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Abstract. We give a new deterministic algorithm that non-adaptively
learns a hidden hypergraph from edge-detecting queries. All previ-
ous non-adaptive algorithms either run in exponential time or have
non-optimal query complexity. We give the first polynomial time non-
adaptive learning algorithm for learning hypergraph that asks an almost
optimal number of queries.

1 Introduction

Let Gs,r be a set of all labeled hypergraphs of rank at most r (the maximum
size of an edge e ⊆ V in the hypergraph) on the set of vertices V = {1, 2, . . . , n}
with at most s edges. Given a hidden Sperner hypergraph1 G ∈ Gs,r, we need
to identify it by asking edge-detecting queries. An edge-detecting query QG(S),
for S ⊆ V is: Does S contain at least one edge of G? Our objective is to non-
adaptively learn the hypergraph G by asking as few queries as possible.

This problem has many applications in chemical reactions, molecular biology
and genome sequencing, where deterministic non-adaptive algorithms are most
desirable. In chemical reactions, we are given a set of chemicals, some of which
react and some which do not. When multiple chemicals are combined in one test
tube, a reaction is detectable if and only if at least one set of the chemicals in
the tube reacts. The goal is to identify which sets react using as few experiments
as possible. The time needed to compute which experiments to do is a secondary
consideration, though it is polynomial for the algorithms we present. See [2,4–
7,13,15,17–22,26,28,29,31,34] for more details and many other applications in
molecular biology.

In all of the above applications the rank of the hypergraph and the number
of edges are much smaller than the number of vertices n. Therefore, throughout
the paper, we will assume that n ≥ (max(r, s))2. In the full paper we show that
the results in this paper are also true for all values of r, s and2 n.

The above hypergraph Gs,r learning problem is equivalent to the problem of
exact learning a monotone DNF with at most s monomials (monotone terms),

1 The hypergraph is Sperner hypergraph if no edge is a subset of another. If it is not
Sperner hypergraph then learning is not possible.

2 It is easy to see from Lemma 4 that all the results in this paper are also true for any
r, s and n ≥ r + s.
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where each monomial contains at most r variables (s-term r-MDNF) from mem-
bership queries [1,7]. In this paper we will use the later terminology rather than
the hypergraph one.

The non-adaptive learnability of s-term r-MDNF was studied in [12,20,21,
25,28,29,34]. Torney, [34], first introduced the problem and gave some applica-
tions in molecular biology. The first explicit non-adaptive learning algorithm for
s-term r-MDNF was given by Gao et. al., [25]. They showed that this class can
be learned using a (n, (s, r))-cover-free family ((n, (s, r))-CFF). This family is a
set A ⊆ {0, 1}n of assignments such that for every distinct i1, . . . , is, j1, . . . , jr ∈
{1, . . . , n} there is a ∈ A such that ai1 = · · · = ais = 0 and aj1 = · · · = ajr = 1.
Given such a set, the “folklore algorithm” simply takes all the monomials M of size
at most r that satisfy (∀a ∈ A)(M(a) = 1 ⇒ f(a) = 1). The disjunction of all such
monomials is equivalent to the target function. Assuming a set of (n, (s, r))-CFF
of size N can be constructed in time T , this algorithm learns s-term r-MDNF with
N membership queries in time O(

(
n
r

)
+T ). Notice that, no matter what is the time

complexity of constructing the (n, (s, r))-CFF, the folklore algorithm runs in time
at least nΘ(r), which is nonpolynomial for nonconstant r.

