
Deciding Subsumers of Least Fixpoint Concepts
w.r.t. general EL-TBoxes

Shasha Feng1, Michel Ludwig2(B), and Dirk Walther2

1 Jilin University, Changchun, China
fengss@jlu.edu.cn

2 Theoretical Computer Science, TU Dresden, Dresden, Germany
{michel,dirk}@tcs.inf.tu-dresden.de

Abstract. In this paper we provide a procedure for deciding subsump-
tions of the form T |= C � E, where C is an ELUµ-concept, E an ELU-
concept and T a general EL-TBox. Deciding such subsumptions can be
used for computing the logical difference between general EL-TBoxes.
Our procedure is based on checking for the existence of a certain simu-
lation between hypergraph representations of the set of subsumees of C
and of E w.r.t. T , respectively. With the aim of keeping the procedure
implementable, we provide a detailed construction of such hypergraphs
deliberately avoiding the use of intricate automata-theoretic techniques.

1 Introduction

Description Logics (DLs) are popular KR languages [3]. Light-weight DLs such as
EL with tractable reasoning problems in particular are commonly used ontology
languages [1,2]. The notion of logical difference between TBoxes was introduced
as a logic-based approach to ontology versioning [10]. Computing the logical
difference between EL-TBoxes can be reduced to fixpoint reasoning w.r.t. TBoxes
in a hybrid μ-calculus [8,13]. This involves subsumptions of the form T |= C � D,
where C is an ELUμ-concept, i.e. EL-concepts enriched with disjunction and
the least fixpoint operator, D an ELν-concept, i.e. EL-concepts enriched with
the greatest fixpoint operator, and T an EL-TBox. Such subsumptions can be
reduced to finding an ELU-concept E such that T |= C � E and T |= E � D.
Here E acts as an interpolant between the fixpoint concepts C and D w.r.t. T .
In this paper, we only focus on deciding the former type of subsumption, whose
decision procedure is arguably more involved than the one for the latter type of
subsumption. Deciding the existence of a suitable ELU-concept E, however, will
be handled in another paper. Unfortunately, the fact that the required fixpoint
reasoning can be solved using automata theoretic techniques does not mean that
one can immediately derive a practical algorithm from it [4,9,13]. We therefore
aim to develop a procedure that can be implemented more easily by following our
hypergraph-based approach to the logical difference problem as introduced in [6]

The second and third authors were supported by the German Research Foundation
(DFG) within the Cluster of Excellence ‘Center for Advancing Electronics Dresden’.

c© Springer International Publishing Switzerland 2015
S. Hölldobler et al. (Eds.): KI 2015, LNAI 9324, pp. 59–71, 2015.
DOI: 10.1007/978-3-319-24489-1 5

60 S. Feng et al.

and further extended in [12]. The idea here is to solve the subsumption problem
by checking for the existence of a certain simulation between hypergraphs that
represent the set of subsumees of C and of E w.r.t. T , respectively.

We proceed as follows. In the next section we start with reviewing the basic
DL EL together with its extensions with disjunction and the least fixpoint oper-
ator. In Section 3 we present a three-step procedure for computing a normal
form of C and of E w.r.t. T in detail, which is then used in Section 4 to decide
the subsumption problem T |= C � E. Finally in Section 5, we conclude the
paper with a discussion on how the ELU-concept E can be characterised as a
most-consequence preserving subsumer, which is a more general version of the
notion of least common subsumer [7].

2 Preliminaries

We start by briefly reviewing the lightweight description logic EL together with
the extensions of EL that we consider in this paper.

Let NC, NR, and NV be mutually disjoint sets of concept names, role names,
and variable names, respectively. We assume these sets to be countably infinite.
We typically use A,B to denote concept names, r, s to indicate role names, and
x, y to denote variable names.

The sets of EL-concepts C, ELU-concepts D, ELUV -concepts E, and ELUμ-
concepts F are built according to the following grammar rules:

C ::= � | A | C � C | ∃r.C

D ::= � | A | D � D | D � D | ∃r.D

E ::= � | A | E � E | E � E | ∃r.E | x

F ::= � | A | F � F | F � F | ∃r.F | x | μx.F

where A ∈ NC, r, s ∈ NR, and x ∈ NV. We use calligraphic letters to denote
concepts that may contain a least fixpoint operator. We denote with L the set
of all L-concepts, where L ∈ {EL, ELU , ELUV , ELUμ}. For an ELUμ-concept C,
the set of free variables in C, denoted by FV(C) is defined inductively as follows:
FV(�) = ∅, FV(A) = ∅, FV(D1 � D2) = FV(D1) ∪ FV(D2), FV(D1 � D2) =
FV(D1)∪FV(D2), FV(∃r.D) = FV(D), FV(x) = {x}, FV(μx.D) = FV(D)\{x}.
An ELUμ-concept C is closed if C does not contain free occurrences of variables,
i.e. FV(C) = ∅. In the following we assume that every ELUμ-concept C is well-
formed, i.e. every subconcept of the form μx.D occurring in C binds a fresh
variable x.

