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Abstract. While the complexity of the optimization problem to be
solved when computing the Maximum Entropy distribution P ∗

R of a
knowledge base R grows dramatically when moving to the relational
case, it has been shown that having the weighted conditional impacts
(WCI) of R available, P ∗

R can be computed much faster. Computing
WCI in a straightforward manner readily gets infeasible due to the size
of the set Ω of possible worlds. In this paper, we propose a new app-
roach for computing the WCI without considering the worlds in Ω at all.
We introduce the notion of sat-pairs and show how to determine the set
CSP of all possible combinations of sat-pairs by employing combinatorial
means. Using CSP instead of Ω for computing the WCI is a significant
performance gain since CSP is typically much smaller than Ω. For a
start, we focus on simple knowledge bases consisting of a single condi-
tional. First evaluation results of an implemented algorithm illustrate
the benefits of our approach.

1 Introduction

There is a long tradition of enriching propositional logic with probabilities
([8,17,19]), and relational probabilistic logics (e. g. [7,9,12,20,22]) provide a
strong means to model uncertain knowledge about relations among individual
objects. Here, we are especially interested in relational probabilistic conditionals.
Example 1. A movie actor can be awarded with certain awards (e. g. Oscar, Palme
d’Or) and depending on that, a movie director might consider engaging that actor
with a probability of 0.3. This scenario could be modeled by the relational proba-
bilistic conditional (considerEngagement(X,Z)|awardedWith(X,Y ))[0.3] where
the variable X stands for some actor, Y for some award, and Z for some movie
director.

A set of relational probabilistic conditionals is called a knowledge base R and
there generally exist many probability distributions which satisfy R. Recently,
several semantics for relational probabilistic conditionals have been introduced
which employ the principle of maximum entropy (ME) to select the distribution
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which represents R in the most unbiased way, i. e. by adding as little informa-
tion as possible (cf. [10,11,18,23]). Computing the ME distribution P ∗

R of R
requires solving an optimization problem whose complexity grows dramatically
when moving from a propositional to a first-order setting. In [4], the well-known
technique of generalized iterative scaling (GIS) [2] is used to develop an algo-
rithm computing the ME distribution P ∗

R under aggregating semantics [13] for
the relational case. In [5], it is shown that P ∗

R can be computed much faster by an
algorithm which works on the so-called weighted conditional impacts (WCI) of R
instead of the exponentially large set Ω of possible worlds. Equivalence classes of
worlds are used for probabilistic logics, e. g. in [6,10,12,15,21], and WCI provide
a more abstract view on these equivalence classes and their cardinalities. That
way, WCI comprise the essential information about worlds and their interaction
with the logical part of the conditionals in R in a condensed form. Thus, P ∗

R
can be computed more efficiently once the WCI have been determined. Since the
WCI do not consider the given probabilities of the conditionals in R, the WCI
can also be reused when the probabilities in R are changed. However, comput-
ing the WCI straightforwardly requires to consider each world in Ω once which
readily becomes infeasible due to the size of Ω.

In this paper, we propose a new approach for computing the WCI without
considering the worlds in Ω at all. This approach abstracts from concrete worlds
and from the concrete ground atoms satisfied by worlds. Instead, we focus on
the possible numbers of ground atoms which in principle can be satisfied by
some worlds. So we do not care which worlds cause a certain number of satisfied
ground atoms, but we just make sure that we determine the particular numbers
which are actually possible. We introduce the concept of sat-pairs, i. e. pairs of
numbers which represent satisfiable numbers of ground atoms. We extend that
concept to combinations of sat-pairs and show that the set CSP, consisting of
all possible combinations of sat-pairs and generally being much smaller then Ω,
is a viable replacement for the set Ω. As a start, we focus on simple knowledge
bases consisting of a single conditional, and point out possible extensions.

Section 2 briefly recalls the required background, Section 3 analyzes the WCI
of atomic conditionals, Section 4 shows how to compute the WCI combinato-
rially, Section 5 presents the results of a practical algorithm, and Section 6
concludes.

2 Background

Relational Probabilistic Conditional Logic. Let L be a quantifier-free
first-order language defined over a many-sorted first-order signature Σ =
(Sort ,Const ,Pred), where Sort is a set of sorts, Const is a finite set of constants,
and Pred a set of predicates. The language (L|L)prob consists of probabilistic con-
ditionals of the form (B(X)|A(X))[d] with X containing the variables of the
formulas A and B, and where d ∈ [0,1] is a probability; A finite set R ⊆ (L|L)prob

is called a knowledge base; we always implicitly consider R together with some
appropriate signature Σ.
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H denotes the Herbrand base, i. e. the set containing all ground atoms over Σ,
and Ω = P(H) is the set of all possible worlds (i. e. Herbrand interpretations),
where P is the power set operator. The satisfaction relation between a world ω ∈
Ω and a ground atom at is defied as ω |= at iff at ∈ ω and extended to ground for-
mulas in the usual way. Θ(V) denotes the set of all ground substitutions w. r. t. a
set of variables V. A(a) denotes a ground instance of A(X), where a contains the
particular constants which substitute the variables in X. The expression gnd(r)
denotes the set of ground instances of a conditional r = (B(X)|A(X))[d], and
we write r(a) for a ground instance (B(a)|A(a))[d] ∈ gnd(r). The probabilistic
interpretations for (L|L)prob are given by the set Prob of all probability distribu-
tions P : Ω → [0,1] over possible worlds. P is extended to ground formulas A(a)
by defining P (A(a)) :=

