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Abstract The ISO 9001:2008 quality management standard states that organiza-
tions shall plan and implement monitoring, measurement, analysis and improve-
ment processes to demonstrate conformity to product requirements. According to
the standard, detailed analysis of data is required for this purpose. The analysis of
data should also provide information related to characteristics and trends of pro-
cesses and products, including opportunities for preventive action. The preliminary
aim of this chapter is to show how intelligent techniques can be used to design
data–driven tools that are able to support the organization to continuously improve
the effectiveness of their production according to the Plan—Do—Check—Act
(PDCA) methodology. The chapter focuses on the application of data mining and
multivariate statistical tools for process monitoring and quality control. Classical
multivariate tools such as PLS and PCA are presented along with their nonlinear
variants. Special attention is given to software sensors used to estimate product
quality. Practical application examples taken from chemical and oil and gas
industries illustrate the applicability of the discussed techniques.

Keywords Multivariate statistics � Computational intelligence � Quality moni-
toring � Production systems � PDCA

9.1 Introduction

The modern definition of quality states that “quality is inversely proportional to
variability”. This definition implies that if variability in the important characteristics
of a production system decreases, then the quality of the product increases.
Statistical process control (SPC) provides techniques to assure and improve the
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quality of products by reducing the variance of process variables. The role of these
tools is illustrated in Fig. 9.1, which presents a manufacturing process. The control
chart of SPC is a very useful process monitoring technique, when unusual sources
of variability are present and important process variables will plot outside the
control limits. In these cases some investigation of the process should be made and
corrective action to remove these unusual sources of variability should be taken.
Systematic use of a control chart is an excellent way to reduce variability
(Montgomery 2009).

As new products are required to be introduced to the market over a short time
scale to ensure competitive advantage, the development of process monitoring
models of multi-product manufacturing environment necessitates the use of
empirical based techniques as opposed to first-principles models since phe-
nomenological model development is unrealizable in the time available. Hence, the
mountains of data, that computer-controlled plants generate, must be used by the
operator support systems to distinguish normal from abnormal operating conditions.
Detection and diagnosis of faults and control of product quality are the pivotal tasks
of plant operators. The aim of multivariate statistical based approaches is to reduce
the dimensionality of the correlated process data by projecting them down onto a
lower dimensional latent variable space where the operation can be easily visualized
and hidden functional relationships among process and quality variables can be
detected.

In modern production systems huge amount of process operational data are
recorded. These data definitely have the potential to provide information for product
and process design, monitoring and control (Yamashita 2000). This is especially
important in many practical applications where first-principles modeling of com-
plex “data rich and knowledge poor” systems are not possible (Zhang et al. 1997).
The term knowledge discovery in databases (KDD) refers to the overall process of

Fig. 9.1 Scheme of a production process where statistical process control (SPC) can be applied to
improve the quality characteristic by adjusting and monitoring important process variables
(Montgomery 2009)
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discovering knowledge from data. KDD has evolved from the intersection of
research fields such as machine learning, pattern recognition, databases, statistics,
artificial intelligence, and more recently it gets new inspirations from soft com-
puting. KDD methods have been successfully applied in the analysis of process
systems, and the results have been used for process design, process improvement,
operator training and so on (Wang 1999).

Application of knowledge discovery and data mining for quality development
requires sophisticated methodology. Deming recommended the four steps (Plan,
Do, Check, Act) based PDCA cycle as model to guide improvement. In the Plan
step, we propose a change in the system that is aimed at improvement. In Do, we
carry out the change, usually on a small or pilot scale to ensure that to learn the
results that will be obtained. Check consists of analyzing the results of the change to
determine what has been learned about the changes that we carried out. In Act, we
either adopt the change or, if it was unsuccessful, abandon it. The process is almost
always iterative, and may require several cycles for solving complex problems. It is
interesting to note that the concept of PDCA is also applied in data mining.
CRISP-DM stands for Cross Industry Standard Process for Data Mining
(CRISP-DM 2000) (see Fig. 9.2). It is a data mining process model that describes
commonly used approaches that expert data miners use to tackle problems.

Fig. 9.2 The CRISP-DM methodology as continuous data-driven improvement process
(CRISP-DM 2000)
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Plan:
Business understanding: This initial phase focuses on understanding the project
objectives and requirements from a business perspective, then converting this
knowledge into a data mining problem definition and a preliminary plan designed to
achieve the objectives.
Data understanding: The data understanding phase starts with initial data collection
and proceeds with activities that identify data quality problems, discover first
insights into the data, and/or detect interesting subsets to form hypotheses regarding
hidden information.

Do:
Data preparation: The data preparation phase covers all activities needed to con-
struct the final dataset from the initial raw data.
Modeling: In this phase, various modelling techniques are selected and applied, and
their parameters are calibrated to optimal values. Typically, there are several
techniques for the same data mining problem. Some techniques have specific
requirements on the form of data. Therefore, going back to the data preparation
phase is often necessary.

Check:
Evaluation: At this stage, model (or models) is built that appears to have high
quality from a data analysis perspective. A key objective is to determine if there is
some important business issue that has not been sufficiently considered. At the end
of this phase, a decision on the use of the data mining results should be reached.

Act:
Deployment: Creation of the model is generally not the end of the project. Even if
the purpose of the model is to increase knowledge, the knowledge gained should be
organized and presented in a way that the customer can use it. It often involves
applying “dynamic” models within an organization’s decision making processes—
for real-time control. Depending on the requirements, the deployment phase can be
as simple as generating a report or as complex as implementing a repeatable data
mining process across the enterprise.

The previously presented data mining procedure should be embedded into the
whole quality development process. As we mentioned, most of quality management
methodologies are based on intensive analysis of data. Among the wide ranges of
methodologies, we suggest the application of DMAIC (Define, Measure, Analyze,
Improve, and Control) process (see Fig. 9.3). DMAIC is a structured
problem-solving procedure extensively used in quality and process improvement.

Among the wide range of data mining tools, in this chapter we focus on mul-
tivariate statistical tools that are extensively applied in process monitoring and
quality development.

Process monitoring based on multivariate statistical analysis of process data has
recently been investigated by a number of researchers (MacGregor and Kourti
1995). The aim of these approaches is to reduce the dimensionality of the correlated
process data by projecting them down onto a lower dimensional latent variable
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space where the operation can be easily visualized. These approaches use the
techniques of principal component analysis (PCA) or Partial Least Squares (PLS).
Beside process performance monitoring, these tools can also be used for system
identification (MacGregor and Kourti 1995), ensuring consistent production
(Martin et al. 1996) and product design (Lakshminarayanan et al. 2000). Data
analysis based formulation of new products was first reported by Moteki and Arai
(Moteki and Arai 1986), who used PCA to analyze data from a polymer production.
Jaeckle and MacGregor (1998) used PLS and principal component regression
(PCR) to investigate the product design problem. Their methodology was illustrated
using simulated data from a high-pressure tubular low-density polyethylene pro-
cess. Borosy (1998) used artificial neural networks to analyze data from the rubber
industry.

