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Abstract. This note is a short version of that in [1]. It is intended as a
survey for the 2015 Algorithmic Learning Theory (ALT) conference.

This work considers a computationally and statistically efficient
parameter estimation method for a wide class of latent variable models—
including Gaussian mixture models, hidden Markov models, and latent
Dirichlet allocation—which exploits a certain tensor structure in their
low-order observable moments (typically, of second- and third-order).
Specifically, parameter estimation is reduced to the problem of extract-
ing a certain (orthogonal) decomposition of a symmetric tensor derived
from the moments; this decomposition can be viewed as a natural gen-
eralization of the singular value decomposition for matrices. Although
tensor decompositions are generally intractable to compute, the decom-
position of these specially structured tensors can be efficiently obtained
by a variety of approaches, including power iterations and maximiza-
tion approaches (similar to the case of matrices). A detailed analysis of
a robust tensor power method is provided, establishing an analogue of
Wedin’s perturbation theorem for the singular vectors of matrices. This
implies a robust and computationally tractable estimation approach for
several popular latent variable models.

1 Introduction

The method of moments is a classical parameter estimation technique [29] from
statistics which has proved invaluable in a number of application domains. The
basic paradigm is simple and intuitive: (i) compute certain statistics of the data
— often empirical moments such as means and correlations — and (ii) find model
parameters that give rise to (nearly) the same corresponding population quan-
tities. In a number of cases, the method of moments leads to consistent estima-
tors which can be efficiently computed; this is especially relevant in the context
of latent variable models, where standard maximum likelihood approaches are
typically computationally prohibitive, and heuristic methods can be unreliable
and difficult to validate with high-dimensional data. Furthermore, the method
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of moments can be viewed as complementary to the maximum likelihood app-
roach; simply taking a single step of Newton-Ralphson on the likelihood function
starting from the moment based estimator [22] often leads to the best of both
worlds: a computationally efficient estimator that is (asymptotically) statistically
optimal.

The primary difficulty in learning latent variable models is that the latent
(hidden) state of the data is not directly observed; rather only observed vari-
ables correlated with the hidden state are observed. As such, it is not evident
the method of moments should fare any better than maximum likelihood in
terms of computational performance: matching the model parameters to the
observed moments may involve solving computationally intractable systems of
multivariate polynomial equations. Fortunately, for many classes of latent vari-
able models, there is rich structure in low-order moments (typically second-
and third-order) which allow for this inverse moment problem to be solved effi-
ciently [2,4,6,8,9,16,18,27]. What is more is that these decomposition problems
are often amenable to simple and efficient iterative methods, such as gradient
descent and the power iteration method.

This survey observes that a number of important and well-studied latent
variable models—including Gaussian mixture models, hidden Markov models,
and Latent Dirichlet allocation—share a certain structure in their low-order
moments, and this permits certain tensor decomposition approaches to param-
eter estimation. In particular, this decomposition can be viewed as a natural
generalization of the singular value decomposition for matrices.

While much of this (or similar) structure was implicit in several previous
works [2,4,9,16,18,27], here we make the decomposition explicit under a unified
framework. Specifically, we express the observable moments as sums of rank-one
terms, and reduce the parameter estimation task to the problem of extracting a
symmetric orthogonal decomposition of a symmetric tensor derived from these
observable moments. The problem can then be solved by a variety of approaches,
including fixed-point and variational methods.

One approach for obtaining the orthogonal decomposition is the tensor power
method of [21, Remark3]. We provide a convergence analysis of this method for
orthogonally decomposable symmetric tensors, as well as a robust (and computa-
tionally tractable) variant. The perturbation analysis in [1] can be viewed as an
analogue of Wedin’s perturbation theorem for singular vectors of matrices [32],
providing a bound on the error of the recovered decomposition in terms of the
operator norm of the tensor perturbation.

1.1 Related Work

See [1] for a discussion of related work.

1.2 Organization

The rest of the survey is organized as follows. Section 2 reviews some basic
definitions of tensors. Section 3 provides examples of a number of latent variable
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models which, after appropriate manipulations of their low order moments, share
a certain natural tensor structure. Section 4 reduces the problem of parameter
estimation to that of extracting a certain (symmetric orthogonal) decomposition
of a tensor. See [1] which states establishes an analogue of Wedin’s perturbation
theorem for the singular vectors of matrices.

2 Preliminaries

We introduce some tensor notations borrowed from [23]. A real p-th order tensor
A ∈ ⊗p

i=1 R
ni is a member of the tensor product of Euclidean spaces Rni , i ∈ [p].

We generally restrict to the case where n1 = n2 = · · · = np = n, and simply
write A ∈ ⊗p

R
n. For a vector v ∈ R

n, we use v⊗p := v ⊗ v ⊗ · · · ⊗ v ∈ ⊗p
R

n

to denote its p-th tensor power. As is the case for vectors (where p = 1) and
matrices (where p = 2), we may identify a p-th order tensor with the p-way
array of real numbers [Ai1,i2,...,ip

: i1, i2, . . . , ip ∈ [n]], where Ai1,i2,...,ip
is the

(i1, i2, . . . , ip)-th coordinate of A (with respect to a canonical basis).
We can consider A to be a multilinear map in the following sense: for a set

of matrices {Vi ∈ R
n×mi : i ∈ [p]}, the (i1, i2, . . . , ip)-th entry in the p-way array

representation of A(V1, V2, . . . , Vp) ∈ R
m1×m2×···×mp is

[A(V1, V2, . . . , Vp)]i1,i2,...,ip
:=

∑

j1,j2,...,jp∈[n]

Aj1,j2,...,jp
[V1]j1,i1 [V2]j2,i2 · · · [Vp]jp,ip

.