∑
ω|=A(a) P (ω). The aggregation semantics [13] extends

P to conditionals and resembles the definition of a conditional probability by
summing up the probabilities of all respective ground formulas; it defines the
satisfaction relation |=� for r = (B(X)|A(X))[d] by

P |=� r iff

∑
r(a)∈gnd(r) P (A(a)B(a))
∑

r(a)∈gnd(r) P (A(a))
= d (1)

where
∑

r(a)∈gnd(r) P (A(a)) > 0. If P |=� r holds, we say that P satisfies r or
P is a model of r. P satisfies a set of conditionals R if it satisfies every element
of R.

The principle of maximum entropy (ME ) chooses the distribution P
where the entropy H(P ) is maximal among all distributions satisfying R
[10,18]. The ME model P ∗

R for R based on aggregation semantics is uniquely
defined [13] by the solution of the convex optimization problem P ∗

R :=
arg maxP∈Prob:P |=�R H(P ).

Weighted Conditional Impacts. For r : (B(X)|A(X)), the counting func-
tions (cf. [4,14]) app, ver : Ω → N0 are:

app(ω) :=
∣
∣
{
r(a) ∈ gnd(r) | ω |= A(a)

}∣
∣ (2)

ver(ω) :=
∣
∣
{
r(a) ∈ gnd(r) | ω |= A(a)B(a)

}∣
∣ (3)

For ω ∈ Ω, app(ω) yields the number of ground instances of r which are applicable
w. r. t. ω, and ver(ω) yields the number of ground instances of r verified by ω.

Definition 1 (va-Pair). The function vaΩ : Ω → N0 × N0 with

vaΩ(ω) :=
〈
ver(ω), app(ω)

〉
(4)

w. r. t. a conditional r is called the va-pair function of r. A function value vaΩ(ω)
is called the va-pair of r with respect to ω. The image of vaΩ is denoted by

VA := {〈v, a〉 ∈ N0 × N0 | 〈v, a〉 = vaΩ(ω), ω ∈ Ω} (5)

and called the set of va-pairs of r, and a pair 〈v, a〉 ∈ VA is called a va-pair of r.
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For example, if for some ω ∈ Ω, ten ground instances of a conditional r are
applicable and six ground instances are verified, then we have app(ω) = 10 and
ver(ω) = 6 and consequently 〈6, 10〉 is a va-pair of r.

Definition 2 (Conditional Impact). The function γR : Ω → (N0 × N0)
m

with

γR(ω) :=
[
vaΩ,1(ω), . . . , vaΩ,m(ω)

]
(6)

is called the conditional impact function of R. The value γR(ω) is called the
conditional impact caused by ω on the ground instances of R. The image of γR
is denoted by

ΓR := γR(Ω) = {γ ∈ (N0 × N0)
m | γ = γR(ω) for some ω ∈ Ω} (7)

and called the set of conditional impacts of R,
and a tuple γ =

[〈v1, a1〉, . . . , 〈vm, am〉] ∈ ΓR is called a conditional impact of
R.

For example, a conditional impact of a set R consisting of 4 conditionals
could be γ =

[〈6, 10〉, 〈1, 8〉, 〈0, 6〉, 〈5, 9〉]. Conditional impacts were introduced
by Kern-Isberner [10] as conditional structures in a propositional setting, using a
free Abelian group construction. In the propositional case, each va-pair is 〈0, 0〉,
〈0, 1〉, or 〈1, 1〉.
Definition 3 (WCI). The function wgtR : ΓR → N0 with

wgtR(γ) :=
∣
∣γ−1

R (γ)
∣
∣ =

∣
∣{ω ∈ Ω | γR(ω) = γ}∣∣

is called the weighting function of R. The pair (ΓR,wgtR) is called the weighted
conditional impacts (WCI) of R.

Proposition 1 ([5]). The ME-distribution P ∗
R can be computed by a GIS-

algorithm which solely works on the WCI of R and does not refer to Ω at all.

ME-Computation on Weighted Conditional Impacts. Since the WCI are
in general much smaller than Ω, the adopted GIS-algorithm computes the ME-
distribution P ∗

R much faster and requires much less space than a comparable algo-
rithm working on Ω directly. So the WCI comprise the essential information about
the qualitative part of R and the worlds in Ω in a most condensed form. Once
determined, the WCI can also be reused together with different probabilities for
the conditionals in R. A drawback of the generic algorithm WCIgen [5] computing
the WCI is that is has to consider each world from Ω once for determining the
WCI. However, note that once the WCI are available, the set Ω does not have to
be considered anymore in the whole process of determining the ME-distribution
P ∗

R according to Prop. 1. Thus, our objective is to a develop a more efficient app-
roach to compute the WCI without considering the set Ω at all.
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3 Basic Case: WCI of a Single Conditional

