Chapter 7
A Fuzzy Design of Single and Double
Acceptance Sampling Plans

Cengiz Kahraman, Ebru Turanoglu Bekar and Ozlem Senvar

Abstract In this chapter, we briefly introduce the topic of acceptance sampling.
We also examine acceptance sampling plans with intelligent techniques for solving
complex quality problems. Among intelligent techniques, we focus on the appli-
cation of the fuzzy set theory in the acceptance sampling. Moreover, we propose
multi-objective mathematical models for fuzzy single and fuzzy double acceptance
sampling plans with illustrative examples. The study illustrates how an acceptance
sampling plan should be designed under fuzzy environment.
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7.1 Introduction

In manufacturing industries, sampling inspection is a common practice for quality
assurance and cost reduction. Acceptance sampling is a practical and economical
alternative to costly 100 % inspection. Acceptance sampling offers an efficient way
to assess the quality of an entire lot of product and to decide whether to accept or
reject it. The basic decisions in sampling inspection are how many manufactured
items to be sampled from each lot and how many identified defective items in the
sample to accept or reject each lot (Wang and Chankong 1991). The application of
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acceptance sampling minimizes product destruction during inspection and testing as
well as increases the inspection quantity and effectiveness.

Practically, acceptance sampling is a form of testing that involves taking random
samples of lots or batches of finished products and measuring them against pre-
determined standards. Acceptance sampling pertains to incoming batches of raw
materials or purchased parts and to outgoing batches of finished goods.

Acceptance sampling is useful when one or more of the following conditions is
available: a large number of items must be processed in a small amount of time; the
cost of passing defective items is low; destructive testing is required; or the
inspectors may experience boredom or fatigue in inspecting large numbers of items.

Acceptance sampling plans are useful tools for quality control practices, which
involve quality contracting on product orders between the vendor and the buyer.
Those sampling plans provide the vendor and the buyer rules for lot sentencing
while meeting their preset requirements on product quality. Nowadays, sampling
plans are the primary tools for quality and performance management in industry.
Sampling plans are used to decide either to accept or reject a received batch of
items. In any acceptance sampling plan, there are two possible error, which are
producer’s risk and consumer’s risk. Producer’s risk is the rejection of a good lot.
Consumer’s risk is the acception of a bad lot.

Acceptance sampling plans provide the vendor and buyer the decision rules for
product acceptance to meet the present product quality requirement. In practice,
proper design of an acceptance sampling planning is based on the true quality level
required by customers. However, it is sometimes not possible to determine this
quality level with certain values. Especially in production, it is not easy to deter-
mine the parameters of acceptance sampling such as proportion of defective items,
sample size, acceptable defective items.

Classical acceptance sampling plans have been studied by many researchers. In
different acceptance sampling plans the proportion of defective items, is considered
as a crisp value. The proportions of defective items are estimated or provided by
experiment. According to Fountoulaki et al. (2008), approaches employing machine
learning techniques in acceptance sampling are limited and mainly focused on the
design of acceptance sampling plans. Sampath (2009) emphasized that in the
manufacturing processes, quantities such as the proportion of defective items in a
production lot may not be precisely known and usually the practitioners have to
compromise with some imprecise or approximate values. Prior knowledge of such
quantities is required to evaluate the quality of a produced lot.

The vagueness present from personal judgment, experiment or estimation can be
treated formally with the help of fuzzy set theory. Among other intelligent tech-
niques, fuzzy set theory is known as a powerful mathematical tool for modeling
uncertainity in classical attribute quality characteristics (Jamkhaneh et al. 2009).

There are many other investigations and many other publications related to
acceptance sampling plans. In this chapter, we briefly introduce the topic of ac-
ceptance sampling. Also, we examine acceptance sampling plans with intelligent
techniques for solving important as well as fairly complex problems related to
acceptance sampling. A lot or batch of items can be inspected in several ways
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including the use of single, double, multiple, sequential sampling. Among other
intelligent techniques, we focus on the application of fuzzy set theory in the
acceptance sampling. We propose mathematical models for fuzzy single and fuzzy
double acceptance sampling plans with illustrative examples.

The rest of this chapter is organized as follows. In Sect. 7.2, acceptance sampling
basic concepts, terminology and plans are given. In Sect. 7.3, intelligent techniques
in acceptance sampling are briefly reviewed. Design of fuzzy acceptance sampling
plans and their illustrative examples are provided in Sect. 7.4. In Sect. 7.5 proposed
fuzzy multi-objective mathematical models are explained with illustratives exam-
ples. Finally conclusion, discussions as well as recommendations for further studies
are provided in the last section.

7.2 Acceptance Sampling Basic Concepts
and Terminology

Acceptance sampling inspection is part of statistical practice concerned with
sampled items to produce some quality information about the inspected products,
especially to check whether products have met predetermined quality specifications
(Schilling 1982). The complexity of the sampling inspection process gives rise to
challenges for the definition of data quality elements, determination of sample item,
sample size and acceptance number, and a combination of quality levels required by
the producer and the consumer. Here are the top 10 reasons why acceptance
sampling is still necessary:

Tests are destructive, necessitating sampling.

Process not in control, necessitating sampling to evaluate product.

100 % sampling is inefficient, O % is risky.

Special causes may occur after process inspection.

Need for assurance while instituting process control.

Rational subgroups for process control may not reflect outgoing quality.
Deliberate submission of defective material.

Process control may be impractical because of cost, or lack of sophistication of
personnel.

100 % inspection does not promote process/product improvement.

e Customer mandates sampling plan.

The principle of acceptance sampling to control quality is the fact that it is not
checked all units (N), but only selected part (n). Acceptance sampling plan is a
specific plan that clearly states the rules for sampling and the associated criteria for
acceptance or otherwise. Acceptance sampling plans can be applied for inspection
of end items, components, raw materials, operations, materials in process, supplies
in storage, maintenance operations, data or records and administrative procedures.
There are two essential issues in acceptance sampling inspection theory. The first is
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the determination of the acceptance sampling plan, which is characterized by
sample size and acceptance number. The main goal of designing an optimal sam-
pling plan is to obtain a high accuracy of product inspection and to reduce the
inspection cost (Von Mises 1957). The second is to determine the method to select
samples from the lot, which refers to the sampling method. Commonly used
sampling methods include simple random sampling, system sampling, stratified
sampling, and cluster sampling (Cochran 1977; Degroot 1986; Wang et al. 2010).

Acceptance-sampling plans classify to different ways. One major classification is
by attributes and variables. Acceptance-sampling plans by attributes are single
sampling plan, double sampling plan, multiple-sampling plan, and sequential
sampling plan (Schilling 1982).

Single sampling is undoubtedly the most used of any sampling procedure. The
simplest form of such a plan is single sampling by attributes which relates to
dichotomous situations, i.e., those in which inspection results can be classified into
only two classes of outcomes. This includes go, no-go gauging procedures as well
as other classifications. Applicable to all sampling situations, the attributes single
sampling plan has become the benchmark against which other sampling plans are
judged. It is employed in inspection by counting the number of defects found in
sample (Poisson distribution) or evaluating the proportion defective from processes
or large lots (binomial distribution) or from individual lots (hypergeometric dis-
tribution). It involves taking a random sample size n from a lot size N. The number
of defectives (or defects) d found is compared to an acceptance number c. If the
number found is less than or equal to c, the lot is accepted. If the number found is
greater than c, the lot is rejected.