The large number of examples taken from polymer industry is not surprising.
Formulated products (plastics, polymer composites) are generally produced from
many ingredients, and high number of interactions between the components and the

Fig. 9.3 The DMAIC process of quality development
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processing conditions has an effect on the final product quality. When these effects
are detected, significant economic benefits can be realized. The major aims of
monitoring plant performance are the reduction of off-specification production, the
identification of important process disturbances and the early warning of process
malfunctions or plant faults. Furthermore, when a reliable model is available that is
able to estimate the quality of the product; it can be inverted to obtain the suitable
operating conditions required for achieving the target product quality
(Lakshminarayanan et al. 2000).

When we attempted to use standard data mining, KDD, and multivariate sta-
tistical tools for industrial problems such as extracting knowledge from large
amount of data, we realized that production systems are typically ill-defined, dif-
ficult to model and they have large-scale solution spaces. In these cases, precise
models are impractical, too expensive, or non-existent. Furthermore, the relevant
available information is usually in the form of empirical prior knowledge and
input-output data representing instances of the system’s behaviour. Therefore, we
need an approximate reasoning system capable of handling such imperfect infor-
mation (Abonyi and Feil 2005). Computational Intelligence (CI) and Soft
Computing (SC) are recently coined terms describing the use of many emerging
computing disciplines. According to Zadeh (1994): ‘‘… in contrast to traditional,
hard computing, soft computing is tolerant of imprecision, uncertainty, and partial
truth.’’ In this context Fuzzy Logic (FL), Probabilistic Reasoning (PR), Neural
Networks (NNs), and Genetic Algorithms (GAs) are considered as main compo-
nents of SC.

Most of the SC based models can be effectively used in data mining and lend
themselves to transform into other traditional data mining or advanced SC-based
model structures that allow information transfer between different models. For
example, in Sethi (1990) a decision tree was mapped into a feed forward neural
network. A variation of this method is given in Ivanova and Kubat (1995) where the
decision tree was used only for the discretization of input domains. Another
example is that as radial basis functions (RBF) are functionally equivalent to fuzzy
inference systems (Jang and Sun 1993), tools developed for the identification of
RBFs can also be used to design fuzzy models. The KDD process also includes the
interpretation of the mined patterns. This step involves the visualization of the
extracted patterns/models, or visualization of the data given the extracted models.
Among the wide range of SC tools (Pal 1999), the Self-Organizing Map (SOM) is
the most applicable for this purpose (Kohonen 1990). The main objective of this
chapter is to propose an SOM based methodology that can be effectively used for
the analysis of operational process data and product quality.

Nowadays, more and more articles deal with SOM-based data analysis
(Astudillo and Oommen 2014; Poggy et al. 2013; Ghosh et al. 2014) that is a new,
powerful software tool for the visualization of high-dimensional data. The SOM
algorithm performs a topology preserving mapping from high dimensional space
onto a two dimensional grid of neurons so that the relative distances between data
points are preserved (Valova et al. 2013). The net roughly approximates the
probability density function of the data and, thus, serves as a clustering tool

242 T. Kulcsár et al.



(Kohonen 1990). It also has the capability to generalize, i.e. the network can
interpolate between previously encountered inputs. Since SOM is a special clus-
tering tool that provides compact representation of the data distribution, it has been
widely applied in the visualization of high-dimensional data (Kohonen 1990).
The SOM facilitates visual understanding of processes so that several variables and
their interactions may be inspected simultaneously. For instance, Kassalin used
SOM to monitor the state of a power transformer and to indicate when the process
was entering a non-desired state represented by a “forbidden” area on the map
(Kassalin et al. 1992). Tryba and Goser (1991) applied the SOM in monitoring of a
distillation process and discussed its use in chemical process control in general.
Alander (1991) and Harris and Kohonen (1993) have used SOM in fault detection.
Since the model is trained using measurement vectors describing normal operation
only, a faulty situation can be detected by monitoring the quantization error (dis-
tance between the input vector and the best matching unit (BMU)), as large error
indicates that the process is out of normal operation space. SOM can also be used
for prediction, where SOM is used to partition the input space of piecewise linear
models. This partitioning is obtained by the Voronoi diagram of the neurons (also
called codebook) of SOM. The application of Voronoi diagrams of SOM has
already been suggested in the context of time series prediction (Principe et al.
1998).

Based on the aforementioned beneficial properties of SOM, a new approach for
process analysis and product quality estimation is proposed in this chapter. This
approach is applied in an industrial polyethylene plant, where medium and
high-density polyethylene (MDPE and HDPE) grades are manufactured in a
low-pressure catalytic process, a slurry polymerization technology under license
from Phillips Petroleum Company. The main properties of polymer products (Melt
Index (MI) and density) are controlled by the reactor temperature, monomer,
comonomer and chain-transfer agent concentration. The detailed application study
demonstrates that SOM is very effective in the detection of typical operating
conditions related to different products, and can be used to predict the product
quality (MI and density) based on measured and calculated process variables.

The chapter is organized as follows. In Sect. 9.2, multivariate techniques for
process monitoring and product quality estimation are overviewed. In Sect. 9.3,
case studies are presented where the proposed methodologies are applied in real-life
quality development problems of chemical industry. Finally, conclusions are given
in Sect. 9.4.

9.2 Multivariate Techniques for Quality Development

Measurements on process variables zk ¼ kk;1; . . .; zk;m
� �T

such as temperatures,
pressure, flow rates are available every second. Final product quality variables

yk ¼ yk;1; . . .; yk;n
� �T

, such as polymer molecular weights or melt index are
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available in much less frequent basis. All such data should be used to extract
information in any effective scheme for monitoring and diagnosis operating per-
formance. However, all of these variables are not independent of one another. Only
a few underlying events are driving a process at any time, and all of these mea-
surements are simply different reflections of these same underlying events. When
the quality properties are not correlated, it is customary to build a model that relates
zk to each yk;i separately: yk;i ¼ fi zkð Þ. This approach is satisfactory in general if the
model is just being used for calibration, inferential control or prediction. For
monitoring purposes; however, since quality is a multivariate property, it is
important to fit all the variables from the y-space in a single model in order to obtain
a single low-dimensional monitoring space. Hence, the following multivariate
models are introduced to model the joint distribution of the process and quality

variables xk ¼ xk;1; . . .; xk;l
� �T¼ yTk ; z

T
k

� �T
, where l ¼ nþm.

9.2.1 Principal Component Analysis and Partial Least
Squares

PCA and PLS are the most common algorithms used for the analysis of multivariate
processes data (Jolliffe 2008). In the literature several papers deal with the appli-
cation of these methods (Kano and Nakagawa 2008; Höskuldsson 1995; Godoy
et al. 2014). Analysis of chemical and spectroscopic data mostly requires the uti-
lization of these models. Results of the related research work are mostly published
in Journal of Chemometrics (Kettaneh et al. 2003; Janné et al. 2001) and
Chemometrics and Intelligent Laboratory Systems (Godoy et al. 2014; Nelson et al.
2006). Multivariate statistical methods can also be used in production systems to
estimate unmeasured process and product quality variables (soft sensors) and fault
detection. Chen et al. (1998) demonstrated how PLS and PCA are used for on-line
quality improvement in two case studies: a binary distillation column and
Tennessee Eastman process (Chen et al. 1998). Kresta (1992) showed how PLS and
PCA are used to increase process operating performance in case of fluidized bed
reactor and extractive distillation column (Kresta et al. 1992).