An EL-TBox T is a finite set of axioms, where an axiom can be a concept
inclusion C � C ′, or a concept equation C ≡ C ′, for EL-concepts C,C ′.

The semantics of ELUμ is defined using interpretations I = (ΔI , ·I), where
the domain ΔI is a non-empty set, and ·I is a function mapping each concept
name A to a subset AI of ΔI and every role name r to a binary relation rI ⊆
ΔI × ΔI . Interpretations are extended to concepts using a function ·I,ξ that is
parameterised by an assignment function that maps each variable x ∈ NV to a

Deciding Subsumers of Least Fixpoint Concepts w.r.t. general EL-TBoxes 61

set ξ(x) ⊆ ΔI . Given an interpretation I and an assignment ξ, the extension of
an ELUμ-concept is defined inductively as follows: �I,ξ := ΔI , xI,ξ := ξ(x) for
x ∈ NV, (C1 � C2)I,ξ := CI

1 ∩ CI
2 , (∃r.C)I,ξ := {x ∈ ΔI | ∃y ∈ CI,ξ : (x, y) ∈ rI },

and (μx.C)I,ξ =
⋂

{W ⊆ ΔI | CI,ξ[x�→W] ⊆ W }, where ξ[x
→ W] denotes the
assignment ξ modified by mapping x to W .

For ELUμ-concepts C and D, an interpretation I satisfies C, an axiom C � D
or C ≡ D if, respectively, CI,ξ∅ �= ∅, CI,ξ∅ ⊆ DI,ξ∅ , or CI,ξ∅ = DI,ξ∅ , where
ξ∅(x) = ∅ for every x ∈ NV. We write I |= α iff I satisfies the axiom α. An
interpretation I satisfies a TBox T iff I satisfies all axioms in T ; in this case,
we say that I is a model of T . An axiom α follows from a TBox T , written T |= α,
iff for all models I of T , we have that I |= α. Deciding whether T |= C � C ′,
for two EL-concepts C and C ′, can be done in polynomial time in the size of T
and C,C ′ [1,5].

A signature Σ is a finite set of symbols from NC and NR. The signature sig(C),
sig(α) or sig(T) of the concept C, axiom α or TBox T is the set of concept and
role names occurring in C, α or T , respectively. Analogously, sub(C), sub(α), or
sub(T) denotes the set of subconcepts occurring in C, α or T , respectively.

An EL-TBox T is normalised if it only contains EL-concept inclusions of the
forms � � B, A1 � . . . � An � B, A � ∃r.B, or ∃r.A � B, where A,Ai, B ∈ NC,
r ∈ NR, and n ≥ 1. Every EL-TBox T can be normalised in polynomial time in
the size of T with a linear increase in the size of the normalised TBox w.r.t. T
such that the resulting TBox is a conservative extension of T [10].

3 Normal Form Computation

Our aim is to check whether T |= C � D holds with the help of simula-
tions, where T an EL-TBox, C is an ELUμ-concept, and D an ELU-concept.
Simulations are typically used to characterise properties between two graph
structures, e.g. behavioural equivalence. To be able to apply simulations to our
subsumption problem, we represent the unfoldings of C and the subsumees of D
w.r.t. T in two separate hypergraphs. Intuitively, in such a hypergraph every
node v together with its outgoing hyperedges represents a disjunction of the form⊔m

i=1 Ai �
⊔n

j=1 ∃rj .Cj where the Ai and rj are pairwise different, respectively.
A hyperedge e in such a hypergraph is labelled with role names and it connects
one source node with several target nodes. A hyperedge e = (v0, {v1, . . . , v�})
(� ≥ 1) labelled with a role r represents an existential restriction ∃r.ϕ where ϕ
stands for the conjunction of the nodes v1, . . . , v�. A crucial condition is that
for every role r, a node has at most one outgoing hyperedge labelled with r as
otherwise our simulation notion is not applicable. In this sense, the hypergraph
can be seen to be deterministic. To obtain such a deterministic hypergraph, it is
necessary to merge disjunctively connected existential restrictions involving the
same role name. We therefore design the hypergraphs to be a conjunctive normal
form representation of the set of respective subsumees as it becomes immediate
to identify the existential restrictions that have to be merged. The hypergraph
for an ELU-concept is a tree, whereas the hypergraph for an ELUμ-concept, or
for an ELU-concept w.r.t. a cyclic TBox, may contain cycles.

