
Kamalika Chaudhuri
Claudio Gentile
Sandra Zilles (Eds.)

 123

LN
AI

 9
35

5

26th International Conference, ALT 2015
Banff, AB, Canada, October 4–6, 2015
Proceedings

Algorithmic
Learning Theory

Lecture Notes in Artificial Intelligence 9355

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Kamalika Chaudhuri • Claudio Gentile
Sandra Zilles (Eds.)

Algorithmic
Learning Theory
26th International Conference, ALT 2015
Banff, AB, Canada, October 4–6, 2015
Proceedings

123

Editors
Kamalika Chaudhuri
University of California
La Jolla, CA
USA

Claudio Gentile
Università dell’Insubria
21100 Varese
Italy

Sandra Zilles
Department of Computer Science
University of Regina
Regina, SK
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-24485-3 ISBN 978-3-319-24486-0 (eBook)
DOI 10.1007/978-3-319-24486-0

Library of Congress Control Number: 2015949454

LNCS Sublibrary: SL7 – Artificial Intelligence

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at the 26th International Conference on
Algorithmic Learning Theory (ALT 2015), which was held in Banff, Alberta, Canada
during October 4–6, 2015. ALT 2015 was co-located with the 18th International
Conference on Discovery Science (DS 2015). The technical program of ALT 2015 had
four invited talks (presented jointly to both ALT 2015 and DS 2015) and 23 papers
selected from 46 submissions by the ALT Program Committee. ALT 2015 took place
in the Banff Park Lodge in the heart of Banff. It provided a stimulating interdisciplinary
forum to discuss the theoretical foundations of machine learning as well as their
relevance to practical applications.

ALT is dedicated to the theoretical foundations of machine learning and provides a
forum for high-quality talks and scientific interaction in areas such as reinforcement
learning, inductive inference and grammatical inference, learning from queries, active
learning, probably approximate correct learning, online learning, bandit theory, sta-
tistical learning theory, Bayesian and stochastic learning, unsupervised or semi-
supervised learning, clustering, universal prediction, stochastic optimization, high
dimensional and non-parametric inference, information-based methods, decision tree
methods, kernel-based methods, graph methods and/or manifold-based methods,
sample complexity, complexity of learning, privacy preserving learning, learning based
on Kolmogorov complexity, new learning models, and applications of algorithmic
learning theory.

The present LNAI volume contains the 23 papers presented at ALT 2015 and the
following invited papers, either as full papers or as abstracts:

– Inderjit Dhillon (University of Texas at Austin), “Efficient Matrix Sensing Using
Rank-1 Gaussian Measurements” (Invited Speaker for ALT 2015);

– Sham Kakade (Microsoft Research and University of Washington), “Tensor
Decompositions for Learning Latent Variable Models” (Invited Speaker for ALT
2015);

– Cynthia Rudin (Massachusetts Institute of Technology), “Turning Prediction Tools
Into Decision Tools” (Invited Speaker for DS 2015);

– Kiri Wagstaff (Jet Propulsion Laboratory, Los Angeles, CA), “Overcoming
Obstacles to the Adoption of Machine Learning by Domain Experts” (Invited
Speaker for DS 2015).

Since 1999, ALT has been awarding the E.M. Gold Award for the most outstanding
student contribution. This year, the award was given to Ana Ozaki for her paper “Exact
Learning of Multivalued Dependencies” coauthored with Montserrat Hermo.

ALT 2015 was the 26th meeting in the ALT conference series, established in Japan
in 1990. The ALT series is supervised by its Steering Committee: Shai Ben-David
(University of Waterloo, Canada), Nader H. Bshouty (Technion - Israel Institute of
Technology, Israel), Kamalika Chaudhuri (University of California, San Diego, USA),

Claudio Gentile (Università dell’Insubria, Varese, Italy), Marcus Hutter (Australian
National University, Canberra, Australia), Sanjay Jain (National University of Singa-
pore, Republic of Singapore), Frank Stephan (Co-chair, National University of Sin-
gapore, Republic of Singapore), Gilles Stoltz (École normale supérieure, Paris, France),
Csaba Szepesvári (University of Alberta, Edmonton, Canada), Eiji Takimoto (Kyushu
University, Fukuoka, Japan), György Turán (University of Illinois at Chicago, USA,
and University of Szeged, Hungary), Akihiro Yamamoto (Kyoto University, Japan),
and Sandra Zilles (Chair, University of Regina, Saskatchewan, Canada).

We thank various people and institutions who contributed to the success of the
conference. Most importantly, we would like to thank the authors for contributing and
presenting their work at the conference. Without their contribution this conference
would not have been possible. We would like to thank ISM Canada, an IBM company,
and Alberta Innovates Technology Futures (AITF) for the generous financial support
for the conference.

ALT 2015 and DS 2015 were organized by the University of Alberta and the
University of Regina. We thank the local arrangement team for their efforts in orga-
nizing the two conferences. In particular, we thank Csaba Szepesvári, who co-chaired
the local arrangements team together with Sandra Zilles. Special thanks to Deon
Nicholas and Reka Szepesvári from the University of Alberta for their help in setting
up the registration page for the two conferences. We are grateful for the collaboration
with the conference series Discovery Science. In particular, we would like to thank the
general chair of DS 2015 and ALT 2015, Randy Goebel, and the DS 2015 Program
Committee chairs, Nathalie Japkowicz and Stan Matwin.

We are also grateful to EasyChair, the excellent conference management system,
which was used for putting together the program for ALT 2015. EasyChair was
developed mainly by Andrei Voronkov and is hosted at the University of Manchester.
The system is cost-free.

We are grateful to the members of the Program Committee for ALT 2015 and the
subreferees for their hard work in selecting a good program for ALT 2015. Last but not
least, we thank Springer for their support in preparing and publishing this volume in the
Lecture Notes in Artificial Intelligence series.

July 2015 Kamalika Chaudhuri
Claudio Gentile

Sandra Zilles

VI Preface

Organization

Program Committee

Dana Angluin Yale University, USA
András Antos Budapest University of Technology and Economics,

Hungary
Shai Ben-David University of Waterloo, Canada
Nader Bshouty Technion Israel Institute of Technology, Israel
Nicolò Cesa-Bianchi Università degli Studi di Milano, Italy
Kamalika Chaudhuri University of California San Diego, USA
Vitaly Feldman IBM, Almaden Research Center, San Jose, USA
Claudio Gentile Università dell’Insubria, Varese, Italy
Marcus Hutter Australian National University, Australia
Sanjay Jain National University of Singapore, Singapore
Wouter Koolen Queensland University of Technology, Australia and

University of California, Berkeley, USA
Timo Kötzing Universität Jena, Germany
Lihong Li Microsoft Research, USA
Odalric-Ambrym Maillard Technion Israel Institute of Technology, Israel
Yishay Mansour Microsoft Research and Tel Aviv University, Israel
Claire Monteleoni George Washington University, USA
Gergely Neu Inria, France
Francesco Orabona Yahoo Labs New York, USA
Mark Reid Australian National University, Australia
Lev Reyzin University of Illinois, Chicago, USA
Philippe Rigollet MIT, USA
Sivan Sabato Ben Gurion University of the Negev, Israel
Hans Simon Ruhr Universität Bochum, Germany
Karthik Sridharan Cornell University, USA
Liwei Wang Peking University, China

Additional Reviewers

Abbasi-Yadkori, Yasin
Arias, Marta
Balcazar, Jose
Blanchard, Gilles
Brautbar, Michael
Case, John
Choromanska, Anna

Choromanski, Krzysztof
Daniely, Amit
Daswani, Mayank
Everitt, Tom
Fetaya, Ethan
Frongillo, Rafael
Helmbold, David

Huang, Ruitong
Jackson, Jeffrey
Jiang, Nan
Kanade, Varun
Karampatziakis, Nikos
Kloft, Marius
Kontorovich, Aryeh
Koren, Tomer
Kun, Jeremy
Kuzborskij, Ilja
Leike, Jan
Lelkes, Ádám D.
Levy, Kfir
Liberty, Edo
Menon, Aditya
Mineiro, Paul

Moseley, Benjamin
Ortner, Ronald
Pentina, Anastasya
Perchet, Vianney
Servedio, Rocco
Spall, James
Stephan, Frank
Tamon, Christino
Tang, Cheng
Theocharous, Georgios
Tolstikhin, Ilya
van Rooyen, Brendan
Zeugmann, Thomas
Zhang, Chicheng
Zhao, Peilin

VIII Organization

Abstracts of Invited Talks

Efficient Matrix Sensing
Using Rank-1 Gaussian Measurements

Kai Zhong1, Prateek Jain2, and Inderjit S. Dhillon1

1 University of Texas at Austin, USA
2 Microsoft Research, India

zhongkai@ices.utexas.edu, prajain@microsoft.com,

inderjit@cs.utexas.edu

Abstract. In this paper, we study the problem of low-rank matrix sensing where
the goal is to reconstruct a matrix exactly using a small number of linear
measurements. Existing methods for the problem either rely on measurement
operators such as random element-wise sampling which cannot recover arbitrary
low-rank matrices or require the measurement operator to satisfy the Restricted
Isometry Property (RIP). However, RIP based linear operators are generally full
rank and require large computation/storage cost for both measurement (encod-
ing) as well as reconstruction (decoding).
In this paper, we propose simple rank-one Gaussian measurement operators

for matrix sensing that are significantly less expensive in terms of memory and
computation for both encoding and decoding. Moreover, we show that the
matrix can be reconstructed exactly using a simple alternating minimization
method as well as a nuclear-norm minimization method. Finally, we demon-
strate the effectiveness of the measurement scheme vis-a-vis existing RIP based
methods.

Tensor Decompositions for Learning
Latent Variable Models
(a survey for ALT)

Anima Anandkumar1, Rong Ge2, Daniel Hsu3,
Sham M. Kakade4, and Matus Telgarsky5

University of California, Irvine
Microsoft Research, New England

Columbia University
Rutgers University

University of Michigan

Abstract. This note is a short version of that in [1]. It is intended as a survey for
the 2015 Algorithmic Learning Theory (ALT) conference.
This work considers a computationally and statistically efficient parameter

estimation method for a wide class of latent variable models— including
Gaussian mixture models, hidden Markov models, and latent Dirichlet alloca-
tion—which exploits a certain tensor structure in their low-order observable
moments (typically, of second- and third-order). Specifically, parameter esti-
mation is reduced to the problem of extracting a certain (orthogonal) decom-
position of a symmetric tensor derived from the moments; this decomposition
can be viewed as a natural generalization of the singular value decomposition
for matrices. Although tensor decompositions are generally intractable to
compute, the decomposition of these specially structured tensors can be effi-
ciently obtained by a variety of approaches, including power iterations and
maximization approaches (similar to the case of matrices). A detailed analysis of
a robust tensor power method is provided, establishing an analogue of Wedin’s
perturbation theorem for the singular vectors of matrices. This implies a robust
and computationally tractable estimation approach for several popular latent
variable models.

Turning Prediction Tools Into Decision Tools

Cynthia Rudin

MIT CSAIL and Sloan School of Management
Building E62-576, 100 Main Street, Cambridge, MA 02142, USA

rudin@mit.edu

Arguably, the main stumbling block in getting machine learning algo-
rithms used in practice is the fact that people do not trust them. There
could be many reasons for this, for instance, perhaps the models are not
sparse or transparent, or perhaps the models are not able to be custom-
ized to the user’s specifications as to what a decision tool should look
like. I will discuss some recent work from the Prediction Analysis Lab
on how to build machine learning models that have helpful decision-
making properties. I will show how these models are applied to problems
in healthcare and criminology.

Overcoming Obstacles to the Adoption
of Machine Learning by Domain Experts

Kiri L. Wagstaff

Jet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove Drive, Pasadena, CA 91109, USA

kiri.l.wagstaff@jpl.nasa.gov

The ever-increasing volumes of scientific data being collected by fields such as
astronomy, biology, planetary science, medicine, etc., present a need for automated
data analysis methods to assist investigators in understanding and deriving new
knowledge from their data. Partnerships between domain experts and computer sci-
entists can open that door. However, there are obstacles that sometimes prevent the
successful adoption of machine learning by those who stand to benefit most.

We devote a lot of effort to solving technological challenges (e.g., scalability,
performance), but less effort to overcoming psychological and logistical barriers.
Domain experts may fail to be persuaded to adopt a tool based on performance results
that are otherwise compelling to those in machine learning, which can be frustrating
and perplexing. Algorithm aversion is the phenomenon in which people place more
trust in human predictions than those generated by an algorithm, even when the
algorithm demonstrably performs better. Media hype about the dangers of artificial
intelligence and fears about the loss of jobs or the loss of control create additional
obstacles.

I will describe two case studies in which we have developed and delivered machine
learning systems to solve problems from radio astronomy and planetary science
domains. While we cannot claim to have a magic wand that ensures the adoption of
machine learning systems, we can share lessons learned from our experience. Key
elements include progressive integration, enthusiasm on the part of the domain experts,
and a system that visibly learns or adapts to user feedback to correct any mistakes.

This work was performed at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with NASA. Government sponsorship acknowledged.

Contents

Invited Papers

Efficient Matrix Sensing Using Rank-1 Gaussian Measurements 3
Kai Zhong, Prateek Jain, and Inderjit S. Dhillon

Tensor Decompositions for Learning Latent Variable Models (A Survey for
ALT). 19

Anima Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade,
and Matus Telgarsky

Inductive Inference

Priced Learning . 41
Sanjay Jain, Junqi Ma, and Frank Stephan

Combining Models of Approximation with Partial Learning 56
Ziyuan Gao, Frank Stephan, and Sandra Zilles

Learning from Queries, Teaching Complexity

Exact Learning of Multivalued Dependencies . 73
Montserrat Hermo and Ana Ozaki

Non-adaptive Learning of a Hidden Hypergraph . 89
Hasan Abasi, Nader H. Bshouty, and Hanna Mazzawi

On the Teaching Complexity of Linear Sets . 102
Ziyuan Gao, Hans Ulrich Simon, and Sandra Zilles

Computational Learning Theory and Algorithms

Learning a Random DFA from Uniform Strings and State Information 119
Dana Angluin and Dongqu Chen

Hierarchical Design of Fast Minimum Disagreement Algorithms 134
Malte Darnstädt, Christoph Ries, and Hans Ulrich Simon

Learning with a Drifting Target Concept . 149
Steve Hanneke, Varun Kanade, and Liu Yang

Interactive Clustering of Linear Classes and Cryptographic Lower Bounds . . . 165
Ádám D. Lelkes and Lev Reyzin

http://dx.doi.org/10.1007/978-3-319-24486-0_1
http://dx.doi.org/10.1007/978-3-319-24486-0_2
http://dx.doi.org/10.1007/978-3-319-24486-0_2
http://dx.doi.org/10.1007/978-3-319-24486-0_3
http://dx.doi.org/10.1007/978-3-319-24486-0_4
http://dx.doi.org/10.1007/978-3-319-24486-0_5
http://dx.doi.org/10.1007/978-3-319-24486-0_6
http://dx.doi.org/10.1007/978-3-319-24486-0_7
http://dx.doi.org/10.1007/978-3-319-24486-0_8
http://dx.doi.org/10.1007/978-3-319-24486-0_9
http://dx.doi.org/10.1007/978-3-319-24486-0_10
http://dx.doi.org/10.1007/978-3-319-24486-0_11

Statistical Learning Theory and Sample Complexity

On the Rademacher Complexity of Weighted Automata. 179
Borja Balle and Mehryar Mohri

Multi-task and Lifelong Learning of Kernels . 194
Anastasia Pentina and Shai Ben-David

Permutational Rademacher Complexity: A New Complexity Measure for
Transductive Learning . 209

Ilya Tolstikhin, Nikita Zhivotovskiy, and Gilles Blanchard

Subsampling in Smoothed Range Spaces . 224
Jeff M. Phillips and Yan Zheng

Information Preserving Dimensionality Reduction . 239
Shrinu Kushagra and Shai Ben-David

Learning with Deep Cascades . 254
Giulia DeSalvo, Mehryar Mohri, and Umar Syed

Bounds on the Minimax Rate for Estimating a Prior over a VC Class from
Independent Learning Tasks . 270

Liu Yang, Steve Hanneke, and Jaime Carbonell

Online Learning, Stochastic Optimization

Scale-Free Algorithms for Online Linear Optimization 287
Francesco Orabona and Dávid Pál

Online Learning in Markov Decision Processes with Continuous Actions. . . . 302
Yi-Te Hong and Chi-Jen Lu

Adaptive Sampling for Incremental Optimization Using Stochastic Gradient
Descent . 317

