
Chapter 13
Taguchi Method Using Intelligent
Techniques

Kok-Zuea Tang, Kok-Kiong Tan and Tong-Heng Lee

Abstract The Taguchi method has been widely applied in quality management
applications to identify and fix key factors contributing to the variations of product
quality in manufacturing processes. This method combines engineering and sta-
tistical methods to achieve improvements in cost and quality by optimizing product
designs and manufacturing processes. There are several advantages of the Taguchi
method over other decision making methods in quality management. Being a
well-defined and systematic approach, the Taguchi method is an effective tuning
method that is amenable to practical implementations in many platforms. To build
on this, there are also merits, in terms of overall system performance and ease of
implementation, by utilizing the Taguchi method with some of the artificial intel-
ligent techniques which require more technically involved and mathematically
complicated processes. To highlight the strengths of these approaches, the Taguchi
method coupled with intelligent techniques will be employed on the fleet control of
automated guided vehicles in a flexible manufacturing setting.

Keywords Taguchi method � Artificial intelligent techniques � Automated guided
vehicles

13.1 Introduction

Taguchi method is an experimental design method that has been developed by Dr.
Genichi Taguchi (1993). It is called quality engineering (or Taguchi methods in the
United States). The Taguchi method combines engineering and statistical methods
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(Mori 1993; Ealey 1994) to achieve improvements in cost and quality by opti-
mizing product design and manufacturing processes. The main advantage of
Taguchi method over other search and tuning method is the twofold benefit of both
efficiency and simplicity. Efficiency provides an affordable avenue for problem
solving. Simplicity results in a set of tools more easily adopted and embraced by the
non-statistical expert.

Conventionally, the Taguchi method has been widely applied in quality control
applications to identify and fix key factors contributing to the variation of product
quality in manufacturing process (Peace 1993; Ross 1988; Hong 2012; Rao et al.
2008; Taguchi et al. 2004; Chen et al. 1996). These successful quality management
applications can be found in a diverse range of industries, ranging from chemical
plants, electrical and electronics manufacturing, mechanical productions, software
testing, and biotechnology-related fields like fermentation, food processing,
molecular biology, wastewater treatment and bioremediation biological sciences.

There are several strengths of the Taguchi method that is worth mentioning here
(Ealey 1994; Peace 1993). The Taguchi method is an effective tuning method that
has well-defined, systematic and simple steps. The optimum values of the factors to
be tuned are determined in relatively shorter and limited steps. All the above
mentioned points make the Taguchi method amenable to practical implementation.
Some of the artificial intelligent methods, like the genetic algorithm, the neural
networks and the evolutionary algorithm, propose more involved and complicated
search methods for optimization (Tortum et al. 2007). Furthermore, the Taguchi
method selects a combination of the factors (i.e., that needs to be tuned) that are
robust against the changes in the environment. The Taguchi method has the
additional advantage of being amenable to analyzing the sensitivity of the indi-
vidual factor that is to be tuned on the final objective performance. The above
mentioned artificial intelligent methods, on the other hand, are not able to provide
this analysis. In this perspective, there are some merits in utilizing the Taguchi
method together with some of these artificial intelligent methods.

In the current literature, researchers and engineers have also built on the suc-
cessful track records of the Taguchi method. Being an optimization tool that is
amenable to practical implementation, the Taguchi method is able to complement
the strengths of various tools in artificial intelligence (Tortum et al. 2007; Chang
2011; Ho et al. 2007; Yu et al. 2009; Khaw et al. 1995; Hissel et al. 1998; Tsai
2011; Chou et al. 2000; Hoa et al. 2009; Woodall et al. 2003; Hwang et al. 2013;
Huang et al. 2004; Tan and Tang 2001). For example, Hissel et al. have evaluated
the robustness of a fuzzy logic controller using the Taguchi quality methodology
and experimental product-plans (Hissel et al. 1998). The Taguchi method provides
an effective means to enhance the performance of the neural network in terms of the
speed for learning and the accuracy for recall (Tortum et al. 2007; Khaw et al.
1995). The determination of the parameters in engineering systems can be improved
using hybrid methods that employ evolutionary algorithms, genetic algorithms and
the Taguchi method (Chang 2011; Yu et al. 2009).

It is to be noted that the Taguchi method has some weak areas in comparison to
some of the above mentioned artificial intelligent methods, as a search and tuning
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method. Due to the simplicity of the Taguchi method, it may not be as effective
in situations where the search region is complicated. Also, Taguchi method may not
be as precise a tuning method, as compared to the more elaborate artificial intel-
ligent methods (Chang 2011).

In this chapter, a brief overview of the Taguchi method will first be provided,
focusing on the practical aspects of applications. Leveraging on the quality
methodology of the Taguchi method, hybrid approaches of combining the strengths
of the Taguchi method with intelligent techniques like the fuzzy logic and the
neural network. The case study at the end of the chapter will provide simulation
results of applying the Taguchi method and the hybrid approaches (i.e., combining
the Taguchi method with artificial intelligence) on the fleet control of automated
guided vehicles (AGVs) in a flexible manufacturing setting.

13.2 Taguchi Method

The Taguchi method is a statistical search for a set of optimum factors that could
affect the quality outcome of a process or final product. Given a problem, the
objective value is expressed as a quality characteristic, i.e., productivity, durability,
number of products completed in a given duration of time, etc. The scaling factors
are referred to as the control factors in the Taguchi method. Determination of the
optimum values of the control factors occurs during the experimental design phase.
In this phase, the different combinations of the control factors are used in the runs to
investigate their effects on the final quality characteristic. The results of the
experiments are then used to adjust the control factors for iteratively improved
performance.

13.2.1 Selection of Quality Characteristics

Quality characteristics may be classified into a few general categories such as
smaller-the-better (STB), larger-the-better (LTB) or nominal-the-best (NTB). For a
given problem, a number of measures of the quality characteristics are possible and
associated with the nature of the problem itself.

13.2.2 Control Factors and Levels

The control factors are to be tuned by the Taguchi method for optimal performance.
The number of levels of each control factor is the number of different values that are
to be assigned to the control factor. The number of levels for each factor is assigned
to be two, three or four (Mori 1993), depending on the nature of the overall
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problem. Using a larger number of levels reduces the number of control factors that
are can be effectively analyzed.

13.2.3 Selection of Orthogonal Array and Linear Graph

For the control factors considered, it will not be practically possible to analyze the
effects of all the different combinations on the quality characteristic, as in a full
factorial experimental design (Mori 1993) in a practical sense. Given the con-
straints, the optimum levels of the control factors must be determined using a
practical and limited number of experiments on a rich sample of the possible
combinations. While this set may be generated by a random parameter picking
procedure, there is little assurance that the thus generated set will offer a good
variation of possibilities within the finite set.

