
Chapter 2
Intelligent Process Control Using Control
Charts—I: Control Charts for Variables

Murat Gülbay and Cengiz Kahraman

Abstract Shewhart’s control charts are used when you have enough and exact
observed data. In case of incomplete and vague data, they can be still used by the help
of the fuzzy set theory. In this chapter, we develop the fuzzy control charts for
variables, which are namely X and R and X and S charts. Triangular fuzzy numbers
have been used in the development of these charts. Unnatural patterns have been
examined under fuzziness. Besides, fuzzy EWMA charts have been also developed in
this chapter. For each fuzzy case, we present a numerical example.

Keywords Shewhart’s control charts � EWMA control charts � Fuzzy sets �
Triangular fuzzy numbers � Unnatural pattern

2.1 Introduction

Process control is an engineering discipline dealing with maintaining the output of a
specific process, generally called a quality characteristic, within a desired range.
Type of processes using the process control can be categorized into three main
groups which are discrete, batch, and continuous processes. Applications having
elements of both discrete, batch and continuous process control are often called
hybrid applications.

A process may either be classified as “in control” or “out of control”. The
boundaries for these classifications are set by calculating mean, standard deviation,
and range from a set of process data randomly collected when it is under stable
operation. Based on the statistical methods, analytical decision-making tools which
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allow practitioners to measure, monitor, and control the process behavior working
normally or not, are called “Statistical Process Control (SPC)”. The most successful
SPC tool is control charts, originally developed by Walter Shewhart in the early
1920s. Comparing with boundaries of a stable process with a graphical display,
they enable online data tracing and abnormal conditions warning, which are an
essential tool for continuous quality control. Basically, the control charts are the
graphical display of a quality characteristic that has been measured or computed
from a sample versus the sample number or time to monitor and show how the
process is performing and how the capabilities are affected by changes to the
process. This information is then used to make quality improvements. The control
charts attempt to distinguish between two types of process variation that impede
peak performance. These variations are as follows:

• Common cause variation, which is intrinsic to the process and will always be
present.

• Special cause variation, which stems from external sources indicating that the
process has assignable situation(s).

Based on the monitored quality characteristics in numerical or in “conforming”
or “nonconforming” measurements, the control charts are categorized into two main
groups, variables and attributes. This chapter deals with the control charts for
variables. The most commonly used control charts for variables use the mean (x; l),
range (R), and standard deviations (σ, s) in terms of paired X and R charts, paired X
and s charts, and moving average charts.

2.2 Classical Shewhart Control Charts for Variables

2.2.1 X and R Control Charts

Many quality characteristics can be expressed in terms of a precise numerical
measurement. One of the efficient ways of determining whether the process is in
control or not is checking the process mean and process variability. X Charts are
used to control the process mean while R charts are used to control the process
variability. In general, they are paired and interpreted by looking both of the control
charts. When the sample size is constant and relatively small, say n ≤ 10, the usage
of X and R charts advantageous.

2.2.1.1 Control Limits for X and R Control Charts

Suppose that a quality characteristic “X” is normally distributed with the parameters
of l and σ both known. For a sample size of n (X1, X2, …, Xn), the average of the
sample is
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X ¼ X1 þX2 þ � � � þXn

n
ð2:1Þ

and it is known that x is normally distributed with mean l and standard deviation
rx ¼ r=

ffiffiffi
n

p
. The probability is 1 − α that any sample mean will fall between

lþ za=2rx ¼ lþ za=2
rffiffiffi
n

p and l� za=2rx ¼ l� za=2
rffiffiffi
n

p ð2:2Þ

If l and σ are known, Eq. 2.2 can be used as upper and lower control limits on a
control chart for sample means. It is customary to replace za=2 by 3, so that
three-sigma limits are employed.

In practice, we do not know l and σ and estimate them from preliminary samples
or subgroups usually based on at least 20–25 samples taken when the process is
thought to be in control. If m samples are available, each containing n observations
on the quality characteristic. Let X1; X2; . . .; Xm be the average of each sample.
Then, the best estimator of the process average l is the grand average, and would be
used as the center line of the X chart.

X ¼ X1 þX2 þ � � � þXm

m
ð2:3Þ

The range of a sample (R) is the difference between the largest and smallest
observations and the average range R

� �
can be written as given in Eqs. 2.4 and 2.5,

respectively.

Ri ¼ Xi;max � Xi;min i ¼ 1; 2; . . .; m ð2:4Þ

R ¼ R1 þR2 þ � � � þRm

m
ð2:5Þ

The formulas for constructing the control limits on the X and R charts are
tabulated in Table 2.1. Development of these equations can be found in
Montgomery (2001).

The constants A2, D3, and D4 depend on the sample (observation) size and are
tabulated for various sample sizes in Appendix A.

These initial set of control limits is usually treated as trial limits and subject to
subsequent revision. The past hypothesis that is the process is thought to be in

Table 2.1 Control limits for
X and R charts

X chart R chart

Center Line (CL) X R

Lower Control Limit (LCL) X � A2R D3R

Upper Control Limit (UCL) X þA2R D4R
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control when samples are takes should be checked. If one or more of the samples plot
out of control, the hypothesis is rejected and trial control limits should be revised.
This can be done by examining the out of control points, and looking for assignable
causes. If an assignable cause is found, the point is eliminated and control limits are
recalculated based on the remaining samples. Recalculated control limits are called
revised control limits. This revision process is continued until all points plot in
control, and the final limits are adapted to the process as the control chart limits.

2.2.1.2 A Numerical Example

In a packaging process, 25 samples of size of 4 are taken in order to control the
process mean and deviation. Data obtained from the packaging process is shown in
Table 2.2. Let’s construct the X and R chart.

Table 2.2 Data for the example

Sample number Observations Xi Ri

I II III IV

1 51.98 49.21 49.73 50.16 50.27 2.77

2 50.94 50.28 50.77 51.40 50.85 1.13

3 50.87 51.67 49.89 52.68 51.28 2.79

4 47.15 46.25 48.05 49.91 47.84 3.66

5 48.97 52.20 49.86 52.46 50.87 3.49

6 50.43 51.08 52.99 50.41 51.23 2.58

7 48.51 51.18 52.02 51.09 50.70 3.51

8 50.65 52.73 51.65 52.86 51.97 2.22

9 51.70 50.93 50.80 48.43 50.46 3.27

10 52.77 52.70 48.01 52.93 51.60 4.93

11 48.36 52.59 49.70 51.55 50.55 4.23

12 49.15 51.07 48.33 49.94 49.62 2.73

13 52.07 48.51 48.90 51.15 50.16 3.56

14 52.24 51.01 51.15 52.74 51.79 1.73

15 52.19 48.85 52.28 49.34 50.67 3.43

16 52.53 49.63 51.25 51.15 51.14 2.90

17 48.16 52.89 52.84 50.86 51.19 4.73

18 52.36 48.84 52.88 48.22 50.58 4.66

19 49.00 51.83 49.48 51.67 50.49 2.83

20 52.69 49.86 51.27 52.28 51.52 2.84

21 51.88 48.09 50.64 49.61 50.05 3.79

22 48.33 49.81 51.88 48.23 49.56 3.65

23 48.81 50.90 48.84 52.12 50.17 3.32

24 50.68 49.19 51.66 50.71 50.56 2.47

25 51.21 51.25 50.83 52.34 51.41 1.50

Average 50.661 3.148
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For the sample size of 4, the constants of A2, D3, and D4 are 0.729, 0, and 2.282,
respectively. Mean and range of each subgroup are determined by using Eqs. 2.3
and 2.4, and also shown in Table 2.2.

Trial control limits for the given process to construct X and R charts are as
follows.

For X chart

CL ¼ X ¼ 50:661

UCL ¼ X þA2R ¼ 50:661þ 0:729� 3:148 ¼ 52:956

LCL ¼ X � A2R ¼ 50:661� 0:729� 3:148 ¼ 48:366

For R chart

CL ¼ R ¼ 3:148

UCL ¼ D4R ¼ 2:282� 3:148 ¼ 7:184

LCL ¼ D3R ¼ 0� 3:148 ¼ 0

By looking the Xi’s of the 25 samples, it can be clearly seen that sample 4 plot
out of control which requires for calculation of the revised control limits.
Eliminating sample 4, revised control limits can be calculated by taking remaining
24 samples into consideration as shown in Table 2.3.

Revised control limits for the given process to construct X and R charts are as
follows.

