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Abstract. Transductive learning considers situations when a learner
observes m labelled training points and u unlabelled test points with
the final goal of giving correct answers for the test points. This paper
introduces a new complexity measure for transductive learning called
Permutational Rademacher Complexity (PRC) and studies its properties.
A novel symmetrization inequality is proved, which shows that PRC
provides a tighter control over expected suprema of empirical processes
compared to what happens in the standard i.i.d. setting. A number of
comparison results are also provided, which show the relation between
PRC and other popular complexity measures used in statistical learning
theory, including Rademacher complexity and Transductive Rademacher
Complexity (TRC). We argue that PRC is a more suitable complexity
measure for transductive learning. Finally, these results are combined
with a standard concentration argument to provide novel data-dependent
risk bounds for transductive learning.

Keywords: Transductive learning · Rademacher complexity · Statisti-
cal learning theory · Empirical processes · Concentration inequalities

1 Introduction

Rademacher complexities ([14], [2]) play an important role in the widely used
concentration-based approach to statistical learning theory [4], which is closely
related to the analysis of empirical processes [21]. They measure a complexity of
function classes and provide data-dependent risk bounds in the standard i.i.d.
framework of inductive learning, thanks to symmetrization and concentration
inequalities. Recently, a number of attempts were made to apply this machinery
also to the transductive learning setting [22]. In particular, the authors of [10]
introduced a notion of transductive Rademacher complexity and provided an
extensive study of its properties, as well as general transductive risk bounds
based on this new complexity measure.
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In the transductive learning, a learner observes m labelled training points and
u unlabelled test points. The goal is to give correct answers on the test points.
Transductive learning naturally appears in many modern large-scale applica-
tions, including text mining, recommender systems, and computer vision, where
often the objects to be classified are available beforehand. There are two different
settings of transductive learning, defined by V. Vapnik in his book [22, Chap.8].
The first one assumes that all the objects from the training and test sets are gen-
erated i.i.d. from an unknown distribution P . The second one is distribution free,
and it assumes that the training and test sets are realized by a uniform and ran-
dom partition of a fixed and finite general population of cardinality N := m + u
into two disjoint subsets of cardinalities m and u; moreover, no assumptions are
made regarding the underlying source of this general population. The second
setting has gained much attention1 ([22], [9], [7], [10], [8], and [20]), probably
due to the fact that any upper risk bound for this setting directly implies a risk
bound also for the first setting [22, Theorem8.1]. In essence, the second setting
studies uniform deviations of risks computed on two disjoint finite samples. Fol-
lowing Vapnik’s discussion in [6, p.458], we would also like to emphasize that
the second setting of transductive learning naturally appears as a middle step
in proofs of the standard inductive risk bounds, as a result of symmetrization or
the so-called double-sample trick. This way better transductive risk bounds also
translate into better inductive ones.

An important difference between the two settings discussed above lies in the
fact that the m elements of the training set in the second setting are inter-
dependent, because they are sampled uniformly without replacement from the
general population. As a result, the standard techniques developed for induc-
tive learning, including concentration and Rademacher complexities mentioned
in the beginning, can not be applied in this setting, since they are heavily based
on the i.i.d. assumption. Therefore, it is important to study empirical processes
in the setting of sampling without replacement.

Previous Work. A large step in this direction was made in [10], where the
authors presented a version of McDiarmid’s bounded difference inequality [5]
for sampling without replacement together with the Transductive Rademacher
Complexity (TRC). As a main application the authors derived an upper bound
on the binary test error of a transductive learning algorithm in terms of TRC.
However, the analysis of [10] has a number of shortcomings. Most importantly,
TRC depends on the unknown labels of the test set. In order to obtain com-
putable risk bounds, the authors resorted to the contraction inequality [15],
which is known to be a loose step [17], since it destroys any dependence on the
labels.

Another line of work was presented in [20], where variants of Talagrand’s con-
centration inequality were derived for the setting of sampling without replace-
ment. These inequalities were then applied to achieve transductive risk bounds
with fast rates of convergence o(m−1/2), following a localized approach [1]. In
contrast, in this work we consider only the worst-case analysis based on the
1 For the extensive overview of transductive risk bounds we refer the reader to [18].
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global complexity measures. An analysis under additional assumptions on the
problem at hand, including Mammen-Tsybakov type low noise conditions [4], is
an interesting open question and left for future work.

Summary of Our Results. This paper continues the analysis of empirical pro-
cesses indexed by arbitrary classes of uniformly bounded functions in the setting
of sampling without replacement, initiated by [10]. We introduce a new com-
plexity measure called permutational Rademacher complexity (PRC) and argue
that it captures the nature of this setting very well. Due to space limitations we
present the analysis of PRC only for the special case when the training and test
sets have the same size m = u, which is nonetheless sufficiently illustrative2.