62 S. Feng et al.

A related normal form, later called automaton normal form [4], was intro-
duced in [9] for the full modal μ-calculus with the difference that disjunctive
normal form was used. In particular it is shown that every modal μ-calculus for-
mula is equivalent to a formula in normal form. The transformation of a formula
into automaton normal form is based on an involved, non-trivial construction
using parity automata [4,9]. For our purposes, however, it was not immediate
how to derive a practical algorithm from such a construction.

Our construction is essentially based on applying the following three equiv-
alences as rewrite rules to transform ELUμ-concepts into the desired format.

(i) C � (D1 � D2) ≡ (C � D1) � (C � D2)
(ii) (∃r.C) � (∃r.D) ≡ ∃r.(C � D)
(iii) μx.C ≡ C[x
→ μx.C]

Equivalence (i) is used to transform every “existential level” of the ELUμ-concept
into conjunctive normal form, (ii) to regroup and merge existentials that involve
the same role, and (iii) to unfold fixpoint variables. However, due to the unfolding
of fixpoints, a straightforward rewriting of concepts using these equivalences may
not terminate, and it is not clear how to formulate a termination condition based
on the sequence of concept rewritings.

In the following sections we present a detailed construction of our normal
form, and show how termination can be ensured. Our procedure consists of the
following three steps:

(1) construct a finite labelled tree representing the successive applications of the
equivalences (i)–(iii);

(2) transform the tree that was obtained in the previous step into an hypergraph
by removing superfluous nodes, introducing hyperedges that represent exis-
tential restrictions over conjunctions, and possibly form cycles;

(3) simplify the hypergraph obtained in the previous step by pruning nodes that
can safely be removed while preserving equivalence and that our simulation
notion (Section 3.3) cannot handle correctly.

Before presenting the three steps, we introduce the following auxiliary
notions. An ELU-concept C is said to be atomic iff C = �, C = A ∈ NC,
or C = ∃r.D for some ELU-concept D. We denote with Atoms(S) the set of
atomic concepts from a set S of ELUμ-concepts.

Definition 1 (μ-Suppression). Let C be an ELUμ-concept. We define an
ELUV -concept C† inductively as follows: �† := �, A† := A for A ∈ NC, x† := x
for x ∈ NV, (μx.D)† := x, (C1 � C2)† := (C†

1) � (C†
2), (C1 � C2)† := (C†

1) � (C†
2),

and (∃r.D)† := ∃r.(D†) for ELUμ-concepts C1, C2,D.

Example 1. Let C = (∃s.�) � (∃r.μx.C1) for C1 = A � ∃r.μy.C2 and C2 = B �
∃s.y � x. Then C† = (∃s.�) � (∃r.x), (C1)† = A � ∃r.y and (C2)† = B � ∃s.y � x.

Definition 2 (Variable Expansion Function). Let C be a closed ELUμ-
concept. A variable expansion function for C is a partial function ξC : ELUV →
2ELUV defined as follows: for every x ∈ var(C),

Deciding Subsumers of Least Fixpoint Concepts w.r.t. general EL-TBoxes 63

ξC(x) :={D† | μx.D ∈ sub(C) }.

Note that since C is well-formed, ξC(x) is a singleton set for every x ∈ dom(ξC).

Example 2. Let C be defined as in Example 1. Then we obtain the following
variable expansion function ξC for C: ξC = {x
→ A � ∃r.y, y
→ B � ∃s.y � x}.

Definition 3 (TBox Expansion Function). Let T be a normalised EL-TBox
and let D be an ELU-concept. A TBox expansion function for (D, T) is a partial
function ξ(D,T) : ELUV → 2ELU defined as follows: for every ϕ ∈ sub(T) ∪
sub(D),

ξ(D,T)(ϕ) :={ψ ∈ sub(T) ∪ sub(D) | T |= ψ � ϕ }.

Example 3. Let T = {A � Z, ∃r.X � Z, Z � ∃r.Y, ∃r.Y � X, B � Y } and
D = �. Then we obtain the following TBox expansion function for T : ξ(D,T) =
{ �
→ {�}, A
→ {A}, B
→ {B}, Y
→ {B, Y }, Z
→ {A,Z,∃r.X}, X
→
{A,X,Z,∃r.X,∃r.Y }, ∃r.X
→ {∃r.X}, ∃r.Y
→ {A,Z,∃r.X,∃r.Y } }.

3.1 Step 1

We start with a tableau-like procedure to produce a finite labelled tree, called
concept expansion tree. The tree is iteratively constructed using four expan-
sion rules. For an ELUμ-concept C we start from a root node labelled with
the ELUV -concept C† using the variable expansion function ξC in the expan-
sion rules, whereas for an ELU-concept D and an EL-TBox T the root node is
labelled with D† = D and the TBox expansion function ξ(D,T) is used instead.
The tree structure and the expansion rules are defined as follows.

