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Special Control Charts Using Intelligent
Techniques: EWMA Control Charts
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Abstract In this chapter we consider the economical design of EWMA zone
control charts for set of machines operating under JPS (Jidoka Production System).
We provide an extensive literature review of intelligent systems in quality control
deductively to fit our purposes. It starts with an overview of quality control charts;
then, reviews charts designed for special purposes such as EWMA, CUSUM and
zone control charts. Finally, as particularly related to this study, reviews of eco-
nomical design and intelligent applications of EWMA are provided. We discuss and
review Jidoka Production System and motivation of operating such a system. We
suggest an intelligent control and repair system such that in a production system,
machines are individually controlled and repaired when an out-of-control signal is
triggered in the zone with the tight control limits, however a system-wide shut
down and repair is conducted when the out-of-control signal is from beyond the
inner (tight) control limits which is considered as an opportunity for repair and
calibration of all machines. We illustrate and investigate the behaviour of control
parameters, namely sample size, sampling interval and control limits, via a
numerical study of a three-machine system through simulation. We also provide
insights for implementation of several metaheuristics for the system setting dis-
cussed in this chapter.

Keywords Control charts � EWMA � CUSUM � Intelligent � Jidoka production
system

B. Aslan (&) � Y. Ekinci � A.Ö. Toy
Department of Industrial Engineering, Istanbul Bilgi University,
34060 Eyüp/Istanbul, Turkey
e-mail: bulutaslan@gmail.com

Y. Ekinci
e-mail: yeliz.ekinci@bilgi.edu.tr

A.Ö. Toy
e-mail: ozgur.toy@bilgi.edu.tr

© Springer International Publishing Switzerland 2016
C. Kahraman and S. Yanık (eds.), Intelligent Decision Making
in Quality Management, Intelligent Systems Reference Library 97,
DOI 10.1007/978-3-319-24499-0_4

101



4.1 Introduction

This study suggests an intelligent system approach to the quality control problem of a
production environment. This intelligent system provides controlling particular
decisions automatically, which are once made manually by operators at the job level.
An Exponentially Weighted Moving Average (EWMA) quality control chart, inte-
grated with zone control policy, is intelligently controlled at the system level to
minimize the rate of total cost. This intelligent system will be useful for the com-
panies which use Jidoka Production System and implement statistical process control
tools. The statistical process control (SPC) is a widely used method in quality control.
SPC has been introduced by Walter Shewhart (Shewart, 1924) in 1920s and it is
defined as a technique of monitoring, controlling, and improving a process through
statistical analysis. The advantages of SPC are listed by Parkash et al. (2013) among
which there are improving process performance by reducing product variability,
minimizing rework and loss of sales, and elimination of unnecessary quality checks
and higher quality product by reducing variability and defects. De Vries and Reneau
(2010) state that there are two aspects of the SPC approach: (i) to assist the contin-
uous improvement of performance by further reduction of unexplained variability;
(ii) to detect any variability in the system as quickly as possible.

Benneyan et al. (2003) define the basic principles of SPC as: (i) individual
measurement from any process exhibits variation (ii) variability due to common
cause can be predicted and represented by statistical models such as Gaussian,
binomial, or Poisson distribution, (iii) variability due to assignable cause displays
deviation in some observable way from the aforementioned random distribution
models, (iv) statistical limits can be established to test the data in order to provide
evidence of any change. We refer the reader to Montgomery (1991) for a detailed
description and explanation of SPC.

There are seven basic tools for quality improvement that are used for statistical
process control. These are; check sheet, defect concentration diagram, histogram,
Pareto chart, scatter diagram/chart, cause and effect or fishbone diagram, control
chart. Quality control charts are the most widely used technique and are of concern
in this study.

Quality control charts started to be used in the manufacturing industries in the
1920s, but later implemented in lots of other application areas such as health care
management, epidemiology, animal production systems, service, financial and
agriculture systems, (see De Vries and Reneau 2010; Woodall 2006; Thor et al.
2007; Quesenberry 1997; Montgomery 2009; Solodky et al. 1998 and Diaz and
Neuhauser 2005 for various applications of SPC). We will dwell into control charts
in subsequent sections.

In some processes it may be required to implement more sensitive control charts,
i.e., to detect smaller or moderate sized shifts in the process mean, for which
Exponentially Weighted Moving Average (EWMA) control charts and Cumulative
Sum (CUSUM) control charts have been developed. A large body of literature has
been built on EWMAcontrol charts following the pioneeringwork byRoberts (1959).
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We will present some of recent works on EWMA control charts in the subsequent
sections. We also refer the reader to Page (1954) for CUSUM control charts.

Recognition of any systematic or non-random patterns in observations is of
interest in some cases. In order to pinpoint these patterns, establishment of control
limits at different expanding levels in multiples of process standard deviation is
necessary. Zone control charts are the choice when the concern is to detect sys-
tematic patterns. The zone control charts can be traced back to The Statistical
Quality Control Handbook (Western Electric 1956).

Implementation of control charts in production systems generally assumes that
machines are individually operated and controlled. Therefore, control charts are
designed for each machine considered in isolation. However, this assumption does
not always hold. Recent trends in manufacturing view machines operating in
coordination as a single system, and hence, suggest a central control mechanism.
Jidoka (translated as autonomation) is such a defect detection system, which
automatically or manually stops the production operation whenever an abnormal or
defective condition arises. In the concept of jidoka when a team member encounters
a problem in his or her workstation, he/she is responsible for indicating the problem
by pulling an andon cord, which can stop the line. Hence, when any machine issues
an alarm, a system-wide shut down is triggered and the production is ceased until
the inspection/restoration of the triggering machine. Here, we assume that holding
WIP (Work-In-Process) inventory between the machines, that keeps upstream and
downstream of the line working during restoration of an intermediate machine, is
not feasible or undesirable. Such a production system is denoted as Jidoka
Production System (JPS) by Berk and Toy (2009).