We prove a novel symmetrization inequality (Theorem 2), which shows that
the expected PRC and the expected suprema of empirical processes when sam-
pling without replacement are equivalent up to multiplicative constants. Quite
remarkably, the new upper and lower bounds (the latter is often called desym-
metrization inequality) both hold without any additive terms when m = u, in
contrast to the standard i.i.d. setting, where an additive term of order O(m−1/2)
is unavoidable in the lower bound. For TRC even the upper symmetrization
inequality [10, Lemma4] includes an additive term of the order O(m−1/2) and
no desymmetrization inequality is known. This suggests that PRC may be a
more suitable complexity measure for transductive learning. We would also like
to note that the proof of our new symmetrization inequality is surprisingly sim-
ple, compared to the one presented in [10].

Next we compare PRC with other popular complexity measures used in sta-
tistical learning theory. In particular, we provide achievable upper and lower
bounds, relating PRC to the conditional Rademacher complexity (Theorem 3).
These bounds show that the PRC is upper and lower bounded by the conditional
Rademacher complexity up to additive terms of orders o(m−1/2) and O(m−1/2)
respectively, which are achievable (Lemma 1). In addition to this, Theorem 3
also significantly improves bounds on the complexity measure called maximum
discrepancy presented in [2, Lemma 3]. We also provide a comparison between
expected PRC and TRC (Corollary 1), which shows that their values are close
up to small multiplicative constants and additive terms of order O(m−1/2).

Finally, we apply these results to obtain a new computable data-dependent
risk bound for transductive learning based on the PRC (Theorem 5), which holds
for any bounded loss functions. We conclude by discussing the advantages of the
new risk bound over the previously best known one of [10].

2 Notations

We will use calligraphic symbols to denote sets, with subscripts indicating their
cardinalities: card(Zm) = m. For any function f we will denote its average value
computed on a finite set S by f̄(S). In what follows we will consider an arbitrary

2 All the results presented in this paper are also available for the general m �= u case,
but we defer them to a future extended version of this paper.
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space Z (for instance, a space of input-output pairs) and class F of functions
(for instance, loss functions) mapping Z to R. Most of the proofs are deferred
to the last section for improved readability.

Arguably, one of the most popular complexity measures used in statistical
learning theory is the Rademacher complexity ([15], [14], [2]):

Definition 1 (Conditional Rademacher complexity). Fix any subset
Zm = {Z1, . . . , Zm} ⊆ Z. The following random quantity is commonly known
as a conditional Rademacher complexity:

R̂m(F,Zm) = E
ε

[
2
m

sup
f∈F

m∑
i=1

εif(Zi)

]
,

where ε = {εi}mi=1 are i.i.d. Rademacher signs, taking values ±1 with probabilities
1/2. When the set Zm is clear from the context we will simply write R̂m(F ).

As discussed in the introduction, Rademacher complexities play an important
role in the analysis of empirical processes and statistical learning theory. How-
ever, this measure of complexity was devised mainly for the i.i.d. setting, which
is different from our setting of sampling without replacement. The following
complexity measure was introduced in [10] to overcome this issue:

Definition 2 (Transductive Rademacher complexity). Fix any set ZN =
{Z1, . . . , ZN} ⊆ Z, positive integers m,u such that N = m + u, and p ∈ [

0, 1
2

]
.

The following quantity is called Transductive Rademacher complexity (TRC):

R̂td
m+u(F,ZN , p) =

(
1
m

+
1
u

)
E
σ

[
sup
f∈F

N∑
i=1

σif(Zi)

]
,

where σ = {σ1}m+u
i=1 are i.i.d. random variables taking values ±1 with probabili-

ties p and 0 with probability 1 − 2p.

We summarize the importance of these two complexity measures in the analysis
of empirical processes when sampling without replacement in the following result:

Theorem 1. Fix an N -element subset ZN ⊆ Z and let m < N elements of
Zm be sampled uniformly without replacement from ZN . Also let m elements of
Xm be sampled uniformly with replacement from ZN . Denote Zu := ZN \ Zm

with u := card(Zu) = N − m. The following upper bound in terms of the i.i.d.
Rademacher complexity was provided in [20]:

E
Zm

sup
f∈F

(
f̄(Zu) − f̄(Zm)

) ≤ E
Xm

[
R̂m(F,Xm)

]
. (1)

The following bound in terms of TRC was provided in [10]. Assume that func-
tions in F are uniformly bounded by B. Then for p0 := mu

N2 and c0 < 5.05:

E
Zm

sup
f∈F

(
f̄(Zu) − f̄(Zm)

) ≤ R̂td
m+u(F,ZN , p0) + c0B

N
√

min(m,u)
mu

. (2)
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While (1) did not explicitly appear in [20], it can be immediately derived using
[20, Corollary8] and i.i.d. symmetrization of [13, Theorem 2.1].