To this end, a special table called the orthogonal array due to Fisher (Ealey
1994) is used to generate an efficient set of parameters for experimentation. By
drawing a relatively small amount of data which are statistically balanced and
independent, meaningful and verifiable conclusions can be derived from the
orthogonal array. Complete compilation of orthogonal arrays can be easily available
(Mori 1993; Ealey 1994).

One of the main steps in the experimental design is to choose the most appro-
priate orthogonal array for the particular problem. There are many issues to be
considered in the final selection, i.e., the number of control factors, the number of
levels of the control factors, number of interactions of interest, etc. After the
orthogonal array is selected, the linear graph (Peace 1993) may be used to assign
the control factors and interactions to the appropriate columns of the orthogonal
array. Incorrect analysis and faulty conclusions may result if the control factors and
interactions are assigned to the any columns of the orthogonal array. By using the
linear graph, a systematic way of assigning the control factors and interactions to
the respective columns of the orthogonal array is developed by Taguchi. The linear
graph is made up of nodes and connecting arcs. The nodes represent the control
factors and the arcs represent the interactions or the relationship between the control
factors.

The systematic experimentation procedure of the Taguchi method can be sum-
marized as follows:

1. Determine the number of factors and interactions to be considered in the
experiment and the number of levels (i.e., or values) of the factors. Typically,
the number of levels of the factors is two or three.

2. Select the appropriate orthogonal array.

(a) Determine the required degrees of freedom (DOF) (Peace 1993) from the
factors and interactions. The DOF of a factor is one less than the number of
levels of the factor. The DOF of a particular orthogonal array is obtained by
the sum of the individual DOF for each column in the array.
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(b) The appropriate orthogonal array is the one with has the DOF that is equal
to or more than the required DOF of the factors. The smallest array sat-
isfying this requirement is normally chosen for efficiency.

3. With the appropriate orthogonal array chosen, choose the linear graph that fits
the relationships of the factors of interest. The factors can then be assigned to the
columns of the orthogonal array according to the linear graph.

4. Conduct the experiments and analyze the results.
5. Finally, run a confirmation experiment using the results obtained.

13.2.4 Interpretation and Validation of Experimental
Results

After the experimental data from the set of weighting parameters is obtained, there
are various approaches to verify the results. One of the common approaches
adopted by the industry is to use past data published in the literature. To provide a
more systemic approach, statistical tools like the F-test and the T-test could be used
to interpret the experimental data mathematically and to provide indications of
whether the decision related to the management of the quality is adequate and if
further tuning is necessary to improve the quality of the final output (Mori 1993).

13.2.5 Literature Review on Taguchi Method

In the literature, there are many applications using the Taguchi method. These
applications include a wide range of fields, from manufacturing processes to design
and development of systems and devices. The publication frequencies of the
Taguchi method for the past decade (i.e., from 2004 to 2013) are shown in
Fig. 13.1. There has been increasing interests on the Taguchi method, since Dr.
Genichi Taguchi introduced this practical statistical tool in the 1980s to improve the
quality of manufactured goods. These publications are in the form of journal arti-
cles, books, technical notes and theses. The different publication categories on the
Taguchi method for the past decade are shown in Fig. 13.2.

It is to be noted that these publications focus heavily on the application and
verification of the Taguchi method. For example, Sreenivasulu (2013) employed the
Taguchi method to investigate the machining characteristics on a glass fiber rein-
forced polymeric composite material (GFRP) during end milling. He then used the
ANOVA method to verify significant parameters and confirm the optimum values
obtained by the Taguchi method. These results are even compared with the neural
networks tuning method. The results show that the Taguchi method and the neural
networks produce very similar results. The Taguchi method is also employed to
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understand the fermentative hydrogen production process (Wang and Wan 2009).
The effects of the various factors in this complex process could be investigated and
analyzed using the Taguchi method. The results of this work highlights that the
simplicity of the Taguchi method is an advantage over other more involved opti-
mization tools. Asafa and Said (2013) integrates the Taguchi method and the neural
networks together to model and control the stresses induced during the plasma
enhanced chemical vapor deposition process on hydrogenated amorphous silicon
thin films. The Taguchi method with ANOVA is able to obtain the significance of
the various network parameters on the overall model. Using these significances, the
authors are able to verify the trend between the deposition parameters and the
resulting intrinsic stresses during the process. The obtain results concur with other
published data in the literature on plasma enhanced chemical vapor deposition
process. In a similar way, there are other works in the literature that integrate the
Taguchi method with other tools in artificial intelligence (i.e., genetic algorithm,
neural networks, fuzzy logic and regression analysis) to optimize other processes

Fig. 13.1 Publication frequencies of the Taguchi method for the past decade (i.e., from 2004 to
2013)

Fig. 13.2 Publication categories on the Taguchi method for the past decade (i.e., from 2004 to
2013)
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and systems (Lin et al. 2012; Sun et al. 2012; Mandal et al. 2011; Chang 2011; Tsai
2011; Tansel et al. 2011; Tzeng et al. 2009). In Lin et al. (2012), the Taguchi
method is integrated with the neural networks and the genetic algorithm to improve
a particular manufacturing process of the solar energy selective absorption film. For
this problem, the Taguchi method is able to perform well to optimize a given search
space; whereas the genetic algorithm and other evolutionary numerical methods can
be used to control a poorly defined search space. The results in the literature show
that the integrated approach of the Taguchi method with other artificial intelligence
tools produces better results than just utilizing a single optimization tool alone.

Besides modeling and optimizing manufacturing processes, the Taguchi method
has also been widely applied in other fields, like the supply chain management
(Yang et al. 2011) and clinical diagnostics (De Souza et al. 2011). Yang et al.
(2011) used the Taguchi method to study the robustness of different supply chain
strategies under various uncertain environments. The complexity of the problem is
accentuated by the variations in the business environments. The performance of the
Taguchi method is shown to compare well with other multiple criteria
decision-making techniques, like the simple multiple attribute rating technology
(SMART), the technique for order performance by similarity to ideal solution
(TOPSIS), and grey relational analysis (GRA). The Taguchi method is utilized
to optimize the Molecular assay for venous thrombo-embolism investigation
(De Souza et al. 2011). There are various risk factors that are patient-dependent and
render the investigation process uncertain and difficult. The application of the
Taguchi method can lessen the time and cost necessary to achieve the best operation
condition for a required performance. The results is proven in practice and con-
firmed that the Taguchi method can really offer a good approach for clinical assay
efficiency and effectiveness improvement even though the clinical diagnostics can
be based on the use of other qualitative techniques.