For X chart

CL ¼ X ¼ 50:779

UCL ¼ X þA2R ¼ 50:779þ 0:729� 3:127 ¼ 53:059

LCL ¼ X � A2R ¼ 50:779� 0:729� 3:127 ¼ 48:499

For R chart

CL ¼ R ¼ 3:127

UCL ¼ D4R ¼ 2:282� 3:127 ¼ 7:184

LCL ¼ D3R ¼ 0� 3:127 ¼ 0

Since all points plot in control, these limits can be set as the control limits to
construct X and R charts as given in Figs. 2.1 and 2.2.
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Table 2.3 Data for the calculation of the revised control limits

Sample number Observations Xi Ri

I II III IV

1 51.98 49.21 49.73 50.16 50.27 2.77

2 50.94 50.28 50.77 51.40 50.85 1.13

3 50.87 51.67 49.89 52.68 51.28 2.79

5 48.97 52.20 49.86 52.46 50.87 3.49

6 50.43 51.08 52.99 50.41 51.23 2.58

7 48.51 51.18 52.02 51.09 50.70 3.51

8 50.65 52.73 51.65 52.86 51.97 2.22

9 51.70 50.93 50.80 48.43 50.46 3.27

10 52.77 52.70 48.01 52.93 51.60 4.93

11 48.36 52.59 49.70 51.55 50.55 4.23

12 49.15 51.07 48.33 49.94 49.62 2.73

13 52.07 48.51 48.90 51.15 50.16 3.56

14 52.24 51.01 51.15 52.74 51.79 1.73

15 52.19 48.85 52.28 49.34 50.67 3.43

16 52.53 49.63 51.25 51.15 51.14 2.90

17 48.16 52.89 52.84 50.86 51.19 4.73

18 52.36 48.84 52.88 48.22 50.58 4.66

19 49.00 51.83 49.48 51.67 50.49 2.83

20 52.69 49.86 51.27 52.28 51.52 2.84

21 51.88 48.09 50.64 49.61 50.05 3.79

22 48.33 49.81 51.88 48.23 49.56 3.65

23 48.81 50.90 48.84 52.12 50.17 3.32

24 50.68 49.19 51.66 50.71 50.56 2.47

25 51.21 51.25 50.83 52.34 51.41 1.50

Average 50.779 3.127

UCL
chart

CL

LCL

Fig. 2.1 X chart
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2.2.2 X and S Control Charts

When the sample size is variable and relatively large, say n > 10, the usage of X and
s charts is advantageous.

2.2.2.1 Control Limits for X and S Control Charts

For the cases where a standard value is known and given for σ, control limits for the
S chart can be determined as follows:

CL ¼ c4r ð2:6Þ

UCL ¼ B6r ð2:7Þ

LCL ¼ B5r ð2:8Þ

where the constants c4, B5, and B6 depend on the sample (observation) size and are
tabulated for various sample sizes in Appendix A.

When σ is unknown, we may write the parameters of the X and S control chart as
given in the equations shown in Table 2.4.

where,

Table 2.4 Control limits for
X and R charts

X chart s chart

CL X s

LCL X � A3s B3s

UCL XþA3s B4s

Fig. 2.2 R chart
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s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Xi � X
� �2
n� 1

s
ð2:9Þ

s ¼ s1 þ s2 þ � � � þ sn
n

ð2:10Þ

The constants c4, A3, B3, B4, B5 and B6 depend on the sample (observation) size
and are tabulated for various sample sizes in Appendix A.

If the sample size is variable, a weighted average approach is used in calculating
x and s as given below. In this case, since the sample size differs, the constants c4,
A3, B3, B4, B5 and B6 for each subgroup will be different. Hence, upper and lower
control limits for each subgroup will also change.

X ¼
Pm

i¼1 niXiPm
i¼1 ni

ð2:11Þ

s ¼
Pm

i¼1 ni � 1ð Þs2iPm
i¼1 ni �mð Þ

� �1=2
ð2:12Þ

2.2.2.2 A Numerical Example

Consider the example given in Sect. 2.2.1.2. Calculation of the xi and si for each
subgroup are tabulated in Table 2.5.

For the sample size of 4, the constants of A3, B3, and B4 are 1.628, 0, and 2.266,
respectively. Trial control limits for the given process to construct X and S charts
are as follows.

For X chart

CL ¼ X ¼ 50:661

UCL ¼ XþA3s ¼ 50:661þ 1:628� 1:452 ¼ 53:025

LCL ¼ X � A3s ¼ 50:661� 1:628� 1:452 ¼ 48:297

For s chart

CL ¼ s ¼ 1:452

CL ¼ B4s ¼ 2:266� 1:452 ¼ 3:290

LCL ¼ B3s ¼ 0� 1:452 ¼ 0

By looking the Xi’s of the 25 samples, it can be clearly seen that sample 4 plot
out of control which requires for calculation of the revised control limits.
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Eliminating sample 4, revised control limits can be calculated by taking remaining
24 samples into consideration as shown in Table 2.6.

Revised control limits for the given process to construct X and S charts are as
follows.

Table 2.5 Data for the X and S chart

Sample number Observations Xi si
I II III IV

1 51.98 49.21 49.73 50.16 50.27 1.21

2 50.94 50.28 50.77 51.40 50.85 0.46

3 50.87 51.67 49.89 52.68 51.28 1.18

4 47.15 46.25 48.05 49.91 47.84 1.56

5 48.97 52.20 49.86 52.46 50.87 1.73

6 50.43 51.08 52.99 50.41 51.23 1.21

7 48.51 51.18 52.02 51.09 50.70 1.52

8 50.65 52.73 51.65 52.86 51.97 1.04

9 51.70 50.93 50.80 48.43 50.46 1.41

10 52.77 52.70 48.01 52.93 51.60 2.40

11 48.36 52.59 49.70 51.55 50.55 1.89

12 49.15 51.07 48.33 49.94 49.62 1.16

13 52.07 48.51 48.90 51.15 50.16 1.73

14 52.24 51.01 51.15 52.74 51.79 0.84

15 52.19 48.85 52.28 49.34 50.67 1.83

16 52.53 49.63 51.25 51.15 51.14 1.19

17 48.16 52.89 52.84 50.86 51.19 2.23

18 52.36 48.84 52.88 48.22 50.58 2.38

19 49.00 51.83 49.48 51.67 50.49 1.46

20 52.69 49.86 51.27 52.28 51.52 1.26

21 51.88 48.09 50.64 49.61 50.05 1.60

22 48.33 49.81 51.88 48.23 49.56 1.71

23 48.81 50.90 48.84 52.12 50.17 1.63

24 50.68 49.19 51.66 50.71 50.56 1.02

25 51.21 51.25 50.83 52.34 51.41 0.65

Average 50.661 1.452
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For X chart

CL ¼ X ¼ 50:779

UCL ¼ XþA3s ¼ 50:779þ 1:628� 1:448 ¼ 53:136

LCL ¼ X � A3s ¼ 50:779� 1:628� 1:448 ¼ 48:422

For s chart

CL ¼ s ¼ 1:448

UCL ¼ B4s ¼ 2:266� 1:448 ¼ 3:281

LCL ¼ B3s ¼ 0� 1:448 ¼ 0

Table 2.6 Data for the calculation of the revised control limits

Sample number Observations Xi si
I II III IV

1 51.98 49.21 49.73 50.16 50.27 1.21

2 50.94 50.28 50.77 51.40 50.85 0.46

3 50.87 51.67 49.89 52.68 51.28 1.18

5 48.97 52.20 49.86 52.46 50.87 1.73

6 50.43 51.08 52.99 50.41 51.23 1.21

7 48.51 51.18 52.02 51.09 50.70 1.52

8 50.65 52.73 51.65 52.86 51.97 1.04

9 51.70 50.93 50.80 48.43 50.46 1.41

10 52.77 52.70 48.01 52.93 51.60 2.40

11 48.36 52.59 49.70 51.55 50.55 1.89

12 49.15 51.07 48.33 49.94 49.62 1.16

13 52.07 48.51 48.90 51.15 50.16 1.73

14 52.24 51.01 51.15 52.74 51.79 0.84

15 52.19 48.85 52.28 49.34 50.67 1.83

16 52.53 49.63 51.25 51.15 51.14 1.19

17 48.16 52.89 52.84 50.86 51.19 2.23

18 52.36 48.84 52.88 48.22 50.58 2.38

19 49.00 51.83 49.48 51.67 50.49 1.46

20 52.69 49.86 51.27 52.28 51.52 1.26

21 51.88 48.09 50.64 49.61 50.05 1.60

22 48.33 49.81 51.88 48.23 49.56 1.71

23 48.81 50.90 48.84 52.12 50.17 1.63

24 50.68 49.19 51.66 50.71 50.56 1.02

25 51.21 51.25 50.83 52.34 51.41 0.65

Average 50.779 1.448
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Since all points plot in control, these limits can be set as the control limits to
construct X and S charts as given in Figs. 2.3 and 2.4.

2.3 Moving Average (MA) Control Charts

In the cases where data are collected slowly over a period of time, or data are
expensive to collect, moving average (MA) control charts are beneficial. The MA
charts can help bringing trends to light more rapidly than conventional charts.
However, run tests are not valid, since the adjacent points on the MA charts are not
independent. As another disadvantage, there is a tendency to forget that individual
observations have more variability than do the averages.

Moving average charts use the central limit theorem to make data approximately
normal. There are two types of the moving average charts which are most com-
monly used: Exponentially weighted moving average charts (EWMA) and gener-
ally weighted moving average charts (GWMA).

Fig. 2.4 S chart

Fig. 2.3 X chart
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2.3.1 Exponentially Weighted Moving Average (EWMA)
Control Charts

The traditional EWMA control chart was introduced by Roberts in 1959 as below.
The statistic that is calculated is:

EWMAt ¼ kXt þ 1� kð ÞEWMAt�1for t ¼ 1; 2; . . .; n ð2:13Þ

where EWMA0 is the mean of the historical data (target) and is equal to X, Xt refers
to the observation at time t, n is the number of observations to be monitored, and
0\k� 1 is a constant determining the depth of memory of the EWMA. The
parameter λ determines the rate at which the older data enter into the calculation of
the EWMA statistic where λ = 1 implies that only the most recent measurement
from the observations influences the EWMA. In another words, a large value of λ
that is closer to 1 gives more weight to recent data and a small value of λ that is
closer to 0 gives more weight to the older data. The parameter λ is usually set
between 0.2 and 0.3 although the choice is somewhat arbitrary (Montgomery 2001).

