
Learning with a Drifting Target Concept

Steve Hanneke1(B), Varun Kanade2, and Liu Yang3

1 Princeton, NJ, USA
steve.hanneke@gmail.com

2 Département d’informatique, École normale supérieure, Paris, France
varun.kanade@ens.fr

3 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
yangli@us.ibm.com

Abstract. We study the problem of learning in the presence of a drift-
ing target concept. Specifically, we provide bounds on the error rate at a
given time, given a learner with access to a history of independent sam-
ples labeled according to a target concept that can change on each round.
One of our main contributions is a refinement of the best previous results
for polynomial-time algorithms for the space of linear separators under
a uniform distribution. We also provide general results for an algorithm
capable of adapting to a variable rate of drift of the target concept. Some
of the results also describe an active learning variant of this setting, and
provide bounds on the number of queries for the labels of points in the
sequence sufficient to obtain the stated bounds on the error rates.

1 Introduction

Much of the work on statistical learning has focused on learning settings in
which the concept to be learned is static over time. However, there are many
application areas where this is not the case. For instance, in the problem of
face recognition, the concept to be learned actually changes over time as each
individual’s facial features evolve over time. In this work, we study the problem
of learning with a drifting target concept. Specifically, we consider a statistical
learning setting, in which data arrive i.i.d. in a stream, and for each data point,
the learner is required to predict a label for the data point at that time. We
are then interested in obtaining low error rates for these predictions. The target
labels are generated from a function known to reside in a given concept space,
and at each time t the target function is allowed to change by at most some
distance Δt: that is, the probability the new target function disagrees with the
previous target function on a random sample is at most Δt.

This framework has previously been studied in a number of articles. The
classic works of [5,6,15,16] and [7] together provide a general analysis of a very-
much related setting. Though the objectives in these works are specified slightly
differently, the results established there are easily translated into our present
framework, and we summarize many of the relevant results in Section 3.

c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 149–164, 2015.
DOI: 10.1007/978-3-319-24486-0 10



150 S. Hanneke et al.

While the results in these classic works are general, the best guarantees on
the error rates are only known for methods having no guarantees of computa-
tional efficiency. In a more recent effort, the work of [8] studies this problem
in the specific context of learning a homogeneous linear separator, when all the
Δt values are identical. They propose a polynomial-time algorithm (based on
the modified Perceptron algorithm of [9]), and prove a bound on the number of
mistakes it makes as a function of the number of samples, when the data distri-
bution satisfies a certain condition called “λ-good” (which generalizes a useful
property of the uniform distribution on a sphere). However, their result is again
worse than that obtainable by the known computationally-inefficient methods.

Thus, the natural question is whether there exists a polynomial-time algo-
rithm achieving roughly the same guarantees on the error rates known for the
inefficient methods. In the present work, we resolve this question in the case
of learning homogeneous linear separators under the uniform distribution, by
proposing a polynomial-time algorithm that indeed achieves roughly the same
bounds on the error rates known for the inefficient methods in the literature.
This represents the main technical contribution of this work.

We also study the interesting problem of adaptivity of an algorithm to the
sequence of Δt values, in the setting where Δt may itself vary over time. Since
the values Δt might typically not be accessible in practice, it seems important
to have learning methods having no explicit dependence on the sequence Δt.
We propose such a method below, and prove that it achieves roughly the same
bounds on the error rates known for methods in the literature which require
direct access to the Δt values. Also in the context of variable Δt sequences, we
discuss conditions on the sequence Δt necessary and sufficient for there to exist
a learning method guaranteeing sublinear growth of the number of mistakes.

We additionally study an active learning extension to this framework, in
which, at each time, after making its prediction, the algorithm may decide
whether or not to request access to the label assigned to the data point at
that time. In addition to guarantees on the error rates (for all times, including
those for which the label was not observed), we are also interested in bounding
the number of labels we expect the algorithm to request, as a function of the
number of samples encountered thus far.

2 Definitions and Notation

Formally, in this setting, there is a fixed distribution P over the instance
space X , and there is a sequence of independent P-distributed unlabeled data
X1,X2, . . .. There is also a concept space C, and a sequence of target functions
h∗ = {h∗

1, h
∗
2, . . .} in C. Each t has an associated target label Yt = h∗

t (Xt).
In this context, a (passive) learning algorithm is required, on each round t, to
produce a classifier ĥt based on the observations (X1, Y1), . . . , (Xt−1, Yt−1), and
we denote by Ŷt = ĥt(Xt) the corresponding prediction by the algorithm for
the label of Xt. For any classifier h, we define ert(h) = P(x : h(x) �= h∗

t (x)).



Learning with a Drifting Target Concept 151

We also say the algorithm makes a “mistake” on instance Xt if Ŷt �= Yt; thus,
ert(ĥt) = P(Ŷt �= Yt|(X1, Y1), . . . , (Xt−1, Yt−1)).

For notational convenience, we will suppose the h∗
t sequence is chosen inde-

pendently from the Xt sequence (i.e., h∗
t is chosen prior to the “draw” of

X1,X2, . . . ∼ P), and is not random. In each results, we will suppose h∗ is chosen
from some set S of sequences in C. In particular, we are interested in describing
the sequence h∗ in terms of the magnitudes of changes in h∗

t from one time to the
next. Specifically, for any sequence Δ = {Δt}∞

t=2 in [0, 1], we denote by SΔ the
set of all sequences h∗ in C such that, ∀t ∈ N, P(x : ht(x) �= ht+1(x)) ≤ Δt+1.
Throughout this article, we denote by d the VC dimension of C [18], and we
suppose 1 ≤ d < ∞. Also, ∀x ∈ R, define Log(x) = ln(max{x, e}).

3 Background: (ε, S)-Tracking Algorithms

As mentioned, the classic literature on learning with a drifting target concept is
expressed in terms of a slightly different model. In order to relate those results to
our present setting, we first introduce the classic setting. Specifically, we consider
a model introduced by [15], presented here in a more-general form inspired by
[5]. For a set S of sequences {ht}∞

t=1 in C, and a value ε > 0, an algorithm A is
said to be (ε, S)-tracking if ∃tε ∈ N such that, for any choice of h∗ ∈ S, ∀T ≥ tε,
the prediction ŶT produced by A at time T satisfies P

(
ŶT �= YT

)
≤ ε. Note that

the value of this probability may be influenced by {Xt}T
t=1, {h∗

t }T
t=1, and any

internal randomness of the algorithm A.
The focus of the results expressed in this classical model is determining suf-

ficient conditions on the set S for there to exist an (ε, S)-tracking algorithm,
along with bounds on the sufficient size of tε. These conditions on S typically
take the form of an assumption on the drift rate, expressed in terms of ε. Below,
we summarize several of the strongest known results for this setting.