Designing a control chart means to determine the operating parameters, (i.e.,
when to sample, how much to sample and the reference values (control limits) for
an inference about the sample) of a control chart. There are economical, statistical
and economic-statistical procedures of determining these operating parameters
(refer to Montgomery 1980a, b for explanation of these procedures). Our focus in
this chapter is on the economical design of control charts, specifically economically
designing EWMA zone control charts for set of machines operating under JPS.

We suggest a control and repair policy such that in a production system,
machines are individually controlled and repaired when an out-of-control signal is
triggered in the zone with the tight control limits, however a system-wide shut
down and repair is conducted when the out-of-control signal is from beyond the
inner (tight) control limits which is considered as an opportunity for repair and
calibration of all machines. We illustrate and investigate the behaviour of control
parameters, namely sample size, sampling interval, control limits and EWMA
smoothing parameter.

In the sequel, we will provide literature review on intelligent systems in quality
control. Then, we introduce Jidoka Production System as an intelligent QC
approach with our assumptions and the model prior to presenting our methodology
and numerical study. Finally we present our conclusions.
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4.2 Intelligent Systems in Quality Control

Intelligent systems (IS) is a broad term, covering a range of computing techniques
that have emerged from research into artificial intelligence (Hopgood 2012). It is
about generating representations, procedures and strategies to handle tasks that
were once thought only do-able by humans (Schalkoff 2009). The tools of particular
interest are roughly divided among knowledge-based systems, computational
intelligence and hybrid systems (Schalkoff 2009; Negnevitsky 2011; Hopgood
2012). Knowledge-based systems include expert and rule-based systems,
object-oriented and frame-based systems, and intelligent agents. Computational
intelligence includes neural networks, genetic algorithms and other optimization
algorithms (i.e., metaheuristics). Techniques for handling uncertainty, such as fuzzy
logic, fit into both categories. Knowledge-based systems, computational intelli-
gence, and their hybrids are collectively referred to here as IS. When knowledge is
not explicitly stated but represented by numbers, computational intelligence takes
place to improve any system accuracy; where numerical techniques such as genetic
algorithms and neural networks.

This study brings in an IS approach to the quality control problem of a pro-
duction environment. Particular decisions, which are once made manually by
operators at the job level, are now automatically controlled and taken into con-
sideration at the system-level. An EWMA chart, integrated with zone control
policy, is intelligently controlled at the system level to minimize the rate of total
cost.

The following literature review is organized in a deductive way to clearly
underline this study’s contribution. It starts with a generic introduction to quality
control charts; then, an overview of QC charts designed for special purposes such as
EWMA, CUSUM and zone control charts is provided. Subsequently, as particularly
related to this study, studies on economical design and finally intelligent applica-
tions of EWMA are reviewed. Each subsection is chronologically organized on its
own.

4.2.1 Quality Control Charts

Quality control charts, developed by Shewhart (1924), is a statistical tool applied to
detect a shift on the process. In this tool observations are plotted over time to see
whether a process is running as it should be. In this context, a process is said to be
“in-control” if the probability distribution representing the quality characteristic is
constant over time. If there is some change in this distribution the process is said to
be “out-of-control”. Control charts help to distinguish between common causes and
assignable causes and quickly detect occurrences of unplanned assignable causes so
corrective action may be undertaken and the assignable causes are removed.
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Quality control charts are commonly classified into two types: (i) if a control
chart is used to track a quality characteristic which can be measured and expressed
as a number on some continuous scale of measurement, it is usually called a
variable control chart. Conveniently, the quality characteristic is described with a
measure of central tendency (e.g., mean) and a measure of dispersion (e.g., range or
standard deviation). The �X chart is the most widely used chart for controlling the
former, whereas the charts based on the latter, such as R-chart or s-chart, are used to
control process variability; (ii) In cases where quality characteristics are not mea-
sured on a continuous or quantitative scale, control charts are constructed based on
quality conformances and called attribute control charts. Each unit is categorized as
either conforming or nonconforming on the basis of possession of certain attributes
or the number of nonconformities (defects) appearing on a unit of product.

De Vries and Reneau (2010) state that good design of control charts depends on
grouping of observations, the distribution of the process observations, the size of
the process shift of interest, and the costs of Type I and Type II errors. There are
two types of variable control charts that are widely used, namely, �X chart and
R-chart. The �X chart is used to monitor the process mean and the R-chart is used to
monitor variability. For both of them, samples are taken over time and values of a
statistic are plotted. The first quality control chart developed by Shewhart is of type
�X and is slow in detecting the smaller mean shifts. The “variable sampling intervals
(VSI) �X charts” and “variable parameters (VP) �X charts” detect small shifts in the
process mean faster than the standard �X chart (see Costa 1999; Reynolds et al.
1988; Lee et al. 2012 for discussion). CUSUM and EWMA charts are also good
alternatives when the aim is detecting small shifts. However Lee et al. (2012) argue
that their control procedures are not as easy to set up as Shewhart control chart.

A control chart consists of two parts: (i) a series of measurements plotted in time
order, and (ii) the control chart ‘‘template’’ which consists of three horizontal lines
called the center line (typically, the mean), the upper control limit (UCL), and the
lower control limit (LCL) The values of the UCL and LCL are usually calculated
from the inherent variation in the data. The lower control limit and the upper control
limit determine the bounds of the in-control region, i.e. as long as the measurement
of the sample taken falls in between these two lines the process is assumed to be in
the in-control status. Only random causes exist if the sample data points fall
between the two control limits. If the process shifts to the out-of-control status then
we expect that most of the observations are outside the control limits. Moreover,
when in-control, the data points plotted on the chart should be distributed without a
pattern between the control limits. Sometimes the data points are located only on
one side of the center line and close to each other. This also may be an evidence for
a systematic variation, hence, out-of-control state. It is assumed that, at the start of a
production run after the last restoration, the production process is in the in control
status, producing items of acceptable quality. After a period of time in production,
the process may shift to the out-of-control status.