In [9,21], it is shown that any set A ⊂ {0, 1}n that non-adaptively learns
s-term r-MDNF is an (n, (s − 1, r))-CFF. We also show that A ⊂ {0, 1}n is an
(n, (s, r − 1))-CFF. Therefore, the minimum size of an (n, (s − 1, r))-CFF and
(n, (s, r−1))-CFF is also a lower bound for the number of queries (and therefore,
for the time complexity) of any non-adaptively learning algorithm for s-term r-
MDNF. It is known, [32], that any (n, (s, r))-CFF, n ≥ (max(r, s))2, must have
size at least Ω(N(s, r) log n) where

N(s, r) =
s + r

log
(
s+r

r

)
(

s + r

r

)
. (1)

Therefore, any non-adaptive algorithm for learning s-term r-DNF must ask at
least max(N(s − 1, r), N(s, r − 1)) log n = Ω(N(s, r) log n) membership queries
and runs in at least Ω(N(s, r)n log n) time.

To improve the query complexity of the folklore algorithm, many tried to
construct (n, (s, r))-CFF with optimal size in polynomial time. That is, time
poly(n,N(s, r)). Gao et. al. constructed an (n, (s, r))-CFF of size S = (2s log n/
log(s log n))r+1 in time Õ(S). It follows from [33] that an (n, (s, r))-CFF of
size O

(
(sr)log

∗ n log n
)

can be constructed in polynomial time. Polynomial time
almost optimal constructions of size N(s, r)1+o(1) log n for (n, (s, r))-CFF were
given in [10–12,24]. Those constructions give almost optimal query complex-
ity for the folklore algorithm, but still, the running time is nonpolynomial for
nonconstant r.

Chin et. al. claim in [20] that they have a polynomial time algorithm that
constructs an (n, (s, r))-CFF of optimal size. Their analysis is misleading.3 The
size is indeed optimal but the time complexity of the construction is O(

(
n

r+s

)
).

3 Some parts of the construction can indeed be performed in polynomial time, but not
the whole construction.
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But, as we mentioned above, even if an (n, (s, r))-CFF can be constructed in
polynomial time, the folklore learning algorithm still takes nonpolynomial time.

The first polynomial time randomized non-adaptive learning algorithm was
given by Macula et. al., [28,29]. They gave several randomized non-adaptive
algorithms that are not optimal in the number of queries but use a different
learning algorithm that runs in polynomial time. They show that for every s-
term r-MDNF f and for every monomial M in f there is an assignment a in a
(n, (s − 1, r))-CFF A such that M(a) = 1 and all the other monomials of f are
zero on a. To learn this monomial they compose every assignment in A with a
set of assignments that learns one monomial.

We first use the algorithm of Macula et. al., [28,29], combined with the
deterministic constructions of (n, (r, s))-CFF in [10–12,24] and the fact that
the assignments used in any non-adaptive algorithm must be (n, (s, r − 1))-
CFF and (n, (s − 1, r))-CFF to change their algorithm to a deterministic non-
adaptive algorithm and show that it asks N(s, r)1+o(1) log2 n queries and runs in
polynomial time. The query complexity of this algorithm is almost optimal in s
and r but quadratic in log n. We then use a new technique, similar to the one
in [16], that changes any non-adaptive learning algorithm that asks Q(r, s, n)
queries and runs in polynomial time to a non-adaptive learning algorithm that
asks (rs)2 · Q(r, s, (rs)2) log n queries and runs in polynomial time. This gives a
non-adaptive learning algorithm that asks N(s, r)1+o(1) log n queries and runs in
n log n · poly(N(s, r)) time. Notice that the time complexity of this algorithm is
almost linear in n compared to the folklore algorithm that runs in nonpolynomial
time nΘ(r) + n log n · N(s, r)1+o(1). Our algorithm has almost optimal query
complexity and time complexity.

