protein, although the silica particles without protein
have a negative zeta potential. At higher pH the zeta potential decreases and
becomes negative. This can be attributed to the increasing negative charge density
of the silica surface and the decreasing positive net charge of the adsorbed protein
as its isoelectric point is approached [26].

4.3.4 Adsorption as Ion Exchange

Ion exchange represents an important mechanism for adsorption to charged sur-
faces. This process can be dominated by electrostatic attraction of the ionic group of
the adsorbate with an oppositely charged surface site. In this case adsorption is
expected to be accompanied by a high exothermic adsorption enthalpy. However, in
the case of protein or polyelectrolyte adsorption onto oxide surfaces, in many cases
only weakly exothermic or even endothermic enthalpies of adsorption are observed,
indicating that the driving force must include an entropic contribution that out-
weighs the enthalpic contribution. This can be rationalized from the fact that
adsorption of the ionic group at the oppositely charged surface site involves the
formation of an ion pair and the release of two counterions. In addition, it may also
involve the release of water molecules hydrating the counterions. Models for this
process indicate that the entropy gain amounts to ca. kBT for each counterion or
water molecule released [27].

The adsorption of a charged species on a charged site can be represented by an
ion equilibrium reactions. For example, for a negative protein group P� adsorbing
to a positive site �Rþ

�RþCl� þP�Naþ
aq ¼ �RþP� þNaþ

aq þCl�aq ð4:51Þ

Here, the species are depicted with the counterions associated with the charges.
The equilibrium constant of this reaction expressed in concentration units is [28]

Kads ¼
RP NaCl½ �2aq
R P�Naþ½ �aq

ð4:52Þ

where RP represents the fraction of sites occupied by the protein and R is the
fraction of vacant sites. In the absence of specific attractive interactions between P�

and �Rþ the adsorption is driven by the release of the counterions Naþ and Cl�.
According to Eq. (4.52) the fraction of occupied sites should decrease when the salt
concentration is increased, as it is indeed often observed.
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Chapter 5
Dynamics of Surfactants and Polymers
at Liquid Interfaces

Benoît Loppinet and Cécile Monteux

Abstract In the first part, we provide the background describing the adsorption
dynamics in surfactant solutions, including the cases of kinetically and diffusion
controlled dynamics. The second part deals with the dynamics of polymer mole-
cules at interfaces. We provide a review of the mechanisms involved in the
adsorption dynamics of polymer molecules at liquid interfaces. We show that there
are energy barriers, of steric or electrostatic nature which tend to slow down the
adsorption of polymer molecules in comparaison to surfactant systems. We also
review results concerning the surface shear and compression properties of adsorbed
and spread polymer monolayers at liquid interfaces. In particular, we describe
existing models describing the mushroom to brush transition, which occurs in
polymer layers as the surface concentration increases. At last, we review recent
experimental results concerning the diffusion of polymer molecules at interfaces.

5.1 Introduction

The dynamics of amphiphilic molecules at liquid interfaces, including the
adsorption dynamics as well as the response of adsorbed layers to external stresses
and deformation plays a crucial role in several processes, where liquid interfaces are
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rapidly created or deformed. For example, industrial processes in the food or
cosmetic industry often involve foaming or emulsifying processes, where bubbles
and drops are rapidly created. To stabilize such fresh air-water or oil-water inter-
faces, amphiphilic molecules, such as surfactants or polymers, are used and their
adsorption dynamics need to be faster than the rate of interface creation. Moreover,
emulsions or foams are often forced to flow in confined geometries, leading to
stretching and shearing of the liquid interfaces. As a result, the rheological
behaviour of a foam or an emulsions strongly depends on the ability of the
thin-liquid films and bubble interfaces to deform, hence on the response of the
amphiphilic layer to stretching and shearing of the interface.

In this chapter, we review existing theories and experimental studies concerning
the adsorption dynamics, diffusion and rheological properties of interfacial layers of
surfactants and polymers at liquid interfaces. In the first part, we present derivation
for the adsorption dynamics of soluble surfactants at interfaces. In the second part,
we overview the case of diffusion dynamics of polymer chains near surfaces.

5.2 Adsorption Dynamics of Surfactants

When a clean and fresh interface is created the surfactant molecules which are close
to the surface adsorb at the surface, creating a depletion zone, named the ‘sub-
surface’ (see Fig. 5.1). This concentration gradient between the subsurface and the
bulk concentration induces a diffusion flux of the molecules to the interface. In most
practical cases, the adsorption dynamics is a diffusion-controlled process, meaning
that the adsorption/desorption transfer from the subsurface to the surface is very
fast. However in some cases, such as for concentrated solutions or charged sur-
factants, where the diffusion is fast, the adsorption/desorption process of the sur-
factant at the interface controls the adsorption dynamics. This case is known as the

D

water

air

subsurface

Csub

CB

C

z

z

Csub

CB

Γ (mol/m2)

Fig. 5.1 Schematic drawing of the adsorption dynamics of surfactants at an interface, illustrating
the diffusion process from the bulk phase to the subsurface as well as the adsorption/desorption
transfer from the subsurface to the interface
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kinetically-limited process. Below we describe the diffusion-limited and the
kinetically limited adsorption models. The detailed derivation can be found in the
book from Joos [1].

5.2.1 Diffusion Controlled Adsorption

Using dimensional analysis, one finds that the typical diffusion time needed to
obtain a saturation surface excess, Γ∞, in mol/m2 scales as

sdiff � 1
D

C1
CB

� �2
ð5:1Þ

with CB the bulk concentration, in mol/m3 and D the diffusion coefficient of the
surfactant, in m2/s. Equation 5.1 shows that the diffusion transfer is faster for large
concentrations and diffusion coefficients.

To obtain the time-variation of the surface excess, Γ(t), one has to solve the
standard diffusion equation

@C
@t

¼ D
@2C
@z2

ð5:2Þ

with the following boundary condition for the conservation of mass at the interface

@C
@t

¼ D
@C
@z

� �
z¼0

ð5:3Þ

where z is the coordinate normal to the interface. Far from the interface, the fol-
lowing boundary condition applies C = CB at z → ∞.

We obtain the Ward and Tordai (WT) equation below

CðtÞ ¼ 2

ffiffiffiffi
D
p

r
CB

ffiffi
t

p �
Z ffitp

0

Csubðt � sÞd ffiffiffi
s

p
2
64

3
75 ð5:4Þ

The first term of the rhs represents the diffusion to the interface while the second
term on the rhs represents the back diffusion.

This equation contains two unknown functions, Csub and Γ. If the adsorption
process is diffusion-limited, there is a local equilibrium between the surface and the
subsurface and the Langmuir isotherm gives the relation between Γ(t) and Csub.

The short time and long time limits of the WT equation can be easily derived.
For short times, t → 0, the back diffusion term of the WT equation can be

neglected and one can use the Henry isotherm,
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p � kBTC ð5:5Þ

where kBT is the thermal energy and π is the surface pressure, defined as
p ¼ c� c0, where γ0 is the surface tension of the pure liquid and γ is the surface
tension of the surfactant laden interface.

Combining Eqs. 5.4 and 5.5 we find that

cðtÞ � t1=2 ð5:6Þ

where γ(t) is the surface tension of the surfactant solution as a function of time. For
long times, t → ∞, Csub * CB and the Ward and Tordai equations rewrites

c� ceq ¼
C2

CB

p
Dt

� �1=2
ð5:7Þ

5.2.2 Kinetically-Limited Adsorption

When the diffusion flux to the interface is very fast, for example in concentrated
surfactants solutions, the transfer from the subsurface to the interface is the limiting
step to the adsorption process. The adsorption flux writes

dC
dt

¼ kadsCB 1� CðtÞ
C1

� �
� kdes

CðtÞ
C1

� �
ð5:8Þ

where kads is the adsorption constant in m/s and kdes, in mol s−1m−2, is the
desorption constant.

The first term on the rhs represents the adsorption flux which varies linearly with

1� CðtÞ
C1

h i
, representing the amount of free adsorption sites available for the sur-

factants at the interface. The second term is the desorption flux and scales with
CðtÞ=C1 the amount of surfactants already adsorbed.

The adsorption/desorption constants can be expressed as a function of an
adsorption/desorption energy using an Arrhenius-type law,

kads � k0adse
�Eads=kBT ð5:9Þ

with Eads is the adsorption energy. The desorption constant writes

kdes � e�Edes=kBT ð5:10Þ

with Edes, the desorption constant.
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Equation 5.10 shows that the probability for surfactant molecules to adsorb or
desorb, hence the adsorption or desorption fluxes, increase when the adsorption or
desorption energy decreases.

The general solution of Eq. 5.10 writes

Dc tð Þ � DC tð Þ � exp �ktf g ð5:11Þ

with

k ¼ kadsCB þ kdes
C1

ð5:12Þ

At equilibrium, dΓ/dt = 0 and we obtain

C ¼ C1
kadsCB

kdes þ kadsCB

� �
ð5:13Þ

Equation 5.13 shows that the surface excess increases for a decreasing kdes hence
for increasing desorption energy, meaning that more hydrophobic surfactants tend
to adsorb in denser layers at interfaces.

In the case of ionic surfactants, adsorbed surfactants create an electrostatic
barrier, which repels other surfactants from the bulk and slows down their
adsorption [2]. In this case, the adsorption constant depends on the surface excess
and salt concentration, as salt screens this electrostatic repulsion.

5.3 Dynamics of Adsorbed and Spread Polymer Layers
at Liquid Interfaces

5.3.1 Amphiphilic Soluble Copolymers

Similarly to surfactants, which contain a hydrophilic and a hydrophobic part,
making them surface active, there exist several types of amphiphilic polymers,
which contain both hydrophilic and hydrophobic moieties (Fig. 5.2). The hydro-
phobic moieties can either be part of the backbone or grafted as a pendant
group. Block copolymers are composed of alternate hydrophilic and hydrophobic
blocks while for random copolymers the hydrophobic moieties are randomly dis-
tributed on the backbone. In the case of grafted moieties, let us mention three
specific cases: the comb polymers, where the size of the pendant group is of the
order of the length of the backbone and the polysoaps, for which each monomer is
grafted with a pendant group. Lastly for telechelic polymers the hydrophobic
moieties are situated at both chain ends.
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5.3.2 Pancake and Quasi-brush Regimes

In a series of papers [3–6] Daoud described theoretically, surface transitions for
layers of block copolymers, containing N sequences of ZA hydrophobic monomers
and ZB hydrophilic monomers, as a function of surface coverage, Γ.

In the dilute regime, the chains are far from each other, the hydrophilic blocs
form 3D coils swollen in the liquid phase while the hydrophobic blocs form 2D
pancakes at the interface (Fig. 5.2a). As seen in chapter C.9 by J.-U. Sommer the
radius of the 2D pancakes scales as

rAk � aZm2D¼3=4
A ð5:14Þ

with a the length of a monomer and ν2D = 3/4 the Flory exponent for a chain in
good solvent in 2 dimensions.

The thickness of the pancakes is of the order of the monomer size,

rA? � a ð5:15Þ

The size of the 3D hydrophilic coils scales as

rB? � rBk �Nm3D � aZ3=5
B ð5:16Þ

The 2D radius of the chains writes

Rk � rAkN3=4 � aN3=4Z3=4
A ð5:17Þ

For higher surface coverage, as the chains start overlapping—but not the blocks-,
a first 2D semi-dilute regime is expected. For higher surface concentration, the
interface enters a semi-dilute regime of the block sequences, first on the side of the
interface with the larger sequences and later on both sides of the interface. The
overlap concentrations and regimes encountered depend on the ratio α = ZA/ZB,

On the gas side, for increasing surface coverage, we encounter successively a 2D
semi-dilute regime of the hydrophobic pancakes, then a quasi-melt when the pan-
cakes are expulsed into the gas phase and lastly a quasi-brush. The thickness of the
quasi-brush is larger than the size of the hydrophobic sequences, which stretch into

(a) (b)

(c) (d)

Fig. 5.2 Types of amphiphilic polymers, a random copolymer, b block copolymer, c hydropho-
bicaly-modified polymer with grafted anchors, d telechelic polymer
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the gas phase. On the liquid side, when the hydrophilic blocks overlap, the 3D
hydrophilic coils stretch in the direction perpendicular to the interface and form a
quasi-brush in the solution.

5.3.3 Surface Pressure and Surface Compressibility
of the Layers

Below, we present a summary of the derivation from Daoud for the scaling laws of
surface pressure with surface excess π * Γy in the dilute, 2D semi-dilute and brush
regimes.

In the dilute regime, the surface pressure writes like a 2D perfect gas, π = RTΓ.
When the surface coverage increases, the molecules start overlapping at the

interface. The overlap surface excess C�
pol is obtained when the area occupied by the

N(ZA + ZB) monomers of a chain is of the order of R2
k. We obtain

C�
pol �

NðZA þ ZBÞ
R2
k

� a�2Z�1=5
B N�1=2ð1þ aÞ ð5:18Þ

The correlation length, ξ, has to be independent of N and writes

n�Rk
C
C�
pol

 !m

�N0 ð5:19Þ

From Eqs. 5.19 and 5.18, we find that m = −3/2 hence we obtain

n� a�2ð1þ aÞ3=2Z3=10
B C�3=2 ð5:20Þ

Then the surface pressure writes,

p� kBT

n2
�C3 ð5:21Þ

For the other semi-dilutes regimes, the full calculation also leads to y = 3.
In the case of the quasi-brushes, the overlap surface excess is expressed as below

C�
block �

ZB þ ZA
r2Bk

� a�2Z�1=5
B ð1þ aÞ ð5:22Þ

The correlation length scales like

nB � Z1=2
B C�1=2 ð5:23Þ

5 Dynamics of Surfactants and Polymers at Liquid Interfaces 143



and one deduces that the surface pressure scales as

p� kBT

n2B
� kBTaC ð5:24Þ

These scaling laws can be tested experimentally by two different methods. The
first one consists in spreading the polymer layer, compressing it using a Langmuir
trough and measuring the surface pressure as a function of surface coverage using a
Wilhelmy plate. Aghie-Beguin and Daoud proposed a second method using the
pendant drop experiment. A pendant drop of polymer solution is formed at the tip
of the syringe. While the polymer is adsorbing at the interface and the surface
pressure is rising, the area of the drop, A, is oscillated. From the oscillations, one
can obtain the surface elasticity

e ¼ dp
d lnA

¼ �dp
d lnC

ð5:25Þ

Over the course of time, as the polymer layer is adsorbing, the surface pressure
rises; one can therefore obtain ε as a function of π. Moreover from Eq. 5.25, y writes

y ¼ d ln p
d lnC

¼ e
p

ð5:26Þ

Therefore the exponent y corresponds to the slope of the ε(π)curves.
Daoud and Aghié-Beghin investigated experimentally several triblock copoly-

mers, either PEO-PPO-PEO or PPO-PEO-PPO with varying degrees of hydro-
phobicity, PEO being Poly(ethyleneoxide) and PPO Poly(propyleneoxide). For all
the eight copolymers, they found the first 2D semi-dilute regime with y = 3. At
larger surface pressures, the elasticity either decreased or remained constant and
then increased again for the polymers with moderate hydrophobicity, results which
were not satisfactorily described by the model.

Other experimental studies concerning PEO-PPO-PEO copolymers were pub-
lished by the Miller [7, 8] and Rubio [7, 9] groups. These authors reported quali-
tatively similar results—a maximum of the elasticity with the surface pressure. For
larger surface pressures they observe a second maximum of the compression
elasticity. The authors attribute the first decrease of the elasticity to the desorption
of the PEO monomers into the liquid to form a brush and the second decrease to the
desorption of PPO blocks into the water along with the PEO segments, instead of a
desorption into the air phase as described by Daoud.

In the literature, there are other systems which present a maximum of the
compression elasticity. Barentin [10, 11] observed a plateau in the surface pressure
isotherm, hence a maximum of the elasticity, for Langmuir monolayers of
telechelic PEO spread at the air-water interface. The authors also attributed this
behaviour to a mushroom to brush transition. At low surface concentrations, the
chains lie flat at the interface and the surface pressure is the same as the one
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predicted by scaling laws for a 2D semi-dilute regime, π = Γ3. At larger com-
pressions, the PEO monomers desorb from the interface and form a ‘brush’,
anchored by the two hydrophobic moieties. A second maximum of the elasticity can
be observed at larger surface coverage, when the hydrophobic anchors desorb from
the interface (Fig. 5.3). The desorption time writes

sdes � exp
nd
kBT

	 

ð5:27Þ

where n is the number of carbon atoms of the hydrophobic chain end and δ is the
desorption energy of a -CH2- unit.

After desorption of the hydrophobic moiety from the interface it is expulsed
from the brush because of the gradient of chemical potential between the brush and
the solution. The expulsion velocity results from a balance between osmotic
pressure in the brush and viscous friction during the expulsion process. According
to Wittmer [12], it writes

kBTd
�1 � vexp ulsionNf ð5:28Þ

where d is the distance between the polymer chains in the brush and ζ a friction
coefficient. The typical expulsion time scales like

(a)

(b) (c)

2D hydrophobic
pancake

3D coil

2D pancake

quasi-brush

Fig. 5.3 Transitions upon compression for amphiphilic block copolymer adsorbed onto a
liquid/air interface. a Structure of a single chain adsorbed onto the interface, b brush regime on the
liquid side when the hydrophilic blocks are overlapping, c brush regime on the gas side, when the
hydrophobic blocks overlap
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sexp � h
vexp ulsion

�N2 ð5:29Þ

with h * Γ−1/3 the thickness of the layer.
In the case of the telechelic polymers, Barentin et al. find that

τexp * 10−5s << τdes. Therefore the relaxation dynamics of the layer is controlled
by the desorption dynamics. The authors confirmed experimentally that the relax-
ation of the surface pressure after a strong compression depends on the number of
carbon atoms of the hydrophobic moiety.

5.3.4 Adsorption Kinetics

The adsorption kinetics of soluble polymers spontaneously adsorbing from a bulk
solution is usually very slow because of energy barriers of various origin. Below we
present the main mechanisms which slow down the adsorption process of polymers
at interfaces.

5.3.5 Adsorption Barrier Due to Exchange Between
Micelles and Unimers in the Bulk Solution

Theodoly et al. [13] investigated experimentally the adsorption kinetics of three
types of block copolymers where one block is hydrophilic, PAA, Poly (acrylic
acid), and the second block has an increasing hydrophobicity, namely
PAA-PDEGA (PDGEBA stands for poly(diethylene glycol ethyl ether acrylate)
PAA-PBA (PBA stands for Poly (buthyl acrylate)) and PAA-PS, (PS stands for
polystyrene). Using the pendant drop method, they found that for the most
hydrophobic core, PS, the surface activity is very weak. Indeed, the frozen micelles
do not adsorb at the interface and there are no free polymer molecules in the
solution. In the case of PAA-PBA, the adsorption time scales like sads �C�1

B
, which

rules out diffusion limited kinetics. In that case, the adsorption kinetics is controlled
by the unimer extraction from the micelles. Finally for the most hydrophilic
copolymer, PAA-PDEGA, the adsorption is controlled by the diffusion of the
unimers in the solution and scales as sads �C�2

B

5.3.6 Adsorption Barrier Due to Diffusion-Reptation
of Chains Through the Layer

Ligoure and Leibler [14] and Johner and Joanny [15] described theoretically the
kinetics of adsorption of amphiphilic polymers: a telechelic polymer dissolved in a
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solution in ref. 14, and a diblock copolymer in ref 15 and show that there are two
successive regimes. At short times, of the order of one second, the adsorption is
limited by the diffusion of chains to the interface. The typical time scales as

s diff
saturation

� 1
D

1=a2

NACB

� �2

¼ 0:3s ð5:30Þ

where NA ¼ 6:02� 1023 mol�1 is the Avogadro number. Afterwards, the chains
start to overlap at the interface and to stretch strongly in the direction perpendicular
to the interface, forming a brush. The additional chains approaching the interface
have to stretch and diffuse by reptation through the brush already adsorbed
(Fig. 5.4).

The adsorption flux scales as

Jin � � KðCB � CsurfaceÞ ð5:31Þ

with

K � e�NðNAa2CÞa ð5:32Þ

Where α = 5/6 or 2/3 respectively in references 14 and 15. K is a kinetic constant
which represents the energy barrier due to stretching of the chain.

Fig. 5.4 Energy barrier due to the stretching of a chain which is required to adsorb at an interface
where polymer molecules are already adsorbed and form a quasi-brush. On the left, case of a block
copolymer, the situation described in Johner and Joanny’s work. On the right, case of a telechelic
polymer, situation described in Ligoure and Leibler’s article
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The desorption flux simply scales like

Jout � Ce�e ð5:33Þ

with ε the attraction energy in units of kBT between the chains and the interface,
determined by the hydrophobic anchors.

In this second regime the adsorption of the chains is much slower than the first
one and the surface density increases logarithmically with time.

This logarithmic law was verified experimentally by Millet et al. [16, 17] using
polyacrylic acid polymers statistically grafted with hydrophobic anchors. They
found that the adsorption dynamics did not depend on the polymer concentration,
nor the grafting density nor the salt concentration but only on the molecular mass,
as predicted by Ligoure and Leibler.

5.3.7 Case of Polyelectrolytes: Adsorption Barrier Due
to Electrostatics

In the case of charged molecules, the first chains which adsorb at the interface
create a negative potential which slows down the adsorption of additional chains.
Theodoly et al. [18] observed that electrostatic effects also control the adsorption of
random PS/PSS, polystyrene/polysteren sulfonate copolymers at the air-water
interface. The authors found that the surface tension reaches a minimum with the
degree of sulfonation. The surface tension of the PS/PSS with the highest degree of
sulfonation remains equal to that of pure water. Highly charged polymers are not
hydrophobic enough to be surface active. However for sufficiently large polymer
concentrations or salt concentrations, the surface tension decreases. For interme-
diate degrees of sulfonation, the polyelectrolyte is more surface active and the
surface tension is lower than that of pure water. Unexpectedly, for the lowest degree
of sulfonation, the surface tension is close to that of pure water although the
molecules are hydrophobic. In the bulk solution the chains form hydrophobic
globules which are surrounded by a cloud of counter-ions which is repelled by the
interface. The addition of salt enables to screen the electrostatic interaction and to
decrease the surface tension.

To probe the desorption dynamics of the PS/PSS layers, the same authors
washed out the bulk solution either with pure water or with a salt solution.
In these experiments, the adsorbed amount remains constant, however a lower
surface pressure is reached when the salt solution is used for the rinsing process.
This result illustrates that the surface pressure originates from the electrostatic
repulsions between the charged monomers at the interface and it can be screened
by the salt.
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5.4 Dynamics of Adsorbed Chains

Polymer chains are dynamical objects, with very large number of internal degrees
of freedom. Many of the characteristic properties of polymers find their origin in the
specifics of long chain dynamics, from the single coil Brownian motion to the
rubber visco-elasticity. The dynamics of polymer melts and solutions have been
studied for many years. The current understanding of the mechanisms for macro-
molecular motions permits a good microscopic description of dynamics of chains in
solutions or in melts [19].

The case of confined polymer chains and in particular the effect of the presence
of a surface or an interface on the polymer conformation and also on the polymer
dynamics has long attracted scientific attention [20, 21]. Such dynamics are
important not the least because they determine the mechanical properties of the
interfaces.

A large effort has been directed towards the understanding the adsorption
mechanisms and the characterization of structure and conformation of the polymer
chains, i.e. the static average properties, chain conformation, extend and so on. In
many cases, the effects of the confinement are satisfactorily established. The
dynamical properties often turned out to be more difficult to access, especially in
experiments. The limited amount of available experimental data is mostly due to
experimental difficulties, often related to low experimental signal related to the
small numbers of involved monomers, but also to the difficulties to control the
sample and its preparation to the level required for the clear and clean data
interpretation.

Numerical simulations have been extensively used in order to provide support
and validation for theories. Their results also can be compared to experiments. The
comparison is not always straightforward, as the details of the real systems are often
difficult to take into account in the models [22].

In this part, we briefly overview some cases of dynamics of polymer chains next
or at an interface, mostly from an experimentalist’s viewpoint.

5.4.1 Single Chains on a Solid Substrate

The case of adsorption of a single polymer chain onto a (slightly attractive) surface
has long attracted experimental attention. The conformation of adsorbed hains is
predicted to consist of loops trains and tails (e.g. chapter A. 1 by I. Voets),
designing the difference sequences between adsorbed monomers. The (attractive)
interaction between monomer and the substrate is an important parameter, which
can be experimentally varied depending on the specifics of the polymer/
solvent/substrate systems. The conformation of adsorbed chains is often difficult
to check experimentally, (though it can be achieved in some cases through neutron
scattering for example). Computer simulations have been used extensively to

5 Dynamics of Surfactants and Polymers at Liquid Interfaces 149



address this question. Regarding dynamics, a question, connected to the one of the
conformation of the adsorbed chain, is the motion of such chains, and in particular
the centre of mass diffusion. This has been addressed through simulation and
scaling laws been observed and found to depend on exact conditions [23]. In
particular, a clear scaling of the diffusion coefficient with the molecular mass
D * M−1 was identified. It was attributed to Rouse like dynamics, where the
friction is dependent of the number of contacts with the surface, i.e. proportional to
the molecular mass.

It turned out to be difficult to establish the single chain diffusion experimentally
and it might not yet be fully achieved. One of the difficulties was to be able to
control the type of confinement. Researcher from S. Granick’s group attempted to
study diffusion of polymer chains adsorbed on a solids, using fluorescence based
methods [24–27]. Fluorescence correlation spectroscopy was used to measure
diffusion of single particles. Fluorescence recovery after photo bleaching was also
used in some cases. After long efforts, the situation recently seemed to clarify.
Strong adsorption was expectedly found to lead to immobilization, where the chain
centre of mass does not move at all. But weaker adsorption was observed to lead to
an adsorption/desorption mechanism to be the dominant motion. This was only
recently realized in the case of polymers near to solid surface. For an intermediate
regime it seems to be possible to observe chains crawling on the surface. This was
established for polymer/solid cases in a recent study of polystyrene adsorbed onto
quartz surfaces [27, 28]. The authors were able to control the surface roughness of
the solid substrate, through thermal treatment, and they could identify two regimes.
In the case of a smooth surface, the chains were observed to diffuse, with a diffusion
coefficient that was slowing down with increasing molecular mass as D * M−1.
That was identified as the expected Rouse like motion, where the friction is pro-
portional to the number of monomers. For rougher surfaces, the same authors
observed slower diffusion with a stronger slow down with molecular mass,
D*M−3/2 which was attributed to a motion along the chain path length (reputation
like). They also noticed that for largeM, the scaling seems to depart and go back the
M−1 behaviour.

This was hypothesized to be due to the onset of the adsorption/desorption
mechanism, that also had long been predicted, and that has been observed in
various type of systems and described in term of Levy flight. Note that such
adsorption desorption mechanism can lead to an apparent 2D diffusion coefficient,
which is somewhat faster than what would be expected in the case of adsorbed
chains and which is of a different nature.

The case of polyethylene oxide adsorbed onto silica surfaces has also been
largely studied experimentally by the Granick’s group. A similar picture also
emerged for this system but now with three different regimes. For this system
variation of the diffusion with the surface coverage has been reported [26]. The
results showed some strong concentration dependence of D, at relatively low sur-
face coverage an unanticipated speed-up of the diffusivity was observed. This was
rationalized by the formation of a multilayer as observed in simulations. At larger
surface coverage, the diffusivity was observed to drop significantly reaching very
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slow diffusion. That was attributed to interchain interactions and possibly entan-
glement between chains (Fig. 5.5).

The issue of polymer chains in contact with solid surfaces has received a large
attention, particularly connected to the case of mixtures of polymer and solid
particles, i.e. composites, and in particular to better understand their mechanical
properties. The effect of confinement on the polymer chains dynamics and espe-
cially on the fast segmental dynamics is a much debated issue at present, with
different studies apparently leading to conflicting conclusions. Many studies have
been devoted to the possible change of glass transition temperature and changes in
segmental dynamics for chains in the immediate vicinity of a solid substrate or of
the surface. It is expected to have large impact on the mechanical properties of the
systems. This remains as a very active research field [29–32]. Polymer thin films
and possible change of the glass transition temperature, and possible changes of the
segmental dynamics have been much studied.

5.4.2 Polymer Chains at Water Surface

Another case of interest is the one of a fluid substrate, and more particularly the case
of polymer chains deposited at air-water interfaces.

There has been a long interest into the possibility of forming Langmuir polymer
monolayers on top of a water surface. Water insoluble chains can be spread on the
water-air interface using a dilute solution of the polymer in a volatile good solvent
A Langmuir through with moving barriers offers an easy way to vary the surface
concentration and the interfacial tension can be monitored with a Whilhelmy plate.
This has been widely used to prepare polymer Langmuir monolayers. The measured

Fig. 5.5 Schematic of an adsorbed chain onto a solid surface. Diffusion coefficient of single
polystyrene chains on polished and annealed quartz for different molecular masses and
corresponding scaling laws [from Ref. 24] schematic of adsorption desorption hoping for PEO
on silica [from Ref. 27]
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changes of interfacial tension interpreted in terms of surface pressure are in good
agreement with the expected scaling laws for polymers in two dimensions. The
evolution of the pressure with increasing concentration confirms the existence of
dilute, semi-dilute, concentrated regimes. A characteristic coil size R is deduced
from the onset of the semi-dilute regime. In particular the solvent quality is deduced
from the molecular mass dependence of the coil size (R * N3/4 good solvents and
R * N1/2 for theta solvents). Note that the conformation of individual chains in
such quasi two dimensional systems is difficult to assess directly. The overall
homogeneity of the layer over a large area is often questionable and can be checked
by various techniques like for example Brewster Angle Microscopy.

The mechanical properties of such layers have been studied and eventually one
would like to relate them to a microscopic theory of polymer dynamics, as it is done
in 3D polymer solutions and melts. This has not been achieved yet.

Somewhat surprisingly, the diffusion of dilute chains at the air water interface
has not been much studied experimentally. One could expect the diffusion to be
similar to the case of adsorbed chains onto solid substrate with Rouse like dynamics
where D * M−1. Such scaling has indeed been observed for large DNA chains
adsorbed onto fluid phospholipids layers [33]. However, in polymer chains on top
of water one may expect hydrodynamic interaction between monomers of the same
chain through the water phase to have an effect on the overall diffusion. In standard
three dimensional polymer solutions, the hydrodynamic interactions are important
as they lead to the coil diffusion to scale with the coil size as D * R−1.
Hydrodynamic interactions are incorporated in the Zimm model which leads to the
correct scaling, equivalent to the one of a rigid object. The case of dilute chains with
hydrodynamic interaction has also been treated via computer simulation [34]. The
effect of hydrodynamic interaction on the diffusion and the dynamical scaling. One
may expect a weak (logarithmic) dependence of the diffusion coefficient with the
molecular mass.

At larger concentrations, in the semi-dilute regime, the chains start to interact. At
even larger concentration the layer may resemble a two dimensional polymer melt.
Surface light scattering and interfacial rheology have been used to study the
non-dilute regimes, mainly with the objective to characterize the mechanical
properties of the monolayers and try to relate them to the underlying structure, and
to a lesser extend to attempt to characterize the dynamics of the layers.

Surface light scattering techniques provide a way to assess the local segmental
dynamics of such systems, measuring the spectrum of capillary waves and their
modification by the presence of polymer monolayer [35–37]. The analysis is often
put in terms of the dilational modulus. The capillary surface waves are rather
complicated waves, and their propagation implies several types of deformation of
the visco-elastic surface. As the frequency domain accessible through this type of
measurement is in a rather high frequency (kHz) range, the deduced modulus will
correspond to the high frequency limit of the chains dynamics, known as segmental
dynamics. It is sensitive to local fluctuations, where the polymeric nature of the
layer is expected to have limited effect.
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Interfacial rheology has undergone important experimental developments in the
last decade. Various approaches are used to measure the interfacial shear modulus,
and its elastic and viscous parts. Experiments are reaching a state that can allow
systematic studies and a fine understanding of the mechanical properties of the
interface in relation with its microscopic origin. Interfacial rheology has been
applied to polymer monolayers at air-water interface and it has been recently
reviewed in a book by Jan Vermant, which should appear around the same time as
these lecture notes. The interpretation of mechanical behaviours in terms of
molecular motion (2d molecular rheology, as an analogy of the 3d polymer
molecular rheology) remains limited in those systems. The number of polymers
studied remain rather limited. Moreover, some experimental issues regarding the
exact preparation conditions of the layer are important and makes the reproduc-
ibility and comparison of the experiments difficult to reach.

The most systematic study concerns a broad family of acrylate polymers. The
change of chemistry leads to change of the polymer glass transition Tg and also
change the 2d water solvent quality spanning good and theta conditions. Detailed
studies were done using various interfacial rheology techniques for a range of
molecular masses, in an effort to determine the variation of the mechanical prop-
erties. Scaling approach were used to compare exponent derived from expected
scaling laws to experimental results.

Several questions remained not fully answered, concerning the underlying
structure and its relation to the mechanical properties. In particular the question of
whether a coils can overlap in a Langmuir monolayer and to what extent, and how it
does depend on the specific chemistry is not fully established. Does it resemble
more non-interpenetrating coils in a colloid like behaviour or do monolayers allow
some coils overlap and entanglement, forming through small loops in the direction
normal to the interface, as depicted in Fig. 5.6 (right) ?

Note that true two dimensional polymer melts have been studied through
computer simulation [34, 38]. They are different from 3D melts in the fact that
chains can not overlap, and therefore they should not present entanglement. The
dynamics would then be expected to be of Rouse type for all given molecular
masses. Hydrodynamic interaction could become relevant.

Fig. 5.6 Schematic of two dimensional melt realistic view of semi-dilute polymer chains in
semi-dilute regime at air water interface (adapted from 37, 38)
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5.4.3 Dynamics of Polymer Brushes

Non adsorbing polymer chains that are anchored by one end to the surface represent
another type of systems. In the case of large grafting densities, they form what is
known as polymer brushes where the polymer chains are extended. Polymer bru-
shes have been and still are very actively researched because of their practical
relevance. Most recent studies of the studies focused on the responsiveness of such
systems. Alexander and De Gennes proposed some simple scaling laws for the
thickness as a function of the grafting density based on a scaling blob model,
(See also chapter of C.9 by J.-U. Sommer) which was mostly confirmed.

But comparatively little has been done on the experimental part to uncover the
dynamics of such grafted chains. Polystyrene grafted chains have been studied
using evanescent wave dynamic light scattering [39]. The results were in agreement
with the blob picture developed for polymer brushes [40, 41]. The diffusion length
scale was found to be small and fairly similar to the average distance between
grafted points. An observed fast diffusive process was attributed to a cooperative
mode, in analogy with semi-dilute polymer solutions in good solvent. This corre-
sponds to the polymer-solvent motion within one blob. A hydrodynamic blob size
was deduced from the diffusion coefficient using the Stokes-Einstein relation. The
measured values were found to be in good agreement with the average distance
between grafting points. This supports the Alexander-De Gennes blob models
where the blob size is imposed by the distance between grafting points.

The dynamics of the same brush in a theta solvent revealed more complex
behaviour, with a slower, stronger relaxation developing as the solvent quality was
decreased (Figure 5.7).

Another approach to probe dynamics of those thicker systems is to follow the
diffusion of tracers [42, 43]. The tracer particles’ diffusion inside the layer is
expected to relate to some of the dynamic features of the layer. However, the
relation between the diffusion of the tracers and the polymer dynamics is often not
straightforward due to interaction. One still needs to establish the relation between
the motion of the tracer and the dynamics of the polymer chains.

Fig. 5.7 Concentration fluctuation and blobs in polymer brushes schematics of polymer brush and
associated concentration profile, indicating fluctuation dc. Relation between blob size and grafting
density. Hydrodynamic blob size ξ as a function of grafting density (adapted from 40, 41)
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5.5 Conclusion

Understanding the adsorption dynamics of polymer chains at interfaces as well as
the dynamics of the chains at the interface remains a challenge. In particular, the
microscopic understanding of the dynamical properties is still in an early state.
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Chapter 6
Water–Water Interfaces

R. Hans Tromp

Abstract The theory and experimental properties of interfaces between phase
separated aqueous polymer solutions are discussed. These interfaces are charac-
terized by a very low interfacial tension (0.01–1 μN/m), accumulation of solvent
and in some cases a spontaneous curvature and an electric potential (Donnan
potential). The procedure of calculating interfacial tension of both flat and curved
interfaces is presented, and an overview of the methods to measure this interfacial
tension and interface potential is given.

Keywords Water–water interface � Interfacial tension � Interfacial curvature �
Interfacial potential

6.1 General Aspects of Water–Water Interfaces

Water–water interfaces are interfaces between aqueous volumes which differ in
composition. These interfaces are found between volumes co-existing in thermo-
dynamic equilibrium or between unmixed aqueous solutions in direct contact which
would lose free energy by mixing but are kept in a separated meta-stable state by
slow kinetics. In this treatise, only the former case will be considered, i.e. water–
water interfaces between co-existing liquid solutions in thermodynamic equilib-
rium, called phases. These phases arise from phase separation. Later on, the defi-
nition of water–water interfaces will be widened slightly, including curved
interfaces of meta-stable droplets of one phase, surrounded by the other phase.
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Many properties of water–water interfaces are the same as those of other sol-
vent–solvent interfaces, separating phases with other solvents than water as solvent.
However, in one aspect the case of water as a solvent differs from the case of other
solvents. Due to the high solubility of salts and polyelectrolytes in water, water–
water interfaces may carry an electric potential, which is in general absent or very
weak in systems with non-aqueous solvents.

Water–water interfaces exist in any phase separated aqueous system. The sim-
plest, and most common system contains water soluble non-gelling polymers 1 and
2, which separates at sufficiently high concentration of each polymer and suffi-
ciently low temperature into two volumes (phases), each rich in either one of the
polymers 1 and 2. The water content of the phases may or may not be equal. The
process may be further modified or complicated by the presence of salt and by
conformational changes of the polymer chains during the separation process.

An important class is formed by mixtures of polysaccharides and proteins, which
phase separate typically at concentrations larger than 3–5 % of each. The phase
separation of aqueous food proteins and food polysaccharides solutions, often
accompanied by gelation of one or both polymers [9, 18], is an important mech-
anism of structure formation in food matrices [28]. Such systems may offer a
low-calorie alternative to structuring by fat or oil-containing emulsions. Most of the
examples in this discussion of water–water interfaces will be taken from experi-
ments carried out with aqueous mixtures of non-gelling gelatin with dextran or
pullulan. Such mixtures are ideal model systems because they form clear solutions
unless when phase separating, and show (close to) Newtonian rheological behavior
at all relevant concentrations.

Figure 6.1 shows a cartoon of a solvent–solvent interface, meant to show that the
interface only ‘exists’ for large molecules, not for solvent, salt or fractions of

Fig. 6.1 Schematic impression of a water–water interface, formed by the phase separation of two
aqueous solutions containing two different polymers. The interface is permeable for water, salt and
the low molar mass fraction of the polydisperse polymers
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smaller polymers in the case of polydisperse polymers. This permeability the
interface is further supported by comparing the molar mass distribution of a
polydisperse polymer, in this case dextran, in the two coexisting phases (Fig. 6.2).
In the phase poor in dextran, the molar mass of dextran is an order of magnitude
smaller than that in the phase rich in dextran [13]. In fact, the small molar mass
polymers are not as fully involved in the phase separation as the polymers with
larger molar masses.

Another demonstration of the permeability of the interface, in this case for water
and low molar mass salt is given in Fig. 6.3. Here, density matching is observed at
the same molarities of salts which differ by about a factor of three in molar mass.
This indicates that water is redistributed when salt is added, possibly accompanied
by a change in the polymer composition of the phases. Figure 6.3 also highlights
the role of water in the phase diagram. The continuous water matrix cannot be
considered as an inert medium, and as a consequence, the mixtures cannot be
treated as polymer blends.

This chapter will focus on the fundamental aspects of water–water interfaces, as
they are found in non-gelling ternary systems (polymer 1, polymer 2 and water) in
which the phase separation gives rise to a phase A and a phase B, each of which is
rich in one of the two polymers (segregative phase separation). The other important
case, in which one of the phases is rich in each of the two polymers, and the other
rich in water (complex coacervation or aggregative phase separation) [5] will not be
considered.

Fig. 6.2 Mass distribution of dextran in the two coexisting phases of a phase separated mixture of
non-gelling gelatin and dextran
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6.2 Phase Diagrams

The conditions for phase separation are determined by the behavior of the free energy
density of the mixture, as a function of the composition and temperature. For three
components, the simplest case giving rise to water–water or solvent–solvent inter-
faces, this free energy density is given by the mean-field Flory-Huggins equation
[5, 14, 27]:

f
kBT

¼ u1

V1
logu1 þ

u2

V2
logu2 þ

u3

V3
logu3 þ

1
2
v12u1u2

1
V1

þ 1
V2

� �

þ 1
2
v13u1u3

1
V1

þ 1
V3

� �
þ 1
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v23u2u3

1
V2

þ 1
V3

� �
ð6:1Þ

in which the first three terms are the entropy density of mixing, and the last three the
free energy density of interaction of mixing. φi is the volume fraction of component
i, Vi is the molecular volume of component i, and χi,j the interaction energy between
molecules of type i and j, in units of kBT (kB is Boltzmann’s constant, and T the
absolute temperature). χi,j is proportional to T−1 for purely enthalpic interactions,
but may also contain a temperature independent part, due to an entropic contri-
bution, e.g. from molecular ordering in the hydration sphere of the polymer [15].

Only two of the three variables can be independently varied because

u1 þu2 þu3 � 1 ð6:2Þ

Fig. 6.3 Water redistribution as a result of adding salt. For two types of inert, monovalent salt,
significantly differing in molar mass, the density matching due to redistribution of water when
increasing the salt molarity takes place at the same salt molarity (polymer composition 5 %
gelatin/5 %dextran 200 kDa)
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From now on, φ1 and φ2 will be the volume fractions of the two polymers, and
φ3 that of water

Examples of the energy landscape described by (6.1) are shown in Fig. 6.4.
Phase equilibrium exists if no energy or pressure changes occur when thermal

fluctuations cause the exchange between the phases of small quantities of material,
which cause small changes in the volume fractions. Therefore, the exchange
chemical potential μ1 and μ2 of polymers 1 and 2 (in units of kBT/V1, with α2 = V1/
V2 and α3 = V1/V3)

l1 ¼
V1

kBT
@f
@u1u2

¼ logu1 þ 1� a3 log 1� u1 � u2ð Þ � a3

þ 1
2

v12 1þ a2½ � � v13 1þ a3½ � � v23 a2 þ a3½ �ð Þu2 þ
1
2
v13 1þ a3ð Þ 1� 2u1ð Þ

ð6:3Þ

and

l2 ¼
V1

kBT
@f
@u2u1

¼ a2 logu2 þ a2 � a3 log 1� u1 � u2ð Þ � a3

þ 1
2

v12 1þ a2½ � � v13 1þ a3½ � � v23 a2 þ a3½ �ð Þu1 þ
1
2
v23 a2 þ a3ð Þ 1� 2u2ð Þ

ð6:4Þ

Fig. 6.4 Free energy landscapes in the case of coexistence of three phases, each rich in one of the
components 1, 2 and 3 (left) and coexistence of two phases, each rich in one of the components 1
and 2 (right). The solvent concentration decreases from the bottom left corner. The lines are
connecting locations of equal energy. Coexisting compositions, which are in ‘valleys’ in the
energy landscape, are indicated
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as well as the pressure

p ¼ kBT
V1

l1u1 þ l2u2ð Þ � f ð6:5Þ

in the co-existing phases should be equal. Because of Eq. (6.2), only two of the
three μi are needed for fixing the composition of coexisting phases. The compo-
sition of the phases at three phase co-existence can be obtained from finding sets of
three points in the energy landscape f(φ1,φ2) where the gradient vectors have the
same size and direction, and lie in the same plane. This is expressed by the fol-
lowing set of equations:

l1;A u1;A;u2;A

� � ¼ l1;B u1;B;u2;B

� � ¼ l1;C u1;C;u2;C

� �
l2;A u1;A;u2;A

� � ¼ l2;B u1;B;u2;B

� � ¼ l2;C u1;C;u2;C

� �
pA u1;A;u2;A

� � ¼ pB u1;B;u2;B

� � ¼ pC u1;C;u2;C

� � ð6:6Þ

The phases are labeled A, B and C. These equations form a set of six, with six
unknowns, and can therefore be (numerically) solved.

Each of the three phases is richest in one of the three components. Normally,
though, there are only two phases, say A and B, each rich in one of the two
polymers, with the solvent-rich phase missing. The solvent-rich phase is missing
because there is no (strong) energetically unfavorable interaction between the
solvent and the dissolved polymers, so a solvent-rich phase is not stable. In this case
there are only three equations, with six unknowns. The extra information is pro-
vided by putting in values for any three of these four quantities: the total volume
and the total number of molecules of type 1, 2 or 3. If the latter three are taken, the
total volume is

V ¼ V1n1 þV2n2 þV3n3 ð6:7Þ

and additional relations between the volume fractions can be written down (with VA

and VB the volumes of phases A and B, respectively, and ni,A and ni,B the number of
molecules of type i in these phases):

u1;A ¼ V1n1;A
VA

;u1;B ¼ V1 n1 � n1;A
� �
V � VA

u2;A ¼ V2n2;A
VA

;u2;B ¼ V2 n2 � n2;A
� �
V � VA

ð6:8Þ

This reduces the number of unknowns to three, i.e. n1,A, n2,A and VA.
In most practical cases, phase separation induced by changing the water content

is more relevant than temperature induced phase separation. Therefore, composi-
tional phase diagrams of mixing will be treated in detail. Representative examples
of phase diagrams are shown in Figs. 6.5 and 6.6. For equal degrees of
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polymerization of the two polymers (N1 = N2 = 1000), the diagram is precisely
symmetric relative to the φ1 = φ2 line, whereas a difference in degrees of poly-
merization (N1 = 1000, N2 = 4000, so α2 = 0.25) causes coexistence between phases
of unequal polymer concentrations. The asymmetry corresponds to a stronger
separation of the large polymer than for the small polymer. The asymmetry due to
difference in water affinity is more subtle. The binodals overlap in the symmetric
case, but coexisting total compositions φ1 + φ2 are not equal, in contrast with the
case of identical water affinities. The inequality corresponds to a stronger separation
for the polymer with the most unfavorable interaction with the solvent. The

Fig. 6.5 Calculated phase diagrams of mixing, for equal (α2 = 1) and unequal (α2 = 0.25) degrees
of polymerization with equal water affinities (χ13 = χ23 = 0). χ12 = 9, N1 = 1000 and N3 = 1. Tie
lines and the critical points (full dots) are indicated

Fig. 6.6 Calculated phase diagram of mixing for equal (χ13 = 0) and unequal (χ13 = 0.0005) water
affinities and equal degrees of polymerization (N1 = N2 = 1000, so α2 = 1). χ12 = 9, χ23 = 0, N3 = 1.
Tie lines and the critical points (full dots) are indicated
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asymmetry also corresponds to a difference in the water content of the phases as is
shown in Fig. 6.7. In general, for practically relevant values of α1, α2, α3, χ12 and
difference in water affinity (χ13 ≠ χ23), the effect of ‘water separation’ is much
smaller if due to a difference in water affinity, than if due to a difference in degree of
polymerization. The deviation of the water content in the phases from the overall
water content is not symmetric, corresponding to unequal phase volumes, even in
the case of equal volume fractions of the two polymers.

The critical point of mixing, here defined as the composition where the length of
the tie line approaches zero, moves away from the φ1 = φ2 line in the case of
asymmetries in the polymer size or water affinity. For unequal degrees of poly-
merization the critical point shifts to higher or lower water contents, dependent on
whether the average molar mass decreases or increases.

The experimental phase diagram of mixing (Fig. 6.8) of gelatin and dextran [12]
with molar weights of 170 and 282 kDa, respectively shows a symmetrically
located critical point in spite of the apparently large difference between the molar
weights of the polymers. However, the difference in degree of polymerization is
much smaller, considering the difference in monomer mass. With monomer molar
masses 100 and 160 g/mol of gelatin and dextran, respectively, the value of α is
estimated to be about 1. This estimate is made less accurate by the polydispersity of
both polymers (see Fig. 6.2). The location of the critical point, close to 3.5 %/3.5 %
suggest a value for χ12 of 2/(1 − φ) ≅ 30 [27].

An interesting issue is the phase volume ratio as a function of the overall water
content. This issue is encountered when diluting a system of coexisting phases.
Figure 6.9 shows a representative example of what is observed when diluting a
phase separated mixture. Depending on whether the starting concentrated system
has a phase volume ratio above or below a certain value, as determined by the

Fig. 6.7 Calculated water content of coexisting phase phases A and B versus the overall water
fraction φ3 in the case of different degrees of polymerization and equal water affinity (χ13 = χ23 = 0,
left), and in the case of equal degrees of polymerization (α2 = 1, right). χ12 = 9, N3 = 1, N1 = 1000.
Note the difference in scale on the horizontal axis
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asymmetry in size and water affinity, the phase volume ratio diverges up or down
with progressive dilution. This is also seen in the calculated phase volume ratios
(Fig. 6.10). On dilution towards the critical water content, the phase volume frac-
tion of phase A (rich in polymer 2) tends towards 1 in the case of a larger water
affinity of polymer 2, or towards zero in the case of a larger polymer size in phase
A. In the former case water, which is added prefers the phase in which there is the
least of the polymer with an unfavorable interaction with water, which is phase A.
In the latter case additional water is taken up by the phase which contains the most
of the larger polymer, which experiences the strongest driving force for dilution.

6.3 The Interface

6.3.1 The Blob Model

The free energy of mixing Eq. (6.1) predicts the composition of coexisting phases
(within the mean field approximation). At or near the interface the calculated phase
diagram of mixing cannot be fully correct, because the demixing polymers are
‘forced’ to have contact. This ‘forced contact’ leads to an interfacial energy, often
called an interfacial tension when expressed per unit area. An infinitely sharp
transition in composition would amount to an infinitely low local entropy, and is
therefore thermodynamically unacceptable. Therefore, the systems adapts by
forming a compositional gradient (see also Chap. 4 by G. H. Findenegg). This
gradient, however, contains energy which has to be included in the free energy of

Fig. 6.8 Experimental phase
diagram of mixtures of gelatin
(approximately 170 kDa) and
dextran (app. 282 kDa). The
estimated location of the
critical point of mixing is
indicated
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mixing close to the interface. In order to apply Eq. (6.1) in the border region
between the coexisting phases, it is extended by two gradient terms [6, 8].

Before we use the expression for the free energy of mixing at the interface, we
first introduce a simplification provided by the so called ‘blob’ model [16], which is
valid in the semi-dilute concentration regime of overlapping chains, and convenient
as it disposes of the solvent as a separate component (for details of the blob model
see also Chap. 10 by J.-U. Sommer). It is assumed that the solvent is ‘good’, i.e. the
chain is fully hydrated and repels therefore itself. In other words, the solvent causes
the chain to swell. In that case, it may be realized that for the polymer chains the
solvent is only over short distance different from simply ‘space’. Over these short
distances, usually called the correlation length, ξ, the polymer chains takes an

Fig. 6.9 Phase volume fraction of the gelatin-rich phase as a function of overall water content.
Top series of phase separated gelatin (non-gelling)/dextran (180 kDa) systems; bottom the phase
volume fraction on dilution for different starting ratios
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extended configuration which it would not have, if there was no solvent. Beyond
the distance ξ, the correlation between the chain elements is the same as in a melt of
chain elements of size ξ and, therefore, the configuration of the blobs is that of a
random walk. In Fig. 6.11 the blob model is further illustrated. The renormalization
of the polymer chain by dividing it in elements of size ξ makes it possible to write
the free energy of mixing without an explicit role of the solvent [6]:

Fig. 6.10 Phase volume fraction VA/V as a function of water content for different water affinities
(left), and different degrees of polymerization (right) of the two polymers. χ12 = 9; χ23 = 0; N3 = 1;
N1 = 1000

Fig. 6.11 Illustration of the blob model. The black and gray squares of size ξ in the right-hand
panel represent blobs and form random walks in three dimensions. Inside a blob, a subsection of
the chain (a blob) forms a self-avoiding structure due to the energetically favorable interaction with
the solvent

6 Water–Water Interfaces 169



Fblob

VkBT
¼ 1

n cð Þ3
u

Nb cð Þ loguþ 1� u
Nb cð Þ log 1� uð Þþ u cð Þu 1� uð ÞþK

� �
ð6:9Þ

where, for simplicity it is assumed that the two polymers have the same degree of
polymerization. K = 0.024 [6, 7] and accounts for the free energy of mixing of the
monomers inside a blob with solvent. Because the solvent is good, K is set by the
properties of a self-avoiding walk and is therefore a constant in the concentration.
The solvent only appears via the concentration dependence of ξ. It can be shown
that [6]:

n cð Þ ¼ 0:43Rg
c
c�
� 	 m

1�3m ð6:10Þ

and the number of blobs per chain

Nb cð Þ ¼ N

n3c
ð6:11Þ

and
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where c is the polymer concentration, N the number of monomer per chain (see
below), Rg the radius of gyration at concentration below the overlap concentration
c*, ccrit the critical concentration of mixing, Nb,crit the number of blobs per chain at
ccrit, ucrit the interaction energy at ccrit and χ ≅ 0.22. For a good solvent, the polymer
radius of gyration

Rg ffi bNm ð6:13Þ

in which b is the Kuhn length and ν = 3/5. c* is the overlap concentration, above
which hydrated coils start to overlap. It is calculated by setting the overall monomer
concentration equal to the internal monomer concentration of the chain:

c� � 3
4p

N
R3
g

ð6:14Þ

The specific effects of polymer-solvent interactions are in the Rg, which together
with c* and the monomer concentration c determines the blob size. Equation 6.12
provides experimental access to the theory through N, Rg and ccrit, which can be
measured.

Equation 6.9 can be used to calculate phase diagrams of mixing, just as Eq. (6.1).
For asymmetric cases (unequal blob sizes of polymers 1 and 2 due to different
degrees of polymerization or unequal Kuhn lengths) it is convenient to introduce an
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effective blob size (taking into account that the relative contribution of small blobs
should be higher because they have per monomer more contact points with the
other blobs and therefore a higher interaction energy per monomer)

1
neff

¼ 1
2

1
n1

þ 1
n2

� �
ð6:15Þ

So Eq. (6.9) becomes

F
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n3eff
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where φ is the volume fraction of blobs of polymer 1. Figure 6.12 shows some
examples of the phase diagram when the interaction strength ω is varied. The
interaction strength ω is a renormalized form of u, which is only dependent on the
distance to the critical point ccrit and the asymmetry in blob size, not on the degree
of polymerization:

x ¼ 2u

n3eff

1

Nb;An
3
A

þ 1

Nb;Bn
3
B

 !�1

¼ 1þ ffiffiffi
a

pð Þ2
1þ að Þ

c
ccrit

� ��v�1
1�3m

ð6:17Þ

where α = NA/NB = Nb,AξA
3/Nb,BξB

3, the ratio of the degrees of polymerization.
In Fig. 6.12 it is clearly seen, just as in Fig. 6.5, that the difference in size of

phase separated polymers results in coexisting concentrations which are more
extreme for the larger polymer than for the smaller polymer.

Fig. 6.12 The
temperature-composition
phase diagram calculated
using Eq. (6.16) for some
values of the ratio of degrees
of polymerization. ω
represents the interaction
strength between the
polymers and changes with
temperature via ccrit
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6.3.2 The Flat Interface

In order to calculate the interface profile by using Eq. (6.9), it has to be extended
with gradient energies. Because the system contains solvent, there is, apart from the
composition gradient ~ruðzÞ, which also exists in coexisting blends, also a con-
centration gradient ~rcðzÞ, where z is the distance from the interface. The local free
energy density for equal blob sizes in the two phases becomes [6]

f uðzÞ; cðzÞ½ �
kBT

¼ u

Nbn
3 loguþ 1� u

Nbn
3 log 1� uð Þþ u

n3
u 1� uð Þþ K

n3

þ
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��� ���2

24nu 1� uð Þ þ
~rc
��� ���2
24nc2

ð6:18Þ

where the z-dependence of φ, c and Nb has been omitted by for the sake of clarity.
In the case of unequal blob sizes, an additional term representing the gradient
energy of the cross-correlation of composition and concentration would have to be
included. In order to calculate the interface tension it is convenient to use the grand
potential Ω(T, μφ, μc) = F − Vμφφ − Vμcc = Ωex − pV as the representation for the
free energy, because the interface is able to exchange both thermal energy as well as
mass with the bulk (defined here as the part of the volume without gradients). The
interfacial tension is the excess grand potential per unit area due to the presence of a
gradient, integrated over all distances to the interface:
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with the composition variable

b zð Þ ¼ 2u zð Þ � 1 ð6:20Þ

and the concentration variable

e zð Þ � c zð Þ � �c
�u�c

ð6:21Þ

and �p the pressure.
Symbols with a bar are bulk values, far from the interface. μβ is the coexistence

value of exchange chemical potential of the polymers, which is zero for equal
degrees of polymerization and equal random chain statistics for both polymers, με is
the value of the chemical potential of the solvent when the phases are coexisting. In
order to get the equilibrium interfacial tension, Ωex has to be minimized with
respect to the profiles β(z) and ε(z), using the Euler-Lagrange equation. Because the
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two polymers have an unfavorable interaction energy, the concentration of polymer
will we suppressed at the interface, in favor of an increased solvent concentration.
In other words, the interface is expected to be enriched in solvent. The minimization
of Eq. (6.19) can be done relatively easily, by introducing the assumption that this
enrichment of solvent at the interface is small:

�ue 	 1j j ð6:22Þ

The resulting expression for the interfacial tension

r ¼ kBT
�n2

�u
6

� �1=2

1� D1 � �uD2ð Þ ð6:23Þ

contains three terms. The first represents the interfacial tension for the limiting case
of infinite degree of polymerization. The only reason the interfacial tension is not
infinite in that case (and the interfacial profile not infinitely sharp) is the fact that the
value of �u is finite, which allows some interpenetration of the phases. The second
term Δ1 represents the fact that the degree of polymerization is finite, which increases
the miscibility and lowers the interfacial energy. The third term, Δ2 represents the
effect of accumulation of solvent at the interface, which suppresses the interpene-
tration of the two polymers, and therefore lowers the interfacial tension.

The details of the procedure can be found in Broseta et al. [6] and Tromp and
Blokhuis [30]. Some results will be given here. Figure 6.13 shows the interfacial

Fig. 6.13 Interfacial profile of the total polymer concentration for three degrees of incompatibility
(expressed in terms of the critical concentration of mixing). Rg = 18 nm
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profiles for some experimentally relevant cases of incompatibility. The incompat-
ibility is set by ccrit (the smaller ccrit, the stronger the incompatibility), for which
values between 0.5 and 3.5 % are experimentally relevant. It is seen that the
reduction at the interface of the total polymer concentrations is 25 % for the
strongest incompatibility. The width of the interface is calculated to be about 4 blob
sizes, which is typically a few nm. Figure 6.14 shows the interfacial tension as a
function of ccrit. The typical values calculated are in the range 1–20 μNm−1, which
is in agreement with the results of experiments, as shown below. In particular, close
to the critical point, the effect of accumulation of solvent at the interface on the
interfacial tension is significant, as seen in Fig. 6.15.

6.3.3 The Curved Interface

Figure 6.16 shows a representative example of the microscopic structure of a phase
separated solution (10 % gelatin and 10 % dextran) in a meta-stable stage, devel-
oping into a macroscopically separated system by droplet coalescence. Often, this
meta-stable droplet stage is quite stable, during many hours, or even days. In a
single second, water molecules are able to diffuse over distances of the order of 100
μm, i.e. many times the characteristic size of the droplets during the meta-stable life
time of the structure. This diffusion of water is not hindered by the presence of the

Fig. 6.14 Interfacial tension calculated using Eq. (6.23) for three different degrees of
incompatibility. Rg = 18 nm
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interfaces, which are permeable for small molecules. Therefore, on the time scale of
the coarsening of the structure, the solvent distribution can be considered in
equilibrium with the state of curved interfaces. The curvature of the interfaces
suggests a pressure difference between in the inside and outside of the droplets
(with a droplet radius of 10 μm and an interfacial tension of 1 μNm−1 typically of
the order of 0.2 Pa). This pressure difference corresponds to a water distribution
across the curved interface which is slightly different from that across a flat inter-
face. As a consequence, it is expected that also the polymer composition of the

Fig. 6.15 Effect of solvent
accumulation at the interface
on the interfacial tension,
calculated using Eq. (6.23), as
a function of concentration,
for three experimentally
relevant values of the
incompatibility

Fig. 6.16 Microscope image
of a water-in-water emulsion,
obtained after stirring a phase
separated mixture of aqueous
non-gelling fish gelatin and
dextran solution. The
gelatin-rich phase is the
droplet phase

6 Water–Water Interfaces 175



droplets and the continuous phase are slightly different from that of phases with a
flat separating interface, and, as a consequence, the interfacial tension is slightly
different as well. It was considered interesting to investigate if the curvature of the
interface affects stability of the droplets via an effect of the curvature on the
interfacial tension. This might be the case in particular for different degrees of
polymerization or different blob sizes at the two sides of the interface, because, the
gradient energy is determined by the distance scale in the structure of the liquid, i.e.
the blob size (see Eq. (6.19)).

The (meta)stability of the system in Fig. 6.16 suggests a value for the chemical
potential which is higher than μcoex, the value for flat interfaces in actual thermo-
dynamic equilibrium. Therefore, the interfacial profile has to be calculated, using
Eq. (6.16), for a value of μ larger than μcoex. For simplicity, the asymmetry is
assumed to be due to a difference in the degree of polymerization (and not to a
difference in blob size) and the solvent gradient is ignored, so the concentration
dependence of ξ and u vanishes and the free energy density can be expressed as
(with Eqs. (6.15)–(6.17)) and returning to φ as the composition variable:

f uð Þ ¼ ukBT

n3
2u

1þ að Þx loguþ 2a 1� uð Þ
1þ að Þx log 1� uð Þþu� u2

� �
ð6:24Þ

The excess grand potential of the curved interface, assumed to be a droplet, is

Xex u½ � ¼
Z
V

d~r f uð Þ � luþm uð Þ ~ru
��� ���2� �

ð6:25Þ

with the gradient energy

m uð Þ ¼ kBTu
12n 1� uð Þ ð6:26Þ

The origin of the spherical coordinates is at the center of the droplet. In order to
minimize Ωex with respect to the composition profile φ(r) the compositions far from
the interface have to be known. These are obtained by calculating the phase dia-
gram for two phases according to Eq. (6.6), but now for μ > μcoex. The calculation of
the phase diagram results in the compositions far from the interface inside φin and
outside φout the droplet (it is assumed that φin > φout). With

f uinð Þ � f uoutð Þ � Vl uin � uoutð Þ ¼ �pin þ pout ¼ �Dp ð6:27Þ

the pressure difference is obtained, which corresponds to the chosen value of
μ > μcoex. Using φin and outside φout, the composition profile φ(r) minimizing Ωex

and the corresponding minimum value of Ωex are obtained from Eq. (6.25) by
applying the Euler-Lagrange equation. The curvature R−1 corresponding to the
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chosen non-coexistence value of μ is obtained from the interfacial profile assuming
that the radial distance R where interface is located is such that

4p
Z1
0

u rð Þ � uout½ �r2dr ¼ 4p
3
R3 uin � uoutð Þ ð6:28Þ

or, in other words, deviations of φ from φin inside and φout outside the interface
cancel.

With R and Δp known, the interfacial tension can be obtained from the excess
grand potential per unit area of a droplet:

Xex � Xþ poutV
4pR2 ¼ �DpR

3
þ r Rð Þ ð6:29Þ

The details of these calculations can be found in [30].
A much less cumbersome way to calculate the effect of asymmetry in the

polymer properties on the interfacial tension is based on the approximation that the
interfacial tension for droplets with small curvatures R−1 (R > > interfacial width,
which is certainly the case for the system shown in Fig. 6.16) can be written as an
expansion in the curvature:

r Rð Þ ¼ r1 � 4kr1
Rs

1
R
þ 2kþ kG

R2 þ � � � ð6:30Þ

where σ∞ is the interfacial tension of a flat interface, Rs the spontaneous curvature,
k the bending rigidity and kG the Gaussian rigidity of the interface. The curvature
R−1 is taken positive for an interfacial curvature centered on the droplet.
Expressions have been derived which give the spontaneous curvature and the
interfacial rigidities using the interfacial profile of the flat interface [30].

The essential result of the analysis of the interfacial tension as a function cur-
vature is shown in Fig. 6.17. Here, the excess free energy per unit volume of a
droplet is plotted against the curvature of the droplet. The reference point of the
excess is the flat interface of the same area as that of the droplet. This excess free
energy is plotted for three cases: equal degrees of polymerization (α = 1), and larger
polymer inside or outside the droplet. In all cases, the energy of a droplet increases
when growing from very small sizes because the interfacial area increases. Beyond
a certain preferential size, further growth leads to a decreasing energy, because the
decrease in internal pressure outweighs the increase in interface area. The prefer-
ential size, as well as the height of the energy barrier varies with the asymmetry of
the polymer sizes. A droplet containing larger polymers than the continuous phase
has to cross a higher barrier at a smaller size and will therefore be more stable (or
grow more slowly) than a droplet containing smaller polymers than the continuous
phase.
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It turns out that for experimentally relevant systems the droplet sizes for which
the curvature affects the interfacial tension are fairly small, in the order of tens of
nm. Therefore, in the system shown in Fig. 6.16 the curvature is probably irrele-
vant. However, the size distribution, which develops in a stage of much smaller
droplets than can be observed in a light microscope, may be influenced by a
curvature dependence of the interfacial tension [19]. Also the profile of the spinodal
ring [8], as observed in small angle light scattering and reflecting very early stage
phase separation could be affected.

6.4 Measuring the Interfacial Tension

The interfacial tension of water–water interfaces is in the order of 0.01–10 μN/m.
Therefore, the classical way to measure interfacial tension by mechanically
deforming the interface on a macroscopic length scale and measuring the applied
force (or vice versa) is not suitable for water–water interfaces, because the intended
deformation is too easily obscured by convective flows, which also deform the
interface. Another issue would be the extremely small forces to be measured.
Instead, the best way to measuring these very low interfacial tensions is under static
conditions or from observation of microscopic deformation.

Under static conditions the interfacial tension can be obtained from the shape of
the interface near a wall when one of the phases is wetting this wall [1]. An example

Fig. 6.17 Excess interfacial energy of a collection of monodisperse phase droplets relative to a flat
interface of the same size, as a function of droplet curvature, with asymmetric (α = 8) and
symmetric interfaces (α = 1). The total volume of the droplets is fixed. ucrit = 0.0061, ξcrit = 2.6 nm,
c/ccrit = 1.8. Dashed line droplets rich in large polymers in a continuous phase rich in small
polymer; Dash-dotted line vice versa
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of such a situation is shown in Fig. 6.18. The characteristic decay length of the
height of the interface when moving away from the wall is the capillary length,
which is a function of the interfacial tension and the difference between the den-
sities of the phases (Δρ):

Lcap ¼
ffiffiffiffiffiffiffiffiffi
2r
gDq

s
ð6:31Þ

with g the acceleration of gravity. Δρ is usually quite small (0.1–1 kg m−3) and is
obtained by collecting the two phases and the measuring the density of each by e.g.
a density meter with a oscillating U-tube sensor. Lcap is obtained from fitting the
shape of the interface to the appropriate minimal surface expression [4]. For the
case shown in Fig. 6.18 Lcap was found to be 80 μm. With Δρ 0.25 kg m−3, this
gives an interfacial tension of about 0.01 μNm−1.

An often used method for measuring low interfacial tensions is the spinning drop
method, which uses the deformation from a spherical to an extended shape of a
droplet of one phase surrounded by the other phase inside a cylindrical container,
while the container is rotating around its axis (see Fig. 6.19). The deformation of
the enclosed droplet at a certain spinning rate ω is determined by the interfacial
tension and the density difference. At sufficiently large elongation, the interfacial
tension is given by [22, 33].

r ¼ Dqx2R3

4
ð6:32Þ

where R is the radius of the cap of the extended droplet. Results for a water–water
phase separated systems can be found in e.g. Ryden and Albertsson [25] and
Scholten et al. [26].

Fig. 6.18 Confocal microscopy image of the interface between phase separated non-gelling
gelatin and dextran solutions (3.6 % gelatin/2.4 % dextran) in a flat capillary. The gelatin solution
is fully wetting the glass wall
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Another common method to measure the interfacial tension of water–water
interfaces is to follow the relaxation of shear induced microscopic structure, after
the shearing is stopped. Usually, the structure consists of droplets extended to
ellipsoids, cylinders or even band-like or thread-like structures. In the most com-
mon case, the retraction or relaxation of an ensemble of droplets is measured, either
by light scattering [2], or by direct microscopic observation [3, 10, 17]. An example
is given in Fig. 6.20.

The deformation is defined as the Taylor ratio of the 2-dimensional gray value
correlation at level 0.5:

D ¼ Aflow � Avort

Aflow þAvort
ð6:33Þ

where Aflow and Avort are the sizes of the contour at level 0.5 of the correlation
pattern along central horizontal and vertical lines, respectively. After stopping the
shear, the deformation decays exponentially, assuming that no coalescence takes
place, which is usually justified at early times:

D ¼ D0e
�t=s ð6:34Þ

For a droplet of radius R, and a viscosity inside the droplet, ηin, and outside, ηout,
τ is given by [23]

Fig. 6.19 Schematic
representation of the setup of
the spinning drop technique
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s ¼ goutR
r

19kþ 16ð Þ 2kþ 3ð Þ
40 kþ 1ð Þ ð6:35Þ

where λ = ηin/ηout. Assuming a droplet size of 5 μm, and with the viscosities of the
pullulan phase, 3 Pa s, and of the gelatin phase, 0.03 Pa s, the example in Fig. 6.20
results in σ = 23 μNm−1.

A faster and easier method is to interpret the 2-dimensional light scattering
pattern of the sheared droplet suspension, which should be in a thin layer, to avoid
multiple scattering. The setup is in that case a glass plate and a rotating glass disk,
with a laser beam crossing the sample layer in perpendicular direction. The scat-
tering pattern is projected onto a screen and recorded. The disadvantage of this
method is the fact that the droplet size is unknown. Also other shear induced
structures, such as shear bands are not easily recognized in the scattering pattern.
The relaxation of such patterns after shearing may therefore be erroneously inter-
preted in terms of droplet retraction. This method may therefore only be used for

Fig. 6.20 Stills from a microscope movie of the relaxation in the flow/vorticity plane of the
droplet shape after shearing (6 s−1, in horizontal direction), and the quantitative average
deformation. The full line is a fit of Eq. (6.34) to the data. The result is τ = 0.47 s. The system
contains 5 % non-gelling gelatin and 10 % pullulan. The insets are the gray value correlation
charts
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comparing qualitatively differences in the interfacial tension between different
samples of the same kind.

Other shear-induced structures than extended and retracting droplets can be used
to measure interfacial tension. When exposed to sufficient shear, phase separated
systems with sufficient difference in viscosity between the phases develop cylin-
drical shear bands, extended in the flow direction, [31], the nature of which is not
yet fully understood. After stopping the shear, these bands become unstable and
develop Rayleigh instabilities. The rate by which they develop is set by the radius,
inner and outer viscosities and the interfacial tension. The shape of the band is, at
early times after stopping the shear, when the amplitude of the growing instability is
still much smaller than the initial band width, given by

R x; tð Þ ¼ R 0ð ÞþA tð Þ cos xkþuð Þ ð6:36Þ

where k = 2π/l, with l the wave length of the instability, and φ a phase factor. A(t) is
the amplitude of the instability, whose time dependence is exponential:

A tð Þ ¼ A 0ð Þeqt ð6:37Þ

The growth rate q is obtained from a microscopic observation of the time
dependence of the band shape (see Fig. 6.21) and used in an expression which
relates it to the interfacial tension [29]:

r ¼ 2qgoutR 0ð Þ
X kð Þ ð6:38Þ

The function Ω(λ) is tabulated in Tomotika [29]. In the example shown the result
is 0.9 μNm−1.

Fig. 6.21 Stills from a microscope movie of a shear-induced cylindrical band after stopping the
shear (left), and the development of the amplitude of the instability in units of the initial band width
(right). The system is a mixture of 5 % non-gelling gelatin (200 kDa) and 5 % dextran 282 kDa
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6.5 The Interfacial Potential

A special feature of water–water interfaces is the possibility of electric potentials
across the interface (Donnan potentials [11]). Because of the high dielectric con-
stant of water, charges can be separated relative easily by thermal energies at room
temperature. When one of the phase separating polymers, say α, is a polyelectrolyte,
counter ions on one side of the interface, which is permeable for small solutes, can
spread across the interface to the other side. The spreading is suppressed by the
buildup of an electric potential. The result is a balance between small ion entropy
and electric potential

wD ¼ �NavkBT
F

log
cþa
cþb

¼ NavkBT
F

log
c�a
c�b

ð6:39Þ

where c
i are concentrations of small ions, and the index β refers to the phase
containing the neutral polymer. F is Faraday’s constant and Nav is Avogadro’s
number. Far from the interface charge neutrality is maintained:

cþa þ zc ¼ c�a ð6:40Þ

and

cþb ¼ c�b ¼ cs ð6:41Þ

in which c is the concentration of polyelectrolyte, cs the low molar mass salt
concentration, and z is the number of positive charges on a polymer chain. For total
absence of polyelectrolyte in the phase β, the interfacial or Donnan potential can be
expressed by

wD ¼ NavkBT
F

arcsinh
zc
2cs

� NavkBT
F

zc
2cs

ð6:42Þ

It can be shown, that for the case in which there is also polyelectrolyte in the
phase rich in non-polyelectrolyte, the Donnan potential is expressed by

wD � NavkBT
F

zDc
2cs

ð6:43Þ

where Δc is the difference in polyelectrolyte concentration between the phases. It
can be seen that by adding salt, the Donann potential decreases and becomes zero
when the salt concentration is much higher than the concentration of counterions of
the polyelectrolyte.
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6.6 Measuring the Interfacial Potential

The electric or Donnan potential between the phases can be measured using elec-
trochemical reference electrodes, such as Ag/AgCl electrodes [20, 21, 24] (For the
measurement of interfacial potentials see also Chap. 2 by C.D. Fenández-Solis et al.).
In this way the chemical potential difference of chloride ions between the phases is
measured, which is a measure for the electric potential difference. This is described in
detail in Vis et al. [32]. Care should be taken to avoid artefacts from streaming
potentials.

Figure 6.22 shows some representative results. With increasing separation of
gelatin the absolute value of the interface potential increases. This dependence is
proportional as predicted by Eq. (6.43). The typical number of charges per gelatin
chain, which can be calculated from the slopes in Fig. 6.22 is plotted in Fig. 6.23
and turned out to be in range of 0–5. This range is expected for a polyelectrolyte
chain which consists largely of non-ionizable amino acids. It turns out that the sign
of the electrical potential changes when the pH crosses the isoelectric pH of gelatin,
which is about 7–8. This is a strong indication that the potential measured is indeed
an interfacial potential.

The interfacial potential discussed here differs from the regular membrane
potential in the sense that this potential arises spontaneously across an interface
without quenched degrees of freedom or actively maintained gradients, such as in a
living cell.

It remains to be studied what is the effect of an electric interfacial potential on
the interfacial profile and the interfacial tension. In may be expected that the
interfacial tensions decreases due the separated charges on either side, because the

Fig. 6.22 Measurements of the interfacial electric potential at low (but ubiquitous) salt (∼5
−10 mM) as a function of the difference in the mass fraction of gelatin in the two phases for some
pH values. Below the isoelectric point, a positive potential is observed, whereas above the
isoelectric point, a negative potential is found. The lines are linear fits through the origin. Adapted
with permission from Vis et al. [32]. Copyright 2014 American Chemical Society
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interfacial width may increase. However, the question is how to compare charged
and non-charged interfaces in such a way that the comparison is meaningful, i.e. at
the same distance from the critical point. For this purpose, the phase diagram
separately including positive and negative ions has to be calculated.

Another effect of charges on the interface may be the mutual repulsion of dro-
plets in water–water emulsions. This would be an interesting aspect in the study of
the stability of water–water emulsions.
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Part III
Theoretical Aspects



Chapter 7
Basics of Statistical Physics

W.J. Briels and J.K.G. Dhont

Abstract Statistical physics is the theory that relates macroscopic properties of
materials to their microscopic constitution. Obviously a detailed study of systems
containing on the order of 1023 particles is out of the question, actually even
useless, so we must resort to statistical methods. There are many ways to introduce
statistical mechanics, of which we will present two. Besides this, there are several
different ‘models’, called ensembles, to arrive at a relation between microscopic and
macroscopic properties of materials. Although these ensembles in principle are
different, for sufficiently large systems they provide identical results. While
developing statistical physics we will automatically construct thermodynamics, a
macroscopic theory of invaluable help in describing for example phase transitions.
In principle no knowledge of thermodynamics is assumed in order to understand the
present notes, although obviously it will be of great help to have some acquaintance
with it.

7.1 Introduction

Dear reader, first read carefully the Abstract.
Now you know that we are going to introduce several ways to calculate average

properties of macroscopic systems. The various ways to perform averages depend
on the way the system is prepared, i.e. on the way the system interacts with its
surroundings. Once we have chosen a particular way to perform the calculations,
we are said to use a particular ensemble.
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Calculating averages for macroscopic variables implies that these variables
fluctuate around their averages. In this situation it is natural to ask for the mean
square deviations of these fluctuations from the corresponding averages. While the
averages are the same in all ensembles, the fluctuations will be different. For
sufficiently large systems the fluctuations will be negligible, and one macroscopic
theory emerges, called Thermodynamics.

It will be clear that we cannot treat all subjects of statistical physics that might
interest one or another of this class. We have made our own choice and will feel
glad in case you enjoy the selection we made. In case you identify subjects that we
left out and that you think would interest you even more than the selection we
made, it means we made you see beyond the present notes and we will be even
more satisfied.

7.2 The Micro Canonical Ensemble

In this section we will introduce some concepts of statistical physics in an almost
natural way. We will do this in the so-called microscopic ensemble. It will take a
while before we will explain this name. For now just follow our reasoning.

7.2.1 Entropy

Let us start by asking a question. How can physicists have great confidence in their
knowledge of the chemical constitution of the outer layer of the sun. After every
step of a multistage synthesis, chemists want to know what was the result of their
last step. How do they quickly get information about the chemical structure that
resulted from their last synthetic step? The answer in both cases is the same, by
spectroscopic measurements. Physicists measure emission and absorption lines of
light that comes from the sun and thereby get information about the possible
energies available for the atoms that exist in the sun’s outer layer. Parts of these
energy spectra will be recognized as the fingerprints of particular atoms. Similarly
chemists use infrared spectra as fingerprints of particular atomic groups in the
molecules they have synthesized. The moral of this story is that the distribution of
possible energies acts as a fingerprint to tell one molecule from another.

Now let’s consider a macroscopic system. How can we tell one system from
another? Well, by measuring its distribution of possible energies you will say. That
is exactly what we are going to do. In order to do so we start with the ground state,
call it state number one and write down its energy. Next we go to the state with the
lowest energy but one, call it state number two and write down its energy. In case
there are states with the same energy we number them in whichever order before
going to the next energy level. The number of states in one level we call the
degeneracy Ω of that level. Once we are done we have enumerated all states and
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written down their energies in increasing order. This is what we call the energy
spectrum, which is the thing that is characteristic for the contents of the system.

We are now in possession of the energy spectrum of our system, meaning that
we have enumerated all possible states of the system and given their energies. In
mathematical terms we have produced a map from the natural numbers to the real
numbers

n ! En:

The enumeration has been done such that the energies satisfy En �Enþ1 for all n.
We want to describe this information in a somewhat different way. To this end,

we define UðUÞ to be the number of states with energy less than U. UðUÞ is zero for
sufficiently low energies, then jumps to one when U becomes larger than the ground
state energy E1, and next increases by a value XðEnÞ every time when U passes a
possible energy En. Notice that U is a kind of continuation of the discrete index n to
the real numbers. When all energies are non-degenerate, i.e. when all Ω are equal to
one, this is clear. With Ω’s different from zero the map

U ! UU

does not discriminate between degenerate states. In a few cases it is possible to
calculate UðUÞ exactly.

Consider a crystal composed of N atoms, which each vibrate around a given
equilibrium position. This model is called Einstein crystal. It is a simple matter to
calculate XðUÞ and next UðUÞ for this model. Later you may do this as an exercise,
here we just give the final result

UðUÞ ¼ e
3�hx

U
N

� �3
" #N

1ffiffiffiffiffiffiffiffiffi
6pN

p :

Here ω is the vibration frequency of each of the atoms and e is the base of the
natural logarithm; �h is Planck’s constant divided by 2π.

A second model for which we may easily calculate Φ(U) is an ideal gas con-
sisting of N atoms in a volume V, obtaining

UðUÞ ¼ me

3p�h2
U
N

� �3=2V
N
e

" #N
1ffiffiffi
6

p
pN

:

Obviously, in this case there is a third parameter besides N and U on which Φ
depends, which is the volume V.

The two functions above are clearly very different and are characteristic for the
system they correspond to. So U can be used to tell one system from another.
Actually any monotonous function of U can be used to characterize the system. It
will turn out to be very useful to define
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S ¼ kB lnU.

Here kB is called Boltzmann constant, which we will specify further down these
notes. S is called entropy and will play an important role in all further
considerations.

An important property of U is the fact that it can be written as

UðU;V ;NÞ ¼ u
U
N
;
V
N

� �� �N
aNb;

with φ being some simple function of U/N and V/N, and with a and b some con-
stants that are independent of U, V or N. This is characteristic for all systems.
Taking the logarithm we find

SðU;V ;NÞ ¼ kBN ln u
U
N
;
V
N

� �� �
;

where we have neglected contributions in the right hand side that are negligible
compared to the one proportional to N. From this it immediately follows that

SðxU; xV ; xNÞ ¼ xSðU;V ;NÞ:

So if we take two systems, one of which has energy, volume and number of
particles twice as big as the other, then its entropy is also twice as big as that of the
other. We say that S is an extensive quantity. It is not difficult to prove that only the
logarithm can turn U into an extensive quantity.

It will be of great help to be a bit flexible with the definition of entropy. To this
end, notice that U can be written as

UðUÞ ¼
X
n

HðU � EnÞ:

Here n runs through all states of the system, and HðxÞ is the Heaviside function,
which equals zero for x ≤ 0 and unity for x larger than zero. We may rewrite this as

UðUÞ ¼
X

Em �U

XðEmÞ;

where the sum now runs over all possible energies (levels, not states) less than U. It
may be shown that for a macroscopic system the overwhelming contribution to this
sum comes from the last energy level. In that case S can equally well be defined by

S ¼ kB lnX:
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We suggest that you are happy with this and neglect the explanation given
below.

Let us now give a quick argument why U can be replaced by X in the definition
of entropy. Roughly speaking X is equal to @U=@U, more exactly

@U
@U

¼ XðUÞqLðUÞ;

where ρL is the number of energy levels per energy increase dU. With the particular
property of U mentioned above

@U
@U

¼ U
u0

u
;

where

u0 ¼ @u
@u

;

with u = U/N. As a result

U ¼ XqL
u
u0 :

After taking the logarithm, only the lnX term is proportional to N. Notice that
we assume that the energy level density is approaching a constant with increasing
energy, or at least is not growing like a power of N.

7.2.2 Thermodynamics

Now consider an isolated macroscopic system in the sense that no particles can
leave or enter the system, that no external force can perform work on the system,
nor can any other form of energy be transmitted to the system. You may think of a
system in a rigid Styrofoam box. For this box, the energy U, the volume V and the
number of particles N are well defined. Therefore also the entropy S = S(U, V, N) is
well defined. Our next discussion will be simpler if we concentrate on the energy
U as a function of S, V and N, instead of on the entropy S as a function of U, V and
N. We now ask, how will the energy change if we change entropy, volume and
number of particles? From a mathematical point of view the answer is simple:

dU ¼ @U
@S

� �
V ;N

dSþ @U
@V

� �
S;N

dV þ @U
@N

� �
S;V

dN:
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where the subscripts indicate the variables which are kept constant during the
individual steps. What does it mean in physical terms? The second term in the right
hand side has a simple interpretation; the others are a bit more difficult. So let’s start
with the second term.

Consider a change of volume of a closed system (i.e. no particles can leave or
enter the system, but energy can be exchanged with the surroundings) at constant
entropy. Recall that constant entropy means that the number of states with energy
below the actual energy is constant. This means that the number of states below the
new energy U + dU is equal to the number of states below the original energy U. If
we change volume all energies of the system will change as shown in Fig. 7.1.
Keeping the number of states with energy less than U constant simply means that
the change of energy of the system dU is equal to the change of energy of the state
with energy En = U, i.e. the actual state of the system. In order to make sure that the
system does not jump to a new state and only follows the actual energy in its
dependence on volume, we must perform the process very slowly; processes like
these are called reversible adiabatic. The change of energy is by definition the work
w performed on the system in order to change its volume. This we know from
high-school is given by w ¼ �pextdV , with pext the applied pressure on the piston.
For adiabatic processes pext = p, with p being that particular pressure that must be
applied to a freely sliding piston to keep its position constant, and so

w ¼ �pdV :

p is called the pressure of the system. As a result, we have

@U
@V

� �
S;N

¼ �p:

In order to interpret the differential quotient of entropy and energy we will make
a little detour. To this end we write

Fig. 7.1 Change of energies with changing volume. In order to keep the number of states with
energy below the actual energy the process must be performed adiabatically
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dS ¼ @S
@U

� �
V ;N

dU þ @S
@V

� �
U;N

dV þ @S
@N

� �
U;V

dN:

We now concentrate on changes with dS = dN = 0 and divide by dV, obtaining

0 ¼ @S
@U

� �
V ;N

@U
@V

� �
S;N

þ @S
@V

� �
U;N

;

and finally

p ¼ � @U
@V

� �
S;N

¼
@S
@V

� �
U;N

@S
@U

� �
V ;N

¼ @S
@V

� �
U;N

@U
@S

� �
V ;N

:

For an ideal gas, knowing S as a function of U, V and N, it can be shown that

p ¼ NkB
V

@U
@S

� �
V ;N

:

We deliberately have not evaluated the last factor in this equation. From
experiment we know that

p ¼ nRT
V

;

where n = N/NAv, with NAv being Avogadro’s number, R is the gas constant and T is
absolute temperature. This result strongly advises us to choose the till now
unspecified Boltzmann constant according to

kB ¼ R
NAv

:

We then find that for an ideal gas

@U
@S

� �
V ;N

¼ T:

This is not yet very spectacular, but alas at least we have produced something.
Now let us turn this into something more spectacular. From high school you may

remember that in the old days temperature was measured by putting the system in
thermal contact with a small body of ideal gas until equilibrium was obtained, after
which the temperature of the system was declared to be equal to the temperature of
the ideal gas thermometer. Later we will see that at thermal equilibrium between
systems A and B we have
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@U
@S

� � Að Þ

V ;N
¼ @U

@S

� � Bð Þ

V ;N
:

This implies that we may identify ð@U=@SÞV ;N and the ideal gas temperature T.
For the time being we will define

@U
@N

� �
S;V

¼ l:

This new quantity μ is called the chemical potential and it plays a similar role in
equilibria as pressure and temperature. To be continued.

With our findings so far we have

dU ¼ TdS� pdV þ ldN:

This is the fundamental equation of thermodynamics. An alternative way to
write the fundamental equation of thermodynamics is

dS ¼ 1
T
dU þ p

T
dV � l

T
dN:

We have seen that U, S, V and N are extensive quantities; they grow proportional
to the size of the system. By their very definition, T, p and μ are intensive variables;
they do not change when we combine two identical systems (actually they tell us if
systems are identical or not, apart from their size). There is one interesting thing that
we should mention about these intensive variables. Because of extensivity we have

UðxS; xV ; xNÞ ¼ xUðS;V ;NÞ:

Differentiating this equation with respect to x we find

TS� pV þ lN ¼ U:

This implies

dU ¼ TdS� pdV þ ldN þ SdT � Vdpþ Ndl:

Comparing this with the fundamental equation of thermodynamics we find

SdT � Vdpþ Ndl ¼ 0:

This is called the Gibbs-Duhem equation. It says that out of the three intensive
variables T, p and μ only two can be varied independently. Fixing two intensive
variables fixes the other. This means that for example the chemical potential is a
function of temperature and pressure. Giving the values of two intensive variables
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only fixes the internal state of the system. In order to know the size of the system at
least one extensive quantity must be known.

Exercise:
Prove the following equation:

N! ¼
Z1
0

dxxNe�x ¼
Z1
0

dxeN ln x�x:

Next develop n ln x� x in a Taylor series up to second order around its maxi-
mum and calculate the integral, obtaining

N! ¼ N
e

� �N ffiffiffiffiffiffiffiffiffi
2pN

p
:

This approximation for N! is called Stirling equation. You will need

Z1
�1

dxe�cx2 ¼
ffiffiffi
p
c

r
:

Exercise:
The states of an Einstein crystal are indexed by 3N quantum numbers

n1; n2; . . .; n3N�1; n3N , which each take integer values from 0 to ∞. The corre-
sponding energies read

En1;...n3N ¼ �hx n1 þ 1=2ð Þ þ � � � þ �hx n3N þ 1=2ð Þ ¼ �hx
3N
2

þM

� �

M ¼ n1 þ � � � þ n3N

In order to calculate the number of states XðUÞ corresponding to energy U, you
must distribute

M ¼ U
�hx

� 3
2
N

quanta of energy �hx over 3N oscillators. To this end you write down M crosses.
Next you decide how many quanta you give to the first oscillator, i.e. you decide
about the value of n1. If it is zero, you put a bar to the left of the very first cross, if it
is larger than zero you put the bar between the crosses indexed n1 and n1 + 1
respectively. Next you decide about the number of quanta you give to the second
oscillator, i.e. you decide about the value of n2. If it is zero you put a bar right after
the previous bar, if it is non-zero you put the bar after the next n2 crosses, i.e.
between the crosses indexed n1 þ n2 and n1 þ n2 þ 1 respectively. Next you repeat
this procedure for all remaining oscillators.
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Show that

XðUÞ ¼ ðM þ 3N � 1Þ!
M!ð3N � 1Þ! ;

and if you want

UðMÞ ¼ ðM þ 3NÞ!
M!ð3NÞ! :

From this calculate T ¼ TðUÞ and invert this to find U ¼ UðTÞ. Next calculate
the specific heat CV ¼ @U=@T :

Note:
The U for the Einstein crystal given in the main text is obtained from the one

given in this exercise assuming that M is much larger than 3N. It will therefore not
give the correct behavior of the specific heat at low temperatures.

7.2.3 Irreversible Processes and Equilibria

Now consider what happens to the entropy in case we let a spontaneous process
occur. How do we do this? As an example, we start with an isolated system which
is constrained in the sense that energy cannot be freely distributed all over the
system, like in Fig. 7.2, where two parts of the system are separated by an insulating
wall. The system consists of a part A with energy UA and a part B with energy UB.
A spontaneous process may be induced by suddenly turning the insulating wall into
a heat conducting wall. As a result of removing the constraint, suddenly many more
states become available. Calling Xc the number of states of the constrained system
and Xu the number of states of the unconstrained system, we have Xu �Xc and
hence with DS ¼ Su � Sc:

DS� 0:

This is the second law of thermodynamics. It says that spontaneous processes are
accompanied by an increase of entropy.

We now want to translate this inequality into something more useful. To this
end, let’s analyze the process in more detail. First notice

Xc ¼ XðAÞðUAÞ � XðBÞðUBÞ

Xu ¼
X
n

XðAÞðUA þ EnÞ � XðBÞðUB � EnÞ:
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Here the sum runs over all possible values of En such that UA + En is a possible
energy for system A and at the same time UB − En is a possible energy for system
B. The first factor in each term in the sum for Xu is steeply increasing with
increasing values of En while the second factor is steeply decreasing with increasing
En. As a result, the product of the two factors will be maximal for some En = Emax.
The product may then be approximated as

XðAÞðUA þ EnÞ � XðBÞðUB � EnÞ ¼ XðAÞðUA þ EmaxÞ � XðBÞðUB � EmaxÞ

� exp �ðEn � EmaxÞ2
2r2AB

" #
:

Here σAB determines the width of the product in the left hand side as a function
of En. The unconstrained number of states within this approximation reads

Xu ¼ XðAÞðUA þ EmaxÞ � XðBÞðUB � EmaxÞ �
X
n

exp �ðEn � EmaxÞ2
2r2AB

" #
:

The last factor, i.e. the sum over all possible En may be approximated by

X
n

exp �ðEn � EmaxÞ2
2r2AB

" #
� qL

Z
dE exp �ðE � EmaxÞ2

2r2AB

" #
� qL

ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2AB

q

with ρL the density of energy levels. With these results we obtain

Sc ¼ kB lnX
ðAÞðUAÞ þ kB lnX

ðBÞðUBÞ

Su ¼ kB lnX
ðAÞðUA þ EmaxÞ þ kB lnX

ðBÞðUB � EmaxÞ

where in the second equation we have ignored non-extensive terms (Fig. 7.3).
The final result of the analysis given above is that an amount of energy Emax has

been transferred from system B to system A such that

Fig. 7.2 Two systems isolated from the outside world. Initially (left panel) the wall between both
systems is rigid and thermally insulating. When this wall is made thermally conducting (right
panel) energy can be exchanged between both systems
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SuðUA þ UBÞ ¼ SðAÞðUA þ EmaxÞ þ SðBÞðUB � EmaxÞ

is maximal. With this redistribution of energy both systems are in equilibrium and
no further processes take place. An additional exchange of energy will lead to no
increase of the entropy, so at equilibrium

dS ¼ dSðAÞ þ dSðBÞ ¼ 0:

Applying thermodynamics we get

1
TðAÞ dU

ðAÞ þ 1
T ðBÞ dU

ðBÞ ¼ 0:

Since dUðAÞ ¼ �dUðBÞ we get as our criterion for equilibrium

TðAÞ ¼ TðBÞ:

Very similar arguments can be used more generally. Suppose we have a liquid
and a vapor in contact with each other such that besides energy also volume and
particles can be exchanged. The entropy will be maximal in case further exchange
of energy, volume and/or particles does not change the entropy. With
dUðAÞ ¼ �dUðBÞ, dV ðAÞ ¼ �dV ðBÞ and dNðAÞ ¼ �dNðBÞ the criterion for equilib-
rium reads

dS ¼ 1
TðAÞ �

1
T ðBÞ

� �
dUðAÞ þ pðAÞ

TðAÞ �
pðBÞ

T ðBÞ

� �
dV ðAÞ � lðAÞ

TðAÞ �
lðBÞ

T ðBÞ

� �
dNðAÞ ¼ 0:

Fig. 7.3 Second law of thermodynamics. Initially En is constrained to be zero. When the wall
separating the two systems is changed to be thermally conducting, energy can be exchanged and
new states become available. The total entropy is equal to the entropy with En constrained to Emax
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So, finally

T ðAÞ ¼ TðBÞ

pðAÞ ¼ pðBÞ

lðAÞ ¼ lðBÞ

Generalizations will pose no problems. The general concept is that redistributing
extensive quantities over parts of a system in equilibrium does not lead to a change
of entropy. To be clear, ‘redistributing’ implies that the total values of the extensive
quantities that are redistributed do not change.

