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Abstract. In Gold’s framework of inductive inference, the model of par-
tial learning requires the learner to output exactly one correct index
for the target object and only the target object infinitely often. Since
infinitely many of the learner’s hypotheses may be incorrect, it is not
obvious whether a partial learner can be modified to “approximate” the
target object.

Fulk and Jain (Approximate inference and scientific method. Infor-
mation and Computation 114(2):179–191, 1994) introduced a model of
approximate learning of recursive functions. The present work extends
their research and solves an open problem of Fulk and Jain by show-
ing that there is a learner which approximates and partially identifies
every recursive function by outputting a sequence of hypotheses which,
in addition, are also almost all finite variants of the target function.

The subsequent study is dedicated to the question how these find-
ings generalise to the learning of r.e. languages from positive data. Here
three variants of approximate learning will be introduced and investi-
gated with respect to the question whether they can be combined with
partial learning. Following the line of Fulk and Jain’s research, further
investigations provide conditions under which partial language learners
can eventually output only finite variants of the target language.

1 Introduction

Gold [8] considered a learning scenario where the learner is fed with piecewise
increasing amounts of finite data about a given target language L; at every
stage where a new input datum is given, the learner makes a conjecture about L.
If there is exactly one correct representation of L that the learner always outputs
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after some finite time (assuming that it never stops receiving data about L), then
the learner is said to have “identified L in the limit.” In this paper, it is assumed
that all target languages are encoded as recursively enumerable (r.e.) sets of
natural numbers, and that the learner uses Gödel numbers as its hypotheses.

Gold’s learning paradigm has been used as a basis for a variety of theoretical
models in subjects such as human language acquisition [12] and the theory of
scientific inquiry in the philosophy of science [4,11]. This paper is mainly con-
cerned with the partial learning model [13], which retains several features of
Gold’s original framework – the modelling of learners as recursive functions, the
use of texts as the mode of data presentation and the restriction of target classes
to the family of all r.e. sets – while liberalising the learning criterion by only
requiring the learner to output exactly one hypothesis of the target set infinitely
often while it must output any other hypothesis only finitely often. It is known
that partial learning is so powerful that the class of all r.e. languages can be
partially learnt [13].

However, the model of partial learning puts no further constraints on those
hypotheses that are output only finitely often. In particular, it offers no notion
of “eventually being correct” or even “approximating” the target object. From a
philosophical point of view, if partial learning is to be taken seriously as a model
of language acquisition, then it is quite plausible that learners are capable of
gradually improving the quality of their hypotheses over time. For instance, if
the learner M sees a sentence S in the text at some point, then it is conceivable
that after some finite time, M will only conjecture grammars that generate S.
This leads one to consider a notion of the learner “approximating” the target
language.

The central question in this paper is whether any partial learner can be
redefined in a way that it approximates the target object and still partially
learns it. The first results, in the context of partial learning, deal with Fulk and
Jain’s [5] notion of approximating recursive functions. Fulk and Jain proved the
existence of a learner that “approximates” every recursive function. This result
is generalised as follows: partial learners can always be made to approximate
recursive functions according to their model and, in addition, eventually output
only finite variants of the target function, that is, they can be designed as BC ∗

learners1. This result solves an open question posed by Fulk and Jain, namely
whether recursive functions can be approximated by BC ∗ learners. Note that
BC ∗ learning can also, in some sense, be considered a form of approximation,
as it requires that eventually all of the hypotheses (including those output only
finitely often) differ from the target object in only finitely many values. It thus
is interesting to see that partial learning can be combined not only with Fulk
and Jain’s model of approximation, but also with BC ∗ learning at the same
time. Note that in this paper, when two learning criteria A and B are said to
be combinable, it is generally not assumed that the new learner is effectively
constructed from the A-learner and the B-learner.

1 BC ∗ is mnemonic for “behaviourally correct with finitely many anomalies” [4].
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This raises the question whether partial learners can also be turned into
approximate learners in the more general case of learning r.e. languages. Unfor-
tunately, Fulk and Jain’s model applies only to learning recursive functions. The
second contribution is the design of three notions of approximate learning of r.e.
languages, two of which are directly inspired by Fulk and Jain’s model. It is then
investigated under which conditions partial learners can be modified to fulfill the
corresponding constraints of approximate learning. These investigations are also
extended to partial learners with additional constraints, such as consistency and
conservativeness. It will be shown that while partial learners can always be con-
structed in a way so that for any given finite set D, their hypotheses will almost
always agree with the target language on D, the same does not hold if D must
be a finite variant of a fixed infinite set. Thus trade-offs between certain approx-
imate learning constraints and partial learning are sometimes unavoidable – an
observation that perhaps has a broader implication in the philosophy of language
learning.