The placing of the control limits on a control chart depends on the cost of false
alarms (i.e., Type I errors) and the cost after a shift occurs but not detected (i.e.,
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Type II errors). The optimal placing of control limits and the optimal frequency of
collecting observations has triggered much research (Montgomery 2009). If the
limits are set too narrow there is a high probability of a ‘‘Type I error’’—mistakenly
inferring assignable cause variation exists when, in fact, a predictable extreme value
is being observed which is expected periodically from common cause variation. On
the other hand, if the limits are set too wide there is a high probability of a ‘‘Type II
error’’.

The control limits are usually set at ±3 standard errors of the plotted statistic
from a center line at its historical average value. Conventionally, “control limits at
3-standard errors from the mean” is robust for observations from most kinds of
distributions but could result in poor performance when unplanned changes are
costly and need to be detected quickly. The formula for the calculation of the
standard error is usually based on a distributional assumption. The control limits for
the Shewhart charts are relatively easy to calculate. Finding the control limits for the
CUSUM and EWMA given a desired rate of false alarms requires special software
or tables. Hawkins and Olwell (1998) present algorithms for control limits on
CUSUM charts.

Process engineers prefer to evaluate the effectiveness of a control procedure in
terms of cost-based performance rather than risk-based performance measures such
as the Type I and Type II errors. A typical example of the cost- based approach for a
control chart is the economic design of the control chart (Park 2013).

4.2.2 EWMA and CUSUM Quality Control Charts

Alluded to above, EWMA and CUSUM control charts are implemented to detect
small and moderate-sized shifts in the process. In EWMA, each point represents the
weighted average of current and certain number of previous observation values,
giving weight on the observations based on the recency. Shewart-type control
charts are not very efficient in detecting small shifts since they only consider the
final observation and do not consider accumulated information of the multiple
observations; EWMA and CUSUM control charts are the methods to overcome this
difficulty.

Neubauer (1997) discusses the properties of EWMA control charts and com-
parison with other quality control procedures. He specifically states, “The EWMA
chart offers a flexible instrument for visualizing imprecision and inaccuracy”. The
properties of the EWMA chart with the constant control limits have also been
studied by Robinson and Ho (1978), Waldmann (1986), Lucas and Saccucci (1990)
and Gan (1991). The four-step procedure for implementing the EWMA chart
established by Crowder (1989) has been discussed in Neubauer (1997).

The smoothing operation in EWMA control charts is achieved through a
“smoothing parameter, λ” which guarantees giving less and less weight to obser-
vations as they are further removed in time. In brief, after multiplication by a factor
λ, the current measurement is added to the sum of all former measurements, which
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is weighted with (1−λ). Thus, at each time epoch t(t = 1,2,…), the test statistic Zt
can be obtained by Eq. 4.1:

Zt ¼ k�Xt þ 1� kð ÞZt�1½ � ð4:1Þ

where �Xt is the mean of current sample and k 2 [0, 1]. The computed Zt values are
displayed on a control chart over time. Since the statistic used is the sample mean in
this particular example, this control chart is called the EWMA-�x chart. Note that
setting the smoothing parameter to unity (λ = 1) in EWMA control chart yields a
Shewhart-type control chart.

In EWMA control charts test statistic computed above is plotted on a chart and
compared with the control limits. A common approach to determining the control
limits (see e.g. Montgomery 1991, p. 300) first requires the calculation of the
variance of the test statistic, Zt, which is given in Eq. 4.2:

r2t ¼ ½r2=n�½k=ð2� kÞ�½1� ð1� k2tÞ ð4:2Þ

where we assume that the individual observations (sample mean) are independent
random variables with variance r2.

The variance calculation above enables us to derive the following control limits
for the EWMA control chart (Eqs. 4.3 and 4.4):

UCL ¼ l0 þ Lr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k

� �
½1� ð1� kÞ2t�

s
ð4:3Þ

LCL ¼ l0 � Lr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k

� �
½1� ð1� kÞ2t�

s
ð4:4Þ

where L is the coefficient which defines “the width of the control limits”. As the
sample number, t, gets larger control limits converges to, so called, the steady-state
EWMA control limits, which are given by Eqs. 4.5 and 4.6:

UCL ¼ l0 þ Lr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k

� �s
ð4:5Þ

LCL ¼ l0 � Lr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k

� �s
ð4:6Þ

It is important to note, however, that the expression for the variance of Zt for
t > 1 is derived by ignoring the truncation effects of the control limits employed at
the previous t−1 samples. Thus, using a constant multiple of the standard deviation
to give the control limits is done somewhat arbitrarily.
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Vargas et al. (2004) provides insights for choosing smoothing parameter,k; and
for the coefficient of the width of the control limit interval, L. They state that, in
practice, values between 0.05 and 0.25 for the smoothing parameter work well, with
the popular choices being 0:05; 0:10 and 0.20; and the usual three-sigma limits
(L = 3) work reasonably well particularly with the larger values of k. Montgomery
(1996) suggests that when k is small, (k� 0:1Þ, there is an advantage in reducing
the width of limits, using a value of L between 2.6 and 2.8.

We next provide a brief review of CUSUM control charts. The CUSUM and
EWMA control charts differ from each other in incorporation of the smoothing
parameter in EWMA control charts, which allows the adjustment of shift sensi-
tivity. The CUSUM control chart was initially proposed by Page (1954) and has
been widely studied and implemented then on. CUSUM chart attributes equal
weight to all observations independent of their recency.

Like EWMA control charts CUSUM control charts also incorporate past
observations and are therefore sensitive to detecting small shifts in the process.
The CUSUM charts are available for distributions such as the Normal, Binomial,
Poisson, and Weibull.

