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Preface

The objective of quality management is to maintain a desired level of excellence in
service and production systems. Quality management is composed of management
activities and functions involved in determination of product and service quality
policy and its implementation through quality planning and assurance, as well as
quality control and quality improvement.

In recent years, there has been a significant increase in the interest for designing
intelligent systems to address complex decision systems. Intelligent
decision-making deals with solving complex problems in engineering, social sci-
ences, computer sciences, etc., based on artificial intelligence. The aim of
employing intelligent systems is to incorporate the uncertainties in real-world
problems that cannot be handled by classical approaches. The types of uncertainties
that intelligent techniques can handle are due to imprecise, vague, unreliable,
contradictory, and incomplete data.

Intelligent techniques, in addition to the classical techniques, have improved the
ability to solve such complex real-world problems in uncertain environments.
Intelligent techniques include fuzzy and rough sets, neural networks, support vector
machines, genetic algorithms, particle swarm optimization, simulated annealing,
and Tabu search.

The nature of most problems in quality management is complex as they include
many variables and parameters to model them. Besides, the data related to these
problems are commonly vague, imprecise, or incomplete. Moreover, the data are
represented by linguistic terms rather than exact numerical values in some cases. In
such cases, intelligent decision-making techniques can be efficiently used for
solving these types of quality management problems.

The contents of this book have been constituted by considering classical quality
management books. The aim of the book is to gather intelligent applications suit-
able to this content. The complex problems of quality management such as process
control, reliability analysis, and software and service quality have been tackled with
using intelligent techniques such as neural networks, genetic algorithms, or fuzzy
logic. Fifteen chapters have been invited from various countries, namely Turkey,
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USA, India, France, Sweden, Hungary, China, Singapore, Spain, Italy, Croatia, and
Iran.

Chapter 1 reviews the intelligent decision-making literature in order to reveal
their usage in quality problems. It first classifies the intelligent techniques and then
presents graphical illustrations to show the status of these techniques in the solu-
tions of quality problems. These graphs display the publishing frequencies of the
intelligent quality management papers with respect to their countries, universities,
journals, authors, and document types.

Chapter 2 presents the fuzzy control charts for variables. It includes the devel-
opment of fuzzy Shewhart control charts, fuzzy EWMA control charts, and
unnatural pattern analyses under fuzziness.

Chapter 3 presents the fuzzy control charts for attributes, namely p-chart,
np-chart, u-chart, and c-chart. Numerical examples are given for each type of these
charts.

Chapter 4 considers the economical design of EWMA zone control charts for set
of machines operating under Jidoka Production System (JPS). It provides an
extensive literature review of intelligent systems in quality control deductively. It
starts with an overview of quality control charts, then, reviews charts designed for
special purposes such as EWMA, CUSUM, and zone control charts. Finally, it
develops economical design and intelligent applications of EWMA control charts

Chapter 5 includes the categorization of the most essential works on fuzzy
process capability indices in four main categories: Lee et al. method and its
extensions, Parchami et al. method and its extensions, Kaya and Kahraman method
and its extensions, and Yongting method and its extensions.

Chapter 6 presents a methodology for increasing the performance as well as
productivity of the system by utilizing uncertain data. For this, an optimization
problem is formulated by considering reliability, availability, and maintainability
parameters as an objective function. The conflicting nature between the objectives
is resolved by defining their nonlinear fuzzy goals and then aggregate by using a
product aggregator operator.

Chapter 7 reviews acceptance sampling plans with intelligent techniques for
solving important as well as fairly complex problems. Then, it introduces accep-
tance sampling under fuzziness in detail. Finally, multi-objective mathematical
models for fuzzy single and fuzzy double acceptance sampling plans with illus-
trative examples are proposed.

Chapter 8 focuses on the most recent applications of experimental design related
to heuristic optimization, fuzzy approach, and artificial intelligence with a special
emphasis on the optimal experimental design and optimality criteria. The area of
optimal experimentation, which deals with the calculation of the best scheme of
measurements, is explained.

Chapter 9 shows how intelligent techniques can be used to design data-driven
tools that are able to support the organization to continuously improve the effec-
tiveness of their production according to the Plan–Do–Check–Act (PDCA)
methodology. The chapter focuses on the application of data mining and
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multivariate statistical tools for process monitoring and quality control. Classical
multivariate tools such as PLS and PCA are presented along with their nonlinear
variants.

Chapter 10 provides a comprehensive review of the multicriteria approaches
proposed for failure mode and effects analysis under uncertainty and offer a brief
tutorial for those who are interested in these approaches.

Chapter 11 presents research on intelligent techniques for QFD with regard to
four aspects, namely, determination of importance weights of customer require-
ments, modeling of functional relationships in QFD, determination of importance
weights of engineering characteristics, and target value setting of engineering
characteristics. A fuzzy analytic hierarchy process with an extent analysis approach
together with a chaos-based fuzzy regression approach proposes a novel fuzzy
group decision-making method, and an inexact genetic algorithm is proposed in this
chapter.

Chapter 12 extends the understanding of what performance measures can be
applied to processes in order to gain useful information and the emerging appli-
cation of artificial neural networks to handle concurrent multiple feedback loops.

Chapter 13 employs the Taguchi method coupled with intelligent techniques on
the fleet control of automated guided vehicles in a flexible manufacturing setting.
Particularly, details and illustrations of combining the Taguchi method with a fuzzy
system and a radial basis neural network are provided. In the simulation study, the
adaptive fuzzy rules are formulated to base the decision-making process and the
Taguchi method is applied to fine tune the rules for optimal performance.

Chapter 14 focuses on modeling and analysis of quality of service
(QoS) tradeoffs of a software architecture based on optimization models.
A particular emphasis is given to two aspects of this problem: (i) the mathematical
foundations of QoS tradeoffs and their dependencies on the static and dynamic
aspects of a software architecture, and (ii) the automation of architectural decisions
driven by optimization models for QoS tradeoffs.

Chapter 15 describes the application of back-propagation neural networks
(BPNN) in an extended importance–performance analysis (IPA) framework with
the goal of discovering key areas of quality improvements. The value of the
extended BPNN-based IPA is demonstrated using an empirical case example of
airport service quality.

This book will provide a useful resource of ideas, techniques, and methods for
the research on the theory and applications of intelligent techniques in quality
management. Finally, we thank all the authors whose contributions and efforts
made the publication of this book possible. We are grateful to the referees for their
valuable and highly appreciated works contributed to select the high quality of
chapters published in this book.

Cengiz Kahraman
Seda Yanık
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Chapter 1
Intelligent Decision Making Techniques
in Quality Management: A Literature
Review

Cengiz Kahraman and Seda Yanık

Abstract Intelligent techniques present optimum or suboptimal solutions to
complex problems, which cannot be solved by the classical mathematical pro-
gramming techniques. The aim of this chapter is to review the intelligent decision
making literature in order to reveal their usage in quality problems. We first classify
the intelligent techniques and then present graphical illustrations to show the status
of these techniques in the solutions of quality problems. These graphs display the
publishing frequencies of the intelligent quality management papers with respect to
their countries, universities, journals, authors, types (whether it is a conference
paper, book chapter, journal 1 paper, etc.)

Keywords Intelligent techniques � Quality management � Quality control � Tabu
search � Fuzzy sets � Swarm optimization � Genetic algorithm � Ant colony
optimization � Neural networks � Simulated annealing

1.1 Introduction

Traditionally quality is defined as the fitness for use. As the marketplace evolved, a
modern view of quality stated that quality is inversely proportional to variability
(Montgomery 2012). Quality control and improvement efforts aim to control the
variability in order to ensure a continuous specific quality level. To this end, one of the
most effective tools is statistical process control (SPC) which uses the approach of
probability and statistics. The main aim of SPC is to monitor and minimize process
variations. Statistical process control (SPC) is very useful in maintaining an accept-
able and stable level of some quality characteristics (Guh 2003). SPC helps to first
draw conclusions about the populations (or processes) by statistical inference process.
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Then, we decide diagnosing if the process is the deviated and take corrective
actions if necessary.

The tools of quality management help us to draw the reasoning in order to make
decisions for maintaining the quality. Intelligent decision making is defined as the
computer-based artifacts performing human decision making task. Two main
aspects of decision-making, diagnosis and look-ahead, may be adopted by the
intelligent techniques such as expert systems, case-based reasoning, fuzzy set,
rough set theories, neural networks (NNs) and optimization/evolutionary algorithms
(Pomerol 1997). Intelligent systems either observe how people make the decision in
the task at hand and reproduce the process in the machine or help to represent
knowledge and reasoning (Pomerol 1997; Simon 1969, Newell and Simon 1972).

The advance of computer integrated manufacturing allowed automatic imple-
mentation of quality control tasks. The advanced data-collection systems (e.g. the
machine vision system and scanning laser system) increased the rate and number of
data input while decreasing the data collection costs. Quality problems commonly
involve multivariate data that are not easy to model and/or optimize. Hence,
computer-coded logic and algorithms are developed for the data analysis and
decision making in quality control. Intelligent methods are extensively used for
decision making in quality control together with data collection and analysis.
Knowledge discovery with quality data has been achieved by various data mining
techniques such association, clustering. On the other hand, decision-making tasks
such as the description of product and process quality, prediction of quality, clas-
sification of quality and parameter optimization are achieved by intelligent tech-
niques (Köksal et al. 2011). Fuzzy logic is used to capture the uncertainty and
imprecision for the description of product and process quality. Rule-based experts
systems provide a logical, symbolic approach for reasoning while neural networks
use numeric and associative processing to mimic models of biological systems
(Guh 2003). Both techniques help to predict or classify the quality. Evolutionary
algorithms imitate the evolution process for the optimization of parameters in the
quality control applications.

The aim of this chapter is to classify the intelligent techniques and to review their
usage in the solution of complex quality problems. It provides an excellent review
which summarizes the present status of quality problems solved by intelligent
techniques.

The rest of the chapter is organized as follows. Section 1.2 classifies intelligent
techniques. Section 1.3 presents a classification of literature of intelligent techniques
in quality problems. Section 1.4 gives the results of literature review by some
graphical illustrations. Section 1.5 concludes the chapter with future directions.

1.2 Intelligent Techniques

In this section, we introduce the intelligent decision making techniques which are
used in the quality management literature.
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1.2.1 Particle Swarm Optimization

Particle swarm optimization method is inspired from the social behaviour of bio-
logical swarm systems such as the movement of organisms in a bird flock or fish
school. PSO method was developed originally by Kennedy and Eberhart (1995). It
is a population-based computational method which achieves optimization by iter-
atively improving the candidate solutions. Particles, which are candidate solutions,
form a population. The particles of the population are located in the search space
according to the particle’s position and velocity and the current optimum particles.
The particles communicate either directly or indirectly with one another for search
directions. As a result, the swarm is directed to the best solution. PSO has been used
as an effective metaheuristic technique for various problem types of different
applications. Some applications of the use of PSO method for different areas are
reviewed as follows.

Image compression is an important tool which allows effective resource use.
However, the quality of the compressed image should be assessed accurately.
Optimal quantization tables which determine the compression ratio and the quality
of the decoded images are selected using PSO method (Ma and Zhang 2013).
A multi-objective model which also presents different trade-offs between image
compression and quality is developed in their study. Real-time self tuning of
autonomous microgrid operations of typical distributed generation units is needed
for optimal power control strategy.

The parameter design problem for the lighting performance of a specific type of
LED includes the settings of the geometric parameters and the refractive properties
of the materials. Hsu (2012) proposed a hybrid approach for the selection of optimal
design parameters using genetic programming (GP), Taguchi quality loss functions,
and particle swarm optimization. The methodology helps to identify the key quality
characteristics of a LED and outperforms the traditional Taguchi method in solving
this multi-response parameter design problem.

Particle Swarm Optimization (PSO) is applied for real-time self-tuning of the
power control parameters such as voltage and frequency regulation, and power
sharing by Al-Saedi et al. (2012). The developed controller is shown to be effective
to improve the quality of power supply of the microgrid.

The fuzzy logic and particle swarm optimization (PSO) method are also
employed for the power quality by Hooshmand and Enshaee (2010). The single and
combined power quality disturbances are aimed to be detected and classified using
the proposed approach. The signals are used to identify the power quality distur-
bances which are derived from the Fourier and wavelet transforms of the signal.
Fuzzy rule-based system which is oriented with a PSO algorithm is developed to
classify the type of the disturbances. The PSO algorithm is used to provide opti-
mized values for the parameters of the membership functions of the fuzzy
rule-based systems used for detection and classification.

In construction applications, quality is closely interrelated with the time and cost.
The objective is in such settings is minimizing the cost and time while maximizing

1 Intelligent Decision Making Techniques in Quality Management … 3



the quality. The optimal combination of construction methods is chosen by
fuzzy-multi-objective particle swarm optimization in the study of Zhang and Xing
(2010). The imprecise or vague data related to quality is represented by fuzzy
numbers. The proposed methodology presents the solution for time–cost–quality
trade off problem of selected construction methods.

Shirani et al. (2015) introduced a hybrid algorithm, specifically designed to work
with optimized decision tree with particle swarm optimization (PSO-DT), for the
prediction of Soil physical quality indicators (i.e., air capacity, AC; plant-available
water capacity, PAWC; and relative field capacity, RFC). The potential power of
using the PSO-DT algorithm in setting up a framework for identifying the most
determinant parameters affecting the physical quality of agricultural soils in a
semiarid region of Iran is also investigated.

1.2.2 Genetic Algorithms

Genetic Algorithms (GAs) are heuristic procedures that use the principles of evo-
lutionary algorithms. The methodology of Genetic algorithms have been developed
by Holland (1975) and applied extensively to various types of optimization prob-
lems. GAs are inspired from the biological process of natural selection and the
survival of the fittest. A pool of solutions defined as a population of chromosomes
and a search process is achieved by generations of crossovers. Improvement is
aimed to be obtained by selecting the competitive chromosomes that weed out poor
solutions and carry over the genetic material to the offspring. At each iteration, the
competitive solutions are recombined with other solutions to obtain hopefully better
solutions in terms of objective function value or the “fitness” value. The resulting
better solutions are then used to replace inferior solutions in the population. For
further details on Genetic Algorithms, the interested reader is referred to the study
by Reeves (2003).

Genetic algorithms have been mainly used for the calibration of model param-
eters which aim commonly to predict or classify quality and to search for the
optimal design of quality detection and monitoring systems. Examples of studies
from the literature are reviewed as follows.

The efficiency of electrical devices is highly related to harmonic occurrence in
the inverters. Linear equations which are functions of the switching angles are
needed to be solved to eliminate harmonics. Tutkun (2010) developed a hybrid
genetic algorithm method based on the refinement of the genetic algorithms results
through the Newton–Raphson method to simultaneously solve such non-linear
equations.

In power systems, maintaining the quality is important and various methods
have been studied to achieve power quality. One of the most common power
disturbances is due to voltage sag which is a decrease in voltage or current at the
power frequency for short durations. To obtain information related to voltage sags,
power quality monitoring system are implemented in power supply networks. GAs
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have been used to find the optimal number and location of monitored sites to
minimize the number of monitors and to reduce monitoring costs without missing
essential voltage sag information (Gupta et al. 2014). Kazemi et al. (2013) have
offered to use GAs to determine the optimal number and placement of power
quality monitors (PQMs) in power systems. Specifically, a GA was developed to
evaluate the optimum number of allocated monitors, which is defined as the min-
imum difference between the Mallow’s Cp value and the number of variables used
in the multivariable regression model for estimating the unmonitored buses.
Mallow’s Cp is a statistical criterion for selecting among many alternative subset
regressions.

Selection of optimal number and location of quality monitoring sites is also a
problem of water quality assurance. Park et al. (2006) used a genetic algorithm
(GA) and a geographic information system (GIS) for the design of an effective
water quality monitoring network in a large river system. Fitness functions were
defined with five criteria: representativeness of a river system, compliance with
water quality standards, supervision of water use, surveillance of pollution sources
and examination of water quality changes. GIS data was used for obtaining the
fitness levels.

Ng and Perera (2003) developed a GA to optimise model parameters of river
water quality models. Then, Pelletier et al. (2006) has used a GA to find the
combination of kinetic rate parameters and constants that results in a best fit for a
model application compared with observed data. They modelled the relation
between kinetics and the water quality in streams and rivers. Preis and Ostfeld
(2008) also aimed to predict flow and water quality load in watersheds. They have
used extensive data and employed a data driven modelling approach. The
methodology included a coupled model tree–genetic algorithm scheme. The model
tree predicted flow and water quality constituents while the genetic algorithm was
employed for calibrating the model tree parameters.

Advances in the electronic systems and machine learning allow the uses of
devices used for the detection of quality. Shi et al. (2013) used GAs to select and
optimize the effective sensors of electronic nose which is aimed to contribute the
modeling of production areas and tree species.

Artificial intelligence techniques are commonly used to detect quality. An
application on the classification of the cotton yarn quality is presented by Amin
(2013). A hybrid technique involving Artificial Neural Network (ANN) and genetic
algorithm (GA) is developed. GA is used to find the optimal values of the input
chromosomes (input attributes of the ANN) which maximize the nonlinear expo-
nential function of the output node of ANN. Rules for classification are derived
using the optimum chromosomes.

Chou et al. (2010) proposes a virtual metrology (VM) system for real-time
quality measurement of wafers and detection of the performance degradation of
machines in manufacturing of semiconductor and thin-film transistor liquid crystal
display. Support vector machines model is used for detection and a GA is devel-
oped for the training/learning of support vector machine (SVM) model.
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An application for the identification of materials at mines is presented by
Chatterjee and Bhattacherjee (2011). They developed an image analysis-based
method which efficiently and cost effectively determines the quality parameters of
material at mines. A GA was designed to reduce the dimensions of the image
features effectively. Then the features are modelled using neural networks against
the actual grade values of the samples generated by chemical analysis.

Parameters related to manufacturing process are selected to for achieving high
quality for more than one quality characteristics. Su and Chiang (2003) applied a
neural–genetic algorithm to select these parameters. the neural network is used to
formulate a fitness function for predicting the value of the response based on the
parameter settings. GA then takes the fitness function from the trained neural
network to search for the optimal parameter combination.

Castellini et al. (2015) presented an adaptive illumination system for image
quality enhancement in vision-based quality control systems. In particular, a spatial
modulation of illumination intensity was proposed in order to improve image
quality, thus compensating for different target scattering properties, local reflections
and fluctuations of ambient light.

1.2.3 Fuzzy Sets

Fuzzy sets are the basic concept supporting the fuzzy set theory. The main research
fields in the fuzzy set theory are fuzzy sets, fuzzy logic, and fuzzy measure. Fuzzy
reasoning or approximate reasoning is an application of fuzzy logic to knowledge
processing. Fuzzy control is an application of fuzzy reasoning to control devices.
One feature of FSs is the ability to realize a complex nonlinear input–output relation
as a synthesis of multiple simple input–output relations.

The fuzzy set theory has been used in several intelligent technologies by today
ranging from control, automation technology, robotics, image processing, pattern
recognition, medical diagnosis etc. Some examples are

• A major application area is automotive industry. Fuzzy control has been applied
to control automatic transmission system, suspension system, engine system,
climate system and antilock brake system.

• Another example is washing machines that adjust their washing strategy based
on sensed dirt level, fabric type, load size and water level.

• Fuzzy logic has been used to enhance processing of digital image and signals.
Autofocus, auto-zoom, auto-white balancing and auto-exposure systems of
cameras.

• Electrophotography process of photocopying machines has been improved. The
image quality has been improved by better toner supply control based on fuzzy
control.

• Some other successful applications are hand written language recognition and
voice recognition.

6 C. Kahraman and S. Yanık



Fuzzy logic and fuzzy set theory have been successfully applied to handle
imperfect, vague, and imprecise information. Nevertheless, to handle vague and
imprecise information whereby two or more sources of vagueness appear simul-
taneously, the modeling tools of ordinary fuzzy sets are limited. For this reason,
different generalizations and extensions of fuzzy sets have been introduced
(Rodriguez et al. 2012): Type-2 fuzzy sets, nonstationary fuzzy sets, intuitionistic
fuzzy sets, fuzzy multisets, and hesitant fuzzy sets.

Fuzzy logic has been extensively used in quality measurement and control
problems in the literature. Some of the recently published works are as follows:
Yuen (2014) proposes a hybrid framework of Fuzzy Cognitive Network Process,
Aggregative Grading Clustering, and Quality Function Deployment (F-CNP-
AGC-QFD) for the criteria evaluation and analysis in QFD. The fuzzy QFD enables
rating flexibility for the expert judgment to handle uncertainty. The Fuzzy Cognitive
Network Process (FCNP) is used for the evaluation of the criteria weights.

An et al. (2014) introduce a fuzzy rough set to perform attribute reduction. Then,
an attribute recognition theoretical model and entropy method are combined to
assess water quality in the Harbin reach of the Songhuajiang River in China.
A dataset consisting of ten parameters is collected from January to October in 2012.
Fuzzy rough set is applied to reduce the ten parameters to four parameters.

Li et al. (2014) study the problem of multiple attribute decision making in which
the decision making information values are triangular fuzzy numbers and a relative
entropy decision making method for software quality evaluation is proposed. Then,
according to the concept of the relative entropy, the relative closeness degree is
defined to determine the ranking order of all alternatives by calculating the relative
entropy to both the fuzzy positive-ideal solution (FPIS) and fuzzy negative-ideal
solution (FNIS) simultaneously.

Ghorbani et al. (2014) provides a new method to categorize and select distrib-
utors for supply chain management. After determining criteria according to the
service quality dimensions as a novel innovation, the fuzzy adaptive resonance
theory (ART) algorithm is utilized to categorize distributors according to their
similarity. Then, AHP and fuzzy TOPSIS are utilized to arrange distributors in their
relative category.

Hsu (2015) integrated the fuzzy analytic network process and fuzzy VIKOR
method in a fuzzy multi-criteria decision-making model to provide a complete
process to diagnose managerial strategies to reduce customer gaps in service quality
efficiently.

Wei et al. (2015) improved fuzzy comprehensive evaluation (FCE) by importing
trustworthy degree to it and proposed an automatic hotel service quality assessment
method using the improved FCE, which can automatically get more trustworthy
evaluation from a large amount of less trustworthy online comments. Then, the
causal relations among evaluation indexes were mined from online comments to
build the fuzzy cognitive map for the hotel service quality, which was useful to
unfold the problematic areas of hotel service quality, and recommended more
economical solutions for improving the service quality.
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1.2.4 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic approach for solving hard
combinatorial optimization problems. Ant colony optimization (ACO) algorithm
based on the foraging behaviour of ants has been first introduced by Dorigo and
Gambardella (1997). The basic idea of ACO is to imitate the cooperative behavior
of ant colonies. When searching for food, ants initially explore the area surrounding
their nest in a random manner. As soon as an ant finds a food source, it evaluates it
and carries some food back to the nest. During the return trip, the ant deposits a
pheromone trail on the ground. The pheromone deposited, the amount of which
may depend on the quantity and quality of the food, guides other ants to the food
source (Socha and Dorigo 2008). Quantity of pheromone on the arc is decreased in
time due to evaporating. Each ant decides to a path or way according to the quantity
of pheromone which has been leaved by other ants. More pheromone trail consists
in short path than long path. Because the ants drop pheromones every time they
bring food, shorter paths are more likely to be stronger, hence optimizing the
solution. The first ACO algorithm developed was the ant system (AS) (Dorigo
1992), and since then several improvement of the AS have been devised
(Gambardella and Dorigo 1995, 1996; Stützle and Hoos 2000).

Bhaskara Murthy and Prabhakar Rao (2015) focused on the application of ACO
with optimized link state routing protocol to improve quality of service in Mobile
Ad Hoc Network, a dynamic multi-hop wireless network. Simulation results show
that the proposed routing enhances the performance of the network.

1.2.5 Bee Colony Optimization

Artificial bee colony (ABC) algorithm was proposed by Karaboga (2005). Bee
Colony Optimization (BCO) algorithm imitates the procedure of collective food
search of honeybees. The initial search for the food is executed by a group of bees
which inform their remaining bees in the hive about the location quantity and the
quality of the food they have explored. A bee carrying out random search is called a
scout. Moreover, the scout bees which will lead the followers also try to attract
follower bees from the hive by a dance behaviour named as waggle dance. During
the waggle dance, the quantity of the food is also given to the followers. Besides, it
is known that the quality food is an important factor for strong commitment among
the bees. The foraging bees under the lead of the explorer bee leave the hive and
collect the food in the explored area. The collected food is returned back to the hive.
As the bees collect the food, they return back to the hive to store the food. Then,
those bees may choose one of the following options to go through: (i) it may
continue to collect food at the same location under its previous leader; (ii) it may
choose to build up its own team and try to attract followers to join its team (iii) they
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may separate from the leader bee and become an uncommitted bee. The exploration
of new areas and food collection processes continuously take place.

The bee colony optimization algorithms are a newly developed swarm intelli-
gence technique. Its application has mainly focused on job shop scheduling,
location and transportation modelling as well as control theory (Davidović et al.
2011; Taheri et al. 2013; Ngamroo 2012). This newly proposed method provides a
potential approach for the quality related intelligent decision making. Chen et al.
(2015) firstly carried out a sensitivity analysis of a water quality model using the
Monte Carlo method. Then, two hybrid swarm intelligence algorithms were pro-
posed to identify the parameters of the model based on the artificial bee colony and
quantum-behaved particle swarm algorithms. One hybrid strategy is to use
sequential framework, and the other is to use parallel adaptive cooperative evolv-
ing. The results of sensitivity analysis reveal that the average velocity and area of
the river section are well identified, and the longitudinal dispersion coefficient is
difficult to identify.

Chen et al. (2015) firstly carried out a sensitivity analysis of a water quality
model using the Monte Carlo method. Then, two hybrid swarm intelligence algo-
rithms were proposed to identify the parameters of the model based on the artificial
bee colony and quantum-behaved particle swarm algorithms. One hybrid strategy is
to use sequential framework, and the other is to use parallel adaptive cooperative
evolving. The results of sensitivity analysis reveal that the average velocity and area
of the river section are well identified, and the longitudinal dispersion coefficient is
difficult to identify.

1.2.6 Neural Networks

Neural networks are computational models which are inspired by the connected
neurons of the nervous system. The network structure takes the inputs, then weighs
and transforms them by predetermined functions, finally determines the output(s)
through neurons. Using the principles of human brain processes, artificial neural
networks achieve learning from experiences and present the use of these experi-
ences via parallel processing units (i.e. neurons). The learning process takes place in
the network and stored as weights among the connections of the neurons.

ANNs are commonly used for machine learning, data classification, general-
ization, feature extraction, optimization, data completion and pattern recognition.
The fundamental property of ANNs is to process data and make decisions using the
weights acquired from the learning phase.

Salehi et al. (2012) proposes a model consisting of two models which are
effective in recognition of unnatural control chart patterns. The first model is a
support vector machine (SVM)-classifier which recognizes the mean and variance
shift. The second model consists of two neural networks for mean and variance to
detect the magnitude of the shifts. Ebrahimzadeh et al. (2011) develops an intel-
ligent method for recognition of the common types of control chart pattern.
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Similarly the method includes two modules: clustering module uses a combination
of the modified imperialist competitive algorithm (MICA) and the K-means algo-
rithm whereas classifier module includes a neural network for determining the
pattern type. Cheng and Cheng (2011) aims to recognize the bivariate process
variance shifts using neural networks. They have explored the networks design
factors window size, number of training examples, sample size, training algorithm
with respect to the performance of the neural network, in terms of the ARL and run
length distribution. Wu and Yu (2010) propose a network ensemble model to
identify the mean and variance shifts in correlated processes and show that this
model performs better than single NNs. Hosseinifard et al. (2011) proposes to use
artificial neural networks to detect and classify the shifts in linear profiles which are
defined as relation between a response variable and one or more explanatory
variables. Velo et al. (2013) compared the performance of alkalinity level prediction
of cruise ships using ANN and multilinear regression. Then the alkalinity estima-
tion is used for quality control of measurements. Lopez-Lineros et al. (2014)
developed a non-linear autoregressive neural network for the quality control of raw
river stage data. Kesharaju et al. (2014) develop a ultrasonic sensor based neural
network to identify defects in ceramic components. Neural network approach is
used for the classification of defects.

Kadiyala and Kumar (2015) presented a methodology that combines the use of
univariate time series and back propagation neural network (widely used ANN)
methods in the development and evaluation of IAQ models for the monitored
contaminants of carbon dioxide and carbon monoxide inside a public transportation
bus using available software.

1.2.7 Simulated Annealing

Simulated annealing (SA) methods are the methods proposed for the problem of
finding, numerically, a point of the global minimum of a function defined on a
subset of a k-dimensional Euclidean space. The motivation of the methods lies in
the physical process of annealing, in which a solid is heated to a liquid state and,
when cooled sufficiently slowly, takes up the configuration with minimal inner
energy. Metropolis et al. (1953) described this process mathematically. SA uses this
mathematical description for the minimization of other functions than the energy.
The first results published by Kirpatrick et al. (1983), German and German (1984),
Cerny (1985),

SA algorithm is a technique to find a good solution of an optimization problem
using a random variation of the current solution. A worse variation is accepted as
the new solution with a probability that decreases as the computation proceeds. The
slower the cooling schedule, or rate of decrease, the more likely the algorithm is to
find an optimal or near-optimal solution (Xinchao 2011).
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1.2.8 Tabu Search

The word tabu (or taboo) comes from Tongan, a language of Polynesia, where it
was used by the aborigines of Tonga island to indicate things that cannot be touched
because they are sacred. According to Webster’s Dictionary, the word now also
means “a prohibition imposed by social custom as a protective measure” or of
something “banned as constituting a risk.”

Difficulty in optimization problems encountered in practical settings such as
telecommunications, logistics, financial planning, transportation and production has
motivated in development of optimization techniques. Tabu search (TS) is a higher
level heuristic algorithm for solving combinatorial optimization problems. It is an
iterative improvement procedure that starts form an initial solution and attempts to
determine a better solution.

1.2.9 Swarm Intelligence

Social insects work without supervision. In fact, their teamwork is largely
self-organized, and coordination arises from the different interactions among indi-
viduals in the colony. Although these interactions might be primitive (one ant
merely following the trail left by another, for instance), taken together they result in
efficient solutions to difficult problems (such as finding the shortest route to a food
source among myriad possible paths). The collective behaviour that emerges from a
group of social insects has been dubbed swarm intelligence (Bonabeau and Meyer,
2001). SI indicates a recent computational and behavioural metaphor for solving
distributed problems that originally took its inspiration from the biological exam-
ples provided by social insects (ants, termites, bees, wasps) and by swarming,
flocking, herding behaviours in vertebrates.

1.2.10 Differential Evolution

Differential evolution (DE) is introduced by Storn and Price in 1996. DE is known
as population-based optimisation algorithm similar to GAs using similar operators;
crossover, mutation and selection. According to Karaboğa and Ökdem (2004), the
main difference in constructing better solutions is that genetic algorithms rely on
crossover while DE relies on mutation operation. This main operation is based on
the differences of randomly sampled pairs of solutions in the population. DE
algorithm uses mutation operation as a search mechanism and selection operation to
direct the search toward the prospective regions in the search space. In addition to
this, the DE algorithm uses a non-uniform crossover which can take child vector
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parameters from one parent more often than it does from others. By using the
components of the existing population members to construct trial vectors, the
recombination (crossover) operator efficiently shuffles information about successful
combinations, enabling the search for a better solution space. An optimization task
consisting of D parameters can be represented by a D-dimensional vector. In DE, a
population of NP solution vectors is randomly created at the start. This population
is successfully improved by applying mutation, crossover and selection operators.

Zhang et al. (2015) proposed a new method for water quality evaluation inte-
grated self-adaptive differential evolution algorithm and extreme learning machine
namely SADEELM algorithm to overcome the limitation of extreme learning
machine, which not only can solve the problem of complicated non-linear rela-
tionship between influencing factors and the grade of water quality, but also can
well perform in water quality evaluation.

1.3 Some Quality Problem Areas Solved by Intelligent
Techniques

Table 1.1 presents a classification of more than 50 papers from the literature
including the used intelligent methods, aims of the studies, and the application areas
of the related methods. As it can be seen from Table 1.1, Either only one of the
intelligent techniques or integrated intelligent techniques are used for the solutions
of quality problems.

1.4 Graphical Analyses of Literature Review

In this section, the results of literature review are given by some graphical illus-
trations. Figure 1.1 illustrates the publication frequencies of papers with respect to
the years, indicating a positive trend. The years 2012 and 2013 have the largest
frequencies that intelligent techniques are used for quality problems in the papers.

Figure 1.2 shows the journals most publishing papers on quality problems with
intelligent techniques. Applied Mechanics and Materials take the first rank in the
recent years.

Figure 1.3 ranks the universities that intelligent quality based papers come from.
Technische Universitat Wien and Chongqing University takes the first and second
ranks, respectively.

Figure 1.4 ranks the countries that intelligent quality based papers come from.
China and US take the first and second ranks, respectively.
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Table 1.1 Examples of quality problem areas solved by intelligent techniques

Authors Method Aim Problem area

Ma and Zhang
(2013)

PSO Quality
prediction/classification

Power control

Al-Saedi et al.
(2012)

PSO Design parameter
optimization

Power control

Hooshmand and
Enshaee (2010)

PSO-fuzzy
logic

Quality
prediction/classification

Power control

Zhang and Xing
(2010)

PSO-fuzzy
logic

Quality
prediction/classification

Construction

Hsu (2012) PSO-Genetic
programming

Design parameter
optimization

Lighting performance of LEDs

Tutkun (2010) GA Quality
prediction/classification

Electrical devices

Gupta et al.
(2014)

GA optimal number and
location of quality
monitoring

Power systems

Kazemi et al.
(2013)

GA optimal number and
location of quality
monitoring

Power systems

Park et al. (2006) GA optimal number and
location of quality
monitoring

Water quality assurance

Ng and Perera
(2003)

GA Design parameter
optimization

Water quality assurance

Pelletier et al.
(2006)

GA Design parameter
optimization

Water quality assurance

Preis and Ostfeld
(2008)

GA Quality
prediction/classification

Water quality assurance

Shi et al. (2013) GA Quality
prediction/classification

Electronic nose used for
detecting tree production Areas

Amin (2013) ANN-GA Quality
prediction/classification

Cotton yarn quality

Chou et al.
(2010)

SVM-GA Quality
prediction/classification

Manufacturing of semiconductor
and thin-film transistor liquid
crystal display

Chatterjee and
Bhattacherjee
(2011)

GA-ANN Quality
prediction/classification

Mining

Su and Chiang
(2003)

GA-ANN Design parameter
optimization

Multivariate quality at
manufacturing

Lopez-Lineros
et al. (2014)

ANN Quality
prediction/classification

River stage data validation

Salehi et al.
(2012)

ANN-SVM Pattern recognition Multivariate process control

Cheng and
Cheng (2011)

ANN Quality
prediction/classification

Multivariate process control

(continued)
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Table 1.1 (continued)

Authors Method Aim Problem area

Ebrahimzadeh
et al. (2011)

ANN Pattern recognition Multivariate process control

Wu and Yu
(2010)

ANN Pattern recognition Multivariate process control

Kesharaju et al.
(2014)

ANN Quality
prediction/classification

Ceramics

Hosseinifard
et al. (2011)

ANN Quality
prediction/classification

Multivariate process control

Velo et al.
(2013)

ANN Quality
prediction/classification

Yuen (2014) Fuzzy logic Cloud software product
development

Quality function deployment

An et al. (2014) Fuzzy logic Attribute reduction Water quality assessment

Li et al. (2014) Fuzzy logic Relative entropy
decision making

Software quality evaluation

Ghorbani et al.
(2014)

Fuzzy logic Distributor
categorization

Supply chain management

Valavi and
Pramod (2015)

Fuzzy logic Determination of
weightages

Maintenance quality function
deployment

Liu et al. (2015) Fuzzy logic Service quality analysis Certification and inspection
industry

Azar and
Vybihal (2011)

ACO Optimization of service
quality prediction
accuracy

Software quality evaluation

Neagoe et al.
(2010)

ACO Wine quality
assessment

Data mining

Dhurandher
et al. (2009)

ACO Optimization of quality
of service security

Wireless sensor networks

Ning and Wang
(2009)

ACO Construction quality
maximization

Construction project
management

Tong et al.
(2012)

SA Laser cutting quality
control

Laser applications

Abdullah
and Othman
(2014)

SA Optimization of quality
of service

Job scheduling

Kulkarni and
Babu (2005)

SA Product quality
optimization

Continuous casting system

Soliman et al.
(2004)

SA Power systems quality
analysis

Harmonics and frequency
evaluation

Garcia-Martinez
et al. (2012)

TS Voltage minimization Network expansion

Rahim and
Shakil (2011)

TS Optimization of quality
control parameters

Economic production and
Quality control

(continued)
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Table 1.1 (continued)

Authors Method Aim Problem area

Mukherjee
and Ray (2007)

TS Grinding process
optimization

Process functional
approximation

Umapathi and
Ramaraj (2014)

SI Quality of service
improvement

Wireless mobile hosts

Zhang et al.
(2014)

SI Swarm intelligence
optimization

Quality assessment

Machado et al.
(2013)

SI Texture analysis Material quality assessment

Goudarzi (2012) SI Solution improvement
for delivering digital
video

Multi-hop wireless networks

Sagar Reddy and
Varadarajan
(2011)

SI Quality of service
improvement

Mobile communication systems

Lv et al. (2014) DE Water quality
prediction

Regional ecological and water
management

Sathya
Narayanan
and Suribabu
(2014)

DE Multi-objective
time-cost-quality
optimization

Construction project

Biswal et al.
(2012)

DE Classification of power
quality data

Automatic disturbance pattern
classification

Zheng et al.
(2009)

DE Urban living quality
examination

Urbanization and income growth

Fig. 1.1 Publication
frequencies with respect to the
years
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Figure 1.5 shows the distribution of the published intelligent quality based
papers by their document types. Conference papers and journal papers take the first
and second ranks, respectively.

Figure 1.6 shows the distribution of intelligent quality papers by their subject
areas. Engineering and computer sciences take the first and second ranks,
respectively.

Fig. 1.2 The journals most publishing intelligent quality based papers

Fig. 1.3 The universities most publishing intelligent quality based papers
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1.5 Conclusion and Future Trends

Complex quality problems are hard to solve by using classical optimization tech-
niques which guarantee to find an optimal solution and to prove its optimality.
Instead, intelligent techniques that may sacrifice the guarantee of finding optimal
solutions for the sake of getting good solutions in a limited time have been intro-
duced in this chapter. The quality problems solved by intelligent techniques in the
literature are mostly related to power control and systems, water quality assurance,
multivariate process control, software quality, and wireless networks. There is a
significant increasing trend in the number of papers on quality problems using
intelligence techniques after the year 2010. The subject area with the largest

Fig. 1.4 Intelligent quality based papers by the countries
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Fig. 1.5 Distribution of intelligent quality based papers by their document types
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frequency using intelligent techniques for quality problems is engineering sciences.
Computer sciences then follow it. It can be concluded that researchers seem to more
deal with intelligent techniques in the future as the complexity of the quality
problems increases.
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Chapter 2
Intelligent Process Control Using Control
Charts—I: Control Charts for Variables

Murat Gülbay and Cengiz Kahraman

Abstract Shewhart’s control charts are used when you have enough and exact
observed data. In case of incomplete and vague data, they can be still used by the help
of the fuzzy set theory. In this chapter, we develop the fuzzy control charts for
variables, which are namely X and R and X and S charts. Triangular fuzzy numbers
have been used in the development of these charts. Unnatural patterns have been
examined under fuzziness. Besides, fuzzy EWMA charts have been also developed in
this chapter. For each fuzzy case, we present a numerical example.

Keywords Shewhart’s control charts � EWMA control charts � Fuzzy sets �
Triangular fuzzy numbers � Unnatural pattern

2.1 Introduction

Process control is an engineering discipline dealing with maintaining the output of a
specific process, generally called a quality characteristic, within a desired range.
Type of processes using the process control can be categorized into three main
groups which are discrete, batch, and continuous processes. Applications having
elements of both discrete, batch and continuous process control are often called
hybrid applications.

A process may either be classified as “in control” or “out of control”. The
boundaries for these classifications are set by calculating mean, standard deviation,
and range from a set of process data randomly collected when it is under stable
operation. Based on the statistical methods, analytical decision-making tools which
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allow practitioners to measure, monitor, and control the process behavior working
normally or not, are called “Statistical Process Control (SPC)”. The most successful
SPC tool is control charts, originally developed by Walter Shewhart in the early
1920s. Comparing with boundaries of a stable process with a graphical display,
they enable online data tracing and abnormal conditions warning, which are an
essential tool for continuous quality control. Basically, the control charts are the
graphical display of a quality characteristic that has been measured or computed
from a sample versus the sample number or time to monitor and show how the
process is performing and how the capabilities are affected by changes to the
process. This information is then used to make quality improvements. The control
charts attempt to distinguish between two types of process variation that impede
peak performance. These variations are as follows:

• Common cause variation, which is intrinsic to the process and will always be
present.

• Special cause variation, which stems from external sources indicating that the
process has assignable situation(s).

Based on the monitored quality characteristics in numerical or in “conforming”
or “nonconforming” measurements, the control charts are categorized into two main
groups, variables and attributes. This chapter deals with the control charts for
variables. The most commonly used control charts for variables use the mean (x; l),
range (R), and standard deviations (σ, s) in terms of paired X and R charts, paired X
and s charts, and moving average charts.

2.2 Classical Shewhart Control Charts for Variables

2.2.1 X and R Control Charts

Many quality characteristics can be expressed in terms of a precise numerical
measurement. One of the efficient ways of determining whether the process is in
control or not is checking the process mean and process variability. X Charts are
used to control the process mean while R charts are used to control the process
variability. In general, they are paired and interpreted by looking both of the control
charts. When the sample size is constant and relatively small, say n ≤ 10, the usage
of X and R charts advantageous.

2.2.1.1 Control Limits for X and R Control Charts

Suppose that a quality characteristic “X” is normally distributed with the parameters
of l and σ both known. For a sample size of n (X1, X2, …, Xn), the average of the
sample is
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X ¼ X1 þX2 þ � � � þXn

n
ð2:1Þ

and it is known that x is normally distributed with mean l and standard deviation
rx ¼ r=

ffiffiffi
n

p
. The probability is 1 − α that any sample mean will fall between

lþ za=2rx ¼ lþ za=2
rffiffiffi
n

p and l� za=2rx ¼ l� za=2
rffiffiffi
n

p ð2:2Þ

If l and σ are known, Eq. 2.2 can be used as upper and lower control limits on a
control chart for sample means. It is customary to replace za=2 by 3, so that
three-sigma limits are employed.

In practice, we do not know l and σ and estimate them from preliminary samples
or subgroups usually based on at least 20–25 samples taken when the process is
thought to be in control. If m samples are available, each containing n observations
on the quality characteristic. Let X1; X2; . . .; Xm be the average of each sample.
Then, the best estimator of the process average l is the grand average, and would be
used as the center line of the X chart.

X ¼ X1 þX2 þ � � � þXm

m
ð2:3Þ

The range of a sample (R) is the difference between the largest and smallest
observations and the average range R

� �
can be written as given in Eqs. 2.4 and 2.5,

respectively.

Ri ¼ Xi;max � Xi;min i ¼ 1; 2; . . .; m ð2:4Þ

R ¼ R1 þR2 þ � � � þRm

m
ð2:5Þ

The formulas for constructing the control limits on the X and R charts are
tabulated in Table 2.1. Development of these equations can be found in
Montgomery (2001).

The constants A2, D3, and D4 depend on the sample (observation) size and are
tabulated for various sample sizes in Appendix A.

These initial set of control limits is usually treated as trial limits and subject to
subsequent revision. The past hypothesis that is the process is thought to be in

Table 2.1 Control limits for
X and R charts

X chart R chart

Center Line (CL) X R

Lower Control Limit (LCL) X � A2R D3R

Upper Control Limit (UCL) X þA2R D4R
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control when samples are takes should be checked. If one or more of the samples plot
out of control, the hypothesis is rejected and trial control limits should be revised.
This can be done by examining the out of control points, and looking for assignable
causes. If an assignable cause is found, the point is eliminated and control limits are
recalculated based on the remaining samples. Recalculated control limits are called
revised control limits. This revision process is continued until all points plot in
control, and the final limits are adapted to the process as the control chart limits.

2.2.1.2 A Numerical Example

In a packaging process, 25 samples of size of 4 are taken in order to control the
process mean and deviation. Data obtained from the packaging process is shown in
Table 2.2. Let’s construct the X and R chart.

Table 2.2 Data for the example

Sample number Observations Xi Ri

I II III IV

1 51.98 49.21 49.73 50.16 50.27 2.77

2 50.94 50.28 50.77 51.40 50.85 1.13

3 50.87 51.67 49.89 52.68 51.28 2.79

4 47.15 46.25 48.05 49.91 47.84 3.66

5 48.97 52.20 49.86 52.46 50.87 3.49

6 50.43 51.08 52.99 50.41 51.23 2.58

7 48.51 51.18 52.02 51.09 50.70 3.51

8 50.65 52.73 51.65 52.86 51.97 2.22

9 51.70 50.93 50.80 48.43 50.46 3.27

10 52.77 52.70 48.01 52.93 51.60 4.93

11 48.36 52.59 49.70 51.55 50.55 4.23

12 49.15 51.07 48.33 49.94 49.62 2.73

13 52.07 48.51 48.90 51.15 50.16 3.56

14 52.24 51.01 51.15 52.74 51.79 1.73

15 52.19 48.85 52.28 49.34 50.67 3.43

16 52.53 49.63 51.25 51.15 51.14 2.90

17 48.16 52.89 52.84 50.86 51.19 4.73

18 52.36 48.84 52.88 48.22 50.58 4.66

19 49.00 51.83 49.48 51.67 50.49 2.83

20 52.69 49.86 51.27 52.28 51.52 2.84

21 51.88 48.09 50.64 49.61 50.05 3.79

22 48.33 49.81 51.88 48.23 49.56 3.65

23 48.81 50.90 48.84 52.12 50.17 3.32

24 50.68 49.19 51.66 50.71 50.56 2.47

25 51.21 51.25 50.83 52.34 51.41 1.50

Average 50.661 3.148
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For the sample size of 4, the constants of A2, D3, and D4 are 0.729, 0, and 2.282,
respectively. Mean and range of each subgroup are determined by using Eqs. 2.3
and 2.4, and also shown in Table 2.2.

Trial control limits for the given process to construct X and R charts are as
follows.

For X chart

CL ¼ X ¼ 50:661

UCL ¼ X þA2R ¼ 50:661þ 0:729� 3:148 ¼ 52:956

LCL ¼ X � A2R ¼ 50:661� 0:729� 3:148 ¼ 48:366

For R chart

CL ¼ R ¼ 3:148

UCL ¼ D4R ¼ 2:282� 3:148 ¼ 7:184

LCL ¼ D3R ¼ 0� 3:148 ¼ 0

By looking the Xi’s of the 25 samples, it can be clearly seen that sample 4 plot
out of control which requires for calculation of the revised control limits.
Eliminating sample 4, revised control limits can be calculated by taking remaining
24 samples into consideration as shown in Table 2.3.

Revised control limits for the given process to construct X and R charts are as
follows.

For X chart

CL ¼ X ¼ 50:779

UCL ¼ X þA2R ¼ 50:779þ 0:729� 3:127 ¼ 53:059

LCL ¼ X � A2R ¼ 50:779� 0:729� 3:127 ¼ 48:499

For R chart

CL ¼ R ¼ 3:127

UCL ¼ D4R ¼ 2:282� 3:127 ¼ 7:184

LCL ¼ D3R ¼ 0� 3:127 ¼ 0

Since all points plot in control, these limits can be set as the control limits to
construct X and R charts as given in Figs. 2.1 and 2.2.
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Table 2.3 Data for the calculation of the revised control limits

Sample number Observations Xi Ri

I II III IV

1 51.98 49.21 49.73 50.16 50.27 2.77

2 50.94 50.28 50.77 51.40 50.85 1.13

3 50.87 51.67 49.89 52.68 51.28 2.79

5 48.97 52.20 49.86 52.46 50.87 3.49

6 50.43 51.08 52.99 50.41 51.23 2.58

7 48.51 51.18 52.02 51.09 50.70 3.51

8 50.65 52.73 51.65 52.86 51.97 2.22

9 51.70 50.93 50.80 48.43 50.46 3.27

10 52.77 52.70 48.01 52.93 51.60 4.93

11 48.36 52.59 49.70 51.55 50.55 4.23

12 49.15 51.07 48.33 49.94 49.62 2.73

13 52.07 48.51 48.90 51.15 50.16 3.56

14 52.24 51.01 51.15 52.74 51.79 1.73

15 52.19 48.85 52.28 49.34 50.67 3.43

16 52.53 49.63 51.25 51.15 51.14 2.90

17 48.16 52.89 52.84 50.86 51.19 4.73

18 52.36 48.84 52.88 48.22 50.58 4.66

19 49.00 51.83 49.48 51.67 50.49 2.83

20 52.69 49.86 51.27 52.28 51.52 2.84

21 51.88 48.09 50.64 49.61 50.05 3.79

22 48.33 49.81 51.88 48.23 49.56 3.65

23 48.81 50.90 48.84 52.12 50.17 3.32

24 50.68 49.19 51.66 50.71 50.56 2.47

25 51.21 51.25 50.83 52.34 51.41 1.50

Average 50.779 3.127

UCL
chart

CL

LCL

Fig. 2.1 X chart
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2.2.2 X and S Control Charts

When the sample size is variable and relatively large, say n > 10, the usage of X and
s charts is advantageous.

2.2.2.1 Control Limits for X and S Control Charts

For the cases where a standard value is known and given for σ, control limits for the
S chart can be determined as follows:

CL ¼ c4r ð2:6Þ

UCL ¼ B6r ð2:7Þ

LCL ¼ B5r ð2:8Þ

where the constants c4, B5, and B6 depend on the sample (observation) size and are
tabulated for various sample sizes in Appendix A.

When σ is unknown, we may write the parameters of the X and S control chart as
given in the equations shown in Table 2.4.

where,

Table 2.4 Control limits for
X and R charts

X chart s chart

CL X s

LCL X � A3s B3s

UCL XþA3s B4s

Fig. 2.2 R chart
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s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Xi � X
� �2
n� 1

s
ð2:9Þ

s ¼ s1 þ s2 þ � � � þ sn
n

ð2:10Þ

The constants c4, A3, B3, B4, B5 and B6 depend on the sample (observation) size
and are tabulated for various sample sizes in Appendix A.

If the sample size is variable, a weighted average approach is used in calculating
x and s as given below. In this case, since the sample size differs, the constants c4,
A3, B3, B4, B5 and B6 for each subgroup will be different. Hence, upper and lower
control limits for each subgroup will also change.

X ¼
Pm

i¼1 niXiPm
i¼1 ni

ð2:11Þ

s ¼
Pm

i¼1 ni � 1ð Þs2iPm
i¼1 ni �mð Þ

� �1=2
ð2:12Þ

2.2.2.2 A Numerical Example

Consider the example given in Sect. 2.2.1.2. Calculation of the xi and si for each
subgroup are tabulated in Table 2.5.

For the sample size of 4, the constants of A3, B3, and B4 are 1.628, 0, and 2.266,
respectively. Trial control limits for the given process to construct X and S charts
are as follows.

For X chart

CL ¼ X ¼ 50:661

UCL ¼ XþA3s ¼ 50:661þ 1:628� 1:452 ¼ 53:025

LCL ¼ X � A3s ¼ 50:661� 1:628� 1:452 ¼ 48:297

For s chart

CL ¼ s ¼ 1:452

CL ¼ B4s ¼ 2:266� 1:452 ¼ 3:290

LCL ¼ B3s ¼ 0� 1:452 ¼ 0

By looking the Xi’s of the 25 samples, it can be clearly seen that sample 4 plot
out of control which requires for calculation of the revised control limits.
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Eliminating sample 4, revised control limits can be calculated by taking remaining
24 samples into consideration as shown in Table 2.6.

Revised control limits for the given process to construct X and S charts are as
follows.

Table 2.5 Data for the X and S chart

Sample number Observations Xi si
I II III IV

1 51.98 49.21 49.73 50.16 50.27 1.21

2 50.94 50.28 50.77 51.40 50.85 0.46

3 50.87 51.67 49.89 52.68 51.28 1.18

4 47.15 46.25 48.05 49.91 47.84 1.56

5 48.97 52.20 49.86 52.46 50.87 1.73

6 50.43 51.08 52.99 50.41 51.23 1.21

7 48.51 51.18 52.02 51.09 50.70 1.52

8 50.65 52.73 51.65 52.86 51.97 1.04

9 51.70 50.93 50.80 48.43 50.46 1.41

10 52.77 52.70 48.01 52.93 51.60 2.40

11 48.36 52.59 49.70 51.55 50.55 1.89

12 49.15 51.07 48.33 49.94 49.62 1.16

13 52.07 48.51 48.90 51.15 50.16 1.73

14 52.24 51.01 51.15 52.74 51.79 0.84

15 52.19 48.85 52.28 49.34 50.67 1.83

16 52.53 49.63 51.25 51.15 51.14 1.19

17 48.16 52.89 52.84 50.86 51.19 2.23

18 52.36 48.84 52.88 48.22 50.58 2.38

19 49.00 51.83 49.48 51.67 50.49 1.46

20 52.69 49.86 51.27 52.28 51.52 1.26

21 51.88 48.09 50.64 49.61 50.05 1.60

22 48.33 49.81 51.88 48.23 49.56 1.71

23 48.81 50.90 48.84 52.12 50.17 1.63

24 50.68 49.19 51.66 50.71 50.56 1.02

25 51.21 51.25 50.83 52.34 51.41 0.65

Average 50.661 1.452
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For X chart

CL ¼ X ¼ 50:779

UCL ¼ XþA3s ¼ 50:779þ 1:628� 1:448 ¼ 53:136

LCL ¼ X � A3s ¼ 50:779� 1:628� 1:448 ¼ 48:422

For s chart

CL ¼ s ¼ 1:448

UCL ¼ B4s ¼ 2:266� 1:448 ¼ 3:281

LCL ¼ B3s ¼ 0� 1:448 ¼ 0

Table 2.6 Data for the calculation of the revised control limits

Sample number Observations Xi si
I II III IV

1 51.98 49.21 49.73 50.16 50.27 1.21

2 50.94 50.28 50.77 51.40 50.85 0.46

3 50.87 51.67 49.89 52.68 51.28 1.18

5 48.97 52.20 49.86 52.46 50.87 1.73

6 50.43 51.08 52.99 50.41 51.23 1.21

7 48.51 51.18 52.02 51.09 50.70 1.52

8 50.65 52.73 51.65 52.86 51.97 1.04

9 51.70 50.93 50.80 48.43 50.46 1.41

10 52.77 52.70 48.01 52.93 51.60 2.40

11 48.36 52.59 49.70 51.55 50.55 1.89

12 49.15 51.07 48.33 49.94 49.62 1.16

13 52.07 48.51 48.90 51.15 50.16 1.73

14 52.24 51.01 51.15 52.74 51.79 0.84

15 52.19 48.85 52.28 49.34 50.67 1.83

16 52.53 49.63 51.25 51.15 51.14 1.19

17 48.16 52.89 52.84 50.86 51.19 2.23

18 52.36 48.84 52.88 48.22 50.58 2.38

19 49.00 51.83 49.48 51.67 50.49 1.46

20 52.69 49.86 51.27 52.28 51.52 1.26

21 51.88 48.09 50.64 49.61 50.05 1.60

22 48.33 49.81 51.88 48.23 49.56 1.71

23 48.81 50.90 48.84 52.12 50.17 1.63

24 50.68 49.19 51.66 50.71 50.56 1.02

25 51.21 51.25 50.83 52.34 51.41 0.65

Average 50.779 1.448
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Since all points plot in control, these limits can be set as the control limits to
construct X and S charts as given in Figs. 2.3 and 2.4.

2.3 Moving Average (MA) Control Charts

In the cases where data are collected slowly over a period of time, or data are
expensive to collect, moving average (MA) control charts are beneficial. The MA
charts can help bringing trends to light more rapidly than conventional charts.
However, run tests are not valid, since the adjacent points on the MA charts are not
independent. As another disadvantage, there is a tendency to forget that individual
observations have more variability than do the averages.

Moving average charts use the central limit theorem to make data approximately
normal. There are two types of the moving average charts which are most com-
monly used: Exponentially weighted moving average charts (EWMA) and gener-
ally weighted moving average charts (GWMA).

Fig. 2.4 S chart

Fig. 2.3 X chart
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2.3.1 Exponentially Weighted Moving Average (EWMA)
Control Charts

The traditional EWMA control chart was introduced by Roberts in 1959 as below.
The statistic that is calculated is:

EWMAt ¼ kXt þ 1� kð ÞEWMAt�1for t ¼ 1; 2; . . .; n ð2:13Þ

where EWMA0 is the mean of the historical data (target) and is equal to X, Xt refers
to the observation at time t, n is the number of observations to be monitored, and
0\k� 1 is a constant determining the depth of memory of the EWMA. The
parameter λ determines the rate at which the older data enter into the calculation of
the EWMA statistic where λ = 1 implies that only the most recent measurement
from the observations influences the EWMA. In another words, a large value of λ
that is closer to 1 gives more weight to recent data and a small value of λ that is
closer to 0 gives more weight to the older data. The parameter λ is usually set
between 0.2 and 0.3 although the choice is somewhat arbitrary (Montgomery 2001).

If Xt ’s are independent random variables with a known standard deviation of the
population r and a variance of r2

�
n, then the variance of the EWMAt becomes

r2
EWMAt

¼ r2

n
k

2� k

� 	
1� 1� kð Þ2t
h i

ð2:14Þ

As t increases, r2EWMAt
reaches to a limiting value of

r2
EWMA ¼ r2

n
k

2� k

� 	
ð2:15Þ

For a moderately large number of sample size, the control limits for the tradi-
tional EWMA control charts can be expressed as follows:

CLEWMA ¼ X ð2:16Þ

UCLEWMA ¼ Xþ 3
rffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
ð2:17Þ

LCLEWMA ¼ X� 3
rffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
ð2:18Þ

If t is small, the control limits for the traditional EWMA control charts can be
expressed as follows:
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CLEWMA ¼ X ð2:19Þ

UCLEWMA ¼ Xþ 3
rffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

ð2:20Þ

LCLEWMA ¼ X� 3
rffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

ð2:21Þ

If r is unknown and estimated from the samples, then R can be used for con-
structing traditional EWMA charts. In this case, the control limits are as follows:

CLEWMA ¼ X ð2:22Þ

UCLEWMA ¼ XþA2R

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
ð2:23Þ

LCLEWMA ¼ X� A2R

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
ð2:24Þ

where R is the mean of the ranges of the samples, and A2 is a constant given in
Appendix A.

2.3.1.1 A Numerical Example

Consider a process with the parameters of EWMA0 ¼ 50:0 and s ¼ 2:0539 calcu-
lated from historical data. For the following 20 points observed, let us construct
EWMA control charts.

51.9 47.1 53.1 49.4 50 47.6 50.2 50.1 51.4 50.6

49.8 47.5 9.9 50.9 47.6 51.5 52.8 52.3 54.9 50.1

With k chosen to be 0.3 the parameter
ffiffiffiffiffiffi
k

2�k

q
is equal to 0.4201. CL, LCL and

UCL for the EWMA chart can be calculated as follows.

CLEWMA ¼ X ¼ 50:0

UCLEWMA ¼ X þ 3
rffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
¼ 50:0þ 3 2:0539ð Þ 0:4201ð Þ ¼ 52:5884
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LCLEWMA ¼ Xþ 3
rffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
¼ 50:0� 3 2:0539ð Þ 0:4201ð Þ ¼ 47:4115

EWMA statistics of the 20 points are calculated by using Eq. 2.13 and sum-
marized in Table 2.7. Constructed EWMA chart is illustrated in Fig. 2.5.

2.3.2 Maximum Generally Weighted Moving Average
(MaxGWMA) Control Charts

The EWMA chart is widely used to detect small shifts in process mean and it has
successfully become a source of inspiration to the many researchers as in the
reviews by Xie (1999), Han and Tsung (2004), Eyvazian et al. (2008), Li and Wang
(2010), Zhang et al. (2010), Sheu et al. (2012). On the basis of maximum statistic
values, Chen and Cheng developed a Maxtype chart which effectively controls both
process mean and variability on a single chart (Chen and Cheng 1998); Xie further
examined numerous EWMA-type control charts and resulted that the MaxEWMA
chart is superior to others in detecting small shifts of the process mean and

Table 2.7 EWMA statistics
for 20 points

t X EWMA

0 50.00

1 51.9 50.57

2 47.1 49.53

3 53.1 50.60

4 49.4 50.24

5 50.0 50.17

6 47.6 49.40

7 50.2 49.64

8 50.1 49.78

9 51.4 50.26

10 50.6 50.36

11 49.8 50.20

12 47.5 49.39

13 49.9 49.54

14 50.9 49.95

15 47.6 49.24

16 51.5 49.92

17 52.8 50.78

18 52.3 51.24

19 54.9 52.34

20 50.1 51.67
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variability as well as in identifying the source and the direction of an out-of-control
signal (Xie 1999). Sheu and Lin created the generally weighted moving average
(GWMA) chart which can detect small shifts much quicker than the EWMA can
(Shu et al. 2014). By combing the advantages of the MaxEWMA chart and GWMA
chart, Sheu et al. proposed a new chart called the maximum generally weighted
moving average (MaxGWMA) chart which was found to be more sensitive under
abnormal variations of on-line manufacturing processes than the MaxEWMA chart
(Sheu et al. 2012).

Let X be the key quality characteristic with a normal distribution Nðl0;r20Þ,
where l0 is the process mean and r0 is the process standard deviation. If the new
mean is l1¼l0 � dr0, then the process mean is said to have a shift of d d 6¼ 0ð Þ
standard deviation. Similarly, if the new standard deviation is r1 ¼ 1þ qð Þr0, then
the process is said to have a shift of q standard deviation in variability. In real cases,
l0 and r0 are usually unknown and can be estimated from the randomly collected
sample data of which at least 20–25 in-control samples are recommended. Assume
that m random subgroups and each subgroup containing n observation of x are
collected. The sample average of the ith sample (xi) and the grand sample average
x
� �

can be calculated by using formulas below.

xi ¼ 1
n

Xm
j¼1

xij for i ¼ 1; 2; . . .;m ð2:25Þ

x ¼ 1
m

Xn
i¼1

xij for i ¼ 1; 2; . . .;m ð2:26Þ
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Fig. 2.5 EWMA Chart for
the given data
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In the same way, the standard deviation of the ith sample (si) and the average of
the m standard deviations sð Þ can be calculated by using the following formulas.

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1 xij � xi
� �2
n� 1

s
ð2:27Þ

s ¼ 1
m

Xm
i¼1

si ð2:28Þ

The unbiased estimators of the l0 and r0 are then given by

l0 ¼ E xð Þ ¼ x ð2:29Þ

r0 ¼ E sð Þ ¼ s=c4 ð2:30Þ

where the value of the c4 is a constant and can be found from Appendix A.
For the computation of the MaxGWMA statistic, two mutually independent

statistics, Mi and Si are defined as follows.

Mi ¼ xi � l0ð Þ
r0=

ffiffiffi
n

p ð2:31Þ

Si ¼ ;�1 F
n� 1ð Þs2i
r2
0

; n� 1
� �
 �

ð2:32Þ

where F(a, b) refers to the chi-square distribution of a with b degrees of freedom,
and ;�1 is the inverse of the standard normal distribution.

Let A be an event of interest and t be the counting number of samples between
two adjacent occurrences of A. pj = P(t > j) is the probability that A does not occur
in the first j samples. The probability of pj of the occurrence of A at the jth sample
can be calculated by Shu et al. (2014)

pj ¼ P t[ j� 1ð Þ ¼ Pj�1 � Pj ð2:33Þ

Remember that for 8j[ 1 and j\i, we have Pj [Pi.
GWMA statistics for the ith subgroup are given by

Ui ¼
Xi
j¼1

pjMiþ 1�j ð2:34Þ

Vi ¼
Xi
j¼1

pjSiþ 1�j ð2:35Þ
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For the ease of computation, We chose Pj ¼ qj
a
, where q is called a design

parameter that is a constant with the value in [0,1] and a is called an adjustment
parameter determined by the practitioner (Sheu and Lin 2003). Obviously, the
traditional EWMA chart is a special case of GWMA chart when a ¼ 1 and
q ¼ 1� k. Now, the probability pj of the occurrence of A at the jth sample can be
rewritten as

pj ¼ q j�1ð Þa � qj
a ð2:36Þ

If the process is not shifting, with respect to the independence of the Mi and Si,
then GWMA statistics Ui and Vi are also mutually independent and follow the same
standard normal distribution. Thus, their variances can be determined by

r2
Ui

¼ r2
Vi

¼ gi ¼
Xi
j¼1

pj ð2:37Þ

The statistic (MG) used to construct the MaxGWMA chart is defined as

MGi ¼ max Uij j; Vij jð Þ ð2:38Þ

A small value of MGi indicates that the process mean and process variability are
close to their respective targets, while a large value of MGi indicates that the
process mean and process variability are away from their respective targets.

Since MGi is nonnegative, only upper control limit for the ith subgroup for-
mulated below is used to monitor MGi (Sheu et al. 2012).

UCLi ¼ E MGið ÞþL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 MGið Þ

p
ð2:39Þ

where L is a constant.
Based on desired in control ARL0, sample size n, and optimal values of

parameters q, α and L for an initial state of the MaxGWMA chart, the approximate
value of UCLi can be given as (Sheu et al. 2012)

UCLi ¼ 1:12838þ 0:60281Lð Þ ffiffiffiffiffi
gi

p ð2:40Þ

In the MaxGWMA chart, each of the MGi values is compared with the UCLi and
the following judgement can be performed about whether the process is in control
or out of control.

Process Control forMaxGWMA ¼ MGi �UCLi ; in control
MGi [UCLi ; out of control


 �
ð2:41Þ

If there is a change in the process mean and/or process variability, Table 2.8 can
be used to identify the situations (Sheu et al. 2012).
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2.4 Unnatural Patterns for Control Charts

The usual SPC control chart limit rules display at the 3-sigma level. In this case, a
simple threshold test decides if a process is in or out of control. Once a process is
brought under control using the simple 3-sigma level tests, quality professionals
often want to increase the sensitivity of the control chart by detecting and correcting
problems before the process excludes 3-sigma control limits. Based on the proba-
bility, more complex tests rely on more complicated decision-making criteria by
examining the patterns of the points (sample characteristic) on the control chart and
presenting a set of rules with respect to the very low probability of occurrence.
These rules utilize historical data and look for a non-random (unnatural) pattern that
can signify that the process is out of control, before reaching the normal ±3 sigma
limits. In another words, a process may signal an out of control condition even its
characteristic plots in control. The rules that characterize an out of control signal
through the control chart limits are called “unnatural pattern rules” or “non-random
pattern rules”.

The most popular of unnatural (non-random) pattern rules are theWestern Electric
Rules, also known as the WECO Rules, or WE Runtime Rules. First implemented by
theWestern Electric Co. in the 1920s, these quality control guidelineswere codified in
the 1950s and form the basis for the other entire rule sets (Western Electric Company:
Statistical Quality Control Handbook, Indianapolis, Indiana 1956). Different indus-
tries have developed their own variants based on theWECORules. Other sets of rules
which are common enough to recognize an identifying name, i.e. named rules, are
“NelsonRules (1984) ”, “JuranRules (2010) ”, “DuncanRules (1986) ”, “Automotive

Table 2.8 Indications of the out of control points

Situation Symbol Indication

MGi ¼ Ui and
Vij j �UCLi

mþ An increase in the process mean

MGi ¼ �Ui and
Vij j �UCLi

m� An decrease in the process mean

MGi ¼ Vi and
Uij j �UCLi

vþ An increase in the process variability

MGi ¼ �Vi and
Uij j �UCLi

v� A decrease in the process variability

Ui [UCLi and
Vi [UCLi

þ þ An increase in both the process mean and the process
variability

�Ui [UCLi and
�Vi [UCLi

�� A decrease in both the process mean and the process
variability

Ui [UCLi and
�Vi [UCLi

þ� An increase in the process mean and a decrease in the
process variability

�Ui [UCLi and
Vi [UCLi

�þ A decrease in the process mean and an increase in the
process variability
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Industry Action Group (AIAG) Rules (Detroit 1995) ”, “Gitlow Rules (1989) ”, and
“Westgard Rules (2014) ”.

In general, when identifying these rules, the region between the usual ±3 sigma
limits are divided into six region and the pattern is explained with respect to ±1, 2,
and 3 sigma limits as shown in the Fig. 2.6.

Based on the zones illustrated by Fig. 2.6, some “Named Unnatural Pattern
Rules” are explained in the following sections.

2.4.1 Western Electric Rules

In the Western Electric Rules, a process is accepted to signal an out of control if any
of the following criteria are observed (Western Electric Company 1956):

1. One of the any point outside one of the 3-sigma control limits: If a point lies
outside either of ±3 sigma limits, there is only a 0.27 % chance that this was
caused by the normal process.

2. Two out of the three consecutive points outside of the 2-sigma control limits and
on the same side of the center line: The probability that any point will fall
outside the warning limit of 2-sigma is only 5 %. The chance that two out of
three points in a row fall outside the warning limits is only about 1 %.

3. Four out of the five consecutive points outside of the 1-sigma control limits and
on the same side of the center line: In normal processing, 68 % of points fall
within 1-sigma of the mean. The probability that 4 of 5 points fall outside of one
sigma is only about 3 %.

4. Eight consecutive points on the same side of the center line: The probability of
getting eight points on the same side of the mean is only around 1 %.

UCL

CL

LCL

CL+1

CL-1

CL-2

CL+2
Zone A

Zone B

Zone C

Zone C

Zone B

Zone A

Fig. 2.6 Zones in a control
chart
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Remember that these rules apply separately to both sides of the center line at a
time. Therefore, in the WECO Rules there are eight actual alarm conditions.
There are also additional WE Rules related with the trends of the points. These
are often referred to as Western Electric Supplemental Rules.

5. Six points in a row increasing or decreasing: Sometimes this rule is changed to
seven points rising or falling.

6. Fifteen points in a row within one sigma: In normal operation, 68 % of points
will fall within one sigma of the mean. The probability that 15 points in a row
will do so, is less than 1 %.

7. Fourteen points in a row alternating direction. The chances that the second point
is always higher than (or always lower than) the preceding point, for all seven
pairs is only about 1 %.

8. Eight points in a row outside one sigma. Since 68 % of points lie within one
sigma of the mean, the probability that eight points in a row fall outside of the
one-sigma line is less than 1 %.

2.4.2 Nelson Rules

The Nelson rules are almost identical to the combination of the WECO. The only
difference is in Rule #4 where nine consecutive points on the same side of the center
line is accepted as a signal (Nelson 1984).

2.4.3 Other Named Rules

In general, a given rule specifies two test conditions: Being a value of N points out
of M consecutive points above and below of a specified sigma control limits. From
this point of view, named rules mentioned in Sect. 2.4 are summarized and tabu-
lated in Table 2.9.

2.5 Ranking Fuzzy Numbers and Direct Fuzzy Approach

Fuzzy numbers as they are used to represent uncertainties are an important issue in
research in fuzzy set theory and their applications (Gülbay and Kahraman 2006).
Because of the suitability for representing uncertain values, fuzzy numbers have
been widely used in many applications. When quality characteristic and control
limits are represented as fuzzy numbers, the main problem is to decide whether the
quality characteristic lies within their respective fuzzy control limits or not in order
to decide about the process: in-control or out of control. In such situations, a
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comparison of the fuzzy numbers is required. Various methods to manipulate fuzzy
numbers have been developed to overcome the problem illustrated in Fig. 2.7 (Chen
and Chen 2009; Chen and Sanguansat 2011; Deng et al. 2006; Wang and Lee 2008;
Yager 1978; Zimmermann 1996).

The results of studies on ranking fuzzy numbers have been used in application
areas especially where decision-making and data analysis have a vital importance.
The ranking methods can be classified in three categories. The first category directly
transforms each fuzzy number into a crisp real number and the second category
compares a fuzzy number to all the other n − 1 fuzzy numbers to obtain its mapping
into a positive real number. The third category differs substantially from the first two.

Table 2.9 Summarization of some named rules in the form of N/M

Rule Named rules

WECO Nelson Juran Duncan AIAG Gitlow Westgard

Outside ±3σ limits 1/1 1/1 1/1 1/1 1/1 1/1 1/1

Outside ±2σ limits 2/3 2/3 2/3 2/3 2/3 2/2 or
2/3

Outside ±1σ limits 4/5 4/5 4/5 4/5 4/5 4/4 or
3/4

On the same side of
centerline

8/8 9/9 9/9 7/7 8/8 10/10

Increasing or decreasing in
a row

6/6 6/6 7/7 7/7 8/8 7/7

Within ±1σ 15

Outside ±1σ 8/8 8/8

Outside ±2σ 1/1

Alternating 14/14

Opposite sides of ±2σ 2/2

(a)

(b)

Fig. 2.7 Illustration of
ranking two fuzzy numbers.
a ~A\~B. b Not clear
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In this category, a method for pairwise ranking or preference for all pairs of fuzzy
numbers is determined and then based on these pairwise orderings, a final order of
the n fuzzy numbers is attempted (Shureshjani and Darehmiraki 2013). The sig-
nificance of ranking fuzzy numbers for solving real world decision problems in a
fuzzy environment has led to tremendous efforts being spent on the development of
various ranking approaches (Bortolan and Degani 1985; Chen and Hwang 1992;
Cheng 1998; Choobineh and Li 1993; Chu and Tsao 2002; Detyniecki and Yager
2001; Dias 1993; Dubois and Prade 1978, 1980; Fortemps and Roubens 1996; Jain
1976, 1978; Kim et al. 1998; Lee et al. 1994; Lee and Lee-Kwang 1999; Lee and Li
1998; Liu and Han 2005; Murakami 1983; Raj and Kumar 1999; Requena et al.
1994; Tran and Duckstein 2002; Wang et al. 2009; Zadeh 1965). To whom more
interested to the ranking methods for fuzzy numbers, it is suggested to read (Brunelli
and Mezeib 2013) for further knowledge.

For the fuzzy quality control chart studies we present a direct fuzzy comparison
method to compare fuzzy numbers because the method enables the user to have a
fuzzy decision about the comparison (Gülbay and Kahraman 2007).

Let ~X ¼ Xa;Xb;Xc;Xdð Þ be the fuzzy quality characteristic; gLCL ¼
LCL1; LCL2; LCL3; LCL4ð Þ and gUCL ¼ UCL1;UCL2;UCL3;UCL4;ð Þ be fuzzy
lower control limit and fuzzy upper control limit, respectively, represented by
trapezoidal fuzzy numbers. A decision about whether the process is in control can
be made according to the percentage area of the sample which remains inside thegUCL and/or gLCL. When the fuzzy sample is completely involved by the fuzzy
control limits, the process is said to be “in-control”. If a fuzzy sample is totally
excluded by the fuzzy control limits, the process is said to be “out-of-control”.
Otherwise, a sample is partially included by the fuzzy control limits. In this case, if
the percentage area which remains inside the fuzzy control limits (bj) is equal or
greater than a predefined acceptable percentage (b), then the process can be
accepted as “rather in-control”. Otherwise, it can be stated as “rather out of control”.
The possible decisions resulting from “Direct Fuzzy Approach (DFA) are illustrated
in Fig. 2.8. The parameters to determine the sample’s area outside the control limits
for any a-level cut are LCL1, LCL2, UCL3, UCL4, a, b, c, d, and α. The shapes of
the control limits and fuzzy samples are formed by the lines of LCL1LCL2,
UCL3UCL4, ab, and cd,. A flowchart to calculate area of the fuzzy sample outside
the control limits is given in Fig. 2.9. The sample’s area above the upper control
limits, AU

out, and sample area falling below the lower control limits, AL
out, can be

calculated according to the flowchart given in Fig. 88. The equations to compute
AU
out and A

L
out are given in Appendix B. Then, the total area outside the fuzzy control

limits, Aout, is the sum of the areas below the fuzzy lower control limit and above
the fuzzy upper control limit. The percentage sample area within the fuzzy control
limits is calculated as
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baj ¼
Saj � Aa

out

Saj
ð2:42Þ

where Saj is the sample’s area at α-level cut. Remember that performing α-level cut
is not a must but a preference if decided by a quality practitioner. Furthermore, the
acceptable percentage (b) is set by the quality practitioner with respect to the
tightness of the inspection.

2.6 Fuzzy Approaches for Control Charts for Variables

Many quality characteristics can be expressed in terms of a numerical measurement
such as length, width, weight, temperature, volume etc. A process is either “in
control” or “out of control” depending on numeric observation values. For many
problems, control limits could not be so precise. Uncertainty comes from the mea-
surement system including operators and gauges, and environmental conditions
(Senturk and Erginel 2009). A research work incorporating uncertainty into decision
analysis is basically done through the probability theory and/or the fuzzy set theory.

Fig. 2.8 Illustration of the possible areas outside the fuzzy control limits at α-level cut
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The former represents the stochastic nature of decision analysis while the latter
captures the subjectivity of human behaviour. A rational approach toward
decision-making should take human subjectivity into account, rather than employing
only objective probability measures. The fuzzy set theory is a perfect means for
modeling uncertainty (or imprecision) arising from mental phenomena which is

Fig. 2.9 Flowchart to
compute the area of a fuzzy
sample (a,b,c,d) falling
outside the fuzzy control
limits. (See Appendix B for
the equations)
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neither random nor stochastic. When human subjectivity plays an important role in
defining the quality characteristics, the classical control charts may not be applicable
since they require certain information. The judgment in classical process control
results in a binary classification as “in-control” or “out-of-control” while fuzzy
control charts may handle several intermediate decisions. Fuzzy control charts are
inevitable to use when the statistical data in consideration are uncertain or vague; or
available information about the process is incomplete or includes human subjectivity
(Gülbay and Kahraman 2007). In the fuzzy case, each sample, or subgroup, is
represented by a trapezoidal fuzzy number (a,b,c,d) or a triangular fuzzy number (a,
b,d), or (a,c,d) with an α-cut (if necessary) as shown in Fig. 2.10.

X-R and X-s fuzzy control charts can be presented as given in Sects. 2.6.1 and
2.6.2 (Gülbay and Kahraman 2006).

2.6.1 Fuzzy X and R Control Charts

Let quality characteristic of a sample with a size of n be represented as fuzzy
triangular numbers by Xi Xija;Xijb;Xijc;

� �
i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n. Using the

fuzzy arithmetic the mean of the each subgroup and grand average of the samples
can be calculated by Equations below.

~Xi ¼
Pn

j¼1 Xija

n
;

Pn
j¼1 Xijb

n
;

Pn
j¼1 Xijc

n

 !
¼ Xia;Xib;Xicð Þ

i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n

ð2:43Þ

~
X ¼

Pm
i¼1 Xia

m
;

Pm
i¼1 Xib

m
;

Pm
i¼1 Xic

m

� 	
¼ Xa;Xb;Xc

� 
ð2:44Þ

Fig. 2.10 Representation of a sample by trapezoidal and/or triangular fuzzy numbers:
a Trapezoidal (a,b,c,d) and b triangular (a,b,b,d)
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The fuzzy range of each subgroup can be represented by the equation below.

~Ri ¼ ~Xij;max � ~Xij;min i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n ð2:45Þ

In crisp calculation, the maximum and minimum values of R can be easily
determined. But it is not so easy to decide which fuzzy range observation is
maximum and minimum. If represented fuzzy numbers are not intersecting, one can
easily say that the fuzzy number with the most left support is smallest or minimum
and the fuzzy number with the most right support is the greatest or maximum. In
case where fuzzy observations have intersecting supports the problem about the
ranking fuzzy numbers arises. Fuzzy numbers cannot be easily compared to each
other. So, in decision analysis it is very difficult to distinguish the best possible
course of action among alternatives defined by means of fuzzy numbers. Comparing
and ranking fuzzy numbers in a given situation is complex and challenging (Yeh
and Deng 2004; Sun and Wu 2006; Asady 2010). This is because fuzzy numbers
usually represented by the possibility distribution (Zimmermann 2000; Dubois and
Prade 1994) often overlap each other in many practical situations (Cheng 1998; Yeh
and Deng 2004). It is difficult to clearly determine which fuzzy number is larger or
smaller than another for a given situation, in particular when these two fuzzy
numbers are similar (Kim and Park 1990; Deng 2007). Consequently, there are
many fuzzy ranking methods, but an exhaustive review of ranking methods would
be beyond the scope of this chapter. An attempt to list most of the ranking methods
was made in Rao and Shankar (2011). DFA presented in Sect. 2.5 can also be used
to find the greatest and smallest of the fuzzy numbers in any sample group.

Once the maximum and minimum fuzzy observation is decided, the fuzzy range
can be determined by the following equations.

~Ri ¼ ~Xij;max � ~Xij;min ¼ ~Xi Xija;Xijb;Xijc;
� �

max� Xija;Xijb;Xijc;
� �

min ð2:46Þ

~Ri ¼ ð~Xija;max � ~Xijc;min; ~Xijb;max � ~Xijb;min; ~Xijc;max � ~Xija;minÞ ¼ ðRia;Rib;RicÞ
ð2:47Þ

After calculating range of each subgroup, the fuzzy mean of the ranges can be
defined as:

~R ¼
Pm

i¼1 Ria

m
;

Pm
i¼1 Rib

m
;

Pm
i¼1 Ric

m

� 	
¼ Ra; Rb; Rc
� � ð2:48Þ

Control limits for the fuzzy ~X control charts, are then formulized as follows:

fCL ¼ ~
X ¼ Xa;Xb;Xc

� 
¼ CL1;CL2;CL3ð Þ ð2:49Þ
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gUCL ¼ ~
XþA2

~R ¼ Xa;Xb;Xc

� 
þA2 Ra;Rb; Rc

� �
¼ Xa þA2Ra;Xb þA2Rb;Xc þA2Rc

� 
¼ UCL1;UCL2;UCL3ð Þ

ð2:50Þ

gLCL ¼ ~
X� A2

~R ¼ Xa;Xb;Xc

� 
� A2 Ra;Rb;Rc

� �
¼ Xa � A2Rc;Xb � A2Rb;Xc � A2Ra

� 
¼ LCL1;LCL2;LCL3ð Þ

ð2:51Þ

Remember that the constants A2 as well as D3 and D4 depend on the sample
(number of observation in each sample) size and are tabulated for various sample
sizes in Appendix A.

Fuzzy control limits for the R charts can be derived in the same way.

fCL ¼ ~
R ¼ Ra; Rb; Rc

� � ¼ CL1; CL2; CL3ð Þ ð2:52Þ

gUCL ¼ D4
~R ¼ D4 Ra; Rb; Rc

� � ¼ D4Ra; D4Rb; D4Rc
� �

¼ UCL1; UCL2; UCL3ð Þ ð2:53Þ

gLCL ¼ D3
~R ¼ D3Ra; D3Rb; D3Rc

� � ¼ LCL1; LCL2; LCL3ð Þ ð2:54Þ

Fuzzy control limits for the X � R control chart are summarized in Table 2.10.

2.6.2 Fuzzy X and S Control Charts

Determination of the control limits for paired X and s charts are based on the
standard deviation as mentioned in Sect. 2.2.2.1. Hence, average standard deviation
of the subgroups need to be firstly calculated.

Table 2.10 Summary of the fuzzy control limits for the X � R control chart

X chart R chart

Center LinefCL ¼ CL1;CL2;CL3ð Þ
Xa;Xb;Xc

� 
Ra;Rb;Rc
� �

Lower Control LimitgLCL ¼ LCL1;LCL2;LCL3ð Þ
Xa � A2Rc;Xb � A2Rb;Xc � A2Ra

� 
D3Ra;D3Rb;D3Rc
� �

Upper Control LimitgUCL ¼ UCL1;UCL2;UCL3ð Þ
Xa þA2Ra;Xb þA2Rb;Xc þA2Rc

� 
D4Ra;D4Rb;D4Rc
� �
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Let quality characteristic of a sample with a size of n be represented as fuzzy
triangular numbers by ~Xi Xija; Xijb; Xijc;

� �
i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n. Using the

fuzzy arithmetics, the fuzzy standard deviation of the each subgroup and fuzzy
average standard deviation of the samples can be derived by the Equations below.

~si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1

~Xij � ~~Xi

� 2
n� 1

vuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 Xija;Xijb;Xijc

� �� Xia;Xib;Xic
� �� �2

n� 1

s
¼ sia; sib; sicð Þ ð2:55Þ

~s ¼
Pm

i¼1 ~si
m

¼
Pm

i¼1 sia
m

;

Pm
i¼1 sib
m

;

Pm
i¼1 sic
m

� 	
¼ sa; sb; scð Þ ð2:56Þ

The control limits of fuzzy X control chart based on standard deviation are
obtained as follows:

fCL ¼ ~
X ¼ Xa;Xb;Xc

� 
¼ CL1; CL2; CL3ð Þ ð2:57Þ

gUCL ¼ ~
XþA3~s ¼ Xa;Xb;Xc

� 
þA3 sa; sb; scð Þ

¼ Xa þA3sa; Xb þA3sb;XcþA3sc
� 

¼ UCL1; UCL2; UCL3ð Þ

ð2:58Þ

gLCL ¼ ~
X� A3~s ¼ Xa;Xb;Xc

� 
� A3 sa; sb; scð Þ

¼ Xa � A3sc; Xb � A3sb; Xc � A3sa
� 

¼ LCL1;LCL2;LCL3ð Þ

ð2:59Þ

Similarly, the control limits of fuzzy s control chart are derived as follows:

fCL ¼ ~s ¼ sa; sb; scð Þ ¼ CL1; CL2; CL3ð Þ ð2:62Þ

gUCL ¼ B4~s ¼ B4 sa; sb; scð Þ ¼ B4sa; B4sb; B4scð Þ ¼ UCL1; UCL2; UCL3ð Þ

gLCL ¼ D3s ¼ B3sa; B3sb; B3scð Þ ¼ LCL1; LCL2; LCL3ð Þ ð2:61Þ
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2.6.3 Fuzzy Exponentially Weighted Moving Average
(FEWMA) Control Charts

Depending whether fuzzy process mean and fuzzy process standard deviation is
known or not, FEWMA charts can be constructed as explained in Sects. 2.6.3.1 and
2.6.3.2

2.6.3.1 Fuzzy EWMA Control Charts When ~r Are Known

Let ~Xi ¼ Xa;Xb;Xcð Þi and
~
X ¼ Xa;Xb;Xc

� �
be the fuzzy observations for the ith

sample and fuzzy grand averages of the t randomly collected sample data repre-
sented by triangular fuzzy numbers, respectively. Assume that fuzzy standard
deviation ~r is known and represented by triangular fuzzy number as
~r ¼ ra; rb; rcð Þ

If the sample number t is moderately large, the parameter 1� 1� kð Þ2t
h i

reaches to a limiting value of 1 and can be omitted from the formula. Hence, the
control limits for the fuzzy EWMA control chart is given as follows:

fCLEWMA ¼ ~
X ¼ Xa;Xb;Xc

� � ð2:62Þ

gUCLEWMA ¼ ~
Xþ 3ffiffiffi

n
p er ffiffiffiffiffiffiffiffiffiffiffi

k
2� k

r
ð2:63Þ

gLCLEWMA ¼ ~
X� 3ffiffiffi

n
p er ffiffiffiffiffiffiffiffiffiffiffi

k
2� k

r
ð2:64Þ

Replacing the values of the
~
X and ~r to the equations above and performing

simple fuzzy arithmetics, gUCLEWMA and gLCLEWMA for the moderately large number
of samples can be rewritten as

gUCLEWMA ¼ ~
Xþ 3ffiffiffi

n
p er ffiffiffiffiffiffiffiffiffiffiffi

k
2� k

r
¼ Xa;Xb;Xc
� �þ 3ffiffiffi

n
p ra;rb;rcð Þ

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
ð2:65Þ

gUCLEWMA ¼ Xa þ 3raffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
;Xb þ 3rbffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
;Xc þ 3rcffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r !
ð2:66Þ
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gLCLEWMA ¼ ~
X� 3ffiffiffi

n
p er ffiffiffiffiffiffiffiffiffiffiffi

k
2� k

r
¼ Xa;Xb;Xc
� �� 3ffiffiffi

n
p ra;rb;rcð Þ

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
ð2:67Þ

gLCLEWMA ¼ Xa þ 3rcffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
;Xb þ 3rbffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
;Xc þ 3raffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r !
ð2:68Þ

Similarly, if the sample number t is small, control limits for the fuzzy EWMA
control chart can be given as follows:

fCLEWMA ¼ ~
X ¼ Xa;Xb;Xc

� � ð2:69Þ

gUCLEWMA ¼ ~
Xþ 3ffiffiffi

n
p er ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2� k

1� 1� kð Þ2t
h ir

ð2:70Þ

gLCLEWMA ¼ ~
X� 3ffiffiffi

n
p er ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2� k

1� 1� kð Þ2t
h ir

ð2:71Þ

By replacing the values of
~
X and ~r, control limits for the fuzzy EWMA chart for

small sample sizes can be given as

gUCLEWMA ¼ Xa þ 3raffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
1� 1� kð Þ2t
h i

;Xb

 

þ 3rbffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

;Xc

þ 3rcffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir ! ð2:72Þ

gLCLEWMA ¼ Xa þ 3rcffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

;Xb þ 3rbffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
;Xc

 

þ 3raffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir ! ð2:73Þ

Readers who want to apply α-level cuts to the control limits can refer to (Şentürk
et al. 2014; Gülbay et al. 2004).
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2.6.3.2 Fuzzy EWMA Control Charts When ~r Are Unknown

Let ~Ri ¼ Ra;Rb;Rcð Þi and ~R ¼ Ra;Rb;Rc
� �

be the fuzzy range of the ith sample and
fuzzy average range of the t samples for i = 1, 2, …, t. If fuzzy standard deviation,
~r, is unknown, an unbiased estimator of the ~r can be determined from the ranges.
Control limits for the fuzzy EWMA charts for the small sample sizes of t become as
follows

fCLEWMA ¼ ~
X ¼ Xa;Xb;Xc

� � ð2:74Þ

gUCLEWMA ¼ ~
XþA2

~R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

¼ Xa;Xb;Xc
� �þA2 Ra;Rb;Rc

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir ð2:75Þ

gLCLEWMA ¼ ~
X� A2

~R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

¼ Xa;Xb;Xc
� �� A2 Ra;Rb;Rc

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir ð2:76Þ

Performing fuzzy arithmetic to the above equations, we obtain

gUCLEWMA ¼ Xa þA2Ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

; Xb

 

þA2Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

; Xc

þA2Rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir ! ð2:77Þ

gLCLEWMA ¼ Xa � A2Rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

; Xb

 

� A2Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir

; Xc

�A2Ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1� kð Þ2t
h ir ! ð2:78Þ

For moderately large sample size of t, the parameter 1� 1� kð Þ2t
h i

tends to be

1 and can be ignored from the equations above.
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2.6.4 Fuzzy Maximum Generally Weighted Moving Average
(FMaxGWMA) Charts

Let Xijði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ be fuzzy observations. For any given
0� a� 1, the corresponding real-values lower and upper bounds can be obtained as

Xij
� �L

a and Xij
� �U

a , respectively. A real-valued data for the lower and upper bounds

of the ~Xi and ~si can be written as (Shu et al. 2014)

~X
U

ia ¼
1
n

Xn
j¼1

Xij
� �U

a and ~X
L

ia
¼ 1

n

Xn
j¼1

Xij
� �L

a ð2:79Þ

~sU
ia ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 Xij

� �U
a� ~X

U

ia

� 	2

n� 1

vuuut
and ~sL

ia ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 Xij

� �L
a� ~X

L

ia

� 	2

n� 1

vuuut
ð2:80Þ

Then, we obtain unbiased estimators of the ~rU
a and ~rL

a as follows

lUa ¼ ~
X

U

a ¼ 1
m

Xm
i¼1

~X
U

ia and lLa ¼ ~
X

L

a ¼ 1
m

Xm
i¼1

~X
L

ia ð2:81Þ

~s
U
a ¼ 1

m

Xm
i¼1

~sUia and ~s
L
a ¼ 1

m

Xm
i¼1

~s
L
ia ð2:82Þ

~rU
a ¼ ~s

U
a

.
c4 and ~rL

a ¼ ~s
L
a

.
c4 ð2:83Þ

Mutually independent statistics, Mi and Si can also be rewritten in terms of the
real-valued upper and lower bounds as

MU
ia ¼

~X
U

ia � lUa
~rU
a

� ffiffiffi
n

p and ML
ia ¼

~X
L

ia � lLa
~rL
a

� ffiffiffi
n

p ð2:84Þ

~S
U
ia ¼ ;�1 F

n� 1ð Þ~sUia
~rU
a

� �2 ; n� 1

" #( )
and ~S

L
ia ¼ ;�1 F

n� 1ð Þ~sLia
~rL
a

� �2 ; n� 1

" #( )
ð2:85Þ

Finally, fuzzy GWMA statistics for the ith subgroup can be given by

~U
U
ia ¼

Xm
j¼1

pj ~Miþ 1�ja
U and ~U

L
ia ¼

Xm
j¼1

pj ~Miþ 1�ja
L ð2:86Þ
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~V
U
ia ¼

Xm
j¼1

pj~S
U
iþ 1�ja

and ~V
L
ia ¼

Xm
j¼1

pj~S
L
iþ 1�ja

ð2:87Þ

Then, the fuzzy control limits of the F-MaxGWMA chart can be obtained from

gUCLU
ia ¼ aUCLi þ 1� að ÞUCLiþ 1 ð2:88Þ

gUCLL
ia ¼ aUCLi þ 1� að ÞUCLi�1 ð2:89Þ

where UCL0 ¼ 0.
The membership functions of gMGi required to be constructed for further iden-

tifying the manufacturing condition. Consider the closed interval Ca which is
defined as:

Ca ¼ min max ~U
U
ia

��� ���; ~V
U
ia

��� ���� 
;max ~U

L
ia

��� ���; ~V
L
ia

��� ���� n o
;max max ~U

U
ia

��� ���; ~V
U
ia

��� ���� 
;max ~U

L
ia

��� ���; ~V
L
ia

��� ���� n oh i
ð2:90Þ

The membership functions of gMGi can be obtained by using the following
expression

nfMGi
Cð Þ ¼ sup a|fflffl{zfflffl}

0� a� 1

1Ca Cð Þ ð2:91Þ

Endpoints of the a-level closed interval gMGia ¼ gMGL
ia ;
gMGU

ia

h i
become

gMGL
ia ¼ min|{z}

a� b� 1

min max ~U
U
ib

��� ���; ~V
U
ib

��� ���� 
;max ~U

L
ib

��� ���; ~V
L
ib

��� ���� n o
ð2:92Þ

gMGU
ia ¼ max|{z}

a�b� 1

max max ~U
U
ib

��� ���; ~V
U
ib

��� ���� 
;max ~U

L
ib

��� ���; ~V
L
ib

��� ���� n o
ð2:93Þ

Now, to realize if the gMGi lie within their respective fuzzy control limits,
comparisons of fuzzy numbers can be applied as mentioned in Sect. 2.5.

2.6.5 A Numerical Example for X-R Control Chart

A company produces a material and wants to monitor its hardness measured by
hardness testing equipment. Quality assistant takes a subgroup size of three, each
also having three materials. For each material, the measured hardness values vary
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because of the material properties and gauge variability. To overcome the uncer-
tainties caused by the non-uniform material properties, 3 readings for each sample
are explained as a triangular fuzzy number as shown in Table 2.11. Company wants
to construct x-R control charts for the uncertain hardness measurements using fuzzy
control charts. Fuzzy mean and the fuzzy range for each sample are calculated by
the equations given in Sect. 2.4.1, and shown in Table 2.11.

Fuzzy control limits are calculated according to the equations given in the
previous sections. For n = 3, A2 = 1.023, D3 = 0, and D4 = 2.574 are read from the
coefficients table for variable control charts given in Appendix A.

Fuzzy control limits for X charts:

fCL ¼ ~X ¼ 22:7; 24:7; 27:0ð Þ

gUCL ¼ Xa þA2Ra;Xb þA2Rb;Xc þA2Rc

� 
¼ 22:7þ 1:023 �1:5ð Þ; 24:7þ 1:023 2:7ð Þ; 27:0ð þ 1:023 6:9ð ÞÞ

gUCL ¼ 21:17; 27:46; 34:06ð Þ

gLCL ¼ Xa þA2Rc;Xb þA2Rb;Xc þA2Ra

� 
¼ 22:7� 1:023 6:9ð Þ; 24:7þ 1:023 2:7ð Þ; 27:0ð �1:023 �1:5ð ÞÞ

gLCL ¼ 14:21; 21:94; 28:53ð Þ

Fuzzy control limits for R charts:

fCL ¼ ~R ¼ �1:5; 2:7; 6:9ð Þ

gUCL ¼ D4Ra;D4Rb;D4Rc
� � ¼ 2:574 �1:5ð Þ; 2:574 2:7ð Þ; 2:574 6:9ð Þð Þ

¼ �3:86; 6:95; 17:76ð Þ

gLCL ¼ D3Ra;D3Rb;D3Rc
� � ¼ 0; 0; 0ð Þ

Construction of fuzzy X control limits are shown in Fig. 2.11.
Assume that 21st sample’s fuzzy average is X21 ¼ 25:4; 28:5; 32:3ð Þ as shown in

Fig. 2.12.
In order to decide whether ~X21 plots an out of control or not we need to check if

one of the conditions are met.

gLCL� ~X21 � gUCL
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If we use ranking methods explained in Sect. 2.5, we obtain a crisp decision that
~X21 plots either out of control or in control condition. One of the best method is to
use direct fuzzy approach control presented in Gülbay and Kahraman (2007) which
allows quality professionals to decide and interpret the chart with the degree of
membership that a point shows out of control or in control. Furthermore, by
defining intermediate decisions between out of control and in control enables to the
usage of various actions to correct the process.

14.21

21.94

28.53

22.7
24.7
27.4627.0

34.06

Fig. 2.11 Illustration of
Fuzzy X control limits

14.21

21.94

28.53

22.7
24.7

27.46
27.0

34.06

Fig. 2.12 Illustration of a
new fuzzy observation: X21
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2.7 Fuzzy Unnatural Pattern Analyses for Control Charts
for Variables

2.7.1 Probability of Fuzzy Events

The formula for calculating the probability of a fuzzy event A is a generalization of
the probability theory: in the case which a sample space X is a continuum or
discrete, the probability of a fuzzy event P(A) is given by Yen and Langari (1999):

P ~A
� � ¼ R

lA xð ÞPX xð Þdx if X is continuous;P
i
lA xið ÞPX xið Þdx if X is discrete:

(
ð2:94Þ

where PX denotes a classical probability distribution function of X for continuous
sample space and probability function for discrete sample space, and lA is a
membership function of the event A.

The membership degree of a fuzzy sample that belongs to a region is directly
related to its percentage area falling in that region, and therefore, it is continuous.
For example, a fuzzy sample may be in zone B with a membership degree of 0.4
and in zone C with a membership degree of 0.6. While counting fuzzy samples in
zone B, that sample is counted as 0.4.

2.7.2 Generation of Fuzzy Rules for Unnatural Patterns

The run rules are based on the premise that a specific run of data has a low
probability of occurrence in a completely random stream of data. If a run occurs,
then it is meant that something has changed in the process to produce such a
nonrandom or unnatural pattern. Based on the expected percentages in each zone,
sensitive run tests can be developed for analyzing the patterns of variation in the
various zones. For the fuzzy control charts, based on the Western Electric rules
(Western Electric Company 1956), the following fuzzy unnatural pattern rules can
be defined. The probabilities of these fuzzy events are calculated using normal
approach to binomial distribution (Gülbay and Kahraman 2006).

The probability of each fuzzy rule (event) below depends on the definition of the
membership function which is subjectively defined so that the probability of each of
the fuzzy rules is as close as possible to the corresponding classical rule for
unnatural patterns. The idea behind this approach may justify the following rules
(Gülbay and Kahraman 2006).

Rule 1: Any fuzzy data falling outside the three-sigma control limits with a ratio
of more than predefined percentage (β) of sample area at desired α-level. The
membership function for this rule can subjectively be defined as below:
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l1 xð Þ ¼
0 ; 0:85� x� 1;
x� 0:60ð Þ=0:25 ; 0:60� x� 0:85;
x� 0:10ð Þ=0:50 ; 0:10� x� 0:60;
1 ; 0� x� 0:10;

8>><>>: ð2:95Þ

Rule 2: A total membership degree around 2 from three consecutive points in
zone A or beyond. Probability of a sample being in zone A (0.0214) or beyond
(0.00135) is 0.02275. Let the membership function for this rule be defined as
follows:

l2 xð Þ ¼
0 ; 0� x� 0:59;
x� 0:59ð Þ=1:41 ; 0:59� x� 2
1 ; 2� x� 3

8<: ð2:96Þ

The probability of the fuzzy event rule 2 is approximately 0.0015, which cor-
responds to the crisp case of this rule.

Rule 3: A total membership degree around 4 from five consecutive points in
zone C or beyond:

l3 xð Þ ¼
0 ; 0� x� 2:42;
x� 2:42ð Þ=1:58 ; 2:42� x� 4;
1 ; 4� x� 5:

8<: ð2:97Þ

The probability of the fuzzy event rule 3 is approximately 0.0027
Rule 4: A total membership degree around 8 from eight consecutive points on

the same side of the centerline with the membership function below and its prob-
ability is 0.0039:

l4 xð Þ ¼ 0 ; 0� x� 2:54;
x� 2:54ð Þ=5:46 ; 2:54� x� 8:



ð2:98Þ

Rule 5: A total membership degree around 7 from seven consecutive points on
the same side of the center line. The fuzzy probability of this rule is 0.0079 when
membership function is defined as below:

l5 xð Þ ¼ 0 ; 0� x� 2:48;
x� 2:48ð Þ=4:52 ; 2:48� x� 7:



ð2:99Þ

Rule 6: At least a total membership degree around 10 from 11 consecutive points
on the same side of the center line. The fuzzy probability of this rule is 0.0058 when
the membership function is defined as below:
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l6 xð Þ ¼
0 ; 0� x� 9:33;
x� 9:33ð Þ=0:67 ; 9:33� x� 10;
1 ; 10� x� 11:

8<: ð2:100Þ

Rule 7: At least a total membership degree around 12 from 14 consecutive points
on the same side of the center line. If the membership function is set as given
below, then the fuzzy probability of the rule is equal to 0.0065.

l7 xð Þ ¼
0 ; 0� x� 11:33;
x� 11:33ð Þ=0:67 ; 11:33� x� 12;
1 ; 12� x� 14:

8<: ð2:101Þ

Rule 8: At least a total membership degree around 14 from 17 consecutive points
on the same side of the center line. The probability of this fuzzy event with the
membership function below is 0.0062.

l7 xð Þ ¼
0 ; 0� x� 13:34;
x� 13:34ð Þ=0:66 ; 13:34� x� 14;
1 ; 14� x� 17:

8<: ð2:102Þ

A framework for the application of the fuzzy unnatural pattern rules are as
follows:

1. Determine ±3σ fuzzy control limits.
2. Determine fuzzy regions of ±1σ and ±2σ
3. For each sample, calculate the percentage of sample area that belongs to the

regions of A, B, and C for both sides of the fuzzy center line.
4. For each fuzzy rule, check the last N points as defined in the rule and sum their

percentage of sample area in the related region. Then, for that rule use its
corresponding membership function to obtain the membership degree of the
occurrence for the specified rule.

5. Repeat step 4 until all desired fuzzy rules are checked.

2.7.3 An Illustrative Example

Consider the case where a-three subgroup (n = 3) is taken for the construction of the
fuzzy X control charts. For n = 3, the constant A2 = 1.023. Grand average and
average range for the 25 samples are calculated using the Eqs. 2.20–2.25 and given
as
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X ¼ 40; 55; 70ð Þ

R ¼ 10; 15; 20ð Þ

Fuzzy ±zσ limits can be calculated using the equations given in Table 2.12.