Definition 4 (Concept Expansion Tree). Let C be a closed ELUμ-concept,
and let ξ : ELUV → 2ELUV be a TBox or variable expansion function. A concept
expansion tree for C w.r.t. ξ is a finite labelled tree T = (V, E ,L), where V is a
finite, non-empty set of nodes, E ⊆ V × V is a set of edges and L is a labelling
function mapping every node v ∈ V to a subset L(v) of sub(C)∪ sub(ran(ξ)). We
say that a node v ∈ V is blocked iff there exists an ancestor v′ of v in T such
that L(v) = L(v′).

A concept expansion tree T = (V, E ,L) for C w.r.t. ξ is initialised with a single
node v0 with L(v0) = {C†} and T is expanded using the following rules which
are only applied on leaf nodes v ∈ V that are not blocked, and the rule (Exists)
is only applied when no other rule is applicable.

(Disj) if C1 � . . . � Cn ∈ L(v) and {C1, . . . , Cn} �⊆ L(v), add the node v′ with
L(v′) = L(v) ∪ {C1, . . . , Cn} as a child of v;

(Conj) if C � D ∈ L(v) and {C,D} ∩ L(v) = ∅, add the two nodes v1, v2 with
L(v1) = L(v) ∪ {C}, L(v2) = L(v) ∪ {D} as children of v;

(Expansion) if ϕ ∈ L(v), ϕ ∈ dom(ξ), and ξ(ϕ) �⊆ L(v), add the node v′ with
L(v′) = L(v) ∪ ξ(ϕ) as a child of v;

64 S. Feng et al.

v0 : x

v1 : x, (A1 �A 2) � (B � ∃r.x)

v2 : x, C1, (A1 �A 2), (B � ∃r.x)

v3 : x, C1, C2, C3, A1 v4 : x, C1, C2, C3, A 2

v5 : x, C1, C2, C3, A1, B

v8 : x, C1, C2, C3, A 2, ∃r.xv6 : x, C1, C2, C3, A1, ∃r.x

v7 : x, C1, C2, C3, A 2, B

v9 : x v10 : x

(Expansion)

(Disj)

(Conj) (Conj)

(Conj) (Conj) (Conj) (Conj)

(Exists) (Exists)

Fig. 1. Fully-expanded concept expansion tree for Example 4

(Exists) if Atoms(L(v)) = {A1, . . . , Am} ∪ {∃r1.C1, . . . ,∃rn.Cn}, then for
every r ∈ {r1, . . . , rn}, add the node vr with L(vr) = {Ci | ri = r, 1 ≤ i ≤ n }
as a child of v.

A concept tree is said to be fully expanded iff none of the expansion rules is
applicable.

The rule (Disj) is responsible for splitting disjunctions and adding the dis-
juncts to the respective node label. The rule (Conj) splits conjunctions and dis-
tributes the conjuncts over new successor nodes. The (Expansion) rule handles
the expansion of fixpoint variables and TBox entailments. The rule (Exists) adds
one (and only one) successor for every role occurring in some existential restric-
tion contained in the node label. In this sense, the resulting expansion tree can
be seen to be deterministic. The rule (Exists) ensures that all the subconcepts
of existential restrictions over the same role are included disjunctively into the
successor node dedicated to that role. For instance, if {∃r.C1,∃r.C2} ⊆ L(v) for
some node v, then the concepts C1, C2 will be added to the label of the successor
node of v for r. We assume that the rule (Exists) has the least priority among
all expansion rules, i.e. (Exists) is only applied when no other rule is applicable.
During the expansion process, every rule is applied on leaf nodes that are not
blocked. A node is blocked if there exists an ancestor node with the same label.

Example 4. Let C = μx.C1 where C1 = C2 � C3 and C2 = A1 � A2, C3 = B � ∃r.x.
The fully expanded concept expansion tree T = (V, E ,L) for C is shown

in Figure 1. The nodes together with their labels are represented in the form
‘v : L(v)’ for v ∈ V. Edges are represented as arrows between nodes. Arrows are
additionally labelled by the expansion rule that was applied. Blocked nodes are
indicated using dashed arrows.

Deciding Subsumers of Least Fixpoint Concepts w.r.t. general EL-TBoxes 65

v0 : x

v1 : x,A � (∃r2.x) � (∃r3.x)

v2 : x,A � (∃r2.x) � (∃r3.x), A, (∃r2.x), (∃r3.x)

v3 : (∃r.x), (∃r2.x)

v4 : x, (∃r.x)

v5 : x, (∃r.x), A � (∃r2.x) � (∃r3.x)

v6 : x, (∃r.x), A � (∃r2.x) � (∃r3.x), A, (∃r2.x), (∃r3.x)

v7 : x, (∃r.x), (∃r2.x)

v8 : x, (∃r.x), (∃r2.x), A � (∃r2.x) � (∃r3.x)

v9 : x, (∃r.x), (∃r2.x), A � (∃r2.x) � (∃r3.x), A, (∃r3.x)

(Expansion)

(Disj)

(Exists)

(Exists)

(Expansion)

(Disj)

(Exists)

(Expansion)

(Disj)

Fig. 2. Fully-expanded concept expansion tree for Example 5

Example 5. Let D = μx.(A�(∃r.∃r.x)�(∃r.∃r∃r.x)). The fully expanded concept
expansion tree for D is depicted in Figure 2.