Often a lot of items are so good or so bad that we can reach a conclusion about
its quality by taking a smaller sample than would have been used in a single
sampling plan. In double sampling if the results of the first sample are not definitive
in leading to acceptance or rejection, a second sample is taken which then leads to a
decision on the disposition of the lot. In brief, if the number of defects in this first
sample (d,) is less than or equal to some lower limit (c;), the lot can be accepted. If
the number of defects first and second sample (d;) exceeds an upper limit (c;), the
whole lot can be rejected. But if the number of defects in the nl sample is between
¢y and c;, a second sample is drawn. The cumulative results determine whether to
accept or reject the lot. The concept is called double sampling.

Multiple sampling involves the inspection of specific lots on the basis of k
successive samples as needed to make a decision, where k varies from 1 to K (i.e. a
whole number). It is an extension of double sampling, with smaller samples used
sequentially until a clear decision can be made. In multiple sampling by attributes,
more than two samples can be taken in order to reach a decision to accept or reject
the lot. The main advantage of multiple sampling plans is a reduction in sample size
for the same protection.

Single, double, and multiple plans assess one or more successive samples to
determine lot acceptability. Sequential sampling involves making a decision as to
disposition of the lot or resample successively as each item of the sample is taken
and it may be regarded as multiple-sampling plan with sample size one and no
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upper limit on the number of samples to be taken. It is often applied where sample
size critical so that a minimum sample must be taken. Under sequential sampling,
samples are taken, one at time, until a decision is made on the lot or process
sampled. After each item is taken a decision is made to (7.1) accept, (7.2) reject, or
(7.3) continue sampling. Samples are taken until an acceptance or rejection decision
is made. Thus, the procedure is open ended, the sample size not being determined
until the lot is accepted or rejected. Selection of the best sampling approach (single,
double, multiple or sequential) depends on the types of products being inspected
and their expected quality level. A very low-quality batch of goods, for example,
can be identified quickly and more cheaply with sequential sampling. This means
that the inspection, which may be costly and/or destructive, can end sooner. On the
other hand, in many cases a single sampling plan is easier and simpler for workers
to conduct even though the number sampled may be greater than under other plans.

7.3 Operating Characteristic Curves

The operating characteristic (OC) curve plots the probability of acceptance against
possible values of proportion defective. OC curve describes how well an acceptance
plan discriminates between good and bad lots. A curve pertains to a specific plan,
that is, a combination of n and c. It is intended to show the probability that the plan
will accept lots of various quality levels. The curves for different sampling plans are
shown in Fig. 7.1. The OC curve sketches the performance of a plan for various
possible proportions defective. It is plotted using appropriate probability functions
for the sampling situation involved. The curve shows the ability of a sampling plan
to discriminate between high quality and low quality lots. With acceptance sam-
pling, two parties are usually involved: the producer of the product and the
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consumer of the product. When specifying a sampling plan, each party wants to
avoid costly mistakes in accepting or rejecting a lot.

The producer wants to avoid the mistake of having a good lot rejected (pro-
ducer’s risk) because he or she usually must replace the rejected lot. Conversely, the
customer or consumer wants to avoid the mistake of accepting a bad lot because
defects found in a lot that has already been accepted are usually the responsibility of
the customer (consumer’s risk). The producer’s risk a is the probability of not
accepting a lot of acceptable quality level (AQL) quality and the consumer’s risk f§
is the probability of accepting a lot of limiting quality level (LQL) quality. The term
acceptable quality level (AQL) is commonly used as the 95 % point of probability
of acceptance, although most definitions do not tie the term to a specific point on
the OC curve and simply associate it with a “high” probability of acceptance. The
term is used here as it was used by the Columbia Statistical Research Group in
preparing the (Von Mises 1957) input to the JAN-STD-105 standard. LTPD refers
to the 10 % probability point of the OC curve and is generally associated with
percent defective. The advent of plans controlling other parameters of the distri-
bution led to the term limiting quality level (LQL), usually preceded by the per-
centage point controlled. Thus, “10 % limiting quality” is the LTPD (Schilling
1982).

In most sampling plans, when a lot is rejected, the entire lot is inspected and all
of the defective items are replaced. Use of this replacement technique improves the
average outgoing quality in terms of percent defective.

The average outgoing quality (AOQ) can be explained as the expected quality of
outgoing product following the use of an acceptance sampling plan for a given
value of the incoming quality. For the lots accepted by the sampling plan, no
screening will be done and the outgoing quality will be the same as that of the
incoming quality p. For those lots screened, the outgoing quality will be zero,
meaning that they contain no nonconforming items. Since the probability of
accepting a lot is P,, the outgoing lots will contain a proportion of pP, defectives. If
the nonconforming units found in the sample of size n are replaced by good ones,
the average outgoing quality (AOQ) will be (Kahraman and Kaya 2010):

N-—n

A =
oQ N

PPq (7.1)
For large N,
AOQ =~ pP, (7.2)

The maximum value of AOQ over all possible values of fraction defective, which
might be submitted, is called the AOQ limit (AOQL). It represents the maximum
long-term average fraction defective that the consumer can see under operation of
the rectification plan. It is sometimes necessary to determine the average amount of
inspection per lot in the application of such rectification schemes, including 100 %
inspection of rejected lots. This average, called the average total inspection (ATI), is
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made up of the sample size n on every lot plus the remaining (N-n) units on the
rejected lots, so that the ATI for single sampling is calculated as following Egs. (7.3
and 7.4).

ATI =n+ (1 —P,) (N —n) (7.3)
ATI = Pan+ (1 — PN (7.4)

The ATI for the double sampling plan can be calculated from the following
Egs. (7.5-7.7). In Eq. (7.5), the average sample number (ASN) is the mean number
of items inspected per lot. The concept of ASN is very useful in determining the
average number of samples that will be inspected in using more advanced sampling
plans. For a single sampling plan, one takes only a single sample of size n and
hence the ASN is simply the sample size n. In single sampling, the size of the
sample inspected from the lot is always constant, whereas in double sampling, in
double sampling plans, for example, the second sample is taken only if results from
the first sample are not sufficiently definitive to lead to acceptance or rejection
outright. In such a situation the inspection may be concluded after either one or two
samples are taken and so the concept of ASN is necessary to evaluate the average
magnitude of inspection in the long run.

ATI = ASN+ (N —ny) P(dy > ¢2) + (N —ny — np) P(dy + da > ¢2) (7.3)
where
Pldy >c)=1-P(d <c) (7.6)
P(di+dy >c)=1—P,— P(d; > c3) (7.7)
A general formula for the average sample number in double sampling is
ASN =m Py +(ny+n2) (1 — P1) =n; +nm(1 — Py) (7.8)

where P; is the probability of making a lot dispositioning decision on the first
sample. This is calculated as following equation:

P, = P{lot is accepted on the first sample} + P{lot is rejected on the first sample}
(7.9)

Acceptance sampling is useful for screening incoming lots. When the defective
parts are replaced with good parts, acceptance sampling helps to increase the quality
of the lots by reducing the outgoing percent defective. Sampling plans and OC
curves facilitate acceptance sampling and provide the manager with tools to eval-
uate the quality of a production run or shipment.
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7.4 Literature Review on Acceptance Sampling

In recent years, there are some studies concentrated on acceptance sampling in the
literature. Figure 7.2 shows the publication frequencies of acceptance sampling
according to years between 2004 (including 2004 and earlier) and 2013.