Guillaume Papa, Pascal Bianchi, and Stephan Clémençon

Online Linear Optimization for Job Scheduling Under Precedence
Constraints . 332

Takahiro Fujita, Kohei Hatano, Shuji Kijima, and Eiji Takimoto

Kolmogorov Complexity, Algorithmic Information Theory

Solomonoff Induction Violates Nicod’s Criterion . 349
Jan Leike and Marcus Hutter

XVI Contents

http://dx.doi.org/10.1007/978-3-319-24486-0_12
http://dx.doi.org/10.1007/978-3-319-24486-0_13
http://dx.doi.org/10.1007/978-3-319-24486-0_14
http://dx.doi.org/10.1007/978-3-319-24486-0_14
http://dx.doi.org/10.1007/978-3-319-24486-0_15
http://dx.doi.org/10.1007/978-3-319-24486-0_16
http://dx.doi.org/10.1007/978-3-319-24486-0_17
http://dx.doi.org/10.1007/978-3-319-24486-0_18
http://dx.doi.org/10.1007/978-3-319-24486-0_18
http://dx.doi.org/10.1007/978-3-319-24486-0_19
http://dx.doi.org/10.1007/978-3-319-24486-0_20
http://dx.doi.org/10.1007/978-3-319-24486-0_21
http://dx.doi.org/10.1007/978-3-319-24486-0_21
http://dx.doi.org/10.1007/978-3-319-24486-0_22
http://dx.doi.org/10.1007/978-3-319-24486-0_22
http://dx.doi.org/10.1007/978-3-319-24486-0_23

On the Computability of Solomonoff Induction and Knowledge-Seeking 364
Jan Leike and Marcus Hutter

Two Problems for Sophistication. 379
Peter Bloem, Steven de Rooij, and Pieter Adriaans

Author Index . 395

Contents XVII

http://dx.doi.org/10.1007/978-3-319-24486-0_24
http://dx.doi.org/10.1007/978-3-319-24486-0_25

Invited Papers

Efficient Matrix Sensing
Using Rank-1 Gaussian Measurements

Kai Zhong1, Prateek Jain2, and Inderjit S. Dhillon1(B)

1 University of Texas at Austin, Austin, USA
zhongkai@ices.utexas.edu, inderjit@cs.utexas.edu

2 Microsoft Research, Bangalore, India
prajain@microsoft.com

Abstract. In this paper, we study the problem of low-rank matrix sens-
ing where the goal is to reconstruct a matrix exactly using a small num-
ber of linear measurements. Existing methods for the problem either
rely on measurement operators such as random element-wise sampling
which cannot recover arbitrary low-rank matrices or require the mea-
surement operator to satisfy the Restricted Isometry Property (RIP).
However, RIP based linear operators are generally full rank and require
large computation/storage cost for both measurement (encoding) as well
as reconstruction (decoding).

In this paper, we propose simple rank-one Gaussian measurement
operators for matrix sensing that are significantly less expensive in terms
of memory and computation for both encoding and decoding. Moreover,
we show that the matrix can be reconstructed exactly using a simple
alternating minimization method as well as a nuclear-norm minimization
method. Finally, we demonstrate the effectiveness of the measurement
scheme vis-a-vis existing RIP based methods.

Keywords: Matrix sensing · Matrix completion · Inductive learning ·
Alternating minimization

1 Introduction

In this paper, we consider the matrix sensing problem, where the goal is to
recover a low-rank matrix using a small number of linear measurements. The
matrix sensing process contains two phases: a) compression phase (encoding),
and b) reconstruction phase (decoding).

In the compression phase, a sketch/measurement of the given low-rank matrix
is obtained by applying a linear operator A : Rd1×d2 → R

m. That is, given a
rank-k matrix, W∗ ∈ R

d1×d2 , its linear measurements are computed by:

b = A(W∗) = [Tr(AT
1 W∗) Tr(AT

2 W∗) . . . Tr(AT
mW∗)]T , (1)

Electronic Supplementary Materials The online version of this chapter (doi:10.
1007/978-3-319-24486-0 1) contains supplementary material, which is available to
authorized users.

c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-24486-0 1

http://dx.doi.org/10.1007/978-3-319-24486-0_1
http://dx.doi.org/10.1007/978-3-319-24486-0_1

4 K. Zhong et al.

where {Al ∈ R
d1×d2}l=1,2,...,m parameterize the linear operator A and Tr denotes

the trace operator. Then, in the reconstruction phase, the underlying low-rank
matrix is reconstructed using the given measurements b. That is, W∗ is obtained
by solving the following optimization problem:

min
W

rank(W) s.t. A(W) = b . (2)

The matrix sensing problem is a matrix generalization of the popular compressive
sensing problem and has several real-world applications in the areas of system
identification and control, Euclidean embedding, and computer vision (see [20]
for a detailed list of references).

Naturally, the design of the measurement operator A is critical for the suc-
cess of matrix sensing as it dictates cost of both the compression as well as the
reconstruction phase. Most popular operators for this task come from a family
of operators that satisfy a certain Restricted Isometry Property (RIP). How-
ever, these operators require each Al, that parameterizes A, to be a full rank
matrix. That is, cost of compression as well as storage of A is O(md1d2), which
is infeasible for large matrices. Reconstruction of the low-rank matrix W∗ is also
expensive, requiring O(md1d2 + d21d2) computation steps. Moreover, m is typi-
cally at least O(k ·d log(d)) where d = d1+d2. But, these operators are universal,
i.e., every rank-k W∗ can be compressed and recovered using such RIP based
operators.

In this paper, we seek to reduce the computational/storage cost of such opera-
tors but at the cost of the universality property. That is, we propose to use simple
rank-one operators, i.e., where each Al is a rank one matrix. We show that using
similar number of measurements as the RIP operators, i.e., m = O(k · d log(d)),
we can recover a fixed rank W∗ exactly.

In particular, we propose two measurement schemes: a) rank-one independent
measurements, b) rank-one dependent measurements. In rank-one independent
measurement, we use Al = xly

T
l , where xl ∈ R

d1 , yl ∈ R
d2 are both sam-

pled from zero mean sub-Gaussian product distributions, i.e., each element of xl

and yl is sampled from a fixed zero-mean univariate sub-Gaussian distribution.
Rank-one dependent measurements combine the above rank-one measurements
with element-wise sampling, i.e., Al = xily

T
jl

where xil ,yjl are sampled as above.
Also, (il, jl) ∈ [n1] × [n2] is a randomly sampled index, where n1 ≥ d1, n2 ≥ d2.
These measurements can also be viewed as the inductive version of the matrix
completion problem (see Section 3), where xi represents features of the i-th user
(row) and yj represents features of the j-th movie (column). In fact, an additional
contribution of our work is that we can show that the inductive matrix comple-
tion problem can also be solved using only O(k(d1+d2) log(d1+d2) log(n1+n2))
samples, as long as X,Y,W∗ satisfy certain incoherence style assumptions (see
Section 5 for more details)1.

Next, we provide two recovery algorithms for both of the above measure-
ment operators: a) alternating minimization, b) nuclear-norm minimization.
1 A preliminary version of this work appeared in [11]. Since the above mentioned work,

several similar rank-one measurement operators have been studied [2,15,25].

Efficient Matrix Sensing Using Rank-1 Gaussian Measurements 5

Table 1. Comparison of sample complexity and computational complexity for different
approaches and different measurements

methods sample complexity computational complexity

ALS

Rank-1 Indep. O(k4β2d log2 d) O(kdm)

Rank-1 Dep. O(k4β2d log d) O(dm + knd)

RIP O(k4d log d) O(d2m)

Nuclear

Rank-1 Indep. O(kd) O(k̂dm)

Rank-1 Dep. O(kd log n log d) O(k̂2m + k̂nd)

RIP O(kd log d) O(d2m)

Note that, in general, the recovery problem (2) is NP-hard to solve. However, for
the RIP based operators, both alternating minimization as well as nuclear norm
minimization methods are known to solve the problem exactly in polynomial
time [13]. Note that the existing analysis of both the methods crucially uses RIP
and hence does not extend to the proposed operators.

We show that if m = O(k4 ·β2 · (d1 +d2) log2(d1 +d2)), where β is the condi-
tion number of W∗ then alternating minimization for the rank-one independent
measurements recovers W∗ in time O(kdm), where d = d1 + d2. Similarly, if
m = O(k · (d1 + d2) · log2(d1 + d2)) then the nuclear norm minimization based
method recovers W∗ in time O(d2m) in the worst case. Note that alternating min-
imization has slightly higher sample complexity requirement but is significantly
faster than the nuclear norm minimization method. Due to this, most practical
low-rank estimation systems in fact use alternating minimization method for
recovery. We obtain similar results for the rank-one dependent measurements.

We summarize the sample complexity and computational complexity for dif-
ferent approaches and different measurements in Table 1. In the table, ALS
refers to alternating least squares, i.e., alternating minimization. For the sym-
bols, d = d1 + d2, n = n1 + n2, and k̂ is the maximum of rank estimate used
as an input in the nuclear-norm solver [10][9]. This number can be as large as
min{d1, d2} when we have no prior knowledge of the rank.

Paper Organization: We summarize related work in Section 2. In Section 3
we formally introduce the matrix sensing problem and our proposed rank-one
measurement operators. In Section 4, we present the alternating minimization
method for matrix reconstruction. We then present a generic analysis for alter-
nating minimization when applied to the proposed rank-one measurement oper-
ators. We present the nuclear-norm minimization based method in Section 5
and present its analysis for the rank-one dependent measurements. Finally, we
provide empirical validation of our methods in Section 6.

2 Related Work

Matrix Sensing: Matrix sensing[20][12][16] is a generalization of the popular com-
pressive sensing problem for the sparse vectors and has applications in several

6 K. Zhong et al.

domains such as control, vision etc. [20] introduced measurement operators that
satisfy RIP and showed that using only O(kd log d) measurements, a rank-k
W∗ ∈ R

d1×d2 can be recovered. Recently, a set of universal Pauli measurements,
used in quantum state tomography, have been shown to satisfy the RIP condi-
tion [17]. These measurement operators are Kronecker products of 2 × 2 matri-
ces, thus, they have appealing computation and memory efficiency. In concurrent
work, [15][2] also proposed an independent rank-one measurement using nuclear-
norm minimization. In contrast, we use two different measurement operators and
show that the popular alternating minimization method also solves the problem
exactly.

Matrix Completion and Inductive Matrix Completion: Matrix completion
[3][14][13] is a special case of rank-one matrix sensing problem when the operator
takes a subset of the entries. However, to guarantee exact recovery, the target
matrix has to satisfy the incoherence condition. Using our rank-one Gaussian
operators, we don’t require any condition on the target matrix. For inductive
matrix completion (IMC), which is a generalization of matrix completion uti-
lizing movies’ and users’ features, the authors of [22] provided the theoretical
recovery guarantee for nuclear-norm minimization. In this paper, we show that
IMC is equivalent to the matrix sensing problem using dependent rank-one mea-
surements, and provide a similar result for nuclear-norm based methods for IMC
but eliminate a “joint” incoherent condition on the rank-one measurements and
an upper bound condition on the sample complexity. Moreover, we give a theo-
retical guarantee using alternating minimization methods.

Alternating Minimization: Although nuclear-norm minimization enjoys nice
recovery guarantees, it usually doesn’t scale well. In practice, alternating min-
imization is employed to solve problem (2) by assuming the rank is known.
Alternating minimization solves two least square problems alternatively in each
iteration, thus is very computationally efficient[23]. Although widely used in
practice, its theoretical guarantees are relatively less understood due to non-
convexity. [13] first showed optimality of alternating minimization in the matrix
sensing/low-rank estimation setting under the RIP setting. Subsequently, several
other papers have also shown global convergence guarantees for alternating mini-
mization, e.g. matrix completion [8][7], robust PCA [18] and dictionary learning
[1]. In this paper, we provide a generic analysis for alternating minimization
applied to the proposed rank-one measurement operators. Our results distill out
certain key problem specific properties that would imply global optimality of
alternating minimization. We then show that the rank-one Gaussian measure-
ments satisfy those properties.

3 Problem Formulation

The goal of matrix sensing is to design a linear operator A : Rd1×d2 → R
m and

a recovery algorithm so that a low-rank matrix W∗ ∈ R
d1×d2 can be recovered

exactly using A(W∗). In this paper, we focus on rank-one measurement opera-
tors, Al = xly

T
l , and call such problems as Low-Rank matrix estimation using

Efficient Matrix Sensing Using Rank-1 Gaussian Measurements 7

Rank One Measurements (LRROM): recover the rank-k matrix W∗ ∈ R
d1×d2

by using rank-1 measurements of the form:

b = [xT
1 W∗y1 xT

2 W∗y2 . . . xT
mW∗ym]T , (3)

where xl,yl are “feature” vectors and are provided along with the measure-
ments b.

We propose two different kinds of rank-one measurement operators based on
Gaussian distribution.

3.1 Rank-one Independent Gaussian Operator

Our first measurement operator is a simple rank-one Gaussian operator, AGI =
[A1 . . . Am], where, {Al = xly

T
l }l=1,2,...,m, and xl, yl are sampled i.i.d. from

spherical Gaussian distribution.

3.2 Rank-one Dependent Gaussian Operator

Our second operator can introduce certain “dependencies” in our measurement
and has in fact interesting connections to the matrix completion problem. We
provide the operator as well as the connection to matrix completion in this
sub-section. To generate the rank-one dependent Gaussian operator, we first
sample two Gaussian matrices X ∈ R

n1×d1 and Y ∈ R
n2×d2 , where each entry

of both X,Y is sampled independently from Gaussian distribution and n1 ≥ Cd1,
n2 ≥ Cd2 for a global constant C ≥ 1. Then, the Gaussian dependent operator
AGD = [A1, . . . Am] where {Al = xily

T
il

}(il,jl)∈Ω. Here xT
i is the i-th row of X

and yT
j is the j-th row of Y . Ω is a uniformly random subset of [n1] × [n2] such

that E[|Ω|] = m. For simplicity, we assume that each entry (il, jl) ∈ [n1] × [n2]
is sampled i.i.d. with probability p = m/(n1 ×n2). Therefore, the measurements
using the above operator are given by: bl = xT

il
Wyjl , (il, jl) ∈ Ω.

Connections to Inductive Matrix Completion (IMC): Note that the above
measurements are inspired by matrix completion style sampling operator. How-
ever, here we first multiply W with X, Y and then sample the obtained matrix
XWY T . In the domain of recommendation systems (say user-movie system),
the corresponding reconstruction problem can also be thought as the inductive
matrix completion problem. That is, let there be n1 users, n2 movies, X repre-
sents user features, and Y represents the movie features. Then, the true ratings
matrix is given by R = XWY T ∈ R

n1×n2 .
That is, given the user/movie feature vectors xi ∈ R

d1 for i = 1, 2, ..., n1 and
yj ∈ R

d2 for j = 1, 2, ..., n2, our goal is to recover a rank-k matrix W∗ of size
d1 × d2 from a few observed entries Rij = xT

i W∗yj , for (i, j) ∈ Ω ⊂ [n1] × [n2].
Because of the equivalence between the dependent rank-one measurements and
the entries of the rating matrix, in the rest of the paper, we will use {Rij}(i,j)∈Ω

as the dependent rank-one measurements.
Now, if we can reconstruct W∗ from the above measurements, we can predict

ratings inductively for new users/movies, provided their feature vectors are given.

8 K. Zhong et al.

Hence, our reconstruction procedure also solves the IMC problem. However,
there is a key difference: in matrix sensing, we can select X, Y according to our
convenience, while in IMC, X and Y are provided a priori. But, for general X,Y
one cannot solve the problem because if say R = XW∗Y T is a 1-sparse matrix,
then W∗ cannot be reconstructed even with a large number of samples.

Interestingly, our proof for reconstruction using nuclear-norm based method
does not require Gaussian X, Y . Instead, we can distill out two key properties of
R,X, Y ensuring that using only O(k(d1+d2) log(d1+d2) log(n1+n2)) samples,
we can reconstruct W∗. Note that a direct application of matrix completion
results [3][4] would require O(k(n1 + n2) log(n1 + n2)) samples which can be
much large if n1 � d1 or n2 � d2. See Section 5 for more details on the
assumptions that we require for the nuclear-norm minimization method to solve
the IMC problem exactly.