Bounded Drift Rate: The simplest, and perhaps most elegant, results for
(ε, S)-tracking algorithms is for the set S of sequences with a bounded drift rate.
Specifically, for any Δ ∈ [0, 1], define SΔ = SΔ, where Δ is such that Δt+1 = Δ
for every t ∈ N. The study of this problem was initiated in the original work
of [15]. The best known general results are due to [16]: namely, that for some
Δε = Θ(ε2/d), for every ε ∈ (0, 1], there exists an (ε, SΔ)-tracking algorithm
for all values of Δ ≤ Δε.1 This refined an earlier result of [15] by a logarithmic
factor. [16] further argued that this result can be achieved with tε = Θ(d/ε).
The algorithm itself involves a beautiful modification of the one-inclusion graph
prediction strategy of [14]; since its specification is somewhat involved, we refer
the interested reader to the original work of [16] for the details.

1 In fact, [16] also allowed the distribution P to vary gradually over time. For simplic-
ity, we will only discuss the case of fixed P.



152 S. Hanneke et al.

Varying Drift Rates (Nonadaptive Algorithm): In addition to the con-
crete bounds for the case h∗ ∈ SΔ, [15] additionally present an elegant general
result. Specifically, they argue that, for any ε > 0, and any m = Ω

(
d
ε Log 1

ε

)
, if∑m

i=1P(x :h∗
i (x) �=h∗

m+1(x))≤mε/24, then for ĥ=argminh∈C

∑m
i=11[h(Xi) �=Yi],

P(ĥ(Xm+1) �= h∗
m+1(Xm+1)) ≤ ε. This result immediately inspires an algorithm

A which, at every time t, chooses a value mt ≤ t−1, and predicts Ŷt = ĥt(Xt), for
ĥt = argminh∈C

∑t−1
i=t−mt

1[h(Xi) �= Yi]. We are then interested in choosing mt

to minimize the value of ε obtainable via the result of [15]. However, that method
is based on the values P(x : h∗

i (x) �= h∗
t (x)), which would typically not be acces-

sible to the algorithm. However, suppose instead we have access to a sequence
Δ such that h∗ ∈ SΔ. In this case, we could approximate P(x : h∗

i (x) �= h∗
t (x))

by its upper bound
∑t

j=i+1 Δj . In this case, we are interested choosing mt to
minimize the smallest value of ε such that

∑t−1
i=t−mt

∑t
j=i+1 Δj ≤ mtε/24 and

mt = Ω
(

d
ε Log 1

ε

)
. One can easily verify that this minimum is obtained at a value

mt = Θ

⎛
⎝ argmin

1≤m≤t−1

1
m

t−1∑
i=t−m

t∑
j=i+1

Δj +
dLog(m/d)

m

⎞
⎠ ,

and via the result of [15] (applied to Xt−mt
, . . . , Xt) the resulting algorithm has

P

(
Ŷt �= Yt

)
≤ O

⎛
⎝ min

1≤m≤t−1

1
m

t−1∑
i=t−m

t∑
j=i+1

Δj +
dLog(m/d)

m

⎞
⎠ . (1)

As a special case, if every t has Δt = Δ for a fixed value Δ ∈ [0, 1], this result
recovers the bound

√
dΔLog(1/Δ), which is only slightly larger than the best

bound of [16]. It also applies to far more general and more intersting sequences
Δ, including some that allow periodic large jumps (i.e., Δt = 1 for some indices
t), others where the sequence Δt converges to 0, and so on. Note, however, that
the algorithm obtaining this bound directly depends on the sequence Δ. One
of the contributions of the present work is to remove this requirement, while
maintaining essentially the same bound, though in a slightly different form.

Computational Efficiency: [15] also proposed a reduction-based approach,
which sometimes yields computationally efficient methods, though the tolerable
Δ value is smaller. Specifically, given any (randomized) polynomial-time algo-
rithm A that produces a classifier h ∈ C with

∑m
t=1 1[h(xt) �= yt] = 0 for any

sequence (x1, y1), . . . , (xm, ym) for which such a classifier h exists (called the
consistency problem), they propose a polynomial-time algorithm that is (ε, SΔ)-
tracking for all values of Δ ≤ Δ′

ε, where Δ′
ε = Θ

(
ε2

d2Log(1/ε)

)
. This is slightly

worse (by a factor of dLog(1/ε)) than the drift rate tolerable by the (typi-
cally inefficient) algorithm mentioned above. However, it does sometimes yield
computationally-efficient methods. For instance, there are known polynomial-
time algorithms for the consistency problem for the classes of linear separators,
conjunctions, and axis-aligned rectangles.



Learning with a Drifting Target Concept 153

Lower Bounds: [15] additionally prove lower bounds for specific concept
spaces: namely, linear separators and axis-aligned rectangles. They specifically
argue that, for C a concept space BASICn = {∪n

i=1[i/n, (i + ai)/n) : a ∈ [0, 1]n}
on [0, 1], under P the uniform distribution on [0, 1], for any ε ∈ [0, 1/e2] and
Δε ≥ e4ε2/n, for any algorithm A, and any T ∈ N, there exists a choice
of h∗ ∈ SΔε

such that the prediction ŶT produced by A at time T satisfies
P

(
ŶT �= YT

)
> ε. Based on this, they conclude that no (ε, SΔε

)-tracking algo-
rithm exists. They further observe that BASICn is embeddable in many common
concept spaces, including halfspaces and axis-aligned rectangles in R

n, so that
for C equal to either of these, there also is no (ε, SΔε

)-tracking algorithm.

4 Adapting to Arbitrarily Varying Drift Rates

This section presents a general bound on the error rate at each time, expressed
as a function of the rates of drift, which are allowed to be arbitrary. Most-
importantly, in contrast to the methods from the literature discussed above,
the method achieving this general result is adaptive to the drift rates, so that
it requires no information about the drift rates in advance. This is an appeal-
ing property, as it essentially allows the algorithm to learn under an arbitrary
sequence h∗ of target concepts; the difficulty of the task is then simply reflected
in the resulting bounds on the error rates: that is, faster-changing sequences of
target functions result in larger bounds on the error rates, but do not require a
change in the algorithm itself.