Finally, we introduce our new complexity measure:

Definition 3 (Permutational Rademacher complexity). Let Zm ⊆ Z be
any fixed set of cardinality m. For any n ∈ {1, . . . , m− 1} the following quantity
will be called a permutational Rademacher complexity (PRC):

Q̂m,n(F,Zm) = E
Zn

sup
f∈F

(
f̄(Zk) − f̄(Zn)

)
,

where Zn is a random subset of Zm containing n elements sampled uniformly
without replacement and Zk := Zm \ Zn. When the set Zm is clear from the
context we will simply write Q̂m,n(F ).

The name PRC is explained by the fact that if m is even then the definitions
of Q̂m,m/2(F ) and R̂m(F ) are very similar. Indeed, the only difference is that the
expectation in the PRC is over the randomly permuted sequence containing equal
number of “ − 1” and “ + 1”, whereas in Rademacher complexity the average is
w.r.t. all the possible sequences of signs. The term “permutation complexity” has
already appeared in [16], where it was used to denote a novel complexity measure
for a model selection. However, this measure was specific to the i.i.d. setting and
binary loss. Moreover, the bounds presented in [16] were of the same order as
the risk bounds based on the Rademacher complexity with worse constants in
the slack term.

3 Symmetrization and Comparison Results

We start with showing a version of the i.i.d. symmetrization inequality (refer-
ences can be found in [15], [13]) for the setting of sampling without replacement.
It shows that the expected supremum of empirical processes in this setting is up
to multiplicative constants equivalent to the expected PRC.

Theorem 2. Fix an N -element subset ZN ⊆ Z and let m < N elements of Zm

be sampled uniformly without replacement from ZN . Denote Zu := ZN \Zm with
u := card(Zu) = N −m. If m = u and m is even then for any n ∈ {1, . . . , m−1}:

1
2 E

Zm

[
Q̂m,m/2(F,Zm)

]
≤ E

Zm

sup
f∈F

(
f̄(Zu) − f̄(Zm)

) ≤ E
Zm

[
Q̂m,n(F,Zm)

]
.

The inequalities also hold if we include absolute values inside the suprema.

Proof. The proof can be found in Sect. 5.1.

This inequality should be compared to the previously known complexity bounds
of Theorem 1. First of all, in contrast to (1) and (2) the new bound provides
a two sided control, which shows that PRC is a “correct” complexity measure
for our setting. It is also remarkable that the lower bound (commonly known
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as the desymmetrization inequality) does not include any additive terms, since
in the standard i.i.d. setting the lower bound holds only up to an additive term
of order O(m−1/2) [13, Sect.2.1]. Also note that this result does not assume the
boundedness of functions in F , which is a necessary assumptions both in (2) and
in the i.i.d. desymmetrization inequality.

Next we compare PRC with the conditional Rademacher complexity:

Theorem 3. Let Zm ⊆ Z be any fixed set of even cardinality m. Then:

Q̂m,m/2(F,Zm) ≤
(

1 +
2√

2πm − 2

)
R̂m(F,Zm). (3)

Moreover, if the functions in F are absolutely bounded by B then∣∣∣Q̂m,m/2(F,Zm) − R̂m(F,Zm)
∣∣∣ ≤ 2B√

m
. (4)

The results also hold if we include absolute values inside suprema in Q̂m,n, R̂m.

Proof. Conceptually the proof is based on the coupling between a sequence
{εi}mi=1 of i.i.d. Rademacher signs and a uniform random permutation {ηi}mi=1 of
a set containing m/2 plus and m/2 minus signs. This idea was inspired by the
techniques used in [11]. The detailed proof can be found in Sect. 5.2.

Note that a typical order of R̂m(F ) is O(m−1/2), thus the multiplicative
upper bound (3) can be much tighter than the upper bound of (4). We would
also like to note that Theorem 3 significantly improves bounds of Lemma 3
in [2], which relate the so-called maximal discrepancy measure of the class F to
its Rademacher complexity (for the further discussion we refer to Appendix).

Our next result shows that bounds of Theorem 3 are essentially tight.

Lemma 1. Let Zm ⊆ Z with even m. There are two finite classes F ′
m and F ′′

m

of functions mapping Z to R and absolutely bounded by 1, such that:

Q̂m,m/2(F ′
m,Zm) = 0, (2m)−1/2 ≤ R̂m(F ′

m,Zm) ≤ 2m−1/2; (5)

Q̂m,m/2(F ′′
m,Zm) = 1, 1 −

√
2

πm
≤ R̂m(F ′′

m,Zm) ≤ 1 − 4
5

√
2

πm
. (6)

Proof. The proof can be found in Sect. 5.3.