Replacing the values of the X;R; and the constant A2 into the equations above,
we obtain fuzzy regions as given in Table 2.13.

Let the next sample be ~X26 ¼ 48:0; 60:0; 70:0ð Þ. Let’s construct the X control
chart and see at what membership degree ~X26 belongs to the regions of A, B, and C
for the both sides of the fuzzy center line.

In Fig. 2.14, fuzzy control limits and fuzzy regions (see Fig. 2.13) are simplified
in order to show the region A above the centerline and ~X26.

As can be seen from the Fig. 2.14, only a little part of the sample area of ~X26 is
out of the region A, namely most of its parts are in region A. The problem is to
calculate the percentage area of ~X26 which is inside the region A. The percentage

Table 2.12 Equations for
calculation of fuzzy ±zσ
control limits

z Notation Fuzzy zσ limits

+3 gUCL Xa þA2Ra;Xb þA2Rb;Xc þA2Rc

� 
+2 fCLþ 2r Xa þ 2

3

� �
A2Ra;Xb þ 2

3

� �
A2Rb;Xc þ 2

3

� �
A2Rc

� 
+1 fCLþ 1r Xa þ 1

3

� �
A2Ra;Xb þ 1

3

� �
A2Rb;Xc þ 1

3

� �
A2Rc

� 
0 fCL X ¼ Xa;Xb;Xc

� 
−1 fCL � 1r Xa � 1

3

� �
A2Rc;Xb � 1

3

� �
A2Rb;Xc � 1

3

� �
A2Ra

� 
−2 fCL � 2r Xa � 2

3

� �
A2Rc;Xb � 2

3

� �
A2Rb;Xc � 2

3

� �
A2Ra

� 
−3 gLCL Xa � A2Rc;Xb � A2Rb;Xc � A2Ra

� 

Table 2.13 Fuzzy ±zσ
control limits and their
regions (see Fig. 2.6)

z Notation Fuzzy zσ limits Region

+3 gUCL (50.2, 70.3, 90.5) A

+2 fCLþ 2r (46.8, 65.2, 83.6) B

+1 fCLþ 1r (43.4, 60.1, 76.8) C

0 fCL (40.0, 55.0, 70.0) C

−1 fCL � 1r (36.6, 79.9, 63.2) B

−2 fCL � 2r (33.2, 44.8, 56.4) A

−3 gLCL (29.8, 39.7, 49.5)
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sample area within a specified region can be calculated using the formula given in
Eq. 2.42.

bj ¼
Sj � Sout

Sj
ð2:103Þ

where Sj is the sample area and Sout is the area of the sample outside the corre-
sponding region. These calculations are a little hard, but by using simple software it
can be easy to determine. Once control limits are specified a general formula can be
derived for the area calculation and the percentage areas can be calculated using any
spread sheets. The reader can refer to the Gülbay and Kahraman ( 2006) for the

39.7

33.2
36.6
40.0
43.4
46.8
50.249.5

56.4

63.2

70.0

76.8

83.6

90.5

44.8

49.9

55.0

60.1

65.2

70.3

29.8

Fig. 2.13 Illustration of ±zσ
control limits and ~X26

46.8
50.2

56.4

63.2

70.0

76.8

83.6

90.5

65.2

70.3

The part of the that is 
outside the region A 
above the center line:

Fig. 2.14 Illustration of +2σ
and +3σ control limits, and
~X26
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determination of the percentage areas. Suppose that b26; b27; and b28 are determined
as 0.85, 0.50, 0,25. For these 3 consecutive samples the total degree of member-
ships is 0.85 + 0.50 + 0.25 = 1.60 for being in region A above the center line. Fuzzy
rule 2 can be checked now to decide at what membership degree that rule is
performed. Remember that membership degree of the rule 2 was subjectively
defined as:

l2 xð Þ ¼
0 ; 0� x� 0:59;
x� 0:59ð Þ=1:41 ; 0:59� x� 2
1 ; 2� x� 3

8<:
Then,

l2 1:60ð Þ ¼ 1:60� 0:59ð Þ=1:41 ¼ 0:716f

The quality control professional can set a predefined value of l to compare with
the li to accept or reject the occurrence of the rule and hence may justify a set of
actions with respect to the calculated l. The rest of the fuzzy rules are applied in the
same way.

2.8 Conclusion

Control charts aim at detecting if any assignable cause exists in the considered
process. If only random causes exist, no action is required. Otherwise, a corrective
action is needed. We proposed fuzzy control charts to be used in case of incomplete
and vague data for the process control. Fuzzy triangular fuzzy numbers have been
preferred in the developed control charts because of their relative simplicity
whereas the other types of fuzzy numbers can also be used. Trapezoidal fuzzy
numbers or LR type fuzzy numbers can be replaced with triangular fuzzy numbers
in these analyses. EWMA control charts are preferred when we need detecting
small shifts. These charts have been also developed under fuzziness and a numerical
example has been given. The new extensions of fuzzy sets such as type-2 fuzzy sets,
Intuitionistic fuzzy sets, and hesitant fuzzy sets are the possible alternatives to
extend our work. Each of these new extensions is also divided into a few types. For
example, interval type Intuitionistic fuzzy sets for triangular Intuitionistic fuzzy sets
are subalternatives for the new developments.

Appendix A

Table of coefficients for control charts for variables.
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Appendix B

The equations to compute sample area outside the control the limits.

AU
out ¼

1
2

da � UCLa4
� �þ dt � UCLt4

� �� �
max t � a; 0ð Þð Þ

þ 1
2

dz � azð Þþ c� bð Þ½ � min 1� t; 1� að Þð Þ
ð2:104Þ

where,

t ¼ UCL4 � a
b� að Þþ c� bð Þ and z ¼ max t; að Þ

AU
out ¼

1
2

da � UCLa4
� �þ c� UCL3ð Þ� �

1� að Þ ð2:105Þ

AU
out ¼

1
2

da � UCLa4
� �

max t � a; 0ð Þð Þ ð2:106Þ

where

t ¼ UCL4 � d
UCL4 � UCL3ð Þ � d � cð Þ

AU
out ¼

1
2

c� UCL3ð Þþ dz � UCLz4
� �� �

min 1� t; 1� að Þð Þ ð2:107Þ

where

t ¼ UCL4 � d
UCL4 � UCL3ð Þ � d � cð Þ and z ¼ max t; að Þ

AU
out ¼

1
2

dz2 � UCLz24
� �þ dt1 � UCLt14

� �� �
min max t1 � a; 0ð Þ; t1 � t2ð Þð Þ

þ 1
2

dz1 � az1ð Þþ c� bð Þ½ � min 1� t1; 1� að Þð Þ

where

t1 ¼ UCL4 � a
b� að Þþ UCL4 � UCL3ð Þ ;

t2 ¼ UCL4 � d
UCL4 � UCL3ð Þ � d � cð Þ ;

ð2:108Þ

z1 ¼ max a; t1ð Þ; and z2 ¼ max a; t2ð Þ
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AU
out ¼ 0 ð2:109Þ

AU
out ¼

1
2

da � aað Þþ c� bð Þ½ � 1� að Þ ð2:110Þ

AL
out ¼

1
2

LCLa1 � aa
� �þ LCLt1 � at

� �� �
max t � a; 0ð Þð Þ

þ 1
2

dz � azð Þþ c� bð Þ½ � min 1� t; 1� að Þð Þ
ð2:111Þ

where

t ¼ d � LCL1
LCL2 � LCL1ð Þþ d � cð Þ and z ¼ max a; tð Þ

AL
out ¼

1
2

da � aað Þþ c� bð Þ½ � 1� að Þ ð2:112Þ

AL
out ¼

1
2

LCLa1 � aa
� �þ LCL2 � bð Þ� �

1� að Þ ð2:113Þ

AL
out ¼

1
2

LCLz21 � az2
� �þ LCLt11 � at1

� �� �
min max t1 � a; 0ð Þ; t1 � t2ð Þð Þ

þ 1
2

dz1 � az1ð Þþ c� bð Þ½ � min 1� t; 1� að Þð Þ
ð2:114Þ

where

t1 ¼ d � LCL1
LCL2 � LCL1ð Þþ d � cð Þ ;

t2 ¼ a� LCL1
LCL2 � LCL1ð Þ � b� að Þ

z1 ¼ max a; t1ð Þ; and z2 ¼ max a; t2ð Þ

AL
out ¼

1
2

LCLz1 � az
� �þ LCL2 � bð Þ� �

min 1� t; 1� að Þð Þ ð2:115Þ

where

t ¼ a� LCL1
LCL2 � LCL1ð Þ � b� að Þ ; and z ¼ max a; tð Þ

AL
out ¼ 0 ð2:116Þ
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AL
out ¼

1
2

da � aað Þþ c� bð Þ½ � 1� að Þ ð2:117Þ

References

Chen, G., Cheng, S.W.: Max-chart: combining X-bar and s-chart. Statistica Sinica 8, 263–271
(1998)

Eyvazian, M., Naini, S.G.J., Vaghefi, A.: Monitoring process variability using exponentially
weighted moving sample variance control charts. Int. J. Adv. Manuf. 39, 261–270 (2008)

Han, D., Tsung, F.: A generalized EWMA control chart and its comparison with the optimal
EWMA, CUSUM and GRL schemes. Ann Stat. 32(1), 316–339 (2004)

Li, Z., Wang, Z.: An exponentially weighted moving average scheme with variable sampling
intervals for monitoring linear profiles. Comput. Ind. Eng. 59, 630–637 (2010)

Montgomery, D.C.: Introduction to Statistical Quality Control. Wiley, New York (2001)
Nelson, L.S.: The Shewhart control chart–tests for special causes. J. Qual. Technol. 16(4), 238

(1984)
Sheu, S.H., Lin, T.C.: The generally weighted moving average control chart for detecting small

shifts in the process mean. Qual. Eng. 16, 209–231 (2003)
Sheu, S.H., Huang, C.J., Hsu, T.S.: Extended maximum generally weighted moving average

control chart for monitoring process mean and variability. Comput. Ind. Eng. 62, 216–225
(2012)

Shu, M.-H., Nguyen, T.-L., Hsu, B.-M.: Fuzzy MaxGWMA chart for identifying abnormal
variations of on-line manufacturing processes with imprecise information. Expert Syst. Appl.
41, 1342–1356 (2014)

Western Electric Company: Statistical Quality Control Handbook, Indianapolis, Indiana (1956)
Xie, H.: Contributions to qualimetry. Ph.D. thesis, Winnipeg, Canada: University of Manitoba

(1999)
Zhang, J., Li, Z., Wang, Z.: A multivariate control chart for simultaneously monitoring process

mean and variability. Comput. Stat. Data Anal. 54, 2244–2252 (2010)
Juran’s Quality Handbook: McGraw-Hill Professional; 6 edn. (2010). ISBN-10: 0071629734
Asady, B.: The revised method of ranking LR fuzzy numbers based on deviation degree. Expert

Syst. Appl. 37, 5056–5060 (2010)
Bortolan, G., Degani, R.: A review of some methods for ranking fuzzy numbers. Fuzzy Sets Syst.

15, 1–19 (1985)
Brunelli, M., Mezeib, J.: How different are ranking methods for fuzzy numbers? A numerical

study. Int. J. Approximate Reasoning 54, 627–639 (2013)
Chen, S.-M., Chen, J.H.: Fuzzy risk analysis based on ranking generalized fuzzy numbers with

different heights and different spreads. Expert Syst. Appl. 36(3), 6833–6842 (2009)
Chen, S.-J., Hwang, C.-L.: Fuzzy Multiple Attribute Decision Making. Springer, New York (1992)
Chen, S.-M., Sanguansat, K.: Analyzing fuzzy risk based on a new fuzzy ranking method between

generalized fuzzy numbers. Expert Syst. Appl. 38(3), 2163–2171 (2011)
Cheng, C.H.: A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets Syst. 95,

307–317 (1998)
Choobineh, F., Li, H.: An index for ordering fuzzy numbers. Fuzzy Sets Syst. 54, 287–294 (1993)
Chu, T.C., Tsao, C.T.: Ranking fuzzy numbers with an area between the centroid point and the

original point. Comput. Math Appl. 43, 111–117 (2002)
Deng, H.: A discriminative analysis of approaches to ranking fuzzy numbers in fuzzy decision

making. In: Proceedings of the 4th IEEE International Conference on Fuzzy Systems and
Knowledge Discovery, 26–29 Aug, Haikou, China (2007)

68 M. Gülbay and C. Kahraman



Deng, Y., Zhu, Z.F., Liu, Q.: Ranking fuzzy numbers with an area method using radius of
gyration. Comput. Math Appl. 51, 1127–1136 (2006)

Chrysler, Ford, GM: Measurement Systems Analysis Reference Manual. AIAG, Detroit, MI
(1995)

Detyniecki, M., Yager, R.R.: Ranking fuzzy numbers using α-weighted valuations. Int.
J. Uncertainty Fuzziness Knowl.-Based Syst. 8(5), 573–592 (2001)

Dias, G.: Ranking alternatives using fuzzy numbers: a computational approach. Fuzzy Sets Syst.
56, 247–252 (1993)

Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. Syst. Sci. 9, 613–626 (1978)
Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New

York (1980)
Dubois, D., Prade, H.: Fuzzy sets—a convenient function for modeling vagueness and possibility.

IEEE Trans. Fuzzy Syst. 2, 16–21 (1994)
Duncan, A.J.: Quality Control and Industrial Statistics, 5th edn. Irwin, Homewood (1986)
Fortemps, P., Roubens, M.: Ranking and defuzzification methods based on area compensation.

Fuzzy Sets Syst. 82(3), 19–330 (1996)
Gitlow, H.S.: Tools and Methods for the Improvement of Quality (1989). ISBN-10: 0256056803
Gülbay, M., Kahraman, C.: Development of fuzzy process control charts and fuzzy unnatural

pattern analyses. Comput. Stat. Data Anal. 51, 434–451 (2006)
Gülbay, M., Kahraman, C.: An alternative approach to fuzzy control charts: direct fuzzy approach.

Inf. Sci. 177(6), 1463–1480 (2007)
Gülbay, M., Kahraman, C., Ruan, D.: α-cut fuzzy control charts for linguistic data. Int. J. Intell.

Syst. 19, 1173–1196 (2004)
Jain, R.: Decision-making in the presence of fuzzy variables. IEEE Trans. Syst. Man Cybern. 6,

698–703 (1976)
Jain, R.: A procedure for multi-aspect decision making using fuzzy sets. Int. J. Syst. Sci. 8, 1–7

(1978)
Kim, K., Park, K.S.: Ranking fuzzy numbers with index of optimism. Fuzzy Sets Syst. 35, 143–

150 (1990)
Kim, C.B., Seong, K.A., Lee-Kwang, H.: Design and implementation of fuzzy elevator group

control system. IEEE Trans. Syst. Man Cybern. 28, 277–287 (1998)
Lee, J.H., Lee-Kwang, H.: Distributed and cooperative fuzzy controller for traffic intersection

group. IEEE Trans. Syst. Man Cybern. 29, 263–271 (1999)
Lee, E.S., Li, R.J.: Comparison of fuzzy numbers based on the probability measure of fuzzy events.

Comput. Math Appl. 15, 887–896 (1998)
Lee, K.M., Cho, C.H., Lee-Kwang, H.: Ranking fuzzy values with satisfaction function. Fuzzy

Sets Syst. 64, 295–311 (1994)
Liu, X.-W., Han, S.-L.: Ranking fuzzy numbers with preference weighting function expectations.

Comput. Math Appl. 49, 1731–1753 (2005)
Murakami, S., Maeda, S., Imamura, S.: Fuzzy decision analysis on the development of centralized

regional energy control system. In: Proceedings of the IFAC Symposium on Fuzzy
Information, Knowledge Representation and Decision Analysis, pp. 363–368 (1983)

Raj, A., Kumar, D.N.: Ranking alternatives with fuzzy weights using maximizing set and
minimizing set. Fuzzy Sets Syst. 105, 365–375 (1999)

Rao, P.P.B., Shankar, N.R.: Ranking fuzzy numbers with a distance method using circumcenter of
centroids and an index of modality. Adv. Fuzzy Syst. 2011, Article ID 178308 (2011). doi:10.
1155/2011/178308

Requena, I., Delgado, M., Verdagay, J.I.: Automatic ranking of fuzzy numbers with the criterion of
decision-maker learnt by an artificial neural network. Fuzzy Sets Syst. 64, 1–19 (1994)

Senturk, S., Erginel, N.: Development of fuzzy and control charts using α-cuts. Inf. Sci. 179(10),
1542–1551 (2009)

Şentürk, S., Erginel, N., Kaya, İ., Kahraman, C.: Fuzzy exponentially weighted moving average
control chart for univariate data with a real case application. Appl. Soft Comput. 22, 1–10
(2014)

2 Intelligent Process Control Using Control Charts—I … 69

http://dx.doi.org/10.1155/2011/178308
http://dx.doi.org/10.1155/2011/178308


Shureshjani, R.A., Darehmiraki, M.: A new parametric method for ranking fuzzy numbers.
Indagationes Mathematicae 24, 518–529 (2013)

Sun, H., Wu, J.: A new approach for ranking fuzzy numbers based on fuzzy simulation analysis
method. Appl. Math. Comput. 174, 755–767 (2006)

Tran, L., Duckstein, L.: Comparison of fuzzy numbers using a fuzzy distance measure. Fuzzy Sets
Syst. 130, 331–341 (2002)

Wang, Y.J., Lee, H.S.: The revised method of ranking fuzzy numbers with an area between the
centroid and original points. Comput. Math Appl. 55, 2033–2042 (2008)

Wang, Z.-X., Liu, Y.-J., Fan, Z.-P., Feng, B.: Ranking L-R fuzzy number based on deviation
degree. Inf. Sci. 179, 2070–2077 (2009)

Westgard, J.O., Westgard S.: Basic Quality Management Systems (2014). ISBN: 1-886958-28-9
Yager, R.R.: Ranking fuzzy subsets over the unit interval. In: Proceeding of the 17th IEEE

International Conference on Decision and Control, San Diego, CA, pp. 1435–1437 (1978)
Yeh, C.H., Deng, H.: A practical approach to fuzzy utilities comparison in fuzzy multicriteria

analysis. Int. J. Approximate Reasoning 35(2), 179–194 (2004)
Yen, J., Langari, R.: Fuzzy Logic: Intelligence, Control, and Information. Prentice-Hall, Upper

Saddle River (1999)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
Zimmermann, H.-J.: Fuzzy Set Theory and its Applications, 3rd edn. Kluwer Academic

Publishers, Boston (1996)
Zimmermann, H.-J.: An application-oriented view of modeling uncertainty. Eur. J. Oper. Res. 122,

190–198 (2000)

70 M. Gülbay and C. Kahraman



Chapter 3
Intelligent Process Control Using Control
Charts—II: Control Charts for Attributes

Seda Yanık, Cengiz Kahraman and Hafize Yılmaz

Abstract Control charts for attributes are used to detect nonrandom variation when
the inspected quality characteristic cannot be represented numerically. Fuzzy
attribute control charts allow flexibility in evaluating whether an item is conforming
or nonconforming. Thus, it is preferred when there is ambiguity about the con-
formity of the item. In this chapter, crisp attribute control charts, fuzzy attribute
control charts and some numerical examples are given.

Keywords Control charts for attributes � Fuzzy set theory � Fuzzy attribute control
charts

3.1 Introduction

In manufacturing systems, variation is required to be caused only by chance. In
statistics, it is called random variation and the process is said to be under control.
However, commonly other causes may result in undesired variation of the process.
In this case, process becomes out of control and the number of defects might
increase substantially if the assignable causes are not identified and eliminated.
Control charts are used as tools to detect assignable causes of variation. As a result,
the process will be improved by the reduction of variation. Together with the
decrease in the number of defects, productivity will be increased and the unnec-
essary process adjustments will be prevented.
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Attribute control charts are commonly used when the monitored quality char-
acteristic may not be measured on a continuous scale. In such cases, nonconfor-
mities are monitored. Four types of attribute charts are used to define the
nonconformities. p-charts deal with the ratio of the number of nonconforming items
in a population to the total number of items in that population. As an alternative to
calculating the fraction nonconforming, the np-charts track the number of non-
conforming items that are directly observed. The p-chart and the np-chart are used
to deal with nonconforming items while a c-chart tracks the total number of
nonconformities in samples of constant size. However, when the sample size varies,
u-chart is preferred.

Control charts are constructed using inspection data. Inspectors may sometimes
have difficulty in identifying the attribute data as conforming or not. Due to such
uncertainty of the attribute data, traditional control charts becomes insufficient. In
this case, fuzzy control charts are pertinent control techniques used to capture this
vagueness.

In this chapter, we aim to present an overview of the crisp and fuzzy attribute
control charts. Based on the tightness of the inspection represented by a α-cut value,
we then explore the α-cut fuzzy attribute control charts. The fuzzy attribute control
charts is transformed to the crisp control charts via the fuzzy transformation tech-
niques such as α-level fuzzy midrange, fuzzy median, fuzzy average and fuzzy
mode. In this chapter, we review the fuzzy median transformation technique. We
also present case studies from automobile supplier industry, garment production
and paving tiles process.

The chapter is organized as follows: The traditional attribute control charts
defined in Sect. 3.2. The fuzzy attribute control charts, α-cut fuzzy attribute control
charts and α-level fuzzy median for α-cut fuzzy fnp—control chart are presented in
Sect. 3.3. Then, the conclusions are given in Sect. 3.4.

3.2 Control Charts for Attributes

A quality characteristic is an element defining the determined quality of a product
or service (Mitra 2008). It can be physical characteristics as height, weight or time
dependent characteristics as strength (Montgomery 2005). Attribute is a charac-
teristic of an entity that cannot be measured quantitatively but can be observed with
respect to its presence or absence (Braverman 1981). In quality control, the product
with absent characteristic that does not meet certain prescribed specifications or
standards is classified as a defective or a nonconforming item (Mitra 2008).

Attributes charts are generally not as informative as variables charts since the
loss of information occurs during the classification process of items as conforming
or nonconforming. However, they have a wide application area especially in service
industries and in nonmanufacturing quality improvement efforts since the existence
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of numerous quality characteristics in these environments are not easily measured
quantitatively (Montgomery 2005).

3.2.1 Control Chart for Fraction of Nonconformities:
p-Chart

Ratio of the number of nonconforming items in a population to the total number of
items in that population is described as the fraction nonconforming. The inspector
may check items with one or several quality characteristics simultaneously and it is
classified as nonconforming even if one of these characteristics of the item does not
conform to standards.

The binomial distribution is the statistical basis underlying the control chart for
fraction nonconforming. The assumption for the p-charts is that units are produced
independently and there is a stable production process. Assume that p is the
probability of a nonconforming unit with respect to the specifications. If a random
sample of n units of product is selected, the probability of the number of units of
product that are nonconforming is calculated using Eq. (3.1),

P D ¼ xf g ¼ n
x

� �
px 1� pð Þn�x; x ¼ 0; 1; . . .; n ð3:1Þ

where D is the number of units of nonconforming products having a binomial
distribution with parameters n and p. The mean of random variable D is np and
variance of it is np(1-np).

The ratio of the number units which are not conforming in the sample D to the
sample size n, which is given in Eq. (3.2) is the sample fraction nonconforming;

p̂ ¼ D
n

ð3:2Þ

The mean and variance of p̂ are calculated as using Eqs. (3.3) and (3.4);

l ¼ p ð3:3Þ

and

r2p̂ ¼
pð1� pÞ

n
ð3:4Þ

In some cases, the true fraction nonconforming p may be known or may be set as
a specified standard value. In these cases, the control limits of the p-chart is for-
mulated as Eqs. (3.5)–(3.7):
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UCL ¼ pþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
ð3:5Þ

Center Line CLð Þ ¼ p ð3:6Þ

LCL ¼ p� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
ð3:7Þ

In process control, the sample fraction nonconforming p̂ is monitored as samples of
n units are taken. If there exist no observations of p̂ beyond control limits, the
process is in-control at the level of p. Otherwise, that the process fraction non-
conforming level may be shifted to a new level.

The process fraction nonconforming p, may not be known in advance in some
situations. In this case, it is estimated from the observed data. The estimation is
conducted using n samples of each consisting of 20 or 25 observations. Assume Di

is the number of nonconforming units in sample i, the fraction nonconforming in
the ith sample is computed using Eq. (3.8);

p̂i ¼ Di

n
i ¼ 1; 2; . . .;m ð3:8Þ

Then, the average of the sample fractions nonconforming is calculated using
Eq. (3.9)

p ¼
Pm

i¼1 Di

mn
¼
Pm

i¼1 p̂i
m

ð3:9Þ

Finally, p is used to estimate the fraction nonconforming p and the control limits of
the fraction nonconforming control chart is calculated with Eqs. (3.10)–(3.12)
(Montgomery 2005):

UCL ¼ pþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
ð3:10Þ

Center Line CLð Þ ¼ p ð3:11Þ

LCL ¼ p� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
ð3:12Þ

Numerical example for p-charts
A company manufactures valves to use in automobiles. Ten samples of 10 valves
each was taken from the production line and tested. The results are given in the
following (Table 3.1):

The fraction defective is computed by dividing the number of defectives by the
number in each sample, n = 10. The results are given in the following.
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From Table 3.2, the average proportion defective is calculated as p ¼ 0.14.
Using Eqs. (3.10)–(3.12), the control limits and center line are found as follows:

UCL ¼ 0:14þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:14� 0:86

10

r
¼ 0:4692

CL ¼ 0:14

LCL ¼ 0:14� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:14� 0:86

10

r
¼ �0:1892 ! 0

Since all the data points in Table 3.2 are between the control limits, the obtained
trial control limits are now action control limits (Fig. 3.1).

Table 3.1 Data for p-charts

Sample nr. Nr. of defectives Sample nr. Nr. of defectives

1 4 6 1

2 1 7 1

3 0 8 2

4 0 9 3

5 2 10 0

Table 3.2 p-values of the samples

Sample no 1 2 3 4 5 6 7 8 9 10

p 0.4 0.1 0 0 0.2 0.1 0.1 0.2 0.3 0

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

c UCL CL LCL

Fig. 3.1 Control chart for number of nonconformities
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3.2.2 Control Chart for Number of Nonconformities:
np-Chart

Another approach is directly using the number of nonconforming items for moni-
toring the process quality. Similar to the fraction nonconforming, the number of
nonconforming items also is assumed to fit to a binomial distribution. This
approach may be preferred rather than p-chart due to its ease of interpretation. The
control limits of np-chart are computed using Eqs. (3.13)–(3.15).

UCL ¼ npþ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
ð3:13Þ

UCL ¼ np ð3:14Þ

UCL ¼ np� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
ð3:15Þ

In cases where sample sizes change, the control limits also change (Mitra 2008).

Numerical example for np-charts
The example in Sect. 3.2.1 will be handled for np-charts. The shortest way of
obtaining an np-chart when you know the control limits of the p-chart is to multiply
those limits by the sample size. Then we have

UCL ¼ 0:4692 � 10 ¼ 4:692

CL ¼ 0:14 � 10 ¼ 1:4

LCL ¼ 0 � 10 ¼ 0

Since all the data points in Table 3.1 are between the control limits, the obtained
trial control limits are now action control limits.

3.2.3 Control Chart for Nonconformities: c-Chart

The p-chart and the np-chart are used to deal with nonconforming items while
ac-chart tracks the total number of nonconformities in samples of constant size.
However when the sample size varies, u-chart is preferred.

Assume that the defects or nonconformities occur in this inspection unit fit the
Poisson distribution with the probability function as Eq. (3.16),

p xð Þ ¼ e�kkx

x!
x ¼ 0; 1; 2; . . . ð3:16Þ
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Where x is the number of nonconformities, k is the parameter of the Poisson
distribution and is greater than 0. Then the center line and control limits of control
chart for number of nonconformities would be as Eqs. (3.17)–(3.19):

UCL ¼ cþ 3
ffiffiffi
c

p ð3:17Þ

Center LineðCLÞ ¼ c ð3:18Þ

LCL ¼ c� 3
ffiffiffi
c

p ð3:19Þ

Here it is assumed that a standard value for c is available. Also LCL is assumed 0 if
the value of LCL is computed a negative value.

If there is not any given standard, c may be estimated as the observed average
number of nonconformities in a preliminary sample of inspection units (c). Then,
the control chart parameters can be given as Eqs. (3.20)–(3.22),

UCL ¼ cþ 3
ffiffiffi
c

p
ð3:20Þ

CenterLineðCLÞ ¼ c ð3:21Þ

LCL ¼ c� 3
ffiffiffi
c

p
ð3:22Þ

The control limits should be considered as trial control limits when no standard is
given (Montgomery 2005).

Numerical example for c-charts
In a manufacturing paving-tile process, data regarding the number of nonconfor-
mities in 10 square meters of tiles is collected by the staff of quality control
department. Type of defects such as scratch, burst, crack, stain and colour error are
counted as nonconformity. Then, the total number of the nonconformities is noted
as given Table 3.3.

From Table 3.3, the average proportion defective is calculated as c ¼ 2; 733.

Table 3.3 Data for c-charts

Sample no Nr. of nonconformities Sample no Nr. of nonconformities

1 2 9 1

2 5 10 0

3 4 11 0

4 5 12 2

5 1 13 1

6 6 14 4

7 5 15 3

8 2
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Using Eqs. (3.20)–(3.22), the control limits and center line are found as follows:

UCL ¼ 2:733þ 3
ffiffiffiffiffiffiffiffiffiffiffi
2:733

p
¼ 7:6932

Center LineðCLÞ ¼ 2:733

LCL ¼ 2:733� 3
ffiffiffiffiffiffiffiffiffiffiffi
2:733

p
¼ �2:2265

Since number of defects cannot be less than 0, LCL is accepted 0.
Since all the data points in Table 3.3 are between the control limits, the obtained

trial control limits are now action control limits.

3.2.4 Control Charts for Nonconformities Per Unit:
u-Charts

When the sample size is constant in an inspection, c-chart is employed to monitor
and control the process. Operational constraints such as fluctuations in the avail-
ability of labour, machinery, and raw material may cause changes in the number of
inspected items. When the sample size is not constant throughout the inspection,
u-chart is preferred as an alternative to a c-chart.

A u-chart is employed to monitor the number of nonconformities per inspection
unit. ui is the fraction of the number of the nonconformities and sample size of the
ith sample as in Eq. (3.23).

ui ¼ ci
ni

ð3:23Þ

where ci represents the number of nonconformities in the ith sample. And ni is the
sample size and it may vary throughout the inspection.

In a u-chart, the control limits change due to the different sizes of samples.
However, the center line of a u-chart remains constant which allows meaningful
comparisons to be made between subgroups of different sizes. The center line is
constituted using the average number of nonconformities per inspection unit (u) as
in Eq. (3.24):

u ¼
Pm

i¼1 ciPm
i¼1 ni

¼
Pm

i¼1 ui
m

ð3:24Þ

where m is the number of samples.
Also, u is a Poisson random variable since it is a linear combination of inde-

pendent and identically distributed Poisson random variables, ci. Thus, the control
limits are defined as in Eqs. (3.25)–(3.27);
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UCL ¼ uþ 3

ffiffiffiffi
u
ni

r
ð3:25Þ

Center LineðCLÞ ¼ u ð3:26Þ

LCL ¼ u� 3

ffiffiffiffi
u
ni

r
ð3:27Þ

In order to construct a u-chart, the control limits have to be computed using the
number of nonconformities. However, situations frequently arise where the
inspector is not able to define the nonconformities precisely in an inspection. When
the identification of the nonconformities becomes vague, representing the count of
nonconformities as a single number will not be correct. When ill-defined structure
of nonconformities is common in an inspection, using fuzzy numbers allows
modelling the vagueness. Fuzzy set theory provides a framework and methods for
incorporating vagueness in the u-charts.

Numerical example for u-charts
The production batches of a garment manufacturer in a specific day are monitored.
The batches have different sample sizes and all the items of each batch are con-
trolled with respect to its quality. Any type of defect is counted as nonconformity.
Then, the total number of the nonconformities and the sample sizes are noted as
given in Table 3.4.

The average fraction of the number of the nonconformities per sample size is
computed by the total number of nonconformities and the total of the sample sizes
of the batches as follows:

u ¼
Pm

i¼1 ciPm
i¼1 ni

¼ 609
53

¼ 0:087

Then the center line and upper and lower control limited are calculated as in
Table 3.5 and the control chart is depicted in Fig. 3.2.

Table 3.4 Data for u-charts

Sample
Nr.

Sample
size

Number of
nonconformities

Sample
Nr.

Sample
size

Number of
nonconformities

1 54 5 7 49 3

2 48 5 8 44 2

3 47 3 9 52 5

4 51 6 10 47 2

5 58 5 11 52 6

6 53 4 12 54 7
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3.3 Fuzzy Control Charts for Attributes

In this section, we develop the fuzzy ~p-control chart, ~u control chart, ~c control chart
and fnp-control chart.
3.3.1 Fuzzy Numbers and Fuzzy Control Charts

The attribute data might not be certain as for all types of processes. Situations
frequently arise where nonconformities cannot be defined as a precise value. When
the identification of the nonconformities becomes vague, representing it as lin-
guistic values becomes more meaningful.

In such cases, it is necessary to adapt the fuzzy sets connected to linguistic values
into scalars referred to as representative values to retain the standard format of control
charts and to facilitate the plotting of observations on the chart. This adaptation may

Table 3.5 Parameters for u-chart

Sample Nr. ni ci ui UCL CL LCL

1 54 5 0.0926 0.2075 0.0870 −0.0334 → 0

2 48 5 0.1042 0.2148 0.0870 −0.0407 → 0

3 47 3 0.0638 0.2161 0.0870 −0.0421 → 0

4 51 6 0.1176 0.2110 0.0870 −0.0369 → 0

5 58 5 0.0862 0.2032 0.0870 −0.0292 → 0

6 53 4 0.0755 0.2086 0.0870 −0.0345 → 0

7 49 3 0.0612 0.2135 0.0870 −0.0394 → 0

8 44 2 0.0455 0.2204 0.0870 −0.0464 → 0

9 52 5 0.0962 0.2098 0.0870 −0.0357 → 0

10 47 2 0.0426 0.2161 0.0870 −0.0421 → 0

11 52 6 0.1154 0.2098 0.0870 −0.0357 → 0

12 54 7 0.1296 0.2075 0.0870 −0.0334 → 0

Fig. 3.2 Control chart for number of nonconformities per unit
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be performed in various ways as long as the result is instinctively representative of
the range of the base variable included in the fuzzy set. Fuzzy control charts are
pertinent control techniques used to capture this vagueness.

Fuzzy set theory provides a framework and methods for incorporating vague-
ness. Hence, we have identified the nonconformities as triangular fuzzy numbers to
construct fuzzy attribute control charts in this chapter.

The triangular fuzzy numbers defined in fuzzy set theory is as follows:
If R is a set of real numbers F(R) = {A|A: R → [0, 1], when A is a continuous

function}, FT(R) = {Ta,b,c|a, b, c 2 R, a ≤ b ≤ c}, such,

~Ta;b;cðxÞ ¼
ðx� aÞ=ðb� aÞ; if a� x\b
ðc� xÞ=ðc� bÞ; if b� x\c

0; otherwise

8<:
9=;

The membership function of the triangular fuzzy number ~T is depicted in Fig. 3.3.

3.3.2 Fuzzy ~p-Control Chart

In a process using monitoring with p-control charts or np-control charts, due to the
uncertainty of the attribute data, traditional control charts becomes insufficient. In
this case, fuzzy control charts are pertinent control techniques used to capture this
vagueness. Erginel (2013) construct fuzzy ~p and fnp control charts using decision
rules. In her paper, fully fuzzy control charts are introduced for ~p control charts
based on both constant sample size and variable sample size, and fnp control charts
are subsequently introduced using decision rules for the process state conditions.
Thus “rather in control” and “rather out of control” decisions can be considered for
monitoring the process.

In the fuzzy case, triangular fuzzy number (daj ; dbj ; dcjÞ and ðpaj ; pbj ; pcjÞ is
used to represent the number of nonconforming units and the fraction noncon-
forming, respectively. The fraction nonconforming is computed as Eq. (3.28). Also

0

1

a b c x

)(~ x
T

µ

Fig. 3.3 A triangular fuzzy number ~T
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the fuzzy averages of the fraction nonconforming is denoted by (pa; pb; pc) and
calculated using Eq. (3.29), where j ¼ 1; 2; . . .m:

paj ¼
daj
n
; pbj ¼

dbj
n
; pcj ¼

dcj
n

ð3:28Þ

pa ¼
P

paj
m

; pb ¼
P

pbj
m

; pc ¼
P

pcj
m

ð3:29Þ

Fuzzy center line, fuzzy upper and fuzzy lower limits of fuzzy ep-control chart are
calculated as Eqs. (3.30)–(3.32) (Kahraman et al. 2010):

gUCLp ¼ pa þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa 1� pað Þ

n

r
; pb þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pb 1� pbð Þ

n

r
; pc þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pc 1� pcð Þ

n

r !
ð3:30Þ

fCLp ¼ ðpa; pb; pcÞ ð3:31Þ

gLCLp ¼ ðpa � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa 1� pað Þ

n

r
; pb � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pb 1� pbð Þ

n

r
; pc � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pc 1� pcð Þ

n

r
Þ

ð3:32Þ

Numerical example for fuzzy ep-chart
A company manufactures valves to use in automobiles. Ten samples of 10 valves
each was taken from the production line and tested. In this case the numbers of
defectives are not certain since a product in a sample may be accepted as a defective
or a nondefective. Defectiveness is a matter of degree in this case. The results are
given in Table 3.6.

The average defective ratio is calculated using Eq. (3.29) and the control limits
using Eqs. (3.30)–(3.32):

fCL ¼ ~p ¼ 7
100

;
14
100

;
24
100

� �
¼ ð0:07; 0:14; 0:24Þ

Table 3.6 Data for eu chart

Sample nr. Nr. of defectives TFN Sample nr. Nr. of defectives TFN

1 e4 (3, 4, 5) 6 e1 (0, 1, 2)

2 e1 (0, 1, 2) 7 e1 (0, 1, 2)

3 e0 (0, 0, 1) 8 e2 (1, 2, 3)

4 e0 (0, 0, 1) 9 e3 (2, 3, 4)

5 e2 (1, 2, 3) 10 e0 (0, 0, 1)
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gUCLp ¼ð0:07þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:07 1� 0:07ð Þ

10

r
; 0:14þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:14 1� 0:14ð Þ

10

r
; 0:24

þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:24 1� 0:24ð Þ

10

r
Þ

gUCLp ¼ ð0:3121; 0:4692; 0:6452Þ

gLCLp ¼ð0:07� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:07 1� 0:07ð Þ

10

r
; 0:14 � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:14 1� 0:14ð Þ

10

r
; 0:24

� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:24 1� 0:24ð Þ

10

r
Þ

gLCLp ! ð0; 0; 0Þ

If the sample size is not approximate to each other, it is required that the individual
sample size for each of them should be used. The fuzzy fraction nonconforming for
each sample and their fuzzy averages are calculated as Eqs. (3.33) and (3.34);

paj ¼
daj
nj

; pbj ¼
dbj
nj

; pcj ¼
dcj
nj

ð3:33Þ

pa ¼
P

dajP
nj

; pb ¼
P

dbjP
nj

; pc ¼
P

dcjP
nj

ð3:34Þ

where nj is the jth sample size and j = 1, 2, …, m.
The control limits are calculated in fuzzy ep-control chart for each nj by using

triangular membership functions and fuzzy averages of sample fraction noncon-
forming as Eqs. (3.35)–(3.37):

fCLp;j ¼ ðpa; pb; pcÞ ð3:35Þ

gUCLp;j ¼ ðpa þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa 1� pað Þ

nj

s
; pb þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pb 1� pbð Þ

nj

s
; pc þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pc 1� pcð Þ

nj

s
Þ

ð3:36Þ

gLCLp;j ¼ ðpa � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa 1� pað Þ

nj

s
; pb � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pb 1� pbð Þ

nj

s
; pc � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pc 1� pcð Þ

nj

s
Þ

ð3:37Þ
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3.3.2.1 α-Cut Fuzzy ~p-Control Charts

The mean of α-cut is defined with the elements having membership degrees greater
than equal to α. The α-cuts of p/a and p/c are computed using Eq. (3.38):

p/a ¼ pa þ / ðpb � paÞ and p/c ¼ pc� / ðpc � pbÞ ð3:38Þ

The control limits of α-cut fuzzy ep—are calculated with the Eqs. (3.39)–(3.41):

gUCL/
p ¼ ðp/a þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p/a 1� p/a
� �

n

s
; pb þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pb 1� pbð Þ

n

r
; p/c þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p/c 1� p/c
� �

n

s
Þ

ð3:39Þ

fCL/
p ¼ ðp/a ; pb; p/c Þ ð3:40Þ

gLCL/
p ¼ ðp/a � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p/a 1� p/a
� �

n

s
; pb � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pb 1� pbð Þ

n

r
; p/c � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p/c 1� p/c
� �

n

s
Þ

ð3:41Þ

when sample sizes vary, α-cut control limits for fuzzy ~p-control chart are formu-
lated by Eqs. (3.42)–(3.44):

gUCL/
p;j ¼ ðp/a þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p/a 1� p/a
� �
nj

s
; pb þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pb 1� pbð Þ

nj

s
; p/c þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p/c 1� p/c
� �
nj

s
Þ

ð3:42Þ

fCLa
p;j ¼ paa ; pb; p

a
c

� � ð3:43Þ

gLCLa
p;j ¼ ðpaa � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
paa 1� paa
� �
nj

;

s
pb � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pb 1� pbð Þ

nj
; pac � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pac 1� pac
� �
nj

svuut Þ

ð3:44Þ

3.3.2.2 α-Level Fuzzy Median for α-Cut Fuzzy ep-Control Chart
Fuzzy transformation techniques are used for obtaining crisp numbers from the
fuzzy fraction nonconforming. α-level fuzzy midrange, fuzzy median, fuzzy aver-
age and fuzzy mode are the transformation techniques (Wang and Raz 1990). Fuzzy
median transformation technique is used for transformation in this study.
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Gulbay et al. (2004) stated that the fuzzy median (fmed) is expressed by the
following Eq. (3.45):

Zfmed
a/

lF xð Þdx ¼ Zb/
fmed

lF xð Þdx ¼ 1
2

Zb/
a/

lF xð Þdx ð3:45Þ

where a and b are the end points in the base variable of the fuzzy set F such that
a < b. For a sample j, α-level fuzzy median value (S/med�p;j) is calculated as
Eq. (3.46):

S/med�p;j ¼
1
3

p/a;j þ pb;j þ p/c;j
� �

; j ¼ 1; 2; . . .;m ð3:46Þ

The fuzzy control limits of α-level fuzzy median for α-cut fuzzy ep-control chart are
obtained as Eqs. (3.47)–(3.49) by using these formulations:

CL/med�p ¼
1
3

p/a þ pb þ p/c
� � ð3:47Þ

UCL/med�p ¼ CL/med�p þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CL/med�pð1� CL/med�pÞ

n

s
ð3:48Þ

LCL/med�p ¼ CL/med�p � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CL/med�pð1� CL/med�pÞ

n

s
ð3:49Þ

The condition of process control for each sample is given as:

Process control ¼ in control; for LCL/med�p � S/med�p;j �UCL/med�p
out of control; for otherwise

	
ð3:50Þ

Upper, center and lower control limits of α-level fuzzy median for α-cut fuzzy ep-
control chart based on variable sample size are calculated by using fuzzy median
transformation technique as Eqs. (3.51)–(3.53):

UCL/med�p;j ¼ CL/med�p þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CL/med�pð1� CL/med�pÞ

nj

s
ð3:51Þ

CL/med�p ¼
1
3

p/a þ pb þ p/c
� � ð3:52Þ

LCL/med�p;j ¼ CL/med�p � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CL/med�pð1� CL/med�pÞ

nj

s
ð3:53Þ
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α-level fuzzy median value for each sample is given as Eq. (3.54):

S/med�p;j ¼
1
3

p/a;j þ pb;j þ p/c;j
� �

; j ¼ 1; 2; . . .;m ð3:54Þ

The condition of process control for each sample is defined as Eq. (3.55):

Process control ¼ in control; for LCL/med�p;j � S/med�p;j �UCL/med�p;j
out of control; for otherwise

	
ð3:55Þ

3.3.3 Fuzzy fnp-Control Chart
In the fuzzy case, a triangular fuzzy number (daj ; dbj ; dcj ) represents the number of
nonconforming units for each sample. A triangular fuzzy number (npa; npb; npc)
denotes the average sample number of nonconforming units as Eq. (3.56):

npa ¼
Pm

j¼1 daj
m

; npb ¼
Pm

j¼1 dbj
m

; npc ¼
Pm

j¼1 dcj
m

ð3:56Þ

The limits of fuzzy fnp-control chart are obtained with the following Eqs. (3.57)–
(3.59);

gUCLnp ¼ ðnpa þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npa 1� npað Þ

p
; npb þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npb 1� npbð Þ

p
; npc þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npc 1� npcð Þ

p
ð3:57Þ

fCLnp ¼ ðnpa; npb; npcÞ ð3:58Þ

gLCLnp ¼ ðnpa � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npa 1� npað Þ

p
; npb � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npb 1� npbð Þ

p
; npc

� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npc 1� npcð Þ

p
ð3:59Þ

Numerical example for fuzzy fnp chart
Consider the example given in Sect. 3.3.2. In this case, the obtained control limits
for fuzzy ep chart in Sect. 3.3.2 can be easily converted to fuzzy fnp chart control
limits by multiplying these limits by the sample size:

fCLnp ¼ n~p ¼ 10� 0:07; 0:14; 0:24ð Þ ¼ ð0:7; 1:4; 2:4Þ

gUCLnp ¼ n � gUCLp ¼ 10� ð0:3121; 0:4692; 0:6452Þ ¼ 3:121; 4:692; 6:452ð Þ

gLCLnp ¼ n� gLCLp ! ð0; 0; 0Þ
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3.3.3.1 α-Cut Fuzzy fnp Control Chart

The limits of α-cut fuzzy fnp-control chart are calculated as Eqs. (3.60)–(3.62):

gUCL/
np ¼ ðnp/a þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np/a þ 1� np/a

� �q
; npb þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npb 1� npbð Þ

p
; np/c þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np/c 1� np/c

� �q
ð3:60Þ

fCLnp ¼ ðnp/a ; npb; npcÞ ð3:61Þ

gLCLnp ¼ ðnp/a � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np/a 1� np/a

� �q
; npb � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npb 1� npbð Þ

p
; np/c

� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np/c 1� np/c

� �q
ð3:62Þ

Numerical example for α-Cut fuzzy fnp-control chart
A company manufactures valves to use in automobiles. Ten samples of 10 valves
each was taken from the production line and tested. In this case the numbers of
defectives are not certain since a product in a sample may be accepted as a defective
or a non-defective. Defectiveness is a matter of degree in this case. The results are
given in Table 3.7:

First we will calculate the average number of defectives. This is also equal to the
center line.

fCL/
np ¼fnp ¼ ð7þ 7a

10
;
24� 10a

10
Þ ¼ ð0:7þ 0:7a; 2:4� aÞ

ep ¼ð7þ 7a
100

;
24� 10a

100
Þ ¼ ð0:07þ 0:07a; 0:24� 0:1aÞ

eq ¼ð1� 7þ 7a
100

; 1� 24� 10a
100

Þ ¼ ð0:93� 0:07a; 0:76þ 0:1aÞ
gUCL/

np ¼ð 0:7þ 0:7að Þþ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 0:07þ 0:07að Þð0:93� 0:07aÞ

p
;

2:4� að Þþ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 0:24� 0:1að Þð0:76þ 0:1aÞ

p
ÞgLCL/

np ¼ð 0:7þ 0:7að Þ � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 0:7þ 0:7að Þð0:93� 0:07aÞ;

p
2:4� að Þ � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 0:24� 0:1að Þð0:76þ 0:1aÞ

p
Þ

Table 3.7 Data and α-cut values of fnp control chart

Sample nr. Nr. of defectives α-Cut Sample nr. Nr. of defectives α-Cut

1 e4 (3 + α; 5-α) 6 e1 (a; 2-a)

2 e0 (a; 2-a) 7 e1 (a; 2-a)

3 e0 (0; 1-α Þ 8 e2 (1 + a; 3-a)

4 e0 (0; 1-aÞ 9 e3 (2 + a; 4-a)

5 e2 (1 + a; 3-a) 10 e0 (0; 1-aÞ
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These α-Cut control limits give the same fuzzy numbers of fuzzy control limits for
α = 0, α = 1 and α = 0, respectively:

fCL/
np ¼ ð0:7; 1:4; 2:4Þ

gUCL/
np ¼ð0:7þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 0:07� 0:93

p
; 1:4þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 0:14� 0:86

p
; 2:4

þ 3:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 0:24� 0:76

p
Þ ¼ 3:121; 4:692; 6:452ð ÞgLCL/

np ¼ð0:7� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 0:07� 0:93

p
; 1:4� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 0:14� 0:86

p
; 2:4

� 3:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 0:24� 0:76

p
Þ ! 0; 0; 0ð Þ

3.3.3.2 α-Level Fuzzy Median for α-Cut Fuzzy fnp-Control
Chart Based on Constant Sample Size

The control limits of α-cut fuzzy fnp-control chart with α-level fuzzy median is
given by Eqs. (3.63)–(3.65):

UCL/med�np ¼ CL/med�np þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CL/med�np

ð1� CL/med�npÞ
n

s
ð3:63Þ

CL/med�np ¼
1
3

np/a þ pb þ np/c
� � ð3:64Þ

LCL/med�np ¼ CL/med�np � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CL/med�np

ð1� CL/med�npÞ
n

s
ð3:65Þ

α-level fuzzy median value S/med�np;j for jth sample is calculated as Eq. (3.66):

S/med�np;j ¼
1
3

np/a;j þ npb;j þ np/c;j
� �

ð3:66Þ

The condition of process control for each sample is given as Eq. (3.67):

Process control ¼ incontrol; for LCL/med�np;j � S/med�np;j �UCL/med�np;j
out of control; for otherwise

	
ð3:67Þ

3.3.4 Fuzzy ec Control Chart

Trapezoidal fuzzy number (a, b, c, d) or a triangular fuzzy number (a, b, b, d) can
be used for representing each sample or subgroup in the fuzzy case. Also it is
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obvious that a trapezoidal fuzzy number transforms triangular when b = c. A
triangular fuzzy number is also represented as a trapezoidal fuzzy number like (a, b,
b, d) or (a, c, c, d) for the simplicity of representation and calculation. a; b; c; d

� �
is

the representation of center line (fCL) that is the mean of fuzzy samples and
a; b; c; d are the arithmetic means of the values a, b, c, and d, respectively. Center
line can be written in the fuzzy case as Eq. (3.68).

fCL ¼
Pn

j¼1 aj
n

;

Pn
j¼1 bj
n

;

Pn
j¼1 cj
n

;

Pn
j¼1 dj
n

� �
¼ ða; b; c; dÞ ð3:68Þ

fCL can be represented by a fuzzy number and [b; c] is the the closed interval of its
fuzzy mode(Gülbay and Kahraman 2006, 2007). gLCL fCL and gUCL are expressed
in formulas as Eqs. (3.69)–(3.71):

fCL ¼ a; b; c; d
� � ¼ ðCL1;CL2;CL3;CL4Þ ð3:69Þ

gLCL ¼ fCL � 3
ffiffiffiffiffiffiffifCLp

¼ a� 3
ffiffiffi
a

p
; b� 3

ffiffiffi
b

p
; c� 3

ffiffiffi
c

p
; d � 3

ffiffiffi
d

p� �
¼ðLCL1; LCL2; LCL3;LCL4Þ

ð3:70Þ

gUCL ¼ fCLþ 3
ffiffiffiffiffiffiffifCLp

¼ aþ 3
ffiffiffi
a

p
; bþ 3

ffiffiffi
b

p
; cþ 3

ffiffiffi
c

p
; dþ 3

ffiffiffi
d

p� �
¼ðUCL1;UCL2;UCL3;UCL4Þ

ð3:71Þ

Also fuzzy control limits can be rewritten using α-cut representations as
Eqs. (3.72)–(3.74).

gCLa ¼ aa; b; c; d
a� � ¼ ðCLa1 ;CL2;CL3;CLa4Þ ð3:72Þ

gLCL/ ¼ gCL/ � 3
ffiffiffiffiffiffiffiffiffiffigCL/p

¼ a/ � 3
ffiffiffiffiffiffi
a/

p
; b� 3

ffiffiffi
b

p
; c� 3

ffiffiffi
c

p
; d

/ � 3
ffiffiffiffiffiffi
d
/p� �

¼ðLCL/1 ; LCL2; LCL3; LCL/4 Þ
ð3:73Þ

gUCL/ ¼ gCL/ þ 3
ffiffiffiffiffiffiffiffiffiffigCL/p

¼ a/ þ 3
ffiffiffiffiffiffi
a/

p
; bþ 3

ffiffiffi
b

p
; cþ 3

ffiffiffi
c

p
; d

/ þ 3
ffiffiffiffiffiffi
d
/p� �

¼ðUCL/1 UCL2;UCL3;UCL/4 Þ
ð3:74Þ

While a/ and d/ are calculated as Eqs. (3.75)–(3.76):
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a/ ¼ a þ / b� að Þ ð3:75Þ

d/ ¼ d� / d � cð Þ ð3:76Þ

Figure 3.4 illustrates results of these equations. The value of /-cut can be defined
by the quality manager and described as the tightness of the inspection. The higher
/ value means the tighter inspection. Also if /-cut value is chosen as 1, control
chart turns into the classical case (Gulbay and Kahraman 2007).

It is necessary to adapt the fuzzy sets connected to linguistic values into scalars
referred to as representative values to retain the standard format of control charts
and to facilitate the plotting of observations on the chart. This adaptation may be
performed in various ways as long as the result is instinctively representative of
the range of the base variable included in the fuzzy set. Four ways are fuzzy mode,
α-level fuzzy midrange, fuzzy median, and fuzzy average. In addition, these
methods are similar with regard to the measures of central tendency used in
descriptive statistics. It should be indicated that there is not any theoretical basis for
selection of these methods. Ease of computation or preference of the user should be
considered (Wang and Raz 1990). Conversion of fuzzy sets into crisp values causes
loss of information in linguistic data. Keeping fuzzy sets as themselves and
comparing fuzzy samples with the fuzzy control limits are preferred to retain
information of linguistic data. Hence, a method that is based on the area mea-
surement called direct fuzzy approach (DFA) is suggested for the fuzzy control
charts. α- level fuzzy control limits gUCL/ , gCL/ and gLCL/ can be formulated with
fuzzy arithmetic as follows.

Fig. 3.4 Representation of
fuzzy control limits (Gülbay
and Kahraman 2006a, b)
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Numerical example for fuzzy ec chart
In a manufacturing paving tile process, data regarding the number of nonconfor-
mities per 10 square meters of tiles is collected by quality control department.
Types of defects such as scratch, burst, crack, stain, colour error are counted as
nonconformities. In this case the numbers of defects are not certain since it depends
on the controller’s decision, thus it involves vagueness for a controller. Then, the
total number of the nonconformities is given in Table 3.8.

Thus, the number of nonconformities can be expressed as fuzzy numbers and the
center line, the upper and lower limits are computed as fuzzy numbers as given in
Table 3.8. The control chart with fuzzy limits is illustrated in Fig. 3.5.

fCLc ¼ a; b; c
� � ¼ 28

15
;
41
15

;
56
15

� �
¼ ð1:8667; 2:7333; 3:7333Þ

gLCLc ¼ 1:8667� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:8667

p
; 2:7333� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:7333

p
; 3:7333� 3

ffiffiffiffiffiffiffiffiffiffiffi
3:773

p� �
gLCLc ! ð0; 0; 0Þ

gUCLc ¼ 1:8667þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:8667

p
; 2:7333þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:7333

p
; 3:7333þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:7333

p� �
gUCLc ¼ 5:9655; 7:6932; 9:5299ð Þ

Also, fuzzy control limits can be revised with α-cut representations as in Table 3.9.
Here α equals to 0.7. The α-cut of the control limits’ membership functions are
shown in Fig. 3.6.

gCL/ ¼ a/; b; d/
� � ¼ 37:1

15
;
41
15

;
45:5
15

� �
¼ ð2:4733; 2:7333; 3:0333Þ

Table 3.8 Data for ec control chart

Sample
nr.

Nr. of
nonconformities

TFN Sample
nr.

Nr. of
nonconformities

TFN

1 e2 (1, 2, 3) 9 e1 (0, 1, 2)

2 e5 (4, 5, 6) 10 e0 (0, 0, 1)

3 e4 (3, 4, 5) 11 e0 (0, 0, 1)

4 e5 (4, 5, 6) 12 e2 (1, 2, 3)

5 e1 (0, 1, 2) 13 e1 (0, 1, 2)

6 e6 (5, 6, 7) 14 e4 (3, 4, 5)

7 e5 (4, 5, 6) 15 e3 (2, 3, 4)

8 e2 (1, 2, 3)
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Fig. 3.5 Fuzzy membership
functions of the control limits

Table 3.9 α-cut of ec control
chart

Sample nr. c ca cb cc a/ c/

1 2 1 2 3 1.7 2.3

2 5 4 5 6 4.7 5.3

3 4 3 4 5 3.7 4.3

4 5 4 5 6 4.7 5.3

5 1 0 1 2 0.7 1.3

6 6 5 6 7 5.7 6.3

7 5 4 5 6 4.7 5.3

8 2 1 2 3 1.7 2.3

9 1 0 1 2 0.7 1.3

10 0 0 0 1 0 0.3

11 0 0 0 1 0 0.3

12 2 1 2 3 1.7 2.3

13 1 0 1 2 0.7 1.3

14 4 3 4 5 3.7 4.3

15 3 2 3 4 2.7 3.3

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

0 0.2 0.4 0.6 0.8 1 1.2

LCL CL UCL

Fig. 3.6 α-cut of fuzzy
control limits
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gLCL/ ¼ 2:4733� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:4733

p
; 2:7333� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:7333

p
; 3:0333� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:0333

p� �
gLCL/ ! ð0; 0; 0Þ

gUCL/ ¼ 2:4733þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:4733

p
; 2:7333� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:7333

p
; 3:0333þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:0333

p� �
gUCL/ ¼ 7:1914; 7:6932; 8:2583ð Þ

The percentage area of the sample which remains inside the gUCL and/or gLCL
defined asfuzzy numbers can be used to determine whether the process is in control
or not. The process is said to be “in-control” when the fuzzy sample is totally
involved by the fuzzy control limits while the process is said to be “out of control”
when a fuzzy sample is completely excluded by the fuzzy control limits. When a
sample is partially included by the fuzzy control limits the percentage area which
remains inside the fuzzy control limits (βj) should be checked. If it is equal or
smaller than a predefined acceptable percentage (β), then the process can be stated
as “rather out of control”, otherwise it can be accepted as “rather in-control”. In
Fig. 3.7, possible decisions resulting from DFA are given. LCL1, LCL2, UCL3,
UCL4, a, b, c, d, and α are the parameters for determination of the sample area
outside the control limits for α-level fuzzy cut. The lines of LCL1LCL2;
UCL3UCL4; ab, and cd forms the shape of the control limits and fuzzy sample.
AU
out and AL

out, that defines sample area above the upper control limits and sample
area falling below the lower control limits respectively, are calculated. Then, Aout is
the sum of the areas above fuzzy upper control limit and below fuzzy lower control
limit and equals to the total sample area outside the fuzzy control limits. Percentage
sample area within the control limits is computed as Eq. (3.77).

Fig. 3.7 Illustration of all
possible sample areas outside
the fuzzy control limits
at α-level cut (Gülbay and
Kahraman 2006a, b)
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baj ¼
Saj � AU

out;j

Saj
ð3:77Þ

where Saj is the sample area at α-level cut. The interested reader can refer to Gülbay
and Kahraman (2006a, b) for the derivation of the formula and detailed information.
The possibility of obtaining linguistic decisions like “rather in control” or “rather
out of control” is provided using DFA methodology. Further intermediate levels of
process control decisions can be obtained by using β as follows.

Process Control ¼
in control; 0; 85� bj � 1

rather in control 0; 60� bj\0; 85
rather out of control; 0; 10� bj\0; 60

out of control; 0; 10� bj\0; 60

8>><>>: ð3:78Þ

3.3.5 Fuzzy eu Control Chart

Various types of fuzzy numbers are used in fuzzy set theory to express the
vagueness. In this study, we will represent the imprecise number of nonconfor-
mities by triangular fuzzy numbers ðuai ; ubi ; uci ).

In order to construct a fuzzy u-chart, the fuzzy control limits are computed using
fuzzy numbers. The average of the number of fuzzy nonconformities is calculated
as Eq. (3.79) (Senturk et al. 2011):

ua ¼
P

uaj
m

; ub ¼
P

ubj
m

; uc ¼
P

ucj
m

ð3:79Þ

The fuzzy ea-control chart limits are given as Eqs. (3.80)–(3.82):

gUCLu ¼ ðua þ 3

ffiffiffiffiffi
ua
nj

s
; ub þ 3

ffiffiffiffiffi
ub
nj

s
; uc þ 3

ffiffiffiffiffiffi
uc
nj
Þ

s
ð3:80Þ

fCLu ¼ ðua; ub; ucÞ ð3:81Þ

gLCLu ¼ ðua � 3

ffiffiffiffiffi
ua
nj

s
; ub � 3

ffiffiffiffiffi
ub
nj

s
; uc � 3

ffiffiffiffiffiffi
uc
nj
Þ

s
ð3:82Þ

Numerical example for fuzzy eu chart
In the garment quality control example given in Sect. 3.2.4, the defects faced may
not be specified as defects precisely. The below defect types may involve vagueness
for a controller.
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Some of these defects of the garments are listed below:

• Wrong gradation of sizes
• Uneven sizes
• Difference in fabric colours/shading variation
• Pilling of the material
• Seams not lined up
• Twisted, roped seams
• Irregular or uneven top stitching
• Uneven parts
• Faulty zippers (e.g. wavy, tape not matching colour specs)
• Irregular hemming
• Loose buttons
• Improper button holes
• Inappropriate trimming
• Spots, soil, stains, dust.

The data related to the number of nonconformities in a batch can be expressed as
fuzzy numbers and given in Table 3.10. The center line, the upper and lower limits
are computed as fuzzy numbers as given in Table 3.11. The control chart with fuzzy
limits is illustrated in Fig. 3.8.

ua ¼
P

uaj
m

¼ 0; 90
12

¼ 0:07

ub ¼
P

ubj
m

¼ 1; 11
12

¼ 0:09

uc ¼
P

ucj
m

¼ 1; 42
12

¼ 0:12

Table 3.10 Data for ec control chart

Sample
nr.

n ca cb cc ua ub uc Sample
nr.

n ca cb cc ua ub uc

1 54 4 5 6 0.07 0.09 0.11 6 49 3 3 5 0.06 0.06 0.10

2 48 4 5 5 0.08 0.10 0.10 7 44 2 3 4 0.05 0.07 0.09

3 47 3 3 4 0.06 0.06 0.09 8 52 5 5 8 0.10 0.10 0.15

4 51 6 6 7 0.12 0.12 0.14 9 47 2 4 5 0.04 0.09 0.11

5 58 5 6 8 0.09 0.10 0.14 10 52 4 6 6 0.08 0.12 0.12

6 53 3 4 6 0.06 0.08 0.11 11 54 5 7 9 0.09 0.13 0.17
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3.3.5.1 α-Cut Fuzzy eu Control Chart

When α-cut is adapted to the fuzzy sets, the values of u/a and u/c are determinedas
Eq. (3.83):

u/a ¼ ua þ / ðub � uaÞ and u/c ¼ uc� / ðuc � ubÞ ð3:83Þ

α-cut fuzzy eu-control chart is obtained by Eqs. (3.84)-(3.86)

gUCL/
u ¼ u/a þ 3

ffiffiffiffiffiffi
u/a
nj

s
; ub þ 3

ffiffiffiffiffi
ub
nj

s
; u/c þ 3

ffiffiffiffiffiffiffiffi
u/c
nj
Þ

s
ð3:84Þ

Fig. 3.8 Fuzzy control chart for number of nonconformities per unit

Table 3.11 Fuzzy control limits for ec control chart

UCLa UCLb UCLc CLa CLb CLc LCLa LCLb LCLc

0.19 0.22 0.26 0.07 0.09 0.12 −0.04 → 0 −0.03 → 0 −0.02 → 0
0.19 0.22 0.27 0.07 0.09 0.12 −0.04 → 0 −0.04 → 0 −0.03 → 0
0.19 0.23 0.27 0.07 0.09 0.12 −0.04 → 0 −0.04 → 0 −0.03 → 0
0.19 0.22 0.26 0.07 0.09 0.12 −0.04 → 0 −0.04 → 0 −0.03 → 0
0.18 0.21 0.25 0.07 0.09 0.12 −0.03 → 0 −0.03 → 0 −0.02 → 0
0.19 0.22 0.26 0.07 0.09 0.12 −0.04 → 0 −0.03 → 0 −0.02 → 0
0.19 0.22 0.27 0.07 0.09 0.12 −0.04 → 0 −0.04 → 0 −0.03 → 0
0.20 0.23 0.27 0.07 0.09 0.12 −0.05 → 0 −0.04 → 0 −0.04 → 0
0.19 0.22 0.26 0.07 0.09 0.12 −0.04 → 0 −0.03 → 0 −0.02 → 0
0.19 0.23 0.27 0.07 0.09 0.12 −0.04 → 0 −0.04 → 0 −0.03 → 0
0.19 0.22 0.26 0.07 0.09 0.12 −0.04 → 0 −0.03 → 0 −0.02 → 0
0.19 0.22 0.26 0.07 0.09 0.12 −0.04 → 0 −0.03 → 0 −0.02 → 0
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fCLu ¼ ðu/a ; ub; u/c Þ ð3:85Þ

gLCLu ¼ ðu/a � 3

ffiffiffiffiffiffi
u/a
nj

s
; ub � 3

ffiffiffiffiffi
ub
nj

s
; u/c � 3

ffiffiffiffiffiffiffiffi
u/c
nj
Þ

s
ð3:86Þ

Numerical example for α-cut fuzzy eu-control chart
The α-cut for α = 0.7 of the center line, upper and lower limits of the example in
Sect. 3.3.5 are calculated as in Table 3.12:

u0:7a ¼ ua þ 0:7 ub � uað Þ ¼ 0:075þ 0:7 0:093� 0:075ð Þ ¼ 0:09

u0:7c ¼ uc � 0:7 uc � ubð Þ ¼ 0:119� 0:7 0:119� 0:093ð Þ ¼ 0:10

3.3.5.2 α-Level Fuzzy Median for α-Cut Fuzzy eu Control Chart

α-cut fuzzy eu-control chart is transformed to crisp numbers via the fuzzy trans-
formation techniques. α-level fuzzy midrange, fuzzy median, fuzzy average and
fuzzy mode (Wang and Raz 1990) are the transformation techniques. For a sample
j, α-level fuzzy median value (S/med�u;j) is calculated as Eq. (3.87):

S/med�u;j ¼
1
3
ðu/a;j þ u/b;j þ u/c;jÞ ð3:87Þ

By using these formulations, the fuzzy center line, fuzzy upper and fuzzy lower
limits of α-level fuzzy median for α-cut fuzzy eu-control chart is obtained by
Eqs. (3.88)–(3.90):

UCL/med�u ¼ CL/med�u þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CL/med�u

nj

s
ð3:88Þ

CL/med�u ¼
1
3
ðu/a þ u/b þ u/c Þ ð3:89Þ

UCL/med�u ¼ CL/med�u � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CL/med�u

nj

s
ð3:90Þ

The condition of process control for each sample is defined as: Eq. (3.91):

Process control ¼ in control; for LCL/med�u � S/med�u;j �UCL/med�u
out of control; for otherwise

	
ð3:91Þ
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Numerical example for α-level fuzzy median for α-cut fuzzy eu control chart
For each sample j, α-level fuzzy median value (S/med�u;j) and the corresponding
center line, upper and lower limits for α = 0.7 is calculated as in Table 3.13 and the
control chart is depicted in Fig. 3.9.

3.4 Conclusion

In this study, we presented a review of control charts for attributes, specifically
fraction nonconforming (p-chart), number of nonconforming (np-chart), noncon-
formities (c-chart) and nonconformities per unit (u-charts). In real life, attribute data
may be uncertain because nonconformities can not be defined as a precise value.

Table 3.13 Data and fuzzy control limits for α-level fuzzy median for α-cut of eu control chart

n ca cb cc ua ub uc u07 a u07 b u07 c S07

med-u

UCL07

med

CL07

med

LCL07
med

54 4 5 6 0.07 0.09 0.11 0.09 0.09 0.10 0.09 0.22 0.09 −0.03 → 0
48 4 5 5 0.08 0.10 0.10 0.10 0.10 0.10 0.10 0.23 0.09 −0.04 → 0
47 3 3 4 0.06 0.06 0.09 0.06 0.06 0.07 0.07 0.23 0.09 −0.04 → 0
51 6 6 7 0.12 0.12 0.14 0.12 0.12 0.12 0.12 0.22 0.09 −0.03 → 0
58 5 6 8 0.09 0.10 0.14 0.10 0.10 0.11 0.11 0.21 0.09 −0.03 → 0
53 3 4 6 0.06 0.08 0.11 0.07 0.08 0.09 0.08 0.22 0.09 −0.03 → 0
49 3 3 5 0.06 0.06 0.10 0.06 0.06 0.07 0.07 0.22 0.09 −0.04 → 0
44 2 3 4 0.05 0.07 0.09 0.06 0.07 0.08 0.07 0.23 0.09 −0.04 → 0
52 5 5 8 0.10 0.10 0.15 0.10 0.10 0.11 0.10 0.22 0.09 −0.03 → 0
47 2 4 5 0.04 0.09 0.11 0.07 0.09 0.09 0.08 0.23 0.09 −0.04 → 0
52 4 6 6 0.08 0.12 0.12 0.10 0.12 0.12 0.11 0.22 0.09 −0.03 → 0
54 5 7 9 0.09 0.13 0.17 0.12 0.13 0.14 0.13 0.22 0.09 −0.03 → 0

Avr. 0.09 0.09 0.10

Fig. 3.9 α-level fuzzy median for α-cut fuzzy eu control chart
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To deal with this, fuzzy control charts are proposed in the literature. We present a
review of fuzzy control charts, α-cut of the charts and the α-level fuzzy median for
α-cut fuzzy charts for each attribute chart. Then we apply these methods numerical
examples. For further research, other fuzzy number types such as type II fuzzy sets
can be employed at the fuzzification phase. Besides, different transformation
techniques proposed in the literature can be used at the defuzzification phase of
fuzzy attribute control charts.
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Chapter 4
Special Control Charts Using Intelligent
Techniques: EWMA Control Charts

Bulut Aslan, Yeliz Ekinci and Ayhan Özgür Toy

Abstract In this chapter we consider the economical design of EWMA zone
control charts for set of machines operating under JPS (Jidoka Production System).
We provide an extensive literature review of intelligent systems in quality control
deductively to fit our purposes. It starts with an overview of quality control charts;
then, reviews charts designed for special purposes such as EWMA, CUSUM and
zone control charts. Finally, as particularly related to this study, reviews of eco-
nomical design and intelligent applications of EWMA are provided. We discuss and
review Jidoka Production System and motivation of operating such a system. We
suggest an intelligent control and repair system such that in a production system,
machines are individually controlled and repaired when an out-of-control signal is
triggered in the zone with the tight control limits, however a system-wide shut
down and repair is conducted when the out-of-control signal is from beyond the
inner (tight) control limits which is considered as an opportunity for repair and
calibration of all machines. We illustrate and investigate the behaviour of control
parameters, namely sample size, sampling interval and control limits, via a
numerical study of a three-machine system through simulation. We also provide
insights for implementation of several metaheuristics for the system setting dis-
cussed in this chapter.
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4.1 Introduction

This study suggests an intelligent system approach to the quality control problem of a
production environment. This intelligent system provides controlling particular
decisions automatically, which are once made manually by operators at the job level.
An Exponentially Weighted Moving Average (EWMA) quality control chart, inte-
grated with zone control policy, is intelligently controlled at the system level to
minimize the rate of total cost. This intelligent system will be useful for the com-
panies which use Jidoka Production System and implement statistical process control
tools. The statistical process control (SPC) is a widely used method in quality control.
SPC has been introduced by Walter Shewhart (Shewart, 1924) in 1920s and it is
defined as a technique of monitoring, controlling, and improving a process through
statistical analysis. The advantages of SPC are listed by Parkash et al. (2013) among
which there are improving process performance by reducing product variability,
minimizing rework and loss of sales, and elimination of unnecessary quality checks
and higher quality product by reducing variability and defects. De Vries and Reneau
(2010) state that there are two aspects of the SPC approach: (i) to assist the contin-
uous improvement of performance by further reduction of unexplained variability;
(ii) to detect any variability in the system as quickly as possible.

Benneyan et al. (2003) define the basic principles of SPC as: (i) individual
measurement from any process exhibits variation (ii) variability due to common
cause can be predicted and represented by statistical models such as Gaussian,
binomial, or Poisson distribution, (iii) variability due to assignable cause displays
deviation in some observable way from the aforementioned random distribution
models, (iv) statistical limits can be established to test the data in order to provide
evidence of any change. We refer the reader to Montgomery (1991) for a detailed
description and explanation of SPC.

There are seven basic tools for quality improvement that are used for statistical
process control. These are; check sheet, defect concentration diagram, histogram,
Pareto chart, scatter diagram/chart, cause and effect or fishbone diagram, control
chart. Quality control charts are the most widely used technique and are of concern
in this study.

Quality control charts started to be used in the manufacturing industries in the
1920s, but later implemented in lots of other application areas such as health care
management, epidemiology, animal production systems, service, financial and
agriculture systems, (see De Vries and Reneau 2010; Woodall 2006; Thor et al.
2007; Quesenberry 1997; Montgomery 2009; Solodky et al. 1998 and Diaz and
Neuhauser 2005 for various applications of SPC). We will dwell into control charts
in subsequent sections.

In some processes it may be required to implement more sensitive control charts,
i.e., to detect smaller or moderate sized shifts in the process mean, for which
Exponentially Weighted Moving Average (EWMA) control charts and Cumulative
Sum (CUSUM) control charts have been developed. A large body of literature has
been built on EWMAcontrol charts following the pioneeringwork byRoberts (1959).
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We will present some of recent works on EWMA control charts in the subsequent
sections. We also refer the reader to Page (1954) for CUSUM control charts.

Recognition of any systematic or non-random patterns in observations is of
interest in some cases. In order to pinpoint these patterns, establishment of control
limits at different expanding levels in multiples of process standard deviation is
necessary. Zone control charts are the choice when the concern is to detect sys-
tematic patterns. The zone control charts can be traced back to The Statistical
Quality Control Handbook (Western Electric 1956).

Implementation of control charts in production systems generally assumes that
machines are individually operated and controlled. Therefore, control charts are
designed for each machine considered in isolation. However, this assumption does
not always hold. Recent trends in manufacturing view machines operating in
coordination as a single system, and hence, suggest a central control mechanism.
Jidoka (translated as autonomation) is such a defect detection system, which
automatically or manually stops the production operation whenever an abnormal or
defective condition arises. In the concept of jidoka when a team member encounters
a problem in his or her workstation, he/she is responsible for indicating the problem
by pulling an andon cord, which can stop the line. Hence, when any machine issues
an alarm, a system-wide shut down is triggered and the production is ceased until
the inspection/restoration of the triggering machine. Here, we assume that holding
WIP (Work-In-Process) inventory between the machines, that keeps upstream and
downstream of the line working during restoration of an intermediate machine, is
not feasible or undesirable. Such a production system is denoted as Jidoka
Production System (JPS) by Berk and Toy (2009).

Designing a control chart means to determine the operating parameters, (i.e.,
when to sample, how much to sample and the reference values (control limits) for
an inference about the sample) of a control chart. There are economical, statistical
and economic-statistical procedures of determining these operating parameters
(refer to Montgomery 1980a, b for explanation of these procedures). Our focus in
this chapter is on the economical design of control charts, specifically economically
designing EWMA zone control charts for set of machines operating under JPS.

We suggest a control and repair policy such that in a production system,
machines are individually controlled and repaired when an out-of-control signal is
triggered in the zone with the tight control limits, however a system-wide shut
down and repair is conducted when the out-of-control signal is from beyond the
inner (tight) control limits which is considered as an opportunity for repair and
calibration of all machines. We illustrate and investigate the behaviour of control
parameters, namely sample size, sampling interval, control limits and EWMA
smoothing parameter.

In the sequel, we will provide literature review on intelligent systems in quality
control. Then, we introduce Jidoka Production System as an intelligent QC
approach with our assumptions and the model prior to presenting our methodology
and numerical study. Finally we present our conclusions.
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4.2 Intelligent Systems in Quality Control

Intelligent systems (IS) is a broad term, covering a range of computing techniques
that have emerged from research into artificial intelligence (Hopgood 2012). It is
about generating representations, procedures and strategies to handle tasks that
were once thought only do-able by humans (Schalkoff 2009). The tools of particular
interest are roughly divided among knowledge-based systems, computational
intelligence and hybrid systems (Schalkoff 2009; Negnevitsky 2011; Hopgood
2012). Knowledge-based systems include expert and rule-based systems,
object-oriented and frame-based systems, and intelligent agents. Computational
intelligence includes neural networks, genetic algorithms and other optimization
algorithms (i.e., metaheuristics). Techniques for handling uncertainty, such as fuzzy
logic, fit into both categories. Knowledge-based systems, computational intelli-
gence, and their hybrids are collectively referred to here as IS. When knowledge is
not explicitly stated but represented by numbers, computational intelligence takes
place to improve any system accuracy; where numerical techniques such as genetic
algorithms and neural networks.

This study brings in an IS approach to the quality control problem of a pro-
duction environment. Particular decisions, which are once made manually by
operators at the job level, are now automatically controlled and taken into con-
sideration at the system-level. An EWMA chart, integrated with zone control
policy, is intelligently controlled at the system level to minimize the rate of total
cost.

The following literature review is organized in a deductive way to clearly
underline this study’s contribution. It starts with a generic introduction to quality
control charts; then, an overview of QC charts designed for special purposes such as
EWMA, CUSUM and zone control charts is provided. Subsequently, as particularly
related to this study, studies on economical design and finally intelligent applica-
tions of EWMA are reviewed. Each subsection is chronologically organized on its
own.

4.2.1 Quality Control Charts

Quality control charts, developed by Shewhart (1924), is a statistical tool applied to
detect a shift on the process. In this tool observations are plotted over time to see
whether a process is running as it should be. In this context, a process is said to be
“in-control” if the probability distribution representing the quality characteristic is
constant over time. If there is some change in this distribution the process is said to
be “out-of-control”. Control charts help to distinguish between common causes and
assignable causes and quickly detect occurrences of unplanned assignable causes so
corrective action may be undertaken and the assignable causes are removed.
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Quality control charts are commonly classified into two types: (i) if a control
chart is used to track a quality characteristic which can be measured and expressed
as a number on some continuous scale of measurement, it is usually called a
variable control chart. Conveniently, the quality characteristic is described with a
measure of central tendency (e.g., mean) and a measure of dispersion (e.g., range or
standard deviation). The �X chart is the most widely used chart for controlling the
former, whereas the charts based on the latter, such as R-chart or s-chart, are used to
control process variability; (ii) In cases where quality characteristics are not mea-
sured on a continuous or quantitative scale, control charts are constructed based on
quality conformances and called attribute control charts. Each unit is categorized as
either conforming or nonconforming on the basis of possession of certain attributes
or the number of nonconformities (defects) appearing on a unit of product.

De Vries and Reneau (2010) state that good design of control charts depends on
grouping of observations, the distribution of the process observations, the size of
the process shift of interest, and the costs of Type I and Type II errors. There are
two types of variable control charts that are widely used, namely, �X chart and
R-chart. The �X chart is used to monitor the process mean and the R-chart is used to
monitor variability. For both of them, samples are taken over time and values of a
statistic are plotted. The first quality control chart developed by Shewhart is of type
�X and is slow in detecting the smaller mean shifts. The “variable sampling intervals
(VSI) �X charts” and “variable parameters (VP) �X charts” detect small shifts in the
process mean faster than the standard �X chart (see Costa 1999; Reynolds et al.
1988; Lee et al. 2012 for discussion). CUSUM and EWMA charts are also good
alternatives when the aim is detecting small shifts. However Lee et al. (2012) argue
that their control procedures are not as easy to set up as Shewhart control chart.

A control chart consists of two parts: (i) a series of measurements plotted in time
order, and (ii) the control chart ‘‘template’’ which consists of three horizontal lines
called the center line (typically, the mean), the upper control limit (UCL), and the
lower control limit (LCL) The values of the UCL and LCL are usually calculated
from the inherent variation in the data. The lower control limit and the upper control
limit determine the bounds of the in-control region, i.e. as long as the measurement
of the sample taken falls in between these two lines the process is assumed to be in
the in-control status. Only random causes exist if the sample data points fall
between the two control limits. If the process shifts to the out-of-control status then
we expect that most of the observations are outside the control limits. Moreover,
when in-control, the data points plotted on the chart should be distributed without a
pattern between the control limits. Sometimes the data points are located only on
one side of the center line and close to each other. This also may be an evidence for
a systematic variation, hence, out-of-control state. It is assumed that, at the start of a
production run after the last restoration, the production process is in the in control
status, producing items of acceptable quality. After a period of time in production,
the process may shift to the out-of-control status.

The placing of the control limits on a control chart depends on the cost of false
alarms (i.e., Type I errors) and the cost after a shift occurs but not detected (i.e.,
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Type II errors). The optimal placing of control limits and the optimal frequency of
collecting observations has triggered much research (Montgomery 2009). If the
limits are set too narrow there is a high probability of a ‘‘Type I error’’—mistakenly
inferring assignable cause variation exists when, in fact, a predictable extreme value
is being observed which is expected periodically from common cause variation. On
the other hand, if the limits are set too wide there is a high probability of a ‘‘Type II
error’’.

The control limits are usually set at ±3 standard errors of the plotted statistic
from a center line at its historical average value. Conventionally, “control limits at
3-standard errors from the mean” is robust for observations from most kinds of
distributions but could result in poor performance when unplanned changes are
costly and need to be detected quickly. The formula for the calculation of the
standard error is usually based on a distributional assumption. The control limits for
the Shewhart charts are relatively easy to calculate. Finding the control limits for the
CUSUM and EWMA given a desired rate of false alarms requires special software
or tables. Hawkins and Olwell (1998) present algorithms for control limits on
CUSUM charts.

Process engineers prefer to evaluate the effectiveness of a control procedure in
terms of cost-based performance rather than risk-based performance measures such
as the Type I and Type II errors. A typical example of the cost- based approach for a
control chart is the economic design of the control chart (Park 2013).

4.2.2 EWMA and CUSUM Quality Control Charts

Alluded to above, EWMA and CUSUM control charts are implemented to detect
small and moderate-sized shifts in the process. In EWMA, each point represents the
weighted average of current and certain number of previous observation values,
giving weight on the observations based on the recency. Shewart-type control
charts are not very efficient in detecting small shifts since they only consider the
final observation and do not consider accumulated information of the multiple
observations; EWMA and CUSUM control charts are the methods to overcome this
difficulty.

Neubauer (1997) discusses the properties of EWMA control charts and com-
parison with other quality control procedures. He specifically states, “The EWMA
chart offers a flexible instrument for visualizing imprecision and inaccuracy”. The
properties of the EWMA chart with the constant control limits have also been
studied by Robinson and Ho (1978), Waldmann (1986), Lucas and Saccucci (1990)
and Gan (1991). The four-step procedure for implementing the EWMA chart
established by Crowder (1989) has been discussed in Neubauer (1997).

The smoothing operation in EWMA control charts is achieved through a
“smoothing parameter, λ” which guarantees giving less and less weight to obser-
vations as they are further removed in time. In brief, after multiplication by a factor
λ, the current measurement is added to the sum of all former measurements, which
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is weighted with (1−λ). Thus, at each time epoch t(t = 1,2,…), the test statistic Zt
can be obtained by Eq. 4.1:

Zt ¼ k�Xt þ 1� kð ÞZt�1½ � ð4:1Þ

where �Xt is the mean of current sample and k 2 [0, 1]. The computed Zt values are
displayed on a control chart over time. Since the statistic used is the sample mean in
this particular example, this control chart is called the EWMA-�x chart. Note that
setting the smoothing parameter to unity (λ = 1) in EWMA control chart yields a
Shewhart-type control chart.

In EWMA control charts test statistic computed above is plotted on a chart and
compared with the control limits. A common approach to determining the control
limits (see e.g. Montgomery 1991, p. 300) first requires the calculation of the
variance of the test statistic, Zt, which is given in Eq. 4.2:

r2t ¼ ½r2=n�½k=ð2� kÞ�½1� ð1� k2tÞ ð4:2Þ

where we assume that the individual observations (sample mean) are independent
random variables with variance r2.

The variance calculation above enables us to derive the following control limits
for the EWMA control chart (Eqs. 4.3 and 4.4):

UCL ¼ l0 þ Lr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
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½1� ð1� kÞ2t�

s
ð4:3Þ

LCL ¼ l0 � Lr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k

� �
½1� ð1� kÞ2t�

s
ð4:4Þ

where L is the coefficient which defines “the width of the control limits”. As the
sample number, t, gets larger control limits converges to, so called, the steady-state
EWMA control limits, which are given by Eqs. 4.5 and 4.6:

UCL ¼ l0 þ Lr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k

� �s
ð4:5Þ

LCL ¼ l0 � Lr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k

� �s
ð4:6Þ

It is important to note, however, that the expression for the variance of Zt for
t > 1 is derived by ignoring the truncation effects of the control limits employed at
the previous t−1 samples. Thus, using a constant multiple of the standard deviation
to give the control limits is done somewhat arbitrarily.
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Vargas et al. (2004) provides insights for choosing smoothing parameter,k; and
for the coefficient of the width of the control limit interval, L. They state that, in
practice, values between 0.05 and 0.25 for the smoothing parameter work well, with
the popular choices being 0:05; 0:10 and 0.20; and the usual three-sigma limits
(L = 3) work reasonably well particularly with the larger values of k. Montgomery
(1996) suggests that when k is small, (k� 0:1Þ, there is an advantage in reducing
the width of limits, using a value of L between 2.6 and 2.8.

We next provide a brief review of CUSUM control charts. The CUSUM and
EWMA control charts differ from each other in incorporation of the smoothing
parameter in EWMA control charts, which allows the adjustment of shift sensi-
tivity. The CUSUM control chart was initially proposed by Page (1954) and has
been widely studied and implemented then on. CUSUM chart attributes equal
weight to all observations independent of their recency.

Like EWMA control charts CUSUM control charts also incorporate past
observations and are therefore sensitive to detecting small shifts in the process.
The CUSUM charts are available for distributions such as the Normal, Binomial,
Poisson, and Weibull.

In CUSUM charts, each plotted point represents the algebraic sum of the pre-
vious observations and the most recent deviation from the target (Parkash et al.
2013). Assuming that samples of size n ≥ 1 are collected, �xj is the average of the jth
sample and l0 is the value wanted for the process average, the CUSUM control
chart is formed by the formula resulting quantity along with sample i (Vargas et al.
2004) (Eq. 4.7):

Ci ¼
Xi

j¼1

ð�xj � l0Þ ð4:7Þ

where Ci is the cumulative sum including the ith sample, since they combine
information from several samples. If the process keeps in control at the target value
l0, the cumulative sums describe a random way. On the other hand, if the average
changes to any value above l1 [ l0, then an ascendant tendency will develop at the
cumulative sum Ci. Reciprocally, if the average changes to some value below
l1\l0, the cumulative sum Ci will have a negative direction. Considering this, if at
the demarcated points a tendency up or down appears, it must be considered as an
evidence of process average change, and a search for the assignable causes must be
done (Vargas et al. 2004). The main advantage of CUSUM charts is that it is very
effective for small shifts and samples of size n = 1. The main disadvantage is that
they are relatively slow to respond to large shifts and special patterns are hard to see
and analyze.

Montgomery (2013) states that the general consensus is that the practical per-
formances of the CUSUM and EWMA are quite similar and neither of them has a
clear advantage over the other. Thus, users only need to implement one or the other
to monitor their process. The CUSUM chart has a well-known optimality property:
if a shift occurs in steady state, the CUSUM to which it is tuned has a faster average
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response than does any other chart (Hawkins and Olwell 1998; Hawkins and Wu
2014). Vargas et al. (2004) present a comparative study of the performance of the
CUSUM and EWMA control charts. Their objective is to verify when CUSUM and
EWMA control charts do the best control region, in order to detect small changes in
the process mean. One of the results they come up with after several simulations is
that the CUSUM control chart practically does not sign points out of control for the
levels of variation between ±1.0 standard deviation; for these variation levels the
EWMA control chart is more efficient. In a recent study, Hawkins and Wu (2014)
conclude that, though the CUSUM outperforms the EWMA, if the actual shift is
smaller than that used in the design, the EWMA may respond faster. Recently,
synthetic EWMA (SynEWMA) and synthetic CUSUM (SynCUSUM) control
charts have been proposed based on simple random sampling (SRS) by integrating
the EWMA and CUSUM control charts with the conforming run length control
chart, respectively. Haq et al. (2014) state that these synthetic control charts provide
overall superior detection over a range of mean shift sizes.

Recently, Abbas et al. (2012) introduced the design structure of a mixed
EWMA-CUSUM (MEC) control chart for improved monitoring of the process
parameters. In their study, the EWMA statistic is used as the input for the CUSUM
structure. Zaman et al. (2014) propose a reverse version of this mixing, that is, a
mixed CUSUM-EWMA (MCE) control chart. In this new setup, the CUSUM
statistic will serve the input for the EWMA structure. MCE control chart is used to
monitor the location of a process. The performance of the proposed mixed
CUSUM-EWMA control chart is measured through the average run length, extra
quadratic loss, relative average run length, and a performance comparison index
study. The analysis has revealed that the proposed MCE control chart is very
sensitive for the detection of small and moderate shifts and offers a quite efficient
structure as compared with existing counterparts. The relative performance of the
proposed chart as compared with the other charts varies depending on the amounts
of shifts.

4.2.3 Zone Control Charts

It may be of interest to recognize any systematic or non-random patterns in
observations. Establishing control limits at different expanding levels in multiples
of process standard deviation facilitates to pinpoint any patterns. Zone control
charts are the choice when the concern is to detect systematic patterns. The zone
control charts can be traced back to The Statistical Quality Control Handbook
(Western Electric 1956) in which it has been suggested that the process is con-
cluded to be out-of-control if either (1) one point plots outside the three-sigma
control limits, (2) two out of three consecutive points plot beyond the two-sigma
warning limits, (3) four out of five consecutive points plot at a distance of one sigma
or beyond from the center line, or (4) eight consecutive points plot on one side of
the center line.
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Jaehn (1987, 1989) suggests a zone chart with eight zones, four on each side of
the center line. Scores are assigned to each zone, and the procedure signals an
out-of-control status when the total score exceeds a threshold value. Likewise, Flaig
(2004) proposed a zone control chart that partitions the normal process distribution
into regions and assigns a score to each region. A normal process distribution is
partitioned as follows (Table 4.1):

An illustration of the above rules is depicted in Fig. 4.1 (excerption from Flaig
2004). In the figure, the chart starts with current score of zero and a cumulative
score of zero. As additional observations are recorded, the cumulative score is
adjusted using the following rules (Flaig 2004).

1. if observation i and observation i−1 are on different sides of the center line, then
the cumulative score at i is set to the zone score at i

2. if observation i and observation i−1 are on the same side of the center line, then
add the current score at i to the cumulative score at i−1.

3. If the cumulative score reaches 8, then an out of control signal is generated.

Performance of zone control charts, in the presence of a constant process mean,
has been studied by Davis et al. (1990, 1994). The latter paper showed that in the
presence of a constant process mean, a zone control chart with appropriate
parameters has superior performance compared to the corresponding Shewhart
chart with some combination of supplementary runs rules (Davis and Krehbiel
2002). Davis et al. (1994) proposed a general model for the zone control chart. In
this model, any zone control chart is based on a cumulative score, which begins at
zero. The cumulative score for the zone control chart with score vector S = (A1, A2,
A3, M) is incremented based on how many standard errors (s.e.) a sample mean is
away from the target mean, with zone scores assigned as follows (Table 4.2):

Table 4.1 Zone control chart
scores

Zone Score

Centerline 0

Between center and one sigma 1

Between one and two sigma 2

Between two and three sigma 4

Beyond three sigma 8

Table 4.2 Zone control chart
scores in the study of Davis
et al. (1994)

Zone Score

Within one s.e. of target A1

Between one and two s.e. from target A2

Between two and three s.e.from target A3

Beyond three s.e. from target M
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The cumulative score after any given sample consists of the score for the most
recent sample mean added to the previous cumulative score. The only exception is
when two successive sample means fall on opposite sides of the target; in this case,
the cumulative score is reset to the score for only the most recent sample mean.
Thus, if the process is in control, the sample means will fall on either side with a
probability of 1/2 and the cumulative score will reset fairly frequently instead of
continuing to get larger. If the cumulative score reaches or exceeds M, the chart
generates an out-of-control signal (Davis and Krehbiel 2002; Davis et al. 1994).

In another paper, Davis and Krehbiel (2002) studied the average run length
performances of Shewhart charts with supplementary runs rules and zone control
charts when the process mean changes linearly over time. Shewhart charts with all
possible combinations of the typical runs rules are compared to zone control charts
with identical false alarm rates. The zone control charts generally outperform the
Shewhart charts in detecting a process mean that is changing linearly over time.

4.2.4 Economical Design of Quality Control Charts

Economic design of control charts has been extensively studied since the pioneering
work of Duncan (1956). Duncan (1956) studied on the economic design of �X charts
used to maintain current control of process, developed a cost model and solved for
the design parameters (sample size, sampling interval, and control limit coefficient).
Since then, there has been an increased interest in the economic design of the
control charts in the late 1980s and early 1990s in accordance with developments in
lean management of production systems (e.g., Montgomery 1980a, b; Vance 1983;
Woodall 1986; Pignatiello and Tsai 1988; Niaki et al. 2010, 2013). A detailed
explanation of construction of economically designed control charts is provided by
Montgomery (1980a, b) and Ho and Case (1994b).

Fig. 4.1 Zone chart (Flaig 2004)
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In economic design, parameters are determined such that the total cost associated
with the implementation of quality control policy is minimized. In a regular �X
control chart, these parameters consist of the sample size, the time interval between
two consecutive sampling, the coefficient (multiple of standard deviation) that
specifies the Upper Control Limit, and the Lower Control Limit.

The economic models are generally formulated using the total cost per unit time
function. Overall production time is divided into stochastically identical cycles.
Each cycle starts with the production in the in-control status. When, at some
sampling instance, control chart indicates an out-of-control status (denoted as an
alarm) a search for the assignable cause is conducted and if discovered the process
is stored to the in-control status. The time between these two time points is called a
cycle. Hence the expected cost within this cycle is computed and divided by the
expected duration of the cycle. Minimization of this cost rate yields the design
parameters of the control chart.

The study of Lorenzen and Vance (1986) proposed a general cost model that
applied to all control charts, regardless of the statistic used. Later, several studies
(Montgomery et al. 1995; Reynolds et al. 1988; Costa 1993;Torng et al. 2009a, b;
Nenes 2011; Lee et al. 2012) focused on the design of various control charts and
minimize the costs of process control (Niaki et al. 2011).

The weaknesses of the economic design of control charts approach have been
highlighted by Woodall et al. (1986) and Woodall (1987). Despite the problems, the
economic design of control charts is appealing to process engineers since the
effectiveness of the control chart procedure is explained in terms of cost (Park
2013).

There have been studies in the literature, which consider economical design of
control charts other than �X charts. Next we will dwell into economic design of
EWMA control charts by providing reviews of some milestone and recent papers.
The very first work on the economical design of EWMA control charts is by Ho and
Case (1994b). Tolley and English (2001) studied the economic design of EWMA
control chart and EWMA-�X chart, and provide a comparison of the two. One of the
studies in the last decade belongs to Park et al. (2004), who looked into the eco-
nomic design of an adaptive EWMA chart. In this study, the user changes the
sampling interval and/or sample size dynamically based on the current chart
statistic. Chou et al. (2008) presented economic design of Variable Sampling
Intervals EWMA (VSI EWMA) control charts with sampling at fixed times. The
two more recent studies dealing with joint economic design of EWMA charts for
the process mean and dispersion have been performed by Serel and Moskowitz
(2008) and Serel (2009). In the study of Serel (2009) the case where the assignable
cause changes only the process mean or dispersion is explored. The economic
design of the single control chart used for monitoring the process parameter (mean
or variance) influenced by the assignable cause is the main concern in this study. It
suggests that using a different type of quality loss function (linear versus quadratic)
leads to a significant change in sampling interval while affecting the sample size
and control limits very little. It is also observed that the overall costs are insensitive
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to the choice of Shewhart or EWMA charts. Various authors have and studied
meta-heuristic applications in economical design of EWMA control chart, we
discuss these works in later sections.

To the best of our knowledge, the only work that considers economic design of
zone control charts is by Ho and Case (1994a). In their study, based on factors such
as performance, simplicity, efficiency, ease of use, and ease of understanding, they
recommend the joint Zone Control Chart.

4.2.5 Intelligent Applications of Ewma QC Chart

In this study and in most of the studies on economical design of quality control
charts, classical optimization methods are used. Typically, the optimization problem
of EWMA charts contains both, continuous (e.g., smoothing parameter) and dis-
crete (e.g., sample size) decision variables. This produces a discontinuous
non-convex solution space exists, standard non-linear programming techniques may
prove to be ineffective (He et al. 2002; Aparisi and Garcia-Diaz 2007). Hence, here
comes the computational intelligence into place which is employed in order to solve
that optimization problem. Among several intelligent applications of EWMA
quality control charts, metaheuristic applications have outnumbered the rest in the
quality control area. Besides, we review a few but worthwhile efforts deploying
evolutionary methods and neural networks in EWMA quality control chart design.

In the recent years metaheuristic approaches have been widely used to investi-
gate the economic design of EWMA control charts. For instance, a study by Niaki
et al. (2011) models and solves the economic and the economic-statistical design
problems of Multivariate EWMA (MEWMA) control charts by a Particle Swarm
Optimization (PSO) approach. Yet another economical design was conducted by
Chou et al. (2008) who focused on variable sampling intervals of EWMA charts
with sampling at fixed times using genetic algorithms. In fact, Genetic Algorithms
are one of the most widely used heuristics. Aparisi and García-Díaz (2004)
employed an GA optimization of Average Run Length (ARL) of EWMA and
multivariate EWMA charts with respect to smoothing parameter and control limits,
given that sample size n is 1. The authors further improved this setting where
detection of small shifts is not necessary, while shift detecting is still important
(Aparisi and García-Díaz 2007).

Sample size is added as another integer decision variable; and a third zone is
defined where it is insignificant whether the process shift is detected or not.

Seeking a different heuristic approach, Niaki and Ershadi (2012) applied an
ant-colony optimization of the economic-statistical design model of the MEWMA
control chart in which the main parameters of the employed ant colony algorithm are
tuned by means of a response surface methodology approach. Similarly, Zhou and
Zhu (2008) used Grid Search minimization of the (hourly) cost of the integrated
model (SPC and Preventive Maintenance) with respect to sample size, sampling
interval, control limits, and inspection interval. To improve that Charongrattanasakul
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and Pongpullponsak (2011) contributed to the usual zone control policy, by adding
another zone, called warning zone, and increased the set of four decision variables of
Zhou and Zhu (2008) to six variables. In other words, the (hourly) cost of the
integrated model (SPC and Preventive Maintenance) was minimized using GA with
respect to the decision variables of sample size, sampling interval, warning control
limits, the number of subintervals between two consecutive sampling times, and the
number of samples taken before Planned Maintenance. This case revealed an
interesting point such that the addition of the warning zone caused an overall increase
of the total costs, due to increased ability of defective product detection which
resulted to the increase of repairing and maintenance of machines; thus the hourly
cost got higher. Other successful applications of Genetic Algorithms (GA) in the
economic designs of control charts can be found in Saghaei et al. (2013), Celano and
Fichera (1999), Chou and Chen (2006), Vommi and Seetala (2007), Torng et al.
(2009a, b), and Lin et al. (2012). Besides these heuristics widely used in several areas
of Operations Management, the real AI applications of EWMA charts achieved their
potential in the semiconductor industry.

Since early 90s, EWMA has been popular in the semiconductor industry to
maintain process targets over extended periods for improved product quality and
decreased machine downtime (Spanos 1992; Su and Hsu 2004b). However, the
several process factors (alternating in time) are thought to determine the ‘best’ value
for an EWMA smoothing parameter. Smith and Boning (1997a, 1997b) proposed a
self-tuning EWMA controller which dynamically updates its smoothing parameter
by estimating the disturbance state and using the Artificial Neural Network
(ANN) function mapping to provide updates to the controller parameters. Similarly,
Su and Hsu (2004a) applied ANN for online tuning of EWMA smoothing
parameter. The underlying approach indicated that the network learns very quickly
when taking autocorrelation function and sample partial autocorrelation function
patterns as the input features. Fan and Wang (2008) further contributed to this
setting by incorporating a multivariate double EWMA component (i.e., EWMA
having two smoothing parameters, coined for semiconductor industry by Butler and
Stefani 1994). All these studies were conducted and results obtained in a simulation
environment.

The next section introduces the concept of jidoka and its use within the model of
this study as an intelligent quality control procedure.

4.3 Jidoka Production System as an Intelligent QC
Approach

The proposed intelligent system provides controlling particular decisions auto-
matically, which are once made manually by operators at the job level in a Jidoka
Production System. The entrance of Japanese goods in western markets was a
subject of discussion in American business in the 1970s (Schonberger 2007) and
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since then, academia has used many terms to explain this phenomenon, including
Toyota Production System (TPS) also known as Lean Manufacturing (Monden
1983; Hoss and ten Caten 2013). Toyota Production System proposes factory
designers to combine inspections with operations (Kim and Gershwin 2005). By
this way, the production quality is increased and much more benefits are gained.
Hoss and ten Caten (2013)suggest implementation of functions such as just in time
(JIT) and jidoka to achieve high quality, low cost, and low lead time.

TPS is frequently modelled as a house with two pillars (see Fig. 4.2). The top of
the house consists “highest quality, lowest cost, shortest lead time”, whereas one of
the two pillars represents just-in-time (JIT), and the other pillar the concept of
jidoka. Jidoka (translated as autonomation) is a defect detection system, which
automatically or manually stops the production operation whenever an abnormal or
defective condition arises. The manufacturing system introduced will not stand
without both of the pillars. Yet many researchers and practitioners focus on the
mechanisms of implementation—one piece flow, pull production, tact time, stan-
dard work, kanban—without linking those mechanisms back to the pillars that hold
up the entire system. While the majority of the studies in the literature have focused
on the problems of the first pillar (JIT), two research articles by Kim and Gershwin
(2005) and Berk and Toy (2009) are two notable exceptions for the other pillar
(Hoss and ten Caten 2013). We can state that a lot of failed implementations can be
traced back to not building this second pillar. In the concept of jidoka when a team
member encounters a problem in his or her workstation, he/she is responsible for
correcting the problem by pulling an andon cord, which can stop the line. The
objective of jidoka can be summed up as: Ensuring quality 100 % of the time,
preventing equipment breakdowns, and working efficiently.