13.3 Tuning Fuzzy Systems Using the Taguchi Method

The statistical potential of the Taguchi method can be harnessed to tune the per-
formance of many intelligent systems. As highlighted briefly in Sect. 13.2.5 above,
there are other works in the literature that integrate the Taguchi method with other
tools in artificial intelligence (i.e., genetic algorithm, neural networks, fuzzy logic
and regression analysis) to optimize other processes and systems (Lin et al. 2012;
Sun et al. 2012; Mandal et al. 2011; Chang 2011; Tsai 2011; Tansel et al. 2011;
Tzeng et al. 2009). The results show that the integrated approach of the Taguchi
method with other artificial intelligence tools produces better results than just uti-
lizing a single optimization tool alone.

In this section, the integration of the Taguchi method with fuzzy systems will be
described in details to show how these two methodologies can be utilized to
complement each other. The work of Zadeh (1973) provides a comprehensive
review on fuzzy logic, as an alternative branch of mathematics.
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In a fuzzy system, the objects are associated with attributes. These attributes can
be computed from fuzzy operations on a combination of variables which are used to
describe mathematically the real-time conditions of the given problem. Decisions
that affect the system’s performance will be driven primarily by these attributes.

To incorporate the Taguchi method into the fuzzy system, the fuzzy system has
to be posed as a quality control scenario, with appropriate performance measures as
the quality characteristics. The Taguchi method then can be utilized to tune the
parameters in the fuzzy rules in the inference engine.

13.3.1 Takagi and Sugeno’s Fuzzy Rules

To illustrate how the Taguchi method could be used to tune fuzzy systems,
the K attributes will be inferred from a Takagi and Sugeno type of fuzzy
inference (Takagi and Sugeno 1985). Consider the following p rules governing the
attribute ak:

IF xik1 is F
i
1 � � � � � IF xikmi

is Fi
kmi

; THEN uik is a
i; i ¼ 1. . .p: ð13:1Þ

with
Pp

i¼1 a
i and k ¼ k 2 Z j0� k�Kf g, where Fi

j are fuzzy sets, xi ¼

xik1; . . .; x
i
kmi

h iT
2 R are the input linguistic variables identified to affect the attribute

for rule i, ⊗ is a fuzzy operator which combine the antecedents into premises, and
uik is the crisp output for rule i. ai is the scaling factor for rule i reflecting the weight
of the rule in determining the final outcome.

The value of each attribute ak is then evaluated as a weighted average of the ui’s.

ak ¼
PP

i¼1 w
i
ku

i
kPP

i¼1 w
i
k

ð13:2Þ

where the weight wi
k implies the overall truth value of the premise of rule i for the

input and is calculated as:

wi
k ¼

Ym
j¼1

lFi
kj
xikj ð13:3Þ

13.3.2 Incorporating Fuzzy Logic with Taguchi Method

In a fuzzy system, the approach to the decision making is based on a fuzzy
inference engine which is able to specialize in a multiple criteria satisfaction. The
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overall effectiveness of this fuzzy logic approach in a given scenario is critically
dependent on the appropriateness of the fuzzy rules, in particular, the weight or the
scaling factors of each of the fuzzy rules on the final decision. One of the main
issues is to address the selection of the scaling factors, i.e., α’s in Eq. (13.1). By a
manual trial-and-error adjustment method, the search for the optimal set is by far
too tedious and time consuming. On the other hand, an exhaustive search for the
optimal set of scaling factors would be unrealistic and impractical. To this end, a
systematic search procedure within a balanced set of possible weighting parameters
will be both desirable and practical. The Taguchi method would be an ideal can-
didate that could be deployed to obtain the optimal set of the scaling factors for the
fuzzy rules.

The main strength of the Taguchi method over other search and tuning methods is
the twofold benefit of both efficiency and simplicity. Efficiency provides an
affordable avenue for problem solving. Simplicity results in a set of tools more easily
adopted and embraced by the non-statistical expert. The quality characteristics used
in the Taguchi methodology may be classified into a few general categories such
as smaller-the-better (STB), larger-the-better (LTB) or nominal-the-best (NTB).
For a given problem, usually a number of measures of the quality characteristics are
possible and associated with the nature of the problem itself.

To determine the control factors and the assigned levels, the scaling factors
associated with the attributes in the fuzzy rules are the control factors to be tuned by
the Taguchi method for optimal performance. The number of levels of each control
factor is the number of different values that are to be assigned to the control factor.
The values are dependent upon the constraints (i.e., which could be related to the
hardware and other constraints of the system) of the given problem. In the next
section, the case studies will demonstrate the potential of the Taguchi method
combined with the fuzzy system.

13.4 Using Taguchi Method with Neural Networks

To explore further the potential of the Taguchi method as a search and tuning
method, the Taguchi method is applied together with another intelligent method,
i.e., neural network system, for quality management. Neural networks are inher-
ently useful for approximating non-linear and complex functions. This is especially
true for functions when only the input/output pairs are available and the explicit
relationships are unknown. Considering such strengths, neural networks could be
good candidates for quality management problems, like monitoring and controlling
quality-critical processes with complex system dynamics in the manufacturing
environment. This is because such processes display non-linear behavior and it is
very difficult to obtain closed-form models of such processes to describe the overall
system characteristics and dynamics perfectly. By gathering input and output data
pairs of such processes, neural networks could be employed to model the process
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and provide corrective control action in various manufacturing environments,
requiring quality management.

Artificial neural networks are an alternative computing technology that have
proven useful in a variety of pattern recognition, signal processing, estimation, and
control problems. Indeed, many real-world processes are multidimensional, highly
non-linear and complex. It is extremely difficult and time-consuming to develop an
accurate analytical model based on known mathematical and scientific principles.
Moreover, it is often found that the simplified analytical model is not accurate
enough to model these complex processes, resulting in poor performance or results.
Artificial neural networks allows one to consider them as a black box can be taught
using actual data to act as the accurate model for the processes (Haykin 1994).

There are two common configurations which we could utilize neural networks
for quality management (Figs. 13.3 and 13.4). In Fig. 13.3, the neural network
‘learns’ the process dynamics using input/output data pairs. This type of learning is
done using past batches of input/output data pairs to tune the neural network’s
parameters. This neural network can then be used to monitor the performance of the
process during the manufacturing cycle. Corrective actions in the form of user alerts
will be invoked whenever, the output of the process deviates from a known pattern
or when other abnormal conditions are detected by the neural network controller.

Besides the configuration shown in Fig. 13.3, the neural network could also be
incorporated into the process control loop as shown in Fig. 13.4. Here, the neural
network provides control actions that adapt to changes in the system output during
the process run. The learning phase of the neural network could be online or offline.
Online learning of the neural network refers to tuning of the internal parameters
while the process is given new inputs; whereas offline learning refers to tuning of
the neural network’s parameters using past batches of input/output data pairs.