4 Rank-one Matrix Sensing via Alternating Minimization

We now present the alternating minimization approach for solving the recon-
struction problem (2) with rank-one measurements (3). Since W to be recovered
is restricted to have at most rank-k, (2) can be reformulated as the following
non-convex optimization problem:

min
U∈Rd1×k,V ∈Rd2×k

m∑

l=1

(bl − xT
l UV Tyl)2 . (4)

Alternating minimization is an iterative procedure that alternately optimizes for
U and V while keeping the other factor fixed. As optimizing for U (or V) involves
solving just a least squares problem, so each individual iteration of the algorithm
is linear in matrix dimensions. For the rank-one measurement operator, we use
a particular initialization method to initialize U (see line 3 of Algorithm 1). See
Algorithm 1 for a pseudo-code of the algorithm.

4.1 General Theoretical Guarantee for Alternating Minimization

As mentioned above, (4) is non-convex in U, V and hence standard analysis would
only ensure convergence to a local minima. However, [13] recently showed that
the alternating minimization method in fact converges to the global minima of
two low-rank estimation problems: matrix sensing with RIP matrices and matrix
completion.

The rank-one operator given above does not satisfy RIP (see Definition 1),
even when the vectors xl,yl are sampled from the normal distribution (see
Claim 4.2). Furthermore, each measurement need not reveal exactly one entry of
W∗ as in the case of matrix completion. Hence, the proof of [13] does not apply
directly. However, inspired by the proof of [13], we distill out three key prop-
erties that the operator should satisfy, so that alternating minimization would
converge to the global optimum.

Efficient Matrix Sensing Using Rank-1 Gaussian Measurements 9

Algorithm 1. AltMin-LRROM : Alternating Minimization for LRROM
1: Input: Measurements: ball, Measurement matrices: Aall, Number of iterations: H
2: Divide (Aall,ball) into 2H + 1 sets (each of size m) with h-th set being Ah =

{Ah
1 , Ah

2 , . . . , Ah
m} and bh = [bh1 bh2 . . . bhm]T

3: Initialization: U0 =top-k left singular vectors of 1
m

∑m
l=1 b0l A

0
l

4: for h = 0 to H − 1 do
5: b ← b2h+1, A ← A2h+1

6: V̂h+1 ← argminV ∈R
d2×k

∑
l(bl − xT

l UhV Tyl)
2

7: Vh+1 = QR(V̂h+1) //orthonormalization of V̂h+1

8: b ← b2h+2, A ← A2h+2

9: Ûh+1 ← argminU∈R
d1×k

∑
l(bl − xT

l UV T
h+1yl)

2

10: Uh+1 = QR(Ûh+1) //orthonormalization of Ûh+1

11: end for
12: Output: WH = UH(V̂H)T

Theorem 1. Let W∗ = U∗Σ∗V T
∗ ∈ R

d1×d2 be a rank-k matrix with k-singular
values σ1

∗ ≥ σ2
∗ · · · ≥ σk

∗ . Also, let A : Rd1×d2 → R
m be a linear measurement

operator parameterized by m matrices, i.e., A = {A1, A2, . . . , Am} where Al =
xly

T
l . Let A(W) be as given by (1).
Now, let A satisfy the following properties with parameter δ = 1

k3/2·β·100
(β = σ1

∗/σk
∗):

1. Initialization: ‖ 1
m

∑
l blAl − W∗‖2 ≤ ‖W∗‖2 · δ.

2. Concentration of operators Bx, By: Let Bx = 1
m

∑m
l=1(y

T
l v)2xlx

T
l and

By = 1
m

∑m
l=1(x

T
l u)2yly

T
l , where u ∈ R

d1 ,v ∈ R
d2 are two unit vectors

that are independent of randomness in xl,yl, ∀i. Then the following holds:
‖Bx − I‖2 ≤ δ and ‖By − I‖2 ≤ δ.

3. Concentration of operators Gx, Gy: Let Gx = 1
m

∑
l(y

T
l v)(ylv⊥)xlx

T
l ,

Gy = 1
m

∑
l(x

T
l u)(uT

⊥xl)yly
T
l , where u,u⊥ ∈ R

d1 , v,v⊥ ∈ R
d2 are unit

vectors, s.t., uTu⊥ = 0 and vTv⊥ = 0. Furthermore, let u,u⊥,v,v⊥ be
independent of randomness in xl,yl,∀i. Then, ‖Gx‖2 ≤ δ and ‖Gy‖2 ≤ δ.

Then, after H-iterations of the alternating minimization method (Algorithm 1),
we obtain WH = UHV T

H s.t., ‖WH − W∗‖2 ≤ ε, where H ≤ 100 log(‖W∗‖F /ε).

See Supplementary A for a detailed proof. Note that we require intermediate
vectors u,v,u⊥,v⊥ to be independent of randomness in Al’s. Hence, we partition
Aall into 2H + 1 partitions and at each step (Ah, bh) and (Ah+1, bh+1) are
supplied to the algorithm. This implies that the measurement complexity of the
algorithm is given by m · H = m log(‖W∗‖F /ε). That is, given O(m log(‖(d1 +
d2)W∗‖F)) samples, we can estimate matrix WH , s.t., ‖WH − W∗‖2 ≤ 1

(d1+d2)c
,

where c > 0 is any constant.

4.2 Independent Gaussian Measurements

In this subsection, we consider the rank-one independent measurement opera-
tor AGI specified in Section 3. Now, for this operator AGI , we show that if

10 K. Zhong et al.

m = O(k4β2 · (d1 + d2) · log2(d1 + d2)), then w.p. ≥ 1 − 1/(d1 + d2)100, any fixed
rank-k matrix W∗ can be recovered by AltMin-LRROM (Algorithm 1). Here
β = σ1

∗/σk
∗ is the condition number of W∗. That is, using nearly linear number

of measurements in d1, d2, one can exactly recover the d1×d2 rank-k matrix W∗.
As mentioned in the previous section, the existing matrix sensing results typ-

ically assume that the measurement operator A satisfies the Restricted Isometry
Property (RIP) defined below:

Definition 1. A linear operator A : Rd1×d2 → R
m satisfies RIP iff, for ∀W s.t.

rank(W) ≤ k, the following holds:

(1 − δk)‖W‖2F ≤ ‖A(W)‖2F ≤ (1 + δk)‖W‖2F ,

where δk > 0 is a constant dependent only on k.

Naturally, this begs the question whether we can show that our rank-1 mea-
surement operator AGI satisfies RIP, so that the existing analysis for RIP based
low-rank matrix sensing can be used [13]. We answer this question in the nega-
tive, i.e., for m = O((d1 + d2) log(d1 + d2)), AGI does not satisfy RIP even for
rank-1 matrices (with high probability):

Claim. 4.2. Let AGI = {A1, A2, . . . Am} be a measurement operator with each
Al = xly

T
l , where xl ∈ R

d1 ∼ N (0, I), yl ∈ R
d2 ∼ N (0, I), 1 ≤ l ≤ m. Let

m = O((d1 + d2) logc(d1 + d2)), for any constant c > 0. Then, with probability at
least 1 − 1/m10, AGI does not satisfy RIP for rank-1 matrices with a constant δ.

See Supplementary B for a detailed proof of the above claim. Now, even though
AGI does not satisfy RIP, we can still show that AGI satisfies the three properties
mentioned in Theorem 1. and hence we can use Theorem 1 to obtain the exact
recovery result.

Theorem 2 (Rank-One Independent Gaussian Measurements using
ALS). Let AGI = {A1, A2, . . . Am} be a measurement operator with each
Al = xly

T
l , where xl ∈ R

d1 ∼ N (0, I), yl ∈ R
d2 ∼ N (0, I), 1 ≤ l ≤ m. Let

m = O(k4β2(d1 + d2) log2(d1 + d2)). Then, Property 1, 2, 3 required by Theo-
rem 1 are satisfied with probability at least 1 − 1/(d1 + d2)100.

Proof. Here, we provide a brief proof sketch. See Supplementary B for a detailed
proof.

Initialization: Note that,

1
m

m∑

l=1

blxly
T
l =

1
m

m∑

l=1

xlx
T
l U∗Σ∗V T

∗ yly
T
l =

1
m

m∑

l=1

Zl ,

where Zl = xlx
T
l U∗Σ∗V T

∗ yly
T
l . Note that E[Zl] = U∗Σ∗V T

∗ . Hence, to prove
the initialization result, we need a tail bound for sums of random matrices. To
this end, we use Theorem 1.6 in [21]. However, Theorem 1.6 in [21] requires a
bounded random variable while Zl is an unbounded variable. We handle this issue

Efficient Matrix Sensing Using Rank-1 Gaussian Measurements 11

by clipping Zl to ensure that its spectral norm is always bounded. Furthermore,
by using properties of normal distribution, we can ensure that w.p. ≥ 1 − 1/m3,
Zl’s do not require clipping and the new “clipped” variables converge to nearly
the same quantity as the original “non-clipped” Zl’s. See Supplementary B for
more details.

Concentration of Bx, By, Gx, Gy: Consider Gx = 1
m

∑m
l=1 xlx

T
l y

T
l vv⊥Tyl.

As, v,v⊥ are unit-norm vectors, yT
l v ∼ N (0, 1) and vT

⊥xl ∼ N (0, 1). Also,
since v and v⊥ are orthogonal, yT

l v and vT
⊥yl are independent variables. Hence,

Gx = 1
m

∑m
l=1 Zl where E[Zl] = 0. Here again, we apply Theorem 1.6 in [21] after

using a clipping argument. We can obtain the required bounds for Bx, By, Gy

also in a similar manner.
Note that the clipping procedure ensures that Zl’s don’t need to be clipped

with probability ≥ 1 − 1/m3 only. That is, we cannot apply the union bound to
ensure that the concentration result holds for all v,v⊥. Hence, we need a fresh
set of measurements after each iteration to ensure concentration.

Global optimality of the rate of convergence of the Alternating Minimization
procedure for this problem now follows directly by using Theorem 1. We would
like to note that while the above result shows that the AGI operator is almost
as powerful as the RIP based operators for matrix sensing, there is one critical
drawback: while RIP based operators are universal that is they can be used to
recover any rank-k W∗, AGI needs to be resampled for each W∗. We believe
that the two operators are at two extreme ends of randomness vs universality
trade-off and intermediate operators with higher success probability but using
larger number of random bits should be possible.

4.3 Dependent Gaussian Measurements

For the dependent Gaussian measurements, the alternating minimization formu-
lation is given by:

min
U∈Rd1×k,V ∈Rd2×k

∑

(i,j)∈Ω

(xT
i UV Tyj − Rij)2 . (5)

Here again, we can solve the problem by alternatively optimizing for U and V .
Later in Section 4.4, we show that using such dependent measurements leads
to a faster recovery algorithm when compared to the recovery algorithm for
independent measurements.

Note that both the measurement matrices X,Y can be thought of as orthonor-
mal matrices. The reason being, XW∗Y T = UXΣXV T

X W∗VY ΣY UT
Y , where

X = UXΣXV T
X and Y = UY ΣY V T

Y is the SVD of X,Y respectively. Hence,
R = XW∗Y T = UX(ΣXV T

X W∗VY ΣY)UT
Y . Now UX , UY can be treated as

the true “X”, “Y” matrices and W∗ ← (ΣXV T
X W∗VY ΣY) can be thought of as

W∗. Then the “true” W∗ can be recovered using the obtained WH as: WH ←
VXΣ−1

X WHΣ−1
Y V T

Y . We also note that such a transformation implies that the con-
dition number of R and that of W∗ ← (ΣXV T

X W∗VY ΣY) are exactly the same.

12 K. Zhong et al.

Similar to the previous section, we utilize our general theorem for optimality
of the LRROM problem to provide a convergence analysis of rank-one Gaussian
dependent operators AGD. We prove if X and Y are random orthogonal matrices,
defined in [3], the above mentioned dependent measurement operator AGD gen-
erated from X,Y also satisfies Properties 1, 2, 3 in Theorem 1. Hence, AltMin-
LRROM (Algorithm 1) converges to the global optimum in O(log(‖W∗‖F /ε))
iterations.

Theorem 3 (Rank-One Dependent Gaussian Measurements using
ALS). Let X0 ∈ R

n1×d1 and Y0 ∈ R
n2×d2 be Gaussian matrices, i.e. every

entry is sampled i.i.d from N (0, 1). Let X0 = XΣXV T
X and Y0 = Y ΣY V T

Y be
the thin SVD of X0 and Y0 respectively. Then the rank-one dependent operator
AGD formed by X,Y with m ≥ O(k4β2(d1 + d2) log(d1 + d2)) satisfy Property
1,2,3 required by Theorem 1 with high probability.

See Supplementary C for a detailed proof. Interestingly, our proof does not
require X, Y to be Gaussian. It instead utilizes only two key properties about
X,Y which are given by:

1. Incoherence: For some constant μ, c,

max
i∈[n]

‖xi‖22 ≤ μd̄

n
, (6)

where d̄ = max(d, log n)
2. Averaging Property: For H different orthogonal matrices Uh ∈ R

d×k,
h = 1, 2, . . . , H, the following hold for these Uh’s,

max
i∈[n]

‖UT
h xi‖22 ≤ μ0k̄

n
, (7)

where μ0, c are some constants and k̄ = max(k, log n).

Hence, the above theorem can be easily generalized to solve the inductive matrix
completion problem (IMC), i.e., solve (5) for arbitrary X,Y . Moreover, the sam-
ple complexity of the analysis would be nearly in (d1 + d2), instead of (n1 + n2)
samples required by the standard matrix completion methods.

The following lemma shows that the above two properties hold w.h.p. for
random orthogonal matrices .

Lemma 1. If X ∈ R
n×d is a random orthogonal matrix, then both Incoherence

and Averaging properties are satisfied with probability ≥ 1 − (c/n3) log n, where
c is a constant.

The proof of Lemma 1 can be found in Supplementary C.

Efficient Matrix Sensing Using Rank-1 Gaussian Measurements 13

4.4 Computational Complexity for Alternating Minimization

In this subsection, we briefly discuss the computational complexity for Algo-
rithm 1. For simplicity, we set d = d1 + d2 and n = n1 + n2, and in practical
implementation, we don’t divide the measurements and use the whole measure-
ment operator A for every iteration. The most time-consuming part of Algo-
rithm 1 is the step for solving the least square problem. Given U = Uh, V can
be obtained by solving the following linear system,

m∑

l=1

〈V,AT
l Uh〉AlUh =

m∑

l=1

blA
T
l Uh . (8)

The dimension of this linear system is kd, which could be large, thus we use
conjugate gradient (CG) method to solve it. In each CG iteration, different
measurement operators have different computational complexity. For RIP-based
full-rank operators, the computational complexity for each CG step is O(d2m)
while it is O(kdm) for rank-one independent operators. However, for rank-one
dependent operators, using techniques introduced in [24], we can reduce the per
iteration complexity to be O(kdn + md). Furthermore, if n = d, the computa-
tional complexity of dependent operators is only O(kd2 + md), which is better
than the complexity of rank-one independent operators in an order of k.

5 Rank-one Matrix Sensing via Nuclear Norm
Minimization

In this section, we consider solving LRROM by nuclear norm relaxation. We first
note that using nuclear norm relaxation, [15] provided the analysis for indepen-
dent rank-one measurement operators when the underlying matrix is Hermitian.
It can be shown that non-Hermitian matrices problem can be transformed to Her-
mitian cases. Their proof uses the bowling scheme and only requires O(k(d1+d2))
measurements for Gaussian case and O(k(d1+d2) log(d1+d2) log(n1+n2)) mea-
surements for 4-designs case. In this paper, we consider dependent measurement
operators which have a similar sample complexity as the independent opera-
tors, but less computational complexity and memory footprint than those of
independent ones.

The nuclear norm minimization using rank-one dependent Gaussian operator
is of form,

min ‖W‖∗
s.t. xT

i Wyj = Rij , (i, j) ∈ Ω .
(9)

(9) can be solved exactly by semi-definite programming or approximated by

min
W

∑

(i,j)∈Ω

(xT
i Wyj − Rij)2 + λ‖W‖∗ , (10)

where λ is a constant and can be viewed as a Lagrange multiplier.

14 K. Zhong et al.

5.1 Recovery Guarantee for Nuclear-norm Minimization

In this subsection, we show that using rank-one dependent Gaussian operators,
the nuclear-norm minimization can recover any low-rank matrix exactly with
O(k(d1 + d2) log(d1 + d2) log(n1 + n2)) measurements. We also generalize the
theorem to the IMC problem where the feature matrices X and Y can be arbi-
trary instead of being Gaussian. We show that as long as X,W∗, Y satisfy certain
incoherence style properties, the nuclear norm minimization can guarantee exact
recovery using only O(k(d1 + d2) log(d1 + d2)) samples.