The following table summarizes the results mentioned above for non-adaptive
learning algorithms for s-term r-MDNF. In the table we assume that n ≥
(max(r, s))2 and r = ω(1). For r = O(1) the folklore algorithm is almost optimal
and runs in polynomial time.4

References Query Complexity Time Complexity
[25] N(s, r) · (r log n/ log(s log n))r+1

(
n
r

)

[20] N(s, r) log n
(

n
r+s

)

[10–12,24] N(s, r)1+o(1) log n
(
n
r

)

Ours+[28,29]+[12] N(s, r)1+o(1) log2 n poly(n,N(s, r))
Ours N(s, r)1+o(1) log n (n log n) · poly(N(s, r))

Ours, r = o(s) N(s, r)1+o(1) log n (n log n) · N(s, r)1+o(1)

Lower Bound [21] N(s, r) log n (n log n) · N(s, r)

The adaptive learnability of s-term r-MDNF was already studied in many
papers which gave almost optimal algorithms [5–7,21]. In [5], Abasi et. al. gave
a polynomial time adaptive learning algorithm for s-term r-MDNF with almost
optimal query complexity.
4 The factor of n in the lower bound of the time complexity comes from the length n

of the queries.
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This paper is organized as follows. Section 2 gives some definitions and pre-
liminary results that will be used throughout the paper. Section 3 gives the first
algorithm that asks N(s, r)1+o(1) log2 n membership queries and runs in time
poly(n,N(s, r)). Section 4 gives the reduction and shows how to use it to give
the second algorithm that asks N(s, r)1+o(1) log n membership queries and runs
in time (n log n) · N(s, r)1+o(1).

All the algorithms in this paper are deterministic. One can consider a ran-
domized construction of CFF that gives a randomized algorithm that slightly
improves (in the o(1) of the exponent) the query and time complexity.

2 Definitions

2.1 Monotone Boolean Functions

For a vector w, we denote by wi the ith entry of w. Let {e(i) | i = 1, . . . , n} ⊂
{0, 1}n be the standard basis. That is, e

(i)
j = 1 if i = j and e

(i)
j = 0 otherwise. For

a positive integer j, we denote by [j] the set {1, 2, . . . , j}. For two assignments
a, b ∈ {0, 1}n we denote by (a ∧ b) ∈ {0, 1}n the bitwise AND assignment. That
is, (a ∧ b)i = ai ∧ bi.

Let f(x1, x2, . . . , xn) be a boolean function from {0, 1}n to {0, 1}. For 1 ≤
i1 < i2 < · · · < ik ≤ n and σ1, . . . , σk ∈ {0, 1} ∪ {x1, . . . , xn} we denote by

f |xi1←σ1,xi2←σ2,··· ,xik
←σk

the function f(y1, . . . , yn) where yij = σj for all j ∈ [k] and yi = xi for all i ∈
[n]\{i1, . . . , ik}. We say that the variable xi is relevant in f if f |xi←0 �≡ f |xi←1.
A variable xi is irrelevant in f if it is not relevant in f . We say that the class is
closed under variable projections if for every f ∈ C and every two variables xi

and xj , i, j ≤ n, we have f |xi←xj
∈ C.

For two assignments a, b ∈ {0, 1}n, we write a ≤ b if for every i ∈ [n], ai ≤ bi.
A Boolean function f : {0, 1}n → {0, 1} is monotone if for every two assignments
a, b ∈ {0, 1}n, if a ≤ b then f(a) ≤ f(b). Recall that every monotone boolean
function f has a unique representation as a reduced monotone DNF, [1]. That is,
f = M1 ∨ M2 ∨ · · · ∨ Ms where each monomial Mi is an AND of input variables,
and for every monomial Mi there is a unique assignment a(i) ∈ {0, 1}n such that
f(a(i)) = 1 and for every j ∈ [n] where a

(i)
j = 1 we have f(a(i)|xj←0) = 0. We

call such assignment a minterm of the function f . Notice that every monotone
DNF can be uniquely determined by its minterms [1]. That is, a ∈ {0, 1}n is a
minterm of f iff M := ∧i∈{j:aj=1}xi is a monomial in f .