TPS advocates think that mechanical and human jidoka prevent the waste that
would result from producing a series of defective items. Hence, jidoka can be

Fig. 4.2 The house of toyota
production system (Ohno
1988)
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defined as a means to improve quality and increase productivity at the same time
(Shingo 1989; Toyota Motor Corporation 1996; Kim and Gershwin 2005). Berk
and Toy (2009)consider design of control charts in the presence of machine stop-
pages that are exogenously imposed (as under jidoka practices). Here, each stop-
page creates an opportunity for inspection/repair at reduced cost. They first model a
single machine facing opportunities arriving according to a Poisson process,
develop the expressions for its operating characteristics and construct the opti-
mization problem for economic design of a control chart. Afterwards, they consider
a multiple machine setting where alarms about the quality status of the machines
cause system-wide stoppages as it is the case under jidoka practices. Their findings
indicate that ignoring exogenous inspection/repair opportunities and employing the
classical QC chart parameters may result in significant cost increases.

4.3.1 Model Description

In the model described herein, we consider a multiple machine environment. In this
environment, machines are operated and controlled individually. Each machine is
controlled through a separate control chart. EWMA procedure is employed with
multiple control limits; hence there are zones in the control charts. We use 2-zone
control chart.We specify tight control limits (UCLt and LCLt) and loose control limits
(UCLl and LCLl). The zone between the tight control limits is the inner zone and the
zone between tight and loose control limits identifies the outer zone. Inner zone is
where the process is considered to be in-control. A different inspection and repair
policy is defined for outer zone and outside the control limits. A test statistic, Zt,
(exponentially weighted moving-average values of the sample means) which lies in
the outer zone and outside the control limits is denoted as an alarm for the system.

Production system considered herein is assumed to be part of Jidoka Production
System. Whenever a machine raises an alarm, all the system stops, i.e. the pro-
duction is ceased. In the policy we suggest, these overall system stoppages due to
individual machine alarms create opportunities for other machines to be inspected
and repaired. This opportunity is taken only if the test statistic, Zt lies beyond the
loose control limits. That is, all the machines in the system are inspected and
repaired, yielding in-control machines at the next system re-start instance. The time
and cost of inspection/repair for each machine at a system stoppage are computed as
follows: The alarm-raising machine(s) incur the downtime cost related to its own
inspection/repair time. Among the remainder, the machine(s) with the longest
inspection/repair time will have an available duration (as an opportunity for pre-
ventive maintenance) equal to the inspection/repair time of the alarm-raising
machine(s). There will be no additional delay if these durations are equal to each
other; otherwise, there will be some extra delay and machine experiencing the
longest inspection/repair time will incur the additional downtime cost. However,
when the system is stopped due to a Ztvalue in the outer zone, only the machine(s)
raising alarm is (are) inspected and repaired. As shutdowns are not utilized for
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inspecting other machines, the downtime cost is charged only to the self-stopping
machine in this case.

In the model description below we retain the notation used in Berk and Toy
(2009). Let M be the set of machines working in coordination, and let m denote the
number of machines. The set of machines may comprise non-identical machines.
Hence, when the machines have different reliability, restoration times, sampling
interval etc., inspection opportunities may be beneficial, i.e., resulting in cost
reduction, for some machines, it may be not beneficial, i.e., increasing the cost for
the others.

Every machine i(2 M), is subject to control with an EWMA control chart.
A sample of size y(i) is taken with h(i) time intervals, test statistic Zt is computed.
The EWMA values of the quality specification of the sample weighted by λ, is
plotted on a control chart. If the EWMA value of machine i falls outside the loose
control limits (k2) defined by Eq. 4.8.
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2
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all machines are stopped. If it falls between the loose and tight control limits (k1) for
machine i, the latter defined by
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only that particular machine is stopped. A sample results in a false alarm with
probability α (Type I error) and a true alarm with probability (1− β) (complement of
Type II error). Clearly, α and β are related to k1, k2, λ, y and for a normal variate
Z. If the process faces an exogenous shutdown triggered by another alarm-raising
machine, its operator uses this stoppage as an opportunity to carry out an inspection
of the process although no signals have been received from the control chart to
initiate one. On inspection, if the process is found to be in the out-of-control status,
the opportunity is said to be a true opportunity, which is followed by a complete
restoration of the process to the in-control status; otherwise, the opportunity is a
false opportunity, which requires no adjustment. Type I and Type II errors for
multiple machine with two zone control limits (α1, α2 and β1, β2) are as follows
(Eqs. 4.10, 4.11, 4.12, 4.13):
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Next we define the costs associated with the quality control of the systems. We
consider three categories of quality costs: (i) sampling cost, (ii) the cost of operating
in the out-of-control state, and (iii) the inspection and repair cost.

Sampling Cost: The sampling cost has two components, fixed and variable.
Fixed component is denoted by u and is incurred at each sampling instance whereas
variable component, y, is associated with the sample size and incurred at each
sampling instance, as well. Hence, the total sampling cost is given by u + by.

Cost of Operating in out-of-control state: once the process shifts to the
out-of-control state, any product processed in a stage (machine) is considered to be
defective hence requires rework. The cost associated with these sub-standard
products is denoted by a per time unit.

Inspection and repair cost: When a machined is stopped by an alarm, an
inspection is conducted immediately and if shift is detected a repair operation is
conducted. Since the system stops until inspection and repair operations completed
we assume that there is a lost profit cost associated with idle time. The idle time is
related with the system status at the stoppage instance; i.e., if the process has shifted
it requires a time for both inspection and repair, however if the process has not
shifted the idle time is only as much as the inspection time. The elapsed time until
the process shift is distributed exponentially with mean θ. This cost component is
computed as πLs, where π is the profit (lost) per unit of time and Ls denotes the
downtime of the process. Depending on the status of the machine at the stoppage
instance repair cost varies, as well. Such that shifted process costs more than the
non-shifted process, in terms of labour hours and spare parts.

Our objective is to economically and jointly design the control charts of all
machines resulting a minimum system-wide cost rate. Control parameters of this
system are same as the regular control charts. Specifically, we decide on the sample
size (y), sampling frequency (h), control limits (k1, k2) and smoothing parameter (λ)
which minimizes the expected cost per unit time.

4.4 Numerical Study

Three-machine setting with two zone control policy is simulated using the
parameter sets below which results in 54 experimental instances. In each combi-
nation, an exhaustive search over the variable set (within the provided intervals) has
been performed in order to find the ‘best (minimum)’ overall system cost rate.
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The results are compared with the case where autonomation (or JPS) is not applied.
Namely, the same experimental instances are simulated for the three independent
machine system, i.e., for each machine a separate control chart is maintained, hence
only self-stoppages are allowed.

The parameter ranges for our experimental set: variable cost (per sample) cost of
sampling, b = 0.1; fixed cost of sampling u = 5; true and false alarm repair costs,
RT = RF = 0; true and false alarm idle times, LT = LF = L, with L 2{0.05, 0.10, 0.15};
profit per unit time, π 2 {500, 1500}; process mean shift rate, θ 2 {0.01, 0.05, 0.1};
and the per time cost of operating in out-of-control state, a 2{50, 250, 500}.

The domains for our decision variables, in which we performed an exhaustive
search, are as follows: [1, 10] for the sample size (y), [0.01, 10] for sampling
frequency (h), [1, 2] and [k1, 3] for the control limits (k1, k2), and [0, 0.5] for

Table 4.3 Comparative results with improvement percentage for π = 500

Case # L θ a No System cost Improvement

JPS policy Under JPS policy (%)

1 0.05 0.01 50 10.98 8.58 22

2 250 24.01 18.45 23

3 500 31.76 25.25 20

4 0.05 50 23.72 21.44 10

5 250 55.68 44.59 20

6 500 77.11 59.89 22

7 0.1 50 34.38 29.34 15

8 250 71.77 59.86 17

9 500 107.2 100.12 7

10 0.1 0.01 50 14.36 10.98 24

11 250 32.2 25.38 21

12 500 44.62 31.7 29

13 0.05 50 32.65 25.43 22

14 250 72.24 58.1 20

15 500 103.4 74.33 28

16 0.1 50 44.46 37.03 17

17 250 96.78 77.19 20

18 500 131.3 106.34 19

19 0.15 0.01 50 17.86 14.28 20

20 250 36.26 28.03 23

21 500 52.54 37.77 28

22 0.05 50 37.3 33.54 10

23 250 85.05 67.31 21

24 500 119.05 91.13 23

25 0.1 50 51.2 47.07 8

26 250 117.05 106.56 9

27 500 152.72 116.2 24

4 Special Control Charts Using Intelligent Techniques … 119



smoothing parameter (λ). Considering the time-related variables and parameters, the
cases were simulated for a reasonably long final simulation run time and replicated
4.5 times on average. On the completion of each replication (50,000 time units), the
domains of all decision variables were shrunk to narrower domains and another
replication was performed. An improvement in total quality cost was generally
observed after each replication, yet whenever the cost got worse the simulation was
run for 150,000 time units using the parameter set resulting the lowest cost.
Therefore, the number of replications depended on the quality cost of the penul-
timate replication.

Tables 4.3 and 4.4 presents the resulting costs of 54 different cases, which are
the combinations of different parameters explained above. The costs under JPS
policy and classical policy are given in the tables together with the percentage

Table 4.4 Comparative results with improvement percentage for π = 1000

Case # L θ a No System cost Improvement

JPS policy Under JPS policy (%)

28 0.05 0.01 50 17.16 13.54 21

29 250 38.97 29.4 25

30 500 55.03 42.03 24

31 0.05 50 37.63 33.26 12

32 250 87.45 71.43 18

33 500 126.63 102.17 19

34 0.1 50 54.96 45.72 17

35 250 122.83 102.7 16

36 500 166.72 142.92 14

37 0.1 0.01 50 25.6 21.99 14

38 250 54.66 43.9 20

39 500 76.06 56.73 25

40 0.05 50 50.23 46.87 7

41 250 121.21 95.68 21

42 500 170.32 127.29 25

43 0.1 50 65.93 62.76 5

44 250 167.55 135.66 19

45 500 235.49 188.66 20

46 0.15 0.01 50 30.94 28.9 7

47 250 66.65 51.57 23

48 500 91.31 67.88 26

49 0.05 50 59.35 54.61 8

50 250 148.03 130.6 12

51 500 207.68 175.27 16

52 0.1 50 76.29 80.94 −6

53 250 198.38 169.32 15

54 500 276.1 225.02 19
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of improvement. It can be clearly observed that, only one case does not show
improvement under the JPS policy. The reason for this specific case is that, the
computation time was significantly long for this parameter set and an adequate
exhaustive search was not performed. The minimum improvement is 5 %, average
improvement is 18 % and maximum is 29 % for all 54 cases. Hence we can
conclude that JPS policy is significantly superior than the classical policy. The
minimum improvement (5 %) is obtained in the case where L = 0.10, π = 1500,
θ = 0.10, and a = 50. The maximum improvement (29 %) is obtained in the case
where L = 0.10, π = 500, θ = 0.01, and a = 500.

We observe that system costs increase when a increases while other parameters
are kept constant. Another result that can be derived from Table 4.4 is that
improvement in the cost decreases when π increases from 500 to 1500 except for
the cases where L = 0.05. Table 4.3 shows the results where π = 500 and Table 4.4
shows the results where π = 1000. The average improvement in Table 4.3 is 19 %
while it is 16 % in Table 4.4. It is also seen from the results that, the improvement
percentage decreases when θ increases. For instance, the average improvement
percentage for the first three combinations, where θ = 0.01 is approximately 22 %
while it is 17 % for the next three cases where θ = 0.05, and 13 % for the cases
where θ = 0.1. Similar pattern can be seen for the other case groups. However, we
do not observe any significant pattern in the improvement percentages with respect
to L.

4.5 Conclusion

In this article, we give an extensive literature review on quality control charts and
we specifically consider the intelligent systems of economical design of EWMA
zone control charts in the presence of machine stoppages that are exogenously
imposed. Each stoppage creates an opportunity for inspection/repair at reduced cost.
We consider a multiple machine setting where alarms about the quality status of the
machines cause system-wide stoppages as it is the case under Jidoka practices. In a
numerical study for three machine setting to investigate the cost advantages of
employing the models herein versus the classical model where JPS is not used. Our
findings indicate that ignoring exogenous inspection/repair opportunities and
employing the classical QC chart parameters may result in significant cost
increases. The average improvement percentage in cost under classical policy and
JPS policy is 18 %, which shows that the performance of our model is really high.
Hence we can conclude that JPS policy is significantly successful than the classical
policy.

There are a number of extensions to our basic model. Herein, we consider only
the design of �X control charts in our numerical study, but our model can be applied
to other variable and attribute-control charts. Similarly, different design criteria
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(semieconomic and statistical) can be considered, as well. For the future research,
further applications of metaheuristics are also encouraged for the economic design
of quality control charts.
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Chapter 5
Trends on Process Capability Indices
in Fuzzy Environment

Abbas Parchami and B. Sadeghpour-Gildeh

Abstract After the fuzzy set theory was introduced and developed, many studies
have been realized to combine quality control methods and fuzzy set theory. This
chapter is including the categorization of most essential works on fuzzy process
capability indices in the following four main categories:

(1) Lee et al.’s method and its extensions: This class deals with the method of
modeling and estimating the membership function of process capability
indices where all data and specifications are fuzzy numbers;

(2) Parchami et al.’s method and its extensions: This class deals with the problem
of obtaining fuzzy process capability indices based on fuzzy specification
limits and crisp data by extension principle approach;

(3) Kaya and Kahraman’s method and its extensions: This class deals with the
problem of estimating the classical process capability indices by a triangular
shaped fuzzy number when both specifications and data are crisp;

(4) Yongting’s method and its extensions: This class deals with introducing
process capability indices based on fuzzy quality where the data and param-
eters are crisp.

After presenting the basic idea of the main works, all related studies briefly
reviewed in each class. Some numerical examples are presented to show the
applicability of the proposed methods.
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5.1 Preliminaries: Process Capability Indices

A common way to measure performance of a manufacturing process is using
process capability indices based on a random sample which taken from the pro-
duction line. In fact, process capability ratio or process capability index (PCI) is a
shorthand numerical comparison, which measured the capability and effectiveness
of the quality characteristic with respect to the specification limits. In other words,
PCI is a statistical measure to calculate the ability of a process to produce output
within specification limits. Several PCIs introduced in the literature such as Cp, Cpk,
Cpm, Cpmk and so on (Kotz 1993). When univariate measurements concerned, we
will denote the corresponding random variable (quality characteristic) by X.
Expected value and standard deviation of X will be denoted by l and r, respec-
tively. The commonly recognized PCIs are:

Cp ¼ USL� LSL
6r

; ð5:1Þ

where USL and LSL are respectively the upper and lower specification limits. This
Cp is used when l ¼ M with M ¼ ðUþ LÞ=2.

Cpk ¼ USL� LSL� 2 l�Mj j
6r

¼ minfUSL� l; l� LSLg
3r

; ð5:2Þ

and

Cpm ¼ USL� LSL

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þðl� TÞ2

q ¼ USL� LSL

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðX � TÞ2�

q ; ð5:3Þ

where T is the target value and E½:� denotes the expected value. There is also the
hybrid index

Cpmk ¼ USL� LSL� 2 l�Mj j
6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þðl� TÞ2

q ¼ USL� LSL� 2 l�Mj j
6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðX � TÞ2�

q : ð5:4Þ

Usually, T ¼ M. If T 6¼ M the situation sometimes described as “asymmetric
tolerances”, see (Boyles 1994). Introduction of Cp ascribed to Juran (1974); that of
Cpk to Kane (1986); that of Cpm for the most part to Hsiang and Taguchi (1985), and
Cpmk to Pearn et al. (1992). Substituting the sample mean and standard deviation
provides a point estimate for any of PCIs. For more details on conventional and
classical PCIs see (Kotz and Johnson 2002), (Montgomery 2005) and (Kotz and
Lovelace 1998).

Although PCIs are effective tools for quality assurance and they have been
proposed to provide numerical measures on process capability in a precise
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environment, but we may confront imprecise concepts in a manufacturing process.
If we introduce vagueness into some crisp assumptions (such as data, quality set,
specification limits and target value), then we face quite new and interesting pro-
cesses, where the ordinary capability indices are not appropriate for measuring the
capability of these processes. However, classical PCIs extension to fuzzy envi-
ronment is concomitant with some computational difficulties. Classical statistical
quality control is based on crisp data, random variables, control charts, decision
rules, capability indices, and so on. As there are many different situations in which
the above assumptions are rather unrealistic, there have been some attempts to
analyze these situations with the fuzzy set theory. In the present chapter, we try to
briefly overview some works on the applications of fuzzy set theory and fuzzy logic
for extending process capability indices in quality control researches. For simplify,
we classify this overview in four categories that are presented in four Sects. 5.2, 5.3,
5.4 and 5.5. It must be mentioned that the assumptions of theses four categories are
different and so they are not comparable.

At the end of this section, we clarify our notation for triangular fuzzy numbers
which used through paper. As an especial case of fuzzy numbers, triangular fuzzy
number defined by membership function

TðxÞ ¼
x�a
b�a if a� x\b
c�x
c�b if b� x\c
0 elsewhere

8<: ð5:5Þ

and it symbolically noted by Tða; b; cÞ. The real number b called the core value and
the positive real numbers b� a and c� b called left and right spreads of triangular
fuzzy number, respectively. FTðRÞ denotes the set of all triangular fuzzy numbers
where R is the set of all real numbers.

Four basic methods on generalization of process capability indices for fuzzy
environment and their extensions are reviewed and discussed in this paper.

The rest of the paper is organized as follows. An introduction and a brief review
of Lee et al.’s (1999) method, Parchami et al.’s (2005) method, Kaya and
Kahraman’s (2009) method and Yongting’s (1996) method are presented in
Sects. 5.2, 5.3, 5.4 and 5.5, respectively. The last section concludes the paper and
gives suggestions for further research.

5.2 Lee et al.’s Method and Its Extensions

Lee et al. (1999) generalized the capability index Cp by extension principles based
on fuzzy specifications and fuzzy data. Under a similar conditions, Lee (2001)
follows his approach to generalize capability index Cpk. Based on triangular fuzzy
observations ~xj ¼ Tðoj; pj; qjÞ 2 FTðRÞ; j ¼ 1; . . .; n; and considering triangular
fuzzy target value ~t ¼ Tðw; y; zÞ 2 FTðRÞ and also triangular fuzzy specification
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limits gLSL ¼ Tðl;m; nÞ 2 FTðRÞ and gUSL ¼ Tðo; p; qÞ 2 FTðRÞ, Lee proposed the
following approximation for the membership function of Cpk index

UCpkðIÞ ’

�B1
2A1

þ B1
2A1

� �2
� C1�I

A1

� �1=2
if C1 � I�C3

B2
2A2

� B2
2A2

� �2
� C2�I

A2

� �1=2
if C3 � I�C2

0 elsewhere;

8>>>>><>>>>>:
ð5:6Þ

in which

A1 ¼ ðb� aÞðe� dÞ ; A2 ¼ ðc� bÞðf � eÞ;
B1 ¼ aðe� dÞþ dðb� aÞ ; B2 ¼ cðf � eÞþ f ðc� bÞ;
C1 ¼ ad ; C2 ¼ cf ; C3 ¼ be ;

a ¼1�
Pn

j¼1 oj
n

� z

� �
2

q� l

� �
;

b ¼1�
Pn

j¼1 pj
n

� y

� �
2

p� m

� �
;

c ¼1�
Pn

j¼1 qj
n

� w

� �
2

o� n

� �
;

d ¼ o� nð Þ 1
6C2

� �
;

e ¼ p� mð Þ 1
6C3

� �
;

f ¼ q� lð Þ 1
6C1

� �
:

After computing the membership function of fuzzy PCI, he fuzzified the pro-
posed fuzzy PCI for making final decision in the examined manufacturing process.
The major advantage of the proposed method is using extension principle approach.
Complex calculations, low speed of process and presenting non-exact approximates
for capability indices are weakness points of Lee’s method which cause increasing
the progress of the proposed method.

A similar approach to solve this problem based on extension principle presented
by Shu and Wu (2009) by fuzzy data. In their approach, which is easier and fasten
than Lee’s method, the α-cuts of fuzzy index Cpk was calculated based on the α-cuts
of fuzzy data for 0� a� 1. Meanwhile, they investigated on the capability of the
LCD monitors assembly line using their generalized indices. In this regard, the
capability test on the generalized capability index Cp with fuzzy data have been
investigated by Tsai and Chen (2006).
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5.3 Parchami et al.’s Method and Its Extensions

A process with fuzzy specification limits, which Parchami et al. (2005) called a
fuzzy process for short, is one which approximately satisfies the normal distribution
condition and its specification limits are fuzzy. They extend the classical PCIs (1-4)
by extension principle for fuzzy processes as follows

~Cp ¼ T
au � cl
6r

;
bu � bl
6r

;
cu � al
6r

� �
; ð5:7Þ

~Cpk ¼ T
au � cl � 2 l� mj j

6r
;
bu � bl � 2 l� mj j

6r
;
cu � al � 2 l� mj j

6r

� �
ð5:8Þ

~Cpm ¼ T
au � cl

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þðl� tÞ2

q ;
bu � bl

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þðl� tÞ2

q ;
cu � al

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þðl� tÞ2

q
0B@

1CA ð5:9Þ

and

~Cpmk ¼ T
au � cl � 2 l� mj j
6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þðl� tÞ2

q ;
bu � bl � 2 l� mj j
6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þðl� tÞ2

q ;
cu � al � 2 l� mj j
6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þðl� tÞ2

q
0B@

1CA;

ð5:10Þ

where t is target value, m ¼ ðbu þ blÞ=2; au � cl and the fuzzy numbers
Uðau; bu; cuÞ ¼ Tðau; bu; cuÞ 2 FTðRÞ and Lðal; bl; clÞ ¼ Tðal; bl; clÞ 2 FTðRÞ are
the upper and lower engineering specification limits, respectively. It is obvious that
the proposed fuzzy indices ~Cp; ~Cpk; ~Cpm; ~Cpmk are exactly triangular fuzzy numbers
and they are applied when the data are crisp and specification limits are two
triangular fuzzy numbers.

Example 1 For a special product suppose that the lower and upper specification
limits are considered to be “approximately 4” and “approximately 8”, which are
characterized by Lð2; 4; 6Þ ¼ Tð2; 4; 6Þ 2 FTðRÞ and Uð7; 8; 9Þ ¼ Tð7; 8; 9Þ 2
FTðRÞ; respectively (see the left graph of Fig. 5.1). Assume that the process mean
and the process standard deviation are 6 and 2

3, respectively. Also, let the target
value be equal to 7. By Eq. (5.7) one can easily calculate the fuzzy index
~Cp ¼ T 1

4 ; 1;
7
4

	 

. Therefore, ~Cp is “approximately one”, as shown in the right graph

of Fig. 5.1. Also by Eq. (5.9), one can similarly calculate the fuzzy index
~Cpm ¼ T 1

2
ffiffiffiffi
13

p ; 2ffiffiffiffi
13

p ; 7
2
ffiffiffiffi
13

p
� �

. Moreover, considering Eqs. (5.7–5.10), we can expect

that ~Cpk ¼ ~Cp ¼ T 0:25; 1; 1:75ð Þ and ~Cpmk ¼ ~Cpm ¼ T 0:139; 0:555; 0:971ð Þ which
are drawn in the right graph of Fig. 5.1, since m ¼ l.
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In recent years, some papers have been concentrated on different statistical fields
of fuzzy process which we briefly review them. Moeti et al. (2006) introduced the
fuzzy process capability indices based on LR specification limits. Ramezani et al.
(2011) and Parchami et al. (2006), (2011) constructed several fuzzy confidence
regions for fuzzy PCIs ~Cp and ~Cpm, respectively. Testing the capability of fuzzy
processes are investigated by Parchami and Mashinchi (2009) where specification
limits are triangular fuzzy numbers. Extending other classical and conventional
PCIs are followed by Kaya and Kahraman (2010) based on this method. Also, after
extending this method by Kaya and Kahraman (2008) for trapezoidal fuzzy spec-
ification limits, they applied their extended PCIs to compare several educational and
teaching processes (also see Mashinchi et al. 2005).

5.4 Kaya and Kahraman’s Method and Its Extensions

An another prevalent method for PCIs estimation is constructed on the basis of
Buckley’s estimation approach. Buckley (2004), (2006) propose a general esti-
mation approach to estimate any unknown parameter by a triangular shaped fuzzy
number whose α-cuts are equal to the 100ð1� aÞ% confidence intervals of the
parameter. Recently, several authors used Buckley’s estimation approach to PCIs
estimation by a triangular shaped fuzzy number when both specifications and data
are crisp. Parchami and Mashinchi (2007) estimated classical PCIs Cp, Cpk and Cpm

by Buckley’s approach and they proposed a method for the comparison of the
estimated PCIs. For instance in their approach, the α-cut of the fuzzy estimation for
Cp is equivalent to

Fig. 5.1 The membership functions of fuzzy specification limits (left graph) and the membership
functions of fuzzy process capability indices based on Parchami et al.’s (2005) method (right
graph) in Example 1
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Ĉp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2n�1;a=2

n� 1

s
; Ĉp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2n�1;1�a=2

n� 1

s24 35; 0\a\1; ð5:11Þ

in which Ĉp ¼ USL�LSL
6s is the point estimation of Cp and v2n;a is the α-quantile of

Chi-square distribution with n degrees of freedom. So, the proposed estimations for
PCIs contain both point and interval estimates and so provide more information for
the practitioner. Kahraman and Kaya (2009) introduced fuzzy PCIs for quality
control of irrigation water. Wu (2009) proposed an approach for testing process
performance Cpk based on Buckley’s estimator with crisp data and crisp specification
limits. Also, after introducing Buckley’s fuzzy estimation for capability index, Wu
and Liao (2009) investigated on testing process yield assuming fuzzy critical value
and fuzzy p-value. It must be clarified that both data and specification limits have
considered crisp in two recent works and the presented concepts are also illustrated
in a case study on the light emitting diodes manufacturing process. In this regard,
Kaya and Kahraman (2009) introduced fuzzy robust capability indices and they
evaluated the air pollution’s Istanbul by their fuzzy PCIs. For instance, the α-cut of
the presented fuzzy estimation in Eq. (5.11) modified in their method as follows

Ĉp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2n�1;a=2

n� 1

s
þ Ĉp � Ĉp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2n�1;0:5

n� 1

s0@ 1A;

24
Ĉp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2n�1;1�a=2

n� 1

s
þ Ĉp � Ĉp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2n�1;0:5

n� 1

s0@ 1A35; 0\a� 1:

ð5:12Þ

Example 2 Suppose that the lower and upper specification limits for a product are
L ¼ 4 and U ¼ 8, respectively. By assuming l ¼ 6, we take a random sample
X1; X2; � � � ; X41 from Nð6 ; r2Þ to estimate index Cp and assume that the estimated
process standard deviation is 2=3. According to Eq. (5.11), the α-cut of Parchami
and Mashinchi’s (2007) fuzzy estimation for Cp is equivalent to

ffiffiffiffiffiffiffiffiffiffiffiffi
v240;a=2
40

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v240;1�a=2

40

s24 35; 0\a\1; ð5:13Þ

in which Ĉp ¼ 8�4
6�2

3
¼ 1 is computed. The graph of the membership function of

Parchami and Mashinchi’s (2007) fuzzy estimation is drawn in Fig. 5.2 by line. We
would never expect the classical precise point estimate Ĉp ¼ 1 to be exactly equal to
the parameter value, so we often compute a ð1� aÞ100% confidence interval for Cp.
The fuzzy estimate obtained by this approach contains more information than a point
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or interval estimate, in the sense that the fuzzy estimate contains the point estimate
and all ð1� aÞ100% confidence intervals all at once for 0\a\1, which can be
useful from practical point of view. From Parchami and Mashinchi’s (2007) fuzzy
estimate, one can conclude that the classical crisp estimate Ĉp ¼ 1 belongs to their
fuzzy estimate with grade of membership one. It is obvious that their fuzzy set
containsmore elements other than “1”with corresponding grades ofmembership. For
example, one can says that Ĉp ¼ 0:946 belongs to their fuzzy estimate with grade of
membership 0.68. Meanwhile according to Eq. (5.12), the α-cut of the modified Kaya
and Kahraman’s (2009) fuzzy estimation can be calculated as follows

ffiffiffiffiffiffiffiffiffiffiffiffi
v240;a=2
40

s
þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffi
v240;0:5
40

s0@ 1A;

24 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v240;1�a=2

40

s
þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffi
v240;0:5
40

s0@ 1A35; 0\a� 1;

ð5:14Þ

where v240;0:5 ¼ 39:34 is the median of Chi-square distribution with 40 degrees of
freedom. The graph of the membership function of Kaya and Kahraman’s (2009)
fuzzy estimation is drawn in Fig. 5.2 by dash line.

As another work on this topic, Hsu and Shu (2008) studied on fuzzy estimation of
capability index Cpm to assess manufacturing process capability with imprecise data.
Kaya and Kahraman (2011b) estimated classical capability indices via triangular
shaped fuzzy numbers by replacing Buckley’s fuzzy estimations of process mean and

Fig. 5.2 The membership functions of fuzzy estimate for capability index by Parchami and
Mashinchi (2007) and Kaya and Kahraman’s (2009) methods in Example 2
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process standard deviation. Analyzing fuzzy PCIs followed by Kaya and Kahraman
(2011a) based on fuzzy measurements and also they drawn fuzzy control charts for
fuzzy measurements. Moradi and Sadeghpour-Gildeh (2013) worked on fuzzy
one-sided process capability plots for the family of one-sided specification limits.

5.5 Yongting’s Method and Its Extensions

Yongting (1996), for the first time, defines fuzzy quality by substituting the indi-
cator function Ifxj x2½LSL;USL�g with the membership function of the fuzzy set ~Q,

where the membership function ~QðxÞ represents the degree of conformity of the
measured quality characteristic with standard quality (or briefly, the degree of
quality). Note that by using fuzzy quality idea, the range of quality characteristic
function will be changed from f0; 1g into ½0; 1�, see Fig. 5.3.

Also, Yongting (1996) introduced the capability index

C~pðYÞ ¼
Rþ1

�1
eQðxÞf ðxÞdx continuous random variable

PN
i¼1

eQðxiÞPðxiÞ discrete random variable

8>><>>: ð5:15Þ

based on fuzzy quality for precise data in which f and P are p.d.f. and p.m.f. of the
quality characteristic, respectively. Sadeghpour-Gildeh (2003) compared capability
indices Cp, Cpk and C~pðYÞ with respect to the measurement error occurrence.

Example 3 Suppose that a random sample is taken from an assembly line of a
special product under the normality assumption. The mean and standard deviation
of the observed data are �x ¼ 0:7 and s ¼ 0:15, respectively. First, we consider a
non-symmetric triangular fuzzy quality with the following membership function for
product (see Fig. 5.4)

Fig. 5.3 Characterized classical quality with the indicator function of non-defective products (left
figure), and characterized fuzzy quality with the fuzzy set of non-defective products (right figure)
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eQtðxÞ ¼
x�0:2
0:6 if 0:2� x\0:8

1:1�x
0:3 if 0:8� x\1:1
0 elsewhere:

8<:
In this situation, one can estimate Yongting’s capability index by Eq. (5.15) as

follow

dC~p ðYÞ ¼
Zþ1

�1

fQt ðxÞbf ðxÞdx
¼ 1ffiffiffiffiffiffi

2p
p

s

Zþ1

�1

fQt ðxÞ exp �ðx� xÞ2
2s2

 !
dx

¼ 1

0:15
ffiffiffiffiffiffi
2p

p
Z0:8
0:2

x� 0:2
0:6

exp �ðx� 0:7Þ2
2� 0:152

 !
dx

24
þ
Z1:1
0:8

1:1� x
0:3

exp �ðx� 0:7Þ2
2� 0:152

 !
dx

35
¼0:543þ 0:178 ¼ 0:721:

Fig. 5.4 The membership functions of triangular and trapezoidal fuzzy qualities and the estimated
probability density function of the quality characteristic in Example 3
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Now, let us to consider a trapezoidal fuzzy quality with the following membership
function for this product

eQtrðxÞ ¼
x�0:3
0:3 if 0:3� x\0:6
1 if 0:6� x\0:9
1:1�x
0:2 if 0:9� x\1:1
0 elsewhere:

8>><>>:
Similarly, one can estimate Yongting’s capability index as follow

dC~p ðYÞ ¼ 1ffiffiffiffiffiffi
2p

p
s

Zþ1

�1

fQtr ðxÞ exp �ðx� xÞ2
2s2

 !
dx

¼ 1

0:15
ffiffiffiffiffiffi
2p

p
Z0:6
0:3

x� 0:3
0:3

exp �ðx� 0:7Þ2
2� 0:152

 !
dx

24
þ
Z0:9
0:6

exp �ðx� 0:7Þ2
2� 0:152

 !
dxþ

Z1:1
0:9

1:1� x
0:2

exp �ðx� 0:7Þ2
2� 0:152

 !
dx

35
¼0:178þ 0:656þ 0:060 ¼ 0:894:

Therefore, the process is more capable under considering the trapezoidal fuzzy
quality eQtr with respect to considering the triangular fuzzy quality eQt:

Amirzadeh et al. (2009) constructed a new control chart based on Yongting’s
fuzzy quality, and meanwhile they shown that the developed control chart has a
better response to variations in both the mean and the variance of the process.
Parchami and Mashinchi (2010) proved that Yongting’s introduced PCI is an
extension for the probability of the product is qualified. Therefore, his capability
index is not a suitable extension for Cp index, since Cp is not a probability and is
not always in [0,1]. Then, Parchami and Mashinchi (2010) presented the revised
version of Yongting’s fuzzy quality on the basis of two fuzzy specification limitsgLSL and gUSL which are able to characterize two non-precise concepts of “ap-
proximately bigger than” and “approximately smaller than” in a fuzzy process,
respectively. An instance for fuzzy quality is depicted in Fig. 5.6 in which the fuzzy
quality is characterized by two membership functions of fuzzy specification limitsgLSL and gUSL. Figure 5.5 is shown as an instance of the classical quality by
characterizing two indicator functions Ifxj x�LSLg and Ifxj x�USLg: Note that equationeQ ¼ gUSL \gLSL, or equivalently eQðxÞ ¼ minfgUSLðxÞ ; gLSLðxÞg, presents the
governed relation between membership functions of fuzzy specification limits in
Fig. 5.6 and the membership function of Yongting’s fuzzy quality in the right graph
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of Fig. 5.3. Similarly, Ifxj x2½LSL;USL�gðxÞ ¼ minfIfxj x�USLgðxÞ ; Ifxj x� LSLgðxÞg pre-
sents the relation between depicted indicator functions in Fig. 5.5 and depicted
indicator function of classical quality ½LSL ; USL� in the left graph of Fig. 5.3.

Motivations and merits of using fuzzy quality by considering fuzzy specification

limits gLSL and gUSL, instead of applying classical quality are discussed in Parchami
et al. (2014a). Parchami and Mashinchi (2010) introduced an extended version for
traditional PCIs to present an alternative approach to measure the capability based
on two new revised fuzzy specification limits. Their extended PCIs are used to give
a numerical measure about whether a production method is capable of producing

items within the fuzzy specification limits gLSL and gUSL: This new idea, provides a
new methodology for measuring the fuzzy quality and also constructing confidence
intervals for various PCIs, for example see Parchami and Mashinchi (2011). As an
extended version of Yongting’s index, Sadeghpour-Gildeh and Moradi (2012)
proposed a general multivariate PCI based on fuzzy tolerance region which has not
some of restriction of conventional PCIs. Another generalized version of the
classical PCIs (1-4) is introduced by Parchami et al. (2014b) to measure the
capability of a fuzzy-valued process in producing products based on fuzzy quality.

Fig. 5.5 Characterized classical quality with two indicator functions of “bigger than USL” (left
figure) and “smaller than USL” (right figure)

Fig. 5.6 Characterized fuzzy quality with two membership functions of “approximately bigger
than” (left figure) and “approximately smaller than” (right figure)
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5.6 Conclusions and Future Research Directions

Traditional process capability indices are based on crispness of data, parameters,
lower and upper specification limits, target value, and so on. As there are many
different situations in which the above assumptions are rather unjustified and
unrealistic. This chapter is including the classification of most essential researches
on process capability indices extension for applying in fuzzy environment. After
presenting the basic idea of the main works, all related studies briefly overviewed in
each category. Also, some numerical examples are investigated to show how the
proposed methods can be implemented in real-world cases. Some potential subjects
for further research are presented in follow: (1) extending other non-extended
capability indices in each category; (2) study on alternative approaches for point
and interval estimation of the extended capability indices for each category;
(3) construct statistical testing fuzzy quality based on Bayes, Minimax, Neyman–
Pearson, Likelihood ratio, sequential and p-value approaches; (4) applying the
extended capability indices and the presented methods in real-world cases.

Acknowledgments The authors would like to thank the referees and Professor C. Kahraman for
their constructive suggestions and comments.
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Chapter 6
An Integrated Framework to Analyze
the Performance of Process Industrial
Systems Using a Fuzzy and Evolutionary
Algorithm

Harish Garg

Abstract In the design of critical combinations and complex integrations of large
engineering systems, their reliability, availability and maintainability
(RAM) analysis of the inherent processes in the system and their related equipments
are needed to be determined. Although there have been tremendous advances in the
art and science of system evaluation, yet it is very difficult to assess these param-
eters with a very high accuracy or precision. Basically, this inaccuracy in assess-
ment stems mainly from the inaccuracy of data, lack of exactness of the models and
even from the limitations of the current methods themselves and hence management
decisions are based on experience. Thus the objective of this chapter is to present a
methodology for increasing the performance as well as productivity of the system
by utilizing these uncertain data. For this an optimization problem is formulated by
considering RAM parameters as an objective function. The conflicting nature
between the objectives is resolved by defining their nonlinear fuzzy goals and then
aggregate by using a product aggregator operator. The failure rates and repair times
of all constituent components are obtained by solving the reformulated fuzzy
optimization problem with evolutionary algorithms. In order to increase the per-
formance of the system, the obtained data are used for analyzing their behavior
pattern in terms of membership and non-membership functions using intuitionistic
fuzzy set theory and weakest t-norm based arithmetic operations. A composite
measure of RAM parameters named as the RAM-Index has been formulated for
measuring the performance of the system and hence finding the critical component
of the system based on its performance. Finally the computed results of the pro-
posed approach have been compared with the existing approaches for supremacy
the approach. The suggested framework has been illustrated with the help of a case.
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6.1 Introduction

Today’s competitive business environment requires manufacturers to design,
develop, test, manufacture, and deploy high-reliability products in less time at lower
cost. For achieving this, billions of dollars are being spent annually worldwide to
develop reliable and efficient products. With the advance in technology, a designer
always wants to manufacture the equipment and systems of greater capital cost,
complexity and capacity which results in increasing the reliability of the system.
Also at the same time the unfortunate penalty of low availability and high main-
tenance cost need to be improved for their survival. Thus, for this reason, there is a
growing interest in the investigations of the reliability, availability and maintain-
ability (RAM) principles in various industrial systems during last decades which
affects on the system performance directly. A brief literature review regarding the
reliability/availability evaluation using evolutionary as well as fuzzy methodology
is given below.

6.1.1 Reliability/Availability Analysis Using Evolutionary
Algorithm

With the advances in technology and need of the modern society, the job of the
system analyst and plant personnel becomes so challenging in order to maintain the
profile of the system so that it becomes operating continuously for a longer time.
This is happening so because failure is an inevitable phenomenon for all industrial
systems. Therefore, it is difficult, if not impossible, to construct their mathematical
and statistical model so as to reduce the number of likelihood failures. Thus there is
a need of developing a suitable methodology for analyzing the performance of the
complex systems so that necessary action should be initiated for enhancing the
performance as well as achieving the goal of higher targets. For this, generally,
system performance can be improved either by incremental improvements of
component reliability/availability or by provision of redundant components in
parallel; both methods result in an increase in system cost. Traditionally analytical
and Monte-Carlo simulation techniques have been used for analyzing the system
reliability. While analytical techniques are potentially faster, they tend to get dif-
ficult as system size and complexity increases. Monte Carlo methods, on the other
hand, afford tremendous modeling flexibility, and can be used for systems with
large size and complexity. However, Monte Carlo methods tend to be extremely
time consuming, particularly for reliable systems. Therefore, optimization methods
are necessary to obtain allowable costs at the same time as high availability levels.
Extensive reliability design techniques have been introduced by the researchers
during the past two decades for solving the optimization problem on the specific
applications. Comprehensive overviews of these models have been addressed in
Gen and Yun (2006), Kuo et al. (2001).
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As demonstrated in the literature, the aforementioned optimization techniques
are successfully applied to various reliability optimization problems and show a
significant difference in getting an optimal or near optimal solution. However, the
previously-developed algorithms, as stochastic optimization techniques, heuristic
algorithm have some weakness such as the lower robustness, premature conver-
gence of the solution, not using a prior knowledge, not exploiting local search
information, difficultly in dealing with large scale reliability problems. Also, the
heuristic techniques require derivatives for all non-linear constraint functions that
are not derived easily because of the high computational complexity. To overcome
this difficulty metaheuristics/evolutionary algorithms have been selected such as
Genetic Algorithm (GA) (Goldberg 1989; Holland 1975), Particle Swarm opti-
mization (PSO) (Eberhart and Kennedy 1995; Kennedy and Eberhart 1995),
Artificial bee colony (ABC) (Karaboga 2005; Karaboga and Akay 2009; Karaboga
and Basturk 2007) etc., and have proved itself to be able to approach the optimal
solution against these problems.

In that direction, Bris et al. (2003) attempted to optimize the maintenance policy,
for each component of the system, minimizing the cost function, with respect to the
availability constraints using genetic constraints. Barabady and Kumar (2005a, b)
had presented a methodology for improving the availability of a repairable system
by using the concept of important measures. The empirical data of two crushing
plants at the Jajarm bauxite mine of Iran are used as a case study for reliability and
availability analysis. Zavala et al. (2005) proposed a PSO-based algorithm, to solve
a bi-objective redundant reliability problem with the aim of maximizing the system
reliability, and minimizing redundant components’ cost for three types of systems
as series, parallel, and k-out-of-N systems. Juang et al. (2008) proposed a genetic
algorithm based optimization model to optimize the availability of a series parallel
system where the objective is to determine the most economical policy of com-
ponent’s MTBF and MTTR. Liberopoulos and Tsarouhas (2002) presented a case
study of chipitas food processing system, based on the simplified assumption that
the failure and repair times of the workstations of the lines have exponential dis-
tributions. Kumar et al. (2007) developed an optimization model for optimizing the
reliability, maintainability and supportability under performance based logistics
using goal programming. Their model simultaneously considered multiple system
engineering metrics during the design stage of the product development. Khan et al.
(2008) presented a two step risk-based methodology to estimate optimal inspection
and maintenance intervals which maximize the system’s availability. Sharma and
Kumar (2008) presented the application of RAM analysis in a process industry by
using a Markovian approach as a tool to model the system behavior. Rajpal et al.
(2006) explored the application of artificial neural networks to model the behavior
of a complex, repairable system. A composite measure of RAM parameters called
as the RAM—Index has been proposed for measuring the system performance by
simultaneously considers all the three key indices which influence the system
performance directly. Their index was static in nature while Garg et al. (2012, 2013)
introduced RAM-Index which was time dependent and used historical uncertain
data for its evolution. Yeh et al. (2011) presented an approximate model for
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predicting the network reliability by combining the ABC algorithm and Monte
Carlo simulation. Yeh and Hsieh (2011) and Hsieh and Yeh (2012) presented a
penalty guided artificial bee colony algorithm to solve system reliability redundancy
allocation problems with a mix of components. Garg and Sharma (2012) had
discussed the two-phase approach for analyzing the reliability and maintainability
analysis of the industrial system. The crankcase unit of the two wheeler manu-
facturing industry has been taken as an illustrative example and gave a recom-
mendation to the system analyst. Garg and Sharma (2013) have investigated the
multi-objective reliability-redundancy allocation problem by using PSO and GA
while Garg et al. (2012, 2014) have solved the reliability optimization problem with
ABC algorithm and compared their performance with other evolutionary algorithm.

6.1.2 Reliability Analysis Using a Fuzzy Algorithm

Engineering systems are usually complex, involve a lot of detail, and operate in
unpredictable environments which leads to the job of system analysts has become
more challenging, as they have to study, characterize, measure and analyze the
uncertain systems’ behavior, using various techniques, which require the compo-
nent failure and repair pattern. Further, age, adverse operating conditions and the
vagaries of the system, affect each unit of the system differently. Thus, one comes
across the problem of uncertainty in reliability assessment. To this effect, fuzzy-
theoretic approach (Zadeh 1965) has been used to handle the subjective information
or uncertainties during the evaluation of the reliability of a system than the prob-
abilistic approach. After their successful applications, a lot of progress has been
made in both theory and application and hence several researches were conducted
on the extensions of the notion of fuzzy sets. Among these extensions the one that
have drawn the attention of many researches during the last decades is the theory of
intuitionistic fuzzy sets (IFS) introduced by Attanassov (1986, 1989). The concepts
of IFS can be viewed as an appropriate/alternative approach to define a fuzzy set in
the case where available information is not sufficient for the definition of an
imprecise concept by means of a conventional fuzzy set. IFS add an extra degree to
the usual fuzzy sets in order to model hesitation and uncertainty about the mem-
bership degree of belonging. In fuzzy sets, the degree of acceptance is considered
only but IFS is characterized by a membership function and a non-member function
so that the sum of both values is less than or equal to one. Gau and Buehrer (1993)
extended the idea of fuzzy sets by vague sets. Bustince and Burillo (1996) showed
that the notion of vague sets coincides with that of IFSs. Therefore, it is expected
that IFSs could be used to simulate any activities and processes requiring human
expertise and knowledge, which are inevitably imprecise or not totally reliable. As
far as reliability field is concerned, IFSs has been proven to be highly useful to deal
with uncertainty and vagueness, and a lot of work has been done to develop and
enrich the IFS theory given in Chang et al. (2006), Chen (2003), Garg and Rani
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(2013), Garg et al. (2014), Kumar et al. (2006) Kumar and Yadav (2012) Taheri and
Zarei (2011) and their corresponding references.

All the above researchers have used only reliability index during their analysis.
But it is quite common that other reliability parameters such as failure rate, repair
time, mean time between failures (MBTF) etc. are simultaneously affect the system
behavior and hence on its performance. This idea is highlighted by Knezevic and
Odoom (2001) and Garg (2013) in the fuzzy and intuitionistic fuzzy set theory
respectively. In their approaches, system are modeled with the help of Petri nets and
uncertainties which are present in the data are handled with the help of triangular
fuzzy numbers and hence various reliability parameters of interest are computed in
the form of membership and nonmembership functions. But it has been analyzed
from their study that their approach is limited to a small size structural system. Thus
when their approaches are applied to a complex structural system then the com-
puted reliability indices contains a wide range of uncertainties in the form of
support (spread) (Garg et al. 2013; Garg and Sharma 2012). This is due to the use of
various fuzzy arithmetic operations involved in the analysis. Thus these approaches
are no longer suitable for constructing the membership functions of IFS and hence
do not give the accurate trend of the system as the uncertainty level increases.
Therefore, there is a need of suitable methodology that can be used for computing
the membership function of the reliability index up to a desired degree of accuracy.
For this, by taking the advantages of evolutionary algorithms, the formulated
reliability optimization problem has been solved with the Cuckoo search algorithm
and compares their results with other algorithms. Since most of the collected data
are imprecise and vague, so increase the relevance of the study, the obtained desired
parameters are represented in the form of fuzzy numbers by taking different level of
uncertainties. Based on these numbers, an analysis has been conducted for finding
the most critical component of the system so that proper maintenance actions
should be implemented for increasing the performance of the system.

Thus in the nutshell, the motive of this chapter is to devise a method to chalk out
the performance measures of any repairable system by utilizing limited, vague and
imprecise data. For this, the methodology has been proposed which is an amalgam
of two techniques, EAs and intuitionistic fuzzy set theory, which can be described
in stepwise as, (i) develop an optimization model by considering reliability,
availability and maintainability of the system. The conflict naturalists between the
objectives are resolved with the help of defining their fuzzy goals by using a
nonlinear (sigmoidal) functions) (ii) obtain optimal MTBF and MTTR for the main
component of the system using EAs and optimize the reliability parameters, and
(iii) use their optimal parameters for computing various performance measures such
as failure rate, repair time, ENOF etc. by using intuitionistic fuzzy set theory and
weakest t-norm based arithmetic operations. Sensitivity analysis has been con-
ducted on system MTBF for various combinations of reliability parameters. Finally,
a composite measure of RAM parameters called RAM-Index has been used for
finding the critical components of the system based on their variations of failure rate
and repair time individually as well as simultaneously on its index. Results obtained
from proposed technique are compared with the existing fuzzy and intuitionistic
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fuzzy set theory result. Plant personnel may use the results and can give guidelines
to improve the system’s performance by adopting suitable maintenance strategies.
An example of the washing unit in a paper mill is taken into account to demonstrate
the proposed approach.

6.2 Overview of IFS and EAs

A brief overview about the intuitionistic fuzzy set theory (IFS) and evolutionary
algorithm (EA) have been given here.

6.2.1 Intuitionistic Fuzzy Set Theory

Intuitionistic fuzzy set (IFS) is one of the widely used and successful extension of
the concept of fuzzy set. In order to model the hesitation and uncertainty about the
degree of membership, Atanassov in (1986) add an extra degree, called as degree of
non-membership, to the notion of the fuzzy set. Mathematically, if we define X be a
universe of discourse then

~A ¼ f\x;l~AðxÞ; m~AðxÞ[ jx 2 Xg ð6:1Þ

where l~A; m~A : X ! ½0; 1� be the degree of membership and nonmembership of the
element x in the fuzzy set ~A, respectively such that l~AðxÞþ m~AðxÞ� 1. The function
p~AðxÞ ¼ 1� l~AðxÞ � m~AðxÞ is called the degree of hesitation or uncertainty level of
the element x in the set ~A. Especially, if p~AðxÞ ¼ 0 for all x 2 X, then the IFS is
reduced to a fuzzy set.

ða; bÞ–cut of the IFS set is defined as

Aða;bÞ ¼ fx 2 X j l~AðxÞ� a and m~AðxÞ� bg ð6:2Þ

In other words, Aða;bÞ ¼ Aa \Ab where Aa ¼ fx 2 X j l~AðxÞ� ag and
Ab ¼ fx 2 Xjm~AðxÞ� bg

Definition: Convex Intuitionistic fuzzy set An IFS ~A in universe X is convex if
and only if membership functions of l~AðxÞ and m~AðxÞ of ~A are fuzzy—convex and
fuzzy—concave respectively i.e.,

l~Aðkx1 þð1� kÞx2Þ�minðl~Aðx1Þ; l~Aðx2ÞÞ8x1; x2 2 U; 0� k� 1 ð6:3Þ
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and

m~Aðkx1 þð1� kÞx2Þ�maxðm~Aðx1Þ; m~Aðx2ÞÞ8x1; x2 2 U; 0� k� 1 ð6:4Þ

Definition: Normal Intuitionistic fuzzy set Let ~A be an IFS with universe R,
then ~A is said to be normalized if there exist at least two points x1; x2 2 R such that
l~Aðx1Þ ¼ 1 and m~Aðx2Þ ¼ 1 otherwise it is said to subnormal IFS.

Definition: Intuitionistic fuzzy number (IFN) An IFN ~A is a normal, convex
membership function on the real line R with bounded support i.e. fx 2 Xjm~AðxÞ\1g
is bounded and l~A is upper semi-continuous and m~A is lower semi-continuous. Let ~A
be IFS denoted by ~A ¼ \½ða; b; cÞ; l; m�[ , where a; b; c 2 R then the set ~A is said
to be triangular intuitionistic fuzzy number (TIFN) if its membership function is
given by

l~AðxÞ ¼

l x�a
b�a

� �
; a� x� b

l; x ¼ b

l c�x
c�b

� �
; b� x� c;

0 otherwise

8>>><
>>>:

;

1� m~AðxÞ ¼

ð1� mÞ x�a
b�a

� �
; a� x� b

1� m; x ¼ b

ð1� mÞ c�x
c�b

� �
; b� x� c

0; otherwise

8>>><
>>>:

where the parameter b gives the modal values of A and a; c are the lower and upper
bounds of available area for the evaluation data. A triangular vague set defined by
the triplet ða; b; cÞ with a-cuts, given in Fig. 6.1 is defined below for membership
and non-membership functions respectively.

cuts-a

1

1 – v

aa acaa aca b c

A
~

μ

Fig. 6.1 Representation of a-
cut of the IFS set
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Aa ¼ ½aa; ca� and Aa ¼ ½aa; ca� ð6:5Þ

Here aa; aa are the increasing functions, ca; ca are decreasing functions of cut set
given as follows.

aa ¼ aþ a
li
ðb� aÞ; aa ¼ aþ a

1� mi
ðb� aÞ

ca ¼ c� a
li
ðc� bÞ; ca ¼ c� a

1� mi
ðc� bÞ

Definition: T-norm and weakest t-norm A triangular norm (t-norm) T is a
binary operation on ½0; 1�, i.e. a function T : ½0; 1�2 ! ½0; 1� such that (i) T is
associative, (ii) T is commutative, (iii) T is nondecreasing, and (iv) T has 1 as a
neutral element such that Tðx; 1Þ ¼ x for each x 2 ½0; 1�.

A t-norm is called the weakest t—norm iff

Tðx; yÞ ¼ 0; maxðx; yÞ\1
minðx; yÞ; otherwise

�
ð6:6Þ

The basic arithmetic operations i.e. addition, subtraction, multiplication and
division of IFNs depends upon the arithmetic of the interval of confidence. The four
main basic arithmetic operations for the n triangular IFSs using Tx—based
approximate intuitionistic fuzzy arithmetic operations and with a—cuts arithmetic
operations on triangular fuzzy numbers (TFNs), with l ¼ minðliÞ and m ¼ maxðmiÞ,
are defined as follow.

1. Addition of Tw �ð Þ

~A1 �a
Tw � � � �a

Tw
~An ¼

½Pn
i¼1

aðaÞi1 ;
Pn
i¼1

aðaÞi3 � if ~Ai 2 TFNs

Pn
i¼1

ai2 � max
1� i� n

ðai2 � aðaÞi1 Þ
� �

;

�
Pn
i¼1

ai2 þ max
1� i� n

ðaðaÞi3 � ai2Þ
� ��

otherwise

8>>>>>><
>>>>>>:

ð6:7Þ
2. Subtraction of Tw �ð Þ:

~A1�a
Tw � � � �a

Tw
~An ¼

½aðaÞ11 �Pn
i¼2

aðaÞi3 ; aðaÞ13 �Pn
i¼2

aðaÞi1 � if ~Ai 2 TFNs

a12 �
Pn
i¼2

ai2 � max
1� i� n

ðai2 � aðaÞi1 Þ
� �

;

�

a12 �
Pn
i¼2

ai2 þ max
1� i� n

ðaðaÞi3 � ai2Þ
� ��

otherwise

8>>>>>><
>>>>>>:

ð6:8Þ
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3. Multiplication of Tw 	ð Þ: Here, multiplication of the approximate fuzzy oper-
ations are shown for ~Ai 2 R

þ

~A1 	a
Tw � � � 	a

Tw
~An ¼

Qn
i¼1

aðaÞi1 ;
Qn
i¼1

aðaÞi3

� �
if ~Ai 2 TFNs

Qn
i¼1

ai2 � max
1� i� n

ðai2 � aðaÞi1 Þ Qn
j ¼ 1
j 6¼ i

aj2

0
BBBB@

1
CCCCA;

2
66664

Qn
i¼1

ai2 þ max
1� i� n

ðaðaÞi3 � ai2Þ
Qn

j ¼ 1
j 6¼ i

aj2

0
BBBB@

1
CCCCA

3
77775 otherwise

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð6:9Þ
4. Division of Tw øð Þ: Here, division of the approximate fuzzy operations are

shown for ~Ai 2 R
þ

~A1ø
a
Tw � � � øaTw ~An ¼ ~A1 	a

Tw

1
~A2
� � � 	a

Tw

1
~An
; if 0 62 ~Ai; i� 2 ð6:10Þ

6.2.2 Evolutionary Algorithms: GA, PSO, ABC, CS

6.2.2.1 Genetic Algorithm

Genetic Algorithms (GAs) (Goldberg 1989; Holland 1975) are adaptive heuristic
search algorithms introduced in the evolutionary themes of natural selection. The
fundamental concept of the GA design is to model processes in a natural system
that is required for evolution, specifically those that follow the principles posed by
Charles Darwin to find the survival of the fittest. GAs constitutes an intelligent
development of a random search within a defined search space to solve a problem.
GAs was first pioneered by John Holland in the 1960s, and has been widely studied,
experimented, and applied in numerous engineering disciplines. GAs was intro-
duced as a computational analogy of adaptive systems. They are modeled loosely
on the principles of the evolution through natural selection, employing a population
of individuals that undergo selection in the presence of variability-inducing oper-
ators such as mutation and recombination (crossover). A fitness function is used to
evaluate individuals, and reproductive success varies with fitness. The pseudo code
of the GA algorithm is described in Algorithm 1:
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Algorithm 1 Pseudo code of Genetic algorithm (GA)
1: Objective function: f (x)
2: Define Fitness F (eg. F f(x) for maximization)
3: Initialize population
4: Initial probabilities of crossover (pc) and mutation (pm)
5: repeat
6: Generate new solution by crossover and mutation
7: if pc >rand, Crossover; end if
8: if pm >rand, Mutate; end if
9: Accept the new solution if its fitness increases.

10: Select the current best for the next generation.
11: until requirements are met

6.2.2.2 Particle Swarm Optimization Algorithm

In 1995, Eberhart and Kennedy (1995), Kennedy and Eberhart (1955) developed
PSO, a population based on stochastic optimization strategy, inspired by social
behavior of a flock of birds, schools of fish, a swarm of bees and even sometimes
social behavior of human. Though PSO is similar to Genetic Algorithms (GA) in
terms of population initialization with random solutions and searching for global
optima in successive generations, PSO does not undergo crossover and mutation,
whereas the particles move through the problem space following the current opti-
mum particles. The underlying concept is that, for every time instant, the velocity of
each particle also known as the potential solution, changes between its personnel
best (pbest) and global best (gbest) locations. Mathematically, swarm of particles is
initialized randomly over the search space and move through D—dimensional
space to search new solutions. Let xik and vik respectively be the position and
velocity of ith particle in the search space at kth iteration then the position of this
particle at ðkþ 1Þth iteration is updated through the equation,

xikþ 1 ¼ xik þ vikþ 1 ð6:11Þ

where vikþ 1 is the updated velocity vector of ith particle at ðkþ 1Þth iteration and
are adjusted according to their swarm own experience and that of its neighbors and
are given as follow.

vikþ 1 ¼ w � vik|ffl{zffl}
inertia

þ c1 � r1 � ðpik � xikÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
personal influence

þ c2 � r2 � ðpgk � xikÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
social influence

ð6:12Þ

where vik is the velocity vector at kth iteration, r1 and r2 represent random numbers
between 0 and 1; pik represents the best ever position of ith particle, and pgk cor-
responds to the global best position in the swarm up to kth iteration.
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The essential steps of the particle swarm optimization can be summarized as the
pseudo code given in Algorithm 2.

Algorithm 2 Pseudo code of Particle swarm optimization (PSO)
1: Objective function: f (x), x = (x1,x2, . . . ,xD);
2: Initialize particle position and velocity for each particle and set k = 1.
3: Initialize the particle’s best known position to its initial position i.e. pik = xik.
4: repeat
5: Update the best known position (pik) of each particle and swarm’s best known position (pgk ).
6: Calculate particle velocity according to the velocity equation (12).
7: Update particle position according to the position equation (11).
8: until requirements are met.

6.2.2.3 Artificial Bee Colony Algorithm

The artificial bee colony (ABC) optimization algorithm was first developed by
Karaboga in 2005. Since then Karaboga and Basturk and their coauthors (2005),
Karaboga and Akay (2009) have systematically studied the performance of the
ABC algorithm and its extension on unconstrained optimization problems. In ABC
algorithm, the bees in a colony are divided into three groups: employed bees
(forager bees), onlooker bees (observer bees) and scouts. For each food source,
there is only one employed bee. That is to say, the number of employed bees is
equal to a number of food sources. The employed bee of a discarded food site is
forced to become a scout for searching new food source randomly. The whole
process of the algorithm may also be explained through the Algorithm 2.2.3. In this,
the first stage is the initialization stage in which food source positions are randomly
selected by the bees and their nectar amounts (i.e. fitness function, f ) is determined.
Then, these bees come into the hive and share the nectar information of the sources
with the bees waiting for the dance area with a probability ph ¼ fh=

PN
h¼1 fh where

N is the number of food sources and fh ¼ f ðxhÞ is the amount of nectar evaluated by
its employed bee. After a solution is generated, that solution is improved by using a
local search process called greedy selection process carried out by an onlooker and
employed bees and is given by

Zhj ¼ xhj þ/ðxhj � xkjÞ ð6:13Þ

where k 2 f1; 2; . . .;Ng and j 2 f1; 2; . . .;Dg are randomly chosen index such that
k is different from h and / is a random number between ½�1; 1� and Zh is the
solution in the neighborhood of xh. Here, except for the selected parameter j, all
other parametric value of Zh are same as that of xh. If a particular food source
solution does not improve for a predetermined iteration number then it becomes a
scout and hence discovers a new food source with the randomly generated food
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source within its domain. So this randomly generated food source is equally
assigned to this scout and changing its status from scout to employ and hence other
iteration/cycle of the algorithm begins until the termination condition, maximum
cycle number (MCN) or relative error, is not satisfied.

Algorithm 3 Pseudo code of Artificial Bee Colony (ABC) optimization
1: Objective function: f (x), x = (x1,x2, . . . ,xD);
2: Initialization Phase
3: repeat
4: Employed Bee Phase
5: Onlooker Bee Phase
6: Scout Bee Phase
7: Memorize the best position achieved so far.
8: until requirements are met.

6.2.2.4 Cuckoo Search Algorithm

CS is a meta-heuristic search algorithm which has been proposed recently by Yang
and Deb (2009) getting inspired from the reproduction strategy of cuckoos. At the
most basic level, cuckoos lay their eggs in the nests of other host birds, which may
be of different species. The host bird may discover that the eggs are not its own so it
either destroys the eggs or abandons the nest all together. This has resulted in the
evolution of cuckoo eggs which mimic the eggs of local host birds. CS is based on
three idealized rules:

(i) Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest.
(ii) The best nests with high quality of eggs (solutions) will carry over to the next

generations.
(iii) The number of available host nests is fixed, and a host can discover an alien

egg with a probability pa 2 ½0; 1�. In this case, the host bird can either throw
the egg away or abandon the nest so as to build a completely new nest in a
new location.

To make the things even more simple, the last assumption can be approximated
by the fraction of pa of n nests that are replaced by new nests with new random
solutions. The fitness function of the solution is defined in a similar way as in other
evolutionary techniques. In this technique, egg presented in the nest will represent
the solution while the cuckoo egg represent the new solution. The aim is to use the
new and potentially better solutions (cuckoos) to replace worse solutions that are in
the nests. Based on these three rules, the basic steps of the cuckoo search is
described in Algorithm 4.
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Algorithm 4 Pseudo code of Cuckoo Search (CS)
1: Objective function: f (x), x = (x1,x2, . . . ,xD);
2: Generate an initial population of n host nests xi ; i= 1,2, . . . ,N;
3: While (t < MaxGeneration) or (stop criterion)
4: Get a cuckoo randomly (say, i)
5: Generate a new solution by performing Lévy flights;
6: Evaluate its fitness fi
7: Choose a nest among n (say, j) randomly;
8: if ( fi > f j)
9: Replace j by new solution

10: end if
11: A fraction(pa) of the worse nests are abandoned and new ones are built;
12: Keep the best solutions/nests;
13: Rank the solutions/nests and find the current best;
14: Pass the current best solutions to the next generation;
15: end while

The new solution xðtþ 1Þ
i of the cuckoo search is generated, from its current

location xti and probability of transition, with the following equation

xðtþ 1Þ
i ¼ xðtÞi þ a� L�evyðkÞ ð6:14Þ

where a; ða[ 0Þ represents a step size and we can use a ¼ OðL=10Þ where L is the
characteristic scale of the problem of interest. This step size should be related to the
problem specification and t is the current iteration number. The product � repre-
sents entry-wise multiplications as similar to other evolutionary algorithms like
PSO but random walk via Lévy flight is much more efficient in exploring the search
space as its step length is much longer in the long run.

The Lévy flight essentially provides a random walk whose random step length
drawn from a Lévy distribution

L�evy
 u ¼ t�k; ð1\k� 3Þ ð6:15Þ

which has an infinite variance with an infinite mean. Here the steps essentially form
a random walk process with a power-law step length distribution with a heavy tail.

6.3 Methodology

The present methodology is divided into two folds for analyzing the behavior of an
industrial system. In the first fold, optimal design parameters for system perfor-
mance has been computed by formulating and solving reliability optimization
model with EAs. On the other hand, second fold deals with the determination of the
various reliability parameters by using the obtained optimal desired parameters—
MTBF and MTTR in terms of membership and non-membership functions of IFS.
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The following tools are adopted for this purpose, which may give better results
(closer to real conditions)

• The reliability optimization model has been constructed for optimal design of
systems parameters i.e. MTBF and MTTR by considering reliability, availability
and maintainability functions as an objective.

• Sigmoidal membership functions has been used for handling the conflictness
between the objectives.

• CS is used for finding the optimal (or near to) values as it always give a global
solution as compared to other EAs.

• For increasing the efficiency of the methodology, the weakest t-norm based
arithmetic operations has been used for computing the various reliability
parameters in terms of membership functions.

• Sensitivity and performance analysis of the components of the system has been
addressed for ranking the components as per preferential order for increasing the
productivity of the system

The strategy followed through this approach is shown by the flow chart in
Fig. 6.2 and both the phases are described as below under the following
assumptions.

(i) component failure and repair rates are statistically independent, constant and
obey exponential distribution.

(ii) after repair, the repaired component is considered as good as new.
(iii) separate maintenance facility is available for each component
(iv) standby units are of the same nature and capacity as the active unit.
(v) system structure is precisely known.

Extraction of information from
historical records

available data
system reliability analysts

Integrate
the

information
in the form
of systems
MTBF &
MTTR

Obtain
approximate
expressions
of reliability
parameters

Obtain
membership and
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corresponding to
each objective

function

Construct the fuzzy
reliability

optimization problem

Solve the model
using EAs 

Obtain the optimal
design

parameters-MTBF &
MTTR

Behavior

Sensitivity

Performance

A
N
A
L
Y
S
I
S

Fig. 6.2 Flow chart of the methodology
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6.3.1 Obtaining the Optimal Values of Design Parameters

The main motive of this fold is to compute the design parameters—MTBF and
MTTR—of each component of the system so that the design efficiency will be
maximized. System reliability, maintainability and availability have assumed great
significance in recent years due to a competitive environment and overall operating
and production costs. Performance of equipment depends on the reliability and
availability of the equipment used, operating environment, maintenance efficiency,
operation process and technical expertise of operators, etc. When the reliability and
availability of systems are low, efforts are needed to improve them by reducing the
failure rate or increasing the repair rate for each component or subsystem. Thus,
reliability, availability and maintainability are the important key features for
keeping the production and productivity of the system high. The given industrial
system is divided into its constituent components and based on the reliability block
diagram (RBD), the expressions for the availability, failure rate and repair rates are
obtained from Birolini (2007). The basic parameters for series and parallel system
are shown in Table 6.1. In this table, ki and li represent respectively the failure and
repair rates for the ith component of system while ks and ls represent the same for
system’s. Avs and Avi represent the system and ith component availability. Based on
the expressions in Table 6.1, the approximate reliability Rsð Þ, availability Avsð Þ and
maintainability Msð Þ expression for the system can be written as:

Rs ¼ expð�kstÞ ð6:16Þ

Avs ¼ f ðMTBF1; . . .MTBFn;MTTR1; . . .MTTRnÞ ð6:17Þ

Ms ¼ 1� expð�lstÞ ð6:18Þ

The conflict between the objectives (ft’s) are resolved by defining their fuzzy
goals corresponding to ftðxÞ�mt and ftðxÞ�Mt where mt and Mt are the lower and
upper bound of the objective functions respectively. For defining of this, we make
use of the standard logarithm sigmoid function wðaÞ ¼ 1

1þ e�a and arbitrarily take the

Table 6.1 Basic parameters of availability for series-parallel systems

Type of system Expression

Series configuration Avs ¼ Av1 � Av2 � � �Avn � 1� ðk1l1 þ
k2
l2

þ � � � þ kn
ln
Þ

ks � k1 þ k2 þ � � � þ kn; ls � k1 þ k2 þ ��� þ kn
k1
l1

þ k2
l2

þ ��� þ kn
ln

Parallel configuration Avs � 1� k1 �k2 ���kn
l1 �l2 ���ln

ks � k1 �k2 ���knðl1 þ l2 ���lnÞ
l1 �l2 ���ln ; ls � l1 þ l2 þ � � � þ ln
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domain of this function as [−5, 5]. The corresponding membership functions are
given as (Garg and Sharma 2013)

lftðxÞ ¼
1; ftðxÞ�mt
wð5Þ�wðfftðxÞ�Mt þmt

2 gdtÞ
wð5Þ�wð�5Þ ; mt � ftðxÞ�Mt

0; ftðxÞ�Mt

8><
>: ð6:19Þ

and

lftðxÞ ¼
1; ftðxÞ�Mt
wðfftðxÞ�Mt þmt

2 gdtÞ�wð�5Þ
wð5Þ�wð�5Þ ; mt � ftðxÞ�Mt

0; ftðxÞ�mt

8><
>: ð6:20Þ

where dt ¼ 10
Mt�mt

. The membership function lft are on the same scale and are
discontinuous at the points mt; ft;Mt. Here ðMt þmtÞ=2 is the crossover point of the
sigmoidal membership functions.

Using the achieved objective functions of the system, the optimization model is
formulated as

Maximize lD ¼ lRs
� lAs

� lMs

subject toLbMTBFi �MTBFi �UbMTBFi
LbMTTRi �MTTRi �UbMTTRi

i ¼ 1; 2. . .n All variables� 0

ð6:21Þ

where LbMTBFi; UbMTBFi;LbMTTRi;UbMTTRi are respectively the lower and
upper bound of MTBF and MTTR for ith component of the system. The opti-
mization model (6.21) thus obtained is solved by the evolution strategies tech-
niques, namely as GA, PSO, ABC and CS.

6.3.2 Analyzing the Behavior of the System

In this fold, the optimal values of design parameters, obtained in previous
folds/phase are used to calculate the various reliability parameters using weakest t
—norm based arithmetic operations on vague lambda-tau methodology, so as to
increase the efficiency of the methodology. The procedural steps of the method-
ology can be described as follows:

Step 1 The technique start with the information extraction phase in which data
related to the failure rate and repair time of the main component of the system are
collected or extracted from various resources. In the present study, the data related
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to failure rate and repair time, are obtained using phase Sect. 6.3.1 of the proposed
technique
Step 2 To handle the uncertainties or vagueness in the data, the obtained data are
converted into intuitionistic triangular vague numbers with some spread as sug-
gested by the DMs on both sides of the data. For instance, the failure rate and repair
time for the ith component of the system are converted into ITFNs with 15 %

spreads are depicted in Fig. 6.3 where fkij and esij are the vague failure rate and
repair time, of component i, with j ¼ 1; 2; 3, being lower, middle (crisp) and upper
limit of a triangular membership function, respectively. As soon as the input data
are represented in the form intuitionistic fuzzy numbers then their corresponding
values for their top event of the system are calculated using the extension principle
coupled with a� cuts and interval weakest t- norm based arithmetic operations on
conventional AND/OR expression, as listed in Table 6.2. The weakest t-norm based
interval expression for the triangular vague number, for the failure rate ~k and repair
time ~s, for AND/OR-transitions are as follow

Table 6.2 Basic expressions of lambda tau methodology

Gate kAND sAND kOR sOR
Expression Qn

j¼1
kj½

Pn
i¼1

Qn
j ¼ 1
i 6¼ j

sj�
Qn
i¼1

siPn

j¼1
½
Qn

i ¼ 1
i 6¼ j

si �

Pn
i¼1

ki
Pn
i¼1

kisiPn
i¼1

ki

1 1

(a) (b)

Fig. 6.3 Input intuitionistic triangular fuzzy number. a Membership Functions of ~ki
b Membership Functions of ~si
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For truth membership functions:
Expressions for AND-Transitions

kðaÞ ¼
Yn
i¼1

fðki2 � max
1� i� n

ðki2 � kðaÞi1 Þ
� �

g �
Xn
j¼1

Yn
i¼1
i 6¼j

fðsi2 � max
1� i� n

ðsi2 � sðaÞi1 Þ
� �2

664
3
775;

2
664

Yn
i¼1

fki2 þ max
1� i� n

ðkðaÞi3 � ki2Þ
� �

g �
Xn
j¼1

Yn
i¼1
i6¼j

fðsi2 þ max
1� i� n

ððsðaÞi3 � si2ÞÞ

2
664

3
775
3
775

sðaÞ ¼
Qn
i¼1

fsi2 � max
1� i� n

ðsi2 � sðaÞi1 Þ
� �

Pn
j¼1

½ Qn
i ¼ 1
i 6¼ j

fsi2 þ max
1� i� n

ðsðaÞi3 � si2Þ
� �

g�
;

Qn
i¼1fsi2 þ max

1� i� n
ðsðaÞi3 � si2Þ

� �
g

Pn
j¼1

½Qn
i ¼ 1
i 6¼ j

fðsi2 � max
1� i� n

ðsi2 � sðaÞi1 Þ
� �

g�

2
666666664

3
777777775

Expressions for OR-Transitions

kðaÞ ¼
Xn
i¼1

fki2 � max
1� i� n

ðki2 � kðaÞi1 Þ
� �

g;
Xn
i¼1

fki2 þ max
1� i� n

ðkðaÞi3 � ki2Þ
� �

g
" #

sðaÞ ¼
Pn
i¼1

½fki2 � max
1� i� n

ðki2 � kðaÞi1 Þ
� �

g � fsi2 � max
1� i� n

ðsi2 � sðaÞi1 Þ
� �

g�
Pn
i¼1

fki2 þ max
1� i� n

ðkðaÞi3 � ki2Þ
� �

g
;

2
664
Pn
i¼1

½fki2 þ max
1� i� n

ðkðaÞi3 � ki2Þ
� �

g � fsi2 þ max
1� i� n

ðsðaÞi3 � si2Þ
� �

g�
Pn
i¼1

fki2 � max
1� i� n

ðki2 � kðaÞi1 Þ
� �

g

3
775
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For false membership functions (i.e. non-membership functions):
Expressions for AND-Transitions

kðbÞ ¼
Yn
i¼1

fðki2 � max
1� i� n

ðki2 � kðbÞi1 Þ
� �

g �
Xn
j¼1

½
Yn
i ¼ 1

i 6¼ j

fðsi2 � max
1� i� n

ðsi2 � sðbÞi1 Þ
� �

2
666664

3
777775;

Yn
i¼1

fki2 þ max
1� i� n

ðkðbÞi3 � ki2Þ
� �

g �
Xn
j¼1

½
Yn
i ¼ 1

i 6¼ j

fðsi2 þ max
1� i� n

ðsðbÞi3 � si2Þ
� �

�

3
777775

sðbÞ ¼
Qn
i¼1

fsi2 � max
1� i� n

ðsi2 � sðbÞi1 Þ
� �

Pn
j¼1

½ Qn
i ¼ 1

i 6¼ j

fsi2 þ max
1� i� n

ðsðbÞi3 � si2Þ
� �

g�
;

Qn
i¼1

fsi2 þ max
1� i� n

ðsðbÞi3 � si2Þ
� �

g
Pn
j¼1

½ Qn
i ¼ 1

i 6¼ j

fðsi2 � max
1� i� n

ðsi2 � sðbÞi1 Þ
� �

g�

2
6666666664

3
7777777775

Expressions for OR-Transitions

kðbÞ ¼
Xn
i¼1

fki2 � max
1� i� n

ðki2 � kðbÞi1 Þ
� �

g;
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i¼1
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1� i� n

ðkðbÞi3 � ki2Þ
� �

g
" #

sðbÞ ¼
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� �

g

3
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Step 3 In order to analyze the system behavior quantitatively, various reliability
parameters such as system failure rate, repair time, MTBF, reliability etc.
are analyzed in terms of membership and non-membership functions at
various membership grades with an increment of 0.1 confidence level

Step 4 In order to obtain a crisp result from fuzzy output, defuzzification is carried
out. In the literature various techniques for defuzzification such as centroid,
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bisector, middle of the max, weighted average exists. The criterion’s for
their selection are disambiguated (result in unique value), plausibility (lie
approximately in the middle of the area) and computational simplicity
(Ross 2004). In the present study, the centroid method is used for
defuzzification as it gives mean value of the parameters

6.4 An Illustrative Example

To demonstrate the application of the proposed methodology, a case from a paper
mill, situated in the northern part of India is taken which produces approximately
200 tons of paper per day. The paper mills are large capital oriented engineering
systems, comprising of various subsystems namely, feeding, pulping, washing,
screening, bleaching and paper formulation system, arranged in a predefined con-
figuration (Garg 2013; Garg and Sharma 2012). The present analysis is based on the
study of one of the important unit i.e. washing unit whose brief description is as
follows.

6.4.1 System Description

The Washing of prepared pulp is done in three to four stages, shown in systematic
diagram in Fig. 6.4, to get it free from blackness and to prepare the fine fibers of the
pulp. The system consists of four main subsystems, defined as:

• Filter (A): It consists of single unit which is used to drain black liquor from the
cooked pulp.

• Cleaners (B): In this subsystem three units of cleaners are arranged in parallel
configuration. Each unit may be used to clean the pulp by centrifugal action.
Failure of anyone will reduce the efficiency of the system as well as quality of
paper.

• Screeners (C): Herein two units of screeners are arranged in series. These are
used to remove oversized, uncooked and odd shaped fibers from pulp through
straining action. Failure of any one will cause the complete failure of the system.

• Deckers (D): Two units of deckers are arranged in parallel configuration. The
function of deckers is to reduce the blackness of pulp. Complete failure of
decker occurs when both the components will fail.
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6.4.2 Formulation of Optimization Model

Let MTBFi and MTTRi be the mean time between failures and mean time to repair
of the ith component of the system then the approximate expressions of system
parameters in the form of reliability, availability and maintainability are expressed
as below

Rs ¼ expð�kstÞ

As ¼ 1� MTTR1

MTBF1
þ MTTR2

MTBF2


 �3

þ 2 � MTTR3

MTBF3
þ MTTR4

MTBF4


 �2
" #

Ms ¼ 1� expð�t=ssÞ

where ks and ss are given as

ks ¼ k1 þ k2k3k4ðs2s3 þ s3s4 þ s4s2Þþ k5 þ k6 þ k7k8ðs7 þ s8Þ
ss ¼ k1s1 þ k2k3k4s2s3s4 þ k5s5 þ k6s6 þ k7k8s7s8

ks

Pulp from tank Filter (A)

Undesirable
material

Cleaner (B1) Cleaner (B2) Cleaner (B3)

Screener (C1)

Screener (C2)

Decker (D1) Decker (D2)

Washed pulp
tank

Chemical
collector

Water tank

Fig. 6.4 Systematic diagram of the washing system
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As the information collected related to systems’ parameter—MTBF and MTTR,
are mostly imprecise in nature because these data are collected from various his-
torical records, logbooks etc. which represents the past behavior of the system but
unable to represent the future behavior. Thus for handling this issue and to resolve
the conflictness between the objective, the membership functions corresponding to
objectives are defined by using log-sigmoidal membership functions as given in
Eq. (6.20) and hence an optimization model (6.21) is formulated for the considered
system. Variance range of the main components’ of the system in the form of
MTBF and MTTR are summarized in Table 6.3.

6.4.2.1 Parametric Setting

In all algorithms, the values of the common parameters used in each algorithm such
as population size and total evaluation number are chosen to be the same.
Population size and the maximum evaluation number are taken as 20� D and 500
respectively for the function, where D is the dimension of the problem. The method
has been implemented in Matlab (MathWorks) and the program has been run on a
T6400 @ 2 GHz Intel Core (TM) 2 Duo processor with 2 GB of Random Access
Memory (RAM). In order to eliminate stochastic discrepancy, 30 independent runs
has been made that involves 30 different initial trial solutions. The termination
criterion has been set either limited to a maximum number of generations or to the
order of relative error equal to 10�6, whichever is achieved first. The other specific
parameters of algorithms are given below:

GA Settings: In our experiments, we employed a real coded standard GA having
an evaluation, fitness scaling, crossover, mutation units. Single point crossover
operation with the rate of 0.85 was employed. Mutation operation restores genetic
diversity lost during the application of reproduction and crossover. Mutation rate in
our experiments was 0.02.

PSO Settings: Cognitive and social components (c1 and c2 in (6.12)) are con-
stants that can be used to change the weighting between personal and population
experience, respectively. In our experiments cognitive and the social components
were both set to 1.5. Inertia weight (w), which determines how the previous velocity
of the particle influences the velocity in the next iteration, was defined as the linear
decreases from initial weight wmax ¼ 0:9 to final weight wmin ¼ 0:4 with the

Table 6.3 Variance range of
MTBF and MTTR of
components

Component MTBF in hrs MTTR in hrs

Lb Ub Lb Ub

Filter 2995 3150 2 4

Cleaners 1850 1950 2 5

Screeners 1880 1920 2 4

Deckers 1860 1910 2 5
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relation w ¼ wmax � ðwmax � wminÞðiter=itermaxÞ. Here itermax represents the max-
imum generation number and ‘iter’ is used a generation number as recommended in
Clerc and Kennedy (2002), Shi and Eberhart (1998).

ABC Settings: Except common parameters (population number and maximum
evaluation number), the basic ABC used in this study employs only one control
parameter, which is called limit. A food source will not be exploited anymore and is
assumed to be abandoned when limit is exceeded for the source. This means that the
solution of which “trial number” exceeds the limit value cannot be improved
anymore. The limit value is defined by using the dimension of the problem and the
colony size as (Karaboga and Akay 2009) limit ¼ SN � D, where SN is the number
of food sources or employed bees.

CS Settings: Except common parameters, CS employ only one control param-
eter called probability (pa) of a host for discovering an alien egg. Here pa is set to be
randomly 0.25 (Yang and Deb 2009).

6.4.2.2 Computational Results

By using these settings, the optimal design parameters for the system performance
optimization are obtained and their corresponding results are tabulated in Table 6.4.
The estimation of optimal design parameters will generally help the maintenance
engineers to understand the behavioral dynamics of the system. However, by using
these optimal designs—MTBF and MTTR—results, the plant personnel may change
their initial goals so as to reduce the operational and maintenance cost by adopting
suitable maintenance strategies from their design results. This methodology will
assist the plant managers to carry out design modification, if any, required to achieve
minimum failures, and to help in maintenance (repair and replacement actions)
decision making.

The statistical simulation results after 30 independent results in terms of values
of the mean, best, worst, standard deviation (S.D) and median of the objective
functions are obtained by CS algorithm and compared with respect to other algo-
rithms are summarized in Table 6.5. It has also been observed from the table that
the S.D. by proposed one are pretty low, and it further implies that the approach
seems reliable to solve the reliability optimization problems.

In order to analyze whether the results as obtained in the above tables are
statistically significantly with each other or not, we performed t—test on pair of
algorithms. For this firstly equality of variances will be tested, since the t—test
assumes equality of variances, by using an F—test on the pair of algorithms. For
this, two tailed F—test has been performed with significant level of a ¼ 0:05 for
checking equality of variances of the two results based on their variances values
after 30 independent runs. The two-tailed version tests against the alternative that
the variances are not equal. Under the null hypothesis, no difference in population
variances, the calculated values of F-statistics are 1.227887, 1.189696 and
1.697688 respectively for GA, PSO and ABC when pair with CS. As the critical
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values for testing null hypothesis against the alternative hypothesis at level of
significance a ¼ 0:05 are given by

F[F29;29ða=2Þ ¼ F29;29ð0:025Þ ¼ 0:475964

and F\F29;29ð1� a=2Þ ¼ F29;29ð0:975Þ ¼ 2:100995

Since, the calculated value of F-statistics (= 1.227887, 1.189696 and 1.697688)
lies between 0.475964 and 2.100995, it is not significant and hence null hypothesis
of equality of population variances may be accepted at level of significance
a ¼ 0:05. Now a single-tail t-test has been performed with the null hypothesis that
their mean difference is zero at 5 % significance level in the case of CS results with
other results. The results computed are tabulated in Table 6.6 and it indicates that
the value of their t-stat is much greater than the t-critical values. Also the p-value
obtained during the test is less than the significance level. Thus it is highly sig-
nificant and null hypothesis i.e. mean of the two algorithms is identical is rejected.
Hence the two types of means differ significantly. Further, since mean of the
performance function value of the system with CS is greater than others, we con-
clude that CS is definitely better than others results and this difference is statistically
significant.

Table 6.5 Statistics analysis for the optimization problem

Methods Mean Best Worst Median SD �10�5
� �

GA 0.9963972 0.9965286 0.9961616 0.9963215 3.5109

PSO 0.9969629 0.9970177 0.9969189 0.9969829 3.4017

ABC 0.9969330 0.9970130 0.9968258 0.9969427 4.8542

CS 0.9969831 0.9970375 0.9968965 0.9969861 2.8593

Table 6.6 t-test for Statistical analysis

GA PSO ABC CS

Mean 0.99639724 0.9969629 0.9969330 0.9969831

SD 3:5109� 10�4 3:4017� 10�5 4:8542� 10�5 2:8593� 10�5

Variance �10�8ð Þ 0.123264 0.115715 0.235632 0.081756

Observation 30 30 30 30

Pooled variance
�10�8ð Þ

0.1025101 0.0987357 0.1586942

Hypothesized
mean difference

0 0 0

Degree of freedom 58 58 58

t—stat 70.868982 2.4897725 4.8708273

P(T � t) one tail 0 0.007835 4.475094
�10�6

T-critical one tail 1.6772241 1.6772241 1.6772241
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6.4.3 Behavior Analysis

The behavior of the system has been analyzed by using the above computed design
parameters in the vague set [0.6, 0.8] i.e. degree of acceptance l ¼ 0:6 and degree
of rejection is m ¼ 1� 0:8 ¼ 0:2 so that efficiency of the vague lambda-tau
methodology may increase. In this, the computed failure rate and repair time of
each of the components are represented in the form of vague triangular numbers
with 15 % spread and hence various reliability parameters of the system are
computed in the form of membership and non-membership functions with the left
and right spreads. These behavior plots are shown graphically in Fig. 6.5 along with
the existing methodologies results.

(i) The results computed by the traditional or crisp methodology are independent
of the uncertainty level a. Hence their results will be suitable only for a system
with precise data.

(ii) The results computed by FLT methodology (Knezevic and Odoom 2001) are
not that much practical as it contains a wide range of uncertainties during the
analysis. Also domain of confidence level is taken to be one and there is a 0°
of hesitation between the membership functions.

(iii) The above shortcomings during the analysis has been taken into account by
Garg (2013) in their analysis and hence proposed a new technique named as
Vague Lambda-Tau methodology (VLTM). In their approach, the domain of
confidence level is taken to be � 0:8 instead of one and the intuitionistic fuzzy
set theory has been used for representing the uncertainties in the data in the
form of membership and non-membership functions. In their approach,
interval level uncertainty has been considered with 0.2° of hesitation between
the membership functions. However, their results gave more maintenance
strategy for the decision maker for increasing the performance of the system as
it gives an interval value of a reliability parameter for a particular level of
significance (a) as compared to point value. Since in their analysis fuzzy
arithmetic operations have been used for computing the system’s reliability
parameters and hence the level of uncertainties has not been reduced so much.

(iv) The proposed approach provides an improvement over the above shortcoming
by considering 0.2° of hesitation between the degree of membership and
non-membership functions. In the proposed approach the domain of confi-
dence level is clearly a� 0:8. The graphical results show that if the uncertainty
in input data is described by means of triangular fuzzy numbers, then the
possibility distribution of failure rate and repair time is a distorted triangle
because after applying the fuzzy operations, the linear sides of triangle
changes to parabolic one. These results obtained by weakest t-norm based
arithmetic operations on vague set theory are more suitable than the other
existing methods. To sustain the analysis for different spreads say 15, 25
and 50 % and to import the results to the system analysts it is necessary that
the obtained fuzzy output is converted into crisp value so that decision
maker/system analyst may implement these results into the system. For this
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defuzzification has been done by using the center of gravity method and their
corresponding values at different level of uncertainties along with their crisp
values are tabulated in Table 6.7. It has been concluded from the table that
crisp values do not change with the change of spread while defuzzified values
change with change of spreads.
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Fig. 6.5 Reliability plots for the system at 15 % spreads
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6.4.3.1 Sensitivity Analysis

To analyze the impact of the reliability parameters on system MTBF, an analysis
has been done in which various combinations of reliability, availability and failure
rate parameters has been taken. Throughout the combinations, ranges of repair time
and ENOF are fixed and have been varied respectively in the range computed from
their membership functions at cut level a ¼ 0. For instance, the first three combi-
nations of the reliability parameters states that when reliability and availability of
the system has been fixed to 0.9855 and 0.9964 respectively and failure rate are
changed from 0.0008 to 0.0013 and further to 0.0018 then the predicted range of the
system MTBF has been reduced to 56.7185, 56.7614 and 56.8040 % from Garg
(2013) approach when proposed approach has been applied. A similar effect is
observed for other combinations too and their ranges are tabulated in Table 6.8. The
major advantage of this analysis is that based on their results the system analyst
may preserve the particular index and hence seen the effect of taking wrong
combinations of the reliability parameters on its MTBF. Also it shows that how the
slightest change of failure rate will effect on system MTBF and hence on its
performance.

6.4.3.2 Performance Analysis Using RAM-Index

As the time passes then the reliability of the system would gradually decrease if no
preventive maintenance action has been taken within a regular interval of time.
Thus it is necessary for the system analyst to perform a necessary maintenance
action in order to increase the performance of the system. But it is difficult, if not
impossible, to find the component from the system on which more attention should
be given for saving the money, time and manpower so that the efficiency of the
system may increase. For such analysis, a composite measure of the system relia-
bility, availability and maintainability parameter named as the RAM—Index has
been used for finding the critical component, as per preferential order, of the
system.

The mathematical expression of the RAM-Index is defined as

RAMðtÞ ¼ w1 � RsðtÞþw2 � AsðtÞþw3 �MsðtÞ ð6:22Þ

where wi 2 ð0; 1Þ; i ¼ 1; 2; 3 are the weights corresponding to reliability, avail-
ability and maintainability respectively such that

P3
i¼1 wi ¼ 1. Here w1 ¼ 0:36,

w2 ¼ 30 and w3 ¼ 0:34 have been used during the analysis. The major advantage
of using this index is that by varying the components failure and repair rate
parameters, the impact onto the system’s performance by the change in its behavior
can be analyzed effectively to make the future course of action. Since RAM
parameters are represented in the form of membership functions and hence con-
sequently RAM-Index will come as a fuzzy membership function. In order to
analyze the system performance, firstly the effect of uncertainties on RAM-Index
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has been investigated by varying their spread from 0 to 100 % and their corre-
sponding variation of their index has been plotted in Fig. 6.6a which indicates that
RAM-Index decreases with the increase in the uncertainty level. It means to achieve
higher performance of the systems, involved uncertainties should be minimized. On
the other hand, at different a—cut (0, 0.3, 0.6) the long-run period behavior of the
RAM-Index for the system has been shown in Fig. 6.6b which shows that
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RAM-Index of the system increases within the time interval from t = 0 to 13 h and
attain its maximum value at t = 13 h in the interval 0.9918217–0.9929697 and after
that system performance reduces exponentially. Thus it is found that for increasing
the performance of the system, a necessary action should be taken after time t = 13 h.

As the performance of the system is directly depends upon its components and
hence the effect on its index has been investigated by varying the failure rate and
repair time of each component separately at t = 10 h and simultaneously fixing the
other component parameter in Fig. 6.7. In this figure, each plot contains two sub-
plots against variations in failure rate and repair time of the each component while
their corresponding maximum and minimum values are summarized in Table 6.8.
On the other hand, the effect of the simultaneous variations of failure rate and repair
time of each component is shown in Fig. 6.8. It may be observed from the Fig. 6.8b
that the variation in the failure rate and repair time of the cleaner components shows
the significant impact on the performance of the system i.e. an increase in their
failure rate from (0.4394331 to 0.5945271) �10�3 h�1 and repair time from
3.60835 to 4.88188 h reduce the system index by 2.6484 %. On the other hand, the
variation in the failure rate and repair time of the filter components shows the
insignificant impact on the performance of the system. Similar effect on system
RAM-Index by the variation of the other component failure rate and repair times is
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analyzed from the Fig. 6.8. The magnitude of the effect of variation in failure rate
and repair times of various subsystems of the system on its performance is sum-
marized in Table 6.10. On the basis of results tabulated, it can be analyzed that for
improving the performance of the system, more attention should be given to the
components as per the preferential order; cleaner, decker, screener and filter.

Table 6.9 Effect of variations of system’s components’ failure and repair times on its RAM-Index
for washing system

Component Range of failure rate
k� 10�3 h�1

� � RAM-Index Range of repair time
τ(h)

RAM-Index

Filter 0.2728972–0.3692139 Min:
0.99173248

1.7225029–2.33044510 Min:
0.99147413

Max:
0.99213980

Max:
0.99235452

Cleaner 0.4394331–0.5945271 Min:
0.99193595

3.6083503–4.8818857 Min:
0.99193595

Max:
0.99193597

Max:
0.99193598

Screener 0.4462899–0.6038041 Min:
0.99128629

1.7030243–2.3040917 Min:
0.99028515

Max:
0.99258587

Max:
0.99313700

Decker 0.4563434–0.6174058 Min:
0.99193573

2.0462152–2.7684088 Min:
0.99193456

Max:
0.99193616

Max:
0.99193703

Table 6.10 Effect of simultaneously variations of system’s components’ failure and repair times
on its RAM-Index for washing system

Component Range of failure rate
k� 10�3 h�1

� � Range of repair time τ(h) RAM-Index

Filter 0.2728972–0.3692139 1.7225029–2.33044510 Min: 0.99103063

Max: 0.99561977

Cleaner 0.4394331–0.5945271 3.6083503–4.8818857 Min: 0.94760573

Max: 0.97270171

Screener 0.4462899–0.6038041 1.7030243–2.3040917 Min: 0.98920784

Max: 0.99357250

Decker 0.4563434–0.6174058 2.0462152–2.7684088 Min: 0.98273166

Max: 0.99170908
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6.5 Conclusion

This chapter deals with the evaluation of the various reliability parameters of the
industrial systems by using uncertain, vague and imprecise data. For this, a struc-
tural framework has been developed by the author, based on CS and vague set
theory, to model, analyze and predict the system behavior by utilizing quantified,
limited and uncertain data. The washing system of the paper industry has been
taken as an illustrative example to demonstrate the approach. For this, optimal
design parameters—MTBF and MTTR—of the system have been obtained firstly
using reliability, availability and maintainability as an objective. The conflicting
nature between the objectives is resolved by defining their nonlinear fuzzy goals
and then aggregate by using a product aggregator operator. The stability of these
optimal parameters is justified by means of pooled t-test statistics. These optimal
design parameters will generally help the maintenance engineers to understand the
behavioral dynamics of the system and to reallocate the resources. The information
system stored the system designs and parameters in the knowledge base and can be
retrieved by significant features, which facilitates the designer and increases design
efficiency.

Due to complexity in the system configuration, the data obtained from historical
records, is imprecise and inaccurate. Keeping this point in view, efficiency for
analyzing the behavior of the system is increased by using computed design
parameters in terms of membership and non-membership functions using weakest
t-norm based arithmetic operations on vague set theory. The development of in-
tuitionistic fuzzy numbers from the available data and using vague possibility
theory can greatly increase the relevance of reliability study. The computed results
are compared with the existing methodology results and have been observed that
the proposed technique has compressed range of uncertainties during the analysis as
compared to others and consequently the proposed approach is more flexible for the
decision maker to make a more sound and effective decision in a lesser time. The
crisp and defuzzified values of various reliability parameters are summarized in a
tabular form. Sensitivity as well as performance analysis of the system performance
index has been investigated which help the plant personnel to rank the system
components. Based on their analysis, the components of the system which has
excessive failure rates, long repair times or high degree of uncertainty associated
with these values are identified and reported in preferential order as cleaner, decker,
screener and a filter.

6.6 Future Research Direction

The present work can be done equally well to evaluate the system behavior in other
process industries such as thermal power plant, sugar plant etc. as the considered
methodology can overcome various kinds of problem in the area of quality,
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reliability and maintainability, which strongly needs the management attention.
Also we can extend the present work for time varying component failure rate
instead of constant rate i.e. from exponential distribution to Weibull or Normal
distribution functions. The work can also be extended to devise suitable method-
ology for [(i)]

(i) Conducting cost analysis.
(ii) Developing inventory and spare parts maintenance management system.
(iii) Redundancy allocation problem.
(iv) suitable maintenance strategies after understanding the behavior dynamics

associated with functioning of the system.

Also, the general idea presented here could also be applicable to many other
systems like complex, circular, series-parallel, k-out-of-n systems and so on. The
investigations on these different systems will be carried out in our future work.
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Chapter 7
A Fuzzy Design of Single and Double
Acceptance Sampling Plans

Cengiz Kahraman, Ebru Turanoglu Bekar and Ozlem Senvar

Abstract In this chapter, we briefly introduce the topic of acceptance sampling.
We also examine acceptance sampling plans with intelligent techniques for solving
complex quality problems. Among intelligent techniques, we focus on the appli-
cation of the fuzzy set theory in the acceptance sampling. Moreover, we propose
multi-objective mathematical models for fuzzy single and fuzzy double acceptance
sampling plans with illustrative examples. The study illustrates how an acceptance
sampling plan should be designed under fuzzy environment.

Keywords Acceptance sampling � Double sampling � Single sampling � Fuzzy
sets

7.1 Introduction

In manufacturing industries, sampling inspection is a common practice for quality
assurance and cost reduction. Acceptance sampling is a practical and economical
alternative to costly 100 % inspection. Acceptance sampling offers an efficient way
to assess the quality of an entire lot of product and to decide whether to accept or
reject it. The basic decisions in sampling inspection are how many manufactured
items to be sampled from each lot and how many identified defective items in the
sample to accept or reject each lot (Wang and Chankong 1991). The application of
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acceptance sampling minimizes product destruction during inspection and testing as
well as increases the inspection quantity and effectiveness.

Practically, acceptance sampling is a form of testing that involves taking random
samples of lots or batches of finished products and measuring them against pre-
determined standards. Acceptance sampling pertains to incoming batches of raw
materials or purchased parts and to outgoing batches of finished goods.

Acceptance sampling is useful when one or more of the following conditions is
available: a large number of items must be processed in a small amount of time; the
cost of passing defective items is low; destructive testing is required; or the
inspectors may experience boredom or fatigue in inspecting large numbers of items.

Acceptance sampling plans are useful tools for quality control practices, which
involve quality contracting on product orders between the vendor and the buyer.
Those sampling plans provide the vendor and the buyer rules for lot sentencing
while meeting their preset requirements on product quality. Nowadays, sampling
plans are the primary tools for quality and performance management in industry.
Sampling plans are used to decide either to accept or reject a received batch of
items. In any acceptance sampling plan, there are two possible error, which are
producer’s risk and consumer’s risk. Producer’s risk is the rejection of a good lot.
Consumer’s risk is the acception of a bad lot.

Acceptance sampling plans provide the vendor and buyer the decision rules for
product acceptance to meet the present product quality requirement. In practice,
proper design of an acceptance sampling planning is based on the true quality level
required by customers. However, it is sometimes not possible to determine this
quality level with certain values. Especially in production, it is not easy to deter-
mine the parameters of acceptance sampling such as proportion of defective items,
sample size, acceptable defective items.

Classical acceptance sampling plans have been studied by many researchers. In
different acceptance sampling plans the proportion of defective items, is considered
as a crisp value. The proportions of defective items are estimated or provided by
experiment. According to Fountoulaki et al. (2008), approaches employing machine
learning techniques in acceptance sampling are limited and mainly focused on the
design of acceptance sampling plans. Sampath (2009) emphasized that in the
manufacturing processes, quantities such as the proportion of defective items in a
production lot may not be precisely known and usually the practitioners have to
compromise with some imprecise or approximate values. Prior knowledge of such
quantities is required to evaluate the quality of a produced lot.

The vagueness present from personal judgment, experiment or estimation can be
treated formally with the help of fuzzy set theory. Among other intelligent tech-
niques, fuzzy set theory is known as a powerful mathematical tool for modeling
uncertainity in classical attribute quality characteristics (Jamkhaneh et al. 2009).

There are many other investigations and many other publications related to
acceptance sampling plans. In this chapter, we briefly introduce the topic of ac-
ceptance sampling. Also, we examine acceptance sampling plans with intelligent
techniques for solving important as well as fairly complex problems related to
acceptance sampling. A lot or batch of items can be inspected in several ways

180 C. Kahraman et al.



including the use of single, double, multiple, sequential sampling. Among other
intelligent techniques, we focus on the application of fuzzy set theory in the
acceptance sampling. We propose mathematical models for fuzzy single and fuzzy
double acceptance sampling plans with illustrative examples.

The rest of this chapter is organized as follows. In Sect. 7.2, acceptance sampling
basic concepts, terminology and plans are given. In Sect. 7.3, intelligent techniques
in acceptance sampling are briefly reviewed. Design of fuzzy acceptance sampling
plans and their illustrative examples are provided in Sect. 7.4. In Sect. 7.5 proposed
fuzzy multi-objective mathematical models are explained with illustratives exam-
ples. Finally conclusion, discussions as well as recommendations for further studies
are provided in the last section.

7.2 Acceptance Sampling Basic Concepts
and Terminology

Acceptance sampling inspection is part of statistical practice concerned with
sampled items to produce some quality information about the inspected products,
especially to check whether products have met predetermined quality specifications
(Schilling 1982). The complexity of the sampling inspection process gives rise to
challenges for the definition of data quality elements, determination of sample item,
sample size and acceptance number, and a combination of quality levels required by
the producer and the consumer. Here are the top 10 reasons why acceptance
sampling is still necessary:

• Tests are destructive, necessitating sampling.
• Process not in control, necessitating sampling to evaluate product.
• 100 % sampling is inefficient, 0 % is risky.
• Special causes may occur after process inspection.
• Need for assurance while instituting process control.
• Rational subgroups for process control may not reflect outgoing quality.
• Deliberate submission of defective material.
• Process control may be impractical because of cost, or lack of sophistication of

personnel.
• 100 % inspection does not promote process/product improvement.
• Customer mandates sampling plan.

The principle of acceptance sampling to control quality is the fact that it is not
checked all units (N), but only selected part (n). Acceptance sampling plan is a
specific plan that clearly states the rules for sampling and the associated criteria for
acceptance or otherwise. Acceptance sampling plans can be applied for inspection
of end items, components, raw materials, operations, materials in process, supplies
in storage, maintenance operations, data or records and administrative procedures.
There are two essential issues in acceptance sampling inspection theory. The first is
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the determination of the acceptance sampling plan, which is characterized by
sample size and acceptance number. The main goal of designing an optimal sam-
pling plan is to obtain a high accuracy of product inspection and to reduce the
inspection cost (Von Mises 1957). The second is to determine the method to select
samples from the lot, which refers to the sampling method. Commonly used
sampling methods include simple random sampling, system sampling, stratified
sampling, and cluster sampling (Cochran 1977; Degroot 1986; Wang et al. 2010).

Acceptance-sampling plans classify to different ways. One major classification is
by attributes and variables. Acceptance-sampling plans by attributes are single
sampling plan, double sampling plan, multiple-sampling plan, and sequential
sampling plan (Schilling 1982).