Following the line of Fulk and Jain’s research, conditions are investigated
under which partial language learners can eventually output only finite variants
of the target function. While it remains open whether or not partial learners
for a given BC ∗-learnable class can be made BC ∗-learners for this class without
losing identification power, some natural conditions on a BC ∗ learner M are
provided under which all classes learnable by M can be learnt by some BC ∗

learner N that is at the same time a partial learner.
Figure 1 summarises the main results of this paper. RECPart and RECAppr -

oxBC ∗Part refer respectively to partial learning of recursive functions and
approximate BC ∗ partial learning of recursive functions. The remaining learn-
ing criteria are abbreviated (see Definitions 1, 2 and 6), and denote learning of
classes of r.e. languages. An arrow from criterion A to criterion B means that the
collection of classes learnable under model A is contained in that learnable under
model B. Each arrow is labelled with the Corollary/Example/Remark/Theorem
number(s) that proves (prove) the relationship represented by the arrow. If there
is no path from A to B, then the collection of classes learnable under model A
is not contained in that learnable under model B.

2 Preliminaries

The notation and terminology from recursion theory adopted in this paper fol-
lows in general the book of Rogers [14]. Background on inductive inference can be
found in [9]. The symbol N denotes the set of natural numbers, {0, 1, 2, . . .}. Let
ϕ0, ϕ1, ϕ2, . . . denote a fixed acceptable numbering [14] of all partial-recursive
functions over N. Given a set S, S∗ denotes the set of all finite sequences in
S. Wherever no confusion may arise, S will also denote its own characteristic
function, that is, for all x ∈ N, S(x) = 1 if x ∈ S and S(x) = 0 otherwise.
One defines the e-th r.e. set We as dom(ϕe) and the e-th canonical finite set by
choosing De such that

∑
x∈De

2x = e. This paper fixes a one-one padding func-
tion pad with Wpad(e,d) = We for all e, d. Furthermore, 〈x, y〉 denotes Cantor’s
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Fig. 1. Learning hierarchy

pairing function, given by 〈x, y〉 = 1
2 (x + y)(x + y + 1) + y. A triple 〈x, y, z〉

denotes 〈〈x, y〉, z〉.
For any σ, τ ∈ (N ∪ {#})∗, σ � τ if and only if σ is a prefix of τ , σ ≺ τ if

and only if σ is a proper prefix of τ , and σ(n) denotes the element in the nth
position of σ, starting from n = 0. The concatenation of two strings σ and τ
shall be denoted by σ ◦ τ ; for convenience, and whenever there is no possibility
of confusion, this is occasionally denoted by στ . Let σ[n] denote the sequence
σ(0) ◦ σ(1) ◦ . . . ◦ σ(n − 1). The length of σ is denoted by |σ|.

3 Learning

The basic learning paradigms studied in the present paper are behaviourally
correct learning [2,3] and partial learning [13]. These learning models assume
that the learner is presented with just positive examples of the target language,
and that the learner is fed with a finite amount of data at every stage. They are
modifications of the model of explanatory learning (or “learning in the limit”),
first introduced by Gold [8], in which the learner must output in the limit a single
correct representation h of the target language L; if L is an r.e. set, then h is
usually an r.e. index of L with respect to the standard numbering W0,W1,W2, . . .
of all r.e. sets. Bārzdiņs̆ [2] and Case [3] considered the more powerful model of
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behaviourally correct learning, whereby the learner must almost always output
a correct hypothesis of the input set, but some of the correct hypotheses may
be syntactically distinct. Case and Smith [4] also introduced a less stringent
variant of BC learning of recursive functions, BC ∗ learning, which only requires
the learner to output in the limit finite variants of the target recursive function.
Still more general is the criterion of partial learning that Osherson, Stob and
Weinstein [13] defined; in this model, the learner must output exactly one correct
index of the input set infinitely often and output any other conjecture only
finitely often.

One can also impose constraints on the quality of a learner’s hypotheses. For
example, Angluin [1] introduced the notion of consistency, which is the require-
ment that the learner’s hypotheses must enumerate at least all the data seen up to
the current stage. This seems to be a fairly natural demand on the learner, for it
only requires that the learner’s conjectures never contradict the available data on
the target language. Angluin [1] also introduced the learning constraint of conser-
vativeness; intuitively, a conservative learner never makes a mind change unless
its prior conjecture does not enumerate all the current data. These two learning
criteria have since been adapted to the partial learning model [6,7].

The learning criteria discussed so far (and, where applicable, their partial
learning analogues) are formally introduced below.

