
Chapter 11
Intelligent Quality Function Deployment

Huimin Jiang, C.K. Kwong and X.G. Luo

Abstract Quality function deployment (QFD) is commonly used in the product
planning stage to define the engineering characteristics and target value settings of
new products. However, someQFDprocesses substantially involve human subjective
judgment, thus adversely affecting the usefulness of QFD. In recent years, a few
studies have been conducted to introduce various intelligent techniques into QFD to
address the problems associated with subjective judgment. These studies contribute to
the development of intelligent QFD. This chapter presents our recent research on
introducing intelligent techniques into QFD with regard to four aspects, namely,
determination of importance weights of customer requirements, modeling of func-
tional relationships in QFD, determination of importance weights of engineering
characteristics and target value setting of engineering characteristics. In our research,
a fuzzy analytic hierarchy process with an extent analysis approach is proposed to
determine the importanceweights for customer requirements to capture the vagueness
of human judgment and a chaos-based fuzzy regression approach is proposed to
model the relationships between customer satisfaction and engineering characteristics
by which fuzziness and nonlinearity of the modeling can be addressed. To determine
importance weights of engineering characteristics, we propose a novel fuzzy group
decision-making method to address two types of uncertainties which integrates a
fuzzy weighted average method with a consensus ordinal ranking technique.
Regarding the target value setting of engineering characteristics, an inexact genetic
algorithm is proposed to generate a family of inexact optimal solutions instead of
determining one set of exact optimal target values. Possible future research on the
development of intelligent QFD is provided in the conclusion section.
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11.1 Introduction

Quality function deployment (QFD) is a systematic method of translating customer
requirements (CRs) into engineering characteristics (ECs) in the product planning
stage (Terninko 1997). QFD provides a visual relationship to help engineers focus
on design requirements instead of design function in the whole development pro-
cess. QFD uses the voices of the customers from the beginning of product devel-
opment and deploys it throughout the whole product design process. Customer
requirements (CRs) in a new product are collected. Then, product development
teams map the CRs to ECs based on their knowledge, experience, and judgement.
A QFD system comprises four inter-linked phases: product planning phase, part
deployment phase, process planning phase, and production/operation planning
phase (Karsak 2004). Figure 11.1 shows the four phases of QFD.

The implementation of QFD is called house of quality (HoQ), which offers a
global view of information on a new product and on how CRs can be met at
different stages of new product development. A HoQ typically contains information
on “what to do” (CRs or voice of customers), importance weights of CRs, “how to
do” (ECs), importance weights of ECs, the relationship matrix (relationships
between CRs and ECs), technical correlation matrix, benchmarking data, and the
target values settings of the ECs (Govers 1996). QFD was proposed to develop
products with higher quality to meet or surpass customer’s needs through collecting
and analysing the voice of the customer (Chan and Wu 2002). It has been applied
successfully in many industries. New product designs with QFD can enhance
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organizational learning and improve customer satisfaction. QFD can also decrease
product costs, simplify manufacturing processes, and shorten the development time
of new products (Vonderembse and Raghunathan 1997).

11.2 Literature Review

Determining the importance weights of CRs is a crucial QFD step because these
weights can largely affect the target value setting of ECs in the later stage.
Conducting surveys, such as lead user and focus group surveys, is common to
determine the importance weights. The weights are then determined by analyzing
the survey data. Respondents in surveys are always asked to rate various CRs, such
as good quality and user-friendliness (Mochimaru et al. 2012). The product ratings
of respondents involve subjective judgments. CRs always contain ambiguity and
multiplicity of meaning. The description of CRs is usually linguistic and vague.
Thus, conventional methods, which determine the importance weights of CRs on
the basis of crisp numerical data, are inadequate. Some intelligent techniques have
been introduced in previous studies to determine the importance weights of CRs,
such as artificial neural network (Che et al. 1999), fuzzy and entropy methods
(Chan et al. 1999), fuzzy AHP (Kwong and Bai 2002), supervised learning with a
radial basis function (RBF) neural network (Chen 2003), fuzzy group
decision-making approach (Zhang 2009), and fuzzy decision making trial and
evaluation laboratory (DEMATAL) method (Shahraki and Paghaleh 2011).

Another important step of QFD is to prioritize ECs to facilitate resource plan-
ning. However, the inherent vagueness or impreciseness of QFD makes the pri-
oritization of ECs ineffective. Two types of uncertainties in QFD exist. The first
type is human assessment and judgment on qualitative attributes, which are always
subjective and imprecise; thus, the input information of human perception can be
ambiguous. The second type is the involvement of various stakeholders and/or the
number of customers in the assessment of the importance of CRs, as well as the
degree of relationships between CRs and ECs in QFD. Uncertainty that is associ-
ated with group assessment will exist because of individual heterogeneity. Previous
studies have employed intelligent techniques to prioritize ECs, such as fuzzy
outranking approach (Wang 1999), fuzzy set theory of axiomatic design review
(Huang and Jiang 2002), a combined analytic network process (ANP) and goal
programming approach (Karsak et al. 2002), fuzzy ANP (Buyukozkan et al. 2004),
an integrated fuzzy weighted average method and fuzzy expected value operator
method (Chen et al. 2006), and a methodology of determining aggregated impor-
tance of ECs with the considerations of fuzzy relation measures between CRs and
ECs as well as fuzzy correlation measures among ECs (Kwong et al. 2007).
However, most previous studies only address one of the two types of uncertainties
that can affect the robustness of prioritizing ECs.
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The success of products is heavily dependent on the associated customer sat-
isfaction level. If customers are satisfied with a new product, the chance of that
product being successful in marketplaces would be higher. A product usually is
associated with a number of ECs, such as size, weight, and power consumption that
could affect customer satisfaction. In this regard, modeling the functional rela-
tionships between CRs and ECs for product design is crucial. The developed
models can be employed to formulate an optimization model to determine an
optimal EC setting that leads to maximum customer satisfaction. Some techniques
such as statistical regression (Han et al. 2000) and fuzzy rule-based method (Fung
et al. 1998) were adopted to model the functional relationships. However, only a
small number of data sets are usually available from the HoQ for modeling. On the
other hand, the CRs obtained from market surveys are commonly ambiguous and
qualitative in nature, and the relationships between CRs and ECs can be highly
nonlinear. The customer satisfaction models developed based on QFD should be
able to address nonlinearity and fuzziness. Intelligent techniques such as fuzzy
regression (FR) (Chan et al. 2012), fuzzy least squares regression (Kwong et al.
2010) and genetic programming (Chan et al. 2011) have been recently adopted to
model nonlinear and fuzzy relationships. However, the modeling methods of
nonlinear and fuzzy relationships and the development of explicit customer satis-
faction models based on a small number of data sets have not been addressed well
in previous studies.

One of the key issues in QFD is how the EC settings of new products can be
determined such that a high degree or even maximum customer satisfaction can be
obtained. This involves a complex decision-making process with multiple variables.
Currently, the setting of target EC values relies heavily on the professional expe-
rience and intuition of engineers; thus, the setting of such values is accomplished in
a subjective manner. However, determining the optimal setting for target EC values
based on this approach is very difficult. Some previous research has attempted to
develop systematic procedures and methods for setting optimal target values of ECs
in QFD, such as linear programming (Wasserman 1993), integer programming
(Kim and Park 1998), mixed integer linear programming (Zhou 1998), fuzzy
inference system (Fung et al. 1999), nonlinear mathematical program (Dawson and
Askin 1999), and prescriptive fuzzy optimization (Kim et al. 2000).

Few studies have been conducted to introduce intelligence techniques in QFD.
The results of previous studies on the introduction of intelligent techniques into
QFD undoubtedly contribute to the development of intelligent QFD. In the fol-
lowing sections, our research on the development of intelligent QFD with regard to
four aspects, namely, determination of importance weights of CRs, modeling of
functional relationships in QFD, determination of importance weights of ECs and
target value setting of ECs, is described.
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11.3 Determination of Importance Weights of CRs
by Using Fuzzy AHP with Extent Analysis

Quite a number of techniques were introduced to determine the importance weights
of CRs in QFD. One of them is AHP which is very popular to be used in deter-
mining importance weights. AHP was used to determine the importance weights for
product planning (Lu et al. 1994; Armacost et al. 1994; Hsiao, 2002) but has been
mainly applied in crisp (non-fuzzy) decision applications. However, human judg-
ment on the importance of CRs is always imprecise and vague. To address this
deficiency in AHP, a fuzzy AHP with an extent analysis approach is proposed to
determine the importance weights for CRs. In this method, the linguistic assessment
of CRs is converted to triangular fuzzy numbers. These triangular fuzzy numbers
are used to build a pairwise comparison matrix for the AHP. By applying the fuzzy
AHP with extent analysis, the importance weights for the CRs can be obtained.
Extent analysis refers to the “extent” in which an object can be satisfied for the goal.
In this approach, the “satisfied extent” is defined by triangular fuzzy numbers. The
use of the extent analysis technique and principles for the comparison of fuzzy
numbers allows the calculation of weight vectors for fuzzy AHP. The new approach
can improve the imprecise ranking of CRs inherited from studies based on con-
ventional AHP. The fuzzy AHP with extent analysis is simple and easy to imple-
ment for prioritizing CRs in the QFD process compared with conventional
AHP. The details of the fuzzy AHP are described as follows.