In CUSUM charts, each plotted point represents the algebraic sum of the pre-
vious observations and the most recent deviation from the target (Parkash et al.
2013). Assuming that samples of size n ≥ 1 are collected, �xj is the average of the jth
sample and l0 is the value wanted for the process average, the CUSUM control
chart is formed by the formula resulting quantity along with sample i (Vargas et al.
2004) (Eq. 4.7):

Ci ¼
Xi

j¼1

ð�xj � l0Þ ð4:7Þ

where Ci is the cumulative sum including the ith sample, since they combine
information from several samples. If the process keeps in control at the target value
l0, the cumulative sums describe a random way. On the other hand, if the average
changes to any value above l1 [ l0, then an ascendant tendency will develop at the
cumulative sum Ci. Reciprocally, if the average changes to some value below
l1\l0, the cumulative sum Ci will have a negative direction. Considering this, if at
the demarcated points a tendency up or down appears, it must be considered as an
evidence of process average change, and a search for the assignable causes must be
done (Vargas et al. 2004). The main advantage of CUSUM charts is that it is very
effective for small shifts and samples of size n = 1. The main disadvantage is that
they are relatively slow to respond to large shifts and special patterns are hard to see
and analyze.

Montgomery (2013) states that the general consensus is that the practical per-
formances of the CUSUM and EWMA are quite similar and neither of them has a
clear advantage over the other. Thus, users only need to implement one or the other
to monitor their process. The CUSUM chart has a well-known optimality property:
if a shift occurs in steady state, the CUSUM to which it is tuned has a faster average
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response than does any other chart (Hawkins and Olwell 1998; Hawkins and Wu
2014). Vargas et al. (2004) present a comparative study of the performance of the
CUSUM and EWMA control charts. Their objective is to verify when CUSUM and
EWMA control charts do the best control region, in order to detect small changes in
the process mean. One of the results they come up with after several simulations is
that the CUSUM control chart practically does not sign points out of control for the
levels of variation between ±1.0 standard deviation; for these variation levels the
EWMA control chart is more efficient. In a recent study, Hawkins and Wu (2014)
conclude that, though the CUSUM outperforms the EWMA, if the actual shift is
smaller than that used in the design, the EWMA may respond faster. Recently,
synthetic EWMA (SynEWMA) and synthetic CUSUM (SynCUSUM) control
charts have been proposed based on simple random sampling (SRS) by integrating
the EWMA and CUSUM control charts with the conforming run length control
chart, respectively. Haq et al. (2014) state that these synthetic control charts provide
overall superior detection over a range of mean shift sizes.

Recently, Abbas et al. (2012) introduced the design structure of a mixed
EWMA-CUSUM (MEC) control chart for improved monitoring of the process
parameters. In their study, the EWMA statistic is used as the input for the CUSUM
structure. Zaman et al. (2014) propose a reverse version of this mixing, that is, a
mixed CUSUM-EWMA (MCE) control chart. In this new setup, the CUSUM
statistic will serve the input for the EWMA structure. MCE control chart is used to
monitor the location of a process. The performance of the proposed mixed
CUSUM-EWMA control chart is measured through the average run length, extra
quadratic loss, relative average run length, and a performance comparison index
study. The analysis has revealed that the proposed MCE control chart is very
sensitive for the detection of small and moderate shifts and offers a quite efficient
structure as compared with existing counterparts. The relative performance of the
proposed chart as compared with the other charts varies depending on the amounts
of shifts.

4.2.3 Zone Control Charts

It may be of interest to recognize any systematic or non-random patterns in
observations. Establishing control limits at different expanding levels in multiples
of process standard deviation facilitates to pinpoint any patterns. Zone control
charts are the choice when the concern is to detect systematic patterns. The zone
control charts can be traced back to The Statistical Quality Control Handbook
(Western Electric 1956) in which it has been suggested that the process is con-
cluded to be out-of-control if either (1) one point plots outside the three-sigma
control limits, (2) two out of three consecutive points plot beyond the two-sigma
warning limits, (3) four out of five consecutive points plot at a distance of one sigma
or beyond from the center line, or (4) eight consecutive points plot on one side of
the center line.
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Jaehn (1987, 1989) suggests a zone chart with eight zones, four on each side of
the center line. Scores are assigned to each zone, and the procedure signals an
out-of-control status when the total score exceeds a threshold value. Likewise, Flaig
(2004) proposed a zone control chart that partitions the normal process distribution
into regions and assigns a score to each region. A normal process distribution is
partitioned as follows (Table 4.1):

An illustration of the above rules is depicted in Fig. 4.1 (excerption from Flaig
2004). In the figure, the chart starts with current score of zero and a cumulative
score of zero. As additional observations are recorded, the cumulative score is
adjusted using the following rules (Flaig 2004).

1. if observation i and observation i−1 are on different sides of the center line, then
the cumulative score at i is set to the zone score at i

2. if observation i and observation i−1 are on the same side of the center line, then
add the current score at i to the cumulative score at i−1.

3. If the cumulative score reaches 8, then an out of control signal is generated.

Performance of zone control charts, in the presence of a constant process mean,
has been studied by Davis et al. (1990, 1994). The latter paper showed that in the
presence of a constant process mean, a zone control chart with appropriate
parameters has superior performance compared to the corresponding Shewhart
chart with some combination of supplementary runs rules (Davis and Krehbiel
2002). Davis et al. (1994) proposed a general model for the zone control chart. In
this model, any zone control chart is based on a cumulative score, which begins at
zero. The cumulative score for the zone control chart with score vector S = (A1, A2,
A3, M) is incremented based on how many standard errors (s.e.) a sample mean is
away from the target mean, with zone scores assigned as follows (Table 4.2):

Table 4.1 Zone control chart
scores

Zone Score

Centerline 0

Between center and one sigma 1

Between one and two sigma 2

Between two and three sigma 4

Beyond three sigma 8

Table 4.2 Zone control chart
scores in the study of Davis
et al. (1994)

Zone Score

Within one s.e. of target A1

Between one and two s.e. from target A2

Between two and three s.e.from target A3

Beyond three s.e. from target M
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The cumulative score after any given sample consists of the score for the most
recent sample mean added to the previous cumulative score. The only exception is
when two successive sample means fall on opposite sides of the target; in this case,
the cumulative score is reset to the score for only the most recent sample mean.
Thus, if the process is in control, the sample means will fall on either side with a
probability of 1/2 and the cumulative score will reset fairly frequently instead of
continuing to get larger. If the cumulative score reaches or exceeds M, the chart
generates an out-of-control signal (Davis and Krehbiel 2002; Davis et al. 1994).