Let C be a class of r.e. sets. Throughout this paper, the mode of data pre-
sentation is that of a text, by which is meant an infinite sequence of natural
numbers and the # symbol. Formally, a text TL for some L in C is a map
TL : N → N ∪ {#} such that L = range(TL); here, TL[n] denotes the sequence
TL(0) ◦ TL(1) ◦ . . . ◦ TL(n − 1) and the range of a text T , denoted range(T ), is
the set of numbers occurring in T . Analogously, for a finite sequence σ, range(σ)
is the set of numbers occurring in σ. A text, in other words, is a presentation
of positive data from the target set. A learner, denoted by M in the following
definitions, is a recursive function mapping (N ∪ {#})∗ into N.

Definition 1. (i) [13] M partially (Part) learns C if, for every L in C and
each text TL for L, there is exactly one index e such that M(TL[k]) = e
for infinitely many k; furthermore, if M outputs e infinitely often on TL,
then L = We.

(ii) [3] M behaviourally correctly (BC ) learns C if, for every L in C and each
text TL for L, there is a number n for which L = WM(TL[j]) whenever
j ≥ n.

(iii) [1] M is consistent (Cons) if for all σ ∈ (N ∪ {#})∗, range(σ) ⊆ WM(σ).
(iv) [1] For any text T , M is consistent on T if range(T [n]) ⊆ WM(T [n]) for all

n > 0.
(v) [7] M is said to consistently partially (ConsPart) learn C if it partially

learns C from text and is consistent.
(vi) [6] M is said to conservatively partially (ConsvPart) learn C if it partially

learns C and outputs on each text for every L in C exactly one index e
with L ⊆ We.
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(vii) [4] M is said to behaviourally correctly learn C with at most a anomalies
(BC a) iff for every L ∈ C and each text TL for L, there is a number n for
which |(WM(TL[j]) − L) ∪ (L − WM(TL[j]))| ≤ a whenever j ≥ n.

(viii) [4] M is said to behaviourally correctly learn C with finitely many anomalies
(BC ∗) iff for every L ∈ C and each text TL for L, there is a number n for
which |(WM(TL[j]) − L) ∪ (L − WM(TL[j]))| < ∞ whenever j ≥ n.

This paper will also consider combinations of different learning criteria; for learn-
ing criteria A1, . . . , An, a class C is said to be A1 . . . An-learnable iff there is a
learner M such that M Ai-learns C for all i ∈ {1, . . . , n}. Due to space con-
straints, some proofs of formal statements are omitted throughout this paper.
For the full version of the paper, see http://arxiv.org/abs/1507.01215.

4 Approximate Learning of Functions

Fulk and Jain [5] proposed a mathematically rigorous definition of approximate
inference, a notion originally motivated by studies in the philosophy of science.

Definition 2. [5] An approximate (Approx ) learner outputs on the graph of a
function f a sequence of hypotheses such that there is a sequence S0, S1, . . . of
sets satisfying the following conditions:
(a) The Sn form an ascending sequence of sets such that their union is the set
of all natural numbers;
(b) There are infinitely many n such that Sn+1 − Sn is infinite;
(c) The n-th hypothesis is correct on all x ∈ Sn but nothing is said about the
x /∈ Sn.

The next proposition simplifies this set of conditions. The proof is omitted.

Proposition 3. M Approx learns a recursive function f iff the following con-
ditions hold:
(d) For all x and almost all n, M ’s n-th hypothesis is correct at x;
(e) There is an infinite set S such that for almost all n and all x ∈ S, M ’s n-th
hypothesis is correct at x.

Fulk and Jain interpreted their notion of approximation as a process in scientific
inference whereby physicists take the limit of the average result of a sequence of
experiments. Their result that the class of recursive functions is approximately
learnable seems to justify this view.

Theorem 4 (Fulk and Jain [5]). There is a learner M that Approx learns
every recursive function.

The following theorem answers an open question posed by Fulk and Jain [5] on
whether the class of recursive functions has a learner which outputs a sequence
of hypotheses that approximates the function to be learnt and almost always
differs from the target only on finitely many places.

http://arxiv.org/abs/1507.01215
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Theorem 5. There is a learner M which learns the class of all recursive func-
tions such that (i) M is a BC ∗ learner, (ii) M is a partial learner and (iii) M
is an approximate learner.

Proof. Let ψ0, ψ1, . . . be an enumeration of all recursive functions and some
partial ones such that in every step s there is exactly one pair (e, x) for which
ψe(x) becomes defined at step s and this pair satisfies in addition that ψe(y) is
already defined by step s for all y < x. Furthermore, a function ψe is said to
make progress on σ at step s iff ψe(x) becomes defined at step s and x ∈ dom(σ)
and ψe(y) = σ(y) for all y ≤ x.