11.3.1 Development of a Hierarchical Structure for CRs

All CRs are initially structured into different hierarchical levels to apply AHP in
prioritizing CRs. An affinity diagram, a tree diagram, or a cluster analysis can be
used for this purpose. The voices of the customers can be gathered by a variety of
methods. All of these approaches aim to ask customers to express their needs of a
particular product. Such needs are usually expressed in words that are too general to
use as CRs directly. However, by sorting, classifying, and structuring the voices of
customers, useful CRs can be obtained.

11.3.2 Construction of Fuzzy Judgment Matrixes for AHP

The hierarchy of attributes is the subject of a pairwise comparison of AHP. After
constructing a hierarchy, decision makers are asked to compare the elements at a
given level on a pairwise basis to estimate their relative importance in relation to the
element at the immediately proceeding level. Figure 11.2 shows an example of a
hierarchy of attributes. The total importance weights of CRs can be calculated based
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on the expression, W�
CRi

¼ Wcj �Wsk �WCRi, where W�
CRi

is the total importance
weight of the ith CR, Wcj; Wsk and WCRi are the importance weights of the jth, kth
and ith element in the category level, subcategory level and attributes level,
respectively. In conventional AHP, the pairwise comparison is made by using a
ratio scale. A nine-point scale is commonly used to show the judgment or prefer-
ence of participants between options as equally, moderately, strongly, very
strongly, or extremely preferred. Even though a discrete scale of one to nine has the
advantages of simplicity and ease of use, such a scale does not consider the
uncertainty associated with the mapping of one’s perception (or judgment) to a
number. The linguistic terms that people use to express their feelings or judgments
are vague. The use of this objective is unfeasible for defining the precise numbers to
present linguistic assessment. Fuzzy set theory was first advocated to manage
ambiguity in a system. The widely adopted triangular fuzzy number technique is
employed to represent a pairwise comparison of CRs.

A fuzzy number is a special fuzzy set F ¼ fðx;lFðxÞÞ; x 2 Rg, where x takes its
values on the real line R1: �1\x\1, and lFðxÞ is a continuous mapping from
R1 to the close interval ½0; 1�. A triangular fuzzy number can be denoted as
M ¼ ðl;m; uÞ. The membership function lMðxÞ : R ! ½0; 1� of a triangular fuzzy
number is equal to the following:
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lMðxÞ ¼
x

m�l � l
m�l ; x 2 ½l;m�

x
m�u � u

m�u ; x 2 ½m; u�
0; otherwise;

8<
: ð11:1Þ

where l�m� u; l and u stand for the lower and upper values of the support of M,
respectively; m is the mid-value of M. When l ¼ m ¼ u, it is a non-fuzzy number
by convention.

The main operational laws for two triangular fuzzy numbers, M1 and M2, are as
follows:

M1 þM2 ¼ðl1 þ l2;m1 þm2; u1 þ u2Þ
M1 �M2 �ðl1l2;m1m2; u1u2Þ
k�M1 ¼ðkl1; km1; ku1Þ; k[ 0; k 2 R

M�1
1 �ð 1

u1
;
1
m1

;
1
l1
Þ:

ð11:2Þ

To consider vagueness in an assessment during the pairwise comparison of CRs,
triangular numbers M1; M3; M5; M7; M9 are used to represent the assessment from
“equal to extremely preferred”; M2; M4; M6; M8 are middle values. Figure 11.3
shows the triangular fuzzy numbers Mt ¼ ðlt; mt; utÞ and t ¼ 1; 2. . .9, where lt and
ut are the lower and upper values of fuzzy numberMt, respectively; mt is the middle
value of fuzzy number Mt. d represents a fuzzy degree of judgment where
ut � lt ¼ lt � ut ¼ d, which should be larger than or equal to 0.5. A larger d value
implies a higher fuzzy degree of judgment. When d ¼ 0, the judgment is a
non-fuzzy number.

Participants of the survey use triangular numbers (M1 �M9) to express their
preferences between options. For example, a participant may consider that element i
is very important compared with element j under certain criteria; he/she may set

Fig. 11.3 The membership functions of the triangular numbers
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aij ¼ ð4; 5; 6Þ. If element j is thought to be less important than element i, the
pairwise comparison between j and i can be presented by using the fuzzy number,
aij ¼ ð16 ; 15 ; 14Þ. On the basis of the results of pairwise comparisons for the CRs
obtained from participants, Eq. (11.2) is applied to obtain the fuzzy judgment
matrixes, FCMn, for the CRs.

The AHP methodology provides a consistency index to measure any inconsis-
tency within the judgments in each comparison matrix and for the entire hierarchy.
The index can be used to indicate whether the targets can be arranged in an
appropriate order of ranking and the consistency of pairwise comparison matrixes.
The defuzzification method of triangular fuzzy numbers was employed to convert
fuzzy comparison matrixes into crisp matrixes, which are then used to investigate
consistency. The consistency index, CI, and the consistency ratio, CR, for a
comparison matrix can be computed by the following equations:

CI ¼ kmax � nð Þ=n� 1; ð11:3Þ

CR ¼ CIð Þ=RI nð Þ
� �

100% ð11:4Þ

where kmax is the largest eigenvalue of the comparison matrix, n is the dimension of
the matrix, and RIðnÞ is a random index that depends on n.

If the calculated CR of a comparison matrix is less than 10 %, the consistency of
the pairwise judgment can be considered acceptable; otherwise, the judgments
expressed by the experts are considered inconsistent and the decision maker has to
repeat the pairwise comparison matrix.

A triangular fuzzy number, denoted asM ¼ ðl;m; uÞ can be defuzzified to a crisp
number:

M crisp ¼ 4mþ lþ uð Þ=6: ð11:5Þ

11.3.3 Calculation of Weight Vectors for Individual Levels
of a Hierarchy of the CRs

The extent analysis method and the principles for the comparison of fuzzy numbers
were employed to obtain estimates for the weight vectors for individual levels of a
hierarchy of CRs. The extent analysis method is used to consider the extent of an
object to be satisfied for the goal, that is, the satisfied extent. In this method, the
“extent” is quantified by a fuzzy number. On the basis of the fuzzy values for the
extent analysis of each object, a fuzzy synthetic degree value can be obtained.

Let X ¼ fx1; x2; . . .; xng be an object set and U ¼ fu1; u2; . . .; umg be a goal set.
According to the extent analysis method, each object can be used to perform extent
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analysis for each goal. Therefore, m extent analysis values for each object can be
obtained as follows:

M1
gi ;M

2
gi ; . . .;M

m
gi ; i ¼ 1; 2. . .n; ð11:6Þ

where all M j
gi (j = 1, 2,…, m) are triangular fuzzy numbers. The value of fuzzy

synthetic degree with respect to the ith object is thus defined as follows:

Di ¼
Xm
j

M j
gi �

Xn
i

Xm
j

M j
gi

 !�1

: ð11:7Þ

According to the above definition, the fuzzy synthetic degree values of all
elements in the kth level can be calculated by using Eq. (11.7) based on the fuzzy
judgment matrix of the kth level:

Dk
i ¼

Xn
j¼1

akij �
Xn
i¼1

Xn
j¼1

akij

 !�1

; i ¼ 1; 2; . . .; n; ð11:8Þ

where Dk
i is the fuzzy synthetic degree values of element i in the kth level and

Ak ¼ ðakijÞnn is the fuzzy judgment matrix of the kth level.
The principles for the comparison of fuzzy numbers were introduced to derive

the weight vectors of all elements for each level of the hierarchy with the use of
fuzzy synthetic values. The principles that allow the comparison of fuzzy numbers
are as follows:

Definition 1 M1 and M2 are two triangular fuzzy numbers. The degree of possi-
bility of M1 	M2 is defined as VðM1 	M2Þ ¼ supx	 y½minðlM1

ðxÞ; lM2
ðyÞÞ�.

Theorem 1 If M1 and M2 are triangular fuzzy numbers denoted by ðl1;m1; u1Þ and
ðl2;m2; u2Þ, respectively, then the following holds:

(1) The necessary and sufficient condition of VðM1 	 M2Þ ¼ 1 is m1 	 m2.
(2) If m1 � m2, let VðM1 	 M2Þ = hgt(M1 \M2Þ. VðM1 	M2Þ¼ lðdÞ ¼

l2� u1
ðm1� u1Þ � ðm2� l2Þ ; l2� u1

0 otherwise

8<
: , where d is the crossover point’s abscissa

for M1 and M2.

Definition 2 The degree of possibility for a fuzzy number to be greater than k fuzzy
numbers Miði ¼ 1; 2; . . .; kÞ can be defined by VðM 	 M1;M2; . . .;
MkÞ¼minVðM 	 MiÞ; i ¼ 1; 2; . . .; k:
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Let dðpki Þ ¼ minVðSki 	 Skj Þ, where pki is the ith element of the kth level,
j ¼ 1; 2; . . .; n; j 6¼ i. The number of elements in the kth level is n. The weight
vector of the kth level is then obtained as follows:

W 0
k ¼ ðdðpk1Þ; dðpk2Þ; . . .; dðpknÞÞT : ð11:9Þ

After normalization, the normalized weight vector, Wk, is expressed as follows:

Wk ¼ ðwðpk1Þ;wðpk2Þ; . . .;wðpknÞÞT : ð11:10Þ

Taking the hierarchy of CRs for the hair dryer design (Fig. 11.2) as an example,
the pairwise comparisons of C1, C2 and C3 are shown in Table 11.1.

