
Learning a Random DFA from Uniform Strings
and State Information

Dana Angluin and Dongqu Chen(B)

Department of Computer Science, Yale University, New Haven, CT 06520, USA
dongqu.chen@yale.edu

Abstract. Deterministic finite automata (DFA) have long served as a
fundamental computational model in the study of theoretical computer
science, and the problem of learning a DFA from given input data is
a classic topic in computational learning theory. In this paper we study
the learnability of a random DFA and propose a computationally efficient
algorithm for learning and recovering a random DFA from uniform input
strings and state information in the statistical query model. A random
DFA is uniformly generated: for each state-symbol pair (q ∈ Q, σ ∈ Σ),
we choose a state q′ ∈ Q with replacement uniformly and independently
at random and let ϕ(q, σ) = q′, where Q is the state space, Σ is the
alphabet and ϕ is the transition function. The given data are string-
state pairs (x, q) where x is a string drawn uniformly at random and q
is the state of the DFA reached on input x starting from the start state
q0. A theoretical guarantee on the maximum absolute error of the algo-
rithm in the statistical query model is presented. Extensive experiments
demonstrate the efficiency and accuracy of the algorithm.

Keywords: Deterministic finite automaton · Random DFA · Statistical
queries · Regular languages · PAC learning

1 Introduction

Deterministic finite automata are one of the most elementary computational
models in the study of theoretical computer science. The important role of DFA
leads to the classic problem in computational learning theory, the learnability of
DFA. The applications of this learning problem include formal verification, nat-
ural language processing, robotics and control systems, computational biology,
data mining and music. Exploring the learnability of DFA is significant to both
theoretical and applied realms. In the classic PAC learning model defined by
Valiant [21], unfortunately, the concept class of DFAs is known to be inherently
unpredictable [14,15]. In a modified version of Valiant’s model which allows the
learner to make membership queries, Angluin [1] has shown that the concept
class of DFAs is efficiently PAC learnable. Subsequent efforts have searched for
nontrivial properly PAC learnable subfamilies of regular languages [2,6,16].

Since learning all DFAs is computationally intractable, it is natural to ask
whether we can pursue positive results for “almost all” DFAs. This is addressed
c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 119–133, 2015.
DOI: 10.1007/978-3-319-24486-0 8

120 D. Angluin and D. Chen

by studying high-probability properties of uniformly generated random DFAs.
The same approach has been used for learning random decision trees and random
DNFs from uniform strings [11,12,17,18]. However, the learnability of random
DFAs has long been an open problem. Few formal results about random walks
on random DFAs are known. Grusho [9] was the first work establishing an inter-
esting fact about this problem. Since then, very little progress was made until
a recent subsequent work by Balle [4]. Our work connects these two problems
and contributes an algorithm for efficiently learning random DFAs, in addition
to positive theoretical results on random walks on random DFAs.

Trakhtenbrot and Barzdin [20] first introduced two random DFA models with
different sources of randomness: one with a random automaton graph, one with
random output labeling. In this paper we study the former model. A random
DFA is uniformly generated: for each state-symbol pair (q ∈ Q,σ ∈ Σ), we
choose a state q′ ∈ Q with replacement uniformly and independently at random
and let ϕ(q, σ) = q′, where Q is the state space, Σ is the alphabet and ϕ is
the transition function. Given data are of form (x, q) where x is a string drawn
uniformly at random and q is the state of the DFA reached on input x starting
from the start state q0.

Previous work by Freund et al. [8] has studied a different model under differ-
ent settings. First, the DFAs are generated with arbitrary transition graphs and
random output labeling, which is the latter model in [20]. Second, in their work,
the learner predicts and observes the exact label sequence of the states along
each walk. Such sequential data are crucial to the learner walking on the graph.
In our paper, the learner is given noisy statistical data on the ending state, with
no information about any intermediate states along the walk.

Like most spectral methods, the theoretical error bound of our algorithm
contains a spectral parameter (‖|P †

A|‖∞ in Section 4.1), which reflects the asym-
metry of the underlying graph. This leads to a potential future work of eliminat-
ing this parameter using random matrix theory techniques. Another direction
of subsequent works is to consider the more general case where the learner only
observes the accept/reject bits of the final states reached, which under arbi-
trary distributions has been proved to be hard in the statistical query model
by Angluin et al. [3] but remains open under the uniform distribution [4]. Our
contribution narrows this gap and pushes forward the study of the learnability
of random DFAs.

2 Preliminaries

Deterministic Finite Automaton (DFA) is a powerful and widely studied com-
putational model in computer science. Formally, a DFA is a quintuple A =
(Q,ϕ,Σ, q0, F) where Q is a finite set of states, Σ is the finite alphabet, q0 ∈ Q is
the start state, F ⊆ Q is the set of accepting states, and ϕ is the transition func-
tion: Q×Σ → Q. Let λ be the empty string. Define the extended transition func-
tion ϕ∗ : Q×Σ∗ → Q by ϕ∗(q, λ) = q and inductively ϕ∗(q, xσ) = ϕ(ϕ∗(q, x), σ)
where σ ∈ Σ and x ∈ Σ∗. Denote by s = |Σ| the size of the alphabet and by

Learning a Random DFA from Uniform Strings and State Information 121

n = |Q| the number of states. In this paper we assume s ≥ 2. Let G = (V,E)
be the underlying directed multi-graph of DFA A (also called an automaton
graph). We say a vertex set V0 ⊆ V is closed if for any u ∈ V0 and any v such
that (u, v) ∈ E, we must have v ∈ V0.

