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Abstract. In this paper, we study the problem of low-rank matrix sens-
ing where the goal is to reconstruct a matrix exactly using a small num-
ber of linear measurements. Existing methods for the problem either
rely on measurement operators such as random element-wise sampling
which cannot recover arbitrary low-rank matrices or require the mea-
surement operator to satisfy the Restricted Isometry Property (RIP).
However, RIP based linear operators are generally full rank and require
large computation/storage cost for both measurement (encoding) as well
as reconstruction (decoding).

In this paper, we propose simple rank-one Gaussian measurement
operators for matrix sensing that are significantly less expensive in terms
of memory and computation for both encoding and decoding. Moreover,
we show that the matrix can be reconstructed exactly using a simple
alternating minimization method as well as a nuclear-norm minimization
method. Finally, we demonstrate the effectiveness of the measurement
scheme vis-a-vis existing RIP based methods.

Keywords: Matrix sensing · Matrix completion · Inductive learning ·
Alternating minimization

1 Introduction

In this paper, we consider the matrix sensing problem, where the goal is to
recover a low-rank matrix using a small number of linear measurements. The
matrix sensing process contains two phases: a) compression phase (encoding),
and b) reconstruction phase (decoding).

In the compression phase, a sketch/measurement of the given low-rank matrix
is obtained by applying a linear operator A : Rd1×d2 → R

m. That is, given a
rank-k matrix, W∗ ∈ R

d1×d2 , its linear measurements are computed by:

b = A(W∗) = [Tr(AT
1 W∗) Tr(AT

2 W∗) . . . Tr(AT
mW∗)]T , (1)
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where {Al ∈ R
d1×d2}l=1,2,...,m parameterize the linear operator A and Tr denotes

the trace operator. Then, in the reconstruction phase, the underlying low-rank
matrix is reconstructed using the given measurements b. That is, W∗ is obtained
by solving the following optimization problem:

min
W

rank(W ) s.t. A(W ) = b . (2)

The matrix sensing problem is a matrix generalization of the popular compressive
sensing problem and has several real-world applications in the areas of system
identification and control, Euclidean embedding, and computer vision (see [20]
for a detailed list of references).

Naturally, the design of the measurement operator A is critical for the suc-
cess of matrix sensing as it dictates cost of both the compression as well as the
reconstruction phase. Most popular operators for this task come from a family
of operators that satisfy a certain Restricted Isometry Property (RIP). How-
ever, these operators require each Al, that parameterizes A, to be a full rank
matrix. That is, cost of compression as well as storage of A is O(md1d2), which
is infeasible for large matrices. Reconstruction of the low-rank matrix W∗ is also
expensive, requiring O(md1d2 + d21d2) computation steps. Moreover, m is typi-
cally at least O(k ·d log(d)) where d = d1+d2. But, these operators are universal,
i.e., every rank-k W∗ can be compressed and recovered using such RIP based
operators.

In this paper, we seek to reduce the computational/storage cost of such opera-
tors but at the cost of the universality property. That is, we propose to use simple
rank-one operators, i.e., where each Al is a rank one matrix. We show that using
similar number of measurements as the RIP operators, i.e., m = O(k · d log(d)),
we can recover a fixed rank W∗ exactly.

In particular, we propose two measurement schemes: a) rank-one independent
measurements, b) rank-one dependent measurements. In rank-one independent
measurement, we use Al = xly

T
l , where xl ∈ R

d1 , yl ∈ R
d2 are both sam-

pled from zero mean sub-Gaussian product distributions, i.e., each element of xl

and yl is sampled from a fixed zero-mean univariate sub-Gaussian distribution.
Rank-one dependent measurements combine the above rank-one measurements
with element-wise sampling, i.e., Al = xily

T
jl

where xil ,yjl are sampled as above.
Also, (il, jl) ∈ [n1] × [n2] is a randomly sampled index, where n1 ≥ d1, n2 ≥ d2.
These measurements can also be viewed as the inductive version of the matrix
completion problem (see Section 3), where xi represents features of the i-th user
(row) and yj represents features of the j-th movie (column). In fact, an additional
contribution of our work is that we can show that the inductive matrix comple-
tion problem can also be solved using only O(k(d1+d2) log(d1+d2) log(n1+n2))
samples, as long as X,Y,W∗ satisfy certain incoherence style assumptions (see
Section 5 for more details)1.