Equation (11.2) is applied to obtain the fuzzy judgment matrixes, FCM1, for the
category level.

FCM1 =
C1 C2 C3

C1
C2
C3

ð1; 1; 1Þ ð1:33; 2; 3Þ ð1:00; 1:33; 2:33
ð0:33; 0:50; 0:75Þ ð1; 1; 1Þ ð1:00; 1:33; 2:33Þ
ð0:43; 0:75; 1:00Þ ð0:43; 0:75; 1:00Þ ð1; 1; 1Þ

2
4

3
5

The fuzzy synthetic degree values of the element C1, DC1 , can be calculated
based on (11.8) as follows:

DC1 ¼
X3
j¼1

a1j �
X3
i¼1

X3
j¼1

aij

 !�1

¼ ð1; 1; 1Þþ ð1:33; 2; 3Þþ ð1:00; 1:33; 2:33Þð Þ � ð1; 1; 1Þþ ð1:33; 2; 3Þþ � � � ð1; 1; 1Þð Þ�1

¼ð0:25; 0:45; 0:84Þ

Following the similar calculation, DC2 ¼ ð0:17; 0:29; 0:54Þ and DC3 ¼
ð0:14; 0:26; 0:40Þ can be obtained. The following comparison results are then
derived based on Theorem 1.

Table 11.1 Pairwise
comparison for category level

C1 C2 C3

C1 (1,1,1) (1,2,3) (1,1,2)

(2,3,4) (1,1,2)

(1,1,2) (1,2,3)

C2 (1/3,1/2,1/1) (1,1,1) (1,1,2)

(1/4,1/3,1/2) (1,2,3)

(1/2,1/1,1/1) (1,1,2)

C3 (1/2,1/1,1/1) (1/2,1/1,1/1) (1,1,1)

(1/2,1/1,1/1) (1/3,1/2,1/1)

(1/3,1/2,1/1) (1/2,1/1,1/1)
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VðDC1 	DC2Þ ¼ 1; VðDC1 	DC3Þ ¼ 1;

VðDC2 	DC1Þ ¼
ð0:25� 0:54Þ

ð0:29� 0:54Þ � ð0:45� 0:25Þ ¼ 0:65;

VðDC2 	DC3Þ ¼ 1; VðDC3 	DC1Þ ¼
ð0:25� 0:40Þ

ð0:26� 0:40Þ � ð0:45� 0:25Þ ¼ 0:44;

VðDC3 	DC2Þ ¼
ð0:17� 0:40Þ

ð0:26� 0:40Þ � ð0:29� 0:17Þ ¼ 0:88:

Based on Definitions 1, 2 and Eq. (11.9), the weight vector W 0
C of the category

level can be calculated by using the following formula:

dðC1Þ ¼minðVðDC1C2;DC3Þ ¼ minf1; 1g ¼ 1:00;

dðC2Þ ¼minðVðDC2 	DC1 ;DC3Þ ¼ minf0:65; 1g ¼ 0:65;

dðC3Þ ¼minðVðDC3 	DC1 ;DC2Þ ¼ minf0:44; 0:88g ¼ 0:44;

W 0
C ¼ðdðC1Þ; dðC2Þ; dðC3ÞÞT ¼ ð1:00; 0:65; 0:44Þ:

Based on (11.10), the normalized weight vectors of the category level are
obtained as follows:

ðWC1 ;WC2 ;WC3Þ ¼ ð0:48; 0:31; 0:21Þ:

Following the similar calculation, the weight vectors of the subcategory level,
Wsk, and attributes level, WCRi, can be calculated. Hence, the total importance
weights of CRs can be calculated based on the expression, W�

CRi
¼ Wcj �Wsk �WCRi.

For example, referring to Fig. 11.2, W�
CR4

¼ Wc1 �Ws3 �WCR4 ¼ 0:078:

11.4 Modeling of Functional Relationships in QFD
by Using Chaos-Based FR

As mentioned in Sect. 11.1, the methods of modeling nonlinear and fuzzy rela-
tionships in QFD and the development of explicit customer satisfaction models
based on a small number of data sets have not been addressed in previous studies.
In this section, a novel FR approach, namely chaos-based FR, is described to model
the relationships between customer satisfaction and ECs in order to address the
limitations of previous studies. This approach employs a chaos optimization
algorithm (COA) to generate the polynomial structures of customer satisfaction
models with second- and/or higher-order terms and interaction terms. COA
employs chaotic dynamics to solve an optimization problem. COA does not rely on
learning factors, has fast convergence, and can search for accurate solutions com-
pared with the conventional optimization methods. COA also has better capacity in
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searching for the global optimal solution of an optimization problem and can escape
from a local minimum easier than conventional optimization algorithms. However,
COA cannot address the fuzziness of survey data. The FR method of Tanaka et al.
(1982) was introduced to determine the fuzzy coefficients of models. FR is effective
for modeling problems wherein the degree of fuzziness of the data sets for modeling
is high and only a small amount of data sets is available for modeling. However, the
FR method can yield only linear type models. The chaos-based FR approach
combines the advantages of COA and FR to generate customer satisfaction models
wherein the modeling fuzziness can be explicitly addressed and nonlinear models
can be developed. The proposed approach to the modeling of functional relation-
ships in QFD mainly involves four processes: development of HoQ, generation of
polynomial structures of customer satisfaction models by COA, determination of
fuzzy coefficients of customer satisfaction models by Tanaka’s FR, and generation
of fuzzy polynomial customer satisfaction models.

11.4.1 Fuzzy Polynomial Models
with Second- and/or Higher-Order Terms
and Interaction Terms

Kolmogorov–Gabor polynomial has been widely used to evolve general nonlinear
models but is incapable of addressing the fuzziness of modeling data. In fuzzy
polynomial models developed based on the proposed approach, nonlinear terms and
interaction terms between independent variables are represented in a form of a
higher-order Kolmogorov–Gabor polynomial. The fuzzy coefficients of the models
are determined by using Tanaka’s FR method. The proposed models can overcome
the limitation of conventional FR models where only first-order terms are gener-
ated. A fuzzy polynomial model based on the chaos-based FR approach can be
expressed as follows:

~y ¼~fNR xð Þ

¼ ~A0þ
XN
i1¼1

~Ai1xi1 þ
XN
i1¼1

XN
i2¼1

~Ai1i2xi1xi2 þ
XN
i1¼1

XN
i2¼1

XN
i3¼1

~Ai1i2i3xi1xi2xi3 þ � � �
XN
i1¼1

. . .
XN
id¼1

~Ai1...id

Yd
j¼1

xij ;

ð11:11Þ

where ~y is the dependent variable, xij is the ijth independent variable, ij ¼ 1; . . .;N

and j ¼ 1; 2; . . .d. N and d denote the number of design variables. A


is the fuzzy

coefficients of the linear, second order, and/or higher-order terms and the interaction
terms of the model.
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~A0 ¼ ac0; a
s
0

� �
; ~A1 ¼ ac1; a

s
1

� �
; ~A2 ¼ ac2; a

s
2

� �
; . . .; ~AN ¼ acN ; a

s
N

� �
;

~A11 ¼ ac11; a
s
11

� �
; ~A12 ¼ ac12; a

s
12

� �
; ~A13 ¼ ac13; a

s
13

� �
; . . .; ~ANN ¼ acNN ; a

s
NN

� �
;

~A111 ¼ ac111; a
s
111

� �
; ~A112 ¼ ac112; a

s
112

� �
; ~A113 ¼ ac113; a

s
113

� �
; . . .;

~ANNN ¼ acNNN ; a
s
NNN

� �
;

. . .. . .~AN...N ¼ acN...N ; a
s
N...N

� �
;

where ac and as are the central value and spread of fuzzy numbers, respectively.
The fuzzy polynomial model (11.11) can be rewritten as follows:

~y ¼ ~A0
0 þ ~A0

1 � x01 þ ~A0
2 � x02. . .þ ~A0

NNR
� x0NNR

; ð11:12Þ

or

~y ¼ ac0
0; as0

0� �þ ac1
0; as0

0� � � x01 þ ac2
0; as2

0� � � x02 þ . . . þ acNNR

0; asNNR

0
� �

� x0NNR
;

ð11:13Þ

where ~A0
0 ¼ ~A0, ~A0

1 ¼ ~A1, ~A0
2 ¼ ~A2, . . ., ~A0

NNR
¼ ~AN...N ; ~A0

0 ¼ ac
0
0 ; a

s0
0

� �
,

~A0
1 ¼ ac

0
1 ; a

s0
1

� �
, . . ., ~A0

NNR
¼ ac

0
NNR

; as
0

NNR

� �
, and x00 ¼ 1, x01 ¼ x1, x02 ¼ x1x2, . . .,

x0NNR
¼ x1 x2. . . xd . x0j and ~A0

j (j ¼ 0; 1; 2. . .;NNR) denote the transformed variables
and fuzzy coefficients, respectively.

The vector of the fuzzy coefficients can be defined as follows:

~A0 ¼ ~A0
0;
~A0
1; . . .