An s-term r-MDNF is a monotone DNF with at most s monomials, where
each monomial contains at most r variables. It is easy to see that the class s-term
r-MDNF is closed under variable projections.
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2.2 Learning from Membership Queries

Consider a teacher that has a target function f : {0, 1}n → {0, 1} that is s-term
r-MDNF. The teacher can answer membership queries. That is, when receiving
a ∈ {0, 1}n it returns f(a). A learning algorithm is an algorithm that can ask the
teacher membership queries. The goal of the learning algorithm is to exactly learn
(exactly find) f with a minimum number of membership queries and optimal
time complexity.

Let c and H ⊃ C be classes of boolean formulas. We say that C is learn-
able from H in time T (n) with Q(n) membership queries if there is a learning
algorithm that, for a target function f ∈ C, runs in time T (n), asks at most
Q(n) membership queries and outputs a function h in H that is equivalent to C.
When H = C then we say that C is properly learnable in time T (n) with Q(n)
membership queries.

In adaptive algorithms the queries can depend on the answers to the previous
queries where in non-adaptive algorithms the queries are independent of the
answers to the previous queries and therefore all the queries can be asked in
parallel, that is, in one step.

2.3 Learning a Hypergraph

Let Gs,r be a set of all labeled hypergraphs on the set of vertices V = {1, 2, . . . , n}
with s edges of rank (size) at most r. A hypergraph is called Sperner hypergraph
if no edge is a subset of another. Given a hidden Sperner hypergraph G ∈ Gs,r,
we need to identify it by asking edge-detecting queries. An edge-detecting query
QG(S), for S ⊆ V is: does S contain at least one edge of G? Our objective is to
learn (identify) the hypergraph G by asking as few queries as possible.

This problem is equivalent to learning s-term r-MDNF f from membership
queries. Each edge e in the hypergraph corresponds to the monotone term ∧i∈exi

in f and the edge-detecting query QG(S) corresponds to asking membership
queries of the assignment a(S) where a

(S)
i = 1 if and only if i ∈ S. Therefore,

the class Gs,r can be regarded as the set of s-term r-MDNF. The class of s-term
r-MDNF is denoted by G∗

s,r. Now it obvious that any learning algorithm for G∗
s,r

is also a learning algorithm for Gs,r.
The following example shows that learning is not possible for hypergraphs

that are not Sperner hypergraphs. Let G1 be a graph where V1 = {1, 2} and
E1 = {{1}, {1, 2}}. This graph corresponds to the function f = x1 ∨ x1x2 that
is equivalent to x1 which corresponds to the graph G2 where V2 = {1, 2} and
E2 = {{1}}. Also, no edge-detecting query can distinguish between G1 and G2.

We say that A ⊆ {0, 1}n is an identity testing set for G∗
s,r if for every two

distinct s-term r-MDNF f1 and f2 there is a ∈ A such that f1(a) �= f2(a).
Obviously, every identity testing set for G∗

s,r can be used as queries to non-
adaptively learns G∗

s,r. Also, if A is a nonadaptive algorithm that learns G∗
s,r

from membership queries A then A is identity testing set for G∗
s,r. We denote

by OPT(G∗
s,r) the minimum size of an identity testing set for G∗

s,r. We say that
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a non-adaptive algorithm A is almost optimal if it runs in poly(OPT(G∗
s,r), n)

time and asks OPT(G∗
s,r)

1+o(1) queries.

2.4 Cover Free Families

An (n, (s, r))-cover free family ((n, (s, r))-CFF), [23], is a set A ⊆ {0, 1}n such
that for every 1 ≤ i1 < i2 < · · · < id ≤ n where d = s + r and every J ⊆ [d] of
size |J | = s there is a ∈ A such that aik = 0 for all k ∈ J and aij = 1 for all
j ∈ [d]\J . Denote by N(n, (s, r)) the minimum size of such set. The lower bound
in [30,32] is, for n ≥ (max(r, s))2,

N(n, (s, r)) ≥ Ω (N(s, r) · log n) (2)

where N(s, r) is as defined in (1). It is known that a set of random

m = O

(
r1.5

(
log

(s

r
+ 1

)) (
N(s, r) · log n +

N(s, r)
s + r

log
1
δ

))