Some of these publications are journal articles, books/e-books, and so on.
Figure 7.3 shows the distribution of these publications according to publication
categories. According to this figure, most of the studies on acceptance sampling are
published in journals with a rate of 69 %. For example, Baklizi (2003) developed
acceptance sampling plans assuming that the life test is truncated at a pre-assigned
time. The minimum sample size necessary to ensure the specified average life was
obtained and the operating characteristic values of the sampling plans and pro-
ducer’s risk were presented. Kuo (2006) developed an optimal adaptive control
policy for joint machine maintenance and product quality control. It included the
interactions between the machine maintenance and the product sampling in the
search for the best machine maintenance and quality control strategy to find the
optimal value function and identify the optimal policy more efficiently in the value
iteration algorithm of the dynamic programming.

Borget et al. (2006) applied a single sampling plan by attributes with an
acceptance quality level of 2.2 % was evaluated. A prognostic study using a logistic
regression model was performed for some drugs to identify risk factors associated
with the non-conformity rate of preparations to determine if it was necessary to
assay all therapeutic batches produced, or to calculate an individual control rate for
each cytotoxic drug, according to various parameters (like number of batches or
drug stability). The sampling plan allowed a reduction of almost 8000 analyses with
respect to the number of batches analysed for 6 drugs. Pearn and Wub (2007)
proposed an effective sampling plan based on process capability index, Cy, to deal
with product acceptance determination for low fraction non-conforming products
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based on the exact sampling distribution rather than approximation. Practitioners
could use this proposed method to determine the number of required inspection
units and the critical acceptance value, and make reliable decisions in product
acceptance. Aslam (2008) evolved a reliability acceptance plan assuming that the
lifetime of a product follows the generalized Rayleigh distribution with known
value of the shape parameter. Tsai et al. (2009) explained ordinary and approximate
acceptance sampling procedures under progressive censoring with intermittent
inspections for exponential lifetimes. Jozani and Mirkamali (2010) demonstrated
the use of maxima nomination sampling (MNS) technique in design and evaluation
of single AQL, LTPD, and EQL acceptance sampling plans for attributes. They
exploited the effect of sample size and acceptance number on the performance of
their proposed MNS plans using operating characteristic (OC) curve. Aslam et al.
(2010) developed the double sampling and group sampling plans and determined
the design parameters satisfying both the producer’s and consumer’s risks simul-
taneously for the specified reliability levels in terms of the mean ratio to the
specified life. Nezhad et al. (2011) introduced a novel acceptance-sampling plan is
proposed to decide whether to accept or reject a receiving batch of items. In this
plan, the items in the receiving batch are inspected until a nonconforming item is
found. When the sum of two consecutive values of the number of conforming items
between two successive nonconforming items falls underneath of a lower control
threshold, the batch is rejected. If this number falls above an upper control
threshold, the batch is accepted, and if it falls within the upper and the lower
thresholds then the process of inspecting items continues. Fernadndez and
Pérez-Gonzalez (2012) presented for determining optimal failure-censored relia-
bility sampling plans for log-location—scale lifetime models. The optimization
procedure to decide the acceptability of a product is usually sufficiently accurate for
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the most widely used parametric lifetime models, such as the Weibull and log-
normal distributions, and fairly robust to small deviations in the prior knowledge.
Hsieh and Lu (2013) developed a risk-embedded model via conditional
value-at-risk that allows a decision maker to choose an acceptance sampling plan
with minimal expected excess cost in accordance with his or her attitude towards
risk to gain insights into the role of a decision maker’s risk aversion in the deter-
mination of Bayesian acceptance sampling plans.

7.5 Intelligent Techniques in Acceptance Sampling

In sampling inspection, the fundamental decisions are how many manufactured
items to be sampled from each lot and how many identified defective items in the
sample to accept or reject each lot. The problem of determining an optimal sam-
pling plan is NP-complete (2008). The reason is the combinatorial nature of
alternative solutions on the sample sizes and acceptance criteria possessing the
combinatorial nature. From this standpoint, in recent years, there are a number of
researches that merge acceptance sampling with intelligent techniques. In this
section, we briefly examine the researches regarding acceptance sampling plans
with intelligent techniques for solving important as well as fairly complex problems
related to acceptance sampling.

Wang and Chankong (1991) proposed a neurally-inspired approach to generat-
ing acceptance sampling inspection plans. They formulated a Bayesian cost model
of multi-stage-multi-attribute sampling inspections for quality assurance in serial
production systems. The proposed model can accommodate various dispositions of
rejected lot such as scraping and screening. Besides, the model can reflect the
relationships between stages and among attributes. To determine the sampling plans
based on the formulated model, they developed a neurally-inspired stochastic
algorithm, which simulates the state transition of a primal-dual stochastic neural
network to generate the sampling plans. The simulated primal network is respon-
sible for generation of new states whereas the dual network is for recording the
generated solutions. Starting with an arbitrary feasible solution, this algorithm is
able to converge to a near optimal or an optimal sampling plan with a sequence of
monotonically improved solutions.

Tabled sampling schemes such as MIL-STD-105D offer limited flexibility to
quality control engineers in designing sampling plans to meet specific needs.
Vasudevan et al. (2012) attempted to find a closed form solution for the design of a
single sampling plan for attributes to determine the accepted quality level
(AQL) indexed single sampling plan using an artificial neural network (ANN).
They used the data from tabled sampling schemes and determined the sample size
and the acceptance number by training ANNs, namely with feed forward neural
networks with sigmoid neural function by a back propagation algorithm for normal,
tightened, and reduced inspections. From these trained ANNSs, they obtained the
relevant weight and bias values and the closed form solutions to determine the
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sampling plans using these values. They provided the examples for using these
closed form solutions to determine sampling plans for normal, tightened, and
reduced inspections. The proposed method does not involve table look-ups or
complex calculations. Sampling plan can be determined by using this method, for
any required acceptable quality level and lot size. They provided suggestions to
duplicate this idea for applying to other standard sampling table schemes process.

Cheng and Chen (2007) suggested a Genetic Algorithm (GA) mechanism to
reach a closed form solution for the design of a double sampling plan. In order to
design the double sampling plan, the operating characteristic curve has to satisfy
some specific criteria. As the parameters of the sampling plan have to be integers,
the solution has to be optimal in each case. The GA mechanism is responsible for
providing the optimal solution in contrast to the trial-and-error method that has been
used so far. This approach seeks for the minimum sample number, even when the
initial criteria are not satisfied. Its disadvantage is the relatively large number of the
proposed solutions, from which the quality engineer has to decide the optimal one
by changing the criteria that were predetermined at the beginning of the process.

Designing double sampling plan requires identification of sample sizes and
acceptance numbers. Sampath and Deepa (2012) designed a genetic algorithm for
the selection of optimal acceptance numbers and sample sizes for the specified
producer’s risk and consumer’s risk. Implementation of the algorithm has been
illustrated numerically for different choices of quantities involved in a double
sampling plan.

Fountoulaki et al. (2008) proposed methodology for Acceptance Sampling by
Variables, dealing with the assurance of products quality, using machine learning
techniques to address the complexity and remedy the drawbacks of existing
approaches. Their methodology exploited ANNs to aid decision making about the
acceptance or rejection of an inspected sample. For any type of inspection, ANNs
are trained by data from corresponding tables of a standard’s sampling plan
schemes. Once trained, ANNs can give closed-form solutions for any acceptance
quality level and sample size, thus leading to an automation of the reading of the
sampling plan tables, without any need of compromise with the values of the
specific standard chosen each time. Their methodology provides enough flexibility
to quality control engineers during the inspection of their samples, allowing the
consideration of specific needs, while it also reduces the time and the cost required
for these inspections.