4.1 Adapting to a Changing Drift Rate

Recall that the method yielding (1) (based on the work of [15]) required access
to the sequence Δ of changes to achieve the stated guarantee on the expected
number of mistakes. That method is based on choosing a classifier to predict Ŷt

by minimizing the number of mistakes among the previous mt samples, where
mt is a value chosen based on the Δ sequence. Thus, the key to modifying
this algorithm to make it adaptive to the Δ sequence is to determine a suit-
able choice of mt without reference to the Δ sequence. The strategy we adopt
here is to use the data to determine an appropriate value m̂t to use. Roughly
(ignoring logarithmic factors for now), the insight that enables us to achieve
this feat is that, for the mt used in the above strategy, one can show that∑t−1

i=t−mt
1[h∗

t (Xi) �= Yi] is roughly Õ(d), and that making the prediction Ŷt with
any h ∈ C with roughly Õ(d) mistakes on these samples will suffice to obtain the
stated bound on the error rate (up to logarithmic factors). Thus, if we replace
mt with the largest value m for which minh∈C

∑t−1
i=t−m 1[h(Xi) �= Yi] is roughly

Õ(d), then the above observation implies m ≥ mt. This then implies that, for
ĥ = argminh∈C

∑t−1
i=t−m 1[h(Xi) �= Yi], we have that

∑t−1
i=t−mt

1[ĥ(Xi) �= Yi] is
also roughly Õ(d), so that the stated bound on the error rate will be achieved
(aside from logarithmic factors) by choosing ĥt as this classifier ĥ. There are a



154 S. Hanneke et al.

few technical modifications to this argument needed to get the logarithmic fac-
tors to work out properly, and for this reason the actual algorithm below (and
proof) is somewhat more involved. Specifically, consider the following algorithm
(the value of the universal constant K ≥ 1 will be specified below).

0. For T = 1, 2, . . .

1. Let m̂T =max
{

m∈{1, . . . , T −1} : min
h∈C

max
m′≤m

∑T −1
t=T −m′ 1[h(Xt) �=Yt]

dLog(m′/d)+Log(1/δ) < K

}

2. Let ĥT = argmin
h∈C

max
m′≤m̂T

∑T −1
t=T −m′ 1[h(Xt) �=Yt]

dLog(m′/d)+Log(1/δ)

Note that the classifiers ĥt chosen by this algorithm have no dependence
on Δ, or anything other than the data {(Xi, Yi) : i < t}, and the concept space
C. For space, the proof is deferred to the full version of this paper [13].

Theorem 1. Fix any δ ∈ (0, 1), and let A be the above algorithm. For any
sequence Δ in [0, 1], for any P and any choice of h∗ ∈ SΔ, for every T ∈ N\{1},
with probability at least 1 − δ,

erT

(
ĥT

)
≤ O

⎛
⎝ min

1≤m≤T−1

1
m

T−1∑
i=T−m

T∑
j=i+1

Δj +
dLog(m/d) + Log(1/δ)

m

⎞
⎠ .

One immediate implication of Theorem 1 is that, if the sum of Δt values
grows sublinearly, then there exists an algorithm achieving an expected number
of mistakes growing sublinearly in the number of predictions. Formally, we have
the following corollary. The proof is deferred to the full version [13].

Corollary 1. If
∑T

t=1 Δt = o(T ), then there exists an algorithm A such that,

for every P and every choice of h∗ ∈ SΔ, E
[∑T

t=1 1
[
Ŷt �= Yt

]]
= o(T ).

For many concept spaces of interest, the condition
∑T

t=1 Δt = o(T ) in Corol-
lary 1 is also a necessary condition for any algorithm to guarantee a sublinear
number of mistakes. In the full version of this paper [13], we establish that for
the class of homogeneous linear separators on R

2 with P the uniform distribution
on the unit circle, there exists an algorithm with E

[∑T
t=1 1

[
Ŷt �= Yt

]]
= o(T )

for every choice of h∗ ∈ SΔ if and only if
∑T

t=1 Δt = o(T ).

5 Polynomial-Time Algorithms for Linear Separators

In this section, we suppose Δt = Δ for every t ∈ N, for a fixed constant
Δ > 0, and we consider the special case of learning homogeneous linear sep-
arators in R

k under a uniform distribution on the origin-centered unit sphere. In
this case, the analysis of [15] mentioned in Section 3 implies that it is possible to
achieve a bound on the error rate that is Õ(d

√
Δ), using an algorithm that runs



Learning with a Drifting Target Concept 155

in time poly(d, 1/Δ, log(1/δ)) (and independent of t) for each prediction. This
also implies that it is possible to achieve expected number of mistakes among
T predictions that is Õ(d

√
Δ)T . [8]2 have since proven that a variant of the

Perceptron algorithm achieves an expected number of mistakes Õ((dΔ)1/4)T .
Below, we improve on this result by showing that there exists an efficient

algorithm that achieves a bound on the error rate that is Õ(
√

dΔ), as was possible
with the inefficient algorithm of [15,16]. This leads to a bound Õ(

√
dΔ)T on

the expected number of mistakes. Furthermore, our approach also allows us to
present the method as an active learning algorithm, and to bound the expected
number of queries, as a function of the number of samples T , by Õ(

√
dΔ)T . The

technique is based on modifying the algorithm of [15], replacing an ERM step
with (a modification of) the computationally-efficient algorithm of [1].

Formally, define the class of homogeneous linear separators as the set of
classifiers hw : Rd → {−1,+1}, for w ∈ R

d with ‖w‖ = 1, such that hw(x) =
sign(w · x) for every x ∈ R

d. We have the following result.

Theorem 2. When C is the space of homogeneous linear separators (with d ≥ 4)
and P is the uniform distribution on the surface of the origin-centered unit sphere
in R

d, for any fixed Δ > 0, for any δ ∈ (0, 1/e), there is an algorithm that runs
in time poly(d, 1/Δ, log(1/δ)) for each time t, such that for any h∗ ∈ SΔ, for
every sufficiently large t ∈ N, with probability at least 1 − δ,

ert(ĥt) = O

(√
Δd log

(
1
δ

))
.

