
Interactive Clustering of Linear Classes
and Cryptographic Lower Bounds

Ádám D. Lelkes(B) and Lev Reyzin

Department of Mathematics, Statistics, and Computer Science,
University of Illinois at Chicago, Chicago, IL 60607, USA

{alelke2,lreyzin}@uic.edu

Abstract. We study an interactive model of supervised clustering intro-
duced by Balcan and Blum [7], where the clustering algorithm has query
access to a teacher. We give an efficient algorithm clustering linear func-
tionals over finite fields, which implies the learnability of parity functions
in this model. We also present an efficient clustering algorithm for hyper-
planes which are a natural generalization of the problem of clustering lin-
ear functionals over R

d. We also give cryptographic hardness results for
interactive clustering. In particular, we show that, under plausible cryp-
tographic assumptions, the interactive clustering problem is intractable
for the concept classes of polynomial-size constant-depth threshold cir-
cuits, Boolean formulas, and finite automata.

Keywords: Interactive clustering · Query learning · Parity function ·
Cryptographic lower bounds

1 Introduction

In this paper we consider the interactive clustering model proposed by Balcan
and Blum [7]. This clustering (and learning) model allows the algorithm to issue
proposed explicit clusterings to an oracle, which replies by requesting two of
the proposed clusters “merge” or that an impure cluster be “split”. This model
captures an interactive learning scenario, where one party has a target clustering
in mind and communicates this information via these simple requests.

Balcan and Blum [7] give the example of a human helping a computer cluster
news articles by topic by indicating to the computer which proposed different
clusters are really about the same topic and which need to be split. Another
motivating example is computer-aided image segmentation, where an algorithm
can propose image segmentations to a human, who can show the computer which
clusters need to be “fixed up” – this is likely to be much simpler than having
the human segment the image manually.

Many interesting results are already known for this model [5,7], including
the learnability of various concept classes and some generic, though inefficient,
algorithms (for an overview, see Sect. 3).

In this paper we extend the theory of interactive clustering. Among our main
results:
c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 165–176, 2015.
DOI: 10.1007/978-3-319-24486-0 11

166 Á.D. Lelkes and L. Reyzin

– We show efficient algorithms for clustering parities and, more generally, lin-
ear functionals over finite fields – parities are a concept class of central
importance in most models of learning. (Section 4)

– We also give an efficient algorithm for clustering hyperplanes, a generaliza-
tion of linear functionals over R

d. These capture a large and important set
of concept classes whose efficient clusterability was not known in this model.
(Section 5)

– We prove lower bounds for the interactive clustering model under plausible
cryptographic assumptions, further illustrating the richness of this model.
(Section 6)

2 The Model

In this section we describe the interactive clustering model of Balcan and
Blum [7]. In this model of clustering, no distributional assumptions are made
about the data; instead, it is assumed that the teacher knows the target cluster-
ing, but it is infeasible for him to label each data point by hand. Thus the goal of
the learner is to learn the target clustering by making a small number of queries
to the teacher. In this respect, the model is similar to the foundational query
learning models introduced by Angluin [2]. (As a consequence, the classes we
consider in this paper might be more familiar from the theory of query learning
than from the usual models of clustering.)

More specifically, the learner is given a sample S of m points, and knows
the number of target clusters which is denoted as k. The target clustering is an
element of a concept class C. In each round, the learner presents a hypothesis
clustering to the teacher. The answer of the teacher to this query is one of
the following: either that the hypothesis clustering is correct, or a split or
merge request. If this hypothesis is incorrect, that means that at least one of
the following two cases has to hold: either there are impure hypothesis clusters,
i.e. hypothesis clusters which contain points from more than one target cluster,
or there are more than one distinct hypothesis clusters that are subsets of the
same cluster. In the first case, the teacher can issue a split request to an
impure cluster, in the second case the teacher can issue a merge request to two
clusters that are both subsets of the same target cluster. If there are several valid
possibilities for split or merge requests, the teacher can arbitrarily choose one
of them.