If Xt ’s are independent random variables with a known standard deviation of the
population r and a variance of r2

�
n, then the variance of the EWMAt becomes

r2
EWMAt

¼ r2

n
k

2� k

� 	
1� 1� kð Þ2t
h i

ð2:14Þ

As t increases, r2EWMAt
reaches to a limiting value of

r2
EWMA ¼ r2

n
k

2� k

� 	
ð2:15Þ

For a moderately large number of sample size, the control limits for the tradi-
tional EWMA control charts can be expressed as follows:

CLEWMA ¼ X ð2:16Þ

UCLEWMA ¼ Xþ 3
rffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
ð2:17Þ

LCLEWMA ¼ X� 3
rffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
ð2:18Þ

If t is small, the control limits for the traditional EWMA control charts can be
expressed as follows:

34 M. Gülbay and C. Kahraman



CLEWMA ¼ X ð2:19Þ

UCLEWMA ¼ Xþ 3
rffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

ð2:20Þ

LCLEWMA ¼ X� 3
rffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

ð2:21Þ

If r is unknown and estimated from the samples, then R can be used for con-
structing traditional EWMA charts. In this case, the control limits are as follows:

CLEWMA ¼ X ð2:22Þ

UCLEWMA ¼ XþA2R

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
ð2:23Þ

LCLEWMA ¼ X� A2R

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
ð2:24Þ

where R is the mean of the ranges of the samples, and A2 is a constant given in
Appendix A.

2.3.1.1 A Numerical Example

Consider a process with the parameters of EWMA0 ¼ 50:0 and s ¼ 2:0539 calcu-
lated from historical data. For the following 20 points observed, let us construct
EWMA control charts.

51.9 47.1 53.1 49.4 50 47.6 50.2 50.1 51.4 50.6

49.8 47.5 9.9 50.9 47.6 51.5 52.8 52.3 54.9 50.1

With k chosen to be 0.3 the parameter
ffiffiffiffiffiffi
k

2�k

q
is equal to 0.4201. CL, LCL and

UCL for the EWMA chart can be calculated as follows.

CLEWMA ¼ X ¼ 50:0

UCLEWMA ¼ X þ 3
rffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
¼ 50:0þ 3 2:0539ð Þ 0:4201ð Þ ¼ 52:5884
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LCLEWMA ¼ Xþ 3
rffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
¼ 50:0� 3 2:0539ð Þ 0:4201ð Þ ¼ 47:4115

EWMA statistics of the 20 points are calculated by using Eq. 2.13 and sum-
marized in Table 2.7. Constructed EWMA chart is illustrated in Fig. 2.5.

2.3.2 Maximum Generally Weighted Moving Average
(MaxGWMA) Control Charts

The EWMA chart is widely used to detect small shifts in process mean and it has
successfully become a source of inspiration to the many researchers as in the
reviews by Xie (1999), Han and Tsung (2004), Eyvazian et al. (2008), Li and Wang
(2010), Zhang et al. (2010), Sheu et al. (2012). On the basis of maximum statistic
values, Chen and Cheng developed a Maxtype chart which effectively controls both
process mean and variability on a single chart (Chen and Cheng 1998); Xie further
examined numerous EWMA-type control charts and resulted that the MaxEWMA
chart is superior to others in detecting small shifts of the process mean and

Table 2.7 EWMA statistics
for 20 points

t X EWMA

0 50.00

1 51.9 50.57

2 47.1 49.53

3 53.1 50.60

4 49.4 50.24

5 50.0 50.17

6 47.6 49.40

7 50.2 49.64

8 50.1 49.78

9 51.4 50.26

10 50.6 50.36

11 49.8 50.20

12 47.5 49.39

13 49.9 49.54

14 50.9 49.95

15 47.6 49.24

16 51.5 49.92

17 52.8 50.78

18 52.3 51.24

19 54.9 52.34

20 50.1 51.67
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variability as well as in identifying the source and the direction of an out-of-control
signal (Xie 1999). Sheu and Lin created the generally weighted moving average
(GWMA) chart which can detect small shifts much quicker than the EWMA can
(Shu et al. 2014). By combing the advantages of the MaxEWMA chart and GWMA
chart, Sheu et al. proposed a new chart called the maximum generally weighted
moving average (MaxGWMA) chart which was found to be more sensitive under
abnormal variations of on-line manufacturing processes than the MaxEWMA chart
(Sheu et al. 2012).

Let X be the key quality characteristic with a normal distribution Nðl0;r20Þ,
where l0 is the process mean and r0 is the process standard deviation. If the new
mean is l1¼l0 � dr0, then the process mean is said to have a shift of d d 6¼ 0ð Þ
standard deviation. Similarly, if the new standard deviation is r1 ¼ 1þ qð Þr0, then
the process is said to have a shift of q standard deviation in variability. In real cases,
l0 and r0 are usually unknown and can be estimated from the randomly collected
sample data of which at least 20–25 in-control samples are recommended. Assume
that m random subgroups and each subgroup containing n observation of x are
collected. The sample average of the ith sample (xi) and the grand sample average
x
� �

can be calculated by using formulas below.

xi ¼ 1
n

Xm
j¼1

xij for i ¼ 1; 2; . . .;m ð2:25Þ

x ¼ 1
m

Xn
i¼1

xij for i ¼ 1; 2; . . .;m ð2:26Þ

46.00
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Fig. 2.5 EWMA Chart for
the given data
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In the same way, the standard deviation of the ith sample (si) and the average of
the m standard deviations sð Þ can be calculated by using the following formulas.

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1 xij � xi
� �2
n� 1

s
ð2:27Þ

s ¼ 1
m

Xm
i¼1

si ð2:28Þ

The unbiased estimators of the l0 and r0 are then given by

l0 ¼ E xð Þ ¼ x ð2:29Þ

r0 ¼ E sð Þ ¼ s=c4 ð2:30Þ

where the value of the c4 is a constant and can be found from Appendix A.
For the computation of the MaxGWMA statistic, two mutually independent

statistics, Mi and Si are defined as follows.

Mi ¼ xi � l0ð Þ
r0=

ffiffiffi
n

p ð2:31Þ

Si ¼ ;�1 F
n� 1ð Þs2i
r2
0

; n� 1
� �
 �

ð2:32Þ

where F(a, b) refers to the chi-square distribution of a with b degrees of freedom,
and ;�1 is the inverse of the standard normal distribution.

Let A be an event of interest and t be the counting number of samples between
two adjacent occurrences of A. pj = P(t > j) is the probability that A does not occur
in the first j samples. The probability of pj of the occurrence of A at the jth sample
can be calculated by Shu et al. (2014)

pj ¼ P t[ j� 1ð Þ ¼ Pj�1 � Pj ð2:33Þ

Remember that for 8j[ 1 and j\i, we have Pj [Pi.
GWMA statistics for the ith subgroup are given by

Ui ¼
Xi
j¼1

pjMiþ 1�j ð2:34Þ

Vi ¼
Xi
j¼1

pjSiþ 1�j ð2:35Þ

38 M. Gülbay and C. Kahraman



For the ease of computation, We chose Pj ¼ qj
a
, where q is called a design

parameter that is a constant with the value in [0,1] and a is called an adjustment
parameter determined by the practitioner (Sheu and Lin 2003). Obviously, the
traditional EWMA chart is a special case of GWMA chart when a ¼ 1 and
q ¼ 1� k. Now, the probability pj of the occurrence of A at the jth sample can be
rewritten as

pj ¼ q j�1ð Þa � qj
a ð2:36Þ

If the process is not shifting, with respect to the independence of the Mi and Si,
then GWMA statistics Ui and Vi are also mutually independent and follow the same
standard normal distribution. Thus, their variances can be determined by

r2
Ui

¼ r2
Vi

¼ gi ¼
Xi
j¼1

pj ð2:37Þ

The statistic (MG) used to construct the MaxGWMA chart is defined as

MGi ¼ max Uij j; Vij jð Þ ð2:38Þ

A small value of MGi indicates that the process mean and process variability are
close to their respective targets, while a large value of MGi indicates that the
process mean and process variability are away from their respective targets.

Since MGi is nonnegative, only upper control limit for the ith subgroup for-
mulated below is used to monitor MGi (Sheu et al. 2012).

UCLi ¼ E MGið ÞþL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 MGið Þ

p
ð2:39Þ

where L is a constant.
Based on desired in control ARL0, sample size n, and optimal values of

parameters q, α and L for an initial state of the MaxGWMA chart, the approximate
value of UCLi can be given as (Sheu et al. 2012)

UCLi ¼ 1:12838þ 0:60281Lð Þ ffiffiffiffiffi
gi

p ð2:40Þ

In the MaxGWMA chart, each of the MGi values is compared with the UCLi and
the following judgement can be performed about whether the process is in control
or out of control.

Process Control forMaxGWMA ¼ MGi �UCLi ; in control
MGi [UCLi ; out of control


 �
ð2:41Þ

If there is a change in the process mean and/or process variability, Table 2.8 can
be used to identify the situations (Sheu et al. 2012).
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2.4 Unnatural Patterns for Control Charts

The usual SPC control chart limit rules display at the 3-sigma level. In this case, a
simple threshold test decides if a process is in or out of control. Once a process is
brought under control using the simple 3-sigma level tests, quality professionals
often want to increase the sensitivity of the control chart by detecting and correcting
problems before the process excludes 3-sigma control limits. Based on the proba-
bility, more complex tests rely on more complicated decision-making criteria by
examining the patterns of the points (sample characteristic) on the control chart and
presenting a set of rules with respect to the very low probability of occurrence.
These rules utilize historical data and look for a non-random (unnatural) pattern that
can signify that the process is out of control, before reaching the normal ±3 sigma
limits. In another words, a process may signal an out of control condition even its
characteristic plots in control. The rules that characterize an out of control signal
through the control chart limits are called “unnatural pattern rules” or “non-random
pattern rules”.