Single sampling is undoubtedly the most used of any sampling procedure. The
simplest form of such a plan is single sampling by attributes which relates to
dichotomous situations, i.e., those in which inspection results can be classified into
only two classes of outcomes. This includes go, no-go gauging procedures as well
as other classifications. Applicable to all sampling situations, the attributes single
sampling plan has become the benchmark against which other sampling plans are
judged. It is employed in inspection by counting the number of defects found in
sample (Poisson distribution) or evaluating the proportion defective from processes
or large lots (binomial distribution) or from individual lots (hypergeometric dis-
tribution). It involves taking a random sample size n from a lot size N. The number
of defectives (or defects) d found is compared to an acceptance number c. If the
number found is less than or equal to c, the lot is accepted. If the number found is
greater than c, the lot is rejected.

Often a lot of items are so good or so bad that we can reach a conclusion about
its quality by taking a smaller sample than would have been used in a single
sampling plan. In double sampling if the results of the first sample are not definitive
in leading to acceptance or rejection, a second sample is taken which then leads to a
decision on the disposition of the lot. In brief, if the number of defects in this first
sample (d1) is less than or equal to some lower limit (c1), the lot can be accepted. If
the number of defects first and second sample (d2) exceeds an upper limit (c2), the
whole lot can be rejected. But if the number of defects in the n1 sample is between
c1 and c2, a second sample is drawn. The cumulative results determine whether to
accept or reject the lot. The concept is called double sampling.

Multiple sampling involves the inspection of specific lots on the basis of k
successive samples as needed to make a decision, where k varies from 1 to K (i.e. a
whole number). It is an extension of double sampling, with smaller samples used
sequentially until a clear decision can be made. In multiple sampling by attributes,
more than two samples can be taken in order to reach a decision to accept or reject
the lot. The main advantage of multiple sampling plans is a reduction in sample size
for the same protection.

Single, double, and multiple plans assess one or more successive samples to
determine lot acceptability. Sequential sampling involves making a decision as to
disposition of the lot or resample successively as each item of the sample is taken
and it may be regarded as multiple-sampling plan with sample size one and no
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upper limit on the number of samples to be taken. It is often applied where sample
size critical so that a minimum sample must be taken. Under sequential sampling,
samples are taken, one at time, until a decision is made on the lot or process
sampled. After each item is taken a decision is made to (7.1) accept, (7.2) reject, or
(7.3) continue sampling. Samples are taken until an acceptance or rejection decision
is made. Thus, the procedure is open ended, the sample size not being determined
until the lot is accepted or rejected. Selection of the best sampling approach (single,
double, multiple or sequential) depends on the types of products being inspected
and their expected quality level. A very low-quality batch of goods, for example,
can be identified quickly and more cheaply with sequential sampling. This means
that the inspection, which may be costly and/or destructive, can end sooner. On the
other hand, in many cases a single sampling plan is easier and simpler for workers
to conduct even though the number sampled may be greater than under other plans.

7.3 Operating Characteristic Curves

The operating characteristic (OC) curve plots the probability of acceptance against
possible values of proportion defective. OC curve describes how well an acceptance
plan discriminates between good and bad lots. A curve pertains to a specific plan,
that is, a combination of n and c. It is intended to show the probability that the plan
will accept lots of various quality levels. The curves for different sampling plans are
shown in Fig. 7.1. The OC curve sketches the performance of a plan for various
possible proportions defective. It is plotted using appropriate probability functions
for the sampling situation involved. The curve shows the ability of a sampling plan
to discriminate between high quality and low quality lots. With acceptance sam-
pling, two parties are usually involved: the producer of the product and the

Fig. 7.1 a Perfect discrimination for inspection plan. b OC curves for two different acceptable
levels of defects (c = 1, c = 4) for the same sample size (n = 100). c OC curves for two different
sample sizes (n = 25, n = 100) but same acceptance percentages (4 %). Larger sample size shows
better
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consumer of the product. When specifying a sampling plan, each party wants to
avoid costly mistakes in accepting or rejecting a lot.

The producer wants to avoid the mistake of having a good lot rejected (pro-
ducer’s risk) because he or she usually must replace the rejected lot. Conversely, the
customer or consumer wants to avoid the mistake of accepting a bad lot because
defects found in a lot that has already been accepted are usually the responsibility of
the customer (consumer’s risk). The producer’s risk a is the probability of not
accepting a lot of acceptable quality level (AQL) quality and the consumer’s risk b
is the probability of accepting a lot of limiting quality level (LQL) quality. The term
acceptable quality level (AQL) is commonly used as the 95 % point of probability
of acceptance, although most definitions do not tie the term to a specific point on
the OC curve and simply associate it with a ‘‘high’’ probability of acceptance. The
term is used here as it was used by the Columbia Statistical Research Group in
preparing the (Von Mises 1957) input to the JAN-STD-105 standard. LTPD refers
to the 10 % probability point of the OC curve and is generally associated with
percent defective. The advent of plans controlling other parameters of the distri-
bution led to the term limiting quality level (LQL), usually preceded by the per-
centage point controlled. Thus, ‘‘10 % limiting quality’’ is the LTPD (Schilling
1982).

In most sampling plans, when a lot is rejected, the entire lot is inspected and all
of the defective items are replaced. Use of this replacement technique improves the
average outgoing quality in terms of percent defective.

The average outgoing quality (AOQ) can be explained as the expected quality of
outgoing product following the use of an acceptance sampling plan for a given
value of the incoming quality. For the lots accepted by the sampling plan, no
screening will be done and the outgoing quality will be the same as that of the
incoming quality p. For those lots screened, the outgoing quality will be zero,
meaning that they contain no nonconforming items. Since the probability of
accepting a lot is Pa, the outgoing lots will contain a proportion of pPa defectives. If
the nonconforming units found in the sample of size n are replaced by good ones,
the average outgoing quality (AOQ) will be (Kahraman and Kaya 2010):

AOQ ¼ N � n
N

pPa ð7:1Þ

For large N,

AOQ ffi pPa ð7:2Þ

The maximum value of AOQ over all possible values of fraction defective, which
might be submitted, is called the AOQ limit (AOQL). It represents the maximum
long-term average fraction defective that the consumer can see under operation of
the rectification plan. It is sometimes necessary to determine the average amount of
inspection per lot in the application of such rectification schemes, including 100 %
inspection of rejected lots. This average, called the average total inspection (ATI), is
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made up of the sample size n on every lot plus the remaining (N-n) units on the
rejected lots, so that the ATI for single sampling is calculated as following Eqs. (7.3
and 7.4).

ATI ¼ nþð1� PaÞ ðN � nÞ ð7:3Þ

ATI ¼ Panþð1� PaÞN ð7:4Þ

The ATI for the double sampling plan can be calculated from the following
Eqs. (7.5–7.7). In Eq. (7.5), the average sample number (ASN) is the mean number
of items inspected per lot. The concept of ASN is very useful in determining the
average number of samples that will be inspected in using more advanced sampling
plans. For a single sampling plan, one takes only a single sample of size n and
hence the ASN is simply the sample size n. In single sampling, the size of the
sample inspected from the lot is always constant, whereas in double sampling, in
double sampling plans, for example, the second sample is taken only if results from
the first sample are not sufficiently definitive to lead to acceptance or rejection
outright. In such a situation the inspection may be concluded after either one or two
samples are taken and so the concept of ASN is necessary to evaluate the average
magnitude of inspection in the long run.

ATI ¼ ASNþðN � n1ÞPðd1 [ c2Þþ ðN � n1 � n2ÞPðd1 þ d2 [ c2Þ ð7:5Þ

where

Pðd1 [ c2Þ ¼ 1� Pðd1 � c2Þ ð7:6Þ

Pðd1 þ d2 [ c2Þ ¼ 1� Pa � Pðd1 [ c2Þ ð7:7Þ

A general formula for the average sample number in double sampling is

ASN ¼ n1P1 þðn1 þ n2Þ ð1� P1Þ ¼ n1 þ n2ð1� P1Þ ð7:8Þ

where P1 is the probability of making a lot dispositioning decision on the first
sample. This is calculated as following equation:

P1 ¼ Pflot is accepted on the first samplegþPflot is rejected on the first sampleg
ð7:9Þ

Acceptance sampling is useful for screening incoming lots. When the defective
parts are replaced with good parts, acceptance sampling helps to increase the quality
of the lots by reducing the outgoing percent defective. Sampling plans and OC
curves facilitate acceptance sampling and provide the manager with tools to eval-
uate the quality of a production run or shipment.
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7.4 Literature Review on Acceptance Sampling

In recent years, there are some studies concentrated on acceptance sampling in the
literature. Figure 7.2 shows the publication frequencies of acceptance sampling
according to years between 2004 (including 2004 and earlier) and 2013.

Some of these publications are journal articles, books/e-books, and so on.
Figure 7.3 shows the distribution of these publications according to publication
categories. According to this figure, most of the studies on acceptance sampling are
published in journals with a rate of 69 %. For example, Baklizi (2003) developed
acceptance sampling plans assuming that the life test is truncated at a pre-assigned
time. The minimum sample size necessary to ensure the specified average life was
obtained and the operating characteristic values of the sampling plans and pro-
ducer’s risk were presented. Kuo (2006) developed an optimal adaptive control
policy for joint machine maintenance and product quality control. It included the
interactions between the machine maintenance and the product sampling in the
search for the best machine maintenance and quality control strategy to find the
optimal value function and identify the optimal policy more efficiently in the value
iteration algorithm of the dynamic programming.

Borget et al. (2006) applied a single sampling plan by attributes with an
acceptance quality level of 2.2 % was evaluated. A prognostic study using a logistic
regression model was performed for some drugs to identify risk factors associated
with the non-conformity rate of preparations to determine if it was necessary to
assay all therapeutic batches produced, or to calculate an individual control rate for
each cytotoxic drug, according to various parameters (like number of batches or
drug stability). The sampling plan allowed a reduction of almost 8000 analyses with
respect to the number of batches analysed for 6 drugs. Pearn and Wub (2007)
proposed an effective sampling plan based on process capability index, Cpk, to deal
with product acceptance determination for low fraction non-conforming products

Fig. 7.2 Publication frequencies of acceptance sampling
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based on the exact sampling distribution rather than approximation. Practitioners
could use this proposed method to determine the number of required inspection
units and the critical acceptance value, and make reliable decisions in product
acceptance. Aslam (2008) evolved a reliability acceptance plan assuming that the
lifetime of a product follows the generalized Rayleigh distribution with known
value of the shape parameter. Tsai et al. (2009) explained ordinary and approximate
acceptance sampling procedures under progressive censoring with intermittent
inspections for exponential lifetimes. Jozani and Mirkamali (2010) demonstrated
the use of maxima nomination sampling (MNS) technique in design and evaluation
of single AQL, LTPD, and EQL acceptance sampling plans for attributes. They
exploited the effect of sample size and acceptance number on the performance of
their proposed MNS plans using operating characteristic (OC) curve. Aslam et al.
(2010) developed the double sampling and group sampling plans and determined
the design parameters satisfying both the producer’s and consumer’s risks simul-
taneously for the specified reliability levels in terms of the mean ratio to the
specified life. Nezhad et al. (2011) introduced a novel acceptance-sampling plan is
proposed to decide whether to accept or reject a receiving batch of items. In this
plan, the items in the receiving batch are inspected until a nonconforming item is
found. When the sum of two consecutive values of the number of conforming items
between two successive nonconforming items falls underneath of a lower control
threshold, the batch is rejected. If this number falls above an upper control
threshold, the batch is accepted, and if it falls within the upper and the lower
thresholds then the process of inspecting items continues. Fernández and
Pérez-González (2012) presented for determining optimal failure-censored relia-
bility sampling plans for log-location–scale lifetime models. The optimization
procedure to decide the acceptability of a product is usually sufficiently accurate for

Fig. 7.3 Percentages of publication categories of acceptance sampling
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the most widely used parametric lifetime models, such as the Weibull and log-
normal distributions, and fairly robust to small deviations in the prior knowledge.
Hsieh and Lu (2013) developed a risk-embedded model via conditional
value-at-risk that allows a decision maker to choose an acceptance sampling plan
with minimal expected excess cost in accordance with his or her attitude towards
risk to gain insights into the role of a decision maker’s risk aversion in the deter-
mination of Bayesian acceptance sampling plans.

7.5 Intelligent Techniques in Acceptance Sampling

In sampling inspection, the fundamental decisions are how many manufactured
items to be sampled from each lot and how many identified defective items in the
sample to accept or reject each lot. The problem of determining an optimal sam-
pling plan is NP-complete (2008). The reason is the combinatorial nature of
alternative solutions on the sample sizes and acceptance criteria possessing the
combinatorial nature. From this standpoint, in recent years, there are a number of
researches that merge acceptance sampling with intelligent techniques. In this
section, we briefly examine the researches regarding acceptance sampling plans
with intelligent techniques for solving important as well as fairly complex problems
related to acceptance sampling.

Wang and Chankong (1991) proposed a neurally-inspired approach to generat-
ing acceptance sampling inspection plans. They formulated a Bayesian cost model
of multi-stage-multi-attribute sampling inspections for quality assurance in serial
production systems. The proposed model can accommodate various dispositions of
rejected lot such as scraping and screening. Besides, the model can reflect the
relationships between stages and among attributes. To determine the sampling plans
based on the formulated model, they developed a neurally-inspired stochastic
algorithm, which simulates the state transition of a primal-dual stochastic neural
network to generate the sampling plans. The simulated primal network is respon-
sible for generation of new states whereas the dual network is for recording the
generated solutions. Starting with an arbitrary feasible solution, this algorithm is
able to converge to a near optimal or an optimal sampling plan with a sequence of
monotonically improved solutions.

Tabled sampling schemes such as MIL-STD-105D offer limited flexibility to
quality control engineers in designing sampling plans to meet specific needs.
Vasudevan et al. (2012) attempted to find a closed form solution for the design of a
single sampling plan for attributes to determine the accepted quality level
(AQL) indexed single sampling plan using an artificial neural network (ANN).
They used the data from tabled sampling schemes and determined the sample size
and the acceptance number by training ANNs, namely with feed forward neural
networks with sigmoid neural function by a back propagation algorithm for normal,
tightened, and reduced inspections. From these trained ANNs, they obtained the
relevant weight and bias values and the closed form solutions to determine the
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sampling plans using these values. They provided the examples for using these
closed form solutions to determine sampling plans for normal, tightened, and
reduced inspections. The proposed method does not involve table look-ups or
complex calculations. Sampling plan can be determined by using this method, for
any required acceptable quality level and lot size. They provided suggestions to
duplicate this idea for applying to other standard sampling table schemes process.

Cheng and Chen (2007) suggested a Genetic Algorithm (GA) mechanism to
reach a closed form solution for the design of a double sampling plan. In order to
design the double sampling plan, the operating characteristic curve has to satisfy
some specific criteria. As the parameters of the sampling plan have to be integers,
the solution has to be optimal in each case. The GA mechanism is responsible for
providing the optimal solution in contrast to the trial-and-error method that has been
used so far. This approach seeks for the minimum sample number, even when the
initial criteria are not satisfied. Its disadvantage is the relatively large number of the
proposed solutions, from which the quality engineer has to decide the optimal one
by changing the criteria that were predetermined at the beginning of the process.

Designing double sampling plan requires identification of sample sizes and
acceptance numbers. Sampath and Deepa (2012) designed a genetic algorithm for
the selection of optimal acceptance numbers and sample sizes for the specified
producer’s risk and consumer’s risk. Implementation of the algorithm has been
illustrated numerically for different choices of quantities involved in a double
sampling plan.

Fountoulaki et al. (2008) proposed methodology for Acceptance Sampling by
Variables, dealing with the assurance of products quality, using machine learning
techniques to address the complexity and remedy the drawbacks of existing
approaches. Their methodology exploited ANNs to aid decision making about the
acceptance or rejection of an inspected sample. For any type of inspection, ANNs
are trained by data from corresponding tables of a standard’s sampling plan
schemes. Once trained, ANNs can give closed-form solutions for any acceptance
quality level and sample size, thus leading to an automation of the reading of the
sampling plan tables, without any need of compromise with the values of the
specific standard chosen each time. Their methodology provides enough flexibility
to quality control engineers during the inspection of their samples, allowing the
consideration of specific needs, while it also reduces the time and the cost required
for these inspections.

In acceptance sampling plans, the decisions on either accepting or rejecting a
specific batch is still a challenging problem. In order to provide a desired level of
protection for customers as well as manufacturers, Fallahnezhad and Niaki (2012)
proposed a new acceptance sampling design to accept or reject a batch based on
Bayesian modeling to update the distribution function of the percentage of non-
conforming items. They utilized the backwards induction methodology of the
decision tree approach to determine the required sample size. They carried out a
sensitivity analysis on the parameters of the proposed methodology showing the
optimal solution is affected by initial values of the parameters. Furthermore, they
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determined an optimal (n, c) design when there is a limited time and budget
available and they specified the maximum sample size in advance.

In many practical cases it is difficult to classify inspected items as conforming or
nonconforming. This problem rather frequently can be faced when quality data
come from users who express their assessments in an informal way, using such
expressions like “almost good”, “quite good”, “not so bad”, and etc.

Ohta and Ichihashi (1988), Kanagawa and Ohta (1990), Tamaki et al. (1991),
and Grzegorzewski (1998), Grzegorzewski et al. (2001) discussed single sampling
by attributes with relaxed requirements.

Ohta and Ichihashi (1988) presented a procedure for designing a single sampling
plan using fuzzy membership functions for both the producer’s risk and consumer’s
risk, with the aim of finding a reasonable solution for the trade-off between the
sampling size and the producer’s and consumer’s risks. This design methodology is
deficient in the sense that it does not explicitly takes into account of minimizing the
sample size n. The desire for smaller sample size is imposed by choosing triangular
membership functions for the risks. However, this choice does not make sense for
the part of the membership functions where the risks are higher than their nominal
values.

Kanagawa and Ohta (1990) selected trapezoidal membership functions for risks,
and taking into account a membership function for the grade of satisfaction for the
sample size. They stated that the membership function must be a monotonically
decreasing function of the sample size n, however, no method for constructing this
function is proposed.

Sampling plan by attributes for vague data were considered by Hryniewicz.
Hryniewicz (1992) attempted to cope with the statistical analysis of such quality
data.

If the quality characteristic monitored is a variable, acceptable quality level and
rejectable quality level (AQL and RQL) are identified for evaluating the acceptance
or rejection of an inspection lot. Otherwise, when the quality characteristic is an
attribute, the number of defectives is compared to a specific limit of number of
allowed defectives for the decisions of accept/reject. In the former case, acceptable
quality level and rejectable quality level may not be specified as a crisp value
because rigid values of AQL and RQL may not necessarily give a sampl plan.
Besides, these values are commonly not very precise but rather descriptive. Thus,
the crisp values of AQL and RQL may be relaxed as fuzzy values.Much more
practical procedure, namely the fuzzy version of an acceptance sampling plan by
variables, has been proposed by Grzegorzewski (2002). Grzegorzewski et al.
(2001), Grzegorzewski (2002) considered sampling plan by variables with fuzzy
requirements. General results from the theory of fuzzy statistical tests have been
used for the construction of fuzzy sampling plans when the quality characteristic of
interest is described by a fuzzy normal distribution.

Hryniewicz (2003) has shown why in the case of imprecise input information
optimal inspection intervals are usually determined using additional preference
measures than strict optimization techniques.
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Krätschmer (2005) proposed a mathematically sound basis for the sampling
inspection by attributes in fuzzy environment. According to Hryniewicz (2008), no
new practical SQC procedures have been proposed using that general model.

Jamkhaneh et al. (2009) proposed a method for designing acceptance single
sampling plans with fuzzy quality characteristic with using fuzzy Poisson distri-
bution. They presented the acceptance single sampling plan when the fraction of
nonconforming items is a fuzzy number and modeled by fuzzy Poisson distribution.
Their plans are well defined since if the fraction of defective items is crisp they
reduce to classical plans. They showed that the operating characteristic curve of the
plan is like a band having a high and low bounds whose width depends on the
ambiguity proportion parameter in the lot when that sample size and acceptance
numbers is fixed. They showed that the plan operating characteristic bands are
convex with zero acceptance number.Then, they compared the operating charac-
teristic bands of using of binomial with the operating characteristic bands of using
of Poisson distribution.

Sampath (2009) considered the properties of single sampling plan under situa-
tions involving both impreciseness and randomness using the Theory of Chance.
For fuzzy random environment, the process of drawing an operating characteristic
curve and the issue of identifying optimal sampling plans are also addressed in the
study called hybrid single sampling plan.

In a single stage sampling plan, the decision to accept or reject a lot is made
based on inspecting a random sample of certain size from the lot. Conventional
designs may result in needlessly large sample size. The sample size n can be
reduced by relaxing the conditions on the producer’s and consumer’s risks. Ajorlou
and Ajorlou (2009) proposed a method for constructing the membership function of
the grade of satisfaction for the sample size n based on the shape of the sampling
cost function. They found a reasonable solution to the trade-off between relaxing
the conditions on the actual risks and the sample size n. For three general sampling
cost functions, they derived the membership function of the grade of satisfaction for
the sample size.

Kahraman and Kaya (2010) handled two main distributions of acceptance
sampling plans which are binomial and Poisson distributions with fuzzy parameters
and they derived their acceptance probability functions. Then fuzzy acceptance
sampling plans were developed based on these distributions.

Jamkhaneh et al. (2011) discussed the single acceptance sampling plan, when the
proportion of nonconforming products is a fuzzy number and also they showed that
the operating characteristic (OC) curve of the plan is a band having high and low
bounds and that for fixed sample size and acceptance number, the width of the band
depends on the ambiguity proportion parameter in the lot. Consequently they
explained when the acceptance number equals zero, this band is convex and the
convexity increases with n.

Turanoglu et al. (2012) analyzed when main parameters of acceptance sampling
plan were assumed triangular and trapezoidal fuzzy numbers and also operating
characteristic curve (OC), AOQ, average sample number (ASN), and ATI were
obtained for single and double sampling plans under fuzzy environment.
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In the latter case, when the fraction of the defective items is needed to be used
due to the nature of the quakity characteristic, the non-conforming items may not be
specified exactly. Thu, the fraction of the non-conforming items, the fraction of the
non-conforming items is generally not known exactly in practical cases. The gen-
eral approach is to replace the value with a crisp estimate value. Due to the
uncertainty of the estimation or the experimentation procedure for the estimation,
there exists a vagueness of the value of the fraction of defective items. In order to
model the vagueness, fuzzy set theory has been used in the literature. The number
of defective items in a sample has a binomial distribution. When we use a fuzzy
approach in order to model the uncertainty, the binomial distribution is defined with
a fuzzy parameter ep. If the number of defective items in a sample is small, the
common approach is to use fuzzy Poisson distribution to approximate the fuzzy
binomial (Turanoglu 2012).

Acceptance sampling applications are classified into two based on the nature of
the quality characteristics inspected. If the items can only be identified as disjoint
categories such as good and bad, acceptance sampling by attributes are applied. In
cases where quality characteristics can be continuously measured such as weight,
strength, we apply acceptance sampling by variables. The fuzzy approaches for
both of these types of acceptance sampling have been studied in the literature.
Sampling by attributes with relaxed requirements were discussed by Ohta and
Ichihashi (1988), Kanagawa and Ohta (1990), Tamaki et al. (1991), and
Grzegorzewski (1998), Grzegorzewski et al. (2001), Hryniewicz (1992).
Grzegorzewski et al. (2001), Grzegorzewski (2002), Jamkhaneh and Gildeh (2010)
considered sampling plan by variables with fuzzy requirements.

Another classification of acceptance sampling applications is based on the
number of samples taken until a decision is made related to the lot. A sequential
sampling consists of a sequence of samples from the lot and the number of samples
to be taken is identified based on the results of the sampling process. A random
sample if drawn from the lot and the actual quality level of the sample is compared
with the limit levels. Based on the results of this comparison, three decisions can be
made: (i) the lot can be accepted, (ii) the lot can be rejected; (iii) a new sample is
taken and inspected to make a decision. When only one sample is inspected at each
sampling stage, the procedure is named as item sequential sampling. When only
two decisions, accept and reject is defined after the inspection of the first sample,
the sampling is named as single sampling plan. Single, double and sequential
sampling plans with fuzzy parameters have also been studied in the literature.
Single sampling plans with fuzzy parameters are investigated by Ohta and Ichihashi
(1988), Kanagawa and Ohta (1990), Tamaki, Kanagawa and Ohta (1991), and
Grzegorzewski (1998), Grzegorzewski et al. (2001), Jamkhaneh et al. (2010),
Jamkhaneh et al. (2011). Sequential sampling plans with fuzzy parameters are
discussed by Jamkhaneh and Gildeh (2010).
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7.6 Design of Acceptance Sampling Plans Under Fuzzy
Environment

Acceptance sampling procedures can be applied to lots of items when testing
reveals non-conformance or non-conformities regarding product functional attri-
butes. It can also be applied to variables characterizing lots, thus revealing how far
product quality levels are from specifications. These applications have the main
purpose of sort outing a lot as accepted or rejected, given the quality levels required
for it. Generally, there are two major assumptions made when creating sampling
plans. The first is that the sampling parameters are crisp, such as the fraction of
nonconformities which is the rate of the observed nonconformities in the inspected
samples, and sample rate which is a compromise between the accuracy and cost of
the inspection. The second is that these parameters are vague values, particularly in
the case where they can only be expressed by linguistic variables. According to
Literature Review (Kahraman and Kaya 2010; Ohta and Ichihashi 1988; Kanagawa
and Ohta 1990) some of the acceptance sampling studies have concentrated on
fuzzy parameters. Some of these are given with the illustrative examples in the
following subsections.

7.6.1 Design of Single Sampling Plans Under Fuzzy
Environment

The single attribute sampling plan provides a decision rule to accept or reject a lot
based on the inspection results obtained from a single random sample. The pro-
cedure corresponds to taking a random sample from the lot with size n1 and inspects
each item. If the number of non-conformities or nonconforming items does not
exceed the specified acceptance number c1, the entire lot is accepted. Many different
acceptance plans meet the requirements of both the producer and the consumer.
However, the producer is also interested in keeping the average number of items
inspected to a minimum, aiming to reduce the costs of sampling and inspection, and
economic aspects of the sampling plans must also be considered in practical
implementations (Duarte and Saraiva 2008).

Kahraman and Kaya (2010) analyzed single and double sampling plans by
taking into account two fuzzy discrete distributions such as binomial and Poisson
distribution. They developed a single sampling plan assuming that a sample whose
size is a fuzzy number ~n is taken and 100 % inspected. The fraction nonconforming
of the sample is also a fuzzy number ~p. The acceptance number is determined as a
fuzzy number ~c. The acceptance probability for this single sampling plan can be
calculated as follows:
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~Pa ¼ P d�~cj~n;~c; ~pð Þ ¼
X~c
d¼0

~kde�~k

d!

where ~k ¼ ~n~p:

ð7:10Þ

Pa að Þ ¼ Pal;d;~k að Þ;Par;d;~k að Þ
h i

ð7:11Þ

Pal;d;~k að Þ ¼min
Xc
d¼0

kde�k

d!

�����k 2 k að Þ; n 2 n að Þ; c 2 c að Þ
)(

Par;d;~k að Þ ¼max
Xc
d¼0

kde�k

d!

�����k 2 k að Þ; n 2 n að Þ; c 2 c að Þ
)( ð7:12Þ

If the binomial distribution is used, acceptance probability can be calculated as
follows:

~Pa ¼
X~c
d¼0

~n

d

 !
~pd~q~n�d ð7:13Þ

~Pa ¼
X~c
d¼0

~n

d

 !
~pd~q~n�d

¼
X~c
d¼0

~n

d

 !
~pd~q~n�d

�����p 2 p að Þ; q 2 q að Þ; n 2 n að Þ; c 2 c að Þ
)(

ð7:14Þ

Pa að Þ ¼ Pal að Þ;Par að Þ½ � ð7:15Þ

Pal að Þ ¼min
Xc
d¼0

n

d

 !
pdqn�d

�����p 2 p að Þ; q 2 q að Þ; n 2 n að Þ; c 2 c að Þ
)(
; a

Par að Þ ¼max
Xc
d¼0

n

d

 !
pdqn�d

�����p 2 p að Þ; q 2 q að Þ; n 2 n að Þ; c 2 c að Þ
)(
ð7:16Þ

AOQ values for fuzzy single sampling can be calculated as follows:

A~OQ ffi ~Pa~p ð7:17Þ

AOQ að Þ ¼ AOQl að Þ;AOQr að Þ½ � ð7:18Þ
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AOQl að Þ ¼min Papjp 2 p að Þ;Pa 2 Pa að Þgf ;

AOQr að Þ ¼max Papjp 2 p að Þ;Pa 2 Pa að Þgf ð7:19Þ

ATI curve can also be calculated as follows:

A~TI ¼ ~nþ 1� ~Pa
� �

~N � ~n
� � ð7:20Þ

ATI að Þ ¼ ATIl að Þ;ATIr að Þ½ � ð7:21Þ

ATIl að Þ ¼min nþ 1� Pað Þ N � nð Þjp 2 p að Þ;Pa 2 Pa að Þ; p 2 N að Þ;N 2 N að Þgf ;

ATIr að Þ ¼max nþ 1� Pað Þ N � nð Þjp 2 p að Þ;Pa 2 Pa að Þ; p 2 N að Þ;N 2 N að Þgf
ð7:22Þ

Numerical Example-1
Suppose that a product is shipped in lots of size “Approximately 5000”. The
receiving inspection procedure used is a single sampling plan with a sample size of
“Approximately 50” and an acceptance number of “Approximately 2”. If fraction of
nonconforming for the incoming lots is “Approximately 0.05”, calculate the
acceptance probability of the lot. Based on Eq. (7.16), the acceptance probability of
the sampling plan is calculated as ~Pa ¼ P d� ~2

� � ¼ TFN 0:190; 0:544; 0:864ð Þ and
its membership function is shown in Fig. 7.4.

AOQ is calculated as A~OQ ¼ TFN 0:008; 0:027; 0:052ð Þ by using Eq. (7.19).
ATI is also calculated as ATI ¼ TFN 707:163; 2308:125; 4140:47ð Þ by using
Eq. (7.22) and its membership function is illustrated in Fig. 7.5.

Kanawaga and Ohta (1990) presented a design procedure for the single sampling
attribute plan based on the fuzzy sets theory. They improved the fuzzy design

Fig. 7.4 Membership function of acceptance probability
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procedure proposed by Ohta and Ichihashi (1988) with getting rid of the imbalance
between the producer’s and consumer’s risks and the case in which a large sample
size is (needlessly) required, both of which often arise in traditional crisp formu-
lation, by means of the orthodox formulation as fuzzy mathematical programming
with several objective function. They proposed the following formulation for the
fuzzy design of the single sampling attribute plan.

Pðp1ÞJ 1� a; Pðp2Þ. b; ð7:23Þ

n ! 0 ð7:24Þ

where the symbols ≳ and ≲ stand for fuzzy inequlities. The membership functions
lAða�Þ and lBðb�Þ in this case are shown in Fig. 7.6. The membership function
lnðnÞ which represents the grade of satisfaction for the sample size must mono-
tonically decrease as n increases as shown in Fig. 7.7. The fuzzy formulation can be
written as the following fuzzy mathematical programming problem:

Problem 1 Find (n, c) so that

min lAða�Þ; lBðb�Þ; lnðnÞf g

is maximized.
These membership functions in Fig. 7.6 are as follows:

lAða�Þ ¼
1 ða� � aÞ

au�1þPðp1Þ
au�a ða� a� � auÞ
0 ðau � a�Þ

8<: ð7:25Þ

Fig. 7.5 Membership function of ATI for single sampling

196 C. Kahraman et al.



lBðb�Þ ¼
1 ðb� � bÞ

bu�1þPðp2Þ
bu�b ðb� b� � buÞ
0 ðbu � b�Þ

8<: ð7:26Þ

where

PðpÞ ¼
Xc
k¼0

n
k

� �
pkð1� pÞn�k ð7:27Þ

Figure 7.8 shows the graphs of the membership functions lAða�Þ and lBðb�Þ
with respect to the sample size n. In this figure, nau and nbu are real numbers which
satisfy respectively.

2kðnau ; c; p1Þ ¼ 2gðnau ; cÞhðp1Þ ¼ X2
1�au

ð2cþ 2Þ; ð7:28Þ

2kðnbu ; c; p2Þ ¼ 2gðnbu ; cÞhðp2Þ ¼ X2
1�bu

ð2cþ 2Þ; ð7:29Þ

Fig. 7.6 Membership functions lA and lB

Fig. 7.7 Membership
function ln which represents
the grade of satisfaction for
the sample size n
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Let cu be the minimum integer which satisfies �Rðcu; a; bÞ. If the membership
functions lA and lB were decided as in Fig. 7.6, that is, in Fig. 7.8, it is found that
acceptance number c in Problem 1 is less than or equal to cu. Because when c is
greater than or equal to cu, it is r�Rðcu; a; bÞ, then the membership functions
lA and lB are shown in Fig. 7.8a. Accordingly, which maximizes min flA; lB; lng
depends on only the intersection of lA and lB. The grade of max min flA; lB; lng
decreases with c, because ln is monotonically decreasing. So c is found to be less
than or equal to cu. Let the sample size n expand to a real number. Setting n� 2 R,
which satisfies

lBðb�ðn�; cÞÞ ¼ lnðnÞ ð7:30Þ

It is obvious that when c is equal to cu, n� belongs to interval ½nbu ; nb�. If n� is
found, the integer solution n is either ½n�� or ½n�� þ 1. Note that when c is less than
cu, the relation is changed to nb � na. In the both cases, the integer solution n will be
found by means of searching in the integer interval ½½nbu � � 1; ½nbu � þ 1�. Finally
sample size n is selected as

ni ¼ max
i

l0ðn0Þ; l1ðn1Þ; l2ðn2Þ; . . .; liðniÞ; . . .f g ð7:31Þ

and acceptance number is selected as cu � i.

Fig. 7.8 Membership
functions lAða�Þ and lBðb�Þ
with respect to sample size n
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Numerical Example-2
It is set up the membership functions lA and lB as follows Kahraman and Kaya
(2010):

a ¼ 5%; au ¼ 8%; b ¼ 10%; bu ¼ 20%:

For the membership function functions lnðnÞ, it will be accepted the following
function:

lnðnÞ ¼ 1� n
L

� �m
where L is the tolerance limit of the sample size so that n should be smaller than L.
it is better to select L to be less than N/10 for use of the binomial distribution. m is
the shape parameter of the membership function, and m is selected so that
0�m� 1. In the case where L = 300, m = 0.5, p1¼ 0:02; p2¼ 0:09; the solving
procedure of Problem 1 is as follows:

r ¼ ðhðp2Þ=hðp1ÞÞ ¼ 4:665

So that cu ¼ 4. Then the grade of fuzzy union set with respect to n on each c is
shown in Table 7.1. After all it is c = 3, n = 66, a� ¼ 0:04338; b� ¼ 0:1441:

7.6.2 Design of Double Sampling Plans Under Fuzzy
Environment

In double sampling by attributes, an initial sample is taken, and a decision to accept
or reject the lot is reached on the basis of this first sample if the number of
nonconforming units is either quite small or quite large. A second sample is taken if
the results of the first sample are not decisive. Since it is necessary to draw and
inspect the second sample only in borderline cases, the average number of pieces
inspected per lot is generally smaller with double sampling. It has been demon-
strated to be simple to use in a wide variety of conditions, economical in total cost,
and acceptable psychologically to both producer and consumer (Juran 1998).

Kahraman and Kaya (2010) used a double sampling plan with fuzzy parameters
~n1;~c1; ~n2;~c2ð Þa. ~N and ~p are also fuzzy. If the Poisson distribution is used, the
acceptance probability of double sampling can be calculated as follows:

Table 7.1 The grade of fuzzy
union set with respect to n on
each c

c: Grade of fuzzy product set with respect to n on each c

4: Max min lB;lnf g in ½73; 89� ¼ lnð79Þ ¼ 0:4846

4-1: Max min lA;lB; lnf g in ½60; 73� ¼ lnð66Þ ¼ 0:5310

4-2: Max min lA;lB; lnf g in ½46; 58� ¼ lnð48Þ ¼ 0:1853

4-3: Fuzzy product set does not exist

7 A Fuzzy Design of Single and Double Acceptance Sampling Plans 199



Pa ¼ P d1 �~c1ð ÞþP ~c1\d1 �~c2ð ÞP d1 þ d2 �~c2ð Þ ð7:32Þ

~Pa ¼
X~c1
d1¼0

kd1e�~n1~p

d1!
þ
X~c2

d1 [~c1

kd1e�~n1~p

d1!
	
X~c2�d1

d2¼0

kd2e�~n2~p

d2!

 !
ð7:33Þ

Pa að Þ ¼ Pal;d;~k að Þ;Par;d;~k að Þ
h i

ð7:34Þ

Pal;d;~k að Þ ¼min
Xc1
d1¼0

kd1e�n1p

d1!
þ
Xc2

d1 [ c1

kd1e�n1p

d1!
	
Xc2�d1

d2¼0

kd2e�n2p

d2!

 !)(

Par;d;~k að Þ ¼max
Xc1
d1¼0

kd1e�n1p

d1!
þ
Xc2

d1 [ c1

kd1e�n1p

d1!
	
Xc2�d1

d2¼0

kd2e�n2p

d2!

 !)( ð7:35Þ

where p 2 p að Þ; n 2 n að Þ; and c 2 c að Þ.
If the binomial distribution is used, acceptance probability can be calculated as

follows:

Pa ¼
X~c1
d1¼0

~n1

d1

 !
~pd1 1� ~pð Þ~n1�d1 þ

X~c2
d1 [~c1

~n1

d1

 !
~pd1 1� ~pð Þ~n1�d1	

X~c2�d1

d2¼0

~n2

d2

 !
~pd2 1� ~pð Þ~n2�d2

 !
ð7:36Þ

Pal að Þ ¼min
Xc1
d1¼0

n1

d1

 !
pd1 1� pð Þn1�d1 þ

Xc2
d1 [ c1

n1

d1

 !
pd1 1� pð Þn1�d1	

Xc2�d1

d2¼0

n2

d2

 !
pd2 1� pð Þn2�d2

 !)(
;

Par að Þ ¼max
Xc1
d1¼0

n1

d1

 !
pd1 1� pð Þn1�d1 þ

Xc2
d1 [ c1

n1

d1

 !
pd1 1� pð Þn1�d1	

Xc2�d1

d2¼0

n2

d2

 !
pd2 1� pð Þn2�d2

 !)(

ð7:37Þ

where p 2 p að Þ; q 2 q að Þ; n1 2 n1 að Þ; c1 2 c1 að Þ; n2 2 n2 að Þ; and c2 2 c2 að Þ.
AOQ values for fuzzy double sampling can be calculated as in Eqs. (7.17–7.19).
ASN for double sampling can be calculated as follows:

A~SN ¼ ~n1~PI þ ~n1 þ ~n2ð Þ 1� ~PI
� �

¼ ~n1 þ ~n2 1� ~PI
� � ð7:38Þ

ASN að Þ ¼ ASNl að Þ;ASNr að Þ½ � ð7:39Þ

ASNl að Þ ¼min n1 þ n2 1� PIð Þjp 2 p að Þ; n1 2 n1 að Þ; n2 2 n2 að Þ;PI 2 PI að Þgf ;

ASNr að Þ ¼max n1 þ n2 1� PIð Þjp 2 p að Þ; n1 2 n1 að Þ; n2 2 n2 að Þ;PI 2 PI að Þgf
ð7:40Þ
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ATI curve for fuzzy double sampling can also be calculated as follows:

A~TI ¼ A~SN þ ~N � ~n1
� �

P d1 [~c2ð Þþ ~N � ~n1 � ~n2
� �

P d1 þ d2 [~c2ð Þ ð7:41Þ

ATI að Þ ¼ ATIl að Þ;ATIr að Þ½ � ð7:42Þ

ATIl að Þ ¼min ASN þ N � n1ð ÞP d1 [ c2ð Þþ N � n1 � n2ð ÞP d1 þ d2 [ c2ð Þgf ;

ATIr að Þ ¼max ASNþ N � n1ð ÞP d1 [ c2ð Þþ N � n1 � n2ð ÞP d1 þ d2 [ c2ð Þgf
ð7:43Þ

where p 2 p að Þ;ASN 2 ASN að Þ; n1 2 n1 að Þ;N 2 N að Þ; n2 2 n2 að Þ; and c2 2 c2 að Þ.
Numerical Example-3
Let us reconsider Numerical Example-1 for the case of fuzzy double sampling. The
sample sizes are determined as “Approximately 75” and “Approximately 300” for
the first and second samples, respectively. Also the acceptance numbers are
determined as “Approximately 0” and “Approximately 3” for the first and second
samples, respectively. Based on Eq. (7.35), acceptance probability of the double
sampling plan is calculated as follows:

~Pa ¼P d1� ~0
� �þ P d1 ¼ ~1

� �	 P d2 � ~2
� �	 
þ P d1 ¼ ~2

� �	 P d2 � ~1
� �	 
þ P d1 ¼ ~3

� �	 P d2 � ~0
� �	 


¼ 0:0105; 0:0235; 0:2052ð Þþ 0:0105; 0:0882; 0:227ð Þ 	 0; 0; 0:0024ð Þ½ �
þ 0:0477; 0:1654; 0:224ð Þ 	 0; 0; 0:0005ð Þ½ � þ 0:1088; 0:2067; 0:227ð Þ 	 0; 0; 0:0001ð Þ½ �

¼ 0:0105; 0:0235; 0:2052ð Þþ 0; 0; 0:0005ð Þþ 0; 0; 0:0001ð Þþ 0; 0; 0ð Þ
~Pa ¼ 0:0105; 0:0235; 0:2058ð Þ:

Its membership function is shown in Fig. 7.9.

Fig. 7.9 Membership function of acceptance probability for double sampling
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ASN is calculated as ASN ¼ TFN 74:00; 213:08; 320:24ð Þ by using Eqs. (7.38–
7.40). Also AOQ is calculated as AOQ ¼ TFN 0:00042; 0:001175; 0:01235ð Þ.

Wang and Chen (1997) formulated the problem of determining the Dodge-Romig
LTPD double sampling plan under the fuzzy environment satisfies the consumer’s
risk closely around b using fuzzy mathematical programming. They proposed a
model to minimize the ATI at the process average pm subject to satisfying the con-
sumer’s risk closely around b, the Dodge-Romig LTPD double sampling plan finds a
non-fuzzy non-negative integer pair n1; n2; c1; c2ð Þ that minimizes:

I pm; n1; n2; c1; c2ð Þ ¼ n1 þ n2 � ð1� Gðc1; n1pmÞÞþ ðN � n1 � n2Þ�

1� Gðc1; n1pmÞ �
Xc2�c1

j¼1

gðc1 þ j; n1pmÞ � Gðc2 � c1 � j; n2pmÞ
" #

ð7:44Þ

subject to

K pn; n1; n2; c1; c2ð Þ.b ð7:45Þ

n1; n2; c1; c2 � 0; integer ð7:46Þ

where

K pn; n1; n2; c1; c2ð Þ ¼ Gðc1; n1pnÞþ
Xc2�c1

j¼1

gðc1 þ j; n1pmÞ � Gðc2 � c1 � j; n2pnÞ

ð7:47Þ

where gðx; npÞ represents the probability of the Poisson distribution for the randım
variable x with parameter np, i.e. gðx; npÞ ¼ e�npðnpÞx=x! and Gðx; npÞ is its
cumulative distribution. I pm; n1; n2; c1; c2ð Þ is the ATI. The symbol ≲ stands for
fuzzy inequality.

The symmetry of the decision model in a fuzzy environment rests essentially on
the assumption that the objective function as well as the constraint can be fuzzy
sets, and that the degree of membership of solutions to the objective function and to
the constraint could be considered comparable. The above model shown using
Eqs. (7.44–7.46) is a non-linear integer fuzzy mathematical programming problem.
Because the objective function in Eq. (7.44) is a crisp set and the constraint in
Eq. (7.45) is a fuzzy set, it is the optimization problem is a non-symmetrical fuzzy
model. So Wang and Chen (1997) used the studies of Zimmermann (1985) and
Chakraborty (1988, 1992) with the minimum operator to aggregate the membership
functions of fuzzy sets, they obtained the following model for Dodge-Romig LTPD
double sampling plan problem:
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Maximize

min n1; n2; c1; c2 � 0; integer

inf

R1

I � Iðpm; n1; n2; c1; c2Þ

inf

R1

I �
inf

SðRÞ
I

¼ k1;
bu � Kðpn; n1; n2; c1; c2Þ

bu � b
¼ k2

266664
377775 ¼ k

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
ð7:48Þ

Subject to

inf
SðRÞ I� Iðpm; n1; n2; c1; c2Þ� inf

R1
I ð7:49Þ

b�Kðpn; n1; n2; c1; c2Þ� bu ð7:50Þ

0� k� 1 ð7:51Þ

n1; n2; c1; c2 � 0; integer ð7:52Þ

where R is a fuzzy feasible region, S(R) support of R, and R1�� level cut of R for
a ¼ 1.

This problem can be rewritten in the equivalent optimization problem to find
n1; n2; c1; c2; k that maximize k and subject to

k�
inf
R1

I � Iðpm; n1; n2; c1; c2Þ
inf
R1

I � inf
SðRÞ I

ð7:53Þ

k� bu � Kðpn; n1; n2; c1; c2Þ
bu � b

ð7:54Þ

and inequalities (7.49) through (7.52).Let I1 ¼ inf
R1

I and I0 ¼ inf
SðRÞ I. Then the

above optimization problem can be expressed as: find n1; n2; c1; c2; k that maximize
k and subject to

RðI1�I0Þ þ Iðpm; n1; n2; c1; c2Þ� I1 ð7:55Þ

Rðbu�b0Þ þKðpn; n1; n2; c1; c2Þ��U ð7:56Þ

I0 � Iðpm; n1; n2; c1; c2Þ� I1 ð7:57Þ

and inequalities (7.50), (7.51) and (7.52).
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Numerical Example-4
It is considered the example given in Hald (1981): N = 2000, pm ¼ 0:02; pn ¼ 0:10;
and β = 0.10. The optimum LTPD double sampling planðn�1; n�2; c�1; c�2Þ is to be found
for bu ¼ 0:15: For a LTPD double sampling plan, it is obtained ðna1; na2; ca1; ca2Þ ¼
ð55; 132; 2; 10Þ with I1 ¼ 70:30 and ðnb1; nb2; cb1; cb2Þ ¼ ð36; 111; 1; 8Þ with
I0 ¼ 58:45. The DSP giving the largest value of k for each c1 near fca11; ca2 ¼ 2g is
found. It is concluded that the optimum LTPD double sampling plan is;
ðn�1; n�2; c�1; c�2Þ ¼ ð40; 104; 1; 8Þ with k� ¼ 0:52I(pm; n

�
1; n

�
2; c

�
1; c

�
2Þ ¼ 64:12 and

K(pn; n
�
1; n

�
2; c

�
1; c

�
2Þ ¼ 0:1235.

In this particular example, the difference between the solution of the traditional
Dodge-Romig LTPD double sampling plan and their is that the decision maker
takes an additional consumer’s risk of 2.35 % for a lot being rejected against a
saving of inspection effort per lot.

7.7 Proposed Fuzzy Multi-objective Mathematical Models
for Design of Acceptance Sampling Plans

In this section, multi-objective mathematical models for designing of single and
double sampling by attributes are developed and the optimal results are obtained by
considering the various constraints under fuzziness. As a result it is obtained that
the lower sample sizes in developed single and double sampling plans under fuzzy
environment.

7.7.1 Proposed Fuzzy Multiobjective Models for Design
of Single Acceptance Sampling Plan

The case in which a large sample size is needlessly required often arises in con-
ventional design. The sample size n can be reduced as desired by relaxing the
conditions on the consumer’s risks. Hence, the tradeoff between the reduction of
sample size and the relaxation of the conditions becomes a serious problem. So we
developed a design procedure based on fuzzy multi-objective mathematical model
for single sampling plans. In practical applications, LTPD cannot be known pre-
cisely. Hence the following model is developed to find the most appropriate sample
size n with minimizing of ATI and AOQ. Also in this model, LTPD and con-
sumer’s risks b are defined as fuzzy numbers. The closed form of the model is
given following equations:

Objective function
Min ATI
Min AOQ
Subject to
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Paðn; c; gLTPDÞ � eb ð7:58Þ

n� c ð7:59Þ

n[ 0; integer; c� 0; integer ð7:60Þ

The open form of the model is given by using Eqs. (7.61–7.64).
Objective Function
Min ATI

nþðN � nÞ 	 1�
Xc
x¼0

e�n	gLTPD 	 ðn	 gLTPDÞx
x!

24 35 ð7:61Þ

Min AOQ

gLTPD
N

	 ðN � nÞ 	
Xc
x¼0

e�n	gLTPD 	 ðn	 gLTPDÞx
x!

24 35 ð7:62Þ

Subject to

Xc
x¼0

e�n	gLTPD 	 ðn	 gLTPDÞx
x!

� eb ð7:63Þ

n� c

n[ 0; integer; c� 0; integer ð7:64Þ

Numerical Example-5
Developed fuzzy multi-objective mathematical model for single sampling plan
shown in Eqs. (7.61–7.64) is solved for N = 500, gLTPD ¼ TFN(0:02; 0:03; 0:04Þ
and. The obtained results for n, ATI and AOQ are given in Table 7.2.

According to Table 7.2, when gLTPD and eb re defined as fuzzy numbers, the
smaller values of n, ATI and AOQ are obtained. Table 7.3 gives the comparison of

Table 7.2 The results of n, ATI, and AOQ for single sampling plan given values forgLTPD and ~b and N = 500

N gLTPD Single
sampling plan

Acceptance number (c)

1 2 3 4 5

500 TFN(0.02, 0.03,
0.04)

n 34 66 100 136 174

ATI 104.158 131.915 160.017 190.611 223.688

AOQ 0.0158 0.0147 0.0136 0.0124 0.011
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the values of n, ATI and AQO for the crisp values of LTPD and b ¼ 0:10 and fuzzy

values of gLTPD and eb.
7.7.2 Proposed Fuzzy Multiobjective Models for Design

of Double Acceptance Sampling Plan

In the presented model for double sampling plan, the decision maker specifies
consumer’s riskb and LTPD as fuzzy numbers to find the most appropriate sample
sizes n1 and n2 with minimizing ATI and AOQ. The closed form of the model is
given following equations:

Objective function
Min ATI
Min AOQ
Subject to

Paðn1; n2; c1; c2; gLTPDÞ� eb ð7:65Þ

n1; n2 [ 0; integer; c1; c2 � 0; integer ð7:66Þ

The open form of the model is given by using Eqs. (7.67–7.70).
Objective function

Table 7.3 The comparison of the values of n, ATI and AOQ for the crisp values of LTPD and
b ¼ 0:10 and the fuzzy values of gLTPD and eb
Parameters Single

sampling plan
LTPD gLTPD ¼ TFN(0:02; 0:03; 0:04Þ

N C 0.02 0.03 0.04

500 1 n 195 130 98 20

ATI 469.748 463.301 460.757 40.422

AOQ 0.0012 0.0022 0.0031 0.0183

2 n 267 178 134 44

ATI 476,983 468.191 464.342 72.644

AOQ 0.0009 0.0019 0.0028 0.0171

3 n 335 223 168 71

ATI 483,697 473.459 467.603 97.211

AOQ 0.0006 0.0016 0.0025 0.0161

4 n 400 267 200 101

ATI 490.036 476.919 470.110 125.551

AOQ 0.0004 0.0014 0.0024 0.0148

5 n 464 311 232 132

ATI 496.410 481.654 473.276 154.429

AOQ 0.0001 0.0011 0.0021 0.0138
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Min ATI

n1 þ n2	
Xc2
x¼0

e�n1	gLTPD 	 ðn1 	 gLTPDÞx
x!

�
Xc1
x¼0

e�n1	gLTPD 	 ðn1 	 gLTPDÞx
x!

24 35
þ ðN � n1Þ 	 1�

Xc2
x¼0

e�n1	gLTPD 	 ðn1 	 gLTPDÞx
x!

24 35þðN � n1 � n2Þ 	
Xc2
x¼0

e�n1	gLTPD 	 ðn1 	 gLTPDÞx
x!

24 35

�

Xc1
x¼0

e�n1	gLTPD 	 ðn1 	 gLTPDÞx
x!

þ e�n1	gLTPD 	 ðn1 	 gLTPDÞðc1 þ 1Þ

ðc1 þ 1Þ! 	
Xc2�c1�1

x¼0

e�n2	gLTPD 	 ðn2 	 gLTPDÞx
x!

þ e�n1	gLTPD 	 ðn1 	 gLTPDÞðc1 þ 2Þ

ðc1 þ 2Þ! 	
Xc2�c1�2

x¼0

e�n2	gLTPD 	 ðn2 	 gLTPDÞx
x!

þ � � � þ e�n1	gLTPD 	 ðn1 	 gLTPDÞc2
c2!

	 e�n2	gLTPD

0BBBBBBBBBB@

1CCCCCCCCCCA
ð7:67Þ

Min AOQ

gLTPD
N

	

Xc1
x¼0

e�n1	gLTPD 	 ðn1 	 gLTPDÞx
x!

	 ðN � n1Þþ ðN � n1 � n2Þ

	
Xc2
x¼0

e�n1	gLTPD 	 ðn1 	 gLTPDÞx
x!

�

Xc1
x¼0

e�n1	gLTPD 	 ðn1 	 gLTPDÞx
x!

þ e�n1	gLTPD 	 ðn1 	 gLTPDÞðc1 þ 1Þ

ðc1 þ 1Þ!

	
Xc2�c1�1

x¼0

e�n2	gLTPD 	 ðn2 	 gLTPDÞx
x!

þ e�n1	gLTPD 	 ðn1 	 gLTPDÞðc1 þ 2Þ

ðc1 þ 2Þ!

	
Xc2�c1�2

x¼0

e�n2	gLTPD 	 ðn2 	 gLTPDÞx
x!

þ � � � þ e�n1	gLTPD 	 ðn1 	 gLTPDÞc2
c2!

	 e�n2	gLTPD

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

26666666666666666666666664

37777777777777777777777775
ð7:68Þ

Subject to

Xc2
x¼0

e�n1	gLTPD 	 ðn1 	 gLTPDÞx
x!

�

Xc1
x¼0

e�n1	gLTPD 	 ðn1 	 gLTPDÞx
x!

þ e�n1	gLTPD 	 ðn1 	 gLTPDÞðc1 þ 1Þ

ðc1 þ 1Þ!

	
Xc2�c1�1

x¼0

e�n2	gLTPD 	 ðn2 	 gLTPDÞx
x!

þ e�n1	gLTPD 	 ðn1 	 gLTPDÞðc1 þ 2Þ

ðc1 þ 2Þ!

	
Xc2�c1�2

x¼0

e�n2	gLTPD 	 ðn2 	 gLTPDÞx
x!

þ � � � þ e�n1	gLTPD 	 ðn1 	 gLTPDÞc2
c2!

	 e�n2	gLTPD

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

26666666666666666666666664

37777777777777777777777775

� eb

ð7:69Þ

n1; n2 [ 0; integer; c1; c2 � 0; integer ð7:70Þ
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Numerical Example-6
Developed fuzzy multi-objective mathematical model for double sampling plan
shown in Eqs. (7.67–7.70) is solved for

N = 500, gLTPD ¼ TFNð0:02; 0:03; 0:04Þ and eb = TFN(0:10; 0:15; 0:20Þ. The
obtained results for n1; n2ATI and AOQ are given in Table 7.4.

According to Table 7.4, when gLTPD and eb are defined as fuzzy numbers, the
smaller values of n1; n2 and ATI are obtained. Table 7.5 shows the comparison of

Table 7.4 The results of n for n1; n2ATI and AOQ for double sampling plan given values forgLTPD and eb and N = 500gLTPD Double
sampling
plan

Acceptance numbers ( c1 and c2)
0–1 1–2 2–3 3–4 4–5

TFN(0.02,
0.03, 0.04)

n1 14 29 49 71 94

n2 14 29 49 71 94

ATI 112.956 135.238 175.544 216.570 257.793

AOQ 0.0218 0.0246 0.0243 0.0234 0.0221

Table 7.5 The comparison of the values of n1; n2, ATI and AQO for the crisp values of LTPD and
b ¼ 0:10 and fuzzy values of gLTPD and ~b

Parameters Double
sampling plan

LTPD gLTPD
c1 c2 0.02 0.03 0.04 TFN(0.02,

0.03, 0.04)

0 1 n1 16 11 8 14

n2 16 11 8 14

ATI 89.294 80.528 70.926 112.956

AOQ 0.0151 0.0230 0.0310 0.0218

1 2 n1 36 24 17 29

n2 36 24 17 29

ATI 125.790 100.756 88.238 135.238

AOQ 0.0166 0.0257 0.0347 0.0246

2 3 n1 62 41 31 49

n2 62 41 31 49

ATI 176.329 132.972 113.837 175.544

AOQ 0.0162 0.0256 0.0349 0.0243

3 4 n1 92 61 46 71

n2 92 61 46 71

ATI 234.181 171.887 142.884 216.570

AOQ 0.0152 0.0247 0.0342 0.0234

4 5 n1 124 83 62 94

n2 124 83 62 94

ATI 294.655 214.481 172.498 257.793

AOQ 0.0140 0.0235 0.0331 0.0221
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the values of n1; n2, ATI and AQO for the crisp values of LTPD and b ¼ 0:10 and

fuzzy values of gLTPD and eb.
7.8 Conclusion

The complexity of industrial manufacturing is growing and the need for higher
efficiency, greater flexibility; better product quality and lower cost have changed the
face of manufacturing practice. Statistical Quality Control is a tool for developing
required resolution plans against problematic areas of manufacturing practice. One
of the most important subjects of the Statistical Quality Control is acceptance
sampling. Proper design of an acceptance sampling planning usually depends on
knowing the true level of quality required by customers. However, it is some-
times not possible to determine this quality level with certain values. Especially in
production, it is not easy to determine the parameters of acceptance sampling such
as proportion of defect items, sample size, acceptable defect items.

A lot or batch of items can be inspected in several ways including the use of
single, double, multiple, sequential sampling. In this chapter, the parameters used in
acceptance sampling are defined with the help of linguistic variables and fuzzy set
theory has successfully been applied to acceptance sampling to eliminate uncer-
tainty and lack of knowledge mentioned above. We propose fuzzy multi-objective
mathematical models for single and double sampling schemes. As a result it is
obtained that the lower sample sizes in developed single and double sampling plans
under fuzzy environment. For further studies, multi-objective mathematical models
for multiple and sequential sampling schemes can be developed under fuzzy
environment. Also decision trees that identify the causes of the non conformities of
a rejected sample and indicate the appropriate interventions in the manufacturing
process are worthwhile to study for acceptance sampling.
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Chapter 8
The Role of Computational Intelligence
in Experimental Design: A Literature
Review

Erkan Işıklı and Seda Yanık

Abstract Experimental design (DOE) is a well-developed methodology that has
been frequently adopted for different purposes in a wide range of fields such as
control theory, optimization, and intelligent decision making. The main objective of
DOE is to best select experiments to estimate a set of parameters while consuming
as little resources as possible. The enrichment of literature on computational
intelligence has supported DOE to extend its sphere of influence in the past two
decades. Specifically, the most significant progress has been observed in the area of
optimal experimentation, which deals with the calculation of the best scheme of
measurements so that the information provided by the data collected is maximized.
Nevertheless, determining the design that captures the true relationship between the
response and control variables is the most fundamental objective. When deciding
whether a design is better (or worse) than another one, usually a criterion is utilized
to make an objective distinction. There is a wide range of optimality criteria
available in the literature that has been proposed to solve theoretical or practical
problems stemming from the challenging nature of optimal experimentation. This
study focuses on the most recent applications of DOE related to heuristic opti-
mization, fuzzy approach, and artificial intelligence with a special emphasis on the
optimal experimental design and optimality criteria.
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E. Işıklı (&) � S. Yanık
Department of Industrial Engineering, Istanbul Technical University,
34367 Macka, Istanbul, Turkey
e-mail: isiklie@itu.edu.tr

© Springer International Publishing Switzerland 2016
C. Kahraman and S. Yanık (eds.), Intelligent Decision Making
in Quality Management, Intelligent Systems Reference Library 97,
DOI 10.1007/978-3-319-24499-0_8

213



8.1 Introduction

Experimental design (DOE) aims to quantify the cause and effect relationship
between the inputs (process variables) and outputs (responses) of a process as
economically as possible. The process of interest could belong in any field where
variance reduction or quality improvement is one of the main objectives. Since its
introduction by R.A. Fisher in the 1930s, DOE has attracted much attention and has
been applied in various areas ranging from manufacturing to biochemistry; service
industry to quality control; and biomedical sciences to marketing. As the number of
cases in which DOE approach has been adopted increased, interesting challenges,
mostly related with the main assumptions of DOE or applicability and efficiency of
traditional designs, have arisen. In order to deal with these challenges, newer
designs such as Box–Wilson Central Composite Design, Doehlert Design, Box–
Behnken Design, Plackett–Burman Design, Split Plot Design, and Rechtschaffner
Design have been introduced. However, Box Behnken and Central Composite
designs may not have performed well in case the process behaviour is more
complex than a second order (Rollins and Bhandari 2004). Thus, the significant
acceleration in the rise of new experimentation techniques was observed with the
introduction of computer-aided designs in which one or more optimality criteria are
used to construct optimal experimental designs. Lately, the ease of computation has
propelled the use of computational intelligence based methods in optimal experi-
mental design. In this study, four streams of the related literature are reviewed:
optimization methods, heuristics, fuzzy techniques, and artificial intelligence.
However, we should note that these streams are not clear-cut and it is highly likely
to come across studies combining methods from different research streams when
reviewing the DOE literature. The remainder of this chapter is organized as follows:
Sect. 8.2 overviews the basic terminology of DOE and provides some insights on
the extent of the use of DOE by reviewing its most recent applications, Sects. 8.3
and 8.4 focus on heuristic optimization methods, and artificial intelligence and
fuzzy methods employed in DOE, respectively, Sect. 8.5 concludes with a dis-
cussion of potential research avenues.

8.2 The Fundamentals of Experimental Design

Experimental design (DOE) aims to reduce the experimental cost while observing
how a response variable (output) is influenced by alternating one or more process
variables (inputs). Traditional approaches in DOE include full factorial designs,
fractional factorial designs, mixture designs, Taguchi designs, central composite
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designs (Box–Wilson, Box–Behnken, etc.), and Latin hypercube designs.
Lundstedt et al. (1998) provided an insightful review on DOE with a special
emphasis on the screening methods along with central composite designs and the
Doehlert design. Anderson-Cook et al. (2009) paid particular attention to robust
parameter designs, split-plot designs, mixture experiment designs, and designs for
generalized linear models. The authors underlined the importance of investing more
in the analysis stage, before data collection, to obtain better results. Resolving
issues regarding a design could drastically increase the related cost. Thus, attention
should be paid in the earlier stages of the experimentation. Recently, a remarkable
progress in optimal experimentation has been observed, especially due to new
algorithmic approaches and a significant decrease in computation times; however,
this stream of the literature is still developing and needs more attention even though
its roots date back to 1920s.

Optimal experimental designs (sometimes also called computer-aided designs)
are generated by an optimization algorithm that uses a design criterion to measure
the quality of the experiment. There are several optimality criteria proposed in the
literature which can be mainly classified into two groups: information-based criteria
and distance-based criteria. The former are based on the Fisher information matrix,
XTX, whereas the latter are based on the distance d(y, A) from a point (y) in the
n-dimensional Euclidean space (Rn) to a subset (A) of Rn. These criteria play a vital
role in optimal experimentation as they help experimenters choose between alter-
native designs—by calculating their efficiencies—without wasting too much
resource, time, effort, and money. However, experimenters should also take into
account the robustness of these candidate designs and the effect of missing data to
make better conclusions (Anderson-Cook et al. 2009).

To provide the reader a background to better understand the details of various
designs to be discussed in subsequent sections, we briefly cover the information-
based criteria (also known as the alphabet criteria) below. Interested readers should
refer to Das (2002) or Pukelsheim (1993) for a thorough review on this topic.

• A-optimality minimizes the trace of XTXð Þ�1, which is equivalent to minimizing
the average variance of the parameter estimates. It is vulnerable to changes in
the coding of the design variable(s) (Anderson-Cook et al. 2009).

• C-optimality minimizes the variance of the best linear unbiased estimator of a
predetermined combination of model parameters (Harman and Jurik, 2008).

• D-optimality maximizes det XTXð Þ, which is equivalent to minimizing the
inverse Fisher information matrix. This way, the volume of the confidence
ellipsoid around the parameter vector is minimized. The higher the D-optimality
criterion the smaller the confidence region for the parameter estimates
(Balsa-Canto et al. 2007).
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• E-optimality maximizes the minimum eigenvalue of XTX, which implies the
minimization of the maximum variance of all possible normalized linear
combinations of parameter estimates. Modified E-optimality, which minimizes
the ratio of the largest eigenvalue of XTX to the smallest one, represents the
relationship between the longest and shortest semi-axes of the information
hyper–ellipsoid (Balsa–Canto et al. 2007).

• T-optimality maximizes the trace of XTX.

• G-optimality minimizes the maximum entry in the diagonal of X XTXð Þ�1XT ,
which corresponds to the maximum variance of any predicted value over the
design space.

• I-optimality (also known as Q-optimality, V-optimality, or IV-optimality) min-
imizes the (normalized) average prediction variance over the region of interest.

• L-optimality, a modified version of A–optimality, minimizes the average vari-
ance of the parameter estimates (Wit et al. 2005).

• V-optimality minimizes the average prediction variance over a set of m specific
points.

Fraleigh et al. (2003) mentioned that there were two particular optimal designs
of interest: variance optimal and model discrimination designs. There are a range of
variance optimal designs including A-, D-, E-, G- and Q-optimal approaches. D-
optimal experimental design, which was developed to determine the experimental
conditions that minimize the volume of the uncertainty region for the parameter
estimates, has been very popular. T-optimal experimental designs are used to decide
which experimental conditions to use so that one can discriminate between alter-
native models, and is based on the prediction error. The objective of T-optimal
design is to maximize the sum of squares lack of fit between the observations and
the model predictions. López-Fidalgo et al. (2007) proposed an extension to the
conventional T-optimality criterion that considers the case of non–normal para-
metric regression models. Their criterion was further modified by Otsu (2008) to
also cover the case of semi-parametric models as an assumption on the distribution
of residuals may be restrictive in some cases. Fang et al. (2008) explored five
different approaches to derive the lower bounds of the most common criteria
employed in DOE.

As Anderson-Cook et al. (2009) informed, optimality criteria should not be the
only aspects to consider for the estimation and/or prediction. Collecting data rea-
sonably, estimating/interpreting model parameters carefully, and having Plan B are
equally important aspects in DOE. Thus, creating a design that balances the pros
and cons of each such aspect should be the first priority of an experimenter, which
would result in a near optimal design in many occasions. Imhof et al. (2004) also
discussed the pitfalls of an optimal experimental design methodology when some of
the observations may not be available at the end of the experiment and showed how
inefficient the experimentation could be if the anticipated missingness pattern was
not accounted for at the design stage.
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DOE is an efficient procedure for planning experiments such that the data
obtained can be analyzed to yield valid and objective conclusions. Well-chosen
experimental designs maximize the amount of information that can be obtained
with a given amount of the experimental effort. The main goal of DOE is to plan a
process in an optimal way with a single or multiple underlying objectives such as
cost minimization, effective resource consumption, and reduced environment pol-
lution. Therefore, it is natural that DOE can be viewed as an optimization technique
(Siomina and Ahlinder 2008).

DOE is often used to select the significant factors that affect the output. Fraleigh
et al. (2003) adopted DOE for this purpose in a sensor subsystem to ensure an
effective real time optimization (RTO) system. The authors suggested a procedure
that combines a modified D-optimal and a modified T-optimal design that fits the
RTO problem geometry well and illustrated its use via a simulation study.

Rollins and Bhandari (2004) adopted DOE to determine the design points (to
generate data) for sequential step tests in a new multiple input, multiple output
(MIMO) constrained discrete-time modelling (DTM) approach for dynamic
block-oriented processes. Their approach is essentially innovative as DOE provides
the efficient information to estimate ultimate response and dynamic response
behaviour. Similarly, Patana and Bogacka (2007) attempted to use DOE to properly
design the data collection process and to avoid the noise in the parameter estimates
for multi-response dynamic systems when one of its basic assumptions is violated:
uncorrelated error terms.

Siomina and Ahlinder (2008) stressed one of the most important reasons to use
DOE in practical applications: reducing the cost of experimental time and effort.
The authors presented a lean optimization algorithm that sequentially uses super-
saturated experimental designs for the optimization of a multi-parameter system in
which the maximum number of experiments cannot exceed the number of factors.
Their algorithm was proven to be computationally efficient and to significantly
outperform the well-known Efficient Global Optimization (EGO) algorithm (Jones
et al. 1998). EGO algorithm first fits a response surface to data collected by eval-
uating the objective function at a few points and then balances between finding the
optimum point of the surface and improving the approximation by sampling where
the prediction error may be high (Siomina and Ahlinder 2008).

Myers et al. (2004) observed that the response surface framework had become
the standard approach for much of the experimentation carried out in industrial
research, development, manufacturing, and technology commercialization. The
Response Surface Methodology (RSM) has been originally designed to approxi-
mate an unknown or complex relationship between design variables and design
functions by fitting a simpler model to a (relatively small) number of experimental
points. In RSM, the direction of improvement is determined using the path of the
steepest descent/ascent (for a minimization/maximization problem) based on the
estimated first-order model or using ridge trace analysis for the second-order model
(Siomina and Ahlinder 2008). Anderson-Cook et al. (2009) provided an insightful
discussion on good response surface designs considering qualitative and quantita-
tive characteristics.
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RSM is a widely used technology also for rational experimental design and
process optimization in the absence of mechanistic information. RSM initiates from
design of experiments (DOE) to determine the factors’ values for conducting
experiments and collecting data. The data are then used to develop an empirical
model that relates the process response to the factors. Subsequently, the model
facilitates to search for better process response, which is validated through exper-
iment(s). The above procedure iterates until an optimal process is identified or the
limit on experimental resources is reached (Chi et al. 2012).

In traditional RSM, the first-order or second-order polynomial function is
adopted for empirical modelling. However, the restrictive functional form of
polynomials has long been recognized as ineffective in modelling complex pro-
cesses. The non-traditional RSM is a stage-wise heuristic that searches for the input
combination that maximizes the output (Kleijnen et al. 2004). Progress in adopting
more flexible models in RSM includes artificial neural networks (ANN), support
vector regression (SVR), and more recently Gaussian process regression (GPR).
GPR, also known as kriging model with a slightly different formulation, has been
accepted as a powerful modelling tool in various fields, especially in process sys-
tems engineering (Chi et al. 2012). The next two sections delve deeper into these
topics.

8.3 The Use of Heuristic Optimization Methods in DOE

Lundstedt et al. (1998) compared the theoretical and practical aspects of two
optimization approaches (simplex method and response surface methodology) in
experimental design (DOE). It is possible to reach the optimal set of parameters
using Response Surface Methodology (RSM); however, the experiments are per-
formed one by one in simplex optimization and the global optimum is not guar-
anteed. Coles et al. (2011) emphasized the need for a comprehensive approach that
compares the quality of the optimal experimental design and the computational
efficiency of the algorithm used for parameter estimation. They claimed that it
would not always be possible to find a unique algorithm that could perform well for
different types of objective functions. This is one of the most important challenges
in DOE: the trade-off between the optimum use of resources and the computational
efficiency. Such challenges have usually been approached by using both linear and
non-linear programming techniques. However, traditional algorithms may not work
at some instances. This is where heuristic approach comes into play. A detailed
discussion on the use of heuristic techniques is made in this section after providing
a concise review on how, in general, optimization techniques have been employed
in DOE.

On the linear side, Joutard (2007) proposed a large deviations principle for the
least-squares estimator in a linear model and used its results to find optimal exper-
imental designs. The author demonstrated the performance of this principle by
estimating the whole parameter vector in a Gaussian linear model and one
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component of the parameter vector in an arbitrary linear model in which certain
assumptions on the distribution of errors were made. Harman and Jurík (2008)
formulated the approximate C-optimal design for a linear regression model with
uncorrelated observations and a finite experimental domain as a specific linear
programming problem. The authors stated that the proposed algorithm can also be
applied to difficult problems with singular C-optimal designs and relatively high
dimension of β; however, computing optimal designs with respect to other
well-known criteria cannot be reduced to a linear programming problem. The
algorithm the authors proposed (called SAC), which is based on the simplex method,
identifies the design support points for a C-optimal design. It can also be applied to
C-optimal design problems with a large experimental domain without significant
loss of efficiency.

Research on the non-linear side has been more diversified. The related literature
has mostly focused on the construction of D-optimal designs to estimate some fixed
parameters. Recently, Loeza–Serrano and Donev (2014) drew attention to the lack of
research on the estimation of variance components (or variance ratios) contributed to
the literature by proposing a new algorithm for the construction of A- and D-optimal
designs at such instances. Parameter estimation can get tedious for non-linear models
in the sense of experimental effort and computational effectiveness. Sequential DOE
has been proven to be very helpful in such cases to substantially reduce experimental
cost. The experiments excluding the first one are run using the information on
preceding experiments in order to optimize the design. Harman and Filová (2014)
used a quadratic approximation of D-optimality criterion (DQ criterion) in the
method they proposed when computing efficient exact experimental designs for
linear regression models. They asserted that the main advantage of their method can
be realized in case there are general linear constraints such as cost constraints on
permissible designs. Bruwer and MacGregor (2006) extended the open-loop
D-optimal design formulation of Koung and MacGregor (1994) for robust
multi-variable identification. Their design formulations enable effective and efficient
identification of robust models. The authors regarded that their design formulations
also performed better in the presence of constraints using a two-input, two-output
system as a case study. Even though the designs they proposed resulted in highly
correlated physical input sequences as in the unconstrained case, the authors
maintained that the designs would overcome this when highly unbalanced replica-
tions were used among the support-points to emphasize excitation of these direc-
tions. Similarly, Ucinski and Bogacka (2007) studied optimal experimental designs
in the presence of constraints aiming to develop a theoretical background along with
numerical algorithms for model discrimination design. The authors applied their
numerical procedure in a chemical kinetic model discrimination problem in which
some of the experimental conditions were allowed to continually vary during the
experimental run.

Sagnol (2011) proposed an extension to Elving’s theorem in the case of
multi-response experiments and concluded that it would be possible to use
second-order cone programming to compute the C-, A-, T-, and D-optimality
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criteria when a finite number of experiments was to be run. The author also pro-
vided a way to avoid the complexity in the multi-response C-optimal designs.

DOE has often been employed in adaptive and optimal control. Pronzato (2008)
underlined the role of DOE in the asymptotic behaviour of the parameters esti-
mated. The author pointed out the strength of DOE as a tool to establish links
between optimization, estimation, prediction and control problems. Pronzato (2008)
presented a comprehensive review on the relationship between sequential design
and adaptive control, the mathematical foundations of optimal experimental design
when estimating parameters of dynamical models.

Mandal and Torsney (2006) proposed a way that makes it possible to calculate a
probability distribution by first discretizing the (continuous) sample space and then
using these disjoint clusters of points at each iteration until the algorithm converges.

According to Coles et al. (2011), the non-linear nature of most of the design
criteria add too much complexity to the design algorithms. The authors also
questioned the heuristic nature of many design algorithms and the lack of their
convergence properties in the related literature. Thus, the design criteria should not
be determined without taking the design algorithm into account as the individual
choice for both the former and the latter could alter the final result. Goujot et al.
(2012) proposed a method that does not require the use of a global optimization
algorithm. In a similar study, a new method that blends results obtained from initial
experimental design, empirical modelling, and model-based optimization to deter-
mine the most promising experiments that would be used as an input at the sub-
sequent stage was introduced (Chi et al. 2012). The authors claimed that their
approach could be used as an alternative to RSM, especially in case prediction
uncertainty should be taken into account. The problem they were interested in can
be classified as a multi-objective optimization problem. Balsa-Canto et al. (2007)
formulated the optimal experimental design problem as a general dynamic opti-
mization problem where the objective is to find those experimental variables that
could be manipulated in order to achieve maximum information content (or min-
imum experimental cost), as measured by the Fisher information matrix. They
illustrated their approach in the estimation of the thiamine degradation kinetic
parameters during the thermal processing of canned tuna. Based on their results, the
authors concluded that optimal dynamic experiments could both improve identifi-
ability essentially and reduce the experimental effort. The authors employed a
metaheuristic approach called scatter search method (SSm), which could guarantee
convergence to the global solution, when simultaneously computing the system
dynamics and the local parametric sensitivities.

Coles et al. (2011) presented an empirical formula for designing Bayesian
experimental designs when D-optimality is employed. The authors considered the
case of linearized experimental design and claimed that their approach can be
generalized for both the case of non-linear experimental design and the case of
Bayesian experimental design. They concluded that the choice of the design
algorithm should be made by considering different aspects of the problem such as
the experimental quality and the importance of computational efficiency.
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Myunga et al. (2013) provided a thorough review on the use of Adaptive Design
Optimization (ADO) in the construction of optimal experimental designs. ADO is a
Bayesian statistical framework that can be employed to conduct maximally infor-
mative and highly efficient experiments. The authors compared the practicality of
ADO and the traditional, non-adaptive heuristic approach to DOE and claimed that
ADO combined with modern statistical computing techniques had high potential to
lead the experimenter to better statistical inference while keeping the related cost at
a minimum.

Even though DOE has been applied in a wide variety of areas, some problems
are intrinsically ill-conditioned and/or very large and their solutions require the use
of alternative methods such as metaheuristics that can reduce computation time
while guaranteeing robustness in many occasions.

Kleijnen et al. (2004) focused on the non-traditional RSM, which searches for
the input combination maximizing the output of a real system or its simulation. It is
a heuristic that locally fits first-order polynomials, and estimates the corresponding
steepest ascent paths. The authors proposed novel techniques that combined
mathematical statistics with mathematical programming to solve issues stemming
from the scale-dependence of the steepest ascent and the intuitive selection of its
step size. One of the techniques, called adapted steepest ascent (ASA), accounts for
the covariances between the components of the estimated local gradient. It is
scale-independent; however, the step-size problem can only be solved tentatively.
The other technique follows the steepest ascent direction using a step size inspired
by ASA. Monte Carlo experiments showed that ASA would more likely lead to a
better search direction than the steepest ascent would.

Box and Draper (1969) developed a heuristic approach called Evolutionary
Operation, which iteratively builds a response surface around the optimum from
the previous iteration. Torczon and Trosset (1998) defined and experimented with
the use of merit functions chosen to simultaneously improve both the solution to the
optimization problem and approximation quality. They used the distance between a
possible new candidate point and an already evaluated point as a measure for the
error of the metamodel (Bonte et al. 2010). A number of heuristic move-limit
strategies have been developed for approximate design optimization. These meth-
ods vary the bounds of design variables in approximation iterations and differ from
each other by different bound-adjustment strategies (Siomina and Ahlinder, 2008).

Alonso et al. (2011) proposed using simulated annealing to find the right per-
mutations of levels of each factor in order to obtain uncorrelated main effects with a
minimum number of runs. Factorial experiments are used in many scientific fields.
As the number of factors increases, the number of runs required for a complete
replica of the design grows exponentially. Usually, only a fraction of the full
factorial is used. This is called a fractional factorial design. The key issue is to
choose an appropriate fraction that verifies the desired properties, especially the
orthogonal property.

When characterizing orthogonal fractional factorial, the following notation is
used: s1

k1; s2
k2;…; sh

kh(n) where n is the number of runs, si is the number of levels of
the factors, and ki is the number of factors with si levels. Let matrix d of dimension
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n x p be built by factors as columns and runs as rows, with p = k1 + k2 + … + kh. In
the experimental design literature, d is known as the design matrix. An illustration
of a typical DOE model is given in Fig. 8.1.

It is well known that the multiple linear regression model which represents an
experimental design can be written as in Eq. (8.1).

y ¼ lþX1bþ e ð8:1Þ

where l is the grand mean,y denotes the matrix of the response values, β denotes
the matrix of the main effects coefficients, X1 denotes the matrix of contrast coef-
ficients for the vector of main effects, and e denotes the vector of random errors.

If XT is the transpose matrix of X, the correlations matrix is XTX. The correlation
matrix is an indicator of a good design. If the correlation matrix is diagonal, the
computations will be simple and the estimators of all the regression coefficients are
uncorrelated.

When orthogonal designs are not possible due to excessive runs and restricted
budgets, it would be desirable to obtain a design as close as possible to an
orthogonal one, with just a few runs. Such designs are called nearly-orthogonal, and
generated by using several criteria. Alonso et al. (2011) employed a criterion based
on Addelman frequencies that works with the design matrix. They applied simu-
lated annealing to fractional factorial designs using the Addelman proportional
frequencies criterion in order to obtain orthogonal designs.

Bates et al. (2003) used Genetic Algorithms (GA) to find the optimum points in
the Audze–Eglais experimental design, which is achieved by distributing experi-
mental points as uniformly as possible within the design domain. A uniform dis-
tribution results in the minimization of the potential energy of the points of a DOE.
The potential energy is formulated in Eq. (8.2).

minU ¼ min
XP

p�1

XP

q�pþ 1

1
L2pq

ð8:2Þ

where U is the potential energy and Lpq is the distance between the points p and q.
An example of Audze–Eglais Uniform Latin Hypercube (AELH) for two design

variables and three points are given in Fig. 8.2.

Fig. 8.1 Model of experimental design
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Various experimental design combinations can be evaluated and the one with
minimum objective function (i.e., Eq. (8.2) is minimized) is the AELH experimental
design. Bates et al. (2003) carried out the search for the best DOE by minimizing the
objective function in Eq. (8.2) using the Genetic Algorithm (GA). The fitness
function of the GA is given in Eq. (8.2). For the encoding of two alternatives, the
node numbers and the coordinates of the points are evaluated, and coordinates are
chosen since it results in shorter length of chromosomes. Various numerical studies
have been conducted varying the number of design variables and the number of
points. The results indicate that the method works well and an improvement over
previous results of Audze–Eglais Uniform Latin Hypercube experimental design and
of random sampling Latin Hypercube experimental design has been achieved.

Chen and Zhang (2003) employed a GA for 2 k−p fractional factorial design.
They used a MD-optimality criterion for optimizing the fractional factorial design.
To select the optimal follow-up design using MD-optimality, traditionally the
procedure below is used:

(1) Identify potential regression models that can describe the response values in
the initial experiment by using Bayesian analysis, and define all the factors
appearing in these models as active factors.

(2) Choose a set of runs (follow-up design) from all the experimental combinations
of the active factors such that the best model can be discriminated from the
potential regression models. Note that the effects of the factors and interactions
included in the model are the significant effects in the experiment. Therefore,
the confounded effects produced in the initial experiment are separated.

There is a weakness in this approach as the number of follow-up designs that
needs to be examined significantly increases when the number of active factors
increases, or the number of runs included in a follow-up design increases. Thus,
Chen and Zhang (2003) developed a heuristic method based on an effective evo-
lutionary algorithm and genetic algorithms (GA) for finding the optimal follow-up
design. This heuristic is denoted as GA for maximum model-discrimination design
(GAMMDD). In this GA, the encoding of a solution is represented as a follow-up
design, Ui, which is described as a n1 × k matrix, where n1 is the number of
experimental runs in the follow-up design, and k is the number of active factors.
The fitness value is specified as the model-discrimination (MD) value of a design,

Fig. 8.2 An illustration of Audze-Eglais Latin Hypercube
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since the problem is to find a follow-up design that can identify a model with
maximum model-discrimination value. Let X be a n1 × k follow-up design matrix
for k factors f1, f2, …, fk; and y denote the predicted vector under X, then the MD
value for the design is calculated using Eq. (8.3).

MD ¼ 1
2

X
0� i6¼j�m

p Mijyð ÞpðMjjyÞ; ð8:3Þ

where p Mijyð Þ is the posterior probability of the model Mi, given y and considering
a regression model Mi as in Eq. (8.4).

y ¼ Xibi þ ei ð8:4Þ

The computational results in their research show that the performance of
GAMMDD was significantly better to that of the exchange algorithm, and would be
able to enhance the strength of traditional two-step approach.

Lejeune (2003) implemented a one-exchange algorithm and used a generalized
simulated annealing for the construction of D-optimal designs. The proposed
method does not require to construct or to enumerate each point of the candidate
set, whose size grows exponentially with the number of variables. In order to handle
more complex problems, their procedure generates guided starting designs.

The focus is given to the D-optimality criterion, which requires the maximiza-
tion of the determinant of the information matrix, jXTXj, or, equivalently, its
D-efficiency level formulated using Eq. (8.5)

Deff ¼ 100
XTXj j 1

Pð Þ
N

 !
ð8:5Þ

where P is the number of parameters, N is the number of experiments in the model.
When a linear regression model is considered, y ¼ Xibi þ ei, any increase in the
determinant of XTX reduces the error variances of the estimates.

The integrated algorithmic process presented to find the D-optimal designs has
the following characteristics:

• The proposed algorithm selects a new point of the candidate space randomly and
does not require such maximization operations.

• This is an important aspect in simulated annealing, which has also the advantage
of preventing from premature convergence towards local optima and giving the
possibility to escape from a sequence of local optima. In addition, the method
does not involve the construction or enumeration of each point of the candidate
set and is time-saving.

• The exchange algorithm is a one-exchange procedure.
• The algorithmic process includes a procedure for constructing guided starting

designs. This procedure is implemented with, in mind, the objective of applying
the algorithmic process for more complex models.
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This procedure resulted in a highly D-efficient algorithmic process that could be
applied for more complex models than those treated in the literature. The latter
objective requires that the computing time does not rise exponentially with the
number of factors. The time-saving property constitutes the third characteristic of
the algorithmic process proposed.

Sanchez et al. (2012) focused on finding an experimental design that balances
different competing criteria which is a multi-objective optimization problem. They
tackled the problem by looking for the Pareto-optimal front in the competing
criteria. They reported various criteria used in the literature such as A-, E-, and
D-optimality criteria related to the joint estimation of the coefficients, or the I- and
G-optimality criteria related to the prediction variance.

A design is said to be D-optimal when it achieves the maximum value of D in
Eq. (8.5), which means the minimum volume of the joint confidence region, so the
most precise joint estimation of the coefficients.

A- and E-optimality criteria are related to the shape of the confidence region (the
more spherical the region, the less correlated the estimates). When the estimates are
jointly considered, the (1 – α) × 100 % joint confidence ellipsoid for the coefficients
is determined by the set of vectors β such that

b� bð Þ0XTX b � bð Þ�Pbr2Fa;P;N�P ð8:6Þ

where P is the number of estimated coefficients, N denotes the number of experi-
ments in the design, br2 is the variance of the residuals, (an estimate of r2) and
Fa;P;N�P is the corresponding upper percentage point of an F distribution with P and
N − P degrees of freedom.

When using the I- and G-optimality criteria, the variance of the prediction is
taken into account through the prediction variance. The variance of the response
predicted for a given point x in the experimental domain, is given by Eq. (8.7) and
the G-optimality criterion is shown in Eq. (8.8)

Var by xð Þð Þ ¼ x
0
mð ÞðXTXÞ�1xðmÞbr2 ¼ d xð Þbr2 ð8:7Þ

G ¼ Ndmax ¼ Nmaxx d xð Þð Þ ð8:8Þ

A design is said to be G-optimal when it achieves the minimum value of G in
Eq. (8.9), whereas I-optimality criterion uses the average value of Nd(x) obtained by
integrating it over the domain.

Sanchez et al. (2012) employed an evolutionary algorithm to compute the
Pareto-optimal front for a given problem. The input for the algorithm is the number
of factors (k), domain, model to be fit (that determines the number of coefficients,
P) and number of experiments (N, N ≥ P) to do so, and also the criteria to be taken
into account. The evolutionary algorithm is designed such that each individual in
the population is an experimental design (N × k design matrix), codified according
to the search space and such that detðXTXÞ ≥ 0.01. Every design is evaluated in
terms of the criteria, so that the fitness associated to each individual is a vector.
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The applicability and interpretability of the proposed approach was shown by an
application to determine sulfathiazole in milk (substance that has a maximum
residue limit established by the European Union) by using molecular fluorescence
spectroscopy. Numerical results are presented and the results show that the pro-
posed algorithmic approach makes it possible to address the computation of ad hoc
experimental designs with the property of being optimal in one or several criteria
stated by the user.

Fuerle and Sienz (2011) presented a procedure that creates Optimal Latin
Hypercubes (OLH) for constrained design spaces. OLH in a constrained design
space may result in infeasible points of experimental designs. Instead of omitting
these infeasible points, a better mapping of the feasible space is generated using the
same number of points by using permutation genetic algorithm. In the search
procedure, the objective was set so that the Audze-Eglais potential energy of the
points as shown in Eq. (8.2) is minimized.

8.4 The Use of Experimental Design in Artificial
Intelligence and Fuzzy Methods

Experimental design (DOE) has been one of the most important tools to verify
interactions and interrelations between parameters in the design of intelligent sys-
tems. Among these systems, artificial neural networks and fuzzy inference systems
have been the most prominent ones to search for representations of the domain
knowledge, reasoning on uncertainty, automatic learning and adaptation.
Neuro-fuzzy system is an approach that can learn from the environment and then
reason about its state. A neuro-fuzzy system is based on a fuzzy inference system,
which is trained by a learning algorithm derived from artificial neural network
theory.

The design of a neuro fuzzy system requires the tuning and configuration of the
topology and many parameters. Setting the parameters such as the membership
functions, number and shape of each input variable, learning rates is a difficult task.
Zanchettin et al. (2010) used DOE for parameter estimation of two neuro-fuzzy
systems—Adaptive Neuro Fuzzy Inference System (ANFIS) and Evolving Fuzzy
Neural Networks (EFuNNs). A depiction of two intelligent systems (ANFIS and
EFuNNs) is provided in Fig. 8.3.

The ANFIS architecture consists of a five-layer structure. In the first layer, the
node output is the degree to which the given input satisfies the linguistic label
associated to the membership functions named as premise parameters. In the second
layer, each node function computes the firing strength of the associated rule. In the
third layer, each node i calculates the ratio of the ith rule firing strength for the sum
of firing strength of all rules. The fourth layer is the product of the normalized firing
level and the individual rule output of the corresponding rule. Parameters in this
layer are referred to as consequent parameters. EFuNNs also have a five-layer
structure. Each input variable is represented by a group of spatially arranged
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neurons to represent a fuzzy quantization of this variable. Fuzzy quantization in
variable space is represented in the second layer of nodes. Different membership
functions can be attached to these neurons (triangular, Gaussian, etc.). The

Fig. 8.3 A depiction of ANFIS (a) and EFuNN (b) (Zanchettin et al. 2010)
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experiments for setting the parameters of the two intelligent systems are performed
with four different prediction and classification problem datasets. The results show
that for ANFIS, number of input membership functions and the shape of the output
membership functions are usually the factors with the largest influence on the
system’s error measure. For the EFuNN, the membership function shape and
the interaction between membership function shape and the number usually have
the largest effect (Zanchettin et al. 2010).

Breban et al. (2013) used DOE for choosing the optimized parameters and
determining the influence of the parameters of a fuzzy-logic supervision system in
an embedded electrical power system. The fuzzy logic supervision system was
developed to minimize the DC-link voltage variations, and to increase the system
efficiency by reducing the dissipated power. In the experimental design step, first,
the parameters and their variation range are chosen. Second task is to find the
optimal ones and to test the system response to their changes. The most influential
parameters are determined by testing the system response to each parameter
extremity range modification. Breban et al. (2013) chose eight parameters, each
with two extremity range values. Then, the influence of each parameter is tested on
each optimization factor. For each parameter optimization, the low extremity range
value becomes −1, and the high extremity range value becomes +1. This
assumption creates a matrix, called test matrix. Using relation (8.9), the influence
E of each indicator is calculated as follows:

E ¼ 1
n
MtF ð8:9Þ

where n is the number of tests, Mt, the transpose of the test matrix and F, the
indicators matrix of the parameters.

Basu et al. (2014) analyzed the process parameters of soap manufacturing
industries. The process capability was determined using Fuzzy Inference System
rule editor based on a set of justified “if-then” statements as applicable for the
process. The data was collected in linguistic form to derive its process capability,
using a set of justified rules and the effect of each factor was determined using DOE
and ANOVA for improving the soap quality from the perspective of its softness.
This article concludes that integrating fuzzy inference systems with DOE provides
better results compared to those retrieved from DOE and Fuzzy Inference system in
isolation.

Plumb et al. (2002) investigated the effect of experimental design strategy on the
modelling of a film coating formulation by artificial neural networks (ANNs). Three
different DOE approaches: (i) Box–Behnken, (ii) central composite and
(iii) pseudo-random designs were used to train a multilayer perceptron (MLP). The
structure of the ANN was optimized by training networks containing 3, 4, 5, 6, 7, or
9 nodes in the hidden layer. The predictive ability of each architecture was assessed
by comparing the deviations mean square and R2 from ANOVA analysis of the
linear regression of predicted against observed property values. The architecture
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with the lowest deviations mean square and highest R2 was considered to be the
most predictive one. Over-training was minimized by attenuated training.

Specifically, the onset of over-training was detected by setting a test error weight
(WT) calculated by Eq. (8.10):

WT ¼ NTest

ðNTest þNTrainÞ ð8:10Þ

where NTest and NTrain are the number of records in the training and test sets,
respectively.

As a result, ANN comprising six input and two output nodes separated by a
single hidden layer of five nodes. The Box–Behnken and central composite models
showed a poor predictive ability which is related to the high curvature of the
response surfaces. In contrast, the pseudo-random design mapped the interior of the
design space allowing improved interpolation and predictive ability. It was con-
cluded that Box–Behnken and central composite experimental designs were not
appropriate for ANN modelling of highly curved responses.

Alam et al. (2004) presented a case study which also investigated the experi-
mental design on the development of artificial neural networks as simulation
metamodels. The simulation model used in the study is a deterministic systems
dynamics model. Six different DOE approaches which are the traditional full fac-
torial design, random sampling design, central composite design, modified Latin
Hypercube design and designs supplemented with domain knowledge are compared
for developing the neural network metamodels. Various performance measures
were used to evaluate the networks. The relative prediction error (RPE) which is
commonly used for metamodels of deterministic simulations was used as a per-
formance measure, which was defined as in Eq. (8.11)

RPE ¼
bYr

Yr
ð8:11Þ

where Yr is the known target value (simulation response) from the independent test
data set, and Ŷr is the corresponding network output or prediction. Another measure
of performance is the mean squared error of prediction (MSEP), defined as
Eq. (8.12)

MSEP ¼ 1
N

X
ðYr � bYrÞ2 ð8:12Þ

The mean absolute percentage deviation (MAPD), which is used as the third per-
formance measure is defined as Eq. (8.13)

MAPD ¼ 1
N

X bYr � Yr
h i

=Yr
��� ��� ð8:13Þ
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The neural network developed from the modified Latin Hypercube design sup-
plemented with domain knowledge produced the best performance, outperforming
networks developed from other designs of the same size.

Chang (2008) presented a case for the use of the Taguchi method for product
design. Specifically, the aim was to optimize the parameter robust product design in
terms of production time, cost, and quality as continuous control factors. They
employed a four-stage approach based on artificial neural networks (ANN),
desirability functions, and a simulated annealing (SA) algorithm to resolve the
problems of dynamic parameter design with multiple responses. An ANN was
employed to build a system’s response function model. Desirability functions were
used to evaluate the performance measures of multiple responses. AnSA algorithm
was applied to obtain the best factor settings through the response function model.

Chang and Low (2008) also used Taguchi experiments to minimize various
measures simultaneously (i.e., cost of the filter, its power loss, the total demand
distortion of harmonic currents and the total harmonic distortion of voltages at each
bus) of large-scale passive harmonic filters. Using the results of the Taguchi
experiments as the learning data for an artificial neural network (ANN) model, an
ANN was developed to predict the parameters at discrete levels. Then, the discrete
levels were transformed into continuous scale using a genetic algorithm. Besides,
the multiple objectives of the problem were tackled using the membership functions
of fuzzy logic theory which were adopted in the algorithm for determining the
weight of each single objective. The proposed approach significantly improves the
performance of the harmonic filters when compared with the original design.

Balestrassi et al. (2009) applied DOE to find the optimal parameters of an
Artificial Neural Network (ANN) in a problem of nonlinear time series forecasting.
They presented a case study for six time series representing the electricity load for
industrial consumers of a production company in Brazil. They employed an
approach based on factorial DOE using screening, Taguchi, fractional and full
factorial designs to set the parameters of a feed-forward multilayer perceptron
neural network. The approach used classical factorial designs to sequentially define
the main ANN parameters that a minimum prediction error could be reached. The
main factors and interactions were identified using this approach and results suggest
that ANNs using DOE can perform better comparably to the existent nonlinear
autoregressive models.

Tansel et al. (2011) proposed using Taguchi Method and Genetically Optimized
Neural Networks (GONNS) to estimate optimal cutting conditions for the milling of
titanium alloy with PVD coated inserts. Taguchi method was used to determine the
test conditions, the optimal cutting condition and influences of the cutting speed,
feed rate and cutting depth on the surface roughness. GONNS was used to minimize
or maximize one of the output parameters while the others were kept within a
specified range.

Salmasnia et al. (2012) used DOE for data gathering to find the most valuable
information used in a multiple response optimization problem. The multiple
response optimization problem aims to find optimal inputs (design variables) to the
system that yields in desirable values for stochastic outputs (responses).
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Specifically, the problem of correlated multiple responses where relationship among
response and design variables is highly nonlinear and the assumption that variance
of each response is constant over the feasible region was tackled with a neuro-fuzzy
(i.e. ANFIS) and principal component analysis derived desirability function. The
resulting desirability functions were used to form a fitness function for optimization
in GA. Effectiveness of the proposed method was presented through a numerical
example.

Richard et al. (2012) proposed an alternative method to the classical response
surface technique where the response surface was chosen as a support vector
machine (SVM). An adaptive experimental design was used for the training of the
SVM. As a result, the design can rotate according to the direction of the gradient of
the SVM approximation leading to realistic samples. Furthermore, the precision
of the probability of failure computation was improved since a closed form of
expression of the Hessian matrix could be derived from the SVM approximation.
This method was tested through a case study showing that high-dimensional
problems can be solved with a fairly low computational cost and a good precision.

Hametner et al. (2013) dealt with the model based design of experiments for the
identification of nonlinear dynamic systems. The aim of designing experiments was
to generate informative data and to reduce the experimentation effort as much as
possible as well as to comply with constraints on the system inputs and the system
output. Two different modelling approaches, namely multilayer perceptron net-
works and local model networks were employed and the experimental design was
based on the optimization of the Fisher information matrix of the associated model
architecture. Deterministic data driven models with a stochastic component at the
output were considered. The parameters of the considered models were denoted by

θ. The measured output y(k) at the time k was given by the model output ŷ k; hð Þ plus
some error e(k). Then, the Fisher information matrix was formulated as in Eq. (8.14)

s ¼ 1
r2
XN

k¼1

@ŷ k; hð Þ
@h

@ŷ k; hð Þ0
@h

ð8:14Þ

The effects of the Fisher information matrix in the static and the dynamic config-
urations were discussed. Finally, the effectiveness of the proposed method was
tested on a complex nonlinear dynamic engine simulation model. The presented
model architectures for model based experiment design were compared.

Lotfi and Howarth (1997) proposed a novel technique named as the
Experimental Design with Fuzzy Levels (EDFLs), which assigns a membership
function for each level of variable factors. Traditionally, variable factors can be
expressed with some linguistic terms such as low and high and they are converted
into crisp values such as –1, 0, and +1. If some of the factor levels are not mea-
surable, their values should be represented by equivalent fuzzy terms so that their
importance is included in the system response. Using the fuzzy levels of factors, a
set of fuzzy rules was used to represent the design matrix and observed responses.
In this study, a number of examples were presented to clarify the proposed idea and
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the results were compared with the conventional Taguchi methodology. In their
study, they used a L18 orthogonal array EDFL for the application of the solder paste
printing stage of surface mount printed circuit board assembly. For this case study,
they provided a model for the process and optimized the selection of variable
factors.

8.5 Conclusion

DOE is concerned with the selection of experimental settings that provide maximum
information for the least experimental cost and can prove essential to successful
modelling in an operating process application. According to the experimenter’s
objectives, DOE can dictate which variables should be measured, at which settings,
and howmany replicate measurements are needed to provide the required information
(Fraleigh et al. 2003). The related literature offers very good examples for standard
designs in case offitting a first-order model; however, the choice of a response surface
design forfitting a response surface design can be extremely challenging. Specifically,
parameter estimation may not always easy for non-linear models regarding experi-
mental effort and computational effectiveness. Thus, the need for more flexible and/or
specific designs is still viable (Anderson-Cook et al. 2009). Response surface
methodology has seen the most significant progress in DOE-oriented research due to
recent advances in metaheuristics and fuzzy techniques.

Coles et al. (2011) emphasized the need for a holistic approach that compares the
quality of the optimal experimental design and the computational efficiency of the
algorithm used for parameter estimation. They claimed that it would not always be
possible to find a unique algorithm that could perform well for different types of
objective functions. This is one of the most important challenges in DOE: maxi-
mizing the information to retrieve with scarce resources.

The number of avenues for future research is enormous. Bayesian techniques
have been slightly touched in the literature. Active learning and nonlinear feedback
control (NFC) are also available for further development according to Pronzato
(2008). Computationally faster algorithms are still necessary especially for recently
developed optimality criteria (Otsu, 2008). The derivation of lower (or upper)
bounds or convergence properties of some algorithms should also be studied in
more detail.

Another use of DOE is for tuning the parameters of artificial intelligence tech-
niques such as neural networks, support vector machines or fuzzy inference sys-
tems. The literature shows that commonly traditional DOE methods are used to this
aim. More sophisticated experimental design techniques (i.e. optimal DOE) for
tuning the parameters of such systems present a new potential stream of research.
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Chapter 9
Multivariate Statistical
and Computational Intelligence
Techniques for Quality Monitoring
of Production Systems

Tibor Kulcsár, Barbara Farsang, Sándor Németh and János Abonyi

Abstract The ISO 9001:2008 quality management standard states that organiza-
tions shall plan and implement monitoring, measurement, analysis and improve-
ment processes to demonstrate conformity to product requirements. According to
the standard, detailed analysis of data is required for this purpose. The analysis of
data should also provide information related to characteristics and trends of pro-
cesses and products, including opportunities for preventive action. The preliminary
aim of this chapter is to show how intelligent techniques can be used to design
data–driven tools that are able to support the organization to continuously improve
the effectiveness of their production according to the Plan—Do—Check—Act
(PDCA) methodology. The chapter focuses on the application of data mining and
multivariate statistical tools for process monitoring and quality control. Classical
multivariate tools such as PLS and PCA are presented along with their nonlinear
variants. Special attention is given to software sensors used to estimate product
quality. Practical application examples taken from chemical and oil and gas
industries illustrate the applicability of the discussed techniques.

Keywords Multivariate statistics � Computational intelligence � Quality moni-
toring � Production systems � PDCA

9.1 Introduction

The modern definition of quality states that “quality is inversely proportional to
variability”. This definition implies that if variability in the important characteristics
of a production system decreases, then the quality of the product increases.
Statistical process control (SPC) provides techniques to assure and improve the
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quality of products by reducing the variance of process variables. The role of these
tools is illustrated in Fig. 9.1, which presents a manufacturing process. The control
chart of SPC is a very useful process monitoring technique, when unusual sources
of variability are present and important process variables will plot outside the
control limits. In these cases some investigation of the process should be made and
corrective action to remove these unusual sources of variability should be taken.
Systematic use of a control chart is an excellent way to reduce variability
(Montgomery 2009).

As new products are required to be introduced to the market over a short time
scale to ensure competitive advantage, the development of process monitoring
models of multi-product manufacturing environment necessitates the use of
empirical based techniques as opposed to first-principles models since phe-
nomenological model development is unrealizable in the time available. Hence, the
mountains of data, that computer-controlled plants generate, must be used by the
operator support systems to distinguish normal from abnormal operating conditions.
Detection and diagnosis of faults and control of product quality are the pivotal tasks
of plant operators. The aim of multivariate statistical based approaches is to reduce
the dimensionality of the correlated process data by projecting them down onto a
lower dimensional latent variable space where the operation can be easily visualized
and hidden functional relationships among process and quality variables can be
detected.