Fault detection and isolation algorithms detect outliers and isolate (root) causes
of faults. PLS and PCA models can evaluate the consistency of multivariate data,
characterize normal operation, and generate informative symptoms of deviations
(Chiang et al. 2001; Wise and Gallagher 1996; Hu et al. 1995). It should be noted
that these outliers may significantly reduce model accuracy when they are involved
in the identification of PLS and PCA models. Therefore, data preprocessing and
cleaning are important steps of model building (Wang and Srinivasan 2009;
Fujiwara et al. 2012).

PLS and PCA are similar in that they are both factor analysis methods, and they
both reduce the dimensionality of the variable space. This is done by representing the
data matrix ðXÞ with a few orthogonal variables that explain most of the variance.
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The main difference between PLS and PCA is that PLS can be referred to as a
supervised technique that maximizes the covariance between the response ðYÞ and
input variables ðXÞ in as few factors as possible while PCA simply aims to maximize
the covariance of X (Jolliffe 2008).

Mathematically, PCA reduces the data matrix using eigenvector decomposition
of the covariance matrix of the data matrix. Essentially, the data matrix is broken
down into principal components (PCs), represented by pairs of scores ðtÞ and
loadings ðpÞ (Jolliffe 2008). The loading vectors are equivalent to the eigenvectors
of the covariance matrix of X, and the corresponding eigenvalues ðkÞ represent the
variance of each corresponding PC. Suppose X is composed of n samples on q
variables. The first PC is defined as t1 ¼ Xp1 and explains the greatest amount of
variance, while the second PC is defined as t2 ¼ Xp2 having the next greatest
amount of variance, and so on. Up to q PCs can be defined, but only the first few
ðMÞ are significant in explaining the main variability of the system (Jolliffe 2008).
Selection of optimal number of PCs can be accomplished in various ways.

Partial Least Squares (PLS) regression combines principal component analysis
and multivariate regression. PLS captures variance and correlates X and Y (Vinzi
2010). The first latent variable (LV) t1 ¼ Xw1 is a linear combination of the X
variables that maximizes the covariance of X and Y, where w1 is the first eigen-
vector (called weight vector) of the covariance matrix. The columns of X are then
regressed on t1 to give a regression vector p1. The original X matrix is then deflated
as follows: X2 ¼ X � t1pT1 . X2 is the resultant data matrix after removing the ele-
ment of the original data matrix ðXÞ that was most correlated with Y. The second
LV is then computed from X2, t2 ¼ Xw2, where w2 is the first weight vector of the
covariance matrix of X2 and Y. These steps are repeated until q number of LVs is
computed. As with PCA, the optimum number of LVs may be chosen via
cross-validation methods.

PCA and PLS are widely applied tools of quality development. PCA can be used
in monitoring of groundwater (Sánchez-Martos et al. 2001), essential oil (Ochocka
et al. 1992), pig meat (Karlsson 1992), and soil quality (Garcia-Ruiz et al. 2008).

PLS is essentially a regression tool and may be used to relate process variables to
product quality attributes. PCA can also be used as a regression tool in that the
significant PCs may be used to generate a regression model that relates process
variables to product quality attributes (when PCA is used in such a way, it is
referred to as principal component regression—PCR) (Vinzi 2010). Application
examples can be found from biotechnology (measure fruit and vegetable or veg-
etable oil quality) (Nicolai et al. 2007; Pereira et al. 2008), chemical industry
(predict gasoline properties (Bao and Dai 2009), prediction of crude oil quality
(Abbas et al. 2012), quality improvement of batch processes (Ge 2014), food
industry (food quality improvement (Steenkamp and van Trijp 1996).

PLS can also be used for the visualization of the data. We apply the algorithm
developed in Ergon (2004) for the two-dimensional visualization of the PLS model.

Two components that are informative for visualization may be obtained in
several ways. One example is principal components of predictions (PCP), where in
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the scalar response case by ¼ Xbb normalization is used as one component, while
residuals of X not contributing to y are suggested for use as the second component
(Ergon 2004).

The basic idea behind the applied mapping is illustrated in Fig. 9.2. The esti-

mator bb is found in the space spanned by loading weight vectors in cW ¼bw1; bw2; . . .; bwA½ � i.e. it is a linear combination of these vectors. It is, however, also
found in the plane defined by bw1 and a vector ew2 orthogonal to bw1, which is a
linear combination of the vectors bw2; bw3; . . .; bwA.

The matrix fW ¼ bw1; ew2½ � is thus the loading weight matrix in a two component

PLS solution (2PLS) giving exactly the same estimator bb as the original solution
using any number of components. What matters in the original PLS model is not the

matrix cW as such, but the space spanned by bw1; bw2; . . .; bwA. In the 2PLS model,
this represents the plane spanned by bw1 and ew2 that is essential. Note that all
samples in X (row vectors) in the original PLS model are projected onto the space
spanned by bw1; bw2; . . .; bwA.

Samples may thus be further projected onto the plane spanned by bx1 and ex2,
and form a single score plot containing all y-relevant information. When for some

reasons, for example, bw2 is more informative than bw1, a plane through bw2 and bb
may be a better alternative. It will in any case result in a 2PLS model that gives the

estimator bb, as will in fact all planes through bb that are at the same time subspaces

of the column space of cW (Ergon 2004).

9.2.2 Self-organizing Map

Cluster analysis organizes data into groups according to similarities among them. In
metric spaces, similarity is defined by means of distance based upon the length from
a data vector to some prototypical object of the cluster. The prototypes are usually
not known beforehand, and are sought by the clustering algorithm simultaneously
with the partitioning of the data. In this chapter, the clustering of the operational
data is considered. Hence, the data are the measured input and output process
variables, parameters of the operating conditions, and laboratory measurements of
the product quality. Each observation consists of l measured variables, grouped into

an l-dimensional column vector xi ¼ xi;1; . . .; xi;l
� �T

. A set of N observations is
denoted by X and represented as a matrix X ¼ x1; . . .; xN½ �. In pattern recognition
terminology, the columns of X are called patterns or objects, the rows are called the
features or attributes, and X is called the pattern matrix. The objective of clustering
is to divide the data set X into c clusters.

The SOM algorithm is a kind of clustering algorithm which a performs a
topology preserving mapping from high dimensional space onto map units so that
relative distances between data points are preserved. The map units, or neurons,
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form usually a two dimensional regular lattice. Each neuron, i, of the SOM is

represented by an l-dimensional weight, or model vector mi ¼ mi;1; . . .;mi;l
� �T

.
These weight vectors of the SOM form a codebook and can be considered as cluster
prototypes. The neurons of the map are connected to adjacent neurons by a
neighbourhood relation, which dictates the topology of the map. The number of
neurons determines the granularity of the mapping, which affects the accuracy and
the generalization capability of the SOM.

SOM is a vector quantizer, where the weights play the role of the codebook
vectors. This means that each weight vector represents a local neighbourhood of the

space, also called Voronoi cell. The response of a SOM to an input xk ¼
xk;1; . . .; xk;l
� �T

is determined by the reference vector (weight) mi0 which produces
the best match of the input

i0k ¼ arg mini mi � xkk kð Þ ð9:1Þ

where i0k represents the index of the Best Matching Unit (BMU) of the kth input.
During the iterative training of SOM, the SOM forms an elastic net that folds

onto the “cloud” formed by the data. The net tends to approximate the probability
density of the data; the codebook vectors tend to drift there where the data are
dense, while there are only a few codebook vectors where the data are sparse.