= N(s, r)1+o(1)(log n + log(1/δ)) (3)

assignments a(i) ∈ {0, 1}n, where each a
(i)
j is 1 with probability r/(s + r), is an

(n, (s, r))-CFF with probability at least 1 − δ.
It follows from [10–12,24] that for n ≥ (rs)c, for some constant c, there is a

polynomial time (in the size of the CFF) deterministic construction algorithm
of (n, (s, r))-CFF of size

N(s, r)1+o(1) log n (4)

where the o(1) is with respect to r. When r = o(s) the construction runs in
linear time [10,12].

We now show

Lemma 1. For any r, s and n ≥ r + s, there is a polynomial time deterministic
construction algorithm of (n, (s, r))-CFF of size

N(s, r)1+o(1) log n.

Proof. For n ≥ (rs)c, for some constant c, the result follows from [10–12,24].
For r + s ≤ n ≤ (rs)c we construct the (n, (s, r))-CFF for N = (rs)c and
then truncate the vectors to length n. The size is N(s, r)1+o(1) log(rs)c =
N(s, r)1+o(1) log n. ��

2.5 Perfect Hash Function

Let H be a family of functions h : [n] → [q]. For d ≤ q we say that H is an
(n, q, d)-perfect hash family ((n, q, d)-PHF) [8] if for every subset S ⊆ [n] of size
|S| = d there is a hash function h ∈ H such that h|S is injective (one-to-one)
on S, i.e., |h(S)| = d.
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In [10] Bshouty shows

Lemma 2. Let q ≥ 2d2. There is a (n, q, d)-PHF of size

O

(
d2 log n

log(q/d2)

)

that can be constructed in time O(qd2n log n/ log(q/d2)).

We now give the following folklore results that will be used for randomized
learning algorithms

Lemma 3. Let q > d(d− 1)/2 be any integer. Fix any set S ⊂ [n] of d integers.
Consider

N :=
log(1/δ)

log
(

1
1−g(q,d)

) ≤ log(1/δ)
log 2q

d(d−1)

uniform random hash functions hi : [n] → [q], i = 1, . . . , N where

g(q, d) :=
(

1 − 1
q

)(
1 − 2

q

)
· · ·

(
1 − d − 1

q

)

With probability at least 1 − δ one of the hash functions is one-to-one on S.

2.6 A Lower Bound For Learning

In this subsection we prove the following lower bound

Lemma 4. Let n ≥ r + s. Any identity testing set A ⊆ {0, 1}n for s-term
r-MDNF is (n, (s, r − 1))-CFF and (n, (s − 1, r))-CFF.

In particular, for w = max(r, s) and d = min(r, s),

1. if n > w2 then |A| = Ω(N(s, r) log n),
2. if n = w1+ε for some 1/d < ε < 1, then |A| = Ω(N(s, r)/ logO(1/ε) w),
3. if r + s ≤ n ≤ w1+1/d then |A| = Ω

((
n
d

))
, and

4. for all n ≥ r + s we have |A| = Ω(
(
s+r

r

)
).

Proof. Consider any distinct 1 ≤ i1, · · · , ir+s−1 ≤ n. To be able to distinguish
between the two functions f1 = (xi1 · · · xir ) ∨ xir+1 ∨ · · · ∨ xir+s−1 and f2 =
(xi1 · · · xir−1) ∨ xir+1 ∨ · · · ∨ xir+s−1 we must have an assignment a that satisfies
ai1 = · · · = air−1 = 1 and air = · · · = air+s−1 = 0. Therefore A is (n, (s, r − 1))-
CFF. To be able to distinguish between the two functions g1 = (xi1 · · · xir ) ∨
xir+1 ∨ · · · ∨ xir+s−1 and g2 = xir+1 ∨ · · · ∨ xir+s−1 we must have an assignment
a that satisfies ai1 = · · · = air = 1 and air+1 = · · · = air+s−1 = 0. Therefore A is
(n, (s − 1, r))-CFF.