We first provide recovery guarantees for our rank-one dependent operator,
i.e., when X,Y are sampled from the Gaussian distribution.

Theorem 4 (Rank-one Dependent Gaussian Measurements using
Nuclear-norm Minimization). Let W∗ = U∗Σ∗V T

∗ ∈ R
d1×d2 be a rank-

k matrix. Let X ∈ R
n1×d1 and Y ∈ R

n2×d2 be random orthogonal matrices.
Assume each (i, j) ∈ Ω is sampled from [n1] × [n2] i.i.d.. Then if m = |Ω| ≥
O(k(d1 + d2) log(d1 + d2) log (n1 + n2)), the minimizer to the problem (9) is
unique and equal to W∗ with probability at least 1− c1(d1 +d2)−c2 , where c1 and
c2 are universal constants.

The above theorem is a directly corollary of Theorem 5 combined with Lemma 1.
Lemma 1 shows that random orthonormal matrices X,Y (can be generated
using Gaussian matrices as stated in Theorem 2) satisfy the requirements of
Theorem 5.

Nuclear-norm minimization approach for inductive matrix completion (9) has
also been studied by [22]. However, their recovery guarantee holds under a much
more restrictive set of assumptions on X,W∗, Y and in fact requires that the
number of samples is not only lower bounded by certain quantity but also upper
bounded by some other quantity. Our general analysis below doesn’t rely on this
upper bound. Moreover, their proof also requires a “joint” incoherent condition,
i.e., an upper bound on maxi,j |xT

i U∗V T
∗ yj | which is not required by our method;

to this end, we use a technique introduced by [5] to bound an 	∞,2-norm.

Theorem 5 (Inductive Matrix Completion using Nuclear-norm Mini-
mization). Let W∗ = U∗Σ∗V T

∗ ∈ R
d1×d2 be a rank-k matrix. Assume X,Y are

orthogonal matrices, and satisfy the following conditions with respect to W∗ for
some constant μ and μ0,

C1. max
i∈[n1]

‖xi‖22 ≤ μd1
n1

, max
j∈[n2]

‖yj‖22 ≤ μd2
n2

,

C2. max
i∈[n1]

‖UT
∗ xi‖22 ≤ μ0k

n1
, max

j∈[n2]
‖V T

∗ yj‖22 ≤ μ0k

n2
.

Then if each observed entry (i, j) ∈ Ω is sampled from [n1] × [n2] i.i.d. with
probability p,

p ≥ max
{c0μ0μkd log(d) log (n)

n1n2
,

1
min{n1, n2}10

}
, (11)

Efficient Matrix Sensing Using Rank-1 Gaussian Measurements 15

the minimizer to the problem (9) is unique and equal to W∗ with probability at
least 1 − c1d

−c2 , where c0, c1 and c2 are universal constants, d = d1 + d2 and
n = n1 + n2.

Note that the first condition C1 is actually the incoherence condition on X,Y ,
while the second one C2 is the incoherence of XU∗, Y V∗. Additionally, C2 is
weaker than the Averaging property in Lemma 1, as it only asks for one U∗
rather than H different Uh’s to satisfy the property.

Proof. We follow the popular proof ideas used by [3][19], that is, finding a dual
feasible solution for (9) to certify the uniqueness of the minimizer of (9). Unlike
the analysis in [22], we build our dual certificate in the Rd1×d2 matrix space rather
than theRn1×n2 space. This choice makes it easy to follow the analysis in standard
matrix completion problem. In Proposition 1 in Supplementary D, we give certain
conditions the dual certificate should satisfy for the uniqueness. Then we apply
golfing scheme [6] to find such a certificate. When building the dual certificate, we
use an 	∞,2-norm adapted from [5]. This enables us to discard the assumption of
“joint” incoherence. The details can be found in Supplementary D.

5.2 Computational Complexity for Nuclear-norm Minimization

The optimization for nuclear-norm formulation is much more complex. Recently
[10] proposed an active subspace method to solve Problem (10). The compu-
tational bottleneck is the approxSVD step and the inner problem step, both
of which involve calculating a similar equation as shown on the left hand side
of Eq (8). However, the rank of U or V is not fixed in each iteration as that of
ALS, and in the worst case, it can be as large as min{d1, d2}. The computational
complexity for this basic operation is shown in Table 1.

6 Experiments

In this section, we demonstrate empirically that our Gaussian rank-one linear
operators are significantly more efficient for matrix sensing than the existing
RIP based measurement operators. In particular, we apply the two recovery
methods namely alternating minimization (ALS) and nuclear norm minimization
(Nuclear) to the measurements obtained using three different operators: rank-
one independent (Rank1 Indep), rank-one dependent (Rank1 Dep), and a RIP
based operator generated using random Gaussian matrices (RIP).

The experiments are conducted on Matlab and the nuclear-norm solver is
adapted from the code by [10]. We first generated a random rank-5 signal
W∗ ∈ R

50×50, and compute m = 1000 measurements using different measure-
ment operators. Here, we fix a small λ = 10−6 for solving Eq (10) in order to
exactly recover the matrix. And we set the maximum possible rank k̂ = k as
the input of the nuclear-norm solver. Figure 1a plots the relative error in recov-
ery, err = ‖W − W ∗‖2F /‖W ∗‖2F , against computational time required by each
method. Clearly, recovery using rank-one measurements requires significantly

16 K. Zhong et al.

(a) Relative error in recovery v.s.
computation time

200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Number of Measurements

R
ec

ov
er

y
R

at
e

Nuclear Rank1 Dep
Nuclear Rank1 Indep
Nuclear RIP
ALS Rank1 Dep
ALS Rank1 Indep
ALS RIP

(b) Recovery rate v.s. number of mea-
surements

Fig. 1. Comparison of computational complexity and measurement complexity for dif-
ferent approaches and different operators

50 100 150
0

500

1000

1500

2000

2500

3000

d

N
um

be
r

of
 M

ea
su

re
m

en
ts

0

0.2

0.4

0.6

0.8

1

50 100 150
0

500

1000

1500

2000

2500

3000

d

N
um

be
r

of
 M

ea
su

re
m

en
ts

0

0.2

0.4

0.6

0.8

1

50 100 150
0

500

1000

1500

2000

2500

3000

d

N
um

be
r

of
 M

ea
su

re
m

en
ts

0

0.2

0.4

0.6

0.8

1

50 100 150
0

500

1000

1500

2000

2500

3000

d

N
um

be
r

of
 M

ea
su

re
m

en
ts

0

0.2

0.4

0.6

0.8

1

Indep. ALS Dep. ALS Indep. Nuclear Dep. Nuclear

Fig. 2. Recovery rate for different matrix dimension d (x-axis) and different number of
measurements m (y-axis). The color reflects the recovery rate scaled from 0 to 1. The
white color indicates perfect recovery, while the black color denotes failure in all the
experiments.

less time compared to the RIP based operator. Moreover, ALS in general seems
to be significantly faster than Nuclear methods.

Next, we compare the measurement complexity (m) of each method. Here
again, we first generate a random rank-5 signal W∗ ∈ R

50×50 and its measure-
ments using different operators. We then measure error in recovery by each of
the method and consider success if the relative error err ≤ 0.05. We repeat
the experiment 10 times to obtain the recovery rate (number of success/10) for
each value of m (number of measurements). Figure 1b plots the recovery rate of
different approaches for different m. Clearly, the rank-one based measurements
have similar recovery rate and measurement complexity as the RIP based oper-
ators. However, our rank-one operator based methods are much faster than the
corresponding methods for the RIP-based measurement scheme.

Finally, in Figure 2, we validate our theoretical analysis on the measurement
complexity by showing the recovery rate for different d and m. We fix the rank

Efficient Matrix Sensing Using Rank-1 Gaussian Measurements 17

k = 5, set d = d1 = d2 and n1 = d1, n2 = d2 for dependent operators. Figure 3
plots the recovery rate for various d and m. As shown in Figure 2, both indepen-
dent and dependent operators using alternating minimization or nuclear-norm
minimization require a number of measurements proportional to the dimension
of d. We also see that dependent operators require a slight larger number of
measurements than that of independent ones. Another interesting observation is
that although our theoretical analysis requires a higher measurement complexity
of ALS than that of Nuclear methods, the empirical results show their measure-
ment complexities are almost identical for the same measurement operator.

References

1. Agarwal, A., Anandkumar, A., Jain, P., Netrapalli, P., Tandon, R.: Learning
sparsely used overcomplete dictionaries via alternating minimization. COLT (2014)

2. Cai, T.T., Zhang, A., et al.: Rop: Matrix recovery via rank-one projections. The
Annals of Statistics 43(1), 102–138 (2015)

3. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Foun-
dations of Computational Mathematics 9(6), 717–772 (2009)

4. Candès, E.J., Tao, T.: The power of convex relaxation: Near-optimal matrix com-
pletion. IEEE Trans. Inform. Theory 56(5), 2053–2080 (2009)

5. Chen, Y.: Incoherence-optimal matrix completion. arXiv preprint arXiv:1310.0154
(2013)

6. Gross, D.: Recovering low-rank matrices from few coefficients in any basis. IEEE
Transactions on Information Theory 57(3), 1548–1566 (2011)

7. Hardt, M.: Understanding alternating minimization for matrix completion. In:
Foundations 2014 IEEE 55th Annual Symposium on of Computer Science (FOCS),
pp. 651–660. IEEE (2014)

8. Hardt, M., Wootters, M.: Fast matrix completion without the condition number.
In: Proceedings of The 27th Conference on Learning Theory, pp. 638–678 (2014)

9. Hsieh, C.J., Dhillon, I.S., Ravikumar, P.K., Becker, S., Olsen, P.A.: Quic & dirty:
A quadratic approximation approach for dirty statistical models. In: Advances in
Neural Information Processing Systems, pp. 2006–2014 (2014)

10. Hsieh, C.J., Olsen, P.: Nuclear norm minimization via active subspace selec-
tion. In: Proceedings of The 31st International Conference on Machine Learning,
pp. 575–583 (2014)

11. Jain, P., Dhillon, I.S.: Provable inductive matrix completion (2013). CoRR.
http://arxiv.org/abs/1306.0626

12. Jain, P., Meka, R., Dhillon, I.S.: Guaranteed rank minimization via singular value
projection. In: NIPS, pp. 937–945 (2010)

13. Jain, P., Netrapalli, P., Sanghavi, S.: Low-rank matrix completion using alternating
minimization. In: STOC (2013)

14. Keshavan, R.H., Montanari, A., Oh, S.: Matrix completion from a few entries.
IEEE Transactions on Information Theory 56(6), 2980–2998 (2010)

15. Kueng, R., Rauhut, H., Terstiege, U.: Low rank matrix recovery from rank one
measurements. arXiv preprint arXiv:1410.6913 (2014)

16. Lee, K., Bresler, Y.: Guaranteed minimum rank approximation from linear obser-
vations by nuclear norm minimization with an ellipsoidal constraint. arXiv preprint
arXiv:0903.4742 (2009)

http://arxiv.org/abs/1310.0154
http://arxiv.org/abs/1306.0626
http://arxiv.org/abs/1410.6913
http://arxiv.org/abs/0903.4742

18 K. Zhong et al.

17. Liu, Y.K.: Universal low-rank matrix recovery from pauli measurements. In:
Advances in Neural Information Processing Systems, pp. 1638–1646 (2011)

18. Netrapalli, P., Niranjan, U., Sanghavi, S., Anandkumar, A., Jain, P.: Non-
convex robust PCA. In: Advances in Neural Information Processing Systems,
pp. 1107–1115 (2014)

19. Recht, B.: A simpler approach to matrix completion. The Journal of Machine
Learning Research 12, 3413–3430 (2011)

20. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM Review 52(3), 471–501
(2010)

21. Tropp, J.A.: User-friendly tail bounds for sums of random matrices. Foundations
of Computational Mathematics 12(4), 389–434 (2012)

22. Xu, M., Jin, R., Zhou, Z.H.: Speedup matrix completion with side information:
application to multi-label learning. In: Advances in Neural Information Processing
Systems, pp. 2301–2309 (2013)

23. Yu, H.F., Hsieh, C.J., Si, S., Dhillon, I.S.: Scalable coordinate descent approaches
to parallel matrix factorization for recommender systems. In: ICDM, pp. 765–774
(2012)

24. Yu, H.F., Jain, P., Kar, P., Dhillon, I.S.: Large-scale multi-label learning with
missing labels. In: Proceedings of The 31st International Conference on Machine
Learning, pp. 593–601 (2014)

25. Zuk, O., Wagner, A.: Low-rank matrix recovery from row-and-column affine mea-
surements. In: Proceedings of the 32nd International Conference on Machine Learn-
ing, ICML 2015, Lille, France, 6–11 July 2015, pp. 2012–2020 (2015)

Tensor Decompositions for Learning Latent
Variable Models (A Survey for ALT)

Anima Anandkumar1, Rong Ge2, Daniel Hsu3,
Sham M. Kakade4(B), and Matus Telgarsky5

1 University of California, Irvine, USA
2 Microsoft Research, New England, USA
3 Columbia University, New York, USA

4 Rutgers University, New Brunswick, USA
skakade@microsoft.cm

5 University of Michigan, Ann Arbor, USA

Abstract. This note is a short version of that in [1]. It is intended as a
survey for the 2015 Algorithmic Learning Theory (ALT) conference.

This work considers a computationally and statistically efficient
parameter estimation method for a wide class of latent variable models—
including Gaussian mixture models, hidden Markov models, and latent
Dirichlet allocation—which exploits a certain tensor structure in their
low-order observable moments (typically, of second- and third-order).
Specifically, parameter estimation is reduced to the problem of extract-
ing a certain (orthogonal) decomposition of a symmetric tensor derived
from the moments; this decomposition can be viewed as a natural gen-
eralization of the singular value decomposition for matrices. Although
tensor decompositions are generally intractable to compute, the decom-
position of these specially structured tensors can be efficiently obtained
by a variety of approaches, including power iterations and maximiza-
tion approaches (similar to the case of matrices). A detailed analysis of
a robust tensor power method is provided, establishing an analogue of
Wedin’s perturbation theorem for the singular vectors of matrices. This
implies a robust and computationally tractable estimation approach for
several popular latent variable models.

1 Introduction

The method of moments is a classical parameter estimation technique [29] from
statistics which has proved invaluable in a number of application domains. The
basic paradigm is simple and intuitive: (i) compute certain statistics of the data
— often empirical moments such as means and correlations — and (ii) find model
parameters that give rise to (nearly) the same corresponding population quan-
tities. In a number of cases, the method of moments leads to consistent estima-
tors which can be efficiently computed; this is especially relevant in the context
of latent variable models, where standard maximum likelihood approaches are
typically computationally prohibitive, and heuristic methods can be unreliable
and difficult to validate with high-dimensional data. Furthermore, the method
c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 19–38, 2015.
DOI: 10.1007/978-3-319-24486-0 2

20 A. Anandkumar et al.

of moments can be viewed as complementary to the maximum likelihood app-
roach; simply taking a single step of Newton-Ralphson on the likelihood function
starting from the moment based estimator [22] often leads to the best of both
worlds: a computationally efficient estimator that is (asymptotically) statistically
optimal.

The primary difficulty in learning latent variable models is that the latent
(hidden) state of the data is not directly observed; rather only observed vari-
ables correlated with the hidden state are observed. As such, it is not evident
the method of moments should fare any better than maximum likelihood in
terms of computational performance: matching the model parameters to the
observed moments may involve solving computationally intractable systems of
multivariate polynomial equations. Fortunately, for many classes of latent vari-
able models, there is rich structure in low-order moments (typically second-
and third-order) which allow for this inverse moment problem to be solved effi-
ciently [2,4,6,8,9,16,18,27]. What is more is that these decomposition problems
are often amenable to simple and efficient iterative methods, such as gradient
descent and the power iteration method.

This survey observes that a number of important and well-studied latent
variable models—including Gaussian mixture models, hidden Markov models,
and Latent Dirichlet allocation—share a certain structure in their low-order
moments, and this permits certain tensor decomposition approaches to param-
eter estimation. In particular, this decomposition can be viewed as a natural
generalization of the singular value decomposition for matrices.

While much of this (or similar) structure was implicit in several previous
works [2,4,9,16,18,27], here we make the decomposition explicit under a unified
framework. Specifically, we express the observable moments as sums of rank-one
terms, and reduce the parameter estimation task to the problem of extracting a
symmetric orthogonal decomposition of a symmetric tensor derived from these
observable moments. The problem can then be solved by a variety of approaches,
including fixed-point and variational methods.