A useful alternative criterion for irreversible processes applies for systems with
constant temperature. To find this criterion, put the system in a huge thermostat of
temperature T and allow for possible exchange of energy between the thermostat
and the system. Since the thermostat is assumed to be infinitely large, its temper-
ature does not change as a result of possible exchange of energy between system
and thermostat. Remove existing constraints in the system and let the spontaneous
process run. Before and after the process the temperature of the system is the same
as that of the thermostat. The criterion for irreversibility says

DSþ DSTh � 0:

Here DSTh is the change of entropy of the thermostat as a result of the energy
exchange with the system while the spontaneous process was running in the system.
Because the thermostat is huge, we may use the fundamental equation of thermo-
dynamics to get DSTh ¼ DUTh=T . Now, since the energy DUTh gained by the
thermostat must be lost by the system, we have DUTh ¼ �DU, where DU is the
increase of energy of the system as a result of the spontaneous process in the
system. The irreversibility criterion therefore reads

DS� DU
T

� 0:

Introducing the Helmholtz free energy F ¼ U � TS, we finally get

DF� 0:

Therefore the change of Helmholtz free energy during a spontaneous process is
negative, and the Helmholtz free energy attains a minimum at equilibrium.

7.2.4 Probabilities

It is time to give meaning to the adjective ‘statistical’ in statistical physics.
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Most of you probably have heard about the principle of ‘equal a priori proba-
bilities’. By this we mean that if we interrogate the state of a system we will find
one out of the X possible states and that we will find all of these equally often if we
repeat the experiment a huge number of times. As a working hypothesis (ergodic
hypothesis) we further assume that when we perform a measurement, the system
runs through a great many of its possible states and that the average that is measured
is equal to the average over all possible states. So, if we measure a quantity A with
value An in state n, the result will be

Ah i ¼ 1
X

X
n

An ¼
X
n

1
X
An ¼

X
n

PnAn:

In the last step we have introduced the probability Pn to find state n. ‘Equal a
priori probabilities’ means that all Pn are equal; since

P
n Pn ¼ 1, we must have

Pn ¼ 1=X.
Now, in case we are interested in the probability PA to find a particular property

A that is shared by XA states, we may write

PA ¼ XA

X
¼ eðSA�SÞ=kB :

Here SA is the entropy of a system constrained to have property A. The above
equation was used extensively by Einstein. We will use it in the next section on the
Canonical Ensemble.

Let us end this section by explaining the word ‘ensemble’. One way of intro-
ducing probabilistic arguments is by imagining a huge collection, ensemble in
French, of macroscopically similar systems, which only differ in their microscopic
realization. The number of times that a particular microscopic state occurs in this
collection is taken to be proportional to its probability. Averaging a quantity A with
the proper weight is then equivalent to taking a non-weighted average over the so
created ensemble.

7.3 The Canonical Ensemble

Most of you will remember from high school the barometric height equation

pðzÞ ¼ pð0Þ exp �mgz
kBT

� �
:

This equation gives the partial pressure of molecules with mass per molecule
equal to m as a function of height z above the earth’s surface. Here kB is the
Boltzmann constant and g is the gravitational acceleration. It is a very simple
exercise to derive this equation. Now, using the equation of state for ideal gases, we
may transform the above equation into
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qðhÞ ¼ qð0Þ exp �mgh
kBT

� �
;

with ρ(h) the density at height h. We interpret this result as telling that the prob-
ability density to find a molecule of mass m in the earth’s gravitational field at
height z above the earth’s surface is proportional to expð�mgz=ðkBTÞÞ. The
probability density P(z) is related to the probability Prðz� Z� zþ dzÞ to find
Z between z and z + dz by Prðz� Z� zþ dzÞ ¼ PðzÞdz.

A very similar result was obtained by Maxwell who derived that the probability
density to find the momenta of a molecule to be at (px, py, pz) is given by

Pðpxpy; pzÞ / exp � p2x þ p2y þ p2z
2mkBT

 !
:

Here px = vx/m with vx the velocity in x-direction and m the mass of the mol-
ecule, and similarly for the y- and z-directions. Also this equation can be easily
derived.

Investigating all components of the position vector ~R and the momentum vector
~P we may write

Prðx�Rx � xþ dx; . . .; pz �Pz � pz þ dpzÞ ¼ Pð~r;~pÞd3rd3p;

with ~r ¼ ðx; y; zÞ and ~p ¼ ðpx; py; pzÞ, d3r ¼ dxdydz and d3p ¼ dpxdpydpz. As an
intermezzo, let us tell you that in classical mechanics the concept of momentum is
generalized such that, among other things, d3rd3p is invariant. Another good reason
for using momenta instead of velocities is that MS Word produces ugly v’s while
p’s are great. Now, combining both results above we have

Pð~r;~pÞ / exp �mgz
kBT

� p2x þ p2y þ p2z
2mkBT

 !
:

Introducing the total energy per molecule e ¼ mgzþ ðp2x þ p2y þ p2z Þ=2m we
have

Pð~r;~pÞ / exp � eð~r;~pÞ
kBT

� �
:

This says that the relevant probability density is proportional to natural base to
the power minus energy divided by kBT, which is called Boltzmann factor.

In the following we will generalize this result to systems containing N particles
in a volume V. We now define the probability distribution P(r3N, p3N) by
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Prð~r1 �~R1 �~r1 þ d~r1; . . .;~pN �~PN �~pN þ d~pNÞ ¼ Pðr3N ; p3NÞ d
3Nrd3Np
h3N

;

with d3Nr ¼ d3r1. . .d3rN and d3Np ¼ d3p1. . .d3pN ; the factor h�3N , with h being
Planck’s constant, has been introduced to make the probability distribution
dimensionless. We will find

Pðr3N ; p3NÞ / exp �bHðr3N ; p3NÞ� �
:

Here β = 1/(kBT) and H is the Hamiltonian with value H(r3N, p3N) = E.
The collection of points (r3N, p3N) is called phase space. In the following we will

divide phase space into little cubes of size d3Nrd3Np. This turns phase space into a
countable collection of states. We next introduce the probability Pn to find the
system in cube n:

Pn ¼ Pðr3N ; p3NÞ d
3Nrd3Np
h3N

:

The expectation value of a variable A(r3N, p3N) may then be written as:

Ah i ¼ 1
h3N

Z
d3Nr

Z
d3NpPðr3N ; p3NÞAðr3N ; p3NÞ ¼

X
n

PnAn:

Here An is the value of A(r
3N, p3N) in cube n. The good thing is that we can now

use the same notation in the classical and the quantum mechanical case. That’s it,
we can start.

7.3.1 Thermodynamics

We start by putting a system in a huge thermostat. By definition system and
thermostat have the same temperature T and may exchange energy. Although the
system’s energy may fluctuate, we will assume that a well-defined average energy
U exists. The total of system and thermostat will be isolated, so we can use the
micro canonical ensemble to calculate the thermodynamic properties of the total.
Letting Utot be the energy of system plus thermostat, we write the number of states
going with this energy as

XtotðUtotÞ ¼
X
n

XThðUtot � EnÞ:

Here n runs through all states of the system, while En is the energy of state
n. When the energy of the system is En, that of the thermostat is Utot � En. The
number of states the thermostat can assume with this particular energy is
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XThðUtot � EnÞ. Most of the time En will be near U. Therefore we will write
XThðUtot � EnÞ ¼ XThðUTh � DEnÞ, where by definition DEn ¼ En � U and
UTh ¼ Utot � U, i.e. the total energy minus the system’s energy. Now we use our
main result from the microscopic ensemble to relate the number of states of the
thermostat to its entropy: XThðUTh � DEnÞ ¼ expðSThðUTh � DEnÞ=kBÞ. Since the
thermostat is huge, DEn will be small compared to UTh, so we write

SThðUTh � DEnÞ ¼ SThðUThÞ � 1
T
DEn

to first order in DEn. Combining everything we get

Xtot ¼ eS
Th=kB

X
n

e�DEn=kBT ¼ eS
Th=kBeU=kBTQ;

where

Q ¼
X
n

e�En=kBT :

Finally we calculate the total entropy

Stot ¼ SThðUThÞ þ U
T
þ kB lnQ

� �
:

We interpret this equation by letting STh(UTh) be the entropy of the thermostat
and by letting Stot = STh + S, with S the entropy of the system. For the latter we then
have

S ¼ U
T
þ kB lnQ:

This result is equivalent to

F ¼ �kBT lnQ;

where, as before, F = U − TS is the Helmholtz free energy.
Notice that by definition Q = Q(T, V, N), and that therefore we obtain the free

energy as a function of T, V and N. With dF ¼ dU � TdS� SdT and the funda-
mental equation of thermodynamics we have

dF ¼ �SdT � pdV þ ldN:

We are therefore able to calculate entropy, pressure and chemical potential as
function of temperature, volume and number of particles, and from that all other
thermodynamic properties.
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7.3.2 Probabilities

As we have seen, a system at constant temperature can run through a great many of
states with variable energies. In this section we will obtain the probability with
which each of these states occurs. Calculations are simple.

With every state n of the system, the thermostat can occur in one of XThðUTh �
DEnÞ states, all of which are equally probable. The probability to find state
n therefore is

Pn / XThðUTh � DEnÞ / e�En=kBT :

In the last step we removed all factors not depending on the state n. Using the
fact that the sum of all probabilities must be equal to one, we may calculate the
constant of proportionality, obtaining

Pn ¼ e�En=kBT

Q
:

Here Q is our friend from the previous section.
In this derivation we have used the results already obtained when treating the

micro canonical ensemble. It is possible to obtain the above result without invoking
the micro canonical ensemble. Of course similar ingredients must go into the
derivation, but it is still instructive to see the derivation, in particular if you didn’t
really like the Taylor expansion used in the previous section. So, here we go. The
probability to find state n of the system is

Pn ¼ XThðUTh � DEnÞ
Xtot :

Now, XThðUÞ ¼ C � UcNTh
with c being some small constant and the constant of

proportionality C not dependent on U. Therefore

XThðUTh � DEnÞ ¼ XThðUThÞ � 1� DEn

UTh

� �cNTh

:

For convenience, let us write cNTh ¼ M and reshuffle things a bit, obtaining

XThðUTh � DEnÞ ¼ XThðUThÞ � 1� 1
UTh=M

DEn

M

� �M

:

Now, if the thermostat is huge compared to the system, we may assume that UTh/
M becomes constant with increasing size of the thermostat. Calling this constant 1/β
we obtain
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XThðUTh � DEnÞ ¼ XThðUThÞ � 1� bDEn

M

� �M

¼ XThðUThÞ � e�bDEn :

In the last step we have used the mathematical identity

lim
M!1

1� x
M

	 
M
¼ e�x:

Putting this expression for XThðUTh � DEnÞ into the expression for Pn above, we
get

Pn ¼ e�bEnP
m
e�bEm

:

This is our old friend if we manage to prove that β = 1/(kBT).
Assuming we already know about thermodynamics, we can follow a quick route

to obtain the relation between our present microscopic treatment and thermody-
namics. First notice that, with the actual energy fluctuating, it is clear that the
thermodynamic energy U should be the average energy:

U ¼
X
n

EnPn ¼ 1
Q

X
n

Ene
�bEn :

From this we easily obtain

U ¼ � @ lnQ
@b

:

For an ideal gas one finds with a quantum mechanical description

Q ¼ 2pm
bh2

� �3N=2VN

N!
;

from which it follows that

U ¼ 3N
2b

:

Experiment then tells us that indeed b ¼ 1=ðkBTÞ. Since β is a property of the
thermostat it is irrelevant that we used the ideal gas to obtain this result.
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Next, assuming we know already about thermodynamics, we may write

U ¼ F þ TS ¼ F � T
@F
@T

� �
N;V

¼ @F=T
@1=T

� �
N;V

:

We then have

�kB
@ lnQ
@1=T

¼ @F=T
@1=T

:

From this we conclude

F ¼ �kB lnQþ CN;V :

If we use quantum mechanical energies to calculate the partition function Q, we
may put CN,V = 1, to obtain results in agreement with experiments. If we use
classical mechanics to calculate the partition function Q, experiment forces us to
use CN;V ¼ kB lnN!. From now on we assume that in the classical case a factor of
1=N! is included in the definition of the partition function, i.e.

Q ¼ 1
h3NN!

Z
d3Nr

Z
d3Np exp �Hðr3N ; p3NÞ=kBT

� �
:

If you are happy with this, be happy and go to the next section.
For the diehards we present an alternative route to arrive at the previous results,

but now without assuming you know anything about thermodynamics. To this end
let us see how the average energy changes when we perturb the system? Well

dU ¼ d
X
n

EnPn

 !
¼
X
n

EndPn þ
X
n

PndEn:

In the first term we replace En by �ðlnPn þ lnQÞ=b and use
P

n dPn ¼ 0 to
obtain

dU ¼ �b�1d
X
n

Pn lnPn

 !
þ
X
n

PndEn:

Suppose we adiabatically change the volume of the system. Adiabatically means
that we do not allow the system to change state. Adopting the picture of an
ensemble, when no system changes its state during the adiabatic volume change
means that the probabilities Pn do not change, and so that the first term in dU equals
zero. The second term on the right hand side is just the average work to be
performed on the system to achieve this change of volume, so
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dUadiabatic ¼
X
n

PndEn ¼ �pdV :

If we moreover introduce the entropy

S ¼ �kB
X
n

Pn lnPn;

we obtain

dU ¼ kBbð Þ�1dS� pdV :

Don’t be disturbed by the fact that this entropy looks different from what you
have seen so far; remember that we pretend to know nothing about thermody-
namics. In any case, we will prove in the next section that this is essentially the
same entropy as the one we met in the micro canonical ensemble.

Notice that the last equation implies

kBbð Þ�1¼ @U
@S

� �
V ;N

:

As in the micro canonical ensemble, we will use the ideal gas law to introduce
temperature. In the present case we have

p ¼ @S
@V

� �
U;N

@U
@S

� �
V ;N

¼ @S
@V

� �
U;N

1
kBb

:

To calculate the first factor in the right hand side we must know S = S(U, V, N).
In the present case, i.e. the canonical ensemble, we have

U ¼ � @ lnQ
@b

S ¼ �kBb
@ lnQ
@b

þ kB lnQ

The second of these expressions follows from the definition of entropy using
lnPn ¼ �bEn � lnQ. So, with the partition function Q for the ideal gas given
above, we find

U ¼ 3N
2b

S ¼ NkB ln
2pm
bh2

� �3=2

e5=2
V
N

" #
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Eliminating β in favor of U we get

S ¼ NkB ln
4pm
3h2

� �3=2

e5=2
U
N

� �3=2V
N

" #
:

Putting everything together yields

p ¼ @S
@V

� �
U;N

1
kBb

¼ N
bV

:

So, we conclude

b ¼ NAv

RT
:

Since β is a property of the thermostat, this relation holds fully generally,
independent of the fact that it was obtained on the basis of an application to the
ideal gas. Again we choose kB ¼ R=NAv and find

dU ¼ TdS� pdV þ ldN:

We have added a contribution from changes of the number of particles. Since we
will find that the newly defined entropy is basically the same as before, it is clear
that the chemical potential μ is the same as before. More about this later.

We end this section by introducing the Helmholtz free energy as before

F ¼ U � TS ¼
X
n

EnPn þ kBT
X
n

Pn lnPn:

Introducing again En ¼ �kBTðlnPn þ lnQÞ we obtain

F ¼ �kBT lnQ:

So, from statistical physics we get Q as function of T, V and N, and therefore also
F as function of T, V and N. This allows us to calculate all thermodynamic prop-
erties of the system.

Exercise:
The energies of a system of N non-interacting particles in a volume V are

indexed by 3N quantum numbers n1; n2; . . .; n3N�1; n3N , which each take values
from 1 to 1. The energies are given by

En1;...;n3N ¼ h2

8mL2
ðn21 þ � � � þ n23NÞ
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Sequences of quantum numbers which differ by a mere permutation refer to one
and the same state and should only be counted once when calculating the partition
function. Show that the partition function is given by

Q ¼ 2pmkBT
h2

� �3N=2VN

N!
:

Next calculate the partition function using classical mechanics, i.e. according to

Q ¼ 1
h3NN!

Z
d3Nr

Z
d3Np exp � p21;x þ � � � þ p23N;z

2mkBT

 !
:

You will need

Z1
�1

dxe�cx2 ¼
ffiffiffi
p
c

r
:

Without the ‘unexpected factor’ 1=N! the results would have been different, so
now you know why it has been added.

7.3.3 Fluctuations

We now have two different ways to calculate thermodynamic properties, and it is
not immediately clear that they both give the same result. In the canonical ensemble
the energy of the system can fluctuate, while in the micro canonical ensemble it is
fixed. Both ensembles can only be equivalent when fluctuations of energy in the
canonical ensemble are negligible.

Let us denote by P(En) the probability to find the system with energy En. This
means that the system exists in one of the XðEnÞ states having energy En. Therefore

PðEnÞ ¼ XðEnÞ e
�bEn

Q
:

Now, XðEnÞ is steeply increasing with increasing values of En, while e�bEn=Q is
a decreasing function of En. Since exponentials finally kill any algebraically
increasing function, for high enough values of En the probability to find energy En

will be zero. Consequently the product of the two factors will have a maximum at
some value of En. Assuming that P(En) will be symmetric around this maximum,
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the maximum occurs at the average energy U. The width of the distribution of
energies may be characterized by the standard deviation

rE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � Eh ið Þ2

D Er
:

Here the pointy brackets denote an average

Eh i ¼
X
n

EnPn

E2� � ¼X
n

E2
nPn

etc. The standard deviation therefore is the square root of the average of the square
of the deviation of the energy from its average.

It is an easy task to calculate σE for the canonical ensemble. To this end we first
note

r2E ¼ E2 � 2E Eh i þ Eh i2
D E

¼ E2� �� Eh i2:

The latter expression may easily be calculated according to

@2 lnQ

@b2
¼ @

@b
1
Q
@Q
@b

¼ 1
Q
@2Q

@b2
� 1

Q
@Q
@b

� �2
¼ r2E

Exercise:

Check the last identity.

End of exercise.

This is a beautiful result, since we now have

r2E ¼ @

@b
@ lnQ
@b

¼ � @U
@b

¼ kBT
2 @U
@T

:

What we are really interested in, is the standard deviation relative to the energy
itself. This tells us at which decimal the energy is fluctuating. In general the energy
U is proportional to NkBT with a proportionality constant α depending weakly on
density. Therefore

rE
U

¼ 1ffiffiffiffiffiffi
Na

p :

So, with increasing number of particles the relative uncertainty in the energy
quickly goes to zero.
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We end this section discussing the equivalence of ensembles. According to the
arguments in the last paragraph

XðEnÞe�En=kBT ¼ XðUÞe�U=kBT exp � En � Uð Þ2
2r2E

" #

The partition function then reads

Q ¼
X
n

XðEnÞe�En=kBT ¼ XðUÞe�U=kBT
X
n

exp �ðEn � UÞ2
2r2E

" #

� XðUÞe�U=kBTqL

ffiffiffiffiffiffiffiffiffiffiffi
2pr2E

q
:

The sums in these expressions are over all possible energies, i.e. over all energy
levels, not over states. The free energy then reads (with F ¼ �kBT lnQ):

F ¼ U � kBT lnXðUÞ;

where we have ignored terms not proportional to N. From this we conclude

SðUÞ ¼ kB lnXðUÞ:

So, within the approximation of ignoring terms not proportional to N, the micro
canonical ensemble and the canonical ensemble will give identical results. The
good thing about this is that calculating Q is much easier than calculating X.

7.4 Interacting Systems, Very Simple Application

The most interesting application of statistical physics of course is to interacting
systems. In the previous section we have seen that the major task with statistical
physics is to calculate the partition function. In the (semi) classical approximation
this reads

Q ¼ 1
h3NN!

Z
d3Nr

Z
d3Np exp � p21;x þ � � � þ p2N;z

2mkBT
� UNðr3NÞ

kBT

" #
:

Here UNðr3NÞ is the potential energy of the system. Performing the integrals over
the momenta we get
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Q ¼ 1

K3NN!
ZN

with

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2

2pmkBT

s
;

and

ZN ¼
Z

d3Nr exp �UNðr3NÞ
kBT

� �
:

K is called the thermal de Broglie length and ZN is the configuration integral. So,
our main problem is to calculate the configuration integral.

It is convenient at this point to notice that averages of functions f (r3N) which
only depend on the configuration r3N, may be obtained without any reference to the
momenta:

fh i ¼ 1
ZN

Z
d3Nrf ðr3NÞ exp �UNðr3NÞ

kBT

� �
:

You should have no problem to prove this by integrating over the momenta once
in the numerator and once in the denominator.

We will treat one simple example to illustrate the complexity of calculating
configuration integrals. Consider a system of roughly spherical molecules. The
potential energy then reads

UNðr3NÞ ¼
XN�1

i¼1

XN
j¼iþ1

uðri;jÞ;

with rij being the distance between molecules i and j. In many cases the interaction
between two molecules can be described by the Lennard-Jones potential:

/ðrÞ ¼ 4�
r
r

	 
12
� r

r

	 
6� �
;

with � being the depth of the potential and σ the diameter of the molecule.
Before going to our example, let us first give you one more bit of formal

development, which allows us to understand the concept of chemical potential a bit
better.

214 W.J. Briels and J.K.G. Dhont



7.4.1 Chemical Potential

It is instructive to have a look at the statistical expression for the chemical potential.
Recall that

l ¼ @F
@N

� �
T ;V

;

from which

l ¼ kBT lnK3 þ kBT lnN � kBT
@ ln ZN
@N

:

Approximating

@ ln ZN
@N

¼ ln ZNþ1 � ln ZN ¼ ln
ZNþ1

ZN

we get

l ¼ kBT ln
N
V
K3

� �
� kBT ln

1
V
ZNþ1

ZN

� �
:

The last term in this equation has an interesting meaning. Let us write

UNþ1ðr3ðNþ1ÞÞ ¼ uðr3N ;~rNþ1Þ þ UNðr3NÞ;

where uðr3N ;~rNþ1Þ is the interaction between particle N + 1 and the remaining first
N particles and UNðr3NÞ represents the sum of the interactions between the first
N particles. We then write

1
V
ZNþ1

ZN
¼ 1

V

Z
d3rNþ1

R
d3Nre�buðr3N ;~rNþ1Þe�bUN ðr3N ÞR
d3ðN�1Þre�bUN�1ðr3ðN�1ÞÞ ¼ e�bu

� �
:

This means that we take the average of expð�buðr3N ;~rNþ1ÞÞ on all configura-
tions of the first N particles. Next the operator ð1=VÞ R d3rNþ1 averages this over all
positions of the (N + 1)th particle. So the result is the average of the exponent of
minus the work to bring an additional particle into a system of N particles divided
by kBT, hence the notation with the pointy brackets. Next we take minus the
logarithm and multiply by kBT:

�kBT ln
1
V
ZNþ1

ZN

� �
¼ �kBT ln e�u=kBT

D E
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Roughly stated, we have calculated the average of the work to be performed to
bring the particle from vacuum into the system. The particular way of averaging,
i.e. by first exponentiation and next taking the logarithm, is to get rid of infinities.
Without exponentiation, particles put into the system such as to overlap with one of
the original particles would contribute infinitely much, while now they contribute
zero to the average.

Combining our results, we obtain

l ¼ �kBT ln
V=N

K3

� �
� kBT ln e�u=kBT

D E
:

The chemical potential is more negative the larger the volume per particle and
the lower the energy per particle.

7.4.2 Van der Waals’ Equation of State

In order to calculate the configuration integral we divide the system’s volume into
small cubes of size D ¼ r3. The integral may then be replaced by a sum over all
configurations obtained by distributing all molecules over the various little cubes:

ZN ¼
X
conf

e�bUN ðconf ÞDN :

Configurations with cubes containing more than one molecule have energies
equal to infinity and will not contribute to the sum. So the sum must run over all
configurations with no cube containing more than one molecule. Next, we assume
that the range of the attractive well in the potential energy contribution of a pair of
molecules is less than σ. So, only pairs of molecules which are nearest neighbors
will contribute to the total potential energy. This model may strike you as extremely
simple, yet its configuration sum cannot be calculated exactly except for two
dimensional systems. The mathematics to perform the sum in the two dimensional
case is extremely involved and there is no hope that it will be ever extended to three
dimensional systems.

Let’s go for the next approximation. We will assume that all configurations have
roughly the same energy �UN . The configuration integral then becomes

ZN ¼ Xe�b�UNDN ;

with X being the number of configurations not having any cube being occupied
more than once. Now the problem becomes simple:
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X ¼ M!

ðM � NÞ!

�UN ¼ 1
2
Nz

N
M

ð�eÞ:

Here −ɛ is the contribution to the energy of one nearest neighbor pair of mol-
ecules, and z is the coordination number of the lattice, or the number of nearest
neighbors with each cube. Moreover M is the total number of cubes, i.e. M ¼ V=D.
With these results we calculate the free energy of the system as

F ¼ �NkBT lnK3 � kBT ln
M!

N!ðM � NÞ!
� �

� 1
2
Nz

N
M

e� NkBT lnD:

The pressure then becomes

p ¼ � kBT
D

ln 1� ND
V

� �
� 1
2
zeD

N2

V2 :

Finally we make use of an approximate equation for the logarithm

lnð1þ xÞ ¼ 1
1þ x

2þ x
3þ 4x

4þ���

� 1
1þ x=2

:

The result then is

p ¼ NkBT
V � Nb

� a
N2

V2

a ¼ zeD=2

b ¼ D=2:

This is van der Waals’ equation of state. Clearly the term proportional to
a accounts for attractions between molecules and the one depending on b accounts
for repulsions between molecules.

7.4.3 Carnahan and Starling

Exercise:
In this exercise you will obtain the virial equation of state (to first order). To start

the derivation, define the activity α by writing the chemical potential as
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l ¼ kBT lnK3 þ kBT ln a:

From the results in Sect. 7.4.1. A we have

1
a
¼ 1

N

Z
d3rNþ1

R
d3Nre�buðr3N ;~rNþ1Þe�bUN ðr3N ÞR

d3Nre�bUN ðr3N Þ :

The explicit equation for uðr3N ;~rNþ1Þ reads

uðr3N ;~rNþ1Þ ¼
XN
i¼1

uðri;Nþ1Þ:

We define

e�buðrÞ ¼ 1þ f ðrÞ;

so

e�buðr3N ;~rNþ1Þ ¼ ð1þ f ðr1;Nþ1ÞÞð1þ f ðr2;Nþ1ÞÞ. . .ð1þ f ðrN;Nþ1ÞÞ:

We must evaluate this product and put it into the integral above. In this exercise
we restrict ourselves to terms of first order in f(ri,N), so

e�buðr3N ;~rNþ1Þ ¼ 1þ f ðr1;Nþ1Þ þ f ðr2;Nþ1Þ � � � þ f ðrN;Nþ1Þ:

Argue that this leads to

1
a
¼ 1

q
þ
Z

d3rNþ1

R
d3Nrf ðrN;Nþ1Þe�bUN ðr3NÞR

d3Nre�bUNðr3N Þ :

Here ρ = N/V, i.e. the number density of the system. Now comes the trick. You
must prove that this may be written as

1
a
¼ 1

q
� 2B2;

Where B2 is given by

B2 ¼ � 1
2

Z
d3rf ðrÞ ¼ 1

2

Z
d3r 1� e�buðrÞ
	 


:
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Conclude that to first order

a ¼ qþ 2B2q
2

q ¼ a� 2B2z
2:

Now comes another trick:

p ¼
Za
0

da
@p
@a

� �
T
¼
Za
0

da
@p
@l

� �
T

@l
@a

� �
T
¼
Za
0

daq
kBT
a

:

We have used the Gibbs-Duhem relation ð@p=@lÞT ¼ q. Try to find this relation
in these notes. Next plug in the equation for the density that we just have found and
perform the integrations to get

p
kBT

¼ a� B2a
2:

Finally plug in the equation for α and conclude

p
qkBT

¼ 1þ B2q:

This is the virial equation of state to first order in the density.
Next we consider a so-called hard sphere gas, with interactions

uðrÞ ¼ 1 r� r

¼ 0 r� r

Calculate B2 for this gas.
In the seventies of the last century, theoretical physicists have extended the

analysis to higher powers of the density and found

p
qkBT

¼ 1þ 4gþ 10g2 þ 18:365g3 þ 28:24g4 þ 39:5g5 þ 56:6g6 þ � � �

Here η is the volume fraction of hard spheres:

g ¼ p
6
r3

N
V
:

Our friends, the theoreticians, even went a bit further but calculating coefficients
of large powers of η became increasingly difficult. Then came two engineers who
found that the coefficients of ηn can be well approximated by n2 þ 3n. Assuming
this to be correct to all orders and summing the series to infinite order they found
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p
qkBT

¼ 1þ
X1
n¼1

ðn2 þ 3nÞgn ¼ 1þ gþ g2 � g3

ð1� gÞ3 :

Can you do the summation? By the way, the engineers were called Carnahan and
Starling.

Finally, let us give the free energy for the hard sphere system:

A ¼ �NkBT ln
e

K3

V
N

� �
þ NkBT

gð4� 3gÞ
ð1� gÞ2 :

Show that this indeed gives rise to the equation of state given above.
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Chapter 8
Interfaces of Binary Mixtures

Reinhard Sigel

Abstract Methods to derive an interface concentration profile in a two component
system are discussed on the basis of squared gradient theories. Starting point is
the description of soft matter systems, where the correlation length of fluctuations
becomes the relevant length scale. A phase diagramwhich contains bulk and interface
phase transitions is used as a road map to the involved phenomena. The Landau

theory and the Flory-Huggins theory as a typical representative of soft matter mean
field theories are outlined as motivations for the squared gradient approach. A brief
discussion of bulk properties forms the basis for the discussion of the interface profile
of a two component system and the wetting behavior of this system at a substrate.

8.1 Introduction: Soft Matter at Interfaces

This contribution discusses the application of concepts of interface science to a
representative soft matter system. While interface science is based on a statistical
mechanics language, it usually does not specify a palpable formula for the free energy
of a specific system. The concepts thus remain on an abstract and formal level. With
an atomistic length scale in mind with detailed and complicated interactions, it might
be difficult to write down explicitly a system free energy which is simple enough for
further calculations. For soft matter systems, on the other hand, effective statistical
mechanical models of suitable simplicity do exist, and thus it is possible to apply the
interface formulas. It is not the aim of the soft matter models to describe the atomic
length scale, since a description of polymer chains, liquid crystals, or colloids based
on first principles would be evenmore complicated than the description of ensembles
based on atoms or low molecular weight molecules. Instead, only the most relevant
properties are included in a soft matter model, while other molecular details are
summarized as effective parameters. An example are thermotropic nematic liquid
crystals, where anisotropic molecules in a liquid state might either self organize
with a preferential orientation in a nematic phase, or with random orientation in
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the isotropic phase. The typical soft matter approach assumes these molecules as
rod-like entities with only excluded volume interactions. While such a description
simplifies the detailed molecular interactions between the constituent molecules to
a maximum extend, it offers a good description of the nematic to isotropic phase
transition. The correlation length of fluctuations ξ becomes the relevant length scale,
and a description even of microscopic averages and fluctuations down to this length
scale is possible and successful. A second example concerns polymer chains. The
most relevant property is here the connectivity of the molecules in a polymer chain,
while themolecular interactions are otherwise strongly simplified to excludedvolume
interactions. The only local parameters of a polymer chainwhich enter themodels are
a persistence length lps and a molecular friction coefficient. The persistence length of
a polymer coil is small for flexible polymer chains, while it is large for stiff polymer
chains. The molecular friction coefficient is required to access dynamic phenomena
like the relaxation dynamics. On this simplified basis, advanced approaches like the
reptation model are able to describe phenomena which are as complicated as the
visco-elasticity of polymer melts in rheological experiments.

The application of interface science concepts to softmatter systemoffers traceable
models which describe interfaces on the soft matter length scale ξ . Beside elucidating
the interface concepts on specific examples, another important topic of soft matter
enters the description of interfaces. For soft matter, suitable degrees of freedom show
weak and “soft” restoring forces which are driven by the thermal energy kBT only.
Here, kB is the Boltzmann constant and T the absolute temperature. An example
are again thermotropic liquid crystals. The wide technical use of these systems in
liquid crystalline displays relies on the possibility to change the direction of preferred
alignment in a nematic phase easily by an electric field of moderate strength. The
orientation of this direction which is called liquid crystalline director is a soft degree
of freedom.

A simple second example is a rubber band, i.e. a weakly cross-linked polymer
melt. A rubber band is easily stretched by moderate mechanical forces. Restoring
forces to bring the rubber band back to its original length are caused by entropy
elasticity, not by molecular interactions. The stretching of the rubber band is also
a soft degree of freedom. It can be stated that the technical important properties
of soft matter are mostly due to the soft degrees of freedom in these materials. On
this background, a specific question of the SOMATAI initial training network is to
identify soft degrees of freedom of these materials at the interface. Those degrees of
freedom will react to moderate external forces with a strong response, which might
become the starting point of new technological applications.

Which degrees of freedom at interfaces could be soft? So, for which degrees of
freedom a deviation from the equilibrium position experiences only weak restoring
forces? One can think about a polymer brush, or the two dimensional analog systems
of a nematic phase or a polymer melt. And how could we investigate experimen-
tally the softness of these systems? For an answer, we refer to another consequence
of softness. Since the restoring forces are weak, the thermal energy kBT leads to a
sizable activation of the soft degrees of freedom. Thus, thermal fluctuations have a
significant magnitude in soft matter system. Such fluctuations can be detected by a
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scattering experiment, in case the fluctuations are connected to the scattering contrast
(see Chap. 11 by A. C. Völker et al. and Chap. 12 by J. Daillant). Static scattering
experiments yield the root mean squared thermal amplitude of a fluctuation, while
dynamic scattering experiments (e.g. dynamic light scattering) provide the relax-
ation dynamics of a fluctuation, which in many cases is an exponential decay with a
relaxation time τ . The scattering experiment sets up the scattering vector q, which
defines the wave length 2π/|q| and the geometry of the fluctuations. At an interface,
it is of importance to distinguish the wavelength 2π/q‖ of a fluctuations within the
interface plane, described by the parallel component q‖ of q, and the fluctuation
extend perpendicular to the interface. Interface-bound fluctuations which penetrate
the bulk only to a limited extend are usually not well characterized by the perpen-
dicular component q⊥ of q, even if the complex nature of this parameter in interface
sensitive scattering experiments is taken into account [1]. Still, q⊥ determines the
weighting with which fluctuations with different profiles contribute to a scattering
experiment.

Most interfacial degrees of freedom are not soft and are only weakly excited by
the thermal energy. An example are capillary waves at a liquid-fluid interface. Since
a wave enhances the interface area, capillary waves are suppressed by the interface
tension γ , especially at short wavelengths (large q‖). For large wavelengths, it is the
density difference between the two phases which suppresses capillary waves and
yields a flat, horizontally oriented interface. For extremely low interface tension,
also capillary waves become soft and reach a sizable thermal amplitude [2]. In liquid
crystalline displays, it is the non-soft interface anchoring of the preferred nematic
orientation at the interfaces of a display device which provides the restoring force
for the bulk orientation.

A suitable soft matter system to elucidate and study concepts of interfacial sci-
ence and interfacial fluctuations are mixtures of polymers A and B, described by
the Flory-Huggins theory. Depending on the interaction strength between the two
polymers which form the mixture, there is either a one-phase, mixed system, or a
phase separation into two phases. The theory is usually applied for the description
of bulk phases, or phase de-mixing kinetics in the bulk. Here, we study interface
effects of the theory. The mixture is brought in contact with an interface of a third
material, and the wetting transitions between partial and complete wetting will be
investigated. For partial wetting, a non-zero contact angle is formed, while complete
wetting is characterized by contact angle zero. Furthermore, there are internal inter-
faces between the two phases. Depending on the width of the interface region, one
distinguishes a weak segregation limit (WSL) with a smooth transition, a strong seg-
regation limit (SSL) with a more sharp transition and even a super strong segregation
limit (SSSL) with a step-like concentration change. These cases are also important in
the description of block-copolymer systems, where A and B are not separate polymer
coils, but linked blocks of a common polymer coil.

For a theoretical description of soft matter systems, the application of mean-field
theories offers a first approach. These theories are often based on intuitive arguments.
The implemented physical mechanisms which determine the behavior of a theory
can thus be followed directly. The essential simplification in a mean field theory is

http://dx.doi.org/10.1007/978-3-319-24502-7_11
http://dx.doi.org/10.1007/978-3-319-24502-7_12
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the introduction of the mean field, which covers the multi-particle interactions of
the constituents on a simplified basis. These interactions are pre-averaged, and form
the mean field. The theoretical description of a complicated many particle system is
reduced in this way to the description of the single particle behavior in the presence
of the mean field. The single particle behavior is dependent on the strength of the
mean field. On the other hand, the strength of the mean field is a suitable average
over the single particle behavior. The combination of these two dependencies leads
to an equation, where the mean field is calculated as an average which depends on
the mean field. This closure of the mean field theory is the essential step, and its
solution is called a self-consistent solution. We can take advantage of the common
background of mean field theories for different soft matter classes and will apply
concepts which were developed for liquid crystals to polymer mixtures described by
the Flory-Huggins theory.

The mean field concept fails when the description by averaged interactions is
not appropriate. This situation happens when there are large fluctuations within a
system, especially very close to a second order phase transition, which is also called
a critical point. Another system known to have large fluctuations is a semi-dilute
polymer solution. Due to the large fluctuations, the concept of an averaged local
mean field is no longer appropriate and no longer successful. Very close to a critical
point, there is interesting physics which can be described by different theoretical
concepts, e.g. scaling arguments. By inverting the failure argument of mean field
theories into a positive criterion it can be stated, that apart from conditions very
close to critical points and other possible situations with strong fluctuations, mean
field theories describe a soft matter system usually rather well. This finding might
be traced back to a coincidence: for technical applications, we are mainly interested
in systems with soft matter properties around room temperature. The temperature of
the critical point Tcp is usually also in this range, let’s say around Tcp ∼ 300 K.When
we perform measurements with a temperature deviation ΔT from the critical point,
the relative deviation ΔT/Tcp typically remains small. A deviation of ΔT ∼ 60K
which would be an impressing range for a nematic phase might appear large at first
sight, however, the correlation length of fluctuations is still enhanced compared to the
molecular length scale by the proximity of the critical point ΔT/Tcp ∼ 0.2. Thus, a
theoretical description on the length scale ξ based on suitable averages of molecular
interactions is sufficient and successful. On this basis, it is expected that soft matter
interfaces can also be described successfully down to a length scale ξ by mean field
theories, as long as one does not approach the critical point too closely. Equivalent to
mean field theories is the Landau theory, or the squared gradient theory introduced
by van der Waals.

The outline of this contribution is as follows: as a start, Sect. 8.2 provides an intro-
duction to wetting transitions, with a general phase diagram of bulk and interface
phase transitions. As a second step, the Landau theory and the Flory-Huggins
theory are briefly introduced in Sect. 8.3, as examples of squared gradient theo-
ries. The Flory-Huggins theory describes a similar phase diagram, where, how-
ever, the temperature is replaced by the interaction parameter χ . For the equivalent
Cahn Hilliard theory, only few literature hints will be provided. Since inter-
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faces are boundaries of a bulk phase, a brief outline of bulk properties in Sect. 8.4
forms the basis of a discussion of interfaces, which will be treated in Sect. 8.5.
A general approach for the calculation of interface properties within the squared
gradient theories is illustrated for the Landau theory.

8.2 Wetting Transitions

The phase diagram of a binary mixture might serve as a roadmap to interfacial
phenomena. Such a mixture is composed of two constituents A and B. Volume
additivity is assumed and the volume V contains the volume fractionφ ofB and 1 − φ

of A. Attractive interactions are usually stronger betweenmolecules of the same kind
[3], and thus the internal energy contributionU to the free energyF = U − TS favors
a de-mixing of the mixture. The entropic contribution S, on the other hand, is higher
in a mixed state. Since the entropy is weighted with the temperature T , it wins at high
T and there is generally a mixed state at high T . At low T , interactions might lead
to a de-mixing. We follow the discussion of Bonn and Ross for the description of
wetting phenomena [4], and combine it with physical arguments provided by Strobl
[5]. The shape of the phase diagram is depicted in Fig. 8.1.
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Fig. 8.1 Phase diagram of a binary mixture. The bulk behavior is illustrated by black lines, while
the interface behavior is drawn in grey. The left two insets illustrate the cases of complete wetting
for a temperature above the wetting temperature Tw and partial wetting for T < Tw. The right inset
displays the difference between a thick and a thin interface layer, which occur at the left and the
right side of the pre-wetting line, respectively
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8.2.1 Bulk Behavior of the Mixture

Wefirst focus on the black lines and labels in Fig. 8.1which indicate the bulk behavior
of themixture. In the shaded one phase region, theA-Bblend is in themixed state. The
border to the de-mixed state is indicated by a line which is called binodal Tbin(φ).
A system prepared at a point (φ, T) which falls into the two phase region is not
thermodynamically stable. Phase separation sets in and two phases are created. One
phase is rich in A and the other rich in B. Entropy effects are still present and no
pure phases are created in general. The resulting compositions of the two phases are
found on the two points of the binodal curve which are at the temperature set by the
experiment. So, for a system prepared at point (φ, T) in the two phase region, one
finds the compositions of the two resulting phases by moving at the same T to the
left and to the right until the binodal is hit. In order to find the volumes occupied by
the A-rich phase and the B-rich phase, one can use the known compositions of the
de-mixed phases and determine the volumes of the A-rich phase and the B-rich phase
in a way so the total content of A and B match the original preparation conditions
(φ, T).

The spinodal line Tspin(φ) in the two phase range separates two regions with dif-
ferent mechanisms of phase separation. In the region between the binodal and the
spinodal, the mixture is meta-stable. It might remain mixed for a while, although
the mixed state is not the thermodynamic equilibrium. Phase separation occurs here
via nucleation and growth. A thermal fluctuation might lead to a large enough vol-
ume element with surplus of one component, let’s say A. This fluctuation acts as
a nucleation point which can initiate a phase separation of the whole system. The
formation of such a nucleus involves the creation of an interface between the A-rich
fluctuation and the remaining system. A small nucleus has an unfavorable interface
to volume ratio and so the fluctuation rather decays than initiates the phase separa-
tion. Only if the fluctuations produce a large enough nucleus it survives and initiates
macroscopic phase separation. Note, that this mechanism of meta-stability involves
interface effects between the nucleus and the surrounding. The meta-stability indi-
cates, that the de-mixing is a first order phase transition.

In the region below the spinodal, a mixture is unstable and decays immediately.
Concentration fluctuations of all wavelengths no longer have restoring forces, but are
even enhanced by thermodynamics which favors de-mixing for these unstable situa-
tions. The interplay of diffusion which requires more time to set up a concentration
fluctuation of large wavelength and thermodynamic driving force which increases
with the wavelength of a fluctuation results in a de-mixing, where the wavelength of
the fastest growing concentration fluctuation sets the length scale where de-mixing
starts. In later stages of de-mixing, there is a coarse graining and building up of better
defined interfaces between A-rich and B-rich regions.

The binodal and the spinodal meet in the phase diagram in the bulk critical point.
In this point, the de-mixing becomes a second order phase transition. It is here that
strong concentration fluctuations occur, since restoring forces are weak. In the region
very close to the critical point, mean-field theories are no longer suitable and scaling
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arguments can predict the right behavior. When approaching the critical point, the
difference in the A-rich phase and the B-rich phase gets smaller and finally vanish
(recall that the de-mixing process leads to an A-rich phase and a B-rich phase which
are the two points of the binodal at the same temperature as the original instablemixed
state; at the critical point, the compositions of these phases become identical). For a
temperature above the critical phase transition temperature, a distinction between the
two phases is no longer possible. The situation is in analogy to the critical point of
a single phase system. When the pressure is varied, the first order boiling transition
becomes second order at the critical pressure, and for higher pressure it is no longer
possible to distinguish liquid and vapor. The bulk critical point is of special interest
for experimentalists. At this value of φ, a T jump starting from the one phase region
to the two phase region directly reaches a composition where spinodal de-mixing
can be observed, without the necessity to cross a region of nucleation and growth in
the T -jump.

8.2.2 Interface Behavior of the Mixture

When the binary mixture gets into contact with a substrate—either the container, a
test sample, a colloidal particle, or a gas phase—either A or B molecules are prefer-
entially absorbed at the interface. The interface behavior of the mixture is included
to Fig. 8.1 in grey color [6], where we assume that the interactions result in a prefer-
able adsorption of A to the interface. The two phase region is split by the horizontal
wetting line, which separates regions of partial and complete wetting. For complete
wetting, a film of macroscopic thickness of one phase covers the interface—for our
assumption of preferential adsorption of A molecules it is the A-rich phase. For
partial wetting, the interface might be covered by a microscopic thin film of the com-
ponent with preferential adsorption, however, no homogeneous film of macroscopic
thickness evolves. Instead, drops of the preferentially adsorbed phase are observed
at the interface. The ‘Cahn argument’ established by Cahn in 1977 indicates, that
close to the bulk critical point there is always complete wetting [6]. The transition
of partial to complete wetting is an interface phase transition. Usually, it is of first
order, which implies a sudden, non-steady change in the thickness of the absorbed
layer from microscopic to macroscopic thickness. A further consequence of the first
order nature of this interface phase transition is the existence of meta-stable states,
so a meta-stable microscopic thin film and partially wetted interface for T > Tw or
a meta-stable macroscopically thick film for T < Tw (as a bulk analogy consider the
first order boiling transition of water, where superheating of water and supercooling
of vapor in the absence of nucleation sites are possible meta-stable states). Also a
thermodynamic contribution (beside pinning) for the difference in advancing and
receding contact angles of a liquid drop on a solid substrate can be discussed on the
basis of meta-stability. The Cahn argument was discussed by Bonn and Ross, who
also reviewed scientific papers describing a continuous wetting transition which can
be achieved under certain, suitable conditions.
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The preferential adsorption of one component to the substrate persists into the one
phase region. The typical size of thermal fluctuations of the local composition defines
the correlation length ξ . This length is small and compares to molecular dimensions
for a location (φ, T) far away from the bulk critical point, however, it increases and
diverges when approaching the bulk critical point. The preferential adsorption of one
component at a substrate can be compared to a bulk fluctuation, and so the thickness
of a resulting interface layer is equal to ξ . More exactly, an exponential concentration
profile is found at the interfacewith a decay length equal to ξ . Close to the bulk critical
point where fluctuations become enhanced, the preferential interface adsorption of
one component can thermodynamically stabilize a fluctuation, and an interface layer
with thickness larger than ξ evolves. For our assumption of preferential A adsorption
to the substrate, such thick layers are found on the B-rich side of the phase diagram
in Fig. 8.1 in case the temperature is larger than the pre-wetting temperature Tpw

and only slightly above Tbin(φ). The interface phase transition within the bulk one-
phase region between a thin film with thickness ξ and a thick film is called pre-
wetting transition. It can be either a first or second order transition, or a supercritical
change. When changing φ, the first order pre-wetting transition occurs for different
temperatures. The trace of these temperatures of first order pre-wetting transitions is
captured by the pre-wetting line. The pre-wetting line ends at the critical pre-wetting
point, where the pre-wetting transition becomes a second order phase transition. For
compositions φ closer to the bulk critical point and higher temperatures, there is a
super-critical continuous change from a thin to a thick layer. In Fig. 8.1, the starting
temperature Tpw of the pre-wetting line is distinguished from Tw. Usually, these two
temperatures coincide, and in this case the wetting transition is of first order. It turns
out, however, that for the Landau theory which is discussed as main example in
Sect. 8.5.2 a different behavior with Tw < Tpw is encountered. For this case, there is
no jump in the contact angle like in a first order wetting transition, but a continuous
change from zero to finite values.

A broad overview over the interface behavior of polymers also from the experi-
mental side is provided by the book of Jones and Richards [7]. Examples of experi-
mental and theoretical results of wetting on colloidal particles are found in references
[8, 9].

8.2.3 The Contact Angle

For completeness, the connection between contact angle and interface tension is
briefly repeated. The interface tension γ between two phases can be expressed either
as specific interface energy with the dimension energy per interface area, or as force
per width. The second option, which indicates the required force to increase the size
of an interface of fixed width is used to motivate the Young Dupre equation

γbS = γaS + γab cos(Θa). (8.1)
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Fig. 8.2 Balance of the
force per length of an A-rich
phase and a B-rich phase at a
solid substrate S

Here, γab, γaS, and γbS are the interface tensions between the A-rich phase and
the B-rich phase, the A-rich phase and the substrate, and the B-rich phase and
the substrate, respectively. For the usage of indices, we generally use capital
letters A and B for the pure A and B phase only, while the A-rich and the
B-rich phases are indicated by the lower case letters a and b. The contact angle
inside the A-rich droplet is denoted as Θa. Figure 8.2 illustrates the acting forces:
the force per width to the left composed of γaS and the component parallel to the
interface γab cos(Θ) is counter balanced by the force per area γbS to the right. Only
for γbS < γaS + γab, (8.1) can be used for the calculation of the contact angle, while
for γbS > γaS + γab complete wetting of the A-rich phase occurs. This relation is the
basis for the spreading coefficient of the A-rich phase

Sa = γbS − γaS − γab. (8.2)

For a positive value of Sa, a drop of A-rich phase will tend to cover the interface to the
substrate. For any contact of the B-rich phase with the substrate, the interface energy
can be reduced by replacing the interface of the substrate to B-rich phase by two
interfaces, one of them substrate to A-rich phase and the other one A-rich phase to
B-rich phase. In analogy to (8.2), a spreading coefficient Sb for the B-rich phase can
be defined in order to decide, if there is complete or partial wetting of the substrate by
theB-rich phase.Here,we always assume that theA-rich phase preferentially adsorbs
to the substrate. Bonn and Ross argue that the spreading coefficient in equilibrium
cannot attain positive values, since any contact of the B-rich phase will have been
eliminated after complete wetting [4]. Such a concept does not fit to the definition
(8.2), but rather an alternate quantity defined as S′

a = min (Sa, 0). We stick to (8.2)
as definition, interpret the spreading coefficient as thermodynamic tendency to wet
an interface, and tolerate positive values of Sa. Meta-stable partial wetting states and
pinning can lead to situations with positive Sa without complete wetting.

8.3 Squared Gradient Theories

There are several approaches to justify the phenomenological description of Sect. 8.2
and the roadmap of Fig. 8.1. On a mean-field level and for short ranged interactions,
they typically lead to an increment of a thermodynamic potential of the form:

ΔΩ[φ] =
∫

V

{
Δω (φ(r), T) + 1

2κ [∇φ(r)]2
}
d3r. (8.3)
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Here, ΔΩ is an increment of the grand canonical potential and Δω is its density,
so the grand canonical potential increment of a volume element divided by the size
of this element. The free energy increment ΔF can be expressed by the free energy
density Δf and the squared gradient of φ similar to (8.3). In the description based on
increments ΔΩ or ΔF it is not required, to consider other contributions which are
independent of φ. Any constant background terms in addition to these increments
do not affect the subsequent calculations which are based on derivatives of ΔΩ or
ΔF. The result of (8.3) depends on the composition profile φ(r), as indicated by the
squared brackets on the left side. A system optimizesφ(r) for aminimal value ofΔΩ

or ΔF. A brief introduction to the mathematical tools to perform this optimization
is provided in the appendix, Sect. 8.8.

Interactions between neighboring volume elements are considered by the second
term in the integral (8.3), which involves a phenomenological elastic constant κ .
In bulk, a system in thermodynamic equilibrium is in a homogeneous state, i.e. a
state with a constant value of φ for all locations r and thus vanishing gradient ∇φ

everywhere. Deviations from a homogeneous φ result in a higher value of ΔΩ . The
increase in ΔΩ for inhomogeneous states is described by the square of ∇φ in (8.3).
The square can be considered as the second term in a Taylor expansion, where
the zero and first order terms vanish in order to match the condition of minimum
bulk value of ΔΩ for a homogeneous state. Since only short range interactions
are assumed in the theory, higher terms in the Taylor series can be neglected.
In different fields, (8.3) is addressed either as Landau-Ginzburg functional [5],
or squared gradient theory [4], which is traced back to van der Waals. This
section provides an overview over two famous approaches which lead to (8.3). A
third approach with very similar arguments is the Cahn Hilliard theory [10–12].
A historical overview and an application to simulations is described by Lamorgese
et al. [13].

8.3.1 Landau Theory

Landau Free Energy Density The canonical approach to statistical mechanics (see
also Chap.7 by W.J. Briels and J.K.G. Dhont) starts with the calculation of the
partition function Z , and the free energy F results as

F = −kBT ln(Z). (8.4)

Here, kB is the Boltzmann constant. When the system is divided to cells, and Ei

denotes the energy contained in cell i, Z reads [14]

Z =
∑

i

exp

{
−Ei(φ)

kBT

}
. (8.5)

http://dx.doi.org/10.1007/978-3-319-24502-7_7
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Instead of the sum over the cells, one can integrate over the distribution ρ of φ values
in the system

Z =
∫

dφ ρ(φ) exp

{
−Ei(φ)

kBT

}
. (8.6)

An improvement of (8.6) takes interactions between the cells into account. Due to the
assumed short range nature of the interactions, it is sufficient to consider interactions
between neighbouring cells. The interaction between two neighboring cells scales
with the difference of their φ values divided by the cell size. For neighboring cells
with identical φ, the interaction is zero, while a deviation in φ leads to a positive
contribution. In the limit of infinitesimal small cell size, this parameter reduces to
the derivative ∇φ of φ(r). The weighted sum over different profiles φ(r) is achieved
by a functional integration Dφ(r) over different profiles φ(r), which leads to

Z[φ] =
∫

Dφ(r) exp
{
− 1

kBT

∫
V
d3r
[
f (φ(r), T) + E′(φ,∇φ, T)

]}
. (8.7)

The function

f (φ, T) = E(φ) − kBT ln(ρ(φ)), (8.8)

which is called Landau free energy density, takes energetic contributions E(φ) and
entropic contributions kBT ln(ρ(φ)) into account. Inhomogeneities are considered
in (8.7) by the gradient term E′(φ,∇φ, T). The latter can be expressed as a Taylor
series in ∇φ. The zero order term of this series vanishes, as the interaction between
neighboring cells with the same φ is zero. The first order term as well as higher odd
order terms can be excluded by a symmetry argument. If they would have a non-zero
value, it could be reverted by mirroring the coordinates. Since the thermodynamic
properties do not depend on the choice of the coordinates, such contributions can be
excluded. For weak gradients, E′(φ,∇φ, T) is usually reduced to the second order
term 1

2κ(∇φ)2, which leads to the squared gradient term in (8.3). The elastic constant
κ might depend on φ and T .

It is now required to show that F in the conventional equation (8.4) and the
integration over f have the same information content. With this equivalence, it is
possible to consider f as a free energy density and to discuss a system based on
f instead of F. The exponential function in (8.7) is at maximum for the value of
φ which yields the minimum value of f . The maximum is very sharp, since the
integration in the exponential function is over V , which can be made very large in
the thermodynamic limit. Any deviation from the minimum of f is multiplied by a
large volume factor and weighted exponentially. For this reason, the sharp maximum
of the exponential function and thus the minimum of f dominate the integration in
(8.7) and thus determine the thermodynamic behavior of the system.

As a quantitative example, we consider the homogeneous mixed bulk state
described by the equilibrium value φeq. It is not required to consider the squared
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gradient term in the discussion of the bulk equilibrium, since this term increases f
for inhomogeneous states, which are thus away from the minimum of f . Due to this
simplification, the functional integration in (8.7) is only over constant paths and thus
reduces to a conventional integration. An expansion of f close to the minimum reads

f (φ) ≈ f (φeq) + 1

2

d2f

dφ2

(
φ − φeq

)2
. (8.9)

Since φeq is the equilibrium value, there is no linear term in the expansion (8.9).
Inserting (8.9) into (8.7) results in

Z =
∫

dφ exp

[
− V

kBT

(
f (φeq) + 1

2

d2f

dφ2

(
φ − φeq

)2)]
. (8.10)

The integration in (8.10) contains a Gauss function with maximum at φeq which can
be made arbitrarily narrow in the thermodynamic limit V → ∞. The integration
leads to a constant multiple cf (φeq) of f (φeq), and a combination of (8.4) and (8.10)
results in F = V f (φeq) + ln(c). The effect of c is just a shift of the reference point
of F which has no influence on thermodynamic properties, and thus, F and f have
the same information content.

Landau Assumption Within the Landau approach, the transition between an
ordered, interaction dominated state at low T (here, a state within the two phase
region) and a disordered, entropy dominated state at high T (here, a state in the one
phase region) is considered as an order to disorder transition. In many applications
of the Landau approach, the disordered state has a higher symmetry, since sym-
metry operations like rotations, translations, or reflections leave the homogeneous,
high temperature, disordered phase unchanged. The ordered state, on the other hand,
might be not invariant under one of these symmetry operations. An example are
liquid crystals, where the isotropic phase has complete rotational symmetry, while
the nematic phase has only cylindrical symmetry. The theoretical description of the
phase transition is usually based on an order parameter, which vanishes in the dis-
ordered state and is non-zero in the ordered state. In case of different symmetries of
the two phases, it is possible to construct order parameters based on the symmetry
operations. With the Landau assumption, f (φ) is expressed as a power series in the
order parameter, and predictions for the phase transition and correlation length can
be derived by simple analysis of the behavior of f (φ). We will discuss an example
in Sect. 8.5.2.

8.3.2 Flory-Huggins Theory

The theoretical description of polymer mixtures (also called polymer blends) known
today asFlory-Huggins theorywas developed independently byHuggins and Flory
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VB, FB
VA, FA VA+VB, FAB

Fig. 8.3 Illustration of the Flory-Huggins theory, in which polymers on a lattice are described.
The free energy of mixing is the free energy difference between a configuration where polymers
can mix (right side) and a situation where the two polymers are in separate volumes (left side)

[15, 16]. In its original form, it describes polymers on a lattice, as illustrated in
Fig. 8.3. Strobl presents this theory in the form of a mean field theory with only
limited connections to the lattice background and then transforms it to the form of a
Landau theory [5]. We briefly summarize his approach to provide a second path to
squared gradient theories.

Flory-Huggins as Mean Field Theory The polymer blend is composed of nA
polymer chains of A monomers with chain length NA and nB polymer chains of B
monomers with chain length NB. As a remainder of the original lattice theory, a cell
volume vc and the number of nearest neighbors zeff enter the theory. So, NA and NB

are not necessarily the number of chemical identical repeat units in a polymer chain.
Instead, they are defined as the overall volume of a polymer chain divided by vc.
Since there are no restrictions for the choice of vc, it is possible to set it equal to the
volume of a chemical A monomer vA. With this choice, NA becomes the number of
chemical repeat units in an A chain. With the volume of a chemical B monomer vB
and the number of chemical repeat units in a B chain N ′

B, the adapted number of B
monomers for the Flory-Huggins description results as NB = N ′

BvB/vA. Based on
the assumption of volume additivity in the A B blend, the volumes VA = nANAvc
and VB = nBNBvc occupied by A and B chains, respectively, and the total volume
V = VA + VB are defined. The volume fraction results as 1 − φ = VA/V , with φ =
VB/V . The parameters are not independent, but fulfill the relations

nA = V (1 − φ)

vcNA
and nB = V φ

vcNB
. (8.11)

A prediction of the mixing behavior of the blend is based on the free energy of
mixing.1

1Strobl uses in his book the term free enthalpy instead of free energy, which is employed here. In
order to describe experiments theoretically, the free enthalpy would be more appropriate, since
experiments are in most cases performed at constant pressure, not at constant volume. However, the
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ΔFmix = FAB − (FA + FB) . (8.12)

Here, FAB is the free energy when the A and B chains are in a common volume
VA + VB, while FA and FB are the free energies for the states when the A chains are
located in volume VA, separated from the B chains which occupy the volume VB.
The two situations are depicted in Fig. 8.3.

Afirst energetic contribution toΔFmix arises fromA-B contacts, which are formed
in the mixing process. The attraction between unlike monomers is usually weaker
than between the same monomers [3], so the total cohesive energy is weaker in the
mixed state. Since the cohesive binding energy enters the free energy with a negative
sign, the difference of (8.12) results in a positive energy contributions EAB for each
A-B contact. From the point of the lattice theory, there are (1 − φ)V/vc cells which
contain an A monomer. Each of them has zeff neighboring cells, and on average
φzeff neighboring cells which contain a Bmonomer. Similarly, one can start from the
total number of cells with B monomers φV/vc and determine the average number
of neighbors (1 − φ)zeff of each B cell which contain an A monomer. When both
contributions are added, the number of A-B contacts is counted twice, so we have
to divide by a factor 2. As a result, the total energy contribution from A-B contacts
becomes

ΔU = V

vc
φ(1 − φ)zeffEAB = V

vc
φ(1 − φ)χkBT . (8.13)

The second form of (8.13) introduces the Flory-Huggins interaction parameter χ ,
which expresses the total interaction energy of a cell zeffEAB in units of the thermal
energy kBT . The calculation of the average number of A-B contacts in the derivation
of (8.13) is a typical mean field argument. The presence of A and B monomers
is considered in an averaged way. In case of strong fluctuations, the A monomers
occupy correlated regions in space, as also the B monomers do. For such a case,
(8.13) over estimates the number of A-B contacts, and the mean field description
fails.

A second contribution to ΔFmix stems from the increase of translational entropy
of the chains due to the larger total volume VA + VB in the mixed state, instead of
only VA for the A chains and VB for the B chains before mixing. It is calculated in
the same way as the translational entropy of an ideal gas and reads

TΔS = kBT

(
nA ln

V

VA
+ nB ln

V

VB

)
. (8.14)

(Footnote 1 continued)
Flory-Huggins theory contains the volume V as explicit parameter, not the pressure P. Therefore,
it is formally a free energy, not a free enthalpy. Since the volume change of polymer blends upon
mixing or heating is usually negligible, there is basically no difference between the free energy and
the free enthalpy.
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With VA/V = 1 − φ, VB/V = φ, and (8.11), it is possible to eliminate nA, nB, VA,
and VB for φ, NA and NB. The total free energy of mixing ΔFmix = ΔU − TΔS
results as combination of (8.13) and (8.14)

ΔFmix = kBT
V

vc

[
φ

NB
ln(φ) + 1 − φ

NA
ln(1 − φ) + χφ(1 − φ)

]
. (8.15)

In addition to translational entropy, polymer chains have also configurational entropy.
In the Flory-Huggins theory it is assumed, that the configurations for the polymer
chains are not affected by the surrounding chains and remain the same for the un-
mixed and the mixed state. As a consequence, the configurational entropy cancels
in the difference of (8.12). In experiments on real polymer systems, in contrast,
the mixing might have an effect of the configurational entropy of polymers. It is
considered as an entropic contribution to χ . In (8.13), χ was introduced as a purely
energetic contribution χ = zeffEAB/(kBT). A completely energetically determined
χ thus has a T−1 temperature dependence, while a deviation from this temperature
dependence hints to contributions due to configurational entropy. More details can
be found in [5].

The translational entropy contribution of A and B chains in (8.15) is divided
by the degrees of polymerization NA and NB, respectively. Each chain has only 3
translational degrees of freedom, no matter how many monomers it contains; most
entropy is assigned to conformational entropy of the chains, which, however, does
not enter the free energy increment (8.15). As a consequence, the tendency of trans-
lational entropy to induce mixing is reduced, and energetic interactions dominate
in cases of long chains, leading to a de-mixed blend. Only for polymers with very
similar monomers or specific interactions between A and B like H bridges, mixing
might be favored. A phase diagram similar to Fig. 8.1 can be drawn for polymer
mixtures, with χNA on the y axis instead of T . For χ ∼ T−1, the phase diagram is
inverted, with a mixed state at low values of χNA and a two phase region at high
values. For symmetric polymer mixtures (NA = NB), the critical point is at φ = 0.5
and χNA = 2.

Transformation to a Squared Gradient Theory The resulting mean field formula
(8.15) allows predictions of the behavior of the homogeneous bulk phase and the
transition from a mixed to a de-mixed state. There is, however, no information con-
tained about the spatial behavior. So, it is not possible to calculate from (8.15) the
amplitude of bulk fluctuations with finite wavelength, or the wetting behavior at an
interface. In both cases there are concentration gradients involved. For such kind
of calculations of local properties, it is required to move from the total free energy
(8.15) to a free energy density

Δfmix = ΔFmix

V
= kBT

vc

[
φ

NB
ln(φ) + 1 − φ

NA
ln(1 − φ) + χφ(1 − φ)

]
. (8.16)
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Fig. 8.4 Illustration of
interactions between
different volume elements,
where each element is
described by the
Flory-Huggins free
energy density
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This density is not yet sufficient for a description, since also interactions of neigh-
boring volume elements need to be considered. The situation is sketched in Fig. 8.4
with an argument very similar as for the justification of (8.7). The values of the free
energy in cubic volume elements of side length d is calculated on the basis of (8.16),
and interactions between neighboring volume elements i and j are considered by an
additional term dκ/2(φi − φj)

2. This term vanishes if elements i and j have identical
compositions (φi = φj), while for deviations and thus inhomogeneous concentra-
tion profiles it provides a positive free energy penalty. The lattice model free energy
calculation reads

ΔF =
∑

i

⎧⎨
⎩Δfmix (φi, T) d3 +

∑
neighbors j

d

2
κ(φi − φj)

2

⎫⎬
⎭ . (8.17)

In the limit d → 0, the interaction term becomes a squared gradient, and the free
energy can be written as

ΔF =
∫

V

{
Δfmix (φ(r), T) + 1

2κ [∇φ(r)]2
}
d3r. (8.18)

Equation (8.18) shows the structure of the squared gradient equation (8.3), with the
explicit equation2 (8.16) for Δfmix (φ, T).

8.4 Bulk Behavior

A brief discussion of bulk properties provides the foundation for the description of
interfaces. An excellent extended presentation of bulk properties, e.g. phase separa-
tion mechanisms is found in the book of Strobl [5].

2The formal difference between the total free energy density in (8.3) and the free energy increment
to a constant background is of minor importance, as any calculation is based on derivatives of the
free energy, where any constant shift of the energy scale cancels out.
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Fig. 8.5 Free energy (a) and grand canonical potential (b) for the Flory-Huggins theory for
α = 0.5 and average composition φ̄ = 0.55. The filled circles mark the equilibrium compositions

Bulk Phase Behavior Bulk phases in thermodynamic equilibrium are homogeneous.
So, the gradient term in (8.4) vanishes, and the minimum of the free energy reduces
to minF = ∫V min[f (φ(r), T)]d3r = min[f (φ(r), T)]V . Thus, a discussion of the
free energy density allows for the prediction of the bulk behavior. For polymer blends,
we insert the length ratio of the two polymers α = NA/NB and rewrite (8.16) as

Δfmix = kBT

NAvc
[αφ ln(φ) + (1 − φ) ln(1 − φ) + χNAφ(1 − φ)] . (8.19)

While α is set by the choice of the sample polymers, the right hand side of (8.19)
is a function of φ which depends on the parameter χNA which changes with T .
Figure 8.5a shows the behavior of Δfmix for the case α = 0.5 and different values of
χNA. A sample preparation with the average volume fraction φ̄ = 0.55 is illustrated
in the figure. This value of φ̄ does not match the minimum of Δfmix, and it appears
that the system can lower its free energy by a change of φ. However, since the average
volume fraction is fixed to the value φ̄ by sample preparation, a lowering of φ in
one region of space to a value φ1 needs to be compensated by an enhancement of
φ to φ2 in another region of space. In order to find out if such a separation of two
phases in two volumes V1 and V2 is thermodynamically stable or not, its averaged
free energy needs to be calculated and compared with the free energy density of
the mixed system. With V1 + V2 = V and the fixed average φ̄V = φ1V1 + φ2V2,
the averaged free energy density ¯Δfmix = {Δfmix(φ1)V1 + Δfmix(φ2)V2}/V can be
written as

¯Δfmix
(
φ̄
) = Δfmix(φ1) + φ̄ − φ1

φ2 − φ1

[
Δfmix(φ2) − Δfmix(φ1)

]
. (8.20)

This equation describes a straight line which connects the two points (φ1,Δfmix(φ1))

and (φ2,Δfmix(φ2)) which are lying on the graph of Δfmix (φ). For small values of
χNA, Δfmix(φ) in Fig. 8.5a is a convex function and it is not possible to find any
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pair (φ1, φ2) of compositions embracing φ̄ which lead to a connecting line with
¯Δfmix
(
φ̄
)

< Δfmix
(
φ̄
)
. The system is thermodynamically stable as a mixed phase.

For higher values of χNA, on the other hand, Δfmix(φ) becomes a concave function
in the middle of the φ range. The total free energy of the blend is diminished by the
transition from a mixed state to a two phase state.

The reduction of Δfmix by phase separation is illustrated in Fig. 8.5a for the case
χNA = 2.2. Sample preparation for the selected composition φ̄ = 0.55 is marked
by the symbol ×. A separation of two phases of composition φ1 and φ2 has a lower
average free energy density, since the line connecting these two compositions at φ̄ is
below Δfmix. A further reduction of Δfmix is possible until the two phases reach the
compositions φa and φb, where the connecting line is the common tangential line to
Δfmix(φ). The global analysis of the stability of the mixed state for different values
of χ and the resulting values of φa for the A-rich phase and φb for the B-rich phase
can be used to determine the binodal in a phase diagram similar to Fig. 8.1.

A local criterion if Δfmix is convex or concave and thus if a mixed state is stable
or unstable is the second derivative ∂2Δfmix

∂φ2 . This quantity can be considered as a
potential which provides restoring forces to composition fluctuations. Only as long
as ∂2Δfmix

∂φ2 > 0 there is a tendency to restore the previous composition φ. The spinodal

in a phase diagram similar to Fig. 8.1 is determined by the root of ∂2Δfmix

∂φ2 for different
values of χ , so by the point where restoring forces vanish. The binodal and the
spinodal do not match. A composition might be meta-stable and withstand to small
fluctuations, corresponding to the local criterion. Larger fluctuations, however, test
if Δfmix has convex behavior for the whole φ range.

From a thermodynamics point, the identical slopes at φa and φb indicate that the
B polymers have the same chemical potentials μB in both phases. With (8.11), the

definition μB =
(

∂F
∂nB

)
T ,P,nB

can be rewritten as

μB = vcNB
∂Δfmix

∂φ
, (8.21)

which is the slope of the tangential line in Fig. 8.5a. Similarly, the chemical potential

μA of the A chains can be expressed as μA = vcNA

(
∂Δfmix

∂(1−φ)

)
, which can be rewritten

in the fromμA = −αμB. Also the A chains have the same chemical potential in both
phases.

By a subtraction of the common tangential line, φa and φb become the minima of
the resulting function. A graphwith such functions is shown in Fig. 8.5b. For theχNA

values which describemixed states, the tangential line at the preparation composition
φ̄ is used for the subtraction. The subtraction of the tangential line corresponds to the
Legendre transformation Ω = F − μBN of the free energy to the grand canonical
potential Ω . The corresponding Legendre transformation ofΔfmix to the increment
in the grand canonical potential density Δωmix reads

Δωmix = Δfmix − μBφ. (8.22)
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Δωmix can be considered as the starting point for the description of the interface
behavior and of fluctuations. The grand potential allows for a variation in the number
of particles, which is not a constant for the interface. Unfortunately, the calculation
of φa and φb which determine the common tangent to Δfmix require numerical cal-
culations for most cases. So we do not have an explicit formula for the subtraction
in (8.22) and thus Δωmix. An exception is the symmetric case (NA = NB, so α = 1),
whereμA = μB = 0 and thusΔωmix = Δfmix with the explicit formula (8.16). Some
calculations require ∂2Δωmix

∂φ2 , and we can use ∂2Δfmix

∂φ2 instead, since the subtraction of a
linear function in (8.21) does not alter the second derivative. Further, by construction
∂Δωmix

∂φ
= 0 for the equilibrium bulk composition φ. Thus, a second order Taylor

expansion of Δωmix around the equilibrium bulk composition φeq reads

Δωmix(φeq + Δφ) ≈ Δωmix(φeq) + 1

2

∂2Δfmix

∂φ2

∣∣∣∣
φ=φeq

Δφ2. (8.23)

8.4.1 Bulk Fluctuations

Fluctuation Amplitude Fluctuations are often discussed in connection with scat-
tering experiments. These experiments are not restricted to the investigation of the
sample structure, they are also sensitive to fluctuations. Experimental parameters
determine the scattering vector q, and the experiment detects a variation of the scat-
tering contrast with the shape of a sine wave of wavelength 2π/ |q|. Such a contrast
wave is produced by a sine concentration fluctuation in a polymer blend, and we
can use Δωmix to determine the grand potential penalty for such a fluctuation. Based
on the equipartition theorem which states that each degree of freedom is thermally
excited by 1

2kBT , the root mean squared (rms) amplitude of the fluctuation results by
equating this penalty with 1

2kBT . With (8.18) and (8.23), a small wave fluctuation

φ((x)) = φeq + Δφq cos (q · x) . (8.24)

with amplitude Δφq and wave vector q around φeq results in the grand canonical
potential increment

ΔΩ = V Δωmix(φeq) + 1

2
V

[
∂2Δfmix

∂φ2

∣∣∣∣
φ=φeq

+ κq2

] ∣∣Δφq

∣∣2. (8.25)

While the first term on the right side is the grand canonical potential increment with-
out fluctuation, the second term describes the penalty for the fluctuation. Equating
the average of this penalty to kBT/2 yields
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〈∣∣Δφq

∣∣2〉 = kBT

V

[
∂2Δfmix

∂φ2

∣∣∣
φ=φeq

+ κq2

] . (8.26)

The neglecting of higher orders in
∣∣Δφq

∣∣ in (8.26) is usually justified for small
thermal fluctuations, as long as the system is not very close to the conditions of the
critical point. In general, fluctuations at all wavelengths and thus all q values are
present simultaneously with amplitudes Δφq(q). Thus, a modified version of (8.24)
contains a sum3 over all q values. Inserting such a sum into (8.23) results in a double
sum, which looks complicated at first. However, the fluctuations for different q are
orthogonal, so the cross terms vanish in the volume integration, and an equation
similar to (8.26) with a single sum of squared amplitudes for all q values results.

The Bulk Correlation Length of Fluctuations In Sect. 8.1, the correlation length
of bulk fluctuations ξ was discussed as the relevant length scale in the description of
soft matter. For a derivation of ξ , we start from the scattering amplitude Ã [17] (see
Chap. 11 by A. C. Völker et al. and Chap. 12 by J. Daillant)

Ã = 1

V

∫
V

Δφ(r)eiq·rd3r. (8.27)

The scattering intensity is proportional to the time averaged squared modulus〈∣∣Ã∣∣2〉 = 〈ÃÃ∗
〉
, where Ã∗ is the complex conjugate of Ã. An example is a light

scattering experiment, where the scattering amplitude is the scattered electrical field
E, and the scattering intensity results as absolutemodulus |E|2.With (8.27), the inten-

sity
〈
ÃÃ∗
〉
results as a double integration over r and r′. In an integral substitution r′

is replaced by the difference Δr = r′ − r, and the scattering intensity becomes

〈∣∣Ã∣∣2〉 = 1

V

∫
V
d3r

1

V

∫
V
d3Δr 〈Δφ(r)Δφ(r + Δr)〉 eiq·Δr. (8.28)

The integration over d3r is a spatial averagingof the starting point r. It canbe absorbed
to the average 〈.〉, which becomes an average over space and time. What is left is a
Fourier transform in Δr of the correlation function 〈Δφ(r)Δφ(r + Δr)〉. Due to
the isotropy of the system, the correlation function does not depend on the direction of
Δr, but only on itsmagnitudeΔr = |Δr|. The change to polar coordinates (θ, ϕ,Δr)
yields

〈∣∣Ã∣∣2〉 = 1

V

∫ π

0
sin(θ)dθ

∫ 2π

0
dϕ
∫ ∞

0
dΔr Δr2 〈Δφ(r)Δφ(r + Δr)〉 eiqΔr cos(θ).

(8.29)

3For a finite scattering volume the fluctuations form a Fourier series, not a Fourier integral
transformation.

http://dx.doi.org/10.1007/978-3-319-24502-7_11
http://dx.doi.org/10.1007/978-3-319-24502-7_12
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Here, q = |q| is used. The integrations over ϕ yields a factor 2π , and the integration
over θ can be performed after the substitution u = cos(θ). With the complex notation
sin(x) = [exp(ix) − exp(−ix)]/(2i) of the sin function, the result reads

〈∣∣Ã∣∣2〉 = 4π

V

∫ ∞

0
dΔr Δr2 〈Δφ(r)Δφ(r + Δr)〉 sin(qΔr)

qΔr
. (8.30)

For a connection betweenΔφq and Ã, we insert (8.24) in the definition of Ã (8.27) and
consider a scattering volume V = LxLyLz with q in x direction. With the Euler rela-
tion exp(iqx) = cos(qx) + i sin(qx) and sin2(qx) = 1

2 [1 − cos(2qx)], the integration
reads

Ã = 1

LyLxLz

∫ Lx

0

∫ Ly

0

∫ Lz

0

[
φeq + Δφq cos (qx)

] [
cos(qx) + i sin(qx)

] = 1

2
Δφq.

(8.31)

Thus
〈∣∣Δφq

∣∣2〉 = 4
〈∣∣Ã∣∣2〉. In order to proceed, we use the correlation function

〈Δφ(r)Δφ(r + Δr)〉 =
〈∣∣Δφr

∣∣2〉 ξ

Δr
exp

[
−Δr

ξ

]
, (8.32)

with the correlation length ξ . The local mean squared fluctuation amplitude
〈∣∣Δφr

∣∣2〉

at a fixed point in space in (8.32) and the mean squared amplitude
〈∣∣Δφq

∣∣2〉 of a not
localized, wave-like fluctuation for selected q in (8.24)–(8.26) are distinguished by
their different index. With (8.31) and (8.32), the integration in (8.30) yields

〈∣∣Δφq

∣∣2〉 = 4
〈∣∣Ã∣∣2〉 = 16πξ 3

〈∣∣Δφr

∣∣2〉

V (1 + q2ξ 2)
. (8.33)

A comparison of (8.33) with (8.25) reveals that these equations have the same q
dependence. From this equivalence in q space one can conclude, that (8.32) has
the correct form for the correlation function in real space for Δωmix described by
(8.23), since the mapping by the Fourier transform is unique. A comparison of the
coefficients connects the thermodynamic description in (8.25) with the scattering
description of (8.33). It yields

ξ =
√√√√ κ

∂2Δfmix

∂φ2

∣∣∣
φ=φeq

(8.34)

〈∣∣Δφr

∣∣2〉 = kBT

16πκ

∂2Δfmix

∂φ2

∣∣∣
φ=φeq

κ
= kBT

16πκξ
. (8.35)
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From (8.32), (8.34), and (8.35), the correlation volume Vc of a localized fluctuation
results as

Vc =
∫

V
d3r 〈Δφ(r)Δφ(r + Δr)〉 =

〈∣∣Δφr

∣∣2〉 ξ 3 = kBT

16π ∂2Δfmix

∂φ2

∣∣∣
φ=φeq

. (8.36)

From a conceptual point, the pole atΔr = 0 in the correlation function (8.32) appears
strange, and might not reflect a physical reality. On the other hand, Vc remains well
defined, so fluctuations remain limited within the squared gradient theory.

The Correlation Length for the Flory Huggins Theory In order to relate the
previous paragraph to the example of polymer blends, we follow the discussion of
Strobl for the connection of κ to the sizes of the A and B polymer chains [5]. In
scattering experiments, the overall size of an object is determined in the range of
small q. This limit is called the Guinier range, and the evaluation of the size of
an object is based on either a Zimm plot or a Guinier plot. We use here the Zimm
presentation of the small q limit, which reads4

〈∣∣Ã∣∣2〉−1
(q2) ≈

〈∣∣Ã∣∣2〉−1
(q2 = 0)

[
1 + 1

3
q2R2

g + O(q4)

}
. (8.37)

Here, Rg is the radius of gyration of an object. For an ideal polymer chain with N
segments, it reads R2

g = 2
3 l2psN [5]. The persistence length lps describes the decay

exp(−l/lps) of directional correlation when following a polymer coil. While for stiff
chains lps is large, it is small for flexible polymers. For very small φ, a polymer blend
contains only a few B chains in a background of mainly A chains. The scattering
contrast to the background is thus given by the B chains, and the size of B chains RgB

is detected. With similar arguments the detection of the size of the A chains RgA for
φ values close to 1 is justified. So, we need to evaluate (8.37) for the Flory Huggins
case, then consider the limits of vanishing B and A content and match the resulting

R2
g values with R2

gB and R2
gA, respectively. With (8.31) we can replace

〈∣∣Ã∣∣2〉−1
by〈∣∣Δφq

∣∣2〉−1
and apply (8.26), which can be evaluated for the Flory Huggins case with

(8.19):

〈∣∣Ã∣∣2〉−1 = 4
〈∣∣Δφq

∣∣2〉−1 = 4V

kBT

{
kBT

vc

[
1

φNB
+ 1

(1 − φ)NA
− 2χ

]
+ κq2

}
.

(8.38)

Beside the χ term, the q independent first part has a φ−1 contribution which diverges
and thus dominates in the limit of small φ, and a (1 − φ)−1 contribution which

4For data gained from a real experiment, the measured intensity needs to be corrected by subtracting
the background scattering of the solvent.
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diverges and dominates in the limit φ → 1. In order to realize the required R2
g values

in the two limits, κ is also composed of two terms with the same divergences:

κ = kBT

vc

[
1

φNB

R2
gB

3
+ 1

(1 − φ)NA

R2
gA

3
− 2χ

r20
3

]
. (8.39)

The interaction term −2χr20/3 is added in a similar way as in (8.38), since for high
values of NA and NB it exceeds the non-divergent term in the two limits φ → 0 and
φ → 1, and thus becomes the major correction term. Strobl and Jones provide an
additional justification of (8.39) based on the random phase approximation [5, 7].
Jones ascribes r0 to the range of interactions. For a symmetric blend with NA = NB

and RgA = RgB, the only length scale to define ξ is RgA = RgB. Thus, ξ needs to
become φ independent in this case, which is achieved for r0 = RgA = RgB. It appears
that a φ dependent average of RgA and RgB is a more suitable value for r0.

The random phase approximation is not restricted to the small q limit, but also
predicts the high q behavior, where the internal structure of a chain is resolved. We
do not follow this route, since the involved higher powers in q2 in the scattering
description correspond in the real space equations either to higher powers of the gra-
dient in φ or to higher order derivatives,5 which are no longer compatible with the
squared gradient approach discussed here. The restriction indicates a limitation of
calculations based on the squared gradient theory: the predicted width of an interface
profile scales with ξ and thus remains comparable to RgA and RgB. Such a situation
corresponds to the weak segregation limit, discussed in the introduction. Sharper
interface profiles would require higher order powers of the gradient or higher deriva-
tives. For other systems different from polymer blends, where no additional structure
is expected on a scale smaller than ξ , the limitation of the squared gradient theory
might be less severe.

8.4.2 Simple Dynamics

The description of the fluctuation amplitude by (8.26) has the same form as a ther-
mally excited harmonic oscillator, where the potential is formed by the second order
approximation (8.23) of Δωmix and an additional q2 dependent contribution due to
the elastic constant κ . The discussion in Sect. 8.4.1 thus is a q dependent version
of simple harmonic oscillator physics. The analogy can be extended to the effect of
external fields h, which is considered by adding a linear term hφ to Δωmix in (8.23).
As long as the second order approximation (8.23) holds and thus the potential of
the equivalent oscillator remains harmonic, the shift of the new minimum position
which describes the thermal equilibrium in the presence of h away from the origi-
nal minimum position is linear in h. This description of external fields is the basis

5See the transition from (8.23) to (8.25), where the squared gradient in the real space description
(8.23) transforms to the factor q2 in the q space picture (8.25).
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of the linear response theory (see e.g. [18]). It is often useful for the description
of experimental results by linear response coefficients, which might be set up on a
phenomenological basis.

In this brief section, the harmonic oscillator analogy is used for a simple descrip-
tion of the relaxation dynamics. The differential equation of an equivalent damped
harmonic oscillator reads

m
d2x

dt2
+ b

dx

dt
+ Kx = 0. (8.40)

Here, m is the mass of a particle, b > 0 its friction, and K > 0 the constant of the
spring which forms the harmonic potential U = 1

2Kx2. Thermal fluctuations in soft
matter systems are usually over-damped and inertia effects are negligible. Thus we
can cancel the m term. The remaining differential equation is of first order and the
solution is an exponential decay:

x(t) = x0 exp

[
−K

b
t

]
. (8.41)

When we apply the analogy to a soft matter system, x corresponds to the amplitude
Δφq of a bulk mode with fixed wave vector q or an eigen-mode of an interface
fluctuation. It is excited thermally6 and decays exponentially. Beside the equivalent
spring constant which is twice the prefactor of

∣∣Δφq

∣∣2 in (8.25), we need a friction
factor b, which might also have a q dependence in general. One technique to follow
the relaxation of a fluctuation is dynamic light scattering, where the exponential
decay of a fluctuation turns up in the time auto correlation function as

〈
Δφq(t)Δφq(t + Δt)

〉 = 〈∣∣Δφq

∣∣2〉 exp
{

− V

b

[
∂2Δfmix

∂φ2

∣∣∣∣
φ=φeq

+ κq2

]
Δt

}
.

(8.42)

A simple example are particles with no interactions under highly dilute conditions,

so the thermodynamic restoring force ∂2Δfmix

∂φ2

∣∣∣
φ=φeq

vanishes. With a q independent

friction b the resulting correlation function exp[−q2Δtκ/b] describes the charac-
teristic q2 dependence of diffusion with the diffusion constant D = κ/b. Generally,

the effective spring constant ∂2Δfmix

∂φ2

∣∣∣
φ=φeq

and the friction factor are complemen-

tary information of a system. While a static scattering experiment detects the mean
squared excitation of a fluctuation for selected q and thus yields the effective spring
constant as the static characteristic of a system, the relaxation time is extracted from
a dynamic experiment. The combination of both allows the calculation of the friction
coefficient. The procedures introduced in this section can be also applied to interface

6An excellent discussion of thermal excitation and time correlation function as described by a
Langevin equation is found in the book of Doi and Edwards [19].
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fluctuations, where fluctuation eigen-modes need to be considered instead of wave
like fluctuations φq.

8.4.3 Bulk Fluctuations Revisited

Role of the Translational Symmetry The discussion of fluctuations in the context
of a scattering experiment over emphasizes the experimental scattering technique in
the role of fluctuations. It appears fortuitous that the squared gradient in (8.18) is
replaced by the simpler factor q2, and the scattering amplitude (8.26) is calculated
by simple algebraic operations, without the need to solve a differential equation. A
deeper reason for this simple behavior can be traced back to the translational sym-
metry of the bulk system. This symmetry can be addressed by theNoether theorem
which is introduced in mechanics, but which is usually not mentioned in connection
with statistical mechanics or scattering theory. The Noether theorem establishes a
connection between a continuous symmetry and a corresponding preserved quantity.
The translational symmetry is connected to the preservation of the linear momentum.
Thus, fluctuations in a homogeneous, translational invariant bulk system are neces-
sarily eigen-modes of the momentum operator, so sine waves. The scattering vector
q = ki − ks results as difference of the wave vectors of the incident light ki and
the scattered light ks. Since both modes ki and ks have well defined momenta, the
difference of the two is connected to a single value of momentum transfer and thus
also a sine wave. Since the eigen-modes to different momentum values or directions
are orthogonal, the scattering experiment picks one eigen-mode of fluctuation with
the eigen-value q. This step is formally done by an overlap integration between the
wave set by the momentum transfer of the scattering experiment and the spectrum of
fluctuations. The overlap integration looks like a Fourier transform, and selection
of the mode follows directly.

For a planar interface, a similar reasoning can be set up for any direction within
a plane parallel to the interface. In a direction parallel to the interface, there is trans-
lational symmetry. So any fluctuation mode is an eigen-function of the momentum
operator for the direction parallel to the interface, described by the wave vector
component q‖. For the direction perpendicular to the interface, in contrast, the trans-
lational symmetry is broken. Thus there is no longer the simplifying concept of
momentum conservation, and the calculation of a fluctuation mode requires the solu-
tion of a differential equation. The spectrum of interface fluctuation modes should
still be orthogonal in general, since different modes have different eigen-values for
the excitation energies. An interface sensitive scattering experiment, e.g. evanescent
wave dynamic light scattering (EWDLS, see Chap.13 by B. Loppinet and e.g. [1])
has a sensitivity profile different from the sine wave of a bulk scattering experiment.
The overlap integration in order to calculate the sensitivity of EWDLS is now more
complex than a Fourier transform, and in general there might be overlap to different
modes.

http://dx.doi.org/10.1007/978-3-319-24502-7_13
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8.5 Interface Structure

Interfaces between the A-rich phase and the B-rich phase of a de-mixed state are
often not a sharp transition. Instead, a concentration profile is formed. Similarly, a
concentration profile also builds up when the mixture is in contact with a substrate.
The squared gradient theory provides predictions for these profile. Differential equa-
tions and expressions for the interface tension for a φ independent elastic constant
κ are derived in Sect. 8.5.1. Analytical solutions exist for the Landau theory, and
they are discussed in Sect. 8.5.2. For the Flory Huggins case, the φ dependence of
κ leads to an additional term in the differential equation for the interface profile. It
appears that this term is silently neglected in the literature [7]. The effect of this term
requires additional investigations, which will not be performed here.

8.5.1 Interface Tensions and Differential Equations

Internal Interfaces. A polymer blend in the two phase region consists of an A-
rich phase of composition φa and a B-rich phase of composition φb. The discussion
of the interface profile between these two phases starts with Δωmix as depicted in
Fig. 8.5b. The A-rich and the B-rich phase have the common value Δωmix(φa) =
Δωmix(φb) = Δωbulk, so the minimum value of Fig. 8.5b. For an interface profile
φ(z) which describes a smooth transition from the A-rich to the B-rich phase, the φ

values in the interface interpolate between φa and φb, and thus lead to contributions to
the grand potential with Δωmix(φ) > Δωbulk. The ΔΩ penalty of volume elements
in the interface is thus Δωmix(φ) − Δωbulk. The interface energy is the sum over
these contributions. Within a squared gradient theory (8.3), the interface energy for
a given profile φ(z) is calculated as

γab[φ] =
∫ +∞

−∞
dz

[
Δωmix (φ(z)) − Δωbulk + κ

2

(
dφ

dz

)2]
. (8.43)

A system will minimize the interfacial energy (8.43) and build up φ(z) accordingly.
The interface tension results as γab = min(γab[φ]). Without the gradient term, so for
κ = 0, the profile minimizing (8.43) is a step profile, with a sharp transition from φa

in theA-rich phase toφb in theB-rich phase. For this case, (8.43) yields γab = 0, since
Δωmix(φa) = Δωmix(φb) = Δωbulk. The contribution of the gradient term for κ > 0
modifies this picture, as the step profile has an infinite gradient and thus a step profile
would have infinite interface tension. The resultingφ(z) is a compromise between the
penalties inΔωmix(φ(z)) and the cost for a high gradient. The discussion is restricted
to the case of a φ independent value of κ .
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The calculus of variations for a minimization of (8.43) is briefly summarized in
the appendix (Sect. 8.8). The Lagrange function in (8.43) reads

L

(
φ,

dφ

dz

)
= Δωmix (φ) − Δωbulk + κ

2

(
dφ

dz

)2
, (8.44)

and the Euler-Lagrange equation
∂L

∂φ
− d

dz

∂L

∂(dφ/dz)
= 0 becomes7

dΔωmix

dφ
= κ

d2φ

dz2
. (8.45)

An integration of (8.45) with respect to z is possible after multiplying it by dφ
dz . The

result reads

Δωmix(φ) − Δωbulk = κ

2

(
dφ

dz

)2
. (8.46)

As a cross-check of this step, it might be reverted by differentiating (8.46) with
respect to z to find (8.45). The integration constant is identified in (8.46) already
with Δωbulk. Formally, one can first write (8.46) with an integration constant, and
then determine its value at a position z which is far away from the interface in the
bulk, where dφ

dz = 0. Re-writing (8.46) leads to a first order differential equation for
the interface profile:

dφ

dz
= ±
√
2

κ
[Δωmix(φ) − Δωbulk]. (8.47)

Separation of variables in (8.47) and integration leads to an implicit formula for the
interface profile

z =
∫ φ(z)

φa

√
κ

2 [Δωmix(φ) − Δωbulk]
dφ, (8.48)

with φa as starting point within the A-rich phase. With (8.47) which describes the
minimum of (8.43), the interface tension is written as:

γab =
∫ +∞

−∞

[
κ

2

(
dφ

dz

)2
+ κ

2

(
dφ

dz

)2]
dz =

∫ φb

φa

κ
dφ

dz
dφ

=
∫ φb

φa

√
2κ [Δωmix(φ) − Δωbulk] dφ. (8.49)

7In this step, a φ dependence of the elastic constant κ would lead to an additional term, which does
not fit to the following manipulations in a simple way.
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(8.46) indicates, that the Δωmix penalty and the cost for building up a gradient at the
interface have the same magnitude, similar to the same magnitudes of kinetic and
potential energy for a harmonic oscillator, or the same size of electric and magnetic
energy in an electromagnetic wave. Thus, it is possible to express γab by integrating
(8.49) over the square root of the Δωmix-hump in Fig. 8.5b alone, with the gradient
terms eliminated.

Interface between the Mixture and a Substrate. For a discussion of the wetting
properties, the variation of the interface tension between themixture and the substrate
with composition is required. Starting point are the interface energies γAS between
the pureA phase (φ = 0) and the substrate, and γBS between the pureB phase (φ = 1)
and the substrate. For a composition φ in between 0 and 1, the resulting interface
energy to the substrate results by linear interpolation

γS(φ) = (1 − φ)γAS + φγBS = γAS + φ[γBS − γAS]. (8.50)

This approach is based on an addition of interactions of Amolecules and Bmolecules
which are at the interface to the substrate. So, γS has themeaning of a contact potential
at the interface. For a calculation of interface tensions, the penalties to build up
concentration gradients in interface profiles need to be considered in addition.