Note that if A is a matrix (p = 2), then

A(V1, V2) = V �
1 AV2.

Similarly, for a matrix A and vector v ∈ R
n, we can express Av as

A(I, v) = Av ∈ R
n,

where I is the n×n identity matrix. As a final example of this notation, observe

A(ei1 , ei2 , . . . , eip
) = Ai1,i2,...,ip

,

where {e1, e2, . . . , en} is the canonical basis for R
n.

Most tensors A ∈ ⊗p
R

n considered in this work will be symmetric (some-
times called supersymmetric), which means that their p-way array represen-
tations are invariant to permutations of the array indices: i.e., for all indices
i1, i2, . . . , ip ∈ [n], Ai1,i2,...,ip

= Aiπ(1),iπ(2),...,iπ(p) for any permutation π on [p]. It
can be checked that this reduces to the usual definition of a symmetric matrix
for p = 2.

The rank of a p-th order tensor A ∈ ⊗p
R

n is the smallest non-negative
integer k such that A =

∑k
j=1 u1,j⊗u2,j⊗· · ·⊗up,j for some ui,j ∈ R

n, i ∈ [p], j ∈
[k], and the symmetric rank of a symmetric p-th order tensor A is the smallest
non-negative integer k such that A =

∑k
j=1 u⊗p

j for some uj ∈ R
n, j ∈ [k] (for
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even p, the definition is slightly different [11]). The notion of rank readily reduces
to the usual definition of matrix rank when p = 2, as revealed by the singular
value decomposition. Similarly, for symmetric matrices, the symmetric rank is
equivalent to the matrix rank as given by the spectral theorem.

The notion of tensor (symmetric) rank is considerably more delicate than
matrix (symmetric) rank. For instance, it is not clear a priori that the symmetric
rank of a tensor should even be finite [11]. In addition, removal of the best
rank-1 approximation of a (general) tensor may increase the tensor rank of the
residual [31].

Throughout, we use ‖v‖ = (
∑

i v2
i )1/2 to denote the Euclidean norm of a

vector v, and ‖M‖ to denote the spectral (operator) norm of a matrix. We also
use ‖T‖ to denote the operator norm of a tensor, which we define later.

3 Tensor Structure in Latent Variable Models

In this section, we give several examples of latent variable models whose low-
order moments can be written as symmetric tensors of low symmetric rank; many
of these examples can be deduced using the techniques developed in [25]. The
basic form is demonstrated in Theorem 1 for the first example, and the general
pattern will emerge from subsequent examples.

3.1 Exchangeable Single Topic Models

We first consider a simple bag-of-words model for documents in which the words
in the document are assumed to be exchangeable. Recall that a collection of
random variables x1, x2, . . . , x� are exchangeable if their joint probability distri-
bution is invariant to permutation of the indices. The well-known De Finetti’s
theorem [5] implies that such exchangeable models can be viewed as mixture
models in which there is a latent variable h such that x1, x2, . . . , x� are condi-
tionally i.i.d. given h (see Figure 1(a) for the corresponding graphical model)
and the conditional distributions are identical at all the nodes.

In our simplified topic model for documents, the latent variable h is inter-
preted as the (sole) topic of a given document, and it is assumed to take only
a finite number of distinct values. Let k be the number of distinct topics in
the corpus, d be the number of distinct words in the vocabulary, and � ≥ 3 be
the number of words in each document. The generative process for a document
is as follows: the document’s topic is drawn according to the discrete distribu-
tion specified by the probability vector w := (w1, w2, . . . , wk) ∈ Δk−1. This is
modeled as a discrete random variable h such that

Pr[h = j] = wj , j ∈ [k].

Given the topic h, the document’s � words are drawn independently according to
the discrete distribution specified by the probability vector μh ∈ Δd−1. It will be
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convenient to represent the � words in the document by d-dimensional random vec-
tors x1, x2, . . . , x� ∈ R

d. Specifically, we set

xt = ei if and only if the t-th word in the document is i, t ∈ [�],

where e1, e2, . . . ed is the standard coordinate basis for R
d.

One advantage of this encoding of words is that the (cross) moments of
these random vectors correspond to joint probabilities over words. For instance,
observe that

E[x1 ⊗ x2] =
∑

1≤i,j≤d

Pr[x1 = ei, x2 = ej ] ei ⊗ ej

=
∑

1≤i,j≤d

Pr[1st word = i, 2nd word = j] ei ⊗ ej ,

so the (i, j)-the entry of the matrix E[x1 ⊗ x2] is Pr[1st word = i, 2nd word =
j]. More generally, the (i1, i2, . . . , i�)-th entry in the tensor E[x1 ⊗ x2 ⊗ · · · ⊗
x�] is Pr[1st word = i1, 2nd word = i2, . . . , �-th word = i�]. This means that
estimating cross moments, say, of x1 ⊗ x2 ⊗ x3, is the same as estimating joint
probabilities of the first three words over all documents. (Recall that we assume
that each document has at least three words.)

