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    Chapter 3   
 Nuclear Receptor Coactivators                     

       Ioannis     Zalachoras     and     Onno     C.     Meijer    

    Abstract     The effects that steroid hormones exert on gene expression via their 
nuclear receptors (NRs) must be tightly regulated, in particular because of their 
pleiotropic effects in many tissues. To that end, regulation of receptor activity takes 
place at multiple levels, which include ligand availability, epigenetic modifi cations 
of chromatin around tissue-specifi c target genes, expression levels of the receptor, 
and the presence or absence of other NRs in the same cell. One of the levels of tran-
scriptional control is that of the NR coregulators, proteins that can interact with NRs 
and modulate their function. Coregulators can interact with multiple NRs and NRs 
can interact with multiple coregulators. As a consequence, coregulator expression in 
certain cell types may play the roles of hubs and bottleneck that offers gene target, 
cell type, or context specifi city. Below we offer an overview of NR coregulator 
function, highlighting the best-described coregulators in the brain, as well as pos-
sibilities for the manipulation of NR–coregulator interactions for therapeutic or 
experimental purposes.  

  Keywords     Sex steroids   •   Glucocorticoids   •   Gene transcription   •   Selective modu-
lators   •   Brain  

        I.   Zalachoras    
  Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences , 
 École Polytechnique Fédérale de Lausanne, EPFL ,   CH-1015   Lausanne ,  Switzerland     

    O.  C.   Meijer      (*) 
  Department of Medicine, Division of Endocrinology ,  Leiden University Medical Center , 
  Albinusdreef 2 ,  2333 ZA   Leiden ,  The Netherlands   
 e-mail: o.c.meijer@lumc.nl  

mailto:o.c.meijer@lumc.nl


74

3.1         Introduction 

 Steroid hormones exert their effects in both the brain and the periphery, orchestrat-
ing a wide range of behavioral and physiological responses. Given the nature of 
neuroendocrine regulation, steroids not only act as fi nal signaling molecules of neu-
roendocrine axes but they also shape the activity of these axes via direct negative 
feedback actions and more complex indirect feedback on the brain. Their effects are 
mediated by their respective nuclear receptors (NRs). NRs act in large measure as 
transcription factors that modulate gene expression and chromatin structure. They 
show a wide distribution pattern in peripheral target organs and different cell types 
in brain and pituitary (Goffl ot et al.  2007 ). Given the wide range of possible steroid 
actions and the broad expression pattern of their receptors, it is important that their 
effects are regulated at various levels. Such regulation can take place at the level of 
the ligand availability, type and local concentration (Awasthi and Simons Jr  2012 ; 
Yang and Fuller  2012 ), the expression levels and posttranslational modifi cations of 
the receptor (Noguchi et al.  2010 ; Nicolaides et al.  2010 ), interactions with molecu-
lar chaperones in the cytoplasm (Hartmann et al.  2012 ; Touma et al.  2011 ), dimer-
ization and translocation to the nucleus (Fitzsimons et al.  2008 ), the presence or 
affi nity of multiple receptor types for the same ligand in the same cell (de Kloet 
et al.  2005 ), the presence and activity of kinases such as SGK-1 (Anacker et al. 
 2013 ), and, once the receptor is in the nucleus, the chromatin landscape and many 
interactions with proteins that interact with or compete for nuclear receptors (de 
Kloet et al.  2009 ). The latter can be divided into other – non-receptor – transcription 
factors and nuclear receptor coregulators.  

3.2     Nuclear Receptors 

 All nuclear receptors consist of functional domains that can be directly coupled to 
their function as transcription factors and indirect chromatin modifi ers. The rela-
tionship between the structure and the function of the nuclear receptors has been 
extensively studied and described (Mittelstadt and Ashwell  2003 ; Giguere et al. 
 1986 ). In short, the NR proteins are composed of three critical modular domains: a 
poorly conserved N-terminal domain that harbors the hormone-independent activa-
tion function 1 (AF1), a central DNA-binding domain (DBD) that shows extensive 
homology between related NR family members, and a C-terminal ligand-binding 
domain (LBD) that also forms the hormone-dependent activation function 2 (AF2) 
domain that is activated allosterically upon ligand binding (Fig.  3.1 ) (Mittelstadt 
and Ashwell  2003 ; Danielian et al.  1992 ; Giguere et al.  1986 ; Stanišić et al.  2010 ).