Inequalities (5) simultaneously show that (a) the order O(m−1/2) of the additive
bound (4) can not be improved, and (b) the multiplicative upper bound (3) can
not be reversed. Moreover, it can be shown using (6) that the factor appearing
in (3) can not be improved to 1 + o(m−1/2).

Finally, we compare PRC to the transductive Rademacher complexity:

Lemma 2. Fix any set ZN = {Z1, . . . , ZN} ⊆ Z. If m = u and N = m + u:

R̂N (F,ZN ) ≤ R̂td
m+u (F,ZN , 1/4) ≤ 2R̂N (F,ZN ).
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Proof. The upper bound was presented in [10, Lemma 1]. For the lower bound,
notice that if p = 1/4 the i.i.d. signs σi presented in Definition 2 have the same
distribution as εiηi, where εi are i.i.d. Rademacher signs and ηi are i.i.d. Bernoulli
random variables with parameters 1/2. Thus, Jensen’s inequality gives:

R̂td
m+u (F,ZN , 1/4) =

4
N

E
(ε,η)

[
sup
f∈F

m+u∑
i=1

εiηif(Zi)

]
≥ 4

N
E
ε

[
sup
f∈F

m+u∑
i=1

εi
1
2
f(Zi)

]
.

Together with Theorems 2 and 3 this result shows that when m = u the PRC
can not be much larger than transductive Rademacher complexity:

Corollary 1. Using notations of Theorem 2, we have:

E
Zm

[
Q̂m,m/2(F,Zm)

]
≤

(
2 +

4√
2πN − 2

)
R̂td

m+u(F,ZN , 1/4).

If functions in F are uniformly bounded by B then we also have a lower bound:

E
Zm

[
Q̂m,m/2(F,Zm)

]
≥ 1

2
R̂td

m+u(F,ZN , 1/4) +
2B√
N

.

Proof. Simply notice that EZm

[
supf∈F

(
f̄(Zu) − f̄(Zm)

)]
= Q̂N,m(F,ZN ).

4 Transductive Risk Bounds

Next we will use the results of Sect. 3 to obtain a new transductive risk bound.
First we will shortly describe the setting.

We will consider the second, distribution-free setting of transductive learning
described in the introduction. Fix any finite general population of input-output
pairs ZN = {(xi, yi)}Ni=1 ⊆ X ×Y, where X and Y are arbitrary input and output
spaces. We make no assumptions regarding underlying source of ZN . The learner
receives the labeled training set Zm consisting of m < N elements sampled
uniformly without replacement from ZN . The remaining test set Zu := ZN \Zm

is presented to the learner without labels (we will use Xu to denote the inputs of
Zu). The goal of the learner is to find a predictor in the fixed hypothesis class
H based on the training sample Zm and unlabelled test points Xu, which has
a small test risk measured using bounded loss function � : Y × Y → [0, 1]. For
h ∈ H and (x, y) ∈ ZN denote �h(x, y) = �

(
h(x), y

)
and also denote the loss

class LH = {�h : h ∈ H}. Then the test and training risks of h ∈ H are defined
as erru(h) := �h(Zu) and errm(h) := �h(Zm) respectively.

Following risk bound in terms of TRC was presented in [10, Corollary 2]:

Theorem 4 ([10]). If m = u then with probability at least 1−δ over the random
training set Zm any h ∈ H satisfies:

erru(h) ≤ errm(h) + R̂td
m+u (LH,ZN , 1/4) + 11

√
2
N

+

√
2N log(1/δ)
(N − 1/2)2

. (7)
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Using results of Sect. 3 we obtain the following risk bound:

Theorem 5. If m = u and n ∈ {1, . . . , m − 1} then with probability at least
1 − δ over the random training set Zm any h ∈ H satisfies:

erru(h) ≤ errm(h) + E
Sm

[
Q̂m,n(LH,Zm)

]
+

√
2N log(1/δ)
(N − 1/2)2

. (8)

Moreover, with probability at least 1 − δ any h ∈ H satisfies:

erru(h) ≤ errm(h) + Q̂m,n(LH,Zm) + 2

√
2N log(2/δ)
(N − 1/2)2

. (9)

Proof. The proof can be found in Sect. 5.4.