In another paper, Davis and Krehbiel (2002) studied the average run length
performances of Shewhart charts with supplementary runs rules and zone control
charts when the process mean changes linearly over time. Shewhart charts with all
possible combinations of the typical runs rules are compared to zone control charts
with identical false alarm rates. The zone control charts generally outperform the
Shewhart charts in detecting a process mean that is changing linearly over time.

4.2.4 Economical Design of Quality Control Charts

Economic design of control charts has been extensively studied since the pioneering
work of Duncan (1956). Duncan (1956) studied on the economic design of �X charts
used to maintain current control of process, developed a cost model and solved for
the design parameters (sample size, sampling interval, and control limit coefficient).
Since then, there has been an increased interest in the economic design of the
control charts in the late 1980s and early 1990s in accordance with developments in
lean management of production systems (e.g., Montgomery 1980a, b; Vance 1983;
Woodall 1986; Pignatiello and Tsai 1988; Niaki et al. 2010, 2013). A detailed
explanation of construction of economically designed control charts is provided by
Montgomery (1980a, b) and Ho and Case (1994b).

Fig. 4.1 Zone chart (Flaig 2004)
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In economic design, parameters are determined such that the total cost associated
with the implementation of quality control policy is minimized. In a regular �X
control chart, these parameters consist of the sample size, the time interval between
two consecutive sampling, the coefficient (multiple of standard deviation) that
specifies the Upper Control Limit, and the Lower Control Limit.

The economic models are generally formulated using the total cost per unit time
function. Overall production time is divided into stochastically identical cycles.
Each cycle starts with the production in the in-control status. When, at some
sampling instance, control chart indicates an out-of-control status (denoted as an
alarm) a search for the assignable cause is conducted and if discovered the process
is stored to the in-control status. The time between these two time points is called a
cycle. Hence the expected cost within this cycle is computed and divided by the
expected duration of the cycle. Minimization of this cost rate yields the design
parameters of the control chart.

The study of Lorenzen and Vance (1986) proposed a general cost model that
applied to all control charts, regardless of the statistic used. Later, several studies
(Montgomery et al. 1995; Reynolds et al. 1988; Costa 1993;Torng et al. 2009a, b;
Nenes 2011; Lee et al. 2012) focused on the design of various control charts and
minimize the costs of process control (Niaki et al. 2011).

The weaknesses of the economic design of control charts approach have been
highlighted by Woodall et al. (1986) and Woodall (1987). Despite the problems, the
economic design of control charts is appealing to process engineers since the
effectiveness of the control chart procedure is explained in terms of cost (Park
2013).

There have been studies in the literature, which consider economical design of
control charts other than �X charts. Next we will dwell into economic design of
EWMA control charts by providing reviews of some milestone and recent papers.
The very first work on the economical design of EWMA control charts is by Ho and
Case (1994b). Tolley and English (2001) studied the economic design of EWMA
control chart and EWMA-�X chart, and provide a comparison of the two. One of the
studies in the last decade belongs to Park et al. (2004), who looked into the eco-
nomic design of an adaptive EWMA chart. In this study, the user changes the
sampling interval and/or sample size dynamically based on the current chart
statistic. Chou et al. (2008) presented economic design of Variable Sampling
Intervals EWMA (VSI EWMA) control charts with sampling at fixed times. The
two more recent studies dealing with joint economic design of EWMA charts for
the process mean and dispersion have been performed by Serel and Moskowitz
(2008) and Serel (2009). In the study of Serel (2009) the case where the assignable
cause changes only the process mean or dispersion is explored. The economic
design of the single control chart used for monitoring the process parameter (mean
or variance) influenced by the assignable cause is the main concern in this study. It
suggests that using a different type of quality loss function (linear versus quadratic)
leads to a significant change in sampling interval while affecting the sample size
and control limits very little. It is also observed that the overall costs are insensitive
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to the choice of Shewhart or EWMA charts. Various authors have and studied
meta-heuristic applications in economical design of EWMA control chart, we
discuss these works in later sections.

To the best of our knowledge, the only work that considers economic design of
zone control charts is by Ho and Case (1994a). In their study, based on factors such
as performance, simplicity, efficiency, ease of use, and ease of understanding, they
recommend the joint Zone Control Chart.

4.2.5 Intelligent Applications of Ewma QC Chart

In this study and in most of the studies on economical design of quality control
charts, classical optimization methods are used. Typically, the optimization problem
of EWMA charts contains both, continuous (e.g., smoothing parameter) and dis-
crete (e.g., sample size) decision variables. This produces a discontinuous
non-convex solution space exists, standard non-linear programming techniques may
prove to be ineffective (He et al. 2002; Aparisi and Garcia-Diaz 2007). Hence, here
comes the computational intelligence into place which is employed in order to solve
that optimization problem. Among several intelligent applications of EWMA
quality control charts, metaheuristic applications have outnumbered the rest in the
quality control area. Besides, we review a few but worthwhile efforts deploying
evolutionary methods and neural networks in EWMA quality control chart design.

In the recent years metaheuristic approaches have been widely used to investi-
gate the economic design of EWMA control charts. For instance, a study by Niaki
et al. (2011) models and solves the economic and the economic-statistical design
problems of Multivariate EWMA (MEWMA) control charts by a Particle Swarm
Optimization (PSO) approach. Yet another economical design was conducted by
Chou et al. (2008) who focused on variable sampling intervals of EWMA charts
with sampling at fixed times using genetic algorithms. In fact, Genetic Algorithms
are one of the most widely used heuristics. Aparisi and García-Díaz (2004)
employed an GA optimization of Average Run Length (ARL) of EWMA and
multivariate EWMA charts with respect to smoothing parameter and control limits,
given that sample size n is 1. The authors further improved this setting where
detection of small shifts is not necessary, while shift detecting is still important
(Aparisi and García-Díaz 2007).