   In the absence of ligand, NRs are bound to chaperone protein complexes in the 
cytoplasm, such as FKBP5 and HSP90 (Menke et al.  2013 ; Klengel et al.  2013 ; 
Picard et al.  1990 ). Upon ligand binding, a conformational change takes place that 
leads to the dimerization of the nuclear receptor and its translocation to the nucleus. 
There, the receptor binds to the DNA, either directly via its DBD or indirectly via 
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interaction with other transcription factors. In the direct DNA-binding mode, 
molecular interactions with a host of transcriptionally active proteins may take 
place via the AF1 and AF2 domains. Direct DNA binding occurs at nuclear receptor 
responsive elements (NREs), specifi c nucleotide sequences for each NR linked to 
activation or repression of specifi c genes. There may be hundreds of thousands of 
NRE-like sequences in mammalian genomes (Datson et al.  2011 ), but chromatin 
structure and the demand of associated binding partners limit actual binding to only 
a couple of thousand detectable binding loci per cell type. However, these show a 
very substantial cell specifi city (John et al. 2011), and even strong evolutionary 
conservation of response elements does not automatically imply responsiveness in 
a particular tissue or cell type (Datson et al.  2011 ). The receptors are thought to 
mainly form homodimers, act as monomers in conjunction with other non-receptor 
or transcription factors, or heterodimerize with other steroid receptors (Pearce  1994 ; 
Chen et al.  1997 ; Presman et al.  2014 ; Trapp et al.  1994 ). Of note, although initial 
promoter-directed study revealed a substantial number of response elements within 
hundreds of base pairs of transcription start sites, genome-wide approaches have 
revealed that NREs can be localized many kilobases away from the genes they regu-
late and may act  in cis  over very long ranges. 

 Other transcription factors can interact with NRs during DNA binding. Some of 
the identifi ed transcription factors will bring the receptors to the DNA by way of 
“tethering” mechanisms, like those involved in classic transrepression in the 
immune system (De Bosscher et al.  2008 ). There are also those transcription factors 
that bind in the vicinity (within hundreds of base pairs) of the steroid receptors and 
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  Fig. 3.1    The domain structure of nuclear receptors and their modes of coregulator interactions. 
The central DNA-binding domain (DBD) is fl anked by the N-terminal domain (NTD) and the 
ligand-binding domain (LBD). The LBD has a well-conserved structure consisting of 12 alpha 
helices. These form activation function 2 (AF2) that contacts AF2 NR coregulators via their LxxLL 
motifs, or “NR-boxes.” AF2 NR coregulators are shared between many NRs, and interactions can 
readily be identifi ed using in vitro protein assays, such as MARCoNI. AF1 lies in the NTD – it is 
intrinsically unstructured, and in general, the AF1 NR coregulators are more specifi c to a particular 
receptor and more diffi cult to identify       
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are in some way involved in modulating their function, also by chromatin and DNA 
modifi cations (Biddie et al.  2011 ).  

3.3     Coregulators’ Mode of Action 

 Nuclear receptor coregulators are proteins that interact with NRs but not the DNA 
(they are not transcription factors) (Zalachoras et al.  2013c ). They have three main 
functions: (i) they can recruit other transcriptionally active proteins, (ii) they have 
histone acetyltransferase or methyltransferase activity and/or they can recruit his-
tone acetyl- or methyltransferase, and (iii) they stabilize the transcriptional machin-
ery (Tetel et al.  2009 ). In direct DNA-binding mode, the rate of transcriptional 
stimulation at a given ligand concentration is thought to be limited by any of the 
transcriptional coregulators of the receptors, in a gene-specifi c manner (Ong et al. 
2010). In a general sense, the coregulator repertoire that is assembled at a particular 
locus on the DNA determines the magnitude as well as the nature of the transcrip-
tional response. 

 The activities of the AF1 and AF2 output domains of NRs by defi nition depend 
on interactions with coregulators (Fig.  3.1 ). AF1 coregulators are diffi cult to predict 
and often relatively unique for particular NRs, based on the low degree of homology 
between the different receptors and the intrinsic unordered nature of the domain. 
AF2 domains are much more structured and conserved, and their coregulators share 
structural domains called NR-boxes. These contain specifi c motifs containing the 
amino acid sequence LXXLL. The AF2–NR-box interactions have revealed detailed 
structural information, which can be coupled to the conformational change of the 
receptor after binding to agonists or antagonists (Huang et al.  2010 ). In addition, the 
interactions may be screened for in vitro based on binding of the (recombinant) 
receptor protein to NR-box-containing peptide fragments from many different 
coregulators (Zalachoras et al.  2013a ). 

 The coregulators that are recruited after hormone binding tend to be coactivators 
rather than corepressors. In this respect the classical steroid receptors differ from 
other classes of nuclear receptors, which may be DNA-bound in absence of ligand, 
but transcriptionally inactive based on corepressor binding. Interestingly, some ste-
roid receptor antagonists, such as the mixed AR/GR/PR antagonist RU486/mife-
pristone, induce recruitment of corepressors rather than coactivators (Zhang et al. 
 1998 ). As discussed later in this chapter, this screening opens the possibility to fi nd 
new steroid receptor ligands with intermediate coregulator recruitment profi les 
which consequently combine agonistic and antagonistic properties – so-called 
selective receptor modulators (Zalachoras et al.  2013b ). 