~A0
NNR

� �
¼ ac0

0; as0
0� �
; ac1

0; as1
0� �
; . . .; acNNR

0; asNNR

0
� �� �

; ð11:14Þ

ac0 ¼ ðac00; ac10; . . .; acNNR

0Þ; ð11:15Þ

as0 ¼ ðas00; as10; . . .; asNNR

0Þ ð11:16Þ

11.4.2 Determination of Model Structures Utilizing COA

In this approach, COA was introduced to determine the polynomial structure of
fuzzy models. COA is a stochastic search algorithm wherein chaos is introduced
into the optimization strategy to accelerate the optimum seeking operation and
determine the global optimal solution. Two phases exist in searching for an optimal
solution in the chaos optimization process. The first phase is called wide search and
involves the whole solution space according to an ergodic track. When the end
condition is satisfied, the current optimal state becomes close to the optimal solution
and the second phase starts. The second phase is based on the results of the first
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phase and involves a narrow search focused on a local region. The second phase
adds a small disturbance term until the final requirement is met. The added dis-
turbance can be a chaos variable, a random variable based on Gaussian
distribution/uniform distribution, or a bias generated by the mechanism of gradient
descent. Current COAs use the carrier wave method to map chosen chaos variables
linearly to the space of optimization variables and then search for optimal solutions
on the basis of the ergodicity of chaos variables. COAs focus on chaos
variable-based optimization rather than on introducing chaos variables as a small
disturbance in search optimization.

The logistic model used in chaos optimization is shown in Eq. (11.17). Logistic
mapping can generate chaos variables by iteration:

cnþ 1 ¼ f ðcnÞ ¼ lcnð1� cnÞ; ð11:17Þ

where l ¼ 4 and cn 2 0; 1½ � is the nth iteration value of the chaos variable c.
The optimization process uses the chaos variables generated from logistic

mapping to search through its own locomotion law. Chaos has dynamic properties
including ergodicity, intrinsic stochastic property, and sensitive dependence on
initial conditions. The characteristic of randomness ensures the possibility of
large-scale search. Ergodicity allows COA to traverse all possible states without
repetition and to overcome the limitations caused by ergodic search in general
random methods.

The linear mapping for converting chaos variables into optimization variables is
formulated as follows:

qn ¼ aþðb� aÞ � cn; ð11:18Þ

where qn is the optimization variable; a and b are the lower and upper limits of the
optimization variable q, respectively.

According to the iteration, the chaos variables traverse in 0; 1½ � and the corre-
sponding optimization variables traverse in the corresponding range a; b½ �.
Therefore, the optimal solution can be found in the area of feasible solution.

Each optimization variable represents the polynomial structure of a fuzzy model
and is described by the input variables x1 ; x2; . . .and xm½ � and arithmetic opera-
tions. The two arithmetic operations of addition (“+”) and multiplication (“*”) are
employed in the fuzzy polynomial model (Eq. 11.12). The optimization variable at
the n th generation is defined as follows:

qn ¼ q1n ; q2n; . . . ; q
Nc
n

� �
; ð11:19Þ

where Nc is an odd number representing the number of elements in a chaos variable.
For example, if four variables exist in the model, the value of Nc is first set to

seven with four elements representing four design variables. Another three elements
in the middle of every two adjacent design variables represent the arithmetic
operations to guarantee that the optimization variable, qn, can include all four
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variables. If the error requirement is not satisfied, the Nc value is adjusted until a
satisfactory modeling error that is close to zero and is smaller than the modeling
errors based on the previous studies is achieved.

The elements in odd numbers (q1n , q
3
n , . . ., q

Nc
n ) are used to represent variables in

a nonlinear structure. For the odd number k, if l� 1ð Þ=m\ qkn � l=m (m is the
number of variables in a nonlinear fuzzy model, 1 � l � m), the position of qkn is
represented by the lth variable xl. The elements in even numbers (q2n , q

4
n , . . .,

qNc�1
n ) are used to determine the arithmetic operations. For even number k, if

0\ qkn � 1=2 and 1=2\ qkn � 1, the arithmetic operations are addition (“+”) and
multiplication (“*”), respectively. For example, an optimization variable with nine
elements is used to represent the structure of a fuzzy polynomial model with four
dependent variables. If the optimal variable is obtained as
q ¼ x2; þ ; x3; �; x4; �; x4; þ ; x1½ �, the polynomial structure can be expressed as
x2 þ x3x24 þ x1. The transformed variables are x00 ¼ 1; x01¼x2 ; x02 ¼ x3x24 ; x03 ¼ x1.
Therefore, the fuzzy polynomial model with fuzzy coefficients can be represented
as

~y ¼ ~A0
0 þ ~A0

1x2 þ ~A0
2x3x

2
4 þ ~A0

3x1

where ~A0
0 ¼ ac

0
0 ; a

0s
0

� �
; ~A0

1 ¼ ac
0
1 ; a

s0
1

� �
; ~A0

2 ¼ ac
0
2 ; a

s0
2

� �
and ~A0

3 ¼ ac
0
3 ; a

s0
3

� �
. The

central values acj
0 and spread values asj

0 (j ¼ 0; 1; . . .; 4) of the fuzzy coefficients are
determined by using Tanaka’s FR analysis.

11.4.3 Determination of Fuzzy Coefficients by Using FR
Analysis

Tanaka’s FR aims to use fuzzy functions to describe an imprecise and vague
phenomenon. All input and output variables, as well as the coefficients of the
relationships, are considered as fuzzy numbers. Two different criteria (i.e., the least
absolute deviation and the minimum spread) are used to evaluate the fuzziness of
the output. Deviations between observed and estimated values depend on the
indefiniteness of system structures and are considered as the fuzziness of system
parameters. The fuzzy parameters of FR models indicate the possibility distribution
and are obtained as fuzzy sets that represent the fuzziness of models. The objective
of FR analysis is to minimize the fuzziness of the model by minimizing the total
spread of the fuzzy coefficients, thus leading to the minimum uncertainty of the
output.

On the basis of chaos optimization, a fuzzy model containing second- and/or
higher-order terms and interaction terms is represented in a polynomial structure.
Tanaka’s FR analysis is employed to determine the fuzzy coefficients for each term
of the fuzzy polynomial model. Fuzzy coefficients with the central point ac0 and
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spread value as0 are determined by solving the following linear programming
(LP) problem:

Min J ¼
XNNR

j¼0

asj
0XM
i¼1

x0 j ið Þ
��� ���

 !
; ð11:20Þ

where J is the objective function that represents the total fuzziness of the system,
1þNNR is the number of terms of the fuzzy polynomial model, M is the number of
data sets, x0 j ið Þ is the jth transformed variable of the ith data set in the fuzzy
polynomial model, and :j j refers to absolute value of the transformed variable. The
constraints can be formulated as follows:

XNNR

j¼0

acj
0 x0jðiÞþ ð1� hÞ

XNNR

j¼0

asj
0 x0jðiÞ
��� ���	 yi i ¼ 1; 2; . . .;M; ð11:21Þ

XNNR

j¼0

acj
0x0jðiÞ � ð1� hÞ

XNNR

j¼0

asj
0 x0jðiÞ
��� ���� yi i ¼ 1; 2; . . .;M; ð11:22Þ

asj
0 	 0; acj

0 2 R; j ¼ 0; 1; 2; . . .NNR;

x0
0ðiÞ ¼ 1 for all i and 0 � h � 1:

where h refers to the degree of fit of the fuzzy model in a given data (between zero
and one), and yi is the value of the ith dependent variable. Constraints (11.21) and
(11.22) ensure that each objective yi has at least h degree of belonging to ~yi as
l~yiðyiÞ	 h ; i ¼ 1; 2; . . .;M. The last constraints for the variables ensure that asj

0

and acj
0 are non-negative. Therefore, the fuzzy parameters ~A0

jðj ¼ 0; 1; 2; . . .NNRÞ
can be determined by solving the LP problem subject to l~yiðyiÞ 	 h:

11.4.4 Algorithms of Chaos-Based FR

The algorithms of the proposed chaos-based FR method are described as follows:

(1) The number of iterations and the number of elements Nc in a chaos variable
are initialized. Nc is an odd number, and Nc values are chosen randomly in the
range of 0; 1½ � to decide the value of the initialized chaos variable.

(2) The iteration starts from n ¼ 1. The chaos variables cn are generated based on
the logistic model in Eq. (11.17) and are transformed into the optimization
variables, qn, by using Eq. (11.18). The polynomial structure of the fuzzy
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model is determined based on the value of the optimization variable qn.
According to the rules described in Sect. 11.4.2, the elements in odd numbers
and even numbers are substituted by input variable xk (k ¼ 1; . . .;N and N is
the number of variables) and arithmetic operations “+” and “*,” respectively.
Subsequently, the transformed variable x0j with linear, second order, and/or
higher-order terms and interaction terms are generated based on arithmetic
operations. If the operation is “*,” the second- and/or higher-order terms and
interaction terms are determined by multiplying the variables on both sides of
“*”. The arithmetic operation “+” is used to add all terms, including linear
terms, to generate the final polynomial structure of the fuzzy model.

(3) According to the generated polynomial structure, the fuzzy coefficients ~A
0
j ¼

acj
0; asj

0
� �

are assigned to all transformed variables of the developed structure.

The values of the fuzzy coefficients are calculated by solving the LP problem
as shown in Eqs. (11.20–11.22).

(4) Based on the developed fuzzy polynomial model, the predicted variable ~yi can
be calculated. The fitness value RE can then be obtained by calculating the
relative error between ~yi and the actual data yi.

(5) Step (2) is repeated. The algorithms are again executed by another training
data set until all training data sets are employed. The mean fitness value
MREðnÞ for all training data sets is calculated.