In acceptance sampling plans, the decisions on either accepting or rejecting a
specific batch is still a challenging problem. In order to provide a desired level of
protection for customers as well as manufacturers, Fallahnezhad and Niaki (2012)
proposed a new acceptance sampling design to accept or reject a batch based on
Bayesian modeling to update the distribution function of the percentage of non-
conforming items. They utilized the backwards induction methodology of the
decision tree approach to determine the required sample size. They carried out a
sensitivity analysis on the parameters of the proposed methodology showing the
optimal solution is affected by initial values of the parameters. Furthermore, they
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determined an optimal (n, c¢) design when there is a limited time and budget
available and they specified the maximum sample size in advance.

In many practical cases it is difficult to classify inspected items as conforming or
nonconforming. This problem rather frequently can be faced when quality data
come from users who express their assessments in an informal way, using such
expressions like “almost good”, “quite good”, “not so bad”, and etc.

Ohta and Ichihashi (1988), Kanagawa and Ohta (1990), Tamaki et al. (1991),
and Grzegorzewski (1998), Grzegorzewski et al. (2001) discussed single sampling
by attributes with relaxed requirements.

Ohta and Ichihashi (1988) presented a procedure for designing a single sampling
plan using fuzzy membership functions for both the producer’s risk and consumer’s
risk, with the aim of finding a reasonable solution for the trade-off between the
sampling size and the producer’s and consumer’s risks. This design methodology is
deficient in the sense that it does not explicitly takes into account of minimizing the
sample size n. The desire for smaller sample size is imposed by choosing triangular
membership functions for the risks. However, this choice does not make sense for
the part of the membership functions where the risks are higher than their nominal
values.

Kanagawa and Ohta (1990) selected trapezoidal membership functions for risks,
and taking into account a membership function for the grade of satisfaction for the
sample size. They stated that the membership function must be a monotonically
decreasing function of the sample size n, however, no method for constructing this
function is proposed.

Sampling plan by attributes for vague data were considered by Hryniewicz.
Hryniewicz (1992) attempted to cope with the statistical analysis of such quality
data.

If the quality characteristic monitored is a variable, acceptable quality level and
rejectable quality level (AQL and RQL) are identified for evaluating the acceptance
or rejection of an inspection lot. Otherwise, when the quality characteristic is an
attribute, the number of defectives is compared to a specific limit of number of
allowed defectives for the decisions of accept/reject. In the former case, acceptable
quality level and rejectable quality level may not be specified as a crisp value
because rigid values of AQL and RQL may not necessarily give a sampl plan.
Besides, these values are commonly not very precise but rather descriptive. Thus,
the crisp values of AQL and RQL may be relaxed as fuzzy values.Much more
practical procedure, namely the fuzzy version of an acceptance sampling plan by
variables, has been proposed by Grzegorzewski (2002). Grzegorzewski et al.
(2001), Grzegorzewski (2002) considered sampling plan by variables with fuzzy
requirements. General results from the theory of fuzzy statistical tests have been
used for the construction of fuzzy sampling plans when the quality characteristic of
interest is described by a fuzzy normal distribution.

Hryniewicz (2003) has shown why in the case of imprecise input information
optimal inspection intervals are usually determined using additional preference
measures than strict optimization techniques.
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Kratschmer (2005) proposed a mathematically sound basis for the sampling
inspection by attributes in fuzzy environment. According to Hryniewicz (2008), no
new practical SQC procedures have been proposed using that general model.

Jamkhaneh et al. (2009) proposed a method for designing acceptance single
sampling plans with fuzzy quality characteristic with using fuzzy Poisson distri-
bution. They presented the acceptance single sampling plan when the fraction of
nonconforming items is a fuzzy number and modeled by fuzzy Poisson distribution.
Their plans are well defined since if the fraction of defective items is crisp they
reduce to classical plans. They showed that the operating characteristic curve of the
plan is like a band having a high and low bounds whose width depends on the
ambiguity proportion parameter in the lot when that sample size and acceptance
numbers is fixed. They showed that the plan operating characteristic bands are
convex with zero acceptance number.Then, they compared the operating charac-
teristic bands of using of binomial with the operating characteristic bands of using
of Poisson distribution.

Sampath (2009) considered the properties of single sampling plan under situa-
tions involving both impreciseness and randomness using the Theory of Chance.
For fuzzy random environment, the process of drawing an operating characteristic
curve and the issue of identifying optimal sampling plans are also addressed in the
study called hybrid single sampling plan.

In a single stage sampling plan, the decision to accept or reject a lot is made
based on inspecting a random sample of certain size from the lot. Conventional
designs may result in needlessly large sample size. The sample size n can be
reduced by relaxing the conditions on the producer’s and consumer’s risks. Ajorlou
and Ajorlou (2009) proposed a method for constructing the membership function of
the grade of satisfaction for the sample size n based on the shape of the sampling
cost function. They found a reasonable solution to the trade-off between relaxing
the conditions on the actual risks and the sample size n. For three general sampling
cost functions, they derived the membership function of the grade of satisfaction for
the sample size.

Kahraman and Kaya (2010) handled two main distributions of acceptance
sampling plans which are binomial and Poisson distributions with fuzzy parameters
and they derived their acceptance probability functions. Then fuzzy acceptance
sampling plans were developed based on these distributions.

Jamkhaneh et al. (2011) discussed the single acceptance sampling plan, when the
proportion of nonconforming products is a fuzzy number and also they showed that
the operating characteristic (OC) curve of the plan is a band having high and low
bounds and that for fixed sample size and acceptance number, the width of the band
depends on the ambiguity proportion parameter in the lot. Consequently they
explained when the acceptance number equals zero, this band is convex and the
convexity increases with n.

Turanoglu et al. (2012) analyzed when main parameters of acceptance sampling
plan were assumed triangular and trapezoidal fuzzy numbers and also operating
characteristic curve (OC), AOQ, average sample number (ASN), and ATI were
obtained for single and double sampling plans under fuzzy environment.
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In the latter case, when the fraction of the defective items is needed to be used
due to the nature of the quakity characteristic, the non-conforming items may not be
specified exactly. Thu, the fraction of the non-conforming items, the fraction of the
non-conforming items is generally not known exactly in practical cases. The gen-
eral approach is to replace the value with a crisp estimate value. Due to the
uncertainty of the estimation or the experimentation procedure for the estimation,
there exists a vagueness of the value of the fraction of defective items. In order to
model the vagueness, fuzzy set theory has been used in the literature. The number
of defective items in a sample has a binomial distribution. When we use a fuzzy
approach in order to model the uncertainty, the binomial distribution is defined with
a fuzzy parameter p. If the number of defective items in a sample is small, the
common approach is to use fuzzy Poisson distribution to approximate the fuzzy
binomial (Turanoglu 2012).

Acceptance sampling applications are classified into two based on the nature of
the quality characteristics inspected. If the items can only be identified as disjoint
categories such as good and bad, acceptance sampling by attributes are applied. In
cases where quality characteristics can be continuously measured such as weight,
strength, we apply acceptance sampling by variables. The fuzzy approaches for
both of these types of acceptance sampling have been studied in the literature.
Sampling by attributes with relaxed requirements were discussed by Ohta and
Ichihashi (1988), Kanagawa and Ohta (1990), Tamaki et al. (1991), and
Grzegorzewski (1998), Grzegorzewski et al. (2001), Hryniewicz (1992).
Grzegorzewski et al. (2001), Grzegorzewski (2002), Jamkhaneh and Gildeh (2010)
considered sampling plan by variables with fuzzy requirements.