A walk on an automaton graph G is a sequence of states (v0, v1, . . . , v�) such
that (vi−1, vi) ∈ E for all 1 ≤ i ≤ �, where v0 is the corresponding vertex in
G of the start state q0. A random walk on graph G is defined by a transition
probability matrix P with P (u, v) = #{(u, v) ∈ E}·s−1 denoting the probability
of moving from vertex u to vertex v, where #{(u, v) ∈ E} is the number of edges
from u to v. For an automaton graph, a random walk always starts from the start
state q0. In this paper random walks on a DFA refer to the random walks on the
underlying automaton graph. A vertex u is aperiodic if gcd{t ≥ 1 | P t(u, u) >
0} = 1. Graph G (or a random walk on G) is irreducible if for every pair of
vertices u and v in V there exists a directed cycle in G containing both u and
v, and is aperiodic if every vertex is aperiodic. A distribution vector φ satisfying
φP = φ is called a Perron vector of the walk. An irreducible and aperiodic
random walk has a unique Perron vector φ and limt→+∞ P t(u, ·) = φ (called the
stationary distribution) for any u ∈ V . In the study of rapidly mixing walks, the
convergence rate in L2 distance ΔL2(t) = maxu∈V ‖P t(u, ·)−φ‖2 is often used. A
stronger notion in L1 distance is measured by the total variation distance, given
by ΔTV (t) = 1

2 maxu∈V

∑
v∈V |P t(u, v) − φ(v)|. Another notion of distance for

measuring convergence rate is the χ-square distance:

Δχ2(t) = max
u∈V

(
∑

v∈V

(P t(u, v) − φ(v))2

φ(v)

) 1
2

As the Cauchy-Schwarz inequality gives ΔL2(t) ≤ 2ΔTV (t) ≤ Δχ2(t), a conver-
gence upper bound for Δχ2(t) implies ones for ΔL2(t) and ΔTV (t).

Trakhtenbrot and Barzdin [20] first introduced the model of random DFA
by employing a uniformly generated automaton graph as the underlying graph
and labeling the edges uniformly at random. In words, for each state-symbol
pair (q ∈ Q,σ ∈ Σ), we choose a state q′ ∈ Q with replacement uniformly and
independently at random and let ϕ(q, σ) = q′.

In a computational learning model, an algorithm is usually given access to
an oracle providing information about the target concept. Kearns [13] modified
Valiant’s model and introduced the statistical query oracle STAT. Kearns’ oracle
takes as input a statistical query of the form (χ, τ). Here χ is any mapping of
a labeled example to {0, 1} and τ ∈ [0, 1] is called the noise tolerance. Let c be
the target concept and D be the distribution over the instance space. Oracle
STAT (c,D) returns to the learner an estimate for the expectation IEχ, that is,
the probability that χ = 1 when the labeled example is drawn according to
D. A statistical query can have a condition, in which case IEχ is a conditional
probability. This estimate is accurate within additive error τ . A statistical query
χ is legimate and feasible if and only if:

1. Query χ maps a labeled example 〈x, c(x)〉 to {0, 1};
2. Query χ can be efficiently evaluated in polynomial time;

122 D. Angluin and D. Chen

3. The condition of χ, if any, can be efficiently evaluated in polynomial time;
4. The probability of the condition of χ, if any, should be at least inverse

polynomially large.

Kearns [13] proved that the statistical query model is weaker than the classic
PAC model. That is, PAC learnability from oracle STAT implies PAC learnabil-
ity from the classic example oracle, but not vice versa.

3 Random Walks on a Random DFA

Random walks have proven to be a simple, yet powerful mathematical tool for
extracting information from well connected graphs. Since automaton graphs are
long known to be of strong connectivity with high probability [9], it’s interesting
to explore the possibilities of applying random walks to DFA learning. In this
section we will show that with high probability, a random walk on a random
DFA converges to the stationary distribution φ polynomially fast in χ-square
distance as in Theorem 1.

Theorem 1. With probability 1 − o(1), a random walk on a random DFA has
Δχ2(t) ≤ e−k after t ≥ 2C(C +1)sn1+C(log n+k) · logs n, where constant C > 0
depends on s and approaches unity with increasing s.

A standard proof of fast convergence consists of three parts: irreducibility, ape-
riodicity and convergence rate. Grusho [9] first proved the irreducibility of a
random automaton graph.