Next, we provide two recovery algorithms for both of the above measure-
ment operators: a) alternating minimization, b) nuclear-norm minimization.
1 A preliminary version of this work appeared in [11]. Since the above mentioned work,

several similar rank-one measurement operators have been studied [2,15,25].
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Table 1. Comparison of sample complexity and computational complexity for different
approaches and different measurements

methods sample complexity computational complexity

ALS

Rank-1 Indep. O(k4β2d log2 d) O(kdm)

Rank-1 Dep. O(k4β2d log d) O(dm + knd)

RIP O(k4d log d) O(d2m)

Nuclear

Rank-1 Indep. O(kd) O(k̂dm)

Rank-1 Dep. O(kd log n log d) O(k̂2m + k̂nd)

RIP O(kd log d) O(d2m)

Note that, in general, the recovery problem (2) is NP-hard to solve. However, for
the RIP based operators, both alternating minimization as well as nuclear norm
minimization methods are known to solve the problem exactly in polynomial
time [13]. Note that the existing analysis of both the methods crucially uses RIP
and hence does not extend to the proposed operators.

We show that if m = O(k4 ·β2 · (d1 +d2) log2(d1 +d2)), where β is the condi-
tion number of W∗ then alternating minimization for the rank-one independent
measurements recovers W∗ in time O(kdm), where d = d1 + d2. Similarly, if
m = O(k · (d1 + d2) · log2(d1 + d2)) then the nuclear norm minimization based
method recovers W∗ in time O(d2m) in the worst case. Note that alternating min-
imization has slightly higher sample complexity requirement but is significantly
faster than the nuclear norm minimization method. Due to this, most practical
low-rank estimation systems in fact use alternating minimization method for
recovery. We obtain similar results for the rank-one dependent measurements.

We summarize the sample complexity and computational complexity for dif-
ferent approaches and different measurements in Table 1. In the table, ALS
refers to alternating least squares, i.e., alternating minimization. For the sym-
bols, d = d1 + d2, n = n1 + n2, and k̂ is the maximum of rank estimate used
as an input in the nuclear-norm solver [10][9]. This number can be as large as
min{d1, d2} when we have no prior knowledge of the rank.

Paper Organization: We summarize related work in Section 2. In Section 3
we formally introduce the matrix sensing problem and our proposed rank-one
measurement operators. In Section 4, we present the alternating minimization
method for matrix reconstruction. We then present a generic analysis for alter-
nating minimization when applied to the proposed rank-one measurement oper-
ators. We present the nuclear-norm minimization based method in Section 5
and present its analysis for the rank-one dependent measurements. Finally, we
provide empirical validation of our methods in Section 6.

2 Related Work

Matrix Sensing: Matrix sensing[20][12][16] is a generalization of the popular com-
pressive sensing problem for the sparse vectors and has applications in several
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domains such as control, vision etc. [20] introduced measurement operators that
satisfy RIP and showed that using only O(kd log d) measurements, a rank-k
W∗ ∈ R

d1×d2 can be recovered. Recently, a set of universal Pauli measurements,
used in quantum state tomography, have been shown to satisfy the RIP condi-
tion [17]. These measurement operators are Kronecker products of 2 × 2 matri-
ces, thus, they have appealing computation and memory efficiency. In concurrent
work, [15][2] also proposed an independent rank-one measurement using nuclear-
norm minimization. In contrast, we use two different measurement operators and
show that the popular alternating minimization method also solves the problem
exactly.

Matrix Completion and Inductive Matrix Completion: Matrix completion
[3][14][13] is a special case of rank-one matrix sensing problem when the operator
takes a subset of the entries. However, to guarantee exact recovery, the target
matrix has to satisfy the incoherence condition. Using our rank-one Gaussian
operators, we don’t require any condition on the target matrix. For inductive
matrix completion (IMC), which is a generalization of matrix completion uti-
lizing movies’ and users’ features, the authors of [22] provided the theoretical
recovery guarantee for nuclear-norm minimization. In this paper, we show that
IMC is equivalent to the matrix sensing problem using dependent rank-one mea-
surements, and provide a similar result for nuclear-norm based methods for IMC
but eliminate a “joint” incoherent condition on the rank-one measurements and
an upper bound condition on the sample complexity. Moreover, we give a theo-
retical guarantee using alternating minimization methods.

Alternating Minimization: Although nuclear-norm minimization enjoys nice
recovery guarantees, it usually doesn’t scale well. In practice, alternating min-
imization is employed to solve problem (2) by assuming the rank is known.
Alternating minimization solves two least square problems alternatively in each
iteration, thus is very computationally efficient[23]. Although widely used in
practice, its theoretical guarantees are relatively less understood due to non-
convexity. [13] first showed optimality of alternating minimization in the matrix
sensing/low-rank estimation setting under the RIP setting. Subsequently, several
other papers have also shown global convergence guarantees for alternating mini-
mization, e.g. matrix completion [8][7], robust PCA [18] and dictionary learning
[1]. In this paper, we provide a generic analysis for alternating minimization
applied to the proposed rank-one measurement operators. Our results distill out
certain key problem specific properties that would imply global optimality of
alternating minimization. We then show that the rank-one Gaussian measure-
ments satisfy those properties.