Since analyzing the WCI for a whole set R of m conditionals is a much too
complex task to begin with, we focus on the WCI of single conditional, i. e. we
consider a set R = {r} throughout the rest of this paper. That way, we do not
have to consider conditional impacts in terms of m-tuples of va-pairs as γR in
Def. 2, but we can just consider the va-pairs of r themselves. That is, the set
of conditional impacts under consideration is ΓR = {[〈v, a〉] | 〈v, a〉 ∈ VA} with
VA being the set of va-pairs of r. Analogously to wgtR (Def. 3), the function
wgt : VA → N with

wgt(〈v, a〉) := wgtR(
[〈v, a〉]) = |va−1

Ω (〈v, a〉)| (8)

is the weighting function of r. This allows us to denote the WCI of a single
conditional r more directly as (VA,wgt) when investigating va-Pairs of r and
their weights in the following. Since we will often refer to the number of ground
instances of r, we define the compact notation G := | gnd(r)|.

Note that when discussing values depending on r, the values of VA, wgt, G,
etc. also depend on the number of constants in the given signature Σ.

Proposition 2 (Upper Bound for |VA|). The number of va-pairs of a con-
ditional is bounded by its number of ground instances by |VA| ≤ va lim(G) with:

va lim(G) =
G∑

a=0

a∑

v=0

1 =
G∑

a=0

a + 1 =
G+1∑

a=1

a =
(G+1) · (G+2)

2
=

G2+3G+2
2

(9)

For instance, a conditional with 20 ground instances can have at most 231
va-pairs.

Atomic Conditionals. Since the set gnd(r) plays an important role when
considering the constitution of the set VA of a conditional r, we want to take a
closer look at the syntactical structure of the ground instances arising from r.
Here, we focus on a simple syntactical structure, already covering many relevant
aspects:

Definition 4 (Atomic Conditional). Let Cons and Ante be atoms of different
predicates. Then r = (Cons | Ante ) is called an atomic conditional.

The atoms Ante and Cons can have an arbitrary number of arguments, being
either a variable or a constant. For the rest of this paper, we focus on an atomic
conditional r with only variables, since constants do not have any further effect
when constructing the ground instances of R = {r}.

Example 2 (Atomic Conditionals). Some examples for atomic conditionals are

rX|X : (c(X)|a(X)) rX|XY : (c(X)|a(X,Y ))
rZ|Y : (c(Z)|a(Y )) rXZ|X : (c(X,Z)|a(X)) rXZ|XY : (c(X,Z)|a(X,Y ))

Note that the conditional given in Ex. 1 corresponds to the schema used in
rXZ|XY .
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The above atomic conditionals just differ in the numbers and positions of
their variables. We introduce the following notation to refer to the respective
sets of variables of an atomic conditional r = (Cons | Ante ):

– C ∩ A : variables appearing in both Cons and Ante
– A\C : variables appearing exclusively in Ante
– C\A : variables appearing exclusively in Cons

Accordingly, with ΘC∩A(r), ΘA\C(r), and ΘC\A(r) we denote the corresponding
sets of substitutions with respect to the particular sets of variables, and with

GC∩A := |ΘC∩A(r)|, GA\C := |ΘA\C(r)|, GC\A := |ΘC\A(r)|
we denote the respective number of substitutions. Since ΘC∩A(r) ∪ ΘA\C(r) ∪
ΘC\A(r) = Θ(r) and since the three sets of substitutions are pairwise disjoint,
we have G = GC∩A ·GA\C ·GC\A. Note that each of the sets C∩A, A\C, and C\A
may be empty for a particular atomic conditional; however GC∩A ≥ 1, GA\C ≥ 1,
and GC\A ≥ 1 always hold, since Θ(∅) contains the empty substitution. The
next example illustrates these definitions by an atomic conditional rXsZu|XsYt

covering all three kinds of appearances of variables (cf. Ex. 1 for some practical
interpretation of such a conditional):

Example 3. For Σ = (Sort ,Const ,Pred) with Sort = {S ,T ,U }, Pred =
{a/(S ,T ), c/(S ,U )}, and Const = Const(S) ∪ Const(T) ∪ Const(U ) with

Const(S) = {s1, . . . , s3}, Const(T) = {t1, . . . , t4}, Const(U ) = {u1, . . . , u5}
together with the conditional rXsZu|XsYt

: (c(X,Z)|a(X,Y )) we have:

C ∩ A = {X}, A\C = {Y }, C\A = {Z}
ΘC∩A(rXsZu|XsYt

) =
{{X/s1}, {X/s2}, {X/s3}

}

ΘA\C(rXsZu|XsYt
) =

{{Y/t1}, {Y/t2}, {Y/t3}, {Y/t4}
}

ΘC\A(rXsZu|XsYt
) =

{{Z/u1}, {Z/u2}, {Z/u3}, {Z/u4}, {Z/u5}
}

GC∩A = |ΘC∩A(rXsZu|XsYt
)| = |Const(S) | = 3

GA\C = |ΘA\C(rXsZu|XsYt
) | = |Const(T)| = 4

GC\A = |ΘC\A(rXsZu|XsYt
) | = |Const(U )| = 5

The total number of ground instances is G = GC∩A ·GA\C ·GC\A = 3 · 4 · 5 = 60;
all these ground instances are depicted in Tab. 1. According to (9), an upper
bound for number of va-pairs is |VA| ≤ va lim(60) = 1,891. Computing the set
VA gives us the actual size |VA| = 348. However, the number of worlds is:

|Ω| = 2|H| = 23·4+3·5 = 227 = 134,217,728

So the set VA, which emerges from Ω according to (5), is indeed much smaller
than the original set Ω:

|Ω| = 134,217,728 � |VA| = 348
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Table 1. Complete ground-instance-table of rXsZu|XsYt

c(s1,Z) | a(s1,Y )

c(s1,u1) | a(s1,t1)
c(s1,u2) | a(s1,t1)
c(s1,u3) | a(s1,t1)
c(s1,u4) | a(s1,t1)
c(s1,u5) | a(s1,t1)

c(s1,u1) | a(s1,t2)
c(s1,u2) | a(s1,t2)
c(s1,u3) | a(s1,t2)
c(s1,u4) | a(s1,t2)
c(s1,u5) | a(s1,t2)

c(s1,u1) | a(s1,t3)
c(s1,u2) | a(s1,t3)
c(s1,u3) | a(s1,t3)
c(s1,u4) | a(s1,t3)
c(s1,u5) | a(s1,t3)

c(s1,u1) | a(s1,t4)
c(s1,u2) | a(s1,t4)
c(s1,u3) | a(s1,t4)
c(s1,u4) | a(s1,t4)
c(s1,u5) | a(s1,t4)

c(s2,Z) | a(s2,Y )

c(s2,u1) | a(s2,t1)
c(s2,u2) | a(s2,t1)
c(s2,u3) | a(s2,t1)
c(s2,u4) | a(s2,t1)
c(s2,u5) | a(s2,t1)

c(s2,u1) | a(s2,t2)
c(s2,u2) | a(s2,t2)
c(s2,u3) | a(s2,t2)
c(s2,u4) | a(s2,t2)
c(s2,u5) | a(s2,t2)

c(s2,u1) | a(s2,t3)
c(s2,u2) | a(s2,t3)
c(s2,u3) | a(s2,t3)
c(s2,u4) | a(s2,t3)
c(s2,u5) | a(s2,t3)

c(s2,u1) | a(s2,t4)
c(s2,u2) | a(s2,t4)
c(s2,u3) | a(s2,t4)
c(s2,u4) | a(s2,t4)
c(s2,u5) | a(s2,t4)

c(s3,Z) | a(s3,Y )

c(s3,u1) | a(s3,t1)
c(s3,u2) | a(s3,t1)
c(s3,u3) | a(s3,t1)
c(s3,u4) | a(s3,t1)
c(s3,u5) | a(s3,t1)

c(s3,u1) | a(s3,t2)
c(s3,u2) | a(s3,t2)
c(s3,u3) | a(s3,t2)
c(s3,u4) | a(s3,t2)
c(s3,u5) | a(s3,t2)

c(s3,u1) | a(s3,t3)
c(s3,u2) | a(s3,t3)
c(s3,u3) | a(s3,t3)
c(s3,u4) | a(s3,t3)
c(s3,u5) | a(s3,t3)

c(s3,u1) | a(s3,t4)
c(s3,u2) | a(s3,t4)
c(s3,u3) | a(s3,t4)
c(s3,u4) | a(s3,t4)
c(s3,u5) | a(s3,t4)

Syntactical Structure of Ground Instances. In the following, we employ
Ex. 2 to explain the general concepts. The tabular representation of the ground
instances of rXsZu|XsYt

in Tab. 1 is called the ground-instance-table of rXsZu|XsYt

and consists of 3 = GC∩A sub-tables. Each of these sub-tables emerges from one
particular substitution for the variable X ∈ C ∩ A (cf. the respective table-
headers).

The ground atoms appearing in each sub-table are pairwise disjoint due to
the different substitutions for X, and our results will apply to each of the sub-
tables in the same way. Thus, we continue our analysis with the first sub-table,
which contains all ground instances emerging from the substitution X/s1; we
refer to that table as the s1-table. The ground instances in the sub-table are
divided into 4 = GA\C blocks (represented by horizontal lines), whereas each
block considers a particular substitution for the variable Y ∈ A\C. Finally, each
block contains 5 = GC\A ground instances emerging from the substitutions for
the variable Z ∈ C\A.

Note that, apart from the concrete example, the ground-instance-table of
every atomic conditional has such a three-leveled block-structure, which is a
direct consequence of the three sets C∩A, A\C, and C\A. In particular, this also
holds for any atomic conditional with more than three variables.
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Table 2. General block-
structure of a sub-table

c(s1,Z) | a(s1,Y )

c(s1,u1) | a(s1,t1)
c(s1,u2) | a(s1,t1)
c(s1,u3) | a(s1,t1)
c(s1,u4) | a(s1,t1)
c(s1,u5) | a(s1,t1)

c(s1,u1) | a(s1,t2)
c(s1,u2) | a(s1,t2)
c(s1,u3) | a(s1,t2)
c(s1,u4) | a(s1,t2)
c(s1,u5) | a(s1,t2)

c(s1,u1) | a(s1,t3)
c(s1,u2) | a(s1,t3)
c(s1,u3) | a(s1,t3)
c(s1,u4) | a(s1,t3)
c(s1,u5) | a(s1,t3)

c(s1,u1) | a(s1,t4)
c(s1,u2) | a(s1,t4)
c(s1,u3) | a(s1,t4)
c(s1,u4) | a(s1,t4)
c(s1,u5) | a(s1,t4)