Now one defines for every σ a partial-recursive function ϑe,σ as follows:

– ϑe,σ(x) = σ(x) for all x ∈ dom(σ);
– Let et = e;
– Inductively for all s ≥ t, if some index d < es makes progress on σ at step

s + 1 then let es+1 = d else let es+1 = es;
– For each value x /∈ dom(σ), if there is a step s ≥ t + x for which ψes,s(x) is

defined then ϑe,σ(x) takes this value for the least such step s, else ϑe,σ(x)
remains undefined.

The learner M , now to be constructed, uses these functions as hypothesis space;
on input τ , M outputs the index of ϑe,σ for the unique e and shortest prefix σ
of τ such that the following three conditions are satisfied at some time t:

– t is the first time such that t ≥ |τ | and some function makes progress on τ ;
– ψe is that function which makes progress at τ ;
– for every d < e, ψd did not make progress on τ at any s ∈ {|σ|, . . . , t} and

either ψd,|σ| is inconsistent with σ or ψd,|σ|(x) is undefined for at least one
x ∈ dom(σ).

For finitely many strings τ there might not be any such function ϑe,σ, as τ
is required to be longer than the largest value up to which some function has
made progress at time |τ |, which can be guaranteed only for almost all τ . For
these finitely many exceptions, M outputs a default hypothesis, e.g., for the
everywhere undefined function. Now the three conditions (i), (ii) and (iii) of M
are verified. For this, let ψd be the function to be learnt, note that ψd is total.

Condition (i): M is a BC ∗ learner. Let d be the least index of the function ψd

to be learnt and let u be the last step where some ψe with e < d makes progress
on ψd. Then every τ � ψd with |τ | ≥ u + 1 satisfies that first M(τ) conjectures
a function ϑe,σ with e ≥ d and |σ| ≥ u + 1 and σ � ψd and second that almost
all es used in the definition of ϑe,σ are equal to d; thus the function computed
is a finite variant of ψd and M is a BC ∗ learner.

Condition (ii): M is a partial learner. Let t0, t1, . . . be the list of all times
where ψd makes progress on itself with u < t0 < t1 < . . ..; note that whenever
τ � ψd and |τ | = tk for some k then the conjecture ϑe,σ made by M(τ) satisfies
e = d and |σ| = u+1. As none of these conjectures make progress from step u+1
onwards on ψd, they also do not make progress on σ after step |σ| and ϑe,σ = ψd;
hence the learner outputs some index for ψd infinitely often. Furthermore, all
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other indices ϑe,σ are output only finitely often: if e < d then ψe makes no
progress on the target function ψd after step u; if e > d then the length of σ
depends on the prior progress of ψd on itself, and if |τ | > tk then |σ| > tk.

Condition (iii): M is an approximate learner. Conditions (d) and (e) in Propo-
sition 3 are used. Now it is shown that, for all τ � ψd with tk ≤ |τ | < tk+1, the
hypothesis ϑe,σ issued by M(τ) is correct on the set {t0, t1, . . .}. If |τ | = tk then
the hypothesis is correct everywhere as shown under condition (ii). So assume
that e > d. Then |τ | > tk and |σ| > tk, hence ϑe,σ(x) = ψd(x) for all x ≤ tk. Fur-
thermore, as ψd makes progress on σ in step tk+1 and as no ψc with c < d makes
progress on σ beyond step |σ|, it follows that the es defined in the algorithm of
ϑe,σ all satisfy es = d for s ≥ tk+1; hence ϑe,σ(x) = ψd(x) for all x ≥ tk+1.

5 Approximate Learning of Languages

This section proposes three notions of approximation in language learning. The
first two notions, approximate learning and weak approximate learning, are adap-
tations of the set of conditions for approximately learning recursive functions
given in Proposition 3. Recall that a set V is a finite variant of a set W iff there
is an x such that for all y > x it holds that V (y) = W (y).

Definition 6. Let S be a class of languages. S is approximately (Approx) learn-
able iff there is a learner M such that for every language L ∈ S there is an
infinite set W such that for all texts T and all finite variants V of W and
almost all hypotheses H of M on T , H ∩ V = L ∩ V . S is weakly approximately
(WeakApprox) learnable iff there is a learner M such that for every language
L ∈ S and for every text T for L there is an infinite set W such that for all finite
variants V of W and almost all hypotheses H of M on T , H ∩ V = L ∩ V . S is
finitely approximately (FinApprox) learnable iff there is a learner M such that
for every language L ∈ S, all texts T for L, and any finite set D, it holds that
for almost all hypotheses H of M on T , H ∩ D = L ∩ D.

Remark 7. Jain, Martin and Stephan [10] defined a partial-recursive function
C to be an In-classifier for a class S of languages if, roughly speaking, for every
L ∈ S, every text T for L, every finite set D and almost all n, C on T [n] will
correctly “classify” all x ∈ D as either belonging to L or not belonging to L.
A learner M that FinApprox learns a class S may be translated into a total
In-classifier for S, and vice versa.