3 Problem Formulation

The goal of matrix sensing is to design a linear operator A : Rd1×d2 → R
m and

a recovery algorithm so that a low-rank matrix W∗ ∈ R
d1×d2 can be recovered

exactly using A(W∗). In this paper, we focus on rank-one measurement opera-
tors, Al = xly

T
l , and call such problems as Low-Rank matrix estimation using



Efficient Matrix Sensing Using Rank-1 Gaussian Measurements 7

Rank One Measurements (LRROM ): recover the rank-k matrix W∗ ∈ R
d1×d2

by using rank-1 measurements of the form:

b = [xT
1 W∗y1 xT

2 W∗y2 . . . xT
mW∗ym]T , (3)

where xl,yl are “feature” vectors and are provided along with the measure-
ments b.

We propose two different kinds of rank-one measurement operators based on
Gaussian distribution.

3.1 Rank-one Independent Gaussian Operator

Our first measurement operator is a simple rank-one Gaussian operator, AGI =
[A1 . . . Am], where, {Al = xly

T
l }l=1,2,...,m, and xl, yl are sampled i.i.d. from

spherical Gaussian distribution.

3.2 Rank-one Dependent Gaussian Operator

Our second operator can introduce certain “dependencies” in our measurement
and has in fact interesting connections to the matrix completion problem. We
provide the operator as well as the connection to matrix completion in this
sub-section. To generate the rank-one dependent Gaussian operator, we first
sample two Gaussian matrices X ∈ R

n1×d1 and Y ∈ R
n2×d2 , where each entry

of both X,Y is sampled independently from Gaussian distribution and n1 ≥ Cd1,
n2 ≥ Cd2 for a global constant C ≥ 1. Then, the Gaussian dependent operator
AGD = [A1, . . . Am] where {Al = xily

T
il

}(il,jl)∈Ω. Here xT
i is the i-th row of X

and yT
j is the j-th row of Y . Ω is a uniformly random subset of [n1] × [n2] such

that E[|Ω|] = m. For simplicity, we assume that each entry (il, jl) ∈ [n1] × [n2]
is sampled i.i.d. with probability p = m/(n1 ×n2). Therefore, the measurements
using the above operator are given by: bl = xT

il
Wyjl , (il, jl) ∈ Ω.

Connections to Inductive Matrix Completion (IMC): Note that the above
measurements are inspired by matrix completion style sampling operator. How-
ever, here we first multiply W with X, Y and then sample the obtained matrix
XWY T . In the domain of recommendation systems (say user-movie system),
the corresponding reconstruction problem can also be thought as the inductive
matrix completion problem. That is, let there be n1 users, n2 movies, X repre-
sents user features, and Y represents the movie features. Then, the true ratings
matrix is given by R = XWY T ∈ R

n1×n2 .
That is, given the user/movie feature vectors xi ∈ R

d1 for i = 1, 2, ..., n1 and
yj ∈ R

d2 for j = 1, 2, ..., n2, our goal is to recover a rank-k matrix W∗ of size
d1 × d2 from a few observed entries Rij = xT

i W∗yj , for (i, j) ∈ Ω ⊂ [n1] × [n2].
Because of the equivalence between the dependent rank-one measurements and
the entries of the rating matrix, in the rest of the paper, we will use {Rij}(i,j)∈Ω

as the dependent rank-one measurements.
Now, if we can reconstruct W∗ from the above measurements, we can predict

ratings inductively for new users/movies, provided their feature vectors are given.
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Hence, our reconstruction procedure also solves the IMC problem. However,
there is a key difference: in matrix sensing, we can select X, Y according to our
convenience, while in IMC, X and Y are provided a priori. But, for general X,Y
one cannot solve the problem because if say R = XW∗Y T is a 1-sparse matrix,
then W∗ cannot be reconstructed even with a large number of samples.

Interestingly, our proof for reconstruction using nuclear-norm based method
does not require Gaussian X, Y . Instead, we can distill out two key properties of
R,X, Y ensuring that using only O(k(d1+d2) log(d1+d2) log(n1+n2)) samples,
we can reconstruct W∗. Note that a direct application of matrix completion
results [3][4] would require O(k(n1 + n2) log(n1 + n2)) samples which can be
much large if n1 � d1 or n2 � d2. See Section 5 for more details on the
assumptions that we require for the nuclear-norm minimization method to solve
the IMC problem exactly.