In modern production systems huge amount of process operational data are
recorded. These data definitely have the potential to provide information for product
and process design, monitoring and control (Yamashita 2000). This is especially
important in many practical applications where first-principles modeling of com-
plex “data rich and knowledge poor” systems are not possible (Zhang et al. 1997).
The term knowledge discovery in databases (KDD) refers to the overall process of

Fig. 9.1 Scheme of a production process where statistical process control (SPC) can be applied to
improve the quality characteristic by adjusting and monitoring important process variables
(Montgomery 2009)
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discovering knowledge from data. KDD has evolved from the intersection of
research fields such as machine learning, pattern recognition, databases, statistics,
artificial intelligence, and more recently it gets new inspirations from soft com-
puting. KDD methods have been successfully applied in the analysis of process
systems, and the results have been used for process design, process improvement,
operator training and so on (Wang 1999).

Application of knowledge discovery and data mining for quality development
requires sophisticated methodology. Deming recommended the four steps (Plan,
Do, Check, Act) based PDCA cycle as model to guide improvement. In the Plan
step, we propose a change in the system that is aimed at improvement. In Do, we
carry out the change, usually on a small or pilot scale to ensure that to learn the
results that will be obtained. Check consists of analyzing the results of the change to
determine what has been learned about the changes that we carried out. In Act, we
either adopt the change or, if it was unsuccessful, abandon it. The process is almost
always iterative, and may require several cycles for solving complex problems. It is
interesting to note that the concept of PDCA is also applied in data mining.
CRISP-DM stands for Cross Industry Standard Process for Data Mining
(CRISP-DM 2000) (see Fig. 9.2). It is a data mining process model that describes
commonly used approaches that expert data miners use to tackle problems.

Fig. 9.2 The CRISP-DM methodology as continuous data-driven improvement process
(CRISP-DM 2000)
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Plan:
Business understanding: This initial phase focuses on understanding the project
objectives and requirements from a business perspective, then converting this
knowledge into a data mining problem definition and a preliminary plan designed to
achieve the objectives.
Data understanding: The data understanding phase starts with initial data collection
and proceeds with activities that identify data quality problems, discover first
insights into the data, and/or detect interesting subsets to form hypotheses regarding
hidden information.

Do:
Data preparation: The data preparation phase covers all activities needed to con-
struct the final dataset from the initial raw data.
Modeling: In this phase, various modelling techniques are selected and applied, and
their parameters are calibrated to optimal values. Typically, there are several
techniques for the same data mining problem. Some techniques have specific
requirements on the form of data. Therefore, going back to the data preparation
phase is often necessary.

Check:
Evaluation: At this stage, model (or models) is built that appears to have high
quality from a data analysis perspective. A key objective is to determine if there is
some important business issue that has not been sufficiently considered. At the end
of this phase, a decision on the use of the data mining results should be reached.

Act:
Deployment: Creation of the model is generally not the end of the project. Even if
the purpose of the model is to increase knowledge, the knowledge gained should be
organized and presented in a way that the customer can use it. It often involves
applying “dynamic” models within an organization’s decision making processes—
for real-time control. Depending on the requirements, the deployment phase can be
as simple as generating a report or as complex as implementing a repeatable data
mining process across the enterprise.

The previously presented data mining procedure should be embedded into the
whole quality development process. As we mentioned, most of quality management
methodologies are based on intensive analysis of data. Among the wide ranges of
methodologies, we suggest the application of DMAIC (Define, Measure, Analyze,
Improve, and Control) process (see Fig. 9.3). DMAIC is a structured
problem-solving procedure extensively used in quality and process improvement.

Among the wide range of data mining tools, in this chapter we focus on mul-
tivariate statistical tools that are extensively applied in process monitoring and
quality development.

Process monitoring based on multivariate statistical analysis of process data has
recently been investigated by a number of researchers (MacGregor and Kourti
1995). The aim of these approaches is to reduce the dimensionality of the correlated
process data by projecting them down onto a lower dimensional latent variable
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space where the operation can be easily visualized. These approaches use the
techniques of principal component analysis (PCA) or Partial Least Squares (PLS).
Beside process performance monitoring, these tools can also be used for system
identification (MacGregor and Kourti 1995), ensuring consistent production
(Martin et al. 1996) and product design (Lakshminarayanan et al. 2000). Data
analysis based formulation of new products was first reported by Moteki and Arai
(Moteki and Arai 1986), who used PCA to analyze data from a polymer production.
Jaeckle and MacGregor (1998) used PLS and principal component regression
(PCR) to investigate the product design problem. Their methodology was illustrated
using simulated data from a high-pressure tubular low-density polyethylene pro-
cess. Borosy (1998) used artificial neural networks to analyze data from the rubber
industry.

The large number of examples taken from polymer industry is not surprising.
Formulated products (plastics, polymer composites) are generally produced from
many ingredients, and high number of interactions between the components and the

Fig. 9.3 The DMAIC process of quality development
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processing conditions has an effect on the final product quality. When these effects
are detected, significant economic benefits can be realized. The major aims of
monitoring plant performance are the reduction of off-specification production, the
identification of important process disturbances and the early warning of process
malfunctions or plant faults. Furthermore, when a reliable model is available that is
able to estimate the quality of the product; it can be inverted to obtain the suitable
operating conditions required for achieving the target product quality
(Lakshminarayanan et al. 2000).

When we attempted to use standard data mining, KDD, and multivariate sta-
tistical tools for industrial problems such as extracting knowledge from large
amount of data, we realized that production systems are typically ill-defined, dif-
ficult to model and they have large-scale solution spaces. In these cases, precise
models are impractical, too expensive, or non-existent. Furthermore, the relevant
available information is usually in the form of empirical prior knowledge and
input-output data representing instances of the system’s behaviour. Therefore, we
need an approximate reasoning system capable of handling such imperfect infor-
mation (Abonyi and Feil 2005). Computational Intelligence (CI) and Soft
Computing (SC) are recently coined terms describing the use of many emerging
computing disciplines. According to Zadeh (1994): ‘‘… in contrast to traditional,
hard computing, soft computing is tolerant of imprecision, uncertainty, and partial
truth.’’ In this context Fuzzy Logic (FL), Probabilistic Reasoning (PR), Neural
Networks (NNs), and Genetic Algorithms (GAs) are considered as main compo-
nents of SC.

Most of the SC based models can be effectively used in data mining and lend
themselves to transform into other traditional data mining or advanced SC-based
model structures that allow information transfer between different models. For
example, in Sethi (1990) a decision tree was mapped into a feed forward neural
network. A variation of this method is given in Ivanova and Kubat (1995) where the
decision tree was used only for the discretization of input domains. Another
example is that as radial basis functions (RBF) are functionally equivalent to fuzzy
inference systems (Jang and Sun 1993), tools developed for the identification of
RBFs can also be used to design fuzzy models. The KDD process also includes the
interpretation of the mined patterns. This step involves the visualization of the
extracted patterns/models, or visualization of the data given the extracted models.
Among the wide range of SC tools (Pal 1999), the Self-Organizing Map (SOM) is
the most applicable for this purpose (Kohonen 1990). The main objective of this
chapter is to propose an SOM based methodology that can be effectively used for
the analysis of operational process data and product quality.

Nowadays, more and more articles deal with SOM-based data analysis
(Astudillo and Oommen 2014; Poggy et al. 2013; Ghosh et al. 2014) that is a new,
powerful software tool for the visualization of high-dimensional data. The SOM
algorithm performs a topology preserving mapping from high dimensional space
onto a two dimensional grid of neurons so that the relative distances between data
points are preserved (Valova et al. 2013). The net roughly approximates the
probability density function of the data and, thus, serves as a clustering tool
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(Kohonen 1990). It also has the capability to generalize, i.e. the network can
interpolate between previously encountered inputs. Since SOM is a special clus-
tering tool that provides compact representation of the data distribution, it has been
widely applied in the visualization of high-dimensional data (Kohonen 1990).
The SOM facilitates visual understanding of processes so that several variables and
their interactions may be inspected simultaneously. For instance, Kassalin used
SOM to monitor the state of a power transformer and to indicate when the process
was entering a non-desired state represented by a “forbidden” area on the map
(Kassalin et al. 1992). Tryba and Goser (1991) applied the SOM in monitoring of a
distillation process and discussed its use in chemical process control in general.
Alander (1991) and Harris and Kohonen (1993) have used SOM in fault detection.
Since the model is trained using measurement vectors describing normal operation
only, a faulty situation can be detected by monitoring the quantization error (dis-
tance between the input vector and the best matching unit (BMU)), as large error
indicates that the process is out of normal operation space. SOM can also be used
for prediction, where SOM is used to partition the input space of piecewise linear
models. This partitioning is obtained by the Voronoi diagram of the neurons (also
called codebook) of SOM. The application of Voronoi diagrams of SOM has
already been suggested in the context of time series prediction (Principe et al.
1998).

Based on the aforementioned beneficial properties of SOM, a new approach for
process analysis and product quality estimation is proposed in this chapter. This
approach is applied in an industrial polyethylene plant, where medium and
high-density polyethylene (MDPE and HDPE) grades are manufactured in a
low-pressure catalytic process, a slurry polymerization technology under license
from Phillips Petroleum Company. The main properties of polymer products (Melt
Index (MI) and density) are controlled by the reactor temperature, monomer,
comonomer and chain-transfer agent concentration. The detailed application study
demonstrates that SOM is very effective in the detection of typical operating
conditions related to different products, and can be used to predict the product
quality (MI and density) based on measured and calculated process variables.

The chapter is organized as follows. In Sect. 9.2, multivariate techniques for
process monitoring and product quality estimation are overviewed. In Sect. 9.3,
case studies are presented where the proposed methodologies are applied in real-life
quality development problems of chemical industry. Finally, conclusions are given
in Sect. 9.4.

9.2 Multivariate Techniques for Quality Development

Measurements on process variables zk ¼ kk;1; . . .; zk;m
� �T

such as temperatures,
pressure, flow rates are available every second. Final product quality variables

yk ¼ yk;1; . . .; yk;n
� �T

, such as polymer molecular weights or melt index are
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available in much less frequent basis. All such data should be used to extract
information in any effective scheme for monitoring and diagnosis operating per-
formance. However, all of these variables are not independent of one another. Only
a few underlying events are driving a process at any time, and all of these mea-
surements are simply different reflections of these same underlying events. When
the quality properties are not correlated, it is customary to build a model that relates
zk to each yk;i separately: yk;i ¼ fi zkð Þ. This approach is satisfactory in general if the
model is just being used for calibration, inferential control or prediction. For
monitoring purposes; however, since quality is a multivariate property, it is
important to fit all the variables from the y-space in a single model in order to obtain
a single low-dimensional monitoring space. Hence, the following multivariate
models are introduced to model the joint distribution of the process and quality

variables xk ¼ xk;1; . . .; xk;l
� �T¼ yTk ; z

T
k

� �T
, where l ¼ nþm.

9.2.1 Principal Component Analysis and Partial Least
Squares

PCA and PLS are the most common algorithms used for the analysis of multivariate
processes data (Jolliffe 2008). In the literature several papers deal with the appli-
cation of these methods (Kano and Nakagawa 2008; Höskuldsson 1995; Godoy
et al. 2014). Analysis of chemical and spectroscopic data mostly requires the uti-
lization of these models. Results of the related research work are mostly published
in Journal of Chemometrics (Kettaneh et al. 2003; Janné et al. 2001) and
Chemometrics and Intelligent Laboratory Systems (Godoy et al. 2014; Nelson et al.
2006). Multivariate statistical methods can also be used in production systems to
estimate unmeasured process and product quality variables (soft sensors) and fault
detection. Chen et al. (1998) demonstrated how PLS and PCA are used for on-line
quality improvement in two case studies: a binary distillation column and
Tennessee Eastman process (Chen et al. 1998). Kresta (1992) showed how PLS and
PCA are used to increase process operating performance in case of fluidized bed
reactor and extractive distillation column (Kresta et al. 1992).

Fault detection and isolation algorithms detect outliers and isolate (root) causes
of faults. PLS and PCA models can evaluate the consistency of multivariate data,
characterize normal operation, and generate informative symptoms of deviations
(Chiang et al. 2001; Wise and Gallagher 1996; Hu et al. 1995). It should be noted
that these outliers may significantly reduce model accuracy when they are involved
in the identification of PLS and PCA models. Therefore, data preprocessing and
cleaning are important steps of model building (Wang and Srinivasan 2009;
Fujiwara et al. 2012).

PLS and PCA are similar in that they are both factor analysis methods, and they
both reduce the dimensionality of the variable space. This is done by representing the
data matrix ðXÞ with a few orthogonal variables that explain most of the variance.
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The main difference between PLS and PCA is that PLS can be referred to as a
supervised technique that maximizes the covariance between the response ðYÞ and
input variables ðXÞ in as few factors as possible while PCA simply aims to maximize
the covariance of X (Jolliffe 2008).

Mathematically, PCA reduces the data matrix using eigenvector decomposition
of the covariance matrix of the data matrix. Essentially, the data matrix is broken
down into principal components (PCs), represented by pairs of scores ðtÞ and
loadings ðpÞ (Jolliffe 2008). The loading vectors are equivalent to the eigenvectors
of the covariance matrix of X, and the corresponding eigenvalues ðkÞ represent the
variance of each corresponding PC. Suppose X is composed of n samples on q
variables. The first PC is defined as t1 ¼ Xp1 and explains the greatest amount of
variance, while the second PC is defined as t2 ¼ Xp2 having the next greatest
amount of variance, and so on. Up to q PCs can be defined, but only the first few
ðMÞ are significant in explaining the main variability of the system (Jolliffe 2008).
Selection of optimal number of PCs can be accomplished in various ways.

Partial Least Squares (PLS) regression combines principal component analysis
and multivariate regression. PLS captures variance and correlates X and Y (Vinzi
2010). The first latent variable (LV) t1 ¼ Xw1 is a linear combination of the X
variables that maximizes the covariance of X and Y, where w1 is the first eigen-
vector (called weight vector) of the covariance matrix. The columns of X are then
regressed on t1 to give a regression vector p1. The original X matrix is then deflated
as follows: X2 ¼ X � t1pT1 . X2 is the resultant data matrix after removing the ele-
ment of the original data matrix ðXÞ that was most correlated with Y. The second
LV is then computed from X2, t2 ¼ Xw2, where w2 is the first weight vector of the
covariance matrix of X2 and Y. These steps are repeated until q number of LVs is
computed. As with PCA, the optimum number of LVs may be chosen via
cross-validation methods.

PCA and PLS are widely applied tools of quality development. PCA can be used
in monitoring of groundwater (Sánchez-Martos et al. 2001), essential oil (Ochocka
et al. 1992), pig meat (Karlsson 1992), and soil quality (Garcia-Ruiz et al. 2008).

PLS is essentially a regression tool and may be used to relate process variables to
product quality attributes. PCA can also be used as a regression tool in that the
significant PCs may be used to generate a regression model that relates process
variables to product quality attributes (when PCA is used in such a way, it is
referred to as principal component regression—PCR) (Vinzi 2010). Application
examples can be found from biotechnology (measure fruit and vegetable or veg-
etable oil quality) (Nicolai et al. 2007; Pereira et al. 2008), chemical industry
(predict gasoline properties (Bao and Dai 2009), prediction of crude oil quality
(Abbas et al. 2012), quality improvement of batch processes (Ge 2014), food
industry (food quality improvement (Steenkamp and van Trijp 1996).

PLS can also be used for the visualization of the data. We apply the algorithm
developed in Ergon (2004) for the two-dimensional visualization of the PLS model.

Two components that are informative for visualization may be obtained in
several ways. One example is principal components of predictions (PCP), where in
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the scalar response case by ¼ Xbb normalization is used as one component, while
residuals of X not contributing to y are suggested for use as the second component
(Ergon 2004).

The basic idea behind the applied mapping is illustrated in Fig. 9.2. The esti-

mator bb is found in the space spanned by loading weight vectors in cW ¼bw1; bw2; . . .; bwA½ � i.e. it is a linear combination of these vectors. It is, however, also
found in the plane defined by bw1 and a vector ew2 orthogonal to bw1, which is a
linear combination of the vectors bw2; bw3; . . .; bwA.

The matrix fW ¼ bw1; ew2½ � is thus the loading weight matrix in a two component

PLS solution (2PLS) giving exactly the same estimator bb as the original solution
using any number of components. What matters in the original PLS model is not the

matrix cW as such, but the space spanned by bw1; bw2; . . .; bwA. In the 2PLS model,
this represents the plane spanned by bw1 and ew2 that is essential. Note that all
samples in X (row vectors) in the original PLS model are projected onto the space
spanned by bw1; bw2; . . .; bwA.

Samples may thus be further projected onto the plane spanned by bx1 and ex2,
and form a single score plot containing all y-relevant information. When for some

reasons, for example, bw2 is more informative than bw1, a plane through bw2 and bb
may be a better alternative. It will in any case result in a 2PLS model that gives the

estimator bb, as will in fact all planes through bb that are at the same time subspaces

of the column space of cW (Ergon 2004).

9.2.2 Self-organizing Map

Cluster analysis organizes data into groups according to similarities among them. In
metric spaces, similarity is defined by means of distance based upon the length from
a data vector to some prototypical object of the cluster. The prototypes are usually
not known beforehand, and are sought by the clustering algorithm simultaneously
with the partitioning of the data. In this chapter, the clustering of the operational
data is considered. Hence, the data are the measured input and output process
variables, parameters of the operating conditions, and laboratory measurements of
the product quality. Each observation consists of l measured variables, grouped into

an l-dimensional column vector xi ¼ xi;1; . . .; xi;l
� �T

. A set of N observations is
denoted by X and represented as a matrix X ¼ x1; . . .; xN½ �. In pattern recognition
terminology, the columns of X are called patterns or objects, the rows are called the
features or attributes, and X is called the pattern matrix. The objective of clustering
is to divide the data set X into c clusters.

The SOM algorithm is a kind of clustering algorithm which a performs a
topology preserving mapping from high dimensional space onto map units so that
relative distances between data points are preserved. The map units, or neurons,
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form usually a two dimensional regular lattice. Each neuron, i, of the SOM is

represented by an l-dimensional weight, or model vector mi ¼ mi;1; . . .;mi;l
� �T

.
These weight vectors of the SOM form a codebook and can be considered as cluster
prototypes. The neurons of the map are connected to adjacent neurons by a
neighbourhood relation, which dictates the topology of the map. The number of
neurons determines the granularity of the mapping, which affects the accuracy and
the generalization capability of the SOM.

SOM is a vector quantizer, where the weights play the role of the codebook
vectors. This means that each weight vector represents a local neighbourhood of the

space, also called Voronoi cell. The response of a SOM to an input xk ¼
xk;1; . . .; xk;l
� �T

is determined by the reference vector (weight) mi0 which produces
the best match of the input

i0k ¼ arg mini mi � xkk kð Þ ð9:1Þ

where i0k represents the index of the Best Matching Unit (BMU) of the kth input.
During the iterative training of SOM, the SOM forms an elastic net that folds

onto the “cloud” formed by the data. The net tends to approximate the probability
density of the data; the codebook vectors tend to drift there where the data are
dense, while there are only a few codebook vectors where the data are sparse.

The training of SOM can be accomplished generally with a competitive learning
rule as

m tþ 1ð Þ
i ¼ m tð Þ

i þ gKi0k ;i
xk �m tð Þ

i

� �
ð9:2Þ

where Ki0k ;i
is a spatial neighbourhood function and g is the learning rate, and the ðtÞ

upper index denotes the iteration step. Usually, the neighbourhood function is

Ki0k ;i
¼ exp �

ri � ri0k

��� ���2
2r2; tð Þ

0
B@

1
CA ð9:3Þ

where ri � ri0k

��� ��� represents the Euclidean distance in the low dimensional output

space between the ith vector and the winner neuron (BMU).
There are two phases during learning. First, the algorithm should cover the full

input data space and establish neighbourhood relations that preserve the input data
structure. This requires competition among the majority of the weights and a large
learning rate such that the weights can orient themselves to preserve local
relation-ships. Hence, in the first phase relatively large initial r2 is used. The second
phase of learning is the convergence phase where the local detail of the input space
is preserved. Hence the neighbourhood function should cover just one unit and the
learning rate should also be small. In order to achieve these properties, both the
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neighbourhood function and the learning rate should be scheduled during learning
(Kohonen 1990).

SOM is increasingly applied in quality development (Pölzlbauer 2004). Thanks
to the robustness of the method SOM is applied water management (Kalteh et al.
2008; Juntunen et al. 2013) for soil and sediment quality estimation (Olawoyin
et al. 2013), in pulp and paper processes (Alhoniemi et al. 1999), and in biotech-
nology (Mele and Crowley 2008).

In addition, SOM is capable of detection of faults. Since SOM is a gradient based
iterative technique, it is less sensitive if outliers are in data sets. Since this technique
is a mapping, the performance of whole procedure is not influenced by outliers
because they grouped or they are on the edge of the map.

When a cell contains outliers the performance of the local model may decrease.
Since this cell represents the edge of the normal operating region, outliers do not
influence the global modelling performance. Hence, SOM is much less sensitive to
outliers than PCA or PLS. Therefore, SOM is excellent for fault detection, because
cells contain outliers and data related to malfunction of the process can be easily
identified (Fustes et al. 2013; Munoz and Muruzábal 1998).

9.2.2.1 SOM for Piecewise Linear Regression

The goal of this section is to develop a data-driven algorithm for the identification
of a model in the form of yk ¼ f zkð Þ, where zk represents the model inputs (process
variables) and yk contains the product quality. In general, it may not be easy to find
a global nonlinear model that is universally applicable to describe the relationships
between the inputs and the outputs on the whole operating domain of the process. In
that case, it would certainly be worthwhile to build local linear models for specific
operating points of the process and combine these into a global model. This can be
done by combining a number of local models, where each local model has a
predefined operating region where the local model is valid. This results in the
so-called operating regime based model. The applications and the possible identi-
fication of operating regime based modelling to the identification of dynamic
systems are recent and rich (Murray-Smith 1997).

The operating regime based model is formulated as

yTk ¼
Xs

i¼1

xi zkð Þ zTk ; 1
� �

Hi ð9:4Þ

where xi zkð Þ describes the operating regime of the ith local linear model de-fined
by the Hi parameter matrix (or vector if yTk is a scalar). The piecewise linear models
are special case of operating regime-based models. If we denote the input space of
the model by T : z 2 T � <m, the piecewise linear model consists of a set of
operating ranges T1; T2; . . .; Ts which satisfy T1 [T2 [. . .[ Ts ¼ T and
Tj \Ti ¼ [; 8i 6¼ j.

248 T. Kulcsár et al.



Hence, the model can be formulated as

If zk 2 Ti then yTk ¼ zTk ; 1
� �

Hi ð9:5Þ

where Hi denotes the parameter estimate vector used in the ith local model.
The identification of these models can be divided into two tasks: structure

identification that generates the operating ranges and parameter identification of the
local models. As the simultaneous combination of these steps results in complex
nonlinear optimization problem, several heuristic, mainly iterative algorithms have
been worked out for this purpose (Murray-Smith 1997).

When SOM is used to represent nonlinear systems, it is trained based on the N
input-output data pairs arranged in the X ¼ x1; . . .; xN½ �T pattern matrix as

xk ¼ yTk ; z
T
k

� �T
.

The SOM can be directly used for prediction of the output, yk of the process
given the input vector zk . Regression is accomplished by searching for the BMU
using the known vector components. As the output of the system is unknown, the
BMU is determined as

i0k ¼ arg mini m�
i � zk

�� ��� � ð9:6Þ

where m�
i ¼ ½mi;nþ 1; . . .;mi;l�.

The output of the model can be defined as the unknown component of the BMU,
yTk ¼ mþ

i0 ¼ mi0;1; . . .;mi0;n

� �
, which results in a piecewise constant model.

The accuracy of this model can be increased by building local models for data in
the Voronoi cells of the SOM,

yTk ¼ zk �m�
i0k

h iT
Hi0k

þ mþ
i0

� �T ð9:7Þ

or

yTk ¼ zTk ; 1
� �

Hi0k
ð9:8Þ

where the Hi0k
parameter matrix of the local model is calculated by least squares

method based on the local data set on the operating regime Ti only, where Ti is the
ith Voronoi cell of the Voronoi diagram of the codebook of the SOM,
M ¼ m�

1; . . .;m
�
c

	 

. Vor Mð Þ is defined as the subdivision of T into c cells

Ti; i ¼ 1; . . .; c, with the property that a point zk lies in the cell corresponding to the
site m�

i0k
if and only if i0k ¼ arg mini mi � xkk kð Þ. Thus, each cell of the diagram is the

intersection of a number of half-planes.
When the process is nonlinear there is a need for local linear approximation of

the operating regime of the system. Sliced Inverse Regression (SIR) and the related
techniques are suitable for the extraction and characterization of local linear sub-
spaces (Li 2012; Lue 2009; Kuentz and Saracco 2010). In this context these
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techniques are similar to SOM as SOM also defines local operating regimes that can
be also considered Voronoi cells of SOM. As this section showed, these clusters
can be used to build local linear models. In our case least squares regression is used
to build local models. However, local models of the clusters can also be defined by
local PCA (similar to SIR) or sub-PLS models. This approach also illustrates that
local linear modelling and clustering can be effectively combined to get accurate
and interpretable models (Kenesei and Abonyi 2013; Abonyi et al. 2002).

9.2.2.2 SOM for Classification of Product Grades and Operating
Conditions

The SOM can be used for classification purposes by assigning a class for each
codebook vector and deciding the class of a sample vector based on the class of its
BMU. The rule-based classifier consists of rules that describe Nc number of classes,
given n data points. The rule antecedent defines the operating region of the rule in
the l-dimensional feature space and the rule consequent is a class label from the set
gi ¼ f1; . . .;Ncg.

If xk 2 Ti then class is g ð9:9Þ

The interpretability of classifier depends on the number of utilized features. For
the selection of the most relevant features, we modify the Fischer interclass sepa-
rability method which is based on statistical properties of labeled data. The
importance of a feature is measured by leaving out a feature and calculating a cost
function for the reduced model. The feature selection is made iteratively by leaving
out the less needed feature.

9.3 Application Examples

In this chapter two examples are given to demonstrate the applicability of multi-
variate data-driven tools. In the first example, PLS is applied to visualize the
production of a fuel mixing process and estimate the product quality. The second
example is similar in the application point of view, SOM is applied to monitor
product quality of a polymerization process.

9.3.1 Online NIR—PLS Example

Present research focuses on two tasks. Datasets collected at the Dune Refinery of
MOL Ltd (Hungary) are analyzed. The first task is the development of a prediction
model that can estimate product properties based on spectra taken by online NIR
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analyzers. The second task is the development a monitoring tool based on the
visualization of the same spectra.

The prediction performance of the models is measured by the correlation
coefficient defined as:

Rði; jÞ ¼ Cði:jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cði; iÞCðj; jÞp ð9:10Þ

where C is the covariance matrix and it is calculated as C ¼ covðy;byÞ. Table 9.1
shows that the number of the available samples, N, differs for each properties.
Among the 651 spectra, only 560 were different and in most of the cases, only a
fragment of the properties were measured. Firstly the effect of dimensionality of
latent space of the PLS model was analyzed (from 2 to 48 dimensions). To perform
an adequate comparison, leave-one-out and 10-fold cross validation technique was
applied. As it is shown in this table, the accuracy of the model increases rapidly by
increasing the dimensionality of the latent space from 2 to 6 dimensions; however,
it reaches a maximum since when the complexity of the model is higher than the
complexity of the modelled system.

In Sect. 9.2.2, a special method is presented that can map the PLS latent space
into two dimensional space by orthogonal signal correction. This method is com-
pared with Principal Component Analysis and Topological Near-Infrared Modeling
(CRISP-DM 2000; Abonyi and Feil 2005) (TOPNIR) developed specifically to
visualize NIRspectra and building topological prediction models with the help of
resulted maps. As shown in Fig. 9.4, this technique is effective in visualization of
high dimensional spectral space. This plot gives information about how summer
and winter fuel samples are clustered.

9.3.2 Application in Polyethylene Production

To illustrate the proposed approach, the monitoring of a medium and high-density
polyethylene (MDPE, HDPE) plant of the TVK Ltd. in Hungary is considered.
HDPE is versatile plastic used for household goods, packaging, car parts and pipe,

Table 9.1 Effect of the
number of latent variables to
the performance of the model
(correlation between the
estimated and measured
variables are shown)

Property Latent dimensions

2 6 12 18 24 48

Density 0.776 0.988 0.993 0.993 0.993 0.989

T90 0.432 0.654 0.849 0.895 0.868 0.796

CFPP0 0.657 0.942 0.947 0.953 0.921 0.888

CFPP 0.516 0.755 0.769 0.728 0.703 0.610

Cloud Pt 0.668 0.924 0.950 0.958 0.955 0.943

Flash Pt 0.408 0.596 0.878 0.901 0.895 0.854
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and TVK Ltd. is the largest Hungarian polymer production company (www.tvk.hu).
A brief explanation of the Phillips license based low-pressure catalytic process is
provided in the following section.

Figure 9.5 represents the Phillips Petroleum Co. suspension ethylene polymer-
ization process. The polymer particles are suspended in an inert hydrocarbon. The
melting point of high-density polyethylene is approximately 135 °C. Therefore,
slurry polymerization takes place at a temperature below 135 °C; the polymer
formed is in the solid state. The Phillips process takes place at a temperature
between 85 and 110 °C. The catalyst and the inert solvent are introduced into the
loop reactor where ethylene and an olefin (hexene) are circulating. The inert solvent

Fig. 9.4 Visualization of DS1 using PLS (CFPP0)

Fig. 9.5 Scheme of the Phillips loop reactor process (Nagy 1997)
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(isobuthane) is used to dissipate heat as the reaction is highly exothermic. A cooling
jacket is also used to dissipate heat. The reactor consists of a folded loop containing
four long runs of pipe that are 1 m in diameter, connected by short horizontal
lengths of 5 m. The slurry of HDPE and catalyst particles circulates through the
loop at a velocity between 5 and 12 m/s. The reason for the high velocity is due to
the fact that at lower velocities, the slurry will deposit on the walls of the reactor
causing fouling. The concentration of polymer products in the slurry is 25–40 % by
weight. Ethylene, olefin comonomer (if used), an inert solvent, and catalyst com-
ponents are continuously charged into the reactor at a total pressure of 450 psig.
The polymer is concentrated in settling legs to about 60–70 % by weight slurry and
continuously removed. The solvent is recovered by hot flashing. The polymer is
dried and pelletized. The conversion of ethylene to polyethylene is very high (95–
98 %), eliminating ethylene recovery. The molecular weight of high-density
polyethylene is controlled by the temperature of catalyst preparation (Nagy 1997).
The main properties of polymer products (Melt Index (MI) and density) are con-
trolled by the reactor temperature, monomer, comonomer and chain-transfer agent
concentration.

9.3.2.1 Problem Description

An interesting problem with the process is that it is required to produce about ten
product grades according to market demand. Hence, there is a clear need to min-
imize the time of changeover because off-specification product may be produced
during transition. The difficulty of the problem comes from the fact that there are
more than ten process variables to consider. Measurements are available in every
15 s on process variables zk , which are the zk;1 reactor temperature ðTÞ, zk;2 ethylene
concentration in the loop reactor ðC2Þ, zk;3 hexene concentration ðC6Þ, zk;4 the ratio
of the hexene and ethylene inlet flowrate ðC6=C2inÞ, zk;5 the flowrate of the
isobutane solvent ðC4Þ, zk;6 the hydrogen concentration ðH2Þ, zk;7 the density of the
slurry in the reactor ðrozÞ, zk;8 polymer production intensity ðPEÞ, and zk;9 the
flowrate of the catalyzer ðKATÞ. The product quality yk is only determined later, in
another process. The interval between the product samples is between half an hour
and 5 h. The yk;1 melt index ðMIÞ and the yk;2 density of the polymer ðroÞ are
monitored by off-line laboratory analysis after drying and extrusion of the polymer
that causes 1 h time-delay.

Since, it would be useful to know if the product is good before testing it, the
monitoring of the process would help in the early detection of poor-quality product.
There are other reasons why monitoring the process is advantageous. Only a few
properties of the product are measured and sometimes these are not sufficient to
entirely define the product quality. For example, if only rheological properties of
polymer are measured (melt index), any variation in end-use application that arise
due to variation of chemical structure (branching, composition, etc.) will not be
captured by following only these product properties. In these cases, the process data
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may contain more information about events with special causes that may affect the
product quality (Jeackle and MacGregor 1998).

9.3.2.2 SOM Based Historical Analysis of the Process

The modelling and monitoring of processes from data involves solving the problem
of data gathering, preprocessing, model architecture selection, identification or
adaptation and model validation. The process data analyzed in this chapter have
been collected over 3 months of operation. The data have been extracted from the
distributed control system (DCS) of the process. An SQL server has been installed
to store and merge this data with the product quality database. According to the data
warehousing methodology, the application relevant data have been extracted from
this SQL database. As one of the objectives is to infer the values of product quality
from process data obtained at different operating regions, a set of transition-free
data is used that covers the whole range of specifications of the quality properties
and the process variables over all the possible operating regions. The data were
preprocessed by normalization performed on single variables. Scaling of variables
is of special importance since the SOM algorithm uses Euclidean metric. In the
current phase of the project, this data are processed by the modified version of the
MATLAB SOM Toolbox (Vesanto et al. 2015). The whole methodology is illus-
trated in Fig. 9.6.

The SOM of the process has been applied to predict polymer properties from
measured process variables and to interpret the behaviour of the process. The
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constructed SOM (size 17 by 6 units) with eleven component planes is shown in
Fig. 9.7. Based on the map the typical operating regions related to different product
grades could be determined. Furthermore, the SOM is a good tool for hunting for
correlation among the operating variables (Simula et al. 1999). For example, it can
be easily seen that the melt index of the polymer (MFI) is highly correlated with
reactor temperature (T).

Figure 9.8 shows the labels of the products and the distribution of the data
marked by black hexagons with proportional size to the number of data in the
operating regions of the clusters. This figure shows that the SOM is a useful tool for
the visualization of multivariate data. A common procedure for reducing the
dimensionality of the variable space is Principal Component Analysis
(PCA) (MacGregor and Kourti 1995). For a comparison of the SOM with “stan-
dard” techniques, the historical data have been transformed into a two-dimensional
space spanned by the first two principal components of the data. In Fig. 9.9, the grid
of the transformed codebook of the SOM is shown to illustrate how the clusters
approximate the density of the data. It is interesting to compare the SOM and the
PCA model of the process (Fig. 9.11) as in both transformed spaces the regions of
the different products are similar; the data points appear to cluster into four regions
which corresponded to different product grades and operating conditions.

Since the distance preserving mapping property of the SOM, products that are
close to each other on the map are similar. In the discrete two-dimensional output
space of the SOM, the trajectory of the production can be effectively visualized by

Fig. 9.7 Component planes of the polyethylene production map
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plotting the trajectory of the BMUs (Principe et al. 1998), which is especially useful
in process monitoring and fault detection. Hence, the map can be effectively used
for scheduling the different products by designing the trajectory of the production
on the map of the products. An example for a grade transition is shown in Fig. 9.10,
where the production of Product 6 is followed by the production of Product 7. The
multivariate historical data of this transition depicted in Fig. 9.10 can be easily
visualized by the PCA and the SOM model of the process as shown in Fig. 9.11.

Fig. 9.8 Product labels
(numbers) and distribution of
the data

Fig. 9.9 PCA scores plots for
three months of operation.
The grid of the transformed
codebook of the SOM is also
shown to illustrate how the
clusters approximate the
density of the data
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Fig. 9.10 Example of grade transition

Fig. 9.11 Grade transition shown in Fig. 9.10 mapped into the two dimensional space by PCA
(a) and SOM (b)
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The previous example has shown that the SOM results in a good representation
of the operating regions of the products. Hence, it can be also used for classifica-
tion. When the whole SOM is used as a rule-based classifier system with rules like

If xk 2 Ti then class is gi ð9:11Þ

it gives 8 % classification error. This can be considered as a good result taking into
account that the data is quite noisy and not too much effort was put to select the
training data related to normal operating conditions.

9.3.2.3 SOM Based Product Quality Estimation

The SOM has been also used to estimate the product quality variables. Figure 9.12
shows the estimation error of the linear model and the SOM presented in the
previous section. Although in this case the SOM is used as a piecewise constant
model, it gives better results than the linear model. The performances of the models
have been measured by the Root Mean Square Error (RMSE) of the models. In
Table 9.2, it can be seen that the SOM is more accurate than the linear model. This
is not surprising since the linear model has only two times ten (20) parameters and
cannot capture the nonlinearity of the process. The good performance of the
BMU-based piecewise constant model shows that the SOM gives a good approx-
imation of the density of the data, hence it can be considered as a good

Fig. 9.12 Estimation performance of the SOM based piecewise constant model (.) and a
multivariate linear model (o)

258 T. Kulcsár et al.



nonparametric model. Because of the large number of the clusters (size 17 by 6
units), the Voronoi cell based multiple linear model approach cannot be used. The
reason is that the identification of the most local models become badly conditioned
due to the small number of data related to the operating region of the models.
Hence, in this chapter an approach based on the reduction of the original SOM is
introduced, where for the regression purpose a smaller SOM is identified.

This task requires the selection of the most important variables having effect to
the product quality variables. This can be done by analyzing SOM of the process
(Fig. 9.7) to detect similarities between the component planes that shows the cor-
relation of the variables. Another possible approach is to use Orthogonal Least
Squares (OLS) techniques for ordering of the process variables. The ordering
obtained is shown in Table 9.3. This ordering can then be easily used to select a
subset of the inputs in a forward-regression manner. It is interesting to see that
ordering of the OLS gives similar results that we can obtain from the visual
inspection of the SOM of the process. Based on this model reduction approach, two
independent SOMs with 24 clusters on four process variables (the first four shown
in Table 9.2.) have been identified to estimate the density and the melt index of the
product. As shown in Table 9.3, these compact models give good estimations of the
quality variables.

Table 9.2 Root Mean Square
Errors (RMSE) achieved by
different models

Density
(ro)

Melt index
(MFI)

Linear 0.0355 0.0372

SOM pw constant (BMU) 0.0330 0.0341

Linear (4 variables) 0.0368 0.0387

SOM pw linear (4
variables)

0.0251 0.0312

Table 9.3 Relative
importance of process
variables obtained by OLS

Importance Density (ro) Melt index (MFI)

1 ‘C6/C2in’ ‘T’

2 ‘C4’ ‘C6/C2in’

3 ‘H2’ ‘C4’

4 ‘roz’ ‘H2’

5 ‘PE’ ‘C2’

6 ‘KAT’ ‘roz’

7 ‘C6’ ‘KAT’

8 ‘C2’ ‘C6’

9 ‘T’ ‘PE’
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9.4 Conclusion

Quality development intensively applies process data. The iterative data mining
methodology effectively supports the PDCA cycle based quality development.
Since several process variables have to be monitored and unknown functional
relationships among process and quality variables have to be explored, multivariate
statistical techniques are the most widely applied tools. Beside the classical prin-
cipal component analysis (PCA) and partial least squares regression models (PLS),
we applied soft computing based tools to handle uncertainty and nonlinearity and
complexity of the problem.

We demonstrate that PLS based model is able to simultaneously predict
unmeasured material properties and monitor the state of a complex production
process. Process monitoring is realized in orthogonal two dimensional plots. These
plots can also be used for the effective identification of outliers.

Self-Organizing Map (SOM) is a soft-computing based approach and it is used for
the extraction of knowledge from the historical data of production. Since SOM pro-
vides a compact representation of the data distribution, the typical operating condi-
tions of the process are efficiently detected. It has been shown that efficient process
monitoring can be performed in the two-dimensional projection of the process vari-
ables. For the estimation of the product quality variables multiple local linear models
are introduced, where the operating regimes of the local linear models are obtained by
the Voronoi diagram of the prototype vectors of the SOM. The important process
variables having effect to the product quality have been selected by orthogonal least
squares method. The approach has been demonstrated by means of the analysis of a
polyethylene production plant. The results show that the SOM is very effective in the
detection of typical operating conditions related to different product grades and can be
used to predict the product quality (melt index and density) based on the process
variables measured. The proposed method is attractive in comparison with other
advanced process monitoring schemes such as Principal Component Analysis.

The interested reader might want to know under what conditions these methods
can be employed and what kind of diagnostic tests are available. Some books that
are dealing with only one technique in detail are suggested for them: Handbook of
Partial Least Squares (Vinzi et al. 2010), Principal Component Analysis (Jolliffe
2008), Introduction to Statistical Quality Control (Montgomery 2009) and
Self-Organizing Maps (Kohonen 2001).

More technical details and illustrative examples and MATLAB program codes
related to the application of intelligent tools for fault detection and quality esti-
mation can be found at the website of the authors: www.abonyilab.com.
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Chapter 10
Failure Mode and Effects Analysis Under
Uncertainty: A Literature Review
and Tutorial

Umut Asan and Ayberk Soyer

Abstract The multidimensional nature of risks as well as substantial uncertainties
and subjectivities inherent in the risk assessment process led a growing number of
researchers to develop alternative approaches for failure mode and effects analysis.
The purpose of this chapter is to provide a comprehensive review of the
multi-criteria approaches proposed for failure mode and effects analysis under
uncertainty and offer a brief tutorial for those who are interested in these approaches.

Keywords Failure modes and effects analysis (FMEA) � Risk assessment �
Multi-Criteria decision making (MCDM) approaches � Uncertainty

10.1 Introduction

Failure Modes and Effects Analysis (FMEA) is one of the first structured, sys-
tematic and proactive techniques used for failure analysis. The purpose of FMEA is
to list out all possible failure modes (FMs) (i.e., the things that could go wrong in an
organization); evaluate the causes of each FM and their subsequent effects on the
performance of the system that is under consideration. By definition, FM refers to
the termination of the ability of a system to perform a required function or its
inability to perform within previously specified limits (ISO/IEC-15026-1 2013) and
includes both known and/or potential failures, problems, or errors that may affect
the customers and thus endanger the reputation of the entire organization. Since
FMs are unavoidable for the majority of the systems, FMEA serves as an effective
tool to ensure that potential threats to the system have been considered and
addressed, and associated risks are minimized. The history of FMEA goes back to
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the early 1950s and 1960s. In 1949, it was first used in the United States military as
a reliability evaluation technique to determine the effect of system and equipment
failures. In 1963, National Aeronautics and Space Administration (NASA) used
FMEA during the Apollo missions to assure desired reliability of space systems
(Chang et al. 1999). Later in 1974, the US Navy developed MIL-STD-1629, which
discussed the proper use of the technique. In the late 1970s, Ford Motor Company
introduced FMEA to the automotive industry and then the automotive industry
collectively developed various standards in the 1990s. Over the years, FMEA
became a universally used technique in many different industries, such as, aero-
space, automotive, defense, medical, marine, nuclear power, semiconductor, etc.,
and it has been proven to be successful in any manufacturing or service industry
(Chang et al. 1999, 2001; Chen 2007; Welborn 2010; Arabian-Hoseynabadi et al.
2010).

Commonly, there are four types of FMEA: (i) System FMEA, (ii) Design
FMEA, (iii) Process FMEA, and (iv) Service FMEA. The general properties of
FMEA types are shortly summarized below (Stamatis 2003; Carlson 2012):

(i) System FMEA (sometimes referred as Concept FMEA) is used to analyze
systems and subsystems in the early concept and design stage. It focuses on
potential FMs between the functions of the system caused by system-related
deficiencies (such as, system integration, interaction between systems and/or
subsystems, interaction with the external environment, etc. causing the system
not to work as intended).

(ii) Design FMEA (sometimes referred as Product FMEA) is used to analyze
products, early in the design phase to be able to identify potential design flaws.
Therefore, it focuses on FMs caused by design-related deficiencies to improve
the design and to ensure safety and reliability of the relevant product during its
lifetime.

(iii) Process FMEA is used to analyze processes required to produce a product or
service. It focuses on potential FMs caused by process-related or
assembly-related deficiencies.

(iv) Service FMEA is used to analyze services before they reach to customer, and
focuses on potential FMs caused by system-related or process-related defi-
ciencies to maximize customer satisfaction.

Today, FMEA is one of the most widely utilized and powerful techniques,
having several advantages for organizations that are trying to find the ways of
improving quality and safety. Some of the major advantages of FMEA indicated in
the literature include:

• Inclusion of people from different expertise areas in an organization, as each of
them views the system from various perspectives, responsibilities, and concerns.
By this means, it provides an opportunity to improve the communication and
cooperation between the different functions of an organization, and the rela-
tionships with external factors, such as suppliers and customers (Kostina et al.
2012).
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• It provides a simple analysis procedure which is easy to learn and implement,
and makes even the evaluation of complex systems easy to do (Dhillon 2009;
Mozaffari et al. 2013).

• It acts as a useful visibility tool for managers (Dhillon 2009; Braglia 2000) and
serves as an excellent instrument for learning.

• It is a very structured, systematized and reliable method (Dhillon 2009;
Mozaffari et al. 2013; Kostina et al. 2012) that helps to identify the connections
between the FMs, the reasons of FMs, and the effects of FMs, as well.

• It permits a realistic appreciation of the conformity of products and services with
the market and customer needs (Kerekes and Johanyák 1996); therefore,
increases the safety and reliability of products/services, reduces warranty and
service costs, shortens the development process, improves compliance with the
deadlines (Bujna and Prístavka 2013), and eventually improves the customer
satisfaction (Dhillon 2009).

As mentioned above, FMs (whether known or potential) are listed and prioritized
in FMEA to prepare for them in the best way possible and to prevent problems from
reaching the customer. To this end, FMEA uses Risk Priority Number
(RPN) methodology to analyze the risks associated with each identified FM. This
methodology consists of assessing the FMs with respect to their ‘severity (S)’,
‘probability of occurrence (O)’, and ‘likelihood of detection (D)’. For each FM, an
estimate is made of its S, O, and D on a numerical scale of 1 to 10, as described in
Tables 10.1, 10.2, and 10.3 (Chin et al. 2009a, b; Pillay and Wang 2003;
Seyed-Hosseini et al. 2006; Wang et al. 2009; Guimarães and Lapa 2007; Xu et al.
2002; Franceschini and Galetto 2001; Liu et al. 2013b; Chang and Cheng 2010).
The S, O, and D ratings are then multiplied together to get the RPN. In equation
form, RPN ¼ S� O� D. The FMs with higher RPNs are assumed to be more
important and should be given higher priorities (Wang et al. 2009; Liu et al. 2011).

Table 10.1 Severity scale for a FM

Rating Effect Severity of effect

10 Hazardous
without warning

Very high severity ranking when a potential FM effects safe
system operation without warning

9 Hazardous with
warning

Very high severity ranking when a potential FM effects safe
system operation with warning

8 Very high System inoperable with destructive failure without
compromising safety

7 High System inoperable with equipment damage

6 Moderate System inoperable with minor damage

5 Low System inoperable without damage

4 Very low System operable with significant degradation of performance

3 Minor System operable with some degradation of performance

2 Very minor System operable with minimal interference

1 None No effect
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Whether applied to a system, process, product, or service, FMEA, basically,
consists of the implementation steps summarized in Fig. 10.1.

Despite its advantages mentioned above, there also exists several shortcomings
of the FMEA methodology indicated in the literature (Bowles and Peláez 1995;
Braglia 2000; Braglia et al. 2003, 2007; Chang 2009; Chang and Cheng 2010,
2011; Chang and Sun 2009; Chang and Wen 2010; Chang et al. 2001, 1999, 2010;
Chen 2007; Chen and Ko 2009; Chin et al. 2009a, b; Franceschini and Galetto
2001; Gargama and Chaturvedi 2011; Geum et al. 2011; Kutlu and Ekmekçioğlu

Table 10.2 Probability of occurrence scale for a FM

Rating Probability of occurrence Failure probability

10 Extremely high: failure is almost inevitable >1 in 2

9 Very high 1 in 3

8 Repeated failures 1 in 8

7 High 1 in 20

6 Moderately high 1 in 80

5 Moderate 1 in 400

4 Relatively low 1 in 2000

3 Low 1 in 15,000

2 Remote 1 in 150,000

1 Nearly impossible <1 in 1,500,000

Table 10.3 Likelihood of detection scale for a FM

Rating Detection Likelihood of detection

10 Absolute
uncertainty

Potential cause/mechanism and subsequent FM cannot be
detected

9 Very remote Very remote chance of detecting potential cause/mechanism and
subsequent FM

8 Remote Remote chance of detecting potential cause/mechanism and
subsequent FM

7 Very low Very low chance of detecting potential cause/mechanism and
subsequent FM

6 Low Low chance of detecting potential cause/mechanism and
subsequent FM

5 Moderate Moderate chance of detecting potential cause/mechanism and
subsequent FM

4 Moderately
high

Moderately high chance of detecting potential cause/mechanism
and subsequent FM

3 High High chance of detecting potential cause/mechanism and
subsequent FM

2 Very high Very high chance of detecting potential cause/mechanism and
subsequent FM

1 Almost certain Potential cause/mechanism and subsequent FM will be detected
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2012; Liu et al. 2011, 2012, 2013b, c; Pillay and Wang 2003, Seyed-Hosseini et al.
2006, Sharma et al. 2008a, b; Wang et al. 2009; Xiao et al. 2011; Xu et al. 2002;
Yang et al. 2008, 2011; Zammori and Gabbrielli 2012; Zhang and Chu 2011), some
of which can be summarized as follows:

• Relative weights (importance) of the risk factors (i.e., S, O, and D) are not
considered, while different weights will result in different priorities.

• Various sets of S, O, and D ratings may produce the same RPN value, although,
relevant risk implications may be different.

• It is not possible to measure the amount of difference between the ranks in an
ordinal scale, as the intervals of an ordinal scale are determined subjectively,
and therefore, are not identical to each other. Because of this, mathematical
operations cannot be performed on ordinal scales. However, in FMEA, RPN
values are calculated by multiplying the numerical ratings of S, O, and D, which
are measured on ordinal scales.

• The use of multiplication for RPN calculations, instead of other relationships, is
questionable, as multiplication is very sensitive to the variations in the ratings of
S, O, and D.

Review the process, design, product, or service 

Identify potential FMs 

Identify potential effect(s) of FMs 
(Assign severity ratings for each effect) 

Identify potential causes(s) of FMs 
(Assign occurrence ratings for each FM) 

Evaluate current controls 
(Assign detectability ratings for each FM and/or effect) 

Prioritize failure modes 
(Calculate the RPNs for each FM)

Identify and implement actions leading to improvement 
(Take action to eliminate or reduce the high-risk FMs) 

Reassess risks with another FMEA cycle 

Preparation 

Identification 

Prioritization 

Risk Reduction 

Reassessment 

Fig. 10.1 Steps of FMEA process
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• It considers only three factors (S, O, and D), ignoring other significant factors
such as, costs, production quantities, quality, etc.

• It considers only one FM at a time, interdependencies among various FMs and
their effects are not taken into account.

• Since many of the points in the RPN scale, which ranges from 1 to 1000, cannot
be formed from the product of S, O, and D (only 120 of the 1000 numbers can
be generated), RPNs are not continuous. Furthermore, most of the unique points
in the scale can be formed in several different ways (e.g., 60 can be formed from
24 different combinations of S, O, and D).

• The conversion of ratings for the three components of a FM is different. The
relation between O and O’s probability scale is non-linear, while the relation
between D (S) and D’s (S’s) probability scale is linear.

• It is difficult, or even impossible, to give a precise and direct numerical eval-
uation for intangible quantities, such as S, O, and D.

In their review of literature on FMEA, Liu et al. (2013b) investigated the
shortcomings of the FMEA methodology (which some of them are mentioned
above) and discussed the approaches used in the FMEA literature. They proposed a
framework for classifying the reviewed articles according to the FM prioritization
method used, in which the relevant approaches were divided into five main cate-
gories: (i) Multi-Criteria Decision Making (MCDM) Approaches, (ii) Mathematical
Programming (MP) Approaches, (iii) Artificial Intelligence (AI) Approaches,
(iv) Integrated Approaches, and (v) Other Approaches.

Among others, some of the common approaches classified into these five cate-
gories are:

i. Evidence Theory (Yang et al. 2011), Analytical Hierarchy Process (AHP) (Hu
et al. 2009), Analytical Network Process (ANP) (Zammori and Gabbrielli
2012), Grey Theory (Chang et al. 1999, 2001), and Intuitionistic Fuzzy Sets
(Chang and Cheng 2010; Chang et al. 2010)

ii. Linear Programming (Chen and Ko 2009), Data Envelopment Analysis
(DEA) (Chin et al. 2009a; Chang and Sun 2009), Fuzzy DEA (Garcia et al.
2005)

iii. Rule-base Systems and Fuzzy Rule-base Systems (Gargama and Chaturvedi
2011; Sharma et al. 2008a, b)

iv. Fuzzy Cognitive Maps (Pelaez and Bowles 1996), Fuzzy Evidential
Reasoning and Grey Theory (Liu et al. 2011), Fuzzy AHP and Fuzzy TOPSIS
(Kutlu and Ekmekçioğlu 2012), Intuitionistic Fuzzy Sets (IFS) and
DEMATEL (Chang and Cheng 2010)

v. Monte Carlo Simulation (Bevilacqua et al. 2000), Minimum Cut Sets Theory
(Xiao et al. 2011), Quality Function Deployment (QFD) (Braglia et al. 2007),
and Probability Theory (Sant’Anna 2012).

According to Liu et al. (2013b), the categories including the most frequently
used approaches for the prioritization of FMs, are AI and MCDM, respectively.
Particularly, fuzzy rule-base system in AI category is the most used approach,
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followed by grey theory and AHP/ANP in the MCDM category. Fuzzy rule-based
approaches, although applied extensively in the literature, have also been criticized,
since they have some drawbacks that will be discussed in detail, in Sect. 10.2.

This chapter will be focusing on studies addressing the issues related to mod-
elling, qualitative nature of risk assessment, as well as subjectivities and substantial
uncertainties inherent in the assessment process. In other words, the approaches
dealing with both complexity and uncertainty of the risk assessment process will be
reviewed. The rest of this chapter is organized as follows. First, a comprehensive
review of the literature is provided which is followed by illustrative examples for
selected approaches. Then, the methodological differences of these alternative
approaches are examined. Finally, conclusions and further research opportunities
are presented.

10.2 Multi-criteria Risk Prioritization Under Uncertainty

Identifying and prioritizing potential failure modes and their effects generally
requires dealing with uncertain information (including incomplete, vague and/or
ambiguous information) as well as highly subjective judgments of experts. The
uncertainties and subjectivities that arise here may stem from different sources, such
as (1) lack of knowledge, limited attention and information processing capabilities
(Asan et al. 2013); (2) vague assessment and grading criteria whose meaning, value,
or boundaries vary considerably according to context or conditions; and (3) frag-
mented expert judgments. The last source, also known as inter-personal uncertainty
(see Wu and Mendel 2009), can even emerge in situations where sufficient
knowledge is available. This is related to the fact that FMEA is commonly per-
formed in a group decision environment where experts may provide different
judgments for the same risk factors because of their different expertise and back-
grounds (Chin et al. 2009b; Song et al. 2014).

Thus, it becomes often unrealistic and impractical to acquire exact judgments in
risk assessment when distinct interpretations are present and/or available data is
incomplete or vague. Several authors have similarly reported that precision based
methods suggested in the literature have largely or totally failed to address these
certain sources of uncertainties. Below, the extensively criticized limitations of the
conventional FMEA methods in dealing with uncertainties associated with the
judgment process are summarized:

• They can’t handle imprecise data and subjective judgments of domain experts,
especially when the data set is small in size and its distribution is unknown.

• They can’t cope with incomplete assessments and total ignorance.
• They can’t deal with different types of assessment information simultaneously.
• They require prior information, such as, assumptions or pre-defined functions to

deal with uncertainty.
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• They ignore the level of confidence (belief degrees) experts are often willing to
express in their subjective assessments.

• They ignore diversity in expert judgments.
• They lack a framework to analyze complex structures.
• They ignore other important factors (e.g., economical aspects).

Ideally, a complete theory and its accompanying tools used for identifying and
prioritizing potential FMs and their effects should therefore address not only
modeling issues, but also issues related to the qualitative nature of risk assessment
as well as the analysis of subjectivities and substantial uncertainties inherent in the
assessment process. To overcome some of the mentioned limitations of the con-
ventional FMEA methods, many alternative approaches have been suggested in the
literature. According to the literature review conducted by Liu et al. (2013b), the
most frequently studied class of approaches was found to be artificial intelligence—
in particular fuzzy rule-based approaches. There are several reasons why these
approaches have been more preferred. First of all, they can handle ambiguous,
qualitative as well as quantitative data in a consistent manner; second, they allow
combining risk factors (i.e. FMs) in a more flexible and realistic manner; and
finally, the risk assessment function can be customized according to the particular
product, process or system under consideration (for more detail see Liu et al.
2013b). However, rule-based approaches have also significant limitations. For
example, rule-based approaches require experts to design a sufficiently rich set of
if-then rules and maintain them over time, which is often highly costly and
time-consuming. Otherwise, an incomplete rule base will produce biased or even
wrong inferences. Moreover, the rules with the same consequence but different
antecedents cannot be distinguished from one another, which makes a complete
prioritization or ranking of the failure modes impossible (Song et al. 2014). It is also
hard to define proper membership functions for the risk factors and priority levels
(Liu et al. 2013b). Thus, rule based approaches, which tend to be highly subjective,
costly, and time consuming, should not necessarily be regarded as the best possible
method.

An alternative class developed for FMEA under uncertainty consists of multi-
criteria approaches. These approaches are able to handle both modelling issues
(e.g., scaling, structuring, aggregation, weighting, etc.) and issues related to the
analysis of subjectivities and substantial uncertainties inherent in the assessment
process. A review of the literature indicates a growing interest in these approaches,
especially in the past 5 years (see Fig. 10.2). Note that the source used for the
review was only academic journal articles published in the past 15 years. According
to the review, the most common theories and techniques employed in this class of
approaches are grey relational analysis, aggregation operators, fuzzy technique for
order preference by similarity to ideal solution (fuzzy TOPSIS), evidential rea-
soning (ER), intuitionistic fuzzy sets, type-1 fuzzy sets, 2-tuple fuzzy linguistic
representation, fuzzy analytic hierarchy process (fuzzy AHP), rough set theory,
fuzzy weighted geometric mean, fuzzy weighted least square, and possibility theory
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(see Table 10.4). Below, a summary of the reviewed papers based on this classi-
fication is provided.

Approaches Based on Grey Relational Analysis
Grey theory was initiated by Deng at the beginning of 1980s (Deng 1982, 1989).

Like fuzzy set theory, grey theory also deals with making decisions with poor,
incomplete, and multi-input information, and explores the behavior of a system
using relational analysis (Deng 1982, 1989; Sharma et al. 2008b; Kuo et al. 2008;
Geum et al. 2011; Chang et al. 2013). It provides a measure to analyze relationship
between discrete quantitative and qualitative series (Chang et al. 2001). As one of
the most applied techniques in FMEA, Grey Relational Analysis (GRA) is part of
grey system theory, which can easily handle complicated interactions between
multiple factors and variables. GRA provides a better distinction among decision
alternatives (Kuo et al. 2008), and it gives the opportunity to assign different
importance weights to S, O, and D. In one of the early studies, Chang et al. (2001)
used GRA where they assigned different weights to the risk factors, and eliminated
the need for a utility function and the conversion of ratings for the three components
of FMs. They demonstrated the applicability of the proposed approach in an
automobile PCB assembly case. Similarly, Chang et al. (1999), proposed a new
approach for prioritizing the risks related to FMs. They adopted the fuzzy linguistic
assessment to rate the risk factors, and applied grey theory to calculate the risk
priority numbers (RPNs) of potential causes of each FM. In another study, Pillay
and Wang (2003) presented an improved FMEA methodology utilizing fuzzy rule
base and grey relation theory. In their illustrative application to an ocean going
fishing vessel, they generated 35 fuzzy if-then rules in order to identify lacking
safety features, and thus, to improve the operational safety of the vessel. Using this
fuzzy rule base, risk factor ratings for each FM were integrated to obtain linguistic
variables that were then used to rank FMs. As mentioned above, to address some of
the limitations of traditional FMEA (i.e., identical RPNs and equally weighted risk
factors) Sharma et al. (2008b), also proposed GRA to prioritize the causes of FMs.

Fig. 10.2 Distribution of the reviewed articles (*: only the first quarter)
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Geum et al. (2011) developed a two-stage approach where a service-specific FMEA
was constructed in the first stage; and GRA was applied to calculate the RPN of
each FM in the second stage. To represent the service characteristics, they deter-
mined 19 sub-dimensions for the three risk factors of FMEA. When performing
GRA in the second stage, risk scores for each sub-dimension were calculated firstly
to establish S, O, and D scores, respectively; and then, overall RPN of each FM
were obtained using these risk scores. Finally, in a recent study, Chang et al. (2013)
integrated the GRA and the DEMATEL method to rank FMs according to the risks
they represent for the organization, and presented an actual case of the TFT-LCD
cell process. They argued that their new approach provides a lower duplication rate,
generates more ideal rankings, and helps decision-makers to make more ideal
determinations. Consequently, the major advantages of applying GRA to FMEA
can be summarized as follows: (i) capability of dealing with incomplete information
(ii) eliminating the need for a utility function, (iii) eliminating the need for the
conversion of ratings for the three components of FMs, (iv) capability of assigning
different importance weights to each risk factor, and (v) capability of providing a
better distinction among FMs.

Table 10.4 Classification of multi-criteria methods developed for FMEA under uncertainty

Approach Literature Total
number*

Grey relational
analysis

Chang et al. (1999), (2001), (2013); Pillay and Wang
(2003); Geum et al. (2011); Liu et al. (2011)

6

Aggregation
operators

Chang (2009); Chang and Wen (2010); Chang and
Cheng (2011); Chang et al. (2012); Liu et al. (2014)

5

Fuzzy TOPSIS Braglia et al. (2003); Kutlu and Ekmekçioğlu (2012);
Song et al. (2013), (2014); Hadi-Vencheh and Aghajani
(2013)

5

Evidential reasoning Chin et al. (2009b); Liu et al. (2011); Yang et al.
(2011); Liu et al. (2013a)

4

Intuitionistic fuzzy
sets

Chang et al. (2010); Chang and Cheng (2010); Liu et al.
(2014)

3

Ordinary fuzzy sets Sharma et al. (2008b); Liu et al. (2012); Lin et al.
(2014)

3

2-Tuple fuzzy
linguistic
representation

Chang and Wen (2010); Chang et al. (2012) 2

Fuzzy AHP Hu et al. (2009); Kutlu and Ekmekçioğlu (2012) 2

Rough set theory Song et al. (2014) 1

Fuzzy weighted
geometric mean

Wang et al. (2009) 1

Fuzzy weighted least
square

Zhang and Chu (2011) 1

Possibility theory Mandal and Maiti (2014) 1

*Studies that involve more than one method are classified in more than one category in the table
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Approaches Based on Aggregation Operators
Aggregation operators weight values according to their ordering. In other words,
these techniques are used to find optimal weights of the risk factors based on the
ranks of the weighting vectors after an aggregation process (Chang et al. 2012). At
the end, more accurate and reasonable ranking of the risk of failures may be
obtained. In this category, Chang (2009) and Chang and Cheng (2011) proposed
methodologies, which combine aggregation operators, such as, the ordered
weighted geometric averaging and fuzzy ordered weighted averaging
(OWA) operator, respectively, with the DEMATEL approach to evaluate the
orderings of FMs. Findings suggest that it is more suitable to consider preferences
in form of linguistic variables rather than numerical ones (Chang et al. 2012).
Chang and Wen (2010) proposed a technique, where the OWA operator and 2-tuple
fuzzy linguistic modelling is integrated, to prioritize failures in product design.
They showed that the proposed approach, in comparison to the conventional RPN
method, provides a more flexible structure for combining S, O, and D factors.
Finally, Liu et al. (2014) proposed a new operator (intuitionistic fuzzy hybrid
weighted Euclidean distance) that takes into account both subjective and objective
weights of risk factors during the assessment process. The fragmented and uncertain
assessments provided by a group of experts are treated as linguistic terms expressed
in intuitionistic fuzzy numbers. The proposed operator allows reducing the impact
of disproportionately large (or small) deviations on the results by assigning them
low (or high) weights.

Approaches Based on Fuzzy TOPSIS
Another powerful method suggested to improve the conventional FMEA is TOPSIS
—a multi-criteria decision making approach used to rank alternatives on the basis
of the Euclidean distance of an alternative from both the positive and negative ideal
solutions. Here, FMs are considered as the alternatives to be ranked with respect to
the risk factors S, O, and D, which correspond to the criteria. Braglia et al. (2003)
developed a fuzzy version of TOPSIS to provide a framework that allows dealing
with imprecise quantities, such as those deriving from linguistic evaluations or
subjective and qualitative assessments. By performing a sensitivity analysis of the
fuzzy judgment weights and comparing results with the conventional method, they
confirmed that the proposed approach gives a reasonable and robust final ranking of
FMs. In another study, Kutlu and Ekmekçioğlu (2012) integrated fuzzy AHP with
fuzzy TOPSIS in order to determine more realistic weights for the risk factors.
Fuzzy AHP allows experts weighting the risk factors in linguistic variables. Song
et al. (2013) also suggested a fuzzy weighted TOPSIS for FMEA under uncertainty.
However, they developed a novel weighting approach where subjective weights
derived from experts and objective weights obtained from an entropy-based method
are integrated to avoid any underestimation or overestimation of the FMs. In
another study of Song et al. (2014) a rough group TOPSIS method was proposed.
The method integrates the strength of rough set theory in handling vagueness and
the advantages of TOPSIS in modeling multi-criteria problems. Finally,
Hadi-Vencheh and Aghajani (2013) proposed a fuzzy TOPSIS method based on
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α-level sets and the fuzzy extension principle. They formulated a new relative
closeness coefficient in form of nonlinear programming (NLP) models and solved
them in a series of linear programming models. Consequently, all these studies have
shown that fuzzy TOPSIS is capable of: (1) assigning relative importance to risk
factors, (2) introducing a potentially larger number of risk factors, and (3) using
imprecise data in the form of fuzzy numbers.

Approaches Based on Evidential Reasoning
Evidential reasoning, as another popular approach in FMEA under uncertainty has
been originally developed in the 1990s to support the solution of multi-attribute
decision analysis problems with ignorance (see Yang and Singh (1994)). The recent
ER approaches can model both quantitative and qualitative attributes using a dis-
tributed modelling framework, in which each attribute is characterized by a set of
collectively exhaustive assessment grades (including incomplete information,
complete ignorance and/or fuzzy uncertainty) with different degrees of belief (Wang
et al. 2006). Experiences show that an expert may not always be fully confident in
his assessments and may be willing to express beliefs to subsets of adjacent grades
(Liu et al. 2011). A belief structure, in the FMEA context, captures the performance
distribution of a subjective assessment of a FM. In one of the first studies in this
group, Chin et al. (2009b) proposed a group-based ER approach, which can capture
diversity in FMEA team members’ opinions and prioritize FMs under different
types of uncertainties, such as, incomplete assessment, ignorance and intervals.
They calculate the overall belief structures and convert them into expected risk
scores, which are finally ranked using the minimax regret approach. Inspired by the
work of Chin et al. (2009b); Yang et al. (2011) adopted the modified Dempster–
Shafer evidence theory to aggregate the different opinions about FMs, which may
be inconsistent and uncertain. However, in the proposed model, the three risk
factors are regarded as discrete random variables and all assessment grades are
assumed to be crisp and independent of each other. The ER approach is further
developed by Liu et al. (2011) to deal with risk evaluation problems which involve
both probabilistic and fuzzy uncertainties. These are problems, where some of the
assessment grades are difficult to be expressed as clearly distinctive crisp sets, but
easier as overlapping fuzzy sets (Yang et al. 2006). The most recent study in this
group, by Liu et al. (2013a), combined the fuzzy evidential reasoning
(FER) approach with belief rule-based (BRB) methodology. The FER approach is
used to capture and aggregate expert opinions, while the BRB methodology is used
to model the uncertain causal relationships between risk factors and the risk level.
A belief rule-base is a collection of expert knowledge that represents functional
mappings between risk factors (antecedents) and risk levels (conclusions), possibly
with uncertainty. According to Yang et al. (2008), BRB provides a more infor-
mative and realistic scheme than a simple if-then rule base on uncertain knowledge
representation. To sum up, in comparison with the traditional FMEA and its
variants, an ER approach to FMEA yields the following advantages (see also Chin
et al. (2009b)): (1) the relative importance of risk factors are considered, (2) the
diversity and uncertainty of experts’ assessment information and related confidence
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values can be well reflected and modelled using belief structures, (3) FMs can be
fully ranked and well distinguished from each other, (4) the expected risk score is a
continuous number, and (5) risk factors are aggregated in a highly nonlinear
manner.

Approaches Based on Intuitionistic Fuzzy Sets
Intuitionistic Fuzzy Set (IFS), which is an extension of fuzzy set, was introduced by
Atanassov in 1983 (Atanassov 1986). In fuzzy set theory, the degree of
non-membership is calculated by subtracting the degree of membership from one.
However, this is not the case for IFSs. IFS adds an extra degree of uncertainty to
classic fuzzy sets for modelling the hesitation and uncertainty about the degree of
membership (Da Costa et al. 2010). Therefore, IFS can represent the imprecision of
data in a more comprehensive manner than fuzzy sets (Xu 2011). An IFS A in a
universe U, is defined as (Atanassov 1986):

A ¼ u; lAðuÞ; mAðuÞð Þju 2 Uf g A ¼ ðlA; mAð Þ for shortÞ ð10:1Þ

where the functions lA : U ! 0; 1½ � and mA : U ! 0; 1½ � define the grade of mem-
bership and the grade of non-membership of the each element of U to A, respec-
tively. The functions lA uð Þ and mA uð Þ should satisfy the condition:

0� lA uð Þþ mA uð Þ� 1 ð8u 2 UÞ ð10:2Þ

and

pA uð Þ ¼ ð1� mA uð Þ � lA uð ÞÞ ð10:3Þ

where pA uð Þ denotes the uncertainty of u (also called as the hesitancy of u). Clearly,
in the case of ordinary fuzzy sets, pA uð Þ ¼ 0 for 8u 2 U. For further detail, the
reader should refer to Atanassov (1986).

As mentioned above, due to its capability to deal with uncertainty, IFS has
recently been used in the FMEA literature. Chang et al. (2010) proposed a new
approach utilizing the IFS ranking technique for reprioritization of FMs and pre-
sented an illustrative example of a silane supply system in a TFT-LCD process.
According to Chang et al. (2010), their new approach reduces the occurrence of
duplicate RPNs and provides more accurate information, and real situations are
reflected in a more realistic and flexible manner. In another study, Chang and
Cheng (2010), integrated the IFS and DEMATEL approach on risk assessment
providing a more flexible structure for combining risk factors. They claim that, the
proposed approach provides a more reasonable ranking where FMs are better
distinguished. Finally, Liu et al. (2013c) developed a methodology using
Intuitionistic Fuzzy Hybrid Weighted Euclidean Distance (IFHWED) operator. In
this methodology, linguistic terms were used for the assessment of risk factors. In
order to aggregate multiple experts’ assessments into a group assessment, fuzzy
weighted averaging operator was used, and then, IFHWED operator was applied to
rank FMs, considering the weights of risk factors.
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Approaches Based on Ordinary Fuzzy Sets
One of the prominent area of application of fuzzy set theory is in modeling where
typically the available information contains various kinds of uncertainty due to
internal and external disturbances and limitation of human knowledge and under-
standing (Liu and Lin 2010). As experts from different expertise areas and skill
levels are included in FMEA process (Chin et al. 2009a, b), there usually exists an
imprecise information to be treated as an input of this process. Additionally,
complexity of the systems/products under investigation also increases the impre-
cision and uncertainty in FMEA. Therefore, as an effective tool providing a means
for representing the uncertainty, fuzzy set theory has been extensively employed in
FMEA literature. Bowles and Peláez (1995)’s study, in which the risk factors used
in FMEA (i.e., S, O, and D) were represented as members of a fuzzy set, was the
first study using the fuzzy sets theory for criticality analysis. In this study, linguistic
variables were used to assess the S, O, and D of FMs. Following the determination
of the degree of membership of each FM assessment to the corresponding fuzzy
sets, which were identified as a guide for ranking S, O, and D; these fuzzy inputs
were then evaluated using a linguistic rule base and fuzzy logic operations. Finally,
the results were defuzzified and all FMs were ranked according to their criticality
levels. Sharma et al. (2008b) established a framework based on fuzzy methodology
and grey relation analysis to evaluate and assess system failure behavior, and
presented a case from a process industry to demonstrate the applicability of the
proposed framework. They concluded that their framework provides an effective
way to combine expert knowledge and experience as well as to deal with uncer-
tainty and imprecision in a more realistic manner. In an another study, Liu et al.
(2012) used linguistic variables to assess the ratings and weights of the risk factors
S, O, and D, and proposed a new risk priority model that extends VIKOR method to
determine the risk priorities of FMs. They applied this model to the assessment of
risks in general anesthesia process and claimed that they address some of the
shortcomings of the traditional FMEA. Finally, in a very recent study, Lin et al.
(2014) proposed an assessment model for human reliability in the risk assessment
of medical devices, which applies the fuzzy linguistic theory to deal with the
subjective assessments of experts. They noted that their proposed model, differing
from the qualitative and quantitative methods used in human reliability analysis,
considers some critical aspects, such as, context related factors, organizational
factors, and errors in FMEA team members’ assessments. Consequently, fuzzy set
theory yields the following advantages over traditional FMEA: (i) qualitative, as
well as quantitative, data can be used in the assessment, (ii) risk factors of FMs can
be directly assessed using the linguistic terms, and (iii) S, O, and D can be com-
bined in a more flexible manner.

Approaches Based on 2-Tuple Fuzzy Linguistic Representation
As indicated above, several authors have applied the fuzzy linguistic approach to
FMEA problems with uncertain data. In these studies, the FMs are evaluated with
respect to S, O, and D using a linguistic domain treated as discrete. However,
operations (most notably multiplication) on fuzzy numbers produce results that
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usually do not exactly match any of the initial linguistic terms. To resolve this issue,
an approximation process is used to express the results in the discrete initial
expression domain that, however, leads to loss of information and hence lack of
precision in the final results (Herrera and Martínez 2000). To overcome this critical
shortcoming, Chang and Wen (2010) have suggested an FMEA model based on the
2-tuple fuzzy linguistic representation developed by Herrera and Martínez (2000).
This model represents the crisp or linguistic information with a pair of values, called
2-tuple, which is composed by a linguistic term and a numeric value assessed in
[−0.5, 0.5). In this way, any information obtained in an aggregation process can be
represented on its domain. In their case study, Chang and Wen (2010) showed that
their fuzzy linguistic representation model combined with the OWA operator
effectively solves the problem of measurement scales (i.e., information loss in
aggregation). In another study, Chang et al. (2012) have integrated 2-tuple fuzzy
linguistic representation and the Linguistic Ordered Weighted Geometric Averaging
(LOWGA) operator in process FMEA. This approach, as in Chang and Wen (2010),
provides reasonable rankings for cases including FMs having the same RPN.

Approaches Based on Fuzzy AHP
Some recent studies have suggested using fuzzy AHP to explicitly accommodate
the inherent uncertainty and complexity associated with risk assessment.
Fuzzy AHP involves several concepts and techniques, such as, hierarchical struc-
turing, pairwise comparison, prioritization principles for deriving weights, consis-
tency considerations, and priority synthesis (see Saaty 1988). The hierarchical
models developed in these studies typically consist of a goal (risk assessment),
criteria (risk factors) and alternatives (FMs). Hu et al. (2009), for example, sug-
gested a hierarchical risk assessment model to evaluate the risk of green compo-
nents. They used triangular fuzzy numbers to express the comparative judgments of
decision-makers. The resulting global priority values, i.e., the green component
RPNs, are used to identify high-risk components and provide insight to the
incoming quality control staff for improving the efficiency of inspection and miti-
gating risk. Kutlu and Ekmekçioğlu (2012) have also suggested applying fuzzy
AHP to determine the weight vector of the three risk factors (S, O, and D).
However, differently from the former study, they preferred Chen (2000)’s fuzzy
TOPSIS to prioritize the final risk scores of the FMs.

Approaches Based on Rough Set Theory
Rough set theory, proposed by Pawlak in the early 1980s, is a formal approximation
of the classical set theory that can handle imprecise and subjective judgments
without any assumption and additional information (e.g., membership functions). In
fact, predefined fuzzy membership functions or crisp rating scales in FMEA allow
only judgments in form of point or fixed interval values and, hence, do not fully
reflect the subjectivity and preference differences of experts. However, the rough set
approach to FMEA, proposed by Song et al. (2014), provides a more rational risk
evaluation framework where flexible intervals (i.e., rough intervals) are used to
represent the inter-personal uncertainty. Here, a larger rough interval indicates a
higher inconsistency among the experts. In this respect, the proposed rough FMEA
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not only provides an improved representation of the subjectivity and uncertainty in
the evaluations, but also maintains the objectivity of original information (Zhai
et al. 2007).

Approaches Based on Fuzzy Weighted Geometric Mean
As discussed in previous sections, traditional FMEA has limitations in terms of
acquiring precise assessment information on the three components of FMs. In
response to this limitation, it has been suggested in the literature to evaluate these
risk factors by using linguistic scales and to use fuzzy FMEA, which utilizes a
fuzzy rule-based reasoning approach to obtain RPN ratings. However, building up a
complete and accurate rule base is a tedious and time-consuming task, particularly
for the complex systems/products. Additionally, relative importance weights of the
risk factors are not taken into consideration in traditional FMEA. Therefore, to
overcome these limitations, Wang et al. (2009) suggested using Fuzzy Weighted
Geometric Mean (FWGM) method for the calculation of FRPNs to prioritize FMs.
In their study, Wang et al. (2009), firstly, evaluated the risk factors and their
importance weights in a linguistic manner; then computed FRPNs applying an
alpha cut based linear programming approach; and finally, defuzzified FRPNs using
centroid defuzzification method for the final ranking of FMs. According to the
authors, besides the above-mentioned advantages, the proposed methodology has
the potential to fully prioritize FMs and hence to distinguish each FM from one
another, and is not limited to the risk factors, S, O, and D.

Approaches Based on Fuzzy Weighted Least Square
As mentioned before, generally, people from different expertise areas are included
in FMEA process. Therefore, members of these cross-functional FMEA teams,
usually view the system/product under investigation from various perspectives,
responsibilities and concerns, as they have different levels of knowledge, skills,
experiences and personalities (Liu et al. 2013c). For that reason, FMEA team
members may use different linguistic term sets when evaluating and weighting the
relevant risk factors (Herrera et al. 2000); in other words, they may give their
judgments in different forms. In order to ensure that the aggregated assessment of
the FMEA team reflects all members’ viewpoints and priorities, Zhang and Chu
(2011) claimed that, Fuzzy Weighted Least Squares Model (FWLSM) can be used.
By using FWLSM, the total deviation degree between each individual assessment
information and the aggregated assessment information can be easily determined.
As being the only study in this category, Zhang and Chu (2011) proposed a new
approach, integrating FWLSM, the method of imprecision (MOI) and the method of
partial ranking for evaluating and ranking the FMs. In this approach, firstly, a
FMEA team evaluates each FM by using linguistic term sets with different cardi-
nalities (i.e., multi-granularity linguistic term sets). Then the individual assessments
are aggregated by means of FWLSM. Following the aggregation step, nonlinear
programming method incorporated with the MOI is used for calculating the fuzzy
RPNs in order to address the compensation levels among risk factors. Finally, by
using the Hamming distance between each two fuzzy RPNs, the partial ranking
method that is based on fuzzy preference relations is applied to rank FMs. For
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illustrative purposes, Zhang and Chu (2011) have applied their approach to the case
of a new product development application, and have concluded that their approach
provides more precisely expressed individual assessments, more accurate fuzzy
RPNs, and thus, more robust results.

Approaches Based on Possibility Theory
Fuzzy numerical technique for FMEA, as well as traditional FMEA technique and
fuzzy rule-based technique, have some limitations. When defuzzified crisp risk
values are used to obtain final ranking of FMs, as in fuzzy numerical technique, the
entropy present in fuzzy sets is ignored (Mandal and Maiti 2014). Therefore, like
other techniques, fuzzy numerical technique also suffers from the limitation of
providing arbitrary final ranking of FMs. In response to this limitation, Mandal and
Maiti (2014) developed a robust methodology that integrates the ‘similarity value
measure’ of fuzzy numbers and ‘possibility and necessity measures’ of possibility
theory. Similar to the fuzzy set theory, possibility theory is also an uncertainty theory
devoted to the handling of incomplete, imprecise, and uncertain information. As it
uses the possibility and necessity measures, it has the capability to capture partial
ignorance (Dubois and Prade 2011). In their recent study, Mandal and Maiti (2014)
firstly, used similarity measure approach to obtain FRPNs, and subsequently, rele-
vant priority values are clustered by means of comparison with a standard linguistic
scale. After partially ordering FRPNs, they used possibility theory for making
comparison with conformance guidelines. To this end, after calculating the possi-
bility and necessity measures, they combined these two dual measures to obtain
‘credibility measure’, and consequently, used this measure to compare FRPNs with
compliance guidelines. Here, as the credibility measure gets closer to one, the
possibility of the relevant risk being lower than or equal to the conformance
guideline increases; on the other hand, as it gets closer to zero, then the possibility of
the relevant risk being lower than or equal to the conformance guideline decreases.

From the review above, it can be concluded that although all approaches deal
with uncertainty and subjectivity associated with risk assessment, each one
addresses only a particular set of shortcomings of the conventional FMEA. In the
following section, the most frequently studied and promising approaches are
illustrated by a simple example.

10.3 Illustrative Example for Selected Approaches

In the previous section, many of the new approaches mentioned in the literature are
reviewed, but here only six well-known ones (based on ordinary fuzzy sets, grey
relational analysis, evidential reasoning, intuitionistic fuzzy sets, 2-tuple fuzzy
linguistic representation, and rough set theory) will be discussed in detail. The main
concern will not be the identification of risk factors, but their assessment and
aggregation. First, a summary of their theoretical underpinnings will be presented.
Then, to illustrate their basic steps and ability to deal with uncertainty, a simple
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example will be worked out for all six approaches. The example, adapted from
Kutlu and Ekmekçioğlu (2012), involves the prioritization of risks in an assembly
process at a manufacturing facility operating in the automotive industry. The
potential failure modes (FMs) in the assembly process, identified by a group of
experts, are: non-conforming material (FM1), wrong die (FM2), wrong program
(FM3), excessive cycle time (FM4), wrong process (FM5), damaged goods (FM6),
wrong part (FM7), and incorrect forms (FM8). For the rating of these FMs, with
respect to three risk factors, experts use the linguistic terms given in Table 10.5,
where each term corresponds to a triangular fuzzy number. If otherwise not stated,
the relative importance of the risk factors S, O, and D are assessed by pairwise
comparisons using the linguistic scale provided in Table 10.6. Note that, for the
approaches using crisp ratings in the assessment of FMs or risk factors, only the
midvalues of the triangular fuzzy numbers will be considered in the analyses.

The assessments of the FMs and risk factors using linguistic terms and numerical
values were obtained from three experts as presented in Tables 10.7, 10.8, 10.9 and
10.10, respectively. For example, as shown in Table 10.7, the assessments of the
three experts of FM1 with respect to severity are “Medium”, “Medium”, and
“Medium Low”. These linguistic terms can be converted into the following crisp
values 5, 5, and 3 as shown in Table 10.9. In another example, it can be seen from
Table 10.8 that the comparison of the risk factors severity and occurrence is in
favour of the former, as “Strongly Important”, “Strongly Important”, and “Very
Important” (3/2, 3/2, and 2 in crisp values as given in Table 10.10).

Table 10.5 Linguistic scales used for rating FMs

Linguistic scale Fuzzy scale

Severity Occurrence Detection

Very low (VL) Very low (VL) Very high (VH) (0, 0, 1)

Low (L) Low (L) High (H) (0, 1, 3)

Medium low (ML) Medium low (ML) Medium high (MH) (1, 3, 5)

Medium (M) Medium (M) Medium (M) (3, 5, 7)

Medium high (MH) Medium high (MH) Medium low (ML) (5, 7, 9)

High (H) High (H) Low (L) (7, 9, 10)

Very high (VH) Very high (VH) Very low (VL) (9, 10, 10)

Table 10.6 Linguistic scale used for pairwise comparisons

Linguistic scale Fuzzy scale Fuzzy reciprocal scale

Equally important (EI) (1, 1, 1) (1, 1, 1)

Weakly important (WI) (1, 1, 3/2) (2/3, 1, 1)

Strongly important (SI) (1, 3/2, 2) (1/2, 2/3, 1)

Very important (VI) (3/2, 2, 5/2) (2/5, 1/2, 2/3)

Absolutely important (AI) (2, 5/2, 3) (1/3, 2/5, 1/2)
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Table 10.7 Linguistic scores of FMs with respect to each risk factor

Failure mode S O D

E1 E2 E3 E1 E2 E3 E1 E2 E3

FM1 M M ML M MH MH L ML L

FM2 L ML ML VH H VH MH MH H

FM3 ML L ML VH H H VH MH H

FM4 ML M ML M MH MH L ML L

FM5 M M ML MH MH H L VL L

FM6 MH MH M MH H MH MH MH M

FM7 L ML VL VH VH VH VH MH H

FM8 VL VL L VL VL VL VH VH VH

Table 10.8 Pairwise comparisons of risk factors using the linguistic scale (R: Reciprocal)

S O D

E1 E2 E3 E1 E2 E3 E1 E2 E3

Severity EI EI EI SI SI VI WI WI WI

Occurrence R R R EI EI EI WI R EI

Detection R R R R SI R EI EI EI

Table 10.9 Crisp scores of
FMs with respect to each risk
factor

Failure mode S O D

E1 E2 E3 E1 E2 E3 E1 E2 E3

FM1 5 5 3 5 7 7 9 7 9

FM2 1 3 3 10 9 10 3 3 1

FM3 3 1 3 10 9 9 0 3 1

FM4 3 5 3 5 7 7 9 7 9

FM5 5 5 3 7 7 9 9 10 9

FM6 7 7 5 7 9 7 3 3 5

FM7 1 3 0 10 10 10 0 3 1

FM8 0 0 1 0 0 0 0 0 0

Table 10.10 Pairwise
comparisons of risk factors
using crisp values

S O D

E1 E2 E3 E1 E2 E3 E1 E2 E3

Severity 1 1 1 3/2 3/2 2 1 1 1

Occurrence 2/3 2/3 1/2 1 1 1 1 2/3 1

Detection 1 1 1 1 3/2 1 1 1 1
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10.3.1 FMEA Using Fuzzy Evidential Reasoning

The illustrated fuzzy evidential reasoning based approach, suggested by Liu et al.
(2011), offers a unique way for aggregating expert judgments and prioritizing FMs
in FMEA. One of the main advantages of this approach is its ability to coherently
model both accurate data and subjective judgments with various types of uncer-
tainties (such as, incomplete and fuzzy information as well as complete ignorance)
in a unified framework. A further strength of the approach is its ability to reflect the
diversity in expert judgments. All these benefits are achieved by incorporating
the experts’ level of confidence in their assessments (i.e., belief degrees) into the
analysis. Here, a subjective assessment is characterized by a belief structure that
describes the intensity of the belief for each possible assessment value. The
aggregation of such structures allows one to merge multiple sources of evidence
(numerical or linguistic) for the same risk factor or FM (Yang et al. 2006).
Unquestionably, the belief structures provide experts with an easy-to-use and
flexible way to express their opinions and can better quantify risk factors than the
traditional FMEA methods (Liu et al. 2011).

Below, it will be illustrated how the belief structures of each FM provided by
each expert can be aggregated into a group belief structure and how the group belief
structures of each FM with respect to the three risk factors can be synthesized into
an overall belief structure.

Stage 1: Assessment of FMs Using Belief Structures
FMs are assessed using the linguistic terms provided in Table 10.5. For example,
the set of evaluation grades for Severity are represented as HFS ¼ Very Low;f
Low;Medium Low;Medium;Medium High;High;Very Highg For the sake of
simplicity without losing generality, all seven individual assessment grades are
approximated by triangular fuzzy numbers of which only two adjacent ones

intersect. Then, let Hij; b
k
ijðFMn;RFlÞ

� �
; i ¼ 1; . . .; 7; j ¼ 1; . . .; 7

n o
be the belief

structure provided by expert Ek on the assessment of failure mode FMn with respect
to risk factor RFl, where Hii for i ¼ 1� 7 are the fuzzy assessment grades, Hij for
i ¼ 1� 6 and j ¼ iþ 1 to 7 are the interval fuzzy assessment grades between Hii

and Hjj, and bkijðFMn;RFlÞ are the belief degrees for the intervals Hij(Liu et al.
2011). The interval fuzzy assessment grades, Hij, define trapezoidal fuzzy sets that
include the fuzzy assessment grades Hii;Hðiþ 1Þðiþ 1Þ; . . .;Hjj as shown in Fig. 10.3.

For Severity, the grades Hii for i ¼ 1� 7 and the intervals Hij for i ¼ 1� 6 and
j ¼ iþ 1 to7 all together can be expressed as ĤFS ¼ Hij; i ¼ 1; . . .; 7; j ¼ 1; ::; 7

� �
or equivalently as
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ĤFS ¼

H11 H12 H13 H14 H15 H16 H17

H22 H23 H24 H25 H26 H27

H33 H34 H35 H36 H37

H44 H45 H46 H47

H55 H56 H57

H66 H67

H77

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
This type of formulation allows experts to provide their subjective judgments in

four possible ways (Liu et al. 2011):

• Certain. For example, “Medium” as a certain grade can be written as
H33; 1:0ð Þf g.

• Distribution. For example, a FM that is assessed as “High” with a confidence
level of 0.3 and as “Very High” with a confidence level of 0.7, can be expressed
as H66; 0:3ð Þ; H77; 0:7ð Þf g. This is a complete distribution. When all confidence
levels do not sum to one, the distribution is known to be incomplete. The
missing information in such cases is called local ignorance and it can be
assigned any grade between “Very Low” and “Very High”.

• Interval. For example, a FM that is assessed between “Medium” and “High”,
can be expressed as H46; 1:0ð Þf g.

• Total Ignorance. The FM can be assigned any grade between “Very Low” and
“Very High” and will be expressed as H17; 1:0ð Þf g. In such cases the expert is
whether unable or unwilling to provide an assessment.

Notice that FMs assessed to high values or intervals with high confidence levels
are more risky than those assessed to low values or intervals with high confidence
levels (Chin et al. 2009b). Table 10.11 presents the assessment information (in form
of belief structures) on the eight FMs provided by three experts. The incomplete
assessments and ignorance information are shaded and highlighted, respectively.
For example, according to expert E1, the Severity of ‘using non-conforming

Fig. 10.3 Interval fuzzy grade Hij (shown in dashed line)
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material (FM1)’ is “Medium” with high confidence level (90 %). This assessment is
incomplete with 10 % missing information.

Stage 2: Synthesis of Individual Belief Structures into Group Belief Structures
In this stage, the belief structures provided by the experts for each FM are syn-
thesized into a group belief structure. Suppose that K experts, each given a weight
kk [ 0 (k = 1, …, K) satisfying the condition

PK
k¼1 kk ¼ 1 to reflect his/her relative

importance, assess N failure modes with respect to L risk factors. Then, the
aggregate assessment value, i.e., the fuzzy group belief structure, for each FM with
respect to each risk factor is derived as follows (Liu et al. 2011, Chin et al. 2009b)

~Xn lð Þ ¼ Hij; bijðFMn;RFlÞ
� �

; i ¼ 1; . . .; 7; j ¼ 1; . . .; 7
� �

; n ¼ 1; . . .;N; l ¼ 1; . . .; L

ð10:4Þ

where the group belief degree, bijðFMn;RFlÞ, is calculated as

bij FMn;RFlð Þ ¼
Xk

k¼1
kkb

k
ij FMn;RFlð Þ; i ¼ 1; . . .; 7; j ¼ 1; . . .; 7;

n ¼ 1; ::;N; l ¼ 1; . . .; L
ð10:5Þ

The relative importance of each expert should reflect the expert’s experience and
domain knowledge (Chin et al. 2009b). In the current example, the weights are
supposed to be k1 ¼ 0:2, k2 ¼ 0:5, k3 ¼ 0:3 and Table 10.12 presents the resulting
group assessment values calculated using these weights. For example, given the
individual belief structures ðH44; 0:90Þf g, ðH44; 1:00Þf g, ðH33; 1:00Þf g of three
experts for FM1 with respect to the risk factor Severity (see Table 10.11), the
corresponding group belief structure is obtained as H33; 0:30ð Þ; H44; 0:68ð Þ;f
H17; 0:02ð Þg where

Table 10.11 Assessment information on eight FMs by three experts

Risk factors Experts Failure modes

FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8

Severity E1 (H44, 0.9) H22 H33 H33 H44 H55 H22 H11

E2 H44 H33 H22 H44 H44 H55 H33 H11

E3 H33 H33 H33 H33 H33 H44 H11 H22

Occurrence E1 H44 H77 H77 H44 H55 H55 H77 H11

E2 H55 H66 H66 H55 H55 H66 H77 H11

E3 H55 H77 H66 H55 H66 H55 H77 H11

Detection E1 H66 H33 H11 H66 H66 H33 H11 ?*

E2 H55 H33 H33 H55 H77 H33 H33 H11

E3 H66 (H22, 0.8) H22 H66 H66 H44 H22 H11

*:? Refers to total ignorance
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b33 FM1;RF1ð Þ ¼
X3

k¼1
kkb

k
33 FM1;RF1ð Þ ¼ 0:20 � 0þ 0:50 � 0þ 0:30 � 1:00

¼ 0:30

b44 FM1;RF1ð Þ ¼
X3

k¼1
kkb

k
44 FM1;RF1ð Þ ¼ 0:20 � 0:90þ 0:50 � 1:00þ 0:30 � 0

¼ 0:68

For the missing information in b44 FM1;RF1ð Þ any grade between “Very Low”
and “Very High” can be assigned, thus

b17 FM1;RF1ð Þ ¼
X3

k¼1
kkb

k
17 FM1;RF1ð Þ ¼ 0:20 � 0:10þ 0:50 � 0þ 0:30 � 0

¼ 0:02

Stage 3: Defuzzification
Before a group belief structure is aggregated into an overall belief structure, a
defuzzification process is applied to convert fuzzy numbers into appropriate crisp
values. Various defuzzification methods have been developed in the literature,
including various forms of the centroid method, first (or last) of maxima, mean max
membership, total integral value method, among others (see Ross 2009; Ramli and
Mohamad 2009). Liu et al. (2011) suggests using the defuzzification method
developed by Chen and Klein (1997) which is quite simple to carry out. The
formula is as follows

hij ¼
Pn

i¼0ðbi � cÞPn
i¼0 bi � cð Þ �Pn

i¼0ðai � dÞ ; i ¼ 1; . . .; 7; j ¼ 1; . . .; 7 ð10:6Þ

where the values c and d denote the lower and upper limits of the linguistic scale,
the values a0 and b0 (for a triangular membership function) represent the extreme
limits of each linguistic term where the membership function is 0, and a1 and b1 are
the values where the membership function is 1 (Pillay and Wang 2003). Here, hij is
the defuzzified crisp value of Hij. Accordingly, the crisp group belief structure can
be represented as follows:

Xn lð Þ ¼ hij; bijðFMn;RFlÞ
� �

; i ¼ 1; . . .; 7; j ¼ 1; . . .; 7
� �

; n ¼ 1; . . .;N; l ¼ 1; . . .; L

ð10:7Þ

For example, the linguistic term “Very Low–Very High”, i.e., H17, can be
defuzzified as shown below (see Fig. 10.4):

h17 ¼ b0 � c½ � þ b1 � c½ �
b0 � c½ � þ b1 � c½ �f g � a0 � d½ � þ a1 � d½ �f g ð10:8Þ
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h17 ¼ 10� 0½ � þ 10� 0½ �
10� 0½ � þ 10� 0½ �f g � 0� 10½ � þ 0� 10½ �f g ¼ 0:5

After calculating h33 and h44 in a similar way, the crisp group belief structure of
FM1 with respect to Severity can be stated as follows

X1 1ð Þ ¼ 0:33; 0:30ð Þ; 0:5; 0:68ð Þ; ð0:5; 0:02Þf g

Table 10.13 presents all FMs’ crisp group belief structures.

Stage 4: Aggregation of Defuzzified Group Belief Structures into Overall Belief
Structure
Once the group belief structures of the FMs are defuzzified, they are aggregated into
overall belief structures by using the following equation:

�Xn lð Þ ¼
X7

i¼1

X7

j¼1
hijbij FMn;RFlð Þ; n ¼ 1; . . .;N; l ¼ 1; . . .; L ð10:9Þ

As an example, the overall belief structure of FM1 with respect to the risk factor
Severity is obtained as given below:

�X1 1ð Þ ¼
X7

i¼1

X7

j¼1
hijbij FM1;RF1ð Þ ¼ 0:333 � 0:30þ 0:5 � 0:68þ 0:5 � 0:02

¼ 0:450

Note that, in the example above, values with zero belief degrees are omitted. The
results for all FMs are presented in Table 10.14.

Stage 5: Introduction of Group Weights
In this stage, the relative importance of the risk factors, which will later be used to
calculate the final priorities of the FMs, are determined. Instead of presenting the
direct estimation method suggested by Liu et al. (2011), an alternative approach is
introduced here. According to this method, the weight information can be elicited

Fig. 10.4 Defuzzification of the linguistic term “Very Low–Very High”
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by means of pairwise comparisons using the linguistic scale introduced in
Table 10.6. The typical question asked for the comparison of risk factors with
respect to the overall prioritization goal is formulated as follows: “In assessing the
risk level of failure modes, which of the two risk factors is more critical; and how
much more?” (Asan et al. 2016). Table 10.8 presents the comparisons obtained
from three experts. For example, when comparing the risk factors Severity and
Occurrence, the responses of the three experts are “Strongly Important (SI)”,
“Strongly Important (SI)”, and “Very Important (VI)”, respectively. The assess-
ments are then aggregated into group values. The group value of the comparison of
the risk factors RFl and RFm for K experts is derived as:

~vlm ¼
XK

k¼1
kk~v

k
lm ¼ ð

XK

k¼1
kk~v

k
lma;
XK

k¼1
kk~v

k
lmb;
XK

k¼1
kk~v

k
lmcÞ; l ¼ 1; . . .; L;

m ¼ 1; . . .;M

ð10:10Þ

where ~vklm ¼ ~vklma;~v
k
lmb;~v

k
lmc

� �
denotes the fuzzy pairwise comparison of the risk

factors RFl and RFm stated by expert k. For instance, the group value for the
comparison pair Severity and Occurrence is calculated as follows:

~v12 ¼ 0:2 � 1þ 0:5 � 1þ 0:3 � 1:5; 0:2 � 1:5þ 0:5 � 1:5þ 0:3 � 2; 0:2 � 2þ 0:5 � 2þ 0:3 � 2:5ð Þ ¼ ð1:15; 1:65; 2:15Þ

Before the weights can be derived from these group pairwise comparisons,
shown in Table 10.15, the group comparison values need to be defuzzified. Using
Eq. (10.6) (c = 1/3, d = 3), as explained above, the fuzzy comparison values are
converted into crisp values (vlm), see Table 10.16. Next, the additive normalization
method is used to approximate the weights (wl). It applies the following three-step

Table 10.14 Aggregated
values for the eight FMs

Failure mode Severity Occurrence Detection

FM1 0.450 0.633 0.746

FM2 0.301 0.889 0.305

FM3 0.254 0.851 0.228

FM4 0.417 0.633 0.746

FM5 0.450 0.714 0.889

FM6 0.617 0.746 0.383

FM7 0.216 0.952 0.228

FM8 0.086 0.048 0.138

Table 10.15 Fuzzy group
comparisons of the risk
factors

Severity Occurrence Detection

Severity (1, 1, 1) (1.15, 1.65,
2.15)

(1, 1, 1.5)

Occurrence Reciprocal (1, 1, 1) (0.75, 0.83,
1.1)

Detection Reciprocal Reciprocal (1, 1, 1)
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procedure (Saaty 1988, Asan et al. 2012): (1) the sum of the values in each column
of the pairwise comparison matrix is calculated; (2) then, each column element is
divided by the sum of its respective column; (3) finally, arithmetic mean of each
row of the normalized comparison matrix is calculated. These final numbers pro-
vide an estimate of the weights for the risk factors being compared.

Table 10.17 provides the normalized pairwise comparison matrix and the
resulting weights.

Stage 6: Ranking
In this final stage, the overall belief structures are synthesized over the three risk
factors. Instead of presenting the weighted average method suggested by Liu et al.
(2011), an alternative approach is introduced here where a process of weighting and
multiplying is used as follows:

pn ¼
YL

l¼1
�Xwl
n ðlÞ; n ¼ 1; . . .;N ð10:11Þ

The resulting uni-dimensional values, pn, represent the final priorities of the FMs
that are used to produce a ranking. For example, the priority value of FM1 is
calculated as follows:

p1 ¼
Y3
l¼1

�Xwl
1 ðlÞ ¼ 0:4500:180 � 0:6330:234 � 0:7460:586 ¼ 0:656

The results are shown in the last column of Table 10.18. The priority ranking of
the eight failure modes is estimated as follows: FM5, FM1, FM4, FM6, FM2, FM3,
FM7, and FM8.

10.3.2 FMEA Based on Ordinary Fuzzy Sets

Fuzzy set theory, as one of the most applied approaches to FMEA, comprises the
following six main steps:

Table 10.16 Defuzzified
group comparisons of the risk
factors

Severity Occurrence Detection

Severity 0.250 0.495 0.314

Occurrence 2.021 0.250 0.223

Detection 3.182 4.488 0.250

Table 10.17 The normalized
comparison matrix and
estimated weights

Severity Occurrence Detection Weights

Severity 0.046 0.095 0.399 0.180

Occurrence 0.371 0.048 0.283 0.234

Detection 0.583 0.858 0.318 0.586
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Step 1: Listing FMs
The first step in applying fuzzy set theory to FMEA, as in all other approaches, is to
list all possible FMs. The FMs, determined by a group of experts for further
evaluation in the relevant assembly process, are given in the first part of this section.

Step 2: Determination of the Linguistic Scales
In the second step, firstly, the appropriate linguistic scales for the risk factors (S, O,
and D), which will be used in the assessment of FMs, are selected. Both, the
selected linguistic scales, expressed in positive triangular fuzzy numbers, and the
membership function of the linguistic variables are given in Table 10.5 and
Fig. 10.5, respectively. Note that, membership function values can be determined
according to the historical data and judgment of domain experts (Liu et al. 2011).
Secondarily, to obtain the importance weights of the risk factors, a linguistic scale
for pairwise comparisons is provided in Table 10.6. However, it should be
underlined here that, rather than selecting a linguistic scale for pairwise compar-
isons, a different linguistic scale for directly assessing the relative importance
weights of the risk factors could be used. Here, in this study, the former one is
preferred.

Step 3: Assessment of the Risk Factor Weights and FMs
Using the linguistic scale determined for pairwise comparisons in the prior step,
experts are asked to pairwise compare the relative importance of the risk factors.
Subsequently, they are also asked to assess the ratings of each FM. Risk assessment
results for the FMs and pairwise comparison results for the risk factor weights are
given in Tables 10.7 and 10.8, respectively.