We use results of Sheng [20] for liquid crystals and re-write them for binary mix-
tures. The assumed preferential absorption of A to the interface requires8 γBS > γAS,
and γS in (8.50) increases with φ. Thus, the effect of γS alone would result in a com-
plete coverage of the interface by A molecules with φ = 0. Such a pure composition
at the interface, however, deviates from the bulk composition, as defined by prepa-
ration for the mixed phase and φa or φb in the de-mixed state. The system thus has
to form a concentration profile at the interface which minimizes the total interface
energy, which is composed by the interface potential γS(φ), the thermodynamic con-
tributionΔωmix(φ), and the penalty for a concentration gradient, as considered by the
squared gradient term. For an interface located at z = 0, the resulting formula reads

γ [φ] =
∫ +∞

0
dz

[
Δωmix (φ(z)) − Δωbulk + κ

2

(
dφ

dz

)2

+φ(z)[γBS − γAS]δ(z)
]

+ γAS. (8.51)

The boundary term with the interface potential γS(φ) is taken into account by the
delta-function9 δ(z). In the same way as the transformations from (8.43) to (8.45),
the differential equation for the minimum profile results as

8For a neutral substrate with γAS = γBS and thus no preferential adsorption, the substrate would
have no effect on the sample. This boring case does not need further discussion.
9The delta function is also briefly discussed in the appendix.
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dΔωmix

dφ
= κ

d2φ

dz2
− δ(z)

(
φ[γBS − γAS] + κ

dφ

dz

)
. (8.52)

For z > 0, there is no contribution from the interface potential and (8.52) is identi-
cal to (8.45). Thus the integration of (8.46) and the differential equation (8.47) are
derived as before. With (8.46) and (8.47) and the same integration by substitution as
in (8.49), the interface tension (8.51) results as

γ =
∫ φeq

φ0

√
2κ [Δωmix(φ) − Δωbulk] dφ + [γBS − γAS]φ0 + γAS. (8.53)

For the mixed state φeq = φ̄. In the de-mixed phase, wetting droplets at the substrate
are usually macroscopic, so their thickness is much larger than the extension of an
interfacial profile, which is comparable to the bulk fluctuation length ξ . So, we can
use φa or φb as bulk composition φeq for this case. The contact composition directly
at the substrate is denoted by φ0. With the assumed preferential adsorption of A to
the interface, the A concentration (1 − φ) is generally enhanced compared to the
bulk phase, so φ0 < φeq. Thus the integral in (8.53) is positive. The composition at
the substrate φ0 is determined as the minimum10 of (8.53):

0 = dγ

dφ0
= −√2κ [Δωmix(φ0) − Δωbulk] + [γBS − γAS]. (8.54)

The minimum condition can be transformed to

Δωmix(φ0) − Δωbulk = [γBS − γAS]2
2κ

. (8.55)

There might be several values for φ0 which fulfill (8.54) and (8.55), and it is required
to find the value which corresponds to the absolute minimum. A distinction between
minima and maxima is based on the second derivative of (8.53):

d2γ

dφ2
0

= − κ√
2κ [Δωmix(φ) − Δωbulk]

dΔωmix

dφ

∣∣∣∣
φ=φ0

. (8.56)

Thus, a positive second derivative (8.56) of (8.53) which indicates a minimum
requires a negative slope of Δωmix(φ) at φ = φ0. With a known value of φ0, the
interface profile results from the implicit formula (8.48).

10The negative sign in (8.54) occurs since φ0 is the lower limit in (8.53).
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The Wetting Transition Triggered by the Contact CompositionsThecontact angle
in (8.1) and the spreading coefficient Sa in (8.2) are defined by interface tensions,
which are integrations with the same integrand. Inserting (8.49) and (8.53) in (8.1)
and (8.2) results in

cos(Θa) = 1 −
∫ φ0b

φ0a

∣∣√2κ [Δωmix(φ) − Δωbulk]
∣∣ dφ − [γBS − γAS](φ0b − φ0a)∫ φb

φa

∣∣√2κ [Δωmix(φ) − Δωbulk]
∣∣ dφ

(8.57)

Sa = [γBS − γAS](φ0b − φ0a) −
∫ φ0b

φ0a

∣∣∣√2κ [Δωmix(φ) − Δωbulk]
∣∣∣ dφ.

(8.58)

Here, φ0a and φ0b are the contact compositions for the A-rich phase and the B-rich
phase, respectively. In order to emphasize the requirement that square roots with
a positive sign are used, the integrants in (8.57) and (8.58) are written as absolute
magnitudes. A direct consequence of (8.57) and (8.58) is that for identical contact
compositionsφ0a = φ0b forA-rich andB-rich phases one getsΘa = 0 and Sa = 0 and
thus complete wetting, irrespectively of the detailed shape of Δωmix(φ). As we will
see below the condition φ0a = φ0b is fulfilled for T ≥ Tpw. On the other hand φ0a <

φ0b, which occurs for T < Tpw, implies in general cos(Θa) �= 1 in (8.57) and Sa �= 0
in (8.58), as long as the integrand does not vanish. The case φ0a > φ0b is excluded
for the assumed preferential adsorption of A to the substrate. For | cos(Θa)| < 1
corresponding to a negative value of Sa, a transition of the contact compositions φ0a

and φ0b from an equal value φ0a = φ0b to different values φ0a < φ0b directly induces
the first order wetting transition from complete wetting Sa = 0 to partial wetting
Sa < 0. For this case we have Tw = Tpw (see Fig. 8.1).

It is also possible that (8.57) yields a value | cos(Θa)| > 1. This case corresponds
to Sa > 0, so complete wetting with no contact angle defined. Since, however, we
are discussing the case φ0a �= φ0b, the temperature is below Tpw. So there is no
pre-wetting for the same temperature and a composition in the one-phase region of
the phase diagram. It turns out that the Landau grand canonical potential density
ΔωL discussed in the next Sect. 8.5.2 produces such a behavior. In (8.57) and (8.58),
the integration term has a stronger temperature dependency than the differences’
product [γBS − γAS](φ0b − φ0a). Roughly speaking, the integration is proportinal
to the width of the integration interval (φ0b − φ0a), which essentially covers the
temperature dependence of the differences’ product, multiplied with the average
height of the integrand, which contains an additional temperature dependency. At
a temperature lower than Tpw, the integration term and the differences’ product in
(8.57) and (8.58) become equal, so Sa = 0 and | cos(Θa)| = 1. This temperature is
thus the wetting temperature smaller than Tpw (see Fig. 8.1). Since cos(Θa) and Sa
depend steadily on φ0a, φ0b, and T in the absence of a bulk phase transition, the
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wetting transition is now continuous,11 and so the contact angle changes steadily
from 0 to a finite value.

8.5.2 Interfaces Based on the Landau Assumption

Analytical solutions for the integrations of 8.5.1 are available for the Landau theory
(Sect. 8.3.1). It is convenient to switch to a description, where the composition is
expressed by the deviation φ′ from the critical composition φc:

φ′ = φ − φc. (8.59)

Here, φ′ plays the role of the order parameter in the Landau theory, although it
does not vanish in the disordered phase (the mixed phase) like a classical order
parameter. Alternately, equations can be expanded in the difference to the equilibrium
composition φeq:

φ′′ = φ − φeq = φ′ − φ′
eq. (8.60)

In the mixed state, φeq = φ̄ is set by the sample preparation, while in the de-mixed
state φeq = φa in the A-rich phase and φeq = φb in the B-rich phase. It turns out that a
discussion basedonφ′ is suitable for the two-phase region,while the one-phase region
is described easierwithφ′′. The equations of Sect. 8.5.1 remain basically valid12 when
φ is replaced by φ′, only the boundary terms in (8.51) and (8.53), φ[γBS − γAS]
have to be replaced by (φc + φ′)[γBS − γAS] according to the transform (8.59). The
same holds true when φ is replaced in these equations by φ′′, with the boundary
term (φc + φ′

eq + φ′′)[γBS − γAS] in (8.51) and (8.53). Since these modifications are
constant additional terms, they vanish after derivations or differences in (8.52) and
(8.54)–(8.58).

LandauFree Energy Density.Within theLandau assumption, a simple free energy
density is a power series in φ for the phase separated state:

11The mechanism of such a continuous transition is different from the discussion of Bonn and
Ross [4]. They investigate conditions for the contact composition which could lead to a continuous
transition based on a graphical method eqivalent to (8.55) with an additional, φ dependent term
on the right side. Based on a discussion of this slope of the right side, they identify conditions for
the contact composition where the wetting transition becomes continuous. They find continuous
transitions at a higher temperature than Tpw. In the discussion here, in contrast, the reason for
continuous wetting is a calculated value | cos(Θa)| > 1 at Tpw, which leads to continuous wetting
at lower temperature than Tpw. The discussion of Bonn and Ross does not include a test of the
magnitude of | cos(Θa)| resulting from their derived boundary values.
12Due to the linearity of (8.59),φ′ can simply replaceφ in all derivatives, e.g. dφdz = dφ′

dz or dω
dφ = dω

dφ′ .
In order to apply the equations in Sect. 8.5.1 with φ′ instead of φ, one could write (8.43) with a new
function ω̃(φ′) = ω(φc + φ′), and repeat all derivations of Sect. 8.5.1 with ω̃(φ′) instead of ω(φ).
In order to keep the notation traceable, we use the same symbol and write sloppily ω(φ′) for ω̃(φ′).
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ΔfL(φ) = C

4
(φ − φa)

2(φ − φb)
2. (8.61)

By construction,ΔfL has a minimum at φa and a second minimum at φb, correspond-
ing to the bulk compositions of the two phases. In between, ΔfL has a maximum
at

φc = φa + φb

2
. (8.62)

With the transformation (8.59), (8.61) becomes

ΔfL(φ
′) = C

4
φ4
c − C

2
φ2
cφ

′2 + C

4
φ′4. (8.63)

The important second order term in (8.63) determines the second derivative at the
critical composition φ′ = 0. For a temperature below the critical temperature Tc, in
the de-mixed state, there is a maximum of ΔfL at φ′ = 0. The concave behavior of
ΔfL(φ′) at φ′ = 0 indicates a negative second derivative. In order to describe the
phase transition to a mixed state which requires a convex shape of ΔfL(φ′) with
positive second derivative at φ′ = 0, a replacement Cφ2

c = −A(T − Tc) is inserted
in (8.63):

ΔfL(φ
′) = A2

4C
(T − Tc)

2 + A

2
(T − Tc)φ

′2 + C

4
φ′4, (8.64)

The linear temperature dependence of the second order term is usually motivated as
the lowest order of a Taylor series which vanishes at T = Tc. For a temperature
close to Tc, the contribution of higher orders is small, and thus the linear description
provides reasonable predictions. As discussed in Sect. 8.1, for a Tc at room temper-
ature or higher, which is typical for soft matter systems, the relative temperature
deviation (T − Tc)/Tc from the critical point remains small even for several tens of
degrees temperature difference. So, the description by a linear temperature depen-
dence usually provides a suitable description of experimental results. The coefficient
C > 0 determines the 4th order term, which guarantees the existence of a minimum,
even for 1

2A(T − Tc) < 0. The typical argument to neglect any temperature depen-
dence of C is the weakness of its relative temperature dependence ΔC(T)/C, since
no change of sign in C is to be expected.

By construction, the two minima of ΔfL in (8.64) have the same depth and thus a
horizontal common tangential line. As a consequence, the chemical potential μB of
(8.21) is zero in the de-mixed state T ≤ Tbin(φ). The transformation (8.22) indicates
that the Landau free energy density ΔfL(φ′) is identical to the Landau density of
the grand canonical potential ΔωL for the de-mixed phase.

ΔωL(φ
′) = ΔfL(φ

′) for T ≤ Tbin(φ
′). (8.65)
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Bulk Phase Behavior. As a first application of (8.65) with (8.64), the bulk phase
behavior whichwas discussed in Sect. 8.2 and illustrated in Fig. 8.1 is calculated. The
binodal line Tbin(φ

′), which is given by the equilibrium volume fractions φa and φb

of the A-rich and the B-rich phases for T < Tc, results from the minimum condition
dΔωL
dφ = 0:

φ′
a,b = ∓

√
A(Tc − Tbin)

C
, (8.66)

The sign is negative for φ′
a and positive for φ′

b. An equivalent form of (8.66) is:

Tbin(φ
′) = Tc − C

A
φ′2
a,b. (8.67)

For later use, we re-write (8.65) with (8.64) inserted by using (8.67):

ΔωL(φ
′) = C

4
(φ′2 − φ′2

a,b)
2 for T ≤ Tbin(φ

′). (8.68)

The spinodal line Tspin(φ
′) indicates the locations within the two phase region for

T < Tc where the restoring forces for fluctuations vanish, as described by the condi-
tion d2ΔωL

dφ2 = 0. This condition leads to φ′ = ±√A(Tc − Tspin)/(3C), or alternately

Tspin(φ
′) = Tc − 3

C

A
φ′2. (8.69)

Bulk Fluctuations. Based on (8.64), the amplitude of the fluctuations and the cor-
relation length result from (8.26) and (8.34), respectively. With (8.69), the resulting
expressions can be written in a form which is often used in the presentation of exper-
imental results in the mixed phase:

〈|Δφ|2〉−1 = V A

kBT

[
T − Tspin + κ

A
q2
]

(8.70)

ξ−2 = A

κ

[
T − Tspin

]
. (8.71)

The inverse mean squared amplitude which is proportional to the inverse intensity in
a scattering experiment as well as the inverse squared correlation length follow both
a linear temperature dependence. The extensions of these lines become zero at the
location of the spinodal temperature, which thus can be determined experimentally
by such a plot. The roots of the inverse quantities correspond to poles of

〈|Δφ|2〉
and ξ . However, in most cases these poles on the spinodal cannot be approached
closely, since the system undergoes the phase transition to the de-mixed state when
the binodal temperature (8.67) is reached. Thus, the increase in intensity and ξ remain
limited. An exception occurs for φ′ = 0, so the critical composition. Here, directly
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at the critical point, the divergence can be observed, which is addressed as critical
behavior. This increase in fluctuation amplitude and fluctuation size is the basis of
the discussion of the introduction. The mean field critical exponents for

〈|Δφ|2〉 and
ξ according to (8.70) and (8.71) are 1 and 1

2 , respectively.
In the de-mixed phase, the compositions of the A-rich phase and the B-rich phase

are set by the binodal line (8.67). Inserting T = Tbin in (8.70) and (8.71) yields

〈|Δφ|2〉 = kBT

V
[
2Cφ′2

b,a + κq2
] (8.72)

ξ =
√

κ

2C

1

|φ′
b,a|

. (8.73)

Within the Landau assumption, the fluctuation amplitudes and the correlation
lengths in the two phases are the same.

Density of the Grand Canonical Potential. For the mixed phase for T > Tbin(φ),
ΔωL should have a minimum for the average composition φ̄′ set by the sample
preparation. With (8.22), this condition is achieved by subtracting the tangential line
at φ̄′ from ΔfL

ΔωL(φ
′′) − Δωbulk = ΔfL(φ

′
eq + φ′′) −

[
ΔfL(φ

′
eq) + dΔfL

dφ′

∣∣∣∣
φ′=φ′

eq

φ′′
]

. (8.74)

Here,ΔωL iswritten in terms of the deviationφ′′ (8.60) from the average composition
φeq. Starting from (8.64) and with (8.69) inserted, the resulting expansion

ΔωL(φ
′′) − Δωbulk = A

2
(T − Tspin)φ

′′2 + Cφ′
eqφ

′′3 + C

4
φ′′4 (8.75)

is valid in the mixed state T ≥ Tbin(φ) with φeq = φ̄, as well as in the A-rich and
B-rich phases for T ≤ Tbin(φ) with φeq = φa and φeq = φb, respectively. For later
use, we re-write (8.75) by adding and subtracting a term Cφ′2

eqφ
′′2. The added term

is completing the square with the 3rd and 4th order term, while the subtracted term
is absorbed into the temperature dependence using (8.67) and (8.69), so Tspin is
eliminated for Tbin. The result reads

ΔωL(φ
′′) − Δωbulk = A

2
(T − Tbin)φ

′′2 + Cφ′′2
(

φ′
eq + 1

2
φ′′
)2

. (8.76)

Contact Values and Pre-wetting Temperature. In order to use (8.53) for the cal-
culation of the interface tension between the mixture and a substrate, we first need
to discuss the contact composition φ0. The condition of (8.55) is illustrated in Fig.
8.6. The value of φ0 results from the intersection point of the horizontal line with
ΔωL − Δωbulk. For aminimumof the resulting interface tension, (8.56) indicates that
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Fig. 8.6 Landau free
energy density ΔωL versus
composition φ for several
temperatures. The horizontal
line indicates the effect of
the interface potential. For
intersection points φ0 with
negative slope of ΔωL the
resulting interface tension
has a minimum value
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the slope of ΔωL − Δωbulk at the intersection has to be negative. For temperatures
above and slightly below Tc, there is only one intersection point φ′

0,1 with negative
slope. The negative value of φ′

0,1 corresponds to an A-rich composition, consistent
with our assumption of preferred A adsorption to the substrate. The common value
of the contact composition for an A-rich phase and a B-rich phase slightly below
Tc leads to complete wetting, as discussed in connection with (8.57) and (8.58).
The general occurrence of complete wetting slightly below Tc is the content of the
Cahn argument [6]. Cahn argued further, that γab vanishes with a higher power than
the difference γbS − γaS when T approaches Tc from below, and thus the spreading
coefficient (8.2) necessarily becomes non-negative close to Tc, indicating complete
wetting.

When T becomes lower, the bump in themiddle ofΔωL(φ
′) in Fig. 8.6 grows, and

at a certain temperature a second intersection point φ0,3 of negative slope is created.
An analysis of (8.65) with (8.64) based on the roots of quadratic equations shows
that 4 real valued intersection points are realized for T ≤ Tpw with

Tpw = Tc −
√
2C

κ

[γBS − γAS]
A

. (8.77)

Since φb > φ′
0,3 > φ′

0,1, the integration over a positive integrand in (8.53) for the
B-rich phase (upper limit φeq = φb) becomes smaller with the lower limit φ′

0 = φ′
0,3

compared to the case φ′
0 = φ′

0,1. So, for T ≤ Tpw, the contact composition of the
B-rich phase at the substrate increases to φ′

0,3, in order to minimize the interfacial
energy. The deviation of φ′

0,3 for the B-rich phase from the contact composition
φ′
0,1 of the A-rich phase could directly lead to partial wetting for T ≤ Tpw, in case

(8.57) yields | cos(Θa)| < 1. In this case, Tpw = Tw is the temperature of the wetting
transition. The equilibrium volume fractions±φ′

pw of the A-rich and the B-rich phase
at T = Tbin = Tpw are calculated from (8.66) with (8.77), or from (8.67) with (8.77):

φ′
pw =

√
A(Tc − Tpw)

C
=
√√

2

κC
[γBS − γAS]. (8.78)



256 R. Sigel

Apart from the detailed values (8.77) for Tpw and (8.78) for φ′
pw, the arguments

for wetting do not relie on shape details of Δωmix but apply in general. For ΔωL

as special case, analytical solutions for the de-mixed state are possible. The contact
compositions at the substrate result from (8.55) with (8.68) inserted. The correct
choice of signs for the square roots in the solutions can be extracted from Fig.
8.6. For an A-rich region at the substrate for T ≤ Tc, the most negative solution
φ′
0a = φ′

0,1 indicates the contact composition. B-rich regions at the substrate occur
only for T ≤ Tpw. Here, φ′

0b = φ′
0,3 is the right choice as contact composition. The

results read

φ′
0a,b = ∓

√
φ′2
a,b ±

√
2

κC
[γBS − γAS]. (8.79)

In (8.79) and the following equations of this section, the upper signs apply to the A-
rich phase, while the lower signs describe the B-rich phase. With (8.78), it is possible
to rewrite (8.79) as

φ′
0a,b = ∓

√
φ′2
a,b ± φ′2

pw. (8.80)

Interface Tensions in the Two Phase Region. The interface tension between the
A-rich phase and the B-rich phase in the two phase region results from (8.49) with
(8.68) inserted, where the compositions φ′

b and φ′
a = −φ′

b are the binodal values
(8.66):

γab = 4

3

√
κC

2
φ′3
b . (8.81)

The interface tensions γaS and γbS between the A-rich phase or the B-rich phase
and a substrate are expressed as incrementsΔγaS andΔγbS to a constant background
contribution γAS + [γBS − γAS]φc:

Δγa,bS = γa,bS − γAS − [γBS − γAS]φc. (8.82)

Due to the differences γbS − γaS in (8.1) and (8.2), the constant background does
not affect the contact angle and the spreading coefficient, so a discussion based on
Δγa,bS is sufficient. The integration of (8.53) with (8.68) inserted leads to

Δγa,bS − [γBS − γAS]φ′
0a,b = ±

√
κC

2

[
φ′3
a,b − φ′3

0a,b

3
− φ′2

a,b(φ
′
a,b − φ′

0a,b)

]
.

(8.83)
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With (8.78), the prefactor can be expressed in terms of (γBS − γAS). The sign choice
in (8.83) originates from the square root in (8.53). It is important to select the sign
so the right side of (8.83) is positive: the formation of a concentration profile at a
substrate has a positive contribution to the interfacial energy. In order to find the right
sign, (8.83) is re-written as

Δγa,bS − (γBS − γAS)φ
′
0a,b = ± (γBS − γAS)

3φ′2
pw

[−(φ′
0a,b + 2φ′

a,b)(φ
′
0a,b − φ′

a,b)
2
]
.

(8.84)
On the A-rich side of the binodal, φ′

eq = φ′
a ≤ 0 and φ′

0a < 0. The bracket on the
right side is positive, and the upper positive sign applies to the A-rich side. The
B-rich phase neighboring the substrate is found only for φ′

eq = φ′
b ≥ φ′

pw > 0 below
the pre-wetting transition. For this case, φ′

0b ≥ 0, the bracket becomes negative, and
we have to use the lower negative sign for the B-rich side of the binodal. With (8.80)
inserted into (8.84), Δγa,bS is calculated as

Δγa,bS = −2(γBS − γAS)

3φ′2
pw

[(
φ′2
a,b ± φ′2

pw

) 3
2 ± φ′3

a,b

]
. (8.85)

For themixed state, an analytical integration of (8.53) with (8.76) inserted is possible.
For better clarity, the mixed phase is treated with reduced variables below.

Contact Angle and Wetting Transition. An overview over the behavior of con-
tact compositions and interface tensions is depicted in Fig. 8.7. The composition
φ′
b = −φ′

a on the x axismoves along the binodal line and thuswith (8.67) implies also
a change in temperature.With the chosen scaling of the y-axes, φ′

0a and φ′
0b calculated
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Fig. 8.7 Interface tensions (black) and contact compositions (grey) around the bulk pre-wetting
composition φpw for the Landau grand canonical potential density
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from (8.80) mark the contributions (γBS − γAS)φ
′
0a,b of the contact compositions to

the interface tensions. Because of additional interfacial energy needed to build up
the interfacial concentration profile, the actual interface tension increments ΔγaS
and ΔγbS from (8.85) are slightly higher. The difference ΔγbS − ΔγaS = γbS − γaS
exceeds the interface tension γab from (8.81) at φ′

b/φ
′
pw = 1. Thus, there is no real

solution for the contact angle Θa from (8.1) and the change of contact composition
for a B-rich phase is not accompanied by a first order wetting transition. A continu-
ous transition of Θa occurs at the intersection point of ΔγbS − ΔγaS and γab. When
(8.81), (8.85), and (8.78) are inserted into ΔγbS − ΔγaS − γab = 0, the square roots
can be ellminated by two successive squaring steps. The resulting quadratic equation
for (φ′

b/φ
′
pw)4 leads to the solution for the wetting transition

φ′
w

φ′
pw

=
[
1 +
√
4

3

] 1
4

. (8.86)

Since φ′
w and φ′

pw are both on the binodal, (8.67) can be employed to transfer (8.86)
to an equation for the temperatures:

Tc − Tw

Tc − Tpw
=
√
1 +
√
4

3
. (8.87)

For a different ω, the morphology of a plot like Fig. 8.7 can change. With higher
values of γab an intersection point with ΔγbS − ΔγaS can be avoided. In this case, a
first order pre-wetting transition occurs right at φ′

b/φ
′
pw = 1. The distinction of the

two morphologies illustrates the discussion of first order and continuous wetting at
the end of Sect. 8.5.1.

Shape of the Interface Profile. The form of (8.75) as a power series in φ′ with
only 2nd to 4th powers reminds of the shape of the Landau-de Gennes theory for
liquid crystals [14, 21], and so we can borrow an analytical solution from there [20].
The integration in (8.48) with the expansion (8.75) and the correlation length (8.71)
inserted can be re-written as

z

ξ
=
∫ φ(z)

φ0

√
A(T − Tspin)

A(T − Tspin) + 2Cφ′
eqφ

′′3 + 1
2Cφ′′4 dφ

′′. (8.88)

The scaling of z with ξ shows, that it is in fact the bulk correlation length ξ which
determines the length scale of the interfacial profile. A solution of (8.88) is provided
by Tarczon and Miyano [22]:
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z

ξ
= ln

[
R(φ′′)
R(φ′′

0 )

]
(8.89)

R(φ′′) = 1

φ′′

√
A(T − Tspin)

[
A(T − Tspin) + 2Cφ′

eqφ
′′ + 1

2
Cφ′′2

]

+ 1

φ′′ A(T − Tspin) + Cφ′
eq. (8.90)

Solving for φ′′ yields the profile

φ′′
(

z

ξ

)
= 2A(T − Tspin)Z

Z2 − 2Cφ′
eqZ + C2φ′2

eq − 1
2CA(T − Tspin)

= 2A(T − Tspin)Z

Z2 − 2Cφ′
eqZ − 1

2CA(T − Tbin)
(8.91)

Z = R(φ′′
0 ) exp

[
z

ξ

]
. (8.92)

While for z � ξ the profile approaches an exponential decay, there are deviations
from an exponential for smaller z.

Profiles in the De-Mixed State. A first application of the solution (8.91) are the
interface profiles in the de-mixed state. The equilibrium compositions of the A-rich
and B-rich phases are on the binodal Tbin (8.67), and with (8.69) we get for this case
A(Tbin − Tspin) = 2Cφ′

eq. This simplification reduces (8.90) and (8.92) substantially,
and the profiles result as

φ′′(z) = 2φ′
eqφ

′′
0

[2φ′
eq + φ′′

0 ] exp
[

z
ξ

]
− φ′′

0

. (8.93)

The bulk equilibrium composition φa or φb enters via φ′
eq as the deviation (8.59)

from the critical composition φc. Based on (8.66) this deviation is negative for the
A-rich phase and positive for the B-rich phase. The contact value φ′′

0 is expressed
as deviation from the bulk equilibrium composition. This deviation is negative for
all cases due to the assumed preferential interface adsorption of A. A plot of the A
enrichment −φ′′(z) at the interface shows,13 that the interface profile of an A-rich
region is below the exponential decay exp(−z/ξ), while the profile of a meta-stable
B-rich region is above exp(−z/ξ).

We can use (8.93) for a construction of the profile at internal flat interfaces between
A-rich and B-rich phases. Based on (8.60), the deviations from the bulk equilibrium
compositions φ′′

0 = φ′
0 − φ′

eq and φ′′(z) = φ′(z) − φ′
eq in (8.93) are eliminated for

the deviations from the critical composition φ′
0 and φ′(z), respectively. From an

13For a quick and dirty check, one can plot (8.93) with example values φ′
a = −1, φ′

b = +1, and
φ′′
0 = −1.
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imaginary interface at z = 0 the B-rich phase with φ′
eq = φ′

b expands to positive z,
while the A-rich phase with φ′

eq = φ′
a = −φ′

b is found at negative z values. These
transformations result in

φ′(z) = ∓φ′
b

[∓φ′
b + φ′

0] exp
(
∓ z

ξ

)
− [∓φ′

b − φ′
0]

[∓φ′
b + φ′

0] exp
(
∓ z

ξ

)
+ [∓φ′

b − φ′
0]

. (8.94)

The upper signs apply for the A-rich phase at z < 0, while the lower ones are for
z > 0, where the B-rich phase is located. With the choice φ′

0 = 0, so the critical
composition in the middle between φ′

b and φ′
a = −φ′

b, (8.94) can be transformed to

φ′(z) = φ′
b

exp
(
+ z

2ξ

)
− exp

(
− z

2ξ

)

exp
(
+ z

2ξ

)
+ exp

(
− z

2ξ

) = φ′
b tanh

(
z

2ξ

)
. (8.95)

The interface extends a the distance ξ/2 in positive z direction and also the distance
ξ/2 in negative direction, so the total interfacial width is again ξ . For any other choice
ofφ′

0 in (8.94)with |φ′
0| < φ′

b, a similar transformation to a hyperbolic tangents profile
with shifted z-location can be performed with the substitution

exp

(
Δz

ξ

)
= ±φ′

b + φ′
0

±φ′
b − φ′

0

. (8.96)

Reduced Variables. As a preparation for the discussion of pre-wetting, we rewrite
the important equations in reduced variables. Only for the critical composition φc

we have Tbin = Tspin. For other compositions, the difference Tbin − Tspin = 2Cφ′2
eq/A

resulting from (8.67) and (8.69) defines a suitable temperature unit which is used for
the reduced temperature scale

ϑ = T − Tbin

Tbin − Tspin
. (8.97)

A frequent combination of variables in the equations is reduced as A(T − Tspin)/

(2C) = (ϑ + 1)φ′2
eq. A suitable length scale is the correlation length ξbin at the binodal

T = Tbin. From (8.67), (8.69), and (8.71) we get

ξbin =
√

κ

2C

1

φ′
eq

(8.98)

ξ = ξbin√
ϑ + 1

. (8.99)
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The deviation φ′′ from φ′
eq is also transformed to the reduced variable

φ′′
red = φ′′

φ′
eq

, (8.100)

and the reduced density of the grand canonical density (8.75) becomes

ΔωL,red(φ
′′
red) − Δωbulk,red = ΔωL − Δωbulk

Cφ′4
eq

= (ϑ + 1)φ′′2
red + φ′′3

red + 1

4
φ′′4
red.

(8.101)

When used in the squared gradient expression (8.3), it needs to be combined with
a reduced elastic constant κ

Cφ′
eq

= 2ξ 2
bin. Let’s get to the interface equations. The

reduced form of (8.55) for the calculation of the reduced contact composition φ′′
red,0

results with (8.98)–(8.101) and (8.78)

ΔωL,red(φ
′′
red,0) − Δωbulk,red = 1

4
φ′′4
red,0 + φ′′3

red,0 + (ϑ + 1)φ′′2
red,0 = 1

4

φ′4
pw

φ′4
eq

.

(8.102)

Finally, the composition profile at the interface (8.90)–(8.92) is transformed to the
reduced form

φ′′
red

(
z

ξ

)
= 2(ϑ + 1)Zred

Z2
red − Zred − ϑ/4

(8.103)

Zred = Z

2Cφ′
eq

=
⎡
⎣ 1

φ′′
red,0

√√√√(ϑ + 1)

[
ϑ +
[
1 + 1

2
φ′′
red,0

]2]
+ ϑ + 1

φ′′
red,0

+ 1

2

⎤
⎦ exp

[
z

ξ

]
.

(8.104)

With reduced variables, the only remaining free parameters are ϑ and φ′
eq. The latter

will be discussed as a multiple of a scale defined by φ′′
pw. These two parameters are

suitable coordinates in the two dimensional phase diagram.

Pre-Wetting Profiles. The reduced equations for the interface structure show the
same separation as before. The contact value φ′′

red,0 depending on φ′
eq and φ′

pw result
from (8.102), without reference to the actual interface structure. The concentration
profile, on the other hand, is calculated for known φ′′

red,0 based on (8.103) and (8.104),
where φ′

eq and φ′
pw do not enter explicitly. The temperature enters in both cases.

Examples of interface profiles for different temperatures and two contact values
φ′′
red,0 are displayed in Fig. 8.8. For φ′′

red,0 = −2.25, the thickness of the adsorbed
interface layer depends strongly onϑ . Starting from the interface z = 0, there is first a
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Fig. 8.8 Interface concentration profiles of the mixed phase at a substrate. Profiles with contact
value φ′′

red,0 = −2.25 are drawn in black, while profiles for φ′′
red,0 = −1.5 are shown in grey. The

numbers indicate the reduced temperatures ϑ at which the profiles were calculated

decay toφ′′
red = −2within the length scale ξ . The profile then remains almost flat until

a certain thickness depending on ϑ , with a subsequent decay to the bulk composition
withφ′′

red = 0within a characteristic distance 2ξ . The occurrence of an interface layer
of thickness larger than ξ within the mixed phase is called pre-wetting. Note that ξ

for the variation of ϑ in the range of small ϑ changes only marginally. While the
layer thickness diverges for ϑ → 0 corresponding to T → Tbin, the apparent point
of divergence for ξ with (8.99) is ϑ → −1, or T = Tspin.

For the example profileswithφ′′
red,0 = −1.5 in Fig. 8.8, the interface is not able any

more to stabilize an interface film of A enrichment −φ′′
red > 2, which could increase

in thickness. The effect of a temperature change approaching ϑ = 0 is small, and the
thickness of the interface profile remains comparable to ξ . The qualitative difference
of an interface layer with diverging thickness for ϑ → 0 on one hand and a layer
which almost indifferent thickness for ϑ → 0 on the other hand indicates, that two
different interface states are possible.

The thickness of the interface layer is calculatedby an integrationover the interface
profile

d = −1

2

∫ ∞

0
φ′′
red dz. (8.105)

The factor − 1
2 is introduced in order to compensate the composition φ′′

red = −2 in a
thick layer (see Fig. 8.8). Integration14 of (8.103) yields [23]

d

ξ
= √

1 + ϑ ln

⎡
⎣
√

ϑ + [1 + 1
2φ

′′
red,0

]2 + √
ϑ + 1 + 1

2φ
′′
red,0√

ϑ + [1 + 1
2φ

′′
red,0

]2 + √
ϑ + 1 − 1

2φ
′′
red,0

⎤
⎦ . (8.106)

14For the integration of the profile, use a partial fraction decomposition of (8.103)

2(ϑ + 1)Zred

Z2
red − Zred − ϑ/4

=
√

ϑ + 1(1 + √
ϑ + 1)

Zred − 1
2 − 1

2

√
ϑ + 1

−
√

ϑ + 1(1 − √
ϑ + 1)

Zred − 1
2 + 1

2

√
ϑ + 1

.

.
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Fig. 8.9 Thickness d of the pre-wetting layer as function of the reduced temperature ϑ for several
contact compositions φ′′

red,0 (a), and as function of ϑ for several φ′′
red,0 (b). The numbers indicate

the value of the fixed parameter in the calculations

The temperature dependence of d is depicted in Fig. 8.9a. While for values φ′′
red,0 >

−2 the layer thickness becomes constant at small ϑ , there is a logarithmic divergence
for φ′′

red,0 ≤ −2. The critical value φ′′
red,0 = −2 can be deduced from (8.106) with

the limiting temperature ϑ = 0 inserted. Only for φ′′
red,0 > −2 the fraction in the

logarithm is positive and a solution exists. Figure 8.9b shows the change of d with
φ′′
red,0. At φ

′′
red,0 = −2 there is a transition from a thin to a thick layer, which is most

pronounced for small ϑ .

Pre-Wetting Contact Composition. The construction of the contact composition
according to (8.102) is illustrated inFig. 8.10.The left side of (8.102) is drawn inblack
for several temperatures ϑ . The right side of (8.102) indicated by the grey horizontal
lines is proportional to φ′−4

eq . Thus, in order to approach the critical composition φc

from large φ′
eq to small φ′

eq, we have to discuss first the lower grey lines and then
move upwards. As an orientation, the inset displays a part of the phase diagram
Fig. 8.1, with the example compositions marked by round dots. Like in Fig. 8.6,
an intersection point in the main figure with negative slope of a black curve with
a grey line corresponds to a minimum of interface energy. Since the x-axis is the
deviation from the bulk composition, the rightmost intersection point of negative
slope is the correct one: it is the first one with increased A content relative to φ′

eq
whichmatches theminimumcondition.All intersectionpoints of negative slopeoccur
for φ′′

red,0 < 0. With (8.100), the reduced variable is negative for an A enrichment
φ′′
0 < 0 at the interface and a positive bulk composition above the critical composition

φ′
eq > 0. Thus, pre-wetting occurs at the B-rich side of the phase diagram (see Fig.

8.1). The other negative combination φ′′
0 > 0 and φ′

eq < 0 does not fit to the assumed
preferential A adsorption, since it would correspond to a reduced A content at the
interface. It can be excluded as an equilibrium state, however it might describe a
meta-stable state.

The lowest two grey lines in Fig. 8.10φ′
eq/φ

′
pw = 1.1 andφ′

eq/φ
′
pw = 1 correspond

to compositions on the binodal below the pre-wetting temperature and directly at the
pre-wetting temperature, respectively. The rightmost intersection point of negative
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Fig. 8.10 Reduced density ΔωL,red(φ
′′
red,0) − Δωbulk,red of the grand canonical potential for sev-

eral reduced temperatures ϑ , as indicated by the black tilted numbers. The contact composition
φ′′
red,0 at the interface results as the rightmost negative intersection of ΔωL,red(φ

′′
red,0) − Δωbulk,red

with the grey horizontal lines. These lines are drawn for different ratios of the bulk composition
φ′
eq and the composition at the start of the pre-wetting line φ′

pw, as indicated by the grey numbers
on the right. The pre-wetting line P marks the points where the interface phase transition to higher
A contact value −φ′′

red,0 on the line Q occurs. The pre-wetting line ends at the critical pre-wetting
point, marked by ×. For the grey area φ′′

red,0 ≤ 2 on the left, the logarithmic divergence of the
thickness of the interface layer (see Fig. 8.9a) occurs in the limit ϑ → 0. The first part of line Q
and line L mark the trace of conditions, where this logarithmic divergence starts. The black dotted
line marks the traces of one inflection point of ΔωL,red(φ

′′
red,0) − Δωbulk,red. The inset shows a

magnified section of the phase diagram Fig. 8.1. Beside the binodal, the pre-wetting temperature,
the pre-wetting line P and the grey area of logarithmic divergence of layer thickness, the example
compositions of the main figure are marked by round points and grey lines

slope moves only slightly when the temperature is increased: the contact compo-
sition φ′′

red,0 is only weakly temperature dependent. The lower value of φ′′
red,0 for

φ′
eq/φ

′
pw = 1.1 compared to the value for φ′

eq/φ
′
pw = 1 is due to difference in φ′

eq in
the normalization (8.100).

For the next two grey lines φ′
eq/φ

′
pw = 0.95 and φ′

eq/φ
′
pw = 0.9, the same weak

temperature dependence of the rightmost negative intersection pointφ′′
red,0 as before is

observed for the high temperature examples ϑ = 0.16, 0.125, as well as at ϑ = 0.08
for φ′

eq/φ
′
pw = 0.95. While for these temperatures there are two intersection points

with negative slope of the black curves, there is only one such intersection point for
each curve for the lower temperatures. As a consequence, there is a jump of the right-
most intersection point for φ′

eq/φ
′
pw = 0.95 between ϑ = 0.08 and ϑ = 0.04. The

contact composition jumps discontinuously from φ′′
red,0 ≈ −1.1 to φ′′

red,0 ≈ −2.2.
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For φ′
eq/φ

′
pw = 0.9, a similar jump occurs between ϑ = 0.125 and ϑ = 0.08. These

jumps indicate the first order interface phase transition, the pre-wetting transition.
The starting and the end points of the jump for different ϑ are marked in Fig. 8.10
by the two branches P and Q of the pre-wetting line, respectively. A qualitative dif-
ference between φ′

eq/φ
′
pw = 0.95 and φ′

eq/φ
′
pw = 0.9 is the location of the end-point

of the jump. While for φ′
eq/φ

′
pw = 0.95 it is located below φ′′

red,0 = −2 and thus in a
range with logarithmic thickness growth of the interface layer with ϑ , the jump for
φ′
eq/φ

′
pw = 0.9 ends with φ′′

red,0 > −2, and thus further cooling is required until the
logarithmic growth of the interface layer sets in. The range where values φ′′

red,0 ≤ −2
are realized is grey shaded in Fig. 8.10.

The grey line for φ′
eq/φ

′
pw = [16/27] 1

4 passes through the critical pre-wetting
point. In this point, the lines P and Q meet, so the jumping distance in φ′′

red,0 has
become zero. The remainder of the jump is an infinite slope of φ′′

red,0 with ϑ . It
indicates the critical pre-wetting transition which is now a second order interface
phase transition at the end of the pre-wetting line. For lower values of φ′

eq/φ
′
pw,

there is a steady super-critical change of φ′′
red,0 with temperature. The curve for

φ′
eq/φ

′
pw = 0.85 is an example for this case.

The first section of curve Q combined with curve L in Fig. 8.10 indicates the
locations where the logarithmic thickness divergence for small ϑ starts. Note, that
such a divergence is possible for any choice 0 ≤ φ′

eq ≤ φ′
pw, so any composition φ

above φc and below the composition of the B-rich phase at the wetting line.
It remains to determine the lines P andQ and discuss the transformation of P to the

phase diagram. For a selected temperatureϑ , the jumpoccurs at the localmaximumof
ΔωL,red(φ

′′
red) − Δωbulk,red in Fig. 8.10. Thus, the abscissa value φ′′

red,0,P is calculated
as the location of the local maximum of (8.101):

φ′′
red,0,P(ϑ) = −−3 + √

1 − 8ϑ

2
. (8.107)

The temperature range 0 ≤ ϑ ≤ 1
8 where (8.107) has a real solution defines the

range of the pre-wetting line. The ordinate at the maximum position results after
inserting (8.107) in (8.101). With (8.102), the ordinate can be transformed to the
bulk composition φ′

eq. After simplification, it becomes

1

4

φ′4
pw

φ′4
eq

= 1

8

[
1 + 20ϑ − 8ϑ2 + (1 − 8ϑ)

3
2

]
. (8.108)

The combination of (8.107) and (8.108) is a parametric representation of the P line in
Fig. 8.10. The end-point ϑ = 1

8 inserted in (8.107) and (8.108) yields the coordinates

of the critical pre-wetting point φ′′
red,0 = − 3

2 and φ′
eq/φ

′
pw = [16/27] 1

4 . In order to
calculate also the Q line, we subtract the height of the local maximum (8.108) from
(8.101). Since the compositions at the start and the end of the jump have the same
φ′
eq, they have the same height in Fig. 8.10. So, the Q line results as a root of the
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equation after substraction. By construction, the fourth order polynomial resulting
from the subtraction has a double root at the maximum position (8.107). A polynom
division allows to separate these known roots, and the Q line can be determined as
root of the resulting second order polynomial. These calculations require tedious
book keeping of terms, but otherwise are straight forward. The abscissa φ′′

red,0,Q of
the Q line reads

φ′′
red,0,Q(ϑ) = −1

2
− 1

2

√
1 − 8ϑ −

√
1 + √

1 − 8ϑ. (8.109)

By construction, the ordinate of the Q line is the same as for the P line (constant
value of φ′

eq on both sides of the jump) and thus results also from (8.108). It can
be cross-checked numerically by inserting (8.109) into (8.101). In a similar way, all
relevant points in Fig. 8.10 can be assigned to values of ϑ through the temperature
curve passing through the point and φ′

eq by identifying the height of a point with
1
4

φ′4
pw

φ′4
eq
according to (8.102).

For a transfer of the pre-wetting line P or Q to the phase diagram as in the inset

of Fig. 8.10, one might first draw the binodal as Tbin = Tc − (Tc − Tpw)
(

φ′
eq

φ′
pw

)2
.

According to (8.67) and (8.69), the curvature of the spinodal is 3 times the curva-

ture of the binodal, so Tspin = Tc − 3(Tc − Tpw)
(

φ′
eq

φ′
pw

)2
. With Tbin − Tspin = 2(Tc −

Tpw)
(

φ′
eq

φ′
pw

)2
a connection to the reduced temperature scale ϑ (8.97) is established:

ϑ = 1

2

T − Tc

Tc − Tpw

(
φ′
pw

φ′
eq

)2

+ 1

2
. (8.110)

The ordinate of the pre-wetting line
φ′
eq

φ′
pw

(ϑ) is calculated from (8.108), and it can be

used to evaluate the inversion of (8.110) T
(

φ′
eq

φ′
pw

, ϑ
)
. Again the combination of these

two equations is a parametric representation of the pre-wetting line in terms of ϑ in
the range 0 ≤ ϑ ≤ 1

8 .

Interface Tension in the Mixed State. The integral (8.53) for the calculation of γ

with the reduced grand canonical potential density (8.101) inserted reads

γ = γAS + [γBS − γAS][φc + φ′
eq(1 + φ′′

red,0)]

±
∫ 0

φ′′
red,0

φ′2
eq

√
κC

2

√
4ϑφ′′2

red + (φ′′
red + 2)2φ′′2

red (φ′
eqdφ

′′
red). (8.111)
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A substitution based on (8.100) to the reduced composition deviation φ′′
red from φ′

eq is
already performed, which has resulted in a differential dφ′ = φ′

eqdφ
′′
red and the upper

limit equal to 0. As before, it is important to select the sign of the integral in a way
to keep it positive. The not reduced deviation φ′′ from φ′

eq is generally non positive
for preferential adsorption of A to a substrate. The extension of the relevant range to
negative values can also be seen in Fig. 8.10. For φeq < φc, on the A-rich side relative
to the critical composition, φ′

eq is negative and so with (8.100) φ′′
red > 0. The positive

lower limit φ′′
red,0 > 0 results in a factor (−1), which is compensated by the negative

prefactor in the differential (φ′
eqdφ

′′
red). For φ′

eq > φc, on the B-rich side relative to
φc, φ′

eq > 0, so the differential prefactor is positive. With φ′′
red < 0, the lower limit is

smaller than the upper limit 0, so there is also no sign contribution from the integral.

A first transformation is the extraction of a factor
√

φ′′2
red = ±φ′′

red from the square

root. Based on the discussed signs of φ′′
red, we have to select the upper positive sign

for the A-rich side φ′
eq < 0, and the negative lower sign for the B-rich side φ′

eq > 0.
Another substitution u = φ′′

red + 2 leads to a sumof two integrals which are Bronstein
integrable [23]. With (8.78) and (8.82), the result is expressed as increment to the
constant background in terms of (γBS − γAS):

Δγ = (γBS − γAS)φ
′
eq(1 + φ′′

red,0)

± 4(γBS − γAS)φ
′3
eq

3φ′2
pw

⎧⎨
⎩
[
1 − 2ϑ − φ′′

red,0

2
− φ′′2

red,0

2

]√[
1 + φ′′

red,0

2

]2
+ ϑ

−[1 − 2ϑ]√1 + ϑ + 3ϑ ln

⎡
⎣1 + 1

2φ
′′
red,0 +

√[
1 + 1

2φ
′′
red,0

]2 + ϑ

1 + √
1 + ϑ

⎤
⎦
⎫⎬
⎭ . (8.112)

The sign choice cancels with the sign of φ′
eq, so ±φ′3

eq = −|φ′
eq|3.

Comparison of Binodal Values. The binodal line Tbin(φ) marks the boundary
between the two-phase region and the one phase region. We can cross-check the
equations for φ′

0 and γ for these two regions by a comparison on the binodal line,
where the results should match. For the binodal as limiting case of the one phase
region, φ′′

0 results from (8.101) for ϑ = 0. The resulting curve in Fig. 8.10 is sym-
metric relative to φ′′

red,0 = −1. So, the transformation of (8.101) in terms of a variable
(φ′′

red,0 + 1) results in a fourth order polynomial with only even powers. The roots
are found by double application of the formula for quadratic equations, and φ′′

red,0 for
ϑ = 0 is calculated as:

φ′′
red,0 = −1(∓)2

√
1(±)1

φ′2
pw

φ′2
eq

. (8.113)



268 R. Sigel

(a)

(b)

(c)

Fig. 8.11 Reduced contact composition φ′′
red,0 (a), layer thickness d/ξ (b), and reduced interface

tension incrementΔγ/([γBS − γAS]φ′
pw) (c) plotted against reduced temperatureϑ . The black lines

are calculated for the same compositions φ′
eq/φ

′
pw ∈ {0.85, [16/27] 1

4 , 0.9, 0.95, 1, 1.1} as in Fig.
8.10. In (a) and (c), φ′

eq/φ
′
pw decreases when going from upper lines to the lower lines, while in

(b) it increases. The shaded regions limited by the lines Q and L indicate the areas of logarithmic
divergence of layer thickness. The grey thick lines P and Q mark start and end of the jump in a first
order pre-wetting transition

Here, (±)1 and (∓)2 indicate the sign choices in the first and second application of
the formula for quadratic equations. For |φ′

eq| < φ′
pw, there are only two real solutions

of (8.113), and we have to select the negative one for preferential A adsorption to the
substrate: (±)1 = +, (∓)2 = −. For |φ′

eq| ≥ φ′
pw, there are four real solutions. For an

A-rich region close to the substrate the previous solution remains valid. For a B-rich
region at the substrate, the right choice of signs in (8.113) is (±)1 = −, (∓)2 = +, in
order to obtain the negative solution of smallestmagnitude. This solution corresponds
to the selection of intersection point φ0,3 in Fig. 8.10 for φ′

eq/φ
′
pw > 1. The signs in

(8.113) are again written in a form where the upper signs describe the A-rich side,
while the lower signs stand for the B-rich side of the phase diagram. As a result, the
limit of (8.113) for ϑ = 0 from the side of the mixed phase is the reduced form of
(8.80), which indicates the contact values in the two phase region.

When (8.113) is inserted into (8.112) for the one-phase limiting case ϑ = 0 and
the prefactor expressed in terms of (γBS − γAS) based on (8.78), one recovers the
two-phase formula (8.85). The consistent and steady behavior of φ′

0 and γ at the
binodal has been used as a cross check of signs for the formulas.

How to see the Pre-Wetting Transition in an Experiment? Experimental parame-
ters which might serve for the detection of the pre-wetting transition are the layer
thickness d and the interface tension γ . A direct experimental access to the con-
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tact composition φ′′
red,0 appears more difficult. The temperature dependence of these

three parameters is shown in Fig. 8.11 for the same selection of bulk compositions
φ′
red/φ

′
pw as in Fig. 8.10. The contact composition in Fig. 8.11a was determined

from (8.102) by a simple numeric Newton-RaphsonMethod [24]. The behavior is
already discussed in connection with Fig. 8.10: for φ′

eq/φ
′
pw = 1.1 and φ′

eq/φ
′
pw = 1

in the upper two lines, there is only a marginal increase of φ′′
red,0 when ϑ is decreased.

For φ′
eq/φ

′
pw = 1, the critical composition φ′′

red,0 = −1 is reached for ϑ = 0. The two
examplesφ′

eq/φ
′
pw = 0.95 andφ′

eq/φ
′
pw = 0.9 show the jump inφ′′

red,0 at the first order

pre-wetting transition. For φ′
eq/φ

′
pw = [16/27] 1

4 , the pre-wetting transition becomes
second order: there is no longer a jump, but an infinite slope of φ′′

red,0(ϑ). In the
supercritical example φ′

eq/φ
′
pw = 0.85, there is a continuous transition from strongly

to a moderately negative values of φ′′
red,0.

Based on the numerical solution forφ′′
red,0, the temperature dependencies of d (Fig.

8.11b) and γ (Fig. 8.11c) are calculated with (8.106) and (8.112), respectively. Also
the P, Q, and L lines were transferred to lines in Figs. 8.11b, c. Similar to the behavior
of φ′′

red,0, γ and d have jumps in the first order pre-wetting transition. For γ , the jumps
become very small at higher ϑ . The infinite slopes in the second order pre-wetting
critical point is found only for d. The interface tension is thus less suitable for a
determination of the pre-wetting transition. With the known contact compositions on
the P line (8.107) and the Q line (8.109) before and after the jump, on can use (8.106)
and (8.112) to determine the mean field cirtical exponents when ϑ approaches the the
critical pre-wetting value ϑ = 1

8 . As a result, [φ′′
red,0,P − φ′′

red,0,Q] and [d(φ′′
red,0,Q) −

d(φ′′
red,0,P)] vanish with an exponent 1

2 , while [γ (φ′′
red,0,P) − γ (φ′′

red,0,Q)] approaches
zero with an exponent 2.

The occurrence of a thick pre-wetting layer is accompanied by a reduction of the
interface tension. So, the A component acts like a surfactant on the B-rich side of
the one phase region. The possibility to switch this surfactant in the first order pre-
wetting transition by a small temperature change might be of technological interest.
Due to the scaling with the interface tension difference [γBS − γAS], this surfactant
has different strength on different substrates, which might be used for selectivity. An
example could be a separation of a mixture of colloids or nano-particles of different
material as substrates within a binary mixture as dispersion medium.

Interface Fluctuations A discussion of interface fluctuations for a binary system
similar to the treatment of interface fluctuations in liquid crystals [25], which is
an interesting field of study in its own right, needs to be postponed to a separate
publication. Experimental results for the fluctuation amplitude and the fluctuation
dynamics of a liquid crystalline pre-wetting layer are found in [26, 27], respectively.

Landau Theory: Summary. The Landau theory, where all quantities except the
contact composition in the mixed phase can be calculated analytically, is a very
well suited didactic tool for an illustration of the interface calculations based on the
squared gradient approach. For a grand canonical density different from ΔωL, the
same calculations can be performed numerically. The general morphology of the
phase diagram should remain similar in this case.
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8.6 Summary and Outlook

The squared gradient approach allows a description of interfaces and the bulk phases
with a common set of parameters. A combination of interactions and entropy contri-
bution determines the phase behavior of the bulk, as well as the contact composition
at a substrate. The correlation length of concentration fluctuations in the bulk phase
sets the length scale of an interfacial concentration profile. A number of parameters
for the description of interfaces can be extracted already from bulk results. Thus,
interfaces are no longer exceptionally complicated exotic objects in an otherwise
perfect bulk world. The complication in real interface experiments stems to a large
part from the highly demanding purity requirements in preparation.

The squared gradient theory is limited, since interfaces with a too steep profile
cannot be described. This limitation is less severe for truly soft systems, where struc-
tural changes expand over a correlation length. So, the theory is well adapted to the
focus of SOMATAI. Beside the derivation of the equilibrium state, the theory allows
the calculation of fluctuation amplitudes and restoring forces, which give access
to a basic understanding of relaxation dynamics, if a suitable friction constant is
known. We touched the distinction between meta-stable states and thermodynami-
cally stable states in the two phase region of the bulk between the binodal and the
spinodal only briefly here. An access to meta-stable states at the interface could be
constructed on similar grounds. Such meta-stable states appear to be highly rele-
vant for interface rheology, where often the interface structure is frozen and not at
all in a thermodynamic equilibrium. In a recent workshop “Dynamics of complex
fluid-fluid interfaces” organized by Peter Fischer and others from ETH Zürich at
Monte Verita in Ascona, a majority of interface rheology contributions appeared to
have frozen non equilibrium structures. It might be even speculated, that modern
applications of interface science, e.g. the creation of new food products with low fat
and sugar content in food science require frozen non-equilibrium structures at the
internal interfaces of the product. Here, the squared gradient approach could provide
an access to a theoretical description of meta-stable states, which might be able to
predict food live-times based on breakdown of frozen structures at internal interfaces
by relaxation processes.

8.7 Exercises

The SOMATAI initial training network and also its summer school to which this
contribution was delivered intend to train young researchers. An essential point of
training is to practice the concepts under study. Exercises of the tutorial during the
SOMATAI summer school are listed below.

1. Consider the Figure showing partial and complete wetting of the vapor phase
by the A-rich phase, which has a higher density than the B-rich phase and thus
mainly is at the bottom of the container.
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ab

bSaS

B rich
A rich

γ γ
γ

(a)

(b)

a. Which phase has the higher interface tension against the container wall?
Hint: look at the contact angle at the container wall.

b. Write down the force balance for the three phase contact line for partial
wetting and express the interface energies of A and B against the vapor
phase by the contact angles and the interface tension γAB of the A-rich
phase versus the B-rich phase.

2. Assume that the binodal Tbin(φ) of an A and B mixture is characterized by the
equation

Tbin(φ)

K
= 1600φ2 − 1600

a. Determine the critical point.
b. A mixture 20mL of A and 40mL of B is prepared at the temperature 300K.

Is the mixture in a one phase state, or in a two phase state?
c. Determine the compositions of the two phases.
d. Determine the volumes of the two phases.

3. Consider a blend of polystyrene PS (C8H8, ρ = 1.04 g/cm3) of molecular mass
Mw = 25 000 g/mol and polyisoprene PI (C5H8, ρ = 0.93 g/cm3) of molecular
massMw = 20 000 g/mol. Use the polystyrenemonomer volume as cell volume
vc.

a. Determine the degrees of polymerization NPS and N ′
PI, and the effective

degree of polymerization forNPI to beused in aFlory-Hugginsdescription.
b. For an interaction parameter χ = 0.1, do you expect a mixed (one phase)

or a de-mixed (two phase) state at the temperature T = 150 ◦C?

4. Derive (8.36).
5. Linear response theory: start from the quadratic approximation (8.23) forΔωmix

and consider the effect of an external field h by an additional linear term
hφ. Determine the new equilibrium position φeq(h) = φeq + Δφ with h and
show that the responseΔφ = φeq(h) − φeq(h = 0) is linear in h. Determine the

response coefficient dφeq

dh .
6. Derive (8.70) and (8.71) starting from (8.75).
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8.8 Appendix

8.8.1 Calculus of Variations

Abrief summary of functionals and their derivatives clearly remains insufficient from
a mathematical point of view. However, it provides the techniques to perform the
calculus of variations employed in this contribution. We follow the presentation of
Großmann, and recommend his book for a detailed discussion on solid mathematical
grounds [28].

Starting point is a space F of functions f : M �→ R, which can be chosen with
sufficiently tame properties. Here M ⊂ R

n is the space of arguments for the func-
tions, for our purposes the real axis M = R, the 3D space M = R

3 for bulk prob-
lems, or M = R

2 × R+ for interface problems. The latter describes the half space
with only non-negative z values. The tame functions f , g ∈ F are assumed to be
steady and sufficiently often differentiable. For two functions f , g ∈ F the inte-
gration of the product fg over M is considered as scalar product 〈f |g〉 over F . A
functional

F : F → R (8.114)

f �→ r ∈ R

maps F to the real numbers R and assigns to each f ∈ F a real number r.
As a first example, a fixed function g ∈ F can be chosen, which forms the kernel

in an integral

F[f ] =
∫
M

g(x)f (x) dnx = 〈g|f 〉 . (8.115)

So, f (x) is mapped by the functional F to the real number calculated as the inte-
gral over the product g(x)f (x), so the scalar product mentioned above. The squared
brakets of F[.] which were used in (8.3), (8.7), (8.43), and (8.51) indicate the depen-
dence of the functional F on the function f . A more general functional can take
also derivatives of f (x) into account, and the squared gradient theories in the form
(8.3) are examples for such functionals. A second example to assign a real value to
a function f (x) defined over an intervalI is to select a specific point x0 ∈ I and to
evaluate f (x0). Formally, the corresponding functional δx0 [f ] = f (x0) can be written
in a similar form as in (8.115):

δx0 [f ] =
∫
I

δ(x − x0)f (x) dx. (8.116)

The kernel δ(x − x0) of δx0 [.] is usually called a delta function, although it cannot
be defined in a mathematically consistent way as a function. The interpretation of
(8.116) as a formal notation for the functional which assigns to each f ∈ F its value
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f (x0) gives a more consistent picture. The concept of a distribution which forms the
basis for δ(x − x0) is also discussed by Großmann [28].

The calculation of an equilibrium interface profile is traced back to aminimization
of a functional (8.43) which yields the interfacial energy for arbitrary interfacial pro-
files. Similar to a discussion of the minimum of a function, the minimum is found by
setting the derivative equal to zero. However, now we have to use a functional deriv-
ative, not the normal derivative. The derivative of the functional F at the ‘position’
f ∈ F in the ‘direction’ h ∈ F is calculated as:

∂F

∂f
[h] = lim

ε→0

F[f + εh] − F[f ]
ε

. (8.117)

Under suitable conditions for a steady behavior of ∂F
∂f [h] in f and h, the existence of

functional derivations in specific directions (8.117) implies the existence of a unique
functional derivative

δF

δf
[h] =

∫
M

δF

δf (x)
h(x) dnx =

〈
δF

δf

∣∣∣∣ h
〉
. (8.118)

The resulting functional derivative δF
δf is again a functional in h. It can bewritten as an

integral over the kernel δF
δf (x) , whichmight be either a regular integration, as in (8.115),

or a formal integral similar to (8.116). While F[h] might contain also derivatives of
h, they can be removed by partial integration in order to reach the representation of
δF
δf [.] as an integral which contains h only and no derivatives of h. In this way, it
can be expressed as a scalar product in the second form of (8.118). Removing any
derivative of h is important when the first functional derivative is set equal to zero
in order to find a function with an extremal value. For the mathematically sloppy
discussion we are bound to in this brief appendix, we can assume the existence of
the functional derivative δF

δf of (8.118), if the limit in (8.117) leads to an expression
which is linear in h, so a presentation as scalar product in (8.118) is possible with a
kernel δF

δf (x) independent of h.
A well known example in physics is the functional derivative of the action

F[x] =
∫ t2

t1

L (x, ẋ, t) dt. (8.119)

of the differentiable trace x(t) with speed ẋ = dx
dt of a particle which starts at time t1

and ends at time t2. Here, L(x, v, t) is a two times differentiable Lagrange-function.
For the potential energy V (x) it reads L(x, v, t) = 1

2mv2 − V (x). The functional
derivative in the ‘direction’ h(t) is now calculated according to (8.117) as
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∂F

∂x
[h] = lim

ε→0

1

ε

{∫ t2

t1

L(x(t) + εh(t), ẋ(t) + εḣ(t), t) dt −
∫ t2

t1

L(x(t), ẋ(t), t) dt

}

=
∫ t2

t1

[
∂L

∂x
h(t) + ∂L

∂v
ḣ(t)

]
dt. (8.120)

The arguments of theLagrange-function L(x(t), ẋ(t), t) are not written explicitly in
(8.120) and will also be omitted in the following equations, for facility of inspection.
The time derivative ḣ(t) can be removed by integration by parts, which leads to the
form

∂F

∂x
[h] =

∫ t2

t1

[
∂L

∂x
− d

dt

∂L

∂v

]
h(t) dt +

[
h(t)

∂L

∂v

]t2

t1

=
∫ t2

t1

[
∂L

∂x
− d

dt

∂L

∂v
+ ∂L

∂v
[δ(t − t2) − δ(t − t1)]

]
h(t) dt. (8.121)

Since (8.121) is linear in h, the functional derivative in the direction h, ∂F
∂x , represents

the functional derivative δF
δx , which does not depend on the choice of h. Its kernel can

be extracted from the integral of (8.121) and reads

δF

δx(t)
= ∂L

∂x
− d

dt

∂L

∂v
+ [δ(t − t2) − δ(t − t1)]

∂L

∂v
. (8.122)

The test function h(t) describes the variation of the path x(t), see (8.117). For fixed
starting and end points of a path only variations with h(t1) = h(t2) = 0 are con-
sidered, and the boundary terms in (8.122) indicated by the delta functions do not
contribute. For a path of extremal action, the functional derivative (8.121) needs to
vanish for any such variation h. Thus, the kernel (8.122) needs to vanish, and we
arrive at the Euler- Lagrange equation

0 = δF

δx(t)
= ∂L

∂x
− d

dt

∂L

∂v
. (8.123)

Inserting the arguments of L(x(t), ẋ(t), t) into (8.123) leads to a differential equation,
the solution of which is the path of the particle.

A second example adapted to interface problems starts from the functional

F[φ] =
∫ +∞

−∞
dx
∫ +∞

−∞
dy
∫ +∞

0
dz

[
ω(φ) + κ

2

[[
∂φ

∂x

]2
+
[
∂φ

∂y

]2
+
[
∂φ

∂z

]2]]
.

(8.124)
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While x and y range from −∞ to +∞, z extends only from 0 which is the location
of the interface to +∞. The Lagrange function is extracted from (8.124):

L

(
φ,

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
= ω(φ) + κ

2

[[
∂φ

∂x

]2
+
[
∂φ

∂y

]2
+
[
∂φ

∂z

]2]
. (8.125)

We consider only variations h which vanish for x, y → ±∞ and z → +∞. A cal-
culation similar to (8.120) leads to the kernel of δF

δφ
:

δF

δφ(x, y, z)
= ∂ω

∂φ
− κ

[
∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
− δ(z)

∂φ

∂z

]
. (8.126)

Since the squared gradients in x and y in (8.124) give positive contributions, they
need to vanish for the equilibrium interface profile. So (8.124) and (8.126) effectively
depend on the gradient in z direction only and thus the problem becomes a one
dimensional. Apart from the contact potential, (8.124) corresponds to (8.51), and
(8.126) is similar to (8.52). Also bulk fluctuations are described by (8.126), if the
kernel is integrated over the full R3. The boundary term at the interface with δ(z)
vanishes, if we consider variations with h(z) = 0, so for a profile with fixed value at
the interface.Whenφ(z = 0) is not fixed but determined by an interface potential, the
gradient in the boundary term affects the boundary condition for fluctuation modes
in the second functional derivative.

For the calculation of the second functional derivative δ2F
δf 2 , one considers the first

derivative δF
δf [h] as a functional in f for fixed ‘direction’ h. For this functional in

f , the functional derivative is calculated with the same rules. The second derivative
can be written either as an integral, or as a bi-linear mapping, similar to the scalar
product (8.115):

δ2F

δf 2
[h, k] =

∫
M

h(x)
δ2F

δ2f (x)
k(x) dx =

〈
h

∣∣∣∣δ
2F

δf 2

∣∣∣∣ k
〉
. (8.127)

We do not look for an extremum with the second derivative, and so we do not set
the kernel (8.127) equal to zero, as we did in (8.123). So, it is not required and
often not possible to remove the derivatives of k by partial integration, and thus δ2F

δ2f (x)
might contain derivative operators acting on k. In case the derivative of a product of
a term included in δ2F

δ2f (x) and k(x) is encountered, it can be resolved with the product
rule of derivation for improved clarity. A function f which results in an extremum
as determined by the first functional derivative and its derivative can be inserted
to the Lagrange Function of (8.127), in order to build up a bi-linear form for
fluctuations around the equilibrium profile. This bi-linear form allows the definition
of orthogonality of fluctuation modes. Eigen-fluctuations are the eigen-modes of the
bi-linear form, and if these eigen-fluctuations have different eigen-values they are
necessarily orthogonal. Higher derivatives can be calculated along the same lines,
and a Taylor expansion for a functional reads



276 R. Sigel

F[f + h] ≈ F[f ] + δF

δf
[h] + 1

2

δ2F

δf 2
[h, h] + . . . + 1

n!
δnF

δf n
[h, h, . . . , h]. (8.128)

As an illustration of the second derivative, we use the second example (8.124), start
from the first derivative (8.118) with (8.126) inserted, and perform a limit calculation
with a second variation with respect to k(t) similar to (8.120). The kernel operator
of the resulting bilinear form (8.127) results as

δ2F

δf 2
[h, k] = ∂2L

∂x2
−
(

d

dt

∂2L

∂x∂v

)
−
(

d

dt

∂2L

∂v2

)
d

dt
− ∂2L

∂v2
d2

dt2

+ [δ(t − t2) − δ(t − t1)]

[
∂2L

∂x∂v
+ ∂2L

∂v2
d

dt

]
. (8.129)

8.8.2 List of Important Symbols

Symbol First Occurrence Meaning

Ã (8.27) scattering amplitude
α (8.19) length ratio of the polymers of a blend
χ (8.13) Flory-Huggins interaction parameter
F, ΔF, Δf (8.4), (8.3), (8.8) free energy, free energy increment and its density
ΔFmix, Δfmix (8.12), (8.16) Free energy of mixing and its density, Flory-

Huggins theory
ΔfL (8.61) free energy density Landau theory
ΔΩ , Δωmix (8.3), (8.22) grand canonical potential increment and its density
ΔωL, ΔωL,red (8.65), (8.101) density grand canonical potential Landau theory,

reduced form
Δωbulk, Δωbulk,red (8.43), (8.101) minimum density grand canonical potential, reduced

form
φ, φ′, φ′′ Fig. 8.1, (8.59), (8.60) volume fraction of B, deviation from φc, deviation

from φeq
φa, φb (8.20) compositions on the A-rich and B-rich side on the

binodal line
φ0, φ0a, φ0b (8.53), (8.57) contact compositions at a substrate, for A-rich and

B-rich phases
φc (8.59) critical composition
φ̄ Fig. 8.5, (8.20) average composition set by sample preparation
φeq (8.23) equilibrium composition
φpw (8.78) bulk composition at the start of the pre-wetting line
φred, φred,0 (8.100), (8.102) reduced composition, contact value of it
φred,0,P, φred,0,Q (8.107), (8.109) reduced contact composition on the P line and the

Q line

(continued)
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(continued)

Symbol First Occurrence Meaning
φw Fig. 8.7 bulk composition at the wetting transition
κ (8.3) elastic constant of a squared gradient theory
μA, μB (8.21) chemical potential of A polymers and B polymers
NA, NB, N ′

B (8.11) degree of polymerization of the A and of the B molecules
nA, nB (8.11) number of A polymers and number of B polymers in the volume
Rg, RgA, RgB (8.37) radius of gyration, for A and B chains
Sa (8.2) spreading coefficient of the A-rich phase
γab (8.1) interface tension between the A-rich phase and the B-rich phase
γAS, γBS (8.50) interface tensions between the pure A phase or the pure B phase

and a substrate
γaS, γbS (8.1) interface tensions between the A-rich phase or the B-rich phase

and a substrate
γS(φ) (8.50) contact potential at a substrate
Tbin, Tspin (8.66), (8.69) binodal and spinodal temperature
Θa (8.1) contact angle of the A-rich phase
Tpw Fig. 8.1, (8.77) temperatures at the start of the pre-wetting line
Tw Fig. 8.1, (8.87) bulk composition at the wetting transition
Tc (8.64) temperature of the bulk critical point
VA, VB (8.11) total volumes of A and B
vA, vB (8.11) volumes of an A monomer and a B monomer
vc (8.11) cell volume in the Flory-Huggins theory
ξ , ξbin (8.32), (8.98) correlation length of fluctuations, ξ on the binodal line
zeff (8.11) number of neighboring cells in the Flory-Huggins theory

Acknowledgments The author thanks Helgard Sigel for her hospitality during summer 2014 in
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Chapter 9
Polymer Physics at Surfaces and Interfaces

Jens-Uwe Sommer

Abstract The aim of this chapter is to give a brief introduction to the physical
concepts for polymers interacting with surfaces and interfaces. In particular we
introduce scaling and mean-field concepts for polymers in confinement, at adsorbing
interfaces and surfaces and show how these simple models can be used to understand
the diversity of surface and interface phenomena of polymers. After a short intro-
duction to concepts of polymer physics, self-similarity of polymer conformations is
introduced as the basics for scaling arguments. Then, mean-field concepts as a
thermodynamic approach are presented as a versatile tool in polymer theory. Using
these concepts the physics of polymer adsorption is explored. After consideration of
adsorption of single chains, concentration and saturation at the substrate is discussed.
Polymer brushes represent a particular class of substrate-fixed polymers displaying
new features due to the highly stretched conformations. Mean-field concepts are
used to explore the physics of charged brushes under different solvent conditions.

9.1 Flexible Polymer Chains, Scaling, and Mean-Field
Concepts

9.1.1 Ideal Chains

The universal property of long polymer chains is their huge number of confor-
mational, microscopic states. This can be illustrated by random paths having a
given length L. In Fig. 9.1 sketches of such conformations are drawn for a polymer
chain with fixed ends defining the end-to-end distance vector R. In the simplest
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model one assumes that monomers are grouped into flexibly joint units of length l,
called the statistical or Kuhn-segment with random orientations. The number of
such segments is given by N = L/l. This model is called the ideal chain model and
can be envisioned as the trace of a random walk where all steps of length l are taken
randomly and uncorrelated. The total number of conformations without any
restriction on the chain is thus given by

Z0 ¼ zN0 ; ð9:1Þ

where z0 denotes the number of independent states (for instance orientations) of
each segment. Note that the number of conformations for a single chain is huge:
Taken z0 ¼ 6 and N = 100 we obtain: Z0 ’ 5 � 1077! Consequently the conforma-
tional entropy of the free chain is given by S0 ¼ kBN lnðz0Þ � N, which is much
larger than the entropy associated with a thermal fluctuation (Sth ’ kB), where kB is
the Boltzmann-constant. Thus, a long polymer chain can be considered as a small
thermodynamic system. When applying any constraint to the chain the conforma-
tional entropy is reduced and a thermodynamic force has to be applied. Let us
consider a chain fixed by its endpoints at distance R. Since the segments are
uncorrelated one can easily prove the relation

hR2i ¼ l2N: ð9:2Þ

Fig. 9.1 Sketch of polymer
conformations with fixed end
points located at x0 and x. The
conformational entropy is
given by all possible paths of
a given length which connect
the end-points
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Here, the brackets h. . .i denote averaging over all conformations. The proba-
bility to realize this state due to the statistical independence of the individual
segments is given by a Gaussian distribution according to

PðR;NÞ ¼ 3
2pl2N

� �
exp � 3

2
R2

l2N

� �
¼ ZðR;NÞ

Z0
: ð9:3Þ

From this we can calculate the free energy to fix the end-points as compared to
the state of the unconstrained chain:

F ¼ �kBT lnðZ=Z0Þ ¼ 3
2
kBT

R2

l2N
þ kBT lnN; ð9:4Þ

where we have suppressed constant terms. Thus, an ideal polymer chain behaves as
a harmonic spring with an entropic spring constant, 3kBT=N, being proportional to
the temperature.

We can rewrite Eq. (9.2) in the following form

R�N1=2or N �R2 : ð9:5Þ

Here and in the following we use the short hand notation R :¼ hR2i1=2. Because
the states of the segments are statistically independent all these results are also valid
for any sub-chain consisting of g monomers and thus having an average extension

n� g1=2: ð9:6Þ

We note that the last relation in Eq. (9.5) can be read as the dependence of the
mass, N, of an object as a function of its size, R. From this we would conclude that
the random coil, which represents the conformation of the chain has the (fractal)
dimension df ¼ 2 regardless of the fact that the chain has the chemical dimension,
dc ¼ 1.

9.1.2 Self-Similarity, Scale-Invariance

Equation (9.6) indicates a very important feature of polymer conformations; their
statistical self-similarity. This means that any sub-chain behaves statistically the
same as the whole chain. An observer who investigates the chain conformations
cannot determine the absolute scale of the system: A shorter chain in higher
magnifications is indistinguishable from a longer chain observed in lower magni-
fication. This has important consequences for the physics of polymer chains. In
Fig. 9.2 we show two polymers with different chain length between two plates with
different distance in between them. Since we cannot tell the absolute scale of the
system the physical properties can only depend of the dimensionless ratio
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y ¼ R0=D;

where D denotes the distance between the plates and R0 denotes the size of a free
chain. The fact that the absolute scale for self-similar objects can not be important for
their physical behavior is called scale-invariance. Then, only combinations of rel-
evant length scales control the physical properties. In our example all geometric and
thermodynamic properties of chains in a slit are controlled by the scaling variable
y which represents the only possible combination of relevant length scales here. For
an ideal chain Eq. (9.2) yields y ¼ lN1=2=D and hence only the combination l2N=D2

is relevant instead of the two formally independent variables D and N. This is already
a great reduction of complexity for the present problem! In Sect. 9.1.4 we will
continue the discussion of polymers in the slit geometry based on this consideration.

9.1.3 Good Solvent, Real Chains and Excluded Volume

The model of ideal chains is a good starting point for understanding the physics of
flexible polymers. There are real systems where this model is also fully appropriate
such as dense polymer melts. Moreover, this model can be also relevant on larger
scales quite generally for overlapping polymers such as in semi-dilute solutions. On
the other hand, let us consider a single chain in a dilute polymer solution in a good
solvent. If the ideal chain statistics as expressed in Eq. (9.3) would be valid the
number of pair contacts of two monomers would grow with chain length according
to V � vT � N2�d=2 (d—dimension of space), where

vT ¼ v0
T �H

T
: ð9:7Þ

denotes the effective repulsion free energy between two monomers. Here, v0 cor-
responds to the excluded volume of a monomer in the athermal case (T�HÞ.

Fig. 9.2 Illustration of scale invariance: the two polymers of different length between two plates
are identical up to rescaling of the absolute length
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In the above equation this defines the so-called H-temperature at which the
pair-wise interaction vanishes and the solvent becomes marginal, i.e. vT ¼ 0. At the
H-point, chain statistics is nearly ideal (perturbed only by higher order interac-
tions). Above the H-point, the interaction energy per chain, V, increases with chain
length without limit for d < 4. On the other hand, swelling of the chain confor-
mation requires only an effort of the order of kBT , see Eq. (9.4). Therefore, ideal
chain statistics cannot be preserved and we expect an increase of the chain size with
R[N1=2. Here and in the following we will often denote the scaling relations only
and ignore prefactors and constant length scales in order to focus on the essential
result. In the following, we set the statistical segment size, l, to unity (i.e. defines the
length unit) to achieve a simplified notation.

To understand polymers in good solvent, vT [ 0, one can use the concept of
self-avoiding walks. In generalization of the picture of a random walk for an ideal
chain this refers to a stochastic path which a priori does not has any
self-intersections. In contrast to the random walk the statistical features of
self-avoiding walks are complex and mathematically challenging. It could be shown
using concepts of statistical field theory and intriguing analogies between polymer
statistics and magnetic systems [1] that one essential result for chains with excluded
volume interactions is given by a generalization of Eqs. (9.2) and (9.6) according to

R�Nm and n� gm with m ¼ m3 ’ 0:588: ð9:8Þ

This result for the exponent v3 in three dimension is obtained numerically and
using the methods denoted above. We add that in 2 dimension the exact result is
given by

m2 ¼ 3=4 : ð9:9Þ

The most important consequence is that also the self-avoiding walk (real chain in
a good solvent) displays self-similarity and scale-free behavior. Referring again to
the example of the chain between two plates the scaling variable can be now written
as y ¼ Nm=D. This includes the case of an ideal chain with m ¼ 1=2.

For vT\0 the segments of the chain attract each other (poor solvent conditions).
Using the same argument as above the free energy of contacts is exceeding kBT for
g1=2vT � 1 and chains longer than g� v�2

T tend to collapse. Much longer chains
(N� g) will form a compact globule with R�N1=3. It is important to note that
chains in poor solvent are not self-similar for N� g but display the behavior of
ideal chains confined in a droplet.

9.1.4 Scaling and Blobs

Let us now consider the example of a chain in a slit in more detail. Since only the
scaling variable can control the physics we can write
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Rk=R0 ¼ f ðyÞ; ð9:10Þ

where Rk denotes the (average) extension of the chain in the lateral direction and R0

denotes again the extension of the free chain. The function of the scaling variable,
f ðyÞ, is called cross-over or scaling function. For y ! 0, (very wide slits) we have
Rk ¼ R0, and f ð0Þ ¼ 1. More interesting is the opposite case where the chain is
squeezed in a narrow silt, see Fig. 9.3. In this case the chain is two-dimensional for
Rk �D and we expect: Rk �Nm2 �N3=4 using Eqs. (9.8, 9.9). But how can we

smoothly change from the behavior Rk �N0:588 to �N3=4 This is only possible if
the cross-over function displays a power-law behavior in the limit y� 1 of the
general form ym with an unknown exponent m. Substituting this into Eq. (9.10) we
arrive at: Rk �NmNm�m=Dm �Nm2 with the solution m ¼ ðm2 � mÞ=m. We can con-
clude that the real chain in good solvent expands laterally due to compression
according to

Rk �D1�m2=mN3=4 �D�1=4N3=4: ð9:11Þ

In the last relation we have used the approximation m’ 3=5. The cross-over
function must change smoothly from the asymptotic values f ð0Þ ¼ 1 to
f ðy�1Þ� ym. This is expected to happen in the cross-over region y’ 1. The
general functional form including the cross-over region cannot be deduced from
simple arguments. However, if we plot results for different chains lengths and slit
widths in a scaling plot using Eq. (9.10) we expect that all data obey a single
master-curve for all values of y until the self-similarity is broken. This takes place if
the slit width reaches the statistical segment size D’ 1. Further squeezing will then
depend of the local chain properties and chemical details of the polymer and shall
be not of interest here. Besides, this would require a substantial squeezing force.
Quite generally, scaling and self-similarity will be broken for real chains at a certain
minimal length scale, usually at the statistical segment size.

Fig. 9.3 Chain squeezed in a narrow slit, Rjj �D
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These result can be also obtained using a different approach. Let us redefine the
scaling variable1 according to

y0 ¼ y1=m ¼ N
g

with g�D1=m: ð9:12Þ

We observe that g is the number of segments which just cross the slit without
being strongly perturbed, see Fig. 9.3. We call this sequence a blob. For N� g we
can imagine a chain forming a 2D self-avoiding walk made of blobs:

Rk � N
g

� �m2

�D; ð9:13Þ

where D is the step-length of the 2D-chain. Using Eq. (9.12) we reobtain the result
of Eq. (9.11).

The blob concept yields another clue, namely the access to thermodynamic
observables. Consider again a scale transformation of the squeezed chain as dis-
played in Fig. 9.4. By reducing the slit width and the chain length simultaneously so
that the number of blobs is invariant the two physical situations cannot be distin-
guished. Thus, the thermodynamic properties shall be invariant (up to possible
rescaling of length scale). In particular the free energy should only depend on the
number of blobs: F ¼ fFðN=gÞ. The idea of this confinement-blob is apparently that
a chain sequence of length g is not yet squeezed but just fixed in the slit, i.e. it looses

Fig. 9.4 Scale transformation of a chain squeezed in a narrow slit. Without knowing the absolute
scale, scenarios are indistinguishable, if they display the same number of blobs

1Every monotonic function, in particular a power-law function of the scaling variable is again a
scaling variable.
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its translational degree of freedom in the direction perpendicular to the slit. Thus, we
can associate the free energy loss of a blob by

Fblob ’ kBT :

Then, the total free energy effort to squeeze a chain is given by

F� kBT
N
g

� �
� kBT � N � D�1=m:

Based on this result we can now calculate the force necessary to keep the chain
in the squeezed state:

fD ¼ � @F
@D

� kBT � N � D�1=m�1 � F
D
:

The force exerted by a single chain will be rather week. To estimate its value let
us consider ten blobs squeezed in a slit of width 4 nm. Using kBT ¼ 4:1� 10�21J at
ambient temperature we obtain fD ’ 1pN. We can extend our calculation if we
consider M chains squeezed in the slit without overlapping each other and having
the segment concentration c. The osmotic pressure is then given by

P ¼ M � fD
A

¼ fD
N
�M � N
A � D � D ¼ fD

N
� D � c � kBT � c � D�1=m ’ kBT � c � D�5=3 ;

where in the last relation we have used again the approximation for v noted above.
This result can be also used for ideal chains (for instance under H-conditions)
which leads to P� kBT � c � D�2. We note that the expression for ideal chains can
be derived exactly including the numerical prefactors unknown in the scaling
theory. We note further that the similarity relation (*) in scaling expressions can be
replaced by an equality with a fixed (but unknown) numerical constant. However,
this constant can be easily obtained from computer simulations by applying a scale
free representation such as given in Eq. (9.10). Here, also the scaling function itself
including the crossover region can be obtained.

In general analytical calculations for real chains in three spatial dimensions are
cumbersome and not available for all situations. Moreover, such calculations are
approximate (mostly based on methods of statistical field theory) and need addi-
tional assumptions to find an explicit solution.

Let us consider a further example for scaling arguments which is important to
understand polymer solutionswith overlapping chains of concentration c. The overlap
threshold where chains are in contact to each other in d dimensions is given by

c� � N
Rd

�N1�dmd : ð9:14Þ
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In 3D we obtain c� �N1�3m �N�4=5. For c� c� chains are strongly overlapping
and interpenetrating and we call this state a semi-dilute solution. The conforma-
tional and thermodynamic properties in the semi-dilute state will be strongly
effected by the interactions between the chains. We define a blob for c[ c� as a
sequence of g monomers which is just on the verge of overlapping as sketched in
Fig. 9.5. One can argue that for length scales smaller then the correlation length,
n� gm, chain sequences are only weakly perturbed by other segments and thus
follow the statistics of single chains in good solvent, denoted by “EV” in Fig. 9.5.
In this case we can assume that the extension of the blob is given by Eq. (9.8).
Thus, we obtain:

g� c1=ð1�mddÞ and n� cmd=ð1�mddÞ: ð9:15Þ

Chain sequences much larger than the correlation length are strongly interacting.
Here, one can assume that the information whether a given segment is interacting
with a segment of the same chain or with one from any other chain is lost. As a
consequence the statistics can be assumed to be Gaussian again. This conclusion can
be obtained for dense melts—the case of the so called Flory theorem—and a semi-
dilute solution can be considered as a melt of correlation blobs. This conclusion can

Fig. 9.5 Sketch of a mesh-work of chains in semi-dilute state. Chain sequences up to the length of
g monomers are below their overlap. Thus, up to the correlation length, n, the chain statistics in
good solvents is only weakly perturbed. For length scales larger then n chains interact strongly and
excluded volume correlations along a single chain are destroyed. The arrow denotes the region of
validity of excluded volume statistics (EV) and ideal statistics (Gauss) as a function of the length
scale
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be further obtained using arguments from statistical field theory and the interested
reader is referred to the textbook by de Gennes [1].

Above the size of the blobs the excluded volume interaction is screened and the
interaction between monomers of different chains dominates. The free energy per
blob can be considered as kBT . Thus, we obtain for the total free energy of the
semi-dilute solution in three dimensions F� kBT � V=n3, and the osmotic pressure is

P ¼ � @F
@V

� n�3 � c3m=ðmd�1Þ � c9=4; ð9:16Þ

where in the last relation again the approximation m’ 3=5 has been used. The result
P � n3 � kBT is called the law of Des Cloizeaux [1].

Because of the screening of excluded volume interactions on a scale larger than
n, the chain in a semi-dilute solution can be described as a Gaussian chain made of
blobs:

R� N
g

� �1=2

n�N1=2cðm�1=2Þ=ð1�3mÞ �N1=2c�1=8: ð9:17Þ

Hence the chain extension swells with c�1=8 if the concentration is decreased.
For c ! c� the value of R0 �Nm is reached.

9.1.5 Mean-Field Concepts

Besides the concept of self-similarity which leads to scaling variables and the
blob-picture, mean-field concepts are widely applied in polymer physics. Here one
usually refers to the ideal chain statistics and additional interactions and constraints
are included as additive terms to the free energy. In a certain sense, mean-field
concepts use thermodynamic separability of the various interactions. For a single
chain in a solvent we can write the free energy per chain using Eqs. (9.4) and (9.7)
in the following way:

F ¼ a � 3
2
R2

N
þ vT � N

2

Rd þ w � N
3

R2d : ð9:18Þ

Here and the in the following we use the convention kBT ¼ 1 as the unit of
energy (note that we also use l = 1 as the unit of length). The first term stems from
Eq. (9.4) and represents the elasticity of the chain. Since the ends are freely fluc-
tuating the numerical prefactor is not necessarily equal to 3/2 why we introduced a
factor a. Within the mean-field approach, R is considered as an averaged, ther-
modynamic observable which is given by the minimum of the total free energy. The
second term in the above equation is the mean-field expression of the pairwise
interactions between the monomers: The average density within the chain volume is
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given by c ¼ a0 � N=R3 and the thus the average interactions of all monomers is
N c. Note that the assumption of constant density within the chain volume brings
about another constant which can be, however, just included in the definition of vT ,
see Eq. (9.7). The third term represents the triple-monomer interactions in mean
field constructed similarly to the second term (probability of finding two monomers
in the same place is given by c2). The prefactor w of the three-monomer interactions
is considered as strictly positive and to be not temperature-dependent. The equi-
librium state is given by @F=@R ¼ 0. For vT [ 0 (good solvent) we can ignore the
third term and obtain

R ¼ Ad � v1=ðdþ2Þ
T � N3=ðdþ2Þ

Here, Ad denotes a numerical constant. In d = 3 we obtain R ¼ A3v
1=5
T N3=5. This

result is well know as Flory’s result and following our notation above we obtain

mFd ¼ 3
d þ 2

; ð9:19Þ

and in particular mF3 ¼ mF ¼ 3=5, the approximation we have used already in some
of the formulas above. We note that although this result is very close to the value of
m- exponents discussed above2 its meaning is a bit different: The polymer consid-
ered here is a stretched Gaussian chain and not self-similar. Furthermore, the free
energy is given by Feq ’N1=5 (in d = 3) and is overestimated by the mean-field
approach.

In the case of poor solvent, vT\0, the third term is necessary to obtain a stable
solution. In this case, the second and the third term in Eq. (9.18) balance each other

with the solution: R�ðw=vTÞ1=d � N1=d , which corresponds to a compact globule
with a temperature-dependent density.

We can reconsider the chain squeezed in a slit under good solvent conditions
using mean-field concepts. The corresponding free energy reads:

F ¼ b �
R2
k
N

þ vT � N2

R2
k � D

þ FðN;DÞ: ð9:20Þ

The first term corresponds to the stretching of the chain in the lateral direction,
the second term represents the mean-field contribution of the pairwise interactions
and the third term reflects contributions which do not depend on Rk. The prefactor
of the first term corresponds to two-dimensional stretching and, therefore, may
differ numerically from that in Eq. (9.18). The solution for the equilibrium value of
the chain extension reads

2In fact it is exact in d = 1, 2 and 4.
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Rk �N3=4 � D�1=4: ð9:21Þ

Note that this result coincides with that obtained from scaling in Eq. (9.11) if the
Flory-approximation for v is used. We note that the thermodynamics can be
obtained from the mean-field result from Eq. (9.20). However, here the dominating
contribution stems from the third term in Eq. (9.20) but we will not outline cal-
culations in detail here. Let us only mention that the free energy for the squeezed
chain is again overestimated as compared to the scaling result.

9.2 Polymer Adsorption

The effective interaction between polymers and surfaces or interfaces causes
depletion or adsorption effects. The most interesting and practically relevant case is
adsorption. As we will see, weak attraction between monomers and adsorbing
surface causes strong adsorption effects for the whole chain: Even in a very dilute
solution a weakly adsorbing surfaces can be saturated with polymers.

9.2.1 Adsorption of Single Chains at Interfaces
and on Surfaces

9.2.1.1 Single Chains at Penetrable Interfaces

In Fig. 9.6 we have sketched a polymer chain which is adsorbed at a penetrable
interface. We assume that the segments experience the same energetic environment
at both sides of the interface and experience a certain attraction only if they are
crossing the interface. The adsorbing strength should be e per segment. Apparently
a sequence of monomers is strongly adsorbed if the number of contacts formed with
the interfaces times the strength of interaction is larger then kBT. Without adsorp-
tion the number of interface contacts for the chain is given by

M0 �N/;

where ϕ defines the cross-over exponent. For an ideal chain one can use Eq. (9.3) to
derive: /Gauss ¼ 1=2. In general (for self-similar chain conformations) one can
show: / ¼ 1� m [2]. If M0 � e’ kBT we expect a crossover from a desorbed state
into an adsorbed state. In the adsorbed state the chain conformations will be
strongly perturbed by the interface and one expects a flat, “pancake-like”, state, if
M0 � e� kBT . In this case let us repeat the argument for a small sequence of
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g monomers. This sequence will be on the verge of adsorption if the following
condition is fulfilled:

g/e’ kBT or g’ v�1=/ ;

where the dimensionless parameter v ¼ e=kBT has been introduced. We call this
sequence an adsorption blob. Each adsorption blobs has an effective interaction
energy of the order of kBT , just enough to compensate for the lost translational
degree of freedom. Since we can assume that inside the blob the chain is self-similar
and Eq. (9.8) is valid, all chains having the same number of blobs cannot be
distinguished if the absolute scale is not known. Thus, we can introduce the scaling
variable

y0 ¼ N
g
�N � v1=/ or, alternatively y ¼ N/v: ð9:22Þ

Fig. 9.6 Sketch of a polymer
chain adsorbed at an interface
with the energy per monomer
e�kBT . Adsorption blobs
comprising g monomers are
formed which have an
effective interaction energy of
kBT . The adsorbed chain can
be considered as 2D chain of
adsorption blobs. The
thickness of the adsorbed
chain is given by the size of a
single blob, D� gm
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The extension of the chain perpendicular to the interface, D, can then be
written as

D
R0

¼ fDðyÞ : ð9:23Þ

In the limit of y� 1 obviously we have fDð0Þ ¼ 1. In the limit of strong
adsorption the chain is localized and D should not depend on N. Thus, we obtain

D� v�m=/ � v�3=2: ð9:24Þ

In the second relation we have used the Flory-exponent. We note that
D� n� gm, i.e. the perpendicular extension is given by the unperturbed size of the
blob. The free energy in the adsorbed state is given by

Fad � N
g
� kBT �N � v�1=/ � kBT ; ð9:25Þ

a result which could also be obtained from a scaling function using Fad ¼
kBT � fFðyÞ and requesting the asymptotic limit to be extensive in the number of
monomers, i.e. Fadðy� 1Þ�N.

Next, we consider the number of monomers in contact with the interface. Using
the blob concept in the adsorbed state we can directly write

NM � g/
N
g

� �
�N � g/�1 �N � v1=/�1:

In the case y� 1 we have M ¼ M0. Again a scaling function of y defines the
cross-over from the non-adsorbed to the adsorbed state. We can define the order
parameter for single chain adsorption as

m ¼ NM

N
;

being the ratio of the adsorbed segments. For N� 1, we obtain m ! 0 in the
non-adsorbed state, and m� g/�1 � v1=/�1 [ 0 in the adsorbed state, which
associates single chain adsorption with a continuous phase transition, see Ref. [3]
for more details.

Finally, in some analogy to the chain squeezed in the slit, the extension parallel
to the interface in the adsorbed regime is given by

Rk � N
g

� �m2

D�Nm2gm�m2 �Nm2vðm2�mÞ=/ �N3=4v3=8;
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where in the last relation we have used m ¼ mF ¼ 3=5 as well as the exact result
m2 ¼ 3=4. Due to adsorption, a chain in a good solvent is squeezed to a localization
length, D, independent of N, and swells in the direction parallel to the interface. We
note that for ideal chains there is not swelling in the direction parallel to the
interface. Here we have, mideal ¼ 1=2 in all dimensions and thus, m� m2 ¼ 0.

9.2.1.2 Some Notes About Polymer-Polymer Interfaces

When talking about penetrable interfaces, common examples are interfaces between
two immiscible polymers, A and B. Let us denote the effective interaction between
the segments eAB and let us define v ¼ eAB=kBT . First, one can show that the
interface has a finite width even if the immiscibility is very strong, i.e. vN� 1. Let
us consider a sequence of g monomers forming a loop into the other phase, see lhs
of Fig. 9.7. If the total repulsion of this loop given by g � eAB is of the order of kBT ,
it can be easily formed by thermal fluctuations. Much larger loops, however, will be
suppressed. Since polymer chains in a dense melt obey Gaussian statistics the width
of the interface can be estimated by D� g1=2, and with g � v� 1 we obtain

D� v�1=2 : ð9:26Þ

Thus the polymer-polymer interface width increases with the temperature as
D� T1=2.