Table 3. Atoms satisfied
by ω′

c(s1,Z) | a(s1,Y )

c(s1,u1) | a(s1,t1)
c(s1,u2) | a(s1,t1)
c(s1,u3) | a(s1,t1)
c(s1,u4) | a(s1,t1)
c(s1,u5) | a(s1,t1)

c(s1,u1) | a(s1,t2)
c(s1,u2) | a(s1,t2)
c(s1,u3) | a(s1,t2)
c(s1,u4) | a(s1,t2)
c(s1,u5) | a(s1,t2)

c(s1,u1) | a(s1,t3)
c(s1,u2) | a(s1,t3)
c(s1,u3) | a(s1,t3)
c(s1,u4) | a(s1,t3)
c(s1,u5) | a(s1,t3)

c(s1,u1) | a(s1,t4)
c(s1,u2) | a(s1,t4)
c(s1,u3) | a(s1,t4)
c(s1,u4) | a(s1,t4)
c(s1,u5) | a(s1,t4)

Table 4. Atoms satisfied
by ω′′

c(s1,Z) | a(s1,Y )

c(s1,u1) | a(s1,t1)
c(s1,u2) | a(s1,t1)
c(s1,u3) | a(s1,t1)
c(s1,u4) | a(s1,t1)
c(s1,u5) | a(s1,t1)

c(s1,u1) | a(s1,t2)
c(s1,u2) | a(s1,t2)
c(s1,u3) | a(s1,t2)
c(s1,u4) | a(s1,t2)
c(s1,u5) | a(s1,t2)

c(s1,u1) | a(s1,t3)
c(s1,u2) | a(s1,t3)
c(s1,u3) | a(s1,t3)
c(s1,u4) | a(s1,t3)
c(s1,u5) | a(s1,t3)

c(s1,u1) | a(s1,t4)
c(s1,u2) | a(s1,t4)
c(s1,u3) | a(s1,t4)
c(s1,u4) | a(s1,t4)
c(s1,u5) | a(s1,t4)

Table 2 shows the s1-table, where identical ground atoms in the antecedence
and consequence, respectively, are highlighted accordingly. Since the atoms in
the antecedence and consequence of an atomic conditional must be of different
predicates, the respective sets of ground atoms are always disjoint. So there are
4 = GA\C different antecedence ground atoms (a-atoms) and 5 = GC\A different
consequence ground atoms (c-atoms) in the sub-table.

Numbers of Satisfied Ground Atoms. For some arbitrary world, let satC
and satA denote the number of c-atoms and a-atoms, respectively, in a sub-table
of an atomic conditional which are satisfied by that world. Then satC ∈ NC =
{0, 1, . . . , GC\A} and satA ∈ NA = {0, 1, . . . , GA\C} holds, i. e. the numbers of
satisfied c-atoms and a-atoms are from the respective range. On the other hand,
for every such pair

(satC , satA) ∈ SP := NC × NA,

called sat-pair of an atomic conditional, there exists a world satisfying the respec-
tive number of c-atoms and a-atoms. We illustrate these ideas by considering the
world

ω′ = {c(s1, u1), c(s1, u3), c(s1, u4), a(s1, t1), a(s1, t2)}.
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In Tab. 3, the satC ′ = 3 and satA′ = 2 atoms satisfied by ω′ are highlighted.
So (satC ′, satA′) = (3, 2) is the corresponding sat-pair. Changing our view back
to the ground instances in Tab. 3, we easily see that app(ω′) = GC\A · satA′ =
5 · 2 = 10 holds, i. e. 10 ground instances are applicable w. r. t. ω′. Furthermore,
ver(ω′) = satC ′ · satA′ = 3 · 2 = 6 holds, i. e. 6 of these ground instances are also
verified by ω′. So we have vaΩ(ω′) = 〈ver(ω′), app(ω′)〉 = 〈6, 10〉 ∈ VA. Next, we
consider another world

ω′′ = {c(s1, u2), c(s1, u4), c(s1, u5), a(s1, t1), a(s1, t4)}.

Table 4 illustrates that ω′′ satisfies some different ground atoms (compared to
ω′) and therefore also verifies some different ground instances. Nevertheless, ω′

and ω′′ coincide in the actual numbers of satisfied c-atoms and a-atoms, i. e.
(satC ′, satA′) = (satC ′′, satA′′) = (3, 2) holds, and therefore both worlds have
the same va-pair, i. e. vaΩ(ω′) = vaΩ(ω′′) = 〈6, 10〉. This example illustrates
that if we are interested in possible va-pairs, then we do not necessarily have to
consider worlds, but we can consider sat-pairs instead.