Sample size is added as another integer decision variable; and a third zone is
defined where it is insignificant whether the process shift is detected or not.

Seeking a different heuristic approach, Niaki and Ershadi (2012) applied an
ant-colony optimization of the economic-statistical design model of the MEWMA
control chart in which the main parameters of the employed ant colony algorithm are
tuned by means of a response surface methodology approach. Similarly, Zhou and
Zhu (2008) used Grid Search minimization of the (hourly) cost of the integrated
model (SPC and Preventive Maintenance) with respect to sample size, sampling
interval, control limits, and inspection interval. To improve that Charongrattanasakul
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and Pongpullponsak (2011) contributed to the usual zone control policy, by adding
another zone, called warning zone, and increased the set of four decision variables of
Zhou and Zhu (2008) to six variables. In other words, the (hourly) cost of the
integrated model (SPC and Preventive Maintenance) was minimized using GA with
respect to the decision variables of sample size, sampling interval, warning control
limits, the number of subintervals between two consecutive sampling times, and the
number of samples taken before Planned Maintenance. This case revealed an
interesting point such that the addition of the warning zone caused an overall increase
of the total costs, due to increased ability of defective product detection which
resulted to the increase of repairing and maintenance of machines; thus the hourly
cost got higher. Other successful applications of Genetic Algorithms (GA) in the
economic designs of control charts can be found in Saghaei et al. (2013), Celano and
Fichera (1999), Chou and Chen (2006), Vommi and Seetala (2007), Torng et al.
(2009a, b), and Lin et al. (2012). Besides these heuristics widely used in several areas
of Operations Management, the real AI applications of EWMA charts achieved their
potential in the semiconductor industry.

Since early 90s, EWMA has been popular in the semiconductor industry to
maintain process targets over extended periods for improved product quality and
decreased machine downtime (Spanos 1992; Su and Hsu 2004b). However, the
several process factors (alternating in time) are thought to determine the ‘best’ value
for an EWMA smoothing parameter. Smith and Boning (1997a, 1997b) proposed a
self-tuning EWMA controller which dynamically updates its smoothing parameter
by estimating the disturbance state and using the Artificial Neural Network
(ANN) function mapping to provide updates to the controller parameters. Similarly,
Su and Hsu (2004a) applied ANN for online tuning of EWMA smoothing
parameter. The underlying approach indicated that the network learns very quickly
when taking autocorrelation function and sample partial autocorrelation function
patterns as the input features. Fan and Wang (2008) further contributed to this
setting by incorporating a multivariate double EWMA component (i.e., EWMA
having two smoothing parameters, coined for semiconductor industry by Butler and
Stefani 1994). All these studies were conducted and results obtained in a simulation
environment.

The next section introduces the concept of jidoka and its use within the model of
this study as an intelligent quality control procedure.

4.3 Jidoka Production System as an Intelligent QC
Approach

The proposed intelligent system provides controlling particular decisions auto-
matically, which are once made manually by operators at the job level in a Jidoka
Production System. The entrance of Japanese goods in western markets was a
subject of discussion in American business in the 1970s (Schonberger 2007) and
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since then, academia has used many terms to explain this phenomenon, including
Toyota Production System (TPS) also known as Lean Manufacturing (Monden
1983; Hoss and ten Caten 2013). Toyota Production System proposes factory
designers to combine inspections with operations (Kim and Gershwin 2005). By
this way, the production quality is increased and much more benefits are gained.
Hoss and ten Caten (2013)suggest implementation of functions such as just in time
(JIT) and jidoka to achieve high quality, low cost, and low lead time.

TPS is frequently modelled as a house with two pillars (see Fig. 4.2). The top of
the house consists “highest quality, lowest cost, shortest lead time”, whereas one of
the two pillars represents just-in-time (JIT), and the other pillar the concept of
jidoka. Jidoka (translated as autonomation) is a defect detection system, which
automatically or manually stops the production operation whenever an abnormal or
defective condition arises. The manufacturing system introduced will not stand
without both of the pillars. Yet many researchers and practitioners focus on the
mechanisms of implementation—one piece flow, pull production, tact time, stan-
dard work, kanban—without linking those mechanisms back to the pillars that hold
up the entire system. While the majority of the studies in the literature have focused
on the problems of the first pillar (JIT), two research articles by Kim and Gershwin
(2005) and Berk and Toy (2009) are two notable exceptions for the other pillar
(Hoss and ten Caten 2013). We can state that a lot of failed implementations can be
traced back to not building this second pillar. In the concept of jidoka when a team
member encounters a problem in his or her workstation, he/she is responsible for
correcting the problem by pulling an andon cord, which can stop the line. The
objective of jidoka can be summed up as: Ensuring quality 100 % of the time,
preventing equipment breakdowns, and working efficiently.

TPS advocates think that mechanical and human jidoka prevent the waste that
would result from producing a series of defective items. Hence, jidoka can be

Fig. 4.2 The house of toyota
production system (Ohno
1988)
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defined as a means to improve quality and increase productivity at the same time
(Shingo 1989; Toyota Motor Corporation 1996; Kim and Gershwin 2005). Berk
and Toy (2009)consider design of control charts in the presence of machine stop-
pages that are exogenously imposed (as under jidoka practices). Here, each stop-
page creates an opportunity for inspection/repair at reduced cost. They first model a
single machine facing opportunities arriving according to a Poisson process,
develop the expressions for its operating characteristics and construct the opti-
mization problem for economic design of a control chart. Afterwards, they consider
a multiple machine setting where alarms about the quality status of the machines
cause system-wide stoppages as it is the case under jidoka practices. Their findings
indicate that ignoring exogenous inspection/repair opportunities and employing the
classical QC chart parameters may result in significant cost increases.