Also, choosing δ =
√

Δd∧1/e, the expected number of mistakes among the first T

predictions is O
(√

Δd log
(

1
Δd

)
T

)
. Furthermore, the algorithm can be run as an

active learning algorithm, in which case, for this δ, the expected number of labels
requested by the algorithm among the first T instances is O

(√
Δd log3/2

(
1

Δd

)
T

)
.

We first state the algorithm used to obtain this result. It is primarily based
on a margin-based learning strategy of [1], combined with an initialization
step based on a modified Perceptron rule from [8,9]. For τ > 0 and x ∈ R,
define 	τ (x) = max

{
0, 1 − x

τ

}
. Consider the following algorithm and subrou-

tine; parameters δk, mk, τk, rk, bk, α, and κ will all be specified in the context
of the proof (see Lemmas 2 and 6); we suppose M =

∑	log2(1/α)

k=0 mk.

Algorithm: DriftingHalfspaces
0. Let h̃0 be an arbitrary classifier in C

1. For i = 1, 2, . . .
2. h̃i ← ABL(M(i − 1), h̃i−1)

2 This work in fact studies a much broader model of drift, which allows the distribution
P to vary with time as well. However, this Õ((dΔ)1/4)T result can be obtained from
their theorem by calculating the various parameters for this particular setting.



156 S. Hanneke et al.

Subroutine: ModPerceptron(t, h̃)
0. Let wt be any element of Rd with ‖wt‖ = 1
1. For m = t + 1, t + 2, . . . , t + m0

2. Choose ĥm = h̃ (i.e., predict Ŷm = h̃(Xm) as the prediction for Ym)
3. Request the label Ym

4. If hwm−1(Xm) �= Ym

5. wm ← wm−1 − 2(wm−1 · Xm)Xm

6. Else wm ← wm−1

7. Return wt+m0

Subroutine: ABL(t, h̃)
0. Let w0 be the return value of ModPerceptron(t, h̃)
1. For k = 1, 2, . . . , �log2(1/α)�
2. Wk ← {}
3. For s = t +

∑k−1
j=0 mj + 1, . . . , t +

∑k
j=0 mj

4. Choose ĥs = h̃ (i.e., predict Ŷs = h̃(Xs) as the prediction for Ys)
5. If |wk−1 ·Xs| ≤ bk−1, Request label Ys and let Wk ← Wk ∪{(Xs, Ys)}
6. Find vk ∈ R

d with ‖vk − wk−1‖ ≤ rk, 0 < ‖vk‖ ≤ 1, and∑
(x,y)∈Wk

	τk
(y(vk · x)) ≤ inf

v:‖v−wk−1‖≤rk

∑
(x,y)∈Wk

	τk
(y(v · x)) + κ|Wk|

7. Let wk = 1
‖vk‖vk

8. Return hw�log2(1/α)�−1

The general idea here is to replace empirical risk minimization in the method
of [15] discussed above with a computationally efficient method of [1]: namely, the
subroutine ABL above. For technical reasons, we apply this method to batches
of M samples at a time, and simply use the classifier learned from the previous
batch to make the predictions. The method of [1] was originally proposed for
the problem of agnostic learning, to error rate within a constant factor of the
optimal. To use this for our purposes, we set up an analogy between the best
achievable error rate in agnostic learning and a value O(ΔM) here (which bounds
the best achievable average error rate in a given batch).

The analysis of [1] required this method to be initialized with a reason-
ably accurate classifier (constant bound on its error rate). For this, we find (in
Lemma 1) that the modified Perceptron algorithm (of [8,9]) suffices. The ABL
algorithm then iteratively refines a hypothesis wk by taking a number of samples
within a slab of width bk−1 ∝ 2−k/

√
d around the previous hypothesis separator

wk−1, and optimizing a weighted hinge loss (subject to a constraint that the
new hypothesis not be too far from the previous). The analysis (Lemma 6) then
reveals that the hypothesis wk approaches a classifier w∗ with error rate O(ΔM)
with respect to all of the target concepts in the batch.

We note that, even with the above-described analogy between O(ΔM) and
the noise rate in agnostic learning, the analysis below does not follow immedi-
ately from that of [1]. This is because the sample size M that would be required
by the analysis of [1] to achieve error rate within a constant factor of the noise



Learning with a Drifting Target Concept 157

rate would be too large (by a factor of d) for our purposes. In particular, noting
that ΔM is increasing in M , converting that original analysis to our present
setting would result in a bound on ert(ĥt) larger than that stated in Theorem 2
by roughly a factor of

√
d. The analysis below refines several aspects of the anal-

ysis, using stronger concentration arguments for the weighted hinge loss, and
being more careful in bounding the error rate in terms of the weighted hinge loss
performance. We thereby reduce the bound to the result stated above.

We have a few lemmas that will be needed for the proof. With some effort,
the following result can be derived from the analysis of ModPerceptron by [8].
The details are included in the full version of this article [13].

Lemma 1. Suppose Δ ≤ π2

400·227(d+ln(4/δ)) . For m0 = max{�128(1/c1) ln(32)�,
�512 ln(4δ )�}, with probability at least 1 − δ/4, ModPerceptron(t, h̃) returns a
vector w with P(x : hw(x) �= h∗

t+m0+1(x)) ≤ 1/16.

Next, we consider the execution of ABL(t, h̃), and let the sets Wk be as in
that execution. We will denote by w∗ the weight vector with ‖w∗‖ = 1 such that
h∗

t+m0+1 = hw∗ . Also denote by M1 = M − m0.
The proof relies on a few results proven in the work of [1], which we summarize

in the following lemmas. Although the results were proven in a slightly different
setting in that work (agnostic learning under a fixed joint distribution), one can
easily verify that their proofs remain valid in our present context as well.

Lemma 2. [1] Fix any k ∈ {1, . . . , �log2(1/α)�}. For a universal constant

c7 > 0, suppose bk−1 = c721−k/
√

d, and let zk =
√

r2k/(d − 1) + b2k−1. For a
universal constant c1 > 0, if ‖w∗ − wk−1‖ ≤ rk,∣∣∣E

[∑
(x,y)∈Wk

	τk
(|w∗ ·x|)

∣∣∣wk−1, |Wk|
]

− E

[∑
(x,y)∈Wk

	τk
(y(w∗ ·x))

∣∣∣wk−1, |Wk|
]∣∣∣

≤ c1|Wk|
√

2kΔM1
zk

τk
.