The training of SOM can be accomplished generally with a competitive learning
rule as

m tþ 1ð Þ
i ¼ m tð Þ

i þ gKi0k ;i
xk �m tð Þ

i

� �
ð9:2Þ

where Ki0k ;i
is a spatial neighbourhood function and g is the learning rate, and the ðtÞ

upper index denotes the iteration step. Usually, the neighbourhood function is

Ki0k ;i
¼ exp �

ri � ri0k

��� ���2
2r2; tð Þ

0
B@

1
CA ð9:3Þ

where ri � ri0k

��� ��� represents the Euclidean distance in the low dimensional output

space between the ith vector and the winner neuron (BMU).
There are two phases during learning. First, the algorithm should cover the full

input data space and establish neighbourhood relations that preserve the input data
structure. This requires competition among the majority of the weights and a large
learning rate such that the weights can orient themselves to preserve local
relation-ships. Hence, in the first phase relatively large initial r2 is used. The second
phase of learning is the convergence phase where the local detail of the input space
is preserved. Hence the neighbourhood function should cover just one unit and the
learning rate should also be small. In order to achieve these properties, both the
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neighbourhood function and the learning rate should be scheduled during learning
(Kohonen 1990).

SOM is increasingly applied in quality development (Pölzlbauer 2004). Thanks
to the robustness of the method SOM is applied water management (Kalteh et al.
2008; Juntunen et al. 2013) for soil and sediment quality estimation (Olawoyin
et al. 2013), in pulp and paper processes (Alhoniemi et al. 1999), and in biotech-
nology (Mele and Crowley 2008).

In addition, SOM is capable of detection of faults. Since SOM is a gradient based
iterative technique, it is less sensitive if outliers are in data sets. Since this technique
is a mapping, the performance of whole procedure is not influenced by outliers
because they grouped or they are on the edge of the map.

When a cell contains outliers the performance of the local model may decrease.
Since this cell represents the edge of the normal operating region, outliers do not
influence the global modelling performance. Hence, SOM is much less sensitive to
outliers than PCA or PLS. Therefore, SOM is excellent for fault detection, because
cells contain outliers and data related to malfunction of the process can be easily
identified (Fustes et al. 2013; Munoz and Muruzábal 1998).

9.2.2.1 SOM for Piecewise Linear Regression

The goal of this section is to develop a data-driven algorithm for the identification
of a model in the form of yk ¼ f zkð Þ, where zk represents the model inputs (process
variables) and yk contains the product quality. In general, it may not be easy to find
a global nonlinear model that is universally applicable to describe the relationships
between the inputs and the outputs on the whole operating domain of the process. In
that case, it would certainly be worthwhile to build local linear models for specific
operating points of the process and combine these into a global model. This can be
done by combining a number of local models, where each local model has a
predefined operating region where the local model is valid. This results in the
so-called operating regime based model. The applications and the possible identi-
fication of operating regime based modelling to the identification of dynamic
systems are recent and rich (Murray-Smith 1997).

The operating regime based model is formulated as

yTk ¼
Xs

i¼1

xi zkð Þ zTk ; 1
� �

Hi ð9:4Þ

where xi zkð Þ describes the operating regime of the ith local linear model de-fined
by the Hi parameter matrix (or vector if yTk is a scalar). The piecewise linear models
are special case of operating regime-based models. If we denote the input space of
the model by T : z 2 T � <m, the piecewise linear model consists of a set of
operating ranges T1; T2; . . .; Ts which satisfy T1 [T2 [. . .[ Ts ¼ T and
Tj \Ti ¼ [; 8i 6¼ j.
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Hence, the model can be formulated as

If zk 2 Ti then yTk ¼ zTk ; 1
� �

Hi ð9:5Þ

where Hi denotes the parameter estimate vector used in the ith local model.
The identification of these models can be divided into two tasks: structure

identification that generates the operating ranges and parameter identification of the
local models. As the simultaneous combination of these steps results in complex
nonlinear optimization problem, several heuristic, mainly iterative algorithms have
been worked out for this purpose (Murray-Smith 1997).

When SOM is used to represent nonlinear systems, it is trained based on the N
input-output data pairs arranged in the X ¼ x1; . . .; xN½ �T pattern matrix as

xk ¼ yTk ; z
T
k

� �T
.

The SOM can be directly used for prediction of the output, yk of the process
given the input vector zk . Regression is accomplished by searching for the BMU
using the known vector components. As the output of the system is unknown, the
BMU is determined as

i0k ¼ arg mini m�
i � zk

�� ��� � ð9:6Þ

where m�
i ¼ ½mi;nþ 1; . . .;mi;l�.

The output of the model can be defined as the unknown component of the BMU,
yTk ¼ mþ

i0 ¼ mi0;1; . . .;mi0;n

� �
, which results in a piecewise constant model.

The accuracy of this model can be increased by building local models for data in
the Voronoi cells of the SOM,

yTk ¼ zk �m�
i0k

h iT
Hi0k

þ mþ
i0

� �T ð9:7Þ

or

yTk ¼ zTk ; 1
� �

Hi0k
ð9:8Þ

where the Hi0k
parameter matrix of the local model is calculated by least squares

method based on the local data set on the operating regime Ti only, where Ti is the
ith Voronoi cell of the Voronoi diagram of the codebook of the SOM,
M ¼ m�

1; . . .;m
�
c

	 

. Vor Mð Þ is defined as the subdivision of T into c cells

Ti; i ¼ 1; . . .; c, with the property that a point zk lies in the cell corresponding to the
site m�

i0k
if and only if i0k ¼ arg mini mi � xkk kð Þ. Thus, each cell of the diagram is the

intersection of a number of half-planes.
When the process is nonlinear there is a need for local linear approximation of

the operating regime of the system. Sliced Inverse Regression (SIR) and the related
techniques are suitable for the extraction and characterization of local linear sub-
spaces (Li 2012; Lue 2009; Kuentz and Saracco 2010). In this context these
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techniques are similar to SOM as SOM also defines local operating regimes that can
be also considered Voronoi cells of SOM. As this section showed, these clusters
can be used to build local linear models. In our case least squares regression is used
to build local models. However, local models of the clusters can also be defined by
local PCA (similar to SIR) or sub-PLS models. This approach also illustrates that
local linear modelling and clustering can be effectively combined to get accurate
and interpretable models (Kenesei and Abonyi 2013; Abonyi et al. 2002).

9.2.2.2 SOM for Classification of Product Grades and Operating
Conditions

The SOM can be used for classification purposes by assigning a class for each
codebook vector and deciding the class of a sample vector based on the class of its
BMU. The rule-based classifier consists of rules that describe Nc number of classes,
given n data points. The rule antecedent defines the operating region of the rule in
the l-dimensional feature space and the rule consequent is a class label from the set
gi ¼ f1; . . .;Ncg.

If xk 2 Ti then class is g ð9:9Þ

The interpretability of classifier depends on the number of utilized features. For
the selection of the most relevant features, we modify the Fischer interclass sepa-
rability method which is based on statistical properties of labeled data. The
importance of a feature is measured by leaving out a feature and calculating a cost
function for the reduced model. The feature selection is made iteratively by leaving
out the less needed feature.

9.3 Application Examples

In this chapter two examples are given to demonstrate the applicability of multi-
variate data-driven tools. In the first example, PLS is applied to visualize the
production of a fuel mixing process and estimate the product quality. The second
example is similar in the application point of view, SOM is applied to monitor
product quality of a polymerization process.