In both configurations shown in Figs. 13.3 and 13.4, the effectiveness of the
neural network relies critically on how well it is trained. Training of the neural
network can be seen as allowing its parameters to learn the patterns of the process
using input/output data pairs. The neural network is then able to model the
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Fig. 13.3 Utilizing neural
networks for quality
management with the
controller outside the control
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non-linear and complex function that represents the input/output data pairs. This
training process may entail an exhaustive search for optimum weights, using a
conventional Newton-Raphson type of gradient search (Haykin 1994), or adopting
a backpropagation approach (Zurada 1992). The effectiveness of these approaches
is highly dependent on the proximity of the initial set to the optimum set, and
typically a localized optimum point can be located at best.

As highlighted briefly in Sect. 13.2.5 above, there are other works in the liter-
ature that integrate the Taguchi method with other tools in artificial intelligence
(i.e., genetic algorithm, neural networks, fuzzy logic and regression analysis) to
optimize other processes and systems (Lin et al. 2012; Sun et al. 2012; Mandal et al.
2011; Chang 2011; Tsai 2011; Tansel et al. 2011; Tzeng et al. 2009). The results
show that the integrated approach of the Taguchi method with other artificial
intelligence tools produces better results than just utilizing a single optimization
tool alone. It would be interesting to compare the results of integrating the Taguchi
method with the neural networks. For illustration purpose, a radial basis function
neural network (RBFNN) is used in this section to show how the Taguchi method
can be used effectively with neural networks for process control applications.
RBFNNs are one popular and commonly used configuration of neural networks
(Haykin 1994; Zurada 1992). RBFNNs use a set of basic functions in the hidden
units. Other types of neural networks could use different types of functions in the
hidden units. The training process of the different types of neural networks may
differ in the methodology. But the objectives are the same, i.e., that is to improve
the performance of the neural network when the network is deployed for its pur-
pose. More details of the different types of neural networks could be found in
Haykin (1994).

As mentioned earlier, the effective modeling of the given functions entails
training the RBFNNs which, in turn, filter down to proper selection and tuning of
the parameters (i.e., weighting factors) in the RBFNNs. This training process may
entail an exhaustive search for optimum parameters. The effectiveness of the tuning
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Fig. 13.4 Utilizing neural
networks for quality
management with the
controller integrated within
the control loop
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approach is highly dependent on the proximity of the initial set to the optimum set,
and typically a localized optimum point can be located at best. The effectiveness
and success of the Taguchi statistical method in experiment design to yield an
optimum result is well demonstrated and proven in many cases. Considering
complex processes in quality management, Taguchi-tuned neural networks could
provide good solutions for control and monitoring applications. In the following,
the application of the Taguchi method to RBFNN tuning is briefly discussed.

13.4.1 Taguchi Method Applied to RBFNN Tuning

In this section, the Taguchi method is used to obtain optimum weights associated
with a RBFNN which is used for the purpose of modeling uncertain nonlinear
functions which are subsequently applied for process control. Conventionally, these
weights are obtained via an exhaustive search or a localized search using an iter-
ative gradient search algorithm.

To state the problem for the RBFNN, f ðxÞ is a nonlinear smooth function (i.e.,
which is unknown) which can be represented by

f xð Þ ¼
Xm
i¼0

wi;iðxÞ ð13:4Þ

where ;iðxÞ denotes the RBF, i.e.,

;i xð Þ ¼ exp � x� cij j2
2r2i

 !,Xm

j¼0
exp � x� cj

�� ��2
2r2j

 !
ð13:5Þ

where the vector x represents the states of the system. The ideal weights are
bounded by known positive values such that

wij j �wM ð13:6Þ

where i ¼ i 2 Z j0� i�mf g. Let the RBF functional estimates for f ðxÞ be
given as:

bf xð Þ ¼
Xm
i¼0

bwi;iðxÞ ð13:7Þ

where cwi are the estimates of the ideal RBF weights.
Therefore, there are (m + 1) parameters (i.e., or weights) to be tuned. It is a

difficult NP-complete problem to determine the optimum weights especially for
large m. A gradient search method is sometimes used, which is sensitive to the
initial set selected and is faced with a convergence problem. Even if the search is
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convergent, usually only a localized optimum point is obtained. The Taguchi
method can thus be applied to systematically search for the optimum set.

As mentioned earlier in this chapter, quality characteristics in a Taguchi
experiment refer to the assessment factors which are used for measuring how good
the objectives of the experiment are met. For machine learning, the quality char-
acteristic can be based on an appropriate measure of the deviation of the RBFNN
from the actual nonlinear function, i.e., the residue. Since the objective here is for
the RBFNN to approximate the actual function closely, this measure is desired to be
as small as possible (i.e., smaller-the-better, STB). Even then, the quality charac-
teristic can also be formulated in various ways, e.g., maximum error, sum of
absolute error, sum of squares of error, etc.

The control factors are the parameters to be tuned using the Taguchi method.
Clearly, the weights of the RBFNN are the control factors of the Taguchi experiment.
Depending on the number of control factors and assigned levels in the RBFNN, the
appropriate orthogonal array and linear graph can be used to generate an efficient set
of parameters for experimentation. The systematic experimentation procedure of the
Taguchi method can then be employed for tuning the neural networks. The testing
and validation process of the neural network (which employed the Taguchi method
for training purpose) is the same as that when the other conventional training
methods, like the back propagation and other gradient-based methods, are employed.
The main advantage of employing the Taguchi method for training the neural net-
work is to provide a systemic view for the search space. Problems encountered by
neural networks employing the traditional methods, such as over-training and local
minima, could be avoided.

13.5 Case Studies

In this case study, we would like to study the performance of integrating Taguchi
method with another artificial intelligence tool on the overall system performance.
A particular fuzzy system for a vehicle dispatching platform involving an auto-
mated guided vehicle system (AGVS) will be used for this purpose. With just fuzzy
logic alone, the approach to the dispatching of AGVs is based on a self-adapting
fuzzy method. This method is provided for a unit load transport system in a
manufacturing environment. In this method, it allows for the possibility to for-
mulate more versatile and flexible rules. Thus, the AGVS no longer have to operate
in a single criterion satisfaction. The AGVS is able to specialize in a multiple
criteria satisfaction. Also, the balance between rules can be precisely adapted
to a production environment through real-time parameterization from available
information.

The overall effectiveness of this fuzzy logic approach to the vehicle dispatching
system for the AGVS is critically dependent on the appropriateness of the fuzzy
rules, in particular, the weight or the scaling factors of each of the fuzzy rules on the
final dispatch decision. One of the main issues in the fleet control of the AGVS is to
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address the selection of the scaling factors, i.e., α’s as mentioned in Eq. (13.1). The
scaling factors could be set based on the experience of the operator and fixed
throughout the production process. By this manual adjustment method, the search
for the optimal set is by far too tedious and time consuming. Also, an exhaustive
search for the optimal set of scaling factors would be unrealistic and impractical. To
this end, a systematic search procedure within a balanced set of possible weighting
parameters will be both desirable and practical. In this section, the results of using
the Taguchi method to tune the fuzzy rules in the fuzzy vehicle dispatching system
will be elaborated.