(6) The iteration continues by nþ 1 ! n and stops after the number of iterations
reaches the predefined value. The values of MREðnÞ are recorded for each
iteration and the solution with the smallest mean fitness value is selected. The
fuzzy polynomial model with the smallest training error is then found. Finally,
the chaos-based FR model is generated.

We have applied the proposed approach on modeling the functional relationships
in QFD for mobile phone products. The following shows an example of a customer

Customer 1

Customer 2

Customer n

First Stage

Ranking of 
customer 1

Ranking of 
customer 2

Ranking of 
customer n

A consensus 
ranking

Second Stage

Fig. 11.4 Flowchart of the fuzzy group decision-making method
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satisfaction model for the CR “comfortable to hold” based on the chaos-based FR
approach.

~y ¼ 14:9991; 2:8422 � 10�14� �þ �1:5036; 2:8422 � 10�14� �
x3

þ �0:2890; 0ð Þx4 þ �0:3634; 5:6843 � 10�14� �
x1

þð0:0045; 0:0077Þx1x2;
ð11:23Þ

where ~y is the predicted value of “comfortable to hold”; x1; x2; x3, and x4 are four
ECs that denote weight, height, width, and thickness, respectively.

11.5 Determination of Importance Weights of ECs
by Using Fuzzy Group Decision-Making Method

Regarding the determination of importance weights of ECs in QFD, most previous
studies only address one type of uncertainties as described in Sect. 11.1 that would
adversely affect the robustness of prioritizing ECs. Thus, it is necessary to consider
the two types of uncertainties simultaneously while determining the importance
weights of ECs. In this section, a novel fuzzy group decision-making method that
integrates a fuzzy weighted average method with a consensus ordinal ranking
technique is described to address the two types of uncertainties. The approach
consists of two stages. The first stage involves the determination of the importance
weights of ECs with respect to each customer by using fuzzy weighted average
method with the fuzzy expected operator. The second stage determines a consensus
ranking by synthesizing all customer preferences on the ranking of ECs. The
flowchart for the proposed methodology is presented in Fig. 11.4.

11.5.1 Determination of the Importance Weights of ECs
Based on the Fuzzy Weighted Average Method
with Fuzzy Expected Operator

For the first type of uncertainty in QFD, fuzzy set theory can be an effective tool to
deal with uncertain inputs. On the basis of fuzzy set theory, the inputs required for
QFD are represented with linguistic terms characterized by fuzzy sets. The two sets
of input data should be expressed as fuzzy numbers, namely, the relative weights of
CRs and the relationship measures between CRs and ECs, to determine the
importance weights of ECs.

Some notations that are used in this section are shown as follows:
CRi The ith customer requirement where i ¼ 1; 2; . . .;m
ECj The jth engineering characteristic where j ¼ 1; 2; . . .; n
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Cl The lth customer surveyed in a target market where l ¼ 1; 2; . . .;K
m The number of CRs
n The number of ECs
K The number of customers surveyed in a target market
~Wl
i

The lth customer’s individual preference on the ith customer need, which is a
triangular fuzzy number belonging to certain predefined linguistic terms, such
as “very important,” “important,” and “moderately important.”

~Rij The relationship measure between the ith CR and jth EC, which is a triangular
fuzzy number belonging to some predefined linguistic terms, such as
“strong,” “moderate,” and “weak.”

The relative importance of the ith CR with respect to the lth customer and
relationship measures between CRs and ECs are expressed as triangular fuzzy
numbers. Thus, the determination of the importance of ECs falls under the category
of fuzzy weighted average. The fuzzy importance of ECj with respect to the lth
customer, which is denoted by ~Zl

j , can be expressed as follows:

~Zl
j ¼

Xm
i¼1

~Wl
i
~Rij

,Xm
i¼1

~Wl
i : ð11:24Þ

Several methods can be devised to calculate the fuzzy weighted average.
A common method for calculating the fuzzy ECs of Eq. (11.24) was proposed by
Kao and Liu (2001):

Let Wl
i

� �
a; Rij
� �

a denote the a-level sets of ~Wl
i ;
~Rij, respectively, which can be

defined as follows:

Wl
i

� �
a ¼ Wl

i

� �L
a ; Wl

i

� �U
a

h i
¼ min

wl
i

wl
i 2 Wl

i

.
l ~Wl

i
wl
i

� �	 a
n o

;max
wl
i

wl
i 2 Wl

i

.
l ~Wl

i
wl
i

� �	 a
n o" #

Rij
� �

a ¼ Rij
� �L

a ; Rij
� �U

a

h i
¼ min

rij
rij 2 Rij

.
l~Rij

rij
� �	 a

n o
;max

eik
rij 2 Rij

.
l~Rij

rij
� �	 a

n o	 

:

ð11:25Þ

These intervals indicate where the relative weight of customer attributes and the
relationship between CRs and ECs are located at possibility level a. According to
the extension principle of Zadeh (1978), the membership function, l~Zl

j
, can be

derived from the following equation:

l~Zl
j
zlj
� �

¼ sup
r;w

min l ~Wl
i
wl
i

� �
; l~Rij

rij
� � 8i; j

�
zlj ¼

Pm
i¼1

wl
irij

�Pm
i¼1

wl
i

� 

: ð11:26Þ
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Therefore, the upper and lower bounds of the a-level of ~Zl
j can be obtained. The

solution of the upper and lower bounds can be attained by solving the following LP
model:

Zl
j

� �U
a
¼ max

Pm
i¼1

wl
irij

�Pm
i¼1

wl
i

s:t:

Wl
i

� �L
a �wl

i � Wl
i

� �U
a

Rij
� �L

a � rij � Rij
� �U

a

i ¼ 1; . . .;m ;

ð11:27Þ

and

Zl
j

� �L
a
¼ min

Pm
i¼1

wl
irij

�Pm
i¼1

wl
i

s:t:

Wl
i

� �L
a �wl

i � Wl
i

� �U
a

Rij
� �L

a � rij � Rij
� �U

a

i ¼ 1; . . .;m :

ð11:28Þ

Assume that q ¼ 1
�Pm

i¼1
wl
i and ti ¼ qwl

i i ¼ 1; 2; . . .;m , Eqs. (11.27) and

(11.28) can be transformed into the following LP model:

Zl
j

� �U
a
¼ max

Pm
i¼1

ti Rij
� �U

a

s:t:

q Wið ÞLa � ti � q Wið ÞUaXm
i¼1

ti ¼ 1

i ¼ 1; . . .;m; q; ti 	 0 ;

ð11:29Þ

and
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Zl
j

� �L
a
¼ min

Pm
i¼1

ti Rij
� �L

a

s:t:

q Wið ÞLa � ti � q Wið ÞUaXm
i¼1

ti ¼ 1

i ¼ 1; . . .;m; q; ti 	 0:

ð11:30Þ

According to the method of Chen et al. (2006), the expected value of ~Zl
j can be

calculated by the following:

E ~Zl
j

h i
¼ 1

2L

XL
f¼1

~Zl
ji

� �U
af
þ ~Zl

Ji

� �L
af

� �
; j ¼ 1; 2; . . .;m: ð11:31Þ

The amount of information is best reflected by a single value derived by using
the fuzzy expected value operator. This condition is caused by the fuzzy importance
weights of CRs lying in a range, as well as the different a-cuts providing different
intervals and uncertainly levels of importance weights of CRs. When the impor-
tance weights of ECs are calculated, their ordinal rankings can also be derived.
Details of the methods to determine importance weights of ECs are given by Chen
et al. (2006).

11.5.2 Synthesis of Individual Preferences on the Ranking
of ECs

In synthesizing individual preferences on ECs in terms of ordinal rankings to
address the second type of uncertainty, a form of consensus can be derived by
simply adding up the member preferences and taking their average. However, such
an approach does not necessarily lead to a consensus ranking because the ranking
derived by taking a simple arithmetic average may not be robust. The ranking of
ECs should be viewed in terms of a “distance” measure. Such a measure relative to
a pair of rankings will be an indicator of the degree of correlation between rankings.
In this research, a method is proposed to deal with the problem of synthesizing
ordinal preferences expressed as priority vectors to form a consensus. This method
suggests the problem of determining a compromise or consensus ranking that best
agrees with all individual rankings through an assignment problem.

In the proposed approach, a metric or distance function for a set of rankings is
introduced. The consensus ranking approach can minimize the total absolute dis-
tance (disagreement). We begin by examining some conditions where such a dis-
tance, d, should be satisfied. First, the following axioms are required:
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Axiom 1 d A;Bð Þ � 0 with equality if A ¼ B

Axiom 2 d A;Bð Þ ¼ d B;Að Þ
Axiom 3 d A;Cð Þ � d A;Bð Þþ d B;Cð Þ with equality if the ranking B is between
A and C.

Axiom 4 (Invariance)
(1) If A0 results from A by a permutation of the objects, and B0 results from B by

the same permutation, then d A0;B0ð Þ ¼ d A;Bð Þ
(2) If �A and �B result from A and B by reversing the order of the objects, then

d �A; �Bð Þ ¼ d A;Bð Þ
Axiom 5 (Lifting-moving from n to nþ 1 dimensional space)
If A and B are two rankings of n objects and A* and B* are the rankings that result
from A and B, then d A�;B�ð Þ ¼ d A;Bð Þ by listing the same nþ 1ð Þst object last.
Axiom 6 (Scaling)
The minimum positive distance is one.