Definition 1. An interactive clustering algorithm is called efficient if it runs
in O(poly(k,m, log |C|)) time and makes O(poly(k, log m, log |C|)) queries.

Observe that allowing the learner to make m queries would make the clus-
tering task trivial: by starting from the all singleton hypothesis clustering and
merging clusters according to the teacher’s requests, the target clustering can
be found in at most m rounds.

Interactive Clustering of Linear Classes and Cryptographic Lower Bounds 167

3 Previous Work

Extensive research on clustering has yielded a plethora of important theoreti-
cal results, including traditional hardness results [17,18], approximation algo-
rithms [3,4,9,13,16,20], and generative models [12,14]. More recently researchers
have examined properties of data that imply various notions of “clusterability” [1].
An ongoing research direction has been to find models that capture real-world
behavior and success of clustering algorithms, in which many foundational open
problems remain [11].

Inspired by models where clusterings satisfy certain natural relations with
the data, e.g. [6], Balcan and Blum [7] introduced the notion of interactive clus-
tering we consider in this paper – the data assumption here, of course, is that a
“teacher” has a clustering in mind that the data satisfies, while the algorithm is
aware of the space of possible clusterings.

In addition to defining the interactive clustering model, Balcan and Blum [7]
gave some of the first results for it. In particular, they showed how to efficiently
cluster intervals, disjunctions, and conjunctions (the latter only for constant
k). Moreover, they gave a general, but inefficient, version space algorithm for
clustering any finite concept class using O(k3 log |C|) queries. They also gave
a lower bound that showed efficient clustering was not possible if if the algo-
rithm is required to be proper, i.e. produce k-clusterings to the teacher. These
results contrast with our cryptographic lower bounds, which hold for arbitrary
hypothesis clusterings.

Awasthi and Zadeh [5] later improved the generic bound of O(k3 log |C|) to
O(k log |C|) queries using a simpler version space algorithm. They presented an
algorithm for clustering axis-aligned rectangles.

Awasthi and Zadeh [5] also introduced a noisy variant of this model.
In the noisy version, split requests are still only issued for impure clusters,
but merge requests might have “noise”: a merge request might be issued if at
least an η fraction of the points from both hypothesis clusters belong to the
same target cluster. Alternatively, a stricter version of the noisy model allows
arbitrary noise: the teacher might issue a merge request for two clusters even if
they both have only one point from some target cluster. Awasthi and Zadeh [5]
gave an example of a concept class that cannot be learned with arbitrary noise,
and presented an algorithm for clustering intervals in the η noise model. To
the best of our knowledge, our algorithm for clustering linear functionals over
finite fields, presented in Sect. 4, is the first algorithm for clustering a nontrivial
concept class under arbitrary noise.

Other interactive models of clustering have, of course, also been considered
[10,15]. In this paper, however, we keep our analysis to the Balcan and Blum [7]
interactive model.

4 Clustering Linear Functionals

In this section we present an algorithm for clustering linear functionals over
finite fields. That is, the instance space is X = GF (q)n for some prime power

168 Á.D. Lelkes and L. Reyzin

q and positive integer n, where GF (q) denotes the finite field of order q. The
concept class is the dual space (GF (q)n)∗ of linear operations mapping from
GF (q)n to GF (q). Thus the number of clusters is k = q. Recall that every linear
functional in (GF (q)n)∗ is of the form v �→ x·v, thus clustering linear functionals
is equivalent to learning this unknown vector x. For the special case of q = 2,
we get the concept class of parity functions over {0, 1}n, where there are two
classes/clusters (for the positively and negatively labeled points).