Step 4: Aggregation of Individual Assessments
If it is supposed that there are K experts (E1, …, EK) in a FMEA team who are
responsible for the assessment of N failure modes (FM1, …, FMN) with respect to
L risk factors (RF1, …, RFL), and ~rknl ¼ rknla; r

k
nlb; r

k
nld

� �
denotes the risk assessment

rating of the failure mode FMn given by the expert Ek with respect to the risk factor
RFl under consideration; the risk assessment rating of each FM with respect to all
risk factors is aggregated into a group risk assessment rating as follows:

Table 10.18 Final priorities and their rank order

Failure mode Severity Occurrence Detection Priority Rank

FM1 0.450 0.633 0.746 0.656 2

FM2 0.301 0.889 0.305 0.391 5

FM3 0.254 0.851 0.228 0.317 6

FM4 0.417 0.633 0.746 0.647 3

FM5 0.450 0.714 0.889 0.747 1

FM6 0.617 0.746 0.383 0.488 4

FM7 0.216 0.952 0.228 0.316 7

FM8 0.086 0.048 0.138 0.099 8

Weight 0.180 0.234 0.586
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~rnl ¼
XK

k¼1
kk~r

k
nl ¼

XK

k¼1
kk~r

k
nla;

XK

k¼1
kk~r

k
nlb;

XK

k¼1
kk~r

k
nld

� �
ð10:12Þ

where kk [ 0 (k = 1,…, K) reflects the relative importance weight of each expert Ek

and satisfies the condition
PK

k¼1 kk ¼ 1(Chin et al. 2009b, Liu et al. 2011). Here, kk
should be determined according to the experts’ level of domain knowledge, skills,
and experience. In the current example, as indicated in Sect. 3.1, the expert weights
are supposed to be k1 ¼ 0:2, k2 ¼ 0:5, and k3 ¼ 0:3. Based on these weights, group
risk assessment ratings of FMs are calculated and presented in Table 10.19. In order
to demonstrate the aggregation step, an example calculation for FM1 is shown
below. As it can be seen from Table 10.7, risk assessment rating of FM1, given by
the experts E1, E2 and E3 with respect to the Severity risk factor, are ‘Medium (M)’,
‘Medium (M)’ and ‘Medium Low (ML)’, respectively. Based on Table 10.5, it can
be found that the corresponding fuzzy number of the linguistic term (M) is (3, 5, 7)
and (ML) is (1, 3, 5). Then, the aggregated risk assessment rating of FM1 with
respect to the Severity risk factor ~r11ð Þ is calculated as follows:

Fig. 10.5 Membership functions for rating the FMs

Table 10.19 Fuzzy group risk assessment ratings of FMs

Failure mode S O D

FM1 (2.4, 4.4, 6.4) (4.6, 6.6, 8.6) (6.0, 8.0, 9.5)

FM2 (0.8, 2.6, 4.6) (8.0, 9.5, 10.0) (0.7, 2.4, 4.4)

FM3 (0.5, 2.0, 4.0) (7.4, 9.2, 10.0) (0.5, 1.8, 3.6)

FM4 (2.0, 4.0, 6.0) (4.6, 6.6, 8.6) (6.0, 8.0, 9.5)

FM5 (2.4, 4.4, 6.4) (5.6, 7.6, 9.3) (8.0, 9.5, 10.0)

FM6 (4.4, 6.4, 8.4) (6.0, 8.0, 9.5) (1.6, 3.6, 5.6)

FM7 (0.5, 1.7, 3.4) (9.0, 10.0, 10.0) (0.5, 1.8, 3.6)

FM8 (0.0, 0.3, 1.6) (0.0, 0.0, 1.0) (0.0, 0.0, 1.0)
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~r11 ¼
X3

k¼1
kk~r

k
11 ¼

X3

k¼1
kkr

k
11a;

X3

k¼1
kkr

k
11b;

X3

k¼1
kkr

k
11d

� �
ð10:13Þ

~r11 ¼ 0:20 � 3þ 0:50 � 3þ 0:30 � 1ð Þ; 0:20 � 5þ 0:50 � 5þ 0:30 � 3ð Þ; ð0:20 � 7þ 0:50 � 7þ 0:30 � 5Þð Þ

~r11 ¼ ð2:4; 4:4; 6:4Þ

Similarly, the relative importance weights of the risk factors are also aggregated
as discussed above (for details, refer to the fifth step of Sect. 10.3.1).

Step 5: Defuzzification
Following the aggregation of individual assessments into a group assessment, the
next step is the defuzzification of fuzzy risk assessment ratings into crisp values for
ranking FMs according to their criticality levels. As indicated in the third step of
Sect. 10.3.1, various methods of defuzzification are available in the literature. In
this example, the method developed by Chen and Klein (1997), which can be
expressed by the following equation, is selected due to its simplicity.

rnlðxÞ ¼
Pn

i¼0ðbi � cÞPn
i¼0 bi � cð Þ �Pn

i¼0ðai � dÞ ð10:14Þ

where rnlðxÞ is the defuzzified (crisp) risk assessment rating of the failure mode
FMn with respect to the risk factor RFl. Using this method, crisp risk assessment
ratings of each FM are calculated and presented in Table 10.20. As an example,
consider the defuzzification of the risk assessment rating of FM1 with respect to the
Severity risk factor as shown in Fig. 10.6. To obtain a crisp risk assessment rating,
the relevant fuzzy risk assessment rating can be defuzzified as follows:

r11ðxÞ ¼ b0 � c½ � þ b1 � c½ �
b0 � c½ � þ b1 � c½ �f g � a0 � d½ � þ a1 � d½ �f g ð10:15Þ

r11ðxÞ ¼ 6:4� 0½ � þ 4:4� 0½ �
6:4� 0½ � þ 4:4� 0½ �f g � 2:4� 10½ � þ 4:4� 10½ �f g ¼ 0:450

Table 10.20 Crisp group risk
assessment ratings of FMs

Failure mode S O D

FM1 0.450 0.633 0.745

FM2 0.303 0.886 0.287

FM3 0.255 0.850 0.234

FM4 0.417 0.633 0.745

FM5 0.450 0.713 0.886

FM6 0.617 0.745 0.383

FM7 0.223 0.952 0.234

FM8 0.088 0.048 0.048
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Following the defuzzification of group risk assessment rating of each FM, using
the Eq. 10.14 as shown above, group pairwise comparisons of the relative impor-
tance of risk factors are defuzzified in a similar way. Then the additive normal-
ization method is used to approximate the relative importance weights of risk
factors (for details, refer to the fifth step of Sect. 10.3.1). The normalized pairwise
comparison matrix, together with the resulting importance weights are given in
Table 10.17.

Step 6: Ranking
In the final step, FMs are ordered according to their criticality levels. To this end,
the RPN value of each FM is calculated by multiplying the crisp group risk
assessment ratings of each FM (with respect to S, O, and D) with the relative
importance weights of the risk factors as given in Eq. 10.16.

pn ¼
XL

l¼1
wl � rnlðxÞ; n ¼ 1; . . .;N ð10:16Þ

where pn represents the RPN of a FM. As an example, RPN of FM1 is calculated as
follows:

p1 ¼
X3
l¼1

wl � r1lðxÞ ¼ 0:450 � 0:180þ 0:633 � 0:234þ 0:745 � 0:586ð Þ ¼ 0:666

The final results are shown in the last column of Table 10.21. The priority
rankings of eight failure modes are estimated as follows: FM5, FM1, FM4, FM6,
FM2, FM7, FM3, FM8.

Fig. 10.6 Defuzzification
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10.3.3 FMEA Based on Grey Relational Analysis (GRA)

GRA is one of the most commonly used analytical methods used in FMEA literature,
in terms of dealing with incomplete information and handling complicated inter-
actions between multiple factors and variables. It combines the assessment ratings of
all risk factors being considered into one single value, and thus, makes the com-
parison and ranking of FMs according to their criticality levels easier. Being firstly
applied by Chang et al. in 1999, to FMEA with the aim of obtaining RPNs and
prioritizing FMs, generally, GRA is composed of five major steps as detailed below,
following the initial steps of (i) identification of all possible FMs (ii) determination
of the scales, and (iii) assessment of the risk factor weights and FMs.

Step 1: Establishment of Comparative (Information) Series
As the first step of GRA, all assessment values for every FM are processed into a

comparative series. In this context, if the measurement scales are different for each
risk factor, then the risk assessment ratings should be normalized, in order to avoid
any undervaluation of some factor’s influence.

If it is supposed that there are N FMs (FM1, …, FMN) and L risk factors (RF1,
…, RFL), the original vector of risk assessment ratings of FMn can be expressed as
Yn ¼ ðynð1Þ; ynð2Þ; . . .; ynðLÞÞ where ynðlÞ is the assessment rating of FMn with
respect to the risk factor RFl. Then, Yn should be translated into the comparative
series Xn ¼ ðxnð1Þ; xnð2Þ; . . .; xnðLÞÞ, by using one of the three equations given
below.

xnðlÞ ¼ ynðlÞ �Min ynðlÞ; n ¼ 1; 2; . . .;Nf g
Max ynðlÞ; n ¼ 1; 2; . . .;Nf g �Min ynðlÞ; n ¼ 1; 2; . . .;Nf g
for n ¼ 1; 2; . . .;N; l ¼ 1; 2; . . .;L

ð10:17aÞ

xnðlÞ ¼ Max ynðlÞ; n ¼ 1; 2; . . .;Nf g � ynðlÞ
Max ynðlÞ; n ¼ 1; 2; . . .;Nf g �Min ynðlÞ; n ¼ 1; 2; . . .;Nf g
for n ¼ 1; 2; . . .;N; l ¼ 1; 2; . . .; L

ð10:17bÞ

Table 10.21 Final RPNs of
FMs and their rank orders

Failure
mode

S O D Priority Rank

FM1 0.450 0.633 0.745 0.666 2

FM2 0.303 0.886 0.287 0.430 5

FM3 0.255 0.850 0.234 0.382 7

FM4 0.417 0.633 0.745 0.660 3

FM5 0.450 0.713 0.886 0.767 1

FM6 0.617 0.745 0.383 0.510 4

FM7 0.223 0.952 0.234 0.400 6

FM8 0.088 0.048 0.048 0.055 8

Weight 0.180 0.234 0.586
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xnðlÞ ¼1� ynðlÞ � y�ðlÞ

 


Max ynðlÞ; n ¼ 1; 2; . . .;Nf g �Min ynðlÞ; n ¼ 1; 2; . . .;Nf g

for n ¼ 1; 2; . . .;N; l ¼ 1; 2; . . .; L

ð10:17cÞ

where Eq. 10.17a is used for the-larger-the-better factors, Eq. 10.17b is used for
the-smaller-the-better factors and finally, the Eq. 10.17c is used for the-closer-
to-the-desired-value-y�ðlÞ-the better factors. This translation process (translation of
Yn to Xn) is called grey relational generating in GRA (Geum et al. 2011). As all risk
factors considered in FMEA are comparable to each other, the comparative series
X can be defined as the following matrix:

X ¼
x1
x2
..
.

xN

26664
37775 ¼

x1ð1Þ x1ð2Þ . . . x1ðLÞ
x2ð1Þ x2ð2Þ . . . x2ðLÞ
..
. ..

. ..
. ..

.

xNð1Þ xNð2Þ . . . xNðLÞ

26664
37775 ð10:18Þ

However, if the measurement scales used for each risk factor are all same, as in
this example, then, the need for such translation (i.e., normalization) disappears;
and the original vector of risk assessment ratings of the failure mode FMn (Yn), can
be taken as the comparative series (Xn) of that FM. For this reason, in this example,
the assessment ratings of the experts were directly considered in the analyses
performed, without any further normalization calculations. In other words, the
midvalues of the triangular fuzzy numbers representing each expert’s opinion were
directly taken into consideration without being normalized (See Table 10.9). To
obtain the overall risk assessment ratings of the FMs with respect to each risk
factor, the arithmetic mean of the corresponding assessment values of the experts
were calculated. The resulting comparative series of each FM are given below:

X ¼

x1
x2
x3
x4
x5
x6
x7
x8

266666666664

377777777775
¼

x1ð1Þ x1ð2Þ x1ð3Þ
x2ð1Þ x2ð2Þ x2ð3Þ
x3ð1Þ x3ð2Þ x3ð3Þ
x4ð1Þ x4ð2Þ x4ð3Þ
x5ð1Þ x5ð2Þ x5ð3Þ
x6ð1Þ x6ð2Þ x6ð3Þ
x7ð1Þ x7ð2Þ x7ð3Þ
x8ð1Þ x8ð2Þ x8ð3Þ

266666666664

377777777775
¼

4:333 6:333 8:333
2:333 9:667 2:333
2:333 9:333 1:333
3:667 6:333 8:333
4:333 7:667 9:333
6:333 7:667 3:667
1:333 10:000 1:333
0:333 0:000 0:000

266666666664

377777777775
As an example, calculation of the overall risk assessment rating of FM1with

respect to the Severity risk factor (x1ð1Þ) is given below. Risk assessment rating of
FM1, given by the experts E1, E2 and E3 with respect to the Severity risk factor, are
‘Medium (M)’, ‘Medium (M)’ and ‘Medium Low (ML)’ (See Table 10.7), with the
corresponding fuzzy numbers (3, 5, 7), (3, 5, 7), and (1, 3, 5), respectively (See
Table 10.5). Therefore, by taking the midvalues of this triangular fuzzy numbers
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into consideration (i.e., 5, 5, and 3) to represent the opinion of each expert, the
overall risk assessment rating of FM1 (with respect to the Severity risk factor) is
calculated as follows:

x1ð1Þ ¼
ð5þ 5þ 3Þ

3
¼ 4:333

Step 2: Establishment of Standard (Reference) Series
In order to evaluate the comparative series calculated in Step 1, a standard series is
obtained by determining the optimal levels of each risk factor. The standard series,
which represents an original reference to be compared with the comparative series,
is expressed as below:

X0 ¼ x0ðlÞ½ � ¼ x0ð1Þ x0ð2Þ . . . x0ðLÞ½ � ð10:19Þ

Since, the smaller the score for the risk factors, the less the risk in FMEA, the
standard series includes the lowest level of all risk factors (Chang et al. 2001). In
this example, the optimal level of the risk factors S, O, and D are VL, VL, and VH,
respectively, with the corresponding fuzzy number (0, 0, 1). Hence, the standard
series using the midvalues is defined as:

X0 ¼ VL VL VH½ � ¼ 0 0 0½ � ð10:20Þ

Step 3: Calculation of the Difference between Comparative Series and Standard
Series
Following the establishment of comparative series and standard series, the differ-
ence between these series is calculated by using the Eq. 10.21 and reflected in a
form of a matrix (D0) as shown below:

D0nðlÞ ¼ x0ðlÞ � xnðlÞk k ð10:21Þ

where x0 lð Þ and xn lð Þ represent the standard series and comparative series of the
relevant failure mode FMn, respectively.

D0 ¼
D01ð1Þ D01ð2Þ . . . D01ðLÞ
D02ð1Þ D02ð2Þ . . . D02ðLÞ

..

. ..
. ..

. ..
.

D0Nð1Þ D0Nð2Þ . . . D0NðLÞ

26664
37775 ð10:22Þ

As an example, the difference between comparative series and standard series of
the failure mode FM1 (D01 1ð Þ) for the Severity risk factor is calculated as follows:

D01 1ð Þ ¼ 0� 4:333k k ¼ 4:333

The rest of the calculated difference values are given in the matrix below.
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D0 ¼

4:333 6:333 8:333
2:333 9:667 2:333
2:333 9:333 1:333
3:667 6:333 8:333
4:333 7:667 9:333
6:333 7:667 3:667
1:333 10:000 1:333
0:333 0:000 0:000

266666666664

377777777775
Step 4: Calculation of Grey Relational Coefficient
In the fourth step of GRA, in order to determine how close x0 lð Þ is to xn lð Þ, the grey
relational coefficient, cðx0 lð Þ; xn lð ÞÞ, is calculated using the equation given below:

c x0 lð Þ; xn lð Þð Þ ¼ minnminl x0 lð Þ � xn lð Þj j þ f � maxnmaxl x0 lð Þ � xn lð Þj j
D0n lð Þþ f � maxnmaxl x0 lð Þ � xn lð Þj j

c x0 lð Þ; xn lð Þð Þ ¼ Dmin þ f � Dmax

D0n lð Þþ f � Dmax
for n ¼ 1; 2; . . .;N; l ¼ 1; 2; . . .; L

ð10:23Þ

where f is the distinguished coefficient which takes values in the range [0, 1] and
which only affects the relative values of the risk factors without changing their
priority (Chang et al. 2001). As it increases (decreases), it expands (compresses) the
range of the grey relational coefficient and usually, is accepted as 0.5 (Geum et al.
2011). On the basis of the difference values given in the D0 matrix above, the grey
relational coefficient of the failure mode FM1 for the severity risk factor is calcu-
lated as:

c x0 1ð Þ; x1 1ð Þð Þ ¼ Dmin þ 0:5 � Dmax

D01 1ð Þþ 0:5 � Dmax
¼ 0:000þ 0:5 � 10:000

4:333þ 0:5 � 10:000 ¼ 0:536

The grey relational coefficients of each FM were calculated in a similar manner,
and the results of these calculations are summarized in c x0 lð Þ; xn lð Þð Þ matrix below.
Regarding the grey relational coefficient, it can be said that as it becomes larger,
x0 lð Þ and xn lð Þ values becomes closer.

c x0 lð Þ; xn lð Þð Þ ¼

0:536 0:441 0:375
0:682 0:341 0:682
0:682 0:349 0:789
0:577 0:441 0:375
0:536 0:395 0:349
0:441 0:395 0:577
0:789 0:333 0:789
0:938 1:000 1:000

266666666664

377777777775
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Step 5: Calculation of Grey Relational Grade and Ranking
In the final step of GRA, the grey relational grades of each FM are calculated by
multiplying the grey relational coefficients obtained in the previous step with the
relative importance weights of the risk factors as given in Eq. 10.24. Since the
calculation of the relative importance weights of risk factors is discussed in detail,
in Sect. 10.3.1, here, the resulting importance weights of risk factors that were
calculated previously were directly substituted into Eq. 10.24 (refer to the last
column of Table 10.17 for the relative importance weights of the risk factors).

C x0; xnð Þ ¼
XL

l¼1
wl � c x0 lð Þ; xn lð Þð Þ for n ¼ 1; 2; . . .;N ð10:24Þ

In order to demonstrate the calculation of grey relational grade, an example
calculation for the degree of relation of the first failure mode FM1 is seen below.

C x0; xnð Þ ¼
X3
l¼1

wl � c x0 lð Þ; x1 lð Þð Þ

C x0; xnð Þ ¼ 0:180 � 0:536ð Þþ 0:234 � 0:441ð Þþ 0:586 � 0:375ð Þ ¼ 0:419

Grey relational grades of all FMs were calculated similarly, and presented in
Table 10.22. The relevant grey relational grades estimates the priority ranking of the
eight FMs as FM5, FM1, FM4, FM6, FM2, FM3, FM7, and FM8.

10.3.4 FMEA Based on Intuitionistic Fuzzy Sets (IFSs)

As a generalization of fuzzy sets, IFSs has a much better capability of coping with
imperfect and/or imprecise information as it adds an extra degree of uncertainty for
modelling the hesitation and uncertainty about the degree of membership (Da Costa

Table 10.22 Grey relational grades of FMs and their rank orders

Failure mode Grey relational coefficients Grey relational grades Rank

S O D

FM1 0.536 0.441 0.375 0.419 2

FM2 0.682 0.341 0.682 0.602 5

FM3 0.682 0.349 0.789 0.667 6

FM4 0.577 0.441 0.375 0.427 3

FM5 0.536 0.395 0.349 0.393 1

FM6 0.441 0.395 0.577 0.510 4

FM7 0.789 0.333 0.789 0.683 7

FM8 0.938 1.000 1.000 0.989 8

Weight 0.180 0.234 0.586
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et al. 2010). It consists of membership and non-membership functions and hence,
provides a better representation of experts’ assessments and more information than
classic fuzzy sets. Therefore, it can be used in situations, where making assessments
through linguistic variables based on only a membership function is considered to
be inadequate. IFSs comprise the following four steps, performed just after all
possible FMs are identified.

Step 1: Determination of the Linguistic Scales
In the first step, differently from the other approaches, the linguistic scales for the
risk factors (S, O, and D) are defined as Intuitionistic Fuzzy Numbers (IFNs) and
given in Table 10.23. Note here that, both membership and non-membership
functions of the linguistic terms can be determined according to the suggestions of
the domain experts.

Additionally, a linguistic scale for the pairwise comparison of the importance
weights of risk factors is provided in Table 10.6.

Step 2: Assessment of the Risk Factor Weights and FMs
Using the linguistic scale defined by IFNs and set out in Table 10.23, experts are
asked to assess the ratings of each FM, where the results are given in Table 10.7,
and then are asked to pairwise compare the relative importance of the risk factors
using the linguistic scale introduced in Table 10.6. The comparisons obtained from
the experts are presented in Table 10.8.

Step 3: Aggregation of Individual Assessments
Following the assessment of FMs by each expert, the resulting individual expert
assessments, which are quantified by the corresponding IFNs, are aggregated into
group assessments. If it is supposed that there are K experts (E1, …, EK) in a FMEA
team who are responsible for the assessment of N failure modes (FM1, …, FMN)
with respect to L risk factors (RF1, …, RFL); by using the Intuitionistic Fuzzy
Weighted Averaging (IFWA) operator, the subjective risk assessment ratings of
each FM are aggregated into a group risk assessment rating as follows (Liu et al.
2014):

Table 10.23 Linguistic scales used for rating failure modes and IFNs

Linguistic scale
IFNsSeverity Occurrence Detection

Very low (VL) Very low (VL) Very high (VH) (0.10, 0.90)

Low (L) Low (L) High (H) (0.25, 0.70)

Medium low (ML) Medium low (ML) Medium high (MH) (0.35, 0.55)

Medium (M) Medium (M) Medium (M) (0.50, 0.50)

Medium high (MH) Medium high (MH) Medium low (ML) (0.60, 0.30)

High (H) High (H) Low (L) (0.75, 0.20)

Very high (VH) Very high (VH) Very low (VL) (0.90, 0.10)
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~anl ¼ IFWA ~a1nl; ~a
2
nl; . . .; ~a

K
nl

� � ¼XK

k¼1
kk � ~aknl

¼ 1�QK
k¼1 1� lknl
� �kk ; QK

k¼1 mknl
� �kkh i

for n ¼ 1; 2; . . .;N; l ¼ 1; 2; . . .; L

ð10:25Þ

where ~aknl ¼ lknl; m
k
nl

� �
denotes the IFN provided by Ek on the assessment of FMn

with respect to the risk factor RFl and kk [ 0 (k = 1,…, K) reflects the relative
importance weight of each expert Ek, satisfying the condition

PK
k¼1 kk ¼ 1 (Liu

et al. 2013c).
In the current example, the expert weights were supposed to be k1 ¼ 0:2, k2 ¼ 0:5,

and k3 ¼ 0:3 and Table 10.24 presents the resulting group assessment values calcu-
lated by using these weights. In fact, if needed, the expert weights can also be assessed
in linguistic terms that will be defined as IFNs, instead of their crisp counterparts. As
an example, given the risk assessment ratings “Medium (~a111 ¼ ð0:5; 0:5Þ)”, “Medium
(~a211 ¼ ð0:5; 0:5Þ)”, and “Medium Low (~a311 ¼ ð0:35; 0:55Þ)” of three experts, for
FM1 with respect to the Severity risk factor (RF1), respectively (see Tables 10.7 and
10.23); the corresponding aggregated risk assessment rating, ~/11, is obtained as:

~a11 ¼
X3

k¼1
kk~a

k
11 ¼ 1�Q3

k¼1 1� lk11
� �kk ; Q3

k¼1 mk11
� �kkh i

ð10:26Þ

~a11 ¼ 1� 1� 0:5ð Þ0:2� 1� 0:5ð Þ0:5� 1� 0:35ð Þ0:3
� �

; 0:5ð Þ0:2� 0:5ð Þ0:5� 0:55ð Þ0:3
� �� �

~a11 ¼ 0:459; 0:515ð Þ

Subsequently, the relative importance weights of the risk factors are then
aggregated as shown in the fifth step of Sect. 10.3.1.

Table 10.24 Aggregated risk
assessment ratings of FMs

Failure
mode

S O D

FM1 (0.459, 0.515) (0.582, 0.332) (0.684, 0.245)

FM2 (0.331, 0.577) (0.842, 0.141) (0.321, 0.591)

FM3 (0.302, 0.620) (0.792, 0.174) (0.276, 0.652)

FM4 (0.43, 0.524) (0.582, 0.332) (0.684, 0.245)

FM5 (0.459, 0.515) (0.653, 0.266) (0.842, 0.141)

FM6 (0.572, 0.350) (0.684, 0.245) (0.399, 0.534)

FM7 (0.263, 0.669) (0.900, 0.100) (0.276, 0.652)

FM8 (0.148, 0.835) (0.100, 0.900) (0.100, 0.900)
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Step 4: Calculation of FRPNs
In this step, aggregated risk assessment ratings of FMs with respect to each risk
factor (S, O, and D), given in Table 10.24, are synthesized by using the
Intuitionistic Fuzzy Weighted Geometric (IFWG) operator as follows (Wei 2010):

~an ¼ IFWG ~an1; ~an2; . . .; ~anLð Þ ¼
YL
l¼1

~anlð Þwl

¼
YL

l¼1
lnl
� �wl ; 1�

YL

l¼1
1� mnl
� �wl

h i
for n ¼ 1; 2; . . .;N ð10:27Þ

where ~an ¼ ln; mn
� �

denotes the IFN representing the synthesized assessment of
FMn and wl [ 0 (l = 1,…, L) reflects the subjective weight of risk factor RFl,
satisfying the condition

PL
l¼1 wl ¼ 1 (Wei 2010).

The relative importance weights of the risk factors calculated in Sect. 10.3.1, as
w1 ¼ 0:180, w2 ¼ 0:234, and w3 ¼ 0:586, were directly substituted into Eq. 10.27,
and the resulting synthesized assessments of FMs are presented in Table 10.25.
As an example, given the aggregated risk assessment ratings of FM1 as
~a11 ¼ ð0:459; 0:515Þ, ~a12 ¼ ð0:582; 0:332Þ, and ~a13 ¼ ð0:684; 0:245Þ, regarding
the risk factors S, O, and D, respectively, the corresponding synthesized assessment
rating, ~a1, was obtained as:

~a1 ¼
X3

l¼1
~a1lð Þwl ¼

Y3

l¼1
l1lð Þwl ; 1�

Y3

l¼1
1� m1lð Þwl

h i
ð10:28Þ

~a1 ¼ 0:459ð Þ0:2� 0:582ð Þ0:5� 0:684ð Þ0:3
� �

; 1� 1� 0515ð Þ0:2� 1� 0:332ð Þ0:5� 1� 0:245ð Þ0:3
� �� �

~a1 ¼ 0:613; 0:322ð Þ

Step 5: Ranking
In the final step, using the results obtained in the previous step as an input, the final
rankings of the FMs are determined. To this end, firstly the score and accuracy
degrees of each FM are calculated by Eqs. 10.29 and 10.30, and then, Xu and Yager

Table 10.25 Synthesized
assessment ratings of FMs

Failure Mode Synthesized assessment ratings

FM1 (0.613, 0.322)

FM2 (0.405, 0.511)

FM3 (0.359, 0.568)

FM4 (0.606, 0.325)

FM5 (0.711, 0.253)

FM6 (0.483, 0.446)

FM7 (0.361, 0.570)

FM8 (0.107, 0.891)
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(2006)’s method given below, is used to compare the synthesized assessment rat-
ings of FMs.

Let ~a ¼ ðl; mÞ be an IFN, the score function S ~að Þ and the accuracy function H ~að Þ
of ~a can be represented as follows (Xu and Yager 2006):

S ~að Þ ¼ l� m; S ~að Þ 2 �1; 1½ � ð10:29Þ

H ~að Þ ¼ lþ m; H ~að Þ 2 �1; 1½ � ð10:30Þ

Then the order relation between two IFNs, ~a1 ¼ ðl1; m1Þ and ~a2 ¼ ðl2; m2Þ, can
be defined as follows (Xu and Yager 2006):

ð10:31Þ

where S ~a1ð Þ and S ~a2ð Þ are the score degrees, and H a1ð Þ and H ~a2ð Þ are the accuracy
degrees of ~a1 and ~a2, respectively.

The score and accuracy degrees, and the resulting rankings of the FMs are
presented in Table 10.26 The score and accuracy degrees estimate the priority
ranking of the eight FMs as FM5, FM1, FM4, FM6, FM2, FM3, FM7, and FM8.

10.3.5 FMEA Using Rough Set Theory

As previously mentioned, rough set theory is a formal approximation of the clas-
sical set theory that can handle imprecise and subjective judgments without any
assumption and additional information. In contrast to crisp and fuzzy values/
intervals, which are all based on pre-defined membership functions and thus cannot
truly accommodate inter-personal uncertainty, rough sets use flexible intervals

Table 10.26 Score and accuracy degrees of FMs and their rank orders

FM failure mode Synthesized assessment ratings S að Þ H að Þ Rank

FM1 (0.613, 0.322) 0.290 0.935 2

FM2 (0.405, 0.511) −0.106 0.916 5

FM3 (0.359, 0.568) −0.209 0.926 6

FM4 (0.606, 0.325) 0.281 0.931 3

FM5 (0.711, 0.253) 0.458 0.964 1

FM6 (0.483, 0.446) 0.037 0.929 4

FM7 (0.361, 0.570) −0.209 0.930 7

FM8 (0.107, 0.891) −0.783 0.998 8
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(i.e., boundary regions) to reflect the diversity in expert judgments. A larger rough
interval, then, indicates higher inconsistency among expert judgments (Song et al.
2014).

According to this theory, any vague concept (i.e., rough set) is represented with
two precise concepts (i.e., crisp sets), called its lower and upper approximation
(Pawlak 1997). The lower approximation consists of elements that certainly belong
to the set, whereas the upper approximation contains all elements that possibly
belong to the set. The difference between these two crisp sets constitutes the
boundary region of the rough set and consists of the elements that cannot be
classified uniquely to the set or its complement (Pawlak 1997). Below, more formal
definitions are provided for the basic notions of rough set theory.

Let U be a non-empty set of finite elements (the universe), Y an arbitrary element
of U, and R ¼ C1;C2; . . .;Cnf g a set of n classes defined in the universe. For
example, when assessing the severity of a FM, the distinct severity ratings provided
by the experts can be viewed as classes associated with the FM (i.e., an element in
the classification problem). If the classes are ordered in the following way
C1\C2\. . .\Cn, then for any class, Ci 2 R, 1� i� n, the approximations of Ci

and boundary region can be defined as follows (Zhai et al. 2007, 2009, see also
Pawlak 1997):

Lower approximation of Ci:

Apr Cið Þ ¼
[

Y 2 U=R : R Yð Þ�Cif g ð10:32aÞ

Upper approximation of Ci:

Apr Cið Þ ¼
[

Y 2 U=R : R Yð Þ�Cif g ð10:32bÞ

Boundary Region of Ci:

Bnd Cið Þ ¼
[

Y 2 U=R : R Yð Þ 6¼ Cif g
¼ Y 2 U=R : R Yð Þ[Cif g[ Y 2 U=R : R Yð Þ\Cif g

ð10:32cÞ

Thus the class Ci can be represented by a rough number that is defined by its
lower limit (Lim Cið Þ) and upper limit (Lim Cið Þ) as follows (Zhai et al. 2007, 2009):

Lim Cið Þ ¼ 1
NL

X
R Yð ÞjY 2 Apr Cið Þ ð10:33aÞ

Lim Cið Þ ¼ 1
NU

X
R Yð ÞjY 2 Apr Cið Þ ð10:33bÞ

where NL and NU are the number of elements contained in the lower and upper
approximation of Ci, respectively. Then, a vague class Ci can be expressed in form
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of a rough number (interval) which is denoted as RN Cið Þ and defined as (Zhai et al.
2007, 2009):

RN Cið Þ ¼ Lim Cið Þ; Lim Cið Þ� � ð10:34Þ

The interval between the lower limit and the upper limit (i.e., the rough boundary
interval of Ci) indicates the degree of preciseness.

Below, a slightly adapted version of the rough TOPSIS approach proposed by
Song et al. (2014) is illustrated. The approach, which uses the definitions given
above to represent the uncertainty in FM assessment, consists of two main stages. In
the first stage, the weights of the risk factors S, O, and D are determined, while in
the second stage the FMs are assessed and analyzed using the rough group TOPSIS
approach.

Stage 1: Determination of Rough Interval Weights for Risk Factors
In this stage, the relative importance of the risk factors, which will later be used to
calculate the weighted normalized rough matrix of FMs, are determined. Instead of
using the direct estimation method suggested by Song et al. (2014), an alternative
approach is presented here. According to this method, the weight information can
be elicited by means of pairwise comparisons using the linguistic scale introduced
in Table 10.6 (for the typical questions asked here see Sect. 10.3.1). Table 10.10
presents the crisp comparison values obtained from three experts. For example,
when comparing the risk factors Severity and Occurrence, according to the first
expert, Severity is strongly more important than Occurrence (i.e., v1SO = 3/2). The
additive normalization method is used here to approximate the crisp weights (vkl ,
where l denotes the risk factors and k the experts). It applies the following three-step
procedure (Saaty 1988, Asan et al. 2012): (1) the sum of the values in each column
of the pairwise comparison matrix is calculated; (2) then, each column element is
divided by the sum of its respective column; (3) finally, arithmetic means of each
row of the normalized comparison matrix are calculated. These final numbers
provide an estimate of the weights for the risk factors being compared. Table 10.27
presents each expert’s normalized pairwise comparison values and the corre-
sponding crisp weights.

These crisp weights are then converted into rough numbers using Eqs. 10.32a,
10.32b, 10.32c–10.34. For example, the crisp weights (0.375, 0.379, and 0.411)
obtained from three experts for “Severity” are converted into a rough number as
follows:

Table 10.27 Normalized comparison values and crisp weights

E1 E2 E3

S O D V1 S O D V2 S O D V3

S 0.375 0.428 0.333 0.379 0.375 0.375 0.375 0.375 0.400 0.500 0.333 0.411

O 0.250 0.286 0.333 0.290 0.250 0.250 0.250 0.250 0.200 0.250 0.333 0.261

D 0.375 0.286 0.333 0.331 0.375 0.375 0.375 0.375 0.400 0.250 0.333 0.327
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Lim 0:375ð Þ ¼ 0:375; Lim 0:375ð Þ ¼ 1
3

0:375þ 0:379þ 0:411ð Þ ¼ 0:388

Lim 0:379ð Þ ¼ 1
2

0:375þ 0:379ð Þ ¼ 0:377; Lim 0:379ð Þ ¼ 1
2

0:379þ 0:411ð Þ
¼ 0:395

Lim 0:411ð Þ ¼ 1
3

0:375þ 0:379þ 0:411ð Þ ¼ 0:388; Lim 0:411ð Þ ¼ 0:411

then

RN w1
S

� � ¼ RN 0:375ð Þ ¼ 0:375; 0:388½ �
RN w2

S

� � ¼ RN 0:379ð Þ ¼ 0:377; 0:395½ �
RN w3

S

� � ¼ RN 0:411ð Þ ¼ 0:388; 0:411½ �

The average rough weight of any risk factor RN wlð Þ ¼ Lim wlð Þ; Lim wlð Þ� �� �
can be calculated as follows (Song et al. 2014)

Lim wlð Þ ¼ Lim w1
S

� �þ Lim w2
S

� �þ � � � þ Lim wK
S

� �� �
=K ð10:35aÞ

Lim wlð Þ ¼ Lim w1
S

� �þ Lim w2
S

� �þ � � � þ Lim wK
S

� �� �
=K ð10:35bÞ

where Lim wlð Þ and Lim wlð Þ are the lower and upper limit of the average rough
interval of risk factor l, respectively. According to Eqs. (10.35a and 10.35b), the
average rough weight of Severity is RN wSð Þ ¼ 0:380; 0:398½ � where

Lim wSð Þ ¼ 0:375þ 0:377þ 0:388ð Þ
3

¼ 0:380

Lim wSð Þ ¼ 0:388þ 0:395þ 0:411ð Þ
3

¼ 0:398

The rough numbers and average rough weights of the other two risk factors can
be obtained in a similar way (see Table 10.28).

Table 10.28 Rough numbers and average rough weights of risk factors

K Severity Occurrence Detection

Lim wK
S

� �
Lim wK

S

� �
Lim wK

O

� �
Lim wK

O

� �
Lim wK

D

� �
Lim wK

D

� �
1 0.375 0.388 0.250 0.267 0.328 0.345

2 0.377 0.395 0.256 0.275 0.330 0.353

3 0.388 0.411 0.267 0.290 0.345 0.375

RN wlð Þ [0.380, 0.398] [0.257, 0.277] [0.334, 0.358]

Normalized [0.955, 1.000] [0.647, 0.697] [0.839, 0.898]
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Stage 2: Failure Modes Assessment and Analysis
Experts use a crisp scale (i.e., midvalues of the fuzzy numbers in Table 10.5) to
assess the FMs with respect to each risk factor. Table 10.9 presents the experts’
assessments of the eight FMs. Since the assessment of FMs can be considered as a
multi-criteria decision-making problem, the crisp ratings can be represented in the
form of a decision matrix—which constitutes the main input of TOPSIS. Before the
rough TOPSIS approach can be applied, the crisp ratings in the decision matrix
need to be converted into rough numbers. The average rough assessments obtained
by using Eqs. 10.32a, 10.32b, 10.32c–10.34 are given in Table 10.29.

Next, the average rough assessments are normalized in order to transform the
various factor scales into comparable scales ranging from 0 to 1. The normalization
method is conducted as follows (Song et al. 2014):

Lim x
0
nl

� �
¼ Lim xnlð Þ

maxn¼1toN max Lim xnlð Þ; Lim xnlð Þ� �� � ð10:36aÞ

Lim x
0
nl

� �
¼ Lim xnlð Þ

maxn¼1toN max Lim xnlð Þ; Lim xnlð Þ� �� � ð10:36bÞ

where Lim x
0
nl

� �
;Lim x

0
nl

� �� �
represents the lower and upper limits of the normalized

average rough interval of failure mode FMn with respect to risk factor RFl. The
normalized values are shown in Table 10.30.

Now, the normalized values are weighted by the relative importance of each risk
factor using the following formulas.

Lim znlð Þ ¼ Lim w
0
l

� �
� Lim x

0
nl

� �
; n ¼ 1; . . .;N; l ¼ 1; . . .; L ð10:37aÞ

Lim znlð Þ ¼ Lim w
0
l

� �
� Lim x

0
nl

� �
; n ¼ 1; . . .;N; l ¼ 1; . . .; L ð10:37bÞ

Table 10.29 Average rough
assessment matrix

Failure
mode

Severity Occurrence Detection

FM1 [3.889, 4.778] [5.889, 6.778] [7.889, 8.778]

FM2 [1.889, 2.778] [9.444, 9.889] [1.889, 2.778]

FM3 [1.889, 2.778] [9.111, 9.556] [0.611, 2.111]

FM4 [3.222, 4.111] [5.889, 6.778] [7.889, 8.778]

FM5 [3.889, 4.778] [7.222, 8.111] [9.111, 9.556]

FM6 [5.889, 6.778] [7.222, 8.111] [3.222, 4.111]

FM7 [0.611, 2.111] [10, 10] [0.611, 2.111]

FM8 [0.111, 0.556] [0, 0] [0, 0]
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For example, Lim z1Sð Þ and Lim z1Sð Þ is calculated as follows:

Lim z1Sð Þ ¼ Lim w
0
S

� �
� Lim x

0
1S

� �
¼ 0:955 � 0:574 ¼ 0:548

Lim z1Sð Þ ¼ Lim w
0
S

� �
� Lim x

0
1S

� �
¼ 1:000 � 0:705 ¼ 0:705

The weighted normalized rough values of the eight FMs are given in
Table 10.31.

Finally, the weighted normalized rough values are analyzed by means of
TOPSIS. TOPSIS handles a multi-criteria problem as a geometric system with
n points in an l-dimensional space. It is based on the concept that the chosen
alternative should have the shortest distance from the positive-ideal solution (i.e.,
the solution composed of all the best attribute values achievable) and the longest
distance from the negative-ideal solution (i.e., the solution composed of all the
worst attribute values achievable) (Hwang and Yoon 1981). An index called rela-
tive closeness is used to rank the alternatives with respect to their similarity to the
positive-ideal solution, as well as, the remoteness from the negative-ideal solution
(Yoon and Hwang 1995).

Table 10.30 Normalized
rough matrix

Failure
mode

Severity Occurrence Detection

FM1 [0.574, 0.705] [0.589, 0.678] [0.826, 0.919]

FM2 [0.279, 0.410] [0.944, 0.989] [0.198, 0.291]

FM3 [0.279, 0.410] [0.911, 0.956] [0.064, 0.221]

FM4 [0.475, 0.607] [0.589, 0.678] [0.826, 0.919]

FM5 [0.574, 0.705] [0.722, 0.811] [0.953, 1.000]

FM6 [0.869, 1.000] [0.722, 0.811] [0.337, 0.430]

FM7 [0.090, 0.311] [1.000, 1.000] [0.064, 0.221]

FM8 [0.016, 0.082] [0.000, 0.000] [0.000, 0.000]

Table 10.31 Weighted
normalized rough matrix

Failure
mode

Severity Occurrence Detection

FM1 [0.548, 0.705] [0.381 0.472] [0.693 0.825]

FM2 [0.266, 0.410] [0.611 0.689] [0.166 0.261]

FM3 [0.266, 0.410] [0.589 0.666] [0.054 0.198]

FM4 [0.454, 0.607] [0.381 0.472] [0.693 0.825]

FM5 [0.548, 0.705] [0.467 0.565] [0.800 0.898]

FM6 [0.829, 1.000] [0.467 0.565] [0.283 0.386]

FM7 [0.086, 0.311] [0.647 0.697] [0.054 0.198]

FM8 [0.016, 0.082] [0.000 0.000] [0.000 0.000]
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In the context of rough sets, the Positive Ideal Solution (zþl ) and Negative Ideal
Solution (z�l ) are identified as (Song et al. 2014):

zþl ¼ maxn¼1 to N Lim znlð Þ� �
; if l 2 B;minn¼1 to N Lim znlð Þð Þ; if l 2 C

� � ð10:38aÞ

z�l ¼ minn¼1to N Lim znlð Þð Þ; if l 2 B;maxn¼1to N Lim znlð Þ� �
; if l 2 C

� � ð10:38bÞ

where B and C are associated with benefit and cost criterion, respectively. The
Positive and Negative Ideal Solutions in our example are 0.016 and 1.000 for
Severity, 0 and 0.697 for Occurrence, and 0 and 0.898 for Detection. The relative
closeness (RCn) of each FM is calculated using the l-dimensional Euclidean dis-
tances (dþ

n and d�n ) as follows:

RCn ¼ d�n
d�n þ dþ

n
; n ¼ 1; . . .;N ð10:39aÞ

where

dþ
n ¼

X
l2B Lim znlð Þ � zþl
� �2 þ X

l2C Lim znlð Þ � zþl
� �2n o1=2

; n ¼ 1; . . .;N

ð10:39bÞ

d�n ¼
X

l2B Lim znlð Þ � z�l
� �2 þ X

l2C Lim znlð Þ � z�l
� �2n o1=2

; n ¼ 1; . . .;N

ð10:39cÞ

Using these equations, the distances and the relative closeness for FM1 are
calculated as follows

dþ
1 ¼ 0:705� 0:016ð Þ2 þ 0:472� 0ð Þ2 þ 0:825� 0ð Þ2

n o1=2
¼ 1:174

d�1 ¼ 0:548� 1ð Þ2 þ 0:381� 0:697ð Þ2 þ 0:693� 0:898ð Þ2
n o1=2

¼ 0:589

then

RC1 ¼ d�1
d�1 þ dþ

1
¼ 0:589

0:589þ 1:174
¼ 0:334

The relative closeness values and rank orders of the FMs are given in
Table 10.32. The priority ranking of the eight FMs is estimated as follows: FM5,
FM1, FM6, FM4, FM2, FM3, FM7, and FM8.

10 Failure Mode and Effects Analysis Under Uncertainty … 311



10.3.6 FMEA Using 2-Tuple Fuzzy Linguistic
Representation

A typical drawback in problems modelled with linguistic information is the lack of
precision in the final results. This loss of information, which is inevitable when com-
puting with words, can be avoided by using the fuzzy linguistic representation model
proposed by Herrera and Martínez (2000). This model represents crisp or linguistic
information in form of 2-tuples, and thereby, allows a continuous representation of
the linguistic information on its domain. A 2-tuple, s; að Þ, is a pair of information
composed by a linguistic term, s, and a numeric value, a, assessed in (-0.5, 0.5).
Below, more formal definitions are provided for this symbolic translation.

Suppose that, the semantic element si is assessed by the linguistic variable s
defined in the linguistic term set S ¼ s0; s1; . . .; sg

� �
where i 2 0; g½ �.

Definition 1 (Herrera and Martínez 2000): Let b be the result of an aggregation of
the indices of a set of labels assessed in a linguistic term set S. b 2 0; g½ �, and gþ 1
is the cardinality of S. Let i ¼ round bð Þ and a ¼ b� i be two values such that
i 2 0; g½ � and a 2 �0:5; 0:5Þ½ then a is called a symbolic translation.

This can be expressed as follows, si represents the linguistic label center of the
information; and ai is a numerical value expressing the value of the translation from
the original result b to the closest linguistic term i. Then, a 2-tuple that represents the
equivalent information to b can be obtained as follows (Herrera and Martínez 2000):

D : 0; g½ � ! S� �0:5; 0:5Þ½ ð10:40aÞ

D bð Þ ¼ si; að Þ;with si; i ¼ round bð Þ
a ¼ b� i; a 2 �0:5; 0:5Þ½

�
ð10:40bÞ

Table 10.32 Relative closeness values and their rank order

Failure
mode

Positive ideal
solution

Negative ideal
solution

Relative
closeness

Rank

FM1 1.174 0.589 0.334 2

FM2 0.835 1.040 0.555 5

FM3 0.799 1.124 0.585 6

FM4 1.119 0.663 0.372 4

FM5 1.265 0.517 0.290 1

FM6 1.199 0.678 0.361 3

FM7 0.782 1.245 0.614 7

FM8 0.066 1.504 0.958 8
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where round �ð Þ is the usual round operation. The aggregation operator for 2-tuples
equivalent to the arithmetic mean is formulated as given below. It calculates the
mean of a set of linguistic values without any loss of information (Herrera and
Martínez 2000). In our case, it will be used to aggregate the linguistic assessments
of different experts.

Definition 2 (Herrera and Martínez 2000): Let x ¼ r1; a1ð Þ; . . .; rL; aLð Þf g be a set
of 2-tuples. The 2-tuple arithmetic mean x is computed as:

�x ¼ D
XL

l¼1

1
L
D�1 rl; alð Þ

 �
¼ D

1
L

XL

l¼1
bl

 �
ð10:41Þ

In order to synthesize the linguistic assessment values (of FMs) with a weighted
aggregation operator, in which the weights are not associated with a predetermined
value but rather are associated to a determined position, an OWA operator for
dealing with linguistic 2-tuples is developed.

Definition 3 (Herrera and Martínez 2000): Let A ¼ r1; a1ð Þ; . . .; rL; aLð Þf g be a set
of 2-tuples and W ¼ w1; . . .;wLð Þ be an associated weighting vector that satisfies
(i) wl 2 0; 1½ � and (ii)

P
wl ¼ 1. The 2-tuple OWA operator F is calculated as

follows:

F r1; a1ð Þ; . . .; rL; aLð Þð Þ ¼ D
XL

l¼1
wl � brðlÞ

� �
ð10:42Þ

where r : 1; . . .; Lf g ! 1; . . .; Lf g is a permutation function such that

brð1Þ; . . .; brðLÞ
n o

are in descending order. Finally, the comparison of these values

is carried out according to an ordinary lexicographic order. Let sn; a1ð Þ and sm; a2ð Þ
be two 2-tuples (Herrera and Martínez 2000):

• if n\m then sn; a1ð Þ is smaller than sm; a2ð Þ;
• if n ¼ m then

i. if a1 ¼ a2 then sn; a1ð Þ, sm; a2ð Þ represent the same information;
ii. if a1\a2 then sn; a1ð Þ is smaller than sm; a2ð Þ;
iii. if a1 [ a2 then sn; a1ð Þ is bigger than sm; a2ð Þ.
Below, the approach combining fuzzy linguistic representation and the OWA

operator proposed by Chang and Wen (2010) is illustrated.

Stage 1: Assessment of Failure Modes
Suppose that experts use a linguistic scale S ¼ s0; s1; s2; s3; s4; s5; s6f gð Þ to assess
the FMs with respect to each risk factor (see Table 10.5). The assessment values of
the eight FMs obtained from three experts are presented in Table 10.7. For example,
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the linguistic value provided by the first expert for FM1 with respect to Severity can
be represented by means of a 2-tuple as D Mð Þ ¼ s3; 0ð Þ. Next, the assessment
values provided by the experts for each FM are synthesized into group 2-tuples
using Eq. 10.41. For example, given the individual assessment values “Medium”,
“Medium”, “Medium Low” of three experts for FM1 with respect to the Severity
risk factor, the corresponding group 2-tuple �xS1ð Þ is obtained as follows:

�xSeverity1 ¼ D
1
3

X3
l¼1

bl

 !
¼ D

3þ 3þ 2
3

 �
¼ D 2:667ð Þ ¼ s3;�0:333ð Þ

Table 10.33 presents the resulting group 2-tuples for all FMs and risk factors.

Stage 2: Calculation of the Weights
The weights used in Eq. 10.42 are derived by the method suggested by Fuller and
Majlender (2001) who uses Lagrange multipliers to formulate a polynomial
equation and then determine the optimal weighting vector by solving a constrained
optimization problem. The weight vector is obtained as follows:

lnwj ¼ j� 1
l� 1

lnwl þ l� j
l� 1

lnw1 )wj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wl�j
1 wj�1

l
l�1
q

ð10:43Þ

wl ¼ l� 1ð Þc� lð Þw1 þ 1
l� 1ð Þcþ 1� lw1

ð10:44Þ

w1½ l� 1ð Þcþ 1� lw1�l ¼ ð l� 1ð ÞcÞl�1½ l� 1ð Þc� lð Þw1 þ 1� ð10:45Þ

where w is the weight vector, l is the number of factors, and c is the situation
parameter. For the weighting procedure, first, experts have to provide the situation
parameter (0� c� 1). Table 10.34 provides the optimal weight vectors (calculated
using Eqs. 10.43–10.45) for different situation parameters.

Stage 3: Synthesis of Linguistic Assessment Values
In this stage, the group assessments are synthesized over the three risk factors into
overall priorities. For the synthesis, the 2-tuple OWA operator (see Eq. 10.42) is
used in which the derived weights are associated with particular ordered positions

Table 10.33 Group 2-tuples Failure mode Severity Occurrence Detection

FM1 (s3, −0.333) (s4, −0.333) (s5, −0.333)

FM2 (s2, −0.333) (s6, −0.333) (s2, −0.333)

FM3 (s2, −0.333) (s5, 0.333) (s1, 0)

FM4 (s2, 0.333) (s4, −0.333) (s5, −0.333)

FM5 (s3, −0.333) (s4, 0.333) (s5, 0.333)

FM6 (s4, −0.333) (s4, 0.333) (s2, 0.333)

FM7 (s1, 0) (s6, 0) (s1, 0)

FM8 (s0, 0.333) (s0, 0) (s0, 0)
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of the aggregated values but have no connection with these values. For example, the
priority value of FM1 FFM1 s3;�0:333ð Þ; s4;�0:333ð Þ; s5;�0:333ð Þð Þð Þ is calcu-
lated as follows:

D
X3
l¼1

wl � br lð Þ

 !
¼ D 0:438 � 4:667þ 0:323 � 3:667þ 0:238 � 2:667ð Þ

¼ D 3:867ð Þ ¼ s4;�0:133ð Þ

Note that the situation parameter c was chosen here as 0.6 and the corresponding
optimal weight vector was calculated as (0.438 0.323 0.238). The results for all
FMs are shown in Table 10.35. Eventually, the priority ranking of the eight failure
modes is estimated as follows: FM5, FM1, FM4, FM6, FM2, FM7, FM3, FM8.

10.4 Comparison of the Approaches

The substantial concern here is whether the demonstrated approaches yield the
same outcome or not. Table 10.36 summarizes the results of all six approaches plus
the traditional FMEA method. Considering first the results of the traditional
method, it is not surprising that the simple multiplication produces RPNs with
exactly the same value from different combinations of S, O, and D (notice the RPNs

Table 10.34 Optimal weight
vectors for l = 3

Gamma w1 w2 w3

0.5 0.333 0.333 0.333

0.6 0.438 0.323 0.238

0.7 0.554 0.292 0.154

0.8 0.682 0.236 0.082

0.9 0.826 0.147 0.026

1.0 1 0 0

Table 10.35 Priority values
and their rank order

Failure mode
D
P3
l¼1

wl � br lð Þ

 �
si; að Þ Rank

FM1 D(3.867) (s4, −0,133) 2

FM2 D(3.420) (s3, 0,420) 5

FM3 D(3.115) (s3, 0,115) 7

FM4 D(3.787) (s4, −0,213) 3

FM5 D(4.374) (s4, 0,374) 1

FM6 D(3.641) (s4, −0,359) 4

FM7 D(3.192) (s3, 0,192) 6

FM8 D(0.146) (s0, 0,146) 8

10 Failure Mode and Effects Analysis Under Uncertainty … 315



T
ab

le
10

.3
6

C
om

pa
ri
so
n
of

th
e
ra
nk

in
gs

ob
ta
in
ed

by
th
e
ap
pr
oa
ch
es

de
m
on

st
ra
te
d

Fa
ilu

re
m
od

e
T
ra
di
tio

na
l

m
et
ho
d

E
vi
de
nt
ia
l

re
as
on

in
g

O
rd
in
ar
y

fu
zz
y
se
ts

G
re
y
re
la
tio

na
l

an
al
ys
is

In
tu
iti
on
is
tic

fu
zz
y
se
ts

R
ou
gh

se
t

th
eo
ry

2-
T
up
le

fu
zz
y

lin
gu
is
tic

R
.

Pr
io
ri
ty

R
an
k

Pr
io
ri
ty

R
an
k

Pr
io
ri
ty

R
an
k

G
ra
de

R
an
k

Sc
or
e

A
cc
ur
ac
y

R
an
k

C
lo
se
ne
ss

R
an
k

2-
tu
pl
e

R
an
k

FM
1

19
2

3
0.
65
6

2
0.
66

6
2

0.
41

9
2

0.
29
0

0.
93

5
2

0.
33
4

2
(s
4,
-0
,1
33

)
2

FM
2

40
5

0.
39
1

5
0.
43

0
5

0.
60

2
5

- 0.
10
6

0.
91

6
5

0.
55
5

5
(s
3,
0,
42
0)

5

FM
3

18
6

0.
31
7

6
0.
38

2
7

0.
66

7
6

- 0.
20
9

0.
92

6
6

0.
58
5

6
(s
3,
0,
11
5)

7

FM
4

19
2

3
0.
64
7

3
0.
66

0
3

0.
42

7
3

0.
28
1

0.
93

1
3

0.
37
2

4
(s
4,
-0
,2
13

)
3

FM
5

28
8

1
0.
74
7

1
0.
76

7
1

0.
39

3
1

0.
45
8

0.
96

4
1

0.
29
0

1
(s
4,
0,
37
4)

1
FM

6
19

2
3

0.
48
8

4
0.
51

0
4

0.
51

0
4

0.
03
7

0.
92

9
4

0.
36
1

3
(s
4,
-0
,3
59

)
4

FM
7

10
7

0.
31
6

7
0.
40

0
6

0.
68

3
7

- 0.
20
9

0.
93

0
7

0.
61
4

7
(s
3,
0,
19
2)

6

FM
8

0
8

0.
09
9

8
0.
05

5
8

0.
98

9
8

- 0.
78
3

0.
99

8
8

0.
95
8

8
(s
0,
0,
14
6)

8

316 U. Asan and A. Soyer



of
T
ab

le
10

.3
7

C
om

pa
ri
so
n
of

th
e
ap
pr
oa
ch
es

w
ith

re
sp
ec
t
to

th
ei
r
ch
ar
ac
te
ri
st
ic

fe
at
ur
es

A
pp

ro
ac
h

Fa
ct
or

w
ei
gh

ts
U
nc
er
ta
in
ty

an
d

su
bj
ec
tiv

ity

K
no

w
le
dg

e
re
pr
es
en
ta
tio

n
R
an
ki
ng

(D
is
tin

ct
iv
en
es
s)

Sy
nt
he
si
s

Pr
io
r

in
fo
rm

at
io
n

T
ra
di
tio

na
l

m
et
ho

d
N
o

N
o

(i
gn

or
es

un
ce
rt
ai
nt
y)

Is
ba
se
d
on

cr
is
p
as
se
ss
m
en
t

Po
or
ly

di
st
in
gu

is
hi
ng

(R
PN

s
ar
e
no

t
co
nt
in
uo

us
w
ith

m
an
y
ga
ps
)

Si
m
pl
e

m
ul
tip

lic
at
io
n

Pa
rt
ly

(e
qu

al
w
ei
gh

ts
as
su
m
pt
io
ns
)

E
vi
de
nt
ia
l

re
as
on

in
g

Y
es

Pa
rt
ly

(c
on

si
de
rs

in
tr
a-

an
d

pa
rt
ly

in
te
r-

pe
rs
on

al
un

ce
rt
ai
nt
y)

U
se
s
di
ff
er
en
t
ty
pe
s
of

as
se
ss
m
en
t

in
fo
rm

at
io
n,

co
nfi

de
nc
e
le
ve
l,
ex
pe
rt

w
ei
gh

ts
;
bu

t
in
fo
rm

at
io
n
lo
ss

is
in
ev
ita
bl
e
du

e
to

de
fu
zz
ifi
ca
tio

n

W
el
l

di
st
in
gu

is
hi
ng

(c
on

tin
uo

us
ov

er
al
l
gr
ou

p
be
lie
f
st
ru
ct
ur
es

ar
e
us
ed
)

W
ei
gh

te
d

ge
om

et
ri
c
m
ea
n

of
ov

er
al
l
be
lie
f

st
ru
ct
ur
es

Y
es

(b
el
ie
f
st
ru
ct
ur
e,

pr
e-
de
te
rm

in
ed

fu
nc
tio

ns
)

O
rd
in
ar
y

fu
zz
y
se
ts

Y
es

Pa
rt
ly

(c
on

si
de
rs

in
tr
a-
pe
rs
on

al
un

ce
rt
ai
nt
y)

U
se
s
ex
pe
rt
w
ei
gh

ts
,
m
em

be
rs
hi
p

fu
nc
tio

n;
bu

t
in
fo
rm

at
io
n
lo
ss

is
in
ev
ita
bl
e
du

e
to

de
fu
zz
ifi
ca
tio

n

W
el
l

di
st
in
gu

is
hi
ng

(c
on

tin
uo

us
de
fu
zz
ifi
ed

ri
sk

as
se
ss
m
en
t

va
lu
es

ar
e
us
ed
)

W
ei
gh

te
d
av
er
ag
e

of
de
fu
zz
ifi
ed

va
lu
es

Y
es

(p
re
-d
et
er
m
in
ed

m
em

be
rs
hi
p

fu
nc
tio

n)

G
re
y

re
la
tio

na
l

an
al
ys
is

Y
es

Pa
rt
ly

(c
on

si
de
rs

in
co
m
pl
et
e

in
fo
rm

at
io
n)

U
se
s
gr
ey

re
la
tio

na
l
co
ef
fi
ci
en
t;
bu

t
re
st
ri
ct
ed

to
cr
is
p
va
lu
es

W
el
l

di
st
in
gu

is
hi
ng

(c
on

tin
uo

us
gr
ey

re
la
tio

na
l
gr
ad
es

ar
e
us
ed
)

W
ei
gh

te
d
av
er
ag
e

of gr
ey

re
la
tio

na
l

gr
ad
e

Y
es

(r
ef
er
en
ce

se
ri
es
) (c
on

tin
ue
d)

10 Failure Mode and Effects Analysis Under Uncertainty … 317



T
ab

le
10

.3
7

(c
on

tin
ue
d)

A
pp

ro
ac
h

Fa
ct
or

w
ei
gh

ts
U
nc
er
ta
in
ty

an
d

su
bj
ec
tiv

ity

K
no

w
le
dg

e
re
pr
es
en
ta
tio

n
R
an
ki
ng

(D
is
tin

ct
iv
en
es
s)

Sy
nt
he
si
s

Pr
io
r

in
fo
rm

at
io
n

In
tu
iti
on

is
tic

fu
zz
y
se
ts

Y
es

Pa
rt
ly

(c
on

si
de
rs

in
tr
a-
pe
rs
on

al
un

ce
rt
ai
nt
y)

U
se
s
m
em

be
rs
hi
p
an
d
no

n-
m
em

be
rs
hi
p

fu
nc
tio

ns
,
ex
pe
rt
w
ei
gh

ts
W
el
l

di
st
in
gu

is
hi
ng

(c
on

tin
uo

us
sc
or
e
an
d

ac
cu
ra
cy

de
gr
ee
s
ar
e

us
ed
)

In
tu
iti
on

is
tic

fu
zz
y
w
ei
gh

te
d

ge
om

et
ri
c

ag
gr
eg
at
io
n
of

IF
N
s

Y
es

(p
re
-d
et
er
m
in
ed

m
em

be
rs
hi
p

fu
nc
tio

n,
as
su
m
pt
io
ns
)

R
ou

gh
se
t

th
eo
ry

Y
es

Pa
rt
ly

(c
on

si
de
rs

in
te
r-
pe
rs
on

al
un

ce
rt
ai
nt
y)

U
se
s
bo

un
da
ry

re
gi
on

;
bu

t
re
st
ri
ct
ed

to
cr
is
p
va
lu
es

W
el
l

di
st
in
gu

is
hi
ng

(r
ou

gh
nu

m
be
rs

an
d

co
nt
in
uo

us
cl
os
en
es
s

co
ef
fi
ci
en
ts
ar
e

us
ed
)

E
uc
lid

ea
n

di
st
an
ce

us
in
g

ro
ug

h
va
lu
es

N
o

2-
T
up

le
fu
zz
y

lin
gu

is
tic

R
.

Y
es

Pa
rt
ly

(c
on

si
de
rs

in
te
r-
pe
rs
on

al
un

ce
rt
ai
nt
y)

U
se
s
sy
m
bo

lic
tr
an
sl
at
io
n

W
el
l

di
st
in
gu

is
hi
ng

(c
on

tin
uo

us
2-
tu
pl
es

ar
e

us
ed
)

O
rd
er
ed

w
ei
gh

te
d

av
er
ag
in
g
of

gr
ou

p
lin

gu
is
tic

as
se
ss
m
en
t
va
lu
es

Pa
rt
ly

(l
ab
el

in
di
ce
s)

318 U. Asan and A. Soyer



FM1, FM4, and FM6 given in Table 10.36). This inevitably leads to confusion in
prioritizing the FMs. On the other hand, it can be seen from the table that the scale
and precision levels of the obtained values (i.e., priorities, scores, relative closeness,
or linguistic representation values) differ significantly among the approaches, even
though only slight differences can be noticed in the rankings. For example, the
approaches based on 2-tuples and ordinary fuzzy sets suggest a ranking for the
failure modes three and seven, which is exactly the opposite of the rankings sug-
gested by the remaining five approaches. Such differences are obvious and should
be expected since each approach suggests its own unique way to deal with
uncertainty and subjectivity associated with risk assessment, as well as addresses
only a particular set of conventional FMEA shortcomings. Thus, in order to
examine the effectiveness of the approaches, it is not sufficient to merely compare
the obtained rankings, but it is also necessary to examine the methodological dif-
ferences. Below, the methodological differences of the demonstrated approaches are
reviewed with respect to six characteristic features (see Table 10.37). Notice that
the review considers only the six approaches as they are demonstrated here, and
does not attempt to examine their underlying theories in detail. Certainly, the
approaches can be extended or improved by integrating other techniques (for
synthesis or weighting) and theories, but this option will be ignored here.

• Factor Weights: As discussed earlier, one of the most criticized shortcomings of
the traditional FMEA is that all three factors are assumed to have the same
importance. All the discussed approaches, on the other hand, suggests alternative
mechanisms—such as weighted averaging, ordered weighted averaging,
Euclidean distance—to incorporate the weight information into the analysis. In
this respect, they do not really differ from each other and appear to be promising.

• Uncertainty and Subjectivity: This feature points out whether an approach can
deal with subjectivity in both weight determination and failure assessment, as
well as indicates the type of uncertainty it addresses. Except the traditional
method, which completely ignores uncertainty, all the discussed approaches
suggest alternative ways of dealing with uncertainty and subjectivity. For
example, the FMEA approaches based on ordinary and intuitionistic fuzzy sets
are mainly used to handle intra-personal uncertainty, which relates to assess-
ments made under lack of knowledge and/or limited attention. The approaches
based on rough set theory and 2-tuple fuzzy linguistic representation, on the
other hand, basically, consider inter-personal uncertainty, which arises when a
group of subjects delivers different judgments. Only evidential reasoning seems
to allow dealing with both intra-personal and inter-personal uncertainty, how-
ever, with the latter only partly. The last approach based on grey relational
analysis differs from the other approaches in that it handles partially known
information. Consequently, although the alternative mechanisms suggested in
these approaches provide the FMEA team a more realistic representation of
subjective and uncertain information, there is still a need for an approach that
properly captures both types of uncertainties (intra-personal and inter-personal).
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• Knowledge Representation: How knowledge is extracted from a group of
experts is another important feature that can be used to compare the approaches.
With respect to this feature, evidential reasoning provides the most flexible and
richest representation that allows experts using different possible ways to rep-
resent their assessments (e.g., certain, distribution, interval and total ignorance).
Moreover, it considers experts’ level of confidence in their assessments as well
as their relative importance. Despite these benefits, an information loss to some
degree is inevitable due to the defuzzification used in this approach. The
approaches based on rough set theory and 2-tuple fuzzy linguistic representation
also suggest unique ways to represent knowledge. The boundary region defined
in rough set theory allows modelling the diversity and uncertainty of FMEA
team members’ assessment information; but using crisp values restricts this
approach’s potential. The symbolic translation used in 2-tuple linguistic repre-
sentation avoids any loss of information produced by operations on linguistic
values. Alternatively, knowledge can be represented by IFSs, which allows
experts considering hesitation as part of their assessments by using both
membership and non-membership functions. Thus, IFSs can represent the
uncertainty in a more comprehensive manner than ordinary fuzzy sets. Finally,
approaches based on grey relational analysis seem to be restricted to crisp
values.

• Ranking (Distinctiveness): This feature indicates whether subtle differences in
assessments are properly reflected in the rankings. All approaches, except the
traditional one, suggest alternative mechanisms (e.g., 2-tuples, rough numbers,
grey relational grades, belief structures, score and accuracy degrees) that allow
ranking FMs on a continuous scale, and thereby, avoid unnecessary confusion.
However, as mentioned earlier, the precision levels of the produced priority
values differ significantly among the approaches.

• Synthesis: How the assessments are synthesized over the relevant risk factors
into overall values is another valuable feature that needs to be considered. Not
surprisingly, the method commonly preferred to synthesize assessment values is
the weighted average (arithmetic or geometric) method. More advanced tech-
niques, such as, the ordered weighted averaging and Euclidean distance from the
ideal solution are also employed. In comparison to the simple weighted average,
aggregation operators that weight assessment values according to their ordering,
obtain more reasonable rankings of FMs. It is important to point out that the way
the values are synthesized is largely independent of the method employed to
represent and to analyze uncertain information.

• Prior Information: This feature describes whether an approach requires prior
information, such as, assumptions or pre-defined functions (e.g., membership
functions) to deal with uncertainty or not. Except the approach based on rough
sets, all other approaches need a preliminary or additional information about
data, such as, belief structures in evidential reasoning, membership functions in
(intuitionistic) fuzzy sets, reference series in grey relational analysis and label
indices in 2-tuples. With respect to this feature, rough set theory seems to be the
most favorable approach. It focuses on the uncertainty caused by limited
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distinction between assessments and extracts the facts hidden in the data by
using only the available information. Thus, rough set theory maintains the
objectivity of original information.

10.5 Conclusion and Suggestions for Future Research

The purpose of this study is to provide a comprehensive review of the approaches
developed for failure mode and effects analysis under uncertainty and offer a brief
tutorial for those who are interested in these approaches. According to the review
above, we can safely conclude that the discussed approaches provide a better
modeling of uncertainty, and thereby, a richer knowledge representation than the
traditional FMEA. Although, the theories, on which the approaches are based,
overlap to some extent in dealing with uncertainty and subjectivity, each can be
viewed as an entity in its own right. These theories are neither competing nor the
same; instead, they tend to complement each other. Especially, the recent shift
towards hybrid/integrated methods (e.g., evidential reasoning combined with grey
theory), seems to justify this argument (see also Liu et al. 2013b). Therefore,
research studies are required that integrate different methods or theories to create
synergies, and thereby, enhance the efficacy of risk assessment. A related issue that
still remains unaddressed is the need for a prescriptive model that supports the
FMEA team in deciding under which particular circumstances which FMEA
approach to prefer. Hopefully, the present review may serve as a guidance for such
attempts. Another main concern for future research is the lack of appropriate quality
measures. These measures should check whether an approach is reliable and fulfills
its intended purpose.

In the current study, two types of uncertainties (variation in one expert’s
understanding and variations in the understanding among experts) associated with
the assessment information have been distinguished. The review reveals that none
of the discussed approaches is able to sufficiently deal with both types. In order to
address this issue, type-2 fuzzy sets can be used to develop an alternative approach,
since they are capable of modelling both types of uncertainties. Finally, dealing
with total ignorance, handling different types of assessment information simulta-
neously, and incorporating other factors, such as, costs are the other modelling
issues that need further consideration in the FMEA literature.
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Chapter 11
Intelligent Quality Function Deployment

Huimin Jiang, C.K. Kwong and X.G. Luo

Abstract Quality function deployment (QFD) is commonly used in the product
planning stage to define the engineering characteristics and target value settings of
new products. However, someQFDprocesses substantially involve human subjective
judgment, thus adversely affecting the usefulness of QFD. In recent years, a few
studies have been conducted to introduce various intelligent techniques into QFD to
address the problems associated with subjective judgment. These studies contribute to
the development of intelligent QFD. This chapter presents our recent research on
introducing intelligent techniques into QFD with regard to four aspects, namely,
determination of importance weights of customer requirements, modeling of func-
tional relationships in QFD, determination of importance weights of engineering
characteristics and target value setting of engineering characteristics. In our research,
a fuzzy analytic hierarchy process with an extent analysis approach is proposed to
determine the importanceweights for customer requirements to capture the vagueness
of human judgment and a chaos-based fuzzy regression approach is proposed to
model the relationships between customer satisfaction and engineering characteristics
by which fuzziness and nonlinearity of the modeling can be addressed. To determine
importance weights of engineering characteristics, we propose a novel fuzzy group
decision-making method to address two types of uncertainties which integrates a
fuzzy weighted average method with a consensus ordinal ranking technique.
Regarding the target value setting of engineering characteristics, an inexact genetic
algorithm is proposed to generate a family of inexact optimal solutions instead of
determining one set of exact optimal target values. Possible future research on the
development of intelligent QFD is provided in the conclusion section.
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11.1 Introduction

Quality function deployment (QFD) is a systematic method of translating customer
requirements (CRs) into engineering characteristics (ECs) in the product planning
stage (Terninko 1997). QFD provides a visual relationship to help engineers focus
on design requirements instead of design function in the whole development pro-
cess. QFD uses the voices of the customers from the beginning of product devel-
opment and deploys it throughout the whole product design process. Customer
requirements (CRs) in a new product are collected. Then, product development
teams map the CRs to ECs based on their knowledge, experience, and judgement.
A QFD system comprises four inter-linked phases: product planning phase, part
deployment phase, process planning phase, and production/operation planning
phase (Karsak 2004). Figure 11.1 shows the four phases of QFD.

The implementation of QFD is called house of quality (HoQ), which offers a
global view of information on a new product and on how CRs can be met at
different stages of new product development. A HoQ typically contains information
on “what to do” (CRs or voice of customers), importance weights of CRs, “how to
do” (ECs), importance weights of ECs, the relationship matrix (relationships
between CRs and ECs), technical correlation matrix, benchmarking data, and the
target values settings of the ECs (Govers 1996). QFD was proposed to develop
products with higher quality to meet or surpass customer’s needs through collecting
and analysing the voice of the customer (Chan and Wu 2002). It has been applied
successfully in many industries. New product designs with QFD can enhance
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organizational learning and improve customer satisfaction. QFD can also decrease
product costs, simplify manufacturing processes, and shorten the development time
of new products (Vonderembse and Raghunathan 1997).

11.2 Literature Review

Determining the importance weights of CRs is a crucial QFD step because these
weights can largely affect the target value setting of ECs in the later stage.
Conducting surveys, such as lead user and focus group surveys, is common to
determine the importance weights. The weights are then determined by analyzing
the survey data. Respondents in surveys are always asked to rate various CRs, such
as good quality and user-friendliness (Mochimaru et al. 2012). The product ratings
of respondents involve subjective judgments. CRs always contain ambiguity and
multiplicity of meaning. The description of CRs is usually linguistic and vague.
Thus, conventional methods, which determine the importance weights of CRs on
the basis of crisp numerical data, are inadequate. Some intelligent techniques have
been introduced in previous studies to determine the importance weights of CRs,
such as artificial neural network (Che et al. 1999), fuzzy and entropy methods
(Chan et al. 1999), fuzzy AHP (Kwong and Bai 2002), supervised learning with a
radial basis function (RBF) neural network (Chen 2003), fuzzy group
decision-making approach (Zhang 2009), and fuzzy decision making trial and
evaluation laboratory (DEMATAL) method (Shahraki and Paghaleh 2011).

Another important step of QFD is to prioritize ECs to facilitate resource plan-
ning. However, the inherent vagueness or impreciseness of QFD makes the pri-
oritization of ECs ineffective. Two types of uncertainties in QFD exist. The first
type is human assessment and judgment on qualitative attributes, which are always
subjective and imprecise; thus, the input information of human perception can be
ambiguous. The second type is the involvement of various stakeholders and/or the
number of customers in the assessment of the importance of CRs, as well as the
degree of relationships between CRs and ECs in QFD. Uncertainty that is associ-
ated with group assessment will exist because of individual heterogeneity. Previous
studies have employed intelligent techniques to prioritize ECs, such as fuzzy
outranking approach (Wang 1999), fuzzy set theory of axiomatic design review
(Huang and Jiang 2002), a combined analytic network process (ANP) and goal
programming approach (Karsak et al. 2002), fuzzy ANP (Buyukozkan et al. 2004),
an integrated fuzzy weighted average method and fuzzy expected value operator
method (Chen et al. 2006), and a methodology of determining aggregated impor-
tance of ECs with the considerations of fuzzy relation measures between CRs and
ECs as well as fuzzy correlation measures among ECs (Kwong et al. 2007).
However, most previous studies only address one of the two types of uncertainties
that can affect the robustness of prioritizing ECs.
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The success of products is heavily dependent on the associated customer sat-
isfaction level. If customers are satisfied with a new product, the chance of that
product being successful in marketplaces would be higher. A product usually is
associated with a number of ECs, such as size, weight, and power consumption that
could affect customer satisfaction. In this regard, modeling the functional rela-
tionships between CRs and ECs for product design is crucial. The developed
models can be employed to formulate an optimization model to determine an
optimal EC setting that leads to maximum customer satisfaction. Some techniques
such as statistical regression (Han et al. 2000) and fuzzy rule-based method (Fung
et al. 1998) were adopted to model the functional relationships. However, only a
small number of data sets are usually available from the HoQ for modeling. On the
other hand, the CRs obtained from market surveys are commonly ambiguous and
qualitative in nature, and the relationships between CRs and ECs can be highly
nonlinear. The customer satisfaction models developed based on QFD should be
able to address nonlinearity and fuzziness. Intelligent techniques such as fuzzy
regression (FR) (Chan et al. 2012), fuzzy least squares regression (Kwong et al.
2010) and genetic programming (Chan et al. 2011) have been recently adopted to
model nonlinear and fuzzy relationships. However, the modeling methods of
nonlinear and fuzzy relationships and the development of explicit customer satis-
faction models based on a small number of data sets have not been addressed well
in previous studies.

One of the key issues in QFD is how the EC settings of new products can be
determined such that a high degree or even maximum customer satisfaction can be
obtained. This involves a complex decision-making process with multiple variables.
Currently, the setting of target EC values relies heavily on the professional expe-
rience and intuition of engineers; thus, the setting of such values is accomplished in
a subjective manner. However, determining the optimal setting for target EC values
based on this approach is very difficult. Some previous research has attempted to
develop systematic procedures and methods for setting optimal target values of ECs
in QFD, such as linear programming (Wasserman 1993), integer programming
(Kim and Park 1998), mixed integer linear programming (Zhou 1998), fuzzy
inference system (Fung et al. 1999), nonlinear mathematical program (Dawson and
Askin 1999), and prescriptive fuzzy optimization (Kim et al. 2000).

Few studies have been conducted to introduce intelligence techniques in QFD.
The results of previous studies on the introduction of intelligent techniques into
QFD undoubtedly contribute to the development of intelligent QFD. In the fol-
lowing sections, our research on the development of intelligent QFD with regard to
four aspects, namely, determination of importance weights of CRs, modeling of
functional relationships in QFD, determination of importance weights of ECs and
target value setting of ECs, is described.
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11.3 Determination of Importance Weights of CRs
by Using Fuzzy AHP with Extent Analysis

Quite a number of techniques were introduced to determine the importance weights
of CRs in QFD. One of them is AHP which is very popular to be used in deter-
mining importance weights. AHP was used to determine the importance weights for
product planning (Lu et al. 1994; Armacost et al. 1994; Hsiao, 2002) but has been
mainly applied in crisp (non-fuzzy) decision applications. However, human judg-
ment on the importance of CRs is always imprecise and vague. To address this
deficiency in AHP, a fuzzy AHP with an extent analysis approach is proposed to
determine the importance weights for CRs. In this method, the linguistic assessment
of CRs is converted to triangular fuzzy numbers. These triangular fuzzy numbers
are used to build a pairwise comparison matrix for the AHP. By applying the fuzzy
AHP with extent analysis, the importance weights for the CRs can be obtained.
Extent analysis refers to the “extent” in which an object can be satisfied for the goal.
In this approach, the “satisfied extent” is defined by triangular fuzzy numbers. The
use of the extent analysis technique and principles for the comparison of fuzzy
numbers allows the calculation of weight vectors for fuzzy AHP. The new approach
can improve the imprecise ranking of CRs inherited from studies based on con-
ventional AHP. The fuzzy AHP with extent analysis is simple and easy to imple-
ment for prioritizing CRs in the QFD process compared with conventional
AHP. The details of the fuzzy AHP are described as follows.

11.3.1 Development of a Hierarchical Structure for CRs

All CRs are initially structured into different hierarchical levels to apply AHP in
prioritizing CRs. An affinity diagram, a tree diagram, or a cluster analysis can be
used for this purpose. The voices of the customers can be gathered by a variety of
methods. All of these approaches aim to ask customers to express their needs of a
particular product. Such needs are usually expressed in words that are too general to
use as CRs directly. However, by sorting, classifying, and structuring the voices of
customers, useful CRs can be obtained.

11.3.2 Construction of Fuzzy Judgment Matrixes for AHP

The hierarchy of attributes is the subject of a pairwise comparison of AHP. After
constructing a hierarchy, decision makers are asked to compare the elements at a
given level on a pairwise basis to estimate their relative importance in relation to the
element at the immediately proceeding level. Figure 11.2 shows an example of a
hierarchy of attributes. The total importance weights of CRs can be calculated based
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on the expression, W�
CRi

¼ Wcj �Wsk �WCRi, where W�
CRi

is the total importance
weight of the ith CR, Wcj; Wsk and WCRi are the importance weights of the jth, kth
and ith element in the category level, subcategory level and attributes level,
respectively. In conventional AHP, the pairwise comparison is made by using a
ratio scale. A nine-point scale is commonly used to show the judgment or prefer-
ence of participants between options as equally, moderately, strongly, very
strongly, or extremely preferred. Even though a discrete scale of one to nine has the
advantages of simplicity and ease of use, such a scale does not consider the
uncertainty associated with the mapping of one’s perception (or judgment) to a
number. The linguistic terms that people use to express their feelings or judgments
are vague. The use of this objective is unfeasible for defining the precise numbers to
present linguistic assessment. Fuzzy set theory was first advocated to manage
ambiguity in a system. The widely adopted triangular fuzzy number technique is
employed to represent a pairwise comparison of CRs.

A fuzzy number is a special fuzzy set F ¼ fðx;lFðxÞÞ; x 2 Rg, where x takes its
values on the real line R1: �1\x\1, and lFðxÞ is a continuous mapping from
R1 to the close interval ½0; 1�. A triangular fuzzy number can be denoted as
M ¼ ðl;m; uÞ. The membership function lMðxÞ : R ! ½0; 1� of a triangular fuzzy
number is equal to the following:

S6

C2

C1

S1

S2

S3

S4

S5

Customer
satisfaction

Performancec 
(Wc1)

Market
competitiveness 

(Wc2)

Quality (Ws1)
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Appropriate aesthetics (WCR2)

Dries hair quickly (WCR3)

Seldom break-down (WCR4)

Low risk to user (WCR5)

Pleasing color (WCR6)
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CR4
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design
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S8

Easy controls (Ws7)
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Easy one hand use (WCR11)

Choice of air temperature 
setting (WCR12)

Comfortable handgrip (WCR13)
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CR11

CR12

CR13

CR14

C3

Fig. 11.2 An example of hierarchy of CRs for hair dryer design
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lMðxÞ ¼
x

m�l � l
m�l ; x 2 ½l;m�

x
m�u � u

m�u ; x 2 ½m; u�
0; otherwise;

8<: ð11:1Þ

where l�m� u; l and u stand for the lower and upper values of the support of M,
respectively; m is the mid-value of M. When l ¼ m ¼ u, it is a non-fuzzy number
by convention.

The main operational laws for two triangular fuzzy numbers, M1 and M2, are as
follows:

M1 þM2 ¼ðl1 þ l2;m1 þm2; u1 þ u2Þ
M1 �M2 �ðl1l2;m1m2; u1u2Þ
k�M1 ¼ðkl1; km1; ku1Þ; k[ 0; k 2 R

M�1
1 �ð 1

u1
;
1
m1

;
1
l1
Þ:

ð11:2Þ

To consider vagueness in an assessment during the pairwise comparison of CRs,
triangular numbers M1; M3; M5; M7; M9 are used to represent the assessment from
“equal to extremely preferred”; M2; M4; M6; M8 are middle values. Figure 11.3
shows the triangular fuzzy numbers Mt ¼ ðlt; mt; utÞ and t ¼ 1; 2. . .9, where lt and
ut are the lower and upper values of fuzzy numberMt, respectively; mt is the middle
value of fuzzy number Mt. d represents a fuzzy degree of judgment where
ut � lt ¼ lt � ut ¼ d, which should be larger than or equal to 0.5. A larger d value
implies a higher fuzzy degree of judgment. When d ¼ 0, the judgment is a
non-fuzzy number.

Participants of the survey use triangular numbers (M1 �M9) to express their
preferences between options. For example, a participant may consider that element i
is very important compared with element j under certain criteria; he/she may set

Fig. 11.3 The membership functions of the triangular numbers
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aij ¼ ð4; 5; 6Þ. If element j is thought to be less important than element i, the
pairwise comparison between j and i can be presented by using the fuzzy number,
aij ¼ ð16 ; 15 ; 14Þ. On the basis of the results of pairwise comparisons for the CRs
obtained from participants, Eq. (11.2) is applied to obtain the fuzzy judgment
matrixes, FCMn, for the CRs.

The AHP methodology provides a consistency index to measure any inconsis-
tency within the judgments in each comparison matrix and for the entire hierarchy.
The index can be used to indicate whether the targets can be arranged in an
appropriate order of ranking and the consistency of pairwise comparison matrixes.
The defuzzification method of triangular fuzzy numbers was employed to convert
fuzzy comparison matrixes into crisp matrixes, which are then used to investigate
consistency. The consistency index, CI, and the consistency ratio, CR, for a
comparison matrix can be computed by the following equations:

CI ¼ kmax � nð Þ=n� 1; ð11:3Þ

CR ¼ CIð Þ=RI nð Þ
� �

100% ð11:4Þ

where kmax is the largest eigenvalue of the comparison matrix, n is the dimension of
the matrix, and RIðnÞ is a random index that depends on n.

If the calculated CR of a comparison matrix is less than 10 %, the consistency of
the pairwise judgment can be considered acceptable; otherwise, the judgments
expressed by the experts are considered inconsistent and the decision maker has to
repeat the pairwise comparison matrix.

A triangular fuzzy number, denoted asM ¼ ðl;m; uÞ can be defuzzified to a crisp
number:

M crisp ¼ 4mþ lþ uð Þ=6: ð11:5Þ

11.3.3 Calculation of Weight Vectors for Individual Levels
of a Hierarchy of the CRs

The extent analysis method and the principles for the comparison of fuzzy numbers
were employed to obtain estimates for the weight vectors for individual levels of a
hierarchy of CRs. The extent analysis method is used to consider the extent of an
object to be satisfied for the goal, that is, the satisfied extent. In this method, the
“extent” is quantified by a fuzzy number. On the basis of the fuzzy values for the
extent analysis of each object, a fuzzy synthetic degree value can be obtained.

Let X ¼ fx1; x2; . . .; xng be an object set and U ¼ fu1; u2; . . .; umg be a goal set.
According to the extent analysis method, each object can be used to perform extent
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analysis for each goal. Therefore, m extent analysis values for each object can be
obtained as follows:

M1
gi ;M

2
gi ; . . .;M

m
gi ; i ¼ 1; 2. . .n; ð11:6Þ

where all M j
gi (j = 1, 2,…, m) are triangular fuzzy numbers. The value of fuzzy

synthetic degree with respect to the ith object is thus defined as follows:

Di ¼
Xm
j

M j
gi �

Xn
i

Xm
j

M j
gi

 !�1

: ð11:7Þ

According to the above definition, the fuzzy synthetic degree values of all
elements in the kth level can be calculated by using Eq. (11.7) based on the fuzzy
judgment matrix of the kth level:

Dk
i ¼

Xn
j¼1

akij �
Xn
i¼1

Xn
j¼1

akij

 !�1

; i ¼ 1; 2; . . .; n; ð11:8Þ

where Dk
i is the fuzzy synthetic degree values of element i in the kth level and

Ak ¼ ðakijÞnn is the fuzzy judgment matrix of the kth level.
The principles for the comparison of fuzzy numbers were introduced to derive

the weight vectors of all elements for each level of the hierarchy with the use of
fuzzy synthetic values. The principles that allow the comparison of fuzzy numbers
are as follows:

Definition 1 M1 and M2 are two triangular fuzzy numbers. The degree of possi-
bility of M1 	M2 is defined as VðM1 	M2Þ ¼ supx	 y½minðlM1

ðxÞ; lM2
ðyÞÞ�.

Theorem 1 If M1 and M2 are triangular fuzzy numbers denoted by ðl1;m1; u1Þ and
ðl2;m2; u2Þ, respectively, then the following holds:

(1) The necessary and sufficient condition of VðM1 	 M2Þ ¼ 1 is m1 	 m2.
(2) If m1 � m2, let VðM1 	 M2Þ = hgt(M1 \M2Þ. VðM1 	M2Þ¼ lðdÞ ¼

l2� u1
ðm1� u1Þ � ðm2� l2Þ ; l2� u1

0 otherwise

8<: , where d is the crossover point’s abscissa

for M1 and M2.

Definition 2 The degree of possibility for a fuzzy number to be greater than k fuzzy
numbers Miði ¼ 1; 2; . . .; kÞ can be defined by VðM 	 M1;M2; . . .;
MkÞ¼minVðM 	 MiÞ; i ¼ 1; 2; . . .; k:
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Let dðpki Þ ¼ minVðSki 	 Skj Þ, where pki is the ith element of the kth level,
j ¼ 1; 2; . . .; n; j 6¼ i. The number of elements in the kth level is n. The weight
vector of the kth level is then obtained as follows:

W 0
k ¼ ðdðpk1Þ; dðpk2Þ; . . .; dðpknÞÞT : ð11:9Þ

After normalization, the normalized weight vector, Wk, is expressed as follows:

Wk ¼ ðwðpk1Þ;wðpk2Þ; . . .;wðpknÞÞT : ð11:10Þ

Taking the hierarchy of CRs for the hair dryer design (Fig. 11.2) as an example,
the pairwise comparisons of C1, C2 and C3 are shown in Table 11.1.

Equation (11.2) is applied to obtain the fuzzy judgment matrixes, FCM1, for the
category level.

FCM1 =
C1 C2 C3

C1
C2
C3

ð1; 1; 1Þ ð1:33; 2; 3Þ ð1:00; 1:33; 2:33
ð0:33; 0:50; 0:75Þ ð1; 1; 1Þ ð1:00; 1:33; 2:33Þ
ð0:43; 0:75; 1:00Þ ð0:43; 0:75; 1:00Þ ð1; 1; 1Þ

24 35
The fuzzy synthetic degree values of the element C1, DC1 , can be calculated

based on (11.8) as follows:

DC1 ¼
X3
j¼1

a1j �
X3
i¼1

X3
j¼1

aij

 !�1

¼ ð1; 1; 1Þþ ð1:33; 2; 3Þþ ð1:00; 1:33; 2:33Þð Þ � ð1; 1; 1Þþ ð1:33; 2; 3Þþ � � � ð1; 1; 1Þð Þ�1

¼ð0:25; 0:45; 0:84Þ

Following the similar calculation, DC2 ¼ ð0:17; 0:29; 0:54Þ and DC3 ¼
ð0:14; 0:26; 0:40Þ can be obtained. The following comparison results are then
derived based on Theorem 1.

Table 11.1 Pairwise
comparison for category level

C1 C2 C3

C1 (1,1,1) (1,2,3) (1,1,2)

(2,3,4) (1,1,2)

(1,1,2) (1,2,3)

C2 (1/3,1/2,1/1) (1,1,1) (1,1,2)

(1/4,1/3,1/2) (1,2,3)

(1/2,1/1,1/1) (1,1,2)

C3 (1/2,1/1,1/1) (1/2,1/1,1/1) (1,1,1)

(1/2,1/1,1/1) (1/3,1/2,1/1)

(1/3,1/2,1/1) (1/2,1/1,1/1)
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VðDC1 	DC2Þ ¼ 1; VðDC1 	DC3Þ ¼ 1;

VðDC2 	DC1Þ ¼
ð0:25� 0:54Þ

ð0:29� 0:54Þ � ð0:45� 0:25Þ ¼ 0:65;

VðDC2 	DC3Þ ¼ 1; VðDC3 	DC1Þ ¼
ð0:25� 0:40Þ

ð0:26� 0:40Þ � ð0:45� 0:25Þ ¼ 0:44;

VðDC3 	DC2Þ ¼
ð0:17� 0:40Þ

ð0:26� 0:40Þ � ð0:29� 0:17Þ ¼ 0:88:

Based on Definitions 1, 2 and Eq. (11.9), the weight vector W 0
C of the category

level can be calculated by using the following formula:

dðC1Þ ¼minðVðDC1C2;DC3Þ ¼ minf1; 1g ¼ 1:00;

dðC2Þ ¼minðVðDC2 	DC1 ;DC3Þ ¼ minf0:65; 1g ¼ 0:65;

dðC3Þ ¼minðVðDC3 	DC1 ;DC2Þ ¼ minf0:44; 0:88g ¼ 0:44;

W 0
C ¼ðdðC1Þ; dðC2Þ; dðC3ÞÞT ¼ ð1:00; 0:65; 0:44Þ:

Based on (11.10), the normalized weight vectors of the category level are
obtained as follows:

ðWC1 ;WC2 ;WC3Þ ¼ ð0:48; 0:31; 0:21Þ:

Following the similar calculation, the weight vectors of the subcategory level,
Wsk, and attributes level, WCRi, can be calculated. Hence, the total importance
weights of CRs can be calculated based on the expression, W�

CRi
¼ Wcj �Wsk �WCRi.

For example, referring to Fig. 11.2, W�
CR4

¼ Wc1 �Ws3 �WCR4 ¼ 0:078:

11.4 Modeling of Functional Relationships in QFD
by Using Chaos-Based FR

As mentioned in Sect. 11.1, the methods of modeling nonlinear and fuzzy rela-
tionships in QFD and the development of explicit customer satisfaction models
based on a small number of data sets have not been addressed in previous studies.
In this section, a novel FR approach, namely chaos-based FR, is described to model
the relationships between customer satisfaction and ECs in order to address the
limitations of previous studies. This approach employs a chaos optimization
algorithm (COA) to generate the polynomial structures of customer satisfaction
models with second- and/or higher-order terms and interaction terms. COA
employs chaotic dynamics to solve an optimization problem. COA does not rely on
learning factors, has fast convergence, and can search for accurate solutions com-
pared with the conventional optimization methods. COA also has better capacity in
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searching for the global optimal solution of an optimization problem and can escape
from a local minimum easier than conventional optimization algorithms. However,
COA cannot address the fuzziness of survey data. The FR method of Tanaka et al.
(1982) was introduced to determine the fuzzy coefficients of models. FR is effective
for modeling problems wherein the degree of fuzziness of the data sets for modeling
is high and only a small amount of data sets is available for modeling. However, the
FR method can yield only linear type models. The chaos-based FR approach
combines the advantages of COA and FR to generate customer satisfaction models
wherein the modeling fuzziness can be explicitly addressed and nonlinear models
can be developed. The proposed approach to the modeling of functional relation-
ships in QFD mainly involves four processes: development of HoQ, generation of
polynomial structures of customer satisfaction models by COA, determination of
fuzzy coefficients of customer satisfaction models by Tanaka’s FR, and generation
of fuzzy polynomial customer satisfaction models.

11.4.1 Fuzzy Polynomial Models
with Second- and/or Higher-Order Terms
and Interaction Terms

Kolmogorov–Gabor polynomial has been widely used to evolve general nonlinear
models but is incapable of addressing the fuzziness of modeling data. In fuzzy
polynomial models developed based on the proposed approach, nonlinear terms and
interaction terms between independent variables are represented in a form of a
higher-order Kolmogorov–Gabor polynomial. The fuzzy coefficients of the models
are determined by using Tanaka’s FR method. The proposed models can overcome
the limitation of conventional FR models where only first-order terms are gener-
ated. A fuzzy polynomial model based on the chaos-based FR approach can be
expressed as follows:

~y ¼~fNR xð Þ

¼ ~A0þ
XN
i1¼1

~Ai1xi1 þ
XN
i1¼1

XN
i2¼1

~Ai1i2xi1xi2 þ
XN
i1¼1

XN
i2¼1

XN
i3¼1

~Ai1i2i3xi1xi2xi3 þ � � �
XN
i1¼1

. . .
XN
id¼1

~Ai1...id

Yd
j¼1

xij ;

ð11:11Þ

where ~y is the dependent variable, xij is the ijth independent variable, ij ¼ 1; . . .;N

and j ¼ 1; 2; . . .d. N and d denote the number of design variables. A


is the fuzzy

coefficients of the linear, second order, and/or higher-order terms and the interaction
terms of the model.
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~A0 ¼ ac0; a
s
0

� �
; ~A1 ¼ ac1; a

s
1

� �
; ~A2 ¼ ac2; a

s
2

� �
; . . .; ~AN ¼ acN ; a

s
N

� �
;

~A11 ¼ ac11; a
s
11

� �
; ~A12 ¼ ac12; a

s
12

� �
; ~A13 ¼ ac13; a

s
13

� �
; . . .; ~ANN ¼ acNN ; a

s
NN

� �
;

~A111 ¼ ac111; a
s
111

� �
; ~A112 ¼ ac112; a

s
112

� �
; ~A113 ¼ ac113; a

s
113

� �
; . . .;

~ANNN ¼ acNNN ; a
s
NNN

� �
;

. . .. . .~AN...N ¼ acN...N ; a
s
N...N

� �
;

where ac and as are the central value and spread of fuzzy numbers, respectively.
The fuzzy polynomial model (11.11) can be rewritten as follows:

~y ¼ ~A0
0 þ ~A0

1 � x01 þ ~A0
2 � x02. . .þ ~A0

NNR
� x0NNR

; ð11:12Þ

or

~y ¼ ac0
0; as0

0� �þ ac1
0; as0

0� � � x01 þ ac2
0; as2

0� � � x02 þ . . . þ acNNR

0; asNNR

0
� �

� x0NNR
;

ð11:13Þ

where ~A0
0 ¼ ~A0, ~A0

1 ¼ ~A1, ~A0
2 ¼ ~A2, . . ., ~A0

NNR
¼ ~AN...N ; ~A0

0 ¼ ac
0
0 ; a

s0
0

� �
,

~A0
1 ¼ ac

0
1 ; a

s0
1

� �
, . . ., ~A0

NNR
¼ ac

0
NNR

; as
0

NNR

� �
, and x00 ¼ 1, x01 ¼ x1, x02 ¼ x1x2, . . .,

x0NNR
¼ x1 x2. . . xd . x0j and ~A0

j (j ¼ 0; 1; 2. . .;NNR) denote the transformed variables
and fuzzy coefficients, respectively.

The vector of the fuzzy coefficients can be defined as follows:

~A0 ¼ ~A0
0;
~A0
1; . . .

~A0
NNR

� �
¼ ac0

0; as0
0� �
; ac1

0; as1
0� �
; . . .; acNNR

0; asNNR

0
� �� �

; ð11:14Þ

ac0 ¼ ðac00; ac10; . . .; acNNR

0Þ; ð11:15Þ

as0 ¼ ðas00; as10; . . .; asNNR

0Þ ð11:16Þ

11.4.2 Determination of Model Structures Utilizing COA

In this approach, COA was introduced to determine the polynomial structure of
fuzzy models. COA is a stochastic search algorithm wherein chaos is introduced
into the optimization strategy to accelerate the optimum seeking operation and
determine the global optimal solution. Two phases exist in searching for an optimal
solution in the chaos optimization process. The first phase is called wide search and
involves the whole solution space according to an ergodic track. When the end
condition is satisfied, the current optimal state becomes close to the optimal solution
and the second phase starts. The second phase is based on the results of the first
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phase and involves a narrow search focused on a local region. The second phase
adds a small disturbance term until the final requirement is met. The added dis-
turbance can be a chaos variable, a random variable based on Gaussian
distribution/uniform distribution, or a bias generated by the mechanism of gradient
descent. Current COAs use the carrier wave method to map chosen chaos variables
linearly to the space of optimization variables and then search for optimal solutions
on the basis of the ergodicity of chaos variables. COAs focus on chaos
variable-based optimization rather than on introducing chaos variables as a small
disturbance in search optimization.

The logistic model used in chaos optimization is shown in Eq. (11.17). Logistic
mapping can generate chaos variables by iteration:

cnþ 1 ¼ f ðcnÞ ¼ lcnð1� cnÞ; ð11:17Þ

where l ¼ 4 and cn 2 0; 1½ � is the nth iteration value of the chaos variable c.
The optimization process uses the chaos variables generated from logistic

mapping to search through its own locomotion law. Chaos has dynamic properties
including ergodicity, intrinsic stochastic property, and sensitive dependence on
initial conditions. The characteristic of randomness ensures the possibility of
large-scale search. Ergodicity allows COA to traverse all possible states without
repetition and to overcome the limitations caused by ergodic search in general
random methods.

The linear mapping for converting chaos variables into optimization variables is
formulated as follows:

qn ¼ aþðb� aÞ � cn; ð11:18Þ

where qn is the optimization variable; a and b are the lower and upper limits of the
optimization variable q, respectively.

According to the iteration, the chaos variables traverse in 0; 1½ � and the corre-
sponding optimization variables traverse in the corresponding range a; b½ �.
Therefore, the optimal solution can be found in the area of feasible solution.

Each optimization variable represents the polynomial structure of a fuzzy model
and is described by the input variables x1 ; x2; . . .and xm½ � and arithmetic opera-
tions. The two arithmetic operations of addition (“+”) and multiplication (“*”) are
employed in the fuzzy polynomial model (Eq. 11.12). The optimization variable at
the n th generation is defined as follows:

qn ¼ q1n ; q2n; . . . ; q
Nc
n

� �
; ð11:19Þ

where Nc is an odd number representing the number of elements in a chaos variable.
For example, if four variables exist in the model, the value of Nc is first set to

seven with four elements representing four design variables. Another three elements
in the middle of every two adjacent design variables represent the arithmetic
operations to guarantee that the optimization variable, qn, can include all four
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variables. If the error requirement is not satisfied, the Nc value is adjusted until a
satisfactory modeling error that is close to zero and is smaller than the modeling
errors based on the previous studies is achieved.

The elements in odd numbers (q1n , q
3
n , . . ., q

Nc
n ) are used to represent variables in

a nonlinear structure. For the odd number k, if l� 1ð Þ=m\ qkn � l=m (m is the
number of variables in a nonlinear fuzzy model, 1 � l � m), the position of qkn is
represented by the lth variable xl. The elements in even numbers (q2n , q

4
n , . . .,

qNc�1
n ) are used to determine the arithmetic operations. For even number k, if

0\ qkn � 1=2 and 1=2\ qkn � 1, the arithmetic operations are addition (“+”) and
multiplication (“*”), respectively. For example, an optimization variable with nine
elements is used to represent the structure of a fuzzy polynomial model with four
dependent variables. If the optimal variable is obtained as
q ¼ x2; þ ; x3; �; x4; �; x4; þ ; x1½ �, the polynomial structure can be expressed as
x2 þ x3x24 þ x1. The transformed variables are x00 ¼ 1; x01¼x2 ; x02 ¼ x3x24 ; x03 ¼ x1.
Therefore, the fuzzy polynomial model with fuzzy coefficients can be represented
as

~y ¼ ~A0
0 þ ~A0

1x2 þ ~A0
2x3x

2
4 þ ~A0

3x1

where ~A0
0 ¼ ac

0
0 ; a

0s
0

� �
; ~A0

1 ¼ ac
0
1 ; a

s0
1

� �
; ~A0

2 ¼ ac
0
2 ; a

s0
2

� �
and ~A0

3 ¼ ac
0
3 ; a

s0
3

� �
. The

central values acj
0 and spread values asj

0 (j ¼ 0; 1; . . .; 4) of the fuzzy coefficients are
determined by using Tanaka’s FR analysis.

11.4.3 Determination of Fuzzy Coefficients by Using FR
Analysis

Tanaka’s FR aims to use fuzzy functions to describe an imprecise and vague
phenomenon. All input and output variables, as well as the coefficients of the
relationships, are considered as fuzzy numbers. Two different criteria (i.e., the least
absolute deviation and the minimum spread) are used to evaluate the fuzziness of
the output. Deviations between observed and estimated values depend on the
indefiniteness of system structures and are considered as the fuzziness of system
parameters. The fuzzy parameters of FR models indicate the possibility distribution
and are obtained as fuzzy sets that represent the fuzziness of models. The objective
of FR analysis is to minimize the fuzziness of the model by minimizing the total
spread of the fuzzy coefficients, thus leading to the minimum uncertainty of the
output.

On the basis of chaos optimization, a fuzzy model containing second- and/or
higher-order terms and interaction terms is represented in a polynomial structure.
Tanaka’s FR analysis is employed to determine the fuzzy coefficients for each term
of the fuzzy polynomial model. Fuzzy coefficients with the central point ac0 and
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spread value as0 are determined by solving the following linear programming
(LP) problem:

Min J ¼
XNNR

j¼0

asj
0XM
i¼1

x0 j ið Þ
��� ��� !