9.3.1 Online NIR—PLS Example

Present research focuses on two tasks. Datasets collected at the Dune Refinery of
MOL Ltd (Hungary) are analyzed. The first task is the development of a prediction
model that can estimate product properties based on spectra taken by online NIR
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analyzers. The second task is the development a monitoring tool based on the
visualization of the same spectra.

The prediction performance of the models is measured by the correlation
coefficient defined as:

Rði; jÞ ¼ Cði:jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cði; iÞCðj; jÞp ð9:10Þ

where C is the covariance matrix and it is calculated as C ¼ covðy;byÞ. Table 9.1
shows that the number of the available samples, N, differs for each properties.
Among the 651 spectra, only 560 were different and in most of the cases, only a
fragment of the properties were measured. Firstly the effect of dimensionality of
latent space of the PLS model was analyzed (from 2 to 48 dimensions). To perform
an adequate comparison, leave-one-out and 10-fold cross validation technique was
applied. As it is shown in this table, the accuracy of the model increases rapidly by
increasing the dimensionality of the latent space from 2 to 6 dimensions; however,
it reaches a maximum since when the complexity of the model is higher than the
complexity of the modelled system.

In Sect. 9.2.2, a special method is presented that can map the PLS latent space
into two dimensional space by orthogonal signal correction. This method is com-
pared with Principal Component Analysis and Topological Near-Infrared Modeling
(CRISP-DM 2000; Abonyi and Feil 2005) (TOPNIR) developed specifically to
visualize NIRspectra and building topological prediction models with the help of
resulted maps. As shown in Fig. 9.4, this technique is effective in visualization of
high dimensional spectral space. This plot gives information about how summer
and winter fuel samples are clustered.

9.3.2 Application in Polyethylene Production

To illustrate the proposed approach, the monitoring of a medium and high-density
polyethylene (MDPE, HDPE) plant of the TVK Ltd. in Hungary is considered.
HDPE is versatile plastic used for household goods, packaging, car parts and pipe,

Table 9.1 Effect of the
number of latent variables to
the performance of the model
(correlation between the
estimated and measured
variables are shown)

Property Latent dimensions

2 6 12 18 24 48

Density 0.776 0.988 0.993 0.993 0.993 0.989

T90 0.432 0.654 0.849 0.895 0.868 0.796

CFPP0 0.657 0.942 0.947 0.953 0.921 0.888

CFPP 0.516 0.755 0.769 0.728 0.703 0.610

Cloud Pt 0.668 0.924 0.950 0.958 0.955 0.943

Flash Pt 0.408 0.596 0.878 0.901 0.895 0.854
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and TVK Ltd. is the largest Hungarian polymer production company (www.tvk.hu).
A brief explanation of the Phillips license based low-pressure catalytic process is
provided in the following section.

Figure 9.5 represents the Phillips Petroleum Co. suspension ethylene polymer-
ization process. The polymer particles are suspended in an inert hydrocarbon. The
melting point of high-density polyethylene is approximately 135 °C. Therefore,
slurry polymerization takes place at a temperature below 135 °C; the polymer
formed is in the solid state. The Phillips process takes place at a temperature
between 85 and 110 °C. The catalyst and the inert solvent are introduced into the
loop reactor where ethylene and an olefin (hexene) are circulating. The inert solvent

Fig. 9.4 Visualization of DS1 using PLS (CFPP0)

Fig. 9.5 Scheme of the Phillips loop reactor process (Nagy 1997)
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(isobuthane) is used to dissipate heat as the reaction is highly exothermic. A cooling
jacket is also used to dissipate heat. The reactor consists of a folded loop containing
four long runs of pipe that are 1 m in diameter, connected by short horizontal
lengths of 5 m. The slurry of HDPE and catalyst particles circulates through the
loop at a velocity between 5 and 12 m/s. The reason for the high velocity is due to
the fact that at lower velocities, the slurry will deposit on the walls of the reactor
causing fouling. The concentration of polymer products in the slurry is 25–40 % by
weight. Ethylene, olefin comonomer (if used), an inert solvent, and catalyst com-
ponents are continuously charged into the reactor at a total pressure of 450 psig.
The polymer is concentrated in settling legs to about 60–70 % by weight slurry and
continuously removed. The solvent is recovered by hot flashing. The polymer is
dried and pelletized. The conversion of ethylene to polyethylene is very high (95–
98 %), eliminating ethylene recovery. The molecular weight of high-density
polyethylene is controlled by the temperature of catalyst preparation (Nagy 1997).
The main properties of polymer products (Melt Index (MI) and density) are con-
trolled by the reactor temperature, monomer, comonomer and chain-transfer agent
concentration.

9.3.2.1 Problem Description

An interesting problem with the process is that it is required to produce about ten
product grades according to market demand. Hence, there is a clear need to min-
imize the time of changeover because off-specification product may be produced
during transition. The difficulty of the problem comes from the fact that there are
more than ten process variables to consider. Measurements are available in every
15 s on process variables zk , which are the zk;1 reactor temperature ðTÞ, zk;2 ethylene
concentration in the loop reactor ðC2Þ, zk;3 hexene concentration ðC6Þ, zk;4 the ratio
of the hexene and ethylene inlet flowrate ðC6=C2inÞ, zk;5 the flowrate of the
isobutane solvent ðC4Þ, zk;6 the hydrogen concentration ðH2Þ, zk;7 the density of the
slurry in the reactor ðrozÞ, zk;8 polymer production intensity ðPEÞ, and zk;9 the
flowrate of the catalyzer ðKATÞ. The product quality yk is only determined later, in
another process. The interval between the product samples is between half an hour
and 5 h. The yk;1 melt index ðMIÞ and the yk;2 density of the polymer ðroÞ are
monitored by off-line laboratory analysis after drying and extrusion of the polymer
that causes 1 h time-delay.

Since, it would be useful to know if the product is good before testing it, the
monitoring of the process would help in the early detection of poor-quality product.
There are other reasons why monitoring the process is advantageous. Only a few
properties of the product are measured and sometimes these are not sufficient to
entirely define the product quality. For example, if only rheological properties of
polymer are measured (melt index), any variation in end-use application that arise
due to variation of chemical structure (branching, composition, etc.) will not be
captured by following only these product properties. In these cases, the process data
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may contain more information about events with special causes that may affect the
product quality (Jeackle and MacGregor 1998).

9.3.2.2 SOM Based Historical Analysis of the Process

The modelling and monitoring of processes from data involves solving the problem
of data gathering, preprocessing, model architecture selection, identification or
adaptation and model validation. The process data analyzed in this chapter have
been collected over 3 months of operation. The data have been extracted from the
distributed control system (DCS) of the process. An SQL server has been installed
to store and merge this data with the product quality database. According to the data
warehousing methodology, the application relevant data have been extracted from
this SQL database. As one of the objectives is to infer the values of product quality
from process data obtained at different operating regions, a set of transition-free
data is used that covers the whole range of specifications of the quality properties
and the process variables over all the possible operating regions. The data were
preprocessed by normalization performed on single variables. Scaling of variables
is of special importance since the SOM algorithm uses Euclidean metric. In the
current phase of the project, this data are processed by the modified version of the
MATLAB SOM Toolbox (Vesanto et al. 2015). The whole methodology is illus-
trated in Fig. 9.6.