 Cell-type-specifi c chromatin organization and coregulator repertoire (Meijer et al. 
 2000 ) (  www.nursa.org    ) interact as the recruitment of coregulators by nuclear recep-
tors may take place in a cell-type- and locus-specifi c manner (Trousson et al.  2007 ). 
Coactivators tend to either be direct modifi ers of histones via acetyltransferase or 
methyltransferase activity or recruit other coactivators that subsequently change his-
tone posttranslational modifi cations, such as CREB-binding protein (CBP) and many 
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others (Won Jeong et al.  2012 ). The ensuing histone marks may act as epigenetic 
determinants of cell fate of future cell behavior. This model indicates that coregula-
tors do not act in isolation but in protein complexes that may involve transcription 
factors, coregulator–coregulator interactions, and RNA molecules (Tetel et al.  2009 ). 

 Steroid hormone treatment may also lead to epigenetic changes at the level of 
CpG methylation on the DNA (Auger et al.  2011 ; Yu et al.  2013 ; Zhao et al.  2010 ; 
Sharma et al.  2013 ). There is however not much evidence for direct recruitment of 
DNA methyltransferases by NR coregulators, although this would constitute a 
mechanism for gene-specifi c regulation of CpG islands. On the other hand, DNA 
methylation at specifi c loci may determine which coregulators are recruited by spe-
cifi c nuclear receptors (Ceschin et al.  2011 ). 

 With tissue- and cell-specifi c expression patterns, as well as their promiscuity 
(coregulators can often interact with multiple NRs, mostly based on common inter-
actions with the relatively homologous LBD/AF2 domains of the receptors), coreg-
ulators can create an additional level of regulation that drives the pleiotropic effects 
of NRs toward cell-specifi c transcriptional changes, as well as to NR-specifi c 
expression programs when competition for coregulators occurs. Moreover, given 
their potential to induce chromatin modifi cations, coregulators may be the link 
between NR function and the appropriate epigenetic changes in response to stimuli 
(Hunter  2012 ). Below, we describe examples of interactions between NRs and 
coregulators that highlight the importance of coregulators for the steroid receptor 
family members with focus on brain function. 

 Estimates of the number of nuclear receptor coregulators are as high as >350 
different proteins (Stanisić et al.  2010 ), but the importance of most of these for 
individual steroid receptors is unknown and not every coregulator interacts with 
every receptor type. It is also clear that there is a pronounced differential distribu-
tion of different coregulators per brain region (  www.brain-map.org    ). Neuroendocrine 
relevance of individual coregulators discussed below, based on interactions found in 
cell lines or other organ systems, clearly depends on actual coexpression with ste-
roid receptors in the brain and/or pituitary. 

3.3.1     Sex Steroid Receptor Coregulators 

 AR plays important roles in the brain, most pronounced in regulating male sexual 
behavior. However, given therapeutic urgency, coregulator function in AR action 
has been extensively studied in relation to the development and progression of pros-
tate cancer. For example, E6-associated protein (E6-AP) is a coregulator that inter-
acts with AR during the development of the prostate gland, and it plays an important 
role in development of the brain, but it is not clear whether it is important for AR 
function in the adult brain. 

 In neuroendocrine setting, steroid receptor coactivator-1 (SRC-1) is the best- 
characterized AR coregulator (Feng and O’Malley  2014 ), and it has been shown to 
be necessary for regulation of the androgen-induced behavior and plasticity in 
Japanese quail (Charlier et al.  2006a ). Blockade of SRC-1 expression in the brain 
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led to abrogation of testosterone-dependent sexual behaviors, as well as the 
testosterone- dependent growth of the preoptic medial nucleus, an area of the quail 
brain involved in sexual behavior (Charlier et al.  2006b ). Interestingly, both AR and 
SRC-1 expression are regulated by photoperiod and testosterone treatment, indicat-
ing the signifi cance of parallel regulation of these two components for signaling 
(Charlier et al.  2006a ). 

 SRC-1 was the fi rst of the classical coregulators to be described (Oñate et al. 
 1995 ) and belongs to the so-called p160 family. Other members such as SRC-2 and 
SRC-3 can also be involved in AR signaling, although their involvement has not 
been studied as extensively in the brain. Nevertheless, they may show some redun-
dancy with SRC-1, as SRC-2 overexpression is a known compensatory mechanism 
in the absence of SRC-1 (Apostolakis et al.  2002 ), or offer differential regulation in 
certain brain areas (i.e., SRC-3 shows a very distinct pattern in the brain with high 
expression only in the hippocampus). 

 Estrogen receptors are expressed in two subtypes ERα and ERβ which are coded 
for by two different genes. The effects of the interactions between ER and coregula-
tors have been broadly studied in relation to breast cancer, sexual behavior, and 
cognitive function. In the same context epigenetic regulation of the expression of 
ER-dependent genes has been shown to be relevant as well, in rather complex cas-
cades of events. For instance, estradiol can control the expression of enhancer of 
zeste homolog 2 (EZH2), a methyltransferase specifi c for lysine 27 of histone 3, 
overexpressed in breast cancer, together with mixed lineage leukemia (a coregula-
tor) and CBP/p300 (Bhan et al.  2014 ). 