The second advantage of the vector encoding of words is that the conditional
expectation of xt given h = j is simply μj , the vector of word probabilities for
topic j:

E[xt|h = j] =
d∑

i=1

Pr[t-th word = i|h = j] ei =
d∑

i=1

[μj ]i ei = μj , j ∈ [k]

(where [μj ]i is the i-th entry in the vector μj). Because the words are condition-
ally independent given the topic, we can use this same property with conditional
cross moments, say, of x1 and x2:

E[x1 ⊗ x2|h = j] = E[x1|h = j] ⊗ E[x2|h = j] = μj ⊗ μj , j ∈ [k].

This and similar calculations lead one to the following theorem.

Theorem 1 ([4]). If

M2 := E[x1 ⊗ x2]
M3 := E[x1 ⊗ x2 ⊗ x3],

then

M2 =
k∑

i=1

wi μi ⊗ μi

M3 =
k∑

i=1

wi μi ⊗ μi ⊗ μi.
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As we will see in Section 4.3, the structure of M2 and M3 revealed in Theo-
rem 1 implies that the topic vectors μ1, μ2, . . . , μk can be estimated by computing
a certain symmetric tensor decomposition. Moreover, due to exchangeability, all
triples (resp., pairs) of words in a document—and not just the first three (resp.,
two) words—can be used in forming M3 (resp., M2).

3.2 Beyond Raw Moments

In the single topic model above, the raw (cross) moments of the observed words
directly yield the desired symmetric tensor structure. In some other models, the
raw moments do not explicitly have this form. Here, we show that the desired ten-
sor structure can be found through various manipulations of different moments.

Spherical Gaussian Mixtures. We now consider a mixture of k Gaussian
distributions with spherical covariances. We start with the simpler case where
all of the covariances are identical; this probabilistic model is closely related to
the (non-probabilistic) k-means clustering problem [24]. We then consider the
case where the spherical variances may differ.

Common Covariance. Let wi be the probability of choosing component i ∈ [k],
{μ1, μ2, . . . , μk} ⊂ R

d be the component mean vectors, and σ2I be the common
covariance matrix. An observation in this model is given by

x := μh + z,

where h is the discrete random variable with Pr[h = i] = wi for i ∈ [k] (similar to
the exchangeable single topic model), and z ∼ N (0, σ2I) is an independent mul-
tivariate Gaussian random vector in R

d with zero mean and spherical covariance
σ2I.

The Gaussian mixture model differs from the exchangeable single topic model
in the way observations are generated. In the single topic model, we observe
multiple draws (words in a particular document) x1, x2, . . . , x� given the same
fixed h (the topic of the document). In contrast, for the Gaussian mixture model,
every realization of x corresponds to a different realization of h.

Theorem 2 ([16]). Assume d ≥ k. The variance σ2 is the smallest eigenvalue
of the covariance matrix E[x ⊗ x] − E[x] ⊗ E[x]. Furthermore, if

M2 := E[x ⊗ x] − σ2I

M3 := E[x ⊗ x ⊗ x] − σ2
d∑

i=1

(
E[x] ⊗ ei ⊗ ei + ei ⊗ E[x] ⊗ ei + ei ⊗ ei ⊗ E[x]

)
,

then

M2 =
k∑

i=1

wi μi ⊗ μi

M3 =
k∑

i=1

wi μi ⊗ μi ⊗ μi.
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Differing Covariances. See [1] for the case is where each component may have
a different spherical covariance.

Independent Component Analysis (ICA). The standard model for ICA
[7,10,12,19], in which independent signals are linearly mixed and corrupted with
Gaussian noise before being observed, is specified as follows. Let h ∈ R

k be
a latent random vector with independent coordinates, A ∈ R

d×k the mixing
matrix, and z be a multivariate Gaussian random vector. The random vectors h
and z are assumed to be independent. The observed random vector is

x := Ah + z.

Let μi denote the i-th column of the mixing matrix A.

Theorem 3 ([12]). Define

M4 := E[x ⊗ x ⊗ x ⊗ x] − T

where T is the fourth-order tensor with

[T ]i1,i2,i3,i4 := E[xi1xi2 ]E[xi3xi4 ] + E[xi1xi3 ]E[xi2xi4 ] + E[xi1xi4 ]E[xi2xi3 ],

where 1 ≤ i1, i2, i3, i4 ≤ k ( i.e., T is the fourth derivative tensor of the function
v 	→ 8−1

E[(v�x)2]2, so M4 is the fourth cumulant tensor). Let κi := E[h4
i ] − 3

for each i ∈ [k]. Then

M4 =
k∑

i=1

κi μi ⊗ μi ⊗ μi ⊗ μi.

Note that κi corresponds to the excess kurtosis, a measure of non-Gaussianity
as κi = 0 if hi is a standard normal random variable. Furthermore, note that A
is not identifiable if h is a multivariate Gaussian.

We may derive forms similar to that of M2 and M3 from Theorem 1 using
M4 by observing that

M4(I, I, u, v) =
k∑

i=1

κi(μ�
i u)(μ�

i v) μi ⊗ μi,

M4(I, I, I, v) =
k∑

i=1

κi(μ�
i v) μi ⊗ μi ⊗ μi

for any vectors u, v ∈ R
d.