The bounds 1-4 follows from the lower bounds of (n, (s − 1, r))-CFF and
(n, (s, r − 1))-CFF in [3,32]. ��
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2.7 The Folklore Algorithm

The “folklore algorithm” simply construct a (n, (s, r))-CFF, A, and takes all the
monomials M of size at most r that satisfy (∀a ∈ A)(M(a) = 1 ⇒ f(a) = 1). The
disjunction of all such monomials is equivalent to the target function. This follows
from the following two facts: (1) For any monomial M ′ where M ′ �⇒ f , there
is an assignment a ∈ A such that f(a) = 0 and M ′(a) = 1. (2) f = ∧M⇒fM .
Assuming a set of (n, (s, r))-CFF of size N can be constructed in time T , this
algorithm learns s-term r-MDNF with N membership queries in time O(

(
n
r

)
+T ).

In particular we have

Lemma 5. Let n ≥ r + s. A (n, (s, r))-CFF is an identity testing set for s-term
r-MDNF.

We now show

Theorem 1. Let n ≥ r+s. For constant r or constant s there is a non-adaptive
proper learning algorithm for s-term r-MDNF that asks

N(s, r)1+o(1) log n

queries and runs in time poly(n,N(s, r)).
For n ≥ (max(r, s))2 the algorithm is almost optimal.

Proof. For constant r the folklore algorithm runs in polynomial time and, by
Lemma 1, asks N(s, r)1+o(1) log n queries. By Lemma 4 it is almost optimal for
n ≥ (max(r, s))2.

For constant s, every s-term r-MDNF is rs-clause s-MCNF. We first learn f as
rs-clause s-MCNF. This takes polynomial time and N(s, r)1+o(1) log n queries.5

We then change the target to s-term r-MDNF. This can be done in polynomial
time (rs)s. By Lemma 4, it is almost optimal for n ≥ (max(r, s))2. ��

3 The First Algorithm

In this section we give the first algorithm that asks N(s, r)1+o(1) log2 n queries
and runs in time poly(n,N(s, r))

The first algorithm is similar to the algorithm in [28,29] that were used to give
a Monte Carlo randomized algorithm. Here we use the deterministic construction
of CFF to change it to a deterministic algorithm and give a full analysis for its
complexity.

We first prove

Lemma 6. Let A be an (n, (1, r))-CFF and B be an (n, (s− 1, r))-CFF. There
is a non-adaptive proper learning algorithm for s-term r-MDNF that asks all the
queries in A ∧ B := {a ∧ b | a ∈ A, b ∈ B} and finds the target function in time
|A ∧ B| · n.

In particular, A ∧ B is an identity testing set for s-term r-MDNF.
5 To show that a clause C = xi1 ∨· · ·∨xis is not in f and f �⇒ C we need an assignment a

such that C(a) = 0 and f(a) = 1. Therefore, f can be learned with an (n, (s, r))-CFF.
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Proof. Let f be the target function. For every b ∈ B, let Ab = A∧b := {a∧b | a ∈
A}. Let Ib be the set of all i ∈ [n] such that (a ∧ b)i ≥ f(a ∧ b) for all a ∈ A. Let
Tb := ∧i∈Ibxi. We will show that

1. If T is a term in f then there is b ∈ B such that Tb ≡ T .
2. Either Tb = ∧i∈[n]xi or Tb is a subterm of one of terms of f .

To prove 1, let T be a term in f and let b ∈ B be an assignment that satisfies
T and does not satisfy the other terms. Such assignment exists because B is
(n, (s − 1, r))-CFF. Notice that f(x ∧ b) = T (x) = T (x ∧ b). If xi is in T and
f(a ∧ b) = 1 then T (a ∧ b) = T (a) = f(a ∧ b) = 1 and (a ∧ b)i = 1. Therefore
i ∈ Ib and xi in Tb. If xi not in T then since A is (n, (1, r))-CFF there is a′ ∈ A
such that T (a′) = 1 and a′

i = 0. Then (a′ ∧b)i = 0 where f(a′ ∧b) = 1. Therefore
i is not in Ib and xi is not in Tb. Thus, Tb ≡ T .