Lemma 1. With probability 1−o(1), a random automaton graph G has a unique
strongly connected component, denoted by G̃ = (Ṽ , Ẽ), of size ñ, and a) lim

n→+∞
ñ
n

= C for some constant C > 0.7968 when s ≥ 2 or some C > 0.999 when s > 6;
b) Ṽ is closed.

A subsequent work by Balle [4] proved the aperiodicity.

Lemma 2. With probability 1 − o(1), the strongly connected component G̃ in
Lemma 1 is aperiodic.

However, the order of the convergence rate of random walks on a random
DFA was left as an open question. One canonical technique for bounding the
convergence rate of a random walk is to bound the smallest nonzero eigenvalue
of the Laplacian matrix L of the graph G, defined by

L = I − Φ
1
2 PΦ− 1

2 + Φ− 1
2 P ∗Φ

1
2

2

where Φ is an n×n diagonal matrix with entries Φ(u, u) = φ(u) and P ∗ denotes
the transpose of matrix P . For a random walk P , define the Rayleigh quotient
for any function f : V → R as follows.

R(f) =
∑

u→v |f(u) − f(v)|2φ(u)P (u, v)
∑

v |f(v)|2φ(v)

Learning a Random DFA from Uniform Strings and State Information 123

Chung [7] proved the connection between the Rayleigh quotient and the
Laplacian matrix of a random walk.

Lemma 3

R(f) = 2
〈gL, g〉
‖g‖22

where g = fΦ
1
2 and 〈·, ·〉 means the inner product of two vectors.

On top of this lemma we can further infer the relation between the Rayleigh
quotient and the Laplacian eigenvalues. Suppose the Laplacian matrix L has
eigenvalues 0 = λ0 ≤ λ1 ≤ . . . ≤ λn−1.

Lemma 4. For all 1 ≤ i ≤ n − 1, let vector ηi be the unit eigenvector of λi and
vector fi = ηiΦ

− 1
2 . Then λi = 1

2R(fi) and fi satisfies 〈fi, φ〉 = 0.

Proof. By Lemma 3 we know 1
2R(f) = 〈gL,g〉

‖g‖2 . From the symmetry of Laplacian
matrix L, there exists a set of eigenvectors of L that forms an orthogonal basis.
We denote this set of eigenvectors by η0, η1, . . . , ηn−1 where ηi is the correspond-
ing eigenvector of λi. Notice that for all 0 ≤ i ≤ n − 1 we have

1
2
R(ηiΦ

− 1
2) =

〈ηiL, ηi〉
‖ηi‖22

=
λi‖ηi‖22
‖ηi‖22

= λi

We let fi = ηiΦ
− 1

2 . According to the definition of R(f), we have R(f) ≥ 0. We
know λ0 = R(f0) = 0. Thus f0 is the all-one vector and η0 = φ

1
2 is the unit

eigenvector of eigenvalue 0. For all 1 ≤ i ≤ n − 1 we have 〈ηi, η0〉 = 0, i.e.,
(fiΦ

1
2) · φ

1
2 = 〈fi, φ〉 = 0. Hence, for all 1 ≤ i ≤ n − 1, we have λi = 1

2R(fi)
where fi satisfies 〈fi, φ〉 = 0. �

From this we can see that the Rayleigh quotient serves as an important tool
for bounding the Laplacian eigenvalues. A lower bound on R(f1) is equivalent
to one on λ1. We present a lower bound of λ1 in terms of the diameter and the
maximum out-degree of the vertices in the graph.

Lemma 5. For a random walk on a strongly connected graph G, let λ1 be the
smallest nonzero eigenvalue of its Laplacian matrix L. Denote by Diam the
diameter of graph G and by s0 the maximum out-degree of the vertices in the
graph. Then

λ1 ≥ 1
2n · Diam · s1+Diam

0

Proof. Denote u0 = arg maxx∈V φ(x) and v0 = arg minx∈V φ(x). Let �0 be
the distance from u0 to v0. As φP �0 = φ, we have φ(v0) ≥ P �0(u0, v0)φ(u0) ≥
s−�0
0 φ(u0) ≥ s−Diam

0 φ(u0). We then have 1 =
∑

x∈V φ(x) ≤ nφ(u0) ≤ nsDiam
0

φ(v0) and φ(v0) ≥ n−1s−Diam
0 .

124 D. Angluin and D. Chen

From Lemma 4 we have λ1 = 1
2R(f1) and 〈f1, φ〉 = 0. As φ(x) > 0 for any

vertex x ∈ V , there must exist some vertex u with f1(u) > 0 and some vertex
v whose f1(v) < 0. Let y = arg maxx∈V |f1(x)|. Then there must exist some
vertex z such that f1(y)f1(z) < 0. Let r = (y, x1, x2 . . . , x�−1, z) be the shortest
directed path from y to z, which must exist due to the strong connectivity. Then
the length of path r is �. Therefore,

λ1 =
1
2
R(f1) =

1
2

∑
u→v |f1(u) − f1(v)|2φ(u)P (u, v)

∑
v |f1(v)|2φ(v)

(

due to min
x∈V

φ(x) ≥ n−1s−Diam
0 and min

(u,v)∈E
P (u, v) ≥ 1

s0

)