The axioms are consistent and can characterize a unique distance function. We
can consider the problem wherein K customers provide the ordinal rankings

Al
� �K

l¼1 of n ECs. Let Al ¼ al1; . . .; a
l
n

� �
and bj 2 1; 2; . . .; nf g, where bi represents

the ordinal ranking of the ECs.

Definition 1 The median or consensus ranking B̂ refers to the ranking that mini-
mizes the total absolute distance.

MðBÞ ¼
XK
l¼1

d Al;B
� � ¼XK

l¼1

Xn
j¼1

alj � bj
��� ���: ð11:32Þ

The median ranking is in the best agreement with the set of selected rankings,
thus providing an objective criterion to arrive at a consensus.

Let B0 be the set of all rankings of n objects. Thereafter, the following is
obtained:

min
B2B0

XK
l¼1

d Al;B
� �	 min

B2Rn

XK
l¼1

d Al;B
� � ¼ min

B2Rn

XK
l¼1

Xn
i¼1

alj � bj
��� ���: ð11:33Þ

Equation (11.33) attains its minimum when the following is satisfied:

bj ¼ median alj
n om

l¼1
¼ b0j: ð11:34Þ

Let B0 ¼ b0i; . . .; b
0
n

� �
. Thereafter, we obtain the following:
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M B0ð Þ �M Bð Þ For all B 2 B0: ð11:35Þ

Thus, we have:

Theorem 1 Let Al
� �K

l¼1 be a set of rankings and B0 be given by (11.34). If B0 2 B0,
then B0 is the median ranking.

The determination of the median ranking requires a specialized algorithm.
However, if consideration is restricted to the set of complete rankings, the problem
can be represented by an LP formulation.

The problem can be solved effectively by representing the problem as an
assignment problem. djq is defined as follows:

djq ¼
XK
l¼1

alj � q
��� ���: ð11:36Þ

Considering the following expression:

XK
l¼1

d Al;B
� � ¼XK

l¼1

Xn
j¼1

alj � bj
��� ���: ð11:37Þ

Equation (11.36) is the value of the j th sum in Eq. (11.37) if bj is set equal to
q q 2 1; 2; . . .; nf gð Þ:

If we define the following expression

xjq ¼ 1 if bj ¼ q
0 otherwise ;

�
ð11:38Þ

then the restricted problem is equivalent to the following assignment problem:

min
xjq

Pn
j¼1

Pn
q¼1

djqxjq

s:t:
Pn
j¼1

xjq ¼ 1 for all q

Pn
q¼1

xjq ¼ 1 for all j

xjq 	 0 for all j; q:

ð11:39Þ

The above integer programming model is capable of handling large problems.
By solving the model, the consensus rankings of ECs can be obtained.
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11.5.3 Evaluation of Robustness

The measurement of robustness depends on the perspective of robustness. Kim and
Kim (2009) proposed an index to evaluate the robustness of ordinal ranking, namely,
priority relationships among ECs. This approach indicates the relative priority order
among two or more ECs. The robustness on the priority relationships among ECs
can be measured as the degree in which the relative priority relationships among ECs
are maintained despite the presence uncertainty. In this viewpoint, the robustness
index on the priority relationships among ECs are expressed as the likelihood that a
priority relationship in V is retained. For instance, if V is j1j2½ �, V represents a priority
relationship wherein ECj1 has a higher priority than ECj2 . The robustness index on
the priority relationship, denoted as RI Vð Þ, can be calculated as follows:

RI Vð Þ ¼
PL

l
yðlÞ

L

where
yðlÞ ¼ 1; if ranking ECV vð Þ; l

� � � ranking ECV vþ 1ð Þ; l
� �8v ¼ 1; . . .;N Vð Þ � 1

y lð Þ ¼ 0; otherwise
;

�

ð11:40Þ

where y lð Þ is an indicator variable, ECV vð Þ denotes the vth EC in V , and N Vð Þ
denotes the array size of V .

Considering that RI Vð Þ is expressed as a type of likelihood measured by an
empirical probability, it has a value between zero and one. The larger value of
RI Vð Þ implies that higher robustness on the absolute ranking of ECs or the priority
relationship in V can be obtained. If RI Vð Þ is equal to one, the priority relationship
in V is always retained despite the variability. By using the robustness index, the
robustness of the prioritization decision, EC or V , can be evaluated.

The design of a flexible manufacturing system (FMS) (Liu 2005; Chen et al.
2006) is used to illustrate the proposed method. Assume that ten customers, denoted
as Cl; l ¼ 1; 2; . . .; 10, are surveyed in a target market. Seven fuzzy numbers are
used to express their individual assessments on the eight CRs, as shown in
Table 11.2. W1 
W7 are the importance weights of CRs, which represent very
unimportant, quite unimportant, unimportant, slightly important, moderately
important, important and very important, respectively. The relationship measures
between CRs and ECs are shown in Table 11.3. R1 
R4 denote four relationship
linguistic terms, which are very weak, weak, moderate, and strong, respectively.

The proposed approach was applied to compute the ranking of ECs and the final
ordinal rankings of ECs can be obtained.

EC3 � EC7 � EC1 � EC2 � EC4 � EC8 � EC9 � EC10 � EC6 � EC5

Based on the method of Chen et al. (2006), the ordinal ranking of ECs is shown
as follows:
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EC3 � EC7 � EC1 � EC2 � EC4 � EC8 � EC9 � EC6 � EC10 � EC5

From the ranking results of ECs of the two methods, we can find the difference
in the order of EC10 and EC6. Based on the method of Chen et al. (2006), the
ordinal ranking of EC10 and EC6 is EC6 > EC10. Based on the proposed approach,
the result is opposite. Therefore, the robustness index is used to evaluate the ordinal
ranking of EC10 and EC6 between the method of Chen et al. (2006) and the
proposed approach. In the prior method, the prioritization relationship V is [6 10].
For the first customer, ECI6 > ECI10 is consistent with V . Hence, y 1ð Þ is equal to 1.
In the proposed approach, V is [10 6]. For the first customer, ECI10 < ECI6 is not
consistent to V . Hence, y 1ð Þ is equal to 0. Similarly, the value of y lð Þ for the ten
customers can be derived, as shown in Table 11.4. Then, RI Vð Þ value based on the
Chen’s method can be calculated as follows:

RI Vð Þ ¼ 1þ 0þ 0þ 1þ 0þ 0þ 1þ 0þ 1þ 0
10

¼ 0:4

Table 11.2 The fuzzy importance of eight CRs assessed by ten customers using fuzzy numbers

CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8

C1 W7 W2 W7 W2 W7 W3 W4 W1

C2 W3 W3 W6 W7 W1 W2 W6 W7

C3 W1 W7 W2 W5 W1 W1 W5 W7

C4 W7 W4 W7 W1 W3 W6 W7 W2

C5 W5 W2 W2 W6 W5 W1 W7 W6

C6 W7 W4 W1 W5 W3 W2 W7 W2

C7 W7 W2 W6 W1 W4 W5 W1 W6

C8 W6 W7 W5 W7 W7 W6 W2 W2

C9 W7 W1 W6 W3 W7 W5 W7 W7

C10 W2 W4 W7 W2 W7 W1 W6 W2

Table 11.3 The relationship matrix between CRs and ECs

Rij EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8 EC9 EC10

CR1 R3 R2 R3 R3 R1 R1 R3 R2 R2 R2

CR2 R2 R3 R4 R2 R1 R3 R3 R3 R3 R2

CR3 R4 R3 R4 R2 R1 R1 R4 R2 R2 R2

CR4 R3 R3 R3 R3 R2 R2 R2 R3 R3 R2

CR5 R4 R4 R3 R4 R2 R2 R3 R3 R3 R3

CR6 R2 R2 R3 R3 R2 R2 R2 R2 R2 R2

CR7 R2 R3 R3 R2 R3 R3 R4 R3 R2 R2

CR8 R3 R2 R3 R3 R2 R2 R4 R3 R2 R2
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and RI Vð Þ value based on the proposed approach can be calculated as shown
below.

RI Vð Þ ¼ 0þ 1þ 1þ 0þ 1þ 1þ 0þ 1þ 0þ 1
10

¼ 0:6

Finally, the index values for the ranking based on the prior method and the
proposed approach are calculated as 0.4 and 0.6 respectively. Therefore, the pro-
posed approach outperforms the method of Chen et al. (2006) in prioritizing the
ECs in terms of robustness.