 Next to many studies in relation to sexual function and differentiation, consider-
able work has been done on the effects of estrogens on stress responses and suscep-
tibility (Calmarza-Font et al.  2012 ; Shansky and Lipps  2013 ). The fact that early life 
treatment with estrogen results in altered later life stress responses indicates that 
epigenetic mechanisms may be at play (Panagiotidou et al.  2014 ), something that is 
backed up by observation after manipulation of downstream DNA methylation fac-
tor expression (Wang et al.  2013b ). The exact effects of estrogens (e.g., anxiolytic 
or anxiogenic) differ, depending on the age of treatment, the sex of the animals, and, 
more importantly, treatment with other steroid hormones or the expression levels of 
other steroid receptors. 

 In relation to specifi c coregulators that interact with ER, again most data col-
lected indicate the involvement of members of the p160 family. They are largely 
coexpressed with ER in the rodent brain, interact with ER (Yore et al.  2010 ), and 
often follow the seasonal or age-dependent expression patterns of ER (Tetel et al. 
 2007 ; Tognoni et al.  2011 ). Moreover, SRC-1 expression varies in the hypothalamus 
of cycling female rats with a nadir during diestrus and a zenith during proestrus and 
estrus (Charlier et al.  2010 ). Furthermore, in the brains of aged female mice, SRC-1 
has lower expression, indicating a reduction in hormone sensitivity. Experimental 
deletion of SRC-1 and SRC-2 expression in the brain resulted in loss of sensitivity 
to estrogens leading to aberrant hormone-induced sexual behavior in female rats, 
which was not recovered even after high doses of estradiol (Apostolakis et al.  2002 ), 
even if other studies reported similar but much less striking effects (Molenda et al. 
 2002 ). Also in male Japanese quail, intracerebroventricular injections of antisense 

I. Zalachoras and O.C. Meijer



79

oligonucleotides targeting SRC-1 blocked the estrogen-dependent sexual behaviors 
(Charlier et al.  2006b ). 

 Another interesting ER coregulator is ribosomal protein L7 (RPL7). This protein 
is a selective coactivator of the ER involved in mRNA translation, and in avian spe-
cies, it is highly expressed in the brain and particularly in the regions involved in 
song control such as HVC, RA, and area X (Duncan et al.  2009 ). Sexual dimor-
phism in its expression in the brain has been reported. It is believed that its upregu-
lation at a certain age may play an additional role in the sexual differentiation of the 
avian brain in response to estrogens (Duncan and Carruth  2011 ). Interestingly, 
in vivo knockdown of RPL7 in the zebra fi nch brain resulted in altered morphology 
in song control regions, without however any differences in song learning and sing-
ing behavior, possibly related to other coregulators that can take over RPL7’s func-
tion in its absence. 

 Recently, data collected postmortem from the brains of patients with autism 
spectrum disorders have shown that ERβ, together with SRC-1, CBP, and P/CAF, 
has reduced expression in the medial frontal gyrus compared to controls (Crider 
et al.  2014 ). Combined with data showing the effects of the AR and ER together 
with coregulator NCOA5 on the retinoic acid receptor-related orphan receptor A 
(RORA) promoter may suggest that sex hormones may be relevant for autism spec-
trum disorders, as well as for the sex bias in the development of such disorders 
(Sarachana and Hu  2013a ,  b ). Models of RORA insuffi ciency show behavioral pat-
terns similar to autism spectrum disorders such as spatial learning defi cits and 
reduced object exploration (Sarachana et al.  2011 ).  

3.3.2     GR and MR Coregulators 

 Among other functions, GR and MR orchestrate the expression of responses to 
stressors, which involves the coordination of multiple systems in the brain and the 
periphery (Myers et al.  2013 ; Herman  2013 ; Rodrigues et al.  2009 ; de Kloet et al. 
 2005 ). The HPA axis plays a central role in the regulation of stress responses via 
control of glucocorticoid hormone levels. Glucocorticoids, in turn, exert a wide 
range of effects, including effects on memory, behavior, and metabolism, that are 
mediated by their receptors MR and GR. Importantly, glucocorticoids can block the 
expression and release of CRH in the PVN and  POMC/ ACTH in the pituitary, thus 
creating a negative feedback loop (Kovács  2013 ; Laryea et al.  2013 ). Of interest, 
there is at least one coregulator – the SRC-1 splice variant SRC-1a – that is enriched 
in the hypothalamus and pituitary and may mediate transcriptional effects that are 
part of negative feedback actions (Meijer et al.  2000 ). Many coregulators are shared 
between MR and GR, even if some functional differences exist (Meijer et al.  2005 ). 
Specifi c coregulators likely act via the poorly conserved AF1. Recently, Gemin4 
has been shown to function as an MR coregulator, as well as 11–19 lysine-rich 
leukemia (ELL) (Yang et al.  2015 ; Yang and Young  2009 ; Pascual-Le Tallec et al. 
 2005 ). Within the brain, MR- and GR-specifi c coregulator pathways are basically 
unknown. 
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 In the multiple GR- and MR-dependent neuromodulatory pathways, some of which 
result in epigenetic changes (Hunter et al.  2014 ), several coregulators take part. Many 
studies have been conducted on the coregulators of GR and to a lesser extent MR in 
relation to brain function, particularly for learning and memory and stress responses. 
Apart from members of the p160 family, one dominant example is the coregulators of 
CREB CBP/p300, which via p160 interaction are secondary coregulators of steroid 
receptors. Other examples are p300/CBP-associated factor (pCAF), members of the 
CREB-regulated transcription coactivator (CRTC) family, and the coregulators of ste-
roid hormone receptors RIP-140 and Ube3a (Barrett et al.  2011 ; Malvaez et al.  2011 ; 
Oliveira et al.  2007 ; Jeanneteau et al.  2012 ; Ch’ng et al.  2012 ; Augereau et al.  2006 ; 
Duclot et al.  2010 ,  2012 ; Maurice et al.  2007 ; Godavarthi et al.  2012 ; Mardirossian 
et al.  2009 ; Wallace et al.  2012 ; Weeber et al.  2003 ; Engel and Yamamoto  2011 ). Not 
surprisingly, mutations or deletions of these coregulators often result in impairments 
in learning and memory, decreased neuronal plasticity, inappropriate regulation of 
stress responses, or abnormal brain morphology (Zalachoras et al.  2013c ). 