One approach for obtaining the orthogonal decomposition is the tensor power
method of [21, Remark3]. We provide a convergence analysis of this method for
orthogonally decomposable symmetric tensors, as well as a robust (and computa-
tionally tractable) variant. The perturbation analysis in [1] can be viewed as an
analogue of Wedin’s perturbation theorem for singular vectors of matrices [32],
providing a bound on the error of the recovered decomposition in terms of the
operator norm of the tensor perturbation.

1.1 Related Work

See [1] for a discussion of related work.

1.2 Organization

The rest of the survey is organized as follows. Section 2 reviews some basic
definitions of tensors. Section 3 provides examples of a number of latent variable

Tensor Decompositions for Learning Latent Variable Models 21

models which, after appropriate manipulations of their low order moments, share
a certain natural tensor structure. Section 4 reduces the problem of parameter
estimation to that of extracting a certain (symmetric orthogonal) decomposition
of a tensor. See [1] which states establishes an analogue of Wedin’s perturbation
theorem for the singular vectors of matrices.

2 Preliminaries

We introduce some tensor notations borrowed from [23]. A real p-th order tensor
A ∈ ⊗p

i=1 R
ni is a member of the tensor product of Euclidean spaces Rni , i ∈ [p].

We generally restrict to the case where n1 = n2 = · · · = np = n, and simply
write A ∈ ⊗p

R
n. For a vector v ∈ R

n, we use v⊗p := v ⊗ v ⊗ · · · ⊗ v ∈ ⊗p
R

n

to denote its p-th tensor power. As is the case for vectors (where p = 1) and
matrices (where p = 2), we may identify a p-th order tensor with the p-way
array of real numbers [Ai1,i2,...,ip

: i1, i2, . . . , ip ∈ [n]], where Ai1,i2,...,ip
is the

(i1, i2, . . . , ip)-th coordinate of A (with respect to a canonical basis).
We can consider A to be a multilinear map in the following sense: for a set

of matrices {Vi ∈ R
n×mi : i ∈ [p]}, the (i1, i2, . . . , ip)-th entry in the p-way array

representation of A(V1, V2, . . . , Vp) ∈ R
m1×m2×···×mp is

[A(V1, V2, . . . , Vp)]i1,i2,...,ip
:=

∑

j1,j2,...,jp∈[n]

Aj1,j2,...,jp
[V1]j1,i1 [V2]j2,i2 · · · [Vp]jp,ip

.

Note that if A is a matrix (p = 2), then

A(V1, V2) = V �
1 AV2.

Similarly, for a matrix A and vector v ∈ R
n, we can express Av as

A(I, v) = Av ∈ R
n,

where I is the n×n identity matrix. As a final example of this notation, observe

A(ei1 , ei2 , . . . , eip
) = Ai1,i2,...,ip

,

where {e1, e2, . . . , en} is the canonical basis for R
n.

Most tensors A ∈ ⊗p
R

n considered in this work will be symmetric (some-
times called supersymmetric), which means that their p-way array represen-
tations are invariant to permutations of the array indices: i.e., for all indices
i1, i2, . . . , ip ∈ [n], Ai1,i2,...,ip

= Aiπ(1),iπ(2),...,iπ(p) for any permutation π on [p]. It
can be checked that this reduces to the usual definition of a symmetric matrix
for p = 2.

The rank of a p-th order tensor A ∈ ⊗p
R

n is the smallest non-negative
integer k such that A =

∑k
j=1 u1,j⊗u2,j⊗· · ·⊗up,j for some ui,j ∈ R

n, i ∈ [p], j ∈
[k], and the symmetric rank of a symmetric p-th order tensor A is the smallest
non-negative integer k such that A =

∑k
j=1 u⊗p

j for some uj ∈ R
n, j ∈ [k] (for

22 A. Anandkumar et al.

even p, the definition is slightly different [11]). The notion of rank readily reduces
to the usual definition of matrix rank when p = 2, as revealed by the singular
value decomposition. Similarly, for symmetric matrices, the symmetric rank is
equivalent to the matrix rank as given by the spectral theorem.

The notion of tensor (symmetric) rank is considerably more delicate than
matrix (symmetric) rank. For instance, it is not clear a priori that the symmetric
rank of a tensor should even be finite [11]. In addition, removal of the best
rank-1 approximation of a (general) tensor may increase the tensor rank of the
residual [31].

Throughout, we use ‖v‖ = (
∑

i v2
i)1/2 to denote the Euclidean norm of a

vector v, and ‖M‖ to denote the spectral (operator) norm of a matrix. We also
use ‖T‖ to denote the operator norm of a tensor, which we define later.

3 Tensor Structure in Latent Variable Models

In this section, we give several examples of latent variable models whose low-
order moments can be written as symmetric tensors of low symmetric rank; many
of these examples can be deduced using the techniques developed in [25]. The
basic form is demonstrated in Theorem 1 for the first example, and the general
pattern will emerge from subsequent examples.

3.1 Exchangeable Single Topic Models

We first consider a simple bag-of-words model for documents in which the words
in the document are assumed to be exchangeable. Recall that a collection of
random variables x1, x2, . . . , x� are exchangeable if their joint probability distri-
bution is invariant to permutation of the indices. The well-known De Finetti’s
theorem [5] implies that such exchangeable models can be viewed as mixture
models in which there is a latent variable h such that x1, x2, . . . , x� are condi-
tionally i.i.d. given h (see Figure 1(a) for the corresponding graphical model)
and the conditional distributions are identical at all the nodes.

In our simplified topic model for documents, the latent variable h is inter-
preted as the (sole) topic of a given document, and it is assumed to take only
a finite number of distinct values. Let k be the number of distinct topics in
the corpus, d be the number of distinct words in the vocabulary, and � ≥ 3 be
the number of words in each document. The generative process for a document
is as follows: the document’s topic is drawn according to the discrete distribu-
tion specified by the probability vector w := (w1, w2, . . . , wk) ∈ Δk−1. This is
modeled as a discrete random variable h such that

Pr[h = j] = wj , j ∈ [k].

Given the topic h, the document’s � words are drawn independently according to
the discrete distribution specified by the probability vector μh ∈ Δd−1. It will be

Tensor Decompositions for Learning Latent Variable Models 23

convenient to represent the � words in the document by d-dimensional random vec-
tors x1, x2, . . . , x� ∈ R

d. Specifically, we set

xt = ei if and only if the t-th word in the document is i, t ∈ [�],

where e1, e2, . . . ed is the standard coordinate basis for R
d.

One advantage of this encoding of words is that the (cross) moments of
these random vectors correspond to joint probabilities over words. For instance,
observe that

E[x1 ⊗ x2] =
∑

1≤i,j≤d

Pr[x1 = ei, x2 = ej] ei ⊗ ej

=
∑

1≤i,j≤d

Pr[1st word = i, 2nd word = j] ei ⊗ ej ,

so the (i, j)-the entry of the matrix E[x1 ⊗ x2] is Pr[1st word = i, 2nd word =
j]. More generally, the (i1, i2, . . . , i�)-th entry in the tensor E[x1 ⊗ x2 ⊗ · · · ⊗
x�] is Pr[1st word = i1, 2nd word = i2, . . . , �-th word = i�]. This means that
estimating cross moments, say, of x1 ⊗ x2 ⊗ x3, is the same as estimating joint
probabilities of the first three words over all documents. (Recall that we assume
that each document has at least three words.)

The second advantage of the vector encoding of words is that the conditional
expectation of xt given h = j is simply μj , the vector of word probabilities for
topic j:

E[xt|h = j] =
d∑

i=1

Pr[t-th word = i|h = j] ei =
d∑

i=1

[μj]i ei = μj , j ∈ [k]

(where [μj]i is the i-th entry in the vector μj). Because the words are condition-
ally independent given the topic, we can use this same property with conditional
cross moments, say, of x1 and x2:

E[x1 ⊗ x2|h = j] = E[x1|h = j] ⊗ E[x2|h = j] = μj ⊗ μj , j ∈ [k].

This and similar calculations lead one to the following theorem.

Theorem 1 ([4]). If

M2 := E[x1 ⊗ x2]
M3 := E[x1 ⊗ x2 ⊗ x3],

then

M2 =
k∑

i=1

wi μi ⊗ μi

M3 =
k∑

i=1

wi μi ⊗ μi ⊗ μi.

24 A. Anandkumar et al.

As we will see in Section 4.3, the structure of M2 and M3 revealed in Theo-
rem 1 implies that the topic vectors μ1, μ2, . . . , μk can be estimated by computing
a certain symmetric tensor decomposition. Moreover, due to exchangeability, all
triples (resp., pairs) of words in a document—and not just the first three (resp.,
two) words—can be used in forming M3 (resp., M2).

3.2 Beyond Raw Moments

In the single topic model above, the raw (cross) moments of the observed words
directly yield the desired symmetric tensor structure. In some other models, the
raw moments do not explicitly have this form. Here, we show that the desired ten-
sor structure can be found through various manipulations of different moments.

Spherical Gaussian Mixtures. We now consider a mixture of k Gaussian
distributions with spherical covariances. We start with the simpler case where
all of the covariances are identical; this probabilistic model is closely related to
the (non-probabilistic) k-means clustering problem [24]. We then consider the
case where the spherical variances may differ.

Common Covariance. Let wi be the probability of choosing component i ∈ [k],
{μ1, μ2, . . . , μk} ⊂ R

d be the component mean vectors, and σ2I be the common
covariance matrix. An observation in this model is given by

x := μh + z,

where h is the discrete random variable with Pr[h = i] = wi for i ∈ [k] (similar to
the exchangeable single topic model), and z ∼ N (0, σ2I) is an independent mul-
tivariate Gaussian random vector in R

d with zero mean and spherical covariance
σ2I.

The Gaussian mixture model differs from the exchangeable single topic model
in the way observations are generated. In the single topic model, we observe
multiple draws (words in a particular document) x1, x2, . . . , x� given the same
fixed h (the topic of the document). In contrast, for the Gaussian mixture model,
every realization of x corresponds to a different realization of h.

Theorem 2 ([16]). Assume d ≥ k. The variance σ2 is the smallest eigenvalue
of the covariance matrix E[x ⊗ x] − E[x] ⊗ E[x]. Furthermore, if

M2 := E[x ⊗ x] − σ2I

M3 := E[x ⊗ x ⊗ x] − σ2
d∑

i=1

(
E[x] ⊗ ei ⊗ ei + ei ⊗ E[x] ⊗ ei + ei ⊗ ei ⊗ E[x]

)
,

then

M2 =
k∑

i=1

wi μi ⊗ μi

M3 =
k∑

i=1

wi μi ⊗ μi ⊗ μi.

Tensor Decompositions for Learning Latent Variable Models 25

Differing Covariances. See [1] for the case is where each component may have
a different spherical covariance.

Independent Component Analysis (ICA). The standard model for ICA
[7,10,12,19], in which independent signals are linearly mixed and corrupted with
Gaussian noise before being observed, is specified as follows. Let h ∈ R

k be
a latent random vector with independent coordinates, A ∈ R

d×k the mixing
matrix, and z be a multivariate Gaussian random vector. The random vectors h
and z are assumed to be independent. The observed random vector is

x := Ah + z.

Let μi denote the i-th column of the mixing matrix A.

Theorem 3 ([12]). Define

M4 := E[x ⊗ x ⊗ x ⊗ x] − T

where T is the fourth-order tensor with

[T]i1,i2,i3,i4 := E[xi1xi2]E[xi3xi4] + E[xi1xi3]E[xi2xi4] + E[xi1xi4]E[xi2xi3],

where 1 ≤ i1, i2, i3, i4 ≤ k (i.e., T is the fourth derivative tensor of the function
v 	→ 8−1

E[(v�x)2]2, so M4 is the fourth cumulant tensor). Let κi := E[h4
i] − 3

for each i ∈ [k]. Then

M4 =
k∑

i=1

κi μi ⊗ μi ⊗ μi ⊗ μi.

Note that κi corresponds to the excess kurtosis, a measure of non-Gaussianity
as κi = 0 if hi is a standard normal random variable. Furthermore, note that A
is not identifiable if h is a multivariate Gaussian.

We may derive forms similar to that of M2 and M3 from Theorem 1 using
M4 by observing that

M4(I, I, u, v) =
k∑

i=1

κi(μ�
i u)(μ�

i v) μi ⊗ μi,

M4(I, I, I, v) =
k∑

i=1

κi(μ�
i v) μi ⊗ μi ⊗ μi

for any vectors u, v ∈ R
d.

Latent Dirichlet Allocation (LDA). An increasingly popular class of latent
variable models are mixed membership models, where each datum may belong
to several different latent classes simultaneously. LDA is one such model for

26 A. Anandkumar et al.

the case of document modeling; here, each document corresponds to a mixture
over topics (as opposed to just a single topic). The distribution over such topic
mixtures is a Dirichlet distribution Dir(α) with parameter vector α ∈ R

k
++ with

strictly positive entries; its density over the probability simplex Δk−1 := {v ∈
R

k : vi ∈ [0, 1]∀i ∈ [k],
∑k

i=1 vi = 1} is given by

pα(h) =
Γ (α0)∏k
i=1 Γ (αi)

k∏

i=1

hαi−1
i , h ∈ Δk−1

where
α0 := α1 + α2 + · · · + αk.

As before, the k topics are specified by probability vectors μ1, μ2, . . . , μk ∈
Δd−1. To generate a document, first draw the topic mixture h =
(h1, h2, . . . , hk) ∼ Dir(α), and then conditioned on h, we draw � words
x1, x2, . . . , x� independently from the discrete distribution specified by the prob-
ability vector

∑k
i=1 hiμi (i.e., for each xt, we independently sample a topic j

according to h and then sample xt according to μj). Again, we encode a word
xt by setting xt = ei iff the t-th word in the document is i.

The parameter α0 (the sum of the “pseudo-counts”) characterizes the con-
centration of the distribution. As α0 → 0, the distribution degenerates to a
single topic model (i.e., the limiting density has, with probability 1, exactly one
entry of h being 1 and the rest are 0). At the other extreme, if α = (c, c, . . . , c)
for some scalar c > 0, then as α0 = ck → ∞, the distribution of h becomes
peaked around the uniform vector (1/k, 1/k, . . . , 1/k) (furthermore, the distri-
bution behaves like a product distribution). We are typically interested in the
case where α0 is small (e.g., a constant independent of k), whereupon h typ-
ically has only a few large entries. This corresponds to the setting where the
documents are mainly comprised of just a few topics.

Theorem 4 ([2]). Define

M1 := E[x1]

M2 := E[x1 ⊗ x2] − α0

α0 + 1
M1 ⊗ M1

M3 := E[x1 ⊗ x2 ⊗ x3]

− α0

α0 + 2

(
E[x1 ⊗ x2 ⊗ M1] + E[x1 ⊗ M1 ⊗ x2] + E[M1 ⊗ x1 ⊗ x2]

)

+
2α2

0

(α0 + 2)(α0 + 1)
M1 ⊗ M1 ⊗ M1.

Then

M2 =
k∑

i=1

αi

(α0 + 1)α0
μi ⊗ μi

M3 =
k∑

i=1

2αi

(α0 + 2)(α0 + 1)α0
μi ⊗ μi ⊗ μi.

Tensor Decompositions for Learning Latent Variable Models 27

h

x1 x2 · · · x�

(a) Multi-view models

h1 h2 · · · h�

x1 x2 x�

(b) Hidden Markov model

Fig. 1. Examples of latent variable models.

Note that α0 needs to be known to form M2 and M3 from the raw moments.
This, however, is a much weaker than assuming that the entire distribution of h
is known (i.e., knowledge of the whole parameter vector α).

3.3 Multi-view Models

Multi-view models (also sometimes called näıve Bayes models) are a special class
of Bayesian networks in which observed variables x1, x2, . . . , x� are conditionally
independent given a latent variable h. This is similar to the exchangeable sin-
gle topic model, but here we do not require the conditional distributions of the
xt, t ∈ [�] to be identical. Techniques developed for this class can be used to han-
dle a number of widely used models including hidden Markov models (HMMs)
[4,27], phylogenetic tree models [9,27], certain tree mixtures [3], and certain
probabilistic grammar models [17].

As before, we let h ∈ [k] be a discrete random variable with Pr[h = j] = wj

for all j ∈ [k]. Now consider random vectors x1 ∈ R
d1 , x2 ∈ R

d2 , and x3 ∈ R
d3

which are conditionally independent given h, and

E[xt|h = j] = μt,j , j ∈ [k], t ∈ {1, 2, 3}

where the μt,j ∈ R
dt are the conditional means of the xt given h = j. Thus, we

allow the observations x1, x2, . . . , x� to be random vectors, parameterized only
by their conditional means. Importantly, these conditional distributions may be
discrete, continuous, or even a mix of both.