4 Rank-one Matrix Sensing via Alternating Minimization

We now present the alternating minimization approach for solving the recon-
struction problem (2) with rank-one measurements (3). Since W to be recovered
is restricted to have at most rank-k, (2) can be reformulated as the following
non-convex optimization problem:

min
U∈Rd1×k,V ∈Rd2×k

m∑

l=1

(bl − xT
l UV Tyl)2 . (4)

Alternating minimization is an iterative procedure that alternately optimizes for
U and V while keeping the other factor fixed. As optimizing for U (or V ) involves
solving just a least squares problem, so each individual iteration of the algorithm
is linear in matrix dimensions. For the rank-one measurement operator, we use
a particular initialization method to initialize U (see line 3 of Algorithm 1). See
Algorithm 1 for a pseudo-code of the algorithm.

4.1 General Theoretical Guarantee for Alternating Minimization

As mentioned above, (4) is non-convex in U, V and hence standard analysis would
only ensure convergence to a local minima. However, [13] recently showed that
the alternating minimization method in fact converges to the global minima of
two low-rank estimation problems: matrix sensing with RIP matrices and matrix
completion.

The rank-one operator given above does not satisfy RIP (see Definition 1),
even when the vectors xl,yl are sampled from the normal distribution (see
Claim 4.2). Furthermore, each measurement need not reveal exactly one entry of
W∗ as in the case of matrix completion. Hence, the proof of [13] does not apply
directly. However, inspired by the proof of [13], we distill out three key prop-
erties that the operator should satisfy, so that alternating minimization would
converge to the global optimum.
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Algorithm 1. AltMin-LRROM : Alternating Minimization for LRROM
1: Input: Measurements: ball, Measurement matrices: Aall, Number of iterations: H
2: Divide (Aall,ball) into 2H + 1 sets (each of size m) with h-th set being Ah =

{Ah
1 , Ah

2 , . . . , Ah
m} and bh = [bh1 bh2 . . . bhm]T

3: Initialization: U0 =top-k left singular vectors of 1
m

∑m
l=1 b0l A

0
l

4: for h = 0 to H − 1 do
5: b ← b2h+1, A ← A2h+1

6: V̂h+1 ← argminV ∈R
d2×k

∑
l(bl − xT

l UhV Tyl)
2

7: Vh+1 = QR(V̂h+1) //orthonormalization of V̂h+1

8: b ← b2h+2, A ← A2h+2

9: Ûh+1 ← argminU∈R
d1×k

∑
l(bl − xT

l UV T
h+1yl)

2

10: Uh+1 = QR(Ûh+1) //orthonormalization of Ûh+1

11: end for
12: Output: WH = UH(V̂H)T

Theorem 1. Let W∗ = U∗Σ∗V T
∗ ∈ R

d1×d2 be a rank-k matrix with k-singular
values σ1

∗ ≥ σ2
∗ · · · ≥ σk

∗ . Also, let A : Rd1×d2 → R
m be a linear measurement

operator parameterized by m matrices, i.e., A = {A1, A2, . . . , Am} where Al =
xly

T
l . Let A(W ) be as given by (1).
Now, let A satisfy the following properties with parameter δ = 1

k3/2·β·100
(β = σ1

∗/σk
∗):

1. Initialization: ‖ 1
m

∑
l blAl − W∗‖2 ≤ ‖W∗‖2 · δ.

2. Concentration of operators Bx, By: Let Bx = 1
m

∑m
l=1(y

T
l v)2xlx

T
l and

By = 1
m

∑m
l=1(x

T
l u)2yly

T
l , where u ∈ R

d1 ,v ∈ R
d2 are two unit vectors

that are independent of randomness in xl,yl, ∀i. Then the following holds:
‖Bx − I‖2 ≤ δ and ‖By − I‖2 ≤ δ.

3. Concentration of operators Gx, Gy: Let Gx = 1
m

∑
l(y

T
l v)(ylv⊥)xlx

T
l ,

Gy = 1
m

∑
l(x

T
l u)(uT

⊥xl)yly
T
l , where u,u⊥ ∈ R

d1 , v,v⊥ ∈ R
d2 are unit

vectors, s.t., uTu⊥ = 0 and vTv⊥ = 0. Furthermore, let u,u⊥,v,v⊥ be
independent of randomness in xl,yl,∀i. Then, ‖Gx‖2 ≤ δ and ‖Gy‖2 ≤ δ.

Then, after H-iterations of the alternating minimization method (Algorithm 1),
we obtain WH = UHV T

H s.t., ‖WH − W∗‖2 ≤ ε, where H ≤ 100 log(‖W∗‖F /ε).

See Supplementary A for a detailed proof. Note that we require intermediate
vectors u,v,u⊥,v⊥ to be independent of randomness in Al’s. Hence, we partition
Aall into 2H + 1 partitions and at each step (Ah, bh) and (Ah+1, bh+1) are
supplied to the algorithm. This implies that the measurement complexity of the
algorithm is given by m · H = m log(‖W∗‖F /ε). That is, given O(m log(‖(d1 +
d2)W∗‖F )) samples, we can estimate matrix WH , s.t., ‖WH − W∗‖2 ≤ 1

(d1+d2)c
,

where c > 0 is any constant.