4 Computing WCI Using Combinatorics

Next, we show how the above consideration concerning just one sub-table can
be extended to the complete ground-instance-table. So we consider the world

ω′′′ = {c(s1, u1), c(s1, u3), c(s1, u4), a(s1, t1), a(s1, t2)
c(s2, u2), c(s2, u3), c(s2, u4), a(s2, t2), a(s2, t4)
c(s3, u4), a(s3, t1), a(s3, t2), a(s3, t3), a(s3, t4)}

Table 5 shows the complete ground-instance-table, where the atoms satisfied by
ω′′′ are highlighted accordingly. With respect to the three sub-tables, we have
the sat-pairs

(satC ′′′
1 , satA′′′

1 ) = (3, 2), (satC ′′′
2 , satA′′′

2 ) = (3, 2), (satC ′′′
3 , satA′′′

3 ) = (1, 4).

The overall number of applicable and verified ground instances can be deter-
mined by summing up the particular result of each sub-table:

app(ω′′′) = GC\A ·satA′′′
1 +GC\A ·satA′′′

2 +GC\A ·satA′′′
3 = 5 · 2 + 5 · 2 + 5 · 4 = 40

ver(ω′′′) = satC ′′′
1 ·satA′′′

1 +satC ′′′
2 ·satA′′′

2 +satC ′′′
3 ·satA′′′

3 = 3·2 + 3·2 + 1·4 = 16

This yields vaΩ(ω′′′)=〈ver(ω′′′), app(ω′′′)〉=〈16, 40〉 ∈ VA.
In these computations, the numbers resulting from the particular sat-pairs

are just summed up, hence it does not actually matter from which concrete sub-
table a sat-pair arises. Thus, when considering several sat-pairs, their particular
order does not matter, and it is sufficient to consider unordered combinations
of sat-pairs. Thus, the above combination of sat-pairs can be represented by the
multiset (denoted by double braces):

CSP ′′′ = {{(3, 2), (3, 2), (1, 4)}} (10)
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Table 5. Atoms satisfied by ω′′′ in the ground-instance-table

c(s1,Z) | a(s1,Y )

c(s1,u1) | a(s1,t1)
c(s1,u2) | a(s1,t1)
c(s1,u3) | a(s1,t1)
c(s1,u4) | a(s1,t1)
c(s1,u5) | a(s1,t1)

c(s1,u1) | a(s1,t2)
c(s1,u2) | a(s1,t2)
c(s1,u3) | a(s1,t2)
c(s1,u4) | a(s1,t2)
c(s1,u5) | a(s1,t2)

c(s1,u1) | a(s1,t3)
c(s1,u2) | a(s1,t3)
c(s1,u3) | a(s1,t3)
c(s1,u4) | a(s1,t3)
c(s1,u5) | a(s1,t3)

c(s1,u1) | a(s1,t4)
c(s1,u2) | a(s1,t4)
c(s1,u3) | a(s1,t4)
c(s1,u4) | a(s1,t4)
c(s1,u5) | a(s1,t4)

c(s2,Z) | a(s2,Y )

c(s2,u1) | a(s2,t1)
c(s2,u2) | a(s2,t1)
c(s2,u3) | a(s2,t1)
c(s2,u4) | a(s2,t1)
c(s2,u5) | a(s2,t1)

c(s2,u1) | a(s2,t2)
c(s2,u2) | a(s2,t2)
c(s2,u3) | a(s2,t2)
c(s2,u4) | a(s2,t2)
c(s2,u5) | a(s2,t2)

c(s2,u1) | a(s2,t3)
c(s2,u2) | a(s2,t3)
c(s2,u3) | a(s2,t3)
c(s2,u4) | a(s2,t3)
c(s2,u5) | a(s2,t3)

c(s2,u1) | a(s2,t4)
c(s2,u2) | a(s2,t4)
c(s2,u3) | a(s2,t4)
c(s2,u4) | a(s2,t4)
c(s2,u5) | a(s2,t4)

c(s3,Z) | a(s3,Y )

c(s3,u1) | a(s3,t1)
c(s3,u2) | a(s3,t1)
c(s3,u3) | a(s3,t1)
c(s3,u4) | a(s3,t1)
c(s3,u5) | a(s3,t1)

c(s3,u1) | a(s3,t2)
c(s3,u2) | a(s3,t2)
c(s3,u3) | a(s3,t2)
c(s3,u4) | a(s3,t2)
c(s3,u5) | a(s3,t2)

c(s3,u1) | a(s3,t3)
c(s3,u2) | a(s3,t3)
c(s3,u3) | a(s3,t3)
c(s3,u4) | a(s3,t3)
c(s3,u5) | a(s3,t3)

c(s3,u1) | a(s3,t4)
c(s3,u2) | a(s3,t4)
c(s3,u3) | a(s3,t4)
c(s3,u4) | a(s3,t4)
c(s3,u5) | a(s3,t4)

Computing VA. We put the ideas above in a general form by introducing
combinations of sat-pairs and a function on them leading directly to a va-pair.

Definition 5 (CSP). A multiset

CSP = {{(satC 1, satA1), . . . , (satCGC∩A , satAGC∩A)}}

consisting of GC∩A-many sat-pairs (satC i, satAi) ∈ SP is called a combination
of sat-pairs of r. The set

CSP := {CSP | CSP is a combination of sat-pairs}

is the set of all possible combinations of sat-pairs of r.