Another classification of acceptance sampling applications is based on the
number of samples taken until a decision is made related to the lot. A sequential
sampling consists of a sequence of samples from the lot and the number of samples
to be taken is identified based on the results of the sampling process. A random
sample if drawn from the lot and the actual quality level of the sample is compared
with the limit levels. Based on the results of this comparison, three decisions can be
made: (i) the lot can be accepted, (ii) the lot can be rejected; (iii) a new sample is
taken and inspected to make a decision. When only one sample is inspected at each
sampling stage, the procedure is named as item sequential sampling. When only
two decisions, accept and reject is defined after the inspection of the first sample,
the sampling is named as single sampling plan. Single, double and sequential
sampling plans with fuzzy parameters have also been studied in the literature.
Single sampling plans with fuzzy parameters are investigated by Ohta and Ichihashi
(1988), Kanagawa and Ohta (1990), Tamaki, Kanagawa and Ohta (1991), and
Grzegorzewski (1998), Grzegorzewski et al. (2001), Jamkhaneh et al. (2010),
Jamkhaneh et al. (2011). Sequential sampling plans with fuzzy parameters are
discussed by Jamkhaneh and Gildeh (2010).
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7.6 Design of Acceptance Sampling Plans Under Fuzzy
Environment

Acceptance sampling procedures can be applied to lots of items when testing
reveals non-conformance or non-conformities regarding product functional attri-
butes. It can also be applied to variables characterizing lots, thus revealing how far
product quality levels are from specifications. These applications have the main
purpose of sort outing a lot as accepted or rejected, given the quality levels required
for it. Generally, there are two major assumptions made when creating sampling
plans. The first is that the sampling parameters are crisp, such as the fraction of
nonconformities which is the rate of the observed nonconformities in the inspected
samples, and sample rate which is a compromise between the accuracy and cost of
the inspection. The second is that these parameters are vague values, particularly in
the case where they can only be expressed by linguistic variables. According to
Literature Review (Kahraman and Kaya 2010; Ohta and Ichihashi 1988; Kanagawa
and Ohta 1990) some of the acceptance sampling studies have concentrated on
fuzzy parameters. Some of these are given with the illustrative examples in the
following subsections.

7.6.1 Design of Single Sampling Plans Under Fuzzy
Environment

The single attribute sampling plan provides a decision rule to accept or reject a lot
based on the inspection results obtained from a single random sample. The pro-
cedure corresponds to taking a random sample from the lot with size n; and inspects
each item. If the number of non-conformities or nonconforming items does not
exceed the specified acceptance number c, the entire lot is accepted. Many different
acceptance plans meet the requirements of both the producer and the consumer.
However, the producer is also interested in keeping the average number of items
inspected to a minimum, aiming to reduce the costs of sampling and inspection, and
economic aspects of the sampling plans must also be considered in practical
implementations (Duarte and Saraiva 2008).

Kahraman and Kaya (2010) analyzed single and double sampling plans by
taking into account two fuzzy discrete distributions such as binomial and Poisson
distribution. They developed a single sampling plan assuming that a sample whose
size is a fuzzy number 7 is taken and 100 % inspected. The fraction nonconforming
of the sample is also a fuzzy number p. The acceptance number is determined as a
fuzzy number ¢. The acceptance probability for this single sampling plan can be
calculated as follows:
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P, = P(d<&lié,p) =
’ = d (7.10)
where 1= np.
Pa() = [Puyaz(#): Py (2] (7.11)
& A
P, ,;(0) =min ; i J € ia),n € n(a),c € cx)
- (7.12)
c ide—j, .
Par_’dj'(oc) = max ; | € Ma),n € n(a),c € c(a)
If the binomial distribution is used, acceptance probability can be calculated as
follows:
P, = (”)ﬁdéﬁ“‘ (7.13)
=0 \4
- AW i
P,=>" ( d)l?”lq ¢
=0
¢ 7 ot
= { <d g dpGp(oc),qGq(oc),nen(oc),céc(oc)} (7.14)
d=0

Py(0) = [Pu(), Par(e)] (7.15)

Py(a) —min{zc: <Z>pdqnd
P (o) :max{zc: <Z>pdqnd

p €p(a),q € q(o),n € n(a),c € c(oc)},a

p €p(%),q € q(x),n € n(x),c € C(fx)}
(7.16)
AOQ values for fuzzy single sampling can be calculated as follows:
AOQ =~ P,p (7.17)

A0Q(2) = [A0Q)(), AOQ, ()] (7.18)
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AOQ; (o) =min{P,plp € p(«), P, € Py(ar)},

400, () = max{Puplp € p(2). Pu € Pu(2)} )

ATI curve can also be calculated as follows:
ATI =i+ (1 - P,) (N — i) (7.20)
ATI(o) = [ATL(), ATI, ()] (7.21)

ATI(a) =min{n+ (1 — P,)(N —n)|p € p(«), P, € P,(2),p € N(a),N € N(«0) },
ATI, (o) =max{n+ (1 — P,)(N —n)|p € p(®), P, € P,(2t),p € N(),N € N(o)}
(7.22)

Numerical Example-1

Suppose that a product is shipped in lots of size “Approximately 5000”. The
receiving inspection procedure used is a single sampling plan with a sample size of
“Approximately 50” and an acceptance number of “Approximately 2”. If fraction of
nonconforming for the incoming lots is “Approximately 0.05”, calculate the
acceptance probability of the lot. Based on Eq. (7.16), the acceptance probability of
the sampling plan is calculated as P, = P(d< é) = TFN(0.190, 0.544,0.864) and
its membership function is shown in Fig. 7.4.

AOQ is calculated as AOQ = TFN(0.008, 0.027,0.052) by using Eq. (7.19).
ATI is also calculated as ATI = TFN(707.163, 2308.125,4140.47) by using
Eq. (7.22) and its membership function is illustrated in Fig. 7.5.

Kanawaga and Ohta (1990) presented a design procedure for the single sampling
attribute plan based on the fuzzy sets theory. They improved the fuzzy design
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Fig. 7.4 Membership function of acceptance probability
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Fig. 7.5 Membership function of ATI for single sampling

procedure proposed by Ohta and Ichihashi (1988) with getting rid of the imbalance
between the producer’s and consumer’s risks and the case in which a large sample
size is (needlessly) required, both of which often arise in traditional crisp formu-
lation, by means of the orthodox formulation as fuzzy mathematical programming
with several objective function. They proposed the following formulation for the
fuzzy design of the single sampling attribute plan.

P(Pl) Z 1 — P(pz)Sﬂ, (723)

n—0 (7.24)

where the symbols R and < stand for fuzzy inequlities. The membership functions
Uy (o¥) and pg(f*) in this case are shown in Fig. 7.6. The membership function
U, (n) which represents the grade of satisfaction for the sample size must mono-
tonically decrease as n increases as shown in Fig. 7.7. The fuzzy formulation can be
written as the following fuzzy mathematical programming problem:

Problem 1 Find (n, c¢) so that

min{ﬂA(“*)v :uB(ﬁ*)v :un(n)}

is maximized.
These membership functions in Fig. 7.6 are as follows:

1 (o <a)
pa (o) = { 2ELEPRD (g < gr <) (7.25)
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Fig. 7.6 Membership functions p, and pp

Fig. 7.7 Membership H
function y,, which represents

the grade of satisfaction for 1
the sample size n

pp(pr) = § e tbel (p<pr<p) (7.26)

where
Py =S (") (1 pyt 7.27
W=} a0 (7.27)

Figure 7.8 shows the graphs of the membership functions (o) and pg(f*)
with respect to the sample size n. In this figure, n,, and ng, are real numbers which
satisfy respectively.