4.3.1 Model Description

In the model described herein, we consider a multiple machine environment. In this
environment, machines are operated and controlled individually. Each machine is
controlled through a separate control chart. EWMA procedure is employed with
multiple control limits; hence there are zones in the control charts. We use 2-zone
control chart.We specify tight control limits (UCLt and LCLt) and loose control limits
(UCLl and LCLl). The zone between the tight control limits is the inner zone and the
zone between tight and loose control limits identifies the outer zone. Inner zone is
where the process is considered to be in-control. A different inspection and repair
policy is defined for outer zone and outside the control limits. A test statistic, Zt,
(exponentially weighted moving-average values of the sample means) which lies in
the outer zone and outside the control limits is denoted as an alarm for the system.

Production system considered herein is assumed to be part of Jidoka Production
System. Whenever a machine raises an alarm, all the system stops, i.e. the pro-
duction is ceased. In the policy we suggest, these overall system stoppages due to
individual machine alarms create opportunities for other machines to be inspected
and repaired. This opportunity is taken only if the test statistic, Zt lies beyond the
loose control limits. That is, all the machines in the system are inspected and
repaired, yielding in-control machines at the next system re-start instance. The time
and cost of inspection/repair for each machine at a system stoppage are computed as
follows: The alarm-raising machine(s) incur the downtime cost related to its own
inspection/repair time. Among the remainder, the machine(s) with the longest
inspection/repair time will have an available duration (as an opportunity for pre-
ventive maintenance) equal to the inspection/repair time of the alarm-raising
machine(s). There will be no additional delay if these durations are equal to each
other; otherwise, there will be some extra delay and machine experiencing the
longest inspection/repair time will incur the additional downtime cost. However,
when the system is stopped due to a Ztvalue in the outer zone, only the machine(s)
raising alarm is (are) inspected and repaired. As shutdowns are not utilized for
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inspecting other machines, the downtime cost is charged only to the self-stopping
machine in this case.

In the model description below we retain the notation used in Berk and Toy
(2009). Let M be the set of machines working in coordination, and let m denote the
number of machines. The set of machines may comprise non-identical machines.
Hence, when the machines have different reliability, restoration times, sampling
interval etc., inspection opportunities may be beneficial, i.e., resulting in cost
reduction, for some machines, it may be not beneficial, i.e., increasing the cost for
the others.

Every machine i(2 M), is subject to control with an EWMA control chart.
A sample of size y(i) is taken with h(i) time intervals, test statistic Zt is computed.
The EWMA values of the quality specification of the sample weighted by λ, is
plotted on a control chart. If the EWMA value of machine i falls outside the loose
control limits (k2) defined by Eq. 4.8.
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all machines are stopped. If it falls between the loose and tight control limits (k1) for
machine i, the latter defined by
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only that particular machine is stopped. A sample results in a false alarm with
probability α (Type I error) and a true alarm with probability (1− β) (complement of
Type II error). Clearly, α and β are related to k1, k2, λ, y and for a normal variate
Z. If the process faces an exogenous shutdown triggered by another alarm-raising
machine, its operator uses this stoppage as an opportunity to carry out an inspection
of the process although no signals have been received from the control chart to
initiate one. On inspection, if the process is found to be in the out-of-control status,
the opportunity is said to be a true opportunity, which is followed by a complete
restoration of the process to the in-control status; otherwise, the opportunity is a
false opportunity, which requires no adjustment. Type I and Type II errors for
multiple machine with two zone control limits (α1, α2 and β1, β2) are as follows
(Eqs. 4.10, 4.11, 4.12, 4.13):
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Next we define the costs associated with the quality control of the systems. We
consider three categories of quality costs: (i) sampling cost, (ii) the cost of operating
in the out-of-control state, and (iii) the inspection and repair cost.

Sampling Cost: The sampling cost has two components, fixed and variable.
Fixed component is denoted by u and is incurred at each sampling instance whereas
variable component, y, is associated with the sample size and incurred at each
sampling instance, as well. Hence, the total sampling cost is given by u + by.

Cost of Operating in out-of-control state: once the process shifts to the
out-of-control state, any product processed in a stage (machine) is considered to be
defective hence requires rework. The cost associated with these sub-standard
products is denoted by a per time unit.

Inspection and repair cost: When a machined is stopped by an alarm, an
inspection is conducted immediately and if shift is detected a repair operation is
conducted. Since the system stops until inspection and repair operations completed
we assume that there is a lost profit cost associated with idle time. The idle time is
related with the system status at the stoppage instance; i.e., if the process has shifted
it requires a time for both inspection and repair, however if the process has not
shifted the idle time is only as much as the inspection time. The elapsed time until
the process shift is distributed exponentially with mean θ. This cost component is
computed as πLs, where π is the profit (lost) per unit of time and Ls denotes the
downtime of the process. Depending on the status of the machine at the stoppage
instance repair cost varies, as well. Such that shifted process costs more than the
non-shifted process, in terms of labour hours and spare parts.

Our objective is to economically and jointly design the control charts of all
machines resulting a minimum system-wide cost rate. Control parameters of this
system are same as the regular control charts. Specifically, we decide on the sample
size (y), sampling frequency (h), control limits (k1, k2) and smoothing parameter (λ)
which minimizes the expected cost per unit time.

4.4 Numerical Study

Three-machine setting with two zone control policy is simulated using the
parameter sets below which results in 54 experimental instances. In each combi-
nation, an exhaustive search over the variable set (within the provided intervals) has
been performed in order to find the ‘best (minimum)’ overall system cost rate.
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The results are compared with the case where autonomation (or JPS) is not applied.
Namely, the same experimental instances are simulated for the three independent
machine system, i.e., for each machine a separate control chart is maintained, hence
only self-stoppages are allowed.

The parameter ranges for our experimental set: variable cost (per sample) cost of
sampling, b = 0.1; fixed cost of sampling u = 5; true and false alarm repair costs,
RT = RF = 0; true and false alarm idle times, LT = LF = L, with L 2{0.05, 0.10, 0.15};
profit per unit time, π 2 {500, 1500}; process mean shift rate, θ 2 {0.01, 0.05, 0.1};
and the per time cost of operating in out-of-control state, a 2{50, 250, 500}.