Latent Dirichlet Allocation (LDA). An increasingly popular class of latent
variable models are mixed membership models, where each datum may belong
to several different latent classes simultaneously. LDA is one such model for
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the case of document modeling; here, each document corresponds to a mixture
over topics (as opposed to just a single topic). The distribution over such topic
mixtures is a Dirichlet distribution Dir(α) with parameter vector α ∈ R

k
++ with

strictly positive entries; its density over the probability simplex Δk−1 := {v ∈
R

k : vi ∈ [0, 1]∀i ∈ [k],
∑k

i=1 vi = 1} is given by

pα(h) =
Γ (α0)

∏k
i=1 Γ (αi)

k∏

i=1

hαi−1
i , h ∈ Δk−1

where
α0 := α1 + α2 + · · · + αk.

As before, the k topics are specified by probability vectors μ1, μ2, . . . , μk ∈
Δd−1. To generate a document, first draw the topic mixture h =
(h1, h2, . . . , hk) ∼ Dir(α), and then conditioned on h, we draw � words
x1, x2, . . . , x� independently from the discrete distribution specified by the prob-
ability vector

∑k
i=1 hiμi (i.e., for each xt, we independently sample a topic j

according to h and then sample xt according to μj). Again, we encode a word
xt by setting xt = ei iff the t-th word in the document is i.

The parameter α0 (the sum of the “pseudo-counts”) characterizes the con-
centration of the distribution. As α0 → 0, the distribution degenerates to a
single topic model (i.e., the limiting density has, with probability 1, exactly one
entry of h being 1 and the rest are 0). At the other extreme, if α = (c, c, . . . , c)
for some scalar c > 0, then as α0 = ck → ∞, the distribution of h becomes
peaked around the uniform vector (1/k, 1/k, . . . , 1/k) (furthermore, the distri-
bution behaves like a product distribution). We are typically interested in the
case where α0 is small (e.g., a constant independent of k), whereupon h typ-
ically has only a few large entries. This corresponds to the setting where the
documents are mainly comprised of just a few topics.

Theorem 4 ([2]). Define

M1 := E[x1]

M2 := E[x1 ⊗ x2] − α0

α0 + 1
M1 ⊗ M1

M3 := E[x1 ⊗ x2 ⊗ x3]

− α0

α0 + 2

(
E[x1 ⊗ x2 ⊗ M1] + E[x1 ⊗ M1 ⊗ x2] + E[M1 ⊗ x1 ⊗ x2]

)

+
2α2

0

(α0 + 2)(α0 + 1)
M1 ⊗ M1 ⊗ M1.

Then

M2 =
k∑

i=1

αi

(α0 + 1)α0
μi ⊗ μi

M3 =
k∑

i=1

2αi

(α0 + 2)(α0 + 1)α0
μi ⊗ μi ⊗ μi.
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h

x1 x2 · · · x�

(a) Multi-view models

h1 h2 · · · h�

x1 x2 x�

(b) Hidden Markov model

Fig. 1. Examples of latent variable models.

Note that α0 needs to be known to form M2 and M3 from the raw moments.
This, however, is a much weaker than assuming that the entire distribution of h
is known (i.e., knowledge of the whole parameter vector α).

3.3 Multi-view Models

Multi-view models (also sometimes called näıve Bayes models) are a special class
of Bayesian networks in which observed variables x1, x2, . . . , x� are conditionally
independent given a latent variable h. This is similar to the exchangeable sin-
gle topic model, but here we do not require the conditional distributions of the
xt, t ∈ [�] to be identical. Techniques developed for this class can be used to han-
dle a number of widely used models including hidden Markov models (HMMs)
[4,27], phylogenetic tree models [9,27], certain tree mixtures [3], and certain
probabilistic grammar models [17].

As before, we let h ∈ [k] be a discrete random variable with Pr[h = j] = wj

for all j ∈ [k]. Now consider random vectors x1 ∈ R
d1 , x2 ∈ R

d2 , and x3 ∈ R
d3

which are conditionally independent given h, and

E[xt|h = j] = μt,j , j ∈ [k], t ∈ {1, 2, 3}

where the μt,j ∈ R
dt are the conditional means of the xt given h = j. Thus, we

allow the observations x1, x2, . . . , x� to be random vectors, parameterized only
by their conditional means. Importantly, these conditional distributions may be
discrete, continuous, or even a mix of both.

We first note the form for the raw (cross) moments.

Proposition 1. We have that:

E[xt ⊗ xt′ ] =
k∑

i=1

wi μt,i ⊗ μt′,i, {t, t′} ⊂ {1, 2, 3}, t 
= t′

E[x1 ⊗ x2 ⊗ x3] =
k∑

i=1

wi μ1,i ⊗ μ2,i ⊗ μ3,i.

The cross moments do not possess a symmetric tensor form when the con-
ditional distributions are different. Nevertheless, the moments can be “sym-
metrized” via a simple linear transformation of x1 and x2 (roughly speaking,
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this relates x1 and x2 to x3); this leads to an expression from which the condi-
tional means of x3 (i.e., μ3,1, μ3,2, . . . , μ3,k) can be recovered. For simplicity, we
assume d1 = d2 = d3 = k; the general case (with dt ≥ k) is easily handled using
low-rank singular value decompositions.