Fig. 9.7 Sketch of an interface between two immiscible polymers A and B. On the rhs the
interface potential, VA, with respect to the A-phase and the density profile are shown along the
coordinate perpendicular to the interface, z
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The free energy stored in the interface can be estimated by the number of loops
(each stores a free energy of kBT). Thus we get for the interface tension

c�D=g� v1=2 : ð9:27Þ

These results can be confirmed by a local mean-field approach. Here one can
furthermore predict a smooth interface profile as sketched in the rhs of Fig. 9.7.
Moreover, a real polymer melt has a finite compressibility which results in a
minimum of the total polymer density in the interface region. This becomes
important for interactions with a third component such as a third polymer species,
copolymers or nano-particles. We stop, to note that interfaces can dominate the
physical properties of materials such as for block-copolymers or lipid-bilayers.

9.2.1.3 Single Chains Adsorbed at Hard Surfaces

Perhaps the most common example for polymer adsorption is the adsorption onto
solid substrates. Let us denote the energy gain of a segment in direct contact with
the surface again by ε and v ¼ e=kBT . In contrast to penetrable interfaces, a polymer
chain looses conformational degrees of freedom, if it gets close to an impenetrable
wall. Thus, there is an entropic penalty for chains approaching the surfaces to a
distance of the order of the chain extension, R0, which must be compensated before
adsorption can take place. One can show that there exists a critical adsorption
strength, vc, independent of chain length which divides surface depletion, v\vc,
from adsorption, v[ vc. In fact for N ! 1 this becomes a sharp transition and vc
is a critical point in the thermodynamic sense [4]. For finite chains, adsorption is a
cross-over phenomena as for the penetrable interface. Because of the definition of v,
the critical point can be either a critical temperature, Tc (for a fixed interaction
energy), or a critical interaction energy, ec, (for fixed temperature). The latter can be
practically realized by mixing two solvents with different affinity to the surface. The
distance to the critical point of adsorption can be defined by (Fig. 9.8)

j ¼ e� ec
ec

: ð9:28Þ

It can be shown that j plays a similar role for the adsorbing surface as v for the
penetrable interface. The relevant scaling variable can now be noted as

y ¼ N/j: ð9:29Þ

The important difference to the penetrable interface is that the
crossover-exponent is not a priori related to v, but an independent, so-called surface
critical exponent. As for v in 3D we do not know its exact numerical value. From
scaling analysis of simulation data at least two different predictions have been
made. Direct Monte Carlo simulations are in good agreement with /’ 0:59.
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Conformational sampling methods led to the conjecture / ¼ 0:5. Note that that
both values are very different from the value of / ¼ 1� m’ 0:4 for the penetrable
interface. The true value of ϕ is still an open question. Part of the problem here is
that the critical point of adsorption, vc depends of the polymer system (and on the
simulation model) and has to be estimated at the same time. In fact, very small
changes of vc have a major effect on the estimate of ϕ. In simulations, for instance,
only finite chain lengths can be considered and different values of ϕ in the range of
/ ¼ 0:5. . .0:6 are correlated with a best estimate of vc of the order of one percent.
Such an accurate determination of the critical point of adsorption is quite impossible
for chains up to a length of N = 500. The correlation between the apparent value of
ϕ and the uncertainty in the estimation of vc explains the yet unresolved problem of
the best approximation of ϕ. However, it can be shown that for chain lengths up to
several hundred monomers the correlated estimate of both parameters yields to
excellent data collapse of observables using the scaling variable of Eq. (9.29). In
full analogy with the penetrable interface, scaling predicts

D
R0

¼ f?ðN/jÞ ! D� j�m=/ ð9:30Þ

Rk
R0

¼ fkðN/jÞ ! Rk �Nm2jðm2�mÞ=/ ð9:31Þ

M
N/

¼ fMðN/jÞ ! M�Njð1�/Þ=/ ð9:32Þ

Here, the relation on the rhs give the asymptotic results for large values of the
scaling variable, i.e. in the adsorbed state. In the desorbed state, i.e. for j\0 the
number of adsorbed monomers should not depend on N asymptotically, thus one
obtains M=N/ �N�/. In Fig. 9.9 we show an example which has been obtained by

proximal

distant

D = R

R

adsorbed monomer

adsorption blob

Fig. 9.8 The structure of chains adsorbed onto a solid substrate. As for the adsorption of chains at
penetrable interfaces, an adsorbed chain can be subdivided into adsorption blobs which define the
thickness, D, of the adsorbed chain. Its extension in the lateral directions, Rk, is given by a 2D
self-avoiding walk of adsorption blobs. The region inside the layer of adsorption blobs defines the
“proximal” region
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computer simulations using the bond fluctuation model (BFM) [5]. Using the best
estimate of vc ¼ 1:01 and / ¼ 0:59 a collapse of data into a single master curve,
see Eq. (9.32), can be obtained. Also the asymptotic slopes are well reproduced.
Similar results are obtained for the other observables according to Eqs. (9.30) and
(9.31) [5]. Alternative critical parameters are tested in Ref. [5] where either scaling
or the asymptotics is less satisfying. We can conclude that for moderate chain
length as used in the simulations (corresponding to a molar mass for polyethylene
up to approximately 14 kg/mol) the scaling approach to polymer adsorption pro-
vides very good results.

In full analogy to the case of a penetrable interface we can calculate the free
energy of adsorption per chain in the well adsorbed state, where several adsorption
blobs are formed, N/j�1. As in Eq. (9.25) it can be written as the number of
adsorption blobs per chain and we obtain

Fad � N
g
� kBT �N � j1=/: ð9:33Þ
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Fig. 9.9 Scaling plot of the order parameter according to Eq. (9.32) above (e[ ec) and below
(e\ec) the critical point of adsorption. Here the temperature is taken constant. The data have been
obtained by Monte Carlo simulations using the bond fluctuation model (BFM) [16]. The set of
critical parameters is chosen as ec ¼ 1:01 and / ¼ 0:59. Very good scaling is obtained. The solid
lines indicate the asymptotic behavior both in the adsorbed and in the desorbed state, see Eq. (9.32)
and text. Reproduced with permission from Ref. [5]
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If j is not much smaller than unity this leads to an extremely large free energy
gain per chain (�N) which can be of the order of 100kBT , which is of the order of
a chemical bond energy!

9.2.1.4 Adsorption Isotherm and Saturation

The understanding of single chain adsorption is mandatory for going further
towards the thermodynamics of adsorption. In reality a finite concentration of
polymers in the bulk, c, is in contact with an adsorbing surface at constant tem-
perature as sketched in Fig. 9.10. The amount of adsorbed polymer at the surface
per unit area is denoted by Γ (surface excess). On the molecular level we consider a
chain in the adsorbed state if at least one monomer is touching the surface. In the
following we will consider only the adsorbed case, i.e. N/j� 1, where the
asymptotic scaling relations of Eqs. (9.30)–(9.32) and (9.33) hold.

In order to derive the universal behavior of the adsorption isotherm we start with
the dilute surface state where the adsorbed chains do not overlap. This is given for
C\C� �N=R2

k and Rk given by Eq. (9.31). Here, we can assume Boltzmann

statistics and write

C ¼ A � eNj1=/ � c : ð9:34Þ

where A is a numerical prefactor. Since Nj1=/ � 1 the initial slope of the
adsorption isotherm is very large and an exponentially small value of c is sufficient
to reach overlap at the surface (C ! C�). Thus, the bulk is in the very dilute state of
the polymer solution when the surface begins to be crowded by chains.

Fig. 9.10 Polymer solution in equilibrium with an adsorbing surface. The surface excess is given
by the amount of polymer attached to the surface by at least one monomer. On the rhs a sketch of
the adsorption isotherm is shown where the characteristic concentration regimes are indicated
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Next, we consider the case C[C�. Here, a 2D semi-dilute state on the surface is
formed as discussed in Sect. 9.1.4, see Eqs. (9.14)–(9.15). This is sketched in
Fig. 9.11(top). Note that the natural unit for the 2D chain conformation is the
adsorption blob, given by D� jm=/, see Eq. (9.30), and g�D1=m � j1=/. Following
the arguments given in Sect. 9.1.4, the effort to form a concentration blob is of the
order of kBT . Thus, if the concentration blob is much larger then the adsorption
blob, i.e. n�D, this corresponds to a weak perturbation of the adsorption and only
to a slight deviation from the Boltzmann result of Eq. (9.34). In a first approxi-
mation we can consider Eq. (9.34) to be valid up to n’D. Corrections to this
behavior will be important to explain the crossover to saturation, see rhs of
Fig. 9.10 [6].

If the surface excess is increased further, the 2D concentration blobs become of
the size of the adsorption blobs, n’D, and further increase of the surface con-
centration by adsorption is not possible. In the saturated surface state, the free
energy gain by adsorption is balanced by the effort to pack the adsorption blobs
close to each other. The saturated surface state can thus be considered as closely
packed adsorption blobs. This defines the limiting surface excess by

blobs

⊥

Fig. 9.11 The semi-dilute surface state. The formation of 2D concentration blobs formed by
adsorption blobs is illustrated in the upper part. Due to crowding of chains for C[C� loops and
dangling ends can extend into a distance R? much larger than the adsorption blob size as sketched
in the lower part. By approaching the saturated state the layer thickness reaches the size of the
chains in the bulk
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C�� � g
D2 �B � jð2m�1Þ=/ �B � j0:3 : ð9:35Þ

In the last relation we used /’ 0:59 and B is a numerical prefactor. At the same
time the corresponding bulk concentration can be extremely small. This can be
understood by extrapolating the linear regime of the adsorption isotherm to C��; see
Fig. 9.10, and we obtain: c��C ¼ 1=A � expð�Nj1=/Þ � B � j0:3. Due to the large
exponent we get c��C � c�, where c� again denotes the overlap density in the
solution. Thus, the surface can be saturated by polymers already in a highly dilute
solution. This is one reason why polymer adsorption is technologically important:
Even weakly adsorbing surfaces are fully covered by polymers in dilute solution,
and it is difficult to clean surfaces by exposing to solvent once they were in contact
with adsorbing polymers. A practical example is protein adsorption on metal sur-
faces, related with fouling.

If the saturation density is reached, chains form longer loops into the solution.
The thickness of the adsorption layer approaches again the extension of free chains
in the solvent. Using the argument that in this state the loops (and tails) are in a
semi-dilute state and the correlation length is given by the distance to the wall (the
density is self-organizing this way) one obtains using Eq. (9.15):

cðzÞ� z�4=3 ;

where the Flory-exponent has been used and z denotes the distance to the wall [1].

9.3 Polymer Brushes

As we have seen, adsorption of polymers leads to saturation which limits the
amount of adsorbed polymers to C�� and the size of the adsorbed layer to the size of
the polymer coil in solution, R0 �Nm. However, this limit can be overcome by
adsorbing or chemically grafting polymers by one end only. A sketch is shown in
Fig. 9.12. Such a polymer brush is characterized by the number of chains, M,
grafted on the surface area, A:

r ¼ M
A

¼ 1

n2
; ð9:36Þ

where n denotes the distance between the grafting points. Because of volume
conservation the thickness of the brush, L, must increase proportional to the degree
of polymerization provided that N is large enough and for large enough N we
always obtain
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L�N�R0 �Nm: ð9:37Þ

The polymer surface excess (given the bulk is diluted) is C ¼ rN. End-grafting
chains can lead to film thicknesses much larger than obtained by adsorption and
usually much larger than long-range van der Waals interactions between bare
substrates with useful application for emulsion stabilization and for coatings.

Let us consider first a polymer brush in poor solvent (or under vacuum in the
absence of liquid solvent). The volume of the dense polymer phase controls the
brush thickness and we obtain L=r ¼ N � v0, where we denote the monomer volume
by v0, and thus

L� r � N: ð9:38Þ

This is sometimes called the dry brush limit. We note that a dense film is only
defined for r� r� �N�1, where we have introduce the overlap density r�. At r�

the polymer layer has the thickness of the monomer size and is thus much thinner
then R0, the chains are collapsed on the substrate. The chains are stretched with
respect to their conformation in the melt state only if r� r�� �N�1=2. We call r��

the stretching threshold of the brush in poor solvent. We note that in the region
r\r�� inhomogeneous surface patterns are predicted which result from the for-
mation of micelles which reduce the contact area with the poor solvent [7].

In many cases brushes under good solvent conditions are of interest. Good
solvents swell the chains beyond the prediction of Eq. (9.38). To understand this we

Fig. 9.12 Sketch of a polymer brush. The distance between the grafting points is denoted by n and
the thickness of the brush is given by L. In a simple model the brush can be understood as a
column of blobs of size n
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can first apply a mean-field model, see Sect. 9.1.5. The total free energy for the
brush reads: FM ¼ M � a 3

2
L2
N þ vT M2N2

L�A . The free energy per chain is then given by3

F ¼ FM

M
¼ a

3
2
L2

N
þ vT � rN

2

L
: ð9:39Þ

From @F=@L ¼ 0 we obtain the equilibrium height of the brush as

L� v1=3T r1=3N; ð9:40Þ

which differs from Eq. (9.38) by the exponent of σ. Because of r� 1 we have
Lgood�solvent � Lpoor�solvent.

This result can be also explained using a scaling approach. Here, we assume that
the grafting density determines the blob size of chains in a good solvent, see
Fig. 9.12. The brush is then considered as a dry brush made of blobs each con-
taining g� n1=m monomers and we obtain

L� N
g

� �
n�N � rð1=m�1Þ=2; ð9:41Þ

which corresponds to Eq. (9.40) by using Flory’s value of mF . In this picture the
polymer brush corresponds to a semi-dilute polymer solution with
c� g=n3 � rð3�1=mÞ=2 � r2=3 and an the osmotic pressure given by the law of Des
Cloizeaux, see Eq. (9.16) according to P� n�3 � r3=2. This can be applied if we
want to calculating the free energy effort to insert a particle of volume dV into the
brush which is thus given by dF ¼ PdV � dVr3=2. We note that the crossover from
non-interacting grafted chains at low grafting density (so-called mushroom regime)
to the brush state is given by r� �N�2m and the above obtained results can be
re-derived using the scaling variable r=r�.

9.3.1 Density Profile, Surface Instabilities, and the Role
of End-Group Modification

The mean-field solution and the scaling model, commonly denoted as the
Alexander-de-Gennes model [8, 9], implicitly assumes a square-shape density
profile with a density jump at the brush surface. While this concept is sufficient to
explain most relevant properties of polymer brushes it leaves open the question
about the driving force for stretching of the chains. A gradient of the density profile

3We note that the numerical prefactor a is different for different applications of the mean-field
concept depending of the way the ideal elastic free energy is parametrized (radius of gyration,
brush height etc.
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is necessary to explain the stretching effect based on pair interactions, i.e. the
immersion of monomers in the solution of other monomers. This can be taken into
account by considering a continuous stretching of a chain in an external force field,
ignoring fluctuations of the chain conformations. Assuming Gaussian chain
statistics the density profile is parabolic and can be written in the following form

cðzÞ ¼ ðL2 � z2Þp2=8N2vT ; ð9:42Þ

where L� r1=3N and the average monomer positions are related by hzi ¼ 3L=8.
The stretching force for each monomer is here provided by the gradient of the
density profile, if the brush forms a semi-dilute solution where the pair interaction
between the monomers dominates. As a consequence of this solution the distri-

bution of end-monomers is also smooth and given by ce � z L2 � z2ð Þ1=2. While in
computer simulations Eq. (9.42) can be rather well approximated, the calculation of
the end-point distribution usually fails dramatically. A reason for this is the finite
extensibility of chains which often plays an important role because of the high
stretching. Taking this into account leads to a more box-like behavior of the density
profile which can have important consequences for applications of polymer brushes.

In Fig. 9.13 the role of sharp interface for the conformations of a chain in the
brush is sketched. For the parabolic form all monomers experience a force and
fluctuations of the chains are stable around the mean extension. For a box-like profile
the gradient zone is located in the surface region of the brush which are occupied by
the chain ends. Here, only the chain ends experience a force which is strong enough
to substantially stretch the whole chain. If, for some reason the chain end is diving
into the brush there is only a weak force acting which pushes the chain back into the
stretched state. Thus, a box-like profile creates a surface instability. At least two
cases can be considered where this instability can have important consequences.

Let us consider a minority of chains of length N þ dN in a majority of chains of
length N. For dN\0 the chains cannot easily reach the gradient zone and are thus
collapsed in the brush profile. Longer chains, δN > 0, by contrast have a stronger
anchor in the gradient zone and are thus overstretched. It can be shown in computer
simulations [10] that already a change of only one monomer leads to a jump in the

Fig. 9.13 Sketch of the behavior of a single chain inside the density profile of a polymer brush.
Left parabolic profile with a smooth gradient distributed throughout the brush. Right Sharp profile
with a strong gradient zone localized in the surface region of the brush
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extension of the chain, see Fig. 9.14, which results from the collapse of the slightly
shorter chain. This illustrates nicely the instability of the strongly stretched chain
conformations.

Next, we consider the modification of the end-monomer by changing its size as
illustrated in Fig. 9.15. The excluded volume interaction of the end-monomer is

Fig. 9.14 Extension of a single chain inside a brush of length N = 64 as obtained in Monte Carlo
simulations. For details see Ref. [10]. Here, we have considered a single chain with length N in a
brush with chain length N = 64 (see the vertical line). One missing monomer leads already to a
collapse of the chain in the brush

Fig. 9.15 The role of modified end-groups in a highly stretched polymer brush. For more details
see Ref. [10]
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proportional to its volume vT � v0. Therefore, bigger monomers interact stronger in
the density gradient and vice versa. One would therefore expect that bigger
end-groups provide a stronger stretching of the chains and smaller endgroups lead
to collapse of the chains in the brush. This has been tested in computer simulations
[10]. In Fig. 9.15 the monomer density profile of a minority of 5 % of chains with
modified endgroups is plotted. The curve for not modified chains displays the rather
box-like profile deviating from the prediction of the parabolic profile due to high
grafting density and strong stretching of chains. This profile changes dramatically if
only the size of the end-groups is modified: For endgroups having two-times larger
radius the profile becomes non-monotonous with a peak in the surface region of the
brush. Chains with smaller endgroups collapse with a peak of the density profile
close to the substrate.

As the snapshot in Fig. 9.15 shows, the bigger endgroups are floating on top of
the brush and are strongly localized there. Such modified endgroups usually will
have different properties such as different interactions with the solvent and the other
monomers in the brush. Again, computer simulations have shown that repulsion of
endgroups with respect to solvent leads to a switching of the behavior from stret-
ched to collapsed [11]. Such switching effects can be tuned by external conditions
such as a change in temperature or pH (in the case of charged groups) and have
potential applications for stimuli-responsive surfaces: If the endgroups are formed
by biologically active units such as enzymes, switching would lead to a transition of
an exposed (active) to an hidden (passive) state of the surface with respect to the
enzymatic activity.

9.3.2 Charged Polymer Brushes

In particular in aqueous solutions some polymers can become charged by releasing
counter-ions from monomer units. Charged polymers are called polyelectrolytes or
poly-ions. If the charging is complete and nearly not pH-dependent we call this a
strong polyelectrolyte, if the charging can be changed strongly by changing pH, this
is called a weak polyelectrolyte. In general the effect of charges creates a formidable
problem for the theoretical understanding, because of the long-range character of
charge effects. However, for rather dense polymer systems such as networks,
brushes or dendrimers there is a simple argument which in most cases leads to a
general understanding of the effects of charges: If counterions leave the polymer
phase (a brush in our case) they are attracted by the oppositely charged polymer
phase. In the case of a brush the electric field due to charging is constant and thus
the potential of the counterions increases without limit with increasing height. This
is similar to the barometric effect of a gas in the gravitational field. The typical
length scale within which the counterions can be distributed above an oppositely
charged surface is called the Gouy Chapman length, kGC � kBTer=q2x, where ω
denotes the density of charges of the polymer per surface unit, q, is the charge of
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counterions and er denotes the relative dielectric constant of the solution. One can
understand kGC as the length scale at which the energy of the charge, kq2x=er is of
the order of kBT , although it is usually introduced in the context of the
Poisson-Boltzman equation leading to a power-law decay of the ion-density profile
over the charged surface.

If the height of the brush, L, is much larger than kGC the counterions are trapped
inside the brush but are not localized to the charged monomers.4 Thus we have
local charge neutrality inside the brush as indicated by the circle in Fig. 9.16. In a
first approximation counterions are freely moving inside the volume of the brush
V ¼ A � L and thus exert an osmotic pressure given by the ideal gas law

P0
CI ¼ N �M � f � kBT=A � L ¼ rN � f � kBT=L;

where f denotes the fraction of monomers charged. The osmotic pressure tends to
stretch the chains such as the gas pressure in a balloon stretches its elastic surface.
The total free energy per chain of the charged brush in the mean-field model
extends the expression of Eq. (9.39) into

F ¼ a
3
2
L2

N
þ vT � rN

2

L
� fN ln

L
fNr

� �
; ð9:43Þ

Fig. 9.16 Sketch of a charged polymer brush with a thickness L. Negative counterions are trapped
inside the positively charged brush and exert an osmotic pressure

4Such localization is called counterion condensation but shall be not considered in the following.

9 Polymer Physics at Surfaces and Interfaces 305



where we have again used the convention kBT ¼ 1. The equilibrium condition is
given by

@F
@L

¼ 0 ¼ Pel þPEV þPCI ¼ 3a
L
N
� vTr

N2

L2
� fN

L
; ð9:44Þ

where Pel, PEV and PCI are defined according to the three terms of the free energy
(elasticity, excluded volume and counterion pressure respectively in Eq. (9.43). If
we ignore the excluded volume interactions and consider the osmotic pressure of
the counterions as the dominating force we obtain

L� f 1=2N:

Interestingly this result is independent of the grafting density. This can be
understood by the fact that by doubling the number of chains per unit area we
double the number of counterions but also the number of elastic units. The lowest
grafting density where this behavior can be expected is given by kGC ’ L, using
x ¼ rNf . The region where the counterion pressure is dominating the chain
extension is called the osmotic brush regime [12].

Frequently, the solution contains further ion-pairs due to a finite
salt-concentration, cs. The exchange by like-charge salt ions makes it possible that
counterions leave the brush volume as indicated in Fig. 9.17. This reduces the
osmotic effect of the counterions. At high concentration of salt the counterion effect
will vanish and only the interplay of the solvent quality (now also controlled by the
salted solution) and elasticity remains—thus we recover the situation of effectively
uncharged chains.

Fig. 9.17 Effect of salt on the polymer brush. Counter ions are blue and salt ions are red and
yellow. The charged brush is indicated as a box. Exchange of counterions by like-charged salt ions
as indicated by the arrows does not break the charge neutrality but effectively decreases the
osmotic pressure
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For monovalent salt ions one can show that the salt effect reduce the osmotic
pressure as follows:

PCI ¼ P0
CI

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2S

q
� yS

� �
; ð9:45Þ

with the scaling variable

yS ¼ 2
cs
cCI

¼ 2
cs
fr

rwith r ¼ L
N
: ð9:46Þ

Here, we have introduced the stretching ratio, r, and y stands for the ratio of
concentrations of salt ions and counterions. Using this expression in Eq. (9.44) we
obtain an equation for the equilibrium stretching ratio with the abbreviations s ¼
2cs=r and r30 ¼ rvT [13]:

a � r � f 1þ sr
f

� �2
" #1=2

� sr
f

8<
:

9=
;þ r30 � r3 ¼ 0;

where the prefactor a can be extracted for the unknown prefactor in elasticity. Let
us note that we repeatedly use the symbol “a” to note a constant prefector in
different problems where it does not need to be same value. This equation for
rðs; t; r0Þ can be solved numerically only. However, for the case of high salt con-

centration, y� 1 we obtain from Eq. (9.45) P’ f 2

4cs
c2 which corresponds to a

second virial coefficient of vs ¼ f 2=4cs. Thus we can approximate the highly salted
brush with an effective excluded volume coefficient veff ¼ vT þ vs and thus we
obtain from Eq. (9.40)

L
N

’ r
3a

vT þ f 2

4cs

� �� �1=3
: ð9:47Þ

The first observation from this result is that the effective H-point is now reached
in the poor-solvent state, i.e. for vT ¼ �f 2=4cs. Thus, a charged brush can appear to
be in good solvent, even if the backbone is already under poor solvent conditions.
On the other hand, for vT ! 0, we obtain L� c�1=3

s . This behavior has been taken
as an indication of the validity of the osmotic brush model. As we have shown, this
depends on the solvent quality of the backbone. For hydrophilic backbones, vT will
strongly limit the c�1=3

s - behavior for large values of cs and leads to a plateau-value
of L. For weakly hydrophobic backbones, high salt concentrations lead to collapse
which, however, might degenerate into a smooth crossover for finite chain lengths
and thus is rather difficult to delineate from the salt-effect. Note that high salt
concentrations are typical under physiological conditions in living systems.
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9.3.3 Charged Brushes in Poor Solvents

Poor solvent conditions of the backbone are more effectively compensated if the
salt concentration is low. In this case we can reconsider Eq. (9.43) for vT\0. To
avoid a singular behavior in the collapsed state at least the third virial coefficient
(better would be the full equation of state) has to be taken into account. Then the
free energy per monomer reads

Fm ¼ a
3
2
r2 þ vT � r 1

r
þ wr2

1
r2

� fN ln
r
fr

� �
: ð9:48Þ

The free energy can have two minima at low temperatures which are dominated
by the first and the fourth term (swollen osmotic state), and the second and the third
term (collapsed state) respectively. The general form of the free energy as a function
of the stretching factor is sketched in Fig. 9.18. At the transition temperature, Tc,
both minima have the same height and a discontinuous collapse transition is pre-
dicted which is related to a jump of the stretching ratio.

The equation @Fm=@r ¼ 0 can be implicitly solved in the form: Tðr; r; f ; v0;wÞ
as 1�H=T ¼ ar4 � fr2 � 2wr2ð Þ=v0rr, where we have used the definition of vT
according to Eq. (9.7).

In Fig. 9.19 we display the solution of the mean-field equation. The function T
(r) is not monotonous at high charge fractions. This corresponds to a discontinuous
phase transition from the swollen to the collapsed state which is expected far below
the H-point in salt-free solutions. The arrow indicates the Maxwell-construction,
Tcolðf ; rÞ, where the jump from the swollen to the collapsed state is expected.

Fig. 9.18 Sketch of the free energy function of Eq. (9.48) as a function of the streching ratio
above and at the point of the collapse transition, Tc. At Tc the stretching ratio jumps as indicated by
the double-arrow
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Computer simulations do not display this behavior as can be also seen from
Fig. 9.19 (data points). While a certain fit can be achieved in the swollen state
(however, quite below the H-point), the collapse is much less pronounced, and in
fact only a rather smooth crossover is displayed at low temperatures. Nevertheless,
the temperatures where a shrinkage in height is pronounced coincide roughly with
the prediction of the mean-field model. We note that for lower charge densities also
the mean-field model does not display a discontinuous transition. We note that the
large deviations at low temperatures (very poor solvent) are related with missing
higher order terms of the equation of state of dense polymers. This can be improved
be considering a model equation of state such as the Flory-Huggins-equation [14].

The snapshot on the left of Fig. 9.19 indicates the reason for the failure of the
mean-field approach: At low temperatures, the brush forms bundles (upright
cylinders) which are surrounded by the counterions [15]. Spontaneous formation of
this nano-structure increases the entropy of the counterions since the available
volume (height) is much larger as compared to the homogeneously collapsed state.
The failure of the mean-field model is to assume an homogenous phase from the
beginning.

9.4 Conclusions

Polymers can be understood as flexible chains and typical polymer behavior is
related to conformational entropy. To consider the influence of geometrical
restrictions and interactions two types of simplified concepts have been established:
scaling and mean-field models. In many situations both models make similar pre-
dictions and are to some extend exchangeable. While scaling concepts are based on

r

Fig. 9.19 Charged brush in poor solvent. The stretching ratio, r, calculated as described in text
(lines), and obtained from computer simulations (points). The arrow indicates the first-order
transition (jump) of the stretching ratio at high charge fractions as predicted from the mean-field
model. On the left a snapshot of the simulated system is displayed. The fraction of charged
monomers is indicated by f and f = 0 corresponds to the non-charged system. For more details see
Ref. [14]
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the statistical self-similarity of polymer conformations, mean-field approaches use
the superposition of independent contributions to the free energy such as elasticity,
mean interactions and counterion entropy. In general scaling models should be
considered as more realistic since correlation effects are taken into account by the
assumption of self-similarity in the case of good solvents. While many problems
can be considered with both approaches, more sophisticated situations where many
different effects play a role are usually better accessible in mean-field models. The
simplicity provided by these approaches allows to consider more complex polymer
systems such as adsorbed layers, brushes and even charge effects. Since both
approaches rely on rather strong assumptions, testing of the predictions by simu-
lations is a most suitable pathway to check the consistency and validity of the
predictions. This is all the more important since polymer adsorption experiments
cannot access easily details such as chain conformations and density profiles.

Scaling and mean-field models give a rich and detailed picture of polymers at
surfaces and interfaces. This ranges from critical adsorption and the blob-concept
for single chain adsorption to the properties of surface saturation and adsorption
isotherms. Brushes formed by end-grafted polymer chains are another example of
the diversity of polymer systems which can be achieved by variation of their
components and parameters. The stretched conformations in the brush are unstable
if the stretching is high such that slight differences in chain length or end-group
volume of a minority species can lead to collapse and switching of conformation
under change of external parameters.

Charge effects are important for aqueous systems in particular for biological
systems. Often, charging of monomers by dissociation of counterions is the only
way to achieve hydrophilic behavior of the polymers. Charged brushes can be
theoretically understood by considering the entropy of counterions which are rather
freely moving inside the brush. The osmotic pressure of counterions even over-
comes the effect of poor solvent conditions which are otherwise often present for
the uncharged backbone of the chain in water. Mean-field theory predicts a collapse
transition of the brush when the poor solvent effect is strong enough at low tem-
peratures. Interestingly polymer brushes avoid the collapse to a large extend by
lateral structure formation which allows for higher entropy of the counterions.

Acknowledgments The author thanks Jaroslav Paturej for critical reading of the manuscript.
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Chapter 10
Colloidal Hydrodynamics
and Interfacial Effects

Maciej Lisicki and Gerhard Nägele

Abstract Interfaces and boundaries play an important role in numerous soft matter
and biological systems. Apart from direct interactions, the boundaries interact with
suspended microparticles by altering the solvent flow field in their vicinity.
Hydrodynamic interactions with walls and liquid interfaces may lead to a significant
change in the particle dynamics in (partially) confined geometry. In these lecture
notes we review the basic concepts related to colloidal hydrodynamics and discuss in
more detail the effects of geometric confinement and the hydrodynamic boundary
conditions which an interface imposes on a suspension of microparticles. We start
with considering the general characteristic features of low-Reynolds-number flows,
which are an inherent part of any colloidal system, and discuss the appropriate
boundary conditions for various types of interfaces. We then proceed to develop a
proper theoretical description of the friction-dominated, inertia-free dynamics of
colloidal particles. To this end, we introduce the concept of hydrodynamic mobility,
and analyse the solutions of the Stokes equations for a single spherical particle in the
bulk and in the presence of a planar solid-fluid, and fluid-fluid interfaces. Both
forced and phoretic motions are considered, with a particular emphasis on the
principles of electrophoresis and the associated fluid flows. Moreover, we discuss the
hydrodynamic interactions of self-propelling microswimmers, and the peculiar
motion of bacteria attracted to slip and no-slip walls.
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10.1 Introduction

Mesoscale particles suspended in a viscous fluid are found in numerous techno-
logical processes and products, including paints, cosmetics, pharmaceuticals, and
food stuff. They are encountered also in biological processes involving complex
fluids, and animalcules such as eukaryotic cells and bacteria. Understanding the
dynamics of such systems, often referred to as passive or active soft matter systems,
is of importance not only for industrial development, materials science, microbi-
ology and health care, but also from the point of view of fundamental scientific
problems such as in dynamic phase transitions. The importance of soft matter
systems derives also from their diversity, and the variety of tunable particle inter-
actions giving rise to a plethora of phenomena that are partially still unexplored. An
inherent feature of such systems is the presence of a viscous solvent which trans-
mits mechanical stresses through the fluid, affecting in this way the motion of
suspended particles. These solvent-mediated particle interactions are known as
hydrodynamic interactions (HIs). The presence of HIs affects the dynamic prop-
erties of soft matter systems: In colloidal suspensions, e.g., they change the diffu-
sion and rheological suspension properties [1], and play an important role in the
dynamics of DNA helices and proteins in solution [2]. Moreover, HIs modify the
characteristics of the coiling-stretching transition in polymers [3], influence the
pathways of phase separation in binary mixtures [4], alter the kinetics of macro-
molecules adsorption on surfaces [5] and cell adhesion [6], and are at the origin of
the flow-induced polymer migration in microchannels [7].

There has been a growing interest in the physics of soft matter systems, par-
ticularly triggered by the development of experimental techniques allowing for
probing soft matter on smaller length and time scales. The widespread use of
advanced optical microscopy and light scattering techniques in scientific and
industrial laboratories has fostered the insight in the structure and dynamics of soft
matter systems, and has boosted the development of theoretical and numerical tools
used in tackling emerging problems. The complexity of the studied systems has
considerably grown over the past years. Yet, the underlying physical principles
remain rather simple, so that if not fully quantitative then at least qualitative pre-
dictions of dynamic properties can be made.

Quite interestingly, many relevant hydrodynamic processes take place under
(partial) confinement, such as in a vessel or channel, close to a cell wall, inside
droplets, in the presence of bubbles, or near macroscopic fluid interfaces. Since the
confining boundaries or interfaces can have a dominant effect on the system
dynamics, it is important to analyse in detail their effect on the fluid flow in their
relative vicinity, and on the motion of suspended particles.

The aim of these lecture notes is to give an elementary introduction into
hydrodynamic effects occurring in colloidal systems, with a particular emphasis on
interfacial effects. There are various mathematical subtleties showing up in the
theoretical and computer simulation modelling of colloidal hydrodynamics. In this
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more elementary introduction, however, we leave these subtleties aside, focusing
instead on the physical principles without attempting to be mathematically rigorous.

There exists a large number of overview articles and textbooks on the hydrody-
namics of soft matter systems, on different levels of complexity. As introductory texts
on colloid hydrodynamics, we recommend the textbooks by Dhont [1] and Guazzelli
and Morris [8], the lecture notes by Nägele in [9, 10], and the overview articles by
Hinch [11], Pusey [12], and Pusey and Jones [13]. More advanced topics related to
slow viscous flows are addressed in the excellent textbooks of Kim and Karrila [14],
Happel and Brenner [15], and Zapryanov and Tabakova [16]. Standard textbooks on
general hydrodynamics are the ones by Batchelor [17], and Landau and Lifshitz [18].
We further recommend the textbook by Guyon et al. [19]. A set of classical videos by
G. I. Taylor [20] is recommended as an enjoyable illustration of the general features
of low-Reynolds-number hydrodynamics discussed in the present notes.

Outline We start by introducing in Sect. 10.2 the Stokes (creeping flow)
equations governing the low-Reynolds-number quasi-incompressible motion of a
viscous fluid on colloidal time and length scales. The linear Stokes equations are a
special case of the non-linear Navier-Stokes equations of incompressible flow,
under the conditions where inertial effects are negligible and the particle motion is
viscosity dominated. We show that these equations apply to flows related to the
motion of suspended colloids and unicellular animalcules. The Stokes equations are
amended by boundary conditions (BCs) on particle surfaces, confining interfaces
and container walls. In this context, we discuss as important examples the no-slip
and Navier partial-slip BCs for the fluid at a rigid surface, and the fluid-fluid BCs at
a clean fluid-fluid interface. In Sect. 10.3, we explain salient generic features of
Stokes flows, namely linearity, instantaneity, and kinematic reversibility. These
features are used subsequently to infer some general knowledge on the motion of
rigid microparticles in a viscous liquid. In Sect. 10.4, we analyse the bulk hydro-
dynamics of an unbounded colloidal suspension and the associated microparticles
motion. For this purpose, we introduce the important concept of hydrodynamic
friction and mobility tensors. Moreover, we discuss a versatile set of elemental
solutions of the Stokes equations from which the flow profiles in simple situations
are readily constructed. As examples, we discuss the motion of a slender particle (a
rod) where the shape anisotropy results in anisotropic friction, and a spherical
particle driven by body forces (i.e. gravitational settling), or by external fields such
as temperature or electric potential gradient (phoretic motion). We introduce the
notion of many-body hydrodynamic interactions (HIs) between microparticles, and
outline how these interactions can be accounted for theoretically. The section is
concluded by the lubrication analysis of the motion of two nearly touching spheres,
and of a sphere near a flat no-slip wall.

Section 10.5 is dedicated to single-particle dynamics in the presence of a flat
interface. We show how the solutions of the Stokes equations in (partially) confined
geometry can be constructed using a superposition of the previously introduced
elemental flow solutions, and discuss the implications of various interfacial
boundary conditions on the dynamics of a suspended colloidal particle. In particular,
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we discuss the translational and rotational motion of a spherical particle near a
no-slip wall, and comment on generalizations of this system to elastic particles
and deformable interfaces. In Sect. 10.6, we explore the self-propulsion of
microswimmers such as bacteria and spermatozoa, both in a bulk fluid and near to a
confining surface. Our concluding remarks are contained in Sect. 10.7.

10.2 Fluid-Particle Dynamics on Microscale

In this Section, we elucidate some of the basic features of microscale flows. Due to
the typical small sizes and velocities of microparticles, the flow on these scales can
be treated as inertia-free and dominated by viscous effects. The neglect of inertia in
the Navier-Stokes equations of hydrodynamics leads to the linear Stokes equations.
These equations need to be supplemented with appropriate boundary conditions at
interfaces confining the fluid. We introduce and discuss the BCs for a no-slip rigid
wall, a clean fluid-fluid interface, and a partial slip surface.

10.2.1 Low-Reynolds-Number Flow

On length and time scales where continuum mechanics applies, the flow of an
incompressible Newtonian fluid of shear viscosity g and constant mass density qf is
governed by the Navier-Stokes equations,

qf
@uðr; tÞ

@t
þ uðr; tÞ � ruðr; tÞ

� �
¼ �rpðr; tÞþ gr2uðr; tÞþ fðr; tÞ; ð10:1Þ

r � uðr; tÞ ¼ 0; ð10:2Þ

where u(r,t) is the velocity field at a point r at time t, and p(r,t) is the pressure field.
The shear viscosity η and the fluid mass density ρf are constant for a Newtonian
fluid. The second equation follows from the continuity equation for a fluid of
constant mass density, and is referred to as the incompressibility condition. The
pressure in an incompressible fluid is determined only up to an additive constant,
for p appears in the Navier-Stokes equations in the form of its gradient only. The
external body force field per unit volume acting on the fluid is denoted by f(r,t). It
can be due, e.g., to an applied electric or magnetic field, and to particle surfaces or
system boundaries confining the fluid. For the latter two cases, the body forces are
singularly concentrated on two-dimensional surfaces. For surface hydrodynamic
boundary conditions (BCs) involving velocities only, the effect of a constant
gravitational field on the fluid can be included conveniently by redefining the
pressure according to p ! pþ qf g � r where g is the gravitational acceleration.
A particle of uniform mass density ρp and volume DXp experiences in the fluid the
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buoyancy-corrected gravitational force qp � qf
� �

DXpg acting at its center-of-mass
(Archimedes principle).

Consider now an ensemble of rigid, impermeable microparticles immersed in the
fluid (Fig. 10.1). In many but not all cases, the particles have no-slip surfaces. This
means that the velocity of the fluid at every point of a particle surface must match
the velocity of the particle at this point. The motion of the material on the surface
and inside a rigid particle i can be described by

uðrÞ ¼ Vi þXi � ðr� RiÞ; ð10:3Þ

where Vi and Xi are the particle’s translational and angular velocity vectors,
respectively, and Ri is a body-fixed reference point which can be taken, e.g., to be
the centre-of-mass position. The particles influence the flow outside through the
boundary conditions applied to their surfaces. Another influence on the fluid flow is
caused by the boundary conditions on external boundaries such as container walls,
or at infinity.

The Navier–Stokes Eqs. (10.1) include both inertial effects, represented by the
two terms on the left-hand side proportional to qf , and fluid viscosity effects which

are included in the viscous force density term gr2u on the right-hand side. The
relative importance of these effects can be read off from the dimensionless Reynolds
number Re. Suppose a sphere of radius a translates through the fluid with a velocity
of magnitude V. The Reynolds number associated with the fluid flow caused by the
sphere’s motion is

Re ¼ qf Va

g
� qf ju � ruj

jgr2uj : ð10:4Þ

Fig. 10.1 Sketch of fluid flow around a microparticle labelled i with translational and rotational
velocities Vi and Ωi, respectively, in the presence of other immersed particles. Even if the rigid
particles are free to translate and rotate in response to an externally imposed flow (freely advecting
particles), they still modify the flow pattern through the BCs on their surfaces

10 Colloidal Hydrodynamics and Interfacial Effects 317



For nano- to micrometer-sized particles, including in particular colloidal sys-
tems, the Reynolds number is typically of the order of 10−3 or even smaller [12].
This implies an important feature of the so-called low-Reynolds-number flows:
Inertial effects can be neglected as compared to the viscous ones, so that the
non-linear convective term qfu � ru in Eq. (10.1) can be taken as zero. In the
absence of intrinsic time scales originating from high-frequency oscillatory or
ultra-strong forcing of particles, the linear time derivative term on the left-hand-side
of the Navier-Stokes equation can be likewise neglected.

The description of microparticle-induced hydrodynamics in a Newtonian fluid
reduces then to the Stokes equations,

�rpðrÞþ gr2uðrÞþ fðrÞ ¼ 0; ð10:5Þ

r � uðrÞ ¼ 0; ð10:6Þ

also referred to as creeping flow equations. These equations have no explicit time
dependence and are linear in the velocity and pressure fields.

Equation (10.5) expresses the balance, at any instant of time and for every fluid
element, of pressure gradient, viscous and external force densities. In the absence of
external force density, the instantaneous values of velocity and pressure, and
consequently the fluid stress field, depend solely on the momentary configuration
and shape of particles and system boundaries, and on the surface boundary con-
ditions taken at the particle surfaces and system boundaries. There is thus no
dependence on the earlier flow history. Note that motion under Stokes flow con-
ditions can be unsteady, with the velocities of particles and surrounding fluid
changing as a function of time. An important example illustrating this fact is the
settling of a spherical particle towards a stationary wall in its vicinity. This settling
is discussed in Sect. 10.4.7 in relation to the effect of lubrication. At any instant,
however, the net force and torque on each particle and each fluid element are zero,
with accordingly instantaneous linear force-velocity relations characteristic of
non-inertial fluid and immersed microparticles motions. The flow and pressure
fields pattern readjust quasi-instantaneously to the moving system boundaries and
particle surfaces.

In consequence, the hydrodynamic drag force Fh and torque Th acting on a
particle due to its surface friction with the surrounding fluid are exactly balanced,
according to

Fh þF ¼ 0;

Th þT ¼ 0;
ð10:7Þ

by a non-hydrodynamic ‘external’ force F and torque T, respectively, caused by
direct interactions with other particles and system boundaries, and by external force
fields. Only a force-free and torque-free particle will move quasi-inertia-free. There
is in addition a so-called thermodynamic force contribution to F and T proportional
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to the system temperature T which accounts for the on average isotropic thermal
bombardment of a microparticle by the surrounding fluid molecules. If viewed on
the time and length scales where creeping flow applies this bombardment leads to
an erratic Brownian motion of the particles which persists even in the absence of
additional force contributions to F and T.

The strength of the Brownian motion of a particle can be characterized by the
diffusion time sD which is the time required by a particle to diffuse by Brownian
motion over a distance comparable to its size. For a spherical particle of radius a,
this characteristic diffusion time is

sD ¼ a2

D0 / g
a3

T
; ð10:8Þ

where

D0 ¼ kBT
Cga

; ð10:9Þ

is the single-sphere Stokes-Einstein translational diffusion coefficient. This coeffi-
cient decreases with increasing particle size and fluid viscosity, and it increases with
increasing temperature T. The numerical coefficient C depends on the hydrody-
namic boundary condition for the flow at the sphere surface. According to [1]

RðtÞ � Rð0Þ½ �2
D E

¼ 6D0t; ð10:10Þ

where D0 quantifies the magnitude of the mean-squared displacement, after the time
span t, of the position vector R of an isolated Brownian particle immersed in an
unbounded fluid. The brackets denote here an average over an equilibrium
ensemble of non-interacting Brownian particles.

The diffusion time grows strongly with increasing particle size. For water at
room temperature as the suspending fluid, it increases from sD � 5 ms for a = 0.1
lm to sD � 0:3 h for a = 5 lm. Brownian motion is thus negligibly small for
particles of several micrometers in size or larger. These particles are therefore
referred to as non-Brownian. A dispersion of non-Brownian particles requires
external driving agents to keep them in motion. This agent can be gravity, provided
some of the particles are lighter or heavier than the fluid, or an applied electric,
magnetic or temperature gradient field. Additionally, the particles are hydrody-
namically moved by incident flows created by moving system boundary parts (e.g.,
in cylindrical Couette cell flow) or applied pressure gradients (e.g., in pipe flow).

The distinguishing and to some extent surprising properties of fluid flows
described by the Stokes equations, and of the associated microparticles motions, are
an important theme of the present lecture notes, in addition to interfacial effects
related to the fluid dynamics. In our discussion, we will make ample use of
streamlines pattern in order to visualize Stokes flow fields formed around particles
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in the bulk fluid and at interfaces. A streamline is tangential to the local velocity
field at any fluid point, and for stationary flow it agrees with the pathway of a fluid
element. For each streamline segment dr, we have thus

dr� uðrÞ ¼ 0: ð10:11Þ

The three Cartesian components of this vectorial equation form a coupled set of
differential equations, for given u(r), from which the streamlines can be determined.

10.2.1.1 Hydrodynamic Stresses

To every solution, {u,p}, of the Stokes equations, referred to as a Stokes flow solution,
one can associate a fluid stress field described in terms of a stress tensor r. This
symmetric second-rank tensor consists of nine elementsrij with i; j 2f1;2;3gwhich at
a given fluid position r have values depending on the considered (rectangular)
coordinate system spanned by its three basis unit vectors {e1,e2,e3}. The stress tensor
has the following physical meaning: Imagine a small planar surface element dS in the
fluid with the unit normal vector n. The hydrodynamic drag force, dF, exerted by the
fluid on this surface element, located on the side where n points to, is then given by
dF ¼ r � ndS. The tensor (matrix) element rij is therefore the hydrodynamic force
component per unit area (referred to as stress) acting in the direction ei on a surface
element with the normal vector equal to ej [17]. The stress field of an incompressible
Newtonian fluid is given in terms of the flow fields u and p by

rðrÞ ¼ �pðrÞIþ gEðrÞ; ð10:12Þ

where I is the unit tensor, and

EðrÞ ¼ ½ruðrÞ�þ ½ruðrÞ�T ð10:13Þ

is the symmetric fluid rate-of-strain tensor, with the superscript T denoting the
transposition operation.

While the polyadic tensor expression for rðrÞ in Eqs. (10.12) and (10.13) applies
to all coordinate systems, the explicit form of its elements depends on the selected
coordinates [15]. In Cartesian coordinates where the orthonormal basis vectors {e1,
e2,e3} = {ex,ey,ez} are constant, the stress tensor elements are simply given by

rij ¼ �pdij þ g
@ui
@rj

þ @uj
@ri

� �
; ð10:14Þ

where {r1,r2,r3} = {x,y,z} are the Cartesian components of the fluid element
position vector r.

The hydrodynamic stress field depends on the properties of the fluid flow which
in turn is influenced by the characteristics of the particles and confining walls,
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namely their porosity and fluid permeability, and other non-hydrodynamic surface
properties such as surface charge density, van der Waals attraction etc. The
knowledge of stresses in the fluid is of importance, since it allows for the calcu-
lation of hydrodynamic drag forces and torques acting on bodies immersed in the
fluid. It is also of key importance for the calculation of rheological properties such
as the effective suspension viscosity of a fluid with immersed microparticles [21].
Once the hydrodynamic stresses are known, the hydrodynamic drag force and
torque, Fh and Th, acting on a particle can be calculated as the sum (integral) of the
local surface force and torque contributions, respectively, according to

Fh ¼
Z
S
dSrðrÞ � nðrÞ

Th ¼
Z
S
dSðr� RÞ � rðrÞ � nðrÞ

ð10:15Þ

The surface S can be replaced by any fluid surface S* enclosing the considered
particle without intersecting another one, provided there is no body force density
acting on the enclosed fluid part, since the hydrodynamic force and torque on a
particle are transmitted loss-free through the fluid [9]. The vector n is normal to the
surface of the particle and points into the fluid. See here Fig. 10.2.

It is important to realize that the arguments used to neglect the effects of inertia
and the explicit time dependence of the fluid velocity and pressure fields are not
applicable (i) if one studies processes on very short time and length scales where the
time-dependence of u and p becomes essential, such as sound propagation in the
fluid, and (ii) for processes which occur at different length scales so that the
effective Reynolds number becomes large as compared to one. For a detailed dis-
cussion of the involved time and length scales of fluid and immersed microparticles,
we refer to [1, 8, 12].

R

S

S*

n

r

n

Fig. 10.2 Surface stress or traction (force per area), rðrÞ � nðrÞ, exerted by the fluid on a particle
surface element dS at position r. The surface normal vector n points into the fluid. The vector
R points to a particle-fixed reference point. For the calculation of drag force and torque, the surface
S� enclosing the particle can be chosen rather arbitrarily (see text)
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10.2.2 Boundary Conditions

Fluid flows close to interfaces are strongly influenced by the interfacial properties.
There exists an abundance of soft matter systems in which interfacial effects are
highly influential on the dynamics. Notable examples of interfaces include: A
smooth solid wall or particle surface; an engineered nano-structured surface; an
interface between two immiscible fluids such as water and oil; liquid-gas free
interfaces such as for gas bubbles in a liquid; surfactant-covered interfaces, and
polymer-coated and grafted particle surfaces. To describe and understand the effect
of interfaces on the flow behaviour, one needs to consider the appropriate boundary
conditions imposed on the fluid at the surface or interface. The no-slip boundary
condition for rigid impermeable surfaces noted in Eq. (10.3), first described by
Navier in 1823, has been given considerable attention over the past two centuries,
concerning in particular its applicability and validity [22]. It is generally accepted as
the proper boundary condition for smooth solid hard walls, and for rigid particles
with smooth non-permeable surfaces and sizes exceeding *30 nm.

We discuss in the following two additional types of boundary conditions which
are also frequently applied to soft matter systems. The first one concerns a clean
liquid-liquid interface between two immiscible Newtonian fluids of viscosity ratio

k ¼ g2=g1; ð10:16Þ

with the associated near-interface flow sketched in the left part of Fig. 10.3. The
appropriate boundary conditions are here the continuity of tangential velocities and
tangential (shear) stresses of the two fluids at the interface, and the impermeability
of the interface. The latter condition implies the equality of the normal velocity
components of both fluids. Assuming a planar interface stretching out in the x –

y plane at z = 0, these continuity conditions read

uð1Þz ¼ uð2Þz ; uð1Þx;y ¼ uð2Þx;y ; Eð1Þ
xz ¼ kEð2Þ

xz ; Eð1Þ
yz ¼ kEð2Þ

yz ; ð10:17Þ

Fig. 10.3 Schematic flow profiles close to different interfaces as discussed in the notes. Left A
clean interface between two immiscible fluids of different viscosities g1\g2, where dux/dz changes
discontinuously. Middle Flow above a stationary rigid partial-slip surface, characterized by the
Navier slip length ‘ equal to the distance to an apparent no-slip plane inside the stationary wall.
Right Plug-like flow above a stationary (perfect) slip wall where ‘ ¼ 1. The same flow is
observed near an ideal liquid-gas interface where g2=g1 ¼ 0, and where the gas phase is situated in
the half-space z < 0
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where the EðiÞ
ab are the Cartesian elements of the rate-of-strain tensor E of the fluid

introduced in Eq. (10.13). The liquid-liquid BCs include as limiting cases firstly a
free interface (e.g., a water-air interface) where the viscosity of the second fluid is
negligible, so that k ¼ 0, and secondly a fluid above a rigid no-slip wall with the
latter described as a fluid of infinite viscosity, so that k ! 1. In fact, k ¼ 0 implies
a (perfect) slip surface of zero tangential stress while k ! 1 implies the no-slip
condition u(z = 0,x,y) = 0 for a stationary wall.

The equality of tangential stresses of both fluids at their interface is valid for
uniform interfacial tension c only, i.e. for constant free energy per area gone into the
formation of the interface. Any mechanism creating a gradient,rc, in the interfacial
tension breaks the shear stress continuity and drives motions in the two fluids.
These motions are referred to as Marangoni flows [23]. One possible way to cause a
Marangoni flow is to establish a sufficiently strong temperature gradient along the
interface [19].

For a planar liquid-liquid interface with zero motion of both fluids, the hydro-
static pressure on both sides is the same in order to maintain a stationary interface.
However, for a stationary spherical droplet of radius a in a stationary fluid, the
hydrostatic pressure in its interior exceeds the outside fluid pressure by the capillary
(Laplace) pressure contribution c=a. Any deformation of the droplet away from its
equilibrium spherical shape of constant curvature and minimal surface free energy
will cause flows and associated droplet motion which tend to re-establish its
spherical shape. See Ref. [23] for a lucid discussion of droplet motions and
Marangoni flow effects.

The second type of a boundary condition describes the partial-slip of fluid along
the surface of a fluid-impermeable solid material, as illustrated in the middle and
right parts of Fig. 10.3 where the solid extends to z < 0 with the fluid residing on
top. The so-called Navier BCs for a stationary partial-slip surface demand, in
addition to a vanishing normal velocity component at the surface, the proportion-
ality of surface-tangential fluid velocity and shear stress according to

t � u ¼ ‘

g
t � r � n; n � u ¼ 0: ð10:18Þ

Here, ‘ is the Navier slip length, and t and n are tangential and normal unit vectors
at a surface point. For the planar stationary surface at z = 0 depicted in Fig. 10.3, the
partial-slip BC for the surface-tangential velocity part simplifies to

ux;y ¼ ‘
@ux;y
@z

; uz ¼ 0: ð10:19Þ

The slip length ‘ is here the distance into the interior of the wall for which the
near-surface flow linearly extrapolates to zero, defining in this way an effective
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no-slip plane at z ¼ �‘. In the limit ‘ ¼ 0, the no-slip BC with zero surface slip
velocity is recovered. In the opposite limit ‘ ! 1, the free-surface boundary
condition of zero tangential stress is obtained, with fluid slipping perfectly along the
surface in a plug-flow-like manner.

The Navier partial-slip BCs can serve as an effective description for a
hydrophobic wall, a rigid particle with surface roughness or corrugations [24], and
to some extent also for a wall grafted with polymer brushes acting as depletants
[25]. Moreover, it can be used for a fluid-solid interface with free polymers in the
fluid, and a polymer depletion layer at the interface [26]. An effective (apparent)
fluid slip is also found in electrokinetic [21] and other phoretic flows where the
no-slip boundary condition holds right at the wall and the particle surfaces. Outside
a thin fluid boundary layer with viscous flow, however, flow slip is observed [22].
In Sect. 10.4.5, effective slip is discussed in relation to phoretic motion of a
microsphere.

10.3 Generic Features of Stokes Flows

Creeping flows have interesting generic properties which appear counter-intuitive
from the perspective of our macroscopic world experience where inertia and
high-Reynolds-number effects prevail, with the flow governed by the non-linear
Navier-Stokes equations. The three generic features of the Stokes equations are
linearity, kinematic reversibility, and instantaneity. In this section, their implica-
tions for the colloidal dynamics are described.

10.3.1 Linearity

The Stokes equations are linear in contrast to the underlying Navier-Stokes equa-
tions. This means that the pressure, velocity and stress field are linearly related. The
consequences of linearity are far-reaching. For instance, in a slow viscous channel
flow, on doubling the applied pressure gradient, a doubling of the flow rate is
obtained. Moreover, a twofold increase in the rate of flow of viscous fluid through a
porous medium will result in an unchanged pattern of streamlines of the flow, but
with the magnitude of the fluid elements’ velocities doubled. For a sphere settling in
a viscous liquid, doubling the settling velocity gives rise to a correspondingly
doubled hydrodynamic drag force. The fact that the hydrodynamic force on a
particle and the associated velocity (increment) are linearly related is exploited
further in Sect. 10.4.1, where we discuss the hydrodynamic friction and mobility
coefficients in many-particle dispersions.

For linear evolution equations such as the Stokes equations, the superposition
principle is valid: If u1 and u2 are two velocity solutions of the Stokes equations,
then
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u ¼ k1u1 þ k2u2 ð10:20Þ

rp ¼ k1rp1 þ k2rp2 ð10:21Þ

are likewise solutions with coefficients k1 and k2. Here, rpi is the pressure gradient
field solution to the Stokes equations associated with ui. For a given flow boundary
value problem, the unique velocity field u can be obtained from the linear super-
position of two (simpler) flows with unchanged geometry, provided the velocity
BCs of the two partial flows superimpose correspondingly, with the same coeffi-
cients, to the BCs of the full flow solution.

The linearity of the Stokes flow solutions can lead to rather unexpected con-
clusions; Consider a particle moving through the fluid with the velocity V with
Cartesian components Vi, i = 1,2,3. The particle experiences then the drag force –

F which we can decompose into forces acting along the axes of the coordinate
system according to F = {Fi}. From linearity, we conclude that the force F1 acting
on a particle moving with velocity (V1,0,0) must be of the form F1 ¼ aV1, with a
being a positive constant. Imagine now that the particle is a cube with its edges
aligned along the coordinate axes. Then, from symmetry, F2 ¼ aV2 and F3 ¼ aV3,
and in general F ¼ aV. Hence the drag force experienced by a cube does not
depend on its orientation, and it is collinear with the velocity (see Fig. 10.4). As
everyday experience teaches us, this is obviously not valid any more for large Re. In
fact, a more general statement is true in Stokes dynamics: Any homogeneous body
with three orthogonal planes of symmetry (such as spheroids, rods, cylinders, disks,
or rings), will translate under the action of force without rotating, although in
general with a sidewise velocity component perpendicular to the driving force. The
sidewise motion is absent only if the force is acting along the rotational symmetry
axis of the particle. In addition, force and velocity are collinear independently of the
particle orientation for highly symmetric particles, namely for a homogeneous
sphere and the five regular polyhedra (tetrahedron, cube, etc.), and also for
homogeneous bodies made from the polyhedra by equally rounding off their cor-
ners, provided the hydrodynamic BCs are homogeneous [9, 11]. For this statement
to be true, the particle centre must be selected as the reference point.

As noted earlier, linearity can be used to decompose a complex flow problem
into a number of simpler ones: one can for instance consider the problem of a
spherical particle translating and rotating in a viscous fluid as the two separate
problems of sole rotation and sole translation of a sphere, provided a corresponding
linear decomposition of the surface boundary conditions in Eq. (10.3) is used. Such
a decomposition proves useful in various numerical schemes for the calculation,
e.g., of the hydrodynamic drag forces on an ensemble of spherical particles at a
given fixed configuration. One has to bear in mind, however, that the imposed BCs
must be simultaneously satisfied at the surfaces of all the particles. For more than
two particles, this requires in general a complicated numerical analysis.
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10.3.2 Instantaneity

On the time and length scales where significant motion of colloidal microparticles is
observed, the accompanying viscous flows are described by the quasi-stationary
linear Stokes equations which have no explicit time dependence. As noted before,
this means that the pressure and velocity fields adjust themselves instantaneously,
on the coarse-grained colloidal time and length scales, to changes in the driving
forces. The flow disturbances propagate in the fluid with an (apparently) infinite
speed. A slight change in a particle’s position or velocity is instantaneously com-
municated to the whole system. The fluid flow {u,p} at a given time is therefore
fully determined by the instantaneous positions and velocities of the particle sur-
faces and wall boundaries, independently of how the momentary boundary values
have been reached (history independence). In particular, the instantaneous fluid
flow pattern does not depend on whether the boundary velocities will stay constant
in the future or change, such as in oscillatory motions.

This feature of Stokes flows appears counter-intuitive on the first sight. Yet,
there exist nice demonstrations highlighting its validity, provided the frequency of
oscillatory boundary motions and the probed distances are not too large. Otherwise,
hydrodynamic retardation effects come into play reflecting the actually
non-instantaneous spreading of flow perturbations by pressure (sound) waves, and
by the diffusional spreading of flow vorticity in the viscous fluid with an associated
vorticity diffusion coefficient, g=qf , equal to the kinematic viscosity [19, 27].

10.3.3 Kinematic Reversibility

Kinematic reversibility is a remarkable feature of viscosity-dominated flows. The
linearity of the Stokes equations in the flow fields {u,p} and the applied forces,
including the ones due to the fluid boundaries, implies that under the reversal of the
driving forces, the flow fields are also reversed to {–u,–p}. Moreover, if the forces

Fig. 10.4 A cube translating through a viscous fluid with velocity V under the influence of force
F acting on its centre. For highly symmetric particles, linearity of Stokes equation implies that the
force and velocity are collinear, with the drag force being independent of the particle orientation
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and also the history of their application is reversed, all fluid elements retrace their
motion in the opposite direction along the unchanged streamlines.

Kinematic reversibility was beautifully demonstrated in G. I. Taylor’s video [20]
from 1966, where a drop of coloured ink is immersed in highly viscous glycerine, to
maintain low-Reynolds-number flow, filling the gap between two concentric
cylinders (Couette cell geometry). See here Fig. 10.5. On rotating the inner
cylinder, the drop is smeared out along concentric streamlines into a thin filament.
When the rotation is reversed subsequently by the same number of turns, the
original droplet is reconstituted up to a small amount of blurring originating from
the irreversible residual Brownian motion of the dye particles. The length of the
filament depends on the number of turns only, independently of the rate at which
the inner cylinder is rotated. This nicely illustrates the earlier discussed instanta-
neity of Stokes flows.

The kinematic reversibility in combination with specific symmetries puts general
constraints on the motion of a microparticle in a viscous fluid. A classical example
is a spherical rigid microparticle settling under gravity near a stationary vertical
hard wall (see Fig. 10.6). While the particle is rotating clockwise during settling,
owing to the larger wall-induced hydrodynamic friction on its semi-hemisphere
facing the wall (see Sect. 10.5.2 for details), a question arises whether it will
approach the wall or recede from it. Given that gravity acts vertically downwards
parallel to the wall, assume for the time being that the sphere approaches the wall
while settling (see Fig. 10.6a). Kinematic reversibility requires that once the
direction of the motion-driving gravitational force is reversed, the Stokes flow
pattern remains unchanged except for the directional reversal of the fluid elements
motion, provided the translational and angular particle velocities are likewise
reversed. According to Fig. 10.6b, this implies that the sphere sediments upwards
while receding from the wall. On rotating Fig. 10.6b by 180° around the horizontal
symmetry axis line going through the sphere centre, Fig. 10.6c is obtained in
conflict with Fig. 10.6a wherein the sphere had been assumed to approach the wall.
A contradiction is avoided only if the sphere remains at a constant distance from the
wall while settling, as in Fig. 10.6d. An analogous reasoning can be employed to

t1 t2 > t 1 t3 > t 2

Fig. 10.5 Ink-spreading experiment by G. I. Taylor. An ink droplet inserted in a high-viscosity
Newtonian fluid at time t1 is smeared out in a thin concentric filament when the inner cylinder is
rotated subsequently. The initial droplet shape is recovered after reversal of the rotation,
independent of the rotation rate
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show that in a Poiseuille channel flow, a non-Brownian microsphere translates
along the flow streamline, without any cross-flow velocity component.

As discussed in Sect. 10.5.3, a non-spherical rigid particle, such as a rod, can
move sidewise while settling and so approach the vertical wall. The wall-induced
rotation of the particle can lead to a subsequent motion away from the wall.
A deformable liquid droplet settling close to a vertical wall will deform into a shape
which makes it glide away from the wall.

While non-spherical rigid particles and deformable particles can migrate across
streamlines under Stokes flow conditions, this is not the case for an isolated
non-Brownian spherical particle. However, the non-linear hydrodynamic coupling
of the motions of three or more nearby spheres in a driven system such as in the
pipe flow of a suspension, can lead to irregularly looking trajectories which depend
sensitively on the initial particle configuration. Any reversibility-breaking slight
perturbation of the initial particle configuration caused, e.g., by direct particle
interactions in the form of surface roughness, flexibility or electric charge, or
residual Brownian motion and inertia effects, becomes exponentially amplified,
giving rise to chaotic trajectories causing cross-stream migration and the mixing of
the particles. A macroscopic manifestation of this so-called (anisotropic and
temperature-independent) hydrodynamic diffusion is the flow-induced migration of
spherical particles in concentrated suspensions from the regions of high to low
shear rates. The shear-induced diffusion has an application, e.g., in the inside-out
microfiltration (enrichment) of a particle suspension pumped through a microfluidic
filter pipe where it reduces the formation of irreversible particle deposits at the filter
membrane (fouling reduction).

Already on the particle pair-interaction level, the kinematic reversibility of rigid
particles is broken by physical processes modifying the Stokes equations or the
evolution of the particle trajectories such as non-Newtonian terms in the stress-shear
relation (cf. Eq. (10.14)) occurring in viscoelastic media (e.g., in polymer solutions
and melts), short-range repelling forces, significant Brownian motion and
non-inertial hydrodynamic effects. For example, for Reynolds numbers significantly

(a) (b) (c) (d)

Fig. 10.6 A non-Brownian sphere settling with translational velocity V under gravity of field
strength g near a vertical hard wall. The principle of kinematic reversibility in conjunction with the
flow geometry leads to the conclusion that the sphere maintains a fixed distance from the wall
while settling and rotating clockwise. See the text for details
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larger than zero, a particle immersed in a pipe flow experiences an inertia-induced
lift force driving it away from the pipe wall. This so-called tubular pinch or
Segre-Silberberg effect, named after its discoverers, appears already on the
single-particle level and should be distinguished from the many-particle
shear-induced diffusion effect which takes place under Stokes flow conditions of
zero inertia.

10.4 Colloidal Hydrodynamics in a Bulk Fluid

On the time and length scales of colloidal dynamics, the fluid flow is described by
the Stokes equations supplemented by appropriate boundary conditions at interfaces
and surfaces of suspended particles. Since the dynamics of these particulates is often
of interest, one needs to construct a description of their interaction including the
solvent-mediated hydrodynamic effects. In this Section, we introduce the notion of
friction and mobility, and show how the linearity of the Stokes equations can be used
to construct relations between forces and velocities of particles in a many-body
system in the case where the interfaces are far away and the fluid may be regarded to
be unbounded. We then proceed to explore the basic solutions of the creeping flow
equations for point forces which are the simplest approximation to the flow field
generated by the immersed particles. The set of solutions is then extended by
multipole expansion to include more subtle flow effects. We apply this formalism to
investigate the motion of shape-anisotropic slender bodies, such as rod-like colloids,
and later on to construct a solution for a spherical particle moving through the fluid
as a result of a force, or by a phoretic motion. We conclude this Section by a
discussion of more advanced approaches to hydrodynamic interactions and of the
lubrication effects which are essential when the particles are very close together.

10.4.1 Friction and Mobility of Microparticles

We outline here the theoretical framework for the description of the dynamics of a
dispersion consisting of N rigid microparticles of basically arbitrary shape evolving
under Stokes flows conditions [14]. Consider the particles to be at the instantaneous
configuration X ¼ ðR;HÞ ¼ ðR1; . . .;RN ;H1; . . .;HNÞ, with body-fixed particle
position vectors {Ri} and orientations Hif g. Here, Hi abbreviates the three Euler
angles characterizing the orientation of the particle i.

Suppose now that the particles are subjected to external forces F ¼ ðF1; . . .FNÞ
and torques T ¼ ðT1; . . .;TNÞ where we have introduced 3N-dimensional super-
vectors F and T for notational convenience. As a consequence of this forcing,
motion of the particles and the fluid is induced, and the particles acquire
quasi-instantaneously the translational velocities V ¼ ðV1; . . .;VNÞ and the

10 Colloidal Hydrodynamics and Interfacial Effects 329



rotational velocities X ¼ ðX1; . . .;XNÞ. We have assumed a quiescent fluid for
simplicity, meaning that the fluid would be at rest in the absence of particles. This
implies, in particular, that there is no ambient flow caused, e.g., by confining
boundary parts in relative motion. In the inertia-free Stokes flow system under
consideration, each external force and torque are balanced by a hydrodynamic drag
force and torque. Owing to the linearity of the Stokes equations and the hydro-
dynamic boundary conditions, the forces (torques) and translational (rotational)
velocities are linearly related according to

V
X

� �
¼ lðXÞ � F

T

� �
; ð10:22Þ

where the 6N × 6N hydrodynamic mobility matrix μ has the four
3N × 3N submatrices

lðXÞ ¼ lttðXÞ ltrðXÞ
lrtðXÞ lrrðXÞ

� �
: ð10:23Þ

The superscripts tt and rr label the purely translational and rotational mobility
matrix parts, respectively. The off-diagonal matrices with superscripts tr and rt
describe the hydrodynamic coupling between translational and rotational particle
motions. The tensor elements of these matrices have a straightforward physical
meaning. To give an example, the tensor ½lttðXÞ�ij relates the instant force Fj on
particle j with the translational velocity Vi of particle i, in a situation where particles
different from j are all force- and torque-free. The coupling tensor ½lrtðXÞ�ij, on the
other hand, relates the force Fj on particle j to the resulting angular velocity Ωi of
particle i. It is important to note here that the mobility matrix μ and its 4N2 mobility
tensor elements depend on the configuration of the whole system, i.e. the instant
positions and orientations of all particles, as well as on the particle shapes and sizes,
and the surface boundary conditions. Finding the mobility tensor is therefore a very
difficult problem which for arbitrary particle shapes can be addressed only
numerically for a small number of particles.

It should be further noted that the form of the mobility matrix depends also on the
selection of reference points R inside the particles. For these points, the so-called
center of mobility of each particle should be selected which in Stokes flow dynamics
plays a similar role as the center-of-mass position in Newtonian dynamics. For an
axisymmetric homogeneous rigid body, the center-of-mobility and the
center-of-mass are both located on the symmetry axis but they do not necessarily
coincide. They coincide, however, for a homogeneous sphere. Different from the
center-of-mass, the center-of-volume is depending on the shape of the particle
surface only, for uniform surface BC, independent of the mass distribution inside the
particle. For a more detailed discussion of this important issue, see [14, 28].
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In the simplest case of hydrodynamically non-interacting spherical particles of
equal radius a, the tt and rr tensors reduce to the 3 × 3 unit matrices,

½lttðXÞ�ij ¼ lt0dij; ½lrrðXÞ�ij ¼ lr0dij ð10:24Þ

describing the free translation and rotation of isolated spheres. This limiting case is
approached for an ultra-dilute dispersion where the mean distance between two
particles is very large compared to their sizes. The single-particle mobility coeffi-
cients of a no-slip sphere are explicitly (see Sect. 10.5.2)

lt0 ¼
1

6pga
; lr0 ¼

1
8pga3

ð10:25Þ

with Vi ¼ lt0Fi and Xi ¼ lr0Ti. The tr and rt mobility tensors are here zero
implying that there is no coupling between the translational and rotational motion of
the particles.

Equation (10.22) describes the so-called mobility problem where the forces and
torques acting on the particles are given, and the translational and rotational
velocities are searched for. The inverse problem where the velocities are given and
the forces are searched for, referred to as the friction problem, is straightforwardly
formulated by introducing the 6N × 6N friction matrix

f ¼ l�1 ð10:26Þ

defined as the inverse of the mobility matrix. That this inverse exists is due to the
fact that μ is symmetric and positive definite for all physically allowed particle
configurations. This follows from general principles of the Stokes flows, and it
implies physically that the power supplied to the particles by external forces is
completely and quasi-instantaneously dissipated by heating the fluid. We quantify
this statement for the motion of N torque-free microparticles in an infinite quiescent
fluid where the rate of change of the particles kinetic energy, W(t), instantaneously
dissipated into heat by friction is given by

0\
dWðtÞ
dt

¼ F
T

� �
� V

X

� �
¼ F

T

� �
� lðXÞ � F

T

� �
: ð10:27Þ

Since the 6N-dimensional supervector with the particles forces and torques as
elements is arbitrary, the second equality expresses the positive definiteness of the
6N × 6N symmetric mobility matrix μtt. Any violation of the positive definiteness of
this matrix would imply thus the violation of the second law of thermodynamics. In
specializing Eq. (10.27) to torque-free and force-free particles, respectively, it
follows readily the positive definiteness likewise of the 3N × 3N symmetric sub-
matrices μtt and μrr for all physically allowed particle configurations X.

The knowledge of the configuration-dependence of μ, or likewise that of ζ, allows
for the exploration of the microparticles’ dynamics using numerical simulations,
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without having to address explicitly the accompanying fluid flow. For torque-free
particles large enough for their Brownian motions to be negligible, the 3N coupled
first-order equations of motion for the particles centre-of-mobility positions, in
the presence of external and also non-hydrodynamic particle interaction forces all
subsumed in F, are given by

dRðtÞ
dt

¼ ltt RðtÞð Þ � FðtÞ : ð10:28Þ

Integration of these evolution equations gives the positional trajectories of the
particles. This is referred to as Stokesian dynamics [29]. Due to the non-linearity of
the Stokesian dynamics evolution equations in Eq. (10.28), originating from the
non-linear positional dependence of the mobility matrix, the trajectories are highly
sensitive to the initial particle configuration: A slight change in the initial config-
uration can lead to large differences in the trajectorial evolution. Deterministic
chaos in the trajectories of as little as three hydrodynamically interacting
non-Brownian particles settling under gravity has been discussed theoretically first
in the point-particle limit [30] and later also for extended spheres [31].

For smaller Brownian particles, on the other hand, the mobility matrix is needed
as input not only for the generation of Stokesian particle displacements, but also for
the generation of additional stochastic displacements caused by the thermal fluc-
tuations of the solvent. These displacements are the essential ingredients of the
so-called Brownian dynamics numerical scheme for the generation of Brownian
stochastic trajectories [32]. For a pedagogical introduction to Brownian dynamics
simulations, see [33]. From the generated trajectories, quantities such as the particle
mean-squared displacement in Eq. (10.10) can be calculated, for the general case of
interacting microparticles. The positive definiteness of the mobility matrix plays a
key role for Brownian particles. It guarantees that a perturbed suspension evolves
towards thermodynamic equilibrium, in the absence of external forcing and ambient
flow.

Complementary to the Stokesian dynamics and Brownian dynamics simulation
schemes, the evolution of microparticle dispersions is studied theoretically also in
terms of the probability density distribution function P(X,t), where P(X,t)dX is the
probability of finding N particles at time t in a small 6N-dimensional neighbourhood
dX of the configuration X. The evolution equations for P(X,t) for Brownian and
non-Brownian particles under Stokes-flow conditions are, respectively, the
many-particle Smoluchowski diffusion equation and the Stokes-Liouville equation.
An introductory discussion of these equations is given in Ref. [9].

10.4.2 Method of Singularity Flow Solutions

Linearity of the Stokes equations allows for the representation of the fluid velocity
and pressure in dispersions of microparticles in terms of a discrete or continuous

332 M. Lisicki and G. Nägele



superposition of elementary flow solutions. We discuss in the following a very
useful set of singularity incompressible flow solutions for an unbounded quiescent
fluid which decay all to zero far away from a specified fluid point where they
exhibit a pole singularity [14, 34, 35]. For simple geometries, this set can be
profitably used to obtain, with little effort, exact Stokes flow solutions by linear
superposition. We will exemplify this for the forced and phoretic motions of a
microsphere, and for the velocity field of a point force in front of a fluid-fluid
interface (see Sect. 10.5.1). To solve the latter problem, an image method is used
similar to that in electrostatics [36]. For more complicated geometries such as for a
complex-shaped particle, the singularity method remains useful to gain information
about the flow at far distances from the particle, in the form of a multipolar series.
We shall demonstrate this in our discussion of the swimming trajectories of a
self-propelling microswimmer near a surface.

The important observation is that for a given solution, {u,p}, of the homogeneous
Stokes equations, its derivatives are likewise flow solutions. We can thus construct a
complete set of singularity solutions by taking derivatives of increasing order, of two
fundamental flow solutions, namely those due to a point force and a point source.

We should add that for dispersions of spherical particles, specialized elementary
sets of Stokes flow solutions can be constructed, which are different from the
singularity set discussed below, and which account for the high symmetry of
spheres. These specific sets are used in numerically precise methods [37, 38] of
calculating the many-sphere hydrodynamic mobility and friction coefficients
required in Brownian and Stokesian dynamics simulations.
Point-force solution andOseen tensor: The fundamental flow solutions, {uSt,pSt}, due to
the body force density fðrÞ ¼ dðr� r0ÞF of a point force F = Fe, directed along the
unit vector e and acting on a quiescent, infinite fluid at a position r0, can be obtained
in several ways (see [39]). We only quote here the result

uStðrÞ ¼ Tðr� r0Þ � F ð10:29Þ

pStðrÞ ¼ 1
4p

USðr� r0Þ � F: ð10:30Þ

The second-rank Oseen tensor, T(r), has the form

TðrÞ ¼ 1
8pg

1
r

1þ r̂r̂ð Þ; ð10:31Þ

where 1 is the unit tensor, r ¼ rr̂, and r̂r̂ is a dyadic tensor formed with the
positional unit vector r̂. In Cartesian coordinates, the Oseen tensor elements read

Tij ¼ 1
8pg

dij
r

þ rirj
r3

� �
: ð10:32Þ
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(a) (b)

(c) (d)

(e) (f)

Fig. 10.7 A few elemental singularity solutions used in constructing specific Stokes flow
solutions. The x-axis points horizontally to the right, and the z-axis vertically upwards. The
singularities are marked in red with pictograms reflecting their structure. Note here that
GDðr; ex; ezÞ ¼ �GDðr; ez; exÞ, and e� ¼ ðex � ezÞ=

ffiffiffi
2

p
span the stretching and compression axes.

The elemental source, �USðrÞ, is marked as a circle with a minus sign inside
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The pressure field pSt(r) due to the point force at r0 is expressed here in terms of
the elementary source vector field

USðrÞ ¼ r̂
r2

¼ �r 1
r
: ð10:33Þ

If multiplied by a constant c > 0 with the dimension of volume per time,
cUS(r) describes the radially directed outflow of fluid from the source point r0 ¼ 0.
The flow rate through a surface S enclosing the source point is thus equal to

c
Z
S
dSUS � n ¼ 4pc : ð10:34Þ

The elementary velocity field uSt(r) of a point-force is called a Stokeslet of
strength F in the direction of e, and with the centre at r0 where it has a simple pole
singularity. Note here that Tij is the i-th component of the Stokeslet velocity field
generated by a unit force acting in the j direction. The streamlines of the Stokeslet
are drawn as dashed lines in the left part of Fig. 10.9, together with those generated
by a spherical no-slip particle subjected to the same force. The hydrodynamics of a
translating sphere is discussed in detail further down. A significant difference
between the two streamlines pattern exterior to the impermeable sphere is visible
only near its surface. The streamlines generated by the translating sphere are further
out indistinguishable from those of the point-force Stokeslet.

The Stokeslet velocity field decays like 1/r at far distances from the point force.
This slow decay can be ascribed to the conservation of momentum injected into the
fluid by the point force, which is spread out quasi-instantaneously. It creates major
difficulties in dealing theoretically with the hydrodynamics of suspensions, since
forced velocity disturbances influence even well-separated particles. An additional
difficulty is that the hydrodynamic interactions between three andmore non-point-like
particles are not pairwise additive, i.e. the hydrodynamic interactions of two nearby
particles are changed in a rather complicated way if a third one is in their vicinity.

According to Eq. (10.33), the pressure field of a point force decays faster than
the velocity field by a factor of 1/r. Note that the pressure itself, and not just its
gradient, has been uniquely specified by demanding p ! 0 for r ! 1. Employing
Eq. (10.14), the stress on a fluid surface element at position r and normal n, due to a
point force at the coordinate system origin, is

rStðrÞ � nðrÞ ¼ � 3
4p

F � r̂r̂r̂
r2

� �
� n ¼ � 3

4p
ðr̂ � FÞðr̂ � nÞ

r2
r̂: ð10:35Þ

On integrating the stress over a surface enclosing the point force, the expected
result Fh = −F is obtained.

That the pressure field decays by the factor 1/r faster than the associated velocity
field is a general rule. It follows from the homogeneous Stokes equation written in
the form rp ¼ gr2u, where the first-order derivatives of p are expressed by the
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second-order derivatives of u. It can be also noticed here that the pressure in Stokes
flows is a subsidiary quantity, fully determined by the velocity field for BCs
invoking velocities only. The velocity field can be calculated without reference to
the pressure as a solution of the bi-harmonic differential equation

r2r2uðrÞ ¼ 0; ð10:36Þ

which readily follows from the application of the divergence operation to the
homogeneous Stokes equation, using in addition the flow incompressibility
constraint.

For completeness, consider also the vorticity field, r� uðrÞ, associated with a
velocity field u(r). The vorticity is twice the angular velocity of a fluid element at
r. The vorticity due to a point force at position r0 is

r� uStðrÞ ¼ � 1
4pg

USðr� r0Þ � F; ð10:37Þ

identifying the Stokeslet as an incompressible rotational flow solution.
The Oseen tensor for an unbounded infinite fluid is of key importance not only in

generating higher-order elemental force singularity solutions (see below), but also
for the so-called boundary integral method of calculating the flow around
complex-shaped bodies. The disturbance flow, i.e. the flow taken relative to a given
ambient flow field uamb(r), observed in the exterior of a rigid no-slip particle in
infinite fluid is given by the integral

uðrÞ � uambðrÞ ¼
Z
Sp

dS0Tðr� r0Þ � rðr0Þ � nðr0Þ; ð10:38Þ

over the particle surface Sp, i.e. by a continuous superposition of surface-located
Stokeslets of vectorial strength r � n. We emphasize here that if the fluid at Sp is
tangentially mobile such as for a rigid particle with Navier partial-slip BC, and a
liquid droplet or gas bubble, there is an additional surface integral contribution to
the exterior flow. The form of this additional contribution is discussed in detail in
textbooks on low-Reynolds-number fluid dynamics [14, 35, 40].

The ambient velocity field uamb(r) is a Stokes flow caused by sources exterior to
the considered particle. In a non-quiescent situation it can be, e.g., a linear shear or
a quadratic Poiseuille flow. The ambient flow can be also the flow due to the motion
of other rigid or non-rigid particles. If the considered particle was not present, the
ambient flow would be measured in the system.

Integrating Eq. (10.38) with respect to r over the particle surface, and using the
no-slip BC in Eq. (10.3) for its left-hand side, results in a linear surface integral
equation for the surface stress field r � n in terms of the given translational and
rotational particle velocities V and X, and the ambient flow field (friction problem).
The integral equation can be solved numerically by an appropriate surface dis-
cretization (triangulation). For given particle force and torque (mobility problem),
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and given ambient flow, the velocities are determined from substituting the cal-
culated stress field into the likewise discretized Eq. (10.15) for Fh and Th. See here
[8, 9, 35] for details on the boundary integral method which has the main advantage
of requiring only a two-dimensional surface mesh for a three-dimensional flow
calculation.

Force multipoles solutions: Singularity solutions of increasing multipolar order are
obtained from derivatives of the fundamental flow solution uSt(r). They also show
up in the expansion of uSt in a Taylor series about the force placement (singularity)
point r0. Recall now that a point force F = Fe oriented along the direction e gen-
erates the velocity field

uStðr� r0Þ ¼ F
8pg

Gðr� r0; eÞ; ð10:39Þ

with

Gðr; eÞ ¼ 8pgTðrÞ � e ¼ e
r
þ e � r

r3
r: ð10:40Þ

We select Gðr; eÞ as the starting element of the singularity set, quoting it as the
fundamental e-directed Stokeslet. It is actually equal to a Stokeslet of unit force in
the direction e, made non-dimensional by multiplication with 8pg and division by
the force unit. The first two singularity solutions obtained from directional
derivatives of the fundamental Stokeslet are the Stokeslet doublet GD, and the
Stokeslet quadrupole GQ [26, 41]

GDðr� r0; d; eÞ ¼ d � r0ð ÞGðr� r0; eÞ�O r�2� �
; ð10:41Þ

GQðr� r0; c; d; eÞ ¼ c � r0ð ÞGDðr� r0; d; eÞ�O r�3� �
; ð10:42Þ

where the gradient operator r0 acts on the singularity placement r0, and d and c are
arbitrary vectors. We have indicated here the decay of these velocity fields far away
from the singularity point. Higher-order singularity flow solutions with an Oðr�4Þ
asymptotic decay are obtained accordingly by repeated differentiation. For later use,
we explicitly quote the Stokeslet doublet,

GDðr; d; eÞ ¼ d � 1
r2

r̂1� 1r̂�T r̂1ð Þþ 3 r̂r̂r̂
	 
 � e ð10:43Þ

¼ 1
r2
½eðr̂ � dÞ � dðr̂ � eÞ � ðd � eÞr̂þ 3ðr̂ � eÞðr̂ � dÞr̂� : ð10:44Þ

where the pre-transposition symbol T implies the interchange of the first two
Cartesian indices to its right. The Stokes doublet GDðr; d̂; eÞ, with d̂ denoting a unit
vector, has the following physical interpretation: It is the velocity field times 8pg, of
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two opposing Stokelets of vector strengths �Fe and singularity locations at r0 � d
(with d ¼ dd̂), in the limits d ! 0 and F ! 1 with the force dipole moment
p ¼ 2Fd kept constant equal to one. The unit vector d̂ points from the Stokeslet of
strength –Fe to the one of strength Fe. This interpretation is obviated from the
explicit calculation of the flow field,

uDðrÞ ¼ ½Tðr� r0 � dÞ � Tðr� r0 þ dÞ� � eF ¼ 2dF d̂ � r0
� �

Tðr� r0Þ � eþOðd2Þ
¼ p

8pg
GDðr� r0; d̂;eÞþOðd2Þ :

ð10:45Þ

The force doublet provides the far-field behaviour of flows caused by force-free
microparticles. It is named asymmetric when d̂ is not co-linear with the force
direction ±e, and referred to as symmetric otherwise. The symmetric force doublet
GDðr� r0; e; eÞ is also called a linear force dipole. It plays a major role in the
discussion of the flow created by many autonomous microswimmers, including
various types of prokaryotic bacteria and eukaryotic unicellular microorganisms.
Microswimmers in the bulk fluid and near interfaces are discussed in Sect. 10.6.

The force doublet can be split into an anti-symmetric part, named Rotlet R, and a
symmetric part named Stresslet S, each of which has a direct physical meaning. We
exemplify this for the Rotlet and in the special situation where the force strengths of
the two opposing Stokeslets are orthogonally displaced, and aligned with the z-axis
and x-axis, respectively. Then, F � d ¼ 0 and the dipole moment T = 2dF has the
meaning of an applied torque. The Rotlet at the singularity point r0 = 0 is in this case

Rðr;�eyÞ ¼ 1
2
GDðr; ex; ezÞ �GDðr; ez; exÞ½ � ¼ �ey � r̂

r2
; ð10:46Þ

and after division by the factor 8pg it describes the rotational flow field due to a unit
point torque aligned with the negative y-axis.

The symmetric Stresslet part reads

Sðr; e�Þ ¼ 1
2
½GDðr; ex; ezÞþGDðr; ez; exÞ� ¼ 3r̂

r2
ðr̂ � exÞðr̂ � eZÞ

¼ GDðr; eþ ; eþ Þ �GDðr; e�; e�Þ :
ð10:47Þ

It describes a straining fluid motion [14] originating from the superposition of two
linear force dipoles oriented along the diagonal stretching axis e+ and the anti-diagonal
compression axis e−, respectively, where e� ¼ ðex � ezÞ=

ffiffiffi
2

p
. The streamlines of a

linear force dipole are discussed in Sect. 10.6, and are drawn in Fig. 10.27.
The key point to notice here is that the stresses rS � n and rR � n, associated with

the Stresslet and Rotlet force doublet parts, respectively, are decaying as Oð1=r3Þ.
When these stresses are integrated over a surface enclosing the singularity point,
according to Eq. (10.15) they do not contribute a hydrodynamic drag force.
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Differently from the Stresslet which is torque-free, the Rotlet contributes a
hydrodynamic torque of magnitude equal to 8pg times the torque unit. The stress
fields of all the higher-order force singularity solutions including the one by the
force quadrupole GQ are all of Oð1=r4Þ, so that they contribute neither a drag force
nor a torque [8, 9].

Source multipoles solutions: Elementary singularity solutions in addition to the
force singularities are obtained from derivatives of the source vector field US(r – r0)
in Eq. (10.33) with respect to the singularity (source) point r0. The two
leading-order flows obtained in this way are the source doublet (dipole) and
quadrupole,

DSðr� r0; eÞ ¼ ðe � r0ÞUSðr� r0Þ�Oðr�3Þ ð10:48Þ

QSðr� r0; d; eÞ ¼ ðd � r0ÞDSðr� r0; eÞ�Oðr�4Þ: ð10:49Þ

The source doublet multiplied by a constant c of dimension volume per time
describes the flow due to a source flow with outflow rate 4pc, and a sink flow of the
same inflow rate. The source at r0 + de and the sink of the doublet at r0 – de are an
infinitesimal vector distance 2de separated from each other and have the moment
2dc equal to one. Explicitly,

DSðr; eÞ ¼ 1
r3
½3r̂r̂� 1� � e ¼ 1

r3
½3 r̂ � eð Þr̂� e� : ð10:50Þ

The source singularity solutions are related to the force singularity solutions by

DSðr� r0Þ ¼ � 1
2
r2

0Gðr� r0Þ; ð10:51Þ

and its derivatives. Equation (10.51) identifies the source doublet as a degenerate
force quadrupole, which explains its faster decay than that of the force doublet. The
stress fields of the source multipoles decay as Oð1=r4Þ or faster, except for the
source flow US itself, implying that they make no force and torque contributions. As
the derivatives of the Coulomb-type potential 1/r (see Eq. (10.33)), the source
multipoles belong to the class of irrotational potential flows (where r� u ¼ 0)
with associated constant pressure fields. To understand the pressure constancy, note
with u ¼ rw for some scalar (potential) function w that incompressibility implies
Dw ¼ 0. It follows from the Stokes equation that rp ¼ gD rwð Þ ¼ grðDwÞ ¼ 0.

Superposition of singularity solutions: Linear superposition of fundamental sin-
gularity solutions, appropriately selected and positioned to conform with the system
symmetry and BCs under consideration, can be profitably used to construct (ap-
proximate) flow solutions. The coefficients in the superposition series can be
determined from the prescribed BCs.
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As an example of such a superposition, in Sect. 10.4.3 we discuss the gravita-
tional settling of a slender body whose flow field can be described in decent
approximation by a continuous distribution of Stokeslets placed along the body’s
center line.

For a particle axisymmetric along the direction e, and in a flow situation sharing
this axial symmetry, the appropriate superposition describing the far-distance
velocity field is

uðrÞ ¼ c1 aGðr; eÞð Þþ c2 a2GDðr; e; eÞ
� �þ c3 a3SDðr; eÞ

� �þOðr�4Þ ; ð10:52Þ

with scalar coefficients {ci} having the physical dimension of a velocity. The centre
r0 of the particle is placed here in the origin, and a can be taken as the lateral length
of the particle. The Rotlet part of the symmetric force doublet GD is zero here, since
a torque-free, non-rotating particle is required by the symmetry of the flow problem.
If the particle moves force-free along its axial direction, as it is the case for a
self-propelling microswimmer, there is no Stokeslet contribution so that c1 = 0. On
the other hand, if the particle is sedimenting along its axis, the co-linear driving
force is given by

F ¼ c1 8pgað Þe; ð10:53Þ

with the coefficient c1 determining the strength of the Stokeslet depending on the
particle BCs. In Sect. 10.4.4, we show that the flow created by a sphere translating
through a quiescent fluid, is exactly represented by the superposition of a Stokeslet
and a source dipole, owing to the high symmetry of this flow problem. If the sphere
is placed in an ambient linear shear flow where the stress distribution on its surface
becomes non-uniform, then a more general superposition of singularity solutions
must be used including a source quadrupole, which in addition accounts for all
relevant Cartesian directions, to obtain the exact flow solution [42]. Note also that
for a translating spheroid, a line distribution of Stokeslets and source doublets
extending between the two focal points must be used [34]. As it is explained in
Sect. 10.5.1, an appropriate placement of elemental singularity solutions at a
reflection point provides an analytic solution for the velocity field of a point force in
the vicinity of a fluid-fluid interface.

10.4.3 Slender Body Motion

As a first application, we use the force singularity method to determine the hydro-
dynamic friction experienced by a settling rigid slender body, that is a particle without
sharp corners whose contour length, L, is large compared to its thickness d. Examples
of such bodies include rod-like particles, and elongated (prolate) spheroids. Owing to
the shape anisotropy, the friction force depends on the orientation of the body relative
to the direction of motion. The slenderness of the body renders it possible, in place of
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having to solve a complicated boundary integral problem for a no-slip particle on the
basis of Eq. (10.38), to describe approximately the disturbance flow field caused by its
motion as that of a line of Stokeslets, uniformly distributed along the axis of the
particle. The surface integration reduces then to a one-dimensional integral over a line
of Stokeslets. This concept is originally due to Batchelor [43].

To demonstrate this, consider the sedimentation of a thin rigid rod of length
L and diameter d 	 L translating with velocity V through an unbounded quiescent
fluid, in response to an external force F due, e.g., to gravity. We approximate the
flow created by the particle by a sum of 2n + 1 Stokeslets, placed in the centres of
spherical beads of diameter d building up the rod in the form of a necklace (see
Fig. 10.8). Each Stokeslet is assumed to have the same strength (d/L)F, disregarding
the end effects which are small for long rods. The rod is oriented along the unit
vector e as depicted in the figure. On identifying, according to V = u(0), the rod
velocity with the velocity of the central bead under the hydrodynamic influence of
the 2n other ones, the superposition of the 2n Stokeslets fields at the central bead
position gives

V ¼ d

f0beadL
Fþ

Xn
i ¼ �n;
n 6¼ 0

TðideÞ � d
L
F 
 1

4pgL

Xn
i¼1

1
i

 !
ð1þ eeÞ � F; ð10:54Þ

VF e

Fig. 10.8 A thin rod-shaped particle translating with a velocity V under the action of an applied
force F pointing downwards. The stress distribution on the rod surface is approximated by a line of
equally-spaced and equally strong Stokeslets placed in the centres of the large number of spherical
beads building up the rod. The flow lines of two of the superposing Stokeslets are sketched. The
tilt angle a of the rod with respect to the applied force is in general different from the sedimentation
angle b, resulting in a sidewise velocity component. Reproduced from the COMPLOIDS book [9]
with kind permission of the Societa Italiana di Fisica

10 Colloidal Hydrodynamics and Interfacial Effects 341



where the sum behaves like log n 
 log L=d for large n, and where f0bead ¼ 3pgd is
the no-slip single-bead friction coefficient. On noting that Fh = –F, the result of this
summation is the force-velocity friction problem relation

Fh ¼ � fttkeeþ ftt?ð1� eeÞ
h i

� V; ð10:55Þ

and likewise the inverse relation,

V ¼ � lttkeeþ ltt?ð1� eeÞ
h i

� Fh ; ð10:56Þ

for the mobility problem of given force. The friction and mobility coefficients for
the translation of a thin rod parallel and perpendicular to its axis e have been
obtained here as

fttk ¼ 1
lttk

¼ 2pgL
logðL=dÞ ; ftt? ¼ 1

ltt?
¼ 2fttk : ð10:57Þ

Corrections to this asymptotic result from a refined hydrodynamic calculation for
a cylinder with end effects included are provided in [44]. Note that the application,
i.e. dot-multiplication, of the dyadic (1 − ee) to a vector gives the component of this
vector perpendicular to e.