 SRC-1 and the other p160 family members are arguably the best-characterized 
GR coregulators. SRC-1 has been shown to be crucial for GR-dependent regulation 
of CRH expression in the PVN and the central nucleus of the amygdala (Lachize 
et al.  2009 ). SRC-1 is expressed in two splice variants, SRC-1a and SRC-1e, which 
have differential distribution in the brain and opposite activities on the  crh  promoter 
(Fig.  3.2 ) (van der Laan et al.  2008 ; Meijer et al.  2000 ,  2005 ). SRC-1a downregulates 
 crh  expression and is highly expressed in the PVN, while SRC-1e lacks repressive 
activity and shows high expression in the CeA. In SRC-1 KO animals,  crh  expression 
in the PVN and the CeA is largely resistant to regulation by glucocorticoids, as well 
as POMC expression in the anterior pituitary, while  crh  expression in the CeA is 
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  Fig. 3.2    Proposed model of SRC-1 splice variant differential action. SRC-1a has a longer 
C-terminal domain that contains an additional LxxLL NR-box, as well as a repressor function. Its 
recruitment by GR can lead to repression of the  CRH  gene, whereas SRC-1e may act as a stimula-
tory coactivator       
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decreased (Lachize et al.  2009 ; Winnay et al.  2006 ). The HPA activity and behavioral 
responses to stress are close to normal in these animals, despite the transcriptional 
phenotype. This can be partly attributed to the compensatory developmental upregu-
lation of SRC-2 expression in the absence of SRC-1 (Nishihara et al.  2003 ), and 
defi nitive conclusions await transient or inducible genetic experiments. Despite the 
extensive study of the SRC-1 splice variant function in vitro, only recently have there 
been attempts to study their function in vivo utilizing exon skipping methods to shift 
the expression ratio of SRC-1 and SRC-1e in the mouse brain (Zalachoras et al. 
 2013a ). On the other hand, apart from the compensatory effects of SRC-2 in the 
absence of SRC-1, deletion of SRC-2 results in impaired adrenocortical output at the 
level of the adrenal, thus increasing the HPA axis in response to stress. Interestingly, 
the deletion of any of SRC-1, SRC-2, and SRC-3 was shown to have effects on anxi-
ety behavior, which were often sex-dependent (Stashi et al.  2013 ).

   CREB-binding protein (CBP) is a potential brain GR (Conway-Campbell et al. 
 2011 ) and MR coregulator (Kitagawa et al.  2002 ). CBP is a HAT that can be 
recruited by SRC-1 and therefore likely is a secondary coregulator to all steroid 
receptors. CBP and its homolog p300 (Barrett et al.  2011 ) are also downstream 
transcriptional modulators of CREB and AP1. Since gene transcription is essential 
for many processes such as learning and memory and stress responses, as well as a 
key mode of action of steroid receptors, the broad involvement of CBP/p300 in such 
processes is not surprising (Maurice et al.  2007 ; Malvaez et al.  2011 ). GR effects on 
learning and memory may be to some extent CBP/p300 dependent (Roozendaal 
et al.  2010 ) either via LxxLL-dependent GR-CBP/p300 direct interactions or via 
recruitment by SRC-1. CBP/p300 has different LxxLL interaction domains for GR, 
one KIX domain for interaction with CREB, and one SRC-1 interaction domain; 
thus, combinatorial binding may be possible (Wang et al.  2013a ; Waters et al.  2006 ; 
Chan and La Thangue  2001 ). Thus, a model has been proposed in which glucocor-
ticoids can functionally interact with CBP and alter gene expression both by direct 
binding and promoter transactivation and by histone modifi cations (Roozendaal 
et al.  2010 ). Lack of CBP results in decreased histone methylation, together with 
impairments in long- and short-term memory (Barrett et al.  2011 ; Chen et al.  2010 ), 
while similar results have been observed after deletion of p300 (Oliveira et al.  2007 , 
 2011 ). Interestingly, in the absence of CBP, p300 is not always upregulated and can-
not take over all CBP-dependent functions, thus indicating a certain degree of 
 non- redundancy of the functions of the two proteins (Barrett et al.  2011 ). Thus, CBP 
and p300 have signifi cant involvement in learning and memory, and despite their 
homology, they have possibly non-redundant roles in these processes, although their 
roles may also be brain region dependent (Marek et al.  2011 ). The functional “inte-
grator” CBP may well be one of the direct substrates of the close cross talk between 
GR and CREB pathways in neuronal plasticity. 