The idea of the algorithm is the following: in each round we output the largest
sets of elements that are already known to be pure, thus forcing the teacher
to make a merge request. A merge request for two clusters will yield a linear
equation for the target vector which is independent from all previously learned
equations. We use a graph on the data points to keep track of the learned linear
equations. Since the algorithm learns a independent equation in each round, it
finds the target vector in at most n rounds. The description of the algorithm
follows.

Algorithm 1. Cluster-Functional
initialize G = (V, ∅), with |V | = m, each vertex corresponding an element from the
sample.
initialize Q = ∅.
repeat

find the connected components of G and output them as clusters.
on a merge request to two clusters:
for each pair a, b of points in the union do

if (a − b) · x = 0 is independent from all equations in Q then
add (a − b) · x = 0 to Q.

end if
end for
for each non-edge (a, b), add (a, b) to G if (a− b) ·x = 0 follows from the equations
in Q.

until the target clustering is found

Theorem 1. Algorithm 1 finds the target clustering using at most n queries
and O(m2n4) time. Moreover, the query complexity of the algorithm is optimal:
every clustering algorithm needs to make at least n queries to find the target
clustering.

Proof. We claim that in each round we learn a linear equation that is indepen-
dent from all previously learned equations, thus in n rounds we learn the target
parity.

Assume for contradiction that there is a round where no independent equa-
tions are added. All hypothesis clusters are pure by construction so they can
never be split. If two clusters are merged, then let us pick an element a from one
of them and b from the other. Then (a− b) ·x = 0 has to be independent from Q

Interactive Clustering of Linear Classes and Cryptographic Lower Bounds 169

since otherwise the edge (a, b) would have been added in a previous round and
the two elements would thus belong to the same cluster.

Thus after at most n rounds G will consist of two marked cliques which will
give the correct clustering. Finding the connected components and outputting
the hypothesis clusters takes linear time. To update the graph, O(m2) Gaussian
elimination steps are needed. Hence the total running time is O(m2n4).

To show that at least n queries are necessary, notice that merge and split
requests are equivalent to linear equations and inequalities, respectively. Since
the dimension of the dual space is n, after less than n queries there are at least
two linearly independent linear functionals, and therefore at least two different
clusterings, that are consistent with all the queries. ��

Observe that for q > 2 this is in fact an efficient implementation of the generic
halving algorithm of Awasthi and Zadeh [5]. Every subset of element is either
known to be pure, in which case it is consistent with the entire version space, or
is possible impure, in which case a split request would imply that the target
vector satisfies a disjunction of linear equations. Thus in the latter case the set
is consistent with at most a 1

q < 1
2 fraction of the version space.

There are two other notable properties of the algorithm. One is that it works
without modification in the noisy setting of Awasthi and Zadeh [5]: if any pair
of elements from two pure sets belong to the same target cluster, then it follows
immediately by linearity that both sets are subsets of this target cluster.

The other notable property is that the algorithm never outputs impure
hypothesis clusters. This is because it is always the case that every subset of
the sample is either known to be pure, or otherwise it is consistent with at most
half of the version space. Any concept class that has a similar gap property can
be clustered using only pure clusters in the hypotheses. The following remark
formalizes this idea.

Remark 1. Consider the following generic algorithm: in each round, output the
maximal subsets of S that are known to be pure, i.e. are consistent with the entire
version space. The teacher cannot issue a split request since every hypothesis
cluster is pure. If there is an ε > 0 such that in each round every subset h ⊆ S
of the sample is consistent with either the entire version space or at most a
(1−ε) fraction of the version space, then on a merge request, by the maximality
of the hypothesis clusters, we can eliminate an ε fraction of the version space.
Therefore this algorithm finds the target clustering after k log 1

1−ε
|C| queries

using only pure clusters in the hypotheses.

5 Efficient Clustering of Hyperplanes

Now we turn to a natural generalization of linear functions over R
d, k hyper-

planes. Clustering geometric concept classes was one of the proposed open prob-
lems by Awasthi and Zadeh [5]; hyperplanes are an example of a very natural

170 Á.D. Lelkes and L. Reyzin

geometric concept class. The data are points in R
d and they are clustered (d−1)-

dimensional affine subspaces. Every point is assumed to lie on exactly one of k
hyperplanes.