Definition 6. The va-pair function vaC : CSP → VA on combinations of sat-
pairs of r is defined by vaC (CSP) := 〈v , a〉 with

v =
∑

(satC ,satA)∈CSP

satC · satA and a = GC\A
∑

(satC ,satA)∈CSP

satA

In contrast to the function vaΩ (Def. 1), the function vaC only considers
combinations of sat-pairs instead of worlds.
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Proposition 3. Let r be an atomic conditional. Then we have

VA = vaΩ(Ω) =
⋃

ω∈Ω

{
vaΩ(ω)

}
(11)

= vaC(CSP) =
⋃

CSP∈CSP
{vaC(CSP)} (12)

Proposition 3 states that the set VA can as well be determined via combinations
of sat-pairs instead of considering worlds. In particular, (12) gives rise to an
algorithm which computes VA by just running over the set CSP, i. e. without
taking into account the much larger set Ω at any point.

The size of CSP is determined by the well-known multiset coefficient
((

n
k

))
=

(
n+k−1

k

)
, which denotes number of multisets of cardinality k (here: k = GC∩A)

with elements taken from a set of cardinality n (here: n = |SP|):
Proposition 4. The number of combinations of sat-pairs with respect to r is:

|CSP|=
(( |SP|

GC∩A

))

=
(|SP|+GC∩A−1

GC∩A

)

=
(

GC∩A+GC\A+GA\C+GC\A·GA\C
GC∩A

)

Example 4. In Ex. 3, we have |Ω| = 2|H| = 2GC∩A·(GC\A+GA\C) = 227 =
134,217,728 worlds compared to just |CSP| =

(
3+5+4+5·4

3

)
=

(
32
3

)
= 4,960 com-

binations of sat-pairs of rXsZu|XsYt
. Both sets induce the |VA| = 348 va-pairs of

rXsZu|XsYt
according to Prop. 3.

We get similar magnitudes of numbers by analyzing other examples involving
atomic conditionals (e. g. as in Ex. 2), so we can state in general |Ω| � |CSP|.
Computing Weights of va-Pairs. Up to this point, we have achieved the
first part of our goal: determining the WCI (VA,wgt) of an atomic conditional
without any involvement of Ω. So we still have to show how the weight wgt(〈v, a〉)
of each va-pair can be determined also without considering Ω.

According to (8), the weight wgt(〈v, a〉) of a va-pair corresponds to the num-
ber of worlds from Ω which induce 〈v, a〉. Thus, it seems hard to develop a
closed-formed expression which directly provides the weight of a va-pair without
considering Ω. However, Prop. 3 showed us that it is feasible to consider com-
binations of sat-pairs instead of worlds in a certain situation. Furthermore, in
the previous examples we illustrated how worlds induce sat-pairs and combina-
tions of sat-pairs, respectively. By employing basic techniques from the field of
combinatorics, we indeed obtain a closed formula:

Proposition 5 (nw). Let CSP ∈ CSP be a combination of sat-pairs of r. Let
k be number of different sat-pairs contained in CSP and let m1, . . . ,mk be the
multiplicities of these sat-pairs. Then the function nw : CSP → N with

nw(CSP) :=
(

GC∩A

m1, . . . ,mk

)

·
∏

(satC ,satA)
∈CSP

(
GC\A
satC

)

·
(

GA\C
satA

)

yields the number of worlds inducing a combination of sat-pairs.
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Input: - a knowledge base (Σ, {r}) with r being an atomic condtional
Output: - the weighted conditional impacts (VA, wgt)

1. VA := ∅ // initialize set
2. for each CSP ∈ CSP // construct the next CSP systematically on demand

(a) 〈v, a〉 := vaC(CSP) // compute the va-pair induced by CSP by eval. the
//funct. vaC

(b) if VA ∩ {〈v, a〉} = ∅ // check if 〈v, a〉 appears for the first time
then

i. VA := VA ∪ {〈v, a〉} // adjoin 〈v, a〉 to the set VA
ii. wgt(〈v, a〉) := 0 // initialize function value

(c) // compute the number of worlds inducing CSP by evaluating the function
//nw and
// increase the weight of 〈v, a〉 by nw(CSP)
wgt(〈v, a〉) := wgt(〈v, a〉) + nw(CSP)

end loop

Fig. 1. Algorithm WCIat yielding (VA, wgt) of an atomic conditional in time O(|CSP|)

The above equation makes use of the well-known number of multiset permu-
tations [1], which is defined as

(
GC∩A

m1,...,mk

)
= GC∩A!

m1!·...·mk !
. For instance, by applying

the function nw to the combination of sat-pairs CSP ′′′ given in (10), where
GC∩A = 3, we get:

nw(CSP ′′′) =
(

3
1, 2

)

·
(

5
3

)

·
(

4
2

)

·
(

5
3

)

·
(

4
2

)

·
(

5
1

)

·
(

4
4

)

= 54,000.

That is, besides the world ω′′′ from above, there is a total number of 54,000
worlds in Ω which induce CSP ′′′.

5 Practical Algorithm and Evaluation

Although the function nw in Prop. 5 does not provide the weight of a va-pair
directly, it allows us develop an algorithm which successively computes all func-
tion values of wgt in parallel without considering Ω.

