Chapter 15

Key-Driver Analysis with Extended
Back-Propagation Neural Network Based
Importance-Performance Analysis
(BPNN-IPA)

Josip Mikuli¢, Damir Kresi¢ and Katarina Milicevi¢

Abstract Importance-performance analysis (IPA) is a popular prioritization tool
used to formulate effective and efficient quality improvement strategies for products
and services. Since its introduction in 1977, IPA has undergone numerous
enhancements and extensions, mostly with regard to the operationalization of
attribute-importance. Recently, studies have promoted neural network-based IPA
approaches to determine attribute-importance more reliably compared to traditional
approaches. This chapter describes the application of back-propagation neural
networks (BPNN) in an extended IPA framework with the goal of discovering key
areas of quality improvements. The value of the extended BPNN-based IPA is
demonstrated using an empirical case example of airport service quality.
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15.1 Introduction

Originally introduced by Martilla and James in 1977 (Martilla and James 1977), the
importance-performance analysis (IPA) has become one of the most popular ana-
Iytical tools for prioritizing improvements of service attributes. According to the
SCOPUS citation database, in July 2013 there were more than 300 papers bearing
the name of the technique in the title, abstract or keywords, whereas the term
appeared anywhere in the text in more than 1000 papers.
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IPA usually departs from a formative multi-attribute model of customer satis-
faction (CS). Put differently, the focal service is decomposed into key functional
and/or psychological attributes that significantly influence the customer experience
with the service. Such a model is then used to develop a questionnaire for gathering
the necessary IPA-input data. Following the original methodology, one set of
measurement items is used to measure perceived attribute-importance, and another
set to measure perceived attribute-performance. Arithmetic means of importance
and performance ratings are then plotted into a two-dimensional matrix. Grand
means of importance and performance ratings (or, alternatively, scale means), are
further taken to divide the matrix into four quadrants. Accordingly, four distinct
managerial recommendations can then be derived depending on the location of the
attributes within the matrix (Fig. 15.1).

Although the prioritization logic of the original IPA is intuitive and straight-
forward (priority rises with increasing importance and decreasing performance of
attributes), researchers have identified several shortcomings of the technique during
the past three decades. Whereas some authors were primarily concerned with
technical issues (e.g. the most appropriate way to divide the matrix into different
areas), a significantly larger number of scholars have raised conceptual issues that
mainly regard the importance-dimension in IPA. In order to enhance the reliability
(and validity) of the original methodology, researchers have thus proposed
numerous modifications with regard to both the conceptualization and the opera-
tionalization of attribute-importance in IPA. Most recently, IPA variants have been
introduced that utilize the power of the multilayer perceptron (MLP), a popular type
of back-propagation neural networks (BPNN), for assessing attribute-importance.
As several studies have shown, the integration of BPNNs into the IPA framework
can help to significantly increase the reliability of managerial implications (Deng
et al. 2008; Hu et al. 2009; Mikuli¢ and Prebezac 2012; Mikuli¢ et al. 2012).
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In this chapter we present an extended BPNN-based IPA analytical framework
which solves several significant shortcomings of traditional IPA. The value and
application of the extended BPNN-IPA is demonstrated in an empirical case
example of airport service quality. Before proceeding to the case study in
Sect. 15.3, the following section reviews and summarizes recent advances regarding
the IPA, particularly with regard to the integration of BPNNs into the analysis
framework.

15.2 Literature Review

15.2.1 1IPA and the Conceptualization
of Attribute-Importance

The conceptualization and, subsequent, operationalization of attribute-importance is
a controversial issue in IPA studies. The original methodology put forward the use
of stated importance measures which assess the importance of attributes as per-
ceived by the customer (Martilla and James 1977). This type of importance can be
evaluated through rating-, ranking- or constant-sum scales. Contemporary IPA
studies, however, employ increasingly derived measures of importance which are
obtained by relating attribute-level performance to a measure of global service
performance, like overall satisfaction or overall service quality (Grenholdt and
Martensen 2005).