First, observe that this is a nontrivial interactive clustering problem: even for
d = 2 the cardinality of the concept class can be exponentially large as a function
of k. For example, let k be an odd integer, and consider m−2(k −1) points on a
line and 2(k −1) points arranged as vertices of n squares such that no two edges
are on the same line. Then it is easy to see that the number of different possible
clusterings is at least 3k. Hence, if k = ω(polylog(m)), the target clustering
cannot be efficiently found by the halving algorithm of Awasthi and Zadeh [5]:
since the cardinality of the initial version space is superpolynomial in m, the
algorithm cannot keep track of the version space in polynomial time.

Nevertheless, the case of d = 2 can be solved by the following trivial algo-
rithm: start with the all-singleton hypothesis, and on a merge request, merge
all the points that are on the line going through the two points. This algorithm
will find the target clustering after k queries. However, this idea does not even
generalize to d = 3: the teacher might repeatedly tell the learner to merge pairs
of points that define parallel lines. In this case, it is not immediately clear which
pairs of lines span the planes of the target clustering, and there can be a linear
number of such parallel lines.

On the other hand, in the case of d = 3, coplanar lines either have to be in
the same target cluster, or they all have to be in different clusters. Therefore
if we have k + 1 coplanar lines, by the pigeonhole principle we know that the
plane containing them has to be one of the target planes. Moreover, since all
points are clustered by the k planes, it follows by the pigeonhole principle that
after k2 + 1 merge requests for singleton pairs we will get k + 1 coplanar lines.
This observation gives an algorithm of query complexity O(k3), although it is
not immediately clear how the coplanar lines can be found efficiently.

Algorithm 2, described below, is an efficient clustering algorithm based on a
similar idea which works for arbitrary dimension.

Algorithm 2. Cluster-Hyperplanes
let H = S.
for i = 1 to d − 1 do

for each affine subspace F of dimension i do
if at least ki + 1 elements of H are subsets of F then

replace these elements in H by F .
end if

end for
end for
repeat

output elements of H as hypothesis clusters.
on a merge request, merge the two clusters in H.

until the target clustering is found

Interactive Clustering of Linear Classes and Cryptographic Lower Bounds 171

Theorem 2. Algorithm 2 finds the target clustering using at most O(kd+1)
queries and O(d · md+1) time.

Proof. We claim that in each iteration of the for loop, it holds for every F that
every subset of ki−1 + 1 elements of H that lie on F spans F . The proof is by
induction. For i = 1 this is clear: all pairs of points on a line span the line.
Assume that the claim hold for i − 1. Consider ki−1 + 1 elements of H on an
affine subspace F of dimension i. If they spanned an affine subspace of dimension
less than i, then they would have been merged in a previous iteration. Hence
they have to span F .

Now if ki + 1 elements of H line on an i-dimensional affine subspace F for
i < d, then they have to be in the same target cluster. If they were not, no
hyperplane could contain more than ki−1 of the elements, and therefore the
k target hyperplanes could cover at most ki elements contained by F , which
contradicts the assumption that all points belong to a target cluster.

Hence, at the start of the repeat loop there can be at most kd+1 elements in
H: if there were more than kd+1 + 1 elements in H, by the pigeonhole principle
there would be a target cluster containing kd + 1 of them. However, this is not
possible since those kd + 1 elements would have been merged previously.

Therefore in the repeat loop we only need kd+1 queries to find the target
clustering. In each iteration of the outer for loop, we have to consider every
affine subspace of a certain dimension. Since every at most (d − 1)-dimensional
subspace is defined by d points, there are at most

(
m
d

)
subspaces. For each of

them, we have to count the elements that are contained by them, this takes m
time. Thus the total running time is O

(
d · (

m
d

) · m
)

= O(d · md+1). ��
Hence, for constant d, this is an efficient clustering algorithm.