≥ 1
2ns1+Diam

0

∑
u→v |f1(u) − f1(v)|2
∑

v |f1(v)|2φ(v)

≥ 1
2ns1+Diam

0

∑
u→v∈r |f1(u) − f1(v)|2

∑
v |f1(v)|2φ(v)

(by letting x0 = y and x� = z)

=
1

2ns1+Diam
0

∑�−1
i=0 |f1(xi) − f1(xi+1)|2∑

v |f1(v)|2φ(v)

≥ 1
2ns1+Diam

0

[∑�−1
i=0(f1(xi) − f1(xi+1))

]2

� · ∑
v |f1(v)|2φ(v)

=
1

2ns1+Diam
0

[f1(y) − f1(z)]2

� · ∑
v |f1(v)|2φ(v)

(for f1(y)f1(z) < 0)

≥ 1
2n · Diam · s1+Diam

0

|f1(y)|2
∑

v |f1(v)|2φ(v)

≥ 1
2n · Diam · s1+Diam

0

|f1(y)|2
|f1(y)|2 ∑

v φ(v)

=
1

2n · Diam · s1+Diam
0

which completes the proof. �

As a canonical technique, a lower bound of the smallest nonzero eigenvalue
of the Laplacian matrix implies a lower bound of the convergence rate. Chung
[7] proved

Theorem 2. A lazy random walk on a strongly connected graph G has con-
vergence rate of order 2λ−1

1 (− log minu φ(u)). Namely, after at most t ≥ 2λ−1
1

((− log minu φ(u)) + 2k) steps, we have Δχ2(t) ≤ e−k.

In the paper Chung used lazy walks to avoid periodicity. If the graph is
irreducible and aperiodic, we let P̂ = 1

2 (I + P) be the transition probability

Learning a Random DFA from Uniform Strings and State Information 125

matrix of the lazy random walk and vector φ̂ be its Perron vector, matrix Φ̂ be
the diagonal matrix of φ̂, matrix L̂ be its Laplacian matrix.

We know φ is the solution of φP = φ or equivalently φ(I − P) = 0 and
∑

i φ(i) = 1. Similarly, φ̂ is the solution of φ̂(I − P̂) = 0 and
∑

i φ̂(i) = 1.
Observe that I − P̂ = I − 1

2 (I + P) = 1
2 (I − P) and φ̂(I − P̂) = 1

2 φ̂(IP) = 0,
which is equivalently φ̂(I − P) = 0. Thus φ̂ = φ and Φ̂ = Φ. Then

L̂ = I − 1
2

(
Φ̂

1
2 P̂ Φ̂− 1

2 + Φ̂− 1
2 P̂ ∗Φ̂

1
2

)

= I − 1
2

(

Φ
1
2 · 1

2
(I + P) · Φ− 1

2 + Φ− 1
2 · 1

2
(I + P ∗) · Φ

1
2

)

= I − 1
2

(
1
2
I +

1
2
Φ

1
2 PΦ− 1

2 +
1
2
I +

1
2
Φ− 1

2 P ∗Φ
1
2

)

= I − 1
2

(

I +
1
2
Φ

1
2 PΦ− 1

2 +
1
2
Φ− 1

2 P ∗Φ
1
2

)

=
1
2
I − 1

4

(
Φ

1
2 PΦ− 1

2 + Φ− 1
2 P ∗Φ

1
2

)

=
1
2
L

Let λ̂1 be the smallest positive eigenvalue of L̂. Then λ1 = 2λ̂1. Therefore,
combining this with Lemma 5, we have

Theorem 3. A random walk on a strongly connected and aperiodic directed
graph G has convergence rate of order 2n · Diam · s1+Diam

0 (log(nsDiam
0)), where

s0 = arg maxu∈V du is the maximum out-degree of a vertex in G. Namely, after
at most t ≥ 2n·Diam·s1+Diam

0 ((log(nsDiam
0)+2k)) steps, we have Δχ2(t) ≤ e−k.

However, the convergence rate is still exponential in s0 and Diam. Fortu-
nately, in our case s0 = s and Trakhtenbrot and Barzdin [20] proved the diameter
of a random DFA is logarithmic.

Theorem 4. With probability 1 − o(1), the diameter of a random automaton
graph is O(logs n).

With the logarithmic diameter we complete the poof of Theorem 1. The con-
stant C in Theorem 1 is the constant used in the proof of Theorem 4 by Trakhten-
brot and Barzdin [20]. It depends on s and approaches unity with increasing s.

Notice that the diameter of an automaton graph won’t increase after state-
merging operations, thus with high probability, a random DFA has at most
logarithmic diameter after DFA minimization. It is also easy to see an irreducible
DFA still maintains irreducibility after minimization. Besides, Balle [4] proved
DFA minimization preserves aperiodicity. Now we also have Corollary 1.

Corollary 1. With probability 1− o(1), a random walk on a random DFA after
minimization has Δχ2(t) ≤ e−k after t ≥ 2C(C + 1)sn1+C(log n + k) · logs n,
where constant C > 0 depends on s and approaches unity with increasing s.