The SOM of the process has been applied to predict polymer properties from
measured process variables and to interpret the behaviour of the process. The
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Fig. 9.6 Scheme of the SOM
based process analysis
approach
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constructed SOM (size 17 by 6 units) with eleven component planes is shown in
Fig. 9.7. Based on the map the typical operating regions related to different product
grades could be determined. Furthermore, the SOM is a good tool for hunting for
correlation among the operating variables (Simula et al. 1999). For example, it can
be easily seen that the melt index of the polymer (MFI) is highly correlated with
reactor temperature (T).

Figure 9.8 shows the labels of the products and the distribution of the data
marked by black hexagons with proportional size to the number of data in the
operating regions of the clusters. This figure shows that the SOM is a useful tool for
the visualization of multivariate data. A common procedure for reducing the
dimensionality of the variable space is Principal Component Analysis
(PCA) (MacGregor and Kourti 1995). For a comparison of the SOM with “stan-
dard” techniques, the historical data have been transformed into a two-dimensional
space spanned by the first two principal components of the data. In Fig. 9.9, the grid
of the transformed codebook of the SOM is shown to illustrate how the clusters
approximate the density of the data. It is interesting to compare the SOM and the
PCA model of the process (Fig. 9.11) as in both transformed spaces the regions of
the different products are similar; the data points appear to cluster into four regions
which corresponded to different product grades and operating conditions.

Since the distance preserving mapping property of the SOM, products that are
close to each other on the map are similar. In the discrete two-dimensional output
space of the SOM, the trajectory of the production can be effectively visualized by

Fig. 9.7 Component planes of the polyethylene production map
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plotting the trajectory of the BMUs (Principe et al. 1998), which is especially useful
in process monitoring and fault detection. Hence, the map can be effectively used
for scheduling the different products by designing the trajectory of the production
on the map of the products. An example for a grade transition is shown in Fig. 9.10,
where the production of Product 6 is followed by the production of Product 7. The
multivariate historical data of this transition depicted in Fig. 9.10 can be easily
visualized by the PCA and the SOM model of the process as shown in Fig. 9.11.

Fig. 9.8 Product labels
(numbers) and distribution of
the data

Fig. 9.9 PCA scores plots for
three months of operation.
The grid of the transformed
codebook of the SOM is also
shown to illustrate how the
clusters approximate the
density of the data
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Fig. 9.10 Example of grade transition

Fig. 9.11 Grade transition shown in Fig. 9.10 mapped into the two dimensional space by PCA
(a) and SOM (b)
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The previous example has shown that the SOM results in a good representation
of the operating regions of the products. Hence, it can be also used for classifica-
tion. When the whole SOM is used as a rule-based classifier system with rules like

If xk 2 Ti then class is gi ð9:11Þ

it gives 8 % classification error. This can be considered as a good result taking into
account that the data is quite noisy and not too much effort was put to select the
training data related to normal operating conditions.

9.3.2.3 SOM Based Product Quality Estimation

The SOM has been also used to estimate the product quality variables. Figure 9.12
shows the estimation error of the linear model and the SOM presented in the
previous section. Although in this case the SOM is used as a piecewise constant
model, it gives better results than the linear model. The performances of the models
have been measured by the Root Mean Square Error (RMSE) of the models. In
Table 9.2, it can be seen that the SOM is more accurate than the linear model. This
is not surprising since the linear model has only two times ten (20) parameters and
cannot capture the nonlinearity of the process. The good performance of the
BMU-based piecewise constant model shows that the SOM gives a good approx-
imation of the density of the data, hence it can be considered as a good

Fig. 9.12 Estimation performance of the SOM based piecewise constant model (.) and a
multivariate linear model (o)
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nonparametric model. Because of the large number of the clusters (size 17 by 6
units), the Voronoi cell based multiple linear model approach cannot be used. The
reason is that the identification of the most local models become badly conditioned
due to the small number of data related to the operating region of the models.
Hence, in this chapter an approach based on the reduction of the original SOM is
introduced, where for the regression purpose a smaller SOM is identified.

This task requires the selection of the most important variables having effect to
the product quality variables. This can be done by analyzing SOM of the process
(Fig. 9.7) to detect similarities between the component planes that shows the cor-
relation of the variables. Another possible approach is to use Orthogonal Least
Squares (OLS) techniques for ordering of the process variables. The ordering
obtained is shown in Table 9.3. This ordering can then be easily used to select a
subset of the inputs in a forward-regression manner. It is interesting to see that
ordering of the OLS gives similar results that we can obtain from the visual
inspection of the SOM of the process. Based on this model reduction approach, two
independent SOMs with 24 clusters on four process variables (the first four shown
in Table 9.2.) have been identified to estimate the density and the melt index of the
product. As shown in Table 9.3, these compact models give good estimations of the
quality variables.

Table 9.2 Root Mean Square
Errors (RMSE) achieved by
different models

Density
(ro)

Melt index
(MFI)

Linear 0.0355 0.0372

SOM pw constant (BMU) 0.0330 0.0341

Linear (4 variables) 0.0368 0.0387

SOM pw linear (4
variables)

0.0251 0.0312

Table 9.3 Relative
importance of process
variables obtained by OLS

Importance Density (ro) Melt index (MFI)

1 ‘C6/C2in’ ‘T’

2 ‘C4’ ‘C6/C2in’

3 ‘H2’ ‘C4’

4 ‘roz’ ‘H2’

5 ‘PE’ ‘C2’

6 ‘KAT’ ‘roz’

7 ‘C6’ ‘KAT’

8 ‘C2’ ‘C6’

9 ‘T’ ‘PE’
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9.4 Conclusion

Quality development intensively applies process data. The iterative data mining
methodology effectively supports the PDCA cycle based quality development.
Since several process variables have to be monitored and unknown functional
relationships among process and quality variables have to be explored, multivariate
statistical techniques are the most widely applied tools. Beside the classical prin-
cipal component analysis (PCA) and partial least squares regression models (PLS),
we applied soft computing based tools to handle uncertainty and nonlinearity and
complexity of the problem.

We demonstrate that PLS based model is able to simultaneously predict
unmeasured material properties and monitor the state of a complex production
process. Process monitoring is realized in orthogonal two dimensional plots. These
plots can also be used for the effective identification of outliers.

Self-Organizing Map (SOM) is a soft-computing based approach and it is used for
the extraction of knowledge from the historical data of production. Since SOM pro-
vides a compact representation of the data distribution, the typical operating condi-
tions of the process are efficiently detected. It has been shown that efficient process
monitoring can be performed in the two-dimensional projection of the process vari-
ables. For the estimation of the product quality variables multiple local linear models
are introduced, where the operating regimes of the local linear models are obtained by
the Voronoi diagram of the prototype vectors of the SOM. The important process
variables having effect to the product quality have been selected by orthogonal least
squares method. The approach has been demonstrated by means of the analysis of a
polyethylene production plant. The results show that the SOM is very effective in the
detection of typical operating conditions related to different product grades and can be
used to predict the product quality (melt index and density) based on the process
variables measured. The proposed method is attractive in comparison with other
advanced process monitoring schemes such as Principal Component Analysis.