Approximate learning requires, for each target language, the existence of a set
W suitable for all texts, while in weakly approximate learning the set W may
depend on T . In the weakest notion, finitely approximate learning, on any text T
for a target language L the learner is only required to be almost always correct
on any finite set. As will be seen later, this model is so powerful that the whole
class of r.e. sets can be finitely approximated by a partial learner. The following
examples illustrate the models of approximate and weakly approximate learning.
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Example 8. – If there is an infinite r.e. set W such that all members of
C contain W then C is Approx learnable: the learner simply conjectures
range(σ) ∪ W on any input σ. Such C is not necessarily BC ∗ learnable.

– If C consists only of coinfinite r.e. sets then C is Approx learnable.
– The class of all cofinite sets is BC ∗ learnable and WeakApproxBC ∗Part

learnable but neither Approx learnable nor BC n learnable for any n.
– The class of all infinite sets is WeakApprox learnable.
– Gold’s class consisting of the set of natural numbers and all sets {0, 1, . . . ,m}

is not WeakApprox learnable.

The proofs are omitted. These examples establish that, in contrast to the func-
tion learning case, approximate language learnability does not imply BC ∗ learn-
ability. BC ∗ learnability does not imply approximate learnability either, but
weakly approximate learning is powerful enough to cover all BC ∗ learnable
classes.

Theorem 9. If C is BC ∗ learnable then C is WeakApprox learnable.

Proof. By Example 8, there is a learner M that weakly approximates the class
of all infinite sets. Let O be a BC ∗ learner for C. Now the new learner N is given
as follows: On input σ, N(σ) outputs an index of the following set which first
enumerates range(σ) and then searches for some τ that satisfies the following
conditions: (1) range(τ) = range(σ); (2) |τ | = 2 ∗ |range(σ)|; (3) WO(τ#s)

enumerates at least |σ| many elements for all s ≤ |σ|. If all three conditions
are met then the set contains also all elements of WM(σ). Further details are
omitted.

6 Combining Partial Language Learning With Variants
of Approximate Learning

This section is concerned with the question whether partial learners can always
be modified to approximate the target language in the models introduced above.

6.1 Finitely Approximate Learning

The first results demonstrate the power of the model of finitely approximate
learning: there is a partial learner that finitely approximates every r.e. language.

Theorem 10. The class of all r.e. sets is FinApproxPart learnable.

Proof. Let M1 be a partial learner of all r.e. sets. Define a learner M2 as follows.
Given a text T , let en = M1(T [n+1]) for all n. On input T [n+1], M2 determines
the finite set D = range(T [n+1])∩{0, . . . ,m}, where m is the minimum m ≤ n
with em = en. M2 then outputs a canonical index for D ∪ (Wen

∩ {x : x > m}).
Suppose T is a text for some r.e. set L. Then there is a least l such that M1

on T outputs el infinitely often and Wel
= L. Furthermore, there is a least l′ such
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that for all l′′ > l′, DL = range(T [l′′ + 1]) ∩ {0, . . . , l} = L ∩ {0, . . . , l}. Hence
M2 will output a canonical index for L = DL ∪ (Wel

∩ {x : x > l}) infinitely
often. On the other hand, since, for every h with eh �= el and eh �= eh′ for all
h′ < h, M1 outputs eh only finitely often, M2 will conjecture sets of the form
D′ ∪ (Weh

∩ {x : x > h}) only finitely often. Thus M2 partially learns L.
To see that M2 is also a finitely approximate learner, consider any number

x. Suppose that M1 on T outputs exactly one index e infinitely often; further,
We = L and j is the least index such that ej = e. Let s be sufficiently large so that
for all s′ > s, range(T [s′ +1])∩{0, . . . ,max({x, j})} = L∩{0, . . . ,max({x, j})}.
First, assume that M1 outputs only finitely many distinct indices on T . It follows
that M1 on T converges to e. Thus M2 almost always outputs a canonical index
for (L∩{0, . . . , j})∪(Wej

∩{y : y > j}), and so it approximately learns L. Second,
assume that M1 outputs infinitely many distinct indices on T . Let d1, . . . , dx be
the first x conjectures of M1 that are pairwise distinct and are not equal to e.
There is a stage t > s large enough so that et′ /∈ {d1, . . . , dx} for all t′ > t.
Consequently, whenever t′ > t, M2 on T [t′ +1] will conjecture a set W such that
W ∩{0, . . . , x} = L∩{0, . . . , x}. This establishes that M2 finitely approximately
learns any r.e. set.

Gao, Jain and Stephan [6] showed that consistently partial learners exist for
all and only the subclasses of uniformly recursive families; the next theorem
shows that such learners can even be finitely approximate at the same time, in
addition to being prudent. A learner M is prudent if it learns the class {WM(σ) :
σ ∈ (N∪ {#})∗,M(σ) �=?}, that is, if M learns every set it conjectures [12]; the
? symbol allows M to abstain from conjecturing at any stage..