126 D. Angluin and D. Chen

4 Reconstructing a Random DFA

In this section we present a computationally efficient algorithm for recovering
random DFAs from uniform input strings in the statistical query model with
a theoretical guarantee on the maximum absolute error and supporting experi-
mental results.

4.1 The Learning Algorithm

In our learning model, the given data are string-state pairs (x, q) where x is
a string drawn uniformly at random from Σt and q is the state of the DFA
reached on input x starting from the start state q0. Here t = poly(n, s) is the
length of the example strings. Our goal is to recover the unique irreducible and
closed component of the target DFA from the given data in the statistical query
model. The primary constraint on our learning model is the need to estimate
the distribution of the ending state, while the advantage is that our algorithm
reconstructs the underlying graph structure of the automaton. Let quintuple
A = (Q,ϕ,Σ, q0, F) be the target DFA we are interested in. We represent the
transition function ϕ as a collection of n × n binary matrices Mσ indexed by
symbols σ ∈ Σ as follows. For each pair of states (i, j), the element Mσ(i, j) is 1
if ϕ(i, σ) = j and 0 otherwise. For a string of m symbols y = y1y2 . . . ym, define
My to be the matrix product My = My1 · My2 . . . Mym

. Then My(i, j) is 1 if
ϕ∗(i, y) = j and 0 otherwise.

A uniform input string x ∈ Σt corresponds to a random walk of length
t on the states of the DFA A starting from the start state q0. By Lemma 1
and 2, we can assume the irreducibility and aperiodicity of the random walk.
Due to the uniqueness of the strongly connected component, the walk will finally
converge to the stationary distribution φ with any start state q0. For any string
y = y1y2 . . . ym, we define the distribution vector py over the state space Q
obtained by starting from the stationary distribution φ and inputting string y
to the automaton. That is, py = φMy and pλ = φ. Consequently, each string
y ∈ Σ∗ and symbol σ ∈ Σ contribute a linear equation pyMσ = pyσ where yσ
is the concatenation of y and σ. Due to Theorem 4, the diameter of a random
DFA is O(logs n) with high probability. The complete set of Θ(logs n)-step walks
should have already traversed the whole graph and no new information can be
retrieved after Θ(logs n) steps. Hence, we can only consider the equation set
{pyMσ = pyσ | y ∈ ΣO(logs n)} for each σ ∈ Σ. We further observe that the
equation system {pyMσ = pyσ | y ∈ ΣΘ(logs n)} shares the same solution with
{pyMσ = pyσ | y ∈ ΣO(logs n)}. Let vector z be the i-th column of matrix Mσ,
matrix PA be the sΘ(logs n) × n coefficient matrix whose rows are {py | y ∈
ΣΘ(logs n)} and vector b be the vector consisting of {pyσ(i) | y ∈ ΣΘ(logs n)}.
The task reduces to solving the linear equation system PAz = b for z. Let φt be
the distribution vector over Q after t steps of random walk. As the random walk
always starts from the start state q0, the initial distribution φ0 is a coordinate
vector whose entry of q0 is 1 and the rest are 0, for which

Learning a Random DFA from Uniform Strings and State Information 127

2‖φt − φ‖TV ≤
(

∑

v∈V

(φt(v) − φ(v))2

φ(v)

) 1
2

≤ max
u∈V

(
∑

v∈V

(P t(u, v) − φ(v))2

φ(v)

) 1
2

Theorem 1 claims that a polynomially large t0 = 2C(C + 1)sn1+C(log n +
log 2

τ) · logs n is enough to have the random walk converge to pλ = φ within any
polynomially small χ-square distance τ

2 with high probability where C > 0 is
the constant in the theorem. Let t = t0 + C logs n, which is still polynomially
large. We can estimate the stationary distribution for a state i by the fraction
of examples (x, q) such that q = i. In general, for any string y, we can estimate
the value of py for a state i as the ratio between the number of pairs (x, q) such
that y is a suffix of x and q = i and the number of examples (x, q) where y is a
suffix of x.

In the statistical query model we are unable to directly observe the data;
instead we are given access to the oracle STAT. Define a conditional statistical
query χy,i(x, q) = 1{q = i | y is a suffix of x} where 1 is the boolean indicator
function. It’s easy to see the legitimacy and feasibility of query χy,i(x, q) for
any y ∈ ΣΘ(logs n) because: (1) it is a boolean function mapping an example
(x, q) to {0, 1}; (2) the proposition 1{q = i} can be tested in O(1) time; (3)
the condition 1{y is a suffix of x} can be tested within Θ(logs n) time; (4) the
probability of the condition that y is a suffix of x is inverse polynomially large
s−|y| = s−Θ(logs n) = Θ(n−C) for some constant C > 0.