4.2 Independent Gaussian Measurements

In this subsection, we consider the rank-one independent measurement opera-
tor AGI specified in Section 3. Now, for this operator AGI , we show that if
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m = O(k4β2 · (d1 + d2) · log2(d1 + d2)), then w.p. ≥ 1 − 1/(d1 + d2)100, any fixed
rank-k matrix W∗ can be recovered by AltMin-LRROM (Algorithm 1). Here
β = σ1

∗/σk
∗ is the condition number of W∗. That is, using nearly linear number

of measurements in d1, d2, one can exactly recover the d1×d2 rank-k matrix W∗.
As mentioned in the previous section, the existing matrix sensing results typ-

ically assume that the measurement operator A satisfies the Restricted Isometry
Property (RIP) defined below:

Definition 1. A linear operator A : Rd1×d2 → R
m satisfies RIP iff, for ∀W s.t.

rank(W ) ≤ k, the following holds:

(1 − δk)‖W‖2F ≤ ‖A(W )‖2F ≤ (1 + δk)‖W‖2F ,

where δk > 0 is a constant dependent only on k.

Naturally, this begs the question whether we can show that our rank-1 mea-
surement operator AGI satisfies RIP, so that the existing analysis for RIP based
low-rank matrix sensing can be used [13]. We answer this question in the nega-
tive, i.e., for m = O((d1 + d2) log(d1 + d2)), AGI does not satisfy RIP even for
rank-1 matrices (with high probability):

Claim. 4.2. Let AGI = {A1, A2, . . . Am} be a measurement operator with each
Al = xly

T
l , where xl ∈ R

d1 ∼ N (0, I), yl ∈ R
d2 ∼ N (0, I), 1 ≤ l ≤ m. Let

m = O((d1 + d2) logc(d1 + d2)), for any constant c > 0. Then, with probability at
least 1 − 1/m10, AGI does not satisfy RIP for rank-1 matrices with a constant δ.

See Supplementary B for a detailed proof of the above claim. Now, even though
AGI does not satisfy RIP, we can still show that AGI satisfies the three properties
mentioned in Theorem 1. and hence we can use Theorem 1 to obtain the exact
recovery result.

Theorem 2 (Rank-One Independent Gaussian Measurements using
ALS). Let AGI = {A1, A2, . . . Am} be a measurement operator with each
Al = xly

T
l , where xl ∈ R

d1 ∼ N (0, I), yl ∈ R
d2 ∼ N (0, I), 1 ≤ l ≤ m. Let

m = O(k4β2(d1 + d2) log2(d1 + d2)). Then, Property 1, 2, 3 required by Theo-
rem 1 are satisfied with probability at least 1 − 1/(d1 + d2)100.

Proof. Here, we provide a brief proof sketch. See Supplementary B for a detailed
proof.

Initialization: Note that,

1
m

m∑

l=1

blxly
T
l =

1
m

m∑

l=1

xlx
T
l U∗Σ∗V T

∗ yly
T
l =

1
m

m∑

l=1

Zl ,

where Zl = xlx
T
l U∗Σ∗V T

∗ yly
T
l . Note that E[Zl] = U∗Σ∗V T

∗ . Hence, to prove
the initialization result, we need a tail bound for sums of random matrices. To
this end, we use Theorem 1.6 in [21]. However, Theorem 1.6 in [21] requires a
bounded random variable while Zl is an unbounded variable. We handle this issue
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by clipping Zl to ensure that its spectral norm is always bounded. Furthermore,
by using properties of normal distribution, we can ensure that w.p. ≥ 1 − 1/m3,
Zl’s do not require clipping and the new “clipped” variables converge to nearly
the same quantity as the original “non-clipped” Zl’s. See Supplementary B for
more details.

Concentration of Bx, By, Gx, Gy: Consider Gx = 1
m

∑m
l=1 xlx

T
l y

T
l vv⊥Tyl.

As, v,v⊥ are unit-norm vectors, yT
l v ∼ N (0, 1) and vT

⊥xl ∼ N (0, 1). Also,
since v and v⊥ are orthogonal, yT

l v and vT
⊥yl are independent variables. Hence,

Gx = 1
m

∑m
l=1 Zl where E[Zl] = 0. Here again, we apply Theorem 1.6 in [21] after

using a clipping argument. We can obtain the required bounds for Bx, By, Gy

also in a similar manner.
Note that the clipping procedure ensures that Zl’s don’t need to be clipped

with probability ≥ 1 − 1/m3 only. That is, we cannot apply the union bound to
ensure that the concentration result holds for all v,v⊥. Hence, we need a fresh
set of measurements after each iteration to ensure concentration.