3.2 Step 2

In the second step of our normalisation procedure the concept expansion tree that
was obtained in the previous step is transformed into an expansion hypergraph.

Definition 5 (Expansion Hypergraph). Let S be a finite set of atomic
ELUV -concepts. An expansion hypergraph over S is a finite labelled directed
hypergraph (V, E ,L,R) with a dedicated set R of root nodes, where

– V is a finite, non-empty set of nodes;
– E ⊆ V × 2V is a set of directed hyperedges;
– L : V ∪ E → 2S ∪ 2NR is a labelling function, mapping nodes v ∈ V to subsets

L(v) ⊆ S, and mapping edges e ∈ E to sets of role names L(e) ⊆ sig(S)∩NR;
– R ⊆ V is a non-empty set of root nodes,

such that if L(v) = L(v′) for some v, v′ ∈ V, then v = v′.

Nodes in such hypergraphs are labelled with sets of atomic concepts and sets
of roles occurring in the outermost existential restrictions of such concepts are
the labels of hyperedges. Expansion hypergraphs have a dedicated set of root

66 S. Feng et al.

nodes, indicating a starting point for concept unfoldings, which will be defined
later. Note also that in expansion hypergraphs all the nodes have different labels,
which ensures that only finitely many expansion hypergraphs over S exist.

We now describe how a fully expanded concept expansion tree can be trans-
formed into an expansion hypergraph over the set of atomic concepts occurring
in the node labels of the concept expansion tree.

Definition 6 (Concept Expansion Tree Transformation). Let T =
(V, E ,L) a fully expanded concept expansion tree for a closed ELUμ-concept C
w.r.t. a TBox or variable expansion function ξ with root node v0. Let V∃ ⊆ V
be the set of nodes on which the (Exists)-rule was applied. For every v ∈ V∃ let
succr(v) ∈ V such that (v, succr(v)) ∈ E and L(succr(v)) = {C | ∃r.C ∈ L(v) }.

First, given v ∈ V, let χ(v) ⊆ V be the smallest set closed under the following
conditions:

– if v ∈ V∃, let χ(v) := {v};
– if v is a leaf that is not blocked, let χ(v) := {v};
– if v is blocked by an ancestor v′, let χ(v) := χ(v′);
– otherwise, let χ(v) :=

⋃
{χ(vi) | (v, vi) ∈ E }.

We now define the expansion hypergraph G′
T = (V ′, E ′,L′,R′) for T as follows:

– V ′ = χ(v0) ∪
⋃

{χ(succr(v)) | v ∈ V∃,∃r.C ∈ L(v) };
– E ′ = { (v, χ(succr(v))) | ∃r.C ∈ L(v) };
– L′ = { (v,Atoms(L(v))) | v ∈ V ′ } ∪

{ (e,M) | e = (v, χ(v′)),M = { r | v′ = succr(v)) } };
– R′ = χ(v0).

We obtain the required hypergraph GT from G′
T by taking the quotient of G′

T

w.r.t. equal node labels, i.e. all nodes v1, v2 ∈ V ′ such that L′(v1) = L′(v2) are
unified.

The expansion hypergraph of a closed ELUμ-concept C is the expansion hyper-
graph GTC for a fully expanded concept expansion tree TC for C w.r.t. the vari-
able expansion function ξC for C. Similarly, the expansion hypergraph of an
ELU-concept D w.r.t. a TBox T is the expansion hypergraph GT(D,T) for a fully
expanded concept expansion tree T(D,T) for D w.r.t. the TBox expansion function
ξ(D,T).

For a node v ∈ V, the set χ(v) consists of leaf nodes and nodes on which the
(Exists)-rule was applied that are reachable from v in T without walking along
an edge that was produced by the (Exists)-rule. In this way the set χ(v) can be
seen as representing the conjunctive normal form of the concepts in L(v).

The function χ is used to define the node set and the set of root nodes of
the resulting expansion hypergraph. Note that not necessarily all nodes of T are
nodes in the expansion hypergraph for T . The hyperedges connect a node with
a set of nodes. Every node is labelled with a set of atomic concepts, and every
hyperedge with a set of roles.