The domains for our decision variables, in which we performed an exhaustive
search, are as follows: [1, 10] for the sample size (y), [0.01, 10] for sampling
frequency (h), [1, 2] and [k1, 3] for the control limits (k1, k2), and [0, 0.5] for

Table 4.3 Comparative results with improvement percentage for π = 500

Case # L θ a No System cost Improvement

JPS policy Under JPS policy (%)

1 0.05 0.01 50 10.98 8.58 22

2 250 24.01 18.45 23

3 500 31.76 25.25 20

4 0.05 50 23.72 21.44 10

5 250 55.68 44.59 20

6 500 77.11 59.89 22

7 0.1 50 34.38 29.34 15

8 250 71.77 59.86 17

9 500 107.2 100.12 7

10 0.1 0.01 50 14.36 10.98 24

11 250 32.2 25.38 21

12 500 44.62 31.7 29

13 0.05 50 32.65 25.43 22

14 250 72.24 58.1 20

15 500 103.4 74.33 28

16 0.1 50 44.46 37.03 17

17 250 96.78 77.19 20

18 500 131.3 106.34 19

19 0.15 0.01 50 17.86 14.28 20

20 250 36.26 28.03 23

21 500 52.54 37.77 28

22 0.05 50 37.3 33.54 10

23 250 85.05 67.31 21

24 500 119.05 91.13 23

25 0.1 50 51.2 47.07 8

26 250 117.05 106.56 9

27 500 152.72 116.2 24
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smoothing parameter (λ). Considering the time-related variables and parameters, the
cases were simulated for a reasonably long final simulation run time and replicated
4.5 times on average. On the completion of each replication (50,000 time units), the
domains of all decision variables were shrunk to narrower domains and another
replication was performed. An improvement in total quality cost was generally
observed after each replication, yet whenever the cost got worse the simulation was
run for 150,000 time units using the parameter set resulting the lowest cost.
Therefore, the number of replications depended on the quality cost of the penul-
timate replication.

Tables 4.3 and 4.4 presents the resulting costs of 54 different cases, which are
the combinations of different parameters explained above. The costs under JPS
policy and classical policy are given in the tables together with the percentage

Table 4.4 Comparative results with improvement percentage for π = 1000

Case # L θ a No System cost Improvement

JPS policy Under JPS policy (%)

28 0.05 0.01 50 17.16 13.54 21

29 250 38.97 29.4 25

30 500 55.03 42.03 24

31 0.05 50 37.63 33.26 12

32 250 87.45 71.43 18

33 500 126.63 102.17 19

34 0.1 50 54.96 45.72 17

35 250 122.83 102.7 16

36 500 166.72 142.92 14

37 0.1 0.01 50 25.6 21.99 14

38 250 54.66 43.9 20

39 500 76.06 56.73 25

40 0.05 50 50.23 46.87 7

41 250 121.21 95.68 21

42 500 170.32 127.29 25

43 0.1 50 65.93 62.76 5

44 250 167.55 135.66 19

45 500 235.49 188.66 20

46 0.15 0.01 50 30.94 28.9 7

47 250 66.65 51.57 23

48 500 91.31 67.88 26

49 0.05 50 59.35 54.61 8

50 250 148.03 130.6 12

51 500 207.68 175.27 16

52 0.1 50 76.29 80.94 −6

53 250 198.38 169.32 15

54 500 276.1 225.02 19
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of improvement. It can be clearly observed that, only one case does not show
improvement under the JPS policy. The reason for this specific case is that, the
computation time was significantly long for this parameter set and an adequate
exhaustive search was not performed. The minimum improvement is 5 %, average
improvement is 18 % and maximum is 29 % for all 54 cases. Hence we can
conclude that JPS policy is significantly superior than the classical policy. The
minimum improvement (5 %) is obtained in the case where L = 0.10, π = 1500,
θ = 0.10, and a = 50. The maximum improvement (29 %) is obtained in the case
where L = 0.10, π = 500, θ = 0.01, and a = 500.

We observe that system costs increase when a increases while other parameters
are kept constant. Another result that can be derived from Table 4.4 is that
improvement in the cost decreases when π increases from 500 to 1500 except for
the cases where L = 0.05. Table 4.3 shows the results where π = 500 and Table 4.4
shows the results where π = 1000. The average improvement in Table 4.3 is 19 %
while it is 16 % in Table 4.4. It is also seen from the results that, the improvement
percentage decreases when θ increases. For instance, the average improvement
percentage for the first three combinations, where θ = 0.01 is approximately 22 %
while it is 17 % for the next three cases where θ = 0.05, and 13 % for the cases
where θ = 0.1. Similar pattern can be seen for the other case groups. However, we
do not observe any significant pattern in the improvement percentages with respect
to L.

4.5 Conclusion

In this article, we give an extensive literature review on quality control charts and
we specifically consider the intelligent systems of economical design of EWMA
zone control charts in the presence of machine stoppages that are exogenously
imposed. Each stoppage creates an opportunity for inspection/repair at reduced cost.
We consider a multiple machine setting where alarms about the quality status of the
machines cause system-wide stoppages as it is the case under Jidoka practices. In a
numerical study for three machine setting to investigate the cost advantages of
employing the models herein versus the classical model where JPS is not used. Our
findings indicate that ignoring exogenous inspection/repair opportunities and
employing the classical QC chart parameters may result in significant cost
increases. The average improvement percentage in cost under classical policy and
JPS policy is 18 %, which shows that the performance of our model is really high.
Hence we can conclude that JPS policy is significantly successful than the classical
policy.

There are a number of extensions to our basic model. Herein, we consider only
the design of �X control charts in our numerical study, but our model can be applied
to other variable and attribute-control charts. Similarly, different design criteria
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(semieconomic and statistical) can be considered, as well. For the future research,
further applications of metaheuristics are also encouraged for the economic design
of quality control charts.
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