While several scholars have argued in favor of one of these two types of
importance measures, recent IPA studies have revived the early ideas of Myers and
Alpert (Myers and Alpert 1977) who stressed that these two types of measures
should not be regarded as competing or conflicting measures. Rather they should be
regarded as complementary measures because they assess different dimensions of
the importance-construct (Van Ittersum et al. 2007). While stated measures assess
an attributes general importance (referred to as relevance), derived measures assess
an attributes actual influence in a particular study context (referred to as determi-
nance). Most important, it is not reasonable to assume strong correlation between
these two dimensions of importance. Aspects of a service which are perceived very
important by the customer do not necessarily have to be those ones that will truly
have the strongest influence on his satisfaction in a particular service transaction.
If an attribute which is perceived very important by the customer performs
according to the customer’s expectations, then its actual influence on the customer’s
overall satisfaction might be smaller than the effect of an attribute which is per-
ceived less important. This might occur in cases when the less important attribute
performs below or above customer-expected levels, thus causing strong negative or
positive customer reactions, respectively.

Following this line of thought, Mikuli¢ and Prebezac (2011, 2012) have pro-
posed a rather simple extension of IPA by integrating both stated and derived
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Fig. 15.2 Relevance-determinance matrix

measures of attribute-importance into a relevance-determinance matrix (RDM;
Fig. 15.2). Since a three-dimensional representation of results might, however, be
confusing (i.e. two importance dimensions and one performance dimension), the
authors suggest marking attributes in the RDM that perform below and above
average with a minus (—) and a plus (+), respectively.

The following recommendations apply to the four attribute categories (Mikuli¢
and Prebezac 2012):

e Higher-impact core attributes (quadrant 1): These attributes are perceived very
important by customers and they have a strong influence on overall satisfaction.
The management should primarily focus on this category to strengthen the
market position. Attributes from this attribute category that perform relatively
low should be assigned highest priority in improvement strategies.

e Lower-impact core attributes (quadrant 2): These attributes are perceived very
important, but they only have a relatively weak influence on overall satisfaction.
Market-typical levels of performance should be ensured for these attributes.
These attributes can turn into dissatisfiers with a strong influence on overall
satisfaction when performance drops below a tolerated threshold.

e Higher-impact secondary attributes (quadrant 4): These attributes are perceived
less important, but they have a strong influence on overall satisfaction.
Attributes forming this category are likely part of the augmented product/service
and can be used to differentiate from the competition. The importance of these
attributes would be completely underestimated if using stated importance
measures, only.

e Lower-importance attributes/Lower-impact secondary attributes (quadrant 3):
These attributes should be assigned lower general priority in improvement
strategies than the previous three categories.
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15.2.2 IPA and the Problem of Multicollinearity

While stated importance is typically assessed through direct rating scales, derived
importance is usually assessed by means of multiple regression or correlation
analysis. A significant technical problem here, which limits the applicability of
popular derived measures of attribute-importance, is strong correlation among the
attributes which are used to predict overall CS. In particular, the problem is that a
regression on correlated attributes violates a basic assumption of the technique, why
it may produce invalid estimates of relative attribute-determinance. Typical con-
sequences are (i) regression coefficients with reversed signs, although the zero-order
correlation with the dependent variable is positive, (ii) significantly different
weights for equally determinant variables, and (iii) exaggerated/suppressed
regression coefficients (Johnson 2000). Although many research areas struggle
with correlated variables, the problem can be characterized as a major ‘plague’ in
CS research, as this area of research does not rely on metric measures of objective
phenomena, but rather on limited scale-range measures of perceptions that fre-
quently tend to be strongly correlated (Weiner and Tang 2005). Moreover, CS
studies tend to analyze relatively large numbers of variables, which generally
increases the risk of multicollinearity. Since the reliability and validity of derived
importance measures directly affects the reliability and validity of
attribute-prioritizations, ways need to be found to deal with this problem in IPA.
Basically, there are three general options.

1. Bivariate approaches like zero-order correlation or bivariate regressions may be
applied to circumvent the multicollinearity problem. However, these approaches
are less than optimal because they fail to consider the influence of all other
variables in estimations of relative attribute-determinance. Accordingly, these
measures are generally not recommended for use with multi-attribute CS
models.

2. The risk of high inter-correlations may be reduced by specifying
attribute-models in which they are less likely to occur. Since the likelihood of
occurrence is typically positively correlated with the number of explanatory
variables in a regression model, researchers may, on the one hand, consider the
use of hierarchical attribute-models to keep the number of predictors in a model
at a reasonable level, but thereby preserving desired levels of detail. On the other
hand, if the data are not based on hierarchical models, attributes may be factor
analyzed in an exploratory manner to potentially obtain a decreased number of
uncorrelated factors that enter the analysis. Similarly, but simpler, correlational
matrices can be computed to identify highly correlated attributes that should be
reconsidered for inclusion into the final model.