Global optimality of the rate of convergence of the Alternating Minimization
procedure for this problem now follows directly by using Theorem 1. We would
like to note that while the above result shows that the AGI operator is almost
as powerful as the RIP based operators for matrix sensing, there is one critical
drawback: while RIP based operators are universal that is they can be used to
recover any rank-k W∗, AGI needs to be resampled for each W∗. We believe
that the two operators are at two extreme ends of randomness vs universality
trade-off and intermediate operators with higher success probability but using
larger number of random bits should be possible.

4.3 Dependent Gaussian Measurements

For the dependent Gaussian measurements, the alternating minimization formu-
lation is given by:

min
U∈Rd1×k,V ∈Rd2×k

∑

(i,j)∈Ω

(xT
i UV Tyj − Rij)2 . (5)

Here again, we can solve the problem by alternatively optimizing for U and V .
Later in Section 4.4, we show that using such dependent measurements leads
to a faster recovery algorithm when compared to the recovery algorithm for
independent measurements.

Note that both the measurement matrices X,Y can be thought of as orthonor-
mal matrices. The reason being, XW∗Y T = UXΣXV T

X W∗VY ΣY UT
Y , where

X = UXΣXV T
X and Y = UY ΣY V T

Y is the SVD of X,Y respectively. Hence,
R = XW∗Y T = UX(ΣXV T

X W∗VY ΣY )UT
Y . Now UX , UY can be treated as

the true “X”, “Y” matrices and W∗ ← (ΣXV T
X W∗VY ΣY ) can be thought of as

W∗. Then the “true” W∗ can be recovered using the obtained WH as: WH ←
VXΣ−1

X WHΣ−1
Y V T

Y . We also note that such a transformation implies that the con-
dition number of R and that of W∗ ← (ΣXV T

X W∗VY ΣY ) are exactly the same.
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Similar to the previous section, we utilize our general theorem for optimality
of the LRROM problem to provide a convergence analysis of rank-one Gaussian
dependent operators AGD. We prove if X and Y are random orthogonal matrices,
defined in [3], the above mentioned dependent measurement operator AGD gen-
erated from X,Y also satisfies Properties 1, 2, 3 in Theorem 1. Hence, AltMin-
LRROM (Algorithm 1) converges to the global optimum in O(log(‖W∗‖F /ε))
iterations.

Theorem 3 (Rank-One Dependent Gaussian Measurements using
ALS). Let X0 ∈ R

n1×d1 and Y0 ∈ R
n2×d2 be Gaussian matrices, i.e. every

entry is sampled i.i.d from N (0, 1). Let X0 = XΣXV T
X and Y0 = Y ΣY V T

Y be
the thin SVD of X0 and Y0 respectively. Then the rank-one dependent operator
AGD formed by X,Y with m ≥ O(k4β2(d1 + d2) log(d1 + d2)) satisfy Property
1,2,3 required by Theorem 1 with high probability.

See Supplementary C for a detailed proof. Interestingly, our proof does not
require X, Y to be Gaussian. It instead utilizes only two key properties about
X,Y which are given by:

1. Incoherence: For some constant μ, c,

max
i∈[n]

‖xi‖22 ≤ μd̄

n
, (6)

where d̄ = max(d, log n)
2. Averaging Property: For H different orthogonal matrices Uh ∈ R

d×k,
h = 1, 2, . . . , H, the following hold for these Uh’s,

max
i∈[n]

‖UT
h xi‖22 ≤ μ0k̄

n
, (7)

where μ0, c are some constants and k̄ = max(k, log n).

Hence, the above theorem can be easily generalized to solve the inductive matrix
completion problem (IMC), i.e., solve (5) for arbitrary X,Y . Moreover, the sam-
ple complexity of the analysis would be nearly in (d1 + d2), instead of (n1 + n2)
samples required by the standard matrix completion methods.

The following lemma shows that the above two properties hold w.h.p. for
random orthogonal matrices .

Lemma 1. If X ∈ R
n×d is a random orthogonal matrix, then both Incoherence

and Averaging properties are satisfied with probability ≥ 1 − (c/n3) log n, where
c is a constant.