Deciding Subsumers of Least Fixpoint Concepts w.r.t. general EL-TBoxes 67

Example 6. Let C and T be defined as in Example 4. The expansion hypergraph
for T is shown below. The root nodes are underlined. We have: χ(v0) = χ(v1) =
χ(v2) = χ(v10) = {v5, v6, v7, v8}, χ(v3) = {v5, v6}, and χ(v4) = {v7, v8}.

v6 : A1, ∃r.x v5 : A1, B v7 : A2, B v8 : A2, ∃r.x

r

r

Example 7. Let D and T be defined as in Example 5. The expansion hypergraph
for T is shown below. Note that only v2 is a root node.

v2 : A, (∃r2.x), (∃r3.x)

v3 : (∃r.x), (∃r2.x)

v6 : A, (∃r.x), (∃r2.x), (∃r3.x)

r

r

r

We now define how to obtain the EL-concepts that are represented by an
expansion hypergraph.

Definition 7 (EL-Concept Unfoldings of an Expansion Hypergraph).
Let G = (V, E ,L,R) be an expansion hypergraph over a finite set S of atomic
ELUV -concepts. First, let UnfoldG ⊆ V ×EL be the smallest set closed under the
following conditions:

– if v ∈ V, ϕ = A ∈ L(v) or ϕ = � ∈ L(v), then (v, ϕ) ∈ UnfoldG;
– if e = (v, {v1, . . . , vn}) ∈ E, r ∈ L(e), (vi, Ci) ∈ UnfoldG for every 1 ≤ i ≤ n,

then (v,∃r.
�n

i=1 Ci) ∈ UnfoldG.

We set Unfold(G) = {
�

v∈R Cv | (v, Cv) ∈ UnfoldG }.

Example 8. Let GC be the expansion hypergraph for C, and let GD be the
expansion hypergraph for D, where C, D are defined as in Examples 4 and 5.
Then Unfold(GC) = {A1 � A2, A1 � A2 � B, A1 � ∃r.(A1 � A2), . . . } and
Unfold(GD) = {A,∃r2.A,∃r3.A,∃r4.A, . . . }.

3.3 Step 3

The last step of our normalisation procedure removes superfluous nodes from the
expansion hypergraph obtained in the previous step to ensure the correctness
of our simulation check. Here, a node is superfluous if it does not yield an EL-
concept unfolding (cf. Definition 7).

68 S. Feng et al.

Definition 8 (Simplifying Expansion Hypergraphs). Let G = (V, E ,L,R)
be an expansion hypergraph over a finite set S of atomic ELUV -concepts.

Let Vred ⊆ V be the smallest set closed under the following conditions:

– for every v ∈ V with L(v) ∩ NC �= ∅ or � ∈ L(v), we have v ∈ Vred;
– if v1, . . . , vn ∈ Vred and (v, {v1, . . . , vn}) ∈ E, then v ∈ Vred.

The simplified expansion graph of G is the expansion graph G′ such that
G′ = ({v}, ∅, {v
→ ∅}, {v}) if Vred ∩ R = ∅; and otherwise, G′ = (V ′, E ′,L′,R′)
where

– V ′ = Vred;
– E ′ = { (v, {v1, . . . , vn}) | v ∈ V ′, {v1, . . . , vn}) ⊆ V ′ };
– L′ = { (v,Lv(v)) | v ∈ V ′ } ∪ { (e,Le(e)) | e ∈ V ′ }; and
– R′ = R ∩ V ′.

Intuitively, an expansion hypergraph is simplified by starting from nodes
containing concept names or � in their labels and by collecting the nodes and
hyperedges encountered while following hyperedges backwards. Note that we
only walk an edge (v0, {v1, . . . , vn}) to the node v0 when all the nodes vi have
been visited already (i.e. they are contained in Vred). This condition corresponds
to the intuition that for building a concept for v0 it must be possible to construct
at least one concept for every node vi.

Example 9. Let C = A � μx.(∃r.x)). We obtain the following concept expansion
hypergraph for C. The concept expansion hypergraph for C and its simplification
are respectively shown on the left-hand and right-hand side below.

v0 : A,∃r.x

v1 : ∃r.x
r

r

v′
0 : A,∃r.x

We can now state the correctness property of our normal form transforma-
tion, i.e. all the EL-concepts that are subsumed by the initial closed ELUμ-
concept C or by an ELU-concept D w.r.t. a TBox T are preserved.

In the following we write S1 ≡ S2, for two sets S1, S2 of EL-concepts, to
denote that for every C1 ∈ S1 there exists C2 ∈ S2 with |= C1 � C2, and that
for every D2 ∈ S2 there exists D1 ∈ S1 with |= D2 � D1.

Theorem 1. Let T be a normalised EL-TBox, let C be a closed ELUμ-concept,
and let D be an ELU-concept. Then the expansion hypergraph G(C) for C and
the expansion hypergraph GT (D) for D w.r.t. T can be computed in exponential
time w.r.t. the size of C, or D and T , respectively. Moreover, the following two
statements hold:

(i) Unfold(G(C)) ≡ {E ∈ EL | ∅ |= E � C };
(ii) Unfold(GT (D)) ≡ {E ∈ EL | T |= E � D }.