The interested reader might want to know under what conditions these methods
can be employed and what kind of diagnostic tests are available. Some books that
are dealing with only one technique in detail are suggested for them: Handbook of
Partial Least Squares (Vinzi et al. 2010), Principal Component Analysis (Jolliffe
2008), Introduction to Statistical Quality Control (Montgomery 2009) and
Self-Organizing Maps (Kohonen 2001).

More technical details and illustrative examples and MATLAB program codes
related to the application of intelligent tools for fault detection and quality esti-
mation can be found at the website of the authors: www.abonyilab.com.

Acknowledgments The work was supported by the frames of TÁMOP-4.2.2.C-11/1/KONV-
2012-0004—National Research Center for Development and Market Introduction of Advanced
Information and Communication Technologies and TÁMOP 4.2.4. A/2-11- 1-2012-0001
“National Excellence Program—Elaborating and operating an inland student and researcher per-
sonal support system”. These projects were subsidized by the European Union and co-financed by
the European Social Fund.

260 T. Kulcsár et al.

http://www.abonyilab.com


References

Abbas, O., et al.: PLS regression on spectroscopic data for the prediction of crude oil quality: API
gravity and aliphatic/aromatic ratio. Fuel 98, 5–14 (2012)

Abonyi, J., Feil, B.: Computational intelligence in data mining. Informatica 29, 3–12 (2005)
Abonyi, J., Babuska, R., Szeifert, F.: Modified Gath-Geva fuzzy clustering for identification of

Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. B Cybern. 32(5), 612–621
(2002)

Alander, J.T., et al.: Process error detection using self-organizing feature maps, Artif. Neural Netw.
2, 1229–1232 (1991)

Alhoniemi, E., et al.: Process monitoring and modeling using the self-organizing map. Integr.
Comput. Aided Eng. 6, 3–14 (1999)

Astudillo, C.A., Oommen, B.J.: Self-organizing maps whose topologies can be learned with
adaptive binary search trees using conditional rotations. Pattern Recogn. 47, 96–113 (2014)

Bao, X., Dai, L.: Partial least squares with outlier detection in spectral analysis: a tool to predict
gasoline properties. Fuel 88(7), 1216–1222 (2009)

Borosy, A.P.: Quantitative composition-property modelling of rubber mixtures by utilizing
artificial neural networks. Chemom. Intell. Lab. Syst. 47, 227–238 (1998)

Chen, G., McAvoy, T.J., Piovoso, M.J.: A multivariate statistical controller for on-line quality
improvement. J. Process Control 8(2), 139–149 (1998)

Chiang, L.H., Russel, E.L., Braatz, R.D.: Fault Detection and Diagnosis in Industrial Systems.
Springer, London (2001)

CRISP-DM Cross Industry Standard Process for Data Mining (2000). http://en.wikipedia.org/wiki/
Cross_Industry_Standard_Process_for_Data_Mining

Ergon, R.: Informative PLS score-loading plots for process understanding and monitoring.
J. Process Control 14, 889–897 (2004)

Fujiwara, K., Sawada, H., Kano, M.: Input variable selection for PLS modeling using nearest
correlation spectral clustering. Chemometr. Intell. Lab. Syst. 118, 109–119 (2012)

Fustes, D., et al.: SOM ensemble for unsupervised outlier analysis. Application to outlier
identification in the Gaia astronomical survey. Expert Syst. Appl. 40(5), 1530–1541 (2013)

Garcia-Ruiz, R., et al.: Suitability of enzyme activities for the monitoring of soil quality
improvement in organic agricultural systems. Soil Biol. Biochem. 40(9), 2137–2145 (2008)

Ge, Z.: Two-level PLS model for quality prediction of multiphase batch processes. Chemometr.
Intell. Lab. Syst. 130, 29–36 (2014)

Ghosh, S., Roy, M., Ghosh, A.: Semi-supervised change detection using modified self-organizing
feature map neural network. Appl. Soft Comput. 15, 1–20 (2014)

Godoy, J.L., Vega, J.R., Marchetti, J.L.: Relationships between PCA and PLS-regression.
Chemom. Intell. Lab. Syst. 130, 182–191 (2014)

Harris, T., Kohonen, A.: S.O.M. based, machine health monitoring systems which enables
diagnosis of faults not seen in the training set. Proc. Int. Conf. Neural Netw. (IJCNN’93)
Nagoya, Japan 1, 947–950 (1993)

Höskuldsson, A.: A combined theory for PCA and PLS. J. Chemom. 9(2), 91–123 (1995). doi:10.
1002/cem.1180090203

Hu, W., Storer, R., Georgakis, C.: Disturbance detection and isolation by dynamic principal
component analysis. Chemometr. Intell. Lab. Syst. 30(1), 179–196 (1995)

Ivanova, I., Kubat, M.: Initialization of neural networks by means of decision trees. Knowl. Based
Syst. 8, 333–344 (1995)

Jang, J.-S.R., Sun, C.T.: Functional equivalence between radial basis function networks and fuzzy
inference systems. IEEE Trans. Neural Netw. 4, 156–159 (1993)

Janné, K., et al.: Hierarchical principal component analysis (PCA) and projection to latent structure
(PLS) technique on spectroscopic data as a data pretreatment for calibration. J. Chemom. 15(4),
203–213 (2001). doi:10.1002/cem.677

9 Multivariate Statistical and Computational Intelligence Techniques … 261

http://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining
http://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining
http://dx.doi.org/10.1002/cem.1180090203
http://dx.doi.org/10.1002/cem.1180090203
http://dx.doi.org/10.1002/cem.677


Jeackle, C., MacGregor, J.: Product design through multivariate statistical analysis of process data.
Am. Inst. Chem. Eng. J. 44(5), 1105–1118 (1998)

Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistics (2008)
Juntunen, P., et al.: Cluster analysis by self-organizing maps: an application to the modelling of

water quality in a treatment process. Appl. Soft Comput. 13(7), 3191–3196 (2013)
Kalteh, A.M., Hjorth, P., Berndtsson, R.: Review of the self-organizing map (SOM) approach in

water resources: analysis, modelling and application. Environ. Model Softw. 23(7), 835–845
(2008)

Kano, M., Nakagawa, Y.: Data-based process monitoring, process control, and quality
improvement: recent developments and applications in steel industry. Comput. Chem. Eng.
32(1–2), 12–24 (2008)

Karlsson, A.: The use of principal component analysis (PCA) for evaluating results from pig meat
quality measurements. Meat Sci. 31(4), 423–433 (1992)

Kassalin, M., Kangas, J., Simula, O.: Process state monitoring using self-organizing maps. Artif.
Neural Netw. 2, 1531–1534 (1992)

Kenesei, T., Abonyi, J.: Hinging hyperplane based regression tree identified by fuzzy clustering
and its application. Appl. Soft Comput. J. 13(2), 782–792 (2013)

Kettaneh, N., Berglund, A., Wold, S.: PCA and PLS with very large data sets. Comput. Stat. Data
Anal. 48, 69–85 (2003)

Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)
Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer Series in Information Sciences (2001)
Kresta, J.V.: The application of partial least squares to problems in chemical engineering, PhD

Theis, McMaster University (1992).http://hdl.handle.net/11375/8576
Kresta, J.V., Macgregor, F.F., Marlin, T.E.: Multivariate statistical monitoring of process operating

performance. Can. J. Chem. Eng. 69(1), 35–47 (1992). doi:10.1002/cjce.5450690105
Kuentz, V., Saracco, J.: Cluster-based sliced inverse regression. J. Korean Stat. Soc. 39, 251–267

(2010)
Lakshminarayanan, S., et al.: New product design via analysis of historical databases. Comput.