We now prove 2. We have shown in 1 that if b satisfies one term T then
Tb ≡ T . If b does not satisfy any one of the terms in f then f(a ∧ b) = 0 for all
a ∈ A and then Tb = ∧i∈[n]xi. Now suppose b satisfies at least two terms T1 and
T2. Consider any variable xi. If xi is not in T1 then as before xi will not be in
Tb. This shows that Tb is a subterm of T1. ��

This gives the following algorithm

Learn(G∗
s,r)

1) Construct an (n, (1, r))-CFF A and an (n, (s − 1, r))-CFF B.
2) Ask membership queries for all a ∧ b, a ∈ A and b ∈ B.
3) For every b ∈ B.
4) Tb ← 1.
5) For every i ∈ [n].
6) If for all a ∈ A, (a ∧ b)i ≥ f(a ∧ b)
7) then Tb ← Tb ∧ xi.
8) T ← T ∪ {Tb}.
9) Remove from T the term ∧i∈[n]xi

and all subterms of a larger term.

Fig. 1. An algorithm for learning G∗
s,r.

We now have

Theorem 2. Let n ≥ r + s. There is a non-adaptive proper learning algorithm
for s-term r-MDNF that asks

N(s, r)1+o(1) log2 n

queries and runs in time poly(n,N(s, r)).
For n ≥ (max(r, s))2 the algorithm is almost optimal.
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Proof. For constant r or constant s the result follows from Theorem 1. Let
r, s = ω(1). By Lemma 1, constructing a (n, (1, r))-CFF of size |A| = r2 log n
and a (n, (s−1, r))-CFF of size |B| = N(s−1, r)1+o(1) log n = N(s, r)1+o(1) log n
takes poly(n,N(s, r)) time. By Lemma 6, the learning takes time |A∧B|·n = poly
(n,N(s, r)) time. The number of queries of the algorithm is |A∧B| ≤ |A| · |B| =
N(s, r)1+o(1) log2 n for r, s = ω(1).

By Lemma 4 the algorithm is almost optimal for n ≥ (max(r, s))2. ��
A randomized algorithm with a better query complexity can be obtained

using a randomized (n, (1, r))-CFF, B, and a randomized (n, (s− 1, r))-CFF, A.

4 The Second Algorithm

In this section we give the second algorithm
We first prove the following result

Lemma 7. Let C be a class of boolean functions that is closed under vari-
able projection. Let H be a class of boolean functions and suppose there is an
algorithm that, given f ∈ H as an input, finds the relevant variables of f in
time R(n).

If C is non-adaptively learnable from H in time T (n) with Q(n) membership
queries then C is non-adaptively learnable from H in time

O

(
qd2n log n +

d2 log n

log(q/(d + 1)2)
(T (q) + Q(q)n + R(q))

)

with

O

(
d2Q(q)

log(q/(d + 1)2)
log n

)

membership queries where d is an upper bound on the number of relevant vari-
ables in f ∈ C and q is any integer such that q ≥ 2(d + 1)2.