6 Cryptographic Lower Bounds for Interactive Clustering

In this section, we show cryptographic lower bounds for interactive clustering.
In particular, we prove that, under plausible cryptographic assumptions, the
class of constant-depth polynomial-size threshold circuits and polynomial-size
Boolean formulas are not learnable in the interactive clustering model. These
lower bounds further go to show the richness of this model, which allows for
both positive and negative clusterability results.

It was first observed by Valiant [24] that the existence of certain crypto-
graphic primitives implies unlearnability results. Later, Kearns and Valiant [19]
showed that, assuming the intractability of specific problems such as invert-
ing the RSA function, some natural concept classes, for example the class of
constant-depth threshold circuits, are not efficiently PAC learnable.

The hardness results for PAC learning are based on the following observation:
if f is a trapdoor one-way function, and there is an efficient learning algorithm
which, after seeing polynomially many labeled examples of the form (f(x), x),
can predict the correct label f−1(y) of a new unlabeled data point y, then that
learning algorithm by definition breaks the one-way function f .

172 Á.D. Lelkes and L. Reyzin

This observation doesn’t apply to interactive clustering since here the learner
doesn’t have to make predictions about new examples and the teacher can give
information about any of the elements in the sample. Indeed, if the learner
were allowed to make a linear number of queries to the teacher, the clustering
task would be computationally trivial. Instead, our proofs are based on the
following counting argument: if the concept class is exponentially large in the
size of the sample, then there is an immediate information-theoretic exponential
lower bound on the required number of queries; therefore on average a learner
would have to make an exponential number of queries to learn a randomly chosen
clustering. If there exist certain pseudorandom objects, then one can construct
concept classes of subexponential size such that a randomly chosen concept from
the smaller class is computationally indistinguishable from a randomly chosen
concept from the exponential-size class. However, on the smaller concept class the
learner is only allowed to make a subexponential number of queries; consequently,
this smaller class is not efficiently learnable.

First let us recall some relevant definitions.
A one-way function is a function f : {0, 1}∗ → {0, 1}∗ such that for every

polynomial time algorithm A, every positive integer α, and every sufficiently
large integer n it holds that

Pr(f(A(f(x))) = f(x)) < n−α

where x is chosen uniformly at random from {0, 1}n.
A pseudorandom function family of hardness h(n) is a sequence Fn of sets

of efficiently computable functions An → Bn such that for every h(n) time-
bounded probabilistic algorithm A with oracle access to a function An → Bn

and every α > 0 it holds that

|Pr(Afn(1n) = 1) − Pr(Arn(1n) = 1)| < n−α

where fn and rn are chosen uniformly randomly from Fn and the set of all func-
tions An → Bn, respectively; and there is a probabilistic poly(n)-time algorithm
that on input 1n returns a uniformly randomly chosen element of Fn.

In this paper, we will pick An = {0, 1}n and Bn = {0, 1}. Sometimes it is
useful to consider keyed pseudorandom functions, i.e. pseudorandom function
families where Fn = {fK : K ∈ {0, 1}n} (and the sampling algorithm sim-
ply chooses a uniform K ∈ {0, 1}n and returns fK). The existence of one-way
functions implies the existence of pseudorandom function families of polynomial
hardness.

We will use the following information-theoretic lower bound to prove our
hardness result.

Lemma 1. For k = 2, every clustering algorithm has to make at least
Ω

(
log |C|
log m

)
queries to find the target clustering.