22(”1“, Cvpl) = 2g(notua C)h(pl) = X%—au (2C + 2)7 (728)

2)‘(’1/)’”’ Cap2) = zg(nﬁua c)h(p2) = X%—[f” (26‘ + 2)) (729)
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Fig. 7.8 Membership (a) #
functions g, (o) and pg(f*)
with respect to sample size n 1
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Let ¢, be the minimum integer which satisfies > R(c,; «, f§). If the membership
functions p, and ug were decided as in Fig. 7.6, that is, in Fig. 7.8, it is found that
acceptance number c¢ in Problem 1 is less than or equal to ¢,. Because when c is
greater than or equal to ¢,, it is r > R(c,;a, f5), then the membership functions
Uy and g are shown in Fig. 7.8a. Accordingly, which maximizes min {uy, 1z, 1, }
depends on only the intersection of p, and pg. The grade of max min {w,, g, 1, }
decreases with c, because u, is monotonically decreasing. So c is found to be less
than or equal to ¢,. Let the sample size n expand to a real number. Setting n* € R,
which satisfies

(B (n";¢)) = py(n) (7.30)

It is obvious that when c is equal to c,, n* belongs to interval [ng ,ng]. If n* is
found, the integer solution n is either [n*] or [n*] 4 1. Note that when c is less than
¢y, the relation is changed to ng > n,. In the both cases, the integer solution n will be
found by means of searching in the integer interval [[ng | — 1, [ng ]+ 1]. Finally
sample size n is selected as

m

n; = ;‘X {up(ng), g (ny), o (n2), . ooy i (ny), ...} (7.31)

and acceptance number is selected as ¢, — 1.
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Table 7.1 The grade of fuzzy
union set with respect to n on
each ¢

c: Grade of fuzzy product set with respect to n on each ¢
: Max min {pg, p,} in [73,89] = p,(79) = 0.4846

4-1: | Max min {p,, pg, 1y} in [60,73] = p,(66) = 0.5310
4-2: | Max min {p, U, My} in [46,58] = p,(48) = 0.1853

4-3: Fuzzy product set does not exist

Numerical Example-2
It is set up the membership functions u, and py as follows Kahraman and Kaya
(2010):

a=5%, o,=8%, p=10%, p,=20%.

For the membership function functions y,(n), it will be accepted the following

function:
n m
(1) 7

where L is the tolerance limit of the sample size so that n should be smaller than L.
it is better to select L to be less than N/10 for use of the binomial distribution. m is
the shape parameter of the membership function, and m is selected so that
0<m< 1. In the case where L = 300, m = 0.5, p;= 0.02, p,= 0.09, the solving
procedure of Problem 1 is as follows:

r = (h(p2)/h(p,)) = 4.665

So that ¢, = 4. Then the grade of fuzzy union set with respect to n on each c is
shown in Table 7.1. After all it is ¢ = 3, n = 66, o* = 0.04338, B* = 0.1441.

7.6.2 Design of Double Sampling Plans Under Fuzzy
Environment

In double sampling by attributes, an initial sample is taken, and a decision to accept
or reject the lot is reached on the basis of this first sample if the number of
nonconforming units is either quite small or quite large. A second sample is taken if
the results of the first sample are not decisive. Since it is necessary to draw and
inspect the second sample only in borderline cases, the average number of pieces
inspected per lot is generally smaller with double sampling. It has been demon-
strated to be simple to use in a wide variety of conditions, economical in total cost,
and acceptable psychologically to both producer and consumer (Juran 1998).
Kahraman and Kaya (2010) used a double sampling plan with fuzzy parameters
(1, ¢1,02,C2)a. N and p are also fuzzy. If the Poisson distribution is used, the
acceptance probability of double sampling can be calculated as follows:
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P, :P(dl §51)+P(Z’1 <d, SZ‘z)P(dl'f'dzgz‘z) (732)
_ & pdi p—inp & (/’{dlefllf) &—d, ;Ldzeﬁzi;>
- Ly (EEL ST g
2ar T2 a2 a
Pa(9) = [Py (0, Py (%) (7.34)
' a1 pdt p—mip 2 Jd1 g—mip c2—d, )42 p—mop
Pz (@) me{z ar > (d—ll x D VAR
d;=0 dy > ¢y dr=0
d d di 4d (7.35)
C1 i Lo—mp (] ;» Le—mp €2~ 12 20— M2P
Pt —mn{ SSE S (RIS
di=0 1: di > ¢ 1: dr=0 2

where p € p(a),n € n(a), and ¢ € c(«).
If the binomial distribution is used, acceptance probability can be calculated as
follows:

Pu:i <nl>l~71 _ m d1+ Z (( >~d1 _ nl dlx Z < > ),,2 d7>
=0 di dy > ¢ dy=
(7.36)
el 8 (e e K )
d;=0 dy > ¢ dy 2
Par(Ot) max{ 3 ( >pd‘(l p)"‘ ~d + Z <<d ) d (1 7p>n1*d1 % E (Zz >pdz(1 7P)n:*d2) }
di= dy > ¢y 1 dy 2

(7.37)
where p € p(x),q € q(a),n1 € ni(a),c1 € c1(a), 2 € na(x), and 2 € co(ar).
AOQ values for fuzzy double sampling can be calculated as in Eqgs. (7.17-7.19).
ASN for double sampling can be calculated as follows:

S

[l
* o

(

ASN =P + (fty +i12) (1 — Py)

=it +ii (1 — Py) (738)

ASN(a) = [ASN,(«), ASN, ()] (7.39)

ASN, (o) =min{n; +nz2(1 — Py)|p € p(a),my € ny(a),na € na(a), Py € Pr(ar)},
ASN, (o) =max{n; +na(1 — P;)|p € p(o),n1 € ny(o),n2 € na(ar), Py € Pr()}
(7.40)
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ATI curve for fuzzy double sampling can also be calculated as follows:
ATI =ASN + (N — it)P(dy > &) + (N — ity — i) P(dy +dy > &) (7.41)
ATI(a) = [ATI (o), ATI(20)] (7.42)

ATI(a) =min{ASN + (N — n|)P(d, > c2)+ (N —ny —mp)P(di +dy > )},
ATI, (o) =max{ASN + (N — n))P(d; > c2) + (N —ny —m)P(d\ +da > ¢2)}
(7.43)

where p € p(a),ASN € ASN(a),n; € nj(a),N € N(«),ny € ny(a), and ¢; € ca(a).

Numerical Example-3

Let us reconsider Numerical Example-1 for the case of fuzzy double sampling. The
sample sizes are determined as “Approximately 75 and “Approximately 300" for
the first and second samples, respectively. Also the acceptance numbers are
determined as “Approximately 0 and “Approximately 3” for the first and second
samples, respectively. Based on Eq. (7.35), acceptance probability of the double
sampling plan is calculated as follows:

P, =P(dy<0)+ [P(dy = 1) x P(dr <2)] + [P(dy = 2) x P(dy < 1)] + [P(dy = 3) x P(dr <0)]
=(0.0105, 0.0235, 0.2052) + [(0.0105, 0.0882, 0.227) x (0, 0, 0.0024)]
+ [(0.0477, 0.1654, 0.224) x (0, 0, 0.0005)] + [(0.1088, 0.2067, 0.227) x (0, 0,0.0001)]
=(0.0105, 0.0235, 0.2052) + (0, 0, 0.0005) + (0, 0, 0.0001) + (0, 0, 0)
P, =(0.0105, 0.0235, 0.2058).