Lemma 3. [4] ∀c > 0, there exists c′ > 0 depending only on c (i.e., not depend-
ing on d) such that, for any u, v ∈ R

d with ‖u‖ = ‖v‖ = 1, letting σ = P(x :
hu(x) �= hv(x)), if σ < 1/2, then P

(
x : hu(x) �= hv(x) and |v · x| ≥ c′ σ√

d

)
≤ cσ.

The following is a well-known lemma concerning concentration around the
equator for the uniform distribution (see e.g., [1,3,9]).

Lemma 4. For any C > 0, there are constants c2, c3 > 0 depending only on C
(i.e., independent of d) such that, for any w ∈ R

d with ‖w‖ = 1, ∀γ ∈ [0, C/
√

d],

c2γ
√

d ≤ P (x : |w · x| ≤ γ) ≤ c3γ
√

d.

Based on this lemma, [1] prove the following.

Lemma 5. [1] For X ∼ P, ∀w ∈ R
d with ‖w‖ = 1, ∀C > 0 and τ, b ∈ [0, C/

√
d],

for c2, c3 as in Lemma 4, E
[
	τ (|w∗ · X|)

∣∣∣|w · X| ≤ b
]

≤ c3τ
c2b .



158 S. Hanneke et al.

The following is a stronger version of a result of [1]; specifically, the size of
mk, and the bound on |Wk|, are smaller by a factor of d compared to the original.

Lemma 6. Fix any δ ∈ (0, 1/e). For universal constants c4, c5, c6, c7, c8, c9, c10∈
(0,∞), for an appropriate choice of κ ∈ (0, 1) (a universal constant), if α =

c9

√
Δd log

(
1
κδ

)
, for every k ∈ {1, . . . , �log2(1/α)�}, if bk−1 = c721−k/

√
d, τk =

c82−k/
√

d, rk = c102−k, δk = δ/(�log2(4/α)�−k)2, and mk =
⌈
c5

2k

κ2 d log
(

1
κδk

)⌉
,

and if P(x : hwk−1(x) �= hw∗(x)) ≤ 2−k−3, then with probability at least 1 −
(4/3)δk, |Wk| ≤ c6

1
κ2 d log

(
1

κδk

)
and P(x : hwk

(x) �= hw∗(x)) ≤ 2−k−4.

Proof. By Lemma 4, and a Chernoff and union bound, for an appropriately large
choice of c5 and any c7 > 0, letting c2, c3 be as in Lemma 4 (with C = c7∨(c8/2)),
with probability at least 1 − δk/3,

c2c72−kmk ≤ |Wk| ≤ 4c3c72−kmk. (2)

The claimed upper bound on |Wk| follows from this second inequality.
Next note that, if P(x : hwk−1(x) �= hw∗(x)) ≤ 2−k−3, then

max{	τk
(y(w∗ · x)) : x ∈ R

d, |wk−1 · x| ≤ bk−1, y ∈ {−1,+1}} ≤ c11
√

d

for some universal constant c11 > 0. Furthermore, since P(x : hwk−1(x) �=
hw∗(x)) ≤ 2−k−3, we know that the angle between wk−1 and w∗ is at most
2−k−3π, so that ‖wk−1 − w∗‖ =

√
2 − 2wk−1 · w∗ ≤

√
2 − 2 cos(2−k−3π) ≤√

2 − 2 cos2(2−k−3π) =
√

2 sin(2−k−3π) ≤ 2−k−3π
√

2. For c10 = π
√

22−3, this
is rk. By Hoeffding’s inequality (under the conditional distribution given |Wk|),
the law of total probability, Lemma 2, and linearity of conditional expectations,
with probability at least 1 − δk/3, for X ∼ P,

∑
(x,y)∈Wk

	τk
(y(w∗ · x)) ≤ |Wk|E [

	τk
(|w∗ · X|)∣∣wk−1, |wk−1 · X| ≤ bk−1

]

+ c1|Wk|
√

2kΔM1
zk

τk
+

√
|Wk|(1/2)c211d ln(3/δk). (3)

We bound each term on the right separately. By Lemma 5, the first term is at

most |Wk| c3τk

c2bk−1
= |Wk| c3c8

2c2c7
. Next, zk

τk
=

√
c2102

−2k/(d−1)+4c272
−2k/d

c82−k/
√

d
≤

√
2c210+4c27

c8
,

while 2k ≤ 2
α , so the second term is at most

√
2c1

√
2c210+4c27

c8
|Wk|

√
Δm
α . Noting

M1 =
	log2(1/α)
∑

k′=1

mk′ ≤ 32c5
κ2

1
αd log

(
1
κδ

)
, (4)

the second term on the right of (3) is at most
√

c5
c9

8c1
κ

√
2c210+4c27

c8
|Wk|

√
Δd log( 1

κδ )
α2

= 8c1
√

c5
κ

√
2c210+4c27
c8c9

|Wk|. Since d ln(3/δk) ≤ 2d ln(1/δk) ≤ 2κ2

c5
2−kmk,



Learning with a Drifting Target Concept 159

and (2) implies 2−kmk ≤ 1
c2c7

|Wk|, the third term on the right
of (3) is at most |Wk| c11κ√

c2c5c7
. Altogether,

∑
(x,y)∈Wk

	τk
(y(w∗ · x)) ≤

|Wk|
(

c3c8
2c2c7

+ 8c1
√

c5
κ

√
2c210+4c27
c8c9

+ c11κ√
c2c5c7

)
. For c9 = 1/κ3, c8 = κ, this is at most

κ|Wk|
(

c3
2c2c7

+8c1
√

c5
√

2c210+4c27+ c11√
c2c5c7

)
.

Next, note that because hwk
(x) �= y ⇒ 	τk

(y(vk · x)) ≥ 1, and because (as
proven above) ‖w∗ − wk−1‖ ≤ rk, |Wk|erWk

(hwk
) ≤ ∑

(x,y)∈Wk
	τk

(y(vk · x)) ≤∑
(x,y)∈Wk

	τk
(y(w∗ · x)) + κ|Wk|. Combined with the above, we have

|Wk|erWk
(hwk

) ≤ κ|Wk|
(

1 + c3
2c2c7

+ 8c1
√

c5

√
2c210 + 4c27 + c11√

c2c5c7

)
.

Let c12 = 1+ c3
2c2c7

+8c1
√

c5
√

2c210+4c27+
c11√

c2c5c7
. Furthermore, |Wk|erWk

(hwk
)=∑

(x,y)∈Wk
1[hwk

(x) �=y] ≥ ∑
(x,y)∈Wk

1[hwk
(x) �=hw∗(x)]−∑

(x,y)∈Wk
1[hw∗(x) �=y].