Remarkably, the friction coefficient for the broadside motion of a thin rod is only
twice as large as that for the axial motion. Both coefficients scale essentially with
the length L of the rod, so that the drag force acting on a thin rod is not far less than
that experienced by a sphere of diameter L enclosing it. It should be noted here that
from general properties of Stokes flows it follows that the magnitude of the drag
force on an arbitrarily-shaped body is always in between those for the inscribing
and enclosing spheres [8, 14].

It is interesting to analyse the effect of the friction anisotropy on the direction of
sedimentation. Denoting as α the angle between the rod axis e and the applied force
F, and as β the angle between rod velocity and applied force, we can relate the two
angles by decomposing the external force into its components along and perpen-
dicular to the rod axis, with the accompanying components of V determined by the
mobility coefficients. In this way, one obtains

b ¼ a� arctan
1
2
tan a

� �
: ð10:58Þ

For a vertically or horizontally oriented rod and the applied force pointing down-
wards (see again Fig. 10.8), there will be no sidewise rod motion due to symmetry.
Except for these special configurations, however, the tilt angle α of the rod is
different from its sedimentation angle β, although both will remain constant during
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the motion. The maximum settling angle bmax ¼ arctanð ffiffiffi
2

p
=4Þ 
 19:5� corre-

sponds to a 
 54:7�.
Kinematic reversibility in conjunction with the system symmetry (no nearby

walls are present here) commands that the rod is settling without rotation. The
friction asymmetry of rod-shaped particles discussed here is a key ingredient in the
swimming strategy of microswimmers with helical flagellar propulsion.

An elementary introduction to the concept of slender body motion is contained
in the works [11, 14]. For a general discussion of slender bodies, which may also be
curved, see [45, 46].

10.4.4 Forced Translation of a Microsphere

We consider here a microsphere of radius a with Navier partial slip BCs, which
translates with constant velocity V0 ¼ V0e and without rotation through an
unbounded quiescent fluid. The origin of the coordinate system is placed at the
momentary sphere center. We attempt to describe the exterior fluid velocity (r� a)
by the linear superposition of a Stokeslet and source doublet in accord with
Eq. (10.52), and with the coefficients c1 and c3 determined by the BCs. It is
convenient to express u ¼ ur r̂þ uheh and V0 ¼ V0;r r̂þV0;heh in polar coordinates
with components

urðr; hÞ ¼ 2 cos h c1
a
r

� �
þ c3

a
r

� �3� �
; V0;r ¼ V0 cos h;

uhðr; hÞ ¼ � sin h c1
a
r

� �
� c3

a
r

� �3� �
; V0;h ¼ �V0 sin h;

ð10:59Þ

where e � r̂ ¼ cos h and e � eh ¼ � sin h have been used, with θ denoting the angle
between polar axis e and fluid position vector r. The two coefficients can be
determined from enforcing the BC of zero normal velocity difference between the
sphere and the fluid at the surface, urða; hÞ ¼ V0;r, in conjunction with the Navier
partial slip condition in Eq. (10.18) for the tangential velocity part. The latter is
formulated in terms of the fluid velocity in the particle rest frame,

u0ðrÞ ¼ uðrÞ � V0 ; ð10:60Þ

labelled by the prime, where the fluid far away from the stationary sphere is moving
with uniform velocity –V0. The Navier BC reads then

u0hðr; hÞ ¼
‘

g
@u0h
@r

� u0hðr; hÞ
a

� �
; ðr ¼ aÞ ð10:61Þ

The two coefficients are determined from the BCs as
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c1 ¼ 3V0

4
1þ 2‘�

1þ 3‘�

� �
; c3 ¼ �V0

4
1

1þ 3‘�

� �
; ð10:62Þ

where ‘� ¼ ‘=a.
Using Eq. (10.53), the hydrodynamic drag force opposing the motion of the

sphere follows from the Stokeslet contribution as

Fh ¼ � 8pgac1ð Þe ¼ �6pga
1þ 2‘�

1þ 3‘�

� �
V0 : ð10:63Þ

Note that the single-sphere friction coefficient, ft0 ¼ 1=lt0, relating the velocity of
an isolated sphere to its drag force according to

Fh ¼ �ft0V0 ; ð10:64Þ

reduces from 6pga for a no-slip sphere (‘� ¼ 0) to 4pga for a perfect-slip sphere
with stress-free surface (‘� ¼ 1). For a perfect-slip sphere such as a gas bubble
with clean surface without adsorbed contaminants, the drag force is entirely due to
the pressure changes in the fluid without viscous stress contributions. Since c3 = 0
for ‘� ¼ 1, the flow exterior to a translating gas bubble is that of a Stokeslet of
strength F ¼ 4pgaV0 placed in its center. The relation Fh ¼ CagV0 with undeter-
mined constant C follows readily from linearity of the Stokes equations and BCs,
and a dimensional analysis using the sphere radius as the only physical length scale.
The difficult part is the determination of C which as we have shown requires an
elaborate calculation.

The tangentially oriented slip velocity, u0slipðhÞ ¼ u0hða; hÞeh; relative to the
sphere surface is

u0slipðhÞ ¼
1
2

3‘�

1þ 3‘�

� �
V0 sin h eh ¼ � 1

2
3‘�

1þ 3‘�

� �
1� r̂r̂½ � � V0 : ð10:65Þ

It is zero at the poles, where h ¼ f0; pg and r̂ ¼ �e, and maximal in magnitude
on the equator, where h ¼ p=2 and r̂? e. On the equator, the slip velocity points
oppositely to V0 since ehðh ¼ p=2Þ ¼ �e. For perfect slip, the result uslip ¼ �V0=2
is obtained at the sphere equator.

We proceed by discussing the lab frame velocity field of a translating no-slip
microsphere, given in dyadic notation by

uðrÞ ¼ a
r

� �
ð1þ r̂r̂Þ � 1

3
a
r

� �3
ð3r̂r̂� 1Þ

� �
� F
8pga

; ð10:66Þ

with F ¼ 6pgaV0, and with r measuring the distance from the center of the sphere.
This result has been first calculated by Stokes more than 150 years ago [47], in a
way different from the one described above. The velocity field in Eq. (10.66) has
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two interesting features: Firstly, far away from the particle it reduces to a Stokeslet
flow field. The far-distance form is also recovered from taking the limit a ! 0 with
the applied force kept constant. Secondly, the shorter-ranged source doublet
potential flow contribution accounting for non-zero sphere volume is of importance
in the near-distance region of the sphere only. The streamlines for a no-slip sphere
and for an equal-force Stokeslet are drawn in Fig. 10.9. They are shown both in the
lab frame where the sphere is moving and the fluid is quiescent, meaning that
u ! 0 for r ! 1 (left part), and in the rest frame of the sphere where u ! �V0

for r ! 1 (right part). The vorticity field r� u around a translating sphere
describing the local rotation of fluid elements is due to the Stokeslet part only, since
the potential part has no vorticity. It is given by Eq. (10.37) restricted to the exterior
of the sphere. Differently from u, the associated vorticity field is invariant under a
Galilean change of the reference frame.

10.4.5 Phoretic Particle Motion

So far we have dealt with the translational motion of an isolated microsphere and a
rod settling subjected to an external body force such as the buoyancy-corrected
gravitational force. The Oð1=rÞ far-distance decay of the velocity field outside the
moving particle is due to the momentum imparted to the fluid by the applied force.
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Fig. 10.9 Left Comparison of flow streamlines generated by an upward point force centred at the
origin (a Stokeslet), marked by dashed lines, and a spherical no-slip particle (solid lines) moving
upwards with velocity V0 (red arrow) as viewed in the laboratory frame. Right The streamlines
circle around the sphere if viewed in its rest frame, owing to its experiencing of a uniform ambient
flow equal to –V0. Note the fore-aft symmetry of the flow field related to the kinematic reversibility
of Stokes flows. Reproduced from the COMPLOIDS book [9] with kind permission of the Societa
Italiana di Fisica
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Another mechanism for creating motion of a suspended microparticle is due to
an imposed field gradient, such as an electric field E1 ¼ �r/1, a temperature
gradient rT , or a concentration gradient, rc, in the concentration field c of small
solutes surrounding the colloidal particle. Depending on the physical field, one
refers to electrophoresis, thermophoresis or diffusiophoresis, respectively. The field
gradients drive a so-called phoretic fluid flow relative to the particle surface in an
interfacial region surrounding the particle. The effective hydrodynamic slip asso-
ciated with the relative motion of the particle and the surface-phoretic flow results
in a non-zero phoretic velocity, Vphor, of the particle in the lab frame where the fluid
velocity is zero at infinity (quiescent fluid). The phoretic particle motion occurs
even though the total direct force and torque on the particle plus its interfacial layer
are zero, i.e.

FT ¼ 0 ; TT ¼ 0; ð10:67Þ

with the balancing hydrodynamic drag force and torque being likewise equal to
zero. There is no Stokeslet involved in the velocity field exterior to the particle and
its boundary layer, referred to as the outer flow region. The velocity field in the
outer region decays thus asymptotically like Oðr�2Þ or faster, with r measuring the
radial distance to the sphere center. As we are going to show in the context of the
electrophoresis of a charged colloidal sphere, the outer velocity field is actually a
source doublet potential flow with the characteristic Oðr�3Þ far-distant decay.
A classical review of phoretic motions is given in [48]. For recent lecture notes on
electrophoresis, and the dynamics of charge-stabilized suspensions in general, see
[10].

Consider now an insulating, charged colloidal sphere of radius a immersed in an
infinite electrolyte solution. For the matter of definiteness, the sphere is assumed to
carry a uniform negative surface charge (see Fig. 10.10).

In thermal equilibrium without an externally applied electric field, the charged
sphere is surrounded by a diffuse spherical layer of mainly oppositely charged
electrolyte ions which screen its electric effect to the outside fluid region. On the
length scale of the colloidal sphere, this interfacial region can be considered as an
oppositely (here: positively) charged fluid of charge density qelðrÞ. This density
decays exponentially with outgoing radial distance from the sphere surface at
r = a. The outer electrolyte fluid in the region r[ aþ kD is practically elec-
troneutral, since the influence of the surface charge is screened out across the
interface. Here, kD is the Debye screening length characterizing the thickness of the
charged interfacial layer. It describes, at least for larger distances, the exponential
radial decay of the interfacial charge density

qelðr[ aÞ / expf�r=kDg : ð10:68Þ

The charged sphere and its neutralizing interfacial fluid region form an electric
double layer (EDL) sphere of radius aþ kD whose net charge content is zero. The total
electric force and torque on the EDL sphere are consequently zero. The thickness, kD,
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of the interfacial region decreases with increasing concentration of electrolyte ions.
This can be triggered experimentally by the addition of salt, or through osmotic
contact with an electrolyte reservoir (buffer). For an aqueous strong 1-1 electrolyte at
25 °C, the Debye length in nanometres is

kD ¼ 0:304ffiffiffiffiffiffiffiffiffiffiffi
ns½M�p ; ð10:69Þ

where ns[M] is the concentration of salt ion pairs in mol per litre. For a 1 M solution
kD ¼ 0:3 nm. An upper bound is set by the self-dissociation of water requiring that
kD\961 nm.

If exposed to an uniform electric field, E1 ¼ E1e, created by distant sources
such as a pair of electrode plates with an applied voltage, the negatively charged
sphere migrates with constant electrophoretic velocity

Vel ¼ lelE1 ; ð10:70Þ

opposite to the direction of the applied electric field. The field-independent elec-
trophoretic mobility, lel; characterizing the phoretic particle motion, has a negative
sign for a negatively charged particle. The electrophoretic drift velocity, Vel, is
determined by two retarding electrokinetic effects, termed the electro-osmotic flow
and the ion cloud polarization effect, respectively. Both effects lower the magnitude
of the electrophoretic velocity below the limiting value, V0

el ¼ jQE1j=ð6pgaÞ, for a
sphere of surface charge Q without an electrolyte boundary layer, which is deter-
mined by the balance of the electric and hydrodynamic friction forces on the sphere.

Fig. 10.10 Electrophoretic migration, with velocity Vel, of a negatively charged colloidal sphere
in a uniform electric field of strength E1. The oppositely charged interfacial layer of electrolyte
ions with extension � kD is slightly distorted (polarized) from the spherical shape at zero external
field. The counterions in the near-surface interfacial region drive an electro-osmotic flow.
Figure redrawn after [49]
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This limiting velocity is reached by a charge-stabilized colloidal sphere with an
ultra-extended, and therefore ultra-dilute, diffuse layer where kD  a.

The osmotic flow effect represents the hydrodynamic drag exerted on the sphere
surface by the counter-flowing (since oppositely charged) fluid forming the diffuse
layer. The electro-osmotic counterflow is driven by the electric body force density,

fðrÞ ¼ qelðrÞEðrÞ: ð10:71Þ

in the inhomogeneous Stokes Eqs. (10.5). Here, E(r) is the local electric field inside
the diffuse layer which in general differs from the externally applied field.

The charge polarization effect, on the other hand, describes the field-induced
slight distortion of the interfacial EDL zone from its spherically symmetric equi-
librium shape at zero field. This distortion or polarization sets up diffusion currents
of electrolyte ions which tend to equilibrate the EDL system back to spherical
symmetry, with the net effect of slowing the sphere motion. The polarization effect
becomes stronger with increasing particle charge and electric surface potential, and
with decreasing mobilities of the electrolyte ions.

We restrict ourselves in the following to a charged colloidal sphere with an
ultrathin interfacial layer for which kD 	 a. We further assume a weak surface
charge density. The electrophoresis problem in this limiting situation was first
treated in some detail by Smoluchowski (1903). It is therefore referred to as the
Smoluchowski limit. Since the diffuse interfacial region reduces now to a thin
boundary layer coating the sphere, the fluid can be mentally divided into an
extended outer region r[ aþ kD where qel ¼ 0, and in a thin boundary layer
region a� r\aþ kD which is locally flat. The flows in the two regions are first
determined independently and afterwards matched (asymptotically) to fix the
remaining integration constants. We just outline here the major steps of this cal-
culation. For details see, e.g., [10, 50]. For the assumed low surface charge density,
qel remains radially symmetric (i.e., unpolarized) in the presence of the external
field. The sphere plus its boundary layer have the appearance in the outside fluid
region of a neutral, non-conducting sphere of radius aþ kD (the EDL sphere). This
gives rise to a dipolar electric field, Eout(r), in the outer region whose field lines
must bend tangentially near the sphere surface, for otherwise there would be an
electric current perpendicular to the non-conducting sphere surface. The
surface-tangential electric field acts on the charged fluid inside the boundary layer
through the body force term in Eq. (10.5), creating a surface-tangential flow profile
as depicted in Fig. (10.11) which sketches the locally flat interfacial region. While
the fluid sticks to the actual sphere surface Sa (i.e., the no-slip surface BC is used
here), outside the enclosing surface Saþ kD of the EDL sphere a plug-like local flow
is observed, reminiscent of perfect slip. Incidentally, this plug-like electro-osmotic
flow outside the Debye layer region is used in microfluidic devices to drive
ion-containing aqueous media through narrow micro-channels where the Stokes
flow conditions apply. In micro-channels, electro-osmotic flow transport is far more
efficient than using an imposed pressure gradient along the channel [49]. See
Fig. 10.12 for the sketch of such a device.
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The velocity field at the slip surface, in the rest frame of the sphere, is calculated
as [10, 48]

u0sðrSÞ ¼ � ef
4pg

EoutðrSÞ ¼ � 3ef
8pg

ð1� r̂r̂Þ � E1; ð10:72Þ

where rs 2 Saþ kD , and e is the static dielectric constant of the fluid. Since kD 	 a,
we were allowed in the second equality to identify the slip surface Saþ kD with the
actual particle surface Sa. The so-called zeta potential, f, is likewise identified with
the electric potential at the actual sphere surface. The surface potential decays
exponentially to zero in going outwards radially from a to aþ kD.

Fig. 10.11 Electro-osmotic flow profile of an electrolyte solution flowing tangentially past the
locally flat surface of a negatively charged microsphere, viewed in its rest frame. The flow outside
the thin boundary layer of thickness kD is plug-like with slip velocity u0sðrsÞ ¼ �lelEoutðrsÞ.
Redrawn after [9]

Fig. 10.12 Sketch of electro-osmotic plug flow in an open microcapillary tube with negatively
charged glass walls. The non-dissipative plug flow is driven by the field-induced migration of
counterions accumulated in the thin Debye interfacial layer of thickness kD 	 2h at the glass
walls. In a tube closed at both ends, a pressure difference is created along the channel which drives
a Poiseuille-type backflow of fluid in the central region of the tube [49]
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Since the outer fluid is uncharged, the outer velocity field in the lab frame is
found from a purely hydrodynamic consideration, namely from the solution of the
homogeneous Stokes equations with inner and outer BCs,

uoutðrSÞ ¼ Vel þ u0sðrSÞ; uoutðr ! 1Þ ¼ 0: ð10:73Þ

respectively, where rs 2 Saþ kD 
 Sa, and the sphere located momentarily at the
coordinate frame origin. The electrophoretic velocity Vel is still unknown to this
point. The boundary value problem has a unique flow solution if one demands in
addition the EDL sphere to be force- and torque free, in accord with its overall
electroneutrality.

To determine uout using the singularity method, we notice first that the Stokeslet
and Rotlet are ruled out as flow contributions since they would result in a non-zero
drag force and torque. Therefore, we use the ansatz,

uoutðrÞ ¼ c3a
3DSðr; eÞ: ð10:74Þ

for the out flow in the lab frame, with a source doublet in direction e of the applied
electric field. With this ansatz, the inner and outer BCs are fulfilled with c3
determined as c3 ¼ efE1=ð8pgÞ, and the electrophoretic velocity as

Vel ¼ lel E1 ; lel ¼
ef
4pg

; ð10:75Þ

respectively. The so-called Smoluchowski electrophoretic mobility μel scales lin-
early with the electric zeta potential, and it is independent of the particle radius. The
outer velocity field in the lab frame is thus

uoutðrÞ ¼ 1
2

a
r

� �3
3r̂r̂� 1½ � � Vel ¼ lel EoutðrÞþVel : ð10:76Þ

In the second equality, we have expressed the velocity field in terms of the outer
electric dipole field.

Being an incompressible potential flow field, uout satisfies Duout ¼ 0 with
rpout ¼ 0, so that the outer pressure field is uniform. The source doublet stream-
lines of the outer velocity field are shown in the right part of Fig. 10.13. They
diverge in front of the moving sphere and curve back at its rear side. There are no
closed streamlines, which are not allowed for a potential flow where r� u ¼ 0.
Since uout decays asymptotically like Oðr�3Þ there is indeed no hydrodynamic
torque exerted on the EDL sphere. Moreover, the absence of a Oðr�2Þ Stresslet
contribution to uout is consistent with the fact that a non-uniform ambient flow was
not considered. The streamlines, shown in the left part of Fig. 10.13, are different if
viewed in the particle rest frame where distant from the sphere the fluid moves with
uniform velocity –Vel.
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Without requiring the outer flow solution, the electrophoretic velocity for a
spherical colloidal particle can be obtained directly as the surface average of the slip
velocity field in the particle rest frame. In fact, it follows from Eq. (10.72) that

1
4pa2

Z
Sa

dSu0sðrSÞ ¼ �Vel: ð10:77Þ

This result implies that the surface average of the outer velocity field in the lab
frame is zero. This should be contrasted with the lab-frame Stokeslet velocity field
for r� a,

uðrÞ ¼ 1
2

a
r

� �
1þ r̂r̂½ � � V0 ; ð10:78Þ

due to a Navier perfect-slip sphere translating with velocity V0, which was dis-
cussed earlier in relation to Eq. (10.65). On taking the surface average of this
Stokeslet field, the non-zero result V0/3 is obtained. This highlights the difference
between a phoretically moving sphere with an effective slip, and a forced
perfect-slip sphere without the phoretic boundary layer. The electrophoretic
mobility becomes different from the Smoluchowski result in Eq. (10.75), if in place
of the no-slip BC at Sa the Navier partial-slip BC is used. The Smoluchowski
mobility is then enhanced by the factor ð1þ ‘=kDÞ, for the Navier slip length small
compared to the sphere radius [51]. Measured slip lengths are typically of the order
of nanometres.

For the general case of a phoretically moving microsphere, it can be shown that
its drift velocity is given by the surface average [52, 53]

Vphor ¼ � 1
4pa2

Z
Sa

dSlSðrSÞ½1� r̂r̂� � r/ðrSÞ; ð10:79Þ

Fig. 10.13 Streamlines of the velocity field, uout(r), outside the thin boundary layer of a
negatively charged microsphere in electrophoretic motion. Left Streamlines in the rest frame of the
sphere for which uoutðr ! 1Þ ¼ �Vel. Right Streamlines in the lab frame where the fluid is at rest
at infinity. The sphere migrates in the direction opposite to the external field E1
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where ϕ stands likewise for the potential of the applied electric field, temperature or
solute concentration. Here, lsðrsÞ is a local surface mobility coefficient allowed to
vary over the sphere surface. In our discussion of electrophoresis the potential
gradient and mobility are taken as constant, with the latter equal to ð3=2Þlel.

On recalling the steps which led to Eq. (10.75), one notices that owing to the
local surface flatness on the scale of kD, the inner boundary value problem for the
interfacial region is independent of the global shape of the microparticle. Therefore,
the second equality in Eq. (10.76) remains valid for arbitrarily shaped,
non-conducting rigid particles, provided the local radius of curvature at all surface
points is large compared to kD. What varies with the particle shape is only the
near-distance form of Eout(r). The latter is determined by the electrostatic boundary
value problem of a non-conducting particle in an external field, with its field lines
bending tangentially close to the particle surface to satisfy the non-conductance
condition. The crucial point here is that the explicit form of Eout(r) is not required
for the determination of the electrophoretic mobility. In fact, on noting Eout ! E1
and uout ! 0 for r ! 1, the Smoluchowski mobility result in Eq. (10.75) is readily
recovered from the second equality in Eq. (10.76), but now for arbitrary particle
shape and size, under the proviso that the particle has uniform surface zeta potential
f. This remarkable result is supplemented by the likewise remarkable feature that
the particle migrates phoretically without rotating. This follows from the fact that
the far-distant form of Eout(r) is a dipolar electric field of Oðr�3Þ, independent of
the particle shape. This in turn implies that uout(r) is a potential flow field with a
likewise Oðr�3Þ far-distance decay. Such a flow exerts no hydrodynamic torque on
the particle which consequently is non-rotating while translating.

However, the remarkable finding of shape-independent mobility has been
obtained based on various restrictions. We quote here the most important ones:
Firstly, the surface zeta potential is assumed to be weak enough for the polarization
of the diffuse layer to be negligible, i.e. jfej is small compared to kBT, with e de-
noting the elementary charge. Secondly, the diffuse boundary layer must be very
thin. Moreover, the applied electric field should be uniform on the scale of the
particle size, and the small excluded volume of the electrolyte ions should not
matter. The ions must be monovalent, and the dielectric constant and electrolyte
viscosity should not change across the boundary layer. See [54] for a quantitative
theory for the concentration dependence of the electrolyte viscosity.

For an isolated charge-stabilized sphere, surface uniformity of zeta potential and
surface charge density go hand in hand. However, this is not the case for a
non-spherical particle which has surface regions of varying curvature. A particle
with uniform surface charge density has a larger zeta potential in the regions of
higher curvature. This causes the particle to reorient while translating.

We proceed with the interesting generalization that a force F = Fe co-linear with
the applied field is acting on the electrophoretically moving sphere. The sphere
velocity, V = Ve, and the flow for this situation can be constructed by the addition
of a Stokeslet field of strength F to the source doublet, i.e.

352 M. Lisicki and G. Nägele



uðrÞ ¼ a
r

� �
½1� r̂r̂� F

8pga

� �
þ c3

2
a
r

� �3
½3r̂r̂� 1�

 �
� e: ð10:80Þ

The two conditions determining c3 and the sphere velocity are

uð�aeÞ ¼ V

uðar̂Þ � V ¼ � 3
2
ð1� r̂r̂Þ � Vel:

ð10:81Þ

The first condition assures that the fluid velocity at the poles of the sphere agrees
with its velocity. The second condition demands the phoretic surface flow in the rest
frame of the sphere to be the same as in unforced electrophoresis. This is a rea-
sonable requirement, since for negligible EDL polarization the local osmotic flow in
the boundary layer does not depend on whether the sphere is forced or not. To
evaluate the second condition, one selects a unit vector r̂ ¼ e? perpendicular to
e. The result is

V ¼ Vel þ F
6pga

¼ lt0Fþ lelE1

c3 ¼ Vel � F
12pga

:

ð10:82Þ

The first equation expresses the expected linear superposition of the particle
velocities of the two problems of a phoretically moving sphere without body force,
and a forced no-slip sphere without phoresis. It can be likewise formulated as a
mobility problem for given forces F and eE1. The second force contribution,
however, is not a body force.

The sphere becomes stationary, with V = 0, when the body force is equal to

F ¼ �ð6pgaÞVel; ð10:83Þ

i.e. equal to the hydrodynamic drag force on a no-slip and non-phoretic sphere
moving with velocity Vel. Stationarity can be achieved experimentally, up to the
inevitable undirected Brownian motion for smaller particles, using optical tweezers.
The flow field of a stationary phoretic sphere is thus

uðrÞ ¼ � 3
4

a
r

� �
½1� r̂r̂� � a

r

� �3
½3r̂r̂� 1�

 �
� lelE1: ð10:84Þ

The surface average of this velocity field yields lelE1, which expresses again
the body-force independence of the surface osmotic flow.

The flow in Eq. (10.84) describes an interesting situation: Even though the
sphere is held stationary in a quiescent fluid, it maintains a non-zero flow driven by
the osmotic current along its surface. For a negatively charged sphere where lel is
negative, the flow is oriented in direction of the external electric field. The flow
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lines of the stationary sphere are shown in Fig. 10.14. At large distances from the
sphere, the Stokeslet term dominates and the streamlines converge in the rear and
diverge in front. If the sphere is placed close to an interface, using optical tweezers,
a sufficiently strong temperature gradient, gravity, or electric wall attraction, the
streamlines facing the wall will bend along the interface. This sets up an attractive
hydrodynamic force which favors the formation of particle clusters at the interface
[55].

10.4.6 Many-Particle Hydrodynamic Interactions

As explained in Sect. 10.4.1, when a colloidal particle moves in a viscous liquid in
the presence of other particles, it creates a flow pattern which affects not only the
motion of neighbouring particles, but through hydrodynamic back reflection also
the motion of the particle itself, and this even in the (hypothetical) absence of direct
interactions between the particles. The velocity field generated by a moving particle
is quasi-instantaneously transmitted through the fluid, inducing forces and torques
on all the other particles. These solvent-mediated interactions are referred to as
hydrodynamic interactions (HIs) [1]. For a quiescent dispersion of N microparticles,
these interactions are characterized by the 6N × 6N mobility matrix, lðXÞ, in
Eq. (10.23), or likewise by the associated 6N × 6N friction matrix, fðXÞ, which both
linearly relate translational and angular particles velocities with drag forces and
torques. There are three major distinguishing features of HIs which render them
difficult to deal with. Firstly, they are long-ranged, i.e. the velocity field due to a

Fig. 10.14 Streamlines
around an electrophoretically
driven negatively charged
sphere in quiescent fluid, held
stationary by an applied body
force according to
Eq. (10.83). The flow is
maintained by the
electro-osmotic counterions
current in the boundary layer
region near the sphere surface
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moving particle decays for forced motion with the distance r as 1/r. Secondly, they
are of genuinely many-body character, meaning that the HIs between a pair of
particles are changed through the presence of a third one in their vicinity. To
account for the non-additivity requires the consideration of multiple flow reflections
by neighbouring microparticles, with the reflections being responsible for the
deviations of the exact HIs from the approximate form in terms of a superposition
of pair contributions. The approximate pairwise additivity treatment of the HIs
where flow reflections are disregarded altogether can be justified for dilute dis-
persions only, for conditions where all particles are mutually well separated on the
scale of their sizes. Non-pairwise additive higher-order HIs effects are important in
particular in the dynamics of concentrated dispersions. The third distinguishing
feature of the HIs is that, differently from direct interactions, they do not affect the
equilibrium microstructure (i.e., the configurational distribution function Peq(X)), in
dispersions without external fields or imposed macroscopic flows. This is reflected
by the fact that owing to their interrelation with hydrodynamic friction forces, HIs
are not derivable from a many-particle conservative potential energy function
determining the equilibrium distribution function.

Since diffusion transport properties of suspensions are expressible as configu-
rational averages of certain tensor elements of lðXÞ, and since lðXÞ is a key
ingredient in the many-particle Smoluchowski and Stokes-Liouville equations
governing the evolution of the configurational distribution function P(X,t) of
Brownian and non-Brownian microparticles, respectively, it is essential to be able
to calculate this matrix for a many-particle system. Over the years, various
numerical methods have been developed for this purpose, and a number of review
articles [29, 37] and books [1, 14, 21] dealing with HIs are available.

If the microparticles are mutually well separated, with relative distances large
compared to their size, the flow induced by their motion can be regarded approx-
imately as originating from point forces concentrated at their centres. This liberates
one from the severe complications of having to invoke the prescribed hydrody-
namic BCs simultaneously on the particle surfaces. The tensorial mobility coeffi-
cients describing the linear relations between applied forces and resulting velocities
are then straightforwardly approximated by the superposition of Stokeslets at the
particle centres according to (point-particles model)

lttii 
 lt01 ð10:85Þ

lttij 
 TðRi � RjÞ ð10:86Þ

for i 6¼ j. Here, lt0i is the single-particle translational mobility coefficient of particle
i, and 1 is the unit tensor. Only the leading-order long-distance behaviour of the
flow field is included in the point-particles model, with the off-diagonal mobility
tensors decaying as r−1 in the inter-particle distance r. While the pairwise additive
point-particles model is applicable to well-separated particles, it usually fails when
particles are close to each other or to a confining wall, as indicated by the possible
violation of the positive definiteness of the mobility matrix approximation in
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Eqs. (10.85) and (10.86). At large concentrations and for smaller inter-particle
distances, more refined theoretical methods and numerical schemes are required to
account for the near-distance and non pairwise additive contributions to the HIs.

The next important step in going beyond the point-particles model is to account
for the non-zero volumes of the particles while still maintaining the pairwise
additive single-particle flow superposition. For spherical no-slip particles this is
referred to as the Rotne-Prager (RP) mobility matrix approximation [56], and with
an appropriate extension to overlapping no-slip spheres also as the
Rotne-Prager-Yamakawa (RPY) approximation [57, 58]. The RP approximation is
still pairwise additive, with the RP mobility tensors including terms with the
long-distance decay of Oðr�3Þ. All the hydrodynamic back reflections, which give
rise to more steeply decaying flow field contributions of Oðr�4Þ are hereby disre-
garded. The main merit of the RP approximation, in addition to its convenient
simplicity, is that is leads to a translational mobility matrix approximation, ltt;RP,
which is positive definite for all physically allowed configurations of
non-overlapping spheres. Moreover, ltt;RP is an upper bound to the exact transla-
tional mobility matrix, ltt, in the sense that b � ltt;RP � lttð Þ � b[ 0 for all non-zero
3N-dimensional vectors b and all allowed configurations. This property of the RP
approximation can be used for constructing upper bounds to certain transport
properties of concentrated dispersion such as the (short-time) mean sedimentation
velocity. The RP approximation can be profitably used for dilute to moderately
concentrated dispersions of no-slip microspheres which strongly repel each other
over larger distances. Examples in case are like-charged colloidal particles, and
lower-salinity aqueous solutions of globular proteins.

The derivation of the translational mobility matrix in RP approximation proceeds
as follows: Consider first an isolated no-slip microsphere j of radius a in an infinite
quiescent fluid, translating without rotation under the action of the force Fj acting at
its centre at Rj. From Eq. (10.38), one notices that r � n ¼ Fj

4pa2 is consistent with the
no-slip BC on the sphere surface, i.e. the surface shear stress in this special situation
is constant. Consequently,

uð0Þj ðrÞ ¼
Z
Sj

dS0Tðr� r0Þ � Fj

4pa2
¼ 1þ a2

6
r2

� �
Tðr� RjÞ � Fj ð10:87Þ

where for the second equality, the mean-value theorem for bi-harmonic functions
has been used [59], on recalling that r2r2TðrÞ ¼ 0 for all non-zero vectors

r. From performing the second-order differentiation, one verifies that uð0Þj ðrÞ is
equal to the velocity field in Eq. (10.66) which we had obtained earlier using the
singularity flow solutions.

Consider next the incident flow, uðN�1Þ
inc ðrÞ, created by the motion of (N–1)

no-slip spheres at the position Ri of another sphere i. It should be noticed here that

uðN�1Þ
inc ðrÞ is determined by the BCs on all N spheres, including the singled-out
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sphere i. In the RP treatment, the incident flow is crudely approximated by the
superposition of the single-sphere flow fields,

uðN�1Þ
inc ðrÞ 


XN
j6¼i

uð0Þj ðrÞ : ð10:88Þ

In this incident flow field approximation, the (N–1) no-slip BCs are only
approximately fulfilled for configurations of mutually well separated spheres.

The velocity, Vi, of a no-slip microsphere i of radius a in an infinite fluid,
subjected to a force Fi and an incident flow field uinc(r), is given by the exact
translational Faxén law

Vi ¼ lt0Fi þ 1þ a2

6
r2

i

� �
uincðRiÞ; ð10:89Þ

where lt0 is the translational single-particle mobility of a no-slip sphere. The only
restriction on the form of the incident flow is that it has to be a Stokes flow solution,
created by sources located outside the volume of sphere i. These sources could be,
e.g., other microparticles or confining walls, whereby the wall influence can be
described by an image system as discussed in the following section. A derivation of
the presented Faxén theorem is given, e.g., in [14, 35]. According to the Faxén
theorem, freely advected, i.e. force- and torque-free, small particles can be used to
trace out the streamlines caused by the motion of big ones. For an example, con-
sider a small tracer sphere i placed in the (incident) flow of, say, a phoretically
moving big sphere. Since on the small length scale a of the tracer the curvature
contribution in Eq. (10.89) described by the Laplacian can be neglected, one has

Vi 
 uincðr ¼ RiÞ ð10:90Þ

for the velocity of the tracer dragged along in the flow field of the big particle.
Small tracer particles have been used experimentally, e.g., to visualize the ther-
mophoretic quasi-slip flow around a big polystyrene or silica sphere near a surface,
driven by a temperature gradient in the fluid oriented perpendicular to the surface
[60].

We use now the Faxén theorem to obtain the velocity of a no-slip sphere i of
radius a in the incident flow of (N–1) other ones of equal radii, using the
single-spheres flow superposition. The result is

Vi 
 lt0Fi þ
XN
j 6¼i

1þ a2

3
r2

i

� �
TðRi � RjÞ � Fj; ð10:91Þ

where r2
i r2

j TðRi � RjÞ ¼ 0 for i 6¼ j has been used in the derivation. The
translational mobilities in the RP approximation follow readily from this result as
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l
tt;RP
ii ¼ lt01 ð10:92Þ

l
tt;RP
ij ¼ lt0

3
4

a
r

� �
1þ r̂r̂ð Þþ 1

2
a
r

� �3
1� 3r̂r̂ð Þ

� �
ð10:93Þ

with r ¼ Ri � Rj. The positive definiteness of the RP translational mobility matrix
can be shown, e.g., using the double surface integral representation of its tensor
elements,

l
tt;RP
ij ¼ 1

4pa2ð Þ2
Z
Si

dS
Z
Sj

dS0Tðr� r0Þ; ð10:94Þ

which is valid also for i = j. It has been assumed for the validity of this repre-
sentation for i 6¼ j that the two spheres do not overlap. For the details on how the
positive definiteness is shown using this representation we refer to [58].

The simplicity of the RP approximation renders it very attractive for practical
applications. It has been generalized to no-slip spheres of different radii (see, e.g.,
[58]), and to overlapping particles configurations [61]. Moreover, the RP approx-
imation has been employed for the calculation of the mobilities of complex-shaped
particles using bead-modelling of the particles [62].

For problems where particles are close to each other, like in concentrated dis-
persions, more precise methods than the simple RP approximation are required.
Various advanced numerical methods have been developed for this purpose. A very
powerful and versatile one is the force multipoles method advanced by Cichocki
and coworkers. It is based on a multipolar expansion of the flow field for a system
of spherical particles which is used to construct a set of equations determining the a
priori unknown stresses at the sphere surfaces. The addition of lubrication cor-
rections for nearly-touching particles has led to an efficient numerical algorithm
allowing for a controlled high-precision calculation of the many-spheres mobility
matrix [37]. A review of this method is given in [38]. The force multipoles method
has been extended to account for HIs with a planar wall [63], two parallel walls
[64], and a cylindrical channel [65]. A particularly intriguing feature of the method
is its facile adaptability to different hydrodynamic BCs such as the Navier
partial-slip and liquid interface BCs, with has opened the possibility to study the
dynamics of permeable particles, droplets, and surfactant-covered particles.

10.4.7 Lubrication Effects

Hydrodynamic lubrication plays an important role when two or more particles are
brought close to each other. This is sketched in Fig. 10.15 for two no-slip smooth
spheres, and for three types of relative translational motions, namely squeezing and
receding motions along the line of centres, and shearing motion.
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Since the gap between the particles is small, large pressure gradients build up in
the gap region in order to squeeze out (or push in) the fluid in the form of an
in-to-out Poiseuille flow, as illustrated in Fig. 10.15. This leads to strong friction
forces slowing down the motion of close particles and thus has the effect of strongly
slowing the relative motion of nearly touching particles. As an example consider the
squeezing motion of two no-slip spheres of radii a1 and a2, respectively (with
sphere 1 on top) approaching each other with constant relative velocity Vrel. The
lubrication flow analysis leads to the following expression [66]

pðqÞ � p1 
 � 3ga1a2
a1 þ a2ð Þh2 1þ a1 þ a2

2a1a2h

� �
q2

� ��2

Vrel ; ð10:95Þ

for the pressure distribution inside the narrow gap with the minimal
surface-to-surface distance h 	 fa1; a2g. Here, q 	 ffiffiffiffiffi

ah
p

is the distance from the
symmetry axis, and p1 is the inconsequential pressure far away from the gap
region. The strong Oð1=h2Þ divergence of the pressure in the gap along the vertical
symmetry axis dominates the less severe Oð1=hÞ divergence of the viscous con-
tribution, � gjruj, to the stress tensor. Thus only the pressure contribution is
required in calculating the hydrodynamic drag force, Fh, on the upper sphere 1 on
the basis of Eq. (10.96). The result is [8, 21, 67]

Fh 
 � 6pgVrel

h
a1a2

a1 þ a2

� �2

ez ; ð10:96Þ

for the dominant near-contact lubrication part of the drag force which diverges like
Oð1=hÞ. The main effect of lubrication is therefore a dramatic increase of hydro-
dynamic friction between closely spaced no-slip rigid surfaces. This effect can lead

h

z 

Squeezing motion Receding motion Shearing motion

Fig. 10.15 A sketch of the flows in the thin gap region between two smooth spheres near contact,
for relative translational motions as indicated
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in concentrated suspensions to the formation of transient hydrodynamic clusters of
particles with consequential shear thickening which has applications, e.g., in
manufacturing of protective clothing.

The singular pressure concentration in the gap region of two no-slip spheres is
less severe for shearing motion where it gives rise to weaker logarithmic singularity
of the drag force at contact. Due to their mobile surfaces, two spherical drops slip
past each other in shearing motion even when in contact, experiencing therefore
non-divergent drag forces. For squeezing motion, however, there is still a Oð1= ffiffiffi

h
p Þ

singularity for two droplets with fully mobile interfaces. It is assumed here that the
droplet interfacial tension is so large that the flow-induced deviations from the
spherical shape are negligible. For more information about lubrication effects under
different surface BCs see [14, 66].

As an illustration of the dynamic effect of lubrication consider a no-slip sphere of
radius a approaching a stationary, horizontal no-slip wall in squeezing motion (see
Fig. 10.16). The sphere is driven by the constant external force F ¼ �jFjez ¼ �Fh.
This is a limiting case of Eq. (10.96), for a = a1 and a2 ! 1 with the lower sphere
2 expanded into a planar wall. Here, h denotes now the distance from the wall to the
closest surface point of the sphere. It follows that

dhðtÞ
dt

¼ VrelðtÞ 
 � lt0jFj
a

hðtÞ ; ð10:97Þ

with the solution

hðtÞ 
 h0exp � lt0jFj
a

� �
t

 �
: ð10:98Þ

Here, h0 is the near-contact starting distance with h0=a� 0:01, and lt0 is the
single-sphere translational mobility defined in Eq. (10.25). The exponentially slow
vertical approach of the sphere to the wall is a good description in reality only until
the gap distance h becomes comparable to the surface roughness of the sphere and
plane which in fact leads to plane-sphere contact after a finite time. A finite contact

a

z

h

Fig. 10.16 Squeezing motion
of a no-slip sphere towards a
near-contact planar wall,
driven by the constant force
F ¼ �jFjez
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time would be reached also due to the van der Waals attraction force between the
planar wall and the sphere which in the distance range where lubrication applies
scales as Oð1=h2Þ [68].

10.5 Single-Particle Dynamics Near a Flat Interface

The preceding section was devoted to the effects of the solvent flow on the dynamics
of suspended particles in an unbounded fluid, except for the discussion in Fig. 10.16
of the near-wall settling of a sphere. Most realistic situations involve the presence of
a boundary that may considerably change the flow character, and by reflecting the
flow incident upon it, may modify the hydrodynamic interactions between the
particles. A pronounced example is the effect of sedimentation, where the backflow
of fluid due to the presence of a container bottom, however far distant it may be,
cannot be neglected in order to correctly determine the sedimentation velocity of
dispersed microparticles [9]. Soft matter systems are very often bounded, especially
in biophysical flows and in a number of technical applications. In this section, we
investigate the effects of the presence of an interface on the fluid flow, and in
consequence on the suspended particles. We start by discussing a general solution
for a point force in the presence of a boundary, and its dependence on the BCs at the
interface. This allows to elucidate how the physical character of the interface may
influence the flow close to it. We then consider in more detail the motion of an
isolated spherical particle close to a wall, with the BCs at the particle surface and
lubrication effects taken into account. We discuss the commonly used approxima-
tions for the mobility of a microsphere near a no-slip wall, and present examples of
experimental techniques capable of grasping the dynamic behaviour. Finally, we
explore the motion of flexible particles and the effect of deformable boundaries,
in situations where the elasticity of the surface or particles may not be neglected.

10.5.1 Point Force Near an Interface

To demonstrate the effects of partial confinement on the hydrodynamics of a single
particle, wewill present explicit solutions for the velocity fields for a point force acting
on a fluid bounded by a planar free surface, and a planar no-slip wall. These are
limiting cases for a point-force near a planar liquid-liquid interface, in the limit that the
viscosity ratio, k ¼ g2=g1, is reaching infinity and zero, respectively. The point force
F is located at the point r0 ¼ ðx0; y0; hÞ in the upper half space at vertical distance
h[ 0 above the (x – y) interface at z = 0. Searched for is the flow field u(r) in the upper
half space z� 0. We take advantage of the linearity of the Stokes equations to con-
struct the flow field using the method of images. Akin to electrostatics [36], a number
of hydrodynamic problems of higher symmetry can be solved by this elegant method.
In this method, the fluid in the upper half-space of viscosity g ¼ g1 is mentally
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extended into the lower half-space, with the BCs imposed by the taken-out interface
now accounted for in conjunction with the Stokeslet at r0 by an image system of
elemental singularity solutions placed at appropriate positions in the lower half-space.
Theflowfield constructed in thisway is in the upper half-space identical to the original
flow problem where the interface is present.

For a point force in front of a planar liquid-liquid interface, the image system
multipoles are all located at the same image point

r�0 ¼ Pz � r0 ¼ ðx0; y0;�hÞ: ð10:99Þ

Here

Pz ¼ 1� ezez ð10:100Þ

is the (x – y) plane reflection matrix. This matrix acting on an arbitrary vector turns
the z-component of this vector into its negative.
Free surface: We explain the image method first for the simplest case of a Stokeslet
above a free surface, e.g., a non-contaminated air-water interface or a Navier
perfect-slip wall. The BCs for such an interface is that the surface flow has only an
in-plane tangential component, and that there is no tangential stress across the
interface. This is expressed by Eq. (10.17) in the limit that the viscosity, g2, of the
fluid in the lower half space vanishes, that is for k ! 0. We shall assume the free
surface not to deform in response to the motion of the fluid. This is justified when
the surface tension of the interface is large enough.

The image system is here simply the mirror Stokeslet of strength F� ¼ Pz � F at
the mirror location r�0. The flow in the fluid occupying the upper half-space is thus

uðrÞ ¼ ½TðRÞþTðR�Þ � Pz� � F; ð10:101Þ

where R ¼ r� r0 and R� ¼ r� r�0 are the vectors to the observation point from
the Stokeslet and image Stokeslet locations respectively. The Cartesian frame can
be oriented here such that F ¼ Fkex þF?ez. The flow components tangential and
vertical to the interface are then

uxðrÞ ¼
Fk
8pg

½GðexÞþG�ðexÞ�

uzðrÞ ¼ F?
8pg

½GðezÞþG�ðezÞ�;
ð10:102Þ

where we use GðeÞ ¼ GðR; eÞ and G�ðeÞ ¼ GðR�; eÞ as abbreviations to shorten
the notation.

The image system for a planar free surface, consisting simply of the mirror
reflection of the actual flow singularity, is sketched in Fig. 10.17 for the two basic
situations of the Stokeslet directed along and perpendicular to the plane, respectively.
We use here the elemental singularity solution pictograms introduced in Fig. 10.7.
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The streamlines for the two cases, based on the flow fields in Eq. (10.102), are plotted
in Fig. 10.18. By the reflection symmetry of the present image system, it is obvious
that the velocity field at the interface is purely tangential. Moreover, since uðx; y; zÞ ¼
uðx; y;�zÞ by construction, the tangential stress at the interface proportional to
@ux;y=@z is zero.

The flow solution for a Stokeslet in front of a planar interface can be used to
construct, by superposition, the flow field due to a rigid no-slip body near the
interface. For a free interface, the flow field is determined by

uðrÞ ¼
Z
Sp

dS0Tðr� r0Þ � ðrðrÞ � n0Þ þ
Z
S�p

dS0Tðr� r0Þ � Pz0 � ðrðr0Þ � n0Þ;

ð10:103Þ

where S�p is the surface of the mirror body, and Pz0 � ðrðr0Þ � n0Þ is the mirror stress
field on this surface. This is sketched in Fig. 10.19.

As an interesting problem related to Eq. (10.103), consider the tangential motion
of an isolated no-slip sphere along a planar free interface, in the extreme situation
that the sphere is permanently touching the interface in a single point. This

(a) (b)

Fig. 10.17 The image system satisfying the boundary conditions of a free surface is simply the
mirror Stokeslet of strength F� ¼ Pz � F. a For a point-force oriented parallel to the surface, the
image has the same force direction, while b for the force pointing towards or away from the
surface, the direction of the image force is reversed

(a) (b)

Fig. 10.18 Flow streamlines a due to a point-force oriented parallel to the free surface, and b due
to a perpendicularly oriented point-fore. Reproduced from [69] with kind permission
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quasi-two-dimensional motion is realized to good accuracy in an experimentally
well studied system of super-paramagnetic microspheres at the air-water interface
of a hanging drop. To determine the single-sphere mobilities starting from
Eq. (10.103), it is crucial to account for lubrication effects in the zero gap case.
Lubrication forbids the rotation of the surface-touching sphere along an axis parallel
to the surface [70], i.e. lrk ¼ 0. Rotation is allowed only around the perpendicular

sphere axis. While particle surface roughness and remnant undulations in the planar
surface should give rise to a non-zero mobility lrk, the actual effect of lubrication is

to lower its value significantly below the rotational mobility, lr0, of a sphere in the
bulk fluid. A precise calculation of the mobility tensors of hydrodynamically
interacting spheres touching a free planar interface was made in [70]. The special
result for the mobilities of an isolated sphere is

ltk=l
0
t 
 1:380 ; lr?=l

0
r 
 1:109 : ð10:104Þ

Owing to the smaller friction experienced by the hemisphere facing the free sur-
face, the translational mobility for the motion parallel to the surface is raised above its
bulk value by 38 percent, and the rotational mobility lr? bymere 11 percent. Note that
the sphere is not rotating while translating, since it can be considered as moving side
by side in contact with its twin image sphere located just below the free interface. Each
of the two twin spheres experiences the same hydrodynamic drag force parallel to the
free surface. Amicrosphere above a no-slip wall which has the freedom tomove away
from the wall is discussed further down in relation to Fig. 10.22.

Liquid-liquid interface: The image system for a point force in the presence of a
rigid no-slip wall, and more generally of a (clean) fluid-fluid interface was given by
Blake in the 1970’s [71, 72].

h

- h 

z

x

Fig. 10.19 To determine the flow due to a no-slip particle moving above a planar free surface at
z = 0, one mentally replaces the surface by an image particle, with the fluid continued into the
lower half-space. The surface stress and thus the translational and angular velocities of the image
particle are the surface reflections of those of the real particle
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For a Stokeslet parallel, GðexÞ, and perpendicular, GðezÞ, to the ðx� yÞ
fluid-fluid interface, the image system is given as a function of the viscosity ratio k
by [26]

GIm;xðrÞ ¼ 1� k
1þ k

G�ðexÞþ 2kh
kþ 1

G�
Dðex; ezÞ �

2kh2

kþ 1
D�

SðexÞ; ð10:105Þ

GIm;zðrÞ ¼ �G�ðezÞþ 2kh
kþ 1

G�
Dðez; ezÞ �

2kh2

kþ 1
D�

SðezÞ; ð10:106Þ

where GðeÞ ¼ GðR; eÞ and G�ðeÞ ¼ GðR�; eÞ are used as abbreviations, with anal-
ogous abbreviations used for the other elemental singularities. The superscript (*)
indicates that the considered singularity is located at the position, r�0, of the image.
The Cartesian longitudinal and transversal components of the flow field in the upper
half-space z[ 0 are expressed in terms of this image system as

uxðrÞ ¼ F
8pg

½Gðr; exÞþGIm;xðrÞ�; ð10:107Þ

uzðrÞ ¼ F
8pg

½Gðr; ezÞþGIm;zðrÞ�; ð10:108Þ

with the force F of magnitude F > 0 pointing along the x-axis and z axis,
respectively. In the limit k ¼ 0 of zero viscosity of the lower half space fluid, the
result for a Stokeslet above a free surface is recovered.

No-slip wall: The system of image multipoles at r�0 for a no-slip rigid surface,
obtained by taking the limit k ! 1 in Eq. (10.105), has more components than that
for the free surface. The reason for this is that in addition to a zero normal velocity
component at the interface, also the tangential fluid velocity component must be
zero.

The pictogram representation of the image system for a no-slip wall is shown in
Fig. 10.20, for the strength F of the Stokeslet oriented parallel (a) and (b) perpen-
dicular to the wall. The image system for the general case of a tilted Stokeslet is
obtained by linear superposition. The image system has now two members in
addition to the image Stokeslet in the free surface case, namely a Stokes doublet of
strength modulus 2hF, and a source doublet of strength modulus 2h2F. The
streamlines for a Stokeslet parallel and perpendicular to the no-slip wall are shown
Fig. 10.21. Notice the pronounced flow vortices in the latter case, with fluid
dragged in behind the up-pointing Stokeslet. For a detailed discussion of the image
system solution we refer to Blake’s original work. Quite interestingly, the presence
of a no-slip wall changes the asymptotic behaviour of the flow field in the upper
half-space at distances far from the Stokeslet and the wall. Although the image
Stokes doublet and source doublet contributors to the velocity field decay faster
than the two Stokeslet contributors, there is a long-distance flow cancellation. As a
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result, the velocity field decays asymptotically as Oðr�2Þ, for the Stokeslet oriented
parallel to the wall, and an even faster Oðr�3Þ decay is found for the perpendicularly
oriented Stokeslet [71]. This is an example of hydrodynamic screening induced by a
stationary no-slip boundary which takes momentum out from the fluid.

The method of images can be successfully applied also to the case of
higher-order elemental singularities near a planar wall such as a Stokes dipole,
Rotlet, Rotlet dipole and source doublet [26, 73]. These solutions are quite useful,
e.g., to describe the hydrodynamic attraction of a bacterial microswimmer by an
interface, and its resultant circular motion.
Partial-slip wall: The image system for a planar rigid wall with Navier partial-slip
boundary conditions is more complicated than that for a liquid-liquid interface,
except for the zero and infinite slip length limits where likewise the no-slip wall and
free surface are recovered. As shown by Lauga and Squires in [74], the image

(a) (b)

Fig. 10.20 The image system satisfying the no-slip BC at a rigid wall is more complex than that
for a free surface. The three different flow singularities of the image system and their respective
strengths are expressed as pictograms defined in Fig. 10.7a–f. The image singularity solutions are
all located at the mirror point of the Stokeslet in the actual upper fluid. Note that in a the mirror
Stokeslet is oppositely oriented. Redrawn after [71]

(a) (b)

Fig. 10.21 Flow field streamlines for a point force located above a stationary no-slip wall, with
the wall represented by the thick bottom line. Parallel (a) and perpendicular (b) orientations of the
Stokeslet are considered. Reproduced from [69] with kind permission

366 M. Lisicki and G. Nägele



system for the perpendicularly oriented Stokeslet contains the same set of elemental
singularity solutions as that for a liquid-liquid interface. However, these are now
continuously distributed along a line extending from the reflection point r�0 into the
negative ez direction, with magnitudes that decay exponentially downside this line
over the slip length ‘. For ‘ ! 0, Blake’s solution for a no-slip wall is recovered.
The image system for a Stokeslet parallel to the partial-slip wall involves a larger
set of elemental singularity solutions, likewise distributed along the aforementioned
singularity line. The system includes now also a Rotlet and a Rotlet dipole. Here,
not all singularity solution magnitudes decay exponentially in going downside
along the line.

10.5.2 Motion of a Spherical Particle Near a No-Slip Wall

The hydrodynamic problem of the motion of a spherical particle in a viscous liquid
bounded by a planar no-slip wall has been studied since more than a century. The
difficulty of the problem relates to the fact that BCs must be satisfied both at the
wall and the sphere surface.

Anisotropic mobilities: Owing to the BCs both for the sphere and the wall, the
6 × 6 mobility matrix characterizing the translational and rotational motion of the
sphere near the wall is of an anisotropic character, with scalar elements (mobility
coefficients) depending on the distance z of the sphere centre to the wall extending
into the x – y plane. Five independent mobility coefficients are required to char-
acterize the sphere motion, as depicted in Fig. 10.22. The four coefficients
ltk; l

t
?; l

r
k; l

r
? characterize the translational and rotational sphere motion parallel

Fig. 10.22 Schematic representation of mobility coefficients describing the near-wall translational
(superscript t) and rotational (superscript r) motions of a rigid microsphere parallel and
perpendicular to a planar wall. Not depicted is an additional mobility coefficient, ltr ¼ lrt ,
characterizing the wall-induced translation-rotation coupling of the sphere motion. See the text and
[75] for details
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and perpendicular to the wall, while the additional coefficient ltr describes the
wall-induced coupling of translational and rotational motion. A torque-free sphere
translating parallel to a near-distant wall is rotating. This should be contrasted to the
motion of a sphere far distant from the wall which is fully characterized by the two
bulk coefficients lt0 and lr0 given in Eq. (10.25), without any translational-rotational
coupling.

The 6 × 6 mobility matrix for a sphere near a planar wall is of the form

lðzÞ ¼ lttðzÞ ltrðzÞ
lrtðzÞ lrrðzÞ

� �
; ð10:109Þ

with all coefficients depending on the sphere-wall distance z. The components of
the tt submatrix have in the selected coordinate frame the simple structure

lttðzÞ ¼
ltt?ðzÞ 0 0
0 lttkðzÞ 0
0 0 lttkðzÞ

0
@

1
A; ð10:110Þ

with a similar structure for the rotational rr submatrix. The structure of the rt and tr
coupling tensors is different (see, e.g., [75, 76]).

Numerous works have been devoted to the evaluation of the z-dependence of the
mobility coefficients, dating back to Lorentz [77] and Faxén [78] more than a
century ago who calculated the first terms in the expansion of the two translational
coefficients in terms of the reciprocal sphere-wall distance, t = a/z, in units of the
sphere radius, given by

ltkðtÞ 
 1� 9
8
t; ð10:111Þ

lt?ðtÞ 
 1� 9
8
tþ 1

8
t3 � 45

256
t4 � 1

16
t5: ð10:112Þ

These expressions provide a crude approximation of the exact translational
coefficients for large sphere-wall distances z=a� 10. Subsequent refined calcula-
tions by Brenner et al. [15, 79–81] and Dean and O’Neill [82, 83] have led to
formally exact expressions for part of the mobility coefficients in terms of infinite
series. While frequently quoted, these series expressions are of limited practical
importance owing to their slow convergence at near-contact distances. More
recently, numerically precise and convenient inverse distance series results for all
five mobility coefficients have been obtained, using a high-precision numerical
scheme based on the force multipoles method by Cichocki and Jones [76] combined
with a Padé approximation and with near-contact lubrication effects taken into
account.

For the presentation of these numerical results, we introduce dimensionless
mobilities by division through respective bulk mobility coefficients according to
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~ltk;? ¼
ltk;?
lt0

; ~lrk;? ¼
lrk;?
lr0

; ~ltr ¼ ltr

alr0
: ð10:113Þ

The dimensionless mobility coefficients for a no-slip sphere near a planar no-slip
wall are plotted in Fig. 10.23, as functions of the inverse distance parameter
t. Significant deviations from the bulk mobility values are observed for distances z/
a < 5. The slowing hydrodynamic effect of the wall is in general more pronounced
for translational than rotational motion. Physical processes where this can be of
importance are cellular adhesion [6], and channel flows where translation is hin-
dered but rotation is still strong enough to allow for the reorientation of particles in
external fields [84]. All mobility coefficients except for lr? tend to zero in a
non-analytical way when the contact distance t = 1 is approached. It follows from
lubrication theory that the asymptotic behaviour of the mobility coefficients close to
the wall can be expressed in terms of the dimensionless gap width e ¼ ðz� aÞ=a
[76]. In the case of translational coefficients, one finds

elt
? � eþ 1

5
e2 log e; elt

k � � 2ðlog eÞ�1: ð10:114Þ

Wall lubrication effects imply also that lrkðt ! 1Þ ¼ 0, whereas the sphere

rotation with the angular velocity oriented perpendicular to the wall is possible even
at contact where the related mobility coefficient lr? is reduced by about 18 percent
below the isotropic bulk value. The coefficient ltr relating translational motion to
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Fig. 10.23 Dimensionless mobility coefficients, defined in Eq. (10.113), of a no-slip microsphere
near a planar no-slip wall, as functions of the dimensionless reciprocal sphere-wall distance t = a/z.
At sphere-wall contact where t = 1, all mobilities except for lr? are vanishing. The effect of
translation-rotation coupling, absent both at contact and far away from the wall, is strongest near
sphere-wall contact where ~ltr attains its largest value of about 0.05. Mobility coefficients have
been obtained using the method in [76]
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applied torque is zero at sphere-wall contact since lubrication implies zero transla-
tional velocity of the sphere at wall contact.

Mobility measurement by light scattering: Theoretical predictions for the dis-
tance dependence of the mobility coefficients of an isolated microsphere near a wall
have been scrutinized in experimental studies, for sphere sizes ranging from about
100 nm up to several microns, using various optical techniques. These techniques
include optical trap microscopy [85], nano-PIV [86, 87], dynamic light scattering
(DLS) in presence of two parallel walls [88], low-coherence DLS [89],
resonance-enhanced DLS [90, 91], and evanescent wave dynamic light scattering
(EWDLS) in a system bounded by one or two walls [27, 92–95]. However, only
recently has it been possible to determine both the translational and rotational
diffusion of a colloidal sphere in the vicinity of a planar wall [75, 96], using
EWDLS from optically anisotropic spherical particles. In many experiments such as
in EWDLS, the relation

D ¼ kBTl; ð10:115Þ

between the hydrodynamic mobility matrix and the diffusion matrix, D, of a
dispersed Brownian particle at system temperature T is used, on measuring the
diffusion matrix coefficients instead of the associated hydrodynamic mobility
coefficients.

Light scattering is a powerful tool to investigate the properties of sub-micron soft
matter systems [97]. In evanescent wave scattering experiments, a colloidal sus-
pension is typically illuminated by a monochromatic laser beam that is totally
reflected from a planar glass surface bounding the sample, so that no refracted light
enters into the suspension (which is placed above the glass surface in Fig. 10.24)
except for an evanescent wave whose intensity decays exponentially in going away
from the glass surface into the suspension. Thus, only a colloidal particle close to
the glass surface scatters enough of the incident evanescent light to be detected. The
penetration depth, 2=j, of the evanescent wave can be changed to probe the particle
diffusion at different glass surface-particle distances. For a review of the EWDLS
method including experimental details, see [98].

The key quantity determined in (EW)DLS experiments is the scattered light
intensity time-autocorrelation function. Of particular significance is the short-time
(initial) decay rate, C, of the intensity autocorrelation function referred to as the first
cumulant. This quantity can be theoretically predicted on basis of the generalized
Smoluchowski equation determining the evolution of the configurational proba-
bility density function of Brownian particles under Stokes flow conditions [1, 99].
Inside the bulk region of a very dilute suspension of colloidal hard spheres far away
from confining walls, the first cumulant is proportional to C ¼ q2D0, where q is the
modulus of the scattering vector q, and D0 ¼ kBTlt0 is the translational
(Stokes-Einstein) diffusion coefficient of an isolated Brownian sphere.

In the data analysis gained from a typical EWDLS set-up such as the one
sketched in Fig. 10.24, one conveniently decomposes the scattering vector into its
components parallel and perpendicular to the wall, qk and q?, respectively. The first
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cumulant for the translational motion of a Brownian sphere near the glass wall is
then given by

C ¼ q2k D0
k

D E
j
þ q2? þ j2

4

� �
D0

?
� �

j; ð10:116Þ

where D0
kðzÞ ¼ kBTltkðzÞ and D0

?ðzÞ ¼ kBTlt?ðzÞ, and � � �h ij denotes a j-depen-

dent weighted average of the z-dependent diffusion coefficients over all sphere -
glass wall separations z, for a given evanescent wave penetration parameter j. The
average diffusion coefficients in Eq. (10.116) for translational diffusion parallel and
perpendicular to the glass wall are not purely statistical mechanical properties but
are dependent on the value of j selected in the optical setup: The smaller j is the
larger are the resulting average diffusion coefficients [95]. For a smaller j, diffusion
is detected in EWDLS over a larger distance from the glass wall, and ltkðzÞ and

lt?ðzÞ are increasing with increasing wall-sphere distance z.

By determining C as a function of qk for fixed q? and vice versa, the two average
translational diffusion coefficients are obtained using Eq. (10.116). Moreover, on
the basis of an analytic expression for the first cumulant generalized to optically
anisotropic spherical particles, the distance-averaged rotational diffusion coeffi-
cients are obtained in a light polarization-sensitive EWDLS experiment in addition
to the translational ones [75, 96].

Hydrodynamic radius models: Transport properties of colloidal suspensions
such as the viscosity and translational and rotational diffusion coefficients depend in

Fig. 10.24 Schematics of an EWDLS set-up. The wave vectors of the incident evanescent and
scattered light beams are ke and ks, respectively, with their difference defining the scattering vector
q = ks–ke. Independent experimental variation of the components qk and q? of the scattering
vector parallel and perpendicular to the confining glass wall allows for the determination of
wall-distance averaged diffusion coefficients. See the text for details. Redrawn after [95]
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principle on the details of the hydrodynamic particle structure, e.g. on the particle
surface BC, and the fluid permeability profile in the case of fluid-permeable par-
ticles. Important examples of particles with internal structure are micro- and
nanogels, non-permeable rigid particles with surface corrugation, and core-shell
particles consisting of a dry core coated by a polymer brush. The hydrodynamic
effect of the in general quite complicated intra-particle structure can be character-
ized under surprisingly general conditions by a single parameter, namely the
effective hydrodynamic radius aeff. For globular particles, this radius can be
determined experimentally in a DLS experiment on using the single-sphere
Stokes-Einstein relation for the diffusion coefficient D0. The hydrodynamic radius is
the radius of an effective no-slip sphere with the same diffusion coefficient as the
one of the actual internally structured particle. It has been shown in recent theo-
retical work [100] that the error introduced by simply using aeff for the particle
structure characterization can be well controlled.

10.5.3 Near-Wall Dynamics of Anisotropic and Flexible
Particles

The presence of a nearby wall or interface drastically affects the hydrodynamics
experienced by a microparticle. This can be easily understood qualitatively using
symmetry arguments. Since the hydrodynamic friction experienced by a particle is
in general larger on the side of the particle facing the wall, there is
translational-rotational coupling even for a highly symmetric particle such as a
sphere with uniform surface BC. For a non-spherical particle, there is an additional
dependence of the friction coefficients on the particle orientation giving rise to
interesting dynamic effects.

For an example, consider the sedimentation of a rod-like rigid particle near a
vertical rigid wall. As we have discussed earlier, an inclined rod in an unbounded
fluid has a horizontal side drift while settling but it does not reorient its body axis.
This absence of rod reorientation/rotation does not hold any more in sedimentation
close to a vertical wall. It has been experimentally observed and numerically cal-
culated by Russel et al. [101] for a no-slip rod sedimenting near to a no-slip vertical
wall that there are two possible sedimentation scenarios. The first one is a glancing
motion, where one tip of the rod always points downwards while the rod is
reorienting close to the wall, and the second one a reversing motion, where the rod
tumbles while approaches its closest distance to the wall. In both scenarios, the wall
to centre-of-rod distance decreases initially during sedimentation, increasing again
subsequently. Which of the two scenarios is taking place depends on the initial wall
distance and inclination angle of the rod. To gain a quantitative understanding of
the rod Stokesian dynamics, a slender-body analysis for the motion of an elongated
microparticle close to a flat fluid-fluid interface has been made for determining the
drag force and torque acting on it for a fixed spatial orientation [102].
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The motion of a flexible microparticle is more complicated than that of a rigid
one, owing to inevitable hydrodynamically induced particle surface deformations
which invalidate the simple kinematic reversibility arguments for the associated
Stokes flows. As an illustration, consider in Fig. 10.25a, b, a flexible particle (say a
droplet or vesicle) moving away or towards a rigid planar wall, respectively. During
its motion, the particle will deform in a way controlled by the interplay of fluid
stresses and particle surface tension. The latter tends to restore the spherical particle
shape of minimal surface free energy which it would have if the fluid and particle
were stationary. The particle deformations are different for (a) and the oppositely
directed motion in (b), since the distribution of friction forces (stresses) along the
particle surface is different in the two cases. Since symmetry is here obviously
broken, kinematic reversibility arguments can not be used to gain information on
the particle motion. The changing shape of an elastic body approaching a rigid flat
wall has been numerically calculated, e.g., for a liquid droplet sedimenting in
another fluid [103]. Elasticity effects can lead to cross-stream migration of flexible
particles [40] which is of importance in blood flows, where the suspended cor-
puscles are often highly elastic, in cell adhesion problems in shear flows [104], and
for industrial processes involving macromolecules or polymer flows [105].

So far, we have assumed that the interface in the proximity of a particle is rigid.
This is a valid assumption for non-deformable container walls or liquid-liquid
interfaces of large interfacial tension. Deformable interfaces give rise to additional

(a) (b)

(c) (d)

Fig. 10.25 Sketch of two physical situations where kinematic reversibility is not applicable owing
to hydrodynamically induced particle (in a–b) or interface (in c–d) deformations. In a–b, a flexible
particle is deformed differently if moving towards or away from a rigid flat interface. In c–d, the
flexible interface experiences a local deformation different for a rigid particle moving towards or
away from the interface. The frictional force, Fh, experienced by the particle is likewise dependent
on the motion direction, since the distance to the deformed interface in (c) is smaller than in (d)
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effects. The motion of a rigid particle towards or away from a flexible interface
causes a motion-dependent local deformation of the interface. This is related to a
special type of particle-interface interaction through the geometric coupling of local
interface shape and flow [106]. A rigid particle moving away from the interface
sketched in Fig. 10.25c pulls the fluid along with it which in turn causes a local
deformation in the flexible interface extending in the direction of the particle
motion. This results in an enlarged hydrodynamic friction force on the particle as
compared to the flat-surface situation, i.e. Fh

1 [Fh
flat. The geometric coupling for

the oppositely oriented particle motion in figure part (d) leads to a frictional force
on the particle smaller than in the flat interface case so that Fh

2\Fh
flat. This is

reminiscent of the lift force acting on deformable particles in flow, and is of interest
for biological system flows under elastic confinement. Quite interestingly, the
vicinity of a soft interface or object can be used by microorganisms in their
propulsion even if performing reciprocal motions [107], since the micro-scallop
theorem discussed in Sect. 10.6 does not apply near a flexible surface [108].

10.6 Self-propelling Microswimmers

The locomotion and transport of autonomous (self-propelling) biological and arti-
ficial microswimmers under low-Reynolds-number flow conditions has generated a
lot of interest over the past years. See here [108, 109] for two very informative
overview articles, and the classical book by Lighthill [110]. The motility of
microorganisms such as bacteria, sperm cells, and algae affects many biological
processes including reproduction and infection. Appropriate swimming strategies
are essential for microorganisms in their search for food or the avoidance of toxic
environments (chemotaxis), the reaction to light (phototaxis), and the orientation
under gravity (gravitaxis). Theoretical design and fabrication of synthetic (robotic)
microswimmers who can transport cargo or remove toxins bears the perspective of
highly useful applications in medicine, biology and environmental science.

Autonomous swimmers are characterized by the absence of an external forcing
agent driving their translational and rotational motion. For microswimmers under
Stokes-flow conditions, this means

FhðtÞ ¼ 0; ThðtÞ ¼ 0; ð10:117Þ

expressing that the total hydrodynamic drag force and torque exerted on the
swimmers are zero at any instant of time. The long-distance decay of the disturbance
fluid velocity field caused by the swimmer’s motion is thus of Oðr�2Þ or faster.

There are a variety of autonomous propulsion mechanisms. For instance, a
microobject could swim by self-diffusiophoresis, by creating through a surface-active
site a small gradient,r/, in the concentration / of a dissolved species (solute). This
self-created gradient, in turn, propels the microobject through the phoretic osmotic
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solute flow in its interfacial region [48, 52], with the self-phoretic velocity, Vphor, of
the object determined by Eq. (10.79). The potential flow outside the self-phoretic
object has thus the characteristic Oðr�3Þ far-distance decay.

10.6.1 Purcell’s Micro-scallop Theorem

We focus here on purely mechanical microswimmers which self-propel by con-
tinuously changing their body shape in a periodic way. After one cycle, the
microswimmer returns to its initial body shape.

Two conditions have to be fulfilled to achieve a net translational displacement
after one cycle of body shape deformations. The first one known as Purcell’s
micro-scallop theorem [22, 111] is related to the kinematic reversibility of Stokes
flows. It reads

In the absence of inertia, the periodic sequence of body shape configurations must be
non-reciprocal, that is it must be different when viewed in a time-reversed way.

This excludes in particular cyclic shape changes depending on a single param-
eter only. For the scallop theorem to apply, it is understood that the
single-parametric microobject is far away from a flexible interface which invali-
dates kinematic reversibility arguments (c.f. Sect. 10.5.3). As an illustrative
example of the no-go scallop theorem consider with Purcell in Fig. 10.26 a
(one-hinge) symmetric micro-scallop in the bulk fluid periodically opening and
closing its legs. While shaking back and forth, the net displacement after one cycle
is zero. The opening angle u is here the only parameter characterizing different
shapes, and the sequence of different shapes is thus necessarily reciprocal.

A non-reciprocal sequence of cyclic shape deformations is not sufficient to
achieve a net propulsion under Low-Reynolds-number conditions. An additional
requirement, applying also to non-small Reynolds number locomotion, is:

Fig. 10.26 Left A symmetric micro-scallop shakes back and forth during one motion cycle
without a net vertical translation. Right The sequence of shape configurations in the
one-dimensional parameter space is necessarily reciprocal
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Successful self-propulsion requires an anisotropy or asymmetry in the fluid friction expe-
rienced by the moving swimmer.

The net displacement of an isolated microswimmer does not depend on the rate at
which a given non-reciprocal sequence of shape configurations occurs (rate inde-
pendence) but only on their geometry.

Many microorganisms such as bacteria and spermatozoa have an elongated body
with a distinct body axis or polarity which dictates the direction of their motion.
Roughly speaking, such a microorganism consists of a passive head part and a
slender active filament (flagellum). Animalcules such as sperms are propelled by
wavelike beating of their flagellum which causes them to move in the direction
opposite to that of the flagellar wave travelling away from the head. Unlike
eukaryotic flagella, bacterial flagella are passive fibers incapable of active bending.
They use instead a helical wave propulsion, in the form of a rotating rigid helical
bundle of flagella driven by a molecular motor at the cell body. If viewed from
behind in swimming direction, the flagellar bundle rotates counter-clockwise. The
torque introduced by this rotation is balanced by the clockwise rotation of the cell
body.

In both propulsion mechanisms, swimming is possible because of the friction
anisotropy and non-reciprocal travelling wave deformations of the flagellum. The
slender flagellum can be mentally subdivided, at any instant, into rod-like segments
characterized by two segmental friction coefficients f? 
 2fk. The force DFs

exerted on the fluid by a segment moving with an instantaneous velocity v is

DFs ¼ fkvk þ f?v?; ð10:118Þ

where vk and v? are the velocity projections parallel and perpendicular to the
segment, determined by the instant shape and rate of change of shape of the
swimmer. Integration over the filament contour leads to the momentary propulsion
(thrust) force,

Fprop / ðf? � fk)e; ð10:119Þ

along the body axis e of the swimmer who is kept stationary for this first calculation
step. The propulsion force is proportional to the difference of the segment friction
coefficients and points from the filament to the head. See [108] for the details of
such a calculation, e.g., for a simplified sperm model with a two-dimensional
wave-like beating pattern. The propulsion force must be balanced at any instant by
a hydrodynamic drag force, FhðtÞ ¼ �FpropðtÞ, exerted by the fluid on the instan-
taneously frozen-in shape of the swimmer, which is moving in this second calcu-
lation step with the searched for instantaneous axial swimming velocity V(t). From
a decent estimate of the axial friction coefficient of the frozen-in swimmer
appearing in the relation FhðtÞ ¼ �ffrozðtÞVðtÞ, the instantaneous swimming
velocity is approximately obtained. The here outlined procedure is once again a
direct consequence of the additivity of Stokes flow solutions, and of the associated
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particle velocities. Since both Fprop and Fh are proportional to g, the swimming
velocity is independent of the fluid viscosity. However, the rate of dissipated energy
caused by swimming depends on the viscosity.

10.6.2 Dipole Swimmers

The flow around an isolated axial microswimmer with flagellar propulsion is in
general well approximated by a linear force dipole (linear Stresslet), GD(r;e,e), in
the direction of the swimmer’s body axis e. The two infinitesimally distant
Stokeslets pointing away from each other represent the balance of propulsive and
drag forces discussed above. This far-distance flow model is valid for distances
larger than the axial extension L of the swimmer. Higher-order elemental multipoles
containing additional information on the shape and near-distance motion come into
play when microswimmers get close to each other or to a boundary [26, 41, 108,
109].

With the dipole singularity positioned at the origin, and the dipole orientation
along e = ez, the dipole flow field is

uDðr; eÞ ¼ p
8pg

GDðr; ez; ezÞ ¼ p
8pgr2

½3ðr̂ � eÞ2 � 1�r̂: ð10:120Þ

Note that ðr̂ � eÞ ¼ cosw, with w denoting the angle between the dipole
(swimmer) axis e and the fluid observation point at r. The streamlines of the dipole
velocity field are depicted in Fig. 10.27 for p > 0, where the two Stokeslets are
pointing away from each other. The dipole strength scales as jpj � gjV jL2 where

3 2 1 0 1 2 3
3

2

1

0

1

2

3
3 2 1 0 1 2 3

3

2

1

0

1

2

3

20 10 0 10 20
20

10

0

10

20
20 10 0 10 20

20

10

0

10

20

Fig. 10.27 Streamlines of a linear Stokeslet dipole (force dipole) oriented along the z axis with
positive dipole moment p > 0 (pusher). Lengths are scaled in units of d, and p=ð8pgd2Þ ¼ 1. Left
Near-field streamlines of the oppositely oriented Stokeslets. Right Streamlines of the ideal force
dipole. The two separatrix lines z ¼ �x=

ffiffiffi
2

p
separate the sectors of in- and outflowing fluid.

Reproduced from the COMPLOIDS book [9] with kind permission of the Societa Italiana di Fisica
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V is the swimming speed and L the axial length of the elongated swimmer. Notice
here the distinct differences in the linear Stresslet field of a dipolar microswimmer,
and the source doublet potential flow field of an auto-phoretic microswimmer. The
Stresslet velocity field is in particular longer-ranged than the potential flow velocity
field of a phoretic swimmer.

Microswimmers with a positive dipole moment are called pushers. They have
their active propelling part on their rear side, and as seen in Fig. 10.28 they push the
fluid out along the long (swimming) axis (repulsive flow) and draw fluid in on their
side (attractive flow field). The aforementioned microrganisms are all pushers in
addition to many types of bacteria. Microswimmers with a negative dipole moment
(p < 0) are termed pullers. Their streamline pattern is the same as that for pushers,
however with the flow direction reversed since the two Stokeslets are now pointing
towards each other. Pushers pull in fluid along their long swimming sides (attractive
flow) and push it out at their side (repulsive flow). An example of a puller is the
green algae Chlamydonamas rheinhardtii which swims with two head-sided flag-
ella in a breast-stroke-like motion.

10.6.3 Hydrodynamic Interactions Between Swimmers

Two pushers swimming side-by-side attract each other, while being repulsive if
swimming one behind the other into the same direction. While this behaviour can
be obviated qualitatively from the dipole flow pattern for p > 0 depicted in
Fig. 10.27, it can be more quantitatively discussed by considering the motion of one
force dipole in the incident dipolar flow field of the other one. On employing the

Pusher: p > 0 Puller: p < 0

Fig. 10.28 Left Schematics of the far-distant flow and associated linear force dipole (arrows) of a
pusher (p > 0) with the Salmonella bacterium as an example. Right Schematics of a puller (p < 0)
with the green algae Chlamydomonas as an example. The swimming direction (unit vector) e is
here in the upward direction. Reproduced from the COMPLOIDS book [9] with kind permission
of the Societa Italiana di Fisica
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translational Faxén theorem for point-like torque- and force-free objects (see
Eq. (10.90)), the velocity increments, Vi, of the two equal-moment dipoles at
positions Ri are

V1 ¼ uDðR12; e2Þ ¼ p

8pgðR12Þ2
½3ðR̂12 � e2Þ2 � 1�R̂12 ð10:121Þ

V2 ¼ uDðR21; e1Þ; ð10:122Þ

respectively, with Rij ¼ Ri � Rj and i; j 2 f1; 2g.
If the two swimmers move momentarily side-by-side in the same direction so

that R̂12 � ei ¼ 0, they acquire the relative velocity increment

V1 � V2 ¼ � p

4pgðR12Þ2
R̂12; ð10:123Þ

expressing that pusher 1 is hydrodynamically attracted to pusher 2, and vice versa.
To see this just view the relative motion in the rest frame of pusher 2 where V2 = 0.
For pusher 2 following pusher 1, we have ðR̂12 � eiÞ2 ¼ 1, and the velocity differ-
ence describes now the hydrodynamic attraction of the two swimmers. The opposite
trends apply to two pullers owing to their negative force dipole moments.

This is not the whole story for arbitrary orientations and positions of the two
swimmers. The flow field uD(r;e2) created by swimmer 2 at the centre position R1 of
swimmer 1 has rotating and straining parts, ðr � uDÞ and ED ¼ 1

2 ðruD þðruDÞTÞ,
respectively. Swimmer 1 exposed to the flow field of swimmer 2 has thus the
tendency to align itself with the principal axis (dilation axis) of the strain field part
EDðR12; e2Þ of swimmer 2. For a quantitative analysis, let us model swimmer 1
geometrically overall as a force-free and torque-free prolate spheroid of aspect ratio
C[ 1, with the long-axis orientation unit vector e1. A general rotational Faxén
theorem for a no-slip spheroid states [14] that if the spheroid with its centre at
position R1 is subjected to an arbitrary incident Stokes flow field uinc(r), it will rotate
with an angular velocity Ω1 given by

X1 ¼ 1
2
ðr � uincÞðR1Þþ C2 � 1

C2 þ 1

� �
e1 � ðEincðR1Þ � e1Þþ � � � : ð10:124Þ

The dots annotate that higher order derivative contributions of the incident flow
field are neglected. A freely advecting sphere for which C ¼ 1 rotates thus with half
the vorticity of the incident flow uinc, taken at the sphere center. An elongated body
has an additional angular velocity part due to the shear strain part of the incident
flow. This additional angular velocity part is oriented perpendicular to the long
body axis unit vector e1 of swimmer 1.

Substitution of uD(R12;e2) for the incident flow into Eq. (10.124) reveals that
two nearby pushers on a converging course reorient each other hydrodynamically
into a parallel side-by-side configuration. As depicted in the left part of Fig. 10.29,
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if two pushers located in the x – z plane are separated by the distance h = R12, and
symmetrically oriented with inclination angles �h relative to the z axis, their
reorientation into a parallel configuration takes place with the angular velocities
Xy;12 � � ph=ðgh3Þ [108]. In contrast, and owing to the opposite flow fields, two
pullers on a diverging course align each other in an antiparallel configuration,
swimming subsequently away from each other. This is illustrated in the right part of
Fig. 10.29.

It should be recalled that the analysis presented here is based on the
leading-order singularity flow solutions. It applies in principle to inter-swimmer
distances h large compared to the elongational swimmer size L only, although it is
often found to be quite accurate even for distances comparable to L [109]. For two
closely moving swimmers, the details of their shapes and propulsion mechanisms
play a role. This requires then a refined hydrodynamic modeling and more elaborate
methods to determine the swimmer dynamics. These methods include multiparticle
collision dynamics (MPCD) simulations of bacteria and sperm cells [109],
bead-modeling of complex-shaped swimmers combined with Stokesian dynamics
simulations [112], and numerical boundary integral equation methods invoking
particle surface triangularization [89].

10.6.4 Swimming Near a Surface

For a dipolar swimmer above a planar wall or surface (x – y plane at z = 0), the flow
field is a superposition of its dipolar flow field uD and an image flow field, uIm,
generated by a system of singularities located below the surface. The image flow
contribution is required to satisfy the surface BC (recall Sect. 10.5). In Fig. 10.30,
this situation is illustrated for the simplest case of a pusher swimming above a free
surface. The only BC here is the fluid-impermeability of the surface which can be

Fig. 10.29 Left Two pushers (p > 0) on a not too diverging course attract each other
hydrodynamically, and reorient each other into a parallel side-by-side motion. Right Two pullers
(p < 0) on a diverging course reorient each other towards an antiparallel configuration, swimming
subsequently away from each other in anti-parallel direction (see also [108])
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fulfilled by considering the swimmer in the half-space z > 0 to move along with its
mirror image in the fluid extended to the lower half-space z < 0. This is akin to the
symmetric side-by-side motion of two swimmers in bulk fluid discussed earlier in
relation to Fig. 10.29.

Using again the translational Faxén theorem for a point-like freely advected
particle, the vertical velocity component induced on the swimmer at R0 = (0,0,z0)
with z0 = h > 0 is

Vzðh; hÞ ¼ uD;zðR0 � R�
0; e

imÞ ¼ � p
32pgh2

1� 3 sin2 h
	 


; ð10:125Þ

where h is the tilt angle of the swimmer with respect to the surface, so that
sin h ¼ e � ez ¼ �eim � ez. Here, R�

0 and eim are the position and orientation vectors
of the mirror dipole, respectively. Provided the tilt angle is not too large so that
h\ arcsinð1= ffiffiffi

3
p Þ, the dipole is attracted by the surface. To reveal the influence of

the free surface (i.e. of the image dipole flow part) on the swimmer’s orientation,
we employ the rotational Faxén law where the swimmer is described as an elon-
gated spheroid. The result is [26]

Xyðh; hÞ ¼ 3p sinð2hÞ
128pgh3

1þ C2 � 1

C2 þ 1

� �
sin2ðhÞ

� �
; ð10:126Þ

according to which for all values of h, the pusher always aligns parallel to the free
surface, with the induced velocity in this aligned configuration being equal to

h 

X

z 

e

ime

Fig. 10.30 Swimming with an image: A free surface attracts a puller and reorients its axis parallel
to the surface (h ¼ 0 with e � ex ¼ cos h). A puller on the other hand is reoriented perpendicular to
the surface, swimming subsequently either away or head-on into the surface. This qualitative
behaviour remains valid for a Navier partial-slip wall, a no-slip wall, and a liquid interface [26]
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Vzð0; hÞ ¼ �p=ð32pgh2Þ. Note that C  1 for a typical bacterium such as E. coli,
owing to its extended flagella bundle.

Using the respective image flows, the calculations outlined above for a free
surface are rather straightforwardly extended to a clean liquid interface and a Navier
partial-slip wall, respectively, with the no-slip wall included as a limiting case [26,
113]. For a clean liquid-liquid interface, e.g., the corresponding result is

Xyðh; hÞ ¼ 3p sinð2hÞ
128pg1h3

1þ 1
2

C2 � 1

C2 þ 1

� �
kþð2þ kÞ sin2ðhÞ

1þ k

� �� �
ð10:127Þ

Vzð0; hÞ ¼ � pð2þ 3kÞ
32pg1ð1þ kÞh2 ; ð10:128Þ

with the free and no-slip surface results recovered as the limiting cases for k ¼
g2=g1 ¼ 0 and k ! 1, respectively. A pusher is always attracted by and aligned to
a nearby liquid interface, for any value of the viscosity ratio. The pusher is likewise
attracted and aligned parallel by a partial-slip wall, for any value of the Navier slip
length [26].

The attraction by and the accumulation of biological microswimmers near sur-
faces is indeed observed in many biological experiments. According to the above
analysis, pullers are oriented hydrodynamically in the direction perpendicular to the
surface (h ¼ �p=2), swimming either head-on away or right into the surface.

The simple modeling of pushers as linear force dipoles gives the prediction that
they should move in straight trajectories along a surface, owing to the rotational
symmetry of the aligned dipole with respect to the surface normal. However, it is
known experimentally that bacteria such as E. coli do swim in clockwise
(CW) traversed circles along a glass surface [114], as viewed from inside the fluid,
whereas near a clean free surface the spherical trajectories are traversed
counter-clockwise (CCW). The CW circular motion near the glass plate can be
changed to a CCW motion if a sufficient amount of free polymers is added to the
fluid. Likewise, the CW circular motion at a clean free surface can change to a
CCW motion upon the addition of detergents accumulating at the surface. The
circular motion of a bacterium is interrupted when a tumbling event occurs.

This surface-specificity of the trajectories can be attributed to the chiral bacterial
propulsion mechanism not resolved in the simple force dipole model. It becomes
essential when the swimmer gets close to a surface. To understand qualitatively the
CCW circular motion of a pusher near a free surface, recall that this is equivalent to
a pusher swimming in the flow field of its image. The image moves with the same
speed as the actual pusher, but the helical flagellar bundle (cell body) of the image
rotates opposite to that of the pusher. Recall that the bundle of a bacterium rotates
counterclockwise if viewed from behind, and suppose that the bacterium is oriented
momentarily along the y-axis. The counter-rotating flagellar helices (cell bodies) of
the swimmer and its image create then a disturbance flow directed in the positive
(negative) x-direction. Since the swimmer is freely advecting in this flow, it will
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perform a CCW circular motion [115]. Qualitative arguments similar to the present
ones can be given to explain the CW circular motion of a bacterium at a no-slip
surface where an advection flow oppositely directed to that near a free surface is
created [108].

As Lopez and Lauga have recently shown [26], the surface-specific circular
motion of a bacterium is quantitatively explainable on the singularity method level
by adding a so-called rotlet dipole singularity solution, uRDðrÞ�Oðr�3Þ, to the
linear force dipole solution of Oðr�2Þ. The rotlet dipole part accounts on the
long-distance level for the counter-rotating flagellum and cell body parts of the
torque-free pusher. Using this flow singularity model in conjunction with
surface-specific image systems, interesting quantitative predictions regarding crit-
ical parameter values for the CW to CCW motion transition for partial-slip walls
and surfactant-covered interfaces have been made [26].

10.7 Concluding Remarks

The present notes give an introduction into the world of low-Reynolds-number
flows and associated passive and active (i.e. self-propelling) microparticle motions,
with the focus on surface and interfacial effects. As the topics treated in the notes
should have amply illustrated, studying low-Reynolds-number phenomena is
important, and often leads to surprising findings. Our aim has been to provide the
reader with basic background knowledge which facilitates further reading of more
advanced research texts on processes involving microparticles and animalcules
suspended in viscous fluids. We have presented the governing equations of Stokes
flows and their essential properties in a rather descriptive way, avoiding detailed
calculations which can be found in more specialized textbooks and overview
papers. While the material is presented in a rather systematic way, many important
phenomena such as Marangoni surface flows [23], hydrodynamic screening near
boundaries [116], wall-induced apparent like-charge attraction of colloidal macro-
ions [117, 118], and hydrodynamically induced surface accumulation of
microparticles [55, 119, 120] have been only shortly addressed, with an occasional
reference to related literature, or even not mentioned at all. The present notes can
serve as a good preparation for an improved understanding of research papers on
these additional phenomena.
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Chapter 11
Advanced Light Scattering Techniques

Andreas Charles Völker, Andreas Vaccaro and Frédéric Cardinaux

Abstract Three popular light scattering techniques used for characterization of soft
matter samples such as colloidal suspensions or emulsions are presented. Static and
dynamic light scattering, as well as diffusing wave spectroscopy will be discussed
in detail. These techniques allow determination of a wide range of important soft
matter properties, including particle size, size distribution, microrheology and
molecular weight, to mention only a few examples. These can significantly influ-
ence the properties and dynamics of an interface directly or indirectly. They are thus
vital tools to study soft matter at aqueous interfaces. Since the theoretical funda-
mentals of the presented light scattering techniques are related, we will discuss
them in a comprehensible order while presenting some selected applications for
each technique, with a focus on the most recent improvements. We will also discuss
the most important technical considerations for each technique.

11.1 Introduction

The light scattering techniques presented in this chapter are typically used for
characterization of soft matter samples such as colloidal suspensions or emulsions.
Static and dynamic light scattering, as well as diffusing wave spectroscopy, are
discussed. These techniques allow determination of a wide range of important soft
matter properties such as particle size and size distribution, microrheology or
molecular weight, to mention only a few examples. While none of these properties
characterize an interface on their own, they can significantly influence the prop-
erties and dynamics of an interface directly or indirectly. They are thus vital tools to
study soft matter at aqueous interfaces. Since the theoretical fundamentals of
the presented light scattering techniques are related, we will discuss them in a
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comprehensible order while presenting some selected applications for each tech-
nique, with a focus on the most recent advanced developments. We will also give
the most important technical considerations for each technique.

11.2 Static Light Scattering Fundamentals

In a Static Light Scattering (SLS) experiment, a collimated monochromatic beam of
light illuminates a colloidal sample and the intensity I of the scattered light is
measured as a function of the detection angle θ. This allows determination of the
molecular mass M, the radius of gyration Rg which is a measure of the size of the
colloidal particles, and the (osmotic) second virial coefficient B2 which describes
the magnitude of the interaction among the particles.

A typical SLS experimental setup consists of a monochromatic light beam, be it an
Hg-arc lamp or a monochromatic laser, and a detector whose position defines the
scattering angle θ. The incident light and the scattering angle define the scattering
plane (Fig. 11.1). Customarily used detectors are photomultiplier tubes (PMTs),
avalanche photodiodes (APDs), or standard photodiodes. The first two types are
normally mounted on a goniometer arm that rotates concentrically around the sample
and thus allows measurements at different scattering angles. An advantage of using
APDs and PMTs, despite their relatively high cost compared to standard photodiodes,
is that dynamic light scattering measurements can be simultaneously performed.

To discuss the physical properties of an SLS experiment, we employ standard
electromagnetic wave theory [1]. Upon interaction of the incident light—an elec-
tromagnetic wave—with the electronic cloud of the molecules constituting the
colloidal particles, the electronic cloud oscillates. This oscillation corresponds to an
oscillating current, which results in the emission of light. It is scattering. If there is
no loss of energy in the scattering process, the latter is said to be elastic and the
scattered light has the same wavelength λ as that of the incident light. The corre-
sponding physics is well described by the classic equation of the electric field
radiated by an oscillating dipole found in standard electromagnetics textbooks.