11.6 Target Value Setting of ECs by Using Fuzzy
Optimization and Inexact Genetic Algorithm

In the product design stage, product development teams may need to consider
various design scenarios while determining design specifications. However, in
previous studies of target value setting of ECs in QFD, only a single solution is
obtained and target value setting for different design scenarios cannot be consid-
ered. In this section, a fuzzy optimization model is presented to determine the target
value setting for ECs in QFD. An inexact genetic algorithm approach is described
to solve the model that takes the mutation along the weighted gradient direction as a
genetic operator. Instead of obtaining one set of exact optimal target values, the
approach can generate a family of inexact optimal target values setting within an
acceptable satisfaction degree. Through an interactive approach, a product

Table 11.4 An illustration of the robustness index between the two methods

Customer ECI6(l) ECI10(l) Method of Chen et al. (2006)
with traditional average
arithmetic EC = {EC6, EC10},
V = [6 10]

The proposed approach with
an 0–1 integer programming
EC = {EC10, EC6}, V = [10
6]

CI 0.4561 (8)a 0.4164 (9) y 1ð Þ ¼ 1 y 1ð Þ ¼ 0

C2 0.3276 (9) 0.3669 (8) y 2ð Þ ¼ 0 y 2ð Þ ¼ 1

C3 0.2499 (9) 0.3411 (8) y 3ð Þ ¼ 0 y 3ð Þ ¼ 1

C4 0.4432 (8) 0.3951 (9) y 4ð Þ ¼ 1 y 4ð Þ ¼ 0

C5 0.3540 (9) 0.3725 (8) y 5ð Þ ¼ 0 y 5ð Þ ¼ 1

C6 0.4219 (9) 0.4280 (8) y 6ð Þ ¼ 0 y 6ð Þ ¼ 1

C7 0.3969 (8) 0.3327 (9) y 7ð Þ ¼ 1 y 7ð Þ ¼ 0

C8 0.4146 (9) 0.4301 (8) y 8ð Þ ¼ 0 y 8ð Þ ¼ 1

C9 0.3916 (8) 0.3526 (9) y 9ð Þ ¼ 1 y 9ð Þ ¼ 0

C10 0.3719 (9) 0.4023 (8) y 10ð Þ ¼ 0 y 10ð Þ ¼ 1

Robustness index value RI(V) = 0.4 RI(V) = 0.6

Note aDenotes the ranking of the corresponding ECI for the lth customer
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development team can determine a combination of preferred solution sets from
which a set of preferred target values of ECs based on a specific design scenario can
be obtained.

11.6.1 Formulation of Fuzzy Optimization Model for Target
Values Setting in QFD

The processes of determining the target values for ECs in QFD can be formulated as
shown below:

Determine target values x1; x2; . . .; xn by maximizing the overall customer
satisfaction:

yi ¼ fiðXÞ; i ¼ 1; . . .;m;

Xj ¼ gjðX jÞ; j ¼ 1; . . .; n;

where

X ¼ ðx1; x2; . . .; xnÞT ;

X j ¼ ðx1; . . .; xi�1; xjþ 1; . . .; xnÞT ;

yi is the customer perception of the degree of satisfaction of the ith CR
i ¼ 1; . . .;m,

xj is the target value of the jth EC, j ¼ 1; . . .; n,
fi is the functional relationship between the ith CR and ECs, i.e.

yi ¼ fiðx1; . . .; xnÞ, and
gj is the functional relationship between the jth EC and other ECs, i.e.,

xj ¼ gjðx1; . . .; xj�1; xjþ 1; . . .xnÞ

The above equation is a general model to determine the target values of ECs.
Additional constraints can be added to the above formulation as appropriate. In
reality, many design tasks are performed in an environment wherein system
parameters, objectives, and constraints are not known precisely. Therefore, devel-
oping a crisp optimization model to set the target values of ECs in QFD is difficult.
For the establishment of an objective function, customers usually cannot provide a
precise satisfaction value and instead express their satisfaction in linguistic terms
such as “quite satisfied” and “very satisfied.” The relationships between CRs and
ECs, as well as among ECs, can be very complicated. Engineers usually do not
have full knowledge of the impact of an EC on CRs or on other ECs. Thus, setting
the relationship values between a CR and an EC is also imprecise. Regarding the
constraints, vagueness also exists. For example, the cost is usually described as a
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function of CR and should not exceed a predetermined upper limit. The cost
constraint can then be formulated as follows:

c1x1 þ c2x2 þ � � � þ cnxn �~c;

where, ~c is the upper limit of cost and c1,c2, … cn are the coefficients. Owing to the
imprecise and incomplete design information available in the early design stage, the
values of ~c may be imprecise.

The fuzziness presents a special challenge to model effectively the process of
target values setting by using traditional mathematical programming technique. One
way to deal with such vagueness quantitatively is to employ fuzzy set theory, which
can be used to develop a fuzzy optimization model for the target value setting of
ECs in QFD. On the basis of the work of Kim et al. (2000), a general fuzzy
optimization model to set target values of ECs in QFD is proposed as follows:

M~ax lðy1; y2; . . .; ynÞ
s: t:

C1 : yi ~¼ fiðXÞ; i ¼ 1; . . .;m

C2 : Xj ~¼ gjðX jÞ; j ¼ 1; . . .; n

C3 : CðXÞ�~c;

ð11:41Þ

where l is the satisfaction degree of customers to CRs; C1 and C2 are the fuzzy
relationship constraints; C3 is the cost constraint.

11.6.2 Tolerance Approach to the Determination
of an Exact Optimal Solution from the Fuzzy
Optimization Model

The symmetric models, which are based on the definition of fuzzy decision, were
frequently adopted in fuzzy LP models. They assumed that the objective and
constraints in an imprecise situation could be represented by fuzzy sets. A decision
could be stated as the union of the fuzzy objective and constraints and defined by a
max–min operator. A fuzzy objective set G and a fuzzy constraint set C are
assumed to be given in a space X. G and C are then combined to form a decision D,
which is a fuzzy set resulting from the intersection of G and C, and the corre-
sponding lD is equal lG \ lc. Lai and Hwang (1992) mentioned that the approaches
of Zimmermann, Werner, Chanas and Verdegay are the most practical approaches
among various techniques in fuzzy LP. Transforming a fuzzy optimization model
into a crisp model is the common idea of these approaches. In this research,
Zimmerman’s tolerance approach (Zimmerman 1996) is adopted to solve the fuzzy
optimization model. First, the membership function of fuzzy constraints and the
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fuzzy objective have to be determined. Customers usually cannot provide a satis-
faction value precisely. Customers express satisfaction in fuzzy terms such as “quite
satisfactory” and “not very satisfactory.” Let ymin

i and ymax
i represent the lower and

upper bounds of aspirations, respectively, with respect to yi. A customer would then
express complete dissatisfaction of a design (X) in which yiðXÞ � ymin

i ; but would
express complete satisfaction if yiðXÞ 	 ymax

i . A membership function lyiðXÞ can
be introduced to measure the satisfaction degree of customers to the ith CR at
various ECs for design (X). The membership function lyiðXÞ can be represented as
follows:

lyiðXÞ ¼
0 if yiðXÞ � ymin

i
sðXÞ if ymin

i � yiðXÞ � ymax
i

1 if yiðX Þ	 ymax
i ;

8<
: ð11:42Þ

where sðXÞ could be linear or nonlinear.
The membership functions for all CRs lyiðXÞ, where i¼1; 2; . . .;m, form the

membership function of a fuzzy objective function. Each fuzzy constraint in the
fuzzy optimization model can be represented by a fuzzy set. The membership
function of the fuzzy relationship constraints are lfiðX; YÞ and lgjðX; YÞ, where
i ¼ 1; 2. . .;m and j ¼ 1; 2. . .; n, respectively. The membership functions of a fuzzy
constraint “AX ~¼ b” can be represented as follows (Zimmerman 1996):

lðXÞ ¼
0 amp; if amp;AX � b� d or AX 	 bþ d

1� jAX�bj
d amp; if amp; b� d\AX\bþ d

1 amp; if amp;AX ¼ b

8<
: ð11:43Þ

where A is a row vector, b is a constant, and d is a subjectively chosen constant of
the admissible violations of the constraint.

The membership of the cost constraint, lcðXÞ, can be represented in the fol-
lowing form:

lcðXÞ ¼
1 if CX\ c

1� ðCX � cÞ
t

if c�CX � cþ t

0 if CX[ cþ t ;

8>><
>>:

where t is a pre-specified non-negative tolerance level to cost c. The above mem-
bership function denotes the following:
lðXÞ is zero if the constraints are strongly violated,
lðXÞ is one if the constraints are very satisfied, and
lðXÞ increases monotonously from zero to one

With the use of Zimmerman’s tolerance approach, the crisp form of the fuzzy
optimization model in Eq. (11.41) can be formulated as follows:

11 Intelligent Quality Function Deployment 355



Maximize k

subject to

k� ly iðXÞ; i ¼ 1; 2; . . .;m

k� lf i
ðX; YÞ; i ¼ 1; 2; :. . .m

k� lgjðX; YÞ; j ¼ 1; 2; . . .; n

k� lcðXÞ ;

ð11:44Þ

where k ð0� k� 1Þ represents the overall value of membership functions.
A unique optimal solution for the above model can be obtained by using an LP

technique, which is a set of optimal target values for ECsx1; x2; . . .; xn. The exact
setting of optimal target values for ECs obtained by using the LP technique may not
be acceptable to a product development team in a new product design. This con-
dition is caused by the inherent or permitted possibility and flexibility in the target
values setting of ECs existing in QFD and the obtained solutions allowing a product
development team to reconcile tradeoffs among the CRs and ECs under various
design scenarios. The provision of a family of inexact satisfactory target values
setting for ECs would then be very useful to the product development team. In this
chapter, an inexact genetic algorithm is employed to generate a family of inexact
satisfactory target values setting for ECs from the fuzzy optimization model.
Detailed descriptions are shown below.

11.6.3 Inexact Genetic Algorithm Approach
to the Generation of a Family of Inexact Solutions
from the Fuzzy Optimization Model

During the last 30 years, interest in problem solving systems based on principles of
evolution and hereditary has grown. Even though many different classes of the
systems exist, such as genetic algorithms, evolutionary programming, and evolution
strategies, they all rely on the same concept of mimicking mechanisms of biological
evolution. Admittedly, the gap among them is getting smaller and smaller. They
have also been called as some common terms such as evolutionary algorithms and
evolution programs. The inexact genetic algorithm is a specially designed one to
solve these problems with fuzziness.