The most popular of unnatural (non-random) pattern rules are theWestern Electric
Rules, also known as the WECO Rules, or WE Runtime Rules. First implemented by
theWestern Electric Co. in the 1920s, these quality control guidelineswere codified in
the 1950s and form the basis for the other entire rule sets (Western Electric Company:
Statistical Quality Control Handbook, Indianapolis, Indiana 1956). Different indus-
tries have developed their own variants based on theWECORules. Other sets of rules
which are common enough to recognize an identifying name, i.e. named rules, are
“NelsonRules (1984) ”, “JuranRules (2010) ”, “DuncanRules (1986) ”, “Automotive

Table 2.8 Indications of the out of control points

Situation Symbol Indication

MGi ¼ Ui and
Vij j �UCLi

mþ An increase in the process mean

MGi ¼ �Ui and
Vij j �UCLi

m� An decrease in the process mean

MGi ¼ Vi and
Uij j �UCLi

vþ An increase in the process variability

MGi ¼ �Vi and
Uij j �UCLi

v� A decrease in the process variability

Ui [UCLi and
Vi [UCLi

þ þ An increase in both the process mean and the process
variability

�Ui [UCLi and
�Vi [UCLi

�� A decrease in both the process mean and the process
variability

Ui [UCLi and
�Vi [UCLi

þ� An increase in the process mean and a decrease in the
process variability

�Ui [UCLi and
Vi [UCLi

�þ A decrease in the process mean and an increase in the
process variability
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Industry Action Group (AIAG) Rules (Detroit 1995) ”, “Gitlow Rules (1989) ”, and
“Westgard Rules (2014) ”.

In general, when identifying these rules, the region between the usual ±3 sigma
limits are divided into six region and the pattern is explained with respect to ±1, 2,
and 3 sigma limits as shown in the Fig. 2.6.

Based on the zones illustrated by Fig. 2.6, some “Named Unnatural Pattern
Rules” are explained in the following sections.

2.4.1 Western Electric Rules

In the Western Electric Rules, a process is accepted to signal an out of control if any
of the following criteria are observed (Western Electric Company 1956):

1. One of the any point outside one of the 3-sigma control limits: If a point lies
outside either of ±3 sigma limits, there is only a 0.27 % chance that this was
caused by the normal process.

2. Two out of the three consecutive points outside of the 2-sigma control limits and
on the same side of the center line: The probability that any point will fall
outside the warning limit of 2-sigma is only 5 %. The chance that two out of
three points in a row fall outside the warning limits is only about 1 %.

3. Four out of the five consecutive points outside of the 1-sigma control limits and
on the same side of the center line: In normal processing, 68 % of points fall
within 1-sigma of the mean. The probability that 4 of 5 points fall outside of one
sigma is only about 3 %.

4. Eight consecutive points on the same side of the center line: The probability of
getting eight points on the same side of the mean is only around 1 %.

UCL

CL

LCL

CL+1

CL-1

CL-2

CL+2
Zone A

Zone B

Zone C

Zone C

Zone B

Zone A

Fig. 2.6 Zones in a control
chart
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Remember that these rules apply separately to both sides of the center line at a
time. Therefore, in the WECO Rules there are eight actual alarm conditions.
There are also additional WE Rules related with the trends of the points. These
are often referred to as Western Electric Supplemental Rules.

5. Six points in a row increasing or decreasing: Sometimes this rule is changed to
seven points rising or falling.

6. Fifteen points in a row within one sigma: In normal operation, 68 % of points
will fall within one sigma of the mean. The probability that 15 points in a row
will do so, is less than 1 %.

7. Fourteen points in a row alternating direction. The chances that the second point
is always higher than (or always lower than) the preceding point, for all seven
pairs is only about 1 %.

8. Eight points in a row outside one sigma. Since 68 % of points lie within one
sigma of the mean, the probability that eight points in a row fall outside of the
one-sigma line is less than 1 %.

2.4.2 Nelson Rules

The Nelson rules are almost identical to the combination of the WECO. The only
difference is in Rule #4 where nine consecutive points on the same side of the center
line is accepted as a signal (Nelson 1984).

2.4.3 Other Named Rules

In general, a given rule specifies two test conditions: Being a value of N points out
of M consecutive points above and below of a specified sigma control limits. From
this point of view, named rules mentioned in Sect. 2.4 are summarized and tabu-
lated in Table 2.9.

2.5 Ranking Fuzzy Numbers and Direct Fuzzy Approach

Fuzzy numbers as they are used to represent uncertainties are an important issue in
research in fuzzy set theory and their applications (Gülbay and Kahraman 2006).
Because of the suitability for representing uncertain values, fuzzy numbers have
been widely used in many applications. When quality characteristic and control
limits are represented as fuzzy numbers, the main problem is to decide whether the
quality characteristic lies within their respective fuzzy control limits or not in order
to decide about the process: in-control or out of control. In such situations, a
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comparison of the fuzzy numbers is required. Various methods to manipulate fuzzy
numbers have been developed to overcome the problem illustrated in Fig. 2.7 (Chen
and Chen 2009; Chen and Sanguansat 2011; Deng et al. 2006; Wang and Lee 2008;
Yager 1978; Zimmermann 1996).

The results of studies on ranking fuzzy numbers have been used in application
areas especially where decision-making and data analysis have a vital importance.
The ranking methods can be classified in three categories. The first category directly
transforms each fuzzy number into a crisp real number and the second category
compares a fuzzy number to all the other n − 1 fuzzy numbers to obtain its mapping
into a positive real number. The third category differs substantially from the first two.

Table 2.9 Summarization of some named rules in the form of N/M

Rule Named rules

WECO Nelson Juran Duncan AIAG Gitlow Westgard

Outside ±3σ limits 1/1 1/1 1/1 1/1 1/1 1/1 1/1

Outside ±2σ limits 2/3 2/3 2/3 2/3 2/3 2/2 or
2/3

Outside ±1σ limits 4/5 4/5 4/5 4/5 4/5 4/4 or
3/4

On the same side of
centerline

8/8 9/9 9/9 7/7 8/8 10/10

Increasing or decreasing in
a row

6/6 6/6 7/7 7/7 8/8 7/7

Within ±1σ 15

Outside ±1σ 8/8 8/8

Outside ±2σ 1/1

Alternating 14/14

Opposite sides of ±2σ 2/2

(a)

(b)

Fig. 2.7 Illustration of
ranking two fuzzy numbers.
a ~A\~B. b Not clear
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In this category, a method for pairwise ranking or preference for all pairs of fuzzy
numbers is determined and then based on these pairwise orderings, a final order of
the n fuzzy numbers is attempted (Shureshjani and Darehmiraki 2013). The sig-
nificance of ranking fuzzy numbers for solving real world decision problems in a
fuzzy environment has led to tremendous efforts being spent on the development of
various ranking approaches (Bortolan and Degani 1985; Chen and Hwang 1992;
Cheng 1998; Choobineh and Li 1993; Chu and Tsao 2002; Detyniecki and Yager
2001; Dias 1993; Dubois and Prade 1978, 1980; Fortemps and Roubens 1996; Jain
1976, 1978; Kim et al. 1998; Lee et al. 1994; Lee and Lee-Kwang 1999; Lee and Li
1998; Liu and Han 2005; Murakami 1983; Raj and Kumar 1999; Requena et al.
1994; Tran and Duckstein 2002; Wang et al. 2009; Zadeh 1965). To whom more
interested to the ranking methods for fuzzy numbers, it is suggested to read (Brunelli
and Mezeib 2013) for further knowledge.

For the fuzzy quality control chart studies we present a direct fuzzy comparison
method to compare fuzzy numbers because the method enables the user to have a
fuzzy decision about the comparison (Gülbay and Kahraman 2007).

Let ~X ¼ Xa;Xb;Xc;Xdð Þ be the fuzzy quality characteristic; gLCL ¼
LCL1; LCL2; LCL3; LCL4ð Þ and gUCL ¼ UCL1;UCL2;UCL3;UCL4;ð Þ be fuzzy
lower control limit and fuzzy upper control limit, respectively, represented by
trapezoidal fuzzy numbers. A decision about whether the process is in control can
be made according to the percentage area of the sample which remains inside thegUCL and/or gLCL. When the fuzzy sample is completely involved by the fuzzy
control limits, the process is said to be “in-control”. If a fuzzy sample is totally
excluded by the fuzzy control limits, the process is said to be “out-of-control”.
Otherwise, a sample is partially included by the fuzzy control limits. In this case, if
the percentage area which remains inside the fuzzy control limits (bj) is equal or
greater than a predefined acceptable percentage (b), then the process can be
accepted as “rather in-control”. Otherwise, it can be stated as “rather out of control”.
The possible decisions resulting from “Direct Fuzzy Approach (DFA) are illustrated
in Fig. 2.8. The parameters to determine the sample’s area outside the control limits
for any a-level cut are LCL1, LCL2, UCL3, UCL4, a, b, c, d, and α. The shapes of
the control limits and fuzzy samples are formed by the lines of LCL1LCL2,
UCL3UCL4, ab, and cd,. A flowchart to calculate area of the fuzzy sample outside
the control limits is given in Fig. 2.9. The sample’s area above the upper control
limits, AU

out, and sample area falling below the lower control limits, AL
out, can be

calculated according to the flowchart given in Fig. 88. The equations to compute
AU
out and A

L
out are given in Appendix B. Then, the total area outside the fuzzy control

limits, Aout, is the sum of the areas below the fuzzy lower control limit and above
the fuzzy upper control limit. The percentage sample area within the fuzzy control
limits is calculated as
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baj ¼
Saj � Aa

out

Saj
ð2:42Þ

where Saj is the sample’s area at α-level cut. Remember that performing α-level cut
is not a must but a preference if decided by a quality practitioner. Furthermore, the
acceptable percentage (b) is set by the quality practitioner with respect to the
tightness of the inspection.