3. Researchers may use approaches that are capable of effectively dealing with
correlated predictors. Several regression-based approaches have been proposed,
involving measures of average variable contributions to R” across all possible
sub-models (Kruskal 1987; Budescu 1993), variance-decomposition with
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uncorrelated subsets of predictors (Genizi 1993), or heuristics based on predictor
orthogonalization (Johnson 2000). However, in case of larger numbers of
attributes, a severe limitation of these approaches is that they are either com-
plicated to implement, or computationally very demanding. For example, ‘all
sub-set regression’ procedures require 27 —1 models for estimating the
importances of p attributes—i.e.: 31 models for p = 5, 1023 models for p = 10,
and even 32,767 models for p = 15. Since none of available statistical packages
have built-in features for performing such analyses, these approaches are not
very appealing to CS researchers.

15.2.3 IPA and the Application of Artificial Neural
Networks

A valuable alternative to traditional statistical approaches that does not assume
uncorrelated predictors is the multilayer perceptron (MLP), a popular class of
back-propagation neural networks (BPNN) that has been applied in several IPA
studies (Deng et al. 2008; Hu et al. 2009; Mikuli¢ and Prebezac 2012; Mikuli¢ et al.
2012). BPNNss are artificial neural networks with feed-forward architecture that use
a supervised learning method. Back-propagation is the most widely used neural
network architecture for classification and prediction. The idea of the BPNN goes
back to 1974 with Werbos discussing the concept, while the algorithm was clearly
defined in 1985 by Rumelhart and his colleagues who introduced the Propagation
Learning Rule (Rumelhart et al. 1986). Nowadays, BPNNs are widely applied in
numerous research areas, such as pattern recognition, medical diagnosis, sales
forecasting or stock market returns, among others (Zong et al. 2014; Subbaiah et al.
2014; Kuo et al. 2014; Huo et al. 2014). A graphical presentation of a typical MLP
is provided in Fig. 15.3.

Attribute 1 -@
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Fig. 15.3 Multilayer perceptron
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An MLP consists of one input-layer, one or more hidden-layers, and one
output-layer. Each layer comprises a number of neurons that process the data via
nonlinear activation functions (e.g. sigmoid, hyperbolic-tangent). To draw an anal-
ogy to regression, the input-layer neurons can be referred to as predictors and the
output-layer neurons as the dependent variable (typically this is one in
regression-kind problems).

An important difference compared to regression is, however, that predictors are
not directly related to the dependent variable, but via neurons in one or more hidden
layers. These in turn determine the mapping relations which are stored as weights of
connecting paths between the neurons. The nonlinear activation functions further
enable the MLP to straightforwardly deal with indefinable nonlinearity, giving the
MLP a significant technical advantage over regular linear regression (DeTienne
et al. 2003). The most important difference towards regression is, however, that the
MLP is a dynamic network model that uses a back-propagation algorithm to train
and optimize the network. Errors between predicted and actual output values are
iteratively fed back to the network in order to minimize this discrepancy according
to some predefined rule or target (Haykin 1999). Put differently, the MLP learns
from the data and dynamically updates the network weights. Sum-of-squares
(SOS) error functions are typically used in combination with learning algorithms
like the scaled conjugate gradient algorithm (Moller 1993), or the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Broyden et al. 1973).

Although MLPs are powerful prediction tools that can explain very large
amounts of variance in dependent variables, MLPs do, however, not provide
straightforward indicators of predictor determinance (i.e. derived predictor impor-
tance). Because of this, ANNs have been frequently termed as “black box”
methodologies. Such indicators can, however, be obtained by using one of the
following two approaches.

On the one hand, predictor determinance can be derived through
connection-weight procedures—i.e. all weights connecting an input-layer neuron
over hidden-layers to the output layer neuron are used to calculate a neuron’s
determinance (i.e. its influence on the dependent variable). The two most wide-
spread, though conflicting, procedures are the algorithms proposed by Garson
(Garson 1991) and Olden and Jackson (Olden and Jackson 2002). An empirical
comparison using Monte-Carlo simulated data has, however, come to the conclu-
sion that the latter approach performs significantly better, and thus it should be
preferred (Olden and Jackson 2002).