Its membership function is shown in Fig. 7.9.
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Fig. 7.9 Membership function of acceptance probability for double sampling
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ASN is calculated as ASN = TFN(74.00, 213.08, 320.24) by using Egs. (7.38-
7.40). Also AOQ is calculated as AOQ = TFN(0.00042, 0.001175, 0.01235).

Wang and Chen (1997) formulated the problem of determining the Dodge-Romig
LTPD double sampling plan under the fuzzy environment satisfies the consumer’s
risk closely around f using fuzzy mathematical programming. They proposed a
model to minimize the ATI at the process average p,, subject to satisfying the con-
sumer’s risk closely around b, the Dodge-Romig LTPD double sampling plan finds a
non-fuzzy non-negative integer pair (n;,n,, c1, ¢;) that minimizes:

I(pm,ni,na,c1,62) =ni+ny* (1 —G(er,nipm)) + (N — np — na)x
ey , . (7.44)
1= Gler,mpm) = Y _ gler +j,mpm) * G(ca — ¢1 — j, napm)
=1

subject to
K(pn,ni,ny,¢1,62) S P (7.45)
ny,ny,cy,cp >0, integer (7.46)
where
-

K(pn7n17n27cl762) = G(C17n1pn) + g(C1 +j7n1pm) * G<C2 —C1 _j7 nzpn)
=

(7.47)

where g(x, np) represents the probability of the Poisson distribution for the randim
variable x with parameter np, i.e. g(x,np) =e " (np)*/x! and G(x,np) is its
cumulative distribution. I(p,,,n,n,,c1,cz) is the ATL The symbol < stands for
fuzzy inequality.

The symmetry of the decision model in a fuzzy environment rests essentially on
the assumption that the objective function as well as the constraint can be fuzzy
sets, and that the degree of membership of solutions to the objective function and to
the constraint could be considered comparable. The above model shown using
Egs. (7.44-7.46) is a non-linear integer fuzzy mathematical programming problem.
Because the objective function in Eq. (7.44) is a crisp set and the constraint in
Eq. (7.45) is a fuzzy set, it is the optimization problem is a non-symmetrical fuzzy
model. So Wang and Chen (1997) used the studies of Zimmermann (1985) and
Chakraborty (1988, 1992) with the minimum operator to aggregate the membership
functions of fuzzy sets, they obtained the following model for Dodge-Romig LTPD
double sampling plan problem:
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minny, ny, ¢y, cp >0, integer

inf
. I —I(py,ni,np,cy,c
Maxtmlze Rl (p b 2) ,Bu - K(Pm”la”ZaChCz)
- N - )4, = )“2 = ,1
inf inf B,— B
I— 1
Ry S(R)
(7.48)
Subject to
inf inf
< < .
S(R)I_I(plnanhnZaClaCQ)_ Rl I (7 49)
ﬁSK(Pn7”1a”2701702)§ﬁu (750)
0<i<1 (7.51)
ny,ny,cy,cp >0, integer (7.52)

where R is a fuzzy feasible region, S(R) support of R, and R;_— level cut of R for
o=1.

This problem can be rewritten in the equivalent optimization problem to find
ny,ny, ¢y, ca, A that maximize 4 and subject to

III;fI_I<pm7nl7n27Clac2)
R — . (7.53)
mfI_ inf /
Ry S(R)
- K ny } ) )
j< Bz Kpnmim e c0) (7.54)
ﬁu - ﬂ
. - inf inf
and inequalities (7.49) through (7.52).Let I} = R I and I, = S(R) 1. Then the
1

above optimization problem can be expressed as: find ny, n,, ¢y, ¢z, 4 that maximize
A and subject to

R(ll—lo) +I(pm7n17n27 ci, C2) < Il (755)
R(ﬂuiﬁ(ﬁ +K(pm ny,ny,Cy, C2) S —U (756)
I() SI(Pm,I’ll,}’lz,Cl,Cz) SI] (757)

and inequalities (7.50), (7.51) and (7.52).
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Numerical Example-4

It is considered the example given in Hald (1981): N = 2000, p,, = 0.02, p, = 0.10,
and p = 0.10. The optimum LTPD double sampling plan(n}, n}, ¢}, c}) is to be found
for B, = 0.15. For a LTPD double sampling plan, it is obtained (nj,n3,cj,c5) =
(55,132,2,10) with I; =70.30 and (n®n5,cb cb) = (36,111,1,8) with
I = 58.45. The DSP giving the largest value of 4 for each ¢; near {¢{1, ¢§ =2} 1is
found. It is concluded that the optimum LTPD double sampling plan is;
(n},n},ci,c3) = (40,104,1,8) with A" = 0.52I(p,,n},n},c},c;) = 64.12 and
K(p,,n},n},cj,c5) = 0.1235.

In this particular example, the difference between the solution of the traditional
Dodge-Romig LTPD double sampling plan and their is that the decision maker
takes an additional consumer’s risk of 2.35 % for a lot being rejected against a
saving of inspection effort per lot.

7.7 Proposed Fuzzy Multi-objective Mathematical Models
for Design of Acceptance Sampling Plans

In this section, multi-objective mathematical models for designing of single and
double sampling by attributes are developed and the optimal results are obtained by
considering the various constraints under fuzziness. As a result it is obtained that
the lower sample sizes in developed single and double sampling plans under fuzzy
environment.

7.7.1 Proposed Fuzzy Multiobjective Models for Design
of Single Acceptance Sampling Plan

The case in which a large sample size is needlessly required often arises in con-
ventional design. The sample size n can be reduced as desired by relaxing the
conditions on the consumer’s risks. Hence, the tradeoff between the reduction of
sample size and the relaxation of the conditions becomes a serious problem. So we
developed a design procedure based on fuzzy multi-objective mathematical model
for single sampling plans. In practical applications, LTPD cannot be known pre-
cisely. Hence the following model is developed to find the most appropriate sample
size n with minimizing of ATI and AOQ. Also in this model, LTPD and con-
sumer’s risks f are defined as fuzzy numbers. The closed form of the model is
given following equations:

Objective function

Min ATI

Min AOQ

Subject to
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P,(n,c; LTFB) <B
n>c
n > 0, integer; ¢ >0, integer

The open form of the model is given by using Eqs. (7.61-7.64).
Objective Function

Min ATI
n+(N—n)x |1— ;e_m% X;“ x LTPD)"
Min AOQ
LTPD x (N —n) x ¢ R IPD (n x LTPD)"
N x=0 x!
Subject to

n > 0, integer; ¢ > 0, integer

Numerical Example-5
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(7.58)
(7.59)

(7.60)

(7.61)

(7.62)

(7.63)

(7.64)

Developed fuzzy multi-objective mathematical model for single sampling plan
shown in Egs. (7.61-7.64) is solved for N = 500, LTPD = TFN(0.02,0.03, 0.04)

and. The obtained results for n, ATI and AOQ are given in Table 7.2.