Chem. Eng. 24, 671–676 (2000)
Li, K.-C.: Sliced inverse regression for dimension reduction (2012). www.jstor.org/stable/2290563

. Accessed 19 Dec 2013
Lue, H.-H.: Sliced inverse regression for multivariate response regression. J. Stat. Plan. Inference

139, 2656–2664 (2009)
MacGregor, J.F., Kourti, T.: Statistical process control of multivariate processes. Control Eng.

Pract. 3(3), 403–414 (1995)
Martin, E.B., et al.: Batch process monitoring for consistent production. Comput. Chem. Eng. 20,

S599–S605 (1996)
Mele, P.M., Crowley, D.E.: Application of self-organizing maps for assessing soil biological

quality. Agric. Ecosyst. Environ. 126(3–4), 139–152 (2008)
Montgomery D.C.: Introduction to Statistical Quality Control, John Wiley, New York (2009)
Moteki, Y., Arai, Y.: Operation planning and quality design of a polymer process. In:

IFAC DYCORD, pp. 159–165 (1986)
Munoz, A., Muruzábal, J.: Self-organizing maps for outlier detection. Neurocomputing 18, 33–60

(1998)
Murray-Smith, R., Johansen, T.A.: Multiple Model Approaches to Nonlinear Modeling and

Control. Taylor & Francis, London (1997)
Nagy, G.: The polyethylene, Magyar Kémikusok Lapja (MKL). Hungary 52(5), 233–242 (1997)
Nelson, P.R.C., MacGregor, J.F., Taylor, P.A.: The impact of missing measurements on PCA and

PLS prediction and monitoring applications. Chemometr. Intell. Lab. Syst. 80(1), 1–12 (2006)
Nicolai, B.M., et al.: Nondestructive measurement of fruit and vegetable quality by means of NIR

spectroscopy: a review. Postharvest Biol. Technol. 46(2), 99–118 (2007)
Ochocka, R.J., Wesolowski, M., Lamparczyk, H.: Thermoanalysis supported by principal

component analysis (PCA) in quality assessment of essential oil samples. Thermochim. Acta
210, 151–162 (1992)

262 T. Kulcsár et al.

http://hdl.handle.net/11375/8576
http://dx.doi.org/10.1002/cjce.5450690105
http://www.jstor.org/stable/2290563


Olawoyin, R., et al.: Application of artificial neural network (ANN)–self-organizing map
(SOM) for the categorization of water, soil and sediment quality in petrochemical regions.
Expert Syst. Appl. 40(9), 3634–3648 (2013)

Pal, N.R.: Soft computing for feature analysis. Fuzzy Sets Syst. 103, 201–221 (1999)
Pereira, A.F.C., et al.: NIR spectrometric determination of quality parameters in vegetable oils

using iPLS and variable selection. Food Res. Int. 41(4), 341–348 (2008)
Poggy, G., Cozzolino, D., Verdoliva, L.: Self-organizing maps for the design of multiple

description vector quantizers. Neurocomputing 122, 298–309 (2013)
Pölzlbauer, G.: Survey and comparison of quality measures for self-organizing maps. In: Fifth

Workshop on Data Analysis (WDA) (2004). www.ifs.tuwien.ac.at/*poelzlbauer/publications/
Poe04WDA.pdf. Accessed 17 Dec 2013

Principe, J.C., Wang, L., Motter, M.A.: Local dynamic modeling with self-organizing maps and
applications to nonlinear system identification and control. Proc. IEEE 86(11), 2241–2258
(1998)

Sánchez-Martos, F., Jiménez-Espinosa, R., Pulido-Bosch, A.: Mapping groundwater quality
variables using PCA and geostatistics: a case study of Bajo Andarax, southeastern Spain.
Hydrol. Sci. J.-des Sciences Hydrologiques 46(2), 227–242 (2001)

Sethi, L.K.: Entropy nets: from decision trees to neural networks. Proc. IEEE 78, 1605–1613
(1990)

Simula, O., et al.: Analysis and modeling of complex systems using the self-organizing map. In
Neuro-Fuzzy Techniques for Intelligent Information Systems, pp. 3–22. Springer, New York
(1999)

Steenkamp, J.B.E.M., van Trijp, H.C.M.: Quality guidance: a consumer-based approach to food
quality improvement using partial least squares. Eur. Rev. Agric. Econ. 23(2), 195–215 (1996).
doi:10.1093/erae/23.2.195

Tryba, V., Goser, K.: Self-organizing feature maps for process control in chemistry. Artif. Neural
Netw. 847–852 (1991)

Valova, I., et al.: Initialization Issues in Self-organizing Maps. Procedia Comput. Sci. 20, 52–57
(2013)

Vinzi, V., et al.: Handbook of Partial Least Squares. In: Springer Handbooks of Computational
Statistics (2010)

Wang, D., Srinivasan, R.: Eliminating the effect of multivariate outliers in pls-based models for
inferring process quality. Comput. Aided Chem. Eng. 26, 755–760 (2009)

Wang X.Z.: Data Mining and Knowledge Discovery for Process Monitoring and Control.
Springer, New York (1999)

Wise, B.M., Gallagher, N.B.: The process chemometrics approach to process monitoring and fault
detection. Journal of Process Control 6(6), 329–348 (1996). doi:http://dx.doi.org/10.1016/
0959-1524(96)00009-1

Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: SOM Tooolbox for MATLAB (2015).
The Toolbox can be downloaded for free from http://www.cis.hut.fi/projects/somtoolbox

Yamashita, Y.: Supervised learning for the analysis of the process operational data. Comput.
Chem. Eng. 24, 471–474 (2000)

Zadeh, L.A.: Soft computing and fuzzy logic. Software, IEEE 11(6), 48–56 (1994)
Zhang, J., Martin, E.B., Morris, A.J.: Process monitoring using non-linear statistical techniques.

Chem. Eng. J. 67, 181–189 (1997)

9 Multivariate Statistical and Computational Intelligence Techniques … 263

http://www.ifs.tuwien.ac.at/%7epoelzlbauer/publications/Poe04WDA.pdf
http://www.ifs.tuwien.ac.at/%7epoelzlbauer/publications/Poe04WDA.pdf
http://dx.doi.org/10.1093/erae/23.2.195
http://dx.doi.org/10.1016/0959-1524(96)00009-1
http://dx.doi.org/10.1016/0959-1524(96)00009-1
http://www.cis.hut.fi/projects/somtoolbox

	9 Multivariate Statistical and Computational Intelligence Techniques for Quality Monitoring of Production Systems
	Abstract
	9.1 Introduction
	9.2 Multivariate Techniques for Quality Development
	9.2.1 Principal Component Analysis and Partial Least Squares
	9.2.2 Self-organizing Map
	9.2.2.1 SOM for Piecewise Linear Regression
	9.2.2.2 SOM for Classification of Product Grades and Operating Conditions


	9.3 Application Examples
	9.3.1 Online NIR---PLS Example
	9.3.2 Application in Polyethylene Production
	9.3.2.1 Problem Description
	9.3.2.2 SOM Based Historical Analysis of the Process
	9.3.2.3 SOM Based Product Quality Estimation


	9.4 Conclusion
	Acknowledgments
	References