Theorem 5 ([2]). Assume that the vectors {μv,1, μv,2, . . . , μv,k} are linearly
independent for each v ∈ {1, 2, 3}. Define

x̃1 := E[x3 ⊗ x2]E[x1 ⊗ x2]−1x1

x̃2 := E[x3 ⊗ x1]E[x2 ⊗ x1]−1x2

M2 := E[x̃1 ⊗ x̃2]
M3 := E[x̃1 ⊗ x̃2 ⊗ x3].

Then

M2 =
k∑

i=1

wi μ3,i ⊗ μ3,i

M3 =
k∑

i=1

wi μ3,i ⊗ μ3,i ⊗ μ3,i.

Hidden Markov Models. Our last example is the time-homogeneous HMM
for sequences of vector-valued observations x1, x2, . . . ∈ R

d. Consider a Markov
chain of discrete hidden states y1 → y2 → y3 → · · · over k possible states [k];
given a state yt at time t, the observation xt at time t (a random vector taking
values in R

d) is independent of all other observations and hidden states. See
Figure 1(b).

Let π ∈ Δk−1 be the initial state distribution (i.e., the distribution of y1),
and T ∈ R

k×k be the stochastic transition matrix for the hidden state Markov
chain: for all times t,

Pr[yt+1 = i|yt = j] = Ti,j , i, j ∈ [k].

Finally, let O ∈ R
d×k be the matrix whose j-th column is the conditional expec-

tation of xt given yt = j: for all times t,

E[xt|yt = j] = Oej , j ∈ [k].

Proposition 2 ([4]). Define h := y2, where y2 is the second hidden state in the
Markov chain. Then

– x1, x2, x3 are conditionally independent given h;
– the distribution of h is given by the vector w := Tπ ∈ Δk−1;
– for all j ∈ [k],

E[x1|h = j] = O diag(π)T � diag(w)−1ej

E[x2|h = j] = Oej

E[x3|h = j] = OTej .
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Note the matrix of conditional means of xt has full column rank, for each
t ∈ {1, 2, 3}, provided that: (i) O has full column rank, (ii) T is invertible, and
(iii) π and Tπ have positive entries.

4 Orthogonal Tensor Decompositions

We now show how recovering the μi’s in our aforementioned problems reduces to
the problem of finding a certain orthogonal tensor decomposition of a symmetric
tensor. We start by reviewing the spectral decomposition of symmetric matrices,
and then discuss a generalization to the higher-order tensor case. Finally, we
show how orthogonal tensor decompositions can be used for estimating the latent
variable models from the previous section.

4.1 Review: The Matrix Case

We first build intuition by reviewing the matrix setting, where the desired decom-
position is the eigendecomposition of a symmetric rank-k matrix M = V ΛV �,
where V = [v1|v2| · · · |vk] ∈ R

n×k is the matrix with orthonormal eigenvectors
as columns, and Λ = diag(λ1, λ2, . . . , λk) ∈ R

k×k is diagonal matrix of non-zero
eigenvalues. In other words,

M =
k∑

i=1

λi viv
�
i =

k∑

i=1

λi v⊗2
i . (1)

Such a decomposition is guaranteed to exist for every symmetric matrix.
Recovery of the vi’s and λi’s can be viewed at least two ways. First, each vi

is fixed under the mapping u 	→ Mu, up to a scaling factor λi:

Mvi =
k∑

j=1

λj(v�
j vi)vj = λivi

as v�
j vi = 0 for all j 
= i by orthogonality. The vi’s are not necessarily the

only such fixed points. For instance, with the multiplicity λ1 = λ2 = λ, then
any linear combination of v1 and v2 is similarly fixed under M . However, in
this case, the decomposition in (1) is not unique, as λ1v1v

�
1 + λ2v2v

�
2 is equal

to λ(u1u
�
1 + u2u

�
2 ) for any pair of orthonormal vectors, u1 and u2 spanning

the same subspace as v1 and v2. Nevertheless, the decomposition is unique when
λ1, λ2, . . . , λk are distinct, whereupon the vj ’s are the only directions fixed under
u 	→ Mu up to non-trivial scaling.

The second view of recovery is via the variational characterization of the
eigenvalues. Assume λ1 > λ2 > · · · > λk; the case of repeated eigenvalues again
leads to similar non-uniqueness as discussed above. Then the Rayleigh quotient

u 	→ u�Mu

u�u
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is maximized over non-zero vectors by v1. Furthermore, for any s ∈ [k], the max-
imizer of the Rayleigh quotient, subject to being orthogonal to v1, v2, . . . , vs−1,
is vs. Another way of obtaining this second statement is to consider the deflated
Rayleigh quotient

u 	→
u�

(
M − ∑s−1

j=1 λjvjv
�
j

)
u

u�u

and observe that vs is the maximizer.
Efficient algorithms for finding these matrix decompositions are well studied

[15, Section8.2.3], and iterative power methods are one effective class of algo-
rithms.

We remark that in our multilinear tensor notation, we may write the maps
u 	→ Mu and u 	→ u�Mu/‖u‖22 as

u 	→ Mu ≡ u 	→ M(I, u), (2)

u 	→ u�Mu

u�u
≡ u 	→ M(u, u)

u�u
. (3)

4.2 The Tensor Case

Decomposing general tensors is a delicate issue; tensors may not even have unique
decompositions. Fortunately, the orthogonal tensors that arise in the aforemen-
tioned models have a structure which permits a unique decomposition under a
mild non-degeneracy condition. We focus our attention to the case p = 3, i.e., a
third order tensor; the ideas extend to general p with minor modifications.