2.6 Fuzzy Approaches for Control Charts for Variables

Many quality characteristics can be expressed in terms of a numerical measurement
such as length, width, weight, temperature, volume etc. A process is either “in
control” or “out of control” depending on numeric observation values. For many
problems, control limits could not be so precise. Uncertainty comes from the mea-
surement system including operators and gauges, and environmental conditions
(Senturk and Erginel 2009). A research work incorporating uncertainty into decision
analysis is basically done through the probability theory and/or the fuzzy set theory.

Fig. 2.8 Illustration of the possible areas outside the fuzzy control limits at α-level cut
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The former represents the stochastic nature of decision analysis while the latter
captures the subjectivity of human behaviour. A rational approach toward
decision-making should take human subjectivity into account, rather than employing
only objective probability measures. The fuzzy set theory is a perfect means for
modeling uncertainty (or imprecision) arising from mental phenomena which is

Fig. 2.9 Flowchart to
compute the area of a fuzzy
sample (a,b,c,d) falling
outside the fuzzy control
limits. (See Appendix B for
the equations)
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neither random nor stochastic. When human subjectivity plays an important role in
defining the quality characteristics, the classical control charts may not be applicable
since they require certain information. The judgment in classical process control
results in a binary classification as “in-control” or “out-of-control” while fuzzy
control charts may handle several intermediate decisions. Fuzzy control charts are
inevitable to use when the statistical data in consideration are uncertain or vague; or
available information about the process is incomplete or includes human subjectivity
(Gülbay and Kahraman 2007). In the fuzzy case, each sample, or subgroup, is
represented by a trapezoidal fuzzy number (a,b,c,d) or a triangular fuzzy number (a,
b,d), or (a,c,d) with an α-cut (if necessary) as shown in Fig. 2.10.

X-R and X-s fuzzy control charts can be presented as given in Sects. 2.6.1 and
2.6.2 (Gülbay and Kahraman 2006).

2.6.1 Fuzzy X and R Control Charts

Let quality characteristic of a sample with a size of n be represented as fuzzy
triangular numbers by Xi Xija;Xijb;Xijc;

� �
i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n. Using the

fuzzy arithmetic the mean of the each subgroup and grand average of the samples
can be calculated by Equations below.

~Xi ¼
Pn

j¼1 Xija

n
;

Pn
j¼1 Xijb

n
;

Pn
j¼1 Xijc

n

 !
¼ Xia;Xib;Xicð Þ

i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n

ð2:43Þ

~
X ¼

Pm
i¼1 Xia

m
;

Pm
i¼1 Xib

m
;

Pm
i¼1 Xic

m

� 	
¼ Xa;Xb;Xc

� 
ð2:44Þ

Fig. 2.10 Representation of a sample by trapezoidal and/or triangular fuzzy numbers:
a Trapezoidal (a,b,c,d) and b triangular (a,b,b,d)
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The fuzzy range of each subgroup can be represented by the equation below.

~Ri ¼ ~Xij;max � ~Xij;min i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n ð2:45Þ

In crisp calculation, the maximum and minimum values of R can be easily
determined. But it is not so easy to decide which fuzzy range observation is
maximum and minimum. If represented fuzzy numbers are not intersecting, one can
easily say that the fuzzy number with the most left support is smallest or minimum
and the fuzzy number with the most right support is the greatest or maximum. In
case where fuzzy observations have intersecting supports the problem about the
ranking fuzzy numbers arises. Fuzzy numbers cannot be easily compared to each
other. So, in decision analysis it is very difficult to distinguish the best possible
course of action among alternatives defined by means of fuzzy numbers. Comparing
and ranking fuzzy numbers in a given situation is complex and challenging (Yeh
and Deng 2004; Sun and Wu 2006; Asady 2010). This is because fuzzy numbers
usually represented by the possibility distribution (Zimmermann 2000; Dubois and
Prade 1994) often overlap each other in many practical situations (Cheng 1998; Yeh
and Deng 2004). It is difficult to clearly determine which fuzzy number is larger or
smaller than another for a given situation, in particular when these two fuzzy
numbers are similar (Kim and Park 1990; Deng 2007). Consequently, there are
many fuzzy ranking methods, but an exhaustive review of ranking methods would
be beyond the scope of this chapter. An attempt to list most of the ranking methods
was made in Rao and Shankar (2011). DFA presented in Sect. 2.5 can also be used
to find the greatest and smallest of the fuzzy numbers in any sample group.

Once the maximum and minimum fuzzy observation is decided, the fuzzy range
can be determined by the following equations.

~Ri ¼ ~Xij;max � ~Xij;min ¼ ~Xi Xija;Xijb;Xijc;
� �

max� Xija;Xijb;Xijc;
� �

min ð2:46Þ

~Ri ¼ ð~Xija;max � ~Xijc;min; ~Xijb;max � ~Xijb;min; ~Xijc;max � ~Xija;minÞ ¼ ðRia;Rib;RicÞ
ð2:47Þ

After calculating range of each subgroup, the fuzzy mean of the ranges can be
defined as:

~R ¼
Pm

i¼1 Ria

m
;

Pm
i¼1 Rib

m
;

Pm
i¼1 Ric

m

� 	
¼ Ra; Rb; Rc
� � ð2:48Þ

Control limits for the fuzzy ~X control charts, are then formulized as follows:

fCL ¼ ~
X ¼ Xa;Xb;Xc

� 
¼ CL1;CL2;CL3ð Þ ð2:49Þ
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gUCL ¼ ~
XþA2

~R ¼ Xa;Xb;Xc

� 
þA2 Ra;Rb; Rc

� �
¼ Xa þA2Ra;Xb þA2Rb;Xc þA2Rc

� 
¼ UCL1;UCL2;UCL3ð Þ

ð2:50Þ

gLCL ¼ ~
X� A2

~R ¼ Xa;Xb;Xc

� 
� A2 Ra;Rb;Rc

� �
¼ Xa � A2Rc;Xb � A2Rb;Xc � A2Ra

� 
¼ LCL1;LCL2;LCL3ð Þ

ð2:51Þ

Remember that the constants A2 as well as D3 and D4 depend on the sample
(number of observation in each sample) size and are tabulated for various sample
sizes in Appendix A.

Fuzzy control limits for the R charts can be derived in the same way.

fCL ¼ ~
R ¼ Ra; Rb; Rc

� � ¼ CL1; CL2; CL3ð Þ ð2:52Þ

gUCL ¼ D4
~R ¼ D4 Ra; Rb; Rc

� � ¼ D4Ra; D4Rb; D4Rc
� �

¼ UCL1; UCL2; UCL3ð Þ ð2:53Þ

gLCL ¼ D3
~R ¼ D3Ra; D3Rb; D3Rc

� � ¼ LCL1; LCL2; LCL3ð Þ ð2:54Þ

Fuzzy control limits for the X � R control chart are summarized in Table 2.10.

2.6.2 Fuzzy X and S Control Charts

Determination of the control limits for paired X and s charts are based on the
standard deviation as mentioned in Sect. 2.2.2.1. Hence, average standard deviation
of the subgroups need to be firstly calculated.

Table 2.10 Summary of the fuzzy control limits for the X � R control chart

X chart R chart

Center LinefCL ¼ CL1;CL2;CL3ð Þ
Xa;Xb;Xc

� 
Ra;Rb;Rc
� �

Lower Control LimitgLCL ¼ LCL1;LCL2;LCL3ð Þ
Xa � A2Rc;Xb � A2Rb;Xc � A2Ra

� 
D3Ra;D3Rb;D3Rc
� �

Upper Control LimitgUCL ¼ UCL1;UCL2;UCL3ð Þ
Xa þA2Ra;Xb þA2Rb;Xc þA2Rc

� 
D4Ra;D4Rb;D4Rc
� �
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Let quality characteristic of a sample with a size of n be represented as fuzzy
triangular numbers by ~Xi Xija; Xijb; Xijc;

� �
i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n. Using the

fuzzy arithmetics, the fuzzy standard deviation of the each subgroup and fuzzy
average standard deviation of the samples can be derived by the Equations below.