Let p̃λ be the distribution vector over the states after t steps and p̃y = p̃λMy.
Also denote by vector p̂y the query result returned by oracle STAT where p̂y(i)
is the estimate IEχy,i, and by P̂A and b̂ the estimates for PA and b respectively
from oracle STAT. We infer the solution z by solving the perturbed linear least
squares problem: minz ‖P̂Az − b̂‖2. Let ẑ be the solution we obtain from this
perturbed problem. According to the main theorem, the distance ‖pλ − p̃λ‖1 =
2‖φt − φ‖TV ≤ Δχ2(t) ≤ τ

2 . Then for any string y, ‖py − p̃y‖∞ = ‖(pλ −
p̃λ)My‖∞ ≤ ‖pλ − p̃λ‖1 ≤ τ

2 . If we do the statistical queries with tolerance τ
2 ,

the maximum additive error will be ‖p̃y − p̂y‖∞ ≤ τ
2 for any string y. Thus we

have ‖py − p̂y‖∞ ≤ τ . To conclude a theoretical upper bound on the error, we
use the following theorem by Björck [5], which was later refined by Higham [10].

Theorem 5. Let z be the optimal solution of least squares problem minz ‖Mz −
b‖2 and ẑ be the optimal solution of minz ‖M̂z − b̂‖2. If |M − M̂ | � ωE and
|b− b̂| � ωf for some element-wise non-negative matrix E and vector f , where |·|
refers to element-wise absolute value and � means element-wise ≤ comparison,
then

‖z − ẑ‖∞ ≤ ω(‖|M†|(E|z| + f)‖∞ + ‖|(M�M)−1|E�|Mz − b|‖∞) + O(ω2)

when M has full column rank, or

‖z − ẑ‖∞ ≤ ω(‖|M̂†|(E|ẑ| + f)‖∞ + ‖|(M̂�M̂)−1|E�|M̂ ẑ − b̂|‖∞) + O(ω2)

when M̂ has full column rank, where M† is the MoorePenrose pseudoinverse of
matrix M .

128 D. Angluin and D. Chen

Applying Theorem 5 to our case gives an upper bound on the maximum
absolute error.

Corollary 2. If PA has full rank with high probability,

‖z − ẑ‖∞ ≤ (1 + ε) log ns

log log ns
‖|P †

A|‖∞τ + O(τ2)

with probability 1 − o(1) for any constant ε > 0.

Proof. First in our case the offset |PAz − b| = 0 and ω = τ . Matrix E is the
all-one matrix and vector f is the all-one vector. As a consequence, ‖f‖∞ = 1
and ‖E|z|‖∞ = ‖z‖1. Now it remains to prove with high probability ‖z‖1 ≤
(1+ε) log ns
log log ns for all columns in all Mσ, σ ∈ Σ.

Let θ be the largest 1-norm of the columns in Mσ. According to the properties
of a random DFA, the probability of θ > n is 0 and Pr[θ = n] ≤ n · n−n is
exponentially small. For any k < n,

Pr[θ ≥ k] ≤ n · Pr[a particular column has 1-norm at least k]

≤n ·
(

n

k

)(
1
n

)k

≤
√

2πn
(

n
e

)n
e

1
12n

√
2πk

(
k
e

)k
e

1
12k+1 · √

2π(n − k)
(

n−k
e

)n−k
e

1
12(n−k)+1

· n

(
1
n

)k

≤
√

n3s2

2πk(n − k)s2
· e

1
12n (n)n

(nk)k(n − k)n−k

≤1
s

· elog ns+n log n−k log k−(n−k) log(n−k)−k log n+ 1
12n

We only need to choose a k such that the exponent goes to −∞, which is equal
to

log ns + k
(
1 − n

k

)
log

(

1 − k

n

)

− k log k +
1

12n

If k ≥ n then Pr[θ ≥ k] is exponentially small as discussed above. Otherwise
we have

(
1 − n

k

)
log

(
1 − k

n

) ≤ 1 in our case. Also notice that 1
12n ≤ 1. Let

k = (1+ε) log ns
log log ns . The expression is upper bounded by

log ns +
(1 + ε) log ns

log log ns
− (1 + ε) log ns

log log ns
log

(1 + ε) log ns

log log ns
+ 1

= log ns +
(1 + ε) log ns

log log ns
(1 − log(1 + ε) − log log ns + log log log ns) + 1

= − ε log ns +
(

1 − log(1 + ε)
log log ns

+
log log log ns

log log ns

)

(1 + ε) log ns + 1

With respect to n and s, the expression goes to −∞. There are in total s matrices
{Mσ | σ ∈ Σ}. Using a union bound we have ‖z‖1 ≤ (1+ε) log ns

log log ns for all columns

Learning a Random DFA from Uniform Strings and State Information 129

in all Mσ with probability 1 − o(1), and plugging this upper bound into the
conclusion of Theorem 5 completes the proof. �

This further implies that if we set the tolerance τ = log log ns

3‖|P †
A|‖∞ log ns

, the solu-

tion error ‖z − ẑ‖∞ < 1
2 with high probability. Based on the prior knowledge we

have on z, we could refine ẑ by rounding up ẑ to a binary vector z̃, i.e., for each
1 ≤ i ≤ n, z̃(i) = 1 if ẑ(i) > 1

2 and 0 otherwise, whereby we will have z̃(q) = z(q)
for any state q in the strongly connected component. A toy example is provided
in the appendices to demonstrate how the algorithm works.