According to Table 7.2, when LTPD and p re defined as fuzzy numbers, the
smaller values of n, ATI and AOQ are obtained. Table 7.3 gives the comparison of

Table 7.2 The results of n, ATI, and AOQ for single sampling plan given values for

LTPD and P and N = 500

N LTPD Single Acceptance number (c)
sampling plan 1 2 3 4 5
500 | TEN(0.02, 0.03, |n 34 66 100 136 174
0.04) ATI 104.158 [131.915 |160.017 [190.611 |223.688
AOQ 0.0158 0.0147 0.0136 0.0124 0.011
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Table 7.3 The comparison of the values of n, ATI and AOQ for the crisp values of LTPD and
B = 0.10 and the fuzzy values of LTPD and B

Parameters Single LTPD LTPD = TFN(0.02,0.03,0.04)
N ¢ |sampling plan | 03 0.03 0.04
500 1 n 195 130 98 20
ATI 469.748 | 463.301 460.757 | 40.422
AOQ 0.0012 0.0022 0.0031 0.0183
2 n 267 178 134 44
ATI 476,983 | 468.191 464342 | 72.644
AOQ 0.0009 0.0019 0.0028 0.0171
3 n 335 223 168 71
ATI 483,697 | 473459 | 467.603 | 97.211
AOQ 0.0006 0.0016 0.0025 0.0161
4 n 400 267 200 101
ATI 490.036 | 476919 | 470.110 125.551
AOQ 0.0004 0.0014 0.0024 0.0148
5 n 464 311 232 132
ATI 496.410 | 481.654 | 473.276 154.429
AOQ 0.0001 0.0011 0.0021 0.0138

the values of n, ATI and AQO for the crisp values of LTPD and = 0.10 and fuzzy
values of LTPD and B.

7.7.2  Proposed Fuzzy Multiobjective Models for Design
of Double Acceptance Sampling Plan

In the presented model for double sampling plan, the decision maker specifies
consumer’s riskf and LTPD as fuzzy numbers to find the most appropriate sample
sizes n; and n, with minimizing ATl and AOQ. The closed form of the model is
given following equations:

Objective function
Min ATI
Min AOQ
Subject to
Pa(nl,nz;cl,cz;L?I;D)SE (7.65)
ng,n, > 0, integer;cy, c; > 0, integer (7.66)

The open form of the model is given by using Eqgs. (7.67-7.70).
Objective function
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Min ATI
<2 e""XL;’;) x (ng x LﬁD}' dl e’”'xa;b x (ny x LﬁD)X
np+nyx ] - ]
=0 x =0 x
o e—m)(l}?};l; x (ny x LTPD)" 2 e*“lXL/T;/D x (n, x LTPD)"
+ (N—n)x |1- —(,l ) + (N —ny —ny) x —('1 )
=0 x =0 x
A, n.xL’TFb x (n] x Lﬁb).r+ e rx‘xL;FTl) x (ny x L’ﬁﬁD)(mHJ (»3iﬁle ,,3><L?ﬁ) x (3 % L?ﬁD)X
X
x! (er+1)! = x!

x=0

_ e MLIPD s () 5 [TPD)+?) § T2 g m*LIPD o (ny x LTPD) P e MXLTPD o (n, x LTPD)"

(1 +2)! i x! !
% o-mxLTPD
(7.67)
Min AOQ
[ —meVT\P'l‘) PN 1
¢ " X (m x LTPD)" (N =m)+(N—n —m)
— x!
x=0
CLpomxLIPD o (1 x L’T\P*D)XJF - mxLTPD o (m x LTPD)©* 1)
pr x! (et +1)!
LC\’]’D % - - § gt o mxPD o (4, [TPDY . eI o () x [TPD) )
o 2, e mXEPD 5 () x LTPD)* B s x! (er +2)!
=0 ! A, -
. ‘ii’ze’””""’” % (A:lz x LTPD)* - e MXLIPD (nll x LTPD)
— x! !
B
(7.68)
Subject to
e HIPD (g x LTPD)"
|
= x!
X LTPD 5 X LTPD e 1
1 p—mxLIPD (ny x LTPD)XJr e~mXLTPD o (n1 x LTPD)(C”' )
g x! (Cl + 1)!
—ci—1 _ Fhh — . x _ o — b3 ~
el ,—mxLTPD o (nz % LTPD)" . e~MXLTPD o (ny x LTPD)(”‘+ ) <P
X
B — x! (c1+2)!
T g XLIPD 5 () x LTPD)" e M XLIPD o () x LTPD)®
X 1 + e + T
=0 P Ccy-
« g~MXLIPD

(7.69)

ny,ny > 0, integer; ¢y, cy > 0, integer (7.70)
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Table 7.4 The results of n for n;, n,ATI and AOQ for double sampling plan given values for
LTPD and f and N = 500

LTPD Double Acceptance numbers ( ¢; and c;)
sampling 0-1 1-2 2-3 34 4-5
plan
TFN(0.02, n 14 29 49 71 94
0.03,0.04) |, 14 29 49 71 94
ATI 112.956 135.238 175.544 216.570 257.793
AOQ 0.0218 0.0246 0.0243 0.0234 0.0221

Numerical Example-6
Developed fuzzy multi-objective mathematical model for double sampling plan
shown in Eqgs. (7.67-7.70) is solved for

N = 500, LTPD = TFN(0.02,0.03,0.04) and § = TEN(0.10,0.15,0.20). The

obtained results for ny, n,ATI and AOQ are given in Table 7.4.

According to Table 7.4, when LTPD and E are defined as fuzzy numbers, the
smaller values of n;, ny and ATI are obtained. Table 7.5 shows the comparison of

Table 7.5 The comparison of the values of n;, ny, ATI and AQO for the crisp values of LTPD and

B = 0.10 and fuzzy values of LTPD and P
Parameters Double LTPD LTPD
cl & sampling plan 0.02 0.03 0.04 TEN(0.02,
0.03, 0.04)

0 1 n 16 11 8 14

n, 16 11 8 14

ATI 89.294 80.528 70.926 112.956

AOQ 0.0151 0.0230 0.0310 0.0218
1 2 n 36 24 17 29

n, 36 24 17 29

ATI 125.790 100.756 88.238 135.238

AOQ 0.0166 0.0257 0.0347 0.0246
2 3 n 62 41 31 49

- 62 41 31 49

ATI 176.329 132.972 113.837 175.544

AOQ 0.0162 0.0256 0.0349 0.0243
3 4 n 9 61 46 71

n, 92 61 46 71

ATI 234.181 171.887 142.884 216.570

AOQ 0.0152 0.0247 0.0342 0.0234
4 5 n 124 83 62 94

- 124 83 62 94

ATI 294.655 214.481 172.498 257.793

AOQ 0.0140 0.0235 0.0331 0.0221
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the values of ny, ny, ATI and AQO for the crisp values of LTPD and § = 0.10 and
fuzzy values of LTPD and p.

7.8 Conclusion

The complexity of industrial manufacturing is growing and the need for higher
efficiency, greater flexibility; better product quality and lower cost have changed the
face of manufacturing practice. Statistical Quality Control is a tool for developing
required resolution plans against problematic areas of manufacturing practice. One
of the most important subjects of the Statistical Quality Control is acceptance
sampling. Proper design of an acceptance sampling planning usually depends on
knowing the true level of quality required by customers. However, it is some-
times not possible to determine this quality level with certain values. Especially in
production, it is not easy to determine the parameters of acceptance sampling such
as proportion of defect items, sample size, acceptable defect items.

A lot or batch of items can be inspected in several ways including the use of
single, double, multiple, sequential sampling. In this chapter, the parameters used in
acceptance sampling are defined with the help of linguistic variables and fuzzy set
theory has successfully been applied to acceptance sampling to eliminate uncer-
tainty and lack of knowledge mentioned above. We propose fuzzy multi-objective
mathematical models for single and double sampling schemes. As a result it is
obtained that the lower sample sizes in developed single and double sampling plans
under fuzzy environment. For further studies, multi-objective mathematical models
for multiple and sequential sampling schemes can be developed under fuzzy
environment. Also decision trees that identify the causes of the non conformities of
a rejected sample and indicate the appropriate interventions in the manufacturing
process are worthwhile to study for acceptance sampling.
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