The key idea in the proposed approach is to associate all the work centers in the
system with two attributes for each respective vehicle. The two attributes are
PARTS_IN and PARTS_OUT, which are associated with the extent of
demand-driven and source-driven needs of the work center with respect to the
vehicle (Egbelu and Tanchoco 1984). These attributes are fuzzy variables (i.e.,
PARTS_IN, PARTS_OUT 2 [0, 1]) computed from a fuzzy operation on a com-
bination of variables which are expected to influence the extent of the demand and
source-driven needs of the work center. Decisions for material movement will be
driven primarily by these attributes.

The two attributes, PARTS_IN and PARTS_OUT can be inferred from a Takagi
and Sugeno type of fuzzy inference (Haykin 1994). The fuzzy rules will then
govern the PARTS_IN and PARTS_OUT attributes of the work centers. For example
from Eq. (13.1), xikj may be the linguistic variable CYCLE_TIME and Fi

j may be the
fuzzy set SHORT for the PARTS_IN attribute; similarly, xikj may be the linguistic

variable WAITING_TIME and Fi
j may be the fuzzy set LONG for the PARTS_OUT

attribute. The value of the PARTS INk and PARTS OUTk attributes are then
evaluated separately as a weighted average of the ui’s in Eq. (13.2).

With these attributes, the work centers may be sorted in the order of their
demand and source-driven needs. In a pull-based situation, an idle vehicle searches
for the highest inflow demand station from the PARTS_IN attribute. This station
may then be paired off with a station having the highest PARTS_OUT attribute,
identified from a set of K stations supplying the parts to the kth station in demand.
The converse is true for a push-based system.

Thus far, dispatching rules are rigidly based on either a demand or a
source-driven procedure. There are attractive features associated with a
demand-driven rule as they provide the load movement flexibility for just-in-time
manufacturing concepts. However, under certain circumstances, it might be more
advantageous to revert to a source-driven rule. For example, by reverting to a
source-driven rule when there is a low level of demand but a large number of parts
to be cleared, machine blockage may be reduced. Furthermore, reverting to the
source-driven rule is also a hedge against an unanticipated surge in vehicle demand
at a future time.

Instead of rigidly commissioning a push or a pull-based concept, it is viable to
view each of these concepts as being suited to different operating conditions, and
switch between them when crossing these different operating regions. Clearly, some
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mechanism to trigger this switch between a pull and a push-based environment is
needed. To this end, a methodology may be formulated as follows:

Denote SCE(k) as the set of work centers supplying to the input buffer of work
center k, and DES(k) as the set of work centers to which work center k supplies
parts. The work centers, k�u and k�v are identified where

PARTS INk�u ¼ max ðPARTS INkÞ; where SCEðk�uÞ 6� ;
PARTS OUTk�v ¼ max ðPARTS OUTkÞ; where DESðk�v Þ 6� ;

Based on these attributes, the current state system towards a push or a pull
operation may be determined. For example, a simple formulation may be to
compute the following ratio,

STRATEGY ¼ PARTS OUTk�v
PARTS INk�u þPARTS OUTk�v

ð13:8Þ

If STRATEGY > γ (where suitable values for γ may be in the range 0.6 < γ < 0.7,
depending on the desired level of PULL dominance), a PUSH operation may be
initiated, otherwise a PULL operation will be initiated. The PULL dominance is
necessary for reasonably busy facilities where it has been shown (Egbelu and
Tanchoco 1984) that a PULL strategy is more efficient in moving parts through the
facility.

A graphical representation of the self-adapting fuzzy dispatching algorithm is
illustrated in Fig. 13.5. The vehicles are all indexed. When the vehicle in consid-
eration becomes idle, it is available for reassigned to pick up the load from the
source work center and then deliver the load to the destination work center. With
the idle vehicle in consideration, the fuzzy dispatching algorithm block (as shown
in Fig. 13.5) is then invoked. The fuzzy algorithm is represented as an operation
block in Fig. 13.5. In Fig. 13.6, the fuzzy algorithm is expanded into further details.
Here, the needs of all the work centers are prioritized according to their demand and
source driven needs (i.e., the demand and source driven needs are computed using
the fuzzy PARTS_IN and PARTS_OUT attributes). At the end of the execution of
the fuzzy dispatching algorithm, the work center (i.e., this work center could either
be a source work center or a destination work center; if it is a source work center
most in need of service, push-based operation or a source-driven procedure is then
selected. If it is a destination work center most in need of service, pull-based
operation or a demand-driven procedure is then selected) most in need of service is
selected. The vehicle is then invoked to pick up the load from the assigned source
work center and then deliver the load to the assigned destination work center. The
whole procedure is then repeated for the vehicle, next in the index sequence. If the
vehicle next in the sequence is not idle, the fuzzy dispatching algorithm would not
be invoked. Instead, it would only continue in its travel to its assigned pick-up work
center and then the destination work center.
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While the algorithm is essentially based on vehicle-initiated rules, there are
situations such as during start-up, when more than one vehicle is available for
dispatching. Since these are insignificant for reasonably busy facilities, a simple
random procedure is used to select the vehicle for dispatch under these situations.

13.5.1 Test Facility

The simulation analysis is based on a hypothetical facility as given in Fig. 13.7. The
facility operating data is provided in Table 13.1. There are 9 work centers (WC1 to
WC9) or departments, and a warehouse (WH) for the raw materials and finished
products.

• Job routing = WH, WC1, (WC2, WC3), WC4, WC5, WC6, (WC7, WC8),
WC9, WH

• Load pickup/delivery time = 10 s
• Vehicle length = 3 ft.

Vehicle is idle

Fuzzy Dispatching Algorithm

Vehicle is enroute to pickup the load
and deliver to the delivery workcenter

Whole process
is repeated for

the next idle
vehicle

The workcenter
most in need of

service is
selected

Fig. 13.5 Flowchart of the self-adapting fuzzy dispatching system
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Compute PARTS_IN and PARTS_OUT attributes for all
workcenters, based on the fuzzy rules

Identify the workcenter most in need of service
PARTS_IN* = max (PARTS_INi)
PARTS_OUT* = max (PARTS_OUTj)

Is i and j undefined?

If yes, leave
vehicle idle

If only index i is undefined, then STRATEGY=PUSH.
If only index j is undefined, then STRATEGY=PULL.