Our algorithm only recovers the strongly connected component Ã of a random
DFA A because it relies on the convergence of the random walk and any state
q �∈ Ã will have zero probability after the convergence. We have no information
for reconstructing the disconnected part. In the positive direction, due to Lemma
1, with high probability we are able to recover at least 79.68% of the DFA for
any s ≥ 2 and at least 99.9% of the whole automaton if s > 6. Because Ã is
unique and closed, it is also a well defined DFA. In Section 3 we have proved
minq∈Q{pλ(q) | pλ(q) > 0} ≥ n−1s−Diam = n−C for some constant C > 0 with
high probability. This means we have a polynomially large gap so that we are
able to distinguish the recurrent states from the transient ones by making a
query to estimate p̃λ(q) for each state q ∈ Q. In our result ‖|P †

A|‖∞ is regarded
as a parameter. It might be possible to improve the result by polynomially
bounding ‖|P †

A|‖∞ with other given parameters n and s using random matrix
theory techniques. The full-rank assumption is reasonable because a random
matrix is usually well conditioned and full-rank. From the empirical results in
Section 4.2, the coefficient matrix PA is almost surely full-rank and ‖|P †

A|‖∞ is
conjecturally ≤ ns log s. Furthermore, according to Corollary 1, our algorithm
is also applicable to learning a random DFA after minimization.

4.2 Experiments and Empirical Results

In this section we present a series of experimental results to study the empirical
performance of the learning algorithm, which was run in MATLAB on a worksta-
tion built with Intel i5-2500 3.30GHz CPU and 8GB memory. To be more robust
against fluctuation from randomness, each test was run for 20 times and the medi-
ans were taken. The automata are generated uniformly at random as defined and
the algorithm solves the equation system {pyMσ = pyσ | y ∈ Σ≤logs n�} using
the built-in linear least squares function in MATLAB. We simulate the statistical
query oracle with uniform additive noise. The experiments start with an empiri-
cal estimate for the norm ‖|P †

A|‖∞. We first vary the automaton size n from 32 to
4300 with fixed alphabet size s = 2. Figure 3 (in the appendices) shows the curve
of ‖|P †

A|‖∞ versus n with fixed s. Notice that the threshold phenomenon in the
plot comes from the ceiling operation in the algorithm configuration. When n is
much smaller than the threshold slogs n�, the system is overdetermined with many
extra equations. Thus it is robust to perturbation and well-conditioned. When n
grows up and approaches the threshold slogs n�, the system has fewer extra equa-

130 D. Angluin and D. Chen

Fig. 1. Maximum absolute error versus n with fixed s = 2

Fig. 2. Maximum absolute error versus s with fixed n = 256

tions and becomes relatively more sensitive to perturbations, for which the condi-
tion number increases until the automaton size reaches n = si of the next integer
i. One can avoid this threshold phenomenon by making the size of the equation
system grow smoothly as n increases. We then fix n to be 256 and vary s from
2 to 75, as shown in Figure 4 (in the appendices). Similarly there is the thresh-
old phenomenon resulting from the ceiling strategy. All peaks where n = si are
included and plotted. Meanwhile the rank of PA is measured to support the full-
rank assumption. Matrix PA is almost surely full-rank for large n or s and both fig-
ures suggest an upper bound ns log s for ‖|P †

A|‖∞. We set the query tolerance τ as
log log ns

ns log ns log2 s in the algorithm and measure the maximum absolute error ‖z − ẑ‖∞
at each run. Figures 1 and 2 demonstrate the experimental results. Along with
the error curve in each figure a function is plotted to approximate the asymptotic
order of the decline rate of the error. An empirical error bound is O(n−0.3) with
fixed s and O(s−0.3) with fixed n.

Learning a Random DFA from Uniform Strings and State Information 131

5 Discussion

In this paper we prove fast convergence of random walks on a random DFA
and apply this theoretical result to learning a random DFA in the statistical
query model. One potential future work is to validate the full-rank assumption
or to polynomially bound ‖|P †

A|‖∞ using the power of random matrix theory.
Note that ‖|P †

A|‖∞ reflects the asymmetry of the automaton graph. The class of
permutation automata [19] is one example that has symmetric graph structure
and degenerate PA. Another technical question on the fast convergence result is
whether it can be generalized to weighted random walks on random DFAs. An
immediate benefit from this generalization is the release from the requirement
of uniform input strings in the DFA learning algorithm. However, we conjecture
such generalization requires a polynomial lower bound on the edge weights in the
graph, to avoid exponentially small nonzero elements in the walk matrix P . A
further generalization is applying this algorithm to learning random probabilistic
finite automata. In this case we will have a similar linear equation system, but
the solution vector z can be continuous, not necessarily being a binary vector.