Proof. There are log |C| bits are needed to describe the clustering. To each query,
the answer is split or merge and the identifier of at most two clusters. Since

Interactive Clustering of Linear Classes and Cryptographic Lower Bounds 173

there are at most m clusters in any hypothesis, this means that the teacher gives
at most 2 log m + 1 bits of information per query. Thus the required number of
queries is Ω

(
log |C|
log m

)
. ��

We remark that Theorem 9 of Balcan and Blum [7] implies a worst-case
lower bound of Ω(log |C|). However, this weaker bound of Ω

(
log |C|
log m

)
holds for

teachers that are not necessarily adversarial.
As we noted above, the existence of pseudorandom function families that can

fool any polynomial time-bounded distinguishers is implied by the existence of
one-way functions. Unfortunately, this hardness does not seem enough to imply
a lower bound for interactive clustering for the following reason. If we take a
sample of size m from {0, 1}n, then if m = O(poly(n)), the learner is allowed to
make m queries which makes the clustering problem trivial. On the other hand,
if m is superpolynomial in n, the learner is allowed to take superpolynomial time,
therefore it might break pseudorandom functions that can only fool polynomial-
time adversaries.

However, if there exist pseudorandom functions that can fool distinguishers
that have slightly superpolynomial time, a hardness result for interactive clus-
tering follows. Candidates for pseudorandom functions or permutations used in
cryptographic practice are usually conjectured to have this property.

Theorem 3. If there exist strongly pseudorandom permutations that can fool
distinguishers which have nω(1) time, then there exists a concept class C which is
not learnable in the interactive clustering model with poly(log m, log |C|) queries
and poly(m, log C) time.

Proof. Let fK : {0, 1}n → {0, 1} be a keyed pseudorandom function that can fool
distinguishers which have t(n) time for some time-constructible t(n) = nω(1).
Without loss of generality, assume that t(n) = o(2n). Let us fix a time-
constructible function m(n) such that m(n) = nω(1) and poly(m(n)) = o(t(n)).
Let S be a subset of {0, 1}n of cardinality m = m(n) and let k = 2. Let Un be
a set of all functions {0, 1}n → {0, 1}, Fn = {fK : K ∈ {0, 1}n}.

Let us assume for contradiction that there is an efficient interactive clustering
algorithm A for the concept class C = Fn. Since |C| = 2n, this learner has to
make at most poly(n, log m(n)) = poly(n) queries and has poly(n,m(n)) =
poly(m(n)) time. Let us assume that the learner finds the target clustering after
O(nα) queries.

Let B be the following algorithm: given oracle access to a function f : {0, 1}n →
{0, 1}, pick a sample S of size m = m(n) from {0, 1}n, label the sample vectors
according to the value of f , and simulate the learner A for at most nα+1 queries.
Accept if the learner finds the target clustering and reject otherwise.

Since poly(m(n)) = o(t(n)), B runs in time t(n). If f is chosen from Fn,
B will accept with probability 1. On the other hand, if f is chosen from Un,
then since |Un| = 22

n

, by Lemma 1, we have a query lower bound of log |Un|
log m =

2n

log m(n) = ω(nα+1). Therefore after nα+1 queries there are at least two different

174 Á.D. Lelkes and L. Reyzin

clusterings in the version space, therefore B will reject with probability at least
1
2 . This contradicts the t(n)-hardness of fK . ��

Naor and Reingold [22] constructed pseudorandom functions with one-bit
output that are not only as secure as factoring Blum integers, but also com-
putable by TC0 circuits. Since log |TC0| = poly(n), this, together with Theo-
rem 3, implies the following corollary:

Corollary 1. If factoring Blum integers is hard for h(n)-time bounded algo-
rithms for some h(n) = nω(1) then the class TC0 of constant-depth polynomial-
size threshold circuits and the class of polynomial-size Boolean formulas are not
learnable in the interactive clustering model.