~si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1

~Xij � ~~Xi

� 2
n� 1

vuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 Xija;Xijb;Xijc

� �� Xia;Xib;Xic
� �� �2

n� 1

s
¼ sia; sib; sicð Þ ð2:55Þ

~s ¼
Pm

i¼1 ~si
m

¼
Pm

i¼1 sia
m

;

Pm
i¼1 sib
m

;

Pm
i¼1 sic
m

� 	
¼ sa; sb; scð Þ ð2:56Þ

The control limits of fuzzy X control chart based on standard deviation are
obtained as follows:

fCL ¼ ~
X ¼ Xa;Xb;Xc

� 
¼ CL1; CL2; CL3ð Þ ð2:57Þ

gUCL ¼ ~
XþA3~s ¼ Xa;Xb;Xc

� 
þA3 sa; sb; scð Þ

¼ Xa þA3sa; Xb þA3sb;XcþA3sc
� 

¼ UCL1; UCL2; UCL3ð Þ

ð2:58Þ

gLCL ¼ ~
X� A3~s ¼ Xa;Xb;Xc

� 
� A3 sa; sb; scð Þ

¼ Xa � A3sc; Xb � A3sb; Xc � A3sa
� 

¼ LCL1;LCL2;LCL3ð Þ

ð2:59Þ

Similarly, the control limits of fuzzy s control chart are derived as follows:

fCL ¼ ~s ¼ sa; sb; scð Þ ¼ CL1; CL2; CL3ð Þ ð2:62Þ

gUCL ¼ B4~s ¼ B4 sa; sb; scð Þ ¼ B4sa; B4sb; B4scð Þ ¼ UCL1; UCL2; UCL3ð Þ

gLCL ¼ D3s ¼ B3sa; B3sb; B3scð Þ ¼ LCL1; LCL2; LCL3ð Þ ð2:61Þ
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2.6.3 Fuzzy Exponentially Weighted Moving Average
(FEWMA) Control Charts

Depending whether fuzzy process mean and fuzzy process standard deviation is
known or not, FEWMA charts can be constructed as explained in Sects. 2.6.3.1 and
2.6.3.2

2.6.3.1 Fuzzy EWMA Control Charts When ~r Are Known

Let ~Xi ¼ Xa;Xb;Xcð Þi and
~
X ¼ Xa;Xb;Xc

� �
be the fuzzy observations for the ith

sample and fuzzy grand averages of the t randomly collected sample data repre-
sented by triangular fuzzy numbers, respectively. Assume that fuzzy standard
deviation ~r is known and represented by triangular fuzzy number as
~r ¼ ra; rb; rcð Þ

If the sample number t is moderately large, the parameter 1� 1� kð Þ2t
h i

reaches to a limiting value of 1 and can be omitted from the formula. Hence, the
control limits for the fuzzy EWMA control chart is given as follows:

fCLEWMA ¼ ~
X ¼ Xa;Xb;Xc

� � ð2:62Þ

gUCLEWMA ¼ ~
Xþ 3ffiffiffi

n
p er ffiffiffiffiffiffiffiffiffiffiffi

k
2� k

r
ð2:63Þ

gLCLEWMA ¼ ~
X� 3ffiffiffi

n
p er ffiffiffiffiffiffiffiffiffiffiffi

k
2� k

r
ð2:64Þ

Replacing the values of the
~
X and ~r to the equations above and performing

simple fuzzy arithmetics, gUCLEWMA and gLCLEWMA for the moderately large number
of samples can be rewritten as

gUCLEWMA ¼ ~
Xþ 3ffiffiffi

n
p er ffiffiffiffiffiffiffiffiffiffiffi

k
2� k

r
¼ Xa;Xb;Xc
� �þ 3ffiffiffi

n
p ra;rb;rcð Þ

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
ð2:65Þ

gUCLEWMA ¼ Xa þ 3raffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
;Xb þ 3rbffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
;Xc þ 3rcffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r !
ð2:66Þ
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gLCLEWMA ¼ ~
X� 3ffiffiffi

n
p er ffiffiffiffiffiffiffiffiffiffiffi

k
2� k

r
¼ Xa;Xb;Xc
� �� 3ffiffiffi

n
p ra;rb;rcð Þ

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
ð2:67Þ

gLCLEWMA ¼ Xa þ 3rcffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
;Xb þ 3rbffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
;Xc þ 3raffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r !
ð2:68Þ

Similarly, if the sample number t is small, control limits for the fuzzy EWMA
control chart can be given as follows:

fCLEWMA ¼ ~
X ¼ Xa;Xb;Xc

� � ð2:69Þ

gUCLEWMA ¼ ~
Xþ 3ffiffiffi

n
p er ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2� k

1� 1� kð Þ2t
h ir

ð2:70Þ

gLCLEWMA ¼ ~
X� 3ffiffiffi

n
p er ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2� k

1� 1� kð Þ2t
h ir

ð2:71Þ

By replacing the values of
~
X and ~r, control limits for the fuzzy EWMA chart for

small sample sizes can be given as

gUCLEWMA ¼ Xa þ 3raffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
1� 1� kð Þ2t
h i

;Xb

 

þ 3rbffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

;Xc

þ 3rcffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir ! ð2:72Þ

gLCLEWMA ¼ Xa þ 3rcffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

;Xb þ 3rbffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
;Xc

 

þ 3raffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir ! ð2:73Þ

Readers who want to apply α-level cuts to the control limits can refer to (Şentürk
et al. 2014; Gülbay et al. 2004).
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2.6.3.2 Fuzzy EWMA Control Charts When ~r Are Unknown

Let ~Ri ¼ Ra;Rb;Rcð Þi and ~R ¼ Ra;Rb;Rc
� �

be the fuzzy range of the ith sample and
fuzzy average range of the t samples for i = 1, 2, …, t. If fuzzy standard deviation,
~r, is unknown, an unbiased estimator of the ~r can be determined from the ranges.
Control limits for the fuzzy EWMA charts for the small sample sizes of t become as
follows

fCLEWMA ¼ ~
X ¼ Xa;Xb;Xc

� � ð2:74Þ

gUCLEWMA ¼ ~
XþA2

~R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

¼ Xa;Xb;Xc
� �þA2 Ra;Rb;Rc

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir ð2:75Þ

gLCLEWMA ¼ ~
X� A2

~R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

¼ Xa;Xb;Xc
� �� A2 Ra;Rb;Rc

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir ð2:76Þ

Performing fuzzy arithmetic to the above equations, we obtain

gUCLEWMA ¼ Xa þA2Ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

; Xb

 

þA2Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

; Xc

þA2Rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir ! ð2:77Þ

gLCLEWMA ¼ Xa � A2Rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

; Xb

 

� A2Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

; Xc

�A2Ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir ! ð2:78Þ

For moderately large sample size of t, the parameter 1� 1� kð Þ2t
h i

tends to be

1 and can be ignored from the equations above.
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2.6.4 Fuzzy Maximum Generally Weighted Moving Average
(FMaxGWMA) Charts

Let Xijði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ be fuzzy observations. For any given
0� a� 1, the corresponding real-values lower and upper bounds can be obtained as

Xij
� �L

a and Xij
� �U

a , respectively. A real-valued data for the lower and upper bounds

of the ~Xi and ~si can be written as (Shu et al. 2014)

~X
U

ia ¼
1
n

Xn
j¼1

Xij
� �U

a and ~X
L

ia
¼ 1

n

Xn
j¼1

Xij
� �L

a ð2:79Þ

~sU
ia ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 Xij

� �U
a� ~X

U

ia

� 	2

n� 1

vuuut
and ~sL

ia ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 Xij

� �L
a� ~X

L

ia

� 	2

n� 1

vuuut
ð2:80Þ

Then, we obtain unbiased estimators of the ~rU
a and ~rL

a as follows

lUa ¼ ~
X

U

a ¼ 1
m

Xm
i¼1

~X
U

ia and lLa ¼ ~
X

L

a ¼ 1
m

Xm
i¼1

~X
L

ia ð2:81Þ

~s
U
a ¼ 1

m

Xm
i¼1

~sUia and ~s
L
a ¼ 1

m

Xm
i¼1

~s
L
ia ð2:82Þ

~rU
a ¼ ~s

U
a

.
c4 and ~rL

a ¼ ~s
L
a

.
c4 ð2:83Þ

Mutually independent statistics, Mi and Si can also be rewritten in terms of the
real-valued upper and lower bounds as

MU
ia ¼

~X
U

ia � lUa
~rU
a

� ffiffiffi
n

p and ML
ia ¼

~X
L

ia � lLa
~rL
a

� ffiffiffi
n

p ð2:84Þ

~S
U
ia ¼ ;�1 F

n� 1ð Þ~sUia
~rU
a

� �2 ; n� 1

" #( )
and ~S

L
ia ¼ ;�1 F

n� 1ð Þ~sLia
~rL
a

� �2 ; n� 1

" #( )
ð2:85Þ

Finally, fuzzy GWMA statistics for the ith subgroup can be given by

~U
U
ia ¼

Xm
j¼1

pj ~Miþ 1�ja
U and ~U

L
ia ¼

Xm
j¼1

pj ~Miþ 1�ja
L ð2:86Þ
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~V
U
ia ¼

Xm
j¼1

pj~S
U
iþ 1�ja

and ~V
L
ia ¼

Xm
j¼1

pj~S
L
iþ 1�ja

ð2:87Þ

Then, the fuzzy control limits of the F-MaxGWMA chart can be obtained from

gUCLU
ia ¼ aUCLi þ 1� að ÞUCLiþ 1 ð2:88Þ

gUCLL
ia ¼ aUCLi þ 1� að ÞUCLi�1 ð2:89Þ

where UCL0 ¼ 0.
The membership functions of gMGi required to be constructed for further iden-

tifying the manufacturing condition. Consider the closed interval Ca which is
defined as:

Ca ¼ min max ~U
U
ia

��� ���; ~V
U
ia

��� ���� 
;max ~U

L
ia

��� ���; ~V
L
ia

��� ���� n o
;max max ~U

U
ia

��� ���; ~V
U
ia

��� ���� 
;max ~U

L
ia

��� ���; ~V
L
ia

��� ���� n oh i
ð2:90Þ

The membership functions of gMGi can be obtained by using the following
expression

nfMGi
Cð Þ ¼ sup a|fflffl{zfflffl}

0� a� 1

1Ca Cð Þ ð2:91Þ

Endpoints of the a-level closed interval gMGia ¼ gMGL
ia ;
gMGU

ia

h i
become

gMGL
ia ¼ min|{z}

a� b� 1

min max ~U
U
ib

��� ���; ~V
U
ib

��� ���� 
;max ~U

L
ib

��� ���; ~V
L
ib

��� ���� n o
ð2:92Þ

gMGU
ia ¼ max|{z}

a�b� 1

max max ~U
U
ib

��� ���; ~V
U
ib

��� ���� 
;max ~U

L
ib

��� ���; ~V
L
ib

��� ���� n o
ð2:93Þ

Now, to realize if the gMGi lie within their respective fuzzy control limits,
comparisons of fuzzy numbers can be applied as mentioned in Sect. 2.5.