 CREB-regulated transcription coactivators (CRTCs) are primarily known as tran-
scriptional coregulators of CREB. Upon cAMP and calcium exposure, they are dephos-
phorylated and translocate into the nucleus where they can interact with CREB over 
relevant promoters controlling the function of NRs (Liu et al.  2010 ,  2011 ,  2012 ; 
Altarejos and Montminy  2011 ). Jeanneteau et al. studied how BDNF, GR, and CREB 
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regulate  crh  expression (Jeanneteau et al.  2012 ). It had been known that BDNF can 
upregulate  crh  expression in the PVN (Givalois et al.  2004 ), whereas GR activation 
(e.g., after treatment with glucocorticoids) represses  crh  expression in the PVN 
(Makino et al.  1994 ). Jeanneteau et al. showed with a combination of loss- and gain-of-
function techniques that there is a cross talk between GR and BDNF and its receptor 
TrkB through interactions with CREB, and mediation of the CRTC2 may activate the 
 crh  promoter while glucocorticoids through the GR may target phosphorylation and 
nuclear localization of CRTC2 and repress the  crh  promoter (Jeanneteau et al.  2012 ). 

 Another HAT involved in learning and memory that interacts both directly and 
indirectly (via p160 family members) with GR is p300/CBP-associated factor 
(PCAF) (He et al.  2002 ; Szapary et al.  2008 ; Blanco et al.  1998 ; Li et al.  2003 ), 
which can also acetylate other transcriptional regulators (Pérez-Luna et al.  2012 ). It 
has been found to be upregulated together with increased histone acetylation in the 
rat hippocampus during memory consolidation (Bousiges et al.  2010 ). Lack of 
PCAF resulted in impaired memory function, exaggerated stress responses, ana-
tomical differences in their hippocampus, and decreased synaptic plasticity (Maurice 
et al.  2007 ), while its blockade in the infralimbic prefrontal cortex impaired fear 
memory extinction (Wei et al.  2012 ). 

 Ube3a is a transcriptional coactivator of steroid hormone receptors. Repression 
of its expression is one of the causes of Angelman syndrome (Sutcliffe et al.  1997 ). 
Lack of Ube3a resulted in cognitive and memory impairments, defi cits in hippo-
campal plasticity, seizures, decrease of CaMKII activity, altered adult hippocampal 
neurogenesis, increased stress and anxiety, and differences in neuronal morphology 
(Jiang et al.  2010 ; Mardirossian et al.  2009 ; Godavarthi et al.  2012 ; Sato and Stryker 
 2010 ; Wallace et al.  2012 ; Weeber et al.  2003 ). These phenotypes may be related to 
defective GR signaling leading to increased stress and anxiety as shown by the fact 
that mice lacking Ube3a have higher morning corticosterone levels and poor scores 
in a novel object recognition test and spend more time in the dark (anxiety behavior) 
in a light/dark test than their wild-type or paternal copy-defi cient ube3a mice 
(Godavarthi et al.  2012 ). However, as for other coregulators, direct evidence for 
Ube3a as a mediator of MR and/or GR effects is lacking, and we are at a stage 
where interactions may be likely, but unproven.   

3.4     Discovery of Novel NR Coregulators 

 Given the effects of coregulators on gene expression and the additional regulation 
levels they generate, it becomes increasingly more interesting to i) discover new NR 
coregulators and ii) develop pharmacological agents that can selectively manipulate 
NR–coregulator interactions. 