Theorem 11. If C is a uniformly recursive family, then C is FinApproxCons-
Part learnable by a prudent learner.

Proof. Let C = {L0, L1, L2, . . . , } be a uniformly recursive family. On text T ,
define M at each stage s as follows:

If there are x ∈ N and i ∈ {0, 1, . . . , s} such that
– range(T [s + 1]) − range(T [s]) = {x},
– range(T [s + 1]) ⊆ Li ∪ {#} and
– range(T [s + 1]) ∩ {0, . . . , x} = Li ∩ {0, . . . , x}

Then M outputs the least such i
Else M outputs a canonical index for range(T [s + 1]) − {#}.

The consistency of M follows directly by construction. If T is a text for a finite set
then the “Else-Case” will apply almost always and M converges to a canonical
index for range(T ). Now consider that T is a text for some infinite set Lm ∈ C
and m is the least index of itself. Let t be large enough so that for all t′ > t, all
x ∈ L − range(T [t + 1]) − {#} and all j < m, Lj ∩ {0, . . . , x} �= range(T [t′ + 1])
∩ {0, . . . , x}. There are infinitely many stages s > max({t,m}) at which T (s) /∈
range(T [s]) ∪ {#} and range(T [s + 1]) ∩ {0, . . . , T (s)} = L ∩ {0, . . . , T (s)}. At
each of these stages, M will conjecture Lm. Thus M conjectures Lm infinitely
often. Furthermore, for every x there is some sx such that for all y ∈ L −
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range(T [sx + 1]), it holds that y > x. Thus whenever s′ > sx, M ’s conjecture
on T [s′ + 1] agrees with L on {0, . . . , x}. M is therefore a finitely approximate
learner, implying that it never conjectures any incorrect index infinitely often.

Corollary 12. If C is ConsPart learnable, then C is FinApproxConsPart learn-
able by a prudent learner.

The following result shows that also conservative partial learning may always be
combined with finitely approximate learning.

Theorem 13. If C is ConsvPart learnable, then C is FinApproxConsvPart
learnable.

Proof. Let M1 be a ConsvPart learner for C, and suppose that M1 outputs the
sequence of conjectures e0, e1, . . . on some given text T . The construction of a
new learner M2 is similar to that in Theorem 10; however, one has to ensure
that M2 does not output more than one index that is either equal to or a proper
superset of the target language. On input T [s+1], define M2(T [s+1]) as follows.

1. If range(T [s + 1]) ⊆ {#} then output a canonical index for ∅ else go to 2.
2. Let m ≤ s be the least number such that em = es. If Wes,s ∩ {0, . . . , m} =

range(T [s + 1]) ∩ {0, . . . , m} = D then output a canonical index for D ∪
(Wem

∩ {x : x > m}) else go to 3.
3. If s ≥ 1 then output M2(T [s]) else output a canonical index for ∅.

The details for verifying that M2 is a ConsvPart learner for C are omitted.

6.2 Weakly Approximate, Approximate and BC ∗ Learning

The next proposition shows that Theorem 11 cannot be improved and gives a
negative answer to the question whether partial or consistent partial learning
can be combined with weakly approximate learning.

Proposition 14. The uniformly recursive class {A : A = N or A contains
all even and finitely many odd numbers or A contains finitely many even and
all odd numbers} is WeakApprox learnable and ConsPart learnable, but not
WeakApproxPart learnable.

The next theorem shows that neither partial learning nor consistent partial learn-
ing can be combined with approximate learning. In fact, it establishes a stronger
result: consistent partial learnability and approximate learnability are insufficient
to guarantee both partial and weakly approximate learnability simultaneously.

Theorem 15. There is a class of r.e. sets with the following properties:
(i) The class is not BC ∗ learnable;
(ii) The class is not WeakApproxPart learnable;
(iii) The class is Approx learnable.
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Proof. The key idea is to diagonalise against a list M0,M1, . . . of learners which
are all total and which contains for every learner to be considered a delayed
version. This permits to ignore the case that some learner is undefined on some
input.

The class witnessing the claim consists of all sets Ld such that for each d,
either Ld is {d, d+1, . . .} or Ld is a subset built by the following diagonalisation
procedure: One assigns to each number x ≥ d a level �(x).

– If some set Ld,e = {x ≥ d : �(x) ≤ e} is infinite then
– let Ld = Ld,e for the least such e and Md does not partially learn Ld

– else let Ld = {d, d + 1, . . .} and Md does not weakly approximate Ld.