Proof. By Theorem 3, learning a pseudorandom function family of superpoly-
nomial hardness is hard in the interactive clustering model. If factoring Blum
integers is superpolynomially hard, then by the construction of Naor and Rein-
gold [22], TC0 contains such a pseudorandom function family. Furthermore,
log |TC0| = poly(n), the learner is still only allowed to have poly(n, log m)
queries and poly(n,m) time, therefore the Theorem 3 also applies to TC0. In
fact, this holds for TC0 circuits of size at most nα for some constant α (deter-
mined by the size of the circuits implementing the pseudorandom function). The
set of languages computable TC0 circuits of size nα is in turn a subset of the
languages computable by Boolean formulas of size at most nβ for some other
constant β. Thus our cryptographic lower bound also holds for polynomial-sized
Boolean formulas. ��
Remark 2. After Naor and Reingold’s first construction of pseudorandom func-
tions in TC0, several others showed that it is possible to construct even more effi-
cient PRFs, or PRFs based on different, possibly weaker cryptographic assump-
tions. For example, we refer the reader to the work of Lewko and Waters [21]
for a construction under the so-called “decisional k-linear assumption” which is
weaker than the assumption of Naor and Reingold [22], or to Banerjee et al. [8]
for a construction based on the “learning with errors” problem, against which
there is no known attack by efficient quantum algorithms.

Kearns and Valiant [19] used the results of Pitt and Warmuth [23] about
prediction-preserving reductions to show that in the PAC model, their crypto-
graphic hardness result for NC1 circuits also implies the intractability of learning
DFAs. Despite the fact the problem of interactive clustering is fundamentally dif-
ferent from prediction problems, we show that the ideas of Pitt and Warmuth [23]
can be applied to show that DFAs are hard to learn in this model as well. We
use the following theorem:

Theorem 4 (Pitt and Warmuth [23]). Let k be a fixed positive constant. If
T is a single-tape Turing machine of size at most s that runs in space at most
k log n on inputs of length n, then there exist polynomials p and q such that for
all positive integers n there exists a DFA M of size q(s, n) such that M accepts
g(w) = 1|w|0wp(|w|,s,n) if and only if T accepts w.

Interactive Clustering of Linear Classes and Cryptographic Lower Bounds 175

This theorem implies a hardness result for interactive clustering.

Corollary 2. If there are nω(1)-hard pseudorandom function families com-
putable in logarithmic space, then polynomial-size DFAs are not efficiently learn-
able in the interactive clustering model.

Proof. Let fK : {0, 1}n → {0, 1} be an nω(1)-hard keyed pseudorandom function.
If S ⊂ {0, 1}n has cardinality m(n) as defined in Theorem 3 and the concept
class is {fK : K ∈ {0, 1}}n, the interactive clustering task is hard.

For all K ∈ {0, 1}n, let TK be a Turing machine of size at most s that runs
in space k log n and, given w as an imput, computes fK(w). It is easy to see
that there exists functions g, p and q defined as in Theorem 4 that work for
TK for all K. Consider the sample S′ = g(S) and the concept class C of DFAs
of size q(s, n). Since |S′| = m(n) and log |C| = poly(n), the hardness result of
Theorem 3 holds here as well. ��

7 Conclusion

In this paper we studied a model of clustering with interactive feedback. We pre-
sented efficient clustering algorithms for linear functionals over finite fields, of
which parity functions are a special case, and hyperplanes in R

d, thereby show-
ing that these two natural problems are learnable in the model. On the other
hand, we also demonstrated that under a standard cryptographic assumptions,
constant-depth polynomial-size threshold circuits, polynomial-size Boolean for-
mulas, and polynomial-size deterministic finite automata are not learnable.

We propose the following open problems.

1. It would be interesting to see if the exponential dependence on d in the
complexity of Algorithm 2 for clustering hyperplanes can be reduced.