 Finding or predicting new NR coregulators is the fi rst important step, as there is 
relatively little known about which coregulators interact with which NR. Moreover, 
even for those coregulators/NRs whose interactions are well documented, little is 
known regarding their in vivo function in the brain, since the majority of the data 
comes from in vitro studies. Important data regarding putative interactions between 
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coregulators and NR may come from the Allen Brain Atlas, where the expression 
patterns of all NRs and coregulators in the brain have been studied. Furthermore, 
correlations between the expression of NRs, coregulators, and target genes can take 
place, providing fi rst hints toward the interactions and involvement of both NRs and 
coregulators in specifi c pathways. A second tool to identify putative coregulators 
with relevance for a particular NR is the MARCoNI peptide array in which recep-
tor–coactivator interactions can be predicted based on NR-box interactions (Desmet 
et al.  2014 ; Koppen et al.  2009 ). With this system, not only the NR–coregulator 
interactions induced by different ligands can be quantifi ed, but the interactions 
between coregulators and mutant or recombinant NRs or even the behavior of NRs 
derived from different in vivo contexts (Houtman et al.  2012 ). The MARCoNI assay 
profi les have been previously corroborated in a battery of in vivo tests ranging from 
stress-related behavior to target gene expression (Zalachoras et al.  2013b ). Finally, 
tools like the MARCoNI assay can also be used in the early stages of drug develop-
ment to select the better candidates for in vivo use. 

 For lack of open biochemical approaches based on molecular interactions in 
small tissues (York et al.  2013 ), combing data coming from the MARCoNI assay 
with tools like the Allen Brain Atlas can play an important role in the discovery of 
novel NR coregulators, predict the behavior and properties of novel NR ligands, and 
study the properties of NR mutations or modifi cations.  

3.5     Making Use of Coregulator Diversity: Selective Nuclear 
Receptor Modulators (SNRMs) 

 Endogenous or exogenous steroids may combine benefi cial and disadvantageous 
effects. Ever since it became clear that there are multiple mechanisms by with the 
receptors signal, there has been the notion to dissociate such mechanisms with 
drugs that allow one signaling mechanism, but not others. Such “dissociated com-
pounds” or “selective receptor modulators” that have tissue- or pathway-specifi c 
effects may work by several mechanisms, including selective recruitment of coregu-
lators by the receptors (Fig.  3.3 ). Accordingly, many attempts have been made to 
develop new drugs with the potential to induce or block selective interactions 
between NRs and coregulators. Hence, these drugs should induce such an NR-ligand 
conformation that will make the complex accessible only to a subset of the available 
coregulators (Martinkovich et al.  2014 ; Højfeldt et al.  2014 ).

   Most work done on selective androgen receptor coregulators is related to ligands 
that can target the brain, the bone, or the muscle without affecting prostate tissue 
with oncogenic potential (Akita et al.  2013 ). Age-related androgen depletion is a 
risk factor for sarcopenia, osteoporosis, and accumulation of β-amyloid protein and 
development of Alzheimer’s disease. Androgen replacement therapies are not 
always effective due to side effects. The selective androgen receptor modulator 
NEP28 was shown to increase the expression of an enzyme that breaks down 
β-amyloid plaques in the brain and was effective in the muscle and bone, without 
prostate-related adverse effects (Akita et al.  2013 ). Similar results were also 
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observed after use of another selective androgen receptor modulator, 3beta,19-NA 
(Page et al.  2008 ). Yet another selective AR modulator, A-262536, also showed high 
selectivity for muscle and bone, in contrast to prostate (Piu et al.  2008 ). The mecha-
nism of action of these compounds is not fully known; however, at least some of 
them may induce different AR–coregulator interactions compared to testosterone, 
while others may capitalize on partial agonist effects or differential penetration of 
different tissues. 

 Drugs targeting the ER have a variety of uses including menopausal symptoms, 
fertility agents or oral contraceptives, and breast cancer treatments (Wardell et al. 
 2014 ). Due to the pleiotropic effects of ER in the periphery and the brain, it is 
important to fi nd agents that have selective action on specifi c pathways. ER was the 
prototype target for selective steroid receptor modulators, with tamoxifen, which 
acts as agonist in the bone and endometrium but as antagonist in the breast (tumors). 
This selective action was mainly attributed to the selective profi le of interactions 
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  Fig. 3.3    Proposed model of the function of selective modulators. ( a – b ). The nuclear receptor is 
bound to its natural ligand, dimerized, and on chromatin. It can recruit a number of different 
coregulators that interact directly with it (1,4), which can, in turn, recruit other coregulators (2,3,5, 
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scription of G1 takes place, while the transcription of G2 is blocked       
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between ER and coregulators it can induce, also taking advantage of local expres-
sion differences of ER coregulators. Since the development of tamoxifen, additional 
selective estrogen receptor modulators have been developed with lower side effects 
and variable ER–coregulator interaction profi les (Feng and O’Malley  2014 ; Evers 
et al.  2014 ; Gottardis et al.  1988 ). Important for the directionality of the effects of 
tamoxifen in different tissues are the expression levels of p160 coregulators. 
Interestingly, increased levels of SRC-1, SRC-3, or other coregulator expression are 
associated with tamoxifen resistance in breast cancer (Feng and O’Malley  2014 ; 
Kumar et al.  2009 ). Other compounds similar to tamoxifen (nonsteroidal triphenyl-
ethylene) are toremifene, droloxifene, and idoxifene all with chemical structure 
variations in attempts to fi nd the balance between side effects and potency 
(Martinkovich et al.  2014 ). 