Else

If (PARTS_OUTj / (PARTS_INi PARTS_OUTj) >  0.6,
then STRATEGY=PUSH,
else STRATEGY=PULL.

Exit the Fuzzy Dispatching Algorithm

No

Fig. 13.6 Fuzzy algorithm block (more detailed version)
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• Vehicle speed = 200 fpm
• Pickup and delivery spur capacity = 1 vehicle

13.5.2 Simulation Language

The control simulation language, MATLAB is used for implementing the study. The
language may be used for simulation of both continuous and discrete-time systems.

Warehouse
D P

WC1

WC2

WC3

WC4
WC5

WC6

WC7

WC8 WC9

D

P

D

P

D

PDPDPD

P

D

P

D

P D P (50,0)

(30,0)

(0,20)

(0,55)

(0,75)

(0,110)

(15,150)(65,150)(90,150)(115,150)(140,150)(175,150)

(190,120)

(190,85)

(190,65)

(190,20)

(180,0) (145,0) (115,0)

(80,0)

Key :

     P = Load Pickup Station
     D = Load Delivery Station
  WC = Workcenter 

x

y

(0,150)

(0,0)

(190,150)

(190,0)

Fig. 13.7 Layout of the test facility

Table 13.1 The test facility operating data

Work center Processing time/unit load (min) Input queue size Output queue size

1 1 3 5

2 3 2 3

3 3 2 3

4 2 3 2

5 1 1 4

6 3 2 3

7 3 2 3

8 2 3 2

9 3 4 4
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In this case, it is applied to discrete event investigation, where the AGV guide path is
modeled as a directed network consisting of nodes and arcs. Point locations in the
network are uniquely identified by their Cartesian coordinates. Traffic conflicts at the
load pickup/delivery points are explicitly modeled.

13.5.3 Computation of Attributes

In this simulation, the input variables chosen for the computation of the PARTS_IN
attributes are:

• Length of time before incoming queue is empty, LT_IN
• Shortest travel distance of vehicle to source work centers, and to the work center

concerned, STD_IN.
• Shortest length of time before the outgoing queue of source work centers is full,

SLT_IN
• Number of parts completed already by the workstation, PC_IN.

The time taken for the processing of the load at each work center is assumed to
be fixed and shown as in Table 13.1 so that these variables can be directly com-
puted. The 4 rules formulated for the computation of the PARTS_IN attribute for the
kth work center are:

IF LT_INk is SHORT, THEN uk = μ1
IF STD_INk is SHORT, THEN uk = μ2
IF SLT_INk is SHORT, THEN uk = μ3
IF PC_INk is LOW, THEN uk = μ4

PARTS_IN is then computed as in (13.2). The input variables chosen for the
computation of the PARTS_OUT attributes are:

• Shortest length of time before outgoing queue of work center is full, SLT_OUT.
• Shortest travel distance of vehicle to work center concerned, and to target work

centers, STD_OUT.
• Length of time before the incoming queue of destination work center is empty,

LT_OUT.
• Number of parts completed already by the workstation, PC_OUT.

Similarly, the 4 rules formulated for the computation of the PARTS_OUT
attribute for the kth work center are:

IF SLT_OUTk is SHORT, THEN vk = μ5
IF STD_OUTk is SHORT, THEN vk = μ6
IF LT_OUTk is SHORT, THEN vk = μ7
IF PC_OUTk is LOW, THEN vk = μ8

PARTS_OUT is then computed as in (13.2). The membership functions are made
time varying according to the set of assigned tasks at any point in time. In this
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approach, a linear interpolation between the maximum and minimum values of the
variables serves as the membership function. As an example, consider the following
STD_IN variable

lSHORT STD INkð Þ ¼ STD INk �minðSTD INÞ
max STDINð Þ �minðSTD INÞ ð13:9Þ

13.5.4 Rule Comparison

The performances of the dispatching system with the deployment of three different
deployments will be illustrated. The three different combinations are, just the fuzzy
logic alone, the Taguchi-tuned fuzzy system and the demand driven (DEMD) rules
of Egbelu (Mandal et al. 2011). The comparisons were carried out under the fol-
lowing three different cases.

Case I Given an equal number of vehicles, the same facility scenario, and the
same length of time or shift duration, how does the facility throughput compares
between the two sets of rules? Throughput is defined as the total number of parts
completed and removed from the facility shop floor during the shift. The following
parameters are used for Case I analysis:

• The facility operates a 2-h shift.
• Three vehicles are in use.
• Infinite number of loads were available for processing at time, t = 0.

Due to the nature of the dispatching problem, there are a number of quality
characteristics that could be considered in the Taguchi-tuned fuzzy system. This
quality characteristic is a LTB characteristic.

Case II Given the same conditions as in Case I, how long does it take for the
facility to produce a known number of parts under the three different sets of rules?
The analysis was done with 3 vehicles and 30 parts or unit loads to be produced and
centers on the determination of the length of time it will take the facility to produce
the 30 parts under each of the dispatching methodology. The facility operating
duration is a measure of the rule’s ability to accelerate the unit loads through the
facility. In the Taguchi-tuned fuzzy system, this quality characteristic is a STB
characteristic.

Case III Given the same conditions as in Case I and a production target over a
fixed time period, how many vehicles are required to meet the production target
under the three different sets of rules? The conditions for the analysis are the
following:

• There are a fixed number (30) of unit loads to be produced.
• The production of the fixed number of unit loads must be satisfied within the

time interval specified (2 h).
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If all other factors remain the same, it seems that the number of vehicles required
will be a function of the dispatching rule (i.e., or control factors in the Taguchi
method sense) in force, since the rules act differently with the vehicles. This is a
LTB quality characteristic.

13.5.5 Deployment of Taguchi-Tuned Fuzzy System

In the deployment of the Taguchi method to the AGVS, there are some further
considerations to modify the problem as a quality optimization problem.

13.5.5.1 Control Factors and Number of Levels

As 4 fuzzy rules are chosen for the PARTS_IN fuzzy attribute, there are thus 4
scaling factors (denoted as α1, α2, α3 and α4) for the PARTS_IN fuzzy attribute.
Similarly, for the PARTS_OUT fuzzy attribute, 4 scaling factors (denoted as β1, β2,
β3 and β4) are selected. These 8 scaling factors for the fuzzy rules are the control
factors to be tuned by the Taguchi method for optimal performance. These scaling
factors are the parameters as mentioned in Eq. (13.1). The sum of these scaling
factors is fixed, i.e., α1 + α2 + α3 + α4 = 1 and β1 + β2 + β3 + β4 = 1. This implies that
within the set, the factors cannot be varied arbitrarily. But rather the choice of one
factor limits the possibilities for the other factors. Due to this constraint, the
nested-factor design (Peace 1993) is used for the assignment of the levels of the
control factors (shown in Table 13.2). The layout of the first four control factors for
the PARTS_IN attribute, i.e., α1, α2, α3 and α4 denoted as A, B, C and D respectively,
is shown in Table 13.2. The other four scaling parameters for the PARTS_OUT
attribute, i.e., β1, β2, β3, and β4 denoted as E, F, G and H respectively, have a similar
layout as shown in Table 13.2. The factors are scaled up by a factor of 100 for ease
of calculations.