We first note the form for the raw (cross) moments.

Proposition 1. We have that:

E[xt ⊗ xt′] =
k∑

i=1

wi μt,i ⊗ μt′,i, {t, t′} ⊂ {1, 2, 3}, t
= t′

E[x1 ⊗ x2 ⊗ x3] =
k∑

i=1

wi μ1,i ⊗ μ2,i ⊗ μ3,i.

The cross moments do not possess a symmetric tensor form when the con-
ditional distributions are different. Nevertheless, the moments can be “sym-
metrized” via a simple linear transformation of x1 and x2 (roughly speaking,

28 A. Anandkumar et al.

this relates x1 and x2 to x3); this leads to an expression from which the condi-
tional means of x3 (i.e., μ3,1, μ3,2, . . . , μ3,k) can be recovered. For simplicity, we
assume d1 = d2 = d3 = k; the general case (with dt ≥ k) is easily handled using
low-rank singular value decompositions.

Theorem 5 ([2]). Assume that the vectors {μv,1, μv,2, . . . , μv,k} are linearly
independent for each v ∈ {1, 2, 3}. Define

x̃1 := E[x3 ⊗ x2]E[x1 ⊗ x2]−1x1

x̃2 := E[x3 ⊗ x1]E[x2 ⊗ x1]−1x2

M2 := E[x̃1 ⊗ x̃2]
M3 := E[x̃1 ⊗ x̃2 ⊗ x3].

Then

M2 =
k∑

i=1

wi μ3,i ⊗ μ3,i

M3 =
k∑

i=1

wi μ3,i ⊗ μ3,i ⊗ μ3,i.

Hidden Markov Models. Our last example is the time-homogeneous HMM
for sequences of vector-valued observations x1, x2, . . . ∈ R

d. Consider a Markov
chain of discrete hidden states y1 → y2 → y3 → · · · over k possible states [k];
given a state yt at time t, the observation xt at time t (a random vector taking
values in R

d) is independent of all other observations and hidden states. See
Figure 1(b).

Let π ∈ Δk−1 be the initial state distribution (i.e., the distribution of y1),
and T ∈ R

k×k be the stochastic transition matrix for the hidden state Markov
chain: for all times t,

Pr[yt+1 = i|yt = j] = Ti,j , i, j ∈ [k].

Finally, let O ∈ R
d×k be the matrix whose j-th column is the conditional expec-

tation of xt given yt = j: for all times t,

E[xt|yt = j] = Oej , j ∈ [k].

Proposition 2 ([4]). Define h := y2, where y2 is the second hidden state in the
Markov chain. Then

– x1, x2, x3 are conditionally independent given h;
– the distribution of h is given by the vector w := Tπ ∈ Δk−1;
– for all j ∈ [k],

E[x1|h = j] = O diag(π)T � diag(w)−1ej

E[x2|h = j] = Oej

E[x3|h = j] = OTej .

Tensor Decompositions for Learning Latent Variable Models 29

Note the matrix of conditional means of xt has full column rank, for each
t ∈ {1, 2, 3}, provided that: (i) O has full column rank, (ii) T is invertible, and
(iii) π and Tπ have positive entries.

4 Orthogonal Tensor Decompositions

We now show how recovering the μi’s in our aforementioned problems reduces to
the problem of finding a certain orthogonal tensor decomposition of a symmetric
tensor. We start by reviewing the spectral decomposition of symmetric matrices,
and then discuss a generalization to the higher-order tensor case. Finally, we
show how orthogonal tensor decompositions can be used for estimating the latent
variable models from the previous section.

4.1 Review: The Matrix Case

We first build intuition by reviewing the matrix setting, where the desired decom-
position is the eigendecomposition of a symmetric rank-k matrix M = V ΛV �,
where V = [v1|v2| · · · |vk] ∈ R

n×k is the matrix with orthonormal eigenvectors
as columns, and Λ = diag(λ1, λ2, . . . , λk) ∈ R

k×k is diagonal matrix of non-zero
eigenvalues. In other words,

M =
k∑

i=1

λi viv
�
i =

k∑

i=1

λi v⊗2
i . (1)

Such a decomposition is guaranteed to exist for every symmetric matrix.
Recovery of the vi’s and λi’s can be viewed at least two ways. First, each vi

is fixed under the mapping u 	→ Mu, up to a scaling factor λi:

Mvi =
k∑

j=1

λj(v�
j vi)vj = λivi

as v�
j vi = 0 for all j
= i by orthogonality. The vi’s are not necessarily the

only such fixed points. For instance, with the multiplicity λ1 = λ2 = λ, then
any linear combination of v1 and v2 is similarly fixed under M . However, in
this case, the decomposition in (1) is not unique, as λ1v1v

�
1 + λ2v2v

�
2 is equal

to λ(u1u
�
1 + u2u

�
2) for any pair of orthonormal vectors, u1 and u2 spanning

the same subspace as v1 and v2. Nevertheless, the decomposition is unique when
λ1, λ2, . . . , λk are distinct, whereupon the vj ’s are the only directions fixed under
u 	→ Mu up to non-trivial scaling.

The second view of recovery is via the variational characterization of the
eigenvalues. Assume λ1 > λ2 > · · · > λk; the case of repeated eigenvalues again
leads to similar non-uniqueness as discussed above. Then the Rayleigh quotient

u 	→ u�Mu

u�u

30 A. Anandkumar et al.

is maximized over non-zero vectors by v1. Furthermore, for any s ∈ [k], the max-
imizer of the Rayleigh quotient, subject to being orthogonal to v1, v2, . . . , vs−1,
is vs. Another way of obtaining this second statement is to consider the deflated
Rayleigh quotient

u 	→
u�

(
M − ∑s−1

j=1 λjvjv
�
j

)
u

u�u

and observe that vs is the maximizer.
Efficient algorithms for finding these matrix decompositions are well studied

[15, Section8.2.3], and iterative power methods are one effective class of algo-
rithms.

We remark that in our multilinear tensor notation, we may write the maps
u 	→ Mu and u 	→ u�Mu/‖u‖22 as

u 	→ Mu ≡ u 	→ M(I, u), (2)

u 	→ u�Mu

u�u
≡ u 	→ M(u, u)

u�u
. (3)

4.2 The Tensor Case

Decomposing general tensors is a delicate issue; tensors may not even have unique
decompositions. Fortunately, the orthogonal tensors that arise in the aforemen-
tioned models have a structure which permits a unique decomposition under a
mild non-degeneracy condition. We focus our attention to the case p = 3, i.e., a
third order tensor; the ideas extend to general p with minor modifications.

An orthogonal decomposition of a symmetric tensor T ∈ ⊗3
R

n is a collec-
tion of orthonormal (unit) vectors {v1, v2, . . . , vk} together with corresponding
positive scalars λi > 0 such that

T =
k∑

i=1

λiv
⊗3
i . (4)

Note that since we are focusing on odd-order tensors (p = 3), we have added the
requirement that the λi be positive. This convention can be followed without
loss of generality since −λiv

⊗p
i = λi(−vi)⊗p whenever p is odd. Also, it should

be noted that orthogonal decompositions do not necessarily exist for every sym-
metric tensor.

In analogy to the matrix setting, we consider two ways to view this decompo-
sition: a fixed-point characterization and a variational characterization. Related
characterizations based on optimal rank-1 approximations can be found in [33].

Fixed-Point Characterization. For a tensor T , consider the vector-valued
map

u 	→ T (I, u, u) (5)

Tensor Decompositions for Learning Latent Variable Models 31

which is the third-order generalization of (2). This can be explicitly written as

T (I, u, u) =
d∑

i=1

∑

1≤j,l≤d

Ti,j,l(e�
j u)(e�

l u)ei.

Observe that (5) is not a linear map, which is a key difference compared to the
matrix case.

An eigenvector u for a matrix M satisfies M(I, u) = λu, for some scalar λ. We
say a unit vector u ∈ R

n is an eigenvector of T , with corresponding eigenvalue
λ ∈ R, if

T (I, u, u) = λu.

(To simplify the discussion, we assume throughout that eigenvectors have
unit norm; otherwise, for scaling reasons, we replace the above equation with
T (I, u, u) = λ‖u‖u.) This concept was originally introduced in [23,30]. For
orthogonally decomposable tensors T =

∑k
i=1 λiv

⊗3
i ,

T (I, u, u) =
k∑

i=1

λi(u�vi)2vi .

By the orthogonality of the vi, it is clear that T (I, vi, vi) = λivi for all i ∈ [k].
Therefore each (vi, λi) is an eigenvector/eigenvalue pair.

There are a number of subtle differences compared to the matrix case that
arise as a result of the non-linearity of (5). First, even with the multiplicity
λ1 = λ2 = λ, a linear combination u := c1v1 + c2v2 may not be an eigenvector.
In particular,

T (I, u, u) = λ1c
2
1v1 + λ2c

2
2v2 = λ(c21v1 + c22v2)

may not be a multiple of c1v1 + c2v2. This indicates that the issue of repeated
eigenvalues does not have the same status as in the matrix case. Second, even
if all the eigenvalues are distinct, it turns out that the vi’s are not the only
eigenvectors. For example, set u := (1/λ1)v1 + (1/λ2)v2. Then,

T (I, u, u) = λ1(1/λ1)2v1 + λ2(1/λ2)2v2 = u,

so u/‖u‖ is an eigenvector. More generally, for any subset S ⊆ [k], we have that∑
i∈S(1/λi)vi is (proportional to) an eigenvector.
As we now see, these additional eigenvectors can be viewed as spurious. We

say a unit vector u is a robust eigenvector of T if there exists an ε > 0 such that
for all θ ∈ {u′ ∈ R

n : ‖u′ − u‖ ≤ ε}, repeated iteration of the map

θ̄ 	→ T (I, θ̄, θ̄)
‖T (I, θ̄, θ̄)‖ , (6)

starting from θ converges to u. Note that the map (6) rescales the output to
have unit Euclidean norm. Robust eigenvectors are also called attracting fixed
points of (6) (see, e.g., [20]).

32 A. Anandkumar et al.

The following theorem implies that if T has an orthogonal decomposition
as given in (4), then the set of robust eigenvectors of T are precisely the set
{v1, v2, . . . vk}, implying that the orthogonal decomposition is unique. (For even
order tensors, the uniqueness is true up to sign-flips of the vi.)

Theorem 6. Let T have an orthogonal decomposition as given in (4).

1. The set of θ ∈ R
n which do not converge to some vi under repeated iteration

of (6) has measure zero.
2. The set of robust eigenvectors of T is equal to {v1, v2, . . . , vk}.

The proof of Theorem 6 is given in [1] and follows readily from simple orthogo-
nality considerations. Note that every vi in the orthogonal tensor decomposition
is robust, whereas for a symmetric matrix M , for almost all initial points, the
map θ̄ 	→ Mθ̄

‖Mθ̄‖ converges only to an eigenvector corresponding to the largest
magnitude eigenvalue. Also, since the tensor order is odd, the signs of the robust
eigenvectors are fixed, as each −vi is mapped to vi under (6).

Variational Characterization. We now discuss a variational characterization
of the orthogonal decomposition. The generalized Rayleigh quotient [33] for a
third-order tensor is

u 	→ T (u, u, u)
(u�u)3/2

,

which can be compared to (3). For an orthogonally decomposable tensor, the
following theorem shows that a non-zero vector u ∈ R

n is an isolated local
maximizer [28] of the generalized Rayleigh quotient if and only if u = vi for
some i ∈ [k].

Theorem 7. Assume n ≥ 2. Let T have an orthogonal decomposition as given
in (4), and consider the optimization problem

max
u∈Rn

T (u, u, u) s.t. ‖u‖ = 1.

1. The stationary points are eigenvectors of T .
2. A stationary point u is an isolated local maximizer if and only if u = vi for

some i ∈ [k].

The proof of Theorem 7 is given in [1]. It is similar to local optimality analysis
for ICA methods using fourth-order cumulants (e.g., [13,14]).

Again, we see similar distinctions to the matrix case. In the matrix case,
the only local maximizers of the Rayleigh quotient are the eigenvectors with the
largest eigenvalue (and these maximizers take on the globally optimal value).
For the case of orthogonal tensor forms, the robust eigenvectors are precisely
the isolated local maximizers.

An important implication of the two characterizations is that, for orthogo-
nally decomposable tensors T , (i) the local maximizers of the objective function

Tensor Decompositions for Learning Latent Variable Models 33

u 	→ T (u, u, u)/(u�u)3/2 correspond precisely to the vectors vi in the decompo-
sition, and (ii) these local maximizers can be reliably identified using a simple
fixed-point iteration (i.e., the tensor analogue of the matrix power method).
Moreover, a second-derivative test based on T (I, I, u) can be employed to test
for local optimality and rule out other stationary points.

4.3 Estimation via Orthogonal Tensor Decompositions

We now demonstrate how the moment tensors obtained for various latent vari-
able models in Section 3 can be reduced to an orthogonal form. For concreteness,
we take the specific form from the exchangeable single topic model (Theorem 1):

M2 =
k∑

i=1

wi μi ⊗ μi,

M3 =
k∑

i=1

wi μi ⊗ μi ⊗ μi.

(The more general case allows the weights wi in M2 to differ in M3, but for sim-
plicity we keep them the same in the following discussion.) We now show how to
reduce these forms to an orthogonally decomposable tensor from which the wi

and μi can be recovered. See [1] for a discussion as to how previous approaches
[2,4,16,27] achieved this decomposition through a certain simultaneous diago-
nalization method.

Throughout, we assume the following non-degeneracy condition.

Condition 41 (Non-degeneracy). The vectors μ1, μ2, . . . , μk ∈ R
d are lin-

early independent, and the scalars w1, w2, . . . , wk > 0 are strictly positive.

Observe that Condition 41 implies that M2 � 0 is positive semidefinite and has
rank-k. This is a mild condition; furthermore, when this condition is not met,
learning is conjectured to be hard for both computational [27] and information-
theoretic reasons [26].

The Reduction. First, let W ∈ R
d×k be a linear transformation such that

M2(W,W) = W �M2W = I

where I is the k × k identity matrix (i.e., W whitens M2). Since M2 � 0,
we may for concreteness take W := UD−1/2, where U ∈ R

d×k is the matrix of
orthonormal eigenvectors of M2, and D ∈ R

k×k is the diagonal matrix of positive
eigenvalues of M2. Let

μ̃i :=
√

wi W �μi.

Observe that

M2(W,W) =
k∑

i=1

W �(
√

wiμi)(
√

wiμi)�W =
k∑

i=1

μ̃iμ̃
�
i = I,

so the μ̃i ∈ R
k are orthonormal vectors.

34 A. Anandkumar et al.

Now define M̃3 := M3(W,W,W) ∈ R
k×k×k, so that

M̃3 =
k∑

i=1

wi (W �μi)⊗3 =
k∑

i=1

1√
wi

μ̃⊗3
i .

As the following theorem shows, the orthogonal decomposition of M̃3 can be
obtained by identifying its robust eigenvectors, upon which the original parame-
ters wi and μi can be recovered. For simplicity, we only state the result in terms
of robust eigenvector/eigenvalue pairs; one may also easily state everything in
variational form using Theorem 7.

Theorem 8. Assume Condition 41 and take M̃3 as defined above.

1. The set of robust eigenvectors of M̃3 is equal to {μ̃1, μ̃2, . . . , μ̃k}.
2. The eigenvalue corresponding to the robust eigenvector μ̃i of M̃3 is equal to

1/
√

wi, for all i ∈ [k].
3. If B ∈ R

d×k is the Moore-Penrose pseudoinverse of W �, and (v, λ) is a
robust eigenvector/eigenvalue pair of M̃3, then λBv = μi for some i ∈ [k].

The theorem follows by combining the above discussion with the robust eigen-
vector characterization of Theorem 6. Recall that we have taken as convention
that eigenvectors have unit norm, so the μi are exactly determined from the
robust eigenvector/eigenvalue pairs of M̃3 (together with the pseudoinverse of
W �); in particular, the scale of each μi is correctly identified (along with the
corresponding wi). Relative to previous works on moment-based estimators for
latent variable models (e.g., [2,4,16]), Theorem 8 emphasizes the role of the
special tensor structure, which in turn makes transparent the applicability of
methods for orthogonal tensor decomposition.

5 Tensor Power Method

In this section, we consider the tensor power method of [21, Remark 3] for
orthogonal tensor decomposition. We first state a simple convergence analysis
for an orthogonally decomposable tensor T .