On the other hand, predictor determinance can be derived through stepwise
procedures. Here it is analyzed how the discrepancy between predicted and actual
output values behaves when predictors are iteratively dropped from, or included
into the network (Sung 1998). Analogously to analyzing changes in R?> when
dropping/including predictors in a regression model, a relatively larger increase of
the network/model error, attributed to the omission of a particular predictor, can be
interpreted as relatively larger predictor determinance. Conversely, a decrease of the
network error would imply that the respective predictor should rather be omitted
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from the network, as it, in fact, decreases the overall model quality. Moreover,
because the assumption of uncorrelated predictors is not made in MLPs, a note-
worthy advantage over regression is that there is no need to average changes in
model error over all predictor-orderings to ensure the reliability of determinance
estimates. Since all-subset regressions become exponentially time-consuming with
larger numbers of predictors (i.e. 2°~! models are required to estimate the deter-
minance of p attributes), this is a significant practical advantage of MLPs over
similar regression-based approaches like e.g. dominance analysis, or Kruskal’s
averaging over orderings procedure.

15.3 An Application of the Extended BPNN-IPA

An overview of the extended BPNN-IPA methodology is given in Fig. 15.4.

The data used in this example were collected as part of a periodical survey on
airline passenger satisfaction with services provided at a European international
airport. The data were collected by means of a structured questionnaire in
face-to-face interviews in the international departure area of the airport. Five-point
direct rating scales were used to assess both the importance (1 = less important;
5 = very important) and performance (1 = very poor; 5 = excellent) of a series of
airport attributes, as well as the level of overall satisfaction with the airport
(1 = disappointed; 5 = delighted). Overall, 2025 fully completed questionnaires
entered the subsequent data analysis.

In order to guide management efforts for improving the overall airport experi-
ence we will conduct an extended BPNN-based IPA. Following the approach
proposed by Mikuli¢ and Prebezac (2011, 2012), the traditional IPA framework is
extended by using measures of both attribute-relevance and determinance. This
facilitates a relative categorization of attributes according to their general impor-
tance, as perceived by passengers (i.e. attribute-relevance, AR), and their actual
influence on overall passenger satisfaction with the airport services (i.e.
attribute-determinance, AD).

Step 1: Gather required data

Step 2: Calculate relevance and performance scores

Step 3: Use a BPNN to calculate determinance scores

Step 4: Construct the RDM

Step 5: Interpret results and determine priorities

Fig. 15.4 Methodology of the extended BPNN-IPA
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To prepare the necessary input-data arithmetic means of attribute-performance
ratings (AP) are first calculated:

1
APi:*E y V'EI;':I,,,., 15.1
nj:1pJ l ’ " ey

where p;; is the performance rating for attribute i, i € I by respondent j,
j=1,...,n, n the number of respondents, and [ the set of analyzed attributes i.
Analogously, arithmetic means of importance ratings are calculated to obtain
indicators of attribute-relevance (AR). To obtain indicators of AD an MLP-based
sensitivity analysis is conducted. This analysis involves the following steps:

4. Specification of MLP architecture: AP ratings are specified as input-layer
neurons and ratings of overall satisfaction with the airport as single output-layer
neuron in a one-hidden layer MLP. The overall sample is partitioned into
training, testing, and holdout samples (60, 20, and 20 % of the samples,
respectively). The network training continues as long as the network error is
decreasing in both the main dataset (i.e. training samples) and the testing
samples. When the error between predicted and true output values starts
increasing in the testing sample, training is stopped to prevent over-fitting. This
stopping rule is necessary because over-fitted networks usually perform very
well or perfect during training, but they also typically perform significantly
weaker or badly on unseen data. The holdout samples are further used to
cross-validate the performance of the MLP after the training is finished.
The MLP can be considered reliable only if the network performs consistently
well across all three independent samples.

5. Network training: The network is trained using a sum-of-squares error function
and the BFGS learning algorithm. Network performance is assessed using the
mean absolute percentage error (MAPE) and root mean squared error (RMSE).
RMSE can be used to derive network goodness-of-fit (R?):

Yi— i

a;

ln
MAPE = - 100%i=1,... 15.2
LS 1005 — 1, m (152)

i=1

(15.3)
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where y; is the predicted output value for sample i, a; the actual output value for
sample i, nthe number of samples, and o2 the variance of the actual output.