For an appropriately large value of c5, by a Chernoff bound, with probability at

least 1 − δk/3,
∑t+

∑k
j=0 mj

s=t+
∑k−1

j=0 mj+1
1[hw∗(Xs) �= Ys] ≤ 2eΔM1mk + log2(3/δk). In

particular, this implies
∑

(x,y)∈Wk
1[hw∗(x) �= y] ≤ 2eΔM1mk + log2(3/δk), so

that
∑

(x,y)∈Wk
1[hwk

(x) �= hw∗(x)] ≤ |Wk|erWk
(hwk

)+ 2eΔM1mk + log2(3/δk).
Noting that (4) and (2) imply

ΔM1mk ≤ Δ 32c5
κ2

d log
(

1
κδ

)

c9

√

Δd log
(

1
κδ

)
2k

c2c7
|Wk| ≤ 32c5

c2c7c9κ2

√
Δd log

(
1
κδ

)
2k|Wk|

= 32c5
c2c7c29κ2 α2k|Wk| = 32c5κ4

c2c7
α2k|Wk| ≤ 32c5κ4

c2c7
|Wk|,

and (2) implies log2(3/δk) ≤ 2κ2

c2c5c7
|Wk|, altogether we have

∑
(x,y)∈Wk

1[hwk
(x) �= hw∗(x)] ≤ |Wk|erWk

(hwk
) + 64ec5κ4

c2c7
|Wk| + 2κ2

c2c5c7
|Wk|

≤ κ|Wk|
(
c12 + 64ec5κ3

c2c7
+ 2κ

c2c5c7

)
.

Letting c13=c12+ 64ec5
c2c7

+ 2
c2c5c7

, and noting κ ≤ 1, we have
∑

(x,y)∈Wk
1[hwk

(x) �=
hw∗(x)] ≤ c13κ|Wk|.

Applying a classic ratio-type VC bound (see [17], Section 4.9.2) under the
conditional distribution given |Wk|, combined with the law of total probability,
we have that with probability at least 1 − δk/3,

|Wk|P (
x : hwk

(x) �= hw∗(x)
∣∣|wk−1 · x| ≤ bk−1

)

≤
∑

(x,y)∈Wk

1[hwk
(x) �= hw∗(x)] + c14

√
|Wk|(d log(|Wk|/d) + log(1/δk)),

for a universal constant c14 > 0. Combined with the above, and the fact that (2)

implies log(1/δk) ≤ κ2

c2c5c7
|Wk| and d log(|Wk|/d) ≤ d log

(
8c3c5c7 log

(
1

κδk

)

κ2

)
≤



160 S. Hanneke et al.

d log(8c3c5c7
κ3δk

) ≤ 3 log(8max{c3, 1}c5)c5d log( 1
κδk

) ≤ 3 log(8max{c3, 1})κ22−kmk

≤ 3 log(8max{c3,1})
c2c7

κ2|Wk|, we have |Wk|P(
x : hwk

(x) �= hw∗(x)
∣∣|wk−1 ·x| ≤ bk−1

)

≤ c13κ|Wk| + c14

√
|Wk|

(
3 log(8max{c3,1})

c2c7
κ2|Wk| + κ2

c2c5c7
|Wk|

)
. Letting c15 =

(
c13 + c14

√
3 log(8max{c3,1})

c2c7
+ 1

c2c5c7

)
, this is c15κ|Wk|, which implies

P (
x : hwk

(x) �= hw∗(x)
∣∣|wk−1 · x| ≤ bk−1

) ≤ c15κ. (5)

Next, note that ‖vk − wk−1‖2 = ‖vk‖2 + 1 − 2‖vk‖ cos(πP(x : hwk
(x) �=

hwk−1(x))). Thus, one implication of the fact that ‖vk−wk−1‖ ≤ rk is that ‖vk‖
2 +

1−r2
k

2‖vk‖ ≤ cos(πP(x : hwk
(x) �= hwk−1(x))); since the left hand side is positive, we

have P(x : hwk
(x) �= hwk−1(x)) < 1/2. Additionally, by differentiating, one

can easily verify that for φ ∈ [0, π], x �→ √
x2 + 1 − 2x cos(φ) is minimized at

x = cos(φ), in which case
√

x2 + 1 − 2x cos(φ) = sin(φ). Thus, ‖vk − wk−1‖ ≥
sin(πP(x : hwk

(x) �= hwk−1(x))). Since ‖vk − wk−1‖ ≤ rk, we have sin(πP(x :
hwk

(x) �= hwk−1(x))) ≤ rk. Since sin(πx) ≥ x for all x ∈ [0, 1/2], combining
this with the fact (proven above) that P(x : hwk

(x) �= hwk−1(x)) < 1/2 implies
P(x : hwk

(x) �= hwk−1(x)) ≤ rk.
In particular, we have that both P(x : hwk

(x) �= hwk−1(x)) ≤ rk and
P(x : hw∗(x) �= hwk−1(x)) ≤ 2−k−3 ≤ rk. Now Lemma 3 implies that, for
any universal constant c > 0, there exists a corresponding universal constant
c′ > 0 such that P(x : hwk

(x) �= hwk−1(x) and |wk−1 · x| ≥ c′ rk√
d
) ≤ crk and

P(x : hw∗(x) �= hwk−1(x) and |wk−1 · x| ≥ c′ rk√
d
) ≤ crk, so that P(x : hwk

(x) �=
hw∗(x) and |wk−1 · x| ≥ c′ rk√

d
) ≤ P(x : hwk

(x) �= hwk−1(x) and |wk−1 · x| ≥
c′ rk√

d
) + P(x : hw∗(x) �= hwk−1(x) and |wk−1 · x| ≥ c′ rk√

d
) ≤ 2crk. In par-

ticular, letting c7 = c′c10/2, we have c′ rk√
d

= bk−1. Combining this with (5),
Lemma 4, and a union bound, we have that P(x : hwk

(x) �= hw∗(x)) ≤ P(x :
hwk

(x) �= hw∗(x) and |wk−1·x| ≥ bk−1)+P(x : hwk
(x) �= hw∗(x) and |wk−1·x| ≤

bk−1) ≤ 2crk + P(x : hwk
(x) �= hw∗(x)

∣∣|wk−1 · x| ≤ bk−1)P(x : |wk−1 · x| ≤
bk−1) ≤ 2crk + c15κc3bk−1

√
d = (25cc10 + c15κc3c725)2−k−4. Taking c = 1

26c10

and κ = 1
26c3c7c15

, we have P(x : hwk
(x) �= hw∗(x)) ≤ 2−k−4, as required.