 Most attention regarding selective GR modulators has been drawn by GR ligands 
that have anti-infl ammatory effi cacy, but no effects on metabolism or osteoporosis 
(Rauch et al.  2011 ; van Lierop et al.  2012 ). However, given the pleiotropic actions 
of glucocorticoids in the brain, it may be benefi cial to distinguish between different 
effects of glucocorticoids. Blocking detrimental effects of chronically elevated glu-
cocorticoid exposure with full antagonists such as mifepristone can lead to disinhi-
bition of the HPA axis and counteract effi cient antagonism. Moreover, blocking all 
effects of GR on emotional and cognitive processes may not be optimal in order to 
counteract the negative effects of stress. Similarly, induction in the brain of a pro- 
infl ammatory state by pharmacological blockade of GR in astrocytes and/or microg-
lia may not be desirable. Selective GR or MR modulators may be benefi cial in 
stress-related psychopathology and an interesting and useful tool to distinguish dif-
ferent GR-dependent pathways in experimental settings (Zalachoras et al.  2013c ). 

 First attempts tried to base selective GR modulation on the dissociation of effects 
that depend on DNA binding by the receptor and classical transrepressive effects 
directly on pro-infl ammatory transcription factors NF-κB and AP1 (De Bosscher 
et al.  2003 ). Such an example is the GR ligand “compound A” which induces inhibi-
tion of NF-κB-dependent pro-infl ammatory transcription, but not DNA binding of 
GR (De Bosscher et al.  2005 ; Reber et al.  2012 ). However, part of the anti- 
infl ammatory effects mediated by GR does depend on binding by GR to classical 
GREs (Beaulieu and Morand  2011 ). Coghlan et al. ( 2003 ) showed a GR ligand that 
retained anti-infl ammatory effects while preventing the GR effects on glucose 
metabolism and impact on bones. This study showed that the specifi c behavior of 
the compound arose from the GR–coregulator interaction profi le it induces. An aryl-
pyrazole type of GR ligand was shown to exert selective agonism on hippocampal 
neurogenesis without affecting skeletal muscle protein synthesis, bone or skin col-
lagen synthesis, or splenic lymphocyte counts (Roohk et al.  2010 ) and had tran-
scriptional effects on few target genes in cell lines (Wang et al.  2006 ). This proves 
the point that GR effects relevant for modulation of brain may be quite selectively 
targeted with selective modulator types of drugs. 

 Recently, a novel selective GR modulator has been studied, C108297. It has 
been shown that it is more specifi c for GR than mifepristone and can induce a num-
ber of GR–coregulator interactions while preventing others. Moreover, it was 
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shown to have mixed agonist and antagonist properties in stress-related circuits in 
the brain. For instance, it had agonist effects on the consolidation of fear-related 
memory, antagonist effects on stress-induced  crh  expression in the CeA, and gene 
expression in the hippocampus, without inducing HPA axis disinhibition 
(Zalachoras et al.  2013b ). It was also shown that it can counteract the neuroendo-
crine effects of stress that are induced by glucocorticoid excess (Solomon et al. 
 2014 ), as well as prevent the weight uptake as a result of high-fat diet (Asagami 
et al.  2011 ). Finally, the same ligand showed strong antagonism that improved the 
phenotype in animal models of Alzheimer’s disease and ALS (Meyer et al.  2014 ; 
Baglietto-Vargas et al.  2013 ). 

 Selective receptor modulators for MR have not been studied in depth, as plain 
MR antagonism has been a major clinical goal in cardiovascular disease. However, 
MR agonism in the brain may be of benefi t in relation to particular psychiatric dis-
orders, such as depression (Klok et al.  2011 ), where its expression has been shown 
to be decreased in several brain areas (Qi et al.  2012 ). The development in selective 
MR modulators is currently taking place, and it will be exciting to see what the 
potential of such ligands will be (Yang et al.  2011 ).  

3.6     Conclusions 

 Due to the pleiotropic effects of NRs, modulation of NR-dependent pathways is 
relevant in a number of conditions. NR coregulators are important for immediate 
and long-term tissue-, cell-, and target gene-dependent effects of NRs. Therefore, 
better understanding of NR–coregulator interactions and the development of more 
selective ligands capable of manipulating those interactions to a desirable direction 
may be decisive in the treatment of a number of conditions. Although our knowl-
edge has advanced during the past 20 years, there are outstanding questions regard-
ing the gene targets of each coregulator and which protein cocktail is recruited to 
each particular context. Thus, knowledge of coregulator recruitment to the promot-
ers of certain genes may assist the development of ligands that can affect the expres-
sion of genes with high specifi city depending on cellular context. 

 Finally, coregulators can be involved in epigenetic regulation of gene expression 
either via own activity or via recruitment of appropriate proteins. Thus, studying 
their epigenetic effects in relation to the changes that appear after a number of envi-
ronmental stimuli (Elliott et al.  2010 ; Yehuda et al.  2013 ; Suderman et al.  2012 ; Gräff 
et al.  2014 ) may reveal new level of regulation and possibilities for intervention.     
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