Fig. 11.1 SLS experiment including a photon detector that can rotate concentrically around the
sample [2] (Figure reprinted with permission. Copyright by LS Instruments AG, Switzerland)
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For a colloidal particle of volume dV suspended in a medium of refractive index ns,
much smaller than λ, the expression for the radiated electric field reads [1]

dEs ¼ k2

ns

expðikRÞ
4pR

ê� pðtÞ � r̂; ð11:1Þ

where k ¼ 2p=k is the module of the wave-vector ki of the incident light, ê is the
unit vector indicating the scattering direction, and R is the distance of the detector
from the particle. By means of the polarizability dα, the oscillating dipole moment p
(t) can be expressed in terms of the incident field EiðtÞ ¼ E0 exp i ki � r� xtð Þ½ � at
the position r of the particle as follows:

pðtÞ ¼ n2s daEiðtÞ: ð11:2Þ

For objects smaller than λ and with refractive index n, the polarizability can be
calculated by means of the Lorentz-Lorenz equation as

da ¼ 3dV
m2 � 1
m2 þ 2

ð11:3Þ

where m � n
ns

is the relative refractive index. Piecing everything together, the
modulus of the scattered field can now be written as

dEs ¼ dV
k2

4pns

m2 � 1
m2 þ 2

exp iðkR� xtÞ½ �
R

E0 exp iki � r½ �; ð11:4Þ

where E0 is the module of E0. Referencing spatial positions with respect to a
reference point r0, which corresponds to the variable substitutions r ¼ r0 þ r0 and
R ¼ R0 � r0 � r̂, this yields

dEs ¼ E0dVDq
exp i kR0 þ ki � r0 � xtð Þ½ �

R0
exp �i ks � kið Þ � r0½ �; ð11:5Þ

where we introduced the scattering length density, Dq expressed as

Dq � k2

4pns

m2 � 1
m2 þ 2

: ð11:6Þ

To obtain Eq. (11.5), we exploited the fact that in case of elastic scattering, the
modules of the incident and scattered wave vectors are the same ðks ¼ kêÞ

Equation (11.5) shows that the scattered field is proportional to the incident field
module, the particle volume and the scattering length density. Furthermore, the
phase shift due to the displacement of a particle from a reference position r0 to the
position r0 þ r0 is � ks � kið Þ � r0. Hence the quantity q � ks � ki, known as
scattering vector, takes a crucial role in the scattering theory as it represents an
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experimental quantity that determines the length scale at which interferences in the
system take place. By means of simple geometrical considerations, its module is
calculated as

q ¼ 4pns
k

sinðh=2Þ: ð11:7Þ

If we now consider a homogeneous colloidal particle of any size made up of
many infinitesimally small sub regions dV, the total scattered field can be obtained
by integrating Eq. (11.1) over the volume V of the particle:

Es ¼ E0Dq
exp i kR0 þ ki � r0 � xtð Þ½ �

R0

Z
V

dVexp �iq � r0½ �: ð11:8Þ

In Eq. (11.8), we implicitly assumed that the incident field exciting each
sub-element dV is unaffected by the presence of the surrounding elements. We thus
assumed that we can neglect reflection of the incident light at the particle/solvent
interface and that the scattering is so weak that the attenuation of the incident field
is negligible. This assumption is known as the Rayleigh-Gans-Debye
(RGD) approximation and can be mathematically formulated as

1� mj j � 1 a � k
2pns 1� mj j : ð11:9Þ

Equation (11.8) is easily extended to a system of N identical particles by means
of a simple summation

Es ¼ E0Dq
exp i kR0 þ ki � r0 � xtð Þ½ �

R0

X
j

Z
Vj

dVjexp �iq � r0j
h i

: ð11:10Þ

Using each individual particles’ position Rj in a straightforward variable sub-
stitution r0j ¼ Rj þ rj simplifies the equation. This amounts to expressing the
internal positions of each particle sub-element with respect to the particle position
Rj. Performing the variable substitution we obtain

EsðtÞ ¼ E0
exp i kR0 þ ki � r0 � xtð Þ½ �

R0

X
j

bjexp �iq � RjðtÞ
� � ð11:11Þ

where we defined the so-called scattering length of particle j as

bj � Dq
Z
Vj

dVjexp �iq � r0j
h i

ð11:12Þ
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Equation (11.11) clearly illustrates how the internal interference, embodied in
the particle’s scattering length, and the interparticle interference factor, are
accounted for by the scattering vector.

Equation (11.11) is, however, not yet useful for the interpretation of experi-
mental data, since we do not measure the electric field but the temporal average of
the corresponding scattered intensity. If we assume the sample to be ergodic, time
averages can be replaced by ensemble averages indicated by the notation 〈∙〉 and we
can write

Is qð Þ ¼ Esj j2
D E

¼ I0
R2
0

XN
j¼1

XN
k¼1

bjb�k exp �iq � Rj � Rk
� �� �* +

ð11:13Þ

For a system composed by identical particles considerable math leads to the
important result that

IsðqÞ ¼ I0
R2
0
NV2Dq2PðqÞSðqÞ ð11:14Þ

where we introduced the particle form factor, PðqÞ defined as

PðqÞ ¼ bðqÞj jh i
Dq2

ð11:15Þ

and the structure factor

SðqÞ ¼ 1
N

XN
j¼1

XN
k¼1

exp �iq � Rj � Rk
� �� �* +

ð11:16Þ

PðqÞ accounts for the internal particle interference while SðqÞ accounts for the
interparticle interference. Note that Eq. (11.14) marks a crucial result of the RGD
theory, because inter- and intra- particle interferences appear as independent mul-
tiplicative terms. The magnitude of the signal is thus proportional to the incident
intensity, the number of scatterers, the square of the particle volume, and the square
of a contrast term. Finally, it is important to note that the interference is fully
described by a single experimental quantity, namely the scattering vector.

For small angles, and hence for small scattering vector modules (Rgq ≪ 1), the
following general expansion holds

PðqÞ ¼ 1� R2
gq

2

3
þO R4

gq
4

� �
ð11:17Þ

where Rg is the optical radius of gyration of the colloidal particles under investi-
gation. The radius of gyration effectively represents a measure of the size of the
colloidal particles present in the suspension. Therefore, Eq. (11.17) allows
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estimation of particle size by means of a fit of the intensities collected as a function
of the scattering angle (and hence the scattering vector module) at small angles.

Note that the structure factor depends on the sample concentration, as it accounts
for the interparticle interference. In dilute samples, no interparticle correlation exists
and the structure factor is equal to 1 for all angles. For more concentrated systems,
however, depending on whether the interparticle interactions are attractive or
repulsive, the zero angle value will be either larger or smaller than 1, respectively.
This behavior is described by the following particle concentration expansion of
Sð0Þ

Sð0Þ ¼ 1
1þ 2�B2wþOðw2Þ ð11:18Þ

Here w is the sample mass concentration and �B2 the mass-based second virial
coefficient. This equation therefore allows estimation of the second virial coefficient
from a series of measurements performed at low angles and different particle
concentrations.

11.2.1 Characterization of Macromolecules in Solution:
Zimm Plot

In practice, we will have to consider scattering caused not only by particles, but also
by the solvent. To account for this, we introduce the Rayleigh ratio R, defined as
the time-averaged scattering intensity per unit solid angle, unit scattering volume,
and unit illumination intensity [3]. The Rayleigh ratio is a measure of the absolute
scattering of the sample, and includes contributions from both the solvent and the
macromolecules. Additional measurement of the pure solvent scattering ðRsolÞ is
necessary to isolate the macromolecules’ contribution:Rex ¼ R�Rsol. The excess
Rayleigh ratioRex contains information about the macromolecules, and can be used
to characterize systems such as polymers, surfactant aggregates, or proteins.

In the following, we present a method called Zimm-plot, from which the
molecular weight M, the radius of gyration Rg, and the second virial coefficient B2

of macromolecules in solution can be obtained [3, 4].
Based on the RGD theory, and considering the influence of the experimental

setup, the excess Rayleigh Ration of a solution of macromolecules is [3–5]:

Rexðq;wÞ ¼ KwM PðqÞ Sðq;wÞ; ð11:19Þ

where K is a constant and w is the concentration of macromolecules PðqÞ is the
form factor and SðqÞ the structure factor, as defined previously. The constant
K requires prior knowledge about the solution’s refractive index increment dn

dw

� �
and

is defined as:
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K ¼ p2n2s
NAk

4

dn
dw

� 	2

; ð11:20Þ

where NA is the Avogadro number. For qRg � 1, the form factor can be approx-
imated by the Guinier approximation [7]:

PðqÞ 	 1� R2
g

3
q2; ð11:21Þ

In the limit of small q, the structure factor is related to the osmotic compress-
ibility of the fluid. Moreover, an expansion for small concentrations of the com-
pressibility allows to link the structure factor to a single interaction parameter called
the second virial coefficient B2 [5, 6]. The structure factor reads:

lim
w;q!0

Sðq;wÞ ¼ 1� 2�B2w; ð11:22Þ

Fig. 11.2 Zimm plot of scattering data for four different concentrations of polystyrene chains
dispersed in toluene and measured at a temperature of 25 °C. The data points are presented in color,
while the extrapolations of the global fit to q ¼ 0 and w ¼ 0 are shown as black dots. We obtained a
radius of gyration of 43 nm, a molecular weight of 1.15 106 g/mol and a second virial coefficient of
390 cm3/g, consistent with the chain conformation expected for this well-documented model system
[8] (Figure reprinted with permission. Copyright by LS Instruments AG, Switzerland)
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Using the results of Eqs. (11.21) and (11.22), and rearranging the terms in
Eq. (11.19) yield the following expression:

Kw
Rexðq;wÞ 	

1
M

1þ R2
g

3
q2

" #
1þ 2�B2wð Þ; ð11:23Þ

where we used ð1� xÞ�1 	 1þ x for small x.
A convenient way to obtain Rg,M, and B2 using Eq. (11.23) is the so-called Zimm

plot [3–6]. It is a schematic representation based on a series of SLS measurements at
different scattering angles and different sample concentrations. The plot linearizes
the q2-dependence of Rex while separating the dependence on q and w by plotting
Kw=Rexðq;wÞ versus q2 þ cw, where c is a constant to be chosen arbitrarily.

Figure 11.2 shows an example of Zimm plot for linear polystyrene chains dis-
persed in toluene. The intercept of the linear interpolation at fixed q yields the
inverse of the molecular mass M, while the slope is proportional to the second virial
coefficient. Similarly, the radius of gyration Rg is obtained by linear interpolation of
the Zimm plot at a fixed concentration.

11.3 Fundamentals of Dynamic Light Scattering

Dynamic Light Scattering (DLS)—also known as Photon Correlation Spectroscopy
(PCS) or Quasi-Elastic Light Scattering (QELS)—is an experimental technique that
studies the temporal fluctuations of light scattered by particles, droplets, or bubbles
[3, 4].

The technique is typically used to study the dynamics of a wide variety of soft
matter systems such as micro- and nano-emulsions, nanoparticles, colloids,
micelles, polymers or proteins [5, 9]. One of the most popular applications of DLS
consists in the measurement of particle size from few nanometers up to few
microns, and size distribution in dilute systems [10]. DLS could also be applied to
more concentrated systems, where dynamics contains additional information about
the structure of the dispersion [11–15].

In a DLS experiment, a coherent laser light source illuminates a volume con-
taining N particles while a detector, positioned at angle θ from the incident light and
placed at a distance R from the sample, collects the scattered intensity Iðh; tÞ. The
spatial distribution of the scattered intensity is that of a speckle pattern (grains of
light), resulting from the interferences of the scattered fields from individual par-
ticles. Since particles are moving (i.e. they undergo Brownian motion), the scattered
fields are time-dependent, which leads to a temporal fluctuation of the intensity of a
speckle (“boiling” speckle). The intensity fluctuations therefore entail information
about particles’ motion and can be characterized using the intensity auto-correlation
function, defined as:
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g2ðq; sÞ ¼ Iðq; 0ÞIðq; sÞh i
IðqÞ2
D E ; ð11:24Þ

where the brackets . . . denote an average over the ensemble of realizations of the
fluctuations, and q is the scattering vector. Auto-correlation simply compares the
intensity at time t with the intensity at time tþ s for a range of lag times τ covering
the decay of g2. The intensity auto-correlation function can be related to the field
auto-correlation function g1ðq; sÞ using the Siegert relation [9]:

g2ðq; sÞ ¼ 1þ b g1ðq; sÞ½ �2; ð11:25Þ

where β is a pre-factor related to the number of speckles detected within the
available surface of the detector.

While intensity is the accessible quantity in a DLS experiment, the amplitude
and phase of the scattered field is necessary to link the intensity fluctuations to the
particles’ motion. The electric field scattered by a collection of N particles of
arbitrary shape and size reads (cf. 1.2.1):

Eðq; tÞ ¼
XN
j¼1

bjðq; tÞe�iqRjðtÞ; ð11:26Þ

where bj is the amplitude of the field scattered by particle j and Rj is the position of
particle j. Note that terms that do not fluctuate over time have been omitted in the
expression of the scattered field. The field auto-correlation function can be written as:

g1ðq; sÞ ¼ Eðq; 0ÞE�ðq; sÞh i
IðqÞh i ¼

P
j

P
k bjðq; 0Þb�kðq; sÞe�iq Rjð0Þ�RkðsÞ½ �D E

P
j

P
k bjðq; 0Þb�k q; 0ð Þe�iq Rjð0Þ�Rkð0Þ½ �D E ð11:27Þ

where the star indicates the complex conjugate of the field. The auto-correlation
function can be simplified by considering a system of N identical spheres. In this
case, the field amplitudes are the same for all particles and do not depend on time,
i.e. biðq; sÞ ¼ bðqÞ. Furthermore, for centro-symmetrical particles, the amplitude of
the scattered field only depends on the module of the scattering vector
q ¼ 4pn sin h=k, where n is the suspension’s refractive index and λ the laser
wavelength. Applying these simplifications to the Eq. (11.27) yields:

g1ðq; sÞ ¼
P

j

P
k e�iq Rjð0Þ�RkðsÞ½ �D E

P
j

P
k e�iq Rjð0Þ�Rkð0Þ½ �D E ¼ Fðq; sÞ

Fðq; 0Þ ; ð11:28Þ

where Fðq; sÞ is called the intermediate scattering function and Fðq; 0Þ ¼ SðqÞ is
the static structure factor introduced in the section on static light scattering. It now
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becomes apparent how the dynamics of identical interacting spheres is influenced
by the fluid structure.

For diluted systems, one can further simplify the results for the field
auto-correlation function by considering that the positions Ri;j of the particles are
uncorrelated. As a consequence, the cross terms in the summation are on average
zero, and only self-terms persist:

g1ðq; sÞ¼ N�1
X
j

e�iq Rjð0Þ�RjðsÞ½ �D E

¼ e�iq Rð0Þ�RðsÞ½ �
D E

¼ e�iq�DRðsÞ

ð11:29Þ

The displacement DRðsÞ originates from particles’ Brownian motion. The field
auto-correlation function can now be evaluated:

g1ðq; sÞ ¼ e�
q2

6 DR2ðsÞh i ¼ e�q2Dos; ð11:30Þ

where we used DR2ðsÞ
 � ¼ 6D0s. The field auto-correlation function is therefore an
exponential decay having a decay rate modulated by the free diffusion coefficient
D0 and the square of the scattering vector.

In practice, the diffusion coefficient can be obtained from a fit of the intensity
auto-correlation function. The Stokes-Einstein relation allows to calculate the
hydrodynamic radius a of the particles, for a given temperature T and a solvent
viscosity η:

D0 ¼ kBT
6pga

: ð11:31Þ

Note that the theory of Dynamic Light Scattering is only valid for single scat-
tered light. As for most scattering methods interpretation becomes exceedingly
difficult for systems with non-negligible contributions from multiple scattering,
small contributions of multiple scattering can already result in large analysis errors.
In the case of larger particles with a high scattering contrast, this limits the tech-
nique to very low particle concentrations. A large variety of systems are therefore
excluded from investigations with conventional dynamic light scattering. However,
it is possible to suppress multiple scattering in DLS via the cross-correlation
approach. Different implementations of cross-correlation light scattering have been
developed and applied. The same method can also be used to correct Static Light
Scattering (SLS) data for multiple scattering contributions. Alternatively, in the
limit of strong multiple scattering, a variant of dynamic light scattering called
Diffusing Wave Spectroscopy (DWS) can be applied (cf. section about DWS).
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11.3.1 Sizing Using the Method of Cumulants

An important application of dynamic light scattering is the determination of particle
size. In the introductory chapter about DLS, we focused on results for idealized
systems (i.e. perfectly identical sphere). In the following, we extend the theory to
dispersions of spherical objects having a small degree of polydispersity, and present
a reliable method to analyze DLS data [3, 5, 9].

The field auto-correlation function (Eq. 11.27) can be simplified assuming that
the system under study is a diluted solution of polydisperse spheres. In this case, the
field amplitude bjðq; tÞ is independent of time and only depends on the module of
the scattering vector. For diluted dispersions, particles’ positions are uncorrelated
and the field auto-correlation is given by [5]:

g1 q; sð Þ¼
P

j b
2
j ðqÞ e�iq Rjð0Þ�RjðsÞ½ �D E
P

j b
2
j ðqÞ

¼
P

j b
2
j ðqÞe�q2D0jsP
j b

2
j ðqÞ

;

ð11:32Þ

where D0j ¼ kBT=ð6pgajÞ is the free diffusion coefficient of particles j with radius
aj.

We see that g1ðq; sÞ is a sum of exponential decays, each of which is weighted
by the scattered intensity b2j for particles with radius aj. If only a small degree of
polydispersity is allowed, the correlation function will be close to a single expo-
nential, and it is therefore natural to try to parameterize the D0j term using an
average diffusion coefficient �D. Here we need to use the (intensity-) weighted
average diffusion coefficient �D defined as:

�D ¼
P

j b
2
j ðqÞDjP

j b
2
j ðqÞ

; ð11:33Þ

and similarly,

D2 ¼
P

j b
2
j ðqÞD2

jP
j b

2
j ðqÞ

; ð11:34Þ

A substitution of D0j ¼ �DþðD0j � �DÞ in Eq. (11.32) yields:

g1ðq; sÞ ¼ e�q2 �Ds

P
j b

2
j ðqÞe�q2 D0j��D½ �sP

j b
2
j ðqÞ

; ð11:35Þ
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where the exponential inside the sum can be expanded,

g1ðq; sÞ ¼ e�q2 �Ds

P
j b

2
j ðqÞ 1� D0j � �D

� �
q2sþ 1

2 D0j � �D
� �2

q4s2 þ � � �
h i

P
j b

2
j ðqÞ

¼ e�q2 �Ds 1þ 1
2

D2 � �D2

�D2

 !
ðq2 �DsÞ2 þ � � �

" #

ð11:36Þ

The terms into brackets in Eq. (11.36) represent the expansion of an exponential,
which can be finally substituted,

g1ðq; sÞ ¼ e�q2 �Dsþ 1
2

D2��D2
�D2

� �
q2 �Dsð Þ2 þ ���: ð11:37Þ

The next step is to find a relation between the variance of the distribution of

diffusion coefficients D2 � �D2
� �

=�D2 and the variance of the size distribution itself.

Here we take advantage of the fact that a relation between the average diffusion
coefficient and the particles’ radius exists in the limit q�a
 1. Indeed, under these
conditions, the scattered intensity b2j is proportional to the second power of the

particles’ volume (i.e. b2j / a6j ). Using an ¼ PN
j anj

� �
=N, we can therefore write:

D2 � �D2

�D2 ¼ a4 � a6

a5
� �2 � 1; ð11:38Þ

which can be approximated by,

D2 � �D2

�D2
¼ ð1þ 6r2Þð1þ 15r2Þ

ð1þ 10r2Þ � 1 	 r2; ð11:39Þ

for a distribution of radii PðaÞ having a variance r2 ¼ a2 � �a2
� �

=�a2. The

approximation used in Eq. (11.39) is valid for narrow size distributions and reads
[5]:

an ¼ �an 1þ nðn� 1Þ
2

r2 þ � � �
� 	

; ð11:40Þ

The result of Eq. (11.39) demonstrates that the auto-correlation function mea-
sured in a DLS experiment not only contains information about the average radius
of the particles, sometimes also called the apparent radius �a ¼ kBT=ð6pg�DÞ, but
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also about the variance of the size distribution r2 [11, 16]. This development holds
for diluted suspensions of spherical particles having a narrow size distribution and
for q�a
 1.

In practice, the Siegert relation can be used to relate the measured intensity
correlation function to the field correlation function of Eq. (11.37) [9], and can be
further linearized to accommodate a simple fit having the form of an expansion of
cumulants of the distribution [11, 16]:

ln g2ðq; sÞ � 1½ � ¼ ln cst½ � � 2Csþ ls2 þ � � � ð11:41Þ

where the average size is obtained from the first cumulant C ¼ q2 �D, and the second
cumulant μ, which is related to the standard deviation σ of the distribution as

r ¼
ffiffiffiffiffiffiffiffiffiffiffi
l=C2

p
, gives an estimate of the polydispersity. A detailed discussion about

the type of the minimization procedure and the accuracy of the resulting fits can be
found in [11].

11.3.2 Technical Considerations for a DLS Experiment

Laser intensity: The required laser intensity depends on the detection efficiency of
the employed detector. While PMTs often have a quantum efficiency QE of less
than 10 %, APDs can reach more than 60 % for detection of red light (wavelength
λ, 600–700 nm). In the case of a PMT, a red laser would thus require approximately
6 times as much intensity to obtain the same result as an APD. As a rule of thumb
one can use:

I � QE ðkÞ[ 10 mW

More advanced DLS techniques or very weakly scattering particles might
require more intensity.

Laser stability: While the long term stability (>1 min) of the laser intensity I(t)
is not critical in a DLS experiment, fluctuations on the time scale of the decay time
will result in significant errors.

Laser coherence length: This should be larger than the scattering volume,
which is typically <1 cm.

The scattering angle: The correlation function in a DLS experiment depends on
the wave vector and thus the scattering angle. Moreover, the intensity scattered at a
given scattering angle depends on particle size. There is thus an optimum angle of
detection for each particle size. A high quality analysis should always be performed
at several scattering angles (multi angle DLS). This becomes even more important
in case of polydisperse samples with unknown particle size distribution since at
certain angles, the scattering intensity of some particles will completely overwhelm
the weak scattering signal of other particles, thus making them invisible to the data
analysis at this angle.
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DLS instruments working exclusively at a fixed angle can only deliver good
results for some particles. Therefore, special attention should be paid when con-
sidering the precision of a DLS instrument.

Detectors: The timescale of the detected intensity fluctuations I(t) in a DLS
experiment is on the order of ms and less, so should be the temporal resolution of
the detectors used in DLS. APDs and PMTs offer such a temporal resolution.
Another important detector parameter is the dead time. This is the time after
detection of a single photon in which no further detection is possible. The dead time
will influence the linearity of the intensity detection. Furthermore, all PMT- and
APD-based photon detectors have a certain probability to produce a second elec-
tronic pulse after they detect a photon (the so called “After-Pulsing Effect”). An
after-pulsing probability as little as 2 % can result in significant errors for intensity
fluctuations on timescales below 1 μs. By cross correlating two detectors (pseudo
cross-correlation), the after-pulsing effect can be eliminated, thus allowing mea-
surements down to the full-time resolution of the detector, only limited by the
temporal resolution of the correlator (Fig. 11.3).

11.3.3 Suppressing Multiple Scattering in DLS and SLS

Accurate dynamic and static light scattering measurements require the detection and
analysis of single scattering events; even relatively limited occurrences of multiple
scattering in the sample can dramatically compromise measurement results in DLS
and SLS (Fig. 11.4b). Therefore, highly scattering, turbid samples must usually be
diluted and tedious verification measurements must be executed to ensure data
validity. Furthermore, in many cases sample processes such as aggregation and

Fig. 11.3 Suppression of multiple scattering using the 3D cross correlation technology [21]
(Figure reprinted with permission. Copyright by LS Instruments AG, Switzerland)
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gelation depend on high particle concentrations and so dilution is unacceptable as it
modifies the very samples properties to be measured.

The onset of multiple scattering can be assessed by comparing the suspension
mean free path l with the total length of the light path L within the sample. The
mean free path is the average distance travelled by photons between two consec-
utive scattering events. Prediction for l can be obtained using Mie theory. Single
scattering samples have L=l � 1. For L� l, contributions from multiple scattering
can already affect measurements. Finally, when L=l � 1 samples are opaque and
DLS results can be wrong by orders of magnitude.

An elegant solution to these problems was proposed by Schätzel in 1991 [17]
and applied later using different experimental realizations [18]. The key concept
common to these experiments is that only singly scattered light will produce cor-
related intensity fluctuations when the intensity of two identical but independent
experiments are cross-correlated.

There are different experimental ways to do this, but in practice using two laser
beams at the same scattering angle, but displaced symmetrically above and below
the scattering plane has proven to be the most reliable. This technique is often
referred to as “3D cross correlation” or simply “3D”. In a 3D light scattering
experiment, two parallel laser beams are focused onto the scattering volume using a
lens (Fig. 11.3). An identical detection lens placed at the same distance from the
scattering volume guides scattered light to the detection optics. The two signals are
then cross correlated and since only the signal produced by single scattering is
identical on both detectors, the multiple scattering is suppressed. Moreover, the
intercept of the cross-correlation function is proportional to the multiple scattering

Fig. 11.4 a Results of DLS experiments on a dilution series of latex spheres in water and the
corresponding picture of the samples. The results obtained using the 3D cross-correlation scheme
(cross) are unaffected by multiple scattering, while the single beam experiment records (auto) show
a significant decrease of the particle radius with increasing turbidity [22]. b Corrected and
uncorrected SLS data along with a Mie fit for a turbid sample of 430 nm polystyrene particles in
water (5 × 10−5 w/w, 46 % transmission) [23] (Figure reprinted with permission. Copyright by LS
Instruments AG, Switzerland)
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and can be used to correct the scattering intensity (Fig. 11.4b). The 3D technique
can thus be applied to both DLS and SLS to correct for multiple scattering [19].

One drawback of the 3D cross-correlation technique is that one photon detector
measures the scattered light intensity at the desired scattering vector, but also
receives a contribution from the second illumination beam operating at the same
wavelength. A four-fold reduction in the cross-correlation intercept arises from
cross-talk between the two simultaneous scattering experiments executed in this
way. The correlation intercept strongly influences measurement accuracy due to its
pivotal role in accurately fitting models to the measured data. For strongly scat-
tering samples where only a small component of the detected light is singly-
scattered, the signal-to-noise ratio of the measurement becomes unacceptably low
as the magnitude of the cross-correlation intercept falls into the noise of the baseline
fluctuations.

To avoid this problem, Block and Scheffold [20] developed a new measurement
technique in which the two scattering experiments are temporally separated by
modulating the incident laser beams and gating the detector outputs at frequencies
exceeding the timescale of the system dynamics. This robust modulation scheme
eliminates cross-talk between the two beam-detector pairs and leads to a four-fold
improvement in the cross-correlation intercept, while fully suppressing the negative
effects of multiple scattering (Fig. 11.5).

Fig. 11.5 Schematic of the 3D cross-correlation scheme using beam modulation to avoid
simultaneous illumination of the scattering volume with the two beams. Acousto optical
modulators allow for modulation rates >1 MHz, which is sufficient for most samples [20]
(Figure reprinted with permission. Copyright by LS Instruments AG, Switzerland)
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11.4 Fundamentals of Diffusing Wave Spectroscopy

Diffusing Wave Spectroscopy (DWS) extends the application of DLS to concen-
trated and highly scattering (optically white) media in which light is multiply
scattered. As in the case of DLS, scattering could be caused by either solid particles,
liquid droplets or gaseous bubbles within the medium. For simplicity, we will refer
to any of these as scattering particles.

Observing coherent light that is transmitted through such turbid media onto a
screen, one notes afluctuating pattern of bright and dark spots (Fig. 11.6) similar to the
case ofDLS. InDWS, however, the pattern typicallyfluctuatesmuch faster, since light
is scattered several times. Nevertheless, the rate at which it fluctuates relates to the
dynamics of the particles within the sample; namely, the faster the particle’s motion,
the faster the speckle pattern’s fluctuations. DWS theory establishes an analytical
expression connecting the intensity fluctuations of scattered light to the motion of the
particle to obtain their mean square displacement, similar to DLS but in a different
scattering regime. The different scattering regimes can be distinguished by the mean
free path l, which stands for the average distance travelled by a photon between two
consecutive scattering events (Fig. 11.7). In dilute dispersions, l is given by:

l ¼ 1
qr

; ð11:42Þ

Fig. 11.6 Basic DWS setup in which a laser illuminates a suspension of particles in Brownian
motion in water. Observation of the transmitted light on a screen reveals a boiling speckle pattern
[37] (Figure reprinted with permission. Copyright by LS Instruments AG, Switzerland)

Fig. 11.7 Transport mean free path l* and mean free path li (Figure reprinted with permission.
Copyright by LS Instruments AG, Switzerland)

11 Advanced Light Scattering Techniques 405



where ρ is the number density of particles and σ the total scattering cross-section of
a single particle. Comparison of l and the thickness L of the sample defines the
scattering regime. Three cases are typically identified:

• l ≫ L: single scattering limit where DLS applies;
• l * L: intermediate regime involving a few scattering events (a regime can only

be accessed with 3D light scattering);
• l ≪ L: multiple scattering regime where DWS applies.

In the first two cases, the ratio T of transmitted light intensity I over the input
laser intensity I0 decays according to Beer’s law as T = I/I0 = exp (−L/l). This
expression no longer holds in the regime of multiple scattered light.

11.4.1 The Diffusion Approximation

In the multiple scattering regime, where photons are scattered many times, the
diffusion approximation can be applied, hence the appellation DWS [24]. In this
case, photon propagation can be modeled by a random walk. In the case of very
small particles, light is scattered in an isotropic fashion; the direction of the scattered
light is thus randomized after each scattering event. This is a true random walk with
step lengths equal to the mean free path l. For bigger particles, however, light
scattering becomes anisotropic, and is peaked in the forward direction. The scat-
tering direction of several consecutive scattering events is correlated (biased random
walk). Additional scattering events are required to ensure randomization of the
direction of light propagation. As a consequence, another photon random walk step
length scale that takes into account scattering anisotropy, is defined; it is the transport
mean free path l*, which relates to l as follows:

l� ¼ l
1� coshh i ; ð11:43Þ

where < cosθ > (= g, the scattering anisotropy parameter) is an ensemble average of
the scattering angle θ over many scattering events (Fig. 11.7). For isotropic scat-
tering, < cos θ > = 0, and l* = l. For anisotropic scattering, l* > l. Transmitted
photons will, therefore, have undergone * (L/l*)2 random steps with l*/l scattering
events per step, for a total average number of scattering events of N* (L/l*)2 (l*/l).
This number must be large for the diffusion approximation to be valid. Kaplan et al.
experimentally showed that this approximation holds for L > 4 l* for anisotropic
(Mie) scattering and L > 8 l* for isotropic scattering [25]. In this limit the trans-
mission T of light scattered through a slab of infinite transverse extent and finite
thickness L can be calculated:
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T ¼
5l�
3L

1þ 4l�
3L

: ð11:44Þ

Using Eq. (11.44), it is possible to determine l* of a sample by comparing its
transmitted intensity with that of a reference sample with known l*, provided that
both samples are in cells with the same thickness L, and they are illuminated with
the same intensity I0. In practice, this means that one will calibrate a DWS trans-
mission experiment with an aqueous dispersion of particles of given size for which
calculation of l* is straightforward.

11.4.2 DWS Autocorrelation Functions

For each random walk with path length s = N l, the autocorrelation function g1
s [26]:

gs1ðtÞ ¼ e�
1
3k

2
0 D2

r ðsÞh i s
l� ; ð11:45Þ

for the case of uncorrelated scatterers, such as tracer beads at a volume concen-
tration below 5 %. Here k0 denotes the modulus of the photon wave vector in the
medium of propagation, and τ the correlation lag time. One notices that the term
k0
2 < Δr2(τ) >/3 reflects the decay of the correlation function due to a single scat-
tering event but averaged over all scattering vectors q, weighted by the form factor
of the particle. The average number of random steps s/l* in each photon path of
length s represents the contribution of multiple scattering. Thus each individual
particle only needs to move, on average, a very small fraction of the wavelength λ0
to produce a significant decay in g1

s(τ). This is in stark contrast with DLS where a
particle has to move a distance of * λ0 to lead to a substantial decay of the
autocorrelation function since there is only one scattering event. The ability to
probe particle dynamics down to sub-nanometer length scales is one of the most
outstanding features of DWS.

To obtain the full autocorrelation function of the field, we need to weight
Eq. (11.45) with the probability density function of the path lengths P(s):

g1ðsÞ ¼
Z1
0

PðsÞgs1ðsÞds: ð11:46Þ

P(s) is determined through the use of the diffusion equation for light. This can be
solved analytically for some simple experimental geometries. The most commonly
used geometries are transmission through and backscattering from a slab of finite
thickness L and of infinite transverse extent (Fig. 11.8). In the case of a plane wave
illumination, in transmission, Eq. (11.46) becomes:
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g1ðsÞ ¼
L
l� þ 4

3

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 D2

r ðsÞ

 �q

1þ 4
9 k

2
0 D2

r ðsÞ

 �� �

sinh L
l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 D2

r ðsÞ

 �qh i

þ 4
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 D2

r ðsÞ

 �q

cosh L
l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 D2

r ðsÞ

 �qh i :
ð11:47Þ

In the case of backscattering, Eq. (11.46) becomes:

g1ðsÞ ¼ exp �c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 D2

r ðsÞ

 �q� 	

; ð11:48Þ

where γ = z0/l
* + 2/3. z0 is the distance that separates the source of diffusing

intensity in the medium from the face of incident illumination (z0 * l*).
While the only fitting parameter in Eq. (11.48) is < Δr2(τ) > , γ being a constant,

it seems simpler to conduct measurements in backscattering. However, γ was shown
to depend on both the polarization state of the backscattered light and particle size.
Typically, γ varies between 1.5 and 2.7 as particle size and polarization states are
varied. This is related to the fact that backscattering will always have contributions
of light for which the diffusion approximation does not hold, thus one finds that, in
practice, the results obtained in transmission are far more precise than those
obtained in backscattering. Nevertheless, DWS measurements in backscattering can
be very useful, whenever measurements in transmission are not possible. This is for
example the case when the sample is too dense (too high particle concentration) to
allow transmission of light.

Finally, one needs to note that, just as in a DLS experiment, one cannot measure
the field E(t), but only the intensity I(t) from which one computes the intensity
autocorrelation function g2(τ). The field autocorrelation function g1(τ) is directly
related to g2(τ) through the Siegert relation (Eq. 11.25).

Fig. 11.8 Typical experimental geometries used in DWS. Transmission: scattered light is detected
from the side opposite to the illumination; backscattering: scattered light detected from the same
side (Figure reprinted with permission. Copyright by LS Instruments AG, Switzerland)
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11.4.3 Technical Considerations for DWS Setups

Laser: In DWS experiments, samples must be illuminated by a laser with sufficient
coherence length, which should correspond to the longest relevant paths travelled
by the photons in the sample. For a turbid sample of thickness L = 1 cm, this can
easily be more than 10 cm. Simple diode lasers, however, often have a coherence
length of less than 1 mm. While it is mathematically possible to consider a cut-off
path length in the path length distribution P(s), this introduces significant errors,
since the distribution at very short paths have a minor contribution compared to the
incoherent light of the longer paths that will result in noise. The coherence length of
the laser is thus an important quality factor in DWS experiments and should always
be on the order of 1 m.

Detector: The intensity fluctuations of backscattered or transmitted light can be
collected by point-like detectors such as single-mode fibers coupled to photomul-
tipliers (PMT) or avalanche photodiodes (APD), or by standard Charged Coupled
Device (CCD) or Complementarity Metal-Oxide-Semiconductor (CMOS) cameras.
In the case of fibers, a single speckle of light is detected, whereas there are as many
detected speckles as pixels in the camera, if the detection optics is adjusted in such a
way that the speckle size matches the pixel size of the camera (typically in the order
of 10 µm). Doing DWS with a camera is referred to as Multi-Speckle DWS
(MSDWS) [27]. In MSDWS, a number n (in the order of 105–106) of independent
speckles are simultaneously sampled, and n correlation functions are computed.
The ensemble-averaged intensity autocorrelation function g2(τ) is subsequently
obtained by averaging over all pixels. Thus the acquisition time is reduced by a
factor equal to n, compared to a single detector. The highest acquisition rate,
however, is typically limited to 30 Hz for standard CCD and CMOS cameras,
which limits the smallest measurable characteristic relaxation time of g2(τ) to
τ * 10 ms. By contrast, the time resolution of a single-mode fiber coupled to an
APD or a PMT and a hardware correlator (photon counting device) can be as fast as
12.5 ns. Fast relaxation dynamics can be therefore probed in the latter case. To give
an idea, for 220 nm diameter polystyrene particles suspended in water at a volume
fraction of 7 %, the amplitude of g2(τ) already decreases by 50 % after a correlation
time τ of 0.85 µs, as measured in transmission using a single-mode detection
scheme. Such very fast relaxation dynamics would not be observed by MSDWS.
The single-mode detection scheme is therefore the most suitable one to detect very
fast relaxation dynamics. On the other hand longer measurement times are required
to measure slow relaxation times with a single detector. It could take several hours
to well measure a very viscous dispersion, for example.

DWS Echo technology: One way to solve this problem is to introduce a ground
glass in the light path, mounted on a motor with adjustable angular speed, as shown
in Fig. 11.9 [28]. Here the ground glass scrambles the light illuminating the sample.
After a full revolution of the ground glass, the speckle pattern reappears and
generates an echo peak in the measured correlation function. The sample intensity

11 Advanced Light Scattering Techniques 409



autocorrelation function is now determined for long correlation times that are
separated by the motor rotation period. The shape of the echo peaks is defined by
the rotation speed while the height follows the correlation function of the sample
internal dynamics. The echo mode allows drastic reduction of the measurement
time, from several hours to a few minutes. By merging the acquired short and long
time parts of the recorded sample correlation function, one can therefore access an
extremely wide range of correlation times in a matter of minutes for all kinds of
samples with a single fast detector.

11.4.4 Applications of DWS

DWS is an optical technique based on multiple light scattering in concentrated
colloidal materials, and hence naturally applies to everyday life soft matter systems
such as suspensions (varnishes, paints, inks, etc.), emulsions (mayonnaise, cosmetic
creams, milk, etc.), foams (shaving cream, beer or coffee foam, etc.) or gels (yogurt,
gelatin, etc.). These materials typically consist of colloidal particles, droplets, or
bubbles dispersed at high volume fractions in a continuous liquid phase.

Maybe the most popular application is the combination of DWS with
microrheology, which consists in computing the frequency-dependent storage
G’(ω) and loss G’’(ω) moduli of a colloidal system by applying the generalized
Stokes-Einstein relation to the mean square displacement of the scattering colloids
[29]. Since, moreover, DWS probes particle motion at short timescales, such a
combination allows determination of G’(ω) and G’’(ω) over a very large frequency
range, up to 106 rad/s, while most of mechanical rheometers are limited to angular
frequencies of *103 rad/s. As such, DWS microrheology is complementary to
mechanical rheology, and, in some cases, can even replace it. We note, in addition,
that such high frequencies are only obtainable with the use of the single-mode
detection scheme, since the acquisition rate of CCD and CMOS cameras is limited
to *30 Hz.

Another application, which uses DWS in backscattering, is particle sizing [30].
Although γ depends on both particle size and polarization detection, the mean

Fig. 11.9 DWS setup
integrating a rotating ground
glass [38]
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value < γ > obtained by averaging the values of γ as measured using two different
polarization detection modes (i.e. either vertically or horizontally polarized light is
detected), was experimentally shown to be independent of particle size. As a
consequence, using < γ > and running two consecutive measurements by tuning the
polarization detection was demonstrated to give reliable and very accurate estimates
of the hydrodynamic radius of particles dispersed at high volume fractions in liquid
solvents. Also static measurements of the transmitted intensity as measured in DWS
can provide the diameter of bubbles in foams like shaving cream [31]. Particle size
distribution, however, cannot be assessed by DWS.

Another field of application of DWS, in addition, is the monitoring of processes
like gelation (e.g. transformation of milk into yogurt, drying of paint films, etc.)
[27, 32], aging (e.g. Ostwald ripening in foams, emulsions, coarsening of foams, etc.)
[33, 34], etc., which are of industrial relevance.

DWS can also detect fluctuations of surfaces of low-viscosity droplets dispersed
in a solvent [35], or detect formation of a skin layer at the interface between air and
a drying suspension [36].

Overall, DWS covers a broad range of applications including both fundamental
and industrial aspects.
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Chapter 12
Scattering Techniques Applied to Soft
Matter Interfaces

Jean Daillant

Abstract An introduction to scattering techniques for the investigation of inter-
faces and thin films is given in this lecture. A unified formalism for reflectivity,
scattering and diffraction is used in order to underline the common concepts. The
different methods are illustrated with several examples of liquid surfaces, lipid
membranes, polymer films, nanoparticles, using either x-rays or neutrons.

12.1 Introduction

Surfaces and interfaces play an important role in a large number of systems, in
particular in soft-condensed matter where many systems have a very large specific
area. From the 1980s, x-ray and neutron scattering techniques (diffraction, reflec-
tivity, surface scattering) have been widely used to determine the structure of soft
surfaces and interfaces in complement with, or combined to other methods,
sometimes developed at the same time like scanning probe microscopies. With the
development of more powerful sources, detectors and methods, they are now also
increasingly used to understand interfacial processes.

Different surface scattering techniques have been developed to answer specific
questions. Grazing incidence diffraction (GID) allows the determination of the
in-plane structure of crystalline samples. It was first applied to Langmuir films at
the air/water interface were published in 1987 [1, 2]. The density profile normal to
an interface is obtained in reflectivity experiments, developed at the same time, with
the first reflectivity experiments on the bare water surface being published in 1985
[3]. In reflectivity studies, only density profiles averaged over the surface can be
measured and from the beginning of the 90s, the analysis of diffuse scattering was
developed to access in-plane inhomogeneities or fluctuations [4, 5]. Finally, grazing
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Incidence X-ray Scattering (GISAXS) and Grazing Incidence Neutron Scattering
(GISANS) are the surface couterpart of small angle scattering and are used to
characterize surface structures in the range ≈1–100 nm.

Many soft systems have been studied using scattering techniques: simple liquids,
liquid crystals, surfactants, polymers, membranes, ionic liquids, nanoparticles. The
investigation of liquid–liquid and solid–liquid interfaces has also become possible,
opening wider fields of research.

This chapter is organised as follows. After a short introduction to the interaction
of x-rays with matter, scattering cross-sections for the different methods will be
derived within an unified frame. Experimental aspects will be illustrated with
several examples.

12.2 The Scattering Cross-Section

12.2.1 Differential Scattering Cross-Section and Intensity

The full interpretation of a scattering experiment requires the detailed comparison
of an experimentally determined scattered intensity with a model calculation. This
is most conveniently achieved by calculating the differential scattering cross-section
dr=dX which is defined as the intensity scattered per unit solid angle in the
direction ksc (polarisation esc) for a unit incident flux in the direction kin (polari-
sation ein), see Fig. 12.1. The scattered intensity is then obtained by convoluting
dr=dX with the experimental resolution function.

I ¼ U0

Z
X

dr
dX

dX; ð12:1Þ

where U0 is the incident flux and X the solid angle subtended by the detector. In
some cases (reflectivity, diffraction), intensity will be peaked in a given direction
and Eq. (12.1) will amount to a convolution with instrumental resolution. In other
cases (diffuse scattering), intensity varies slowly with angle and as a result of

dσ/dΩ

in

sc

k

k

Fig. 12.1 Definition of differential scattering cross-section
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integration over dX in Eq. (12.1), intensity will be roughly proportional to X.
Having a proper estimate of the resolution is then as critical as the scattering
cross-section calculation to evaluate the scattered intensity.

12.2.2 The Born Approximation

In the most simple Born approximation (kinematic approximation) which neglects
multiple scattering, a given scatterer only “sees” the incident wave. Considering
first that all scatterers in the medium are identical, the waves scattered by two
scatterers separated by a distance r only differ by a phase factor eiq�r, where q ¼
ksc � kin is the wave-vector transfer (Fig. 12.2). Summing over all scatterers in the
medium, the total amplitude scattered by the medium will be proportional toP

j e
iq�rj

��� ���2 and the scattering cross-section which is proportional to the intensity can
be written:

dr
dX

¼ b2
X
j

eiq�rj
�����

�����
2

¼ b2
Z

drqðrÞeiq�r
����

����
2

; ð12:2Þ

where the proportionality factor b has the dimension of a length and is called the
scattering length. If there are different kinds of scatterers, on can write

dr
dX

¼
X
j

bje
iq�rj

�����
�����
2

¼
Z

drqbðrÞeiq�r
����

����
2

; ð12:3Þ

where qb is called the scattering length density.
As only intensities or scattering cross-sections are measured in a scattering

experiment and not amplitudes, a scattering experiment will generally not lead to a

Fig. 12.2 Kinematics of scattering. The phase shift between the waves scattered in direction ksc
by two scatterers separated by r is q � r
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direct determination of scattering length densities. Starting from Eq. (12.2), we
have:

dr
dX

¼ b2
Z

drqðrÞeiq�r
����

����
2

¼ b2
Z

drdr0qðrÞqðr0Þeiq�ðr�r0Þ

¼ b2
Z

drdRqð0ÞqðRÞeiq�R

¼ b2V
Z

dRhqð0ÞqðRÞieiq�R;

ð12:4Þ

where the step between the last two lines is just the definition of the average of
qð0ÞqðRÞ over the scattering volume, with R ¼ r� r0. hqð0ÞqðRÞi is called the
density-density correlation function. It is the average of the densities at two points
separated by R and plays a particularly important role in scattering, in particular in
disordered systems. A scattering experiment will determine correlation functions
and give a statistical average description of the sample structure.

12.2.3 Scattering Length and Refractive Index

X-rays interact with matter through different mechanisms. They can be absorbed by
an atom with the subsequent emission of another photon (fluorescence) or electron
(photoelectric effect). Anomalous scattering will happen close to an absorption edge
where the interaction will become resonant. Raman scattering, Compton scattering
or magnetic scattering might also happen depending on the system or radiation
energy [6, 7]. In this chapter, we shall mainly consider Thomson (charge) scat-
tering: A charged particle is accelerated by the oscillating electric field and
re-radiates.

The velocity v of free electrons of mass m in an electric field E is such as
mdv=dt ¼ �eE. For a eiwt time dependence v ¼ ðie=mðxÞÞE, the displacement is
x ¼ �iv=x and we have an oscillating dipole

p ¼ �ex ¼ � e2

mex2 Ee
ixt ð12:5Þ

associated with each electron. The field radiated by a dipole p at a distance r in the
far field is:

Esc ¼ k20e
�ik0r

4pe0r
ðr� pÞ � r: ð12:6Þ
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Denoting Ein ¼ êin and Esc ¼ êsc, ðr� pÞ � r ¼ rp� ðp � rÞr. As êsc is normal to
r, ðrp� ðp � rÞrÞ � êsc ¼ prðêin � êscÞ. The intensity scattered in a unit solid angle is
jEj2=r2, which, using k0 ¼ 2p=k ¼ x=c, leads to

b ¼ e2

4pe0mc2
ðêin � êscÞ ¼ reðêin � êscÞ: ð12:7Þ

re ¼ e2

4pe0mc2
¼ 2:818� 10�15 m; ð12:8Þ

with e0 ¼ 8:85� 10�12 the electric permittivity of vacuum. re is called classical
electron radius or Thomson radius.

The scattering is more efficient for the light electrons than for the heavy nuclei
(mass m in Eq. (12.7)). As long as the frequency of the electromagnetic field is
much larger than the characteristic atomic frequencies, which is the case considered
above for the generally light atoms considered in soft-condensed matter, the elec-
trons can be considered as free electrons [8, 9], and a material can be simply
characterised by its electron density qe.

For heavier atoms, the classical model described above can be pushed further by
adding a restoring force mx2

0 describing the interaction with the nucleus and a
damping force due to the emission of light and transfer of energy to other electrons.
Then, md2x=dt2 þ cdx=dtþmx2

0x ¼ �eE, and

b ¼ re
x2

x2 � x2
0 � icx

ðêin � êscÞ ¼ reðf þ f 0 þ if 00Þðêin � êscÞ ð12:9Þ

which describes anomalous scattering, i.e. the variation of the scattering
cross-section close to the absorption edge at x0. Note that Eq. (12.9) is equivalent
to the full quantum mechanical description.

For neutrons, the two main interactions are the strong interaction with the nuclei
and, as the neutron is a spin 1/2 particle, the magnetic interaction with the existing
magnetic moments (nuclear and electronic) [10]. Neutrons obey the Schrödinger
equation and interact with nuclei via the short-range Fermi pseudo-potential:

VFðrÞ ¼ b
2p�h2

mn

� �
dðrÞ; ð12:10Þ

where dðrÞ is the Dirac delta-function. We have

� �h2

2mn
r2 þ 2p�h2

mn

X
i

qibi

 !
wðrÞ ¼ EwðrÞ; ð12:11Þ

with mn the neutron mass and bi the tabulated scattering length of nuclei i.
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An important consideration for neutrons is incoherent scattering. A material will
indeed consist of a random distribution of isotopes and spin states, implying a
random distribution of scattering lengths. For a given atom i in the system, one can
write bi ¼ hbiþ dbi, where hdbi ¼ 0. Coming back to Eq. (12.3) and developing,

dr
dX

¼
X
j

bjeiq�rj
�����

�����
2

¼
X
i

X
j

ðhbiþ dbiÞðhbiþ dbjÞeiq�ðri�rjÞ

¼ hbi2
X
j

bje
iq�rj

�����
�����
2

þNðhb2i � hbi2Þ;
ð12:12Þ

with N the number of nuclei in the system. Indeed hdbii ¼ hdbjihdbiii6¼j ¼ 0 and

hdbidbii ¼ hb2i � hbi2. The first term in Eq. (12.12) called coherent scattering is
the only interesting term for structure determination and the second called inco-
herent scattering will only give rise to an isotropic background.

A complementary, often most useful description is based on the use of a
refractive index like in optics. For x-rays in a homogeneous medium, we have the
Maxwell equations and the constitutive relation,

r� E ¼ � @B
@t

r� B ¼ l0jþ l0
@D
@t

;

D ¼ e0n
2E;

ð12:13Þ

where r is the (@=@x, @=@y, @=@z) operator. E is the electric field and D the electric
induction. B is the magnetic field. l0 ¼ 4p� 10�7N=A2 is the magnetic perme-
ability of vacuum with e0l0c

2 ¼ 1. These equations can be combined to give the
(Helmholtz) propagation equation:

r�r� E� n2ðrÞx
2

c2
E ¼ 0

¼ �r2E� n2ðrÞx
2

c2
E;

ð12:14Þ

where n is the refractive index with e ¼ n2. We have k ¼ nx=c ¼ nk0. Note that in
Eq. (12.14), all the complexity of the system is carried by n2ðrÞ.

Using Eq. (12.5), the local polarization of the medium is PðrÞ ¼ qelðrÞpðrÞ with
qelðrÞ the local electron density. Using D ¼ e0n2E ¼ e0EþP, we can now define
the refractive index:
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n ¼ 1� qele
2

2mee0x2 ¼ 1� k2

2p
qelre � 1� 10�6; ð12:15Þ

for x-rays with k � 1 Å.
As the Schrödinger equation Eq. (12.11) has exactly the same structure as the

propagation equation Eq. (12.14) for x-rays with bi is the scattering length of
nucleus i of density qi, we have

n ¼ 1� k2

2p

X
i

qibi:

12.3 Reflectivity

12.3.1 Reflectivity in the Born Approximation

Integrating Eq. (12.2) for a perfect dioptre of electron density qsub, one obtains

dr
dX

¼ b2q2sub

Z
dzdz0

Z
drdr0eiqk:ðrk�r0kÞeiqzzeiqzz

0

¼ 4p2Ab2q2subdðqkÞ
q2z

;

ð12:16Þ

where we have used
R
drkeiqkrk ¼ 4p2dðqkÞ. In Eq. (12.16), A is the illuminated

area, qk is the wave-vector transfer component in the plane of the surface and qz the
wave-vector transfer component normal to the surface. The condition dðqkÞ yields
specular condition hsc ¼ hin ¼ h, w ¼ 0 and qz ¼ 4p sin h=k. The dðqkÞ condition
ensures that for an infinite surface, intensity will be reflected only in the hsc ¼ hin
direction (Fig. 12.3).

Integrating over the angular acceptance of the detector
dX ¼ dhscdw ¼ ð2=k0qzÞdqk, and normalising to the incident intensity (leading to a
factor A sin h since dr=dX is normalised to a unit incident flux), one obtains for the
reflectivity coefficient within the Born approximation

R ¼ 16p2b2q2sub=q
4
z : ð12:17Þ

Due to the inner product ðêin � êscÞ in Eq. (12.7) for b, the reflectivity is 0 if êin
and êsc are perpendicular to each other. In other words, the Brewster angle is exactly
45° for x-rays in the Born approximation.

Another important point is that in a binary system or a colloidal system, aver-
aging Eq. (12.16) over all possible orientations of local surfaces (or wave-vectors),
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again leads to a Q�4 dependence, the so-called Porod law of small angle
scattering [11].

In fact, the Born approximation is not always accurate enough as can be seen
from the divergence at qz ¼ 0 in Eq. (12.17), and this can be in particular the case
for surfaces.

12.3.2 The Optical Index and Total External Reflection

To solve this problem, the alternative description of matter through a refractive
index introduced in the previous section is advantageous. In the limit discussed
above where the electromagnetic frequencies are much larger than the characteristic
atomic frequencies, this index is local [8, 9], i.e. only averaged over resolution
volumes, which explains why atomic resolution can be achieved using x-rays. The
generalization of Eq. (12.15) is:

n ¼ 1� d� ib; with d ¼ k2

2p
qb; ð12:18Þ

θ

θ
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Fig. 12.3 Geometry and notations used in this chapter. hin is the angle of incidence (which is
defined with respect to the interface, differently from the conventions in optics) and hsc the
scattering angle. kin is the incident wave vector and kr the wave vector of the reflected wave. q is
the wave-vector transfer, and qk its projection onto the sample surface. In a reflectivity experiment,
hsc ¼ hin ¼ h, w ¼ 0 and the wave vector transfer is qz ¼ 4p sin h=k
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with k the wavelength, and qb the scattering length density.
From Eq. (12.18), it is easy to see that surface scattering may be large. Indeed,

total external reflection will occur whenever going from a medium with a larger
index to a medium with a lower index. For x-rays, this happens when going from air
or a vacuum to a dense medium since the refractive index of matter is (slightly) less
than 1. Indeed, using the Snell-Descartes law of refraction with medium 1 a vacuum
and medium 2 a dense medium,

cos h1 ¼ n cos h2; ð12:19Þ

with n ¼ 1� d, we have cos h2 ¼ 1 for cos h1 ¼ 1� d, and total external reflection
occurs for grazing angles of incidence hin � hc ¼

ffiffiffiffiffi
2d

p � 10�3 [12]. This phe-
nomenon is of great help for the study of surfaces since for hin\hc only an
evanescent wave propagates below the surface (with a penetration depth equal to a
few nm), and hence surface sensitivity is considerably enhanced. On the other hand,
scattering cross-sections are large in the total external reflection region, multiple
scattering cannot be neglected, and the simple kinematical approach is no longer
good enough.

For an exp iðxt � kzzÞ wave, the penetration depth is 1=2ImðkzÞ (Fig. 12.4).
Using Eq. (12.19), it is easy to show that the imaginary part of the normal com-
ponent of the wave vector in the medium is:

ImðkzÞ ¼ 1ffiffiffi
2

p k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðh2 � 2diÞ2 þ 4b2�1=2 � ðh2 � 2dÞ

q
: ð12:20Þ

The penetration depth is a few nms below the critical angle, increases around hc
and is limited by absorption above hc.

Fig. 12.4 Penetration depth of a 8 keV radiation in a KCl solution as a function of the grazing
angle of incidence for two concentrations (0.1 and 1 M)
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12.3.3 Fresnel Reflectivity and Optical Formalism

Using boundary conditions (continuity of the tangential component of E and of the
normal component of D ¼ n2E, one finds the transmission r0;1 and reflection t0;1
coefficients for the electric field for a perfect dioptre [12],

r ¼ r0;1 ¼ kz;0 � kz;1
kz;0 þ kz;1

; ð12:21Þ

t ¼ t0;1 ¼ 2kz;0
kz;0 þ kz;1

ð12:22Þ

The Fresnel reflection coefficient for the intensity is R ¼ RF ¼ rr�j j.

RF ¼ I
I0

¼ Erefj j2
Einj j2 ¼ qz �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z � q2c

p
qz þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z � q2c

p
�����

�����
2

; ð12:23Þ

where Ein is the incident field and Eref the reflected field, and we have noted
qc ¼ ð2p=kÞhc. Fresnel reflectivity is plotted on Fig. (12.5) where it can be seen that
Eq. (12.23) converges to Eq. (12.17) for large qz values far from total reflection.

Equation (12.23) can be generalized for stratified media using either recursive
methods [13] or a matrix formalism [12, 14, 15]. In the latter case, propagation in
each medium is characterized by a transfer matrix and refraction at interfaces is also
taken care of by a refraction matrix. Reflectivity can be obtained by the multipli-
cation of the matrices characterizing the Fresnel reflectivities of the stratified
medium. Interestingly, it can be shown [12] that a very good approximation to the
reflectivity of a complex system is given by:
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Fig. 12.5 Calculated reflectivity of a flat silicon wafer and asymptotic law after [12]
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R ¼ RF
1

qsub

Z
@q
@z

eiqzzdz

����
����
2

; ð12:24Þ

where RF is the Fresnel reflectivity of the system. Integrating by parts, assuming
absorption in the substrate for convergence, one also has

R ¼ RF
qz
qsub

Z
qðzÞeiqzzdz

����
����
2

; ð12:25Þ

close to the Born expression Eq. (12.17), but with a RF factor instead of the
diverging 1=q4z factor. Equation (12.25) shows that reflectivity will give access to
the scattering length density profile normal to the surface.

For a single film of scattering length density qf and thickness ‘ on a substrate,
Eq. (12.25) becomes:

R ¼ RF q2f þðqf � qsubÞ2 þ 2qf ðqf � qsubÞ cosðqz‘Þ
h i2

=q2sub: ð12:26Þ

the reflectivity curve will exhibit fringes resulting from the interference between
x-rays or neutrons reflected at the film free surface and the film/substrate interface.
The interfringe distance h is such that qz‘ ¼ 4p sin h=k‘ ¼ 2p, leading to
2‘ sin h ¼ k, similar to Bragg’s law.

12.3.4 Example: Neutron Reflectivity Investigation
of the Swelling of a Polyacrylamide Film

X-ray reflectivity can be easily measured using laboratory sources (x-ray tubes or
rotating anodes). Synchrotron radiation allows time-resolved studies, possibly
down to ms using a dispersive setup [16]. Radiation damage can be an issue with
intense x-ray sources which is avoided with neutrons. Another advantage of neu-
trons is the possibility to do contrast variation, for example using hydrogenated and
deuterated samples with different scattering lengths in order to determine the precise
distribution of a given molecule by comparing the two experiments (Fig. 12.6).

As an example, the swelling dynamics of the ultrathin polyacrylamide
spin-coated films in saturated vapor of D2O and H2O was studied using neutron and
X-ray reflectivity in Ref. [17]. A uniform scattering length density (SLD) profile
represents the dry films (Fig. 12.7), whereas the SLD profiles corresponding to the
swollen films were characterized with a decreasing solvent concentration along the
film thickness from the top surface to the film/substrate interface. As the scattering
length densities of D2O and polyacrylamide are known, the overall scattering length
density profile of the composite film qcomp can be converted into concentration
profiles using qcomp ¼ cD2OqD2O þð1� cD2OÞqPAM. This was used in Ref. [17] to
understand the anomalous swelling dynamics of those samples.
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12.4 Perturbation Methods: The Distorted-Wave Born
Approximation

As we have seen in Sect. 12.3.1, the Born approximation is not accurate when
h\hc which is a very interesting limit due to surface sensitivity. More accurate
approximations like the distorted-wave Born approximation have therefore been
developed to treat this case. A distorted-wave Born approximation (DWBA) is a
perturbation theory using as unperturbed state a system as close as possible to the
system of interest in which the electric field can be calculated exactly using the
Born approximation [18]. For example, if one is interested in the diffraction by a
monolayer on a substrate, an appropriate reference system could be composed of
the substrate and an homogeneous layer having the average refractive index of the
monolayer. If one is interested in the surface roughness of a dioptre, an appropriate
reference system would be the same dioptre without roughness. This means that
reflection and refraction would be exactly (dynamically) taken into account, but not
diffraction from the monolayer, or diffuse scattering from the roughness. More
complicated reference states can be considered. An example when dealing with
gratings is given in Ref. [19]. Two different formalisms have been developed for the
DWBA. The first one [20–22], initiated by Croce and Vineyard is a full optical
formalism. The second one, initiated in particular by Sinha [11] is a quantum
formalism, which has the advantage of being more simple to handle.

In general the scattering is weak enough that only the first order DWBA can be
used, i.e. only single diffraction or diffuse scattering events are considered. The
second-order theory [23] is only important to treat reflectivity, i.e. scattering with
qk ¼ 0 which cannot be accounted for by single scattering events. Of course, the
closest the reference state to the actual experimental system, the better the
approximation. For this reason, it has been proposed to use graded reference states
to give a better account of scattering by surface roughness [24, 25]. This is however

Fig. 12.6 Swelling of a
polyacrylamide film after
[17]. Swelling of the film
(top) and schematics of the
neutron reflectometer at
Laboratoire Léon Brillouin
(bottom)
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not necessary for soft-condensed matter systems which generally contain only weak
scatterers, and for which the only strong contrast is at the surface. For this reason,
we use a simpler approximation in the following, in which reflection and refraction
are only taken into account at the top or substrate surface. This approximation is
good enough for soft-condensed matter systems, and allows a unified treatment of
diffraction and diffuse scattering. The interested reader will find the details of the
electromagnetic calculations in Ref. [26].

Fig. 12.7 Swelling of a
polyacrylamide film after
[17]. a Neutron reflectivity
data (symbols) with fitted
profiles (lines) of the swelling
polymer films when exposed
to D2O, from top to the
bottom as a function of
increasing exposure time.
b Scattering length density
profiles corresponding to the
reflectivity data
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As mentioned in Sect. 12.2.3, all the complexity of the system can now be
described using the refractive index in the propagation equation Eq. (12.14):

r�r� EðrÞ � n2refðrÞk20EðrÞ ¼ dn2ðrÞk20EðrÞ: ð12:27Þ

Using dPðr0Þ ¼ e0dn2ðr0ÞEðr0Þ, we can write

E ¼ Eref þ dE; ð12:28Þ

where dE is the field created by the fictitious dipolar source dP in the reference
case. This is an exact equation and the approximations will consist in evaluating
this field (Fig. 12.8). Formally, as we are considering linear electromagnetism, this
can be done using Green functions GðR; rÞ formally defined as:

r�r� GðR; rÞ � n2refðRÞk20GðR; rÞ ¼ k20e0dðR� rÞ; ð12:29Þ

i.e. for a unit dipole instead of dP. The perturbation dE is then obtained by sum-
ming over all dipoles dP:

EðRÞ ¼ ErefðRÞþ dEðRÞ
¼ ErefðRÞþ

Z
drdPðrÞGðR; rÞ

¼ ErefðRÞþ e0

Z
drdn2ðrÞEðrÞGðR; rÞ:

ð12:30Þ

Using the reciprocity theorem, it can be shown that the Green function can be
simply calculated as the electric field in r at the surface due to a unit dipole
in R (detector) [18, 20]. In a vacuum, it is simply Eq. (12.6) which ensures

(r’ )EPB n=δ 2

sck
kin

Ein

E(R) = E ref + δ (R)E

Fig. 12.8 Schematics of the perturbation theory
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consistency with the Born approximation. At a surface, it can be calculated like in
Sect. 12.3.2. Indeed, the surface electric field is the superposition ð1þ rÞE0 of the
incident and reflected fields above the surface and the transmitted field below the
surface tE0. As the field is continuous, either of them can be used for small heights
qz‘	1, and we simply have in the far field:

GðR; rÞ ¼ tsc0;1k
2
0

e�ik0 R�rj j

4pe0 R� rj j : ð12:31Þ

Developing R� rj j as R� r � R to lowest order, with R the distance between the
detector in the far field, i.e. much farther than the sample size and an arbitrary origin
on the sample, one finally gets a plane wave development for the Green function:

GðR; rÞ ¼ tsc0;1k
2
0
e�ik0R

4pe0R
eiksc�rbesc; ð12:32Þ

with besc the unit vector giving the polarisation of the scattered field.
Equation (12.32) differs from the Born case Eq. (12.6) only by the transmission
coefficient tsc0;1 calculated in the scattering direction, giving an estimate of the sur-
face electric field. t0;1 exhibits a peak at the critical angle (Fig. 12.9) called
Vineyard peak in the surface diffraction literature and Yoneda peak in the surface
scattering or GISAXS literature. That tE is a good approximation of the surface
field is demonstrated in Fig. 12.9 where it is compared to the fluorescence of a

Fig. 12.9 a Penetration depth (dashed line) and b square of the modulus of the Fresnel
Transmission coefficient for polarization (s) as a function of the grazing angle of incidence h (solid
line). Points are experimental data for Mn Ka fluorescence of respectively, a 10−3M MnCl2
solution (a) and a monolayer of Mn2+ ions adsorbed at the water surface below a behenic acid
monolayer (b). The fluorescence intensity emitted by an atom is proportional to E2 and is therefore
a direct measure of the local surface field with the monolayer and the penetration with the solution

12 Scattering Techniques Applied to Soft Matter Interfaces 427



monolayer of ions at the water surface. As the fluorescence emitted by an atom is
proportional to E2, it is a direct probe of the electric field. More, generally, the
element sensitivity of fluorescence is widely used in surface scattering techniques
like grazing incidence fluorescence, like in Fig. 12.9 or standing waves. In the
latter, the standing wave field created by the interference between the incident field
and the field diffracted by a periodic structure like a crystal or monolayer with a
resolution given by a fraction of the period is used to precisely locate atoms.

12.4.1 General Scattering Cross-Section for Scattering
in Thin Films

Inserting Eq. (12.32) into Eq. (12.30) with E ¼ tin0;1e
�ikin�rbein, one obtains:

EðRÞ ¼ ErefðRÞþ k20E0
e�ik0R

4pR
tin0;1t

sc
0;1

Z
drdn2ðrÞeiksc�re�ikin�rðbein � bescÞ: ð12:33Þ

Using Eq. (12.18) for the refractive index and calculating the flux in a unit solid
angle for a unit incident flux, one obtains for the scattering cross-section:

dr=dX ¼ dr=dXref þ tin0;1

��� ���2 tsc0;1

��� ���2 Z drdqbðrÞeiq�r
����

����
2

; ð12:34Þ

with the wave vector transfer q ¼ ksc � kin. tin0;1 and t
sc
0;1 are the Fresnel transmission

coefficients between the upper (0) and lower (1) media, for respectively the angle of
incidence hin and the scattering angle in the scattering plane hsc. The coefficient tin0;1
is an approximation of the actual field scattered by the electron density fluctuations
dq, and tsc0;1 describes how this field propagates to the detector. dqb is the difference
between the actual scattering length density and that of the perfect dioptre.

12.4.2 Grazing Incidence Diffraction

We consider here diffraction in a flat thin film, for example a Langmuir film.
Denoting qucðrÞ the electron density in the unit cell, a1 and a2 the lattice vectors,
and N1 and N2 the number of repeat units along a1 and a2 respectively (Fig. 12.10),

dqðrÞ ¼
XN1

i1¼1

XN2

i2¼1

qucðr� i1a1 � i2a2Þ: ð12:35Þ
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Then,

SðqÞ ¼
Z

drdqðrÞeiq�r
����

����
2

i

¼
Z

dr
XN1

i1¼1

XN2

i2¼1

qucðrÞeiðqk�a1Þi1 þ iðqk�a2Þi2eiq�r
�����

�����
2

:

ð12:36Þ

Performing first the summation and integrating, one obtains:

dr=dX ¼ b2 tin0;1

��� ���2 tsc0;1

��� ���2 ~qucðqÞj j2sin
2 N1q�a1

2

� �
sin2 q�a1

2

� � sin2 N2q�a2
2

� �
sin2 q�a2

2

� � ; ð12:37Þ

where ~qucðqÞ is the Fourier transform of qucðrÞ. If N1 and N2 are large,

dr=dX � 4p2N1N2b
2 tin0;1

��� ���2 tsc0;1

��� ���2 ~qucðqÞj j2
X
n

X
p

dðq � a1 � 2npÞdðq � a2 � 2ppÞ

�
X
G

4p2Ab2 tin0;1

��� ���2 tsc0;1

��� ���2 ~qucðqÞj j2
ja1 � a2j2

dðqk �GÞ;

ð12:38Þ

where G ¼ ð2np=a1; 2pp=a2Þ is a reciprocal lattice wave vector and one recovers
Bragg peaks at reciprocal lattice positions and a scattered intensity proportional to
the crystal size. In the z direction ~qucðqÞ gives access to the Fourier transform of the
unit cell electron density at reciprocal space position G. Note that A=ja1 � a2j is the
number of unit cells.
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Fig. 12.10 Grazing incidence diffraction from a Langmuir film of behenic acid C22H4402 in the S
phase at temperature T ¼ 16:1 
C and surface pressure P ¼ 32:1mN=m (circles). Calculation was
made using Eq. (12.37) with a1 ¼ 0:5027 nm and a2 ¼ 0:7265 nm. N1 ¼ 140 and N2 ¼ 80
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12.4.3 Example: Structure Determination of Amphiphilic
Films at the Air-Water Interface

Langmuir films usually form two-dimensional powders at the water surface. With
fatty acids or alcohols, the indexation can be made by choosing a rectangular
centered cell with two atoms per cell with a1\a2 (choosing a hexagonal cell is also
possible) (Fig. 12.11).

If a2 ¼ a1
ffiffiffi
3

p
, the cell is hexagonal, and if all molecules in the cell are equiv-

alent, the three first-order peaks (02), (11) and ð11Þ are degenerate. This is the case
in the so-called LS phase. If a2 6¼ a1

ffiffiffi
3

p
, the cell is said to be distorted-hexagonal.

This is generally the case if the molecules are tilted. If the chain molecules are tilted
along one of the cell axes, ½10� (a1) towards their nearest neighbours (NN) like in
the L2 phase, or ½01� (a2) towards their next-nearest neighbours (NNN) like in the L02
phase, the reflections (11) and ð11Þ are degenerate, and distinct from (02). The unit
cell parameters a1 and a2 can be easily determined from simple geometrical con-

siderations: a1 ¼ 4p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2ð11Þ � q2ð02Þ

q
and a2 ¼ 4p=qð02Þ.

If the two molecules in the unit cell have the same form factor (implying in
particular that there is no preferential orientation of the backbone planes, or this

a

b

(a)

(1 1)
-

(1 1)

(0 2)
q
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t

z z’
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β

ψ

(b)

φ

Fig. 12.11 a Indexation of the first-order grazing incidence diffraction peaks for a centered
rectangular cell. The angle between the backbone planes of the central molecule and the molecules
at the corners is 90
 in the herringbone structure and 40
 in the pseudo-herringbone structure.
b Geometry for the calculation of the form factor of a cylindrical molecule
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preferential orientation is the same for all the molecules, contrary to what is rep-
resented in Fig. 12.11a). The Fourier transform of the electron density in the unit
cell in Eq. (12.38) can be written as:

~qucðqÞ ¼ ~qmolðqÞ 1þ eiq� 1=2 a1 þ a2ð Þ½ �
h i

;

where ~qmolðqÞ is the molecular form factor. It immediately follows that ðhkÞ
reflections with odd values of hþ k will be forbidden since they will include a
factor 1þ cosðpðhþ kÞÞ ¼ 0.

The vertical dependence of the scattered intensity depends on the form factor of
the tilted cylindrical molecules which can be easily calculated (full calculation
using atomic positions is given for example in Ref. [27]) using cylindrical coor-
dinates with an axis parallel to the long axis of the molecule (Fig. 12.11b),

~qmolðqÞ ¼
Z amol

0
rdr
Z lmol

0
dz0
Z 2p

0
dx q eiq�r;

where z0 is the length along the lmol long cylinder of radius amol. A point r within
the cylinder has for coordinates r ¼ ðr cosx; r sinx; z0Þ. The integration is most
easily performed using the angle / between the cylinder and the wave-vector
transfer as variable:

~qmolðqÞ ¼ q
eiqlmol cos/ � 1

q cos/

Z amol

0
2prdrJ0ðqr sin/Þ:

One obtains,

~qmolðqÞ ¼ Ne�
eiqlmol cos/ � 1
qlmol cos/

� �
2J1ðqamol sin/Þ

qamol sin/

� �
; ð12:39Þ

where Ne� is the total number of electrons in the molecule. From Eq. (12.39) it
appears that the molecular form factor is maximum near / ¼ p=2, i.e. is peaked in a
direction perpendicular to the tilt direction. We deduce from this that for NN tilt the
intensity of the (11) peak is above the horizon by an angle equal to the tilt angle,
and that the (02) peak has its maximum intensity on the horizon (Fig. 12.12).
For NNN tilt, both peaks have their maximum above the horizon. In any case, the
tilt angle t and azimuth can be simply deduced from the peak location. For NN tilt,

tan t ¼ qð11Þz =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð11Þ

2

k � qð02Þ
2

k =4
q

, and for NNN tilt, tan t ¼ qð11Þz =qð11Þk . In that case,

qð11Þz ¼ 2qð02Þz .
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12.5 Surface, Interface and Thin Films Fluctuations

Fluctuations are the rule in soft-condensed matter systems, and they are not
restricted to fluctuations in the positional order in ordered systems: surfaces and
interfaces may strongly fluctuate. Because these fluctuations are not related to any
discontinuous symmetry, they do not give rise to scattering close to a singularity,
and scattering is centered at the origin of reciprocal space.

12.5.1 Random Surfaces

A fluctuating surface can be described as a random surface via probability func-
tions. The one-point distribution function p1ðrk; zÞ will be the probability to find the
surface with height z in rk. The mean height of the surface is then

hziðrkÞ ¼
Z 1

�1
zðrkÞp1ðrk; zÞdz: ð12:40Þ

Higher order probability functions can also be defined like the two-point dis-
tribution function p2ðr1k; z1; r2k; z2Þ which gives the probability of finding the
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Fig. 12.12 Relation between the molecular tilt azimuth (top) and the diffraction pattern (bottom)
in a distorted-hexagonal cell. The azimuth is indicated by the long axis of the ellipses. a Tilt in the
nearest-neighbour direction, b tilt in the next nearest-neighbour direction, c tilt in an intermediate
direction
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surface both at z1 in r1k and z2 in r2k. A very important quantity is the height-height
correlation function

hz1z2i ¼
Z 1

�1
z1z2p2ðr1k; z1; r2k; z2Þdz1dz2: ð12:41Þ

Very often, one will also use the power spectrum:

h~zðqkÞ~zð�qkÞi ¼
Z

drkeiqk�rk hzð0kÞzðrkÞi; ð12:42Þ

with:

~zðqkÞ ¼
Z

zðrkÞeiqk�rkdrk: ð12:43Þ

12.5.2 Scattering Cross-Section

The simplest case is that of a single rough surface separating two homogeneous
media (the upper medium being for example a vacuum). Height fluctuations are
density fluctuations as the density of the upper and lower phase are different at an
interface. Then, Eq. (12.34) becomes:

dr
dX

¼ b2 tin0;1

��� ���2 tsc0;1

��� ���2 Z drdq2eiq�r
����

����
2

¼ b2 tin0;1

��� ���2 tsc0;1

��� ���2Dq2 Z drk

Z zðrkÞ

0
dzeiq�r

�����
�����
2

:

ð12:44Þ

Integrating over z:

dr
dX

¼ b2 tin0;1

��� ���2 tsc0;1

��� ���2Dq2jqzj2
Z

drk½eiqzzðrkÞ � 1�eiqk�rk
����

����
2

: ð12:45Þ

Then,

dr
dX

¼ b2 tin0;1

��� ���2 tsc0;1

��� ���2Dq2jqzj2
Z

drk

Z
dr0k½eiqzzðrkÞÞ � 1�½e�iqzzðr0kÞ � 1�eiqk�ðrk�r0kÞ:

ð12:46Þ
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Making the change of variables Rk ¼ rk � r0k and integrating over Rk:

dr
dX

¼ Ab2 tin0;1

��� ���2 tsc0;1

��� ���2Dq2jqzj2
Z

dRk heiqzzðRkÞ�iqzzð0Þi � heiqzzðRkÞihe�iqzzðRkÞi
h i

eiqk�Rk :

ð12:47Þ

Assuming Gaussian statistics, and, in any case, at second order,

heiqzzðRk i ¼ e�
1
2q

2
z hzðRkÞi2 ; ð12:48Þ

one finally obtains:

dr
dX

¼ Ab2 tin0;1

��� ���2 tsc0;1

��� ���2Dq2 e�q2z z2h i
jqzj2

Z
dRk ejqzj

2 zðRkÞzð0Þh i � 1
h i

eiqk�Rk ; ð12:49Þ

where hz2i is the surface r.m.s. roughness, and hzð0ÞzðrkÞi is the height-height
correlation function.

Note that in the limit of small qz’s:

drdX ¼ Ab2 tin0;1

��� ���2 tsc0;1

��� ���2Dq2hzðqkÞzð�qkÞi; ð12:50Þ

i.e. the scattering cross-section is proportional to the power spectrum. An important
point to note is the absence of dðqÞ functions in Eqs. (12.49), (12.50), implying in
particular that the scattered intensity will be proportional to the solid angle sub-
tended by the detector.

12.5.3 Example: The Liquid Vapor Interface

An interesting case is that of liquid interfaces for which the surface roughness is due
to capillary waves.

A first approach to the structure of liquid surfaces was initiated in 1893 by van
der Waals who described the liquid-vapour interface as a region of smooth tran-
sition from the density of the liquid to that of the gas [28, 29]. Conversely, in the
1965 capillary wave model of Buff et al. [30], a step-like local profile was assumed
for the liquid-vapour interface whose large-scale width results from the wandering
of the interface due to the propagation of thermally excited capillary waves. Light
scattering experiments have shown that this model gives an accurate description of
the liquid surface for in-plane length scales larger than one micron [31–33].

We give below as an example the calculation of the scattering cross-section
starting from the free energy of fluctuations. The free energy of a deformed liquid
surface can be written:
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H ¼
Z

1
2
Dqgf2 þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @f

@x

� �2

þ @f
@x

� �2
s

� 1

0
@

1
A

¼ 1
2
A
X

fðqkÞf�ðqkÞ Dqgf2 þ cq2k
h i

:

ð12:51Þ

Dq is the density difference between the lower and upper liquid, c is the surface
tension, g the acceleration of gravity and A the area. The first term gives the
gravitational energy difference when replacing vapor by liquid and the second term
the increase in surface energy, proportional to the surface area increase. Applying
equipartition of energy, the capillary wave spectrum can be written:

hfðqkÞfð�qkÞi ¼
1
A

kBT
Dqgþ cq2k:

ð12:52Þ

with the thermal energy kBT . Equation (12.52) describes thermally excited capillary
waves limited by gravity at large scales and by surface tension at distances smaller
than the so-called capillary length (lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c=Dqg

p � 2:7mm for water). More
precisely, the cq2k term stems from the increase in interfacial area due to the

deformation. Fourier transforming, we obtain the height-height correlation function:

hfð0ÞfðrkÞi ¼ kBT=ð2pcÞK0ðrk
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dqg=c

p
Þ: ð12:53Þ

K0 is the modified second kind Bessel function of order 0. K0ðxÞx!0 � Log2�
cE Logx with cE Euler’s constant, and limx!1 K0ðxÞ ¼ 0. Then, the scattering
cross-section can be written to a good approximation [5, 11, 34] as:

dr
dX

¼ Ab2q2sub tin0;1

��� ���2 tsc0;1

��� ���2kBT
cq2k

qk
qmax

� �s

; ð12:54Þ

where s ¼ ðkBT=2pcÞq2z , qmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dqg=c

p
is the minimum wave vector in the

capillary wave spectrum, and qmax is the largest one, on the order 2p=molecular
size.

In fact, this is not enough to fully describe the liquid surface as acoustic waves in
the liquid must also be included. In that case, the scattering cross-section is [18]:

dr=dX ¼ b2 tin0;1

��� ���2 tsc0;1

��� ���2Z 0

�1
dz
Z 0

�1
dz0eiqz;subze�iq�z;subz

0

Z
drkhdqð0; z0Þdqðrk; zÞieiqk:rk ;

ð12:55Þ

where qz;sub is the normal component of the wave-vector transfer in the substrate,
and the dependence of the bulk correlation function on rk and z have been explicitly
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shown. In the important case of a liquid, hdqðrÞdqðr0Þi ¼ q2subkBTjTdðr� r0Þ,
where jT is the liquid isothermal compressibility, and the integration yields:

dr=dX ¼ Ab2 tin0;1

��� ���2 tsc0;1

��� ���2q2sub kBTjT
2Imðqz;subÞ : ð12:56Þ

2Imðqz;subÞ is the effective penetration length in the liquid. The total scattering due
to surface and bulk fluctuations is therefore:

dr=dX ¼ Aq2subb
2 tin0;1

��� ���2 tsc0;1

��� ���2 kBT
cq2k

qk
qmax

� �s

þ kBTjT
2Imðqz;subÞ

" #
: ð12:57Þ

Depending on whether the grazing angle of incidence is below or above the
critical angle for total external reflection, the effective penetration length varies
from less than 6 nm whatever the scattering angle (evanescent wave) to more than
10 lm, allowing the control of the relative weight of the surface and bulk terms
(Fig. 12.13). Figure 12.13a gives a striking picture of the very nature of a liquid
surface. Starting from high qk values, i.e. at local scales, one observes the static
peak due to the short-range order of the nearest neighbours. The same peak is
observed in the bulk if the penetration length is increased. Then, going to larger
length scales (smaller qk values) for the surface, we observe the characteristic
divergence in the spectrum. On the contrary, there is no divergence in the low-qk
end of the bulk spectrum which is well described by the white spectrum of acoustic
waves. If we now look for a more precise understanding of the surface experimental
data, they are correctly described by the simple capillary wave spectrum only up to
qk � 5� 108 m�1. A much better agreement can be obtained by including the bulk
fluctuations contribution within the penetration depth, but the experimental scat-
tering is still significantly larger than calculated for 5� 108 m�1.qk.1010 m�1.
This additional scattering does not come from the bulk and is due to the surface
which is thus found rougher than expected from the simple model. The corre-
sponding larger thermally excited surface fluctuations can be attributed to a lower
surface energy, and the scale-dependent surface energy cðqkÞ could be estimated
from the measurements. An explanation for this lowering of the surface energy can
be found in Ref. [35] taking into account the long-range power law decay of the
dispersion (van der Waals) forces always existing between molecules. Indeed, the
origin of the surface energy lies in the non-compensation of molecular interactions
at the interface. A simple interpretation of the observed effect (smaller surface
tension for small wavelength fluctuations) is that this non-compensation of
molecular interactions at the surface is reduced for a corrugated interfacial con-
figuration having a wavelength shorter than the molecular interaction range,
resulting in a lowering of the surface energy or surface tension.
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12.5.4 Thin Films and Membranes

More generally, it is important to note that for the equilibrium structures considered
in soft-condensed matter, the equipartition of energy will always yield
hfðqkÞfð�qkÞi ¼ kBT=HðqÞ, where HðqÞ is the energy necessary to deform the
interface as a sine wave of amplitude fðqÞ. This means that the scattered intensity
will always be inversely proportional to the energy necessary to deform the interface,
and that we will be able to determine this important quantity at all length scales.

Particularly interesting is the case of thin films. Considering for simplicity only
the case of an homogeneous film of thickness d, Eq. (12.34) leads to:

dr
dX

¼ A
q2z

b2 tin0;1

��� ���2 tsc0;1

��� ���2 q2filme
�q2z hf2f i

Z
drk eq

2
z hff ð0Þff ðrkÞi � 1

� 	
eiqk�rk


 �

þ 2q2filmðq2sub � q2filmÞe�
1
2q

2
z ðhf2f iþ hf2s iÞ cosðqzdÞ

Z
drk eq

2
z hff ð0ÞfsðrkÞi � 1

� 	
eiqk�rk

þ q2sube
�q2z hf2s i

Z
drk eq

2
z hfsð0ÞfsðrkÞi � 1

� 	
eiqk�rk

�
;

ð12:58Þ

where qfilm is the film electron density, and ff and fs denote the film-vacuum and
film-substrate interface positions respectively. Equation (12.58) shows that the
cross-correlation hff ð0Þff ðrkÞi between the interfaces can be determined since
the contrast of the interference pattern directly depends of this correlation, and the
different contributions may be separated. In a system at equilibrium, this correlation
will result from interactions which can therefore be determined. An interesting
example is that of wetting films on rough surfaces [36].

Similar phenomena will happen in membranes. Interactions between two lipid
bilayers supported on a solid substrate in water have been investigated in [37]. Two
bilayers of DSPC, (L� a 1,2-distearoyl-sn-glycero-3-phosphocholine) were used in

b Fig. 12.13 Scattering at the air-water interface. Geometry of the experiment (top). Scans in the
horizontal plane using a vertically mounted PSD (bottom). Signal integrated between hsc ¼
10mrad and 0:1 rad for two values of the grazing angle of incidence: hin ¼ 4:61mrad above the
critical angle for total external reflection hc (black circles, bulk scattering dominant) and hin ¼
2:01mrad\hc (empty circles, capillary wave contribution dominant for all but high qk values).
The continuos grey lines are the result of calculations using Eq. (12.57), split into capillary-wave
contribution using the macroscopic surface tension c (grey long-dashed lines), and acoustic-wave
contribution (grey short-dashed lines). The continuous black lines have been calculated using
cðqkÞ given by the theory [35]. There is no adjustable parameter in any of those calculations. The
experimental signal has been multiplied by qk in order to compensate approximately for resolution
effects and to obtain curves proportional to the scattering cross-section or to the fluctuation spectra
(at least above a resolution cut-off indicated by arrows). Note the peak at qk � 2� 1010 m�1

giving the short-range structure of nearest neighbours in water. The two-peaks for hin ¼ 4:61 and
2:01mrad superpose precisely when accounting for the penetration depth difference
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Ref. [37] (Fig. 12.14). It was shown in Ref. [38] that the second bilayer was able to
freely fluctuate in the potential of the first bilayer and of the substrate.

H ¼
X
q

1
2

X2
i¼1

ðU00
i þ ciq

2 þ jiq
4 þU00

12Þ uiðqÞj j2�U00
12u1ðqÞu2ðqÞ; ð12:59Þ

with c the membrane tension ≤1 mN/m, j its bending rigidity, U00
i the second

derivative of the interaction potential of membrane i with the substrate, and U00
12, the

second derivative of the inter-membrane potential [39]. u1ðqÞ is the deformation of
the first membrane close to the surface and u2ðqÞ that of the floating membrane.
Using the same method as above, not only the membrane structure, but also c, j and
the potentials can be accurately determined (Fig. 12.14). Indeed, according to
Eq. (12.58), the interference term depends on the cross-correlation between the two
surfaces. A zoom of the off-specular reflectivity in the region where it is most

Fig. 12.14 Off-specular reflectivity from silicon substrate (
) and a DSPC bilayer at T = 42.9 °C
(h) as a function of qx. Continuous lines represent best fits. Top inset off-specular reflectivity as a
function of qz zoomed into the region where it is most sensitive to the potential at T = 42.9 °C (h),
49.7 °C (�), 51.5 °C (
), 52.0 °C (�), 52.9 °C (D). Note the shift in minimum and decrease in
contrast with increasing temperature. Bottom inset Schematics of the experiment
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sensitive to the interaction potential is shown in the inset of Fig. 12.14 for different
temperatures. It is important to note here that the second derivative of the inter-
bilayer interaction potential is directly linked to the depth of the minimum in the
diffuse scattering curve around qz � 1:0� 1:5 nm−1 without much coupling to the
other parameters. Similarly, the interbilayer water thickness is strongly correlated to
the qz position of that minimum. Hence, it can be seen directly in the inset of
Fig. 12.14 that the interaction potential becomes weaker (the minimum is less
pronounced) when the interlayer water thickness increases (left shift of the mini-
mum) at higher temperatures. Careful modeling of the scattering in Ref. [37]
allowed the authors to evidence the very weak electrostatic repulsion between
almost neutral bilayers and to discriminate between different entropic potentials.

12.5.5 Grazing Incidence Scattering

Let us finally consider the case of domains or particles at a surface or an interface.
We need to determine dqðrÞ and insert it into Eq. (12.34). The particles are located
at rik, have a scattering length density Dq in excess of the reference, and their
surface density is qpart. We have:

dqðrÞ ¼ Dq
X
i

dðrk � rikÞ � FðrÞ; ð12:60Þ

where FðrÞ is a function describing the shape of the particles, taking a value of 1

inside the particle and 0 outside. The term
R
drdqðrÞeiq�r�� ��2 in Eq. (12.34) becomes:

Z
drdqðrÞeiq�r

����
����
2

¼ Dq2 ~FðqÞ�� ��2 Z drk
X
i

dðrk � rikÞeiqk�rk
�����

�����
2

: ð12:61Þ

One can then write:

Z
drk
X
i

dðrk � rikÞeiqk�rk
�����

�����
2

¼
Z

drkdr0k
X
i;j

dðrk � rikÞdðr0k � rjkÞeiqk�rke�iqk�r0k

¼ Nþ
X
i6¼j

eiqk�ðrik�rjkÞ

¼ Nþ
Z

drk
X
i 6¼j

dðrk � rik þ rjkÞeiqk�rk

¼ NþNqpart

Z
drkgðrkÞeiqk�rk ;

ð12:62Þ
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with N the number of particles and we have defined the pair correlation function :

gðrkÞ ¼ 1
qpart

h
X
i6¼0

dðrk � rikÞi: ð12:63Þ

In Eq. (12.63, qpart is the surface density of particles. qpartgðrkÞ is the probability
to find a particle at rk, knowing that there is a particle at 0 (Fig. 12.15).

We then have for the scattering cross-section:

dr
dX

¼ Aqpart t
in
0;1

��� ���2 tsc0;1

��� ���2Dq2 ~FðqÞ�� ��2 1þ qpart

Z
drkgðrkÞeiqk�rk


 �
; ð12:64Þ

which is the equivalent of small angle scattering for a two-dimensional array of
particles. Aqpart is the total number of particles. For a sphere of radius R,

FðqÞ ¼
Z
V
eiq�rdr ¼

Z R

0
4pr2

sinðqrÞ
qr

dr

¼ 4p
sinðqRÞ � qR cosðqRÞ

q3

ð12:65Þ

The square of FðqÞ divided by the volume of the particle is usually called the form
factor PðqÞ.

PsphereðqÞ ¼ 9
ðsinðqRÞ � qR cosðqRÞÞ2

ðqRÞ6 : ð12:66Þ

Fig. 12.15 Example of pair correlation function
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An example of grazing incidence x-ray scattering of gold nanoparticles stabi-
lized by a mixed ligand shell of 1-hexanethiol and 11-mercapto-1-undecanol at the
n-tetradecane/water interface after [40] is given in Fig. 12.16. The particles have a
radius of 1:1 0:1 nm. The in-plane position of the peak reflects the first maximum
in gðrkÞ with an interparticle distance of ≈2p=1:6 ¼ 3:9 nm. The z-dependence of
the intensity results from the particle shape.

Scattering methods (reflectivity and GISAXS) where also used in Ref. [41] to
investigate the interfacial synthesis of gold nanoparticles.
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Chapter 13
Characterization of Soft Matter
at Interfaces by Optical Means

Benoit Loppinet

Abstract In this chapter, I give a brief overview, which is biased by personal
experience, on how various optical techniques can be used for characterization of
soft matter at interfaces, including ellipsometry, light scattering, and total internal
reflection geometries. Without discussing the technical details and theoretical
foundations of the methods, I focus on what can be learned by applying the indi-
vidual techniques.

13.1 Introduction

In this chapter, I will try to give a brief introduction to various optical techniques
that can be used to gain quantitative characterization of surfaces and interfaces of
soft matter systems such as polymer or colloids deposited at interfaces or surfaces
but also the surface of soft matter samples. Typical examples of such systems would
be adsorbed colloids at air-water interfaces, or polymer chains adsorbed or grafted
on a solid flat substrate (as in polymer brushes). The variety of samples and the ease
of access of optical techniques imply that a large number of techniques will be
available. Indeed recent developments of optical instrumentation have seeded the
development of numerous techniques and have been the objects of monograph and
reviews. In view of this variety the newcomer may feel some confusion. Typically
experimental techniques will aim to quantify structure and morphology, composi-
tion, and properties. Optical techniques are well suited for structure and morphol-
ogy. Other specific properties can be measure through dedicated like Composition
can be addressed through spectroscopic techniques (see chapter D.14 by A. Erbe
et al.). More than often, one technique can not bring all the required information
and complementary analysis using different techniques are often needed. Most
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optical techniques, have by construction a resolution which is limited by the light
wavelength. That may seem a bit limited for the precise investigation of interfaces.
But the ease of implementation, as compared to e.g. x-ray techniques, and the
availability makes them popular. Moreover use of interference offers possibilities to
increase the resolution. The aim of this chapter is not so much to give a detailed
description of specific techniques as to provide an introduction of the basic prin-
ciples. It is intended to be complementary to the chapters D.11–D.15.

Optical fields have long been used to characterize interfaces. The historical
example of Benjamin Franklin noticing the fast spread of oil droplet on water
surface (at the end of 18th century) and Lord Rayleigh estimating molecular size by
dividing the volume of spread oil to the area of the spread (in the nid 19th century)
provides a good example how qualitative and quantitative measurement can
sometimes simply be obtained.

13.2 Optical Field Propagation and Reflection [1]

Optical fields are described as electromagnetic plane waves propagating in vacuum
with velocity c. The direction of the electric field E defines the polarization of the
wave. The wave vector k is situated along the propagation axis and |k| = k=2π/λ
where λ is the wavelength. Further the radial frequency is ω. As the wave propa-
gates of one wave length during one period: xc ¼ 2p=k

In material the propagation of the electromagnetic wave is described through the
use of a refractive index n, so that x c ¼ 2p n=k. Dielectric (transparent) media
have a real refractive index. If absorption is present, the refractive index can
become complex. A better description is done in term of real and imaginary part of
the complex electric permittivity ε and ε = n2. As I will consider simple dielectric
cases, I will use refractive index in what follows.

When light encounters an optical interface, characterized by a variation of
refractive index in space, this local variation of refractive index affects the light
propagation, leading to the well-known refraction and reflection. The
reflected/transmitted light therefore carries information about the refractive index
profile of the interface. That serves as base of a number of reflectivity techniques
used for surface or interface characterization.

The simplest model for an interface is an abrupt, discontinuous change of
refractive index from medium 1 with refractive index n1 to medium 2 with
refractive index n2 at position z0, where the z-direction is defined along the interface
normal. This is known as Fresnel interface. In this case the reflection and trans-
mission coefficient have the well known forms derived from continuity equation for
the electric field. Two reflection coefficients can be derived depending on the
polarization of the incident light.

If the electric field oscillates parallel to the plane of incidence (which is span by
the wave vector k and the interface normal, see also Fig. 13.1) it is referred to as a
p-wave, the polarization normal to this plane is referred to as s-wave. The
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reflectivity coefficients are expressed in various ways using either refractive index
n and incidence angle θ or wave vectors k = q + Q where q and Q are the normal
and in plane components of the wave vector k.

rs ¼ q1 � q2
q1 þ q2

¼ n1 cos h1 � n2 cos h2
n1 cos h1 þ n2 cos h2

¼ � sinðh1 � h2Þ
sinðh1 þ h2Þ ð13:1Þ

rp ¼
q1
n21
� q2

n22
q1
n21
þ q2

n22

¼ n2 cos h1 � n1 cos h2
n2 cos h1 þ n1 cos h2

¼ tanðh2 � h1Þ
tanðh2 þ h1Þ ð13:2Þ

Moreover, Snell law accounts for the continuity at the interface Q1 = Q2 or
n1 sin h1 ¼ n2 sin h2

The reflection coefficients can be complex numbers, with a modulus and a phase.
Reflectance is the square of the modulus. Complex reflectivity coefficients are
encountered in the total internal reflection regime, where the reflectance is equal to
one, but a phase shift appears.