An orthogonal decomposition of a symmetric tensor T ∈ ⊗3
R

n is a collec-
tion of orthonormal (unit) vectors {v1, v2, . . . , vk} together with corresponding
positive scalars λi > 0 such that

T =
k∑

i=1

λiv
⊗3
i . (4)

Note that since we are focusing on odd-order tensors (p = 3), we have added the
requirement that the λi be positive. This convention can be followed without
loss of generality since −λiv

⊗p
i = λi(−vi)⊗p whenever p is odd. Also, it should

be noted that orthogonal decompositions do not necessarily exist for every sym-
metric tensor.

In analogy to the matrix setting, we consider two ways to view this decompo-
sition: a fixed-point characterization and a variational characterization. Related
characterizations based on optimal rank-1 approximations can be found in [33].

Fixed-Point Characterization. For a tensor T , consider the vector-valued
map

u 	→ T (I, u, u) (5)
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which is the third-order generalization of (2). This can be explicitly written as

T (I, u, u) =
d∑

i=1

∑

1≤j,l≤d

Ti,j,l(e�
j u)(e�

l u)ei.

Observe that (5) is not a linear map, which is a key difference compared to the
matrix case.

An eigenvector u for a matrix M satisfies M(I, u) = λu, for some scalar λ. We
say a unit vector u ∈ R

n is an eigenvector of T , with corresponding eigenvalue
λ ∈ R, if

T (I, u, u) = λu.

(To simplify the discussion, we assume throughout that eigenvectors have
unit norm; otherwise, for scaling reasons, we replace the above equation with
T (I, u, u) = λ‖u‖u.) This concept was originally introduced in [23,30]. For
orthogonally decomposable tensors T =

∑k
i=1 λiv

⊗3
i ,

T (I, u, u) =
k∑

i=1

λi(u�vi)2vi .

By the orthogonality of the vi, it is clear that T (I, vi, vi) = λivi for all i ∈ [k].
Therefore each (vi, λi) is an eigenvector/eigenvalue pair.

There are a number of subtle differences compared to the matrix case that
arise as a result of the non-linearity of (5). First, even with the multiplicity
λ1 = λ2 = λ, a linear combination u := c1v1 + c2v2 may not be an eigenvector.
In particular,

T (I, u, u) = λ1c
2
1v1 + λ2c

2
2v2 = λ(c21v1 + c22v2)

may not be a multiple of c1v1 + c2v2. This indicates that the issue of repeated
eigenvalues does not have the same status as in the matrix case. Second, even
if all the eigenvalues are distinct, it turns out that the vi’s are not the only
eigenvectors. For example, set u := (1/λ1)v1 + (1/λ2)v2. Then,

T (I, u, u) = λ1(1/λ1)2v1 + λ2(1/λ2)2v2 = u,

so u/‖u‖ is an eigenvector. More generally, for any subset S ⊆ [k], we have that∑
i∈S(1/λi)vi is (proportional to) an eigenvector.
As we now see, these additional eigenvectors can be viewed as spurious. We

say a unit vector u is a robust eigenvector of T if there exists an ε > 0 such that
for all θ ∈ {u′ ∈ R

n : ‖u′ − u‖ ≤ ε}, repeated iteration of the map

θ̄ 	→ T (I, θ̄, θ̄)
‖T (I, θ̄, θ̄)‖ , (6)

starting from θ converges to u. Note that the map (6) rescales the output to
have unit Euclidean norm. Robust eigenvectors are also called attracting fixed
points of (6) (see, e.g., [20]).
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The following theorem implies that if T has an orthogonal decomposition
as given in (4), then the set of robust eigenvectors of T are precisely the set
{v1, v2, . . . vk}, implying that the orthogonal decomposition is unique. (For even
order tensors, the uniqueness is true up to sign-flips of the vi.)

Theorem 6. Let T have an orthogonal decomposition as given in (4).

1. The set of θ ∈ R
n which do not converge to some vi under repeated iteration

of (6) has measure zero.
2. The set of robust eigenvectors of T is equal to {v1, v2, . . . , vk}.

The proof of Theorem 6 is given in [1] and follows readily from simple orthogo-
nality considerations. Note that every vi in the orthogonal tensor decomposition
is robust, whereas for a symmetric matrix M , for almost all initial points, the
map θ̄ 	→ Mθ̄

‖Mθ̄‖ converges only to an eigenvector corresponding to the largest
magnitude eigenvalue. Also, since the tensor order is odd, the signs of the robust
eigenvectors are fixed, as each −vi is mapped to vi under (6).

Variational Characterization. We now discuss a variational characterization
of the orthogonal decomposition. The generalized Rayleigh quotient [33] for a
third-order tensor is

u 	→ T (u, u, u)
(u�u)3/2

,

which can be compared to (3). For an orthogonally decomposable tensor, the
following theorem shows that a non-zero vector u ∈ R

n is an isolated local
maximizer [28] of the generalized Rayleigh quotient if and only if u = vi for
some i ∈ [k].

Theorem 7. Assume n ≥ 2. Let T have an orthogonal decomposition as given
in (4), and consider the optimization problem

max
u∈Rn

T (u, u, u) s.t. ‖u‖ = 1.