The following trial-and-error procedure is used to determine the best network
configuration. In a first step several networks with varying activation functions and
numbers of neurons in the hidden-layer are estimated. The correlations between true
and predicted values are then checked to identify the best-performing networks.
Here it is important that the network configurations provide consistent performance
across the training, testing and holdout samples. After identifying the
better-performing activation functions, these are then used to estimate another set of
network configurations. The correlations between predicted and true output values
are then checked again to identify the best performing activation functions and
number of hidden-layer neurons. Using e.g. the automated neural network feature
in newer versions of Statsoft Statistica (version 8.0 or higher) this whole
trial-and-error procedure can easily be conducted, thereby using large numbers of
network configurations to be estimated at a time (e.g. 5000 or higher).

6. Estimation of attribute-determinance: To obtain indicators of AD a global
sensitivity analysis of the network error is conducted. While in a local sensitivity
analysis the focus is on how sensitive the output is to a given domain of a
predictor, global sensitivity focuses on how the output behaves when completely
eliminating a predictor from the network. This is done by iteratively fixing the
value of each particular predictor to its arithmetic mean before re-estimating the
same network (with a particular predictor omitted). Accordingly, a larger
increase of the network error can then be regarded as an indicator of larger
influence of an attribute in explaining variations in the output (i.e. determi-
nance). This type of indicator is very similar to changes in R? whichare attri-
butable to the omission of predictors from a regression model.

The results of the network performance assessment for our case example are
provided in Table 15.1. The network we choose to estimate indicators of AD has 20
hidden-layer. neurons, exponential activation functions in the hidden layer, and
identity functions in the output layer (in bold). For comparison, the coefficient of
determination of the respective OLS regression model is R?> = 0.59887.

Table 15.1 Assessment of network performances

Network R? (Training R? (Test R? (Holdout Activation functions (Hidden
configuration sample) sample) sample) layer/Output layer)

13-20-1 0.75994 0.74677 0.75358 Exponential/Identity

13-5-1 0.75447 0.73327 0.74652 Exponential/Identity

13-6-1 0.80416 0.73053 0.72631 Exponential/Exponential
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Table 15.2 Determinance, relevance and performance of airport attributes

Attribute Determinance (%) Relevance | Performance
1. Traffic connection between airport and 93.63 4.27 391
city

2. Parking 56.86 3.57 3.70
3. Ease of way-finding 53.61 4.48 4.22
4. Information desk 71.10 4.22 4.21
5. Customs and body check procedure 73.71 4.29 4.19
6. Cafes and restaurants 42.75 3.60 3.66
7. Shopping possibilities 0.00 3.63 3.73
8. Availability of ATMs 50.14 4.16 4.16
9. Availability of Internet access 29.31 3.87 3.59
10. Availability of luggage carts 80.70 3.84 3.94
11. Comfort level and cleanliness 35.03 4.37 4.00
12. Staff politeness 67.29 4.62 4.20
13. Flight network 100.00 4.25 3.86
Grand mean 58.01 4.09 3.95

Min-max normalization is applied to the weights obtained from the sensitivity
analysis for easier comparison across attributes (expressed as percentages). Final
scores of AD, AR and AP are presented in Table 15.2.

Scores of AD and AR are then used to construct the two-dimensional RDM. The
thresholds that divide the matrix into four quadrants are set at the values of the
grand means of AD and AR (Fig. 15.5). The basic prioritization logic is to search
for attributes that perform relatively lower (e.g. below the grand mean) starting
from the first quadrant (higher-impact core attributes; highest general priority), over
the fourth quadrant (higher-impact secondary attributes), the second quadrant
(lower impact core attributes), to the third quadrant (lower importance attributes;
lowest general priority).

The BPNN-IPA reveals that most attention should be paid to the quality of
(13) the flight network and the (1) traffic connection between the airport and the
city. These are the only two attributes located in the first quadrant that perform
below average (AP;3 = 3.86; AP; = 3.91). Improving the quality of these two
attributes would be likely to significantly enhance overall passenger satisfaction
with the airport.

If we move to the fourth quadrant, we see that the only higher-impact secondary
attribute performs below average, i.e. (10) availability of luggage carts
(AP;g = 3.94). Accordingly, this attribute should be considered next for improve-
ment. It is noteworthy that the importance of this attribute would have been sig-
nificantly underestimated if only stated importance measures had been used.

A look at the attributes in the second quadrant (lower-impact core attributes)
reveals that no immediate action is needed here, because all attributes perform
above average.
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Finally, the focus is shifted to the attributes located in the third quadrant which
have relatively lower general priority than attributes in the other three quadrants.
Although these attributes have relatively lower relevance and determinance, the
airport management should consider their improvement after having improved the
previously mentioned attributes, because all the four attributes perform below
average—i.e. (2) parking (AP, = 3.70), (6) cafes and restaurants (APg = 3.66),
(9) availability of Internet access (APy = 3.59), and (7) shopping possibilities
(AP; = 3.73).