The algorithm WCIat depicted in Fig. 1 takes an atomic conditional r together
with an appropriate signature Σ and computes (VA,wgt) by running over all
elements from CSP once. In step (2), the main loop runs over each multiset
CSP ∈ CSP. Note that the next multiset CSP can be constructed systematically
on demand each time, so that the algorithm does not have to store the set CSP
at any point. Within the loop, the function vaC (see Prop. 3) is employed for the
current CSP to determine the corresponding va-pair vaC(CSP). That way, the
set VA is constructed successively in step (2(b)i). In step (2c), the number of
worlds inducing CSP is determined by employing the function nw (see Prop. 5),
and nw(CSP) is added to the current weight of the respective va-pair, i. e. the
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Table 6. Results for computing the weighted conditional impacts (VA, wgt) for dif-
ferent atomic conditionals and numbers of constants; the numbers of constants for the
sorted conditional rXsZu|XsYt refer to the sorts S , U , and T , respectively.

Atomic Runtime of Algorithm
Conditional |Const | |Ω| |CSP| |VA| WCIgen WCIat

rX|X 10 220 286 66 3 sec < 1 sec
12 224 455 91 29 sec < 1 sec
15 230 816 136 30 min 32 sec < 1 sec
50 2100 23,426 1,326 unfeasible < 1 sec

rX|XY 4 220 715 129 2 sec < 1 sec
5 230 4,368 301 56 min 38 sec < 1 sec
10 2100 44,352,165 4,701 unfeasible 1 min 13 sec
12 2156 1,852,482,996 9,793 unfeasible 1 h 2 min

rXsZu|XsYt 3+5+4 227 4,960 348 13 min 46 sec < 1 sec
3+6+5 233 13,244 644 ≈ 27 hours < 1 sec
3+10+10 260 302,621 4,215 unfeasible < 1 sec
4+10+10 280 9,381,251 7,685 unfeasible 11 sec
5+10+10 2100 234,531,275 12,155 unfeasible 5 min 22 sec
6+10+10 2120 4,925,156,775 17,625 unfeasible 1 h 53 min

va-pair which is induced by CSP . That way, the correct weight wgt(〈v, a〉) of
each va-pair is computed incrementally.

Note that the set Ω is not considered in any step of the algorithm WCIat. In
particular, the functions vaC and nw employed by the algorithm are closed-form
expressions which do not refer to Ω either. Thus, the overall runtime of the
algorithm is determined by the size of the set CSP, and the algorithm merely
requires space O(|VA|), which is no more than the size of the output. These
observations yield:

Proposition 6. The algorithm WCIat in Fig. 1 computes the WCI (VA,wgt) of
an atomic conditional in time O(|CSP|) and space O(|VA|).

Table 6 shows some results for applying algorithm WCIat to some conditionals
from Ex. 2 and 3 together with various numbers of constants. For instance,
for rXsZu|XsYt

together with a set of 3, 10, and 10 constants of the respective
sorts, the generic algorithm WCIgen from [5], requiring time O(|Ω|), must process
260 ≈ 1018 worlds which is already infeasible, whereas the algorithm WCIat merely
has to consider |CSP| = 302,621 combinations of sat-pairs, taking less than one
second to determine the weighted conditional impacts (VA,wgt). Thus, WCIat
allows to determine the actual set VA and its actual size in particular for an
increasing number of constants; due to the obvious limitations of any generic
algorithm working on Ω, such concrete numbers could not be computed before.
The actual numbers for |VA| in Tab. 6 suggest that the number of va-pairs grows
significantly slower than |CSP|, i. e. we have:

|Ω| � |CSP| � |VA|
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Indeed, the size of CSP, given by the binomial coefficient in Prop. 4, also
grows rather fast in the number of constants. Nevertheless, it grows significantly
slower than the size of Ω, which grows exponentially in a polynomial of the
constants. So our novel algorithm WCIat also serves as a proof of concept and
illustrates that it is in fact possible to determine (VA,wgt) without considering
the set Ω at all.

6 Conclusions and Future Work

The WCI of a relational probabilistic knowledge base are the essential ingredi-
ent for Maximum Entropy model computation. We presented a new approach
allowing to compute the WCI of an atomic conditional based on combinatorics.
The resulting algorithm fully abstracts from Ω, using the set CSP instead, and
since |Ω| � |CSP|, it is much faster than a generic algorithm which has to run
over Ω. In terms of a first proof of concept, we restricted our considerations
to a single atomic conditional in this paper. In future work, we will investigate
how the general concepts introduced here can be extended to more complex
conditionals and to more than one conditional. For instance, a non-atomic con-
ditional ( c(X) | a(X) ∧ b(Y ) ) can be transformed into an atomic conditional
( c(X) | aAndb(X,Y ) ) by introducing a new predicate aAndb(X,Y ) which cap-
tures the non-atomic formula in the antecedence. Furthermore, while the devel-
opment of an incremental algorithm by extending the WCI appropriately when
adding another conditional may not be feasible in all cases, the current con-
cept can directly be extended to, e. g. a set of several atomic conditionals if we
ensure that each conditional considers different predicates. We will also investi-
gate to what extent techniques of lifted inference [3,9,16] can be adopted to our
approach.
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