1. The stationary points are eigenvectors of T .
2. A stationary point u is an isolated local maximizer if and only if u = vi for

some i ∈ [k].

The proof of Theorem 7 is given in [1]. It is similar to local optimality analysis
for ICA methods using fourth-order cumulants (e.g., [13,14]).

Again, we see similar distinctions to the matrix case. In the matrix case,
the only local maximizers of the Rayleigh quotient are the eigenvectors with the
largest eigenvalue (and these maximizers take on the globally optimal value).
For the case of orthogonal tensor forms, the robust eigenvectors are precisely
the isolated local maximizers.

An important implication of the two characterizations is that, for orthogo-
nally decomposable tensors T , (i) the local maximizers of the objective function
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u 	→ T (u, u, u)/(u�u)3/2 correspond precisely to the vectors vi in the decompo-
sition, and (ii) these local maximizers can be reliably identified using a simple
fixed-point iteration (i.e., the tensor analogue of the matrix power method).
Moreover, a second-derivative test based on T (I, I, u) can be employed to test
for local optimality and rule out other stationary points.

4.3 Estimation via Orthogonal Tensor Decompositions

We now demonstrate how the moment tensors obtained for various latent vari-
able models in Section 3 can be reduced to an orthogonal form. For concreteness,
we take the specific form from the exchangeable single topic model (Theorem 1):

M2 =
k∑

i=1

wi μi ⊗ μi,

M3 =
k∑

i=1

wi μi ⊗ μi ⊗ μi.

(The more general case allows the weights wi in M2 to differ in M3, but for sim-
plicity we keep them the same in the following discussion.) We now show how to
reduce these forms to an orthogonally decomposable tensor from which the wi

and μi can be recovered. See [1] for a discussion as to how previous approaches
[2,4,16,27] achieved this decomposition through a certain simultaneous diago-
nalization method.

Throughout, we assume the following non-degeneracy condition.

Condition 41 (Non-degeneracy). The vectors μ1, μ2, . . . , μk ∈ R
d are lin-

early independent, and the scalars w1, w2, . . . , wk > 0 are strictly positive.

Observe that Condition 41 implies that M2 � 0 is positive semidefinite and has
rank-k. This is a mild condition; furthermore, when this condition is not met,
learning is conjectured to be hard for both computational [27] and information-
theoretic reasons [26].

The Reduction. First, let W ∈ R
d×k be a linear transformation such that

M2(W,W ) = W �M2W = I

where I is the k × k identity matrix (i.e., W whitens M2). Since M2 � 0,
we may for concreteness take W := UD−1/2, where U ∈ R

d×k is the matrix of
orthonormal eigenvectors of M2, and D ∈ R

k×k is the diagonal matrix of positive
eigenvalues of M2. Let

μ̃i :=
√

wi W �μi.

Observe that

M2(W,W ) =
k∑

i=1

W �(
√

wiμi)(
√

wiμi)�W =
k∑

i=1

μ̃iμ̃
�
i = I,

so the μ̃i ∈ R
k are orthonormal vectors.



34 A. Anandkumar et al.

Now define M̃3 := M3(W,W,W ) ∈ R
k×k×k, so that

M̃3 =
k∑

i=1

wi (W �μi)⊗3 =
k∑

i=1

1√
wi

μ̃⊗3
i .

As the following theorem shows, the orthogonal decomposition of M̃3 can be
obtained by identifying its robust eigenvectors, upon which the original parame-
ters wi and μi can be recovered. For simplicity, we only state the result in terms
of robust eigenvector/eigenvalue pairs; one may also easily state everything in
variational form using Theorem 7.

Theorem 8. Assume Condition 41 and take M̃3 as defined above.

1. The set of robust eigenvectors of M̃3 is equal to {μ̃1, μ̃2, . . . , μ̃k}.
2. The eigenvalue corresponding to the robust eigenvector μ̃i of M̃3 is equal to

1/
√

wi, for all i ∈ [k].
3. If B ∈ R

d×k is the Moore-Penrose pseudoinverse of W �, and (v, λ) is a
robust eigenvector/eigenvalue pair of M̃3, then λBv = μi for some i ∈ [k].

The theorem follows by combining the above discussion with the robust eigen-
vector characterization of Theorem 6. Recall that we have taken as convention
that eigenvectors have unit norm, so the μi are exactly determined from the
robust eigenvector/eigenvalue pairs of M̃3 (together with the pseudoinverse of
W �); in particular, the scale of each μi is correctly identified (along with the
corresponding wi). Relative to previous works on moment-based estimators for
latent variable models (e.g., [2,4,16]), Theorem 8 emphasizes the role of the
special tensor structure, which in turn makes transparent the applicability of
methods for orthogonal tensor decomposition.

5 Tensor Power Method

In this section, we consider the tensor power method of [21, Remark 3] for
orthogonal tensor decomposition. We first state a simple convergence analysis
for an orthogonally decomposable tensor T .

When only an approximation T̂ to an orthogonally decomposable tensor
T is available (e.g., when empirical moments are used to estimate population
moments), an orthogonal decomposition need not exist for this perturbed tensor
(unlike for the case of matrices), and a more robust approach is required to extract
the approximate decomposition. Here, we propose such a variant in Algorithm 1
and provide a detailed perturbation analysis. We note that alternative approaches
such as simultaneous diagonalization can also be employed (see [1]).