The basic idea of the inexact genetic algorithm (Wang 1997) is that the mutation
operator moves along a weighted gradient direction. An individual is led by this
mutation operator to arrive at inexact solutions within an acceptable range of the
fuzzy optimal solution sets. By means of an interactive approach, a set of preferred
solutions can be sought by a convex combination of the solutions selected from the
family. The basic idea of the method is applied to solve the fuzzy optimization

356 H. Jiang et al.



model Eq. (11.44) to obtain a set of preferred solutions corresponding to a particular
design scenario.

Generally, two types of genetic operators exist for the genetic algorithm:
crossover and mutation. For the linear problem, only the mutation operator is
utilized. In the inexact genetic algorithm, the mutation operator moves along a
weighted gradient direction. For model Eq. (11.44), the mutation operator can be
induced as follows.

Based on the tolerance method, the fuzzy optimal solution set of the fuzzy
optimization model Eq. (11.44) is a fuzzy set defined by the following:

~S ¼ fðX; l~SðX; YÞÞjX; Y 2 Rn
þ g; ð11:45Þ

where

l~SðX; YÞ ¼ minflyiðXÞ; lfiðX; YÞ; lgjðX; YÞ; lcðXÞg i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;m;

ð11:46Þ

and Rn
þ is the non-negative n-dimensional space. Based on the equivalent uncon-

strained max-min optimization problem, a weighted gradient of l~SðX; YÞ can be
defined as follows:

GðX; YÞ 
rl~SðX; YÞ
¼ � CðlyiÞ �

X
i

lyiðXÞþCðlfiÞ �
X
i

lfiðX; YÞþCðlgjÞ �
X
j

lgjðX; YÞþCðlcÞ � lcðXÞ ;

i ¼1; 2; . . .; n ; j ¼ 1; 2; . . .;m

ð11:47Þ

where CðlÞ represents the weight of the corresponding membership, which can be
designed as follows:

Let lmin ¼ minflyiðXÞ; lfiðX; YÞ; lgjðX; YÞ; lcðXÞ; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;
mg; then

CðlÞ ¼
1; l ¼ lmin
r
l
; lmin\l\1

0 ; l ¼ 1 ;

8>>><
>>>:

ð11:48Þ

where r is a sufficiently small positive number.
If ðx; yÞkþ 1 is the child of the individual, ðx; yÞk , the mutation along the weighted

gradient direction can be described as follows:
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ðx; yÞkþ 1 ¼ ðx; yÞk þ hGðx; yÞ; ð11:49Þ

where h is a random step length of the Erlang distribution, which is generated by a
random number generator.

By employing the inexact genetic algorithm to solve the fuzzy optimization
model, a family of inexact optimal solutions can be obtained. The interactive
approach allows a product development team to select a preferred solution from the
fuzzy optimal solutions. First, the team provides an acceptable membership degree
level of the fuzzy optimization. They then choose their preference structure utilizing
the human-computer interaction. The product development team needs to point out
which criteria are of utmost concern to them. The criteria could be the objective,
constraints, or decision variables. The solutions in the α-cut of the fuzzy solutions
set, ~Sa, with the highest and lowest values of these criteria are stored in memory and
updated in each interaction. Given the large number of the visited points, the
solutions preferred by the product development team can be found with high
probability. Considering that in general, more than one criterion of concerns from
the product development team exists, more than one solution would be derived.
When the iteration terminates, the solutions with their criteria values will be dis-
played to the product development team. The product development team can then
select a couple of preferred solutions each time. By repeating the above procedures,
the preferred final solution can be generated.

The proposed approaches have been applied to car door design. Table 11.5
shows the 5 sets of optimal solutions, which correspond to maximum values of the
decision variables. In this table, y1–y5 are the satisfaction values of five CRs, which
are “easy to close from outside,” “stays open on a hill,” “rain leakage,” “road
noise,” and “cost,” respectively; x1 to x6 are target values setting of six ECs, which
are “energy to close the door,” “check force on level ground,” “check force on 10 %
slope,” “door seal resistance,” “road noise reduction,” and “water resistance,”
respectively; lðzÞ is the membership function of the fuzzy optimal solution
set, which can be calculated based on Eq. (11.46); The last column shows
the maximum values of y1 to y5. For example, the maximum of
y1 = maxf4:9273; 3:3547; 4:9273; 4:0517; 3:1515g¼ 4:9273.

From the results, various sets of preferred target values setting ECs can be
obtained for different design scenarios rather than the only one exact optimal target
values setting. For example, the design team would like to have the maximum
satisfaction values of all the CRs. In this case, the design team should select the
solutions, Zmax(1), Zmax(2), Zmax(3), Zmax(4) and Zmax(5). The satisfaction values of the
individual CRs, Y final, and the target values setting of the ECs, X final can be
calculated using the following linear combination.

Z ¼ Zmaxð1Þ � x1 þ Zmaxð2Þ � x2 þ Zmaxð3Þ � x3 þ Zmaxð4Þ � x4 þ Zmaxð5Þ � x5

where Z ¼ ðYfinal; XfinalÞ, and x1 ¼ 0:3;x2 ¼ 0:2; x3 ¼ 0:1; x4¼0:1 and x5¼0:3
are the importance weights of the corresponding CRs.
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Based on the above linear combination, Yfinal and Xfinal can be determined as
follows:

Yfinal ¼ðyfinal1 ; yfinal2 ; yfinal3 ; yfinal4 ; yfinal5 Þ ¼ ð3:9925; 3:0021; 5:4967; 4:6247; 4:2214Þ
Xfinal ¼ðxfinal1 ; xfinal2 ; xfinal3 ; xfinal4 ; xfinal5 ; xfinal6 Þ ¼ ð8:5048; 14:0983; 7:5752; 4:7012; 6:7942; 74:5975Þ

11.7 Conclusion

In this chapter, our recent research on the development of intelligent QFD is
described. First, a fuzzy AHP with extent analysis approach is described to deter-
mine the importance weights for CRs. The approach is effective to determine the
importance weights as it is capable of capturing the vagueness of human judgment
in assessing the importance of CRs. The fuzzy AHP with extent analysis is also
easy to implement because the tedious calculation of eigenvectors required by the
conventional AHP is no longer necessary. Second, a chaos-based FR approach is
described to model the functional relationships between CRs and ECs. This
approach can address the issues pertaining to the modeling of the functional rela-
tionships based on QFD: (1) only a small number of data sets are available for
modeling, (2) relationships between CRs and ECs are nonlinear in nature, (3) data
sets for modeling contain a high degree of fuzziness, and (4) explicit customer
satisfaction models are preferred. Third, a fuzzy group decision-making method is
described to address the two uncertainties simultaneously in prioritizing ECs and to
determine the importance weights of ECs. It mainly involves an ordinal ranking of

Table 11.5 A family of satisfactory solutions corresponding to the maximum values of decision
variables

Solution y1–y5 x1–x6 lðzÞ Meaning

Zmax(1) 4.9273 3.2594 5.9671
4.9027 3.8029

7.91431 4.5618 7.8602 5.0459
6.1948 74.7782

0.3365 Maximum
of y1
y1 = 4.9273

Zmax(2) 3.3547 3.2897 5.7525
4.8893 3.7896

8.0849 15.1257 7.8171 4.7470
6.2084 74.7672

0.3443 Maximum
of y2
y2 = 3.2897

Zmax(3) 4.9273 3.2594 5.9671
4.9027 3.8029

7.9143 14.5618 7.8602 5.0459
6.1948 74.7782

0.3365 Maximum
of y3
y3 = 5.9671

Zmax(4) 4.0517 3.2626 5.1167
4.9183 3.6646

8.7023 14.0130 7.5656 4.4619
6.6273 74.6778

0.5414 Maximum
of y4
y4 = 4.9183

Zmax(5) 3.1515 2.3806 4.8255
3.9799 5.2530

9.5063 12.8237 7.0370 4.2907
8.0396 74.2166

0.3580 Maximum
of y5
y5 = 5.2530
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ECs based on a fuzzy weighted average method with fuzzy expected operator and a
consensus ranking method. Finally, a fuzzy optimization model is presented and an
inexact genetic algorithm approach is described to solve the model to determine the
target value setting of ECs. Considering that product development teams may
consider product design under various design scenarios, a unique optimal solution
obtained from the fuzzy model may not be acceptable to them. The proposed
approaches are capable of generating a family of optimal target values setting for
ECs, from which various sets of preferred target values setting for ECs can be
obtained for different design scenarios rather than the only one exact optimal target
values setting.

Future research on developing intelligent QFD can involve the detection and
elimination of outliers to improve survey data quality. Outliers may exist in the
survey data and can affect the predictive accuracy of the models. Regarding
the chaos-based FR approach for modeling functional relationships, minimizing the
complexity of the generated fuzzy polynomial models could be considered in future
work as an objective together with minimizing errors in the formulation of the
fitness function. This approach would help develop fuzzy polynomial models with
simpler structures and good modeling accuracy. Future works can also consider
cost minimization as an objective in the fuzzy optimization model apart from
maximizing customer satisfaction. The optimization problem thus becomes a
multi-objective one. Other solving techniques such as multi-objective genetic
algorithms and particle swarm optimization need to be introduced to solve the
optimization problem.
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