When only an approximation T̂ to an orthogonally decomposable tensor
T is available (e.g., when empirical moments are used to estimate population
moments), an orthogonal decomposition need not exist for this perturbed tensor
(unlike for the case of matrices), and a more robust approach is required to extract
the approximate decomposition. Here, we propose such a variant in Algorithm 1
and provide a detailed perturbation analysis. We note that alternative approaches
such as simultaneous diagonalization can also be employed (see [1]).

5.1 Convergence Analysis for Orthogonally Decomposable Tensors

The following lemma establishes the quadratic convergence of the tensor power
method (i.e., repeated iteration of (6)) for extracting a single component of

Tensor Decompositions for Learning Latent Variable Models 35

the orthogonal decomposition. Note that the initial vector θ0 determines which
robust eigenvector will be the convergent point. Computation of subsequent
eigenvectors can be computed with deflation, i.e., by subtracting appropriate
terms from T .

Lemma 1. Let T ∈ ⊗3
R

n have an orthogonal decomposition as given
in (4). For a vector θ0 ∈ R

n, suppose that the set of numbers
|λ1v

�
1 θ0|, |λ2v

�
2 θ0|, . . . , |λkv�

k θ0| has a unique largest element. Without loss of
generality, say |λ1v

�
1 θ0| is this largest value and |λ2v

�
2 θ0| is the second largest

value. For t = 1, 2, . . . , let

θt :=
T (I, θt−1, θt−1)

‖T (I, θt−1, θt−1)‖ .

Then

‖v1 − θt‖2 ≤
(

2λ2
1

k∑

i=2

λ−2
i

)
·
∣∣∣∣
λ2v

�
2 θ0

λ1v�
1 θ0

∣∣∣∣
2t+1

.

That is, repeated iteration of (6) starting from θ0 converges to v1 at a quadratic
rate.

To obtain all eigenvectors, we may simply proceed iteratively using deflation,
executing the power method on T − ∑

j λjv
⊗3
j after having obtained robust

eigenvector / eigenvalue pairs {(vj , λj)}.

Proof. Let θ0, θ1, θ2, . . . be the sequence given by θ0 := θ0 and θt :=
T (I, θt−1, θt−1) for t ≥ 1. Let ci := v�

i θ0 for all i ∈ [k]. It is easy to check that (i)
θt = θt/‖θt‖, and (ii) θt =

∑k
i=1 λ2t−1

i c2
t

i vi. (Indeed, θt+1 =
∑k

i=1 λi(v�
i θt)2vi =

∑k
i=1 λi(λ2t−1

i c2
t

i)2vi =
∑k

i=1 λ2t+1−1
i c2

t+1

i vi.) Then

1 − (v�
1 θt)

2 = 1 − λ2t+1−2
1 c2

t+1

1
∑k

i=1 λ2t+1−2
i c2

t+1
i

≤
∑k

i=2 λ2t+1−2
i c2

t+1

i
∑k

i=1 λ2t+1−2
i c2

t+1
i

≤ λ2
1

k∑

i=2

λ−2
i ·
∣
∣
∣
∣
λ2c2
λ1c1

∣
∣
∣
∣

2t+1

.

Since λ1 > 0, we have v�
1 θt > 0 and hence ‖v1 − θt‖2 = 2(1 − v�

1 θt) ≤ 2(1 −
(v�

1 θt)2) as required.

5.2 Perturbation Analysis of a Robust Tensor Power Method

Now we summarize the case where we have an approximation T̂ to an orthogo-
nally decomposable tensor T . Here, a more robust approach is required to extract
an approximate decomposition. We propose such an algorithm in Algorithm 1,
and provide a detailed perturbation analysis. For simplicity, we assume the tensor
T̂ is of size k×k×k as per the reduction from Section 4.3. In some applications,
it may be preferable to work directly with a n × n × n tensor of rank k ≤ n (as
in Lemma 1); our results apply in that setting with little modification.

36 A. Anandkumar et al.

Algorithm 1. Robust tensor power method
input symmetric tensor T̃ ∈ R

k×k×k, number of iterations L, N .
output the estimated eigenvector/eigenvalue pair; the deflated tensor.
1: for τ = 1 to L do
2: Draw θ

(τ)
0 uniformly at random from the unit sphere in R

k.
3: for t = 1 to N do
4: Compute power iteration update

θ
(τ)
t :=

T̃ (I, θ
(τ)
t−1, θ

(τ)
t−1)

‖T̃ (I, θ
(τ)
t−1, θ

(τ)
t−1)‖

(7)

5: end for
6: end for
7: Let τ∗ := arg maxτ∈[L]{T̃ (θ

(τ)
N , θ

(τ)
N , θ

(τ)
N)}.

8: Do N power iteration updates (7) starting from θ
(τ∗)
N to obtain θ̂, and set λ̂ :=

T̃ (θ̂, θ̂, θ̂).
9: return the estimated eigenvector/eigenvalue pair (θ̂, λ̂); the deflated tensor T̃ −

λ̂ θ̂⊗3.

Assume that the symmetric tensor T ∈ R
k×k×k is orthogonally decompos-

able, and that T̂ = T + E, where the perturbation E ∈ R
k×k×k is a symmetric

tensor with small operator norm:

‖E‖ := sup
‖θ‖=1

|E(θ, θ, θ)|.

In our latent variable model applications, T̂ is the tensor formed by using empir-
ical moments, while T is the orthogonally decomposable tensor derived from the
population moments for the given model. In the context of parameter estimation
(as in Section 4.3), E must account for any error amplification throughout the
reduction, such as in the whitening step.

[1] provides a perturbation analysis which is similar to Wedin’s perturbation
theorem for singular vectors of matrices [32] in that it bounds the error of the
(approximate) decomposition returned by Algorithm 1 on input T̂ in terms of
the size of the perturbation, provided that the perturbation is small enough.

Acknowledgments. We thank Boaz Barak, Dean Foster, Jon Kelner, and Greg
Valiant for helpful discussions. This work was completed while DH was a postdoctoral
researcher at Microsoft Research New England, and partly while AA, RG, and MT
were visiting the same lab. AA is supported in part by the NSF Award CCF-1219234,
AFOSR Award FA9550-10-1-0310 and the ARO Award W911NF-12-1-0404.

References

1. Anandkumar, A., Ge, R., Hsu, D., Kakade, S., Telgarsky, M.: Tensor decomposi-
tions for learning latent variable models. Journal of Machine Learning Research
15, (2014)

Tensor Decompositions for Learning Latent Variable Models 37

2. Anandkumar, A., Foster, D.P., Hsu, D., Kakade, S.M., Liu, Y.-K.: A spectral algo-
rithm for latent Dirichlet allocation. In: Advances in Neural Information Processing
Systems 25, (2012)

3. Anandkumar, A., Hsu, D., Huang, F., Kakade, S.M.: Learning mixtures of tree
graphical models. In: Advances in Neural Information Processing Systems 25 (2012)

4. Anandkumar, A., Hsu, D., Kakade, S.M.: A method of moments for mixture mod-
els and hidden Markov models. In: Twenty-Fifth Annual Conference on Learning
Theory, vol. 23, pp. 33.1–33.34 (2012)

5. Austin, T.: On exchangeable random variables and the statistics of large graphs
and hypergraphs. Probab. Survey 5, 80–145 (2008)

6. Cardoso, J.-F.: Super-symmetric decomposition of the fourth-order cumulant ten-
sor. Blind identification of more sources than sensors. In: ICASSP-91, 1991 Inter-
national Conference on Acoustics, Speech, and Signal Processing, pp. 3109–3112.
IEEE (1991)

7. Cardoso, J.-F., Comon, P.: Independent component analysis, a survey of some
algebraic methods. In: IEEE International Symposium on Circuits and Systems,
pp. 93–96 (1996)

8. Cattell, R.B.: Parallel proportional profiles and other principles for determining
the choice of factors by rotation. Psychometrika 9(4), 267–283 (1944)

9. Chang, J.T.: Full reconstruction of Markov models on evolutionary trees: Identifi-
ability and consistency. Mathematical Biosciences 137, 51–73 (1996)

10. Comon, P.: Independent component analysis, a new concept? Signal Processing
36(3), 287–314 (1994)

11. Comon, P., Golub, G., Lim, L.-H., Mourrain, B.: Symmetric tensors and symmetric
tensor rank. SIAM Journal on Matrix Analysis Appl. 30(3), 1254–1279 (2008)

12. Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Com-
ponent Analysis and Applications. Academic Press, Elsevier (2010)

13. Delfosse, N., Loubaton, P.: Adaptive blind separation of independent sources: a
deflation approach. Signal Processing 45(1), 59–83 (1995)

14. Alan, M., Frieze, M.J., Kannan, R.: Learning linear transformations. In: Thirty-
Seventh Annual Symposium on Foundations of Computer Science, pp. 359–368
(1996)

15. Golub, G.H., van Loan, C.F.: Matrix Computations. Johns Hopkins University
Press (1996)

16. Hsu, D., Kakade, S.M.: Learning mixtures of spherical Gaussians: moment meth-
ods and spectral decompositions. In: Fourth Innovations in Theoretical Computer
Science (2013)

17. Hsu, D., Kakade, S.M., Liang, P.: Identifiability and unmixing of latent parse trees.
In: Advances in Neural Information Processing Systems 25 (2012)

18. Hsu, D., Kakade, S.M., Zhang, T.: A spectral algorithm for learning hidden Markov
models. Journal of Computer and System Sciences 78(5), 1460–1480 (2012)

19. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applica-
tions. Neural Networks 13(4–5), 411–430 (2000)

20. Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs.
SIAM Journal on Matrix Analysis and Applications 32(4), 1095–1124 (2011)

21. De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-
(R1, R2, ., Rn) approximation and applications of higher-order tensors. SIAM J.
Matrix Anal. Appl. 21(4), 1324–1342 (2000)

22. Le Cam, L.: Asymptotic Methods in Statistical Decision Theory. Springer (1986)

38 A. Anandkumar et al.

23. Lim, L.-H.: Singular values and eigenvalues of tensors: a variational approach. In:
Proceedings of the IEEE International Workshop on Computational Advances in
Multi-Sensor Adaptive Processing vol. 1, pp. 129–132 (2005)

24. MacQueen, J.B.: Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statis-
tics and Probability, vol. 1, pp. 281–297. University of California Press (1967)

25. McCullagh, P.: Tensor Methods in Statistics. Chapman and Hall (1987)
26. Moitra, A., Valiant, G.: Settling the polynomial learnability of mixtures of Gaus-

sians. In: Fifty-First Annual IEEE Symposium on Foundations of Computer Sci-
ence, pp. 93–102 (2010)

27. Mossel, E., Roch, S.: Learning nonsingular phylogenies and hidden Markov models.
Annals of Applied Probability 16(2), 583–614 (2006)

28. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, 1999
29. Pearson, K.: Contributions to the mathematical theory of evolution. In: Philosoph-

ical Transactions of the Royal Society, London, A., p. 71 (1894)
30. Qi, L.: Eigenvalues of a real supersymmetric tensor. Journal of Symbolic Compu-

tation 40(6), 1302–1324 (2005)
31. Stegeman, A., Comon, P.: Subtracting a best rank-1 approximation may increase

tensor rank. Linear Algebra and Its Applications 433, 1276–1300 (2010)
32. Wedin, P.: Perturbation bounds in connection with singular value decomposition.

BIT Numerical Mathematics 12(1), 99–111 (1972)
33. Zhang, T., Golub, G.: Rank-one approximation to high order tensors. SIAM Jour-

nal on Matrix Analysis and Applications 23, 534–550 (2001)

Inductive Inference

Priced Learning

Sanjay Jain1(B), Junqi Ma1, and Frank Stephan2

1 School of Computing, National University of Singapore,
Singapore 117417, Singapore

sanjay@comp.nus.edu.sg, ma.junqi@nus.edu.sg
2 Department of Mathematics and Department of Computer Science,

National University of Singapore, Singapore 119076, Singapore
fstephan@comp.nus.edu.sg

Abstract. In iterative learning the memory of the learner can only be
updated when the hypothesis changes; this results in only finitely many
updates of memory during the overall learning history. Priced learning
relaxes this constraint on the update of memory by imposing some price
on the updates of the memory – depending on the current datum – and
requiring that the overall sum of the costs incurred has to be finite.
There are priced-learnable classes which are not iteratively learnable.
The current work introduces the basic definitions and results for priced
learning. This work also introduces various variants of priced learning.

1 Introduction

Learning from positive data in Gold’s model [6] has the following basic scenario:
Given a class of r.e. languages and an unknown language L from this class,
the learner observes an infinite list containing all and only the elements of L.
The order and multiplicity of the elements of L in the list may be arbitrary.
As the learner is observing the members of the list, it outputs a sequence of
hypotheses about what the input language might be. For learning the language,
this sequence of hypotheses is required to converge to a grammar for L (for every
input list of elements of L as above).

In general, in the above learning process, the learner can memorise all data
observed so far and do comprehensive calculations without restrictions to the
memory amount and usage. Several approaches have been formalised in order
to restrict the amount of memory used. One of them is the strict separation
between short-term and long-term memory where, whenever a datum is read,
some computations are done in an unlimited short-term memory and then the
data for the next round of learning is archived in a size-constrained long-term
memory [4,7]. The other approaches to limit the memory usage do not count
bits and bytes, but rather allow only fixed number of elements of the input to be
memorized. In such models, if the learner does not update its memory/hypothesis
on a receipt of a datum, then at later stages it is not able to know whether the

Research for this work is supported in part by NUS grants C252-000-087-001
(S. Jain) and R146-000-181-112 (S. Jain and F. Stephan).

c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 41–55, 2015.
DOI: 10.1007/978-3-319-24486-0 3

42 S. Jain et al.

corresponding datum was observed or not. In its most restrictive form, this type
of learning is called incremental or iterative learning [3,8,13]. An iterative learner
can memorise data only when it revises the hypothesis and not at any other point
of time; thus it can, through the overall learning history, only finitely often revise
its long-term memory. This restriction is quite severe and, for example, the class
consisting of the set {1, 2, . . .} and all sets of the form {0, 1, . . . , x}, where x is a
natural number, is not iteratively learnable. To see this, note that if the learner
first sees data from the infinite set {1, 2, . . .}, then, after some time, the learner
will need to converge to a grammar for {1, 2, . . .}. Thereafter the learner cannot
archive any data, in particular it cannot archive the maximum datum x seen so
far. If later the datum 0 shows up, the learner knows that the input set must be
of the form {0, 1, . . . , x}; however, the learner can no longer recover the exact
value of x from its memory.

The idea of priced learning is to relax the severe constraints placed on itera-
tive learning. In priced learning, a price is charged for each update of the memory
and it is required that during the learning process, the overall costs incurred is
finite. In the case that this price charged is always the same constant c for each
memory update, the corresponding notion would be exactly that of iterative
learning. However, by allowing the price to depend on the datum x read when
the memory is updated, one can give discounts for various types of data and
permit, under certain circumstances, to update the memory infinitely often dur-
ing the learning process. This concept of priced learning, however, still does not
permit, in general, to do every possible update of the memory. Priced learning is
therefore between the two extremes of iterative learning and the original unre-
stricted model of learning by Gold where the memory could be updated as often
as desired. For the priced learning model PricedfEx introduced in this paper,
the costs incurred are guided by a price function f which is a parameter of the
learning criterion. A PricedfEx-learner incurs, at every update of the memory
on input datum x, the cost 1/(f(x) + 1) (where f is a recursive function). We
refer the reader to Section 3 for the formal definitions. On reading a datum x,
the learner has to decide whether it wants to update the memory so that on one
hand, all important information are preserved in the long term memory and, on
the other hand, the overall price of these updates does not go to infinity.

The present work investigates when, for different price functions f and g,
PricedfEx-learnability implies PricedgEx-learnability. This depends on the
existence of sets S such that

∑
x∈S

1
f(x)+1 is finite but

∑
x∈S

1
g(x)+1 is infinite

(see Theorem 9 and Theorem 11). Theorem 15 gives a characterisation of classes
which are PricedfEx-learnable for some recursive function f : these are exactly
the classes which are learnable by a set-driven learner. Here a set-driven learner
[9] is a learner whose output conjecture depends only on the set of elements it
has observed in the input and not on their order or amount of repetitions.