We conclude by comparing risk bounds of Theorems 5 and 4:
1. First of all, the upper bound of (9) is computable. This bound is based

on the concentration argument, which shows that the expected PRC (appearing
in (8)) can be nicely estimated using the training set. Meanwhile, the upper
bound of (7) depends on the unknown labels of the test set through TRC.
In order to make it computable the authors of [10] resorted to the contraction
inequality, which allows to drop any dependence on the labels for Lipschitz losses,
which is known to be a loose step [17].

2. Moreover, we would like to note that for binary loss function TRC (as well
as the Rademacher complexity) does not depend on the labels at all. Indeed,
this can be shown by writing �01(y, y′) = (1 − yy′)/2 for y, y′ ∈ {−1,+1} and
noting that σi and σiy are identically distributed for σi used in Definition 2.
This is not true for PRC, which is sensitive to the labels even in this setting. As
a future work we hope to use this fact for analysis in the low noise setting [4].

3. The slack term appearing in (8) is significantly smaller than the one of (7).
For instance, if δ = 0.01 then the latter is 13 times larger. This is caused by the
additive term in symmetrization inequality (2). At the same time, Corollary 1
shows that the complexity term appearing in (8) is at most two times larger
than TRC, appearing in (7).

4. Comparison result of Theorem 3 shows that the upper bound of (9) is also
tighter than the one which can be obtained using (1) and conditional Rademacher
complexity.

5. Similar upper bounds (up to extra factor of 2) also hold for the excess risk
erru(hm) − infh∈H erru(h), where hm minimizes the training risk errm over H.
This can be proved using a similar argument to Theorem 5.

6. Finally, one more application of the concentration argument can simplify
the computation of PRC, by estimating the expected value appearing in Defini-
tion 3 with only one random partition of Zm.
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5 Full Proofs

5.1 Proof of Theorem 2

Lemma 3. For 0 < m ≤ N let Sm := {s1, . . . , sm} be sampled uniformly with-
out replacement from a finite set of real numbers C = {c1, . . . , cN} ⊂ R. Then:

E
Sm

[
1
m

m∑
i=1

si

]
=

1(
N
m

) ∑
Sm⊆C

1
m

∑
z∈Sm

z =
1

m
(
N
m

) N∑
i=1

(
N − 1
m − 1

)
ci =

1
N

N∑
i=1

ci.

Proof (of Theorem 2). Fix any positive integers n and k such that n + k = m,
which implies n < m and k < m = u. Note that Lemma 3 implies:

f̄(Zu) = E
Sk

[
f̄(Sk)

]
, f̄(Zm) = E

Sn

[
f̄(Sn)

]
,

where Sk and Sn are sampled uniformly without replacement from Zu and Zm

respectively. Using Jensen’s inequality we get:

E
Zm

sup
f∈F

(
f̄(Zu) − f̄(Zm)

)
= E

Zm

sup
f∈F

(
E
Sk

[
f̄(Sk)

] − E
Sn

[
f̄(Sn)

])
≤ E

(Zm,Sk,Sn)
sup
f∈F

(
f̄(Sk) − f̄(Sn)

)
. (10)

The marginal distribution of (Sk,Sn), appearing in (10), can be equivalently
described by first sampling Zm from ZN , then Sn from Zm (both times uniformly
without replacement), and setting Sk := Zm \ Sn (recall that n + k = m). Thus

E
(Zm,Sk,Sn)

sup
f∈F

(
f̄(Sk) − f̄(Sn)

)
= E

Zm

[
E
Sn

[
sup
f∈F

(
f̄(Zm \ Sn) − f̄(Sn)

)∣∣∣∣Zm

]]
,

which completes the proof of the upper bound.
We have shown that for n ∈ {1, . . . , m − 1} and k := m − n:

E
Zm

[
Q̂m,n(F,Zm)

]
= E

(Zk,Zn)
sup
f∈F

(
f̄(Zk) − f̄(Zn)

)
, (11)

where Zn and Zk are sampled uniformly without replacement from ZN and
ZN \ Zn respectively. Let Zm−n be sampled uniformly without replacement
from ZN \ (Zn ∪Zk) and let Zu−k be the remaining u−k elements of ZN . Using
Lemma 3 once again we get:

E

[
f̄(Zm−n)

∣∣(Zn,Zk)
]

= E

[
f̄(Zu−k)

∣∣(Zn,Zk)
]
.

We can rewrite the r.h.s. of (11) as:

E
(Zn,Zk)

sup
f∈F

(
f̄(Zk) − f̄(Zn) + E

[
f̄(Zu−k) − f̄(Zm−n)

∣∣(Zn,Zk)
])

≤ E sup
f∈F

(
f̄(Zk) − f̄(Zn) + f̄(Zu−k) − f̄(Zm−n)

)
,
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where we have used Jensen’s inequality. If we take n∗ = k∗ = m/2 we get

E
Zm

[
Q̂m,m/2(F,Zm)

]
≤ E sup

f∈F

(
2f̄(Zk∗ ∪ Zu−k∗) − 2f̄(Zn∗ ∪ Zm−n∗)

)
.