Each of the control factors is assigned 3 levels. A 3-layered structure for the
control factors is used. Factors C and D are nested within Factor B which is in turn
nested within Factor A. For example, consider Factor A at level 1, i.e., A1, Factor
B can be at level 1, level 2 or level 3, i.e., B′1, B′2 and B′3 respectively. For Factor
A at level 2, i.e., A2, Factor B can be at another set of level 1, level 2 or level 3, i.e.,
B″1, B″2 and B″3 respectively. The set of levels of Factor B at A1 is different from
that at A2. The same layout is also applied to Factor B and Factors C, D.

As shown in Table 13.3 for Factor A (traversing the second column), there are 3
levels, i.e., 1, 50 and 90. Factor A at level 1, level 2 and level 3 is denoted as A1, A2

and A3 respectively. For A1, Factor B has three levels: 1, 50 and 90 (denoted as B′1,
B′2 and B′3 respectively). For A2, Factor B has another 3 levels: 1, 25 and 40
(denoted as B″1, B″2 and B″3 respectively). For A3, Factor B has another 3 levels: 1,
5 and 9 (denoted as B‴1, B‴2 and B‴3 respectively).

13 Taguchi Method Using Intelligent Techniques 409



Table 13.2 Layout for the
layered structure of the
control factors Control factors

Control factors α1 α2 α3 α4
Symbol used A B C D

Actual level value 1 1 97 1

49 49

1 97

50 48 1

24.5 24.5

1 48

90 8 1

4.5 4.5

1 8

Actual level value 50 1 48 1

24.5 24.5

1 48

25 24 1

12.5 12.5

1 24

40 9 1

5 5

1 9

Actual level value 90 1 8 1

4.5 4.5

1 8

5 4 1

2.5 2.5

1 4

9 0.9 0.1

0.5 0.5

0.1 0.9

Table 13.3 Optimum levels
of the various control factors
Control factors

Control factor Optimum level Value

A A1 0.01

B B0
1 0.01

C CDð Þ011 0.49

D CDð Þ012 0.49

E E1 0.01

F F0
3 0.90

G ðGHÞ031 0.08

H ðGHÞ031 0.01
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13.5.5.2 Orthogonal Array and Linear Graph

For this vehicle dispatching problem considered here, the required DOF is 36,
obtained as follows.

Axial factor (A) 1 × (3 − 1) = 2 DOF

Nested factor (B) 1 × (3 − 1) = 2 DOF

Nested factor (C & D) 1 × (3 − 1) = 2 DOF

Axial nesting for A & B 1 × (3 − 1) (3 − 1) = 4 DOF

Axial nesting for A & B & C, D 1 × (3 − 1) (3 − 1) (3 − 1) = 8 DOF

Total DOF needed for A, B, C, D = 18

Total DOF needed for A, B, C, D & E, F, G, H = 36

The L81 (340) orthogonal array (Peace 1993) is used, being the smallest array
with a degree of freedom larger than 36. The subscript refers to the number of
experiments or rows in the array whereas the superscript refers to the number of
factors or columns in the array. For this array, there are many different linear graphs
with different structures (Peace 1993). The linear graph chosen is as shown in
Fig. 13.8. The nodes represent the control factors. The joining arcs represent the
interactions or the relationship between the control factors. The numbers in brackets
refer to the column number in which the particular control factor is assigned to in
the orthogonal array.

13.5.5.3 Results of the Experiments

After the experiments are run, the optimum condition is determined by selecting the
best levels of each factor. Note that the choice of one factor limits the choice of
subsequent ones due to nesting. The average level of a factor is obtained by
summing the experimental data for each particular level of a factor and averaging
the sum by the number of experiments. The best level of a factor is the level with
the highest average level (for a LTB quality characteristic) or the level with the

Fig. 13.8 Linear graph for the control factors in the L81 (3
40) orthogonal array
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lowest average level (for a STB quality characteristic). The best levels for the
factors are thus obtained as illustrated from Fig. 13.9 to 13.14.

In this experiment, the quality characteristic of concern is a LTB quality char-
acteristic. From the factors’ effects plot above (Figs. 13.9, 13.10, 13.11, 13.12, 13.13
and 13.14), the optimum condition is thus obtained by choosing the factors com-
bination A1;B0

1 and CDð Þ011 ;E1;F0
3 and GH03

1 . The next best factors combination is
A1;B0

1 and CDð Þ012 ;E1;F0
3 and GH03

1 . There is little difference between Factor CDð Þ011
and CDð Þ012 on the quality characteristic. Using the two optimum sets of factors, a
final test run is done. The results of the final test run confirm that the optimum
condition obtained for the control factors at the given levels as shown in Table 13.3.

Here, Factor A at Level 1, Factor B at Level 1 and Factors C and D at Level 2 are
chosen, whereas Factor E at Level 1, Factor F at Level 3, and Factors G and H at
Level 1 are chosen.

13.5.5.4 Validation with Statistical Tools

As mentioned at the start of this chapter, after the experimental data from the set of
weighting parameters is obtained, the statistical tools could be used to interpret the
experimental data mathematically and to provide indications of whether the choice
is adequate and if further experimentation is necessary. For this purpose in this
chapter, the analysis of variance (ANOVA) is chosen. This is because when results
of laboratories or methods are compared where more than one factor can be of
influence and must be distinguished from random effects, then the ANOVA is a
powerful statistical tool to be used. Furthermore, the ANOVA also allows one to
assess the degree to which a factor affects variation and the quality characteristic.
ANOVA is used as a supplement to the experimental design (Sreenivasulu 2013;
Asafa and Said 2013; Mandal et al. 2011; Tzeng et al. 2009; Howanitz and
Howanitz 1987; International Organization for Standardization 1981; Bauer 1971).

Analysis results from the ANOVA method are summarized in Table 13.4. The
results obtained by the ANOVA method confirm the results obtained earlier.
Referring to Table 13.4, the second column (F) refers to the degrees of freedom of
each factor. The third column (S) refers to the factor variation and error variation.
The fourth column (V) refers to the factor variances and the error variance. The fifth
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column (F) refers to the variance ratio of each the factor variance to the error
variance. The last column (ρ) refers to the contribution ratio, i.e., significance or
importance with regards to the particular quality characteristic, of each factor.