; ð11:20Þ

where J is the objective function that represents the total fuzziness of the system,
1þNNR is the number of terms of the fuzzy polynomial model, M is the number of
data sets, x0 j ið Þ is the jth transformed variable of the ith data set in the fuzzy
polynomial model, and :j j refers to absolute value of the transformed variable. The
constraints can be formulated as follows:

XNNR

j¼0

acj
0 x0jðiÞþ ð1� hÞ

XNNR

j¼0

asj
0 x0jðiÞ
��� ���	 yi i ¼ 1; 2; . . .;M; ð11:21Þ

XNNR

j¼0

acj
0x0jðiÞ � ð1� hÞ

XNNR

j¼0

asj
0 x0jðiÞ
��� ���� yi i ¼ 1; 2; . . .;M; ð11:22Þ

asj
0 	 0; acj

0 2 R; j ¼ 0; 1; 2; . . .NNR;

x0
0ðiÞ ¼ 1 for all i and 0 � h � 1:

where h refers to the degree of fit of the fuzzy model in a given data (between zero
and one), and yi is the value of the ith dependent variable. Constraints (11.21) and
(11.22) ensure that each objective yi has at least h degree of belonging to ~yi as
l~yiðyiÞ	 h ; i ¼ 1; 2; . . .;M. The last constraints for the variables ensure that asj

0

and acj
0 are non-negative. Therefore, the fuzzy parameters ~A0

jðj ¼ 0; 1; 2; . . .NNRÞ
can be determined by solving the LP problem subject to l~yiðyiÞ 	 h:

11.4.4 Algorithms of Chaos-Based FR

The algorithms of the proposed chaos-based FR method are described as follows:

(1) The number of iterations and the number of elements Nc in a chaos variable
are initialized. Nc is an odd number, and Nc values are chosen randomly in the
range of 0; 1½ � to decide the value of the initialized chaos variable.

(2) The iteration starts from n ¼ 1. The chaos variables cn are generated based on
the logistic model in Eq. (11.17) and are transformed into the optimization
variables, qn, by using Eq. (11.18). The polynomial structure of the fuzzy
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model is determined based on the value of the optimization variable qn.
According to the rules described in Sect. 11.4.2, the elements in odd numbers
and even numbers are substituted by input variable xk (k ¼ 1; . . .;N and N is
the number of variables) and arithmetic operations “+” and “*,” respectively.
Subsequently, the transformed variable x0j with linear, second order, and/or
higher-order terms and interaction terms are generated based on arithmetic
operations. If the operation is “*,” the second- and/or higher-order terms and
interaction terms are determined by multiplying the variables on both sides of
“*”. The arithmetic operation “+” is used to add all terms, including linear
terms, to generate the final polynomial structure of the fuzzy model.

(3) According to the generated polynomial structure, the fuzzy coefficients ~A
0
j ¼

acj
0; asj

0
� �

are assigned to all transformed variables of the developed structure.

The values of the fuzzy coefficients are calculated by solving the LP problem
as shown in Eqs. (11.20–11.22).

(4) Based on the developed fuzzy polynomial model, the predicted variable ~yi can
be calculated. The fitness value RE can then be obtained by calculating the
relative error between ~yi and the actual data yi.

(5) Step (2) is repeated. The algorithms are again executed by another training
data set until all training data sets are employed. The mean fitness value
MREðnÞ for all training data sets is calculated.

(6) The iteration continues by nþ 1 ! n and stops after the number of iterations
reaches the predefined value. The values of MREðnÞ are recorded for each
iteration and the solution with the smallest mean fitness value is selected. The
fuzzy polynomial model with the smallest training error is then found. Finally,
the chaos-based FR model is generated.

We have applied the proposed approach on modeling the functional relationships
in QFD for mobile phone products. The following shows an example of a customer

Customer 1

Customer 2

Customer n

First Stage

Ranking of 
customer 1

Ranking of 
customer 2

Ranking of 
customer n

A consensus 
ranking

Second Stage

Fig. 11.4 Flowchart of the fuzzy group decision-making method
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satisfaction model for the CR “comfortable to hold” based on the chaos-based FR
approach.

~y ¼ 14:9991; 2:8422 � 10�14� �þ �1:5036; 2:8422 � 10�14� �
x3

þ �0:2890; 0ð Þx4 þ �0:3634; 5:6843 � 10�14� �
x1

þð0:0045; 0:0077Þx1x2;
ð11:23Þ

where ~y is the predicted value of “comfortable to hold”; x1; x2; x3, and x4 are four
ECs that denote weight, height, width, and thickness, respectively.

11.5 Determination of Importance Weights of ECs
by Using Fuzzy Group Decision-Making Method

Regarding the determination of importance weights of ECs in QFD, most previous
studies only address one type of uncertainties as described in Sect. 11.1 that would
adversely affect the robustness of prioritizing ECs. Thus, it is necessary to consider
the two types of uncertainties simultaneously while determining the importance
weights of ECs. In this section, a novel fuzzy group decision-making method that
integrates a fuzzy weighted average method with a consensus ordinal ranking
technique is described to address the two types of uncertainties. The approach
consists of two stages. The first stage involves the determination of the importance
weights of ECs with respect to each customer by using fuzzy weighted average
method with the fuzzy expected operator. The second stage determines a consensus
ranking by synthesizing all customer preferences on the ranking of ECs. The
flowchart for the proposed methodology is presented in Fig. 11.4.

11.5.1 Determination of the Importance Weights of ECs
Based on the Fuzzy Weighted Average Method
with Fuzzy Expected Operator

For the first type of uncertainty in QFD, fuzzy set theory can be an effective tool to
deal with uncertain inputs. On the basis of fuzzy set theory, the inputs required for
QFD are represented with linguistic terms characterized by fuzzy sets. The two sets
of input data should be expressed as fuzzy numbers, namely, the relative weights of
CRs and the relationship measures between CRs and ECs, to determine the
importance weights of ECs.

Some notations that are used in this section are shown as follows:
CRi The ith customer requirement where i ¼ 1; 2; . . .;m
ECj The jth engineering characteristic where j ¼ 1; 2; . . .; n
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Cl The lth customer surveyed in a target market where l ¼ 1; 2; . . .;K
m The number of CRs
n The number of ECs
K The number of customers surveyed in a target market
~Wl
i

The lth customer’s individual preference on the ith customer need, which is a
triangular fuzzy number belonging to certain predefined linguistic terms, such
as “very important,” “important,” and “moderately important.”

~Rij The relationship measure between the ith CR and jth EC, which is a triangular
fuzzy number belonging to some predefined linguistic terms, such as
“strong,” “moderate,” and “weak.”

The relative importance of the ith CR with respect to the lth customer and
relationship measures between CRs and ECs are expressed as triangular fuzzy
numbers. Thus, the determination of the importance of ECs falls under the category
of fuzzy weighted average. The fuzzy importance of ECj with respect to the lth
customer, which is denoted by ~Zl

j , can be expressed as follows:

~Zl
j ¼

Xm
i¼1

~Wl
i
~Rij

,Xm
i¼1

~Wl
i : ð11:24Þ

Several methods can be devised to calculate the fuzzy weighted average.
A common method for calculating the fuzzy ECs of Eq. (11.24) was proposed by
Kao and Liu (2001):

Let Wl
i

� �
a; Rij
� �

a denote the a-level sets of ~Wl
i ;
~Rij, respectively, which can be

defined as follows:

Wl
i

� �
a ¼ Wl

i

� �L
a ; Wl

i

� �U
a

h i
¼ min

wl
i

wl
i 2 Wl

i

.
l ~Wl

i
wl
i

� �	 a
n o

;max
wl
i

wl
i 2 Wl

i

.
l ~Wl

i
wl
i

� �	 a
n o" #

Rij
� �

a ¼ Rij
� �L

a ; Rij
� �U

a

h i
¼ min

rij
rij 2 Rij

.
l~Rij

rij
� �	 a

n o
;max

eik
rij 2 Rij

.
l~Rij

rij
� �	 a

n o	 

:

ð11:25Þ

These intervals indicate where the relative weight of customer attributes and the
relationship between CRs and ECs are located at possibility level a. According to
the extension principle of Zadeh (1978), the membership function, l~Zl

j
, can be

derived from the following equation:

l~Zl
j
zlj
� �

¼ sup
r;w

min l ~Wl
i
wl
i

� �
; l~Rij

rij
� � 8i; j

�
zlj ¼

Pm
i¼1

wl
irij

�Pm
i¼1

wl
i

� 
: ð11:26Þ
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Therefore, the upper and lower bounds of the a-level of ~Zl
j can be obtained. The

solution of the upper and lower bounds can be attained by solving the following LP
model:

Zl
j

� �U
a
¼ max

Pm
i¼1

wl
irij

�Pm
i¼1

wl
i

s:t:

Wl
i

� �L
a �wl

i � Wl
i

� �U
a

Rij
� �L

a � rij � Rij
� �U

a

i ¼ 1; . . .;m ;

ð11:27Þ

and

Zl
j

� �L
a
¼ min

Pm
i¼1

wl
irij

�Pm
i¼1

wl
i

s:t:

Wl
i

� �L
a �wl

i � Wl
i

� �U
a

Rij
� �L

a � rij � Rij
� �U

a

i ¼ 1; . . .;m :

ð11:28Þ

Assume that q ¼ 1
�Pm

i¼1
wl
i and ti ¼ qwl

i i ¼ 1; 2; . . .;m , Eqs. (11.27) and

(11.28) can be transformed into the following LP model:

Zl
j

� �U
a
¼ max

Pm
i¼1

ti Rij
� �U

a

s:t:

q Wið ÞLa � ti � q Wið ÞUaXm
i¼1

ti ¼ 1

i ¼ 1; . . .;m; q; ti 	 0 ;

ð11:29Þ

and
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Zl
j

� �L
a
¼ min

Pm
i¼1

ti Rij
� �L

a

s:t:

q Wið ÞLa � ti � q Wið ÞUaXm
i¼1

ti ¼ 1

i ¼ 1; . . .;m; q; ti 	 0:

ð11:30Þ

According to the method of Chen et al. (2006), the expected value of ~Zl
j can be

calculated by the following:

E ~Zl
j

h i
¼ 1

2L

XL
f¼1

~Zl
ji

� �U
af
þ ~Zl

Ji

� �L
af

� �
; j ¼ 1; 2; . . .;m: ð11:31Þ

The amount of information is best reflected by a single value derived by using
the fuzzy expected value operator. This condition is caused by the fuzzy importance
weights of CRs lying in a range, as well as the different a-cuts providing different
intervals and uncertainly levels of importance weights of CRs. When the impor-
tance weights of ECs are calculated, their ordinal rankings can also be derived.
Details of the methods to determine importance weights of ECs are given by Chen
et al. (2006).

11.5.2 Synthesis of Individual Preferences on the Ranking
of ECs

In synthesizing individual preferences on ECs in terms of ordinal rankings to
address the second type of uncertainty, a form of consensus can be derived by
simply adding up the member preferences and taking their average. However, such
an approach does not necessarily lead to a consensus ranking because the ranking
derived by taking a simple arithmetic average may not be robust. The ranking of
ECs should be viewed in terms of a “distance” measure. Such a measure relative to
a pair of rankings will be an indicator of the degree of correlation between rankings.
In this research, a method is proposed to deal with the problem of synthesizing
ordinal preferences expressed as priority vectors to form a consensus. This method
suggests the problem of determining a compromise or consensus ranking that best
agrees with all individual rankings through an assignment problem.

In the proposed approach, a metric or distance function for a set of rankings is
introduced. The consensus ranking approach can minimize the total absolute dis-
tance (disagreement). We begin by examining some conditions where such a dis-
tance, d, should be satisfied. First, the following axioms are required:
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Axiom 1 d A;Bð Þ � 0 with equality if A ¼ B

Axiom 2 d A;Bð Þ ¼ d B;Að Þ
Axiom 3 d A;Cð Þ � d A;Bð Þþ d B;Cð Þ with equality if the ranking B is between
A and C.

Axiom 4 (Invariance)
(1) If A0 results from A by a permutation of the objects, and B0 results from B by

the same permutation, then d A0;B0ð Þ ¼ d A;Bð Þ
(2) If �A and �B result from A and B by reversing the order of the objects, then

d �A; �Bð Þ ¼ d A;Bð Þ
Axiom 5 (Lifting-moving from n to nþ 1 dimensional space)
If A and B are two rankings of n objects and A* and B* are the rankings that result
from A and B, then d A�;B�ð Þ ¼ d A;Bð Þ by listing the same nþ 1ð Þst object last.
Axiom 6 (Scaling)
The minimum positive distance is one.

The axioms are consistent and can characterize a unique distance function. We
can consider the problem wherein K customers provide the ordinal rankings

Al
� �K

l¼1 of n ECs. Let Al ¼ al1; . . .; a
l
n

� �
and bj 2 1; 2; . . .; nf g, where bi represents

the ordinal ranking of the ECs.

Definition 1 The median or consensus ranking B̂ refers to the ranking that mini-
mizes the total absolute distance.

MðBÞ ¼
XK
l¼1

d Al;B
� � ¼XK

l¼1

Xn
j¼1

alj � bj
��� ���: ð11:32Þ

The median ranking is in the best agreement with the set of selected rankings,
thus providing an objective criterion to arrive at a consensus.

Let B0 be the set of all rankings of n objects. Thereafter, the following is
obtained:

min
B2B0

XK
l¼1

d Al;B
� �	 min

B2Rn

XK
l¼1

d Al;B
� � ¼ min

B2Rn

XK
l¼1

Xn
i¼1

alj � bj
��� ���: ð11:33Þ

Equation (11.33) attains its minimum when the following is satisfied:

bj ¼ median alj
n om

l¼1
¼ b0j: ð11:34Þ

Let B0 ¼ b0i; . . .; b
0
n

� �
. Thereafter, we obtain the following:
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M B0ð Þ �M Bð Þ For all B 2 B0: ð11:35Þ

Thus, we have:

Theorem 1 Let Al
� �K

l¼1 be a set of rankings and B0 be given by (11.34). If B0 2 B0,
then B0 is the median ranking.

The determination of the median ranking requires a specialized algorithm.
However, if consideration is restricted to the set of complete rankings, the problem
can be represented by an LP formulation.

The problem can be solved effectively by representing the problem as an
assignment problem. djq is defined as follows:

djq ¼
XK
l¼1

alj � q
��� ���: ð11:36Þ

Considering the following expression:

XK
l¼1

d Al;B
� � ¼XK

l¼1

Xn
j¼1

alj � bj
��� ���: ð11:37Þ

Equation (11.36) is the value of the j th sum in Eq. (11.37) if bj is set equal to
q q 2 1; 2; . . .; nf gð Þ:

If we define the following expression

xjq ¼ 1 if bj ¼ q
0 otherwise ;

�
ð11:38Þ

then the restricted problem is equivalent to the following assignment problem:

min
xjq

Pn
j¼1

Pn
q¼1

djqxjq

s:t:
Pn
j¼1

xjq ¼ 1 for all qPn
q¼1

xjq ¼ 1 for all j

xjq 	 0 for all j; q:

ð11:39Þ

The above integer programming model is capable of handling large problems.
By solving the model, the consensus rankings of ECs can be obtained.
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11.5.3 Evaluation of Robustness

The measurement of robustness depends on the perspective of robustness. Kim and
Kim (2009) proposed an index to evaluate the robustness of ordinal ranking, namely,
priority relationships among ECs. This approach indicates the relative priority order
among two or more ECs. The robustness on the priority relationships among ECs
can be measured as the degree in which the relative priority relationships among ECs
are maintained despite the presence uncertainty. In this viewpoint, the robustness
index on the priority relationships among ECs are expressed as the likelihood that a
priority relationship in V is retained. For instance, if V is j1j2½ �, V represents a priority
relationship wherein ECj1 has a higher priority than ECj2 . The robustness index on
the priority relationship, denoted as RI Vð Þ, can be calculated as follows:

RI Vð Þ ¼
PL

l
yðlÞ

L

where
yðlÞ ¼ 1; if ranking ECV vð Þ; l

� � � ranking ECV vþ 1ð Þ; l
� �8v ¼ 1; . . .;N Vð Þ � 1

y lð Þ ¼ 0; otherwise
;

�
ð11:40Þ

where y lð Þ is an indicator variable, ECV vð Þ denotes the vth EC in V , and N Vð Þ
denotes the array size of V .

Considering that RI Vð Þ is expressed as a type of likelihood measured by an
empirical probability, it has a value between zero and one. The larger value of
RI Vð Þ implies that higher robustness on the absolute ranking of ECs or the priority
relationship in V can be obtained. If RI Vð Þ is equal to one, the priority relationship
in V is always retained despite the variability. By using the robustness index, the
robustness of the prioritization decision, EC or V , can be evaluated.

The design of a flexible manufacturing system (FMS) (Liu 2005; Chen et al.
2006) is used to illustrate the proposed method. Assume that ten customers, denoted
as Cl; l ¼ 1; 2; . . .; 10, are surveyed in a target market. Seven fuzzy numbers are
used to express their individual assessments on the eight CRs, as shown in
Table 11.2. W1 
W7 are the importance weights of CRs, which represent very
unimportant, quite unimportant, unimportant, slightly important, moderately
important, important and very important, respectively. The relationship measures
between CRs and ECs are shown in Table 11.3. R1 
R4 denote four relationship
linguistic terms, which are very weak, weak, moderate, and strong, respectively.

The proposed approach was applied to compute the ranking of ECs and the final
ordinal rankings of ECs can be obtained.

EC3 � EC7 � EC1 � EC2 � EC4 � EC8 � EC9 � EC10 � EC6 � EC5

Based on the method of Chen et al. (2006), the ordinal ranking of ECs is shown
as follows:

350 H. Jiang et al.



EC3 � EC7 � EC1 � EC2 � EC4 � EC8 � EC9 � EC6 � EC10 � EC5

From the ranking results of ECs of the two methods, we can find the difference
in the order of EC10 and EC6. Based on the method of Chen et al. (2006), the
ordinal ranking of EC10 and EC6 is EC6 > EC10. Based on the proposed approach,
the result is opposite. Therefore, the robustness index is used to evaluate the ordinal
ranking of EC10 and EC6 between the method of Chen et al. (2006) and the
proposed approach. In the prior method, the prioritization relationship V is [6 10].
For the first customer, ECI6 > ECI10 is consistent with V . Hence, y 1ð Þ is equal to 1.
In the proposed approach, V is [10 6]. For the first customer, ECI10 < ECI6 is not
consistent to V . Hence, y 1ð Þ is equal to 0. Similarly, the value of y lð Þ for the ten
customers can be derived, as shown in Table 11.4. Then, RI Vð Þ value based on the
Chen’s method can be calculated as follows:

RI Vð Þ ¼ 1þ 0þ 0þ 1þ 0þ 0þ 1þ 0þ 1þ 0
10

¼ 0:4

Table 11.2 The fuzzy importance of eight CRs assessed by ten customers using fuzzy numbers

CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8

C1 W7 W2 W7 W2 W7 W3 W4 W1

C2 W3 W3 W6 W7 W1 W2 W6 W7

C3 W1 W7 W2 W5 W1 W1 W5 W7

C4 W7 W4 W7 W1 W3 W6 W7 W2

C5 W5 W2 W2 W6 W5 W1 W7 W6

C6 W7 W4 W1 W5 W3 W2 W7 W2

C7 W7 W2 W6 W1 W4 W5 W1 W6

C8 W6 W7 W5 W7 W7 W6 W2 W2

C9 W7 W1 W6 W3 W7 W5 W7 W7

C10 W2 W4 W7 W2 W7 W1 W6 W2

Table 11.3 The relationship matrix between CRs and ECs

Rij EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8 EC9 EC10

CR1 R3 R2 R3 R3 R1 R1 R3 R2 R2 R2

CR2 R2 R3 R4 R2 R1 R3 R3 R3 R3 R2

CR3 R4 R3 R4 R2 R1 R1 R4 R2 R2 R2

CR4 R3 R3 R3 R3 R2 R2 R2 R3 R3 R2

CR5 R4 R4 R3 R4 R2 R2 R3 R3 R3 R3

CR6 R2 R2 R3 R3 R2 R2 R2 R2 R2 R2

CR7 R2 R3 R3 R2 R3 R3 R4 R3 R2 R2

CR8 R3 R2 R3 R3 R2 R2 R4 R3 R2 R2
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and RI Vð Þ value based on the proposed approach can be calculated as shown
below.

RI Vð Þ ¼ 0þ 1þ 1þ 0þ 1þ 1þ 0þ 1þ 0þ 1
10

¼ 0:6

Finally, the index values for the ranking based on the prior method and the
proposed approach are calculated as 0.4 and 0.6 respectively. Therefore, the pro-
posed approach outperforms the method of Chen et al. (2006) in prioritizing the
ECs in terms of robustness.

11.6 Target Value Setting of ECs by Using Fuzzy
Optimization and Inexact Genetic Algorithm

In the product design stage, product development teams may need to consider
various design scenarios while determining design specifications. However, in
previous studies of target value setting of ECs in QFD, only a single solution is
obtained and target value setting for different design scenarios cannot be consid-
ered. In this section, a fuzzy optimization model is presented to determine the target
value setting for ECs in QFD. An inexact genetic algorithm approach is described
to solve the model that takes the mutation along the weighted gradient direction as a
genetic operator. Instead of obtaining one set of exact optimal target values, the
approach can generate a family of inexact optimal target values setting within an
acceptable satisfaction degree. Through an interactive approach, a product

Table 11.4 An illustration of the robustness index between the two methods

Customer ECI6(l) ECI10(l) Method of Chen et al. (2006)
with traditional average
arithmetic EC = {EC6, EC10},
V = [6 10]

The proposed approach with
an 0–1 integer programming
EC = {EC10, EC6}, V = [10
6]

CI 0.4561 (8)a 0.4164 (9) y 1ð Þ ¼ 1 y 1ð Þ ¼ 0

C2 0.3276 (9) 0.3669 (8) y 2ð Þ ¼ 0 y 2ð Þ ¼ 1

C3 0.2499 (9) 0.3411 (8) y 3ð Þ ¼ 0 y 3ð Þ ¼ 1

C4 0.4432 (8) 0.3951 (9) y 4ð Þ ¼ 1 y 4ð Þ ¼ 0

C5 0.3540 (9) 0.3725 (8) y 5ð Þ ¼ 0 y 5ð Þ ¼ 1

C6 0.4219 (9) 0.4280 (8) y 6ð Þ ¼ 0 y 6ð Þ ¼ 1

C7 0.3969 (8) 0.3327 (9) y 7ð Þ ¼ 1 y 7ð Þ ¼ 0

C8 0.4146 (9) 0.4301 (8) y 8ð Þ ¼ 0 y 8ð Þ ¼ 1

C9 0.3916 (8) 0.3526 (9) y 9ð Þ ¼ 1 y 9ð Þ ¼ 0

C10 0.3719 (9) 0.4023 (8) y 10ð Þ ¼ 0 y 10ð Þ ¼ 1

Robustness index value RI(V) = 0.4 RI(V) = 0.6

Note aDenotes the ranking of the corresponding ECI for the lth customer
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development team can determine a combination of preferred solution sets from
which a set of preferred target values of ECs based on a specific design scenario can
be obtained.

11.6.1 Formulation of Fuzzy Optimization Model for Target
Values Setting in QFD

The processes of determining the target values for ECs in QFD can be formulated as
shown below:

Determine target values x1; x2; . . .; xn by maximizing the overall customer
satisfaction:

yi ¼ fiðXÞ; i ¼ 1; . . .;m;

Xj ¼ gjðX jÞ; j ¼ 1; . . .; n;

where

X ¼ ðx1; x2; . . .; xnÞT ;

X j ¼ ðx1; . . .; xi�1; xjþ 1; . . .; xnÞT ;

yi is the customer perception of the degree of satisfaction of the ith CR
i ¼ 1; . . .;m,

xj is the target value of the jth EC, j ¼ 1; . . .; n,
fi is the functional relationship between the ith CR and ECs, i.e.

yi ¼ fiðx1; . . .; xnÞ, and
gj is the functional relationship between the jth EC and other ECs, i.e.,

xj ¼ gjðx1; . . .; xj�1; xjþ 1; . . .xnÞ

The above equation is a general model to determine the target values of ECs.
Additional constraints can be added to the above formulation as appropriate. In
reality, many design tasks are performed in an environment wherein system
parameters, objectives, and constraints are not known precisely. Therefore, devel-
oping a crisp optimization model to set the target values of ECs in QFD is difficult.
For the establishment of an objective function, customers usually cannot provide a
precise satisfaction value and instead express their satisfaction in linguistic terms
such as “quite satisfied” and “very satisfied.” The relationships between CRs and
ECs, as well as among ECs, can be very complicated. Engineers usually do not
have full knowledge of the impact of an EC on CRs or on other ECs. Thus, setting
the relationship values between a CR and an EC is also imprecise. Regarding the
constraints, vagueness also exists. For example, the cost is usually described as a
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function of CR and should not exceed a predetermined upper limit. The cost
constraint can then be formulated as follows:

c1x1 þ c2x2 þ � � � þ cnxn �~c;

where, ~c is the upper limit of cost and c1,c2, … cn are the coefficients. Owing to the
imprecise and incomplete design information available in the early design stage, the
values of ~c may be imprecise.

The fuzziness presents a special challenge to model effectively the process of
target values setting by using traditional mathematical programming technique. One
way to deal with such vagueness quantitatively is to employ fuzzy set theory, which
can be used to develop a fuzzy optimization model for the target value setting of
ECs in QFD. On the basis of the work of Kim et al. (2000), a general fuzzy
optimization model to set target values of ECs in QFD is proposed as follows:

M~ax lðy1; y2; . . .; ynÞ
s: t:

C1 : yi ~¼ fiðXÞ; i ¼ 1; . . .;m

C2 : Xj ~¼ gjðX jÞ; j ¼ 1; . . .; n

C3 : CðXÞ�~c;

ð11:41Þ

where l is the satisfaction degree of customers to CRs; C1 and C2 are the fuzzy
relationship constraints; C3 is the cost constraint.

11.6.2 Tolerance Approach to the Determination
of an Exact Optimal Solution from the Fuzzy
Optimization Model

The symmetric models, which are based on the definition of fuzzy decision, were
frequently adopted in fuzzy LP models. They assumed that the objective and
constraints in an imprecise situation could be represented by fuzzy sets. A decision
could be stated as the union of the fuzzy objective and constraints and defined by a
max–min operator. A fuzzy objective set G and a fuzzy constraint set C are
assumed to be given in a space X. G and C are then combined to form a decision D,
which is a fuzzy set resulting from the intersection of G and C, and the corre-
sponding lD is equal lG \ lc. Lai and Hwang (1992) mentioned that the approaches
of Zimmermann, Werner, Chanas and Verdegay are the most practical approaches
among various techniques in fuzzy LP. Transforming a fuzzy optimization model
into a crisp model is the common idea of these approaches. In this research,
Zimmerman’s tolerance approach (Zimmerman 1996) is adopted to solve the fuzzy
optimization model. First, the membership function of fuzzy constraints and the
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fuzzy objective have to be determined. Customers usually cannot provide a satis-
faction value precisely. Customers express satisfaction in fuzzy terms such as “quite
satisfactory” and “not very satisfactory.” Let ymin

i and ymax
i represent the lower and

upper bounds of aspirations, respectively, with respect to yi. A customer would then
express complete dissatisfaction of a design (X) in which yiðXÞ � ymin

i ; but would
express complete satisfaction if yiðXÞ 	 ymax

i . A membership function lyiðXÞ can
be introduced to measure the satisfaction degree of customers to the ith CR at
various ECs for design (X). The membership function lyiðXÞ can be represented as
follows:

lyiðXÞ ¼
0 if yiðXÞ � ymin

i
sðXÞ if ymin

i � yiðXÞ � ymax
i

1 if yiðX Þ	 ymax
i ;

8<: ð11:42Þ

where sðXÞ could be linear or nonlinear.
The membership functions for all CRs lyiðXÞ, where i¼1; 2; . . .;m, form the

membership function of a fuzzy objective function. Each fuzzy constraint in the
fuzzy optimization model can be represented by a fuzzy set. The membership
function of the fuzzy relationship constraints are lfiðX; YÞ and lgjðX; YÞ, where
i ¼ 1; 2. . .;m and j ¼ 1; 2. . .; n, respectively. The membership functions of a fuzzy
constraint “AX ~¼ b” can be represented as follows (Zimmerman 1996):

lðXÞ ¼
0 amp; if amp;AX � b� d or AX 	 bþ d

1� jAX�bj
d amp; if amp; b� d\AX\bþ d

1 amp; if amp;AX ¼ b

8<: ð11:43Þ

where A is a row vector, b is a constant, and d is a subjectively chosen constant of
the admissible violations of the constraint.

The membership of the cost constraint, lcðXÞ, can be represented in the fol-
lowing form:

lcðXÞ ¼
1 if CX\ c

1� ðCX � cÞ
t

if c�CX � cþ t

0 if CX[ cþ t ;

8>><>>:
where t is a pre-specified non-negative tolerance level to cost c. The above mem-
bership function denotes the following:
lðXÞ is zero if the constraints are strongly violated,
lðXÞ is one if the constraints are very satisfied, and
lðXÞ increases monotonously from zero to one

With the use of Zimmerman’s tolerance approach, the crisp form of the fuzzy
optimization model in Eq. (11.41) can be formulated as follows:

11 Intelligent Quality Function Deployment 355



Maximize k

subject to

k� ly iðXÞ; i ¼ 1; 2; . . .;m

k� lf i
ðX; YÞ; i ¼ 1; 2; :. . .m

k� lgjðX; YÞ; j ¼ 1; 2; . . .; n

k� lcðXÞ ;

ð11:44Þ

where k ð0� k� 1Þ represents the overall value of membership functions.
A unique optimal solution for the above model can be obtained by using an LP

technique, which is a set of optimal target values for ECsx1; x2; . . .; xn. The exact
setting of optimal target values for ECs obtained by using the LP technique may not
be acceptable to a product development team in a new product design. This con-
dition is caused by the inherent or permitted possibility and flexibility in the target
values setting of ECs existing in QFD and the obtained solutions allowing a product
development team to reconcile tradeoffs among the CRs and ECs under various
design scenarios. The provision of a family of inexact satisfactory target values
setting for ECs would then be very useful to the product development team. In this
chapter, an inexact genetic algorithm is employed to generate a family of inexact
satisfactory target values setting for ECs from the fuzzy optimization model.
Detailed descriptions are shown below.

11.6.3 Inexact Genetic Algorithm Approach
to the Generation of a Family of Inexact Solutions
from the Fuzzy Optimization Model

During the last 30 years, interest in problem solving systems based on principles of
evolution and hereditary has grown. Even though many different classes of the
systems exist, such as genetic algorithms, evolutionary programming, and evolution
strategies, they all rely on the same concept of mimicking mechanisms of biological
evolution. Admittedly, the gap among them is getting smaller and smaller. They
have also been called as some common terms such as evolutionary algorithms and
evolution programs. The inexact genetic algorithm is a specially designed one to
solve these problems with fuzziness.

The basic idea of the inexact genetic algorithm (Wang 1997) is that the mutation
operator moves along a weighted gradient direction. An individual is led by this
mutation operator to arrive at inexact solutions within an acceptable range of the
fuzzy optimal solution sets. By means of an interactive approach, a set of preferred
solutions can be sought by a convex combination of the solutions selected from the
family. The basic idea of the method is applied to solve the fuzzy optimization
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model Eq. (11.44) to obtain a set of preferred solutions corresponding to a particular
design scenario.

Generally, two types of genetic operators exist for the genetic algorithm:
crossover and mutation. For the linear problem, only the mutation operator is
utilized. In the inexact genetic algorithm, the mutation operator moves along a
weighted gradient direction. For model Eq. (11.44), the mutation operator can be
induced as follows.

Based on the tolerance method, the fuzzy optimal solution set of the fuzzy
optimization model Eq. (11.44) is a fuzzy set defined by the following:

~S ¼ fðX; l~SðX; YÞÞjX; Y 2 Rn
þ g; ð11:45Þ

where

l~SðX; YÞ ¼ minflyiðXÞ; lfiðX; YÞ; lgjðX; YÞ; lcðXÞg i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;m;

ð11:46Þ

and Rn
þ is the non-negative n-dimensional space. Based on the equivalent uncon-

strained max-min optimization problem, a weighted gradient of l~SðX; YÞ can be
defined as follows:

GðX; YÞ rl~SðX; YÞ
¼ � CðlyiÞ �

X
i

lyiðXÞþCðlfiÞ �
X
i

lfiðX; YÞþCðlgjÞ �
X
j

lgjðX; YÞþCðlcÞ � lcðXÞ ;

i ¼1; 2; . . .; n ; j ¼ 1; 2; . . .;m

ð11:47Þ

where CðlÞ represents the weight of the corresponding membership, which can be
designed as follows:

Let lmin ¼ minflyiðXÞ; lfiðX; YÞ; lgjðX; YÞ; lcðXÞ; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;
mg; then

CðlÞ ¼
1; l ¼ lmin
r
l
; lmin\l\1

0 ; l ¼ 1 ;

8>>><>>>: ð11:48Þ

where r is a sufficiently small positive number.
If ðx; yÞkþ 1 is the child of the individual, ðx; yÞk , the mutation along the weighted

gradient direction can be described as follows:
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ðx; yÞkþ 1 ¼ ðx; yÞk þ hGðx; yÞ; ð11:49Þ

where h is a random step length of the Erlang distribution, which is generated by a
random number generator.

By employing the inexact genetic algorithm to solve the fuzzy optimization
model, a family of inexact optimal solutions can be obtained. The interactive
approach allows a product development team to select a preferred solution from the
fuzzy optimal solutions. First, the team provides an acceptable membership degree
level of the fuzzy optimization. They then choose their preference structure utilizing
the human-computer interaction. The product development team needs to point out
which criteria are of utmost concern to them. The criteria could be the objective,
constraints, or decision variables. The solutions in the α-cut of the fuzzy solutions
set, ~Sa, with the highest and lowest values of these criteria are stored in memory and
updated in each interaction. Given the large number of the visited points, the
solutions preferred by the product development team can be found with high
probability. Considering that in general, more than one criterion of concerns from
the product development team exists, more than one solution would be derived.
When the iteration terminates, the solutions with their criteria values will be dis-
played to the product development team. The product development team can then
select a couple of preferred solutions each time. By repeating the above procedures,
the preferred final solution can be generated.

The proposed approaches have been applied to car door design. Table 11.5
shows the 5 sets of optimal solutions, which correspond to maximum values of the
decision variables. In this table, y1–y5 are the satisfaction values of five CRs, which
are “easy to close from outside,” “stays open on a hill,” “rain leakage,” “road
noise,” and “cost,” respectively; x1 to x6 are target values setting of six ECs, which
are “energy to close the door,” “check force on level ground,” “check force on 10 %
slope,” “door seal resistance,” “road noise reduction,” and “water resistance,”
respectively; lðzÞ is the membership function of the fuzzy optimal solution
set, which can be calculated based on Eq. (11.46); The last column shows
the maximum values of y1 to y5. For example, the maximum of
y1 = maxf4:9273; 3:3547; 4:9273; 4:0517; 3:1515g¼ 4:9273.

From the results, various sets of preferred target values setting ECs can be
obtained for different design scenarios rather than the only one exact optimal target
values setting. For example, the design team would like to have the maximum
satisfaction values of all the CRs. In this case, the design team should select the
solutions, Zmax(1), Zmax(2), Zmax(3), Zmax(4) and Zmax(5). The satisfaction values of the
individual CRs, Y final, and the target values setting of the ECs, X final can be
calculated using the following linear combination.

Z ¼ Zmaxð1Þ � x1 þ Zmaxð2Þ � x2 þ Zmaxð3Þ � x3 þ Zmaxð4Þ � x4 þ Zmaxð5Þ � x5

where Z ¼ ðYfinal; XfinalÞ, and x1 ¼ 0:3;x2 ¼ 0:2; x3 ¼ 0:1; x4¼0:1 and x5¼0:3
are the importance weights of the corresponding CRs.
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Based on the above linear combination, Yfinal and Xfinal can be determined as
follows:

Yfinal ¼ðyfinal1 ; yfinal2 ; yfinal3 ; yfinal4 ; yfinal5 Þ ¼ ð3:9925; 3:0021; 5:4967; 4:6247; 4:2214Þ
Xfinal ¼ðxfinal1 ; xfinal2 ; xfinal3 ; xfinal4 ; xfinal5 ; xfinal6 Þ ¼ ð8:5048; 14:0983; 7:5752; 4:7012; 6:7942; 74:5975Þ

11.7 Conclusion

In this chapter, our recent research on the development of intelligent QFD is
described. First, a fuzzy AHP with extent analysis approach is described to deter-
mine the importance weights for CRs. The approach is effective to determine the
importance weights as it is capable of capturing the vagueness of human judgment
in assessing the importance of CRs. The fuzzy AHP with extent analysis is also
easy to implement because the tedious calculation of eigenvectors required by the
conventional AHP is no longer necessary. Second, a chaos-based FR approach is
described to model the functional relationships between CRs and ECs. This
approach can address the issues pertaining to the modeling of the functional rela-
tionships based on QFD: (1) only a small number of data sets are available for
modeling, (2) relationships between CRs and ECs are nonlinear in nature, (3) data
sets for modeling contain a high degree of fuzziness, and (4) explicit customer
satisfaction models are preferred. Third, a fuzzy group decision-making method is
described to address the two uncertainties simultaneously in prioritizing ECs and to
determine the importance weights of ECs. It mainly involves an ordinal ranking of

Table 11.5 A family of satisfactory solutions corresponding to the maximum values of decision
variables

Solution y1–y5 x1–x6 lðzÞ Meaning

Zmax(1) 4.9273 3.2594 5.9671
4.9027 3.8029

7.91431 4.5618 7.8602 5.0459
6.1948 74.7782

0.3365 Maximum
of y1
y1 = 4.9273

Zmax(2) 3.3547 3.2897 5.7525
4.8893 3.7896

8.0849 15.1257 7.8171 4.7470
6.2084 74.7672

0.3443 Maximum
of y2
y2 = 3.2897

Zmax(3) 4.9273 3.2594 5.9671
4.9027 3.8029

7.9143 14.5618 7.8602 5.0459
6.1948 74.7782

0.3365 Maximum
of y3
y3 = 5.9671

Zmax(4) 4.0517 3.2626 5.1167
4.9183 3.6646

8.7023 14.0130 7.5656 4.4619
6.6273 74.6778

0.5414 Maximum
of y4
y4 = 4.9183

Zmax(5) 3.1515 2.3806 4.8255
3.9799 5.2530

9.5063 12.8237 7.0370 4.2907
8.0396 74.2166

0.3580 Maximum
of y5
y5 = 5.2530
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ECs based on a fuzzy weighted average method with fuzzy expected operator and a
consensus ranking method. Finally, a fuzzy optimization model is presented and an
inexact genetic algorithm approach is described to solve the model to determine the
target value setting of ECs. Considering that product development teams may
consider product design under various design scenarios, a unique optimal solution
obtained from the fuzzy model may not be acceptable to them. The proposed
approaches are capable of generating a family of optimal target values setting for
ECs, from which various sets of preferred target values setting for ECs can be
obtained for different design scenarios rather than the only one exact optimal target
values setting.

Future research on developing intelligent QFD can involve the detection and
elimination of outliers to improve survey data quality. Outliers may exist in the
survey data and can affect the predictive accuracy of the models. Regarding
the chaos-based FR approach for modeling functional relationships, minimizing the
complexity of the generated fuzzy polynomial models could be considered in future
work as an objective together with minimizing errors in the formulation of the
fitness function. This approach would help develop fuzzy polynomial models with
simpler structures and good modeling accuracy. Future works can also consider
cost minimization as an objective in the fuzzy optimization model apart from
maximizing customer satisfaction. The optimization problem thus becomes a
multi-objective one. Other solving techniques such as multi-objective genetic
algorithms and particle swarm optimization need to be introduced to solve the
optimization problem.
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Chapter 12
Process Improvement Using Intelligent Six
Sigma

James Fogal

Abstract Six Sigma is a well-regarded and proven methodology for improving the
quality of products and services by removing inconsistencies in processes.
Insomuch of the early Six Sigma initiatives was focused on process effectiveness in
meeting quality expectations and process efficiency for achieving maximum pro-
ducer value; the future trends is moving towards utilizing feedback loops to create
intelligent processes that enhances the adaptability to changing conditions. The
purpose of this chapter is to extend understanding of what performance measures
can be applied to processes in order to gain useful information and the emerging
application of artificial neural networks to handle concurrent multiple feedback
loops.

Keywords Six Sigma � Process improvement � Performance measures � Artificial
intelligence � Neural networks

12.1 Introduction

Quality is a key concern for all businesses seeking profitability and long term
success and managing quality—at all levels and across all company components- is
crucial in enabling organizations to make decisions that will achieve those goals.
Whether deciding the best way to increase brand reputation, minimize liabilities, or
become distinguished against the competition, quality is a critical factor in how a
company is viewed in the marketplace. In fact, quality is so important, it is fairly
common to see success in this area not only expressed in measures of product
availability, price, and customer satisfaction, but also in terms of process man-
agement and efficacy.

J. Fogal (&)
School of Business and Management, Notre Dame de Namur University,
Belmont, CA, USA
e-mail: jfogal@ndnu.edu

© Springer International Publishing Switzerland 2016
C. Kahraman and S. Yanık (eds.), Intelligent Decision Making
in Quality Management, Intelligent Systems Reference Library 97,
DOI 10.1007/978-3-319-24499-0_12

363



The far reaching value of quality as an important differentiator is why managing
it effectively is essential to the success of an organization and why vast amounts of
time, attention, and resources are committed annually by organizations to achieve
levels of quality necessary to ensure their prosperity. To that end, there are a
number of approaches put forth by various industries as the most effective way to
improve quality in products or services. These approaches range from Quality
Control, a focus on ensuring results are as expected and Quality Assurance, which
advocates doing the right things the right way, to the pursuit of a philosophy of
Total Quality Management, which emphasizes continuous quality improvements.
However, the framework that has garnered the most worldwide interest in recent
years is Six Sigma. Six Sigma is a disciplined, data-driven approach and strategy
for process improvement and is seen as an amalgamation of the best elements of all
other quality approaches. It differentiates itself by promoting a stronger emphasis
on monitoring yields and costs associated with a quality improvement effort. In
other words, Six Sigma is not just about seeking quality based on the output of
product and services, but also as a means for achieving efficacy in how things are
accomplished.

The origins of the Six Sigma movement can be traced back to the mid-1980s
with Motorola’s ground breaking work to seek ways to significantly improve
quality in order to obtain bottom-line production results in their organization. The
simplistic view of Six Sigma often describes it as a methodology for taking quality
measurements in order to achieve reductions in process variation. However, the
Six Sigma strategy and the results it can achieve is much more than just the simple
application of a set of statistical tools and techniques. At its most fundamental
level, the objective of Six Sigma is the implementation of a measurement-based
strategy focused on achieving perfection in quality, but the framework is also
being used widely today on process improvements to drive organizational effec-
tiveness and gain greater value from processes. The drive to improve process
efficacy is being fueled by ever-changing requirements for products and services
in areas such as technology, consumption demands, and legal standards and these
changes require organizations to adapt and instill processes with capabilities to
meet increased expectations. These continuously rising expectations necessitate
that organizations understand quality beyond the basic level of what is working
and what isn’t in individual components of the company. Six Sigma is a strategy
that can be the means for managing the whole organization as well as its indi-
vidual components to achieve success. A key benefit of Six Sigma is it can be
useful for tackling issues that are often embedded in complexities of processes (Zu
et al. 2010). The thorough, end-to-end strategy that Six Sigma brings to quality
improvement is why organizations around the world have adopted it as their
primary approach for doing business.
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12.2 Processes

Processes are an inescapable part of doing business and for this reason are integral
components within the fabric of all organizations. By definition, a process is any
ordered collection of activities that takes one or more kinds of input and transforms
it into an output that is valuable for internal and/or external use or consumption.
These outputs can be tangible or even intangible goods or services. Similarly, the
output from one process can be the inputs (sub-process) to another downstream
process. Whether the outputs are intended for internal use or delivery to a customer
or end user, the point is with every process there is a value, causal dependency, and
expectation associated with the output from a process. For this reason, processes
performing to expectation are maximizing the value of everything as well ensuring
that the results can be leveraged elsewhere. In addition organizations are wholly
dependent upon processes because they assist with knowledge formalization by
translating narrative guidelines into structured knowledge that can be readily
communicated and whereby consistency is achieved with outputs derived from a
process. The seminal message is that processes are inescapable because they are the
glue that binds together assets and rules which enable organizations to operate
within a framework of roles and responsibilities needed to accomplish all of nec-
essary steps in a correct order. As a result, organizations that get it right tend to have
high efficiency, lower operating costs, reduced waste, and proper utilization of
human resources. By their very nature, processes are a good thing, however, for
reasons good or bad, over time each process leaves an organizational legacy in its
wake. It is not uncommon to find once simple processes that have morphed to
become unduly complex and multi-layered with sometimes conflicting purposes
because they failed to adapt to changing conditions. The two most common reasons
for this are that the process was never required to be overly efficient from the
beginning and that over time, the effect of short term measures overlaid on existing
processes, making them inefficient and overly complex.

Clearly the improvements of processes are the intrinsic focus of Six Sigma.
However the management of Six Sigma initiatives are commonly administered with
a project-wide focus. Typically Six Sigma projects undertaken are broadly classi-
fied according to the use of one of two Six Sigma sub-methodologies: DMAIC and
DMADV. Determining which one will be implemented is often dependent upon the
state of processes currently in place. If the objective is to improve an existing
process, the Six Sigma roadmap selected for quality improvement will utilize the
methodology steps of: Define, Measure, Analyze, Improve, and Control (DMAIC).
However in those situations absent any existing process, Six Sigma provides an
alternate methodology using the steps of: Define, Measure, Analyze, Design, and
Verify (DMADV). While DMAIC and DMADV approaches have a general simi-
larity in that that the outcome will be a process that is more efficient and effective;
the difference one approach over another often comes downs to whether there is an
existing process for which changes can be measured accurately (DMAIC) or if it is
a case requiring a new start to meet requirements (DMADV). Regardless of either
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framework, project initiatives implemented in organizations will always be focused
at a process level.

It is not uncommon for an organization to endeavor to move directly from the
perception of a problem to an attempt to solve it, which is fundamentally the wrong
approach to take. Before undertaking any attempt to find a solution, there needs not
only to be a perceived problem, but it must be properly defined. The difficulty of
properly defining the problem can sometimes be underestimated because often a
finalized description of a problem is often very different from initial perception of it.
Without the essential step of consensus on the definition of the problem, the
implemented solution may turn out to treat the symptoms rather than cure the
underlying problem. Consider that within any given organization there can be a
myriad of processes comprising any number of ordered or sequenced activities (with
rules and logic dictating behavior). These processes are in place to ultimately
transform inputs by which (hopefully) value is added by the actions, methods, and
operations into useful and meaningful outputs. Recognize though, that any processes
also most likely interact with other processes throughout an organization; as outputs
from one process form the inputs to another. It is crucial to see how any one process
is often part of a larger process; where the organizations as the amalgamation of
complex networks of interconnecting processes can be seen. The simple truth is that
processes are the fundamental building blocks of all organizations. Since with Six
Sigma the primary objective of improvement is to reduce variation in process output,
it is a necessary step to first identify causes of variation. One technique which aids in
considering processes in the overall realm of an organization is to map the Suppliers,
Inputs, Process, Output, Customers (SIPOC). This enables the studying of complex
interrelationships likely to exist within and externally to a process and facilitates
identify sources of variation within processes. Conceptually, a SIPOC map shown
Fig. 12.1 can be used to identify and categorize the parts of a process as relating to
either suppliers, inputs, process, outputs, or customers. In particular it becomes a
useful starting point for not only identifying sources of variation, but is invaluable
way to describe the relationship between the variables and help in ascertaining what
metrics are capable of being captured at each point.

Viewing it at this level, it is easy to see how each process consists of inputs and
outputs. Process inputs may be raw materials, human resources, or the result of
some upstream process. Particularly important is the feedback from downstream
process measurements that can also be used to improve an upstream process.

Fig. 12.1 Mapping of process Suppliers, Inputs, Process, Output, Customers (SIPOC)
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All inputs have some quantifiable measurement, including human effort and skill
level. Therefore it is imperative that process input requirements should be stated so
that key measures of input quality can be controlled. Once process capabilities are
known, output measures can then be used to monitor whether or not a process has
remained in control. Finally once monitoring strategies are implemented, the
measurements derived are capable changing the behavioral characteristics or can
even effectively control processes. Ultimately the starting point is gaining under-
standing of processes and installing useful measurement strategies as the underlying
aim with Six Sigma is to identify, measure, and reduce sources of variation within
processes.

12.3 Variation ≈ Opportunity

Variation represents the dispersion between an ideal standard of perfection and what
actually occurs. Quite simply variation is a fact of life in that it is all around us and
present in everything we do. No matter how hard we try, there can never be two
identical actions that generate exactly the same result. Therefore you can safely
assume that processes themselves are subject to being affected by variation. However
instead of regarding variation as the enemy, it is more productive to see it as an
opportunity since it is through the reduction of variation from requirements and the
centering of performance on targets that improvement is achieved with Six Sigma.

Operationally variation reflects any change or difference from the desired ideal
state or central tendency (in statistics also called distribution of dispersion denoting
relatively spread of values). The two statistical measures of dispersion that are the
most widely used to provide indication of this are variance (σ2) and standard
deviation (σ). In addition Statistical Process Control charts (a.k.a., SPC or Shewhart
charts) are often employed to distinguish between these two types of variation and
uses what are known as control charts to analyze variation that is occurring within
processes (as shown in Fig. 12.2). Since variation is an inevitable part of all
processes, it needs to be measured over time to determine whether changes
occurring are the result of common and/or special-cause conditions.

The first sources of variation to look for in processes are of the category special-
cause. These occur because of the presence of assignable (yet unpredictable) factors
external to the process. These types of variation can be traced to a specific reason.
For example defective materials, operator error, incorrect training, and faulty
machinery are sources of assignable variation. Unfortunately special-cause varia-
tions are not readily predictable. From a management perspective, once this situ-
ation occurs, the task is to uncover the source and take corrective action to prevent
it from reoccurring. Unlike special cause variation, common cause variations are
due to factors internal to the process. Examples of common cause variations are:
normal wear and tear, temperature and humidity, inappropriate procedures, poor
design, and even measurement errors. The point is any and all of these are pre-
dictable causes and as such are ultimately controllable. Common cause variation is
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readily observed in the random distribution of output about the average of mea-
surements (x). Again variation is not evil, rather there is a need for a change of
perspective to view common cause variation as a measure of the process’s potential.
In other words it shows how well the process could perform when special cause
variation is removed. Anecdotally Edward Deming estimated that the way pro-
cesses where constructed was responsible for more than 85 % of the causes of
variation. This statistic alone is evidence of an abundance of opportunities to make
sustained improvements.

Six Sigma seeks to reduce quality dispersions by minimizing the occurrences of
variation at the earliest stage in a processes life cycle; whereby preventing failure in
the downstream stages. Since variation happens as a result of how we directly or
indirectly construct processes, variation can be treated as a causal factor. As such it
can be quantified, predicted, and even reduced if the investment is worth the gains
realized. However be aware that individual sources of variation within a process are
also additive. What this means is often it is any number of small sources of vari-
ations which are underlying cause disrupting output quality rather just one a solitary
significant source. Identification and classification of the inputs and outputs of
every step in a process as either critical, noise, standard operating procedure, or
controllable, provides a knowledge basis necessary that along with monitoring
outputs enables the establishment of key decision points within a process on how
best to affect sustained changes. For this reason having a working foundation of
where all possible sources of variation can occur in a process is a requisite in
designing an effective quality management measurement system.

12.4 Measures for Performance

A metric can be a measurement, but a measurement is not necessarily a metric.
A measurement is simply some dimension, quantity, or determination of capacity.
Examples of metrics capture might be cycle times, defect rates, wait times,

Fig. 12.2 Control chart mapping of process variations
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headcount, inventory levels, or service times. A metric can also be defined as a
standard of measurement. Thus, it is more appropriate to view Six Sigma as the set
of standards of measurement in an organization that help to it achieve quality goals
for delivering value to improve bottom line performances.

Measurements in and of themselves are not capable of delivering process
improvements in efficiency or effectiveness. In fact, there are many methodologies
for achieving improved performances at the process level. Business Process
Management (BPM) and Eliyahu Goldratt’s Theory of Constraints (TOC) share
similarities emphasizing process improvements by way of focusing on streamlining
processes with the elimination of bottlenecks, waste, and any other non-valued
added activities. However, Six Sigma differs from these other methodologies in that
it promotes the use of statistical measures to drive quality improvements and sustain
improvements realized. The philosophy underlying Six Sigma is that variation
within any given process is likely the main driver for defects occurring. Specifically
the need to measure variation over time and in order is a requisite for determining
whether changes occurring are the result of common and/or special causes. Thereby
when an organization is able to minimize process variation it will have the effect of
reducing defects causing unnecessary waste and customer dissatisfaction.

Six Sigma, while borne out of manufacturing, has actually proven to be a
well-suited strategy and can be found implemented across all forms of industries;
both manufacturing and service. However there tends to still be a great deal of
misunderstanding this important quality improvement strategy. In part this can be
attributed to the term itself; sigma (σ) which is actually the mathematical symbol
related to the standard deviation. Central then to Six Sigma is calculating the
“sigma” level of a process where variation is measured in terms of sigma values or
thresholds. To the uninitiated, Six Sigma’s emphasis on statistics can be seen as
unduly burdensome. However, unless there is a willingness to measure something,
you can’t manage for improvement because there has to be a baseline to see what is
getting better and what isn’t. The underlying techniques of Six Sigma are by no
means new since seminal works like Walter Shewhart’s concept of Statistical
Process Control (SPC) and Edwards Deming’s Total Quality Management
(TQM) had been popularized early on in the 20th century (Deming, 1982; Pyzdek
& Keller, 2009). However the Six Sigma methodology has evolved in recent years
out of a need to spur greater reductions of manufacturing defects; measuring such
not in the thousands of opportunities as was the norm, but to achieve a granularity
whereby Defects Per Million Opportunities (DPMO) is the aim. Therefore a Six
Sigma (6σ) process will statistically be expected to have a 99.99966 % yield free
from defects (or inversely, 3.4 DPMO). In fact the term Six Sigma is prominently
being used these days to denote comparisons of performance in nonmanufacturing
settings. Therefore Six Sigma should not be viewed as applicable only to the
manufacture of products or just to improve the consistency of services provided,
rather Six Sigma has evolved into an organizational philosophy connoting the
application of improvement methods using systematic quality tools to achieve
quality goals to both deliver value and improve bottom line performance in any
industry.
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12.5 Quality and Value

Value is the overall subjective and objective assessment of the utility of a product or
service based on perceptions of what is received and what is given. It is for this
reason why processes are seen as playing such an important role in organization as
they serve as one of the primary mechanisms for value creation. From the per-
spective of a process, value is the net result of reducing the cost (e.g., procurement,
transformation, waste) to as small amount as possible while maximizing qualities
that makes the outcome desirable. It appears that value happens to be one of those
traits which seem to have the greatest diversity in how it can be defined or assessed.
However, what distinguishes successful organizations is when they are able to
quantify it relative to its ultimate use and consumption. Quality on the other hand
has a pragmatic interpretation as an indicator non-inferiority or superiority related to
some dimension of a product or service. What Joseph Juran related to as fitness for
purpose implied that quality was really nothing more than a judgment on how well
the output of a process met, exceeded, or alternatively did not measure up to
expectations. Consider the case of a product or service deemed high quality. If there
is not a demand for it because it is too costly for consumption, its value will not be
perceived as being as high as that of a nearly comparable product seen as more
affordable even though it has lower quality. Thus, quality and value, while two
distinct attributes, have differences which are inextricably linked as tradeoffs which
can have profound implications for how creation or transformations of products
and/or services are performed. Whereas there are numerous techniques and
strategies that help lower cost and others that are focused on achieving highest
degrees of quality, Six Sigma has been so widely adopted because of the desire to
streamline cost expenditures while increasing quality in order to maximize value
creation achieved through processes. For this reason, successful organizations are
those who are best able to best quantify dimensions of both relative to the ultimate
use and consumption of any product or service. And it is in this manner by which
organizations tend to differentiate in their views on quality. Often a cost strategy is
employed where the focus is on reducing costs in order to capture as much value as
possible. The counter-approach to this would be a quality strategy where creating
higher quality justified any costs so long as sufficient demand for the perceived
high-costing value exists. Neither approach is general is better; just different. What
dictates which approach is ultimately preferred is the premium placed on the final
value perceived from the products or services. However, Six Sigma sidesteps this
conundrum by emphasizing both approaches. For purposes of Six Sigma, value is
treated as the ratio of quality to costs; where the aim is to increase quality and
simultaneously reduce cost. Therefore quality costs (i.e., cost of quality) is but a
means to quantify the total cost of quality related efforts and deficiencies resulting
from processes. In this way, the total cost of quality is comprised to two types of
costs: prevention and noncompliance. The first are those costs incurred to inspect
for defects, prevent defects, and even those steps to correct defects in order to make
the outcome acceptable. The costs associated with noncompliance would be such as
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those as waste, returns, and even loss of sales. Obviously as more costs are
attributed to prevention quality will be expected to improve. Conversely, if pre-
vention costs are reduced, it is reasonable to assume that noncompliance costs will
rise as well. Ideally then, it is finding the right balance of these two costs that is
where optimal ratio of quality to costs (as shown in Fig. 12.3) will be derived.

In fact this strategy has characterized most approaches to managing quality where
quality is viewed in terms of conforming within a range of Lower Specification Limit
(LSL) and some Upper Specification Limit (USL) which are used to dictate whether
it is either good/acceptable or it isn’t. However, an underlying principle of Six Sigma
is based on continuous improvement and not being satisfied just with an optimal
ratio of quality to costs. Genichi Taguchi in the 1980s pioneered the notion that even
if a product or service attributes lies within these limits of acceptability, there will
still some degradation with the perceived value. What he described was that even
when an attribute (product or service) is within compliance (i.e., acceptable), the
closer the outcome is to its ideal state will have higher value than one nearer one of
the outlier specification limits (Fig. 12.4). This is reflected in Taguchi’s loss
function:

L xð Þ ¼ k x � mð Þ2 ð12:1Þ

where deviation from the utmost ideal value is monetized as Loss (L), m is the point
at representing the ideally desired characteristic should be set, x denoting what the
characteristic’s value is actually (measured or perceived), and k is a constant cor-
responding to the magnitude of the characteristic typically the same as the monetary
unit involved. Recognize this is a dramatic contrast from the traditional under-
standing of cost of poor quality, where Taguchi’s loss function facilitates the

Fig. 12.3 Achieving optimized total cost of quality
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measuring of financial impact of any process deviation from its target. Even further,
Taguchi’s philosophy is clearly aimed at the continuous reduction of common cause
variations within processes. It is because of this ability to quantify the value
associated with process improvement as part of a financial assessment and benefit
evaluation that it has become a technique use inclusive of most Six Sigma
initiatives.

Traditionally organizations encounter not one performance issue related to
processes but two: effectiveness and efficiency. Effectiveness relates to processes
ability to conform to quality expectations (i.e., the initial focus of Six Sigma).
Efficiency, on the other hand, relates to processes operating with the least amount of
associated costs to provide the maximum amount of value (i.e., focus of Lean
methodologies). There are many examples illustrating where processes can operate
effectively (high quality) but not efficiently; or where they are efficient (high value)
but lacking in effectiveness. The goal with Six Sigma projects is therefore to seek
both quality and value as it is needed. To do so and achieve effectiveness and
efficiency within a process often necessitates mapping the linkages of activities
within and between processes. The aim is to identify and measure each of the inputs
and outputs of every step in a process in order to see what variation is occurring and
the effect. Once that is known, there is a basis to ascertain what is causing sub-
optimal processes and thereby differentiating the total cost of quality; even when
everything is operating within specification limits.

Fig. 12.4 Taguchi’s total loss function
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12.6 Process Stability

Process stability refers to when all of the response parameters being measured about
the process are characterized by stable and consistent patterns of variation over time
and where the average process value show a constant distribution as well. This of
course does not mean there will not be any variation; rather, it means that what
dispersion does occur will be random in nature stemming from common-cause
sources of variation. Remember that variation is an integral part of any process.
When variation is found to occur from common causes, these are considered
controllable since they can be reduced or even eliminated by those responsible for
the process. A stable process is one that is predictable and consistent over time. In
other words the process HAS performed in a certain way in the past and WILL
continue to do so in the future. On the other hand, process instability occurs when
there exist abnormal or special causes of variation acting upon a process. Unstable
processes by definition will not have predictable outcomes. Note that achieving
stability reflects efficiency, but not necessarily effectiveness.

Process stability reflects process performance over time and therefore any
assessment of stability should precede analyzing process capability. The easiest
way to ascertain stability is with the use of control charts. A control chart is a scatter
or line graph of the measurements collected from response measurements plotted
against a center line representing the mean value for the in-control process and two
sigma lines called the upper control limit (UCL) and the lower control limit
(LCL) to show the boundaries of what is acceptable behavior for stability
(Fig. 12.5).

Specification limits are specified by the customer whereas chart control limits are
a calculated as 3 standard deviations above and below the grand average of the
response measurement data (�x� 3r). Take care not to use interchangeably speci-
fication limits and control limits. A stable process will present all data 99.7 % of all
response measurement occurring between the UCL (+3 sigma line) and LCL (−3
sigma line). An instable or process out-of-control is detected on a control chart

Fig. 12.5 Process stability relation of process deviations to established control limits
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either by having any points outside the control limits or by unnatural patterns of
variability.

12.7 Process Capability

Variation is a perfectly normal part of any process. This is because all the activities
involved in creating the product or service outputs have naturally occurring fluc-
tuations in how they perform. The problem arises when there is so much variation
that the outcome is a process generating unpredictable results. Clearly as variation
is reduced, quality will be seen as improving. Therefore, the question really
becomes one of just how much variation is then acceptable? This is where it
becomes necessary to measure the process capability or extent to which a process is
able to provide output within an allowable deviation from what is desired of it. The
output goal or target becomes important as well as any specification limits which
are imposed to define what is an acceptable distribution of occurring output values.
In this way a process capability study can be used to determine whether a process is
and will likely continue to be capable of producing results within tolerance
requirements. Consider the two distributions of output measures taken for the
output of a process shown in Fig. 12.6. In the first distribution all output measures
lay wholly between the Lower Specification Limit (LSL) and the Upper
Specification Limit (LSL). In this case the process is considered to be capable of
meeting the long term performance needs with regard to tolerances or specifications
range set. However in the second distribution it is evinced that some of the mea-
surements are occurring outside permissible limits. This is an example where the
process is unable to consistently produce results within specification.

Specification limits can be product specific (e.g., length = 4.25 m ± 0.02 cm) or
just as easily related to services generated by processes (e.g., average time to
respond = 6.00 ± 0.50 min). Again, variation does not necessarily indicate that there
are any problems. If the process is producing desirable outputs and is stable, then it
is safe to expect outputs are meeting requirements as well future variations from it

Fig. 12.6 Process capability established by specification limits
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are able to be predicted. This is why in order to achieve process stability where all
special-causes of variation have been eliminated is needed; otherwise, any mea-
surements for process capability will be meaningless. Also where process stability
makes use of control limits based on actual process output; process capability charts
use specification limits (LSL and USL) which are independently set in order to
narrow the distribution of a product’s properties. The performance and capability of
a process in this way can simply be defined as the variability inherent within a
process; absent any special-cause influences.

When evaluating the quality associated with a process, a Six Sigma level of
quality is defined as achieving 3.4 or less defects per million opportunities.
Therefore, when discussing the relative measure of quality for a process, in Six
Sigma terminology this is referred to as the sigma of a process or simply the
process score. This reflects the number of standard deviations from the mean or
target goal. For example one standard deviation in either direction accounts for
68 % of the metrics captured. The process score is based on the statistical modified
Z score which takes into account that over the long term, disturbances to the process
cause it to expand and ultimately create defects beyond the specification limit. For
this reason the process score is calculated as the statistical Z score adjusted by 1.5
standard deviations. Similar to the statistical Z-scores, it too is applicable for only
normal distributions; which if special-cause variations have been removed, should
be the observed behavior for processes. The usefulness of this is in knowing how
far a particular score is away from the mean as it can be used as an indicator for the
likelihood of process defects occurring. For example a process score of 0.67 means
there is a 31 % probability of encountering a defect; a process score of 1.00 means
there is a 6.7 % probability of a defect; and for a process that is 6σ the probability of
a defect is 0.00034 % or 3.4 Defects Per Million Opportunities (DPMO). Shown in
the table is a summary of expected defects and yields corresponding to associated
process scores. These scores are important in providing a benchmark when cal-
culating the capability and performance of processes (Table 12.1).

Assessing the capability of a process first begins with establishing whether it
stable and free of external sources is causing special-cause variations to occur. In all
cases where a process is deemed to be stable and normal, what it will do can be
described by its standard deviation (σ) and process mean (μ). However for new

Table 12.1 Process scores for corresponding level of statistical variation

Sigma % defective (%) % yield (%) DPMO Process score

1 69 31 691,462 0.33

2 31 69 308,538 0.67

3 6.7 93.3 66,807 1.00

4 0.62 99.38 6,210 1.33

5 0.023 99.977 233 1.67

6 0.00034 99.99966 3.4 2.00
7 0.0000019 99.9999981 0.019 2.33
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processes lacking sufficient data, a pilot run can be used to generate control chart
data for estimating the process capability where the standard deviation can be
estimated from:

r � R
d2

ð12:2Þ

Similarly in lieu of the mean, the sample mean (x) is all that is needed to begin
calculating the performance capabilities of any process.

12.7.1 Process Capability Ratio: Cp

Since quality goals are geared towards the minimization of variation around
appropriate targets, understanding how well processes are performing becomes a
necessary evaluation. This first begins with gaining an understanding of the total
variability in a process. For this the process capability ratio (Cp) is used to provide a
measure of potential or maximum process capability which relates how well the
process is capable of adhering to specification limits (USL, LSL).

Cp ¼ ðUSL � LSLÞ
6r

ð12:3Þ

A process is then defined as being capable if Cp values fall with ±3 standard
deviations (a.k.a., having a tolerance of 6σ). By simply by knowing the dispersion
of the process output, the Lower Specification Limit (LSL), and the Upper speci-
fication Limit (USL); then any variation identified beyond the specified limits are
considered a defect.

The greater the Cp values are, the higher levels of quality are achieved. For
example a Cp value of 1.0 indicates a process consistently yielding 3-sigma quality
with only 6.7 % defects. A 4σ process would have a critical value of 1.33; a 5σ
process a Cp value of 1.67; and in order to achieve a 6σ process it would need to
achieve a Cp value of 2.0.

12.7.2 Capability Index: Cpk

While Cp provides a good measure of variation present in a process (higher the
value, less variation), this does not provide any information about how close it is to
meeting the mean capacity of the process. For this the capability index (Cpk) is used
to relate the centeredness of performance expected from the process. For this, Cpk is
defined as:
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Cpk ¼ min
l� LSLð Þ

3r
;
USL� lð Þ

3r

� �
ð12:4Þ

With this metric, the minimum value of the two ratios is needed as it represents
the worst-case performance for the process. In effect, what this indicates is that if
Cpk is less than the critical value, then either it is because the process average is too
close to one of the tolerance limits or because the process variability measured is
too large. Here the process is capable only when the capability ratio is greater than
the critical value and the process distribution is centered about the mean output
value. Simply Cpk is an index which indicates how close a process is running to its
specification limits. Consider a process with minimal variability (high Cp score) but
producing results skewed closer to one of the specification limits would be char-
acteristic of lower Cpk index. Alternatively a process with lots of variation (low Cp

score) but with a distribution centered about the mean would have a high Cpk index.
Ideally the processes will consistently meet the mean (high Cpk) with minimal
variation (high Cp).

12.7.3 Taguchi Capability Index: Cpm

While the process capability indices Cp and Cpk are widely used to provide unitless
measures of process potential and performance, there is a drawback in that both
operate under the assumption that the process mean coincides with the target goal.
In fact, the process index Cp is considered location independent as it only provides
indication of whether a process is operating within limits. The process index Cpk

does consider location, but only to that of the mean of a process. Simply put, it is
not enough to know that processes are conforming to tolerances, it is equally
important to know just how good they are. This is where work based on Genichi
Taguchi’s Loss Function has led to relating process performance to consistency in
meeting the target goal. The Taguchi Capability Index combines variability and
distance from the target into one measure; where T represents the optimized goal or
ideal target value. For this, Cpm is defined as:

Cpm ¼ USL� LSL

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l�ð TÞ2

q ð12:5Þ

This unique index is then able to take into account the degree of relationship that
exists between the goal target and the specification limits. While Cp and Cpk are
useful measures for estimating the impact on the fraction nonconforming of a shift
in the process mean, variance, or specification limits; it is only with Cpm that you
are able to generate a sensitivity measure of the impact any process changes might
have on conforming outputs. This becomes yet another component in establishing a
quality measurement system. Commonly Cp and Cpk are classified as
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Critical-To-Quality (CTQ) evaluators as they relate process output to the wants and
needs of the customer; whereas Cpm is considered an indication of
Critical-To-Customer (CTC). It is not uncommon to hear confusion between CTQ
and CTC, however recognize the perspectives provided a very different. While
CTQs are what is important to ensure that the output of the process is conforming to
defined quality standards, it is ultimately CTCs which are what is most valued. In
this fashion knowing the Cpm of a process becomes important in order to make
adjustments in optimizing a process to consistently produce as close as possible the
ideal product or service desired.

12.8 Feedback Gives Rise to Intelligent Processes

An axiom of organizations is that as they change over time, so too will their
processes inevitably evolve in both complexity and scope. The challenge therefore
becomes one of deciding how best to design a process that exhibits inherent
self-control that is able to quickly respond and adapt to changing conditions. In
large order this reflects the underlying objectives of any Six Sigma initiative which
involves the translation of needs into the quantifiable and measurable outcomes,
evaluating process inputs for an understanding of root causes of variation, and then
using that knowledge to optimize processes based on uncertainties and opportu-
nities discovered (Elshennawy, 2004). This is why such a heavy reliance is placed
on incorporating the use of feedback with processes for relating measurement data
about outputs to better enable an analysis of performance behaviors stemming from
a process. The simple fact is that to reach a state of continuous improvement;
outputs must be taken into consideration where corrections are based on feedback.
The progression of quality systems has used numerous analytical approaches to
gain richer insights and “intelligence” into process performance in order to drive
process effectiveness for optimum compliance. While there is little question that
effectiveness drives better process outcomes, organizations have come to realize
that efficiency from processes is also just a necessary and vital condition to realize
optimum value from outputs (Nold, 2011). This was in fact the impetus for Six
Sigma, to optimize process Effectiveness (quality) and Efficiency (cost). However
just as Six Sigma is used as a means achieving continuous improvement, so too has
it evolved over the years. Most notably this was where Joseph Juran began to extol
Adaptability as the third dimension for which processes should be designed and
evaluated. This implies that in addition to using performance feedback (CTQ and
CTC) metrics about the process to achieve optimization, there should also be
feedback control loops embedded within the process that lend themselves to ana-
lyzing the Critical-To-Adaptability (CTA) or capability in behaviors to accom-
modate changing circumstances that invariably do occur over time. What this
further necessitates is capturing internal metrics about outputs from any activity or
sub-stage within a process and relating them to another interdependent activity or
sub-stage to understand the impact they might have on the process and in turn

378 J. Fogal



influence when and what actions are necessary. CTA evaluates the number of
non-compliance events recorded (δ = count of measurements exceeding LSL or
USL) by the reciprocal of the square root of the product of interactions between
distinct activities or sub-stages occurring within a process (aij since activities and
sub-stages can have multiple interactions) and count of process outputs (O) over an
interval of time.

CTA =
P

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
aij O

p ð12:6Þ

When CTA approaches 0 the process is demonstrating adaptability for handling
changes. Alternatively as it approaches or exceeds 1.0 the process is demonstrating
an inability to adapt to changing conditions. Insomuch as the environments and
conditions that organizations operate in are constantly changing, so too must it have
the ability to remain effective and efficient in the face of change. This was a major
extension of how Six Sigma has evolved, looking not only at how processes are
behaving today, but ensuring that they have the necessary feedback mechanisms to
be to recognize and adapt as needed.

For this very reason the concept of feedback within any given processes is
important in case future changes are proposed to any complex processes
(Savolainen & Haikonen, 2007). This begins by instilling feedback loops on any
causal relationships that can possibly be used to affect change upon a process
(anything that affects an effect is a factor of that effect). In fact much of the art of
Six Sigma lies in discovering and representing the feedback processes and other
elements of complexity for a given process. The aim therefore is to extract the
essence of pertinent information while being able to ignore any irrelevant context.

12.9 Emergent Quality Assurance Practices: Neural
Networks

Since the underlying theme with any Six Sigma initiative is the analyses of data
gathered from processes to detect a changing process mean (μ), this is accomplished
by continuously sampling attributes about a process or its outputs (Conklin, 2006).
Whereby for each new sample collected, a new sample mean (x) is and compared
with previous data points to ascertain whether the process mean is shifting; an
indication of the presence of deviation within the process. While there are many
associated strengths with Six Sigma methodology; it is however not without its
share of weaknesses. As a process improvement method, Six Sigma is dependent
upon users involved having an understanding of statistical sampling methods and
then having the confidence in making changes to processes. As noted, if �x is
detected as changing, then the likely course of action is to stop the process and
attempt and conduct an investigation. The outcome of such investigation will be
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either because the process mean is changing due to occurrences of common-cause
variation (where the process does need to be corrected), special-cause variation
(where the process does not need to be corrected), or a false-positive measurement
(type I error) has been recorded. This in fact lends to one of the complaints around
Six Sigma where analyses performed tend to be focused on a given single
parameters and ultimately disruptive while processes are interrupted in the inves-
tigation of the problems identified. Further the effects from changes implemented
are not immediately known since past performance is no longer a viable indicator of
future results. In fact, one of the chief limitations of Six Sigma methods is it only
looks only at the last point as opposed to any pattern as a predictor of future
performance. As a result this has led to efforts which are less reliant on traditional
description statistics and instead incorporate using inferential statistics combined
with heuristic learning. Following is an overview/synopsis where research has made
substantive strides in adapting artificial intelligence to Six Sigma methods.

12.9.1 Adapting Neural Network Approach to Six Sigma

One of the viable trends emerging is in the application of artificial neural networks
for ascertaining whether a process is under statistical in-control or one which is
about to become an out of control process. This is accomplished in its ability to
extract patterns and detect trends from dynamic and nonlinear inputs and then
adaptively learn from these inputs to better predict when a process might be out of
control. First, neural networks are ideally suited for modeling process and collecting
in real-time any number of inputs of performance measurement data. Secondly it
associated weights to each of the inputs in order to produce a linear output.
However what truly makes a neural network so remarkable is by its ability to not
only compare the outputs to some expected result, but in its ability to modify the
weighting associated with each of the inputs in order to further refine the input
parameters. Consider in Fig. 12.7 a process comprised of any number of activities
which quality response measurement data (Xn) is collected. Each input is given an
initial weighting (Wn) to each of the inputs to produce a linear output for deciding
conformity or not.

In this example the output is dependent upon the weighted sum of all its inputs
where the weighting (Wn) represents the difference between the actual and the
desired output.

Xn
i¼1

xi � wi

This is in fact where the learning function of a neural network happens as the
weights are adjusted with each subsequent data point collected so that the error
between the desired output and the actual output is reduced. Simply with each pass
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of data being collected, corresponding weights are increased or decreased slightly
with each recalculation by an amount which is proportional to the rate at which the
error changes as the weight is changed.

12.9.2 Integrating Multiple Quality of Service
Measurements

The architecture of a neural network is not limited by the number of inputs nor by
the amount of abstraction where weighted functions are processing this information;
rather it can easily encompass many input sources linked together with any number
of distinct functional processing QoS objectives that together are able to transform
the inputs into meaningful outputs. What is presented in Fig. 12.8 is an example of
a simple network consisting of one input layer (∑xn), one hidden layer where
processing and sigmoidal activation functions (∑aj) reside that culminates in an
output layer (Y) where a decision result is presented.

Fig. 12.7 Example process producing multitude of performance data

Fig. 12.8 Multilayered
network
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The topology for neural networks can then be constructed in layers of inter-
connected nodes with the first representing the input layer where data inputs are
received (e.g., x1, x2, .., xn−1, xn). The next layer of interconnected nodes is then
referred to as a hidden layer. The nodes in the hidden layer represent the activation
function whereby the actual processing of the data is done via weighted connections
(w1, w2, …, wn−1, wn). Each of these nodes in the hidden layer are then capable of
processing like-data. For example one node could be responsible for processing
data from similar activities the Cp; while another node process the Cpk, the Cpm, and
so on. However there are no limitations on the number of hidden layers within a
neural network which can then be used as additional layers of processing. In this
way a network can process dissimilar data from a multitude of sources with their
own distinct specification limits and target values. For example in the first hidden
layer there could be a node associated to one activity processing its Cp1; and another
node processing the Cp2 value for another activity. However with the addition of
another hidden layer, it is possible to then look at the grouping of like activation
functions and process that information to globally look at the state response of the
entire process; and not just one activity.

Neural networks are able learn by applying training algorithms to recode weights
based on the structure of underlying data inputs. In fact there are not one but several
variations neural network architectures that employ learning rules based on modi-
fying the weights of the input connections. Some of these which have been adapted
to measuring accuracy include Radial Basis Function (RBF) networks, Hopfield
Recurrent Neural Networks (RNN), Kohonen Self-Organizing Mapping
(SOM) networks, and the Associative Neural Networks (ASNN). However the
architecture which has shown great promise inquality process control analysis are
Back-Propagation (BP) neural networks. For purposes of discussion in this paper,
the focus will be on the adaption of BP networks to creating Six Sigma measure-
ment systems.

12.9.3 Back-Propagational Learning

Back-Propagation (BP) neural networks are an adaptation of the delta rule whereby
error in the activation functions are minimalized with the input gradient recalculate
and then recoding within each node each of the hidden layers.

Learning is thereby achieved through a two-step process. The first step is con-
sidered a forward pass where inputs measurements received are compared within
the nodes of the hidden layer to some baseline threshold value that results a gradient
descent minimization of the output error being determined. The net effect is
whereby the activation function becomes is a simple linear function of the inputs.
The second step then involves a back-propagation of the information where newly
derived output error is used to revise the associated connection weights so with the
adjustment made produces a better comparative baseline for the next round or pass
of data inputs. This two-step process is then repeated over and over again with
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receipt of new data inputs until the iterative error becomes so small that the degree
of learning occurring is no longer significant. One of the more popular activation
functions suited for statistical process control with BP networks is the sigmoid
function since slope calculated always yield a descent direction that is either
increasing or decreasing. This particular activation function is defined by the
expression:

AðxÞ ¼ 1
1þ e�x

ð12:7Þ

In order for a BP network to learn first necessitates iterative processing of
historical runs utilizing training data. The training data set consists of input signals
assigned with corresponding desire target output. It is crucial that training data be
representative of the problem space for the processes which are modeled and where
output is evaluated against a separate and independent data set. By using historical
measurement data used to adjust the weights and thresholds, the network is able to
eventually make gains in minimizing the error and learn to detect whether a process
shift has occurred for runs other than those used for the training process. What
occurs then is a form of supervised or inductive learning of which combinations of
parameters are adequate to produce meaningful results derived from the training
data. If the error of the output is after one a training run is deemed too large, this
data set then further acts to retrain the learning algorithms. This is repeated with
additional separate and independent data sets until the error signal is longer sta-
tistically significant in regards to the underlying input data. In this way a multilayer
BP network can be ultimately be trained to yield a maximum-likelihood estimation
of the weight values.

12.9.4 Survey of Neural Network Applications in the Design
of Quality Measurement Systems

The driving force for applying neural networks to the area of quality measurement
and control is because of the unique nature or processes which in themselves can
behave as systems comprised of interconnected elements. In such situation this can
result where data independence makes it extremely difficult for traditional Six
Sigma charting to be used as a tool for identifying shifts in correlated processes. For
this very reason neural networks are especially useful in error approximation,
classification, and as work well in parallel structures whereby quality parameters
can be self-tuned within closed-loop systems. Now with the introduction of the first
neural model by McCulloch and Pitts (1943), there has continued to be numerous
advancements in the field of artificial neural networks with a particular focus on
quality diagnostics and evaluation of process. One of the most notable advance-
ments was with the back-propagation algorithm formulated by Rumelhart and
McClelland (1986) which apportioned error responsibility throughout a multi-layer
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network. In fact this work has provided much of the basis for the overwhelming
application of neural networks to the correlation of diagnostics from inputs and
outputs with multistage processes. The following is a review of the state of
Back-Propagation (BP) neural networks in recent literature where they have
demonstrated an ability to self-learn and adapt to dynamic quality control problems.

What differentiates back-propagation handling of data (i.e., BP networks) from
other neural network architectures and which makes it ideally suited for statistical
process control applications was first given notice by Alwan and Roberts’ (1988)
work on how correlated data could be monitored in lieu of traditional Six Sigma
control charts. Just as with traditional Six Sigma measurement systems which seek
to detect whether there is a causal shift in the process means, a BP type mea-
surement architecture also similarly samples process metrics. In both approaches for
each new sample collected, only one of two binary decisions can be made: the
process mean did not shift or ascertain that the process is no longer operating
normally. However with Six Sigma if it is ascertained there has been shift in the
mean, then the process is stopped and an attempt is made to discover the reason for
the change in the process mean. What Alwan and Roberts (1988) demonstrated with
a BP network is how it is ideal for statistical process control is that where multiple
means must be evaluated in context of the entire process. One of the first to
experiment in comparing back-propagation algorithms for replacing traditional
statistical control charts for arriving at decision criteria governing a multistage
quality control system was Puch (1991) where he proved that such a network is
capable of detecting both in-control and out-of-control signals. A shortcoming with
traditional Six Sigma quality control charts it the inability to differentiate between
existences of data dependency within processes. This is further compounded when
underlying processes changes and previously developed control charts can become
misleading if control limits are not readjusted. This is where BP network models
have a distinct advantage in that they require only failure history as input and not
assumptions about either the development environment or external parameters. For
this reason in order for a BP network to be considered successful, it must correctly
identify the types of the underlying disturbances and of the out-of-control data
vectors as well. Building upon this, work by Guo and Dooley (1992) introduced an
activation function to detect whether a process change was due to a shift in the
mean or because of special-cause variability. This work was particularly seminal in
that found where BP network could successfully identify of mean shifts whereas
conventional Shewart or cumulative sum control charts effectiveness would degrade
as sampling rates increased. One of the earliest to demonstrate BP networks could
be used in lieu of traditional Six Sigma charting for identifying patterns that sig-
nified mean shift in processes was Hwarng and Hubele (1993). Hwarng (2004)
applied this later to an industrial application of where a BP network was compared
to statistics-based control charts of an associated process for producing paper. What
was evinced was that the quality monitoring with the BP network did not require
any readjustment (unlike SPC charts) about the time series data inputs or underlying
data distributions as it correctly identified mean shift and correlation magnitudes as
underlying processes where changed.
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While much of the previous work was aimed at identifying patterns of sys-
tematic variation, the research performed by Perry et al. (2001) developed a BP
network that generated results similar to that of traditional X-bar and R-charts
which uniquely address the identification of process instability. Whereas with
previous research the focus was on detecting mean-shift, here their work focused on
the early detection of a change before a pattern would be recognized by use of
traditional charting alone. After all it is not unnatural that multiple patterns may be
present in a given process. This was demonstrated by Perry et al. (2001) with in a
two-layer BP construct for 64 processing inputs where the first layer tested for early
indications of change and the second layer identify a specific pattern of distribution.
The outcome of their experiment showed significant reduction in Type I and Type II
errors over using a single network alone. The seminal promise shown by their work
was that BP networks can do more than just recognize patterns; they can be adapted
to a closed-loop whereby adjustments to the process in near real-time in order that
quality problems are averted before noncompliance patterns fully develop. The
application of BP networks is however not limited to just manufacturing processes.
A novel approach adapted the BP algorithm to sampling quality indicators of
teachers to predict whether a teacher was developing good or bad traits which
ultimately would impact the overall quality of teaching (Lianxin et al. 2014). In this
case the process was itself an evaluation system comprised of 16 quality metrics.
The training set consisted of subjective historical data for 20 teachers which then
utilized two hidden layers; the first to normalize the data and the second to rate
overall teaching effectiveness. The takeaway from their research showed was that a
BP network can be an effective means to model the relationship between the
prediction and analysis of pre-normalized data when sufficient training data is
available.

12.10 Quality is Itself Decision

Decision making is an inescapable part of life. Organizations are no different in that
they are also being driven by the demand for information in order to make better
decisions and deliver solutions more widely and faster. Therefore, achieving sus-
tained and effective well-informed choices requires use of an organized and logical
approach for understanding what you have and what you need. For this reason is
why so many organizations have adopted Six Sigma as a means to provide a
structured approach to baseline performance for any products, services, and pro-
cesses in order to achieve higher effectiveness and efficiency from processes. The
benefit of Six Sigma is that it ensures gains made do not have to be redone at a later
time. It facilitates understanding of how processes compare to one another and
assists in focusing resources effectively toward the organizations largest problems.
At a minimum, it helps puts in place the right feedback measurements on processes
to answer how current performance has changed from past performance. This
however also becomes its Achilles heel since to ever fully optimize process quality,
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the sum total sources of disparate feedback measurements need to be evaluated in
parallel; something that traditional Six Sigma control charts were not envisioned
for. For this reason the use of neural networks is being seen as an emergent means
by which to improve performance within process by way of its ability to differ-
entiate concurrent patterns from individual patterns. In addition when presented
with a pattern the neural network is able to make a guess as to what it might be,
determine how far the outcome was off, and is then able to make an adjustment to
its connection weights. It is this ability to both exhibit capability for generalization
beyond its initial training data (i.e., self-learn) and in focusing on the cumulative set
of patterns (as opposed to just the last data point) which is giving promise to using
neural networks for real-time quality measurement systems in improving processes.
However use of artificial neural networks should not viewed simply as a replace-
ment to Six Sigma, but rather should be viewed as the next extension of quality
management systems wherever data is incomplete or noisy and functional rela-
tionships amongst disparate data sources from processes are needed to be consid-
ered in whole to enable improvements. While neural networks are seen as
promising in providing a self-adaptive approach to handling non-parametric data, it
does not eliminate the need understanding cause-and-effect relationships inherent in
the process. When implemented as part of a Six Sigma architecture, a neural
network goes beyond just being able to predict how often a process will meet
specifications and hold tolerances. It provides guidance on where improvements in
the process can increase value. Most importantly, it facilitates understanding
whether processes are able to adapt to changes which invariably will occur in the
future. The true determinant of how intelligent processes are in an organization, as
well as its ability to prosper over time, is the degree to which a structured quality
measurement system is put in place to promotes process effectiveness, efficiency,
and adaptability in responding to changes.
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Chapter 13
Taguchi Method Using Intelligent
Techniques

Kok-Zuea Tang, Kok-Kiong Tan and Tong-Heng Lee

Abstract The Taguchi method has been widely applied in quality management
applications to identify and fix key factors contributing to the variations of product
quality in manufacturing processes. This method combines engineering and sta-
tistical methods to achieve improvements in cost and quality by optimizing product
designs and manufacturing processes. There are several advantages of the Taguchi
method over other decision making methods in quality management. Being a
well-defined and systematic approach, the Taguchi method is an effective tuning
method that is amenable to practical implementations in many platforms. To build
on this, there are also merits, in terms of overall system performance and ease of
implementation, by utilizing the Taguchi method with some of the artificial intel-
ligent techniques which require more technically involved and mathematically
complicated processes. To highlight the strengths of these approaches, the Taguchi
method coupled with intelligent techniques will be employed on the fleet control of
automated guided vehicles in a flexible manufacturing setting.

Keywords Taguchi method � Artificial intelligent techniques � Automated guided
vehicles

13.1 Introduction

Taguchi method is an experimental design method that has been developed by Dr.
Genichi Taguchi (1993). It is called quality engineering (or Taguchi methods in the
United States). The Taguchi method combines engineering and statistical methods
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(Mori 1993; Ealey 1994) to achieve improvements in cost and quality by opti-
mizing product design and manufacturing processes. The main advantage of
Taguchi method over other search and tuning method is the twofold benefit of both
efficiency and simplicity. Efficiency provides an affordable avenue for problem
solving. Simplicity results in a set of tools more easily adopted and embraced by the
non-statistical expert.

Conventionally, the Taguchi method has been widely applied in quality control
applications to identify and fix key factors contributing to the variation of product
quality in manufacturing process (Peace 1993; Ross 1988; Hong 2012; Rao et al.
2008; Taguchi et al. 2004; Chen et al. 1996). These successful quality management
applications can be found in a diverse range of industries, ranging from chemical
plants, electrical and electronics manufacturing, mechanical productions, software
testing, and biotechnology-related fields like fermentation, food processing,
molecular biology, wastewater treatment and bioremediation biological sciences.

There are several strengths of the Taguchi method that is worth mentioning here
(Ealey 1994; Peace 1993). The Taguchi method is an effective tuning method that
has well-defined, systematic and simple steps. The optimum values of the factors to
be tuned are determined in relatively shorter and limited steps. All the above
mentioned points make the Taguchi method amenable to practical implementation.
Some of the artificial intelligent methods, like the genetic algorithm, the neural
networks and the evolutionary algorithm, propose more involved and complicated
search methods for optimization (Tortum et al. 2007). Furthermore, the Taguchi
method selects a combination of the factors (i.e., that needs to be tuned) that are
robust against the changes in the environment. The Taguchi method has the
additional advantage of being amenable to analyzing the sensitivity of the indi-
vidual factor that is to be tuned on the final objective performance. The above
mentioned artificial intelligent methods, on the other hand, are not able to provide
this analysis. In this perspective, there are some merits in utilizing the Taguchi
method together with some of these artificial intelligent methods.

In the current literature, researchers and engineers have also built on the suc-
cessful track records of the Taguchi method. Being an optimization tool that is
amenable to practical implementation, the Taguchi method is able to complement
the strengths of various tools in artificial intelligence (Tortum et al. 2007; Chang
2011; Ho et al. 2007; Yu et al. 2009; Khaw et al. 1995; Hissel et al. 1998; Tsai
2011; Chou et al. 2000; Hoa et al. 2009; Woodall et al. 2003; Hwang et al. 2013;
Huang et al. 2004; Tan and Tang 2001). For example, Hissel et al. have evaluated
the robustness of a fuzzy logic controller using the Taguchi quality methodology
and experimental product-plans (Hissel et al. 1998). The Taguchi method provides
an effective means to enhance the performance of the neural network in terms of the
speed for learning and the accuracy for recall (Tortum et al. 2007; Khaw et al.
1995). The determination of the parameters in engineering systems can be improved
using hybrid methods that employ evolutionary algorithms, genetic algorithms and
the Taguchi method (Chang 2011; Yu et al. 2009).

It is to be noted that the Taguchi method has some weak areas in comparison to
some of the above mentioned artificial intelligent methods, as a search and tuning
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method. Due to the simplicity of the Taguchi method, it may not be as effective
in situations where the search region is complicated. Also, Taguchi method may not
be as precise a tuning method, as compared to the more elaborate artificial intel-
ligent methods (Chang 2011).

In this chapter, a brief overview of the Taguchi method will first be provided,
focusing on the practical aspects of applications. Leveraging on the quality
methodology of the Taguchi method, hybrid approaches of combining the strengths
of the Taguchi method with intelligent techniques like the fuzzy logic and the
neural network. The case study at the end of the chapter will provide simulation
results of applying the Taguchi method and the hybrid approaches (i.e., combining
the Taguchi method with artificial intelligence) on the fleet control of automated
guided vehicles (AGVs) in a flexible manufacturing setting.

13.2 Taguchi Method

The Taguchi method is a statistical search for a set of optimum factors that could
affect the quality outcome of a process or final product. Given a problem, the
objective value is expressed as a quality characteristic, i.e., productivity, durability,
number of products completed in a given duration of time, etc. The scaling factors
are referred to as the control factors in the Taguchi method. Determination of the
optimum values of the control factors occurs during the experimental design phase.
In this phase, the different combinations of the control factors are used in the runs to
investigate their effects on the final quality characteristic. The results of the
experiments are then used to adjust the control factors for iteratively improved
performance.

13.2.1 Selection of Quality Characteristics

Quality characteristics may be classified into a few general categories such as
smaller-the-better (STB), larger-the-better (LTB) or nominal-the-best (NTB). For a
given problem, a number of measures of the quality characteristics are possible and
associated with the nature of the problem itself.

13.2.2 Control Factors and Levels

The control factors are to be tuned by the Taguchi method for optimal performance.
The number of levels of each control factor is the number of different values that are
to be assigned to the control factor. The number of levels for each factor is assigned
to be two, three or four (Mori 1993), depending on the nature of the overall
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problem. Using a larger number of levels reduces the number of control factors that
are can be effectively analyzed.

13.2.3 Selection of Orthogonal Array and Linear Graph

For the control factors considered, it will not be practically possible to analyze the
effects of all the different combinations on the quality characteristic, as in a full
factorial experimental design (Mori 1993) in a practical sense. Given the con-
straints, the optimum levels of the control factors must be determined using a
practical and limited number of experiments on a rich sample of the possible
combinations. While this set may be generated by a random parameter picking
procedure, there is little assurance that the thus generated set will offer a good
variation of possibilities within the finite set.

To this end, a special table called the orthogonal array due to Fisher (Ealey
1994) is used to generate an efficient set of parameters for experimentation. By
drawing a relatively small amount of data which are statistically balanced and
independent, meaningful and verifiable conclusions can be derived from the
orthogonal array. Complete compilation of orthogonal arrays can be easily available
(Mori 1993; Ealey 1994).

One of the main steps in the experimental design is to choose the most appro-
priate orthogonal array for the particular problem. There are many issues to be
considered in the final selection, i.e., the number of control factors, the number of
levels of the control factors, number of interactions of interest, etc. After the
orthogonal array is selected, the linear graph (Peace 1993) may be used to assign
the control factors and interactions to the appropriate columns of the orthogonal
array. Incorrect analysis and faulty conclusions may result if the control factors and
interactions are assigned to the any columns of the orthogonal array. By using the
linear graph, a systematic way of assigning the control factors and interactions to
the respective columns of the orthogonal array is developed by Taguchi. The linear
graph is made up of nodes and connecting arcs. The nodes represent the control
factors and the arcs represent the interactions or the relationship between the control
factors.

The systematic experimentation procedure of the Taguchi method can be sum-
marized as follows:

1. Determine the number of factors and interactions to be considered in the
experiment and the number of levels (i.e., or values) of the factors. Typically,
the number of levels of the factors is two or three.

2. Select the appropriate orthogonal array.

(a) Determine the required degrees of freedom (DOF) (Peace 1993) from the
factors and interactions. The DOF of a factor is one less than the number of
levels of the factor. The DOF of a particular orthogonal array is obtained by
the sum of the individual DOF for each column in the array.
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(b) The appropriate orthogonal array is the one with has the DOF that is equal
to or more than the required DOF of the factors. The smallest array sat-
isfying this requirement is normally chosen for efficiency.

3. With the appropriate orthogonal array chosen, choose the linear graph that fits
the relationships of the factors of interest. The factors can then be assigned to the
columns of the orthogonal array according to the linear graph.

4. Conduct the experiments and analyze the results.
5. Finally, run a confirmation experiment using the results obtained.

13.2.4 Interpretation and Validation of Experimental
Results

After the experimental data from the set of weighting parameters is obtained, there
are various approaches to verify the results. One of the common approaches
adopted by the industry is to use past data published in the literature. To provide a
more systemic approach, statistical tools like the F-test and the T-test could be used
to interpret the experimental data mathematically and to provide indications of
whether the decision related to the management of the quality is adequate and if
further tuning is necessary to improve the quality of the final output (Mori 1993).

13.2.5 Literature Review on Taguchi Method

In the literature, there are many applications using the Taguchi method. These
applications include a wide range of fields, from manufacturing processes to design
and development of systems and devices. The publication frequencies of the
Taguchi method for the past decade (i.e., from 2004 to 2013) are shown in
Fig. 13.1. There has been increasing interests on the Taguchi method, since Dr.
Genichi Taguchi introduced this practical statistical tool in the 1980s to improve the
quality of manufactured goods. These publications are in the form of journal arti-
cles, books, technical notes and theses. The different publication categories on the
Taguchi method for the past decade are shown in Fig. 13.2.

It is to be noted that these publications focus heavily on the application and
verification of the Taguchi method. For example, Sreenivasulu (2013) employed the
Taguchi method to investigate the machining characteristics on a glass fiber rein-
forced polymeric composite material (GFRP) during end milling. He then used the
ANOVA method to verify significant parameters and confirm the optimum values
obtained by the Taguchi method. These results are even compared with the neural
networks tuning method. The results show that the Taguchi method and the neural
networks produce very similar results. The Taguchi method is also employed to
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understand the fermentative hydrogen production process (Wang and Wan 2009).
The effects of the various factors in this complex process could be investigated and
analyzed using the Taguchi method. The results of this work highlights that the
simplicity of the Taguchi method is an advantage over other more involved opti-
mization tools. Asafa and Said (2013) integrates the Taguchi method and the neural
networks together to model and control the stresses induced during the plasma
enhanced chemical vapor deposition process on hydrogenated amorphous silicon
thin films. The Taguchi method with ANOVA is able to obtain the significance of
the various network parameters on the overall model. Using these significances, the
authors are able to verify the trend between the deposition parameters and the
resulting intrinsic stresses during the process. The obtain results concur with other
published data in the literature on plasma enhanced chemical vapor deposition
process. In a similar way, there are other works in the literature that integrate the
Taguchi method with other tools in artificial intelligence (i.e., genetic algorithm,
neural networks, fuzzy logic and regression analysis) to optimize other processes

Fig. 13.1 Publication frequencies of the Taguchi method for the past decade (i.e., from 2004 to
2013)

Fig. 13.2 Publication categories on the Taguchi method for the past decade (i.e., from 2004 to
2013)
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and systems (Lin et al. 2012; Sun et al. 2012; Mandal et al. 2011; Chang 2011; Tsai
2011; Tansel et al. 2011; Tzeng et al. 2009). In Lin et al. (2012), the Taguchi
method is integrated with the neural networks and the genetic algorithm to improve
a particular manufacturing process of the solar energy selective absorption film. For
this problem, the Taguchi method is able to perform well to optimize a given search
space; whereas the genetic algorithm and other evolutionary numerical methods can
be used to control a poorly defined search space. The results in the literature show
that the integrated approach of the Taguchi method with other artificial intelligence
tools produces better results than just utilizing a single optimization tool alone.

Besides modeling and optimizing manufacturing processes, the Taguchi method
has also been widely applied in other fields, like the supply chain management
(Yang et al. 2011) and clinical diagnostics (De Souza et al. 2011). Yang et al.
(2011) used the Taguchi method to study the robustness of different supply chain
strategies under various uncertain environments. The complexity of the problem is
accentuated by the variations in the business environments. The performance of the
Taguchi method is shown to compare well with other multiple criteria
decision-making techniques, like the simple multiple attribute rating technology
(SMART), the technique for order performance by similarity to ideal solution
(TOPSIS), and grey relational analysis (GRA). The Taguchi method is utilized
to optimize the Molecular assay for venous thrombo-embolism investigation
(De Souza et al. 2011). There are various risk factors that are patient-dependent and
render the investigation process uncertain and difficult. The application of the
Taguchi method can lessen the time and cost necessary to achieve the best operation
condition for a required performance. The results is proven in practice and con-
firmed that the Taguchi method can really offer a good approach for clinical assay
efficiency and effectiveness improvement even though the clinical diagnostics can
be based on the use of other qualitative techniques.

13.3 Tuning Fuzzy Systems Using the Taguchi Method

The statistical potential of the Taguchi method can be harnessed to tune the per-
formance of many intelligent systems. As highlighted briefly in Sect. 13.2.5 above,
there are other works in the literature that integrate the Taguchi method with other
tools in artificial intelligence (i.e., genetic algorithm, neural networks, fuzzy logic
and regression analysis) to optimize other processes and systems (Lin et al. 2012;
Sun et al. 2012; Mandal et al. 2011; Chang 2011; Tsai 2011; Tansel et al. 2011;
Tzeng et al. 2009). The results show that the integrated approach of the Taguchi
method with other artificial intelligence tools produces better results than just uti-
lizing a single optimization tool alone.

In this section, the integration of the Taguchi method with fuzzy systems will be
described in details to show how these two methodologies can be utilized to
complement each other. The work of Zadeh (1973) provides a comprehensive
review on fuzzy logic, as an alternative branch of mathematics.
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In a fuzzy system, the objects are associated with attributes. These attributes can
be computed from fuzzy operations on a combination of variables which are used to
describe mathematically the real-time conditions of the given problem. Decisions
that affect the system’s performance will be driven primarily by these attributes.

To incorporate the Taguchi method into the fuzzy system, the fuzzy system has
to be posed as a quality control scenario, with appropriate performance measures as
the quality characteristics. The Taguchi method then can be utilized to tune the
parameters in the fuzzy rules in the inference engine.

13.3.1 Takagi and Sugeno’s Fuzzy Rules

To illustrate how the Taguchi method could be used to tune fuzzy systems,
the K attributes will be inferred from a Takagi and Sugeno type of fuzzy
inference (Takagi and Sugeno 1985). Consider the following p rules governing the
attribute ak:

IF xik1 is F
i
1 � � � � � IF xikmi

is Fi
kmi

; THEN uik is a
i; i ¼ 1. . .p: ð13:1Þ

with
Pp

i¼1 a
i and k ¼ k 2 Z j0� k�Kf g, where Fi

j are fuzzy sets, xi ¼

xik1; . . .; x
i
kmi

h iT
2 R are the input linguistic variables identified to affect the attribute

for rule i, ⊗ is a fuzzy operator which combine the antecedents into premises, and
uik is the crisp output for rule i. ai is the scaling factor for rule i reflecting the weight
of the rule in determining the final outcome.

The value of each attribute ak is then evaluated as a weighted average of the ui’s.

ak ¼
PP

i¼1 w
i
ku

i
kPP

i¼1 w
i
k

ð13:2Þ

where the weight wi
k implies the overall truth value of the premise of rule i for the

input and is calculated as:

wi
k ¼

Ym
j¼1

lFi
kj
xikj ð13:3Þ

13.3.2 Incorporating Fuzzy Logic with Taguchi Method

In a fuzzy system, the approach to the decision making is based on a fuzzy
inference engine which is able to specialize in a multiple criteria satisfaction. The
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overall effectiveness of this fuzzy logic approach in a given scenario is critically
dependent on the appropriateness of the fuzzy rules, in particular, the weight or the
scaling factors of each of the fuzzy rules on the final decision. One of the main
issues is to address the selection of the scaling factors, i.e., α’s in Eq. (13.1). By a
manual trial-and-error adjustment method, the search for the optimal set is by far
too tedious and time consuming. On the other hand, an exhaustive search for the
optimal set of scaling factors would be unrealistic and impractical. To this end, a
systematic search procedure within a balanced set of possible weighting parameters
will be both desirable and practical. The Taguchi method would be an ideal can-
didate that could be deployed to obtain the optimal set of the scaling factors for the
fuzzy rules.

The main strength of the Taguchi method over other search and tuning methods is
the twofold benefit of both efficiency and simplicity. Efficiency provides an
affordable avenue for problem solving. Simplicity results in a set of tools more easily
adopted and embraced by the non-statistical expert. The quality characteristics used
in the Taguchi methodology may be classified into a few general categories such
as smaller-the-better (STB), larger-the-better (LTB) or nominal-the-best (NTB).
For a given problem, usually a number of measures of the quality characteristics are
possible and associated with the nature of the problem itself.

To determine the control factors and the assigned levels, the scaling factors
associated with the attributes in the fuzzy rules are the control factors to be tuned by
the Taguchi method for optimal performance. The number of levels of each control
factor is the number of different values that are to be assigned to the control factor.
The values are dependent upon the constraints (i.e., which could be related to the
hardware and other constraints of the system) of the given problem. In the next
section, the case studies will demonstrate the potential of the Taguchi method
combined with the fuzzy system.