Two specific angles can be noted on the graph on the right of Fig. 13.1. At the
Brewster angle θB, the p-reflectivity is zero so that all the p-polarized light is
transmitted. The second angle is the critical angle of internal reflection θc where
both s and p reflectivity reach one. At incidence angles large than the critical angle
total internal reflection occurs, where both reflectivity coefficients have modulus
one, but have a different phase shift.

In the presence of a thin layer of thickness d and refractive index nf between
semi infinite medium 1 and 2, multiple reflection gives rise to interference. The total
reflection coefficient is a function of the reflection coefficients at each interface and
the phase shift depends on the thickness of the layer. For both s and p polarization
the total reflection coefficient is of the form [2]:

0.0 0.5 1.0 1.5
0.0

0.5

1.0

external  reflectivity 

re
fle

ct
an

ce

incidence angle

Brewster angles θB

critical angle θc

internal  reflectivity 

Fig. 13.1 Left Reflectivity geometry, Right angular dependence of the reflection coefficient rp and
rs for external reflection n1 > n2 (black lines) and internal reflection n2 > n1 (grey lines) as a
function of incidence angle for n2/n1 = 1.52/1.33. broken: rp;full: rs. At incidence greater than
critical, the internal reflection introduces a phase shift
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r ¼ r1 þ r2 exp ð�2iqf dÞ
1þ r1r2 exp ð�2iqf dÞ ð13:3Þ

where qf ¼ nf cos hf and n1 sin h1 ¼ nf sin hf . r1 is the reflection coefficient
between the medium 1 and the film, r2 is the reflection coefficient between the film
on the medium 2 with the appropriate incidence angles. The expression is valid for
both s and p polarization.

The reflectivities of multilayer systems can be computed through the matrix
method where every layer can be represented by a matrix I and every interface by a
matrix M. The total system is then expressed by a matrix [3]

S ¼ s11 s12
s21 s22

� �
¼ I1M1I2M2. . .InMnInþ1

with Ij ¼ 1
tj

1 rj
rj 1

� �
and Mj ¼ expð�2iqjÞ 0

0 expð�2iqjÞ
� �

where tj and rj are

the transmission and reflection coefficients between medium j and j + 1 and qj is the
phase shift induced by the jth layer of thickness dj.

The total reflectivity r is then r ¼ s12=s11.
This matrix method allows the computation of reflectivities for layered systems

for both s and p polarization. This approach can also be used to calculate reflec-
tivities arising from continuous refractive index profile which have to be approxi-
mated for this purpose by a layered system, as schematically shown in th eleft part
of Fig. 13.2.

Of course the Fresnel model is at best an approximation, but as molecular sizes
that will control the change of material are small compared to the typical wave-
length of light, it is a good approximation for optically flat surfaces.

Measuring reflectivity as a function of angle or wavelength can therefore bring
information on the refractive index profile. Practically optical reflectivity techniques

Fig. 13.2 Left thin film interference and right discretized refractive index profile
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are not able to characterize thin layers. This can be achieved through the use of
radiation with much shorter wavelength like X-ray or neutrons (see chapter D.12 by
J. Daillant)

Optical reflectivities are nonetheless used to probe the formation of thin layers,
especially at Brewster angle incidence (Brewster angle reflectivity). There, a
non-zero reflectivity can be attributed to the formation of an interfacial layer. This
can be used to monitor adsorption for example.

Other, somewhat more sophisticated reflectivity techniques use resonant layer
substrates (optical wave guide, surface Plasmon resonance). The reflected intensi-
ties typically show a minimum when the light is exciting resonantly the structure.
This excitation can be achieved through internal reflection. The exact onset of this
resonanance is very sensitive to the refractive index on the other side of the wave
guide (optical wave guide spectroscopy). The reflectivity is then very sensitive to
the refractive index, and small changes lead to a shift in the reflectivity spectrum,
that can easily be measured. But probably the most used and versatile reflectivity
techniques is ellipsometry that relies on measuring the ratio rp/rs.

13.3 Ellipsometry

Ellipsometry is probably the oldest, most established and best known reflectivity
technique. Ellipsometry is the subject of a number of dedicated text books [3–6]
and its applications to various fields of science and technology have been and are
regularly reviewed [7–9]. It measures the ratio of the p and s polarized reflectivity
with the aim to characterize the refractive index profile that gives rise to the
reflectivity. The ellipsometric ρ ratio is defined as:

q ¼ rp
rs

¼ tanw eiD ¼ rp
�� ��
rsj j exp iðdp � dsÞ ð13:4Þ

tanΨ describes the ratio of the p and s reflectivities amplitudes, and Δ the phase shift
between the p and s polarised reflected light induced by the reflecting interface.
Practically it is implemented in many different ways that measure Ψ and Δ.
Ellipsometers come in a variety of geometries. A broad range of instrumentation
exists, ranging from sophisticated commercial setups including variable angle and
spectroscopic (variable wavelength) possibilities to simpler fixed angle manual
nulling ellispometer. The scheme of nulling ellipsometry is the simplest way and
often the most precise.

The relation between the measured quantities (angular, wavelength dependence
of the ellipsometric ratio) and what the user would like to know (refractive index
profile) is neither “intuitive” nor straightforward. It is therefore difficult to provide
simple, meaningful introduction to ellipsometry. Despite this apparent limitation,
ellipsometry remains a very useful and powerful technique, due to its high sensi-
tivity and its very wide range of applicability. It can provide information that is
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difficult to obtain with other (possibly more intuitive) techniques. The analysis and
interpretation of the measured data in terms of the looked-for quantities (compo-
sition, distribution, homogeneity,…) often relies on the use of analysis software
which is installed on most commercial instruments. This type of analysis is an
inverse problem that relies on the use of models to produce refractive index profiles.
These models often need more parameters than can be safely deduced from the data,
so that the obtained results are often model dependent and independent checks of
the validity of the models are not easy.

13.3.1 Thick Film Limit

In case of thick layer or multilayers, the refractive index profile can be modelled by
a homogeneous (box) multi-layer. Then the ellipsometric ratio can be calculated
using the matrix formalism exposed above. For accurate measurements, variable
angle and possibly variable wavelength will be used. Minimization software will be
used to return the best solution of the profile. However, cautious users will
remember that, as mentioned above, the obtained profile will most likely not be the
unique one that provide a good fit of the data.

A good example for the application of ellipsometry to thick soft matter layers is
the case of concentration profiles in extended polymer brushes. If made thick
enough such systems can extend to hundreds of nanometres and therefore fall into
the thick film category. There, multiple angle incidence coupled with internal
reflection can be used (see Ref. [8] and reference therein). The resolution is not
good enough to allow a direct quantification of the refractive index profile, but
using a profile function, good fits were obtained. They quantify the change of
thickness and concentration profiles following swelling and deswelling induced by
changes of temperature or pH.

Similarly, it is also possible to follow and evaluate the change of thicknesses for
polymer brush following external triggering of the brush (by change of temperture
or pH for example) at a single angle of detection, using spectroscopic ellipsometry,
or even single wavelength ellipsometry. Those changes will not affect the adsorbed
amount, but only the distribution of the polymer in the direction normal to the
surface. For a recent example of application to polyelectrolyte brushes see [10].

13.3.2 Thin Film Limit

The use of refractive index profile loses its sense when the layer thickness is
reduced to small dimension compared to the light wavelength. This thin film limit is
relevant in the case of adsorption of molecules and macromolecules on solid
substrate or liquid/air or liquid/liquid interfaces. Ellipsometry is widely used to
study such systems. In those cases the use of refractive index profile is not
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recommended, as refractive index and thickness may not be measured indepen-
dently. The ellipsometric signal will be dominated by the substrate-ambient signal,
and the contribution of the film will be small. A perturbation expansion of the
reflection coefficient can be obtained in terms of the ellipsometric invariants
introduced by Lekner [2]. Those invariants are named this way as they measure
moments of the refractive index function and are independent of the precise profile
of refractive index. In the case of adsorption of molecules/macromolecules on a
solid substrate from solutions, [8, 11] the first invariant can be expressed in terms of
the refractive index increment dn/dc of the solution and of the adsorbed amount (the
enrichment layer) Γ (typically in mg/m2). The ellipsometric ratio expansion can be
put into the following forms:

q� q0 ¼ iKðh; n1; n2ÞC dn
dc

ð13:5Þ

C dn
dc has the dimension of an optical thickness (n.d). It is independent of the precise

distribution of the adsorbat’s refractive index as long as the thickness remains small
compared to the light wavelength.

The constant K depends on the measurement condition (refractive index of
substrate and solution and incidence angle) as:

K ¼ 2p
k

� �2 4ðn21 � n22Þn22q2xq1
ðq1 � q2Þ2ðn22q1 þ n21q2Þ2

n21 � n22
n1

ð13:6Þ

Adsorption measurements are often done at the Brewster angle, where the
sensitivity is expected to be largest. Note that the first expansion term (for dielectric
layers) is an imaginary number. A special approach to measure directly this term
has been introduced by Beaglehole [12].

It should be clear that in this first order expansion case, ellipsometric mea-
surements will not be able to provide independently the overall extend (thickness)
of the adsorbed layer and its refractive index. Only the adsorbed amount will
be measurable in a micro-balance type a measurement. If the adsorbed amount is
already known, then ellipsometry can be expected to be redundant. For example,
the use of ellipsometry in the thin film limit to measure conformation changes at air
water interface can be expected to be limited, as the signal will mostly arise from
the molecules surface concentration, independently of the extension of the formed
layer.

As films grow thicker, a second term of the perturbation development may
become measureable. When the two terms can be measured independently, then it
becomes possible to deduce independently both the thickness and the refractive
index of the formed layer. This is best done in kinetics experiments (signal evo-
lution) as the noise/parasitic signal is expected to remain constant [12]. The method
has been well demonstrated by M. Tirrell and co-workers for the case of diblock
copolymer adsorption, measured at Brewster angle [12].
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13.3.3 Effective Medium Approximation
for Non-Homogeneous Layers

As a specular reflectivity technique, ellipsometry can in principle only address the
refractive index profile normal to the interface. Possible in plane variation of the
refractive index can arise from roughness, mixed composition. The standard
approach to treat such inhomogeneities in ellipsometry, is to use an effective
refractive index for the medium. This type of approximation, illustrated in Fig. 13.3
is known as effective medium approximation.

It originates from the need of describing a complex medium with a single
refractive index number. Various models exist to calculate the refractive index of a
multi-constituent layer. Such models are usually available in the ellipsometry
software [5, 6]. Such an approach is commonly used to evaluate porosity in thin
film material for example through ellipsometric porosimetry. Therefore ellipsom-
etry analysis software often offers the possibility to build such models. The number
of parameters for the model can become quite large.

In the field of soft matter systems, such an approach has recently been proposed
for the study of colloidal particles deposited at fluid-fluid interfaces. In particular
several groups have tried to relate the ellipsometric signal to the precise position of
colloidal particles at interfaces, in an attempt to measure contact angle of small
colloidal particles. It relies on the use of an effective medium theory that allows to
transform the position and concentration of the particles at the interface in a
refractive index profile n(z) with refractive index and thickness. The thickness of
the effective layer is expected to relate with the position of the colloid at the
interface. n(z) is parameterized with quantities like the particles size, their surface
concentration and their position on the interface (the contact angle). The parameter
values can be found using a minimization (fitting) procedure of the predicted el-
lipsometric ratio to the measured ones. Measurements were done at the Brewster
angle. Knowledge of the refractive index of the colloids and both fluids is required.
The found contact angles were in reasonable agreement with values measured with
macroscopic samples [13].

ns

Interfacial layer

nl

Roughness layer 

Substrate ns

Layer  n l

Ambient  n0 n0

Fig. 13.3 Typical example of effective medium approximation for a rough film deposited on a
rough surface. Left is the real structure, right is the effective refractive index used for fitting
ellipsometric results. Please provid a Figure of higher quality
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13.4 Other Optical Techniques

Apart from ellipsometry, very many other optical techniques are able to provide
some level of characterization of surfaces and interfaces. Imaging techniques, that
attempt to image the morphology, composition of surfaces and interfaces exist in
various forms. Surface light scattering techniques can be used, especially dynamic
light scattering techniques are able to probe temporal fluctuation at surface or
interface.

13.4.1 Imaging of Surfaces or Interfaces Morphology

Specular reflectivity techniques probe only the direction normal to the interface. It
is therefore not well suited for the characterization of in plane morphology.
A number of techniques exist that can provide an image, or a mapping of the
interfaces refractive index, either as a direct image or through scanning methods.

An important example is the Brewster angle microscopy [14] (BAM).
Introduced about 25 years ago, it provides a way to image (on a grey scale) the
refractive index inhomogeneities of surface layers. The contrast arises from the
strong dependence of the p-reflectivity at the Brewster angle on the presence or
absence of a thin layer. As in dark field microscopy, the bare Fresnel interface will
appear black and a layer will appear grey, the thicker/denser the brighter. BAM
requires the use of oblique incidence which reduces the field of view. Therefore it is
often associated with scanning abilities, and large size image can be obtained as a
superposition of images. BAM is particularly well adapted for the air water inter-
face, and in particular for application in combination with a Langmuir through
where it allows for controlling the homogeneity of the monolayers.

Over the years other types of reflectivity microscopy have been used to deter-
mine surface structure. For example the standard white light EPI microscope is well
adapted to characterize film thicknesses deposited on reflective surfaces. In the
presence of a thin optical layer, the multiple reflections may give rise to interfer-
ence, which are wavelength dependent and produce colourful pictures which pro-
vide a simple way to measure refractive index homogeneities of films and layers.
Being an interferometric technique it has a high sensitivity in the z-direction. It has
the resolution of the microscope detection in the plane.

A range of instruments, known as optical surface profilometers aim at providing
a quantitative refractive index profile mapping, with good in plane resolution.
Different approaches can be used, based on white light interferometry or confocal
scanning reflectivity. Typical examples of application range from measuring the
roughness of polymer films to contact angles of colloidal particles at air-water
interface. Buried interfaces have also been imaged this way.

Progresses in microscopy, like confocal fluorescence microscopy with high
resolution, using fluorescence of single molecules, have also benefited the study of
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interfaces structures and dynamics. One can take advantage of the ability to image
single molecules and to follow them in time. The fluorescent tracers required for
fluorescence microscopy are nowadays easily available, being quantum dots, simple
fluorescent molecules, or modified polymers or colloids. Two examples of use of
advanced microscopy technique for interfacial soft matter phenomena are the
observation of capillary waves in phase separated colloid-polymer mixtures using
confocal microscopy [15] or the adsorption and diffusion of single fluorescently
labelled molecules on a solid substrate [16, 17]. Interfacial/surface systems present
the advantage that there extend in the normal direction is reduced, making the
microscopic observation simpler than in 3D systems.

Total internal reflection (TIR) can be used in conjunction with microscopy and
imaging. TIR microscopy and TIR fluorescent microscopy provide a neat way to
measure time-dependent positions of particles and relate to relate the position
fluctuation to the interaction potential between the particles and the interface [18].

13.4.2 Light Scattering and Dynamics

Light scattering is well adapted to the study of soft matter (see chapter D.11 by C.
A. Völker). A number of established techniques exist. Distinction is often made
between static light scattering that measures time averaged intensities to obtain
structural information and dynamic light scattering that analyses fluctuating
intensities in the time/frequency domains, and relates it to the dynamics of
refractive index fluctuation that are thermally excited at a given temperature, (which
is often related to Brownian motion).

The angular dependence of the scattered light is often used as it allows for the
variation of the scattering vector (defined as the difference of the scattered wave
vector and the incident wave vector), which itself provides a spatial frequency or a
wavelength of the probed fluctuation.

The case of scattering by surfaces and interfaces has long been considered. (see
chapter D. 12 by J. Daillant). Due to the large wavelength, light is not the most
appropriate probe to resolve the structure of nanometre length scale. X-rays or
neutrons are more appropriate for that purpose. Dynamic light scattering provides
the ability to access dynamical information on interfaces and their fluctuations. The
information does not only lie in the value of the scattered intensity and its angular
dependence, but rather in the time fluctuation of the scattered intensity. The origin
of such light intensity fluctuation can be found in the presence of fluctuation of the
refractive index close to the interface. The temporal analysis of the scattered light
intensity provides the characteristic life time of the fluctuation of given length scale
(defined by the scattering vector). Different type of analysis are available depending
on the type of fluctuation one is looking at and looking forTwo specific techniques
are presented below with some details.
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13.4.3 Surface Quasi Elastic Light Scattering

Surface Quasi Elastic Light Scattering designates a technique used to probe the
dynamics of surface wave present at fluid-fluid interfaces [19, 20]. Fluid surfaces
and interfaces at finite temperature present a spectrum of thermally excited surface
waves, with in particular capillary waves. Scattering by propagating surface waves
leads to a Doppler shift in the scattered wave compare to the incident one. The
related frequency ω can be found in the time domain as well as in the frequency
domain. The frequency provides a measure of the propagation of the specific sur-
face waves at the specific scattering vector q.

At a given scattering angle, one would then detect the light scattered by the
mode of wavelength 2π/q and measure their frequency, as well as their damping
(how far the thermally excited waves do propagate)

Varying the scattering wave vector through the scattering angle provides a way
to obtain the dispersion curves (ω vs q) for the specific surface waves.

The technique is used to obtain information on the spectrum of capillary waves
and especially their damping and relates them to mechanical properties of the
interfacial layer. The analysis is realized either in the time domain or in the fre-
quency domain (providing by the way a nice illustration of the equivalence of the
two). The results are then used to deduce the mechanical modulus characteristic of
the interface, very much like the sound velocity is used to measure the compression
modulus of solids. However capillary waves are more complicated than sound
waves, and the interpretation is not always straightforward.

13.4.4 Evanescent Wave Dynamic Light Scattering

Another light scattering technique well adapted to interfacial studies is the so-called
evanescent wave dynamic light scattering (EWDLS). Evanescent wave denotes a
type of near field wave, i.e. waves localized near an interface. They are therefore
ideal candidates to probe interfacial phenomenon. Near field radiations are present
in a number of situations, and in particular in the case of total internal reflection (see
Appendix 1). Such radiation is excited through total internal reflection but also
through other related approaches such as optical wave guides or surface plasmons.

The evanescent wave is used as the incoming beam of a scattering experiment,
providing a light scattering experiment with a very reduced, anisotropic scattering
volume. This is set by the penetration depth of the evanescent field and the beam
dimension in the other directions. The applications of EW-DLS have been reviewed
by Sigel in [21].It has so far been used to probe near wall diffusion of polymers and
colloids. Interfacial effects can be measured with resolutions that are of the order of
tens of nanometres (*λ/50).
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13.5 Conclusion

Optical techniques have long proven very useful for qualitative and quantitative
characterization of surfaces and interfaces. The continuous development of pho-
tonic devices, and the relative ease to manipulate optical signals makes optical
fields very attractive to characterize surfaces and interfaces despite the limitation
due to the long wavelength of visible light (*0.5 μm).The development of new
approaches and instrumentation are bound to lead to progress in our understanding
of the structure and dynamics of those surfaces and interfaces.

Acknowledgments Part of the work was presented as as a lecture at the SOMATAI summer
school 2014 in Berlin. The support of the Greek ESPA programme Areistea RINGS is
acknowledged.

Appendix 1: Total Internal Reflection and Evanescent Field

Electromagnetic near fields designate non-radiative fields that are localized near an
object, so to say at the surface of the object. Optical near fields offer a convenient
way to probe interfaces. They extend over one wavelength or so. In particular they
can be used to excite scattering or fluorescence.

One such near field is the evanescent waves present in the medium of lower
refractive index at total internal reflection. When reflectivity coefficients are one,
there is nonetheless a near field penetrating the medium of lower refractive index. It
is well described by the reflectivity coefficients, with rp and rs being complex
numbers of module 1 (Fig. 13.4).

Fig. 13.4 Optical field at TIR the bottom correspond to the low refractive index medium
(wiki-commons). The white line is added to materialize the interface. Below is the medium of low
refractive index and above the one with high refractive index. The brightness relates to the
amplitude of the electric field (the brighter the higher) The standing waves due to the interference
between the incoming and reflected beam is clearly seen. The evanescent field is also clearly
visible below the white line. (image wiki-commons)
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In particular it is possible to compute the penetration depth.
The evanescent field writes [2] as Eev ¼ E0 e�jzeiðkx�xtÞ with the “penetration

wave vector” j ¼ 1=dp ¼ 2pn1
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n22

n21

r
and the “propagation wave vector”

along the interface k ¼ 2pn1
k sin h.

The other may be less appreciated length scale associated with TIR is the Goss
Haenchen shift, that describes the lateral shift of the beam [2]. Looking into the
reflectivity coefficient, a phase shift appears under TIR, which also depends on the
polarization and the incidence angle. This phase shift is the sign of a time (length)
associated with the TIR.

The EW produced at TIR can be associated with many different detection
schemes [22], ellipsometry, light scattering, fluorescence, Raman, IR, and recently
optical rotation.

The critical angle is independent of the polarization for non-birefringent mate-
rials, and so is the penetration depth. However the s and p polarized light undergo
different phase shift under TIR. The difference of phase shift is what ellipsometry
under total internal reflection will measure. The penetration depth can be varied by
changing the incidence angle. A larger optical contrast between the two materials
will provide a shorter penetration depth, as will larger incidence angles. As an
example, the field penetration depth dp at interface between high refractive index
incidence medium (n1 = 2) with water (n2 = 1.33) can become as low as 60 nm for a
wavelength of 532 nm.
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Chapter 14
Optical Absorption Spectroscopy
at Interfaces

Andreas Erbe, Adnan Sarfraz, Cigdem Toparli, Kai Schwenzfeier
and Fang Niu

Abstract This chapter summarises the physical principles of optical absorption
spectroscopy and its use for the characterisation of surfaces and interfaces. After a
brief discussion of the fundamentals of absorption spectroscopy and its relation to
quantum mechanics, the chapter discusses the basics of optics at interfaces,
focusing on the absorption of light by molecules in the interfacial region. Because
of fundamental similarities, the chapter will touch on spectroscopy of both elec-
tronic and vibrational transitions, with a strong focus on infrared absorption
experiments. There is a brief discussion, with reference to examples, of experiments
in internal and external reflection geometry, including a brief discussion of the
measurement of spectra on different classes of substrates (metallic vs. transparent).

14.1 Motivation

This chapter shall illustrate the use of optical absorption spectroscopy in the
characterisation of interfaces, with a particular emphasis on the detection of
molecules at interfaces between condensed media. While this chapter’s main focus
is on reflection absorption techniques, physical principles of related techniques,
such as ellipsometry (see Chap. 13 by B. Loppinet), X-ray and neutron reflectivity
and scattering techniques (see Chap. 12 by J. Daillant), and non-linear optical
spectroscopy (second harmonic and sum frequency generation spectroscopy; see
Chap. 15 by M. Hoffmann et al.) are discussed elsewhere. In this chapter, reflection
absorption techniques of both electronic and vibrational transitions shall be dis-
cussed, though the former are typically probed in the ultraviolet (UV) and visible
(VIS) spectral range, and the latter in the mid-infrared (IR). From the spectroscopic
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side, the physical basics of the different transitions are closely related, so that it
appears justified to treat them in a single text.

The chapter shall briefly summarise the quantum mechanical basics of optical
absorption spectroscopy, further it shall point out what type of information on
molecular systems can be obtained using absorption spectroscopy at interfaces. The
heart of the chapter is the analysis of the peculiarities when working at interfaces.

The main motivation for using optical spectroscopy is its versatility. Many of the
characterisation techniques that yield the most detailed information, such as
electron-probe based techniques, including microscopy, spectroscopy, scattering
and diffraction techniques, are limited to vacuum conditions, or single crystalline
surfaces. Their extension to ambient conditions is a field of very active current
research. Currently, many techniques cannot be applied routinely to soft matter at
aqueous (or other solution-based) interfaces. Optical techniques, especially spec-
troscopy, have proven to be valuable tools for the characterisation of the compo-
sition, conformation, molecular orientation and kinetics of soft interfacial systems.
Optical spectroscopy is suitable for application in complex environments, e.g.
aqueous media.

This chapter is not another textbook, and not another review article. Rather, it is
meant to briefly summarise textbook knowledge, enrich it with current examples,
and to refer to modern and classical reviews of applications, especially from the
field of soft matter, for further reading. A good general introduction into the
physical basics of optical spectroscopy, especially its foundation in quantum
mechanics, is given by Hollas [1] and Levine [2]. The effect of molecular symmetry
on vibrational and electronic spectra is discussed by Harris and Bertolucci [3].
(Almost) all analytical aspects of electronic and vibrational spectroscopy in the bulk
are summarised in a book edited by Gauglitz and Vo-Dinh [4]. An introduction
specifically into the vibrational spectroscopy of molecular solids is given by
Sherwood [5]—while its description of computations is largely outdated, the book
is well-suited for understanding the principles of waves in crystalline solids.
A further introduction into the optical properties of crystalline (and amorphous)
solids is given by Fox [6]. The physical basics for investigations of interfaces is
described by Tolstoy, Chernyshova, and Skryshevsky, with the major focus on IR
spectroscopy [7]. Further, interface specific applications of optical spectroscopy are
discussed in a number of reviews [8–15]. In this chapter, we will also refer to a
number of original research articles as examples of application of one or another
technique, with some bias to work from our own laboratory.

Before proceeding, a word on notation. In this chapter, vectorial quantities are
represented bold underlined as e.g. r. The same letter as a normal symbol, e.g. r,
may have a different meaning than the vectorial quantity. The modulus of vectorial
quantity is denoted as jrj. In a subscript or superscript, an italic symbol, e.g. r in Nr,
is a symbol which is a placeholder for a number, while a non-italic symbol, e.g. the
r in Nr, is an abbreviation. Operators are designated by a hat, as r̂.
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14.2 Principles

14.2.1 Type of Information Obtained

The central quantity measured experimentally in an absorption spectroscopy
experiment, both in a volume phase as well as at an interface, is the absorbance

A ¼ � log10
Isample

Ireference

� �
¼ � log10 M: ð14:1Þ

Here, I is the irradiance/intensity of light recorded at the detector (See, e.g. [16]
for a discussion of the background of the irradiance for experimentalists). While the
index “sample” refers to the actual system under investigation (e.g. a polymer
adsorbed to an interface), the index “reference” refers to a reference state, which is
ideally the same interface without the presence of the sample. In an experiment in a
bulk phase, “reference” is simply a blank measurement, i.e. a measurement without
any sample in the beam path. In experiments involving interfaces, there is no such
unique choice of a reference system, and all practical reference measurements
involve reflection at a certain reference interface, so that the reflectance absorbance
Ar (which will be mainly discussed in this chapter) is given as

Ar ¼ � log10
Rsample

Rreference

� �
; ð14:2Þ

where the two reflectivities R can be used synonymously with the respective
intensities from Eq. 14.1, and will be discussed briefly in Sect. 14.3. Ar describes
the difference of an interface to a reference state, and needs to be carefully inter-
preted as such.

Equation 14.1 also introduces the “transmittance” M, which is frequently used in
the chemical literature discussing bulk spectra, but is less useful for the quantitative
analysis of reflection spectra.

In a bulk phase, the absorbance recorded after light is passing through a sample
of length l is proportional to the concentration c of an absorbing species via
Lambert Beer’s law,

A ¼ aclc; ð14:3Þ

where the absorption coefficient ac is an intrinsic quantity of the transition studied,
and shall be discussed below. The strict linearity in concentration c assumes
non-interacting species, which absorb light. At higher concentrations, deviations
from the linear behaviour A / c are found. Therefore, ac is a well-defined quantity
in dilute systems (at infinite dilution), or in a pure phase. In a pure phase,
acc ¼ ap, as concentration is fixed in a pure phase at constant pressure (see also
Sect. 14.2.3).
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Also in a reflection experiment, the absorbance increases with increasing amount
of species present. In addition, especially for thin and ordered systems, the absor-
bance is affected by the orientation of the molecules. In some cases, effects of con-
centration and orientation can be separated (see Sect. 14.3). Absorption of light at a
characteristic wavelength is characteristic for the presence of a certain bond or group
—though certain bonds are easier to detect than others. Electronic transitions (in-
volving valence electrons) are furthermore sensitive to the environment the absorbing
group is immersed in, e.g. the solvation state. Some vibrational modes also “feel” this
presence of the surrounding medium, while others are non-sensitive to it. Many
vibrational modes vary with the conformation of a molecule. Overall, optical
absorption spectroscopy at interfaces is able to yield (a) qualitative information on the
presence of certain groups, (b) (semi)quantitative information on the amount of
certain species present, (c) quantitative information about the orientation of certain
groups, (d) qualitative information about the environment (e.g. polar vs. non-polar) a
certain group is in and (e) information on the conformation of molecules.

Amongst the optical spectroscopic techniques, vibrational spectroscopy is
probably the most versatile. The large number of vibrational modes of organic
molecules—especially those comprising “soft matter”—ensure that almost all
molecular substances, and many solids, can in principle be detected [17–19].
Mid-IR light used in IR absorption experiments, with its photon energy of about
0.1 eV is one of the softest probes widely available, so the effect on the sample is
minimal, which is not always true for alternative techniques.

14.2.2 The Spectroscopic Process of Dipole Transitions

While significantly more complicated in solvated large molecules as encountered in
soft matter at aqueous interfaces, the fundamentals of the spectroscopic process can
still be understood on the basics of quantum mechanics of simple systems. The
treatment here closely follows [1]. A quantum system is characterised by its wave
function Wðr; tÞ, which in general depends on the positional coordinates r, and for
simplicity we will disregard the dependence on time t. In this picture, energy
eigenvalues Ei are obtained for the ith eigenstate as a solution of the Schrödinger
equation,

ĤW ¼ EiW ; ð14:4Þ

with the quantum mechanical Hamiltonian

Ĥ ¼ T̂ þ V̂ ; ð14:5Þ

consisting of the sum over all contributions to kinetic energy T̂ and potential energy
V̂ . For a molecule, Ĥ has contributions from the kinetic energy of both electrons

462 A. Erbe et al.



(index e) and nuclei (index n), and from the interaction potentials of electrons and
nuclei with each other,

Ĥ ¼ T̂e þ T̂n þ V̂en þ V̂ee þ V̂nn: ð14:6Þ

Because motion of electrons is significantly faster than motion of nuclei, e.g.
because of the different masses, this Hamiltonian can be separated into an electronic
contribution for fixed, static nuclei,

Ĥe ¼ T̂e þ V̂en þ V̂ee; ð14:7Þ

and a contribution from the motion of the nuclei itself,

Ĥn ¼ T̂n þ V̂nn þEe: ð14:8Þ

This Born-Oppenheimer approximation enables us to solve the Schrödinger
equation independently for electronic states, and states associated with a motion of
the nuclei. It implies that the total wave function can be factorised into contributions
from nuclei and electrons, W ¼ WeWn, while the total energy is the sum of elec-
tronic and nuclear contributions, Etot ¼ Ee þEn.

Spectroscopically, we can observe transitions between the energy levels of the
electrons (“electronic transitions”). The nuclear part contains contributions from
vibrations and rotations, from which we will discuss only the transitions between
vibrational levels (“vibrational transitions”). In other words, different Hamiltonians
are used, resulting in different wave functions, and different energy eigenvalues.

Light shall be described as an electromagnetic plane wave with angular fre-
quency ω, with space and time dependence of the electric field E

ð14:9Þ

with wave vector k, amplitude Eð0Þ and . Light can be absorbed by a system if its
photon energy Ephoton ¼ �hx equals the difference between (e.g. electronic or
vibrational) energy levels (Here, �h is the Planck constant h divided by 2π). The rate
of change in occupancy N2 of an excited state 2, which ultimately determines the
total absorbed light intensity is given as

dN2

dt
¼ ðN1 � N2ÞB21qðxÞ ; ð14:10Þ

where index 1 indicates the ground state, B21 the Einstein coefficient and qðxÞ the
spectral radiation density. The Einstein coefficient is directly related to the wave
functions of the involved states,
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B21 ¼ 2p3

3pe0h2
M21
�� ��2; i:e:B21 / M21

�� ��2; ð14:11Þ

with transition dipole moment

M21 ¼
Z

W2
� l̂ W1 dr ¼ hW2jl̂jW1i; ð14:12Þ

where we use the convenient bra-ket notation (e0 denotes the vacuum permittivity).
Here, the * denotes the complex conjugate and l̂ ¼ P

qiri is the dipole moment
operator, summing over the product of all partial charges qi and positions, in
analogy to the definition of the dipole moment. The dipole moment operator is a
vectorial quantity, and hence the transition dipole moment is a vectorial quantity
too. While the Einstein coefficient, which ultimately determines the strength of an
absorption, is essentially the squared modulus of the transition dipole moment, in
interfacial systems the vectorial nature of the transition dipole moment will become
important, as essentially M21 � Eð0Þ determines the strength of an absorption (In
isotropic solution, the orientation of the transition dipole moment with respect to the
electric field takes an average value, while at interfaces, a preferential orientation is
typically imposed).

The Einstein coefficient B21 (and hence the modulus of the transition dipole
moment) is related to the integral over the absorption band with maximum at
wavenumber ~m21 from its beginning at wavenumber ~m1 till its end at wavenumber ~m2

Z ~m2

~m1

acd~m ¼ NAh~m21B21

ln 10
; ð14:13Þ

where NA represents the Avogadro constant. It is sometimes convenient to use the
dimensionless oscillator strength

f21 ¼ 4e0mec2h~m21
e2

B21 ð14:14Þ

to express the same information (Here, me and e represent mass and charge of the
electron, respectively). The fact that we can relate a quantum mechanical quantity to
the integral over the absorption band is convenient in some cases, but complicates
interpretation of spectra in condensed phase. For a full quantitative description here,
a model including the band shape is needed, and a description is needed which
yields details of the interaction of light with matter. This purpose is served by the
dielectric function, which will be introduced as a macroscopic concept below.

Before proceeding to the next section, we should comment on the fundamental
selection rule, which follows from Eqs. 14.11 and 14.12. A transition can only be
directly excited, if its transition dipole moment is non-zero. We need a change in
dipole moment during the transition for the transition to be excited. The simplest
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way to understand the transition rule is based on the analysis of a vibrational
transition of a two-atomic molecule, where the dipole moment is oriented along the
molecular axis, and its change in the course of the absorption with elongation along
the molecular axis x can be written as as a Taylor expansion

l ¼ leq þ
dl
dx

xþ . . .: ð14:15Þ

Here, μ is the magnitude of the dipole moment as a function of difference
x ¼ x0 � x0 from the equilibrium atomic separation x0. Inserting Eq. 14.15 as the
dipole moment operator into Eq. 14.12 yields

M21 ¼ leqhW2jW1iþ dl
dx

hW2jxjW1iþ . . .: ð14:16Þ

The first term in this sum vanishes as hW2jW1i ¼ 0 when using orthogonal,
normalised wave functions, while the second exists for certain combinations of
wavefunctions and if dl=dx 6¼ 0 (For vibrations of more complex molecules, mass–
weighted normal coordinates need to be introduced and take the role of x, see [20]).

In a simple absorption spectroscopy experiment as outlined here, a transition
between two energy levels can hence only be excited if the dipole moment changes
in the course of the transition. Another kind of spectroscopy, Raman spectroscopy,
yields signals in a different experiment, if the polarisability of a system changes in
the course of the transition. While Raman spectroscopy is also popular in the
characterisation of interfacial systems [7, 21–23], it shall not be discussed here in
more detail.

14.2.3 From the Molecule to the Dielectric Function

Optical phenomena within matter involve interactions between the electromagnetic
radiation and atoms, ions and/or electrons [6]. On a macroscopic level, the complex
dielectric function er describes the electrical (at low frequencies) and optical (at
high frequencies) properties of a material. er is strongly dependent on
frequency/photon energy, and contains the entire information about optical transi-
tions, mainly about the dipole transitions discussed in this chapter. The dielectric
function can be determined directly by ellipsometry experiments or derived from
absorption, reflection or transmission experiments [24]. In general, the dielectric
function is related to the complex refractive index m as

m2ðxÞ ¼ erðxÞlrðxÞ: ð14:17Þ

Though exception exist (e.g. [25]), this chapter shall consider only non-magnetic
systems with a relative permeability lr ¼ 1.

14 Optical Absorption Spectroscopy at Interfaces 465



If an optical medium is excited by the periodic transverse electric field of a light
beam, it has a dielectric response due to its electrons. The medium is polarised by the
applied field, and an induced dipole moment is the result. The dipole moment per
unit volume V defines the dielectric polarisation P ¼ N

V a
� � E.1 There are three types

of polarisation: (1) electronic polarisation, a displacement of electrons with respect
to nucleus, (2) atomic polarisation, a distortion of atomic position in a molecule or
lattice, and (3) orientational polarisation, an alignment of polar molecules by the
electric field [26]. The polarisability tensor a� describes on the molecular level how
“strong” the reaction of the system is to an electric field in a certain direction.

In a classical description of dielectric media, electrons are assumed to be bound
by harmonic forces to positively charged ions [27]. In classical physics, solving the
equation of a damped harmonic oscillator leads to the Lorentzian-type dielectric
function (e.g. [16] and Chap. 12 by J. Daillant). From the spectroscopy point of
view, a quantum mechanical approach is desired. For this purpose, we need to solve
the stationary Schrödinger equation, Eq. 14.4, and obtain the wave functions of a
system. Their time dependence can be treated e.g. in a perturbation approach, for
details see [27].

The polarisation can be written as the expectation value of the dipole operator, in
close analogy to Eq. 14.12

PðtÞ ¼ N0hW2ðtÞjl̂jW1ðtÞi: ð14:18Þ

Here N0 is the number density of the mutually independent atoms in the system.
Provided they are known, one can insert the wave functions into Eq. 14.18, and
solve the integral to obtain the response to an electric field from the material.
Transformation into the frequency domain gives for each excitation frequency a
dielectric susceptibility v, which relates the polarisation at this frequency to the

incident electric field,

PðxÞ ¼ vðxÞEðxÞ : ð14:19Þ

In this quantum mechanical approach, atoms are represented as a collection of
oscillators with different transition frequencies xpq. The resulting equation

ð14:20Þ

closely resembles the shape of the response of a classical harmonic oscillator [16],

1The term “polarisation” is ambiguous in this text, because we follow general literature usage.
Polarisation can stand for the polarisation of light, as will be extensively used from Sect. 14.3
onward. In this paragraph, dielectric “polarisation” means the induction of an electric field,
opposing an external field, in matter. A third meaning of polarisation, which is not used in this
chapter, however, in Chap. 2 by C. D. Fenández-Solis et al. is the application of a controlled
electrode potential other than the open circuit potential.
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with oscillator strength fpq / Bpq, see Eq. 14.14. Adding the strength of all oscil-
lators by summing over all final states q leads to the oscillator strength sum rule,X

q

fpq ¼ 1: ð14:21Þ

This rule shows that the total transition strength in an atom can be represented as
one oscillator which includes many partial oscillators. In Eq. 14.20 we have ignored
the tensorial nature of the susceptibility, however, from Eq. 14.19 it is clear that the
components of the electric field in the different directions of space can induce a
polarisation in the three different directions of space.

The dielectric function is essentially erðxÞ ¼ 1þ vðxÞ,2 and when we include
effects beyond this picture in erð1Þ (which should = 1, but in this formulation
contains all contributions not accounted for, but present at x � xT), we obtain for
a single excitation (see also Chap. 12 by J. Daillant)

ð14:22Þ

where xT is the transition frequency of the excitation. Our resulting complex
dielectric function has a real and imaginary part, as has the complex refractive
index . The shape of Eqs. 14.20 and 14.22 shows that real and imaginary part of the
dielectric function are not independent. When there is no light absorption, k ¼ 0
and e1 ¼ n2. Further, from k one obtains the absorption coefficient aP when dividing
by the wavelength λ

aP ¼ 4pk
k

: ð14:23Þ

We should finally note that the susceptibility vðxÞ is defined for a collection of
atoms or molecules. On the other hand, the polarisability a� is the analogous
quantity on the level of an individual atom or molecule. Nevertheless, their role is
closely related: both describe the response of a system to an electric field the system
is exposed to.

14.2.4 Electronic Transitions

The energy differences between electronic ground states and electronic excited
states of many molecular systems are such that they can be excited by light with
photon energies in the UV, with some systems extending into the VIS. The
absorption of UV or VIS corresponds to the excitation of valence electrons.

2 As a side remark, we note that in general, both χ and er are tensorial quantities, which we ignore
in these equations for simplicity.
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In molecular systems, which are common in soft matter, the lowest energy
electronic transition is a transition from electrons in the highest occupied molecular
orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO), as illustrated
in Fig. 14.1. After excitation, the system may relax back to its original, energetically
more stable state, by releasing the energy difference as photons. If the molecule is
exposed to light photon energy equal to Eg, the HOMO-LUMO energy gap, this
wavelength will be absorbed [1].

While in this picture, we need essentially to consider the HOMO and LUMO
(and all other molecular orbitals) of the complete molecule, often characteristic
groups of the molecule are dominating light absorption at a certain wavelength.
These groups are called chromophores, and their presence can easily be detected in
a UV/VIS spectroscopic experiment [4].

While soft matter is typically composed of molecular systems, at interfaces it may
be in touch with a crystalline solid, e.g. a semiconductor or a metal. In this case, there
are nowell-defined energy levels, but there are bands. Optical properties of crystalline
solids are connected with transitions between the bands, and the lowest energy
transitions, the analogue of the HOMO-LUMO transition, is the transition between
valance band and conduction band, as illustrated in Fig. 14.1 [28, 29]. As we have a
continuum of transitions above the band gap Eg, the spectra in this case do not consist
of discrete bands, but show strong absorption over an extended wavelength range.

14.2.5 Vibrational Transitions

Radiation in the mid-IR wavelength range excites vibrational modes. One can think
of these in two different ways: (a) as vibrations of molecules or (b) as vibration of
lattices. In molecular soft matter systems, the molecular picture is more useful to

Fig. 14.1 Schematic view of a transition by light absorption in a solid from valence band to
conduction band (left) and in a molecular system from HOMO to LUMO (right). The vibrational
fine structure of the different electronic energy levels is not shown in this figure
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understand spectra, however, at solid/liquid interfaces, lattice vibrations of the solid
may become important.

The picture of the vibration of molecules (a) is the more easy to comprehend for
(small) molecules at an interfaces. If we look at the structure of a molecule, say
water, H2O, feel free to regard the bonds between the atoms as “quantum
mechanical springs” [20], for which we can obtain solutions of the Schrödinger
equation with harmonic (or anharmonic) oscillators representing the potential.
Every molecule is thus a collection of springs, and at certain frequencies these
springs will oscillate—these are the eigenfrequencies of a certain system. The light
will provide the excitation energy of these systems, so the light intensity will
decrease after passing through a sample.

The second picture, the picture of lattice modes in a crystal, is more popular in
the world of crystalline solids [30]. Here, lattice vibrations are known as phonons,
and are the analogue to vibrations of molecules (See [5] for a clear statement on the
distinction between lattice vibrations and phonons).

14.2.5.1 Molecular Vibrations

In order to understand the vibrations of a molecule, we want to think of water as an
example. The molecule consists of three atoms. Every molecule with X atoms has
3X � 6 vibrational degrees of freedom, except if the molecule is linear, which has
only 3X � 5. What oscillations these modes come down to can be determined “from
scratch” by a normal coordinate analysis [1, 20]. In the simple picture presented
above, we need to replace the actual coordinates by mass-weighted normal coor-
dinates, in which the respective analysis can be performed.

For water with its three atoms, we should look for 3 oscillatory modes. These
three turn out to be (a) the antisymmetric stretching mode, (b) the symmetric
stretching mode, and (c) the bending mode. The movement of bonds in these
different modes is depicted in Fig. 14.2. Please understand that when looking at the
motion of the atoms the picture is a bit different, because in a vibrational mode, the
centre of mass of the molecule needs to be fixed.

In the case of water, all three modes can be observed in the IR spectrum
(Fig. 14.3). The absorbance band at around 1645 cm−1 is assigned to water bending
mode [δ (OH2)], while the band at 3000–3700 cm−1 contains the stretching modes
[ν (OH)].

Fig. 14.2 Motion of the bonds in the different normal modes of a water molecule: a symmetric
stretching mode, b antisymmetric stretching and c bending mode
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Figure 14.3 illustrates the strong differences between a spectrum from the gas
phase and a spectrum of a liquid. In the gas phase, rotational excitation show up as
fine structure around the vibrational transitions. While the bending mode is centred
at the same wavenumber in gas phase and in liquid phase, the stretching modes are
shifted to lower wavenumber in liquid phase. In water, this shift is caused by the
strong hydrogen bonding. Hydrogen bonding also leads to the occurrence of the
restricted rotational and translational modes at lower wavenumbers (“librations”)
[31–34]. At this point, it is worth to direct the interested reader to the website of
Chaplin [35], which discusses in detail the absorption spectrum of water.

For complicated molecules, the possible modes are also getting more compli-
cated. Even a relatively simple molecule like hexane, C6H14, has 20 Atoms, and
therefore 54 vibrational modes. Some of these modes will be very close in their
frequencies and some even degenerate, however for chemically more diverse sys-
tems, as typically encountered in soft matter, this does not need to be the case. In
the case of complex molecules as present in soft matter systems, frequently almost
all modes can be visible in both the IR absorption as well as the Raman spectrum,
though with different intensities.

In general, some modes will be localized in certain parts of a molecules and
therefore be highly specific for the presence of a certain group. Examples are the
CH2 stretching modes, to whom only the methylene groups contribute. These
modes hint to the presence of certain groups in a molecules [4, 19]. Also, small
difference in a vibrational frequency of a certain group (e.g. of the CH2 stretching
modes) can be an indication of different conformations of these groups. A very
systematic collection of the vibrational modes typically observed in organic com-
pounds with a great variety of substitution patterns was compiled by Nyquist [19].
Nowadays, also software is available to analyse vibrational spectra for the presence
of certain characteristic groups based on empirically collected knowledge [36].

Fig. 14.3 IR absorption spectrum (A from Eq. 14.1) of liquid water (bottom) and water vapour
(top, transmittance, M from Eq. 14.1). The peak around 2300 cm−1 is the absorption of
atmospheric carbon dioxide, which was present in the system during measurement, but won’t be
discussed here
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Other modes will be delocalised over the whole molecules, meaning that all
bonds are collectively oscillating. These are the ones responsible for the “finger-
print” of the molecule, making IR spectroscopy useful as a proof of identity [4, 19].

At interfaces, the bond between a certain molecule and the interface may give
rise to additional vibrational modes not present in the free molecules. Likewise,
coupling may occur between vibrational modes of species on both sides of the
interface, or between electronic transitions of species on one and vibrational tran-
sitions of species on another side of an interface.

14.2.5.2 Lattice Vibrations (Phonons)

Similar to atoms in a molecule, the atoms in a crystal oscillate around their average
position. In a crystalline solid, these oscillations happen in a synchronised way
between different unit cells, and are called lattice vibrations, also known as phonons
[30]. A crystal will also have phonons that are highly localized and that resemble
e.g. the stretching of a bond. As an example, the O–Si–O stretching modes occur at
similar frequencies in a quartz crystal and in a silicon-organic compound. Other
phonons are delocalized over the complete unit cell of a crystal. Details are pre-
sented in textbooks of solid state physics [5, 37].

In a crystal containing x atoms in y molecules per unit cell, containing in total
X atoms, there will also be 3X normal modes, each with energy �hx. Of these modes,
3ðy� 1Þ will be translational modes (see [5] for more details).

The phonons may couple to electronic transitions, giving rise to interesting
physics, e.g. for the electrical conductivity [38]. Also in solids, typical phonon
energies are comparable with IR photon energies. When adsorbing molecules to
interfaces, the lattice vibrations of the crystalline material may couple with the
vibrational modes of the molecules, giving rise to completely new phenomena due
to the presence at the interface.

14.3 What’s Special at Interfaces? Principles
and Application

At an interface, reflection and refraction of light will occur. If light-absorbing
species are present at the interface, absorption will occur in addition. Most infor-
mation about the state of the interface can be obtained by analysing the reflected
light, which is why most of this section will discuss the different options to perform
reflection experiments (We will, however, also briefly discuss the experiments in a
transmission geometry). Within the scope of this book, we will focus on systems
containing soft matter at interfaces where at least one side is an aqueous solution.
We will exclusively discuss specular reflection experiments (angle of inci-
dence = angle of reflection), and not discuss diffuse reflection and scattering.
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The central quantities in reflection spectroscopy are the amplitude reflection
coefficients r, which give the ratio of reflected time-averaged electric field ampli-
tude Eð0Þ;refl to incident time-averaged electric field amplitude Eð0Þ; inc,
r ¼ Eð0Þ; refl=Eð0Þ; inc. As the electric field has been introduced as vectorial quantity
in Sect. 14.2 (Eq. 14.9), r has a strong directional dependence. To take this
directional dependence into account, the polarisation of light will be introduced
below. A more detailed discussion of the amplitude reflection coefficient is pre-
sented in Chap. 13 by B. Loppinet. For this chapter, we still have to note that we
will discuss intensities rather than field amplitudes. The reflectivity R describes the
analogous intensity ratio between reflected Irefl and incident I inc intensity of light,
R ¼ Irefl=I inc, and is the quantity already used in Eq. 14.2 to define the reflectance
absorbance.

Reflection experiments at interfaces can be divided into two broad categories,
internal and external reflection and are schematically shown in Fig. 14.4.

The external reflection geometry is the simplest geometry of a reflection
experiment. Light is incident through a sample-containing solution, the medium
with the lower refractive index, and reflected from the interface under investigation.
Because in this experiment, there is a uniform surface, therefore molecules in the
entire illuminated part of the surface contribute to the final spectrum in the same
fashion. This type of experiment can also be used to study the surface of bulk
metals, including single crystals, or rough surfaces as used in industrial processes.
Using flat surfaces opens up the possibility to determine the orientation of mole-
cules with respect to a well-defined interface, or any other well-defined reference
direction. Big drawback of this geometry is the interaction of the light with the bulk
sample medium in a similar fashion as in transmission geometry, hence tricks are
needed to extract interface-specific information.

Substrate

Aqueous phase + soft matter

External reflection

Internal reflection

Fig. 14.4 Schematic
representation of internal and
external reflection
experiments performed at an
interface. For the sake of
clarity, refracted beams in
transmission are not depicted
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In internal reflection, light is impinging on the interface under study from a
medium with the higher refractive index above the critical angle of total reflection.
Hence, an evanescent wave is generated at the interface, probing the sample
medium. In this fashion, there is limited interaction of the light with the bulk sample
medium. However, use of internal reflection is limited to few incidence media.

Before proceeding to different cases of application, it is worth to point out that at
interfaces, an analysis of the polarisation of light is critical. Because the linear
polarisations of light are eigenpolarisations of a planar interface, i.e. impinging
linearly polarised light result in reflected linearly polarised light, we shall limit
ourselves to linearly polarised light in this chapter. For a thorough introduction to
polarisation of light, see [39]. In Eq. 14.9, for a transverse wave as discussed here,
E?k, hence Eð0Þ?k, which corresponds to amplitude components perpendicular to
the propagation direction of the electromagnetic wave. The conventional coordinate
system in the optics of interfaces is shown in Fig. 14.5.

When the oscillation of the electric field vector occurs perpendicular to the paper
plane, this is called perpendicular polarisation (or vertical, or transverse electric, or
simply s-polarisation; labeled “s”; referring to the German word “senkrecht” for
“perpendicular”, in Fig. 14.5). The electric field therefore has only components in y-
direction, and no component in the x- and z-direction. An oscillation of the electric
field vector within the x-z-plane, but perpendicular to the direction of polarisation is

Fig. 14.5 Coordinate system used (x/z axes) to describe light impinging on a surface under an
angle of incidence θ. Reflected (R) and transmitted (T) beams are observed. The two modes of
linear polarisation are shown: in s-polarisation, the electric field vector oscillates perpendicular to
the x-z-plane, the plane of incidence, while for p-polarisation it oscillates within that plane and
perpendicular to the direction of propagation of the incident beam. The medium from which the
light impinges on the surface is medium 1 with the refractive index n1, and the exit medium is
medium 2 with a refractive index n2
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shown as an arrow and called parallel polarisation (or horizontal, or transverse
magnetic, or simply p-polarisation; labeled “p” in Fig. 14.5). The electric field of
the p-polarised wave has therefore components in the x and z direction, but is 0 in y-
direction.3

Because the oscillation of the electric field vectors are in different planes for the
different polarizations, they can excite different components of the vectorial tran-
sition dipole moment to a different extend. One gets maximum signal if the tran-
sition dipole moment is parallel to the direction of polarisation. That is the basis for
obtaining information about the orientation of the molecules at an interface.

Quantification of the reflectivities from the interfaces are discussed in Chap. 13
by B. Loppinet. Here, we want to point out that based on the complex refractive
index of a well-defined layer systems, reflectivities can be calculated, hence a
reflectance absorbance can be defined. Calculation from the complex refractive
indices of all ingredients may be performed using matrix methods [40, 41]. For such
calculations, the author’s lab has developed the open source computer program
reflcalc, which is flexible but not too user-friendly [42]. For geometries with
in-plane structure, sophisticated methods of solving the Maxwell equations are
needed, e.g. finite difference time domain [43] or finite element methods [44].

14.3.1 Transmission Spectroscopy for Interface
Characterisation

The simplest spectroscopic experiment to characterise an interface is a transmission
experiment, as sketched in Fig. 14.6. Here, light is simply going through the
structure under investigation, the transmitted light is collected and analysed. This
experiment is convenient if all parts of a structure are sufficiently optically trans-
parent. For the investigation of metals or other strongly absorbing substrates, a wire
grind can be manufactured and introduced into the beam [45]. The solution,
including the interface under study, must be placed between two windows trans-
parent for the wavelength range in use.

In this type of experiment a spectrum contains information averaged over all
molecules with the respective absorption in the beam. This includes molecules
adsorbed to the surface, but also those present in the bulk solution, or a thin film.
This problem is simplified if only adsorbed molecules are present in the system, e.g.
if unbound molecules can be rinsed away.

Metals, however, are not transparent to light—their investigation is, however,
highly desired e.g. when discussing electrochemical phenomena (see Chap. 2 by C.
D. Fenández-Solis et al.). Near the surface of an ideal metal (n = 0, k→ infinity) [46],

3 Actually, the magnetic field vector is perpendicular to the electric field vector. Therefore, for the
p-wave, the magnetic field vector has only a y-component that is different from 0, which is where
the name transverse-magnetic originates from.
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the boundary conditions show that the electric field vanishes directly at the interface
for normal incidence [40, 46]. In real metals, which have values n � 5�20 and
k � 5�50 [24], the boundary conditions are somewhat softened in this respect.
Therefore, some intensity of light will be present at the interface. The intensity will be
maximised at large angles of incidence, near grazing incidence and depends on the
polarisation [40, 47].

A further complication in this approach arises from the strong IR absorption of
most solvents, including water. This problem is known in solution transmission IR
spectroscopy, and is usually solved by using only short paths through the elec-
trolyte, down to <10 μm, if vibrational modes near the solvent absorption should be
investigated. In such thin cells, adsorption experiments are, however, hard to per-
form, because of diffusion limited transport to the grid.

Because of its appealing simplicity, however, the transmission experiment has
been very popular (see e.g. [45, 48]). It is advantageous for qualitative analysis of
finely dispersed structures, where species at an interface make up a significant
fraction of the total amount of molecules to be analysed. The transmission approach
is particularly suitable to investigate differences between different states, and if
bound molecules have a significantly different spectroscopic signature than those in
free solution.

14.3.2 External Reflection Spectroscopy on Metals

In the visible, and even more so in the infrared, metals are good mirrors. At room
temperature, they posses a continuum of electronic transitions below the plasma
edge. Since the photon energy �hx of infrared radiation is lower than that, metals
absorb strongly in the infrared wavelength range. Consequently, electromagnetic

Fig. 14.6 Sketch of the propagation of light (arrows) in a transmission experiment. The central
darker structure symbolises a metal grid, or an IR-transparent semiconductor. The dots symbolise
the solvent, while the curved structure depicts the soft matter molecules under study
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waves, and therefore light as well, cannot be transmitted through macroscopic metal
samples above a thickness of several tens of nm. Therefore, bulk metal surfaces
cannot be studied by transmission (see Sect. 14.3.1) or internal reflection (see
Sect. 14.3.4) techniques. Thus, external reflection experiments provide the most
significant amount of information [7, 49].

Naively, one would expect this to be a very straightforward technique, since
metals do have a high reflectivity. However, due to the boundary conditions for
electromagnetic waves at a metallic interface, the field is almost zero directly at the
interface. This is because, as already mentioned, the electromagnetic field does not
penetrate the metal due to its material properties, so close to the metal surface,
electromagnetic waves already “prepare” for the presence of the metal. Figure 14.7
depicts the situation for a reflected electromagnetic wave at normal incidence. It
shows that at normal incidence, there will be a maximum of intensity at about a
quarter of the wavelength away from the surface. One can therefore highly sensi-
tively probe materials somewhere about this distance away from the surface, but not
in the first nanometres away from the surface.

Because of electromagnetic reasons, only transition dipole moment components
perpendicular to the metal surface can be excited near a metal surface [7, 49, 50].
This so-called “surface selection rule” is governed by the interaction of the tran-
sition dipole moment with its image dipole, as illustrated in Fig. 14.8. As light has a
wavelength that is much larger than the transition dipoles of molecular dimension,

Fig. 14.7 Standing wave pattern formed by a reflected electromagnetic wave that is impinging on
a metal surface at normal incidence. The pattern formed by interference between incident and
reflected wave has a knot at or near the surface. The maximum of intensity is somewhere around a
quarter of the wavelength inside the incidence medium

Fig. 14.8 A transition dipole moment on the surface of a conductor with free charge carriers, e.g.
a metal, interacts with its image dipole. Hence, components parallel to the metal surface cancel,
while components perpendicular to the interface are amplified
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light will probe the sum over the transition dipole and its image dipole. Transition
dipole moment components parallel to the interface, however, cancel with their
image dipole. On the other hand, components perpendicular to the surface are
enhanced. S-polarised light would excite only components which are parallel to the
surface, hence no absorption of light is measured in s-polarisation. The components
which are active on the surface can be excited in p-polarisation at large angles of
incidence.

One example, where external reflection spectroscopy can be conveniently used
on metal substrates are monomolecular layers on metals in air or vacuum. Here, we
shall briefly discuss the case of self-assembled monolayers (SAMs), however,
similar lines of reasoning apply to Langmuir-Blodgett films, or other adsorbate
structures. SAMs are essentially spontaneous assemblies of organic molecules
chemisorbed onto the metal substrate through a head group. A representation of a
typical SAM on a metal substrate is shown in Fig. 14.9. The interesting properties
of such a system to be studied pertains to the interface between the organic
molecule and the metal surface. This means in principle the angle, order/disorder,
morphology, and coverage of the deposited SAMs. IR spectroscopy is a common
method to study such systems—though most of the time not in contact with
aqueous solutions. The most commonly studied system of SAMs are molecules
with thiol headgroups assembled onto a gold surface, by the strong S-Au bond [51–
55].

IR spectra can be recorded, with spectra from the bare substrate serving as a
reference (background in Eq. 14.2). An example of a spectrum is shown in
Fig. 14.10. This figure shows the CH stretching modes of dodecanethiol adsorbed
to gold. The spectrum differs from a spectrum in homogeneous solution in the
absorbance ratios between the different peaks (surface selection rule applied to an
oriented layer!), and in the exact peak position (conformationally ordered chains
with all-trans conformation in SAM, disordered in solution). See [56, 57] for a
detailed discussion of the spectra of alkyl chains in different conformations.

Because of the fact that only the transition dipole moments perpendicular to the
surface can be probed at all, the determination of the orientation of molecules
requires a reference system. This reference system can either be a quantitative

Fig. 14.9 Representation of a
self assembled monolayer on
a metal substrate, as an
example for organic thin films
on metals
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comparison to a transmission spectrum [58]. Alternatively, an internal reference, i.e.
a comparison of groups whose transition dipole moment directions are not equal, is
suitable, which we shall briefly illustrate here. We start from the approach that

Z
band

Ard~m / B21bz; ð14:24Þ

where bz gives the projection of the transition dipole moment components on the z-
axis, according to the surface selection rule, and

R
band Ard~m represents the integrated

reflectance absorbance. For bz, one can use a model developed for the determi-
nation of the orientation of protein fibres from its linear dichroism [59], which
yields for a uniaxial system

bz ¼ S2 cos2 cþ 1=3ð1� S2Þ ; ð14:25Þ

where γ is the angle between transition dipole moment and molecular axis, and S2
the orientational order parameter,

S2 ¼ hcos2 diN � 1
2

; ð14:26Þ

with tilt angle δ of the molecular structure with respect to the z-axis, and h:iN
indicating an ensemble average. Let’s consider now the ratio of reflectance
absorbance between two modes, one with cð1Þ ¼ 0�, and the other with cð2Þ ¼ 90�.
Examples may be SAMs terminated by —NO2 or —COO− groups. These groups
posses both symmetric and antisymmetric stretching modes, with transition dipole
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Fig. 14.10 IR reflection absorption spectrum of a decanethiol SAM on Au(111) (full line, scale on
the left), compared to spectrum of decanethiol in CCl4 (dotted line, scale on the right).
Different CH stretching modes are shown, with the respective assignment. The reflection spectrum
has been recorded at grazing incidence (incidence angle 80°) with p-polarised light
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moments which are in first approximation perpendicular to each other. Hence
absorption peaks from these modes can be analysed quantitatively for determination
of the orientation of these groups. Calculating the ratio of the reflectance absor-
bances by putting Eq. 14.26 into Eq. 14.25, substituting the result for bz into
Eq. 14.24, and simplifying, yields

R
band A

ð1Þ
r d~mR

band A
ð2Þ
r d~m

¼ Cð1ÞBð1Þ
21 ð2S2 þ 1Þ

Cð2ÞBð2Þ
21 ð1� S2Þ

; ð14:27Þ

where Cð2Þ and Cð2Þ are the constants of proportionality from Eq. 14.24. The ratio

DðreflÞ ¼ R
band A

ð1Þ
r d~m=

R
band A

ð2Þ
r d~m can then be obtained from the integrated bands

from the reflectance absorbance spectrum, while the ratioDðtransÞ ¼ Cð1ÞBð1Þ
21 =C

ð2ÞBð2Þ
21

is obtained from the integrated absorbance of the same bands in a spectrum of the
same species in solution, where it is randomly distributed. Substituting the ratios into
Eq. 14.27 yields DðreflÞ ¼ DðtransÞ � ð2S2 þ 1Þ=ð1� S2Þ, which can be solved directly
for the squared cosine of the tilt angle, using Eq. 14.26, to yield

hcos2 diN ¼ DðreflÞ

DðreflÞ þ 2DðtransÞ : ð14:28Þ

With this result, the orientation of a molecular group can be determined by
comparing the absorbance ratio of two modes in reflection with those in a random
orientation, e.g. from a transmission spectrum in free solution.

In modern works, a calculated spectrum (e.g. by density functional theory, DFT)
can be directly compared to a measured spectrum. DFT is also quite useful to obtain
the directions of transition dipole moments. The ratio DðtransÞ may hence also be
obtained from a calculation. When comparing measured spectra to experimentally
obtained, most of the time only the calculated frequencies are compared, not cal-
culated spectra (see e.g. [60] for one example). Calculations of the full dielectric
function and hence the full spectral information probed by an experiment are also
possible, though challenging [61]. It should be pointed out that calculated vibra-
tional frequencies apply not only to the IR absorption experiments, but also to
transitions in Raman or sum frequency generation spectroscopy experiments (see
also Chap. 15 by M. Hoffmann et al.) [60, 62].

Because of the surface selection rule, quantification of the exact amount of
transition dipoles near an interface is rather challenging. Even a surface which is
fully covered may not show any contribution in the spectrum, if the molecular
transition dipoles are oriented parallel to the surface. As one textbook puts it [63],
the surface of a metal is the perfect place to hide a thin coating of organic material.

Thicker soft matter structures can also be studied, e.g. [64]. In experiments
where thick layers of soft matter are investigated, it has to be pointed out that
because of the distance-dependence of the field strength (Fig. 14.7), molecular
groups which are located at a different distance from the surface contribute to the
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spectrum differently, which again makes quantification of concentrations as in
transmission spectroscopy of homogeneous solutions difficult.

The problem arising from the fact that in the case of metals, species in solution
contribute to the spectra to a larger extend than species on the surface is obvious for
this geometry. Further, solvent absorption is a problem, which is why optical path
lengths through the sample solution need to be minimised. Due to the large angle of
incidence needed, the solvent layer thickness needs to be even smaller than for
transmission experiments.

The lack of interface specificity of the direct external reflection experiment can be
overcome by modulating the polarisation of the incoming light. The physical prin-
ciple of the technique uses the fact that during propagation through an isotropic
medium, all possible linear polarisation states of light are affected equally. However,
p-polarised light interacts differently with an interface than s-polarised light (see also
Chap. 13 by B. Loppinet). Because the linear polarisations are the eigenpolarisations
of a planar interface, the differences in the linear polarisation states are the quantities
that contain the information about the interface [40, 47, 65]. The measured reflection
spectrum is obtained by signal processing as the difference of the intensity measured
with parallel polarisation and the intensity measured with perpendicular polarisation
[66–68]. The signal is then usually normalised with respect to the sum of signals
from both polarisations. Because of the surface selection rule, the analysis is con-
siderably simplified in the case of metal substrates compared to transparent sub-
strates [66]. For non-metallic substrates, e.g. semiconductors, or H2O, the use of the
difference signal can lead to cases where contributions to the absorption from light
with parallel and perpendicular polarisations cancel each other, and no absorption is
seen in the spectrum despite the presence of molecules on the surface.

The length scale of the interface specificity of this technique is on the length
scale of the differences in the intensity reflection coefficients of the two linear
polarisations, i.e. in the subwavelength range, usually a few 10 nm in the mid-IR
[47]. The constraint that only a thin layer of electrolyte may be present above the
surface, here between the entrance window and the sample surface, is still present
when using polarisation modulation.

14.3.3 External Reflection Experiments on Transparent
Substrates

The surface selection rule, caused by the free electrons in the metal, makes metals
special in reflection spectroscopy experiments. External reflection experiments can,
however, also be performed with substrates which are transparent, such as MgF2 or
CaF2, which are transparent from UV to IR. Substrates containing polarisable
molecules, such as H2O, also fall in this group. Though H2O is strongly absorbing
in the IR, its absorption from excitation of vibrational modes is still considerable
weaker than the absorption caused by electronic transitions in metals.
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Typically, the reflectivity of these materials is much lower than the reflectivity of
metals, therefore, the total intensity at the detector is typically rather low, making
experiments on non-metallic substrates much more challenging compared to metals
discussed in Sect. 14.3.2. On the other hand, there is no mechanism to decrease the
intensity of certain species, as the surface selection rule for metal surfaces. A rough
determination of orientation is possible from measurements with two polarizations
at one angle of incidence, however, a better method are angular-resolved mea-
surements, which need to be fit to a multilayer model, similar to the analysis of
ellipsometric data (see Chap. 13 by B. Loppinet).

The angular and polarisation dependence of the absorbance is not trivial. The
complex relation results from the presence of a transmitted and reflected beam. In
s-polarisation, absorbance bands are typically negative, while in p-polarisation they
change the sign around the Brewster angle. Bands are most intense in p-polarisation
near the Brewster angle. For more details, see e.g. [7]. A careful optimisation of the
angle of incidence is needed if optimum sensitivity should be achieved. For
examples, the reader is also referred to the substrate-specific original literature, e.g.
[69–73].

14.3.4 Internal Reflection Spectroscopy—Attenuated Total
Reflection (ATR)

In internal reflection experiments, measurements are performed at an incidence
angle above the critical angle hcr of total internal reflection, which is given as
sinðhcrÞ ¼ n2=n1 from the ratio of the refractive indexes n1 and n2 of incidence and
exit material, respectively.4 The larger the refractive index n1, the smaller hcr, and
therefore the larger the range of incidence angles one can use [74, 75]. The incident
wave generates an evanescent wave with an exponentially decaying electric field
into the medium with lower refractive index,

EðzÞ ¼ E0 e
�z=dp : ð14:29Þ

Here, E0 is the electric field at the interface, z is the distance from the surface,
and

dp ¼ k0=2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 sin hÞ2 � n22

q
; ð14:30Þ

4The same phenomenon is referred to in Chap. 12 by J. Daillant as “total external reflection”,
because at X-ray wavelengths, the refractive index situation is reversed compared to optical
wavelengths, i.e. the medium with lower refractive index here may be the medium with higher
refractive index when using X-rays.

14 Optical Absorption Spectroscopy at Interfaces 481

http://dx.doi.org/10.1007/978-3-319-24502-7_13
http://dx.doi.org/10.1007/978-3-319-24502-7_12


with k0 the vacuum wavelength of the incident radiation, is the characteristic length
of the exponential, the penetration depth. The nature of the evanescent wave is e.g.
discussed in [76]. Visualisations can be found e.g. at [77].

Placing an absorbing medium in contact with the evanescent wave leads to an
attenuation of the total internal reflection, which is why this method is also known
as attenuated total reflection (ATR) spectroscopy. An overview over physical basics
and general applications is given elsewhere [7, 15, 49, 74, 78]. This method has
also been quite popular for the characterisation of lipid membranes, small peptides,
and membrane proteins [12, 78]. Polymers at interfaces have also been investigated
extensively [79].

Internal reflection spectroscopy requires a transparent, high-index medium of
incidence. Typical examples for materials serving as “internal reflection elements”,
i.e. the high refractive index incident media, are silicon, germanium, and zinc
selenide in the IR, and ZrO2 or high-index glasses in the UV/VIS. Especially
semiconductors with a low band gap are very suitable incidence media in the IR,
though they can be used in transmission and external reflection experiments as well.
The transparency of the substrate is usually only limited by the absorption from
lattice vibrations (see Sect. 14.2.5.2). Metals are unsuitable media of incidence, due
to their strong light absorption. However, thin metal films can be deposited onto the
surface of a transparent medium of incidence, and a tunnelling of the light through
the metal films used for spectroscopic applications. Such a method has been used to
characterise peptides [80, 81] and lipid bilayers on gold surfaces [82, 83]. Interlayer
systems can be applied to enhance the transparency of the metal layers [84, 85].

Using internal reflection spectroscopy, there is a certain surface specificity given
by the penetration depth dp. The penetration depth of the evanescent wave depends
on the refractive index difference (or rather, depends on how “far” away one is from
the critical angle), and a higher refractive index difference with a higher angle of
incidence gives a lower penetration depth, therefore increasing the
“surface-specificity”, i.e. the amount the contributions near the interface are
amplified over the contributions from the bulk medium 2. It is worth noting that
absorbance is governed by jEðzÞj2, implying that the characteristic length of the
decay of the absorbance contribution is dp=2. In typical situations, with silicon or
germanium as incidence media and aqueous electrolytes as rarer medium,
dp � 200�400 nm. Even if thin metal (or other) films are present on the surface of
the medium of incidence, the decay length and hence the interface specificity are
determined by the medium of incidence and the exit medium. The intermediate
films modify the amplitudes E0, but dp is left unchanged. There is a significant
decrease of E0 on thin metal films, leading to a low overall sensitivity. It must be
noticed, however, that the exponentially decaying intensity profile means that
solution species are still detected in the spectrum, but species nearer to the interface
are detected with a larger weighting factor.

The big advantage of this method is that no propagation of light through the
medium under investigation is needed. Therefore, there are no geometrical con-
straints to the solution side of the experiment and no need for thin layer cells.

482 A. Erbe et al.



The orientation of a molecule on a surface can easily be estimated in internal
reflection spectroscopy from the dichroic ratio D ¼ ðRband Ar;pd~mÞ=ð

R
band Ar;sd~mÞ via

S2 (Eq. 14.26). D is the ratio of the integrated reflectance absorbance with s- ðAr;sÞ
and p-polarisation ðAr;pÞ. Details can be found elsewhere [15, 78]. The orientation
can also be determined if thin solid layers of known thickness are present between
medium of incidence and solution [82, 83]. As there is no orientation of the tran-
sition dipole moment in which absorption is fully extinct, the concentration of
species on the surface can be determined as well [86–88]. Furthermore, the
evanescent wave is one of the most repeatable waveforms that can be created for
spectroscopic application, which is why its use for illumination has big advantages
for highly quantitative work [32, 74, 75].

14.3.5 Evanescent-Wave Illuminated Spectroscopy
in External Reflection

An evanescent wave generated on one interface can also be used to illuminate a
second interface in the vicinity of the one where the evanescent wave is generated.
This is illustrated in Fig. 14.11. Frequently, this geometry is also referred to as ATR
geometry [10, 11], but because the mechanism in which the light interacts with the
sample surface is different from the one described in Sect. 14.3.4, we decided to
devote an extra subsection to it. Here, from the viewpoint of the sample interface,
the optics is similar to the optics described in Sect. 14.3.2, except that the illumi-
nation is now happening through an evanescent wave instead of a freely propa-
gating wave.

In this geometry, bulk metal electrodes can be illuminated, but a large price has
to be paid in terms of the interface specificity. Because in this geometry, the
evanescent wave is generated several 100 nm away from the sample surface, there

Semiconductor

Sample surface

Fig. 14.11 Sketch of an
optical configuration in which
an evanescent wave generated
at a semiconductor/solvent
interface is used to probe a
sample surface close-by
through a solution
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is an exponentially larger sensitivity to species near the incidence medium than to
species near the sample surface. Furthermore, the solution layer between incidence
medium and sample surface must be extremely thin, leading again to a very
demanding cell design.

On the other hand, the interface to the internal reflection geometry offers an
increase in overall sensitivity when compared to external reflection or transmission
experiments, which can be achieved by using multiple reflections in the medium of
incidence [12]. Applications of this geometry are described elsewhere [10, 11].

14.3.6 Surface Enhancement from Rough Interfaces

Using rough metal surfaces, it is possible to obtain special “surface enhancement”
of the absorption in the spectra, which leads e.g. in the IR to “surface enhanced
infrared absorption” (SEIRA) spectroscopy. The enhancement originates mainly
from near-field effects: incident light is scattered with a high intensity into e.g.
radial fields near particles or other small structures [7, 65, 89]. Therefore, there is an
increase in interface specificity, as well as an increase in the overall sensitivity to
species. A number of applications in this field have been reviewed recently [13].
There are certain analogies in the mechanisms to the mechanisms of
surface-enhanced Raman spectroscopy, though the details of the mechanisms must
take into account the different mechanisms of Raman and IR absorption spec-
troscopy [90, 91]. While sketched in principle in Fig. 14.12 for the more popular
internal reflection geometry [13], surface enhancement is obtained in both internal
and external reflection geometry [92].

Semiconductor

Fig. 14.12 Optical configuration of creating surface enhancement. A metal-island structure (dots
on the surface) is deposited on the surface of an IR-transparent medium (bottom). IR light (arrows)
propagates inside the semiconductor medium probing solvent and sample near the metal
nanostructures
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Due to the near-field nature of the experiment, this is the method with the largest
interface specificity, which can reach only a few nm. Both the large sensitivity and
the large interface do, however, imply the need for using rough surfaces. On these
surfaces, quantitative work is again difficult, because different parts of the surface
contribute to the overall spectrum to a different extend. Furthermore, some regions
of the surface are not illuminated at all [90]. In addition, the option to determine the
orientation of molecules has disappeared, mainly because of the ill-defined surface.
Adsorption studies to such surfaces may also be rather specific to the actual surface
morphology and structure.

One of the current sticking points of SEIRA in the applications described here is
the need for rather ill-defined surfaces. The use of well-defined surfaces may bring
further advantages to the technique [92].

14.4 Conclusion

Interfaces can be probed by optical spectroscopy using a variety of reflection
techniques, but under some circumstances also by transmission spectroscopy. The
physical principles of dipole transitions are very similar for probing electronic and
vibrational transitions. However, the latter offer more transitions, therefore they are
more frequently probed in soft matter science. Depending on the type of sample and
the available sampling techniques, optical absorption spectroscopy may give
(a) qualitative information on the presence of certain groups, (b) (semi)quantitative
information on the amount of certain species present, (c) quantitative information
about the orientation of certain groups, (d) qualitative information about the
environment (e.g. polar vs. non-polar) a certain group is in and (e) information of
the conformation of molecules.

From the spectroscopic techniques discussed here, SEIRA spectroscopy has the
largest interface specificity, of only a few nanometres, but it depends on the exact
geometry of the surface. The interface specificity of polarisation modulated external
reflection experiments is less pronounced, followed by direct internal reflection
spectroscopy. All other methods discussed here are not interface specific. However,
interface specificity itself is only important if species near the surface are to be
investigated in a background of species in a bulk solution or film. A better speci-
ficity to interface contributions is obtained by non-linear optical techniques, see
Chap. 15 by M. Hoffmann et al.

For optical reasons, the sensitivity to the amount of adsorbed species is high for
SEIRA spectroscopy, but due to the use of multiple internal reflection can be
increased almost arbitrarily using internal reflection spectroscopy in a direct way or
using the generated evanescent wave to illuminate a different surface.

Overall, the internal reflection geometry (ATR) is the best suited for quantitative
work, though it is rather limited in the number of interfaces which can be inves-
tigated. Both orientation of species and surface concentrations can be determined in
ATR geometry. On the other hand, spectroscopy in external reflection shows
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largely different spectra comparing metal and transparent substrates. On metals, the
“surface selection rule” implies that transition dipoles in a certain direction cannot
be probed, making quantification of the surface coverage difficult. Overall, all
methods discussed here are useful for qualitative in situ and operando analysis of
the composition of interfaces, which is likely the most significant contribution of
optical spectroscopy to interface science.
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Chapter 15
Introduction to Quantitative Data Analysis
in Vibrational Sum-Frequency Generation
Spectroscopy

Matthias Josef Hofmann and Patrick Koelsch

Abstract Analyzing molecules at aqueous interfaces in situ, in vitro, or even
in vivo without the need for labels and/or disruptive sample preparation is crucial
for the understanding and optimization of material’s interactions with its sur-
rounding. In this context, a central theme is the ability to differentiate between
molecules in the respective bulk phases and those that are located at the interface.
Here we introduce vibrational sum-frequency generation (SFG) spectroscopy, a
nonlinear optical technique that is capable to selectively probe molecules at inter-
faces. SFG spectroscopy can be applied under ex vacuo conditions and allows to
record vibrational spectra from molecules at interfaces. Though this technique holds
great potential in research themes involving aqueous interfaces, the data analysis of
SFG spectra can get quite complex and often requires a comprehensive under-
standing of the underlying nonlinear optical processes. This chapter introduces
experimental and theoretical aspects of SFG spectroscopy with a strong focus on
data analysis. It is meant for scientists new to the field of SFG spectroscopy who
like to explore its applicability and theoretical background or are starting to apply
SFG spectroscopy in their own research.

15.1 Introduction

Vibrational sum-frequency generation (SFG) spectroscopy has become an estab-
lished nonlinear optical method for surface analysis of aqueous interfaces. It allows
to record vibrational spectra of molecules with superior surface specificity and
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sensitivity down to submonolayer coverages. Its working principle is based on the
spatial and temporal overlap between visible and IR laser pulses at interfaces to
generate a signal at the sum-frequency of the two incident beams
(xSFG ¼ xIR þxVIS). This process can be understood as the excitation of a vibra-
tion with the IR beam followed by an upconversion through the visible beam in a
coherent anti-Stokes Raman process to generate SFG signals as illustrated in
Fig. 15.1. In a typical experimental setting, the visible wavelength will be kept
constant while the IR frequency is either tuned or broadband in nature. In an
experiment utilizing picosecond (ps) laser pulses, the frequency is narrowband
(typically < 5 cm−1) and an SFG spectrum is acquired by tuning the IR frequency.
Repetition rates for ps lasers are on the order of 10 and acquiring a spectrum over a
range of 100 cm−1 takes several tens of minutes. In an experiment utilizing fem-
tosecond (fs) laser pulses, the IR frequency is broadband (up to several 100 cm−1)
so that every SFG pulse contains information within this spectral range. This
together with repetition rates for fs laser sources being 1000 Hz and higher results
in spectral acquisition times in the sub-second regime. Independent of the laser
source is the principle that once the incident IR energy is in concert with a resonant
mode that is both IR and Raman active, an SFG signal can be produced. This SFG
beam is spatially separated from the reflected visible and IR beams and can be
isolated by a proper set of mirrors and filters. Detection schemes for narrowband
experiments involve a monochromator and a photomultiplier to measure the SFG
photon flux at each IR wavelength. For broadband experiments, SFG spectra are
recorded by a spectrograph that is dispersing the signal onto a CCD camera.

The differences to linear first-order vibrational spectroscopies, as discussed in
Chap. 14 by A. Erbe et al. are in the selection rules: second-order—in fact all
even-order—nonlinear optical processes are forbidden in media that are isotropic
and in molecular arrangements that possess inversion symmetry. Molecules that are
self-assembling at interfaces do have an asymmetric arrangement, for example the
isotropic surrounding of molecules typical for all gases and most liquid phases is
disrupted at the interface. Applying SFG selection rules to such a scenario yields
that molecules in the isotropic bulk phase cannot generate second-order signals—

(a) (b) (c)

Fig. 15.1 a Energy diagram of the SFG process. b Probing schemes for ps- and fs-SFG including
a frequency representation of the involved beams. c Typical presentation for an SFG spectrum
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only molecules that are both residing in an ordered fashion within the asymmetric
interphase and do not possess inversion symmetry in its molecular structure can
produce a signal (Fig. 15.2). Also consider that many crystal structures are cen-
trosymmetric and cannot generate SFG, while the centrosymmetry is necessarily
broken at interfaces. This makes vibrational SFG spectroscopy a powerful tech-
nique to probe molecules at solid/liquid, liquid/liquid, solid/air, and air/liquid
interfaces [1–17].

Let us have a closer look on light-matter interactions and the difference between
linear and nonlinear optics. Light can be expressed as an electromagnetic wave that
is traveling in time and space. The respective electric field E may induce a polar-
ization P in the medium, where P is a macroscopic quantity denoting the induced
dipole moment per unit volume. In linear optics, a direct proportionality between the
electric field and the polarization can be found. This linear relation is the result of
energy considerations within molecules that follow the principles of a harmonic
oscillator, i.e., the restoring force is proportional to the elongation. In analogy, the
electric field is proportional to the polarization, which is generating a wave that has
the same frequency as the incoming wave. The corresponding proportionality factor
is a material constant that is called the susceptibility v. If we only consider com-
pletely elastic light-matter interactions, this scenario—on an abstract level—is
describing linear optics: the intensity of light may be reduced due to absorption
processes, the speed of light might differ as a result of a change in refractive index,
but no new frequencies can be generated—i.e., the polarization wave in the medium
has the same frequency as the incoming light. The linear relation between electric
field and polarization holds true unless the incident fields are strong enough so that
potential energy levels within the molecule are reached that cannot be approximated
by an harmonic oscillator anymore, but follows the real potential—i.e., a Morse
potential. In this case, the polarization vector P can be represented as a power series
of the incident fields E and the linear relation between the electric field and the
polarization no longer holds true, this is in fact where the term nonlinear optics stems
from. The respective material constants vðiÞ are referred to as susceptibility tensors of
i-th order. The i-th component of the P-vector can be obtained by the following
summation of contributions arising from expanding P into a Taylor series:

Fig. 15.2 Illustration of the selection rules: media that are isotropic or molecular arrangements
that possess inversion symmetry cannot produce SFG signals. These symmetries are typically
broken at interfaces making SFG spectroscopy inherently surface specific
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Pi ¼20 vð1Þij � Ej þ 1
2
vð2Þijk � EjEk þ 1

6
vð3Þijkl � EjEkEl þ . . .

� �
; ð15:1Þ

with e0 being the vacuum permittivity. In case of second-order nonlinear spec-
troscopy, the third rank tensor vð2Þ is the relevant material constant. Even though the
absolute values of its elements are several orders of magnitude lower compared to
the corresponding first order vð1Þ tensor known from linear spectroscopies, such as
conventional IR-spectroscopy, vð2Þ-effects can become significant when using
higher input fields, such as those generated by ultrashort laser pulses. In this case,
the whole endeavor of recording SFG signals comes back to measuring tensor
elements of vð2Þ. The goal of this chapter is to outline strategies for measuring these
tensor elements and to relate the measured data to molecular arrangements such as
order and orientation of molecular moieties at interfaces. None of the presented
strategies and results can be viewed as new insights into SFG spectroscopy. This
chapter is more intended to provide an overview of analysis routines for those
researchers who are new to the field. It is arranged in the following way: we first
define appropriate laboratory and molecular coordinate systems. Then we will
outline the structure of the vð2Þ tensor and discuss symmetry considerations to
identify non-vanishing tensor elements. These tensor elements are required to be
understood in the context of the experimental geometry to finally relate the mea-
sured SFG signal to a vð2Þ tensor element.

15.1.1 Definition of Laboratory Coordinate System

The first step to an appropriate interpretation of SFG data is to define coordinate
systems. There are three types to be considered: the laboratory fixed coordinate
system xyz, the surface fixed coordinate system XYZ and the molecular fixed
coordinate system abc. These orthonormal coordinate systems can be transferred
into each other by the application of an appropriate Euler-transformation, which is
discussed later in this chapter. Here we first define the laboratory fixed coordinate
system xyz with respect to the direction of propagation for the participating IR-,
VIS- and SFG light (Fig. 15.3). The surface plane is typically the xy-plane, whereas
the surface normal is referred to as z-axis. With the direction of propagation for the
laser beams projected onto the surface being the x-axis, the plane of incidence
coincides with the xz-plane. In a typical experimental setting, the polarization of
incident and emitted laser beams is set to p and s where p denotes an electric field
vector oscillating parallel to the plane of incidence and s denotes an electric field
vector perpendicular to the plane of incidence (Fig. 15.3). The terms s-polarized and
p-polarized are derived from the German expressions for “senkrecht”—meaning
perpendicular—and “parallel”.
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15.2 Structure of the χ(2) Tensor and Symmetry
Considerations

The linear vð1Þ tensor is a second-rank tensor and has [3×3] elements. The
second-order vð2Þ is a third-rank tensor with a total of [3×3×3] elements. These can
be probed by polarization dependent measurements, for example by utilizing p- and
s-polarization. The polarization combination is typically noted in order of
decreasing energy of the involved beams (or increasing wavelength: SFG, Vis, and
IR). The use of sps-polarization means that the emission at the sum-frequency is
detected under s-polarization, whereas the incident visible beam is p-polarized and
the incident IR-beam is set to be s-polarized. Taking into account that s-polarization
has only a contribution along the y-axis whereas the p-polarization can be
decomposed into components along the x-axis and z-axis, it is evident that various
tensor elements of the nonlinear susceptibility of second order vð2Þ can be probed
using a given set of polarization combinations.

Table 15.1 explicitly shows the tensor components that are probed for all sets of
eigen-polarization combinations. Studies at interfaces often involve azimuthal
isotropy meaning that the properties of the surface and its covering layer are
identical in both x-direction and y-direction. These types of surfaces are also
referred to as rotationally symmetric about the surface normal. There is no possi-
bility to distinguish between the x-axis and y-axis in terms of optical properties of
the surface—rotating the sample by any angle will lead to the same SFG spectrum.
For this reason, we can use the equality for x-direction and y-direction to simplify

the nonlinear susceptibility of second order vð2Þ. For example, a symmetry

Fig. 15.3 Definition of the directions of propagation and the electric field vectors; the plane of
incidence is given by the xz-plane, the surface plane is given by the xy-plane; the solid-line arrows
denote the unit vectors of propagation of the IR-, VIS- and SFG light, the dotted-line arrows
indicate the p-polarized components of the electric fields. The decomposition of the p-polarized
component along the laboratory x-axis and z-axis of the electric field for the IR beam is shown as
grey dashed lines. Note that s-polarized light has only a contribution along the y-axis and that the
unit vector along the x-axis is reversed for the EX component of the SFG field
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operation that is rotating the sample by 180° changes the signs of the unity vectors
along the x and y-direction for the laboratory fixed coordinate system xyz and can be
expressed as x ! �x and y ! �y. Let us now consider all 27 tensor elements of
the nonlinear susceptibility of second order vð2Þ and their transformation behavior
along the x- and y-axis upon the application of the symmetry operation. For an
azimuthally isotropic system, the transformations x ! �x and y ! �y need to have
the same results. For example the elements xxz and ð�xÞð�xÞz must be the same,
which is the case since ð�xÞð�xÞz ¼ xxz. Let us consider the element xzz: changing
the sign of x will change the sign of xzz. Therefore, xzz and −xzz can only be the
same if xzz is zero. Exercising the same formalism to all 27 vð2Þ elements reveals
that only 13 elements are non-zero for a system having a net orientation in z-
direction and being azimuthally isotropic otherwise (underlined vð2Þ elements in
Table 15.1).

For a completely isotropic system, the transformation x ! �x; y ! �y and z !
�z have to result in the same response. Performing this transition for any of the 27
tensor elements yields the same tensor element with a negative sign (e.g. xxx ¼
ð�xÞð�xÞð�xÞ ¼ �xxx and so on). Again, the same element being positive and
negative can only mean that all 27 tensor elements are zero. That is the reason why
all even-order processes are forbidden in isotropic media. In these cases all vð2nÞ

elements with n ¼ 1; 2; 3; . . . are zero.

15.2.1 From the Molecular (Hyper)Polarizability β
to the Macroscopic Susceptibility χ(2)

Quantitative orientational analysis is more demanding from a theoretical point of
view. In practice it relies on the comparison of experimentally assessed SFG

Table 15.1 Probed tensor elements under the given polarization combinations. The underlined
elements are non-vanishing in an azimuthally isotropic system

Polarization combination Number Tensor elements

ppp-polarization 2.2.2 vð2Þzzz , v
ð2Þ
zzx , v

ð2Þ
zxz , v

ð2Þ
xzz , v

ð2Þ
zxx, v

ð2Þ
xzx, v

ð2Þ
xxz, v

ð2Þ
xxx

pps-polarization 2.2.1 vð2Þzzy , v
ð2Þ
zxy, v

ð2Þ
xzy, v

ð2Þ
xxy

psp-polarization 2.1.2 vð2Þzyz , v
ð2Þ
zyx, v

ð2Þ
xyz, v

ð2Þ
xyx

spp-polarization 1.2.2 vð2Þyzz , v
ð2Þ
yzx, v

ð2Þ
yxz, v

ð2Þ
yxx

pss-polarization 2.1.1 vð2Þzyy, v
ð2Þ
xyy

sps-polarization 1.2.1 vð2Þyzy, v
ð2Þ
yxy

ssp-polarization 1.1.2 vð2Þyyz, v
ð2Þ
yyx

sss-polarization 1.1.1 vð2Þyyy
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intensity ratios with expressions gained from theoretical considerations. The first
exercise in this context is to find a relation between the molecular fixed coordinate
system abc and the laboratory fixed coordinate system xyz. These transformations
can be expressed by means of Euler angles and corresponding rotation matrices.
The molecular fixed coordinate system abc is the appropriate system for describing
the molecular properties under investigation. Theoretical calculations concerning
transition dipole moments, polarizabilities, etc. are carried out at this level. One
order above is the so-called surface fixed coordinate system XYZ. This frame serves
to describe, e.g., the orientation of domains at surfaces or inclination of the probed
surface, for example when investigating solid surfaces. The laboratory fixed
coordinate system xyz denotes the coordinate system in which the polarization of
the incident and emitted beams are defined. Typically, the surface fixed coordinate
system XYZ and laboratory fixed coordinate system xyz coincide due to the fact of
azimuthal isotropy and appropriate leveling of the sample.

In this case, only a transition between the molecular fixed coordinate system abc
and the laboratory fixed coordinate system xyz has to be considered. This can be
achieved by means of an Euler-transformation [18] about the Euler angles h, U and
W shown in Fig. 15.4. Here we define the geometrical relations between Euler
angles and coordinate systems as follows:

• the tilt angle h denotes the angle between the molecular c-axis and the laboratory
z-axis.

• the azimuthal angle U describes the angle between the molecular a-axis and the
laboratory x-axis for a rotation about the laboratory z-axis.

• the twist angle W denotes the rotation of the molecular ab-plane about the
molecular c-axis. It is only the application of this step, that the molecular a-axis
becomes displaced from the laboratory xy-plane.

In the trivial case that all Euler angles are zero, the laboratory fixed coordinate
system xyz and the molecular fixed coordinate system abc coincide. Otherwise

Fig. 15.4 Definition of the Euler angles h, U and W describing the relative orientation between
molecular fixed coordinate system abc and laboratory fixed coordinate system xyz
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every possible relative orientation between the molecular fixed coordinate system
abc and the laboratory fixed coordinate system xyz can be established allowing the
Euler angles h, U and W to vary in ranges from 0° to 180° for the tilt angle h and
from 0° to 360° for both the azimuthal angle U and the twist angle W.

The transformation from the molecular fixed coordinate system abc to the lab-
oratory fixed coordinate system xyz is equivalent to the application of three suc-
cessive transformations: a rotation about the c-axis followed by a rotation about the
a-axis followed by a rotation about the c-axis. Therefore, the Euler-transformation
matrix R̂ can be obtained by multiplication of three rotation matrices. The subse-
quent rotation about the initial z-axis, followed by rotations about the rotated x-axis
and the doubly rotated z-axis is referred to as the zxz-convention [19]. The corre-
sponding matrix describing the overall rotation is given by

R̂ ¼
cosW cosU� cos h sinU sinW � sinW cosU� cos h sinU cosW sin h sinU
cosW sinUþ cos h cosU sinW � sinW sinUþ cos h cosU cosW � sin h cosU

sin h sinW sin h cosW cos h

0
@

1
A:

ð15:2Þ

The transformation of the molecular hyper-polarizability blmn given in the

molecular fixed coordinate system abc to vð2Þijk in the laboratory fixed coordinate
system xyz is achieved by two steps: first transforming the molecular
hyper-polarizability blmn from the molecular fixed coordinate system abc to the
laboratory fixed coordinate system xyz by means of an Euler-transformation and
second by an orientational averaging:

vð2Þijk ¼ Ns

20
bijk
� � ¼ Ns

20
R̂blmnðU; h;WÞ� �

: ð15:3Þ

These steps can be summarized in the following equation that relates each tensor

element of vð2Þijk to a summation of rotations and averaging over the molecular
hyper-polarizability blmn [20]:

vð2Þijk ¼ Ns

20

X
lmn

î � R̂̂l
� �� 	

ĵ � R̂m̂
� �� 	

k̂ � R̂n̂
� �� 	� �

blmn; ð15:4Þ

with Ns being the number density. In this equation vð2Þijk denotes the observable
tensor element given in the laboratory frame and blmn the corresponding molecular
property. The pointed brackets denote orientational averaging that is equivalent to
the integration over the Euler angles h, u and W. The quantities î, ĵ, k̂ and l̂, m̂, n̂
represent the unit vectors of the coordinate systems of the laboratory and molecular
frame, respectively. The expressions within the rectangular delimiters represent the
projection of the rotated molecular unit vector of the molecular fixed coordinate
system abc onto the laboratory unit vector of interest.
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It is obviously important to get insights into the tensor elements of the molecular
hyper-polarizability blmn. In this context, symmetry considerations are of great
importance when it comes to simplifying the molecular hyper-polarizability blmn
without knowing the exact value of each element. In analogy to symmetry con-
siderations for the macroscopic quantity vð2Þ, we will extend this discussion to the
microscopic scale by analyzing the symmetry of individual molecular moieties.
A common example for molecules under investigation in SFG is a methylene group
(Fig. 15.5). The corresponding symmetry operations can be found from character
tables given in literature, e.g., in almost every standard textbook of physical
chemistry. Every symmetry operation within the point group needs to be accounted
for in order to attain a full description of all molecular hyper-polarizability blmn
elements. Assuming a perfect C2v-symmetry for the methylene group without any
kind of distortion, we find two mirror planes r1 and r2 as well as a rotation about
the main axis C2 and the identity operation E. Table 15.2 lists the corresponding
transformation of basis vectors from the character tables.