Deciding Subsumers of Least Fixpoint Concepts w.r.t. general EL-TBoxes 69

4 Simulation

We are now ready to characterise the subsumption T |= C � D in terms of
simulations between the respective expansion hypergraphs. In this way we obtain
a practical decision procedure for the subsumption T |= C � D.

Definition 9 (Expansion Graph Simulation). Let G1 = (V1, E1,L1,R1),
G2 = (V2, E2,L2,R2) be two expansion graphs.

We say that G1 can be simulated by G2, written G1 ↪→ G2, iff there exists a
binary relation S ⊆ V1 × V2 which fulfills the following conditions:

(i) if (v1, v2) ∈ S and � �∈ L2(v2), then L1(v1) ∩ (NC ∪ {�}) ⊆ L2(v2);
(ii) if (v1, v2) ∈ S, � �∈ L2(v2), and e1 = (v1,H1) ∈ E1, then for every r ∈

L1(e1) there exists e2 = (v2,H2) ∈ E2 such that r ∈ L2(e2) and for every
v′
2 ∈ H2 there exists v′

1 ∈ H1 with (v1, v′
1) ∈ S; and

(iii) for every v2 ∈ R2 there exists v1 ∈ R1 such that (v1, v2) ∈ S.

The simulation Condition (i) ensures that all the concept names contained
in the label of v1 must also be present in the label of v2 (if the label of v2
does not contain �). Condition (i) is a local condition in the sense that it does
not depend on other nodes to be contained in the simulation. Condition (ii)
propagates the simulation conditions along hyperedges (if the label of v2 does
not contain �), and in contrast to Condition (i) it imposes constraints on other
nodes. Condition (iii) enforces that the root nodes are present in the simulation.

For a more detailed explanation of the simulation conditions, we refer the
reader to [6,12], where a similar simulation notion between hypergraphs and its
connection to reasoning has been established.

We note that without Step 3 in our normal form transformation it would be
impossible to establish for C = μx.(∃r.x) and D = A that T |= C � A holds (as
CI,∅ = ∅ in every interpretation I). Condition (ii) would require the hypergraph
GT (D) to contain edges labelled with r, which it does not have.
Example 10. Let T = {∃s.X � Y, ∃r.Y � X, A � X} and let C = B � μx.(A �
∃r.∃s.x). Then T |= C � A�∃r.∃s.X. The simplified expansion hypergraph G(C)
for C and the simplified expansion hypergraph GT (D) for D w.r.t. T are shown
in Figure 3.

We have that S = {(v1, v′
0), (v2, v

′
1), (v1, v

′
2), (v2, v

′
3)} is a simulation between

G(C) and GT (D).
We can now state our main result, linking the existence of a simulation

between simplified expansion hypergraphs with subsumption.

Theorem 2. Let T be an EL-TBox, let T ′ be its normalisation, let C be a
closed ELUμ-concept, and let D be an ELU-concept. Additionally, let G(C) be the
simplified expansion hypergraph for C and let GT (D) be the simplified expansion
hypergraph for D w.r.t. T ′. Then the following two statements are equivalent:

(i) T ′ |= C � D;
(ii) G(C) ↪→ GT ′(D).

The subsumption T |= C � D can be decided in exponential time in the size of
T , C, and D.

70 S. Feng et al.

G(C)

GT (D)

v0 : B v1 : A, ∃r.∃s.x

v2 : ∃s.x

v′
0 : A, ∃r.∃s.X

v′
1 : ∃s.X

v′
2 : A,X, ∃r.Y

v′
3 : Y, ∃s.X

s

s

r r

r

r

Fig. 3. Simplified expansion hypergraphs for Example 10

5 Conclusion and Discussion

We have provided a procedure for deciding subsumptions of the form T |= C � D,
where C is an ELUμ-concept, D an ELU-concept and T an EL-TBox. Our proce-
dure is based on checking for the existence of a certain simulation between hyper-
graph representations of the unfoldings of C and the subsumees of D w.r.t. T ,
respectively. We have presented in detail how the hypergraphs can be built in
three steps from C and D, T , not relying on automata-theoretic techniques.

We plan to apply our procedure for solving the logical difference problem
between EL-TBoxes and for checking the existence of uniform interpolants of
EL-TBoxes. In this context an evaluation of the procedure will be required.