The construction of the sets is inductive over stages. For each stage s = 0, 1, 2, . . .:

– Let τe be a sequence of all x ∈ {d, d + 1, . . . , d + s − 1} with �(x) = e in
ascending order;

– If there is an e < s such that e has not been cancelled in any previous
step and for each η � τe the intersection WMd(τ0τ1...τe−1η),s ∩ {y : d ≤ y <
d + s ∧ �(y) > e} contains at least |τe| elements

• Then choose the least such e and let �(d + s) = e and cancel all e′ with
e < e′ ≤ s

• Else let �(d + s) = s.

A text T = lime σe is defined as follows (where σ0 is the empty sequence):

– Let τe be the sequence of all x with �(x) = e in ascending order;
– If σe is finite then let σe+1 = σeτe else let σe+1 = σe.

In case some σe are infinite, let e be smallest such that σe is infinite. Then T = σe

and Ld = Ld,e and T is a text for Ld. As Ld,e is infinite, one can conclude that

∀η � σe ∀c [|WMd(τ0τ1...τe−1η) ∩ {y : �(y) > e}| ≥ c]

and thus Md outputs on T almost always a set containing infinitely many ele-
ments outside Ld; so Md does neither partially learn Ld nor BC ∗ learn Ld.

In case all σe are finite and therefore all Ld,e are finite there must be infinitely
many e that never get cancelled. Each such e satisfies

∃η � τe [WMd(τ0τ1...τe−1η) ∩ {y : �(y) > e} is finite]

and therefore e also satisfies ∃η � τe [WMd(τ0τ1...τe−1η) is finite]. Thus Md outputs
on the text T for the cofinite set Ld = {d, d + 1, . . .} infinitely often a finite set
and Md is neither weakly approximately learning Ld (as there is no infinite set
on which almost all conjectures are correct) nor BC∗-learning Ld. Thus claims
(i) and (ii) are true.

Next it is shown that the class of all Ld is approximately learnable by some
learner N . This learner N will on a text for Ld eventually find the minimum
d needed to compute the function �. Once N has found this d, N will on each
input σ conjecture the set

WN(σ) = {x : x ≥ max(range(σ)) ∨ ∃y ∈ range(σ) [�(x) ≤ �(y)]}
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In case Ld = Ld,e for some e, Ld,e is infinite, and for each text for Le,d, almost all
prefixes σ of this text satisfy max{�(y) : y ∈ range(σ)} = e and Ld,e ⊆ WN(σ). So
almost all conjectures are correct on the infinite set Ld itself. Furthermore, WN(σ)

does not contain any x < max(range(σ)) with �(x) > e, hence N eventually
becomes correct also on any x /∈ Ld,e and therefore N approximates Ld,e = Ld.

In case Ld = {d, d + 1, . . .}, all Ld,e are finite. Then consider the infi-
nite set S = {x : ∀y > x [�(y) > �(x)]}. Let x ∈ S and consider any
σ with min(range(σ)) = d. If x ≥ max(range(σ)) then x ∈ WN(σ). If
x < max(range(σ)) then �(max(range(σ))) ≥ �(x) and again x ∈ WN(σ). Thus
WN(σ) contains S. Furthermore, for all x ≥ d and sufficiently long prefixes σ of
the text, �(max(range(σ))) ≥ �(x) and therefore all x ∈ WN(σ) for almost all
prefixes σ of the text. So again N approximates Ld. Thus claim (iii) is true.

One can further show that the class in the above proof is explanatorily learnable
if the learner has access to an oracle for the jump of the halting set.

While these negative results suggest that approximate and weakly approx-
imate learning imposes constraints that are too stringent for combining with
partial learning, at least partly positive results can be obtained. For example,
the following theorem shows that ConsvPart learnable classes are ApproxPart
learnable (thus dropping only the conservativeness constraint) by BC ∗ learners.
This considerably improves an earlier result by Gao, Stephan and Zilles [7] which
states that every ConsvPart learnable class is also BC ∗ learnable.

Theorem 16. If C is ConsvPart learnable then C is ApproxPart learnable by a
BC ∗ learner.

Proof. Let M be a ConsvPart learner for C. For a text T for a language L ∈
C, one considers the sequence e0, e1, . . . of distinct hypotheses issued by M ; it
contains one correct hypothesis while all others are not indices of supersets of
L. For each hypothesis en one has two numbers tracking its quality: bn,t is the
maximal s ≤ n + t such that all T (u) with u < s are in Wen,n+t ∪ {#} and
an,t = 1 + max{bm,t : m < n}.

Now one defines the hypothesis set Hen,σ for any sequence σ. Let en,0, en,1, . . .
be a sequence with en,0 = en and en,u be the em for the minimum m such that
m = n or Wem

has enumerated all members of range(σ) within u+ t time steps.
The set Hen,σ contains all x for which there is a u ≥ x with x ∈ Wen,u

.
An intermediate learner O now conjectures some canonical index of a set

Hen,σ at least k times iff there is a t with σ = T (0)T (1) . . . T (an,t) and bn,t > k.
Thus O conjectures Hen,σ infinitely often iff Wen

contains range(T ) and an,t =
|σ| for almost all t.