The proof of Lemma 1 can be found in Supplementary C.
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4.4 Computational Complexity for Alternating Minimization

In this subsection, we briefly discuss the computational complexity for Algo-
rithm 1. For simplicity, we set d = d1 + d2 and n = n1 + n2, and in practical
implementation, we don’t divide the measurements and use the whole measure-
ment operator A for every iteration. The most time-consuming part of Algo-
rithm 1 is the step for solving the least square problem. Given U = Uh, V can
be obtained by solving the following linear system,

m∑

l=1

〈V,AT
l Uh〉AlUh =

m∑

l=1

blA
T
l Uh . (8)

The dimension of this linear system is kd, which could be large, thus we use
conjugate gradient (CG) method to solve it. In each CG iteration, different
measurement operators have different computational complexity. For RIP-based
full-rank operators, the computational complexity for each CG step is O(d2m)
while it is O(kdm) for rank-one independent operators. However, for rank-one
dependent operators, using techniques introduced in [24], we can reduce the per
iteration complexity to be O(kdn + md). Furthermore, if n = d, the computa-
tional complexity of dependent operators is only O(kd2 + md), which is better
than the complexity of rank-one independent operators in an order of k.

5 Rank-one Matrix Sensing via Nuclear Norm
Minimization

In this section, we consider solving LRROM by nuclear norm relaxation. We first
note that using nuclear norm relaxation, [15] provided the analysis for indepen-
dent rank-one measurement operators when the underlying matrix is Hermitian.
It can be shown that non-Hermitian matrices problem can be transformed to Her-
mitian cases. Their proof uses the bowling scheme and only requires O(k(d1+d2))
measurements for Gaussian case and O(k(d1+d2) log(d1+d2) log(n1+n2)) mea-
surements for 4-designs case. In this paper, we consider dependent measurement
operators which have a similar sample complexity as the independent opera-
tors, but less computational complexity and memory footprint than those of
independent ones.

The nuclear norm minimization using rank-one dependent Gaussian operator
is of form,

min ‖W‖∗
s.t. xT

i Wyj = Rij , (i, j) ∈ Ω .
(9)

(9) can be solved exactly by semi-definite programming or approximated by

min
W

∑

(i,j)∈Ω

(xT
i Wyj − Rij)2 + λ‖W‖∗ , (10)

where λ is a constant and can be viewed as a Lagrange multiplier.
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5.1 Recovery Guarantee for Nuclear-norm Minimization

In this subsection, we show that using rank-one dependent Gaussian operators,
the nuclear-norm minimization can recover any low-rank matrix exactly with
O(k(d1 + d2) log(d1 + d2) log(n1 + n2)) measurements. We also generalize the
theorem to the IMC problem where the feature matrices X and Y can be arbi-
trary instead of being Gaussian. We show that as long as X,W∗, Y satisfy certain
incoherence style properties, the nuclear norm minimization can guarantee exact
recovery using only O(k(d1 + d2) log(d1 + d2)) samples.

We first provide recovery guarantees for our rank-one dependent operator,
i.e., when X,Y are sampled from the Gaussian distribution.

Theorem 4 (Rank-one Dependent Gaussian Measurements using
Nuclear-norm Minimization). Let W∗ = U∗Σ∗V T

∗ ∈ R
d1×d2 be a rank-

k matrix. Let X ∈ R
n1×d1 and Y ∈ R

n2×d2 be random orthogonal matrices.
Assume each (i, j) ∈ Ω is sampled from [n1] × [n2] i.i.d.. Then if m = |Ω| ≥
O(k(d1 + d2) log(d1 + d2) log (n1 + n2)), the minimizer to the problem (9) is
unique and equal to W∗ with probability at least 1− c1(d1 +d2)−c2 , where c1 and
c2 are universal constants.

The above theorem is a directly corollary of Theorem 5 combined with Lemma 1.
Lemma 1 shows that random orthonormal matrices X,Y (can be generated
using Gaussian matrices as stated in Theorem 2) satisfy the requirements of
Theorem 5.

Nuclear-norm minimization approach for inductive matrix completion (9) has
also been studied by [22]. However, their recovery guarantee holds under a much
more restrictive set of assumptions on X,W∗, Y and in fact requires that the
number of samples is not only lower bounded by certain quantity but also upper
bounded by some other quantity. Our general analysis below doesn’t rely on this
upper bound. Moreover, their proof also requires a “joint” incoherent condition,
i.e., an upper bound on maxi,j |xT

i U∗V T
∗ yj | which is not required by our method;

to this end, we use a technique introduced by [5] to bound an 	∞,2-norm.

Theorem 5 (Inductive Matrix Completion using Nuclear-norm Mini-
mization). Let W∗ = U∗Σ∗V T

∗ ∈ R
d1×d2 be a rank-k matrix. Assume X,Y are

orthogonal matrices, and satisfy the following conditions with respect to W∗ for
some constant μ and μ0,

C1. max
i∈[n1]

‖xi‖22 ≤ μd1
n1

, max
j∈[n2]

‖yj‖22 ≤ μd2
n2

,

C2. max
i∈[n1]

‖UT
∗ xi‖22 ≤ μ0k

n1
, max

j∈[n2]
‖V T

∗ yj‖22 ≤ μ0k

n2
.