Let us consider in the following the transformation behavior for the various
symmetry operations within the point group C2v. It is important to include all
symmetry operations of the point group in order to identify non-vanishing contri-
butions. For the tensor element bbba the relation bbba ¼ �bbba is a result from the
symmetry operations r1 and C2 and can only be fulfilled when this tensor element
assumes a value of zero (Table 15.3). Consequently, the tensor element bbba is zero.
Let us now consider the tensor element bbbc. Table 15.4 shows that for the bbbc
element all transformations lead to a similar result as demanded by the point
group. Therefore, the element bbbc can lead to a non-vanishing contribution to the
overall SFG signal intensity. Performing the same analysis for all other tensor
elements leads to the following: non-vanishing contributions can only be found in
case of an odd number of contributions of the c-components, i.e., only for one or

Fig. 15.5 Definition of the CH2-molecule in the laboratory coordinate system; the c-axis is along
the C2-main axis of the methylene group; the plane of the CHC-group coincides with the ac-plane
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three c-components. Also excluded are combinations that include all three com-
ponents, e.g., babc. Therefore, in the case of C2v-symmetry, the molecular
hyper-polarizability blmn has only 7 non-vanishing tensor elements: bccc, bcaa, baca,
baac, bbbc, bbcb and bcbb.

In summary, only by symmetry considerations, we reduced the number of the
molecular hyper-polarizability blmn tensor elements from 27 to 7. This procedure
exemplifies the power of considering symmetry arguments for the prediction of
non-vanishing tensor elements of molecular hyper-polarizability blmn.

In the following a practical example is discussed: the orientation of a terminal
methyl group in an aliphatic chain that is isotropic in the azimuthal and twist angles.
Here we are interested in the vibrations that involve a transition dipole moment
along the molecular axis, i.e., the c-axis. This scenario is equivalent to a molecular
arrangement that is cylindrically symmetric with symmetry along the c-axis. The

Table 15.2 Transformation
of basis vectors upon
application of the symmetry
operations within the C2v-
point group

Symmetry operation Transformation of components

E a ! a

b ! b

c ! c

r1 a ! �a

b ! b

c ! c

r2 a ! a

b ! �b

c ! c

C2 a ! �a

b ! �b

c ! c

Table 15.3 Transformation
of the tensor element bbba
upon application of the
symmetry operations within
the C2v-point group

Symmetry operation Transformation of components

E bba ! bba

r1 bba ! bbð�aÞ ¼ �bba

r2 bba ! ð�bÞð�bÞa ¼ bba

C2 bba ! ð�bÞð�bÞð�aÞ ¼ �bba

Table 15.4 Transformation
of the tensor element bbbc
upon application of the
symmetry operations within
the C2v-point group

Symmetry operation Transformation of components

E bbc ! bbc

r1 bbc ! bbc

r2 bbc ! ð�bÞð�bÞc ¼ bbc

C2 bbc ! ð�bÞð�bÞc ¼ bbc
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corresponding symmetry group is C1v.
1 Given that the visible and SFG frequencies

are far from a resonance, the tensor components that include a and b in the third
place are negligible, i.e., at an IR frequency with a vanishing IR transition dipole
moment perpendicular to the c-axis. In this case only three non-zero tensor elements
can be found within the molecular hyper-polarizability blmn. These are baac; bbbc
and bccc. If we consider additionally azimuthal isotropy, these elements are linearly
related to each other such that

baac ¼ bbbc and
baac
bccc

¼ bbbc
bccc

¼ r: ð15:5Þ

Therefore the molecular hyper-polarizability blmn of a single CH3 group can be
described by the two variables bccc and the ratio r.

On a macroscopic level, the vð2Þ tensor can be reduced to 13 elements due to
azimuthal isotropy as mentioned earlier. Additional reductions are related to the
molecular symmetry that excludes elements with all indices, such as xyz, yxz etc.
Therefore, only 7 elements are left to consider for vð2Þ. These are listed in
Table 15.5. Also note that in azimuthal isotropy, only five tensor elements are

different: vð2Þzzz , v
ð2Þ
zzx , v

ð2Þ
xxz = vð2Þyyz, v

ð2Þ
xzx = vð2Þyzy and vð2Þzxx = vð2Þzyy. Furthermore, if the visible

and SFG frequencies are away from electronic resonances, the tensor elements vð2Þxzx

and vð2Þzxx as well as v
ð2Þ
yzy and vð2Þzyy are very similar, so that only four different elements

remain: vð2Þzzz , v
ð2Þ
zzx , v

ð2Þ
xxz = vð2Þyyz and vð2Þxzx = vð2Þyzy = vð2Þzxx = vð2Þzyy. Finally, in case the methyl

groups would be oriented primarily upright, the laboratory fixed coordinate system
xyz and molecular fixed coordinate system abc are similar. As mentioned above, we
are only considering transition dipole moments along the z-axis, or c-axis for that

matter, meaning that tensor elements vð2Þxzx and vð2Þzxx—with an x-direction in the IR
polarization—would be very small for the same reasons stated above for the

Table 15.5 Probed tensor
elements of the C1v-
symmetry group under all
eigen-polarization
combinations

Polarization combination Contributing tensor elements

ppp-polarization vð2Þzzz , v
ð2Þ
xxz, v

ð2Þ
xzx, v

ð2Þ
zxx

sss-polarization

ssp-polarization vð2Þyyz

sps-polarization vð2Þyzy

pss-polarization vð2Þzyy

psp-polarization

spp-polarization

pps-polarization

1The molecular symmetry of a methyl group is C3v, but its macroscopic arrangement as defined
here is C1v.
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molecular hyper-polarizability blmn. In such a scenario, only vð2Þzzz and vð2Þxxz = vð2Þyyz are
non-vanishing. However, here we are assuming the most general case for which we
consider the three different elements of vð2Þ.

In order to obtain the susceptibility tensor elements vð2Þzzz , v
ð2Þ
xxz, and vð2Þxzx in the

laboratory frame, all three tensor elements baac, bbbc and bccc arising from the
molecular fixed coordinate system abc have to be taken into account in accordance
to Eq. 15.4. In a first step, we multiply the Euler-transformation matrix R̂ and the
molecular hyper-polarizability blmn which results in

vð2Þzzz ¼
Ns

20
sin2 h sin2 U cos h bð2Þxxz þ sin2 h cos2 U cos h bð2Þyyz þ cos3 h bð2Þzzz

D E
:

ð15:6Þ

An equivalent derivation for the macroscopically observable tensor elements vð2Þxxz

and vð2Þxzx yields

vð2Þxxz ¼ vð2Þyyz ¼
Ns

20
cosW cosU� cos h sinU sinWð Þ2cos h � bð2Þxxz

D

þ cosW sinUþ cos h cosU sinWð Þ2cos h � bð2Þyyz

þ sin2 h sin2 W cos h � bð2Þzzz

E ð15:7Þ

and

vð2Þxzx ¼ vð2Þyzy ¼ vð2Þzyy ¼ vð2Þzxx ¼
Ns

20
cosW cosU� cos h sinU sinWð Þ sin2 h sinU sinW � bð2Þxxz

D

� cosW sinUþ cos h cosU sinWð Þ sin2 h cosU sinW � bð2Þyyz

þ sin2 h sin2 W cos h � bð2Þzzz

E
:

ð15:8Þ

Considering an isotropic distribution of the azimuthal angle U and the twist angle
W, i.e., no dependency of molecular hyper-polarizability blmn for these angles, we can
integrate Eqs. 15.6, 15.7 and 15.8 from 0° to 360° for U and W which leads to [20]

vð2Þzzz ¼
Ns

20
bccc r cos hh iþ cos3 h

� �ð1� rÞ� 	
;

vð2Þxxz ¼ vð2Þyyz ¼
1
2
Ns

20
bccc cos hh ið1þ rÞ � cos3 h

� �ð1� rÞ� 	
and

vð2Þxzx ¼ vð2Þyzy ¼ vð2Þzyy ¼ vð2Þzxx ¼
1
2
Ns

20
bccc cos hh i � cos3 h

� �� 	ð1� rÞ:
ð15:9Þ
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A plot of the tensor elements vð2Þzzx ; v
ð2Þ
xxz, and vð2Þxzx as a function of the tilt angle h is

given in Fig. 15.6 for r = 2.4 and bccc ¼ 1:2 [20]. An orientational analysis is
typically performed using ratios of measured (and subsequently fitted) intensities
recorded under specific polarization combinations, which will be discussed in the
next chapter. In such a case, the set of three equations for the non-vanishing vð2Þ

tensor elements will allow determining the parameters bð2Þccc, r, and tilt angle h. Note
that considering ratios does eliminate the dependency of the number density Ns.
This is possible if we, for example, use a delta-function for the distribution, i.e., the
integral over tilt angle h yields its identity. Such a procedure determines the average
tilt angle h, but not its distribution. Using SFG to quantify orientations as presented
here would require an explicit distribution function which cannot be determined
a priori from conventional SFG measurements—so SFG spectroscopy serves as a
technique that allows to deduce average tilt angles of molecular fragments rather
than an explicit distribution function if not combined with simulations [21] or other
techniques [22].

15.2.2 From χ(2) to χeff
(2)

The three tensor elements vð2Þzzz , v
ð2Þ
zzx , v

ð2Þ
xxz = vð2Þyyz, v

ð2Þ
xzx = vð2Þyzy = vð2Þzxx = vð2Þzyy can be

deduced from SFG measurement with three different input and output polarization
combinations, for example ssp, sps, and ppp. In order to relate experimental data to
theoretical considerations as introduced here, we need to take into account local

Fig. 15.6 Plot of the tensor elements vð2Þzzz ; v
ð2Þ
xxz and vð2Þxzx as a function of the tilt angle h. The plots

show the angular dependence assuming a value of 2.4 for r and 1.2 for the polarizability tensor
element along the main molecular axis bccc
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field corrections L that include experimental parameters such as angle of incidences
and refractive indices of the involved bulk phases. This is achieved by a transition
from the nonlinear susceptibility of second order vð2Þ to the closely related effective

nonlinear susceptibility of second order vð2Þeff :

vð2Þeff;ijk ¼ LiiðxiÞ � êiðxiÞ½ � � vð2Þijk : LjjðxjÞ � êjðxjÞ
� 	

LkkðxkÞ � êkðxkÞ½ �vð2Þijk ; ð15:10Þ

where ê stands for the unit polarization vectors. The local field corrections along the
orthogonal axes of the laboratory fixed coordinate system xyz are given by [1, 20,
23, 24]

LxxðxiÞ ¼ 2n1ðxi cos ciÞ
n1ðxiÞ cos ci þ n2ðxiÞ cos ai

LyyðxiÞ ¼ 2n1ðxi cos aiÞ
n1ðxiÞ cos aiþ n2ðxiÞ cos ai and

LzzðxiÞ ¼ 2n2ðxi cos aiÞ
n1ðxiÞ cos ci þ n2ðxiÞ cos ai

n1ðxiÞ
n0ðxiÞ

� �2

:

ð15:11Þ

In these equations, the parameters niðxkÞ denote the refractive indices in med-
ium i (1 for the phase that carry the beams) as a function of the incident or emitted
frequency for the respective light source. The relation between the angles of inci-
dence ai and the corresponding refracted angles ci is given by Snell’s law of
refraction.

The parameter n0ðxiÞ denotes the effective refractive index within the interfacial
layer as introduced by Shen and coworkers. It is further discussed in references [1,
20, 23, 25]. The interfacial refractive index is the only unknown parameter within
the calculation of the local field factors. The dielectric function associated with the
effective interfacial refractive index can be associated to the ratio between micro-
scopic local field factors parallel and perpendicular to the interface
n02eff ¼20

eff¼ Ljj=L?
� �

. Therefore, the effective interfacial refractive index only
influences intensities when p-polarization is used for one of the beams. Its value is
usually in the range between 1 and values for the dielectric constant of the adjacent
bulk phases.

vð2Þeff depends on the polarization combinations used in the experiments. It is a
linear combination of the tensor elements that are probed in a certain polarization
combination. Table 15.5 lists all tensor elements of the C1v-symmetry for which
the respective polarization combinations include non-zero vð2Þ elements, namely

ppp, ssp, sps, and pss. For this symmetry, vð2Þeff is a linear combination of:

504 M.J. Hofmann and P. Koelsch



vð2Þeff; ppp ¼ sinðaSFGÞ sinðaVisÞ sinðaIRÞ � LzzðxSFGÞLzzðxVisÞLzzðxIRÞ � vzzz
� cosðaSFGÞ cosðaVISÞ sinðaIRÞ � LxxðxSFGÞLxxðxVisÞLzzðxIRÞ � vxxz
� cosðaSFGÞ sinðaVisÞ cosðaIRÞ � LxxðxSFGÞLzzðxVisÞLxxðxIRÞ � vxzx
þ sinðaSFGÞ cosðaVisÞ cosðaIRÞ � LzzðxSFGÞLxxðxVisÞLxxðxIRÞ � vzxx

ð15:12Þ

vð2Þeff; ssp ¼ sinðaIRÞ � LyyðxSFGÞLyyðxVisÞLzzðxIRÞ � vyyz ð15:13Þ

vð2Þeff; sps ¼ sinðaVisÞ � LyyðxSFGÞLzzðxVisÞLyyðxIRÞ � vyzy ð15:14Þ

vð2Þeff; pss ¼ sinðaSFGÞ � LzzðxSFGÞLyyðxVisÞLyyðxIRÞ � vzyy ð15:15Þ

The sign of the individual contribution from a vð2Þ tensor element that has an x-
component in SFG, i.e., xzx or xxz, is negative, because of the direction for the SFG
polarization unit vector being in (-x)-direction (see Fig. 15.3). Interestingly, in the

off-resonant case for visible and SFG, the tensor elements vð2Þxzx and vð2Þzxx as well as
the prefactors that include trigonometric functions and local field factors are very
similar. Therefore, if the angle of incidence for vis and IR are close to one another,

the tensor elements vð2Þxzx and vð2Þzxx almost cancel each other given that one is positive

and the other is negative. In this case, vð2Þeff; ppp is dominated by the vð2Þzzz and vð2Þxxz

components.
In all optical experiments, the frequencies for the electric field are too high to be

measured directly. Intensities scale with the absolute value squared of the electric

field and consequently, the SFG intensity is proportional to Pð2Þ

 

2. In this context,

relating the SFG Intensity ISFG to vð2Þeff involves again Fresnel factors that account for
the experimental geometry as well as for the refractive indices of the respective bulk
phases (sometimes also referred to as macroscopic field corrections). Considering
these macroscopic field factors, one can define the SFG intensity as:

ISFG ¼ 8p3x2 sec2 aSFG
c30n1ðxSFGÞn1ðxVisÞn1ðxIRÞ � vð2Þeff




 


2�IðxVisÞIðxIRÞ; ð15:16Þ

with c0 being the speed of light in vacuum. In the following we used Eqs. 15.9,
15.10 and 15.12–15.16 to calculate the SFG intensity for 60° angle of incidence for
the visible beam and 55° for the IR beam. The corresponding intensity plot is
shown in Fig. 15.7 for baac ¼ 2:88, bbbc ¼ 2:88, and bccc ¼ 1; 2 [20].

Additionally, we considered similar symmetry arguments for C2v-symmetry and
C3v-symmetry and performed the same calculations as for the C1v-symmetry. For
these calculations, we also assumed azimuthal and twist angle isotropy. Note that
the directions of the transition dipole moments for symmetric and asymmetric
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vibrations differ and therefore other elements of the molecular hyper-polarizability
blmn are non-zero. All values used in our calculations are referring to CH2 and CH3

vibrations; if not otherwise noted, a value for bccc ¼ 1 was used for normalization
purposes: for C2v;symmetric: baca=bccc ¼ 2 [26]; for C2v;asymmetric: baca=bccc ¼ 0:27
[27]; for C3v;symmetric: baca=bccc ¼ 2:4, bccc ¼ 1:2 [20]; and for C3v;asymmetric:
baca=bccc ¼ 3:4 [27]. The corresponding plots for the calculated SFG Intensity
versus the tilt angle h of the transition dipole moment for the symmetric and
asymmetric vibration are shown in Fig. 15.8 for C2v-symmetry—note that the
difference to the C1v-symmetry for the symmetric vibration is related to different
values within the molecular hyper-polarizability blmn. Figure 15.9 display the
corresponding plots for molecular fragments that have C3v-symmetry. Here the plot

Fig. 15.7 Calculated SFG
intensities for a molecular
group assuming C1v-
symmetry. Note that pss-
polarization and sps-
polarization nearly overlap
and that ppp-polarization is
multiplied by a factor of 5

(a) (b)

Fig. 15.8 Calculated intensities of molecular fragments assuming C2v-symmetry, a for the
symmetric stretch (ppp-polarization is multiplied by a factor of 5) and b for the asymmetric stretch.
Note that pss-polarization and sps-polarization nearly overlap
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for the symmetric vibration is the same as for C1v-symmetry, but differs for
the asymmetric vibration due to an orientation of the transition dipole moment in
the a-axis direction.

These plots are very helpful when it comes to identifying SFG spectral contri-
butions in various polarization combinations. For example, the symmetric CH3

stretching vibration would be almost absent in ppp-polarization at a tilt angle h
around 45°, but at maximum intensity in ssp-polarization. Also, for the asymmetric
stretching vibration, ppp-polarization dominates over ssp-polarization. In literature,
discussions about spectral contributions without taking into account the used
polarization combination have led to confusion in the assignments of vibrational
bands. For example, the Fermi resonance of the CH3 symmetric stretch can be
misinterpreted as the asymmetric stretching vibration, which in fact was only absent
at a certain tilt angle h and chosen polarization combination.

15.3 Comparison of Various Fitting Methods

The previous sections introduced the theoretical background needed to relate the
molecular hyper-polarizability blmn in the molecular fixed coordinate system abc to

elements of vð2Þeff in the laboratory fixed coordinate system xyz. These relations
finally ended up in equations that allowed us to deduce average orientations. Here

we finally outline how to measure elements of vð2Þeff using Eq. 15.16. The first
important fact to recognize is the proportionality between the SFG intensity and the

absolute square of the non-linear susceptibility vð2Þ


 

2:

(a) (b)

Fig. 15.9 Calculated intensities of molecular fragments assuming C3v-symmetry, a for the
symmetric stretch (ppp-polarization is multiplied by a factor of 5) and b for the asymmetric stretch.
Note that pss-polarization and sps-polarization nearly overlap
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ISFG / Pð2Þ

 

2/ vð2Þeff




 


2IIRIVIS: ð15:17Þ

vð2Þeff itself includes possible contributions from a non-resonant background as a
result of electronic transitions and from resonant vibrational modes. The corre-
sponding decomposition of the effective nonlinear susceptibility of second order

vð2Þeff in the frequency domain can be written as

vð2Þeff ¼ vð2ÞNR




 


 expi/ þ
X
q

vqAR;q

xR;q � xIR � iCR;q
; ð15:18Þ

in which / is the phase of the non-resonant background. Other equivalent forms of
this equation can be found in the literature and the form presented here is consistent
with the time-domain description discussed by Wang and co-workers [28, 29].

The indices R and NR denote the corresponding contributions due to resonant
and non-resonant effects, respectively. CR;q represents the line width of the q-th
oscillating mode, xR;q the resonant frequency of the q-th mode vq, and AR;q the
associated amplitude value:

AR;q ¼ � 1
2 20 xq

@fð1Þi;j;k

@Qq

@lk
@Qq

ð15:19Þ

in which @fð1Þi;j;k=@Qq and @lk=@Qq are the partial derivatives of the Raman polar-
izability tensor and the IR transition dipole moment, Qq is the normal coordinate of
the q-th mode. Fitting the spectra with Eq. 15.18 yields the Amplitude AR;q, which

represents the tensor element of vð2Þeff for the polarization combination used in the
experiment, e.g., for ppp the amplitude AR;q obtained by fitting a spectrum is equal

to vð2Þeff; ppp.

Given that Eq. 15.17 includes vð2Þeff




 


2 to obtain ISFG, it is important to realize that

cross terms can occur. This is a major difference to linear IR spectroscopy, where
peaks add up linearly in the spectrum that can be fitted for example with Lorentzian
peak shapes as given by

1
2p

AR;q

ðxIR � xR;qÞ2 þ 1
2CR;q
� �2 : ð15:20Þ

SFG spectra, in particular those with overlapping peaks, strongly depend on the
phase between the peaks. For example, two peaks that do overlap and have
opposing phases may cancel each other. It is therefore of great importance to use
the correct fitting function to obtain quantitative results to be used for data analysis.
The phase in Eq. 15.18 adds another parameter to the fitting routine for SFG
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spectra, which may over-parametrize the fitting routine itself. Hence it is often
necessary to predefine certain parameters, such as the position of peaks that are
known from other experiments or theoretical modelling approaches. Also the peak
width can be limited as many molecular moieties do have a similar surrounding
leading to the same damping constants. Other theoretical methods and algorithms
for spectral analysis have been introduced recently, including the maximum entropy
method (MEM) [30–33] and iterative phase matching between MEM and intensity
fits (iMEMfit) [34]. It is also possible to experimentally access the real and

imaginary part of vð2Þeff by performing so-called phase-sensitive SFG, in which the
SFG signal is interfered with a reference signal. Such a discussion is beyond the
scope of this chapter.

Some reports on SFG data use Lorentzian line shapes in their analysis. Again, for
single peaks the results for fitting with Eq. 15.18 and Eq. 15.20 may not be sig-
nificantly different, but for spectra with overlapping peaks it is highly demanded to
use Eq. 15.18. Figure 15.10 shows an SFG spectrum of sodium dodecyl sulfate in
D2O in the CH stretching region. The black line is the measured SFG spectrum that
is normalized to the visible and IR intensities. The smooth line is the corresponding
SFG fit of the spectrum using Eq. 15.18. The dotted line represents the best fit
obtained with Lorentzian line shapes from Eq. 15.20 and the dashed line is a fit that
is using the peak positions from the SFG fit as fixed parameters for a fit with
Lorentzian line shapes. This plot illustrates, that the fit results from Eqs. 15.18 and
15.20 are different, i.e., they yield different peak positions.

While the presence of phase effects severely complicates SFG spectral analysis,
it is also a source of information. First of all, let us consider a centrosymmetric
arrangement, say two molecular groups that are oriented opposite to each other.
Exciting both vibrations results in an opposite phase for each group, i.e., the
transition dipole moments are oriented antithetic to each other. In simple pictorial

Fig. 15.10 Different fitting curves for an SFG spectrum of sodium dodecyl sulfate in D2O in the
CH stretch; the smooth line corresponds to a fit using the SFG equation, the dotted line to a fit with
Lorentzian line shapes, and the dashed line to a Lorentzian fit that uses the peak positions from the
SFG fit. This plot illustrates that different results are obtained when analyzing overlapping peaks
with Lorentzian line shapes and the fit function for SFG (Eq. 15.18)
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terms, when one molecules moves up, the other one moves down. The respective
phases for these vibrations would be opposite and, therefore, destructive interfer-
ence would take place that can only result in a vanishing SFG signal. This is the
reason why molecules that are arranged in a centrosymmetric fashion, in other
words, in arrangements that possess inversion symmetry, cannot produce SF sig-
nals. So the absence of a signal in fact provides information about the conformation
of molecules. Prominent examples in this context are alkyl chains of surfactants: In
an all-trans conformation the methylene groups have a center of inversion in
between them. Therefore, a highly ordered alkane-chain does not produce a sig-
nificant CH2 signal, but the terminal methyl groups do because they are embedded
in a symmetry that does not have inversion symmetry. For example, a
self-assembled monolayer (SAM) of alkanethiols on a gold substrate does show
CH2 vibrations for a non-ordered layer (gauche-defects do not have inversion
symmetry) and less CH3 contributions that are outnumbered by CH2 groups.
However, a highly ordered SAM only shows CH3 contributions because the CH2

groups are in an all-trans conformation that cannot produce SFG signals.
Similar relations can be transferred to surfactants at air/water interfaces.

Figure 15.11 shows SFG spectra that are recorded at aqueous solutions of sodium
dodecyl sulfate at concentrations of 0.5 mmol/L (line) and 8 mmol/L (dashed) in the
CH stretching region. The peak at around 2855 cm−1 is associated to CH2 vibra-
tions and the peak at around 2880 cm−1 includes CH3 vibrations. At the lower SDS
concentration, both contributions are similar, while at the higher concentration,
around the critical micelle concentration, a stronger spectral contribution of the
methyl groups can be detected.

Fig. 15.11 Comparison of
spectra of aqueous solutions
of sodium dodecyl sulfate at
concentrations of 0.5 mmol/L
(line) and 8.0 mmol/L
(dotted) obtained under ppp-
polarization; the increasing
intensity of the CH3 mode
indicates a transition to a
more ordered conformation
within the alkyl chain
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As mentioned earlier, phase and orientation are closely related. For a qualitative
assessment of orientations, the phase analysis often helps to determine directions of
transition dipole moments. For example, if the phase of the non-resonant contri-
bution, / in Eq. 15.18, is known, the relative phase to a resonant vibrations can be
related to orientations of this group. Coming back to the example of the
alkanethiol-SAM on Au, it can be experimentally shown that an orientation of the
methyl group away from the Au surface results in a destructive interference with the
non-resonant signal from the Au (/Au ¼ �p=2), so a dip in the non-resonant signal
occurs (Fig. 15.12). If a group does have an orientation towards the Au substrate, its
contribution to the spectra results in constructive interference (a peak).

15.4 Summary

This chapter summarizes basic concepts of SFG data analysis. It includes a dis-
cussion about the structure of vð2Þ including symmetry considerations which help
identifying non-zero tensor elements. A mathematical translation between the
molecular coordinate system and the laboratory coordinate system is provided as

well as the description between vð2Þ and vð2Þeff , which is accessible in the experiment.
Examples are provided for several common molecular symmetries and practical
aspects of data analysis have been presented. The purpose of this chapter is (i) to
illustrate the opportunities and limitations of SFG spectroscopy, and (ii) to help
researchers using the basics presented here to follow up on more complex data
analysis routines that are presented in literature or that they use in their own work.

Fig. 15.12 SFG spectrum of a alkanethiol-SAM on Au. The spectrum is recorded in ppp
polarization and normalized to IR and visible intensities. The dips around 2875, 2940 and
2965 cm−1 in the non-resonant background are related to terminal methyl groups within the SAM
that are oriented away from the Au substrate
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Chapter 16
Microfluidics: From Basic Principles
to Applications

Florent Malloggi

Abstract Microfluidics is the science and technology of systems that process or
manipulate small amounts of fluids using channels with dimensions of one to hun-
dreds of micrometers. This field is mainly driven by technological applications where
the aim is to develop entire laboratories inside chips. Introduced more than a decade
ago, microfluidics has quickly become an important tool in several fields including
new technologies as well as basic research. One reason for its fast development is
based on the predictability of the flows at such scale and the exquisite control of
interfaces in microchannels. Nowadays microfluidics has a place in many scientific
fields. More often it is seen as a tool for the development of various topics related to
chemistry, biology or physics. The list of possible applications and developed sys-
tems is very long and it is not the purpose of this chapter. In the following, we focus on
the physics foundations on which this discipline relies. After a brief introduction on
lab on chip technology, we introduce the basis offluid mechanics with the governing
equation for a fluid in motion. We also introduce diffusion transport and capillary
effects which are dominant in microfluidic systems. Throughout the chapter we will
illustrate the basic principles with practical examples.

16.1 Introduction

16.1.1 Lab-on-Chip Technology

Microfluidics is the science and technology of systems that process or manipulate
small amounts of fluids (microliter to attoliter), using channels with dimensions of
one to hundreds of micrometers. This field is mainly driven by technological
applications where the aim is to develop entire laboratories inside chips. In the
1990s, miniaturization of electronic integrated circuits and microelectromechanical
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systems (MEMS) [8, 12, 16] coupled to fluid gave birth to microfluidics: a new
discipline based on the theory of flow of fluids (fluid mechanics) and of suspensions
in submillimeter-sized systems influenced by external forces (colloidal science).
Although the theory involved is not new, interestingly, manipulating fluid at the
micrometric scale changed our intuition and relative importance between forces (see
Table 16.1). The fluid transport occurs as either a continuous flow or as a finite
volume, i.e. droplet based, which is known as digital microfluidics. Fluid motion is
achieved via mechanical or pressurized pumps as well as surface tension effects,
electrostatic or magnetohydrodynamic [19]. The scientific and technological
renewed interest has been motivated by the emerging and rapidly evolving field of
lab-on-chip (LOC) systems [9, 17, 18]. Originally built on silicon based technology
developed by the semiconductor industry, the field had a great expansion with the
emergence of soft lithography [22] i.e. polymer devices in analogy to hard
lithography used in microelectronics [15]. Main components are microchannels and
micropumps as well as associated sensors, heaters or actuators. There are several
advantages of scaling down standard laboratories. One obvious advantage is the
reduction in the amount of required sample. A linear reduction by a factor of 103

amounts to a volume reduction by a factor of 109, so instead of handling 1 mL a
lab-on-a-chip system could easily deal with 1 nL or even smaller down to 1 pL.
Such small volumes allow for very fast analysis, efficient detection schemes, and
analysis, even when large amounts of sample are not available. Moreover, the small
volumes make it possible to develop compact and portable systems that might ease
the use of bio/chemical handling and analysis systems tremendously. Nowadays
lab-on-a-chip systems have great impact in biotechnology, pharmacology, medical
diagnostics, forensics, environmental monitoring and basic research.

Table 16.1 Comparison of flows in macrochannels and microchannels

Phenomenon Macrochannels Microchannels

Gravity Dominant (typical size
� capillary length: lc

Negligible (channel size � lc)

Continuum mechanics Valid Valid if lengthscale: fluid > 10 nm;
gas > 10 μm

Reynolds number Laminar and turbulent
flow (Re ≈ 2000)

laminar flow (Re < 1) in most cases,
Stokes flow approximation

Surface roughness Negligible To be considered; roughness may be
comparable to dimensions of the system

Diffusion Negligible Important and used for separation and
mixing

Surface tension Negligible Important and major contributing force

Viscous heating Negligible Major player due to high velocity
gradient

Electrohydrodynamic
effects

Negligible Important
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16.1.2 Scaling Laws

When analyzing the physical properties of microsystems, it is helpful to introduce
the concept of scaling laws or size reduction effect. A scaling law expresses the
variation of physical quantities with the size l of the given system or object, while
keeping other quantities such as time, pressure, temperature, etc. constant. As an
example, consider volume forces, such as gravity and inertia, and surface forces,
such as surface tension and viscosity. The basic scaling law for the ratio of these
two classes of forces can generally be expressed by

surfaceforces
volumeforces

/ l2

l3
¼ l�1 ð16:1Þ

This scaling law implies that when scaling down to the microscale in
lab-on-a-chip systems, the volume forces, which are very prominent in our daily
life, become largely unimportant. Instead, the surface forces become dominant, and
as a consequence, we must revise our intuition [7, 21]. The most common types of
forces and their scaling with size are listed in Table 16.2.

Examples
At macroscopic scale the weight (which scales as l3) of an object is predominant

and it falls down under gravity. When an object of the same mass density, ρ, is very
small, the weight becomes insignificant compared to the air friction force which
depends on the surface area scaling as l2. As a consequence even small air currents
can keep the object floating. One way to see this is to consider the terminal velocity,
v, of a particle in air. This velocity is simply determined by the balance between
gravity force and viscous drag and writes:

gvl�mg ð16:2Þ

where η is the shear viscosity. The velocity v writes

v� qgl2

g
/ l2 ð16:3Þ

As a result the terminal velocity is very small for microparticles and this causes
the particles to float with the moving air instead of falling.

Table 16.2 Scaling of the
most common forces with
system size l

Surface tension l1

Fluid force/electrostatic force l2

Weight/inertia/electromagnetic l3
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In the same manner, let us consider the volume flow rate Q (an important
quantity in fluid mechanics of microflows):

Q� l4DP
gl

ð16:4Þ

For a given pressure drop rate (i.e. ΔP/l) Q ∝ l4 meaning a reduction of 10 in
channel size induced a reduction of 104 in volume flow.

16.1.3 Dimensional Analysis

Dimensional analysis is a powerful analytic technique based on the Buckingam π-
theorem [5]. In a system described by m dimensional variables containing n dif-
ferent physical dimensions (length, time, mass, temperature, etc.): the
Buckingham π-theorem states that there are m–n independent non-dimensional
groups that can be formed from these governing variables. When forming the
dimensionless groups, we try to keep the dependent variable (the one we want to
predict) in only one of the dimensionless groups. Once we have the m–n dimen-
sionless variables, the Buckingham π-theorem further tells us that the variables can
be related according to

p1 ¼ f ðp2; pi; . . .; pm�nÞ ð16:5Þ

where πi is the ith dimensionless variable.
Example: mixing scale.
In microfluidics systems, we will see that convection-diffusion mechanisms are

important for mixing chemical species. In this problem we have three parameters:
L is the distance over which the chemical spreads, D is a measure of the rate of
diffusion (dimension L2/t), and t is the time. Thus, we have three variables and two
dimensions (L and t), the dimensionless group writes:

p1 ¼ LaDbtc

and we want all dimensions to cancel out, giving us two equations

t gives: 0 = −b + c
L gives: 0 = a+2b

Thus, we have

p1 ¼ L2

Dt
ð16:6Þ
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Later, we will see that this dimensionless quantity is called the Peclet number.

Example: Reynolds number.
We consider here a famous number in fluid mechanics, the Reynolds number Re,
which describes the transition between different flow regimes (laminar vs turbu-
lent). This number is dimensionless and the variables it depends on are the flow
velocity u, the flow disturbances characterized by a typical length scale L and the
fluid properties (density ρ, viscosity η and temperature T). Since ρ and η are
functions of T the most compact approach is to retain ρ and η in the form of the
kinematic viscosity ν = η/ρ in m2/s unit. Thus, we have three variables (u, L and ν)
and two dimensions (L and t), yielding one non-dimensional number:

p1 ¼ uL
m

¼ Re

which is the Reynolds number defined later.

16.2 Fluid Motion: Governing Equations

16.2.1 Fluid Definition

The two main classes of fluids, the liquids and the gases, differ by the densities and
by the degree of interaction between the constituent molecules. At ambient tem-
perature, the density of a real gas is so low (.1 kg/m3), that the molecules move
largely as free particles that only interact by direct collisions at atomic dis-
tances, ≈0.1 nm. The relatively large distance between the gas molecules, ≈3 nm,
makes the gas compressible. The density of a liquid (� 103kg/m3) is comparable to
that of a solid, i.e. the molecules are packed as densely as possible with a typical
average intermolecular distance of 0.3 nm, and a liquid can be considered
incompressible in most practical cases. As opposed to a solid body, a fluid is a
substance that deforms continuously when being acted on an arbitrarily small
shearing stress. Whatever small this action may be, the fluid responses with a
time-dependent deformation e.g. a fluid motion, a flow.

We will focus on liquids only in this chapter. One of the most important property
of the liquid is its viscosity. In order to understand what is the viscosity let us
consider two parallel planes of surface A with the top one sliding at a velocity u0
(Fig. 16.1). The motion of the top plane gives rise to the motion of the fluid below:
this flow is called Couette flow. The velocity profile is linear along the z-direction
(supposing the flow stationary e.g. long time after the plane motion). This kind of
flow is similar to what is obtained with the heat between two plates of different
temperatures. The friction force F on the surface plane with area A (opposite to
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plane motion) is proportional to the velocity variation from one plane to the other
and writes:

F
A
¼ gu0

l
¼ �g

@u
@z

ð16:7Þ

The ratio F=A ¼ r is called shear stress and it has a dimension of a pressure. The
material constant η is called dynamic viscosity and it is expressed in
Pascal × second (Pas). If the viscosity is low as for example in the case of gases the
motion of the top plate induces only a very small or even no fluid motion.
Accordingly, the shear stress is very small or vanishes completely.

16.2.2 Continuum Approximation

One possible approach to describe a fluid in motion is to examine what happens at
the microscopic level where the stochastic motions of individual molecules can be
distinguished. However, the resulting many-body problem of molecular dynamics
is very complex for a liquid since it contains an enormous number of molecules.
The standard way to solve this problem is to introduce the continuum approxi-
mation. According to this hypothesis, the fluid is infinitely divisible without change
of character. This implies that all quantities such as density, viscosity as well as
variables such as pressure, velocity and temperature can be defined without
ambiguities. The motivation of this approach is that in many applications, we are
concerned with fluid motions in the vicinity of bodies such as channel walls and not
with the instantaneous forces of interaction between the surface and the molecules:
at such macroscopic level we are interested in the time average of the forces of
interactions between the fluid and the surface. Nowadays with the growing trend of
using microfluidics and nanofluidics it is legitimate to ask whether this assumption
is still valid. A general rule of thumb is that the continuum postulate holds for
length scales greater than 1 μm for gases and larger than 10 nm for liquids [12]. In
other words the continuum approximation is valid for a liquid in microchannels [3].

Fig. 16.1 Couette flow
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16.2.3 Acceleration of a Fluid Particle

Consider a fluid particle of volume V in the geometry as sketched in Fig. 16.2. The
velocity depends on time and position as v = v(x(t), y(t), z(t), t). For an infinitesimal
volume V the acceleration is simply:

a ¼ dv
dt

ð16:8Þ

To facilitate our understanding we consider the acceleration along the x-axis ax
first. Given the functional dependency, it is derived as:

ax ¼ dvx
dt

¼ d
dt
vxðxðtÞ; yðtÞ; zðtÞ; tÞ

¼ @vx
@x

dx
dt

þ @vx
@y

dy
dt

þ @vx
@z

dz
dt

þ @vx
@t

¼ @vx
@x

vx þ @vx
@y

vy þ @vx
@z

vz þ @vx
@t

ð16:9Þ

If we perform the corresponding derivation along the y and z axes we obtain the
3-D expression for the acceleration which writes in a more compact form:

dv
dt

¼ @v
@t

þðv � rÞv ð16:10Þ

The symbolic form in the second term involves a scalar product between the vector
v and the operatorr with the components ∂/∂x, ∂/∂y and ∂/∂z. Equation (16.10) is a
generic expression where (i) the first term ∂v/∂t relates to the acceleration of the fluid
due to an increase of velocity over time and (ii) the second term ðv � rÞv describes the
increase of the fluid velocity due to mass conservation. We will use this expression
later when introducing the fundamental equation of motion in fluid mechanics.

V

flow

x

y
z

Fig. 16.2 Decomposition of
the acceleration of a fluid
particle in an unsteady flow
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Note.
Equation (16.10) can also be used to express the variation of other quantities with
position and time. For instance it is possible to look at the temperature variation of a
particle T(r, t) along its trajectory.

dT
dt

¼ @T
@t

þðv � rÞT

where ∂T/∂t is the temporal derivative of the temperature of the fluid at a given
fixed point. The second term reflects the variation of T due to fluid flow in the
direction of the temperature gradient.

16.2.4 Mass Conservation in a Fluid Flow

We consider an arbitrary volume (V) bounded by a closed surface (S), which is
stationary with respect to the reference used to describe fluid flow (Fig. 16.3). At
every moment, the fluid enters and exits the volume; the change of the total mass
m therein is opposite to the outgoing flow through the surface.

Therefore

dm
dt

¼ d
dt

Z Z Z
V
qdV

� �
¼ �

Z Z
S
qv � ndS ð16:11Þ

where n is the unit vector normal to the interface.
Applying Ostrogradski’s theorem to the second term of the Eq. (16.11), we get

Z Z Z
V

@q
@t

þr � ðqvÞ
� �

dV ¼ 0 ð16:12Þ

v dt

(dS)

(S)

(V)

n

Fig. 16.3 Mass balance of the fluid within the fixed volume (V). The outgoing flow of mass per
unit time is qv � ndS
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This equation is correct regardless of the volume V and hence we obtain the
continuity equation

@q
@t

þr � ðqvÞ ¼ 0 ð16:13Þ

In the case of incompressible fluids, i.e. the density remains constant over time,
the equation of mass conservation (16.13) becomes

r � v ¼ 0 ð16:14Þ

The conditions under which a fluid can be considered incompressible can be
reduced to the inequality

U � c , M � 1

where U represents the scale of characteristic flow velocity and c the sound celerity
of pressure waves in the fluid of interest. We defined M as the Mach number. This
condition is clearly not satisfied in studies of gas dynamics at high speeds.

Conversely, this case is almost always encountered in microfluidics dealing with
liquids.

Remark For small Reynolds number the previous condition is even more
restrictive

M �
ffiffiffiffiffiffi
Re

p
, fluid incompressible

16.2.5 Surface Forces

General expression of surface forces
Considering an element of fluid surface dS, the shear is the value of the force

acting on this surface element.
For a fluid at rest, the force is normal to the surface and it is the hydrostatic

pressure. For a fluid in motion, there are stresses appearing parallel to the surface
element dS. Stresses are due to the friction between fluid layers. They come from
the fluid viscosity. In other words there is momentum transport from region of high
velocities to region with lower velocities.

Considering an element of fluid volume dV there are 9 stress components on dV.
These components represent the so-called stress tensor r which writes

(Figs. 16.4 and 16.5):
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r ¼
rxx rxy rxz
ryx ryy ryz
rzx rzy rzz

0
@

1
A

where diagonal terms are normal stress and non-diagonal ones are the parallel or
shear stress.

From the stress tensor r one can extract the part corresponding to pressure
stresses (fluid at rest or in global translation). This compound is purely diagonal
(normal stresses) and isotropic (same value for the 3 coefficients of the diagonal).
Hence the stress tensor re-writes:

rij ¼ sij � p dij ð16:15Þ

where p is the pressure, δij is an element of theKronecker tensor (δij= 1 if i = j and δ= 0
if i ≠ j). Note that the negative sign before p means that the fluid at rest is in general
pressurized: the stress is opposite to the unit normal vectorn of the surface. The term τij
is the generic form of the viscous stress: this part is linked to the fluid deformation.

Viscous stresses τijtensor for a Newtonian fluid
For a Newtonian fluid, the viscous stress tensor, s, can be represented as a com-
bination of the rate of strain tensor d, fluid velocity vector, shear viscosity η and the
bulk coefficient of viscosity κ as

σxx

σyx

σzx n

x

y

z
o

dS

Fig. 16.4 Components of the stress exerted on a surface whose normal is oriented along the x-axis

σxx

σyy

x

y

z
o

σxz

σyxσyz
σxy

σzy

σzxσzz

Fig. 16.5 Components of the
stress exerted on a volume
element
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s ¼ 2gdþ j� 2
3
g

� �
r � v

� �
I ð16:16Þ

where I is the identity matrix. The rate of strain tensor can be calculated from the
velocity vector as

dij ¼ 1
2

@vi
@xj

þ @vj
@xi

� �
ð16:17Þ

The continuity equation, a statement of conservation of mass, states

@q
@t

þr � ðqvÞ ¼ 0 ð16:18Þ

which for an incompressible fluid reduces to

r � ðvÞ ¼ 0 ) @vi
@xi

¼ 0 ð16:19Þ

In case of an incompressible newtonian fluid, the viscous stress tensor s sim-
plifies to the following expression:

sij ¼ g
@vi
@xj

þ @vj
@xi

� �
ð16:20Þ

16.2.6 The Navier-Stokes Equation

The equation of motion (Newton’s Second Law) for a liquid in vector notation is:

q
dv
dt

¼ qgþr � r ð16:21Þ

where g is the acceleration of gravity and r is the stress tensor introduced before
and defined as

r ¼ �pIþ s ð16:22Þ

and p, the pressure, is the stress experienced by the fluid at rest which always acts
along the outwardly directed normal unit vector, I is the identity matrix, and s the
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viscous stress tensor due to the motion of the fluid. Substituting Eqs. (16.21) into
(16.22) and applying the definition of d

dt
1 we get

q
@v
@t

þ v � r
� �

v ¼ �rpþ qgþr � s ð16:23Þ

Introducing expression (16.20) into (16.23), and assuming a constant viscosity,
we eventually obtain the Navier-Stokes equation

q
@v
@t

þ v � r
� �

v ¼ �rpþ qgþ gDv ð16:24Þ

where the Laplace-operator D ¼ r2.
The Navier-Stokes equation simply states that the time rate of change in linear

momentum (left-hand side) must equal the applied body and surface forces
(right-hand side).

16.2.7 Boundary Conditions in Fluid Flows

To have a complete description of the fluid motion, it is necessary to determine the
boundary conditions i.e. the value of the velocity and stress fields at the fluid
boundary. Two cases are possible depending on whether the medium limiting the
fluid is a solid or another fluid.

16.2.7.1 Boundary Conditions at the Surface of a Solid Body

The fluid cannot penetrate the solid and this condition imposes the equality of the
normal velocity at the interface solid/liquid

vsolid � n ¼ vfluid � n

Moreover due to the viscous stress, there is no-slip condition of the fluid at body
surface. The tangential components of the fluid velocities and the solid must be equal,
which, added to the condition of equality of normal components, leads to the relation

vfluid ¼ vsolid no� slip condition ð16:25Þ

1

d
dt

¼ @

@t
þ v � r:
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16.2.7.2 Boundary Conditions Between Two Fluids

In addition to the requirement of continuous velocities, a second condition demands
the continuity of the stress (force per unit area) across the surface of separation
between two fluids. Indeed there must be a balance between the internal stresses in
each of the two fluids and the localized stresses at the surface.

At the fluid interface, the condition on the normal stress (pressure) is expressed
by the Laplace law. The pressures p1 and p2 in the two fluids are related by

p1 � p2 ¼ c
1
R
þ 1

R0

� �
ð16:26Þ

where γ is the surface tension between fluid 1 and 2, and R and R0 are the principal
radii of curvature of the interface.2

Moreover, the balance of the tangential stresses at the interface is expressed by

rð1Þ � n
� �

� t ¼ rð2Þ � n
� �

� t ð16:27Þ

This equation expresses the equilibrium at the interface between each action
exerted by one fluid on the other, and the received reaction.

For an incompressible Newtonian fluid, the stress tensor can be simply written
rij ¼ gð@vi=@xj þ @vj=@xiÞ. The continuity condition (16.27) becomes

g1
@vð1Þi

@xj
þ @vð1Þj

@xi

 !
ni

 !
tj ¼ g2

@vð2Þi

@xj
þ @vð2Þj

@xi

 !
ni

 !
tj ð16:28Þ

where ti (resp.ni) represents the components of a unit vector t (resp.n) tangent
(resp. normal) to the interface.

Let’s consider the case of the Fig. 16.6 where locally the interface is extrapolated
to a plane and the velocity v is parallel to the abscissa and a function of the
y-coordinate, vx(y).

The tangential stress is reduced to the term rxy ¼ g@vx=@y. The condition of
equality of tangential stress writes

g1
@vð1Þx

@y
¼ g2

@vð2Þx

@y
ð16:29Þ

which simply means that the velocity gradients at the interface are in the inverse
ratio of the dynamic viscosities.

2The pressure is higher inside the concavity of the interface.
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The equation is even simpler when one of the fluids is a gas (then the interface is
called free surface). The low viscosity of the gas allows to neglect the shear stress in
the liquid at the interface and then

rð1Þ � n
� �

� t ¼ 0 ð16:30Þ

or, in the example described above @vx=@y ¼ 0

16.2.8 Stokes Flow

The non-linear term qðv � rÞv in the Navier-Stokes equation is responsible for
making the mathematical treatment of the equation complex and difficult. However,
in microfluidics systems, it is possible to neglect the non-linear term since the
Reynolds number is small (Re < 1). In this condition and in the assumption of a
stationary state the Navier-Stokes (16.24) equation becomes the Stokes equation
where analytic solutions can be found:

0 ¼ �rpþ gDv ð16:31Þ

In deriving this approximation, we assumed that the time derivative @v=@t was
controlled by the intrinsic constant time scale T0 ¼ L0=U0. In case of non-stationary
flows we must keep the temporal evolution of the velocity

@v
@t

¼ �rpþ gDv ð16:32Þ

Fig. 16.6 Conditions at viscous fluid interface
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16.2.9 Flows in Microchannels: Some Examples

The Navier-Stokes equation is notoriously difficult to solve due to its non-linearity.
However, analytical solutions can be found in a few, but important cases. In the
following we will develop some of these solutions. We will focus on steady-state
problems and the so-called Poiseuille-flow problem, i.e. pressure induced
steady-state fluid flow in infinitely long (translation invariant) channels. Such
idealized flows are important since they provide us with a basic understanding of
the behavior of liquids flowing in the microchannels.

16.2.9.1 Flow in a Cylindrical Microchannel

We consider a horizontal cylinder of radius R and we study the flow induced by a
pressure difference Δp over the tube length L along the z axis (see Fig. 16.7).

Field of flow velocity
Due to the cylindrical geometry of the problem we adopt the cylindrical coor-

dinate to solve the Stokes equation. We can already make several intuitive argu-
ments about the flow in this geometry. The tube is axisymetric which means that the
velocity is independent of θ and infinite along the z-axis which means that the
velocity is independent of z i.e. vðr; h; zÞ ¼ vðrÞ. The mass conservation with the
incompressible fluid condition, expressed in cylindrical coordinates, gives

1
r
@rvr
@r

¼ 0 ) vr ¼ 0

Moreover, as illustrated in Fig. 16.7 the velocity is along the z-axis only i.e.
vðvr; vh; vzÞ ¼ vð0; 0; vzÞ. We have simplified the velocity field by simple intuitive
arguments and it writes

vðr; h; zÞ ¼ vzðrÞez
The Stokes equation can be reduced to

@p
@z

¼ pz¼0 � pz¼L

L
¼ �Dp

L
¼ g

1
r
@

@r
r
@vz
@r

� �
ð16:33Þ

L

P1

P2

ereθ

ez

vM

M
r
θ
z

vr
vθ
vz

dM

Fig. 16.7 Laminar flow in a
cylindrical tube
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The no-slip boundary condition becomes

vzðr ¼ RÞ ¼ 0 ð16:34Þ

This partial differential equation is easily solvable with a double integration over
r as

vz ¼ � Dp
L

� �
r2

4g
þAlnðrÞþB ð16:35Þ

Obviously A = 0 since vz cannot be infinite when r = 0. Now applying the
boundary condition of (16.34), we find

B ¼ Dp
L

� �
R2

4g

The velocity profile is now fully determined

vz ¼ Dp
L

� �
R2

4g
1� r

R

� �2� �
ð16:36Þ

The functional form of the velocity profile indicates that the fluid front has a
parabolic shape. From this velocity profile, several important parameters can be
calculated. The maximum linear flow velocity, Vmax which occurs at r = 0 is

Vmax ¼ Dp
L

� �
R2

4g
ð16:37Þ

The volumetric flow rate Q can be calculated

Q ¼
Z2p
0

ZR
0

vzrdrdh ¼ pR4

8g
Dp
L

� �
ð16:38Þ

This equation is known as the Hagen-Poiseuille law and it shows that the flow
rate and the pressure drop are linked. In microfluidics, fluids can be controlled
either by syringe pump (controlled flow rate) or by pressure controller. According

Table 16.3 Analogy fluid
mechanics/electromagnetism

Microchannel network Electrical equivalent

Pressure Potential

Flow rate Electrical current

Hydrodynamic resistance Electrical resistance
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to Eq. (16.38) it is then easy to know the local pressure (resp. flow rate) when using
constant flow rate (resp. pressure).

Hydraulic resistance
From the Hagen-Poiseuille law Eq. (16.38) we found that a constant pressure

drop Δp leads to a constant flow rate Q. We can re-write this equation by intro-
ducing Rh the hydraulic resistance, in analogy of Ohm’s law in electricity (see
Table 16.3).

Dp ¼ RhQ; ½Rh� ¼ Pas
m3 ¼ kg

m4s
ð16:39Þ

Due to this analogy, we can apply Kirchoff’s laws: in series Rh ¼
P

Ri and in
parallel 1=Rh ¼

P
1=Ri.

In the particular case studied above (flow in a cylindrical microchannel) the
hydraulic resistance writes

Rh ¼ 8gL
pR4

Table 16.4 lists the hydraulic resistance for a number of different cross section
[4]

Friction force on the walls
The friction force exerted by the fluid on the tube is calculated from the stress on

the walls

F ¼
Z Z

ðwallÞ
r � ndS ð16:40Þ

where n is the unit vector normal to the wall. The component Fz along the z- axis
writes

Fz ¼
Z Z

ðwallÞ
½rzrr�r¼Rdhdz ¼

Z L

0
dz
Z 2p

0
½rzrr�r¼Rdh ð16:41Þ

Using the expression of the stress rzr ¼ gð@vz=@rÞ, one obtains the force fz per
unit length of tube

Table 16.4 Hydraulic
resistance for straight
channels with different
cross-sectional shapes

Shape Expression

circle, radius a 8gL
pa4

triangle, length a 320gLffiffi
3

p
a4

square, length a 28:4gL 1
a4

rectangle, height h width w 12gL
1�0:63ðh=wÞ

1
h3w
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fz ¼ Fz=L ¼ 4pgVmax ð16:42Þ

16.2.9.2 Laminar Flow in a Rectangular Microchannel

For lab-on-a-chip systems many fabrication methods lead to rectangular
cross-section microchannels instead of circular cross-sections as we discussed
above. For such a geometry no analytical solution is known to the Poiseuille flow
problem. The best that can be done analyticaly is to find a Fourier sum representing
the solution [4].

vxðy; zÞ ¼ 4 h2Dp
p3gL

X1
n;odd

1
n3

1� coshðnp y
hÞ

coshðnp w
2 hÞ

� �
sin np

z
h

� �
ð16:43Þ

The flow rate is found by integration

Q ¼ 2
Z 1

2w

0
dy
Z h

0
dzvxðy; zÞ

¼ 4 h2Dp
p3gL

X1
n;odd

1
n3

2 h
np

w� 2 h
np

tanh np
w
2 h

� �� �

¼ h3wDp
12gL

1�
X1
n;odd

1
n5

192
p5

h
w
tanh np

w
2 h

� �" # ð16:44Þ

where we have used
P1
n;odd

1
n4 ¼ p4

96.

In the limit h=w ! 0 i.e. a flat and very wide channel, we can approximate
(16.22) with h=w tanhðnp w

2 hÞ ! h=w tanhð1Þ ¼ h=w and Q becomes

Q � h3wDp
12gL

1� 0:63
h
w

� �
ð16:45Þ

This approximation is rather good. For the worst case, the square h = w, the error
is just 13 %.

16.3 Diffusive Transport

A fundamental transport process in fluid mechanics and in microfluidics is diffu-
sion. Diffusion differs from advection in that it is random in nature and the related
transport is from regions of high concentration to regions of low concentration with
an equilibrium state of uniform concentration.
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16.3.1 Diffusion

To derive a diffusive flux equation, it is somehow easier to begin by studying the
simple 1D constant-step random-walk model of diffusion.

We consider two rows of molecules side-by-side and centered at x = 0
(Fig. 16.8). Each of these molecules moves randomly. Here we will consider only
the component in one direction: motion right or left along the x-axis. We further
define the mass of the particles on the left (right) as Ml (Mr), and the probability that
a particle moves across x = 0 as k. After some time δt on average half of the
particles have taken steps to the right and half of them have taken steps to the left.
Mathematically, the average flux of particles from the left-hand column to the right
is kMl, and the average flux of particles from the right-hand column to the left is
−kMr, where the minus sign is used to distinguish direction. Thus, the net flux of
particles jx is

jx ¼ kðMl �MrÞ ð16:46Þ

For the one-dimensional case we can re-write in terms of concentrations using

cl ¼ Ml=dx cr ¼ Mr=dx ð16:47Þ

where δx is the average step along the x-axis taken by a molecule in the time δt.
Next, we note that a finite difference approximation for dc=dx is

dc
dx

¼ cr � cl
xr � xl

¼ Mr �Ml

dxðxr � xlÞ ð16:48Þ

which gives

0

Fig. 16.8 Schematic of the one-dimensional molecular motion of a group of molecules illustrating
Fickian diffusion
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jx ¼ �D
dc
dx

; D ¼ kðdxÞ2 ð16:49Þ

Generalizing to three dimensions, we can write the diffusive flux vector at a
point by adding the other two dimensions, yielding Fick’s law

J ¼ �Drc ð16:50Þ

where it is assumed that diffusion is isotropic, and the diffusion tensor D can be
replaced by the scalar diffusion coefficient D.

16.3.2 Diffusion Coefficient

Since we derived Fick’s law for molecules moving in Brownian motion, D is a
molecular diffusion constant. The intensity of this Brownian motion controls the
value of D. Thus, D depends on the state (solid, liquid, gas), temperature and
molecule size. For dilute molecular species in water, D is generally of order
10�9m2=s. For dispersed gases in air, D is of order 10−5m2/s.

In the case of particles small enough (less than a micron), the effects of thermal
agitation are sufficiently important to enable calculating the corresponding molec-
ular diffusion constant. Let us consider a spherical particle of radius R, moving at
velocity U relative to the liquid, the interaction force with the latter is the Stokes
force F ¼ �6pgRU which can be expressed as

F ¼ �U
m

; m ¼ 1
6pgR

ð16:51Þ

where m is the mobility coefficient. In addition, the mobility is linked to the dif-
fusion constant D through the Einstein relation

D ¼ mkBT ð16:52Þ

which leads to

D ¼ kBT
6pgR

ð16:53Þ

where kB is the Boltzmann constant. This relation is valid for particle radii
decreasing down to molecular scales.

534 F. Malloggi



16.3.3 Diffusion Equation

Although the Fick’s law gives us an expression for the flux of mass due to the
process of diffusion, we still require an equation that predicts the change in con-
centration of the diffusing mass over time at a point. This equation is achieved by
considering mass conservation and combining with Fick’s law we obtain the dif-
fusion equation

@c
@t

¼ DDc ð16:54Þ

or written out fully in cartesian coordinates,

@c
@t

¼ D
@2c
@x2

þ @2c
@y2

þ @2c
@z2

� �
ð16:55Þ

This equation describes the spreading of mass in a fluid with no mean velocity.
The most fundamental solution to the diffusion equation is that which describes

the spreading of an initial slug of mass M introduced at time zero at x = 0. Since the
equation is linear, this solution may be seen as building block to construct solutions
to problems with more complex initial or boundary conditions.

Point source solution.
We consider the simple case where at the point x = 0 and at time t = 0, a mass of

tracer, M, is injected uniformly across the cross-section of area A (see Fig. 16.9).
In one dimension, the governing Eq. (16.55) writes

@c
@t

¼ D
@2c
@x2

ð16:56Þ

which requires two boundary conditions and an initial condition.
As boundary conditions, we impose that the concentration at 	1 remain zero:

cð	1; tÞ ¼ 0 ð16:57Þ

The initial condition is that the dye tracer is injected instantaneously and uni-
formly across the cross-section over an infinitesimal width in the x-direction:

cðx; 0Þ ¼ M=AdðxÞ ð16:58Þ

x
M

A

Fig. 16.9 Definition sketch for one-dimensional pure diffusion in an infinite pipe
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where δ(x) is zero everywhere accept at x = 0, where it is infinite, but the integral of
the delta function from �1 to ∞ is 1.

The fundamental solution of this problem is:

cðxÞ ¼ M

A
ffiffiffiffiffiffiffiffiffiffi
4pDt

p exp� ðx2=4DtÞ ð16:59Þ

The solution is a Gaussian curve (Fig. 16.10). Its width increases as the square
root of the time: a characteristic of diffusive phenomena. At the same time, the
amplitude decreases as 1=

ffiffi
t

p
so as to keep the area constant (the area corresponds to

the initial mass).

16.4 Convective-Diffusive Transport

The derivation of the advective diffusion equation relies on the principle of super-
position: advection and diffusion can be added together if they are linearly inde-
pendent. In the previous section, diffusion was shown to be a random process due to
molecular motion: each molecule during a time δt will move either one step to the
left or one step to the right (i.e. ±δx). Due to advection, each molecule will also move
uδt in the cross-flow direction. These processes are clearly additive and independent:
the net movement of the molecule is uδt±δx. The total flux in the x-direction Jx,
including the advective transport and a Fickian diffusion term, must be

Jx ¼ ucþ qx ¼ uc� D
@c
@x

ð16:60Þ

-4 -2 2 4
x

0.2

0.4

0.6

0.8

1.0

c
t0

t1

t2

Fig. 16.10 Solution of the
diffusion equation in one
dimension for 3 different
times (t0 < t1 < t2) after the
injection
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where qx is the diffusive flux along the x-axis. Using this flux law and the con-
servation of mass, we can express the convection-diffusion equation for the con-
centration c of solutes in solutions having a weak velocity field u

@c
@t

þ u � rc ¼ DDc ð16:61Þ

Point source solution.
As we did previously, we study the simple case of a point source problem but

this time the diffusion is coupled with advection. We substitute the coordinate
transformation for the moving reference frame into the one-dimensional version of
Eq. 16.61. In the 1-D case, u ¼ ðu; 0; 0Þ, and there are no concentration gradients in
the y� or z� directions, leaving us with

@c
@t

þ @ðucÞ
@x

¼ D
@2c
@x2

ð16:62Þ

The coordinate transformation for the moving system is

/ ¼ x� ðx0 þ utÞ

s ¼ t

which substituted into Eq. 16.62 using the chain rule yields

@c
@s

@s
@t

þ @c
@/

@/
@t

þ u
@c
@/

@/
@x

þ @c
@s

@s
@x

� �
ð16:63Þ

¼ D
@

@/
@/
@x

þ @

@s
@s
@x

� �
@c
@/

@/
@x

þ @c
@s

@s
@x

� �
ð16:64Þ

which reduces to

2 4 6 8
x

0.2

0.4

0.6

0.8

1.0

c
t0

t1
t2

Fig. 16.11 Solution of the
advection-diffusion equation
in one dimension
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@c
@s

¼ D
@2c

@/2 ð16:65Þ

We recover the diffusion Eq. (16.54) expressed in the moving coordinates ϕ and
τ with the solution

c ¼ M

A
ffiffiffiffiffiffiffiffiffiffiffi
4pDs

p exp� ð/2=4DsÞ ð16:66Þ

Figure 16.11 shows the solution of the point source problem in the absolute
system. Note that expressed in the moving coordinates we have exactly the solu-
tions as shown in Fig. 16.10 with / ¼ x� ðx0 þ utÞ.

This example is interesting since it highlights the importance of both diffusive
and advective transport. If the cross flow was stronger, the cloud would have less
time to spread out and would be narrower at each ti. Conversely, if the diffusion was
faster (larger D), the cloud would spread out more between the different ti and the
profiles would overlap. Thus, we see that diffusion versus advection dominance is a
function of t, D and u, and we express this property through the non-dimensionnal
Peclet number

Pe ¼ u2t
D

ð16:67Þ

or for a given downstream location L = ut

t

∞

C0

0-W/2 W/2

C/C0

0

1

Fig. 16.12 Evolution of the concentration profile along the microfluidics channel
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Pe ¼ uL
D

ð16:68Þ

For Pe ≫ 1 (Pe ≪ 1), advection (diffusion) is dominant.

Advection-diffusion problem in microfluidics
One of the most popular mixers in microfluidics is based on the simple
advection-diffusion problem. The geometry used is a channel with a Y-junction
where a solute (concentration c0) is diluted at the junction. Due to the laminarity of
the flow there is an equivalence between time and length. In other words, in the
steady state regime, measuring the concentration profile at a given length is
equivalent of measuring the concentration at a given time.

Figure 16.12 shows the results of a numerical simulation of such a Y-junction.
The dilution occurs at the interface and spreads along the flow (direction top to
down). The right part on Fig. 16.12 shows the concentration profile across the
channel at 5 different times.

The previous example is equivalent to solve the problem of an initial spatial
concentration distribution as sketched in Fig. 16.13.

We consider the homogeneous initial distribution, given by

cðx; tÞ ¼ c0 if x
 0

¼ 0 if x[ 0

where t = 0 and c0 is the uniform initial concentration. Since advection can always
be included by changing the frame of reference, we will consider the
one-dimensional stagnant case. At a point x ¼ n\0, there is an infinitesimal mass
dM ¼ c0Adn, where A is the cross-section area δyδz. For t > 0, the concentration at
any point x is determined by the diffusion of mass from all the differential element

x

c
c0

dM=c0 Adξ

dξ 0

Fig. 16.13 Schematic of an instantaneous initial concentration distribution showing the
differential element dM at a point ξ
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dM. The contribution dc for a single element dM is just the solution of Eq. 16.54 for
an instantaneous point source

dcðx; tÞ ¼ dM

A
ffiffiffiffiffiffiffiffiffiffi
4pDt

p exp �ðx� nÞ2
4Dt

 !
ð16:69Þ

and by virtue of superposition, we can sum up all the contribution dM to obtain

cðx; tÞ ¼
Z0
�1

c0dnffiffiffiffiffiffiffiffiffiffi
4pDt

p exp �ðx� nÞ2
4Dt

 !
ð16:70Þ

which is the superposition solution. To compute the integral we must make a
change of variables as follows

f ¼ x� nffiffiffiffiffiffiffiffi
4Dt

p ; df ¼ � dnffiffiffiffiffiffiffiffi
4Dt

p ð16:71Þ

Substituting ζ into the integral gives

cðx; tÞ ¼ c0ffiffiffi
p

p
Zx= ffiffiffiffiffiffi4Dt
p

þ1
�expð�f2Þdf ð16:72Þ

¼ c0ffiffiffi
p

p
Zþ1

x=
ffiffiffiffiffiffi
4Dt

p
expð�f2Þdf ð16:73Þ
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c

t

Fig. 16.14 Solutions of
Eq. (16.76) for an
instantaneous initial
concentration distribution
with c0 = 1 and various time
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¼ c0ffiffiffi
p

p
Z1
0

expð�f2Þdf�
Zx= ffiffiffiffiffiffi4Dt
p

0

expðf2Þdf

2
64

3
75 ð16:74Þ

The first integral can be solved analytically (from a table of integrals) and its
solution is

ffiffiffi
p

p
=2. The second term of the integral is the so-called error function,

defined as

erf ðxÞ ¼ 2ffiffiffi
p

p
Zx
0

expð�f2Þdf ð16:75Þ

Hence, the solution can be written

cðx; tÞ ¼ c0
2

1� erf
xffiffiffiffiffiffiffiffi
4Dt

p
� �� �

ð16:76Þ

We plot the solution of Eq. (16.76) in Fig. 16.14 for 4 different times. Note that
this solution is also valid if we use the moving coordinate system.

16.5 Capillary Effect

16.5.1 Notation of Interface

An interface is the geometrical surface that delimits two fluid domains. This defi-
nition implies that an interface has no thickness and is smooth. The reality is more
complex and the separation of two immiscible fluids (water/air, water/oil) depends
on molecular interactions between the molecules of each fluid and on Brownian
diffusion (thermal agitation). However for macroscopic problems encountered in
microfluidics we can consider an interface as a mathematical surface without
thickness and the contact angle θ is uniquely defined by the tangent to the surface at
the contact line (see Fig. 16.15).

θ

liquid 1

liquid 2

solid

macroscopic molecular

Fig. 16.15 Molecular and macroscopic sketch of the interfaces of a drop sitting on a solid
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16.5.2 Surface Tension

Surface tension is related to the internal cohesion forces that act between the
molecules of a fluid: van der Waals forces, hydrogen bonding, ionic bonds. In the
bulk fluid, the forces exerted by each molecule are balanced by those exerted by
neighboring molecules. If an interface is introduced the forces are not balanced
anymore: this is the origin of surface forces and the corresponding energy. The
interfacial tension γA,B between the two compounds (16.1) and (16.2) of free surface
tension γ1 and γ2 may be estimated from the approximate expression

c1;2 ¼ c1 þ c2 � 2
ffiffiffiffiffiffiffiffiffi
c1c2

p ð16:77Þ

16.5.3 Laplace Law

The force differential over the surface area of the interface, @F=@A, induces both a
surface tension and a pressure drop across the interface.

For the general case depicted in Fig. 16.16, the pressure difference can be written
as

Dp ¼ p2 � p1 ¼ c1;2
1
R
þ 1

R0

� �
ð16:78Þ

This equation is known as Laplace law or Laplace pressure. In the particular case
of a spherical drop (R ¼ R0), the Laplace pressure is simply

Dp ¼ p2 � p1 ¼ c1;2
2
R

� �
ð16:79Þ

R'

R

n (2)

(1)

Fig. 16.16 Geometry of the
surface separation between
two liquids (1) and (2) and the
definition of the radius of
curvature R and R’
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16.5.4 Wetting

So far, we have dealt with interfaces between two fluids. Triple contact lines are the
intersections of three interfaces involving three different materials: for example, a
droplet of water sitting on a solid substrate in contact with air has a triple contact
line. Liquids spread differently on a horizontal plate according to the nature of the
solid surface and that of the liquid. In reality, it depends also on the third con-
stituent, which is the gas or the fluid surrounding the drop. At the liquid-solid
interface, the liquid interface molecules have strong interactions to both the bulk
liquid and the solid. If the intermolecular force balance favors the solid, the liquid
will seek to minimize the total surface energy by spreading out over the surface of
the solid: this process is called wetting. If water wets the solid surface, the solid is
called hydrophilic. Conversely, if the intermolecular force balance favors the bulk
liquid, the liquid will not wet the surface but instead form a spherical cap in order to
minimize the surface energy. The free surface of a solid on which water forms a
spherical cap is hydrophobic.

A liquid spreads on a substrate in a film if the energy of the system is lowered by
the presence of the liquid film. The spreading parameter S determines the type of
spreading

S ¼ cSG � ðcSL þ cLGÞ ð16:80Þ

where γij denotes the surface tension between the phases i and j, with S, L and
G representing the solid, the liquid and the gas phase, respectively. If S > 0, the
liquid spreads on the solid surface; if S < 0 the liquid forms a droplet.

16.5.5 Contact Angle

The angle the spherical cap of liquid makes with the solid surface is called the
contact angle and is related to the surface tension of the various interfaces by the
following equation:

θ

γ

γSG

γSL

Fig. 16.17 Schematic of the tensions at the triple contact line
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cosh ¼ cSG � cSL
cLG

ð16:81Þ

In Fig. 16.17 we draw the different tensions that are exerted by the presence of a
fluid on the triple contact line. At equilibrium, the sum of the tensions must be zero.
The projection of the tensions on the horizontal line gives Eq. (16.81)

16.5.6 Capillary Length and Dimensionless Numbers

The effects of capillary, which are directly related to the curvature of the interface,
are significant when considering phenomena at small length scales. For large
objects, they are outweighed by volume forces like the gravity. In other words, it
exists a length lc, called capillary length, beyond which gravity becomes dominant.
A manifestation of this phenomenon is the well known ascent of the liquid
meniscus near the walls of a tube. An estimate is given by considering the Laplace
pressure γ/lc and the hydrostatic pressure ρglc. The equality of the two pressures
defines the capillary length

lc ¼
ffiffiffiffiffiffi
c
qg

r
ð16:82Þ

It is also possible to define a dimensionless number related to the
gravity/capillary ratio. This number is called the Bond number and writes

Bo ¼ gravitationalforce
surfacetensionforce

¼ qgl2

c
¼ l2

lc
ð16:83Þ

where l is a characteristic length of the system. For water at room temperature the
capillary length is around 3 mm which means that in microfluidics gravity is
negligible.

θ1

θ2

liquid
R

R

θ1

θ2

h

Fig. 16.18 Geometry of the liquid meniscus between two plates with different wettability
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Laplace pressure in a microchannel.
We want to calculate the Laplace pressure in a flat channel with different contact
angles θ1 and θ2. This example is observed where the bottom and the top of the
channel are from different material i.e. there is a difference in wettability. In
Fig. 16.18 we sketch such a system. The distance between the bottom and the top
plate is denoted h. Let θ1 and θ2 be the contact angle at the bottom and top plates,
respectively, then we have h ¼ Rðcosh1 þ cosh2Þ. The Young-Laplace pressure is
given by

Dp ¼ c
R
¼ c

h
ðcosh1 þ cosh2Þ ð16:84Þ

This expression is validated in one dimension. If we consider the case where the
channel is 2-D with a width w, Eq. (16.84) re-writes

Dp ¼ c
2
w

þ cosh1 þ cosh2
h

� �
ð16:85Þ

16.5.6.1 References

This chapter has been inspired by several books. Readers who wish to learn more
about microfluidics and fundamental physics behind it are referred to the following
monographs:

• Introduction to fluid dynamics, Batchelor [1]
• Fluid mechanics, Landau and Lifshitz [14]
• Introduction to microfluidics, Tabeling [20]
• Theoritical microfluidics, Bruus [4]
• Elements of random walk and diffusion processes, Ibe [13]
• Mixing in inland and coastal waters, Fischer [10]
• Microdrops and digital microfluidics, Berthier [2]
• french readers will appreciate also Hydrodynamique physique, Guyon et al. [11]

and Gouttes, bulles, perles et ondes, de Gennes et al. [6]
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A
Absolute surface concentration, 121–122
Absorbance, 461–462. See also Optical

absorption spectroscopy at interfaces
Absorption coefficient, 461, 467
Active coating, 60–64
Activity coefficients, 118–121
Adhesion, 46, 52–53, 57–58
Adsorption, 11, 14–21

adsorbed chains, dynamics of, 149–154
barrier, in bulk solution, 146
barrier, due to electrostatics, 148
barrier, due to exchange between micelles

and unimers, 146
barrier, through the layer, 146–148
diffusion controlled, 139–140
as a displacement reaction, 130
dynamics of surfactants, 138–141
isotherm, 122–127, 297–299
kinetically-limited, 140–141
kinetics, 146
at liquid interfaces, 141–148
saturation, 297–299

Advection, 357, 379, 381, 383
Air/water interface, 119–120, 125
Alexander-de-Gennes model, 301
Alkyd resin, 50
All-trans conformation, 510
Aluminium, 42, 57
Amphiphilic soluble copolymers, 141–142
Amplitude, 463, 472–473, 482
Amplitude reflection coefficient, 472
Anisotropic mobilities, 367–370
Anode, 32, 57, 59–60
Anodic delamination, 53
Asakura-Oosawa-Vrij (AOV) depletion

potential, 72–73
Attenuated total reflection (ATR), 481–483
Azimuthal isotropy, 495, 496–502, 505

B
Bacteria, 376, 378, 380, 382–383
Barrier coating, 46, 53–57
Base coat, 52–53
Binary mixtures, interfaces of, 221–277

bulk behavior, 236–245
soft matter at interfaces, 221–225
squared gradient theories, 229–236
structure of interface, 246–269
wetting transitions, 225–229

Binder resin, 46–52
Binodal line, 225–226, 238, 253–260, 267–268
Binodals, 84, 87, 90, 99–103
Blistering, 46, 53, 57
Blob/Blob model, 167–171, 283–288
Block copolymers, 142
Bode plot, 54
Bond fluctuation model (BFM), 296
Born approximation, 415–416, 419–420,

424–432
Born-Oppenheimer approximation, 463
Boundary conditions (BCs), 315–319,

322–325, 329–330
Brasher-Kingsbury equation, 56
Brewster angle, 481
Broadband, 492
Brownian motion, 319, 327–328, 332–333,

353, 370
Bulk behavior, of binary mixture interfaces,

236–245
Buried interface, 43, 45–46
Butler-Volmer equation, 37–38

C
Cahn argument, 227, 230, 255
Calculus of variation, 272–276
Calorimetry, 131
Canonical ensemble, 202–213. See also Micro

canonical ensemble
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Canonical ensemble (cont.)
fluctuations, 211–213
probabilities, 206–211
thermodynamics, 204–205

Capacitance, 41–42, 44, 53–56
Capacitor, 39–40, 42–44
Capillary effects, 541–545
Capillary waves, 223, 434–436, 438
Carnahan-Starling equation, 85–87, 104,

217–220
Cathode, 32, 57
Cathodic delamination, 57–59
Cathodic electrodeposition coating, 52
Character tables, 499
Charge, 33, 38, 43–44
Charged polymer brushes, 304–307
Chemical potential, 32, 114–115, 127, 196,

215–216, 238, 252. See also
Electrochemical potential

Clear coat, 52–53
Coating resistance, 54–55
Coexisting phases, 161, 164–168
Cole-Cole plot, 41
Colloidal phase behaviour, 71–104

colloidal dispersions, phase behaviour of,
82–92

of colloid-polymer mixture, 92–103
of dispersion of hard cores plus Yukawa

attraction, 88–92
free volume theory, 93–96
of hard sphere dispersion, 84–88
phase diagrams, 99–103
scaled particle theory (SPT), 96–99
of van der Waals fluid, 82–84

Colloid-polymer mixture, phase behaviour of,
92–103

Colloid-polymer suspension, 118
Colloids, 7–9
Complete wetting, 225–227, 250
Computer simulations, 296, 302, 304, 309
Concentration, 31–34, 36, 461
Condensation reaction, 48, 50–51
Conducting polymer (CP), 62
Conduction band, 468
Contact angle, 228–229, 257–258
Contact composition, 250–251, 263–266
Convective-diffusive transport, 536–541
Copolymers

amphiphilic soluble copolymers, 141–142
block copolymers, 142
triblock copolymers, 144

Correlation length, 240–243, 287, 299
Corrosion, 52–53, 57

electrochemical methods in, 39–46

Corrosion current, 36, 38
Corrosion protection, 60–64
Corrosion rate, 38, 60
Counter ions, 304, 306

distribution, 30
Critical interaction energy, 294
Critical point, 115, 116–118, 224–228,

294–296
Critical temperature, 294
Cross correlation, 398, 402–404
Cross-linking, 47–50, 52, 55, 59
Cross-over exponent, 284, 290, 292, 294
Crystallization, 76
Current, 33–34, 36–38
Curved interface, 174–178

D
De Broglie wavelength, 83
de Gennes model. See Alexander-de-Gennes

model
Debye-Hückel equation, 120
Debye screening length, 346–349
Delamination, 45–46, 53, 57–59
Density profile, parabolic, 302
Depletion, 72–78
Depletion interaction, 71–104

early observations, 75–76
first theory on, 71–72
between two flat plates, 78–79
between two spheres, 79–82

Deposition, 36, 61, 482
Deterioration, 53
2D ideal lattice gas model, 125
Dielectric constant, 55–56
Dielectric function, 464, 465–467
Diffusing wave spectroscopy (DWS), 405–411
Diffusion, 42, 56, 58–59

controlled adsorption, 139–140
diffusion-reptation of chains, adsorption

barrier due to, 146–148
Diffusion coefficient, 55–56, 319, 326,

370–372
Diffusive transport, 532–536
Dimensional analysis, 518–519
Dipole moment operator, 464–466
Dipole swimmers, 377–378
Dipole transition, 462–465
Displacement of solvent

enthalpy of displacement, 131–132
entropy of displacement, 131–132
free energy of displacement, 131

Dissolution, 36, 42, 58–59
Distorted-wave Born approximation, 424–432
Donnan potential, 45, 183–184
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Double layer, 30, 60
Dynamic light scattering (DLS), 370, 396–404

E
Effective slip, 351
Eigenpolarisation, 473, 480, 495, 501
Einstein coefficient, 463–464
Einstein crystal, 191, 197–198
Elastic constant, 230–231, 246
Electric double layer (EDL), 346, 348, 350,

353
Electric field, 30, 463–467, 473–475, 481
Electrical double layer, 132
Electrochemical impedance spectroscopy

(EIS), 39–43
Electrochemical potential, 31–33
Electrochemistry, fundamentals, 29–65
Electrode potential, 32–36, 39, 41, 43–46, 60,

62–64
Electrode, 32
Electrolyte, 30, 42–47, 53–61
Electromagnetic wave, 473, 475–476
Electron transfer reaction, 29, 34, 36–38, 53,

57–58, 60
Electronic transition, 467–468
Electro-osmotic flow, 347–349
Electrophoretic velocity/mobility, 347,

350–354
Electrostatic potential, 30–31
Ellipsometry, 449–452, 465
Emulsions, 7–8, 15–16, 21. See also Pickering

emulsions
Ensemble average, 202
Enthalpy of adsorption, 114, 127
Entropic driving force of adsorption, 128
Entropy, 190–193
Entropy of adsorption, 114
Epoxy based coatings, 47–48
Equilibrium, 31, 33–34
Equilibrium potential, 34–36
Equimolar dividing surface, 113, 115
Equipartition theorem, 239
Equivalent circuit, 39, 41–43, 53–54, 57
Euler-Lagrange equation, 247, 274
Euler transformation, 494, 497–498, 502
Evanescent wave, 473, 481–484
Evanescent wave dynamic light scattering

(EWDLS), 245, 370–371, 455
Exchange current, 34–38
Excitation, 38, 466–470, 480
Excluded volume, 282–283, 288, 303
Extensive quantity, 192, 196–197, 201

External reflection (x-rays and neutrons),
420–421

External reflection spectroscopy, 475–481

F
Faraday’s law, 33
Faxén law, 357, 379, 381
Fermi level, 43–44, 63
Fermi pseudo-potential, 417
Filler, 52
Film pressure, 122–125, 127
Fingerprint, 471
Flat interface, 172–174
Flexible particles, 372–374
Flexible polymer chain, 279–290
Flory-Huggins interaction parameter, 17
Flory Huggins theory, 223–224, 232–237, 242,

246
Flory theorem, 287, 289–290, 292, 299
Flow, laminar, 529, 532
Fluctuations, 211–213, 432–442
Fluid interfaces, 117–121
Fluid mechanics, 516, 518–519, 521, 530, 532
Fluid motion, governing equations, 519–532
Food biopolymers, 160
Force, 79–81
Force multipoles, 337–339
Free energy, 127–128, 225, 230–238, 281–283,

288, 292, 294, 308
Free enthalpy, 31–33
Free surface, 362–366
Free volume theory, 93–96
Frequency, 39, 41–42, 463–467
Fresnel factors, 505
Fresnel reflectivity, 422–423
Friction tensor/matrix, 315, 331, 354
Frumkin-Fowler-Guggenheim (FFG) isotherm,

126–127
fs-pulse, 492

G
Galvani potential, 31–32
Gauche-defect, 510
Gibbs adsorption equation, 113–115, 123
Gibbs dividing surface, 112, 114
Gibbs films, 122
Gibbs-Duhem equation/relation, 85, 96, 104,

120–121, 130, 196, 219
Grafting density, 301, 304, 306
Grand canonical potential, 230, 238–239, 246,

250, 254, 257, 266, 269
Grazing incidence, 475, 478
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Grazing incidence (cont.)
diffraction, 428–429
scattering, 440–442

H
Hamiltonian, 462–463
Hard sphere dispersion, phase behaviour,

84–88
Harmonic oscillator, 466–467
Helmholtz free energy, 201, 205, 210
Helmholtz plane, 132
High-energy surfaces, 129
Highest occupied molecular orbital (HOMO),

468
Hydrodynamic drag, 318, 320–321, 324–325,

330, 338, 344, 346, 348, 353, 359, 364,
374, 376

Hydrodynamic interactions (HIs), 314–315,
354–358, 378–380

Hydrodynamic radius, 371–372
Hydrogen bond, 470
Hydrophobic aggregation, 132
Hydrophobic effect, 127–129

I
Ideal gas, 191, 195–196, 207, 209–210
Ideal polymer chain, 279–281
Image system/particle, 333, 357, 361–367, 383
Impedance, 39–42, 55–56. See also

Electrochemical impedance
spectroscopy (EIS)

Incoherent scattering (neutrons), 418
Index of refraction (x-rays and neutrons). See

Refractive index
Inductor, 39–40
Infrared absorption, 459
Infrared (IR) spectroscopy, 475, 492, 509
Inhibitor, 60–64
Ink-spreading, 327
Inner Helmholtz layer, 30
Inner potential, 31
Instantaneity, 326
Insulator, 42, 57, 62
Intensity, 469, 472, 475–476, 480–482
Interaction parameter (Chi), 224, 234
Interactions, 13–14, 17–18
Interface, 159–185. See also Water-water

interfaces
Interface phase transition, 224, 226–228,

264–265
Interface profile, 243, 246–249, 258–259
Interface specificity, 471–485

application, 471–485

evanescent-wave illuminated spectroscopy
in external reflection, 483–484

external reflection spectroscopy on metals,
475–480

internal reflection spectroscopy, ATR,
481–483

principles, 471–485
surface enhancement from rough interfaces,

484–485
transmission spectroscopy for, 474–475
transparent substrates, external reflection

experiments on, 480–481
Interface tension, 228–229, 246–251, 256–257,

266–267, 294
Interfaces and soft matter, 13–22
Interfacial capacitance, 54, 56
Interfacial curvature, 175–177
Interfacial electric potential, 183–184
Interfacial tension, 116, 130, 167, 172–177

measuring, 178–183
Interfacial width, 177
Internal reflection, 472–473, 476, 482
Internal reflection element, 482
Internal reflection spectroscopy, 481–483
Inter-particle interactions, 213–220
Inversion symmetry, 492–493, 510
Ion exchange reaction, 135
Iron, 57–59, 61
Irradiance, 461
Isocyanate, 49
Isoelectric point, 133
Isotropic systems, 492, 496, 500, 501

K
Kelvin probe, 43–46
Kinematic reversibility, 315, 326–329, 343,

373, 375
Kinetically-limited adsorption, 140–141

L
Lab on a chip technology, 515–516
Laboratory coordinate system, 494–495
Lamber Beer’s law, 461
Landau free energy density, 251–252
Landau theory, 225, 230–232, 251, 269
Langmuir films (diffraction), 122, 428–430
Langmuir isotherm, 133–134
Lateral interactions, 123–126
Lattice vibrations, 471
Layer-by-layer polyelectrolyte assembly,

60–61
Layered double hydroxide, 60
Librations, 470
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Linear polarisation, 38, 473, 480
Lipid bilayers (scattering), 438
Liquid crystals, 5, 11, 22
Liquid/gas interface, 112–113, 434–438
Liquid/liquid interface, 112–113, 115–117,

322, 364–365
Liquid/solid interface, 128–135
Liquid window, 95, 102
Local charge neutrality, 305
Local field correction, 504–505
Localized monolayer adsorption, 125–127
Lorentzian function, 466
Lorentzian peak shape, 508–509
Low-energy surfaces, 129
Lowest unoccupied molecular orbital (LUMO),

468
Low-Reynolds-number flow, 316–320, 327,

336, 374–375
Lubrication effects, 358–361

M
Marcus theory, 38
Matrix method, 474
Maxwell equation, 474
Mean field theory, 223–224, 233
Mean-squared-displacement, 319, 332
Melamine formaldehyde resins, 51–52
Metal, 31, 34, 43–46, 468, 474, 482, 484

external reflection spectroscopy on,
475–480

Micro canonical ensemble, 190–202
entropy, 190–193
irreversible processes and equilibria,

198–201
probabilities, 201–202
thermodynamics, 193–198

Microemulsion, 7, 22
Microfluidics, 515–545
Microrheology, 410
Micro-scallop theorem, 375–377
Microswimmers, 374–383
Mixed potential, 34–36
Mobility, 56, 63
Mobility tensor/matrix, 315, 330–332,

355–358, 364, 367–368
Molecular coordinate system, 494, 497–498,

501–502, 507
Molecular vibrations, 469–471
Monolayer equation of state

2D perfect gas, 123
2D Volmer equation, 123–124
van-der-Waals equation, 123–125

Multilayer coating, 52–53
Multiple scattering, 402–404

N
Nanoparticles, 414, 442
Navier partial-slip, 315, 324, 336, 343, 351,

358, 366, 381–382
Navier slip length, 322–323, 382
Navier-Stokes equation, 315–318, 324
Nernst equation, 33–34
Noether theorem, 245
Nonlinear optics, 493
Non-linear susceptibility of second order, 507
Non-resonant background, 508, 511
Normal pressure, 110
No-slip wall, 365–372
Novolac, 48
Nyquist plot, 40–41, 470

O
Ohm’s law, 39
Oil/water interface, 119
Open circuit potential, 34–36
Optical absorption spectroscopy at interfaces,

459–486
electronic transitions, 467–468
information obtained, types, 461–462
from molecule to dielectric function,

465–467
motivation for using, 459–460
principles, 461–471
spectroscopic process of dipole transitions,

462–465
vibrational transitions, 468–471

Optical techniques, 445–457
evanescent wave dynamic light scattering

(EWDLS), 455
interfaces morphology imaging, 453–454
light scattering and dynamics, 454
optical field propagation and reflection,

446–449
surface quasi elastic light scattering, 455
surfaces imaging, 453–454

Optics/Optical phenomena, 459–486
Order parameter, 232, 251, 292
Organic coating, 46–52

epoxy based, 47, 48
melamine formaldehyde resins, 51–52
phenol formaldehyde resins, 48–49
polyesters resins, 50–51
polyurethane resins, 49

Orientational analysis, 496, 503
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Orientational averaging, 498
Oscillator strength, 464, 467
Oseen tensor, 333–337
Osmotic brush model, 306–307
Osmotic pressure, 72–75, 79–81, 83–85, 90,

96–98, 286, 288, 301, 305–307
Outer Helmholtz layer, 30
Overlap concentration/threshold, 286–287
Overpotentials, 34, 36–38
Oxidation, 32
Oxygen, 46, 57–58
Oxygen reduction, 58–60

P
Pair-wise additive, 77, 82
Partial non-wetting, 14–15
Partial wetting, 14–15, 223, 225, 227, 229
Partially miscible liquids, 115–117
Particle characterization, 390–394, 396–403,

406–411
Partition function, 208–209, 211, 213
Passive coating, 60
Penetrable hard spheres, 74, 77–82, 93–95,

98–100
Penetrable interfaces, 290–293
Penetration depth (x-rays and neutrons), 421,

427
Perfect non-wetting, 14–15
Perfect wetting, 14–15
Persistence length, 222, 242
Perturbation Methods, 424–432
pH, 60–62
Phase behaviour, 71–104. See also Colloidal

phase behaviour
Phase coexistence, 77, 83–84, 87, 90–93, 102
Phase diagrams, 99–103, 162–167
Phase-sensitive SFG, 509
Phase separation, 223, 226–227
Phase shift, 39–42
Phase transition, 222, 224, 226–228
Phenol formaldehyde resins, 48–49
Phenolic polymers, 46
Phonons, 14, 471
Phoretic motion/flow, 345–354
Pickering emulsions, 14–15
Plane of incidence, 494–495
Plane wave, 463
Plates, parallel flat, 78–79
Plug flow, 324, 349
PMMA particles, 87
Point of zero charge, 133
Polarisation [of light], 466–467, 472–474, 480,

466n, 496–503
Polarisation modulation, 480

Polarisation resistance, 37, 54, 56
Polyacrylate resins, 49–50
Polyanilines, 62–63
Polyelectrolyte, 60–62
Polyesters resins, 50–51
Polymer adsorption, 290–299

adsorbed at hard surfaces, 294–297
at penetrable interfaces, 290–293
single chains at interfaces and on surfaces,

290–299
Polymer brush, 299–309

charged polymer brushes, 304–307
collapse, 302–304, 307–310
density profile, 301–304
dynamics of, 154
end-group modification, 301–304
in poor solvents, 308–309
surface instabilities, 301–304

Polymer chains, 279–299
adsorption isotherm and saturation,

297–299
flexible, 279–290
ideal, 279–281
real, 282–283
single chains at interfaces and on surfaces,

290–299
Polymer dynamics, at liquid interfaces,

137–155
spread polymer layers at liquid interfaces,

141–148
at water surface, 151–153

Polymer melt, 282, 294
Polymers, 9–11, 141–148. See also

Copolymers
Polyurethane resins, 49
p-Polarization, 494–495, 504
Preferential curvature, 177
Pressure field, 316, 318, 321, 335, 339, 350
Prewetting line, 225
Prewetting transition, 228, 269
Primer, 53, 61
Probabilities, 201–202, 206–211
Protein adsorption, 134–135
ps-Pulse, 492
Purcell’s micro-scallop theorem, 375–377

Q
Quantum mechanics, 460, 462–466

R
Radius of gyration, 242
Raman spectroscopy, 465, 470, 484, 492, 508
Randles circuit, 39, 41–42
Rate constant, 36, 38
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Reaction rate, 33–34
Real polymer chain, 282–283
Redox reaction, 32–33, 36, 57
Reduced adsorption, 113
Reduced variables, 260–261
Reduction, 32. See also Oxygen reduction
Reference, 45, 461, 472, 477
Reflectance absorbance, 461, 472, 474,

478–479, 483
Reflection, 462, 465, 471. See also External

reflection; Internal reflection
Reflection absorption spectroscopy, 478.

See also Optical absorption
spectroscopy at interfaces

Reflectivity, 419–424, 472, 481
Refraction, 471
Refractive index (x-rays and neutrons),

416–419
Relative adsorption, 112, 113
Relaxation, 38, 42, 56
Relaxation time, 42
Resistance, 39–42, 53
Resistor, 39–40
RESOLV, 486
Reynolds number, 317–318, 321, 328
Rotne-Prager-Yamakawa (RPY) tensor/matrix,

356
Rough interfaces, surface enhancement from,

484–485

S
Scale invariance, 281–282
Scaled particle theory (SPT), 77, 96–99
Scaling laws, 517–518
Scaling variable, 282, 284–285, 291
Scallop theorem, 375–377
Scanning Kelvin probe (SKP), 43–46
Scattering, 454

evanescent wave dynamic light scattering
(EWDLS), 455

surface quasi elastic light scattering, 455
Scattering cross-section, 414–419
Scattering techniques, 413–442

fluctuations, 432–442
perturbation methods, 424–432
reflectivity, 419–424

Scattering vector, 223, 239, 245
Schrödinger equation, 462–463, 466, 469
Second law of thermodynamics, 198, 200
Second-order process, 492, 494
Segre-Silberberg effect, 329
Selection rule, 464. See also Surface selection

rule

Self-assembly at interfaces, 492
Self-propelling microswimmers, 374–383
Self-similarity, 281–282
Semiconductor, 468, 482–484
Semi-dilute solutions, 287
Semi-dilute surface state, 287–288, 298–299,

301–302
Semigrand potential, 95, 98–99
SFG. See Sum-frequency generation

(SFG) spectroscopy
Singularity flow solutions, 332–340
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