If en is the correct index for the set to be learnt then, by conservative-
ness, the sets Wem

with m < n are not supersets of the target set. So the
values bm,t converge which implies that an,t converges to some s. It follows that
for the prefix σ of T of length s, the canonical index of Hen,σ is conjectured
infinitely often while no other index is conjectured infinitely often. Thus O is a
partial learner. Furthermore, for all sets Hem,τ conjectured after an,t has reached
its final value s, it holds that the em,u in the construction of Hem,τ converge
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to en. Thus Hem,τ is the union of Wen
and a finite set. Hence O is a BC ∗ learner.

To guarantee the third condition on approximate learning, O will be translated
into another learner N .

Let d0, d1, . . . be the sequence of O output on the text T . Now N will copy
this sequence but with some delay. Assume that N(σk) = dk and σk is a prefix of
T . Then N will keep the hypothesis dk until the current prefix σk+1 considered
satisfies either range(σk+1) �⊆ range(σk) or Wdk,|σk+1| �= range(σk+1).

If range(T ) is infinite, the sequence of hypotheses of N will be the same as
that of O, only with some additional delay. Furthermore, almost all Wdn

contain
range(T ), thus the resulting learner N learns range(T ) and is almost always
correct on the infinite set range(T ); in addition, N learns range(T ) partially
and is also BC ∗. If range(T ) is finite, there will be some correct index that
equals infinitely many dn. There is a step t by which all elements of range(T )
have been seen in the text and enumerated into Wdn

. Therefore, when the learner
conjectures this correct index again, it will never withdraw it; furthermore, it
will replace eventually every incorrect conjecture due to the comparison of the
two sets. Thus the learner converges explanatorily to range(T ) and is also in
this case learning range(T ) in a BC ∗ way, partially and approximately. From
the proof of Theorem 10, one can see that N may be translated into a learner
satisfying all the three requirements (a), (b) and (c).

Case and Smith [4] published Harrington’s observation that the class of recursive
functions is BC ∗ learnable. This result does not carry over to the class of r.e.
sets; for example, Gold’s class consisting of the set of natural numbers and all
finite sets is not BC ∗ learnable. In light of Theorem 5, which established that
the class of recursive functions can be BC ∗ and Part learnt simultaneously, it
is interesting to know whether any BC ∗ learnable class of r.e. sets can be both
BC ∗ and Part learnt at the same time. While this question in its general form
remains open, the next result shows that BC n learning is indeed combinable
with partial learning.

Theorem 17. Let n ∈ N. If C is BC n learnable, then C is Part learnable by a
BC n learner.

Proof. Fix any n such that C is BC n learnable. Given a recursive BC n learner
M of C, one can construct a new learner N1 as follows. First, let F0, F1, F2, . . .
be a one-one enumeration of all finite sets such that |Fi| ≤ n for all i. Fix a text
T , and let e0, e1, e2, . . . be the sequence of M ’s conjectures on T .

For each set of the form Wei
∪ Fj (respectively Wei

− Fj), N1 outputs a
canonical index for Wei

∪ Fj (respectively Wei
− Fj) at least m times iff the

following two conditions hold.

1. There is a stage s > j for which the number of distinct x < j such that
either x ∈ Wei,s ∧ x /∈ range(T [s + 1]) or x ∈ range(T [s + 1]) ∧ x /∈ Wei,s

holds does not exceed n.
2. There is a stage t > m such that for all x < m, x ∈ Wei,t ∪ Fj iff x ∈

range(T [t + 1]) (respectively x ∈ Wei,t − Fj iff x ∈ range(T [t + 1])).
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At any stage T [s+1] where no set of the form Wei
∪Fj or Wei

−Fj satisfies the
conditions above, or each such set has already been output the required number
of times (up to the present stage), N1 outputs M(T [s+1]). The details showing
that a BC nPart learner N for C can be constructed from N1 are omitted.

Theorems 18 and 19 show that partial BC ∗ learning is possible for classes that
can be BC ∗ learned by learners that satisfy some additional constraints. The
proofs are omitted.

Theorem 18. Assume that C is BC ∗ learnable by a learner that outputs on
each text for any L ∈ C at least once a fully correct hypothesis.Then C is Part
learnable by a BC ∗ learner.

Theorem 19. Suppose there is a recursive learner that BC ∗ learns C and out-
puts on every text for any L ∈ C at least one index infinitely often. Then there
is a recursive learner for C that BC ∗ and Part learns C.
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