It is left to notice that the random subsets Zk∗ ∪ Zu−k∗ and Zn∗ ∪ Zm−n∗ have
the same distributions as Zu and Zm.

5.2 Proof of Theorem 3

Let m = 2 · n, ε = {εi}mi=1 be i.i.d. Rademacher signs, and η = {ηi}mi=1 be a
uniform random permutation of a set containing n plus and n minus signs. The
proof of Theorem 3 is based on the coupling of random variables ε and η, which
is described in Lemma 4. We will need a number of definitions. Consider binary
cube Bm := {−1,+1}m. Denote Sm := {v ∈ Bm :

∑m
i=1 vi = 0}, which is a set

of all the vectors in Bm having equal number of plus and minus signs. For any
v ∈ Bm denote ‖v‖1 =

∑m
i=1 |vi| and consider the following set:

T (v) = arg min
v′∈Sm

‖v − v′‖1,

which consists of the points in Sm closest to v in Hamming metric. For any
v ∈ Bm let t(v) be a random element of T (v), distributed uniformly. We will use
ti(v) to denote i-th coordinate of the vector t(v).

Remark 1. If v ∈ Sm then T (v) = {v}. Otherwise, T (v) will clearly contain
more than one element of Sm. Namely, it can be shown, that if for some positive
integer q it holds that

∑m
i=1 vi = q, then q is necessarily even and T (v) consists

of all the vectors in Sm which can be obtained by replacing q/2 of +1 signs in v

with −1 signs, and thus in this case card
(
T (v)

)
=

(
(m+q)/2

q/2

)
.

Lemma 4 (Coupling). Assume that m = 2 ·n. Then the random sequence t(ε)
has the same distribution as η.

Proof. Note that the support of t(ε) is equal to Sm. From symmetry it is easy
to conclude that the distribution of t(ε) is exchangable. This means that it is
invariant under permutations and as a consequence uniform on Sm.

Next result is in the core of the multiplicative upper bound (3).

Lemma 5. Assume that m = 2 · n. For any q ∈ {1, . . . , m} the following holds:

E[εq|t(ε)] =
(

1 − 2−m

(
m

n

))
tq(ε) ≥

(
1 − 2(2πm)−1/2

)
tq(ε).

Proof. We will first upper bound P{εq �= tq(ε)|t(ε) = e}, where e = {ei}mi=1 is
(w.l.o.g.) a sequence of n plus signs followed by a sequence of n minus signs.

P{εq �= tq(ε)|t(ε) = e} =
P{εq �= tq(ε) ∩ t(ε) = e}

P{t(ε) = e}
=

(
m

n

)
2−m

∑
s

P{εq �= tq(ε) ∩ t(ε) = e|ε = s}, (12)
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where we have used Lemma 4 and the sum is over all different sequences of m
signs s = {si}mi=1. For any s denote S(s) =

∑n
j=1 sj and consider terms in (12)

corresponding to s with S(s) = 0, S(s) > 0, and S(s) < 0:
Case 1: S(s) = 0. These terms will be zero, since t(s) = s.
Case 2: S(s) > 0. This means that s “has more plus signs than it should” and

according to Remark 1 the mapping t(·) will replace several of “+1” with “-1”. In
particular, if sq = −1 then tq(s) = sq and thus the corresponding terms will be
zero. If sq = 1 and in the same time eq = 1 the event {εq �= tq(ε)∩ t(ε) = e} also
can not hold. Moreover, note that identity e = t(s) can hold only if e ∈ T (s),
which necessarily leads to{

j ∈ {1, . . . , m} : sj = −1
} ⊆ {

j ∈ {1, . . . , m} : ej = −1
}
. (13)

From this we conclude that if q ∈ {1, . . . , n} then all the terms corresponding
to s with S(s) > 0 are zero. We will use Uq(e) to denote the subset of Bm

consisting of sequences s, such that (a) S(s) > 0, (b) sq = 1, and (c) condition
(13) holds. It can be seen that if s ∈ Uq(e) then:

P{εq �= tq(ε) ∩ t(ε) = e|ε = s} =
(

n + S(s)/2
S(s)/2

)−1

.

This holds since, according to Remark 1, t(ε) can take exactly
(
n+S(s)/2
S(s)/2

)
different

values, while only one of them is equal to e.
Let us compute the cardinality of Uq(e) for q ∈ {n + 1, . . . ,m}. It is easy to

check that condition S(s) = 2j for some positive integer j implies that s has
exactly n − j minus signs. Considering the fact that sq = 1 for s ∈ Uq(e) we
have:

card
(
Uq(e)

)
=

(
n − 1
n − j

)
.