2. Clustering half-spaces remains a natural and important open problem.

References

1. Ackerman, M., Ben-David, S.: Clusterability: A theoretical study. In: Proceedings
of the Twelfth International Conference on Artificial Intelligence and Statistics,
AISTATS 2009, Clearwater Beach, Florida, USA, April 16–18, pp. 1–8 (2009)

2. Angluin, D.: Queries and concept learning. Machine Learning 2(4), 319–342 (1988)
3. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for euclidean-medians

and related problems. In: STOC, pp. 106–113 (1998)
4. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local

search heuristics for k-median and facility location problems. SIAM J. Comput.
33(3), 544–562 (2004)

5. Awasthi, P., Zadeh, R.B.: Supervised clustering. In: Advances in Neural Informa-
tion Processing Systems, pp. 91–99 (2010)

6. Balcan, M., Blum, A., Vempala, S.: A discriminative framework for cluster-
ing via similarity functions. In: Proceedings of the 40th Annual ACM Sympo-
sium on Theory of Computing, Victoria, British Columbia, Canada, May 17–20,
pp. 671–680 (2008)

176 Á.D. Lelkes and L. Reyzin

7. Balcan, M.-F., Blum, A.: Clustering with interactive feedback. In: Freund, Y.,
Györfi, L., Turán, G., Zeugmann, T. (eds.) ALT 2008. LNCS (LNAI), vol. 5254,
pp. 316–328. Springer, Heidelberg (2008)

8. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 719–737. Springer, Heidelberg (2012)

9. Bartal, Y., Charikar, M., Raz, D.: Approximating min-sum-clustering in metric
spaces. In: STOC, pp. pp. 11–20 (2001)

10. Basu, S., Banerjee, A., Mooney, R.J.: Active semi-supervision for pairwise con-
strained clustering. In: Proceedings of the Fourth SIAM International Conference
on Data Mining, Lake Buena Vista, Florida, USA, April 22–24, pp. 333–344 (2004)

11. Ben-David, S.: Computational feasibility of clustering under clusterability assump-
tions. CoRR abs/1501.00437 (2015)

12. Brubaker, S.C., Vempala, S.I.: PCA and affine-invariant clustering. In: 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp. 25–28,
Philadelphia, PA, USA, pp. 551–560 (October 2008)

13. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation
algorithm for the k-median problem. J. Comput. Syst. Sci. 65(1), 129–149 (2002)

14. Dasgupta, A., Hopcroft, J., Kannan, R., Mitra, P.: Spectral clustering by recur-
sive partitioning. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168,
pp. 256–267. Springer, Heidelberg (2006)

15. Dasgupta, S., Ng, V.: Which clustering do you want? inducing your ideal clustering
with minimal feedback. J. Artif. Intell. Res. (JAIR) 39, 581–632 (2010)

16. de la Vega, W.F., Karpinski, M., Kenyon, C., Rabani, Y.: Approximation schemes
for clustering problems. In: STOC, pp. 50–58 (2003)

17. Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms.
J. Algorithms 31(1), 228–248 (1999)

18. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location
problems. In: STOC, pp. 731–740. ACM (2002)

19. Kearns, M., Valiant, L.: Cryptographic limitations on learning boolean formulae
and finite automata. Journal of the ACM (JACM) 41(1), 67–95 (1994)

20. Kumar, A., Sabharwal, Y., Sen, S.: Linear-time approximation schemes for clus-
tering problems in any dimensions. J. ACM 57, 2 (2010)

21. Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the decisional lin-
ear assumption and weaker variants. In: Proceedings of the 16th ACM Conference
on Computer and Communications Security, pp. 112–120. ACM (2009)

22. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. Journal of the ACM (JACM) 51(2), 231–262 (2004)

23. Pitt, L., Warmuth, M.K.: Prediction-preserving reducibility. Journal of Computer
and System Sciences 41(3), 430–467 (1990)

24. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11),
1134–1142 (1984)

	Interactive Clustering of Linear Classes and Cryptographic Lower Bounds
	1 Introduction
	2 The Model
	3 Previous Work
	4 Clustering Linear Functionals
	5 Efficient Clustering of Hyperplanes
	6 Cryptographic Lower Bounds for Interactive Clustering
	7 Conclusion
	References