5.1 Convergence Analysis for Orthogonally Decomposable Tensors

The following lemma establishes the quadratic convergence of the tensor power
method (i.e., repeated iteration of (6)) for extracting a single component of
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the orthogonal decomposition. Note that the initial vector θ0 determines which
robust eigenvector will be the convergent point. Computation of subsequent
eigenvectors can be computed with deflation, i.e., by subtracting appropriate
terms from T .

Lemma 1. Let T ∈ ⊗3
R

n have an orthogonal decomposition as given
in (4). For a vector θ0 ∈ R

n, suppose that the set of numbers
|λ1v

�
1 θ0|, |λ2v

�
2 θ0|, . . . , |λkv�

k θ0| has a unique largest element. Without loss of
generality, say |λ1v

�
1 θ0| is this largest value and |λ2v

�
2 θ0| is the second largest

value. For t = 1, 2, . . . , let

θt :=
T (I, θt−1, θt−1)

‖T (I, θt−1, θt−1)‖ .

Then

‖v1 − θt‖2 ≤
(

2λ2
1

k∑

i=2

λ−2
i

)

·
∣
∣
∣
∣
λ2v

�
2 θ0

λ1v�
1 θ0

∣
∣
∣
∣

2t+1

.

That is, repeated iteration of (6) starting from θ0 converges to v1 at a quadratic
rate.

To obtain all eigenvectors, we may simply proceed iteratively using deflation,
executing the power method on T − ∑

j λjv
⊗3
j after having obtained robust

eigenvector / eigenvalue pairs {(vj , λj)}.

Proof. Let θ0, θ1, θ2, . . . be the sequence given by θ0 := θ0 and θt :=
T (I, θt−1, θt−1) for t ≥ 1. Let ci := v�

i θ0 for all i ∈ [k]. It is easy to check that (i)
θt = θt/‖θt‖, and (ii) θt =

∑k
i=1 λ2t−1

i c2
t

i vi. (Indeed, θt+1 =
∑k

i=1 λi(v�
i θt)2vi =

∑k
i=1 λi(λ2t−1

i c2
t

i )2vi =
∑k

i=1 λ2t+1−1
i c2

t+1

i vi.) Then

1 − (v�
1 θt)

2 = 1 − λ2t+1−2
1 c2

t+1

1
∑k

i=1 λ2t+1−2
i c2

t+1
i

≤
∑k

i=2 λ2t+1−2
i c2

t+1

i
∑k

i=1 λ2t+1−2
i c2

t+1
i

≤ λ2
1

k∑

i=2

λ−2
i ·
∣
∣
∣
∣
λ2c2
λ1c1

∣
∣
∣
∣

2t+1

.

Since λ1 > 0, we have v�
1 θt > 0 and hence ‖v1 − θt‖2 = 2(1 − v�

1 θt) ≤ 2(1 −
(v�

1 θt)2) as required.

5.2 Perturbation Analysis of a Robust Tensor Power Method

Now we summarize the case where we have an approximation T̂ to an orthogo-
nally decomposable tensor T . Here, a more robust approach is required to extract
an approximate decomposition. We propose such an algorithm in Algorithm 1,
and provide a detailed perturbation analysis. For simplicity, we assume the tensor
T̂ is of size k×k×k as per the reduction from Section 4.3. In some applications,
it may be preferable to work directly with a n × n × n tensor of rank k ≤ n (as
in Lemma 1); our results apply in that setting with little modification.
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Algorithm 1. Robust tensor power method
input symmetric tensor T̃ ∈ R

k×k×k, number of iterations L, N .
output the estimated eigenvector/eigenvalue pair; the deflated tensor.
1: for τ = 1 to L do
2: Draw θ

(τ)
0 uniformly at random from the unit sphere in R

k.
3: for t = 1 to N do
4: Compute power iteration update

θ
(τ)
t :=

T̃ (I, θ
(τ)
t−1, θ

(τ)
t−1)

‖T̃ (I, θ
(τ)
t−1, θ

(τ)
t−1)‖

(7)

5: end for
6: end for
7: Let τ∗ := arg maxτ∈[L]{T̃ (θ

(τ)
N , θ

(τ)
N , θ

(τ)
N )}.

8: Do N power iteration updates (7) starting from θ
(τ∗)
N to obtain θ̂, and set λ̂ :=

T̃ (θ̂, θ̂, θ̂).
9: return the estimated eigenvector/eigenvalue pair (θ̂, λ̂); the deflated tensor T̃ −

λ̂ θ̂⊗3.

Assume that the symmetric tensor T ∈ R
k×k×k is orthogonally decompos-

able, and that T̂ = T + E, where the perturbation E ∈ R
k×k×k is a symmetric

tensor with small operator norm:

‖E‖ := sup
‖θ‖=1

|E(θ, θ, θ)|.

In our latent variable model applications, T̂ is the tensor formed by using empir-
ical moments, while T is the orthogonally decomposable tensor derived from the
population moments for the given model. In the context of parameter estimation
(as in Section 4.3), E must account for any error amplification throughout the
reduction, such as in the whitening step.

[1] provides a perturbation analysis which is similar to Wedin’s perturbation
theorem for singular vectors of matrices [32] in that it bounds the error of the
(approximate) decomposition returned by Algorithm 1 on input T̂ in terms of
the size of the perturbation, provided that the perturbation is small enough.
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