Combining everything together we have:

∑
s : S(s)>0

P{εq �= tq(ε) ∩ t(ε) = e|ε = s} = 1{q > n}
n∑

j=1

(
n−1
n−j

)
(
n+j
j

) .

Finally, it is easy to show using induction that:

n∑
j=1

(
n−1
n−j

)
(
n+j
j

) =
1
2
.

Case 3: S(s) < 0. We can repeat all the steps of the previous case and get:∑
s : S(s)<0

P{εq �= tq(ε) ∩ t(ε) = e|ε = s} =
1
2
1{q ≤ n}.

Accounting for these three cases in (12) we conclude that

P{εq �= tq(ε)|t(ε) = e} =
1
2

(
m

n

)
2−m ≤ 1√

2πm
,
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where we have used the upper bound on the binomial coefficient from [19, Corol-
lary2.4]. We can conclude the proof of lemma by writing:

E[εq|t(ε)] = tq(ε) (1 − 2P{εq �= tq(ε)|t(ε)}) ≥ tq(ε)
(
1 − 2(2πm)−1/2

)
.

Proof (of Theorem 3). First we prove (3). Let Zm = {z1, . . . , zm}. We can write:

Q̂m,n(F ) = E

[
sup
f∈F

2
m

m∑
i=1

ti(ε)f(zi)

]
(14)

≤ (
1 − 2(2πm)−1/2

)−1
E

[
sup
f∈F

2
m

m∑
i=1

E[εi|t(ε)]f(zi)

]
(15)

≤
(

1 +
2√

2πm − 2

)
E

[
sup
f∈F

2
m

m∑
i=1

εif(zi)

]
, (16)

where we have used coupling Lemma 4 in (14), Lemma 5 in (15), and Jensen’s
inequality in (16). This completes the proof of (3).

Next we prove (4). We have:

∣∣∣Q̂m,n(F ) − R̂m(F )
∣∣∣ =

∣∣∣∣∣Eη
[
sup
f∈F

2
m

m∑
i=1

ηif(zi)

]
− E

ε

[
sup
f∈F

2
m

m∑
i=1

εif(zi)

]∣∣∣∣∣ .

Using Lemma 4 and Jensen’s inequality we further get:∣∣∣Q̂m,n(F ) − R̂m(F )
∣∣∣

=

∣∣∣∣∣Eε
[
E
t

[
sup
f∈F

2
m

m∑
i=1

ti(ε)f(zi)
∣∣∣∣ε

]]
− E

ε

[
sup
f∈F

2
m

m∑
i=1

εif(zi)

]∣∣∣∣∣
≤ E

ε

[
E
t

[∣∣∣∣∣sup
f∈F

2
m

m∑
i=1

ti(ε)f(zi) − sup
f∈F

2
m

m∑
i=1

εif(zi)

∣∣∣∣∣
∣∣∣∣ε

]]
, (17)

where we have, perhaps misleadingly, denoted the conditional expectation with
respect to the uniform choice from T (ε) given ε using Et[ · |ε]. Next we have:

∣∣∣∣∣sup
f∈F

2
m

m∑
i=1

ti(ε)f(zi) − sup
f∈F

2
m

m∑
i=1

εif(zi)

∣∣∣∣∣ ≤
∣∣∣∣∣∣sup
f∈F

4
m

∑
i∈S(ε,t)

εif(zi)

∣∣∣∣∣∣ , (18)

where S(ε, t) ⊆ {1, . . . ,m} is a subset of indices, s.t.
(
t(ε)

)
i
�= εi iff i ∈ S(ε, t).

We can continue by writing∣∣∣∣∣sup
f∈F

2
m

m∑
i=1

ti(ε)f(zi) − sup
f∈F

2
m

m∑
i=1

εif(zi)

∣∣∣∣∣ ≤ 4
m

sup
f∈F

∑
i∈S(ε,t)

|f(zi)|. (19)
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Note that since functions in F are absolutely bounded by B:

sup
f∈F

∑
i∈S(ε,t)

|f(zi)| ≤ B · card (S(ε, t)) .

Returning to (17) and using Remark 1 we obtain:

∣∣∣Q̂m,n(F ) − 2R̂m(F )
∣∣∣ ≤ 4B

m
E
ε

[
E
t
[card (S(ε, t)) |ε]

]
= E

ε

[
1
2

∣∣∣∣∣
m∑
i=1

εi

∣∣∣∣∣
]

.

Khinchin’s inequality [15, Lemma4.1] together with the best known constant due
to [12] gives Eε [|∑m

i=1 εi| ] ≤ √
m, which completes the proof of (4).