Proof. Consider the algorithm in Figure 2. Let A(n) be a non-adaptive algorithm
that learns C from H in time T (n) with Q(n) membership queries. Let f ∈ Cn

be the target function. Consider the (n, q, d + 1)-PHF P that is constructed in
Lemma 2 (Step 1 in the algorithm). Since C is closed under variable projection,
for every h ∈ P the function fh := f(xh(1), . . . , xh(n)) is in Cq. Since the mem-
bership queries to fh can be simulated by membership queries to f there is a
set of |P | · Q(q) assignments from {0, 1}n that can be generated from A(q) that
non-adaptively learn fh for all h ∈ P (Step 2 in the algorithm). The algorithm
A(q) learns f ′

h ∈ H that is equivalent to fh.
Then the algorithm finds the relevant variables of each f ′

h ∈ H (Step 3 in the
algorithm). Let Vh be the set of relevant variables of f ′

h and let dmax = maxh |Vh|.
Suppose xi1 , . . . , xid′ , d′ ≤ d are the relevant variables in the target function f .
There is a map h′ ∈ P such that h′(i1), . . . , h′(id′) are distinct and therefore f ′

h′

depends on d′ variables. In particular, d′ = dmax (Step 4 in the algorithm).



Non-adaptive Learning of a Hidden Hypergraph 99

After finding d′ = dmax we have: Every h for which f ′
h depends on d′

variables necessarily satisfies h(i1), . . . , h(id′) are distinct. Consider any other
non-relevant variable xj �∈ {xi1 , . . . , xid′ }. Since P is (n, q, d + 1)-PHF, there is
h′′ ∈ P such that h′′(j), h′′(i1), . . . , h′′(id′) are distinct. Then f ′

h′′ depends on
xh′′(i1), . . . , xh′′(id′ ) and not on xh′′(j). This way the non-relevant variables can
be eliminated. This is Step 6 in the algorithm. Since the above is true for every
non-relevant variable, after Step 6 in the algorithm, the set X contains only the
relevant variables of f . Then in Steps 7 and 8, the target function f can be
recovered from any f ′

h0
that satisfies |V (h0)| = d′. ��

Algorithm Reduction I
A(n) is a non-adaptive learning algorithm for C from H.
1) Construct an (n, q, d + 1)-PHF P .
2) For each h ∈ P

Run A(q) to learn fh := f(xh(1), . . . , xh(n)).
Let f ′

h ∈ H be the output of A(q).
3) For each h ∈ P

Vh ← the relevant variables in f ′
h

4) dmax ← maxh |Vh|.
5) X ← {x1, x2, . . . , xn}.
6) For each h ∈ P

If |Vh| = dmax then X ← X\{xi | xh(i) �∈ Vh}
7) Take any h0 with |Vh0 | = dmax

8) Replace each relevant variable xi in f ′
h0 by xj ∈ X where h0(j) = i.

9) Output the function constructed in step (8).

Fig. 2. Algorithm Reduction.

We now prove

Theorem 3. Let n ≥ r + s. There is a non-adaptive proper learning algorithm
for s-term r-MDNF that asks

N(s, r)1+o(1) log n

queries and runs in time (n log n) · poly(N(s, r)) time.
For n ≥ (max(r, s))2 the algorithm is almost optimal.

Proof. For constant r or constant s the result follows from Theorem 1. Let
r, s = ω(1). We use Lemma 7. C = H is the class of s-term r-MDNF. This
class is closed under variable projection. Given f that is s-term r-MDNF, one
can find all the relevant variables in R(n) = O(sr) time. The algorithm in
the previous section runs in time T (n) = poly(n,N(s, r)) and asks Q(n) =
N(s, r)1+o(1) log2 n queries. The number of variables in the target is bounded by
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d = rs. Let q = 3r2s2 ≥ 2d2. By Lemma 7, and since r, s = ω(1), there is a
non-adaptive algorithm that runs in time

O

(
qd2n log n +

d2 log n

log(q/d2)
(T (q)n + R(q))

)
= (n log n)poly(N(r, s))

and asks

O

(
d2Q(q)

log(q/d2)
log n

)
= N(s, r)1+o(1) log n

membership queries.
By Lemma 4 the algorithm is almost optimal for n ≥ (max(r, s))2. ��
A randomized algorithm with a better query complexity can be obtained

using a randomized (n, q, d + 1)-PHF, a randomized (n, (1, r))-CFF, B, and a
randomized (n, (s − 1, r))-CFF, A.
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