Then if each observed entry (i, j) ∈ Ω is sampled from [n1] × [n2] i.i.d. with
probability p,

p ≥ max
{c0μ0μkd log(d) log (n)

n1n2
,

1
min{n1, n2}10

}
, (11)
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the minimizer to the problem (9) is unique and equal to W∗ with probability at
least 1 − c1d

−c2 , where c0, c1 and c2 are universal constants, d = d1 + d2 and
n = n1 + n2.

Note that the first condition C1 is actually the incoherence condition on X,Y ,
while the second one C2 is the incoherence of XU∗, Y V∗. Additionally, C2 is
weaker than the Averaging property in Lemma 1, as it only asks for one U∗
rather than H different Uh’s to satisfy the property.

Proof. We follow the popular proof ideas used by [3][19], that is, finding a dual
feasible solution for (9) to certify the uniqueness of the minimizer of (9). Unlike
the analysis in [22], we build our dual certificate in the Rd1×d2 matrix space rather
than theRn1×n2 space. This choice makes it easy to follow the analysis in standard
matrix completion problem. In Proposition 1 in Supplementary D, we give certain
conditions the dual certificate should satisfy for the uniqueness. Then we apply
golfing scheme [6] to find such a certificate. When building the dual certificate, we
use an 	∞,2-norm adapted from [5]. This enables us to discard the assumption of
“joint” incoherence. The details can be found in Supplementary D.

5.2 Computational Complexity for Nuclear-norm Minimization

The optimization for nuclear-norm formulation is much more complex. Recently
[10] proposed an active subspace method to solve Problem (10). The compu-
tational bottleneck is the approxSVD step and the inner problem step, both
of which involve calculating a similar equation as shown on the left hand side
of Eq (8). However, the rank of U or V is not fixed in each iteration as that of
ALS, and in the worst case, it can be as large as min{d1, d2}. The computational
complexity for this basic operation is shown in Table 1.

6 Experiments

In this section, we demonstrate empirically that our Gaussian rank-one linear
operators are significantly more efficient for matrix sensing than the existing
RIP based measurement operators. In particular, we apply the two recovery
methods namely alternating minimization (ALS) and nuclear norm minimization
(Nuclear) to the measurements obtained using three different operators: rank-
one independent (Rank1 Indep), rank-one dependent (Rank1 Dep), and a RIP
based operator generated using random Gaussian matrices (RIP).

The experiments are conducted on Matlab and the nuclear-norm solver is
adapted from the code by [10]. We first generated a random rank-5 signal
W∗ ∈ R

50×50, and compute m = 1000 measurements using different measure-
ment operators. Here, we fix a small λ = 10−6 for solving Eq (10) in order to
exactly recover the matrix. And we set the maximum possible rank k̂ = k as
the input of the nuclear-norm solver. Figure 1a plots the relative error in recov-
ery, err = ‖W − W ∗‖2F /‖W ∗‖2F , against computational time required by each
method. Clearly, recovery using rank-one measurements requires significantly
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(a) Relative error in recovery v.s.
computation time
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Fig. 1. Comparison of computational complexity and measurement complexity for dif-
ferent approaches and different operators
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Fig. 2. Recovery rate for different matrix dimension d (x-axis) and different number of
measurements m (y-axis). The color reflects the recovery rate scaled from 0 to 1. The
white color indicates perfect recovery, while the black color denotes failure in all the
experiments.

less time compared to the RIP based operator. Moreover, ALS in general seems
to be significantly faster than Nuclear methods.

Next, we compare the measurement complexity (m) of each method. Here
again, we first generate a random rank-5 signal W∗ ∈ R

50×50 and its measure-
ments using different operators. We then measure error in recovery by each of
the method and consider success if the relative error err ≤ 0.05. We repeat
the experiment 10 times to obtain the recovery rate (number of success/10) for
each value of m (number of measurements). Figure 1b plots the recovery rate of
different approaches for different m. Clearly, the rank-one based measurements
have similar recovery rate and measurement complexity as the RIP based oper-
ators. However, our rank-one operator based methods are much faster than the
corresponding methods for the RIP-based measurement scheme.

Finally, in Figure 2, we validate our theoretical analysis on the measurement
complexity by showing the recovery rate for different d and m. We fix the rank
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k = 5, set d = d1 = d2 and n1 = d1, n2 = d2 for dependent operators. Figure 3
plots the recovery rate for various d and m. As shown in Figure 2, both indepen-
dent and dependent operators using alternating minimization or nuclear-norm
minimization require a number of measurements proportional to the dimension
of d. We also see that dependent operators require a slight larger number of
measurements than that of independent ones. Another interesting observation is
that although our theoretical analysis requires a higher measurement complexity
of ALS than that of Nuclear methods, the empirical results show their measure-
ment complexities are almost identical for the same measurement operator.
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