15.4 Conclusion

This chapter described the application of back-propagation neural networks
(BPNN) in an extended importance-performance analysis (IPA) framework with the
goal of discovering and prioritizing key areas of quality improvements. The
application of the extended BPNN-based IPA was demonstrated using an empirical
case study of passenger satisfaction with services provided by an international
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airport. The extended BPNN-based IPA identified the most important key-drivers of
passenger satisfaction and provided detailed improvement priorities of the various
airport services.

From a methodological point of view, the applied framework solves two
important shortcomings of traditional key-driver analyses, in particular of prevail-
ing approaches to IPA:

First, by combining two different dimensions of attribute-importance into IPA
(i.e. attribute-relevance and determinance), the general reliability of the analytical
framework is significantly increased. With only few exceptions, IPA studies typi-
cally use a one-dimensional operationalization of importance, i.e. either they use
relevance or determinance. Since these two measures do not necessarily have to
converge, the reliability and validity of managerial implications from traditional
IPA are at least questionable. That a one-dimensional operationalization of
importance might mislead managers has also been demonstrated in the example
used in this chapter. The importance of one attribute (availability of luggage carts)
would have been significantly underestimated if only measures of relevance had
been used. Here, relevance of the attribute was below average, while its determi-
nance was significantly above average.

Second, by using the multilayer perceptron (MLP), a popular class of BPNNs for
deriving attribute-determinance in IPA, the proposed framework provides more
reliable determinance estimates compared to traditional regression-based analyses.
This is because the MLP can effectively deal with correlated predictors, and it
applies nonlinear rather than linear activation functions in modeling the data.
The MLP can thus straightforwardly account for possible nonlinearities in the
relationship between the performance of various service/product attributes and the
level of global satisfaction. Application of the MLP is particularly valuable in
customer satisfaction studies, as demonstrated in this chapter, because studies in
this area typically analyze larger numbers of product or service attributes. Since
there is usually a significant amount of correlation among these attributes, tradi-
tional regression-based analyses tend to provide distorted and, subsequently,
unreliable determinance scores. With application of the MLP, reliability of
determinance-scores is significantly improved. Moreover, since multicollinearity
problems tend to increase with larger numbers of analyzed product/service
attributes-predictors, application of the MLPdoes not force researchers to make
large trade-offs between the desired level of detail of the attribute-model under
study and the reliability of results.

For future IPA studies it is generally recommended to apply both relevance and
determinance scores to determine an attribute’s importance. With regard to the
application of ANNs in assessing an attribute’s influence on a dependent variable
(like overall satisfaction), future IPA studies may consider the application of genetic
algorithm for network optimization. Also, it would be useful to further investigate
and compare different was of obtaining determinance weights from ANNs (e.g.
connection-weights procedures vs. stepwise procedures), in order to provide some
best practice guidelines for both practitioners and researchers in this area.
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Key terms

e Back-propagation neural network: A feed-forward artificial neural network that
uses supervised learning to map a set of input data onto a set of output data. The
error (i.e. discrepancies between true and computed data) is back-propagated to
the network until it is minimized according to some predefined rule.

e Importance-performance analysis: A widely applied analytical tool that is used
to prioritize product/service attributes for improvement. The rationale is to
compare the importance of product/service attributes with the attributes’ per-
formance using a two-dimensional matrix. The analysis is based on data from
typical customer satisfaction surveys.

e Relevance: A dimension of the importance construct that could be referred to as
general importance. The literature also uses the term stated importance to
denote relevance. The relevance of a product/service attribute such refers to the
attribute’s importance without a particular performance context.

e Determinance: A dimension of the importance construct that could be referred to
as actual importance or impact. The literature also uses the term derived
importance to denote determinance. The determinance of a product/service
attribute such refers to the attribute’s actual influence on e.g. the customer’s
satisfaction given a particular context of attribute performances.

e Relevance-determinance asymmetry: The case when the relevance of a
product/service attribute does not correspond with the attribute’s determinance.
E.g. the relevance of safety as an attribute of an airline flight certainly is very
high. The attribute’s actual importance or impact on a passenger’s flight satis-
faction (i.e. determinance), however, certainly depends on the attribute’s level of
performance. Such, it should not have a significant impact in case everything
went fine on a flight.
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