There are two conclusions that can be drawn from the ANOVA table to support
the optimum combination of factors obtained earlier. First, there is about 11 % of
significance to the quality characteristic due to uncontrolled or unwanted factors.
This implies positively that the factors chosen earlier to study their effects on the
quality characteristic has a major influence of about 89 % on the quality charac-
teristic. Secondly, the factors chosen earlier in Table 13.3 are indeed those with
most significant contribution to the quality characteristic, as shown in the last
column of Table 13.4 by their contribution ratio. Referring to the contribution ratio
(last column of Table 13.4), Factor A has a significance of about 0.259 % on the
quality characteristic. From the factor effects graph of Factor A (Fig. 13.9), Level 1
is chosen as the optimum level. For Factors B′, B″ and B‴, B′ with Level 1 is chosen
in the optimum factor combination from the factor effects’ graph as A1 is chosen.
This is due to the nesting arrangement in Table 13.2. Factor B′ has the highest
contribution ratio among B′, B″ and B‴. For Factor CD, the optimum factor chosen
from the factor effects’ graph is (CD)′1. This is again due to the nesting arrangement
in Table 13.2 as we have chosen A1 and B′1. Factors (CD)′

1, (CD)′2 and (CD)′3 have
quite similar contribution ratios.

13.5.6 Simulation Results

The values of the manually adjusted (in a trial-and-error manner) scaling factors
(i.e., α’s as mentioned in Eq. (13.1)) obtained manually by trial and error method,
are shown in Table 13.5. For this approach, the scaling parameters are changed on a
rather ad hoc basis, relying solely on the experience and the judgment of the
operator. For the Taguchi method, the obtained weighting parameters at the end of
the tuning procedure are given in the third row of Table 13.5.

Based on the scaling factors in Table 13.5, the performances of the various
dispatching methods are compared and summarized in Table 13.6. It can be seen
that the Taguchi-tuned fuzzy dispatching methodology has outperformed the
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manually tuned fuzzy dispatching rules of and DEMD dispatching rules of Egbelu
for all the three cases studied. It is also interesting to note the improvement of the
performance of the system with the introduction of fuzzy logic to this vehicle
dispatching platform.

Table 13.4 Table showing the ANOVA results

Factor F S V F ρ %

A 2 4.247 2.123 2.279 0.259
B′ 2 93.407 46.704 100.298 9.950
B″ 2 23.407 11.704 25.134 2.340

B‴ 2 3.185 – – –

CD′1 2 29.556 14.778 31.736 3.008
CD′2 2 29.556 14.778 31.736 3.008

CD′3 2 52.667 26.334 56.552 5.519

CD″1 2 24.889 12.445 26.725 2.501

CD″2 2 4.222 2.111 4.553 0.256

CD″3 2 10.889 5.445 11.692 0.980

CD‴1 2 2.889 – – –

CD‴2 2 2.889 – – –

CD‴3 2 3.556 – – –

E 2 151.580 75.790 162.762 16.261
F′ 2 24.074 12.037 25.850 2.412

F″ 2 18.074 9.037 19.407 1.761

F‴ 2 10.296 5.148 11.056 0.916
GH′1 2 94.889 47.445 101.056 10.104
GH′2 2 81.556 40.778 87.573 8.656

GH′3 2 44.667 22.334 47.962 4.649

GH″1 2 82.889 41.445 89.004 8.801

GH″2 2 28.667 14.334 30.782 2.911

GH″3 2 0.222 – – –

GH‴1 2 24.667 12.334 26.487 2.477

GH‴2 2 0.222 – – –

GH‴3 2 26.889 13.445 28.873 2.718

Total 80 920.691 – – 100

Error 64 59.603 0.932 1 10.513

Table 13.5 Values of the scaling factors for the different approaches

Scaling factors α1 α2 α3 α4 β1 β2 β3 β4
Trial and error setting 0.1 0.5 0.2 0.2 0.2 0.5 0.1 0.2

Taguchi method 0.01 0.01 0.49 0.49 0.01 0.50 0.48 0.01
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The results in this study concur with the other works in the literature that
integrate the Taguchi method with other tools in artificial intelligence (i.e., genetic
algorithm, neural networks, fuzzy logic and regression analysis) to optimize pro-
cesses and systems (Lin et al. 2012; Sun et al. 2012; Mandal et al. 2011; Chang
2011; Tsai 2011; Tansel et al. 2011; Tzeng et al. 2009). The integrated approach of
the Taguchi method with other artificial intelligence tools produces better results
than just utilizing a single optimization tool alone. For this study, it is also inter-
esting to note that there is a marked improvement in the fuzzy system for the third
case. It is to be noted that the Taguchi method performs well when the boundaries
of the search space is well-defined. With the production time and other manufac-
turing constraints fixed, the Taguchi method seeks to only optimize the vehicles
deployed.

13.6 Conclusions

Since Dr. Genichi Taguchi introduced the Taguchi method as a practical statistical
tool in the 1980s to improve the quality of manufactured goods, there has been
increasing interests on the Taguchi method in various industries and the academia.
It is to be noted that in the literature, there is a strong focus on the application and
verification of the Taguchi method. Recently, there are several works in the liter-
ature that integrate the Taguchi method with other tools in artificial intelligence
(i.e., genetic algorithm, neural networks, fuzzy logic and regression analysis) to
optimize processes and systems. This is interesting in that the main strengths of the
Taguchi methods are accentuated with a well-defined boundary for a given search
space. The results in the literature show that the integrated approach of the Taguchi
method with other artificial intelligence tools produce better results than just uti-
lizing a single optimization tool alone. Besides modeling and optimizing manu-
facturing processes, the Taguchi method has also been widely applied in other
non-conventional fields.

Table 13.6 Rule comparisons of the various methods

DEMD
(Egbelu)

Fuzzy % Improvement
(Fuzzy vs.
DEMD) (%)

Taguchi-tuned
Fuzzy

% Improvement
(Taguchi-Fuzzy vs.
Fuzzy) (%)

Case I:
Throughput

16 27 69 31 14.81

Case II:
Production
time/h

2.99 2.14 28 1.95 19.74

Case III:
No of vehicles

9 5 44 3 40
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In this chapter, a few possible approaches of integrating the Taguchi method
combined with some artificial intelligent techniques, to create hybrid approaches
with improved overall system performance, are elaborated. Particularly, details and
illustrations of combining the Taguchi method with a fuzzy system and a radial
basis neural network are provided. In the simulation study, the adaptive fuzzy rules
are formulated to base the decision making process and the Taguchi method is
applied to fine tune the rules for optimal performance. The experimental design is
performed and simulations are conducted to compare the Taguchi-tuned fuzzy
method to other earlier reported methods. The results in this study concur with the
other works in the literature that integrate the Taguchi method with other tools in
artificial intelligence.
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