Acknowledgments. We thank Borja Balle Pigem for helpful discussions and the
anonymous reviewers of ALT 2015 for their valuable comments.

Appendix: A Toy Example

Suppose we consider the alphabet {0, 1} and a 3-state DFA with the following
transition matrices.

M0 =

⎛

⎝
0 1 0
1 0 0
1 0 0

⎞

⎠ and M1 =

⎛

⎝
0 1 0
0 0 1
0 1 0

⎞

⎠

For this automaton, the stationary distribution pλ is (1/3, 4/9, 2/9). Since
logs n� = log2 3� = 2, the algorithm recovers the first column of matrix M0,
denoted by z = (M0(1, 1),M0(2, 1),M0(3, 1))�, by solving the overdetermined
equation system

⎧
⎪⎪⎨

⎪⎪⎩

p00 · z = p000(1)
p01 · z = p010(1)
p10 · z = p100(1)
p11 · z = p110(1)

, i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

1
3M0(1, 1) + 2

3M0(2, 1) + 0M0(3, 1) = 2
3

0M0(1, 1) + 2
3M0(2, 1) + 1

3M0(3, 1) = 1
1M0(1, 1) + 0M0(2, 1) + 0M0(3, 1) = 0
0M0(1, 1) + 4

9M0(2, 1) + 5
9M0(3, 1) = 1

Similarly the algorithm recovers all columns in M0 and M1 and reconstructs
the target automaton. Note that in the statistical query model the above equa-
tion system is perturbed but we showed the algorithm is robust to statistical
query noise.

132 D. Angluin and D. Chen

Appendix: Estimate of ‖|P †
A|‖∞

Fig. 3. ‖|P †
A|‖∞ versus n with fixed s = 2

Fig. 4. ‖|P †
A|‖∞ versus s with fixed n = 256

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Angluin, D., Aspnes, J., Eisenstat, S., Kontorovich, A.: On the learnability of
shuffle ideals. Journal of Machine Learning Research 14, 1513–1531 (2013)

3. Angluin, D., Eisenstat, D., Kontorovich, L.A., Reyzin, L.: Lower bounds on learn-
ing random structures with statistical queries. In: ALT (2010)

4. Balle, B.: Ergodicity of random walks on random DFA. CoRR, abs/1311.6830
(2013)

5. Björck, A.: Component-wise perturbation analysis and error bounds for linear least
squares solutions. BIT Numerical Mathematics 31(2), 237–244 (1991)

Learning a Random DFA from Uniform Strings and State Information 133

6. Chen, D.: Learning shuffle ideals under restricted distributions. In: NIPS (2014)
7. Chung, F.: Laplacians and the Cheeger inequality for directed graphs. Annals of

Combinatorics 9, 1–19 (2005)
8. Freund, Y., Kearns, M., Ron, D., Rubinfeld, R., Schapire, R.E., Sellie, L.: Efficient

learning of typical finite automata from random walks. In: STOC (1993)
9. Grusho, A.A.: Limit distributions of certain characteristics of random automaton

graphs. Mathematical notes of the Academy of Sciences of the USSR (1973)
10. Higham, N.J.: A survey of componentwise perturbation theory in numerical linear

algebra. In: Proceedings of symposia in applied mathematics (1994)
11. Jackson, J.C., Lee, H.K., Servedio, R.A., Wan, A.: Learning random monotone

DNF. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and
RANDOM 2008. LNCS, vol. 5171, pp. 483–497. Springer, Heidelberg (2008)

12. Jackson, J.C., Servedio, R.A.: Learning random log-depth decision trees under
uniform distribution. SIAM Journal on Computing 34(5), 1107–1128 (2005)

13. Kearns, M.: Efficient noise-tolerant learning from statistical queries. J. ACM 45(6),
983–1006 (1998)

14. Kearns, M., Valiant, L.: Cryptographic limitations on learning boolean formulae
and finite automata. J. ACM 41(1), 67–95 (1994)

15. Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be approx-
imated within any polynomial. J. ACM 40(1), 95–142 (1993)

16. Ruiz, J., Garcia, P.: Learning k-piecewise testable languages from positive data.
In: Grammatical Interference Learning Syntax from Sentences (1996)

17. Sellie, L.: Learning random monotone DNF under the uniform distribution. In:
COLT, pp. 181–192 (2008)

18. Sellie, L.: Exact learning of random DNF over the uniform distribution. In: STOC,
pp. 45–54. ACM (2009)

19. Thierrin, G.: Permutation automata. Theory of Computing Systems (1968)
20. Trakhtenbrot, B.A., Barzdin, I.M.: Finite automata; behavior and synthesis. Fun-

damental Studies in Computer Science 1 (1973)
21. Valiant, L.G.: A theory of the learnable. Commun. ACM (November 1984)

	Learning a Random DFA from Uniform Strings and State Information
	1 Introduction
	2 Preliminaries
	3 Random Walks on a Random DFA
	4 Reconstructing a Random DFA
	4.1 The Learning Algorithm
	4.2 Experiments and Empirical Results

	5 Discussion
	References