By a union bound, this occurs with probability at least 1 − (4/3)δk. ��
Proof (Proof of Theorem 2). We begin with the bound on the error rate. If Δ >

π2

400·227(d+ln(4/δ)) , the result trivially holds, since then 1 ≤ 400·227
π2

√
Δ(d+ln(4/δ)).

Otherwise, suppose Δ ≤ π2

400·227(d+ln(4/δ)) . Fix any i ∈ N. Lemma 1 implies that,
with probability at least 1 − δ/4, the w0 returned in Step 0 of ABL(M(i −
1), h̃i−1) satisfies P(x : hw0(x) �= h∗

M(i−1)+m0+1(x)) ≤ 1/16. Taking this as
a base case, Lemma 6 then inductively implies that, with probability at least
1 − δ

4 − ∑	log2(1/α)

k=1 (4/3) δ

2(	log2(4/α)
−k)2 ≥ 1 − δ, ∀k ∈ {0, 1, . . . , �log2(1/α)�},

P(x : hwk
(x) �= h∗

M(i−1)+m0+1(x)) ≤ 2−k−4, (6)



Learning with a Drifting Target Concept 161

and furthermore the number of labels requested during ABL(M(i−1), h̃i−1) total
to at most (for appropriate universal constants ĉ1, ĉ2) m0 +

∑	log2(1/α)

k=1 |Wk|≤

ĉ1

(
d + ln

(
1
δ

)
+

∑	log2(1/α)

k=1 d log

(
(	log2(4/α)
−k)2

δ

))
≤ ĉ2d log

(
1

Δd

)
log

(
1
δ

)
. In

particular, by a union bound, (6) implies that ∀k ∈ {1, . . . , �log2(1/α)�}, ∀m ∈{
M(i − 1) +

∑k−1
j=0 mj + 1, . . . , M(i − 1) +

∑k
j=0 mj

}
, P(x :hwk−1(x) �=h∗

m(x))≤
P(x :hwk−1(x) �=h∗

M(i−1)+m0+1(x))+P(x :h∗
M(i−1)+m0+1(x) �=h∗

m(x))≤2−k−3+ΔM .

Since M =
∑	log2(1/α)


k=0 mk = Θ
(
d+log(1δ )+

∑	log2(1/α)

k=1 2kd log

(
	log2(1/α)
−k

δ

))

= Θ
(
1
αd log(1δ )

)
= Θ(

√
(d/Δ) log(1/δ)), with probability at least 1 − δ, P(x :

hw�log2(1/α)�−1(x) �= h∗
Mi(x)) ≤ O (α + ΔM) = O(

√
Δd log(1/δ)). This implies

that, with probability at least 1 − δ, ∀t ∈ {Mi + 1, . . . , M(i + 1) − 1}, ert(ĥt) ≤
P(x : hw�log2(1/α)�−1(x) �= h∗

Mi(x))+P(x :h∗
Mi(x) �= h∗

t (x)) ≤ O(
√

Δd log(1/δ))+

ΔM = O
(√

Δd log
(
1
δ

))
, which completes the proof of the error rate bound.

Setting δ =
√

Δd, and noting that 1[Ŷt �= Yt] ≤ 1, we have that for any

t > M , P
(
Ŷt �= Yt

)
= E

[
ert(ĥt)

]
≤ O

(√
Δd log(1δ )

)
+ δ = O

(√
Δd log( 1

Δd )
)
.

The bound on E
[ ∑T

t=1 1[Ŷt �= Yt]
]

follows by linearity of the expectation.
Furthermore, as mentioned, with probability at least 1 − δ, an execution of
ABL(M(i − 1), h̃i−1) requests at most O

(
d log

(
1

Δd

)
log

(
1
δ

))
labels. Thus, since

the number of queries during the execution of ABL(M(i−1), h̃i−1) cannot exceed
M , letting δ =

√
Δd, the expected number of queries during an execution is at

most O
(
d log2

(
1

Δd

))
+

√
ΔdM ≤ O

(
d log2

(
1

Δd

))
. The bound on the expected

number of queries among T samples follows by linearity of the expectation. ��

Remark: The original work of [8] additionally allowed some number K of jumps:
times t with Δt = 1. In the above algorithm, since the influence of each sample
is localized to the predictors trained within that batch of M instances, the effect
of allowing such jumps would only change the bound on the number of mistakes
to Õ(

√
dΔT +

√
d/ΔK). This compares favorably to the result of [8], which

is roughly O((dΔ)1/4T + d1/4

Δ3/4 K). However, that result was proven for a more
general setting, allowing certain nonuniform distributions P (though they do
require a relation between the angle between separators and the probability
mass they disagree on, similar to that holding for the uniform distribution). It
is not clear whether Theorem 2 generalizes to this larger family of distributions.

6 General Results for Active Learning

As mentioned, the above results on linear separators also provide results for the
number of queries in active learning. One can also state quite general results on
the expected number of queries and mistakes achievable by an active learning
algorithm. This section provides such results, for an algorithm based on the
the well-known strategy of disagreement-based active learning. Throughout this
section, we suppose h∗ ∈ SΔ, for a given Δ ∈ (0, 1].



162 S. Hanneke et al.

First, a few definitions. For any set H ⊆ C, define the region of disagreement :

DIS(H) = {x ∈ X : ∃h, g ∈ H s.t. h(x) �= g(x)}.

This section focuses on the following algorithm. The Active subroutine is from
the work of [12] (slightly modified here), and is a variant of the A2 (Agnostic
Acive) algorithm of [2]; the values of M and T̂k(·) are discussed below.