2.6.5 A Numerical Example for X-R Control Chart

A company produces a material and wants to monitor its hardness measured by
hardness testing equipment. Quality assistant takes a subgroup size of three, each
also having three materials. For each material, the measured hardness values vary
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because of the material properties and gauge variability. To overcome the uncer-
tainties caused by the non-uniform material properties, 3 readings for each sample
are explained as a triangular fuzzy number as shown in Table 2.11. Company wants
to construct x-R control charts for the uncertain hardness measurements using fuzzy
control charts. Fuzzy mean and the fuzzy range for each sample are calculated by
the equations given in Sect. 2.4.1, and shown in Table 2.11.

Fuzzy control limits are calculated according to the equations given in the
previous sections. For n = 3, A2 = 1.023, D3 = 0, and D4 = 2.574 are read from the
coefficients table for variable control charts given in Appendix A.

Fuzzy control limits for X charts:

fCL ¼ ~X ¼ 22:7; 24:7; 27:0ð Þ

gUCL ¼ Xa þA2Ra;Xb þA2Rb;Xc þA2Rc

� 
¼ 22:7þ 1:023 �1:5ð Þ; 24:7þ 1:023 2:7ð Þ; 27:0ð þ 1:023 6:9ð ÞÞ

gUCL ¼ 21:17; 27:46; 34:06ð Þ

gLCL ¼ Xa þA2Rc;Xb þA2Rb;Xc þA2Ra

� 
¼ 22:7� 1:023 6:9ð Þ; 24:7þ 1:023 2:7ð Þ; 27:0ð �1:023 �1:5ð ÞÞ

gLCL ¼ 14:21; 21:94; 28:53ð Þ

Fuzzy control limits for R charts:

fCL ¼ ~R ¼ �1:5; 2:7; 6:9ð Þ

gUCL ¼ D4Ra;D4Rb;D4Rc
� � ¼ 2:574 �1:5ð Þ; 2:574 2:7ð Þ; 2:574 6:9ð Þð Þ

¼ �3:86; 6:95; 17:76ð Þ

gLCL ¼ D3Ra;D3Rb;D3Rc
� � ¼ 0; 0; 0ð Þ

Construction of fuzzy X control limits are shown in Fig. 2.11.
Assume that 21st sample’s fuzzy average is X21 ¼ 25:4; 28:5; 32:3ð Þ as shown in

Fig. 2.12.
In order to decide whether ~X21 plots an out of control or not we need to check if

one of the conditions are met.

gLCL� ~X21 � gUCL
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If we use ranking methods explained in Sect. 2.5, we obtain a crisp decision that
~X21 plots either out of control or in control condition. One of the best method is to
use direct fuzzy approach control presented in Gülbay and Kahraman (2007) which
allows quality professionals to decide and interpret the chart with the degree of
membership that a point shows out of control or in control. Furthermore, by
defining intermediate decisions between out of control and in control enables to the
usage of various actions to correct the process.

14.21

21.94

28.53

22.7
24.7
27.4627.0

34.06

Fig. 2.11 Illustration of
Fuzzy X control limits

14.21

21.94

28.53

22.7
24.7

27.46
27.0

34.06

Fig. 2.12 Illustration of a
new fuzzy observation: X21
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2.7 Fuzzy Unnatural Pattern Analyses for Control Charts
for Variables

2.7.1 Probability of Fuzzy Events

The formula for calculating the probability of a fuzzy event A is a generalization of
the probability theory: in the case which a sample space X is a continuum or
discrete, the probability of a fuzzy event P(A) is given by Yen and Langari (1999):

P ~A
� � ¼ R

lA xð ÞPX xð Þdx if X is continuous;P
i
lA xið ÞPX xið Þdx if X is discrete:

(
ð2:94Þ

where PX denotes a classical probability distribution function of X for continuous
sample space and probability function for discrete sample space, and lA is a
membership function of the event A.

The membership degree of a fuzzy sample that belongs to a region is directly
related to its percentage area falling in that region, and therefore, it is continuous.
For example, a fuzzy sample may be in zone B with a membership degree of 0.4
and in zone C with a membership degree of 0.6. While counting fuzzy samples in
zone B, that sample is counted as 0.4.

2.7.2 Generation of Fuzzy Rules for Unnatural Patterns

The run rules are based on the premise that a specific run of data has a low
probability of occurrence in a completely random stream of data. If a run occurs,
then it is meant that something has changed in the process to produce such a
nonrandom or unnatural pattern. Based on the expected percentages in each zone,
sensitive run tests can be developed for analyzing the patterns of variation in the
various zones. For the fuzzy control charts, based on the Western Electric rules
(Western Electric Company 1956), the following fuzzy unnatural pattern rules can
be defined. The probabilities of these fuzzy events are calculated using normal
approach to binomial distribution (Gülbay and Kahraman 2006).

The probability of each fuzzy rule (event) below depends on the definition of the
membership function which is subjectively defined so that the probability of each of
the fuzzy rules is as close as possible to the corresponding classical rule for
unnatural patterns. The idea behind this approach may justify the following rules
(Gülbay and Kahraman 2006).

Rule 1: Any fuzzy data falling outside the three-sigma control limits with a ratio
of more than predefined percentage (β) of sample area at desired α-level. The
membership function for this rule can subjectively be defined as below:
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l1 xð Þ ¼
0 ; 0:85� x� 1;
x� 0:60ð Þ=0:25 ; 0:60� x� 0:85;
x� 0:10ð Þ=0:50 ; 0:10� x� 0:60;
1 ; 0� x� 0:10;

8>><>>: ð2:95Þ

Rule 2: A total membership degree around 2 from three consecutive points in
zone A or beyond. Probability of a sample being in zone A (0.0214) or beyond
(0.00135) is 0.02275. Let the membership function for this rule be defined as
follows:

l2 xð Þ ¼
0 ; 0� x� 0:59;
x� 0:59ð Þ=1:41 ; 0:59� x� 2
1 ; 2� x� 3

8<: ð2:96Þ

The probability of the fuzzy event rule 2 is approximately 0.0015, which cor-
responds to the crisp case of this rule.

Rule 3: A total membership degree around 4 from five consecutive points in
zone C or beyond:

l3 xð Þ ¼
0 ; 0� x� 2:42;
x� 2:42ð Þ=1:58 ; 2:42� x� 4;
1 ; 4� x� 5:

8<: ð2:97Þ

The probability of the fuzzy event rule 3 is approximately 0.0027
Rule 4: A total membership degree around 8 from eight consecutive points on

the same side of the centerline with the membership function below and its prob-
ability is 0.0039:

l4 xð Þ ¼ 0 ; 0� x� 2:54;
x� 2:54ð Þ=5:46 ; 2:54� x� 8:



ð2:98Þ

Rule 5: A total membership degree around 7 from seven consecutive points on
the same side of the center line. The fuzzy probability of this rule is 0.0079 when
membership function is defined as below:

l5 xð Þ ¼ 0 ; 0� x� 2:48;
x� 2:48ð Þ=4:52 ; 2:48� x� 7:



ð2:99Þ

Rule 6: At least a total membership degree around 10 from 11 consecutive points
on the same side of the center line. The fuzzy probability of this rule is 0.0058 when
the membership function is defined as below:
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l6 xð Þ ¼
0 ; 0� x� 9:33;
x� 9:33ð Þ=0:67 ; 9:33� x� 10;
1 ; 10� x� 11:

8<: ð2:100Þ

Rule 7: At least a total membership degree around 12 from 14 consecutive points
on the same side of the center line. If the membership function is set as given
below, then the fuzzy probability of the rule is equal to 0.0065.

l7 xð Þ ¼
0 ; 0� x� 11:33;
x� 11:33ð Þ=0:67 ; 11:33� x� 12;
1 ; 12� x� 14:

8<: ð2:101Þ

Rule 8: At least a total membership degree around 14 from 17 consecutive points
on the same side of the center line. The probability of this fuzzy event with the
membership function below is 0.0062.

l7 xð Þ ¼
0 ; 0� x� 13:34;
x� 13:34ð Þ=0:66 ; 13:34� x� 14;
1 ; 14� x� 17:

8<: ð2:102Þ

A framework for the application of the fuzzy unnatural pattern rules are as
follows:

1. Determine ±3σ fuzzy control limits.
2. Determine fuzzy regions of ±1σ and ±2σ
3. For each sample, calculate the percentage of sample area that belongs to the

regions of A, B, and C for both sides of the fuzzy center line.
4. For each fuzzy rule, check the last N points as defined in the rule and sum their

percentage of sample area in the related region. Then, for that rule use its
corresponding membership function to obtain the membership degree of the
occurrence for the specified rule.