Applying our procedure for solving T |= C � D to the logical difference
problem between EL-TBoxes requires finding a suitable ELU-concept D, which
acts as an interpolant between C and an ELν-concept w.r.t. T (cf. Section 1). The
notion of the least common subsumer (lcs) appears to lend itself as a candidate
for such concepts D [7]. For our purposes we would consider the following notion.
An ELU-concept D is the least common subsumer of an ELUμ-concept C w.r.t. an
EL-TBox T (written lcsT (C)) if it satisfies the following two conditions: (i) T |=
C � D, and (ii) T |= D � E, for all ELU-concepts E with T |= C � E.
Intuitively, C stands for a disjunction of infinitely many concept descriptions
which are to be approximated by an ELU-concept. However, such an lcs does not
always exist. For instance, let C = μx.(A � ∃r.x) and T ′ = {A � Y, ∃r.Y � Y }.
For ϕ0 = Y , ϕ1 = A�∃r.Y , ϕ2 = A�∃r.(A�∃r.Y), etc., it holds that T ′ |= C � ϕi

and T ′ |= ϕi+1 � ϕi for i ≥ 0. Then, for every ELU-concept E with T ′ |= C � E
we have that T ′ �|= E � ϕi for some i ≥ 0.

As an alternative to an lcs of a least fixpoint concepts w.r.t. a background
TBox, we say that an ELU-concept D is a most-consequence preserving subsumer
(mcps) of an ELUμ-concept C for EL-consequences w.r.t. an EL-TBox T iff the
following conditions hold: (i) T |= C � D, and (ii) there does not exist an ELU-
concept E with T |= C � E and {F ∈ EL | T |= D � F } � {F ∈ EL | T |=
E � F }. Continuing the example above, every ϕi is an mcps of C w.r.t. T as
{F ∈ EL | T ′ |= ϕi � F } = {Y } and {F ∈ EL | T ′ |= C � F } = {Y }.

Deciding Subsumers of Least Fixpoint Concepts w.r.t. general EL-TBoxes 71

We plan to investigate the notion of an mcps further and possibly apply it
to finding interpolants of least and greatest fixpoint concepts w.r.t. TBoxes.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceedings
of IJCAI-05: the 19th International Joint Conference on Artificial Intelligence,
pp. 364–369. Morgan-Kaufmann Publishers (2005)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Proceedings
of the OWLED 2008 DC Workshop on OWL: Experiences and Directions (2008)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The description logic handbook: theory, implementation, and applications.
Cambridge University Press, 2nd edition (2010)

4. Bradfield, J., Stirling, C.: Modal µ-calculi. In: Blackburn, P., van Benthem, J.,
Wolter, F. (eds.) Handbook of Modal Logic, Studies in Logic and Practical Rea-
soning, vol. 3, pp. 721–756. Elsevier (2007)

5. Brandt, S.: Polynomial time reasoning in a description logic with existential restric-
tions, GCI axioms, and–what else? In: Proceedings of ECAI-04: the 16th European
Conference on Artificial Intelligence, pp. 298–302. IOS Press (2004)

6. Ecke, A., Ludwig, M., Walther, D.: The concept difference for EL-terminologies
using hypergraphs. In: Proceedings of DChanges-13: the International Workshop
on (Document) Changes: Modeling, Detection, Storage and Visualization. CEUR-
WS, vol. 1008 (2013)

7. Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in
description logics with existential restrictions. In: Proceedings of IJCAI-99: the
16th International Joint Conference on Artificial Intelligence, pp. 96–101. Morgan-
Kaufmann Publishers (1999)

8. Feng, S., Ludwig, M., Walther, D.: The logical difference for EL: from terminologies
towards TBoxes. In: Proceedings of IWOST-15: the 1st International Workshop on
Semantic Technologies. CEUR-WS (2015)

9. Janin, D., Walukiewicz, I.: Automata for the modal mu-calculus and related results.
In: Wiedermann, J., Hájek, P. (eds.) Mathematical Foundations of Computer Sci-
ence 1995. LNCS, vol. 969, pp. 552–562. Springer, Heidelberg (1995)

10. Konev, B., Ludwig, M., Walther, D., Wolter, F.: The logical difference for the
lightweight description logic EL. Journal of Artificial Intelligence Research (JAIR)
44, 633–708 (2012)

11. Kozen, D.: Results on the propositional µ-calculus. Theoretical Computer Science
27(3), 333–354 (1983)

12. Ludwig, M., Walther, D.: The logical difference for ELHr-terminologies using
hypergraphs. In: Proceedings of ECAI-14: the 21st European Conference on Arti-
ficial Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 263,
pp. 555–560. IOS Press (2014)

13. Sattler, U., Vardi, M.Y.: The hybrid mgr-calculus. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, p. 76. Springer, Heidel-
berg (2001)

	Deciding Subsumers of Least Fixpoint Concepts w.r.t. general EL-TBoxes
	1 Introduction
	2 Preliminaries
	3 Normal Form Computation
	3.1 Step 1
	3.2 Step 2
	3.3 Step 3

	4 Simulation
	5 Conclusion and Discussion
	References