Algorithm: DriftingActive
0. For i = 1, 2, . . .
1. Active(M(i − 1))

Subroutine: Active(t)
0. Let ĥ0 be an arbitrary element of C, and let V0 ← C

1. Predict Ŷt+1 = ĥ0(Xt+1) as the prediction for the value of Yt+1

2. For k = 0, 1, . . . , log2(M/2)
3. Qk ← {}
4. For s = 2k + 1, . . . , 2k+1

5. Predict Ŷs = ĥk(Xs) as the prediction for the value of Ys

6. If Xs ∈ DIS(Vk)
7. Request the label Ys and let Qk ← Qk ∪ {(Xs, Ys)}
8. Let ĥk+1 = argminh∈Vk

∑
(x,y)∈Qk

1[h(x) �= y]

9. Let Vk+1 ← {h ∈ Vk :
∑

(x,y)∈Qk
1[h(x) �= y] − 1[ĥk+1(x) �= y] ≤ T̂k}

As in the DriftingHalfspaces algorithm above, this DriftingActive algorithm
proceeds in batches, and in each batch runs an active learning algorithm designed
to be robust to classification noise. This robustness to classification noise trans-
lates into our setting as tolerance for the fact that there is no classifier in C that
perfectly classifies all of the data. The specific algorithm employed here main-
tains a set Vk ⊆ C of candidate classifiers, and requests the labels of samples Xs

for which there is some disagreement on the classification among classifiers in
Vk. We maintain the invariant that there is a low-error classifier contained in Vk

at all times, and thus the points we query provide some information to help us
determine which among these remaining candidates has low error rate. Based on
these queries, we periodically (in Step 9) remove from Vk those classifiers making
a relatively excessive number of mistakes on the queried samples, relative to the
minimum among classifiers in Vk. Predictions are made with an element of Vk.

We establish an abstract bound on the number of labels requested by this
algorithm, expressed in terms of the disagreement coefficient [11]. Specifically, for
any r ≥ 0 and any classifier h, define B(h, r) = {g ∈ C : P(x : g(x) �= h(x)) ≤
r}. Then for r0 ≥ 0 and any classifier h, define the disagreement coefficient
of h with respect to C under P: θh(r0) = supr>r0

P(DIS(B(h,r)))
r . Usually, the

disagreement coefficient would be used with h equal the target concept; however,
since the target concept is not fixed in our setting, we will use the worst-case
value: θC(r0) = suph∈C θh(r0). This quantity has been bounded for a variety of
C and P (see e.g., [4,10,11]). It is useful in bounding how quickly the region



Learning with a Drifting Target Concept 163

DIS(Vk) collapses in the algorithm. Thus, since the probability the algorithm
requests the label of the next instance is P(DIS(Vk)), the value θC(r0) naturally
arises in bounding the number of labels the algorithm requests. Specifically, we
have the following result. For space, the proof is deferred to the full version [13].

Theorem 3. For an appropriate universal constant c1 ∈ [1,∞), if h∗ ∈ SΔ for

a Δ ∈ (0, 1], then with3 M =
⌈
c1

√
d
Δ

⌉

2

and T̂k = log2(1/
√

dΔ)+22k+2eΔ, defin-

ing εΔ =
√

dΔLog(1/(dΔ)), among the first T instances, the expected number of
mistakes by DriftingActive is O (εΔLog(d/Δ)T ) = Õ

(√
dΔ

)
T , and the expected

number of label requests is O (θC(εΔ)εΔLog(d/Δ)T ) = Õ
(
θC(

√
dΔ)

√
dΔ

)
T .

References

1. Awasthi, P., Balcan, M.F., Long, P.M.: The power of localization for efficiently
learning linear separators with noise. arXiv:1307.8371v2 (2013)

2. Balcan, M.F., Beygelzimer, A., Langford, J.: Agnostic active learning. In: Proceed-
ings of the 23rd International Conference on Machine Learning (2006)

3. Balcan, M.-F., Broder, A., Zhang, T.: Margin based active learning. In:
Bshouty, N.H., Gentile, C. (eds.) COLT. LNCS (LNAI), vol. 4539, pp. 35–50.
Springer, Heidelberg (2007)

4. Balcan, M.F., Long, P.M.: Active and passive learning of linear separators under
log-concave distributions. In: Proceedings of the 26th Conference on Learning The-
ory (2013)

5. Bartlett, P.L., Ben-David, S., Kulkarni, S.R.: Learning changing concepts by
exploiting the structure of change. Machine Learning 41, 153–174 (2000)

6. Bartlett, P.L., Helmbold, D.P.: Learning changing problems (1996) (unpublished)
7. Barve, R.D., Long, P.M.: On the complexity of learning from drifting distributions.

Information and Computation 138(2), 170–193 (1997)
8. Crammer, K., Mansour, Y., Even-Dar, E., Vaughan, J.W.: Regret minimization

with concept drift. In: Proceedings of the 23rd Conference on Learning Theory,
pp. 168–180 (2010)

9. Dasgupta, S., Kalai, A., Monteleoni, C.: Analysis of perceptron-based active learn-
ing. Journal of Machine Learning Research 10, 281–299 (2009)

10. El-Yaniv, R., Wiener, Y.: Active learning via perfect selective classification. Journal
of Machine Learning Research 13, 255–279 (2012)

11. Hanneke, S.: A bound on the label complexity of agnostic active learning. In:
Proceedings of the 24th International Conference on Machine Learning (2007)

12. Hanneke, S.: Activized learning: Transforming passive to active with improved
label complexity. Journal of Machine Learning Research 13(5), 1469–1587 (2012)

13. Hanneke, S., Kanade, V., Yang, L.: Learning with a drifting target concept.
arXiv:1505.05215 (2015)

14. Haussler, D., Littlestone, N., Warmuth, M.: Predicting {0, 1}-functions on ran-
domly drawn points. Information and Computation 115, 248–292 (1994)

3 Here, we define �x�2 = 2�log2(x)�, for x ≥ 1.

http://arxiv.org/abs/1307.8371v2
http://arxiv.org/abs/1505.05215


164 S. Hanneke et al.

15. Helmbold, D.P., Long, P.M.: Tracking drifting concepts by minimizing disagree-
ments. Machine Learning 14(1), 27–45 (1994)

16. Long, P.M.: The complexity of learning according to two models of a drifting
environment. Machine Learning 37(3), 337–354 (1999)

17. Vapnik, V.: Statistical Learning Theory. John Wiley & Sons Inc., New York (1998)
18. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies

of events to their probabilities. Theory of Probability and its Applications 16,
264–280 (1971)


	Learning with a Drifting Target Concept
	1 Introduction
	2 Definitions and Notation
	3 Background: (,S)-Tracking Algorithms
	4 Adapting to Arbitrarily Varying Drift Rates
	4.1 Adapting to a Changing Drift Rate

	5 Polynomial-Time Algorithms for Linear Separators
	6 General Results for Active Learning
	References