5. Repeat step 4 until all desired fuzzy rules are checked.

2.7.3 An Illustrative Example

Consider the case where a-three subgroup (n = 3) is taken for the construction of the
fuzzy X control charts. For n = 3, the constant A2 = 1.023. Grand average and
average range for the 25 samples are calculated using the Eqs. 2.20–2.25 and given
as
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X ¼ 40; 55; 70ð Þ

R ¼ 10; 15; 20ð Þ

Fuzzy ±zσ limits can be calculated using the equations given in Table 2.12.

Replacing the values of the X;R; and the constant A2 into the equations above,
we obtain fuzzy regions as given in Table 2.13.

Let the next sample be ~X26 ¼ 48:0; 60:0; 70:0ð Þ. Let’s construct the X control
chart and see at what membership degree ~X26 belongs to the regions of A, B, and C
for the both sides of the fuzzy center line.

In Fig. 2.14, fuzzy control limits and fuzzy regions (see Fig. 2.13) are simplified
in order to show the region A above the centerline and ~X26.

As can be seen from the Fig. 2.14, only a little part of the sample area of ~X26 is
out of the region A, namely most of its parts are in region A. The problem is to
calculate the percentage area of ~X26 which is inside the region A. The percentage

Table 2.12 Equations for
calculation of fuzzy ±zσ
control limits

z Notation Fuzzy zσ limits

+3 gUCL Xa þA2Ra;Xb þA2Rb;Xc þA2Rc

� 
+2 fCLþ 2r Xa þ 2

3

� �
A2Ra;Xb þ 2

3

� �
A2Rb;Xc þ 2

3

� �
A2Rc

� 
+1 fCLþ 1r Xa þ 1

3

� �
A2Ra;Xb þ 1

3

� �
A2Rb;Xc þ 1

3

� �
A2Rc

� 
0 fCL X ¼ Xa;Xb;Xc

� 
−1 fCL � 1r Xa � 1

3

� �
A2Rc;Xb � 1

3

� �
A2Rb;Xc � 1

3

� �
A2Ra

� 
−2 fCL � 2r Xa � 2

3

� �
A2Rc;Xb � 2

3

� �
A2Rb;Xc � 2

3

� �
A2Ra

� 
−3 gLCL Xa � A2Rc;Xb � A2Rb;Xc � A2Ra

� 

Table 2.13 Fuzzy ±zσ
control limits and their
regions (see Fig. 2.6)

z Notation Fuzzy zσ limits Region

+3 gUCL (50.2, 70.3, 90.5) A

+2 fCLþ 2r (46.8, 65.2, 83.6) B

+1 fCLþ 1r (43.4, 60.1, 76.8) C

0 fCL (40.0, 55.0, 70.0) C

−1 fCL � 1r (36.6, 79.9, 63.2) B

−2 fCL � 2r (33.2, 44.8, 56.4) A

−3 gLCL (29.8, 39.7, 49.5)
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sample area within a specified region can be calculated using the formula given in
Eq. 2.42.

bj ¼
Sj � Sout

Sj
ð2:103Þ

where Sj is the sample area and Sout is the area of the sample outside the corre-
sponding region. These calculations are a little hard, but by using simple software it
can be easy to determine. Once control limits are specified a general formula can be
derived for the area calculation and the percentage areas can be calculated using any
spread sheets. The reader can refer to the Gülbay and Kahraman ( 2006) for the

39.7

33.2
36.6
40.0
43.4
46.8
50.249.5

56.4

63.2

70.0

76.8

83.6

90.5

44.8

49.9

55.0

60.1

65.2

70.3

29.8

Fig. 2.13 Illustration of ±zσ
control limits and ~X26

46.8
50.2

56.4

63.2

70.0

76.8

83.6

90.5

65.2

70.3

The part of the that is 
outside the region A 
above the center line:

Fig. 2.14 Illustration of +2σ
and +3σ control limits, and
~X26
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determination of the percentage areas. Suppose that b26; b27; and b28 are determined
as 0.85, 0.50, 0,25. For these 3 consecutive samples the total degree of member-
ships is 0.85 + 0.50 + 0.25 = 1.60 for being in region A above the center line. Fuzzy
rule 2 can be checked now to decide at what membership degree that rule is
performed. Remember that membership degree of the rule 2 was subjectively
defined as:

l2 xð Þ ¼
0 ; 0� x� 0:59;
x� 0:59ð Þ=1:41 ; 0:59� x� 2
1 ; 2� x� 3

8<:
Then,

l2 1:60ð Þ ¼ 1:60� 0:59ð Þ=1:41 ¼ 0:716f

The quality control professional can set a predefined value of l to compare with
the li to accept or reject the occurrence of the rule and hence may justify a set of
actions with respect to the calculated l. The rest of the fuzzy rules are applied in the
same way.

2.8 Conclusion

Control charts aim at detecting if any assignable cause exists in the considered
process. If only random causes exist, no action is required. Otherwise, a corrective
action is needed. We proposed fuzzy control charts to be used in case of incomplete
and vague data for the process control. Fuzzy triangular fuzzy numbers have been
preferred in the developed control charts because of their relative simplicity
whereas the other types of fuzzy numbers can also be used. Trapezoidal fuzzy
numbers or LR type fuzzy numbers can be replaced with triangular fuzzy numbers
in these analyses. EWMA control charts are preferred when we need detecting
small shifts. These charts have been also developed under fuzziness and a numerical
example has been given. The new extensions of fuzzy sets such as type-2 fuzzy sets,
Intuitionistic fuzzy sets, and hesitant fuzzy sets are the possible alternatives to
extend our work. Each of these new extensions is also divided into a few types. For
example, interval type Intuitionistic fuzzy sets for triangular Intuitionistic fuzzy sets
are subalternatives for the new developments.

Appendix A

Table of coefficients for control charts for variables.
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Appendix B

The equations to compute sample area outside the control the limits.

AU
out ¼

1
2

da � UCLa4
� �þ dt � UCLt4

� �� �
max t � a; 0ð Þð Þ

þ 1
2

dz � azð Þþ c� bð Þ½ � min 1� t; 1� að Þð Þ
ð2:104Þ

where,

t ¼ UCL4 � a
b� að Þþ c� bð Þ and z ¼ max t; að Þ

AU
out ¼

1
2

da � UCLa4
� �þ c� UCL3ð Þ� �

1� að Þ ð2:105Þ

AU
out ¼

1
2

da � UCLa4
� �

max t � a; 0ð Þð Þ ð2:106Þ

where

t ¼ UCL4 � d
UCL4 � UCL3ð Þ � d � cð Þ

AU
out ¼

1
2

c� UCL3ð Þþ dz � UCLz4
� �� �

min 1� t; 1� að Þð Þ ð2:107Þ

where

t ¼ UCL4 � d
UCL4 � UCL3ð Þ � d � cð Þ and z ¼ max t; að Þ

AU
out ¼

1
2

dz2 � UCLz24
� �þ dt1 � UCLt14

� �� �
min max t1 � a; 0ð Þ; t1 � t2ð Þð Þ

þ 1
2

dz1 � az1ð Þþ c� bð Þ½ � min 1� t1; 1� að Þð Þ

where

t1 ¼ UCL4 � a
b� að Þþ UCL4 � UCL3ð Þ ;

t2 ¼ UCL4 � d
UCL4 � UCL3ð Þ � d � cð Þ ;

ð2:108Þ

z1 ¼ max a; t1ð Þ; and z2 ¼ max a; t2ð Þ
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AU
out ¼ 0 ð2:109Þ

AU
out ¼

1
2

da � aað Þþ c� bð Þ½ � 1� að Þ ð2:110Þ

AL
out ¼

1
2

LCLa1 � aa
� �þ LCLt1 � at

� �� �
max t � a; 0ð Þð Þ

þ 1
2

dz � azð Þþ c� bð Þ½ � min 1� t; 1� að Þð Þ
ð2:111Þ

where

t ¼ d � LCL1
LCL2 � LCL1ð Þþ d � cð Þ and z ¼ max a; tð Þ

AL
out ¼

1
2

da � aað Þþ c� bð Þ½ � 1� að Þ ð2:112Þ

AL
out ¼

1
2

LCLa1 � aa
� �þ LCL2 � bð Þ� �

1� að Þ ð2:113Þ

AL
out ¼

1
2

LCLz21 � az2
� �þ LCLt11 � at1

� �� �
min max t1 � a; 0ð Þ; t1 � t2ð Þð Þ

þ 1
2

dz1 � az1ð Þþ c� bð Þ½ � min 1� t; 1� að Þð Þ
ð2:114Þ

where

t1 ¼ d � LCL1
LCL2 � LCL1ð Þþ d � cð Þ ;

t2 ¼ a� LCL1
LCL2 � LCL1ð Þ � b� að Þ

z1 ¼ max a; t1ð Þ; and z2 ¼ max a; t2ð Þ

AL
out ¼

1
2

LCLz1 � az
� �þ LCL2 � bð Þ� �

min 1� t; 1� að Þð Þ ð2:115Þ

where

t ¼ a� LCL1
LCL2 � LCL1ð Þ � b� að Þ ; and z ¼ max a; tð Þ

AL
out ¼ 0 ð2:116Þ
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AL
out ¼

1
2

da � aað Þþ c� bð Þ½ � 1� að Þ ð2:117Þ
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