13.4 Using Taguchi Method with Neural Networks

To explore further the potential of the Taguchi method as a search and tuning
method, the Taguchi method is applied together with another intelligent method,
i.e., neural network system, for quality management. Neural networks are inher-
ently useful for approximating non-linear and complex functions. This is especially
true for functions when only the input/output pairs are available and the explicit
relationships are unknown. Considering such strengths, neural networks could be
good candidates for quality management problems, like monitoring and controlling
quality-critical processes with complex system dynamics in the manufacturing
environment. This is because such processes display non-linear behavior and it is
very difficult to obtain closed-form models of such processes to describe the overall
system characteristics and dynamics perfectly. By gathering input and output data
pairs of such processes, neural networks could be employed to model the process
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and provide corrective control action in various manufacturing environments,
requiring quality management.

Artificial neural networks are an alternative computing technology that have
proven useful in a variety of pattern recognition, signal processing, estimation, and
control problems. Indeed, many real-world processes are multidimensional, highly
non-linear and complex. It is extremely difficult and time-consuming to develop an
accurate analytical model based on known mathematical and scientific principles.
Moreover, it is often found that the simplified analytical model is not accurate
enough to model these complex processes, resulting in poor performance or results.
Artificial neural networks allows one to consider them as a black box can be taught
using actual data to act as the accurate model for the processes (Haykin 1994).

There are two common configurations which we could utilize neural networks
for quality management (Figs. 13.3 and 13.4). In Fig. 13.3, the neural network
‘learns’ the process dynamics using input/output data pairs. This type of learning is
done using past batches of input/output data pairs to tune the neural network’s
parameters. This neural network can then be used to monitor the performance of the
process during the manufacturing cycle. Corrective actions in the form of user alerts
will be invoked whenever, the output of the process deviates from a known pattern
or when other abnormal conditions are detected by the neural network controller.

Besides the configuration shown in Fig. 13.3, the neural network could also be
incorporated into the process control loop as shown in Fig. 13.4. Here, the neural
network provides control actions that adapt to changes in the system output during
the process run. The learning phase of the neural network could be online or offline.
Online learning of the neural network refers to tuning of the internal parameters
while the process is given new inputs; whereas offline learning refers to tuning of
the neural network’s parameters using past batches of input/output data pairs.

In both configurations shown in Figs. 13.3 and 13.4, the effectiveness of the
neural network relies critically on how well it is trained. Training of the neural
network can be seen as allowing its parameters to learn the patterns of the process
using input/output data pairs. The neural network is then able to model the
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non-linear and complex function that represents the input/output data pairs. This
training process may entail an exhaustive search for optimum weights, using a
conventional Newton-Raphson type of gradient search (Haykin 1994), or adopting
a backpropagation approach (Zurada 1992). The effectiveness of these approaches
is highly dependent on the proximity of the initial set to the optimum set, and
typically a localized optimum point can be located at best.

As highlighted briefly in Sect. 13.2.5 above, there are other works in the liter-
ature that integrate the Taguchi method with other tools in artificial intelligence
(i.e., genetic algorithm, neural networks, fuzzy logic and regression analysis) to
optimize other processes and systems (Lin et al. 2012; Sun et al. 2012; Mandal et al.
2011; Chang 2011; Tsai 2011; Tansel et al. 2011; Tzeng et al. 2009). The results
show that the integrated approach of the Taguchi method with other artificial
intelligence tools produces better results than just utilizing a single optimization
tool alone. It would be interesting to compare the results of integrating the Taguchi
method with the neural networks. For illustration purpose, a radial basis function
neural network (RBFNN) is used in this section to show how the Taguchi method
can be used effectively with neural networks for process control applications.
RBFNNs are one popular and commonly used configuration of neural networks
(Haykin 1994; Zurada 1992). RBFNNs use a set of basic functions in the hidden
units. Other types of neural networks could use different types of functions in the
hidden units. The training process of the different types of neural networks may
differ in the methodology. But the objectives are the same, i.e., that is to improve
the performance of the neural network when the network is deployed for its pur-
pose. More details of the different types of neural networks could be found in
Haykin (1994).

As mentioned earlier, the effective modeling of the given functions entails
training the RBFNNs which, in turn, filter down to proper selection and tuning of
the parameters (i.e., weighting factors) in the RBFNNs. This training process may
entail an exhaustive search for optimum parameters. The effectiveness of the tuning
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approach is highly dependent on the proximity of the initial set to the optimum set,
and typically a localized optimum point can be located at best. The effectiveness
and success of the Taguchi statistical method in experiment design to yield an
optimum result is well demonstrated and proven in many cases. Considering
complex processes in quality management, Taguchi-tuned neural networks could
provide good solutions for control and monitoring applications. In the following,
the application of the Taguchi method to RBFNN tuning is briefly discussed.

13.4.1 Taguchi Method Applied to RBFNN Tuning

In this section, the Taguchi method is used to obtain optimum weights associated
with a RBFNN which is used for the purpose of modeling uncertain nonlinear
functions which are subsequently applied for process control. Conventionally, these
weights are obtained via an exhaustive search or a localized search using an iter-
ative gradient search algorithm.

To state the problem for the RBFNN, f ðxÞ is a nonlinear smooth function (i.e.,
which is unknown) which can be represented by

f xð Þ ¼
Xm
i¼0

wi;iðxÞ ð13:4Þ

where ;iðxÞ denotes the RBF, i.e.,

;i xð Þ ¼ exp � x� cij j2
2r2i

 !,Xm

j¼0
exp � x� cj

�� ��2
2r2j

 !
ð13:5Þ

where the vector x represents the states of the system. The ideal weights are
bounded by known positive values such that

wij j �wM ð13:6Þ

where i ¼ i 2 Z j0� i�mf g. Let the RBF functional estimates for f ðxÞ be
given as:

bf xð Þ ¼
Xm
i¼0

bwi;iðxÞ ð13:7Þ

where cwi are the estimates of the ideal RBF weights.
Therefore, there are (m + 1) parameters (i.e., or weights) to be tuned. It is a

difficult NP-complete problem to determine the optimum weights especially for
large m. A gradient search method is sometimes used, which is sensitive to the
initial set selected and is faced with a convergence problem. Even if the search is
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convergent, usually only a localized optimum point is obtained. The Taguchi
method can thus be applied to systematically search for the optimum set.

As mentioned earlier in this chapter, quality characteristics in a Taguchi
experiment refer to the assessment factors which are used for measuring how good
the objectives of the experiment are met. For machine learning, the quality char-
acteristic can be based on an appropriate measure of the deviation of the RBFNN
from the actual nonlinear function, i.e., the residue. Since the objective here is for
the RBFNN to approximate the actual function closely, this measure is desired to be
as small as possible (i.e., smaller-the-better, STB). Even then, the quality charac-
teristic can also be formulated in various ways, e.g., maximum error, sum of
absolute error, sum of squares of error, etc.

The control factors are the parameters to be tuned using the Taguchi method.
Clearly, the weights of the RBFNN are the control factors of the Taguchi experiment.
Depending on the number of control factors and assigned levels in the RBFNN, the
appropriate orthogonal array and linear graph can be used to generate an efficient set
of parameters for experimentation. The systematic experimentation procedure of the
Taguchi method can then be employed for tuning the neural networks. The testing
and validation process of the neural network (which employed the Taguchi method
for training purpose) is the same as that when the other conventional training
methods, like the back propagation and other gradient-based methods, are employed.
The main advantage of employing the Taguchi method for training the neural net-
work is to provide a systemic view for the search space. Problems encountered by
neural networks employing the traditional methods, such as over-training and local
minima, could be avoided.

13.5 Case Studies

In this case study, we would like to study the performance of integrating Taguchi
method with another artificial intelligence tool on the overall system performance.
A particular fuzzy system for a vehicle dispatching platform involving an auto-
mated guided vehicle system (AGVS) will be used for this purpose. With just fuzzy
logic alone, the approach to the dispatching of AGVs is based on a self-adapting
fuzzy method. This method is provided for a unit load transport system in a
manufacturing environment. In this method, it allows for the possibility to for-
mulate more versatile and flexible rules. Thus, the AGVS no longer have to operate
in a single criterion satisfaction. The AGVS is able to specialize in a multiple
criteria satisfaction. Also, the balance between rules can be precisely adapted
to a production environment through real-time parameterization from available
information.

The overall effectiveness of this fuzzy logic approach to the vehicle dispatching
system for the AGVS is critically dependent on the appropriateness of the fuzzy
rules, in particular, the weight or the scaling factors of each of the fuzzy rules on the
final dispatch decision. One of the main issues in the fleet control of the AGVS is to
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address the selection of the scaling factors, i.e., α’s as mentioned in Eq. (13.1). The
scaling factors could be set based on the experience of the operator and fixed
throughout the production process. By this manual adjustment method, the search
for the optimal set is by far too tedious and time consuming. Also, an exhaustive
search for the optimal set of scaling factors would be unrealistic and impractical. To
this end, a systematic search procedure within a balanced set of possible weighting
parameters will be both desirable and practical. In this section, the results of using
the Taguchi method to tune the fuzzy rules in the fuzzy vehicle dispatching system
will be elaborated.

The key idea in the proposed approach is to associate all the work centers in the
system with two attributes for each respective vehicle. The two attributes are
PARTS_IN and PARTS_OUT, which are associated with the extent of
demand-driven and source-driven needs of the work center with respect to the
vehicle (Egbelu and Tanchoco 1984). These attributes are fuzzy variables (i.e.,
PARTS_IN, PARTS_OUT 2 [0, 1]) computed from a fuzzy operation on a com-
bination of variables which are expected to influence the extent of the demand and
source-driven needs of the work center. Decisions for material movement will be
driven primarily by these attributes.

The two attributes, PARTS_IN and PARTS_OUT can be inferred from a Takagi
and Sugeno type of fuzzy inference (Haykin 1994). The fuzzy rules will then
govern the PARTS_IN and PARTS_OUT attributes of the work centers. For example
from Eq. (13.1), xikj may be the linguistic variable CYCLE_TIME and Fi

j may be the
fuzzy set SHORT for the PARTS_IN attribute; similarly, xikj may be the linguistic

variable WAITING_TIME and Fi
j may be the fuzzy set LONG for the PARTS_OUT

attribute. The value of the PARTS INk and PARTS OUTk attributes are then
evaluated separately as a weighted average of the ui’s in Eq. (13.2).

With these attributes, the work centers may be sorted in the order of their
demand and source-driven needs. In a pull-based situation, an idle vehicle searches
for the highest inflow demand station from the PARTS_IN attribute. This station
may then be paired off with a station having the highest PARTS_OUT attribute,
identified from a set of K stations supplying the parts to the kth station in demand.
The converse is true for a push-based system.

Thus far, dispatching rules are rigidly based on either a demand or a
source-driven procedure. There are attractive features associated with a
demand-driven rule as they provide the load movement flexibility for just-in-time
manufacturing concepts. However, under certain circumstances, it might be more
advantageous to revert to a source-driven rule. For example, by reverting to a
source-driven rule when there is a low level of demand but a large number of parts
to be cleared, machine blockage may be reduced. Furthermore, reverting to the
source-driven rule is also a hedge against an unanticipated surge in vehicle demand
at a future time.

Instead of rigidly commissioning a push or a pull-based concept, it is viable to
view each of these concepts as being suited to different operating conditions, and
switch between them when crossing these different operating regions. Clearly, some
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mechanism to trigger this switch between a pull and a push-based environment is
needed. To this end, a methodology may be formulated as follows:

Denote SCE(k) as the set of work centers supplying to the input buffer of work
center k, and DES(k) as the set of work centers to which work center k supplies
parts. The work centers, k�u and k�v are identified where

PARTS INk�u ¼ max ðPARTS INkÞ; where SCEðk�uÞ 6� ;
PARTS OUTk�v ¼ max ðPARTS OUTkÞ; where DESðk�v Þ 6� ;

Based on these attributes, the current state system towards a push or a pull
operation may be determined. For example, a simple formulation may be to
compute the following ratio,

STRATEGY ¼ PARTS OUTk�v
PARTS INk�u þPARTS OUTk�v

ð13:8Þ

If STRATEGY > γ (where suitable values for γ may be in the range 0.6 < γ < 0.7,
depending on the desired level of PULL dominance), a PUSH operation may be
initiated, otherwise a PULL operation will be initiated. The PULL dominance is
necessary for reasonably busy facilities where it has been shown (Egbelu and
Tanchoco 1984) that a PULL strategy is more efficient in moving parts through the
facility.

A graphical representation of the self-adapting fuzzy dispatching algorithm is
illustrated in Fig. 13.5. The vehicles are all indexed. When the vehicle in consid-
eration becomes idle, it is available for reassigned to pick up the load from the
source work center and then deliver the load to the destination work center. With
the idle vehicle in consideration, the fuzzy dispatching algorithm block (as shown
in Fig. 13.5) is then invoked. The fuzzy algorithm is represented as an operation
block in Fig. 13.5. In Fig. 13.6, the fuzzy algorithm is expanded into further details.
Here, the needs of all the work centers are prioritized according to their demand and
source driven needs (i.e., the demand and source driven needs are computed using
the fuzzy PARTS_IN and PARTS_OUT attributes). At the end of the execution of
the fuzzy dispatching algorithm, the work center (i.e., this work center could either
be a source work center or a destination work center; if it is a source work center
most in need of service, push-based operation or a source-driven procedure is then
selected. If it is a destination work center most in need of service, pull-based
operation or a demand-driven procedure is then selected) most in need of service is
selected. The vehicle is then invoked to pick up the load from the assigned source
work center and then deliver the load to the assigned destination work center. The
whole procedure is then repeated for the vehicle, next in the index sequence. If the
vehicle next in the sequence is not idle, the fuzzy dispatching algorithm would not
be invoked. Instead, it would only continue in its travel to its assigned pick-up work
center and then the destination work center.
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While the algorithm is essentially based on vehicle-initiated rules, there are
situations such as during start-up, when more than one vehicle is available for
dispatching. Since these are insignificant for reasonably busy facilities, a simple
random procedure is used to select the vehicle for dispatch under these situations.

13.5.1 Test Facility

The simulation analysis is based on a hypothetical facility as given in Fig. 13.7. The
facility operating data is provided in Table 13.1. There are 9 work centers (WC1 to
WC9) or departments, and a warehouse (WH) for the raw materials and finished
products.

• Job routing = WH, WC1, (WC2, WC3), WC4, WC5, WC6, (WC7, WC8),
WC9, WH

• Load pickup/delivery time = 10 s
• Vehicle length = 3 ft.

Vehicle is idle

Fuzzy Dispatching Algorithm

Vehicle is enroute to pickup the load
and deliver to the delivery workcenter

Whole process
is repeated for

the next idle
vehicle

The workcenter
most in need of

service is
selected

Fig. 13.5 Flowchart of the self-adapting fuzzy dispatching system
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Compute PARTS_IN and PARTS_OUT attributes for all
workcenters, based on the fuzzy rules

Identify the workcenter most in need of service
PARTS_IN* = max (PARTS_INi)
PARTS_OUT* = max (PARTS_OUTj)

Is i and j undefined?

If yes, leave
vehicle idle

If only index i is undefined, then STRATEGY=PUSH.
If only index j is undefined, then STRATEGY=PULL.

Else

If (PARTS_OUTj / (PARTS_INi PARTS_OUTj) >  0.6,
then STRATEGY=PUSH,
else STRATEGY=PULL.

Exit the Fuzzy Dispatching Algorithm

No

Fig. 13.6 Fuzzy algorithm block (more detailed version)
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• Vehicle speed = 200 fpm
• Pickup and delivery spur capacity = 1 vehicle

13.5.2 Simulation Language

The control simulation language, MATLAB is used for implementing the study. The
language may be used for simulation of both continuous and discrete-time systems.
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Fig. 13.7 Layout of the test facility

Table 13.1 The test facility operating data

Work center Processing time/unit load (min) Input queue size Output queue size

1 1 3 5

2 3 2 3

3 3 2 3

4 2 3 2

5 1 1 4

6 3 2 3

7 3 2 3

8 2 3 2

9 3 4 4
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In this case, it is applied to discrete event investigation, where the AGV guide path is
modeled as a directed network consisting of nodes and arcs. Point locations in the
network are uniquely identified by their Cartesian coordinates. Traffic conflicts at the
load pickup/delivery points are explicitly modeled.

13.5.3 Computation of Attributes

In this simulation, the input variables chosen for the computation of the PARTS_IN
attributes are:

• Length of time before incoming queue is empty, LT_IN
• Shortest travel distance of vehicle to source work centers, and to the work center

concerned, STD_IN.
• Shortest length of time before the outgoing queue of source work centers is full,

SLT_IN
• Number of parts completed already by the workstation, PC_IN.

The time taken for the processing of the load at each work center is assumed to
be fixed and shown as in Table 13.1 so that these variables can be directly com-
puted. The 4 rules formulated for the computation of the PARTS_IN attribute for the
kth work center are:

IF LT_INk is SHORT, THEN uk = μ1
IF STD_INk is SHORT, THEN uk = μ2
IF SLT_INk is SHORT, THEN uk = μ3
IF PC_INk is LOW, THEN uk = μ4

PARTS_IN is then computed as in (13.2). The input variables chosen for the
computation of the PARTS_OUT attributes are:

• Shortest length of time before outgoing queue of work center is full, SLT_OUT.
• Shortest travel distance of vehicle to work center concerned, and to target work

centers, STD_OUT.
• Length of time before the incoming queue of destination work center is empty,

LT_OUT.
• Number of parts completed already by the workstation, PC_OUT.

Similarly, the 4 rules formulated for the computation of the PARTS_OUT
attribute for the kth work center are:

IF SLT_OUTk is SHORT, THEN vk = μ5
IF STD_OUTk is SHORT, THEN vk = μ6
IF LT_OUTk is SHORT, THEN vk = μ7
IF PC_OUTk is LOW, THEN vk = μ8

PARTS_OUT is then computed as in (13.2). The membership functions are made
time varying according to the set of assigned tasks at any point in time. In this
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approach, a linear interpolation between the maximum and minimum values of the
variables serves as the membership function. As an example, consider the following
STD_IN variable

lSHORT STD INkð Þ ¼ STD INk �minðSTD INÞ
max STDINð Þ �minðSTD INÞ ð13:9Þ

13.5.4 Rule Comparison

The performances of the dispatching system with the deployment of three different
deployments will be illustrated. The three different combinations are, just the fuzzy
logic alone, the Taguchi-tuned fuzzy system and the demand driven (DEMD) rules
of Egbelu (Mandal et al. 2011). The comparisons were carried out under the fol-
lowing three different cases.

Case I Given an equal number of vehicles, the same facility scenario, and the
same length of time or shift duration, how does the facility throughput compares
between the two sets of rules? Throughput is defined as the total number of parts
completed and removed from the facility shop floor during the shift. The following
parameters are used for Case I analysis:

• The facility operates a 2-h shift.
• Three vehicles are in use.
• Infinite number of loads were available for processing at time, t = 0.

Due to the nature of the dispatching problem, there are a number of quality
characteristics that could be considered in the Taguchi-tuned fuzzy system. This
quality characteristic is a LTB characteristic.

Case II Given the same conditions as in Case I, how long does it take for the
facility to produce a known number of parts under the three different sets of rules?
The analysis was done with 3 vehicles and 30 parts or unit loads to be produced and
centers on the determination of the length of time it will take the facility to produce
the 30 parts under each of the dispatching methodology. The facility operating
duration is a measure of the rule’s ability to accelerate the unit loads through the
facility. In the Taguchi-tuned fuzzy system, this quality characteristic is a STB
characteristic.

Case III Given the same conditions as in Case I and a production target over a
fixed time period, how many vehicles are required to meet the production target
under the three different sets of rules? The conditions for the analysis are the
following:

• There are a fixed number (30) of unit loads to be produced.
• The production of the fixed number of unit loads must be satisfied within the

time interval specified (2 h).
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If all other factors remain the same, it seems that the number of vehicles required
will be a function of the dispatching rule (i.e., or control factors in the Taguchi
method sense) in force, since the rules act differently with the vehicles. This is a
LTB quality characteristic.

13.5.5 Deployment of Taguchi-Tuned Fuzzy System

In the deployment of the Taguchi method to the AGVS, there are some further
considerations to modify the problem as a quality optimization problem.

13.5.5.1 Control Factors and Number of Levels

As 4 fuzzy rules are chosen for the PARTS_IN fuzzy attribute, there are thus 4
scaling factors (denoted as α1, α2, α3 and α4) for the PARTS_IN fuzzy attribute.
Similarly, for the PARTS_OUT fuzzy attribute, 4 scaling factors (denoted as β1, β2,
β3 and β4) are selected. These 8 scaling factors for the fuzzy rules are the control
factors to be tuned by the Taguchi method for optimal performance. These scaling
factors are the parameters as mentioned in Eq. (13.1). The sum of these scaling
factors is fixed, i.e., α1 + α2 + α3 + α4 = 1 and β1 + β2 + β3 + β4 = 1. This implies that
within the set, the factors cannot be varied arbitrarily. But rather the choice of one
factor limits the possibilities for the other factors. Due to this constraint, the
nested-factor design (Peace 1993) is used for the assignment of the levels of the
control factors (shown in Table 13.2). The layout of the first four control factors for
the PARTS_IN attribute, i.e., α1, α2, α3 and α4 denoted as A, B, C and D respectively,
is shown in Table 13.2. The other four scaling parameters for the PARTS_OUT
attribute, i.e., β1, β2, β3, and β4 denoted as E, F, G and H respectively, have a similar
layout as shown in Table 13.2. The factors are scaled up by a factor of 100 for ease
of calculations.

Each of the control factors is assigned 3 levels. A 3-layered structure for the
control factors is used. Factors C and D are nested within Factor B which is in turn
nested within Factor A. For example, consider Factor A at level 1, i.e., A1, Factor
B can be at level 1, level 2 or level 3, i.e., B′1, B′2 and B′3 respectively. For Factor
A at level 2, i.e., A2, Factor B can be at another set of level 1, level 2 or level 3, i.e.,
B″1, B″2 and B″3 respectively. The set of levels of Factor B at A1 is different from
that at A2. The same layout is also applied to Factor B and Factors C, D.

As shown in Table 13.3 for Factor A (traversing the second column), there are 3
levels, i.e., 1, 50 and 90. Factor A at level 1, level 2 and level 3 is denoted as A1, A2

and A3 respectively. For A1, Factor B has three levels: 1, 50 and 90 (denoted as B′1,
B′2 and B′3 respectively). For A2, Factor B has another 3 levels: 1, 25 and 40
(denoted as B″1, B″2 and B″3 respectively). For A3, Factor B has another 3 levels: 1,
5 and 9 (denoted as B‴1, B‴2 and B‴3 respectively).
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Table 13.2 Layout for the
layered structure of the
control factors Control factors

Control factors α1 α2 α3 α4
Symbol used A B C D

Actual level value 1 1 97 1

49 49

1 97

50 48 1

24.5 24.5

1 48

90 8 1

4.5 4.5

1 8

Actual level value 50 1 48 1

24.5 24.5

1 48

25 24 1

12.5 12.5

1 24

40 9 1

5 5

1 9

Actual level value 90 1 8 1

4.5 4.5

1 8

5 4 1

2.5 2.5

1 4

9 0.9 0.1

0.5 0.5

0.1 0.9

Table 13.3 Optimum levels
of the various control factors
Control factors

Control factor Optimum level Value

A A1 0.01

B B0
1 0.01

C CDð Þ011 0.49

D CDð Þ012 0.49

E E1 0.01

F F0
3 0.90

G ðGHÞ031 0.08

H ðGHÞ031 0.01
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13.5.5.2 Orthogonal Array and Linear Graph

For this vehicle dispatching problem considered here, the required DOF is 36,
obtained as follows.

Axial factor (A) 1 × (3 − 1) = 2 DOF

Nested factor (B) 1 × (3 − 1) = 2 DOF

Nested factor (C & D) 1 × (3 − 1) = 2 DOF

Axial nesting for A & B 1 × (3 − 1) (3 − 1) = 4 DOF

Axial nesting for A & B & C, D 1 × (3 − 1) (3 − 1) (3 − 1) = 8 DOF

Total DOF needed for A, B, C, D = 18

Total DOF needed for A, B, C, D & E, F, G, H = 36

The L81 (340) orthogonal array (Peace 1993) is used, being the smallest array
with a degree of freedom larger than 36. The subscript refers to the number of
experiments or rows in the array whereas the superscript refers to the number of
factors or columns in the array. For this array, there are many different linear graphs
with different structures (Peace 1993). The linear graph chosen is as shown in
Fig. 13.8. The nodes represent the control factors. The joining arcs represent the
interactions or the relationship between the control factors. The numbers in brackets
refer to the column number in which the particular control factor is assigned to in
the orthogonal array.

13.5.5.3 Results of the Experiments

After the experiments are run, the optimum condition is determined by selecting the
best levels of each factor. Note that the choice of one factor limits the choice of
subsequent ones due to nesting. The average level of a factor is obtained by
summing the experimental data for each particular level of a factor and averaging
the sum by the number of experiments. The best level of a factor is the level with
the highest average level (for a LTB quality characteristic) or the level with the

Fig. 13.8 Linear graph for the control factors in the L81 (3
40) orthogonal array
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lowest average level (for a STB quality characteristic). The best levels for the
factors are thus obtained as illustrated from Fig. 13.9 to 13.14.

In this experiment, the quality characteristic of concern is a LTB quality char-
acteristic. From the factors’ effects plot above (Figs. 13.9, 13.10, 13.11, 13.12, 13.13
and 13.14), the optimum condition is thus obtained by choosing the factors com-
bination A1;B0

1 and CDð Þ011 ;E1;F0
3 and GH03

1 . The next best factors combination is
A1;B0

1 and CDð Þ012 ;E1;F0
3 and GH03

1 . There is little difference between Factor CDð Þ011
and CDð Þ012 on the quality characteristic. Using the two optimum sets of factors, a
final test run is done. The results of the final test run confirm that the optimum
condition obtained for the control factors at the given levels as shown in Table 13.3.

Here, Factor A at Level 1, Factor B at Level 1 and Factors C and D at Level 2 are
chosen, whereas Factor E at Level 1, Factor F at Level 3, and Factors G and H at
Level 1 are chosen.

13.5.5.4 Validation with Statistical Tools

As mentioned at the start of this chapter, after the experimental data from the set of
weighting parameters is obtained, the statistical tools could be used to interpret the
experimental data mathematically and to provide indications of whether the choice
is adequate and if further experimentation is necessary. For this purpose in this
chapter, the analysis of variance (ANOVA) is chosen. This is because when results
of laboratories or methods are compared where more than one factor can be of
influence and must be distinguished from random effects, then the ANOVA is a
powerful statistical tool to be used. Furthermore, the ANOVA also allows one to
assess the degree to which a factor affects variation and the quality characteristic.
ANOVA is used as a supplement to the experimental design (Sreenivasulu 2013;
Asafa and Said 2013; Mandal et al. 2011; Tzeng et al. 2009; Howanitz and
Howanitz 1987; International Organization for Standardization 1981; Bauer 1971).

Analysis results from the ANOVA method are summarized in Table 13.4. The
results obtained by the ANOVA method confirm the results obtained earlier.
Referring to Table 13.4, the second column (F) refers to the degrees of freedom of
each factor. The third column (S) refers to the factor variation and error variation.
The fourth column (V) refers to the factor variances and the error variance. The fifth
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column (F) refers to the variance ratio of each the factor variance to the error
variance. The last column (ρ) refers to the contribution ratio, i.e., significance or
importance with regards to the particular quality characteristic, of each factor.

There are two conclusions that can be drawn from the ANOVA table to support
the optimum combination of factors obtained earlier. First, there is about 11 % of
significance to the quality characteristic due to uncontrolled or unwanted factors.
This implies positively that the factors chosen earlier to study their effects on the
quality characteristic has a major influence of about 89 % on the quality charac-
teristic. Secondly, the factors chosen earlier in Table 13.3 are indeed those with
most significant contribution to the quality characteristic, as shown in the last
column of Table 13.4 by their contribution ratio. Referring to the contribution ratio
(last column of Table 13.4), Factor A has a significance of about 0.259 % on the
quality characteristic. From the factor effects graph of Factor A (Fig. 13.9), Level 1
is chosen as the optimum level. For Factors B′, B″ and B‴, B′ with Level 1 is chosen
in the optimum factor combination from the factor effects’ graph as A1 is chosen.
This is due to the nesting arrangement in Table 13.2. Factor B′ has the highest
contribution ratio among B′, B″ and B‴. For Factor CD, the optimum factor chosen
from the factor effects’ graph is (CD)′1. This is again due to the nesting arrangement
in Table 13.2 as we have chosen A1 and B′1. Factors (CD)′

1, (CD)′2 and (CD)′3 have
quite similar contribution ratios.

13.5.6 Simulation Results

The values of the manually adjusted (in a trial-and-error manner) scaling factors
(i.e., α’s as mentioned in Eq. (13.1)) obtained manually by trial and error method,
are shown in Table 13.5. For this approach, the scaling parameters are changed on a
rather ad hoc basis, relying solely on the experience and the judgment of the
operator. For the Taguchi method, the obtained weighting parameters at the end of
the tuning procedure are given in the third row of Table 13.5.

Based on the scaling factors in Table 13.5, the performances of the various
dispatching methods are compared and summarized in Table 13.6. It can be seen
that the Taguchi-tuned fuzzy dispatching methodology has outperformed the
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manually tuned fuzzy dispatching rules of and DEMD dispatching rules of Egbelu
for all the three cases studied. It is also interesting to note the improvement of the
performance of the system with the introduction of fuzzy logic to this vehicle
dispatching platform.

Table 13.4 Table showing the ANOVA results

Factor F S V F ρ %

A 2 4.247 2.123 2.279 0.259
B′ 2 93.407 46.704 100.298 9.950
B″ 2 23.407 11.704 25.134 2.340

B‴ 2 3.185 – – –

CD′1 2 29.556 14.778 31.736 3.008
CD′2 2 29.556 14.778 31.736 3.008

CD′3 2 52.667 26.334 56.552 5.519

CD″1 2 24.889 12.445 26.725 2.501

CD″2 2 4.222 2.111 4.553 0.256

CD″3 2 10.889 5.445 11.692 0.980

CD‴1 2 2.889 – – –

CD‴2 2 2.889 – – –

CD‴3 2 3.556 – – –

E 2 151.580 75.790 162.762 16.261
F′ 2 24.074 12.037 25.850 2.412

F″ 2 18.074 9.037 19.407 1.761

F‴ 2 10.296 5.148 11.056 0.916
GH′1 2 94.889 47.445 101.056 10.104
GH′2 2 81.556 40.778 87.573 8.656

GH′3 2 44.667 22.334 47.962 4.649

GH″1 2 82.889 41.445 89.004 8.801

GH″2 2 28.667 14.334 30.782 2.911

GH″3 2 0.222 – – –

GH‴1 2 24.667 12.334 26.487 2.477

GH‴2 2 0.222 – – –

GH‴3 2 26.889 13.445 28.873 2.718

Total 80 920.691 – – 100

Error 64 59.603 0.932 1 10.513

Table 13.5 Values of the scaling factors for the different approaches

Scaling factors α1 α2 α3 α4 β1 β2 β3 β4
Trial and error setting 0.1 0.5 0.2 0.2 0.2 0.5 0.1 0.2

Taguchi method 0.01 0.01 0.49 0.49 0.01 0.50 0.48 0.01
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The results in this study concur with the other works in the literature that
integrate the Taguchi method with other tools in artificial intelligence (i.e., genetic
algorithm, neural networks, fuzzy logic and regression analysis) to optimize pro-
cesses and systems (Lin et al. 2012; Sun et al. 2012; Mandal et al. 2011; Chang
2011; Tsai 2011; Tansel et al. 2011; Tzeng et al. 2009). The integrated approach of
the Taguchi method with other artificial intelligence tools produces better results
than just utilizing a single optimization tool alone. For this study, it is also inter-
esting to note that there is a marked improvement in the fuzzy system for the third
case. It is to be noted that the Taguchi method performs well when the boundaries
of the search space is well-defined. With the production time and other manufac-
turing constraints fixed, the Taguchi method seeks to only optimize the vehicles
deployed.

13.6 Conclusions

Since Dr. Genichi Taguchi introduced the Taguchi method as a practical statistical
tool in the 1980s to improve the quality of manufactured goods, there has been
increasing interests on the Taguchi method in various industries and the academia.
It is to be noted that in the literature, there is a strong focus on the application and
verification of the Taguchi method. Recently, there are several works in the liter-
ature that integrate the Taguchi method with other tools in artificial intelligence
(i.e., genetic algorithm, neural networks, fuzzy logic and regression analysis) to
optimize processes and systems. This is interesting in that the main strengths of the
Taguchi methods are accentuated with a well-defined boundary for a given search
space. The results in the literature show that the integrated approach of the Taguchi
method with other artificial intelligence tools produce better results than just uti-
lizing a single optimization tool alone. Besides modeling and optimizing manu-
facturing processes, the Taguchi method has also been widely applied in other
non-conventional fields.

Table 13.6 Rule comparisons of the various methods

DEMD
(Egbelu)

Fuzzy % Improvement
(Fuzzy vs.
DEMD) (%)

Taguchi-tuned
Fuzzy

% Improvement
(Taguchi-Fuzzy vs.
Fuzzy) (%)

Case I:
Throughput

16 27 69 31 14.81

Case II:
Production
time/h

2.99 2.14 28 1.95 19.74

Case III:
No of vehicles

9 5 44 3 40
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In this chapter, a few possible approaches of integrating the Taguchi method
combined with some artificial intelligent techniques, to create hybrid approaches
with improved overall system performance, are elaborated. Particularly, details and
illustrations of combining the Taguchi method with a fuzzy system and a radial
basis neural network are provided. In the simulation study, the adaptive fuzzy rules
are formulated to base the decision making process and the Taguchi method is
applied to fine tune the rules for optimal performance. The experimental design is
performed and simulations are conducted to compare the Taguchi-tuned fuzzy
method to other earlier reported methods. The results in this study concur with the
other works in the literature that integrate the Taguchi method with other tools in
artificial intelligence.

Acknowledgments Special thanks to Ms. Chua Xiaoping Shona and Mr. Lee Tat Wai David for
their efforts in the initial drafting of this chapter.
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Chapter 14
Software Architecture Quality of Service
Analysis Based on Optimization Models

Pasqualina Potena, Ivica Crnkovic, Fabrizio Marinelli
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Abstract The ability to predict Quality of Service (QoS) of a software architecture
supports a large set of decisions across multiple lifecycle phases that span from
design through implementation-integration to adaptation phase. However, due to
the different amount and type of information available, different prediction
approaches can be introduced in each phase. A major issue in this direction is that
QoS attribute cannot be analyzed separately, because they (sometime adversely)
affect each other. Therefore, approaches aimed at the tradeoff analysis of different
attributes have been recently introduced (e.g., reliability versus cost, security versus
performance). In this chapter we focus on modeling and analysis of QoS tradeoffs
of a software architecture based on optimization models. A particular emphasis will
be given to two aspects of this problem: (i) the mathematical foundations of QoS
tradeoffs and their dependencies on the static and dynamic aspects of a software
architecture, and (ii) the automation of architectural decisions driven by opti-
mization models for QoS tradeoffs.
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14.1 Introduction

The presence in the market of standard off-the-shelf components/services has
drastically changed in the last decade the development process of component-based
and service-based systems (as claimed, e.g., in Szyperski 2002).

A software system today is no more conceived as a product to be built “from
scratch”; rather software engineers aim at building a system where several software
units–components/services, each satisfying a certain number of requirements—
interact each other and with users to accomplish the tasks required.

Requirements can be partitioned in functional and non-functional. The former
concerns “what” the software has to do, while the latter concern “how” the software
works. In a service-oriented architecture, in practice, functional requirements
determine the services the system should provide, whereas non-functional require-
ments (that determine the Quality of Service of the system), are constraints on
the services offered by the system, such as timing constraints or constraints on the
development process (Sommerville 2004).

The properties (functional and non-functional) of the final software product
therefore heavily depend on (i) the properties of the reused software units and those
of newly built software units, as well as on (ii) the way these software units are
assembled (i.e. the software architecture).

In the last years several research efforts have been devoted to the definition of
models representing dependencies between non-functional properties of single
elements and the properties of the whole system.

External properties (i.e., system attributes) are functions of both internal prop-
erties (i.e. attributes of elementary components or services) and other factors, such
as system architecture or usage profile. Developers must therefore address how the
integrated system inherits attributes of elementary parts. For example, if you
integrate several high performance or high-reliability components, what can you
say about the performance or reliability of the system as a whole? Similarly, if
you integrate a combination of low and high-quality components, how can you
assess and improve the resulting system’s quality? (Brereton and Budgen 2000).
The formulation of such models is not easy due to complex relationships between
components that may be hard to express in a closed form.

Component-Based Software Engineering (CBSE) and Service-Oriented
Software Engineering (SOSE) are the most dominant disciplines that deal with
problems of building software systems based on (reused and newly built)
components/services (Breivold and Larsson 2007). The ability to predict QoS of a
software architecture has to be supported by a large set of decisions arising from
several phases of the software lifecycle that span from design, through
implementation-integration, to adaptation phase. However, due to the different
amount and type of information available, different prediction approaches should be
introduced in each phase.

In the design and implementation phase, elementary software units are typically
selected and verified/tested alone or in combination with other (selected) software
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units at the aim of choosing the combination that best fits the goals. In fact, it is well
known (Wallnau and Stafford 2002) that even if isolated components correctly work,
an assembly of them may fail due to not immediately apparent dependencies and
relationships, such as shared data and resources. Besides, since the software units
always have to be deployed on an hardware platform, the best mapping of software
onto hardware with respect to certain criteria (e.g. performance of the whole system)
has to be considered as well. Finally, an existing software unit (or a set of units)
would be replaced and/or new units would be adopted in the maintenance phase,
e.g., when the requirements of the system evolve or when the vendor of the com-
ponent releases an updated version,1 while keeping other units unchanged.

On the basis of the above considerations, it is evident that the architectural
decisions must be carefully carried on taking into account non-functional properties
(besides functional ones). In fact, functionally equivalent software units (to be used
for replacing existing software units or to be added to the system) may heavily
differ in their non-functional properties, affecting in this way the QoS at various
extents. We hence forth refer to functionally equivalent software units that differ for
their non-functional properties as to instances.

One of the most prominent characteristic of a software unit is its cost. In general,
the cost of an in-house developed component depends (among others) on the
development and testing effort required to deliver the component. On the other
hand, the cost of a purchased component depends (among others) on its buying
price and on the effort needed to adapt it to the working context.

The non-functional properties and the cost of a software unit are typically tied.
Indeed, components and services with high quality value in general result to be the
more expensive ones. Hence there is an intrinsic trade-off between the cost of a
software product, which results from the costs of its elementary elements plus, e.g.,
the cost for component/service adaptation, and its quality that result from both the
non-functional properties of its elementary elements and other characteristics such
as the architecture of the system.

In general, the definition of architectural decision criteria based on
non-functional properties is not easy. In fact, an elementary unit could be the best
one with respect to a certain property, but at the same time it could be either too
expensive or not compliant with possibly constraints on other non-functional
properties.

Due to the complexity of addressing non-functional criteria in the architectural
decision-making process, and given the extremely high number of parameters to
consider in order to achieve a (near-) optimal decision, the introduction of quan-
titative methods and automatic tools would help the software engineers to raise their
focus from a human-based search to a machine-based search.

Quantitative methods find their natural definition in the field of optimization. An
optimization model allows, for example, to find a solution that minimizes the cost

1A deeper discussion on the peculiarities of the component selection activity within each phase of
a development process can be found in Cortellessa et al. (2008).
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of a software system while satisfying requirements that can be expressed as a set of
mathematical constraints. Optimization techniques have been already proposed and
used for the analysis of QoS tradeoffs of a software architecture (Aleti et al. 2013).
In Sect. 14.2 we discuss this aspect.

In this chapter we focus on the optimization-based modeling and analysis of
software architecture QoS tradeoffs. A particular emphasis will be given to two
aspects of these tasks: (i) the mathematical foundations of QoS tradeoffs and their
dependencies on the static and dynamic aspects of a software architecture, and
(ii) the automation of the architectural decision-making process driven by QoS
tradeoff optimization models.

In particular, we present a general optimization model that minimizes the total
costs subject to constraints on the level quality of the software architecture. The
model can be adopted in (specialized for) one of the lifecycle phases by leveraging
available information and parameters, the level of detail of which obviously
increases as the development progresses. Then, each specialized form of the general
model can be either separately used and solved, if required in a certain lifecycle
phase, or used in pipeline feeding with each other, as we will show in our example.

In the context of a waterfall development process, we implement three models:
one for the architectural design (i.e. the software architecture driven model appli-
cable before the release of a system), one for the implementation/deployment phase
(we show how the QoS of a software architecture depends on the hardware
architecture), and one for the maintenance phase (i.e. the software architecture
driven model applicable after the release of a system).

In order to show the usefulness of our approach, we run these models on an
example coming from the domain of medical information systems. We also study
the sensitivity of the solutions to changes of parameters; we analyze, in particular,
the behavior of the system costs at varying of non-functional requirements, see
Potena et al. (2016).

Although here we describe the phases and interactions that fit well in a waterfall
approach and show how our models can be employed in such a context, our
approach is not limited to the waterfall design process only. Different paradigms
can be considered, provided that the interactions between phases are properly taken
into account. Indeed, the interactions between phases may change among different
design approaches. For example, the interaction between the requirements and
design phases will repeat when performed within agile, iterative or incremental
development frameworks. In such cases the decision-making process would con-
verge faster, e.g., due the know-how acquired and/or the activities performed in the
previous iterations of the process. Also, in case of selecting new software units for
new requirements, potential compatibility problems with existing units can be
already recognized in the early phase of the process.

Our major contribution is to show how effectively optimization modeling
techniques can capture relevant aspects of the architectural decision-making process
in different lifecycle phases, thus representing a very relevant support for the
software engineer’s tasks.
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All the proposed models belong to the class of mixed-integer nonlinear pro-
gramming problems and therefore can be solved by means of exact and heuristic
optimization techniques such as spatial branch-and-bound (Belotti et al. 2009) and
tabu search. Although such problems are generally hard to solve due to
non-linearities and integrality, they can be handled by common solvers (we used
LINGO http://www.lindo.com in our computational assessment) since usually they
are small for most of the common software domains. For large scale problems,
however, search-based techniques, e.g., tabu search or genetic algorithms (Blum
and Roli 2003), can be successfully adopted. Indeed, such techniques have been
applied for obtaining solutions for several problems in the software engineering
domain, from requirements and project planning to maintenance and re-engineering
(Harman et al. 2012).

The chapter is organized as follows. In Sect. 14.2 we present related works and
discuss the novelty of our contribution. In Sect. 14.3 the most common problems
encountered for QoS tradeoffs analysis are discussed, and in Sect. 14.4 we intro-
duce the general formulation of an optimization model for such kind of analysis.
Section 14.5 describes the distributed medical informatics system adopted as
example. Sections 14.6, 14.7 and 14.8 detail the optimization models and their
application to the example for the architectural design, maintenance, and
implementation/deployment phases, respectively. Finally, conclusions are delin-
eated in Sect. 14.9. In Potena et al. (2016) we have collected all the further details
that are not strictly necessary for this chapter understanding.

14.2 Related Work

A quite extensive collection of papers on decision-making processes across life-
cycle phases and on methods/tools able to predict and evaluate the QoS of a
software architecture can be found in literature. Decision-making frameworks have
been introduced to facilitate the reasoning process for different goals and from
different perspectives. For example, software architecture has been used for doc-
umenting and communicating design decisions and architectural solutions
(Clements et al. 2011). However, being the focus of this chapter on the QoS
tradeoffs’ analysis of a software architecture, we report only papers that present
similar criteria for this task. This helps us to clearly describe, at the end of this
section, the novelty of this chapter with respect to the existing related work.

Several qualitative methods have been proposed in order to explicitly analyze
the impact of architectural decisions on system quality, among which the
well-known Architecture Tradeoff Analysis Method (Kazman et al. 1998) and Cost
Benefit Analysis Method (CBAM) (see, for example, the survey in Breivold et al.
2012). These evaluation techniques suffer of some weaknesses that mainly are the
subjective point of view of the analysts and the heavyweight process, which
requires many steps and intense participation of stakeholders (Kim et al. 2007).
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In order to overcome these limitations, qualitative attributes are transformed into
quantitative figures, e.g., see the Multi-Criteria Decision Analysis (MCDA) tech-
nique that combines Analytic Hierarchy Process (AHP) and CBAM (Lee et al.
2009; Kim et al. 2007). Other common techniques such as AHP and Weighted
Scoring Method (WSM) are used, for example, by component selection approaches
(Kontio 1996). In particular, WSM estimates how to modify a software architecture,
e.g. by introducing a different COTS component, with respect to a set of weighted
criteria. The score of the change is calculated by the weighted sum of the criteria
values. Alternatively, AHP suggests to define a hierarchy of criteria. Modification
choices are compared in pairs and finally ranked on the basis of a score that
combines the results of the comparison. Both the above methods come with serious
drawbacks: the combinatorial explosion of the number of pair-wise comparisons,
the need of extensive a priori preference information, and the highly problematic
assumption of linear utility functions. Optimization techniques may solve some of
these drawbacks because, in general, they do not need any weighting and/or ranking
of the evaluation criteria (Neubauer and Stummer 2007).

Several research efforts have also been devoted in the last years to the designing
of optimization methods for the analysis of software architectures (a quite extensive
list of these approaches can be found in Aleti et al. 2013). Mostly depending on
the lifecycle phase, different types of decisions and quality analysis methods are
considered. Typically the decisions span from the service/component selection
(e.g., Cardellini et al. 2012; Yang et al. 2009) through the deployment of
components/services (e.g., Malek et al. 2012; Vinek et al. 2011) to the application
of recurring software designs solutions2 (e.g., Mirandola and Potena 2011). All
these approaches basically provide guidelines to automate the search for an optimal
architecture design based on the QoS tradeoffs.

The QoS tradeoffs analysis of such approaches basically is based on simple
optimization models (see, e.g., Cortellessa et al. 2010) or multi-objective opti-
mization models that, for example, maximize both reliability and performance (see,
e.g., Cardellini et al. 2012). Different techniques are used to solve such optimization
models, such as metaheuristic techniques, integer programming, or a combination
of both (see, for example, surveys Harman et al. 2012; Aleti et al. 2013). For
example, the work in Grunske (2006) shows how evolutionary algorithms and
multi-objective optimization strategies, based on architecture refactorings, can be
implemented to identify architecture designs, which can be used as an input for
architecture tradeoffs analysis techniques.

Usually the goal of the existing approaches is to predict and/or analyze QoS
attribute, like performance or reliability, starting from the architectural description
of the system, or to select the architecture of the system, among a finite set of
candidates, that better fulfill the required quality. In our previous works (Cortellessa
et al. 2010; Potena 2013), we have addressed the problem of system quality from a

2They provide a generic solution to address issues pertaining to quality attributes, like the
architectural tactics (Vinek et al. 2011).
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different point of view: starting from the description of the system and from a set of
new requirements, we devise the set of actions to be accomplished to obtain a new
architecture. This is able to fulfill the new requirements with the minimum cost
based QoS tradeoffs (i.e., reliability vs. availability, and vs. performance).

Other challenges related to the quality analysis are represented by the lots of
different type of uncertainties that can be faced during the decision-making process.
The specification of the effect of architectural decisions on goals (e.g., functional or
non-functional requirements) is a difficult task. As a consequence, the process of
making early architectural choices is a risky proposition mired with uncertainty
(Esfahani et al. 2012). Several interesting approaches have been introduced in order
to make the uncertainty explicit and using it to drive the production process itself
(see, for example, Esfahani et al. 2012; Autili et al. 2011; Ghezzi et al. 2013) some
of which are detailed below. In particular, for the design time (early phases of the
software development process), the GuideArch framework (Esfahani et al. 2012)
guides the exploration of alternative architectures under uncertainty by exploiting
fuzzy mathematical methods. GuideArch allows to compare alternative architec-
tures with respect to system’s properties (like cost and battery usage). The ADAM
(Adaptive Model-driven execution) framework (Ghezzi et al. 2013), based on
probability theory and probabilistic model checking, supports the development and
execution of software that tolerates manifestations of uncertainty by self-adapting to
changes in the environment, trying to do its best to satisfy certain non-functional
requirements (i.e., response time and the faulty behavior of components integrated
in a composite application).

Research efforts have also been spent in order to deal with parameters’ uncer-
tainty (Doran et al. 2011; Meedeniya et al. 2012; Wang et al. 2012; Wiesemann
et al. 2008). In particular, in Meedeniya et al. (2012), a robust optimization
approach allows to deal with the impact of inaccurate design-time estimates of
parameters. A Bayesian approach has been introduced in Doran et al. (2011), in
order to systematically consider parametric uncertainties in architecture-based
analysis. In Wang et al. (2012), the propagation of a single parameter’s uncertainty
on the overall system reliability estimation is analyzed. Finally, in Wiesemann
(2008), the stochastic programming is exploited to support the service composition
under quality attributes tradeoffs. In particular, the service composition problem is
formulated as a multi-objective stochastic program which simultaneously optimizes
some quality-of-service parameters (i.e., workflow duration, service invocation
costs, availability, and reliability).

The originality of this chapter mainly consists in showing how effectively
optimization modeling techniques can capture relevant aspects of the architectural
decision making process in different lifecycle phases, thus representing a very
relevant support for the software engineers’ decisions. Our overall approach of
embedding optimization models for different lifecycle phases is, at the best of our
knowledge, the first example of an integrated framework for supporting developers’
decisions based on cost/QoS tradeoffs during the whole software development
process. Moreover, our optimization models are not tied to any particular devel-
opment process as well as they do not depend on the specific application domain.

14 QoS Analysis based on Optimization Models … 427



14.3 Typical Problems of QoS Tradeoffs Modeling

There are some limitations in the analytical formulation of non-functional aspects of
components/services-based software systems mostly due to the intrinsic complexity
of the component/service inter-relationships. Here below we summarize the major
points.

In general, the quality attributes (such as response time and availability) depend
on many observable parameters (such as size of messages exchanged, number of
function points, etc.) that might be tightly correlated to each other. Some
assumptions are typically made in order to keep as simple as possible the model
formulation. For example, most reliability models for systems composed by basic
elements (e.g. objects, components or services Becha and Amyot 2012;
Goseva-Popstojanova and Trivedi 2001; Immonen and Niemelä 2008; Krka et al.
2009) assume that the elements are independent, namely the models do not take into
account the dependencies that may exist between elements. They assume that the
failure of a certain element provokes the failure of the whole system. What is
basically neglected under this assumption is the error propagation probability,
which in several real domains (such as control systems) is not an issue, because
component/service errors are straightforwardly exposed as system failures. In order
to relax such an assumption, an error propagation model must be introduced (see,
for example, the reliability model for service-based systems introduced in our
previous work Cortellessa and Potena 2007).

Also the non-functional properties are tightly correlated, and often depend on
each other. In fact, some conflicts could exist among quality attributes (Boehm and
In 1996), e.g., suitable tradeoffs between modifiability and performance have to be
provided while building a software architecture, as remarked in Lundberg et al.
(1999).

Sometimes the providers of pre-existing components/services are not able to
come up with the exact values of some non-functional properties, and simply get a
set of ranges over which the values may lie. For example, the component reliability
for a given component cost is usually specified over a range based on prior
experience (Gokhale 2007). If only ranges are available, then optimization can be
performed on a parametric model, i.e., a model with some parameters ranging
within provided limits, in order to observe the trend and sensibility of solutions.

In other cases, the information provided by vendors are not enough to estimate
the non-functional properties of a given component/service since some of its
parameters (e.g. cost or reliability) may be characterized by a not negligible
uncertainty. In the case of component reliability, the propagation of such uncer-
tainty is analyzed by Goseva-Popstojanova and Kamavaram (2004), and Dai et al.
(2007). However, it was out of the scope of this chapter to deal with this kind of
sensitivity analysis.

The reliability estimation methods typically deal with the operational profile
(Musa 1993; Chandran et al. 2010) which is another factor that brings uncertainty in
QoS analysis. In fact, the operational profile of the system is in general different
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from the one adopted to estimate the non-functional properties of elementary
components/services. As remarked in Becker and Koziolek (2005), no standard
model are available for describing the operational profile and hence it is necessary
to take into account the transformations that the components may provide on it.
“Inputs on the provided interfaces of a component are transformed along the control
flow down to the required interfaces. Thus, the provided interfaces of subsequent
components connected with the required interfaces receive a different operational
profile than the first component. The transformations form a chain through the
complete architecture of components until the required interfaces of components
only execute functions of the operating system or middleware” (Becker and
Koziolek 2005). However, if the operational profile of the system is not (fully)
available at the design phase, the domain knowledge and the information provided
by the software architecture in general are sufficient for estimating it, as suggested
in Roshandel and Medvidovic (2007) or in Musa (1993).

The integration of components/services often entails mismatches whose han-
dling cost should be included into the QoS tradeoffs modeling. Several approaches
have been introduced to deal with the mismatches problems (e.g., see Park 2006;
Younas et al. 2005 for the integration of web services in distributed system). For
solving a mismatch between a requirement and a pre-existing software unit, dif-
ferent actions are possible, and different existing works could be exploited, such as
the approach presented in Mohamed et al. (2007), which supports the resolution of
mismatches during and after a COTS selection process by using an optimization
model.

As far as concerns the non-functional requirements, the task of handling mis-
matches between the properties of single components/services and the quality
required for the whole system is even harder than one for the functional mis-
matches, e.g., sometimes the improvement of a single software unit could not affect
the quality of the whole system. Clearly, closed formulas for estimating the quality
of the system as a function of the properties of components/services would be very
helpful, but many problems have to be faced for defining them.

14.4 A General Formulation for Architectural Decisions
Versus Quality

In this section we propose a general optimization model that helps developers to
make the QoS tradeoffs analysis of a software architecture.

Let S ¼ u1; . . .; unf g be a software architecture made of n software units
ui ð1� i� nÞ the composition of which results in services that the system offers to
users.

Since the proposed model may support different lifecycle phases, we adopt a
general definition of software unit: it is a self-contained deployable software
module containing data and operations, which provides/requires services to/from
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other elementary elements. A unit instance is a specific implementation of a unit.3

For each unit ui, let Ji be the set of instances available by vendors and �Ji the set of
possible options for developing the instance in-house. Let uij be the jth instance of
Ji [ �Ji.

The analysis of the QoS tradeoffs is a broad decision-making process that
consists of a set of actions aiming to modify the static and dynamic structure of the
software architecture. The decisions within the different life-cycle phases are
basically related to the following software actions:

1. Introducing new software units: One or more new software units may be
embedded into the system.4 We call NewS the set of new available software
units that can provide different functionalities.

2. Replacing existing unit instances with functionally equivalent ones available on
the market: The employed instance uik of a software unit ui may be replaced
with an element of the set Ji, i.e., with of the instances available for it on the
market (e.g. a Commercial-Off-The-Shelf (COTS) component/web service). We
assume that all the instances in Ji are functionally compliant with uik, i.e., each
of them provides at least all services provided by uik and requires at most all
services required by uik.

5 The instances in Ji may differ from uik for cost and
quality attribute (e.g. reliability and response time).

3. Replacing existing unit instances with functionally equivalent ones developed
in-house: An existing instance of a software unit ui may be replaced with one
developed in-house. Developers could opt for different building strategies
resulting in different in-house instances, i.e., the elements of the set �Ji. The
values of quality attributes of such optional instances (e.g., reliability, response
time) could vary due to the values of the development process parameters (e.g.
experience and skills of the developing team).

4. Modifying the interactions among software units in a certain functionality: The
system dynamics may be modified by introducing/removing interactions among
software units within a certain functionality.

Clearly, the system quality heavily depends on the hardware features, e.g.,
response time decreases as the processing capacity improves, and therefore deci-
sions on software architecture must also take into account the decisions on the
hardware characteristics of the system. Hardware decisions typically span from the
deployment of software units on hardware nodes through to modify the charac-
teristics of the underlying hardware resources (e.g., CPU, disk, memory, network

3The optimization model can work for any semantics given to software units under the condition
that the parameters are associated to the correct units. The only difference, of course, is in the
techniques needed to estimate the model parameters, but this is out of the scope of this chapter.
4Notice that such type of action has to be associated to another action that indicates how this unit
interacts with existing units, therefore it modifies the interactions within certain functionalities (see
last type of software action).
5As remarked in Cortellessa et al. (2010), such an assumption could be relaxed by introducing
integration/adaptation costs.
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throughput, etc.) to introducing/removing connection links among hardware
nodes.6 Indeed, depending on the adopted engineering paradigm (e.g., CBSE or
SOSE), different types of hardware changes may be performed. For example, as
explained in Mirandola and Potena (2011), in the SOA domain, due to the fact that
the services are not acquired in terms of their binaries and/or source code, but they
are simply used while they run within their own execution environment (that is not
necessarily under the control of the system using them), hardware changes can be
suggested by the service providers.

Optimization Model Formulation
All the above actions can be modeled by decision variables that describe the
software architecture instances selection process. In particular, let xij ð1� i� n; j 2
Ji [ �JiÞ be the binary variable that is equal to 1 if the instance j is chosen for the
software unit i, and 0 otherwise. Moreover, let zh ð1� h� jNewSjÞ be the binary
variable that is equal to 1 if the new software units h is chosen and 0 otherwise.

Let us suppose to analyze the system on the base of p quality attributes (such as
cost, response time, availability, etc.). Suppose moreover that each attribute of any
software unit depends on the value of parameters aki ’s, b

k
i ’s, and ckij’s, where (i) the

vector aki describes the (at most) usoftware architecture observable parameters, e.g.,
the average number of invocations of a software unit within the execution scenarios
considered for the software architecture, (ii) the vector bki contains the (at most) v
hardware observable parameters, e.g., the processing capacity of the node hosting
the software unit, that is measured, for example, as the average number of
instructions per second that the source can execute, and (iii) the vector ckij represents
the (at most) w features of the implementation of ui, e.g., the reliability of the
instance used for replacing the existing unit. For the k quality attributes of a
provided instance, the value of the features ckij’s is assumed to be either given from
the software unit provider or estimated from the customer. On the contrary, for an
in-house developed instance the ckij’s can be predicted by considering variables of
the decision planning. For example, in Sect. 14.6, we express the reliability of an
in-house instance as a function of a variable representing the amount of testing Ntot

i
to be performed on that instance.

Let Ck : R
u � R

v � R
w ! R ð�Ck : R

u � R
v � R

w ! RÞ be the function that,
on the base of the above parameters, returns the value of the kth quality attribute

ð1� k� pÞ of an existing (new) software unit. In particular, let Kk
ij ¼

Ck aki ; b
k
i ; c

k
ij

� �
the value of the kth attribute of the provided/in-house instance uij.

For sake of readability, we introduce here a formulation without correlations among
Ck’s, where each quality attribute does not affect other attributes and a self-contained
analytical expression can be formulated for it. Obviously this is not always true, as it
depends on the considered quality attributes and the model complexity. If

6A deeper discussion on the hardware changes can be found in Mirandola (2011).
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quality attributes have to be correlated (Bass et al. 2002) (e.g., when performability
is considered) then additional constraints may be needed, which can be expressed as
contingent decisions (Jung and Choi 1999).

We can represent the value of the kth quality attribute of the ith existing software
unit as a function of the decisional strategy x:

hki ¼
X
j2�Ji[Ji

Kk
ijxij ð14:1Þ

Similarly, we can represent the value of the kth quality attribute of the hth new
software unit as a function of the decisional strategy z:

�hkh ¼ zh�Ck aki ; b
k
i ; c

k
ij

� �
ð14:2Þ

Let Gk : R
n � R

Newsj j ! R, with 1� k� p, be the function that returns the kth
quality attribute of the whole system on the base of the same attributes of each
existing/new software unit. And let us assume (without loss of generality) that the
values of each quality attribute k are constrained to be above a lower threshold
value Hk. Assume, moreover, that the cost is the first quality attribute, i.e., h0i ð�h0i Þ
express the cost of the existing (new) software units. Finally, let Cost : Rn �
R

jNewSj ! R be the cost function of the whole system that clearly depends on the
costs of all the existing (new) software units. Different cost models could be used to
define Cost, e.g., it may also include the potential costs of software unit adaption
(i.e. the glue ware). For the sake of readability, we introduce here a formulation
without correlation between the software unit costs and the other software/hardware
quality attributes.

The general formulation of the optimization model for the QoS tradeoffs analysis
is given by:

min
x;z

Costðh0; �h0Þ ð14:3Þ

s.t.

Gk h0; �h0
� ��Hk 8k ¼ 1. . .p

X
j2�Ji[Ji

Kk
ij xij ¼ hki 8k ¼ 1. . .p; 8i ¼ 1. . .n

zh�Ck akh; b
k
h; c

k
h

� � ¼ �hki 8k ¼ 1. . .p; 8h ¼ 1. . .jNewSj
X
j2�Ji[Ji

xij ¼ 1 8i ¼ 1. . .n
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xij 2 0; 1f g 8i ¼ 1. . .n; 8j ¼ 1. . .p

zh 2 0; 1f g 8h ¼ 1. . .jNewSj

Other constraints (e.g., equations to predict aki ’s and bki ’s).

14.5 An Example: A Distributed Medical Informatics
System

In this section we describe the main features of an example that we will use for
illustrating the application of our approach (see Sects. 14.6, 14.7 and 14.8). For
sake of readability, a description of the high-level structure of the system, together
with all the details on the models, i.e., the meaning of additional parameters and
constraints and on the computational results, is available in Potena et al. (2016).

We have considered the distributed medical informatics system described by
Yacoub et al. (1999) mainly because its features allow us to show how effectively
optimization modeling techniques can capture relevant aspects of the architectural
decision making process in different lifecycle phases. Shortly, medical institutions
need in general to exchange information, e.g., medical images, between each other.
Actually, they form a client/server system where the AE Client subsystem is con-
nected to the AE Server subsystem by the Network subsystem. The communication
between the entities of the system is performed using Digital Imaging and
Communication in Medicine (DICOM) standard,7 which is typically used for
producing, processing and exchanging medical images: “The DICOM specifies the
transport and presentation layer for a network protocol as DICOM Upper Layer
(DICOM UL Client and Server subsystems)” (Yacoub et al. 1999).

In the following sections, we will analyze the three scenarios identified by
Yacoub et al.: We will consider AE Client, Network, AE Server, DICOM UL Client
and Server subsystems as architectural elementary elements of the system.
Moreover, we will suppose that Network subsystem does not identify all the net-
work, but a component which is deployed along the network.

14.6 Architectural Design Phase

14.6.1 Before Release (Platform Independent)

For the design phase, the general optimization model (14.3) is instantiated with a
mathematical formulation that stems from our previous work in the context of
component based software (Cortellessa et al. 2006). Specifically, we consider the

7http://medical.nema.org/.

14 QoS Analysis based on Optimization Models … 433

http://medical.nema.org/


following architectural decisions: (i) replacing existing unit instances with func-
tionally equivalent ones available on the market, and (ii) replacing existing unit
instances with functionally equivalent ones developed in-house.

We report the model formulation by plugging the problem in a general appli-
cation domain, where the build-or-buy decisions refer to general software unit
rather than components. Additional constraints on delivery time and reliability of
the system are considered, and decision planning variables associated to the amount
of testing to be performed on each in-house instance are introduced.

Our model definition makes the following significant assumptions. (i) We
assume that the pattern of interactions within each scenario does not change by
changing the software unit instance. (ii) We only consider the sequential execution
of the software units, and we assume that the units communicate by exchanging
synchronous messages. (iii) From a reliability viewpoint, we suppose that the
software units are independent, namely we assume that the failure of a unit pro-
vokes the failure of the whole system. We only consider crash failures that are
failures that (immediately and irreversibly) compromise the behavior of the whole
system. Besides, we suppose that a unit shows the same reliability across different
invocations. (iv) We assume that the operational profile of the system is the same
one used for certifying the component. (v) Finally, we assume that sufficient
manpower is available to independently develop in-house unit instances. Note that
the above assumptions are shared with most of the models in this domain, as
discussed in Sect. 14.3.

Let us suppose to be committed to assemble the system by the time T while
ensuring a minimum reliability level R and spending the minimum amount of
money. Let Ntot

ij be the integer variable representing the total number of tests per-
formed on the in-house developed instance j of the ith unit.8 Figure 14.1 summarizes
the parameters and the expressions used in the model formulation. Specifically,
(i) the development cost and the delivery time of an in-house instance are computed
by considering the development time, the testing time and the number of tests.
(ii) The reliability of the whole system can be obtained as a function of the proba-
bility of failure on demand of its elementary elements. In particular, the expression of
the system reliability reported in Fig. 14.1 is the probability of a failure-free exe-
cution of the system, and hence the reliability constraint is RelSyS�R. (iii) The
delivery time constraints can be expressed as DT1 � T. . .DTn � T .

Experimenting the model on an example
In order to show the practical usefulness of the model, we apply it to the example
presented in Sect. 14.5.

Figure 14.2 reports a synthesis of the results obtained by solving the opti-
mization model with different values of T and R. The former spans from 4 to 30
whereas the latter from 0.89 to 0.99.

8The effect of testing on cost, reliability and delivery time of provided units is instead assumed to
be accounted in the parameters.
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As expected, the total cost of the application decreases for the same value of the
reliability bound R and increasing values of the delivery time limit T . On the other
hand, for the same value of T the total cost decreases while decreasing the relia-
bility bound R (i.e. less reliable application required).

As shown in Potena et al. (2016), the model tends to select in-house instances for
increasing values of T because they become cheaper than the available provided
instances. The total cost decreases while T increases because it is possible to

Fig. 14.1 Design phase: parameters and cost, reliability and delivery time expressions
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increase the amount of testing to perform. The in-house instances remain cheaper
than the corresponding provided instances even in cases where a non negligible
amount of testing is necessary to make them more reliable with respect to the
available provided instances.

In this example, the in-house instances result cheaper than the provided
instances, but real situations may be different. In fact, an in-house unit could be
built by adopting different strategies of development. Therefore, its values of cost,
reliability and delivery time could vary due to the values of the development
process parameters (e.g. experience and skills of the developing team). In Potena
et al. (2016) we also study the sensitivity of the model to changes in its parameters
(we analyze, in particular, the behavior of the system costs at varying of
non-functional requirements).

14.7 Maintenance Phase

14.7.1 After Release (Platform Independent)

In this section, we instantiate the general optimization model (14.3) for supporting
the maintenance phase. Specifically, we show how an optimization model can
support the software unit replacement maintenance activity for overcoming an
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unexpected system failure. Unexpected means that, on the basis of the certified
reliability of the elementary software units, a failure shall not occur so early. Under
the assumption that exactly one faulty software unit is present in the system, the
proposed optimization model aims to maintain the system by suggesting how to
reconfigure it. After a software failure occurs, our approach searches for a different
system configuration (e.g. by replacing a (some) unit(s)) that minimizes the costs
while raising the system reliability by a fair amount that (hopefully) allows in future
to avoid unexpected failures. Indeed, the model solution may suggest either to
replace a faulty software unit by a provided instance or to perform on the faulty
software unit an additional number of test cases if it has been developed in-house.

The mathematical formulation, similar to that described in Sect. 14.6, has been
presented in Cortellessa and Potena (2009) in the context of component-based
software. In this chapter we plug the model in a general application domain, where
the decisions refer to general software units rather than components.

Let S be the software architecture of a deployed system that has been assembled
following the architectural approach presented in Sect. 14.6. In particular, let
ð�x;NtotÞ be the description of the instances chosen to build S at minimum cost while
assuring (among others) a system reliability greater than the threshold R. For sake
of readability, suppose that the possibly in-house built instance for the software unit
i is included in the set Ji (and therefore �xi0 ¼ 1 means that the ith software unit has
been developed inhouse). Moreover, assume that an unexpected system failure
occurs and that no specific monitoring action is devised to identifying the faulty unit
originating the failure.

Let R′ be the new reliability threshold required for the whole system (i.e. R′ > R)
and T′ be the time limit for this maintenance action to be completed.

Given the current solution ð�x;NtotÞ, let NTesti ð8i ¼ 1; . . .nÞ be the number of
test cases required for the unit i in order to satisfy the new reliability threshold R′.
The number DNi of possible additional test cases to be performed on the ith unit is
given by DNi ¼ max 0;Ntesti � Ntot

i

� �
. Since the system has been already assem-

bled, new costs incur only if additional tests are performed on in-house instances,
i.e., DNi [ 0, and/or existing instances are replaced by new instances bought by
vendors, i.e., �xij ¼ 1 and xij ¼ 0. The latter case can be modeled by introducing a
new binary variable yij � xij � �xij. Differently from the model presented in
Sect. 14.6, the objective function and the constraints of the maintenance model take
into account only such kind of costs, see Fig. 14.3.

Experimenting the model on an example
In order to show the practical usefulness of the model, we apply it to the example
presented in Sect. 14.5. In particular, among the results of the architectural design
phase (see Sect. 14.6), we picked the system configuration ½u11; u21; u32;
u40; 128ð Þ; u51� corresponding to the case (T ¼ 4, R ¼ 0:97). Here, ðu40; 128Þ
means that the fourth software unit has been built in-house and 128 test cases has
been performed on it.

Figure 14.4 reports the results obtained from solving the optimization model for
different values of T′ and R′. Each bar represents the minimum cost for a given
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Fig. 14.3 Maintenance phase: cost, reliability and delivery time expressions
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value of the delivery time bound T′ and a given value of the reliability bound R′.
The former spans from 5 to 50 whereas the latter from 0.98 to 0.992.

As expected, the maintenance cost of the system increases for given T′ and
increasing R′. However, for the same value of R′ the cost decreases while increasing
T′ which means that a larger availability of time helps to reduce maintenance cost.

The model suggests restructuring the system by working on the second and
fourth software units: in some cases it suggests to perform additional testing on the
fourth unit, while in all cases it argues to replace the second software unit with
either its in-house instance or with its second or third provided instance available.

If we increase the value of R′ to 0.995 and set T′ = 18, then the model provides
the solution ½u11; u23; u32; u40; 452ð Þ; u52�, with a maintenance cost equal to 26:268
KE and a system reliability equal to 0.996227. In this case the model suggests
replacing also the fifth unit. If it would keep the first provided instance for the fifth
unit (i.e. if the fifth software unit would not be replaced), the reliability constraint
would be not satisfied. In fact, the system reliability would be equal to 0.992548.

In Potena et al. (2016) we study the sensitivity of the model to changes in its
parameters. We also show how, under no-monitoring assumptions and in case a
monitoring action allows identifying the faulty software unit, the model can
leverage the approach to overcome an unexpected failure of a system, see
Cortellessa and Potena (2009).

14.8 Implementation/Deployment Phase

In this section, we instantiate the general optimization model (14.3) in order to
support the activities of the implementation/development phase. In particular, we
show how changes in the hardware features may affect the system quality and
therefore the software decisions. As in the previous phases, the model’s solution
describes the instances to choose for build up a minimum cost software architecture
that satisfies reliability and performance constraints. In addition, the model of the
deployment phase also suggests the hardware nodes on which the software unit
shall be deployed.

The mathematical formulation makes the following significant assumptions.
(i) We assume that an UML Sequence Diagram (SD) describes the dynamic of each
available functionality in terms of interactions that take place between software
units (however, multiple Sequence Diagrams could be lumped by using the
methodology suggested in Uchitel et al. 2003). (ii) The communication between
two components co-located in the same node is assumed totally reliable, because it
does not use any hardware links. (iii) Finally, we make all the assumptions of the
model that we have introduced for the architectural design phase (see Sect. 14.6).

Let H be the set of hardware nodes on which the software units can be deployed,
and L the set of (uni-directional) network links between hardware nodes. A link
implements a connector between components deployed on different hardware
nodes.
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Additional binary variables dik ði 2 S; k 2 HÞ and hlii0 ðl 2 L; i; i
0 2 SÞ are needed

to describe how to deploy software units on hardware nodes and how connect-
software units to each other. In particular, (i) dik is equal to 1 if the node k is chosen
for software unit i, and 0 otherwise, and (ii) hlii0 is equal to 1 if the link l is chosen to
connect the software units i and ip, and 0 otherwise. Each software unit i must be
deployed on exactly one node k, i.e.,

P
k2H dik ¼ 1; 8i 2 S, and a path must exist

between the components i and ip if a call exists between them. The latter condition
can be easily expressed as network flow constraints. Also constraints on the
capacity of the nodes and the bandwidth of the network links have to be considered,
see Potena et al. (2016) for details.

Assume that the performance of the system is measured in terms of calls’ response
time, and that a maximum threshold ResT has been given. The response time RTf of
the functionality f can be obtained as a function of the processing time and the
network time, see Fig. 14.5. In a worst-case scenario, all the functionalities should
satisfy the performance threshold, hence the constraints RT1 �ResT. . .RT Fj j �ResT
have to be included in the formulation. Alternatively, in an average-case scenario, the
response time RT of the whole system can be computed in terms of arrival rate kf
of the calls for the f th functionality as RT ¼ P

f2F
kfP
i2F ki

RTf , and therefore the

performance constraint can be simply expressed as RT �ResT .
The evaluation of the reliability of each functionality, see Fig. 14.5, takes into

account that two software units may be connect from a path of more than one link.
Note that the communication between two software units co-located in the same
node is assumed totally reliable, because it does not use any hardware link. Again,
in a worst-case scenario, the constraints RELf �R f 2 Fð Þ must be considered,
whereas in an average-case scenario, the reliability of the system is

REL ¼ P
f2F

kfP
i2F ki

RELf and the reliability constraint is REL�R:

Experimenting the model on an example
In this section we conclude the example presented in Sect. 14.5.

Since in general the implementation phase takes place between the architectural
design and the deployment, at the deployment time no real distinction, for sake of
modeling, needs to be made between in-house and provided instances. This is why
the in-house instances indicated by the model solution of the architectural design
phase in the scenario (T ¼ 30, R ¼ 0:99) are now simply considered as possible
provided instances. The hardware architecture consists of three hardware nodes, see
Potena et al. (2016) for details on the model parameters.

Figure 14.6 reports the results provided by the optimization model by setting the
probability of failure of the links to a value between 0.00001 and 0.0004, the
processing speed of the links to 200 bits/s (measured as the average number of bits
per second), the arrival rate for a service provided by the system to 1, and the
reliability required to 0.97 and 0.99. Two configurations of the processing capac-
ities of the nodes (measured as the average number of instructions per second, ips)
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have been considered: the first with 60, 80, and 90 ips for the first, second and third
node, respectively; the second with 50, 80, and 50 ips.

As expected, for a given configuration of processing capacities of the hardware
nodes and for the same value of the probability of failure of the links, the cost
decreases while decreasing the reliability required for the system. On the other
hand, for the same values of reliability and probability of failure of the links, the
second configuration of processing capacities requires a more expensive solution.

The deployment of the software unit could change as the probability of the
failure of the links varies, even when the total cost of the system remains
unchanged. Indeed, in some cases it is not possible to deploy the software unit in
the same way, because this does not guarantee the reliability threshold of the

Fig. 14.5 Implementation/deployment phase: cost, reliability and performance expressions
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system. For example, for the scenario (([60, 80, 90], 0.99), 0.0001) the model
suggests a configuration of nodes that is different from the one suggested for the
scenario (([60, 80, 90], 0.99), 0.0004). In fact the reliability achieved with the
former configuration of nodes would be equal to 0.98853 with the probability of
failure of the links fixed to 0.0004. In other cases, it is possible to deploy the
software units on the hardware nodes in the same way. For example, the config-
uration of nodes that the model returns for the scenario (([50, 80, 50], 0.99),
0.00001) is optimal also for the scenario (([50, 80, 50], 0.99), 0.0001). In fact, the
reliability achieved with the former configuration would be equal to 0.99099 with
the probability of failure of the links fixed to 0.0001.

Therefore, the probability of failure of the links, that would have not emerged
during the architectural design phase where the information of the links (i.e. the
hardware architecture) is not taken into account (see Sect. 14.6), may sensibly affect
the reliability of the system. As we have remarked in Sect. 14.1, the QoS prediction
gets more accurate while progressing in the development process because more
knowledge is available about the features of the system. In Potena et al. (2016) we
also study the sensitivity of the model to changes in its parameters.
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14.9 Conclusions

In this chapter, we have showed how optimization models can be of support for the
architectural decision-making process based on QoS tradeoffs along the whole
software lifecycle. We have focused on the architectural design, the implementation/
deployment, and maintenance phases, and for each phase we have introduced an
optimization model that supports the decisions on the basis of the available
knowledge in the specific phase. We have merged the three models in the same
approach, and we have shown the usefulness of our approach by applying it to the
same example in the domain of medical information systems.

The work presented in this chapter is the result of our research effort in the last
years. As we report here below, besides the models formulation, we have built
software tools to support the automated model generation and solution. Basing on
this experience we can assert that optimization modeling is a very promising
approach to formulate certain problems in the field of software quality analysis.
This is especially true in cases where decisions have to be made among different
alternatives that may lead to different software costs.

The most evident limitation of such approaches nowadays is the necessity to
express objective functions as well as constraints in closed mathematical formulas.
This is not trivial for many non-functional properties and scenarios. In addition,
with the increasing complexity of software systems based on components/services,
the size of these models can sensibly grow. This aspect leads to prefer heuristic
search-based techniques to exact optimization tools.

Therefore we devise for the near future the necessity to work in the definition of
closed mathematical formulas for different quality attributes. Beside this, we also
intend to work on relaxing the model assumptions that we have introduced
throughout this chapter. In particular a quite relevant aspect to work on is repre-
sented by the dependencies among different quality attributes and among param-
eters within the same optimization model. In this direction, we also intend to
investigate the use of search based techniques, such as metaheuristics, and the
multi-objective optimization for solving large scale models.

For the model for architectural design phase we have already provided the tool,
called CODER (Cost Optimization under DElivery and Reliability constraints)
(Cortellessa et al. 2006), which generates and solves the model automatically. We
are also designing an integrated tool, based on our optimization models that may
assist software designers during the whole software life cycle. It would be inter-
esting to embed such a tool into a CASE tool, for example the one presented in
Cancian et al. (2007), for supporting and automating the development of a
component-based system.
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Chapter 15
Key-Driver Analysis with Extended
Back-Propagation Neural Network Based
Importance-Performance Analysis
(BPNN-IPA)

Josip Mikulić, Damir Krešić and Katarina Miličević

Abstract Importance-performance analysis (IPA) is a popular prioritization tool
used to formulate effective and efficient quality improvement strategies for products
and services. Since its introduction in 1977, IPA has undergone numerous
enhancements and extensions, mostly with regard to the operationalization of
attribute-importance. Recently, studies have promoted neural network-based IPA
approaches to determine attribute-importance more reliably compared to traditional
approaches. This chapter describes the application of back-propagation neural
networks (BPNN) in an extended IPA framework with the goal of discovering key
areas of quality improvements. The value of the extended BPNN-based IPA is
demonstrated using an empirical case example of airport service quality.

Keywords Back-propagation � Neural network � Importance-performance
analysis � Attribute importance � Service quality

15.1 Introduction

Originally introduced by Martilla and James in 1977 (Martilla and James 1977), the
importance-performance analysis (IPA) has become one of the most popular ana-
lytical tools for prioritizing improvements of service attributes. According to the
SCOPUS citation database, in July 2013 there were more than 300 papers bearing
the name of the technique in the title, abstract or keywords, whereas the term
appeared anywhere in the text in more than 1000 papers.
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IPA usually departs from a formative multi-attribute model of customer satis-
faction (CS). Put differently, the focal service is decomposed into key functional
and/or psychological attributes that significantly influence the customer experience
with the service. Such a model is then used to develop a questionnaire for gathering
the necessary IPA-input data. Following the original methodology, one set of
measurement items is used to measure perceived attribute-importance, and another
set to measure perceived attribute-performance. Arithmetic means of importance
and performance ratings are then plotted into a two-dimensional matrix. Grand
means of importance and performance ratings (or, alternatively, scale means), are
further taken to divide the matrix into four quadrants. Accordingly, four distinct
managerial recommendations can then be derived depending on the location of the
attributes within the matrix (Fig. 15.1).

Although the prioritization logic of the original IPA is intuitive and straight-
forward (priority rises with increasing importance and decreasing performance of
attributes), researchers have identified several shortcomings of the technique during
the past three decades. Whereas some authors were primarily concerned with
technical issues (e.g. the most appropriate way to divide the matrix into different
areas), a significantly larger number of scholars have raised conceptual issues that
mainly regard the importance-dimension in IPA. In order to enhance the reliability
(and validity) of the original methodology, researchers have thus proposed
numerous modifications with regard to both the conceptualization and the opera-
tionalization of attribute-importance in IPA. Most recently, IPA variants have been
introduced that utilize the power of the multilayer perceptron (MLP), a popular type
of back-propagation neural networks (BPNN), for assessing attribute-importance.
As several studies have shown, the integration of BPNNs into the IPA framework
can help to significantly increase the reliability of managerial implications (Deng
et al. 2008; Hu et al. 2009; Mikulić and Prebežac 2012; Mikulić et al. 2012).
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In this chapter we present an extended BPNN-based IPA analytical framework
which solves several significant shortcomings of traditional IPA. The value and
application of the extended BPNN-IPA is demonstrated in an empirical case
example of airport service quality. Before proceeding to the case study in
Sect. 15.3, the following section reviews and summarizes recent advances regarding
the IPA, particularly with regard to the integration of BPNNs into the analysis
framework.

15.2 Literature Review

15.2.1 IPA and the Conceptualization
of Attribute-Importance

The conceptualization and, subsequent, operationalization of attribute-importance is
a controversial issue in IPA studies. The original methodology put forward the use
of stated importance measures which assess the importance of attributes as per-
ceived by the customer (Martilla and James 1977). This type of importance can be
evaluated through rating-, ranking- or constant-sum scales. Contemporary IPA
studies, however, employ increasingly derived measures of importance which are
obtained by relating attribute-level performance to a measure of global service
performance, like overall satisfaction or overall service quality (Grønholdt and
Martensen 2005).

While several scholars have argued in favor of one of these two types of
importance measures, recent IPA studies have revived the early ideas of Myers and
Alpert (Myers and Alpert 1977) who stressed that these two types of measures
should not be regarded as competing or conflicting measures. Rather they should be
regarded as complementary measures because they assess different dimensions of
the importance-construct (Van Ittersum et al. 2007). While stated measures assess
an attributes general importance (referred to as relevance), derived measures assess
an attributes actual influence in a particular study context (referred to as determi-
nance). Most important, it is not reasonable to assume strong correlation between
these two dimensions of importance. Aspects of a service which are perceived very
important by the customer do not necessarily have to be those ones that will truly
have the strongest influence on his satisfaction in a particular service transaction.
If an attribute which is perceived very important by the customer performs
according to the customer’s expectations, then its actual influence on the customer’s
overall satisfaction might be smaller than the effect of an attribute which is per-
ceived less important. This might occur in cases when the less important attribute
performs below or above customer-expected levels, thus causing strong negative or
positive customer reactions, respectively.

Following this line of thought, Mikulić and Prebežac (2011, 2012) have pro-
posed a rather simple extension of IPA by integrating both stated and derived
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measures of attribute-importance into a relevance-determinance matrix (RDM;
Fig. 15.2). Since a three-dimensional representation of results might, however, be
confusing (i.e. two importance dimensions and one performance dimension), the
authors suggest marking attributes in the RDM that perform below and above
average with a minus (−) and a plus (+), respectively.

The following recommendations apply to the four attribute categories (Mikulić
and Prebežac 2012):

• Higher-impact core attributes (quadrant 1): These attributes are perceived very
important by customers and they have a strong influence on overall satisfaction.
The management should primarily focus on this category to strengthen the
market position. Attributes from this attribute category that perform relatively
low should be assigned highest priority in improvement strategies.

• Lower-impact core attributes (quadrant 2): These attributes are perceived very
important, but they only have a relatively weak influence on overall satisfaction.
Market-typical levels of performance should be ensured for these attributes.
These attributes can turn into dissatisfiers with a strong influence on overall
satisfaction when performance drops below a tolerated threshold.

• Higher-impact secondary attributes (quadrant 4): These attributes are perceived
less important, but they have a strong influence on overall satisfaction.
Attributes forming this category are likely part of the augmented product/service
and can be used to differentiate from the competition. The importance of these
attributes would be completely underestimated if using stated importance
measures, only.

• Lower-importance attributes/Lower-impact secondary attributes (quadrant 3):
These attributes should be assigned lower general priority in improvement
strategies than the previous three categories.
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15.2.2 IPA and the Problem of Multicollinearity

While stated importance is typically assessed through direct rating scales, derived
importance is usually assessed by means of multiple regression or correlation
analysis. A significant technical problem here, which limits the applicability of
popular derived measures of attribute-importance, is strong correlation among the
attributes which are used to predict overall CS. In particular, the problem is that a
regression on correlated attributes violates a basic assumption of the technique, why
it may produce invalid estimates of relative attribute-determinance. Typical con-
sequences are (i) regression coefficients with reversed signs, although the zero-order
correlation with the dependent variable is positive, (ii) significantly different
weights for equally determinant variables, and (iii) exaggerated/suppressed
regression coefficients (Johnson 2000). Although many research areas struggle
with correlated variables, the problem can be characterized as a major ‘plague’ in
CS research, as this area of research does not rely on metric measures of objective
phenomena, but rather on limited scale-range measures of perceptions that fre-
quently tend to be strongly correlated (Weiner and Tang 2005). Moreover, CS
studies tend to analyze relatively large numbers of variables, which generally
increases the risk of multicollinearity. Since the reliability and validity of derived
importance measures directly affects the reliability and validity of
attribute-prioritizations, ways need to be found to deal with this problem in IPA.
Basically, there are three general options.

1. Bivariate approaches like zero-order correlation or bivariate regressions may be
applied to circumvent the multicollinearity problem. However, these approaches
are less than optimal because they fail to consider the influence of all other
variables in estimations of relative attribute-determinance. Accordingly, these
measures are generally not recommended for use with multi-attribute CS
models.

2. The risk of high inter-correlations may be reduced by specifying
attribute-models in which they are less likely to occur. Since the likelihood of
occurrence is typically positively correlated with the number of explanatory
variables in a regression model, researchers may, on the one hand, consider the
use of hierarchical attribute-models to keep the number of predictors in a model
at a reasonable level, but thereby preserving desired levels of detail. On the other
hand, if the data are not based on hierarchical models, attributes may be factor
analyzed in an exploratory manner to potentially obtain a decreased number of
uncorrelated factors that enter the analysis. Similarly, but simpler, correlational
matrices can be computed to identify highly correlated attributes that should be
reconsidered for inclusion into the final model.

3. Researchers may use approaches that are capable of effectively dealing with
correlated predictors. Several regression-based approaches have been proposed,
involving measures of average variable contributions to R2 across all possible
sub-models (Kruskal 1987; Budescu 1993), variance-decomposition with
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uncorrelated subsets of predictors (Genizi 1993), or heuristics based on predictor
orthogonalization (Johnson 2000). However, in case of larger numbers of
attributes, a severe limitation of these approaches is that they are either com-
plicated to implement, or computationally very demanding. For example, ‘all
sub-set regression’ procedures require 2p � 1 models for estimating the
importances of p attributes—i.e.: 31 models for p = 5, 1023 models for p = 10,
and even 32,767 models for p = 15. Since none of available statistical packages
have built-in features for performing such analyses, these approaches are not
very appealing to CS researchers.

15.2.3 IPA and the Application of Artificial Neural
Networks

A valuable alternative to traditional statistical approaches that does not assume
uncorrelated predictors is the multilayer perceptron (MLP), a popular class of
back-propagation neural networks (BPNN) that has been applied in several IPA
studies (Deng et al. 2008; Hu et al. 2009; Mikulić and Prebežac 2012; Mikulić et al.
2012). BPNNs are artificial neural networks with feed-forward architecture that use
a supervised learning method. Back-propagation is the most widely used neural
network architecture for classification and prediction. The idea of the BPNN goes
back to 1974 with Werbos discussing the concept, while the algorithm was clearly
defined in 1985 by Rumelhart and his colleagues who introduced the Propagation
Learning Rule (Rumelhart et al. 1986). Nowadays, BPNNs are widely applied in
numerous research areas, such as pattern recognition, medical diagnosis, sales
forecasting or stock market returns, among others (Zong et al. 2014; Subbaiah et al.
2014; Kuo et al. 2014; Huo et al. 2014). A graphical presentation of a typical MLP
is provided in Fig. 15.3.

Fig. 15.3 Multilayer perceptron
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An MLP consists of one input-layer, one or more hidden-layers, and one
output-layer. Each layer comprises a number of neurons that process the data via
nonlinear activation functions (e.g. sigmoid, hyperbolic-tangent). To draw an anal-
ogy to regression, the input-layer neurons can be referred to as predictors and the
output-layer neurons as the dependent variable (typically this is one in
regression-kind problems).

An important difference compared to regression is, however, that predictors are
not directly related to the dependent variable, but via neurons in one or more hidden
layers. These in turn determine the mapping relations which are stored as weights of
connecting paths between the neurons. The nonlinear activation functions further
enable the MLP to straightforwardly deal with indefinable nonlinearity, giving the
MLP a significant technical advantage over regular linear regression (DeTienne
et al. 2003). The most important difference towards regression is, however, that the
MLP is a dynamic network model that uses a back-propagation algorithm to train
and optimize the network. Errors between predicted and actual output values are
iteratively fed back to the network in order to minimize this discrepancy according
to some predefined rule or target (Haykin 1999). Put differently, the MLP learns
from the data and dynamically updates the network weights. Sum-of-squares
(SOS) error functions are typically used in combination with learning algorithms
like the scaled conjugate gradient algorithm (Moller 1993), or the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Broyden et al. 1973).

Although MLPs are powerful prediction tools that can explain very large
amounts of variance in dependent variables, MLPs do, however, not provide
straightforward indicators of predictor determinance (i.e. derived predictor impor-
tance). Because of this, ANNs have been frequently termed as “black box”
methodologies. Such indicators can, however, be obtained by using one of the
following two approaches.

On the one hand, predictor determinance can be derived through
connection-weight procedures—i.e. all weights connecting an input-layer neuron
over hidden-layers to the output layer neuron are used to calculate a neuron’s
determinance (i.e. its influence on the dependent variable). The two most wide-
spread, though conflicting, procedures are the algorithms proposed by Garson
(Garson 1991) and Olden and Jackson (Olden and Jackson 2002). An empirical
comparison using Monte-Carlo simulated data has, however, come to the conclu-
sion that the latter approach performs significantly better, and thus it should be
preferred (Olden and Jackson 2002).

On the other hand, predictor determinance can be derived through stepwise
procedures. Here it is analyzed how the discrepancy between predicted and actual
output values behaves when predictors are iteratively dropped from, or included
into the network (Sung 1998). Analogously to analyzing changes in R2 when
dropping/including predictors in a regression model, a relatively larger increase of
the network/model error, attributed to the omission of a particular predictor, can be
interpreted as relatively larger predictor determinance. Conversely, a decrease of the
network error would imply that the respective predictor should rather be omitted
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from the network, as it, in fact, decreases the overall model quality. Moreover,
because the assumption of uncorrelated predictors is not made in MLPs, a note-
worthy advantage over regression is that there is no need to average changes in
model error over all predictor-orderings to ensure the reliability of determinance
estimates. Since all-subset regressions become exponentially time-consuming with
larger numbers of predictors (i.e. 2p�1 models are required to estimate the deter-
minance of p attributes), this is a significant practical advantage of MLPs over
similar regression-based approaches like e.g. dominance analysis, or Kruskal’s
averaging over orderings procedure.

15.3 An Application of the Extended BPNN-IPA

An overview of the extended BPNN-IPA methodology is given in Fig. 15.4.
The data used in this example were collected as part of a periodical survey on

airline passenger satisfaction with services provided at a European international
airport. The data were collected by means of a structured questionnaire in
face-to-face interviews in the international departure area of the airport. Five-point
direct rating scales were used to assess both the importance (1 = less important;
5 = very important) and performance (1 = very poor; 5 = excellent) of a series of
airport attributes, as well as the level of overall satisfaction with the airport
(1 = disappointed; 5 = delighted). Overall, 2025 fully completed questionnaires
entered the subsequent data analysis.

In order to guide management efforts for improving the overall airport experi-
ence we will conduct an extended BPNN-based IPA. Following the approach
proposed by Mikulić and Prebežac (2011, 2012), the traditional IPA framework is
extended by using measures of both attribute-relevance and determinance. This
facilitates a relative categorization of attributes according to their general impor-
tance, as perceived by passengers (i.e. attribute-relevance, AR), and their actual
influence on overall passenger satisfaction with the airport services (i.e.
attribute-determinance, AD).

Step 1: Gather required data

Step 2: Calculate relevance and performance scores

Step 3: Use a BPNN to calculate determinance scores

Step 4: Construct the RDM

Step 5: Interpret results and determine priorities

Fig. 15.4 Methodology of the extended BPNN-IPA
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To prepare the necessary input-data arithmetic means of attribute-performance
ratings (AP) are first calculated:

APi ¼ 1
n

Xn
j¼1

pi;j 8i 2 I; j ¼ 1; . . .; n ð15:1Þ

where pi;j is the performance rating for attribute i, i 2 I by respondent j,
j ¼ 1; . . .; n, n the number of respondents, and I the set of analyzed attributes i.

Analogously, arithmetic means of importance ratings are calculated to obtain
indicators of attribute-relevance (AR). To obtain indicators of AD an MLP-based
sensitivity analysis is conducted. This analysis involves the following steps:

4. Specification of MLP architecture: AP ratings are specified as input-layer
neurons and ratings of overall satisfaction with the airport as single output-layer
neuron in a one-hidden layer MLP. The overall sample is partitioned into
training, testing, and holdout samples (60, 20, and 20 % of the samples,
respectively). The network training continues as long as the network error is
decreasing in both the main dataset (i.e. training samples) and the testing
samples. When the error between predicted and true output values starts
increasing in the testing sample, training is stopped to prevent over-fitting. This
stopping rule is necessary because over-fitted networks usually perform very
well or perfect during training, but they also typically perform significantly
weaker or badly on unseen data. The holdout samples are further used to
cross-validate the performance of the MLP after the training is finished.
The MLP can be considered reliable only if the network performs consistently
well across all three independent samples.

5. Network training: The network is trained using a sum-of-squares error function
and the BFGS learning algorithm. Network performance is assessed using the
mean absolute percentage error ðMAPEÞ and root mean squared error ðRMSEÞ.
RMSE can be used to derive network goodness-of-fit ðR2Þ:

MAPE ¼ 1
n

Xn
i¼1

yi � ai
ai

����
���� � 100% i ¼ 1; . . .; n ð15:2Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðyi � aiÞ2

n

vuuut ð15:3Þ
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R2 ¼ 1� RMSE
r2 ð15:4Þ

where yi is the predicted output value for sample i, ai the actual output value for
sample i, nthe number of samples, and r2 the variance of the actual output.

The following trial-and-error procedure is used to determine the best network
configuration. In a first step several networks with varying activation functions and
numbers of neurons in the hidden-layer are estimated. The correlations between true
and predicted values are then checked to identify the best-performing networks.
Here it is important that the network configurations provide consistent performance
across the training, testing and holdout samples. After identifying the
better-performing activation functions, these are then used to estimate another set of
network configurations. The correlations between predicted and true output values
are then checked again to identify the best performing activation functions and
number of hidden-layer neurons. Using e.g. the automated neural network feature
in newer versions of Statsoft Statistica (version 8.0 or higher) this whole
trial-and-error procedure can easily be conducted, thereby using large numbers of
network configurations to be estimated at a time (e.g. 5000 or higher).

6. Estimation of attribute-determinance: To obtain indicators of AD a global
sensitivity analysis of the network error is conducted. While in a local sensitivity
analysis the focus is on how sensitive the output is to a given domain of a
predictor, global sensitivity focuses on how the output behaves when completely
eliminating a predictor from the network. This is done by iteratively fixing the
value of each particular predictor to its arithmetic mean before re-estimating the
same network (with a particular predictor omitted). Accordingly, a larger
increase of the network error can then be regarded as an indicator of larger
influence of an attribute in explaining variations in the output (i.e. determi-
nance). This type of indicator is very similar to changes in R2 whichare attri-
butable to the omission of predictors from a regression model.

The results of the network performance assessment for our case example are
provided in Table 15.1. The network we choose to estimate indicators of AD has 20
hidden-layer. neurons, exponential activation functions in the hidden layer, and
identity functions in the output layer (in bold). For comparison, the coefficient of
determination of the respective OLS regression model is R2 ¼ 0:59887.

Table 15.1 Assessment of network performances

Network
configuration

R2 (Training
sample)

R2 (Test
sample)

R2 (Holdout
sample)

Activation functions (Hidden
layer/Output layer)

13-20-1 0.75994 0.74677 0.75358 Exponential/Identity
13-5-1 0.75447 0.73327 0.74652 Exponential/Identity

13-6-1 0.80416 0.73053 0.72631 Exponential/Exponential
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Min-max normalization is applied to the weights obtained from the sensitivity
analysis for easier comparison across attributes (expressed as percentages). Final
scores of AD, AR and AP are presented in Table 15.2.

Scores of AD and AR are then used to construct the two-dimensional RDM. The
thresholds that divide the matrix into four quadrants are set at the values of the
grand means of AD and AR (Fig. 15.5). The basic prioritization logic is to search
for attributes that perform relatively lower (e.g. below the grand mean) starting
from the first quadrant (higher-impact core attributes; highest general priority), over
the fourth quadrant (higher-impact secondary attributes), the second quadrant
(lower impact core attributes), to the third quadrant (lower importance attributes;
lowest general priority).

The BPNN-IPA reveals that most attention should be paid to the quality of
(13) the flight network and the (1) traffic connection between the airport and the
city. These are the only two attributes located in the first quadrant that perform
below average (AP13 = 3.86; AP1 = 3.91). Improving the quality of these two
attributes would be likely to significantly enhance overall passenger satisfaction
with the airport.

If we move to the fourth quadrant, we see that the only higher-impact secondary
attribute performs below average, i.e. (10) availability of luggage carts
(AP10 = 3.94). Accordingly, this attribute should be considered next for improve-
ment. It is noteworthy that the importance of this attribute would have been sig-
nificantly underestimated if only stated importance measures had been used.

A look at the attributes in the second quadrant (lower-impact core attributes)
reveals that no immediate action is needed here, because all attributes perform
above average.

Table 15.2 Determinance, relevance and performance of airport attributes

Attribute Determinance (%) Relevance Performance

1. Traffic connection between airport and
city

93.63 4.27 3.91

2. Parking 56.86 3.57 3.70

3. Ease of way-finding 53.61 4.48 4.22

4. Information desk 71.10 4.22 4.21

5. Customs and body check procedure 73.71 4.29 4.19

6. Cafes and restaurants 42.75 3.60 3.66

7. Shopping possibilities 0.00 3.63 3.73

8. Availability of ATMs 50.14 4.16 4.16

9. Availability of Internet access 29.31 3.87 3.59

10. Availability of luggage carts 80.70 3.84 3.94

11. Comfort level and cleanliness 35.03 4.37 4.00

12. Staff politeness 67.29 4.62 4.20

13. Flight network 100.00 4.25 3.86

Grand mean 58.01 4.09 3.95
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Finally, the focus is shifted to the attributes located in the third quadrant which
have relatively lower general priority than attributes in the other three quadrants.
Although these attributes have relatively lower relevance and determinance, the
airport management should consider their improvement after having improved the
previously mentioned attributes, because all the four attributes perform below
average—i.e. (2) parking (AP2 = 3.70), (6) cafes and restaurants (AP6 = 3.66),
(9) availability of Internet access (AP9 = 3.59), and (7) shopping possibilities
(AP7 = 3.73).

15.4 Conclusion

This chapter described the application of back-propagation neural networks
(BPNN) in an extended importance-performance analysis (IPA) framework with the
goal of discovering and prioritizing key areas of quality improvements. The
application of the extended BPNN-based IPA was demonstrated using an empirical
case study of passenger satisfaction with services provided by an international

Fig. 15.5 BPNN-based importance-performance analysis importance-performance analysis
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airport. The extended BPNN-based IPA identified the most important key-drivers of
passenger satisfaction and provided detailed improvement priorities of the various
airport services.

From a methodological point of view, the applied framework solves two
important shortcomings of traditional key-driver analyses, in particular of prevail-
ing approaches to IPA:

First, by combining two different dimensions of attribute-importance into IPA
(i.e. attribute-relevance and determinance), the general reliability of the analytical
framework is significantly increased. With only few exceptions, IPA studies typi-
cally use a one-dimensional operationalization of importance, i.e. either they use
relevance or determinance. Since these two measures do not necessarily have to
converge, the reliability and validity of managerial implications from traditional
IPA are at least questionable. That a one-dimensional operationalization of
importance might mislead managers has also been demonstrated in the example
used in this chapter. The importance of one attribute (availability of luggage carts)
would have been significantly underestimated if only measures of relevance had
been used. Here, relevance of the attribute was below average, while its determi-
nance was significantly above average.

Second, by using the multilayer perceptron (MLP), a popular class of BPNNs for
deriving attribute-determinance in IPA, the proposed framework provides more
reliable determinance estimates compared to traditional regression-based analyses.
This is because the MLP can effectively deal with correlated predictors, and it
applies nonlinear rather than linear activation functions in modeling the data.
The MLP can thus straightforwardly account for possible nonlinearities in the
relationship between the performance of various service/product attributes and the
level of global satisfaction. Application of the MLP is particularly valuable in
customer satisfaction studies, as demonstrated in this chapter, because studies in
this area typically analyze larger numbers of product or service attributes. Since
there is usually a significant amount of correlation among these attributes, tradi-
tional regression-based analyses tend to provide distorted and, subsequently,
unreliable determinance scores. With application of the MLP, reliability of
determinance-scores is significantly improved. Moreover, since multicollinearity
problems tend to increase with larger numbers of analyzed product/service
attributes-predictors, application of the MLPdoes not force researchers to make
large trade-offs between the desired level of detail of the attribute-model under
study and the reliability of results.

For future IPA studies it is generally recommended to apply both relevance and
determinance scores to determine an attribute’s importance. With regard to the
application of ANNs in assessing an attribute’s influence on a dependent variable
(like overall satisfaction), future IPA studies may consider the application of genetic
algorithm for network optimization. Also, it would be useful to further investigate
and compare different was of obtaining determinance weights from ANNs (e.g.
connection-weights procedures vs. stepwise procedures), in order to provide some
best practice guidelines for both practitioners and researchers in this area.
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Key terms

• Back-propagation neural network: A feed-forward artificial neural network that
uses supervised learning to map a set of input data onto a set of output data. The
error (i.e. discrepancies between true and computed data) is back-propagated to
the network until it is minimized according to some predefined rule.

• Importance-performance analysis: A widely applied analytical tool that is used
to prioritize product/service attributes for improvement. The rationale is to
compare the importance of product/service attributes with the attributes’ per-
formance using a two-dimensional matrix. The analysis is based on data from
typical customer satisfaction surveys.

• Relevance: A dimension of the importance construct that could be referred to as
general importance. The literature also uses the term stated importance to
denote relevance. The relevance of a product/service attribute such refers to the
attribute’s importance without a particular performance context.

• Determinance: A dimension of the importance construct that could be referred to
as actual importance or impact. The literature also uses the term derived
importance to denote determinance. The determinance of a product/service
attribute such refers to the attribute’s actual influence on e.g. the customer’s
satisfaction given a particular context of attribute performances.

• Relevance-determinance asymmetry: The case when the relevance of a
product/service attribute does not correspond with the attribute’s determinance.
E.g. the relevance of safety as an attribute of an airline flight certainly is very
high. The attribute’s actual importance or impact on a passenger’s flight satis-
faction (i.e. determinance), however, certainly depends on the attribute’s level of
performance. Such, it should not have a significant impact in case everything
went fine on a flight.
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