5.3 Proof of Lemma 5

Proof. Let Zm = {z1, . . . , zm}. Take F ′
m to be a set of two constant functions,

f1(z) = 1 and f2(z) = 0 for all z ∈ Z. Clearly, Q̂m,n(F ′
m) = 0. In the same time:

E
ε

[
sup
f∈F ′

m

2
m

m∑
i=1

εif(zi)

]
= E

ε

[
max

{
0,

2
m

m∑
i=1

εi

}]
≤ E

ε

[∣∣∣∣∣ 2
m

m∑
i=1

εi

∣∣∣∣∣
]

≤ 2√
m

,

where we used Khinchin’s inequality. Finally, Khinchin’s inequality also gives:

E
ε

[
max

{
0,

2
m

m∑
i=1

εi

}]
=

1
2 E

ε

[∣∣∣∣∣ 2
m

m∑
i=1

εi

∣∣∣∣∣
]

≥ 1√
2m

.

Next, let F ′′
m contain

(
m

m/2

)
functions, such that their projections on Zm recover

all the permutations of binary vector containing equal number of 0 and 1. Clearly,
in this case Q̂m,n(F ′′

m) = 1. Straightforward calculations show that in the same
time R̂m(F ′′

m) = 1 − 2−m
(
m
n

)
and we conclude the proof using upper and lower

bounds on the binomial coefficient from [19, Corollary 2.4].

5.4 Proof of Theorem 5

The following version of McDiarmid’s bounded difference inequality for the set-
ting of sampling without replacement was presented in [10, Lemma 2] and further
improved in [8, Theorem 5]:

Theorem 6 ([10], [8]). Let Zm be sampled uniformly without replacement from
a fixed set Zm+u ⊆ Z of m+u elements. Let g : Zm → R be a symmetric function
s.t. for all i = 1, . . . ,m and for all z1, . . . , zm ∈ Z and z′

1, . . . , z
′
m ∈ Z,∣∣∣g(z1, . . . , zm) − g(z1, . . . , zi−1, z

′
i, zi+1, . . . , zm)

∣∣∣ ≤ c. (20)

Then if m = u with probability not less than 1 − δ the following holds:

g ≤ E[g] +

√
c2N3 log(1/δ)
8(N − 1/2)2

.
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Note that function suph∈H (errh(Zu) − errh(Zm)) maps (X ×Y)m to R and is of
course symmetric. Straightforward calculations show that this function satisfies
bounded difference condition (20) with c = 1

m + 1
u ([10, Inequality 9]). Theorem 6

states that with probability not less than 1 − δ:

sup
h∈H

(erru(h) − errm(h)) ≤ E
Sm

[
sup
h∈H

(erru(h) − errm(h))
]
+

√
2N log(1/δ)
(N − 1/2)2

. (21)

Using upper bound of Theorem 2 with LH in place of F we complete the proof
of (8). Next, consider a symmetric function −Q̂m,n(LH,Zm) which also maps
(X ×Y)m to R. It can be shown again that it satisfies bounded difference condi-
tion (20) with c = 2

m . And thus, Theorem 6 gives that with probability not less
than 1 − δ:

E
Sm

[
Q̂m,n(LH,Zm)

]
≤ Q̂m,n(LH,Zm) +

√
2N log(1/δ)
(N − 1/2)2

. (22)

Using this inequality together with (8) in a union bound we obtain the second
inequality of the theorem.

Appendix: Improving Lemma 3 of [2]

Let μ be a probability distribution on Z and Xm := {X1, . . . , Xm} be i.i.d.
samples selected according to μ. Maximal discrepancy of F was defined in [2] as:

D̂m(F,Xm) = sup
f∈F

⎛
⎝ 2

m

m/2∑
i=1

f(Xi) − 2
m

m∑
i=m/2+1

f(Xi)

⎞
⎠ .

It was shown in [2] that if functions in F are uniformly bounded by 1 then:

1
2 E

[
R̂m(F,Xm)

]
− 2

√
2
m

≤ E

[
D̂m(F,Xm)

]
≤ E

[
R̂m(F,Xm)

]
+ 4

√
2
m

. (23)

Since elements in Xm are i.i.d. the distribution of D̂m is invariant under their
permutations and thus E

[
D̂m(F,Xm)

]
= E

[
Q̂m,m/2(F,Xm)

]
. Now we can use

Theorem 3 to significantly improve bounds in (23):

E

[
R̂m(F,Xm)

]
− 2√

m
≤ E

[
D̂m(F,Xm)

]
≤

(
1 +

2√
2πm − 2

)
E

[
R̂m(F,Xm)

]
.
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