Further results are based on whether a class can be learnt when the price func-
tions are from a natural class C of price functions, irrespective of which price func-
tion from the class is actually chosen. Here, one may allow the learner to be chosen
depending on the price function, uniformly or non-uniformly based on the pro-

Priced Learning 43

gram for the price function, or may even require it to be the same learner for all
the price functions from the class C. Section 6 onwards explore such questions.
Let MF = {f : f is recursive and unbounded and ∀x [f(x) ≤ f(x + 1)]} and
FF = {f : f is recursive and ∀y [card(f−1(y)) is finite]}. Note that MF is a proper
subset of FF. It is shown in Theorem 17 that there exists a class of languages which
can be Pricedf -learnt for every f ∈ FF, but which cannot be iteratively learnt.
On the other hand, Theorem 18 shows advantages of price function being from MF
compared to it being from FF. Results in Section 7 deal with the question of when
and what kind of uniformity constraints can be placed on learners which learn a
class with respect to a price function from a class of price functions such as MF or
FF. Due to space constraints, some proofs are omitted.

2 Notations and Preliminaries

Any unexplained recursion theoretic notation is from Rogers’ book [11]. The
symbol N denotes the set of natural numbers {0, 1, 2, . . .}. Subsets of natural
numbers are referred to as languages. We let ∅, ⊆, ⊂, ⊇ and ⊃ respectively denote
empty set, subset, proper subset, superset and proper superset. Cardinality of a
set S is denoted by card(S). The maximum and minimum of a set S are denoted
by max(S) and min(S), respectively, where max(∅) = 0 and min(∅) = ∞.

Let 〈·, ·〉 denote a recursive pairing function which is a bijection from N × N

to N. Without loss of generality, we assume that pairing function is monotonic in
both its arguments; in particular 〈0, 0〉 = 0. The pairing function can be extended
to pairing of n-tuples by using 〈x1, x2, . . . , xn〉 = 〈x1, 〈x2, . . . , xn〉〉. We define
projection functions π1, π2 as π1(〈x1, x2〉) = x1 and π2(〈x1, x2〉) = x2. Similarly,
let πn

i (〈x1, x2, . . . , xn〉) = xi. For a set L, let cyl(L) = {〈x, i〉 : x ∈ L, i ∈ N}.
By ϕ we denote a fixed acceptable programming system for the partial com-

putable functions mapping N to N [11]. By ϕi we denote the partial function
computed by the i-th program in the ϕ-system. Thus, i is also called a pro-
gram/index for ϕi. Let R denote the class of all total recursive functions. For
any partial function η, we let η(x)↓ denote that η(x) is defined and η(x)↑ denote
that η(x) is undefined. By Φ we denote an arbitrary fixed Blum complexity
measure [2] for the ϕ-system. Let

ϕi,s(x) =
{

ϕi(x), if x < s and Φi(x) < s;
↑, otherwise.

Let Wi = domain(ϕi). Wi can be considered as the language accepted by the
i-the ϕ-program ϕi. We also say that i is a grammar/index for Wi. Thus,
W0,W1, . . ., is an acceptable programming system for recursively enumerable
languages. The symbol E denotes the set of all recursively enumerable (r.e.) lan-
guages. The symbol L ranges over E ; the symbol L ranges over subsets of E .
By L, we denote the complement of L, that is L = N − L. By L(x) we denote
the value of the characteristic function of L at x; that is, L(x) = 1 if x ∈ L and
L(x) = 0 if x �∈ L. By Wi,s we denote the set {x < s : Φi(x) < s}.

44 S. Jain et al.

3 Models of Learning

We now present some concepts from language learning theory. A text is a map-
ping from N to N∪{#}. The content of a text T , denoted content(T) is the set of
natural numbers in the range of T , that is, {T (m) : m ∈ N} − {#}. We say that
T is a text for L if content(T) = L. Intuitively, # can be considered as pauses
in the presentation of data to a learner. We let T range over texts. T [n] denotes
the initial segment of a text T with length n, that is, T (0), T (1), . . . , T (n − 1).

Initial segments of texts are called finite sequences (or just sequences). We let
σ and τ range over finite sequences. We let content(σ) denote the set of natural
numbers in the range of σ. Let SEQ denote the set of all finite sequences. We
assume some fixed computable ordering of members SEQ (so that we can talk
about the least sequence, etc.). We let |σ| denote the length of σ. We let Λ denote
the empty sequence and σ[n] denote the initial segment of σ of length n (where
σ[n] = σ, if n ≥ |σ|). Let σ�τ denote the concatenation of two finite sequence σ
and τ . Similarly, let σ�T denote the concatenation of finite sequence σ and text
T . For x ∈ N ∪ {#}, we let σ�x denote the concatenation of σ with the finite
sequence containing just one element x. Let σ � T and σ � τ denote that σ is
an initial segment of T and τ respectively.

Definition 1 (Based on Gold [6]).

(a) A learner M is a (possibly partial) recursive mapping from (N∪{?})× (N∪
{#}) to (N∪{?})×(N∪{?}). A learner has initial memory mem0 and initial
hypothesis hyp0.

(b) Suppose a learner M with initial memory mem0 and initial hypothesis
hyp0 is given. Let memM,T

0 = mem0 and hypM,T
0 = hyp0. For k ≥ 0,

let (memM,T
k+1 , hypM,T

k+1) = M(memM,T
k , T (k)). Extend the definition of M to

initial segments of texts by letting M(T [k]) = (memM,T
k , hypM,T

k).
Intuitively, memM,T

k is considered as the memory of the learner after having
seen data T [k] and hypM,T

k is considered as the hypothesis of the learner
after having seen data T [k]. Without loss of generality we assume that the
memory is revised whenever the hypothesis is revised. Sometimes, we just
say M(T [k]) = hypM,T

k , where the memory of the learner is implicit.
(c) We say that M converges on a text T to a hypothesis hyp if the sequence

hypM,T
0 , hypM,T

1 , hypM,T
2 , . . . converges syntactically to hyp.

(d) We say that M Ex-learns a language L on text T if M is defined on all
initial segments of the text T and M converges on T to a hypothesis hyp
such that Whyp = L.

(e) We say that M Ex-learns a language L (written: L ∈ Ex(M)), if M Ex-
learns L from each text T for L.

(f) We say that M Ex-learns a class L of languages (written: L ⊆ Ex(M)) iff
M Ex-learns each L ∈ L.

(g) Ex = {L : ∃M [L ⊆ Ex(M)]}.

Priced Learning 45

We say that M changes its mind (hypothesis, conjecture) at T [n+1], if hypM,T
n �=

hypM,T
n+1 . We say that M changes its memory at T [n+1], if memM,T

n �= memM,T
n+1

or hypM,T
n �= hypM,T

n+1 ; that is, a learner cannot bring down the costs of mind
changes by only changing the hypothesis and not doing adequate bookkeeping in
the memory. Blum and Blum [1] gave a useful lemma for learnability of languages
by learners based on topological considerations.

Definition 2 (Fulk [5]). Suppose M(σ) = (mem, hyp). Sequence σ is said to
be a stabilising sequence for M on a language L if

(i) content(σ) ⊆ L and
(ii) for all τ such that σ ⊆ τ and content(τ) ⊆ L, M(τ) = (·, hyp). That is, M

does not change its hypothesis beyond σ on any text T for L.

Definition 3 (Blum and Blum [1]). A sequence σ is said to be a locking
sequence for M on a language L if

(i) σ is a stabilising sequence for M on L and
(ii) Whyp = L, where M(σ) = (mem, hyp).

Lemma 4 (Blum and Blum [1]). Suppose M Ex-learns L. Then the following
statements hold:

(i) There exists a locking sequence for M on L;
(ii) Every stabilising sequence for M on L is a locking sequence for M on L.

A lemma similar to above can be shown for all of the criteria of learning consid-
ered in this paper.

For some of the results in this paper it is useful to consider set-driven learning,
where the output of the learner depends just on the set of inputs seen.

Definition 5 (Osherson, Stob and Weinstein [9]).

(a) A learner M is said to be set-driven iff for all σ, τ , if content(σ) = content(τ),
and M(σ) = (mem, hyp), then M(τ) = (mem′, hyp), for some memory
mem′. That is, the hypothesis of the learner depends just on the content
of the input and not on the exact order or the number of repetitions of the
elements presented.

(b) SD = {L : ∃M [M is set-driven and L ⊆ Ex(M)]}.

A related notion of rearrangement independence, where the learner is able to
base its conjectures on the content and length of the input was considered by
[12]. We now consider iterative learning.

46 S. Jain et al.

Definition 6 (Based on Wexler and Culicover [13] and Wiehagen [14]).

(a) A learner M is said to be iterative if for any text T and any k memM,T
k =

hypM,T
k (where it is possible that both are undefined).

(b) M ItEx-learns a language L (class of languages L) iff M is iterative and M
Ex-learns L (class of languages L).

(c) ItEx = {L : ∃M [M is iterative and L ⊆ Ex(M)]}.

It can be shown that iterative learning is restrictive: ItEx ⊂ Ex (see [14]).
There are several other variations of iterative learning considered in the litera-

ture where the memory is constrained in some way. For example, a learner M has
k-bounded example memory [8,10] iff for all texts T and n, memM,T

n represents
a set of size at most k, where memM,T

0 = ∅ and memM,T
n+1 ⊆ memM,T

n ∪ {T (n)}.
As iterative learning (and most of its variations considered until now) put

severe constraints on what can be memorised by a learner, we consider a variation
where we allow the memory of grow arbitrarily large. However, there is a cost
associated with each change of memory: if the learner changes its memory (or
hypothesis) after seeing datum x, then it is charged some cost f(x). Now the
learner is said to identify the input language (for any given text) iff besides Ex-
learning the language, the total cost charged to the learner on the input text is
finite. Formally, this is defined as follows.

A price function is a recursive function mapping N ∪ {#} to N.

Definition 7. Suppose f is a price function and C is a class of price functions.

(a) M PricedfEx-learns a language L (written: L ∈ PricedfEx(M)) iff M
Ex-learns L and for all texts T for L,

∑
n:M(T [n+1]) �=M(T [n])

1
f(T (n))+1 < ∞.

(b) PricedfEx = {L : ∃M [L ⊆ PricedfEx(M)]}.
(c) PricedCEx = {L : ∀f ∈ C [L ∈ PricedfEx]}.

Note that in the above definition M(T [n]) is taken as the pair
(memM,T

n , hypM,T
n). For a learner M and price function g, costM,g(σ) is defined

as follows. Let S = {m < |σ| : M makes a memory change or a mind change
at σ[m + 1]}. Let costM,g(σ) =

∑
m∈S 1/(g(σ(m)) + 1) and costM,g(T) =

supσ�T costM,g(σ). Here costM,g(σ) (costM,g(T)) is called the cost of M on
input σ (input T) with respect to the cost function g.

Let pricef (S) =
∑

x∈S
1

f(x)+1 . Intuitively, pricef (S) denotes the cost with
respect to the price function f if a mind change is made by the learner exactly
once with respect to each member of S.

Let M0,M1, . . . denote a recursive enumeration of all the learning machines.

Definition 8. Suppose C ⊆ R. EffPricedCEx = {L : ∃f ∈ R∀i ∈ N [if ϕi ∈ C
then Mf(i) Pricedϕi

Ex-learns L]}.

4 General Cost Functions

The theorems in this section explore when PricedfEx ⊆ PricedgEx. Theo-
rem 9 shows when L ∈ PricedfEx implies L ∈ PricedgEx, and Theorem 11
shows when such an implication does not hold.

Priced Learning 47

Theorem 9. Suppose f and g are price functions for which no set S satisfies:
pricef (S) is finite and priceg(S) is infinite. Then, PricedfEx ⊆ PricedgEx.

Proposition 10. Let S be an infinite r.e. set, g be a price function such that
priceg(S) is infinite. Then, L = {S − {x} : x ∈ S − min(S)} is not PricedgEx-
learnable.

Proof. Suppose by way of contradiction that M PricedgEx-learns L.
Suppose there are distinct x, y ∈ S−{min(S)} such that for some σ satisfying

{x, y} ⊆ content(σ) ⊆ S, M did not change its memory and hypothesis whenever
it received x, y in the input σ. Let T be a text for S −{x, y}. Let σ′ be obtained
from σ by deleting the occurrences of x and σ′′ be obtained from σ by deleting
the occurrences of y. Now, M converges to the same hypothesis on both σ′�T and
σ′′�T , however σ′�T and σ′′�T are respectively texts for two different languages
S − {x} and S − {y} in L. Thus, M does not PricedgEx-learn at least one of
these languages.

On the other hand, if such distinct x, y and corresponding σ as above do not
exist, then on any text T for a language L ∈ L, the cost incurred by M on T is
infinite. Thus, M does not PricedgEx-learn L. ��
Theorem 11. Suppose f and g are price functions such that there exists a set S
satisfying that pricef (S) is finite but priceg(S) is infinite. Then PricedfEx �⊆
PricedgEx.

Proof. Suppose there is a set S such that pricef (S) is finite and priceg(S) is
infinite. Then, for each c, there exists a set Sc such that pricef (Sc) < 1/(c + 1)
and priceg(Sc) = ∞. Such sets can be found by considering tails of the sum
of the members in S. Hence one can, by effective search, find disjoint finite sets
S̃0, S̃1, . . . such that pricef (S̃c) < 1/(c+1) and priceg(S̃c) ≥ 1. To see this, define
S̃c by induction as the first finite set found (in some ordering of finite sets) such
that pricef (S̃c) < 1/(w + 1) and priceg(S̃c) ≥ 1, where w > c + max({f(x) :
x ∈ ⋃

c′<c S̃c′}); note that the constraint on w implies that S̃c ∩ (
⋃

c′<c S̃c′) = ∅.
Now let S̃ be the union of all sets S̃2k for k ∈ N. The set S̃ is an r.e. set.

One can let L = {S̃ −{x} : x ∈ S̃}. It is easy to see that L ∈ PricedfEx, as
on any input text T for L ∈ L, the learner can memorise all data seen, and, in
the limit, output a grammar for S̃ −{x}, where x is the minimal element, if any,
in S̃ − content(T). Note that such a learner makes a memory / mind change on
any x at most once.

By Proposition 10, L �∈ PricedgEx. The theorem follows. ��
Theorem 9 and Theorem 11 imply that PricedfEx = ItEx iff pricef (S) is infi-
nite for every infinite subset S of N. Theorem 11 can be generalised to find classes
which have one learner working with all price functions which permit to learn
this class. These classes can be chosen such that they are priced learnable for
some but not all price functions and hence they do not coincide with iteratively
learnable classes.

48 S. Jain et al.

Theorem 12. Given any price function f , there is a class Cf and a learner M
such that for all price functions g, the following conditions are equivalent:

– PricedfEx ⊆ PricedgEx;
– M PricedgEx-learns Cf ;
– There is no set S such that pricef (S) is finite but priceg(S) is infinite.

5 Priced Learning and Set-Drivenness

In this section we show that classes which are PricedfEx-learnable with respect
to some price function f are learnable by a set-driven learner and vice versa,
classes which are set-driven-learnable are PricedgEx-learnable with respect to
some price function g. To this end we first give a modification of the definition
of stabilising/locking sequences with respect to a cost function.

Definition 13. A sequence σ is a g-cost-stabilising sequence (g-cost-locking
sequence) for M on L, if the following conditions hold:

(a) σ is a stabilising sequence (locking sequence) for M on L and
(b) for all τ such that σ � τ and content(τ) ⊆ L, costM,g(τ) ≤ costM,g(σ)+1.

The following can be proved in a way similar to locking sequence lemma in [1].

Lemma 14 (Based on Blum and Blum [1]). If M PricedgEx-learns L
then there exists a g-cost-locking sequence for M on L; Furthermore, all g-cost-
stabilising sequences for M on L are g-cost-locking sequences for M on L.

Furthermore, note that for any finite set S contained in some set learned by M,
and any price function g one can check if σ is a g-cost-stabilising sequence for
M on S. This holds as the number of memory / mind changes of M on any
text extending σ for S will be at most max({g(x) + 1 : x ∈ S ∪ {#}}) if σ is
indeed a g-cost-stabilising sequence for M on S. Thus, we can check if the tree
of memory/mind changes for M on S above σ is bounded as above.

Theorem 15.
⋃

g∈R PricedgEx = SD.

Proof. Suppose L ∈ SD as witnessed by M. Let g(x) = 1/2x. Let N(σ) =
(content(σ), hyp), where hyp is the hypothesis of M on input σ. Note that, as
M is set-driven, N can easily obtain the hypothesis of M on input σ, using its
memory content(σ), by running M on any τ such that content(τ) = content(σ).
It is easy to verify that N PricedgEx-learns L.

Now suppose L ∈ PricedgEx as witnessed by M. Then, consider the follow-
ing set-driven learner N. The aim of the set-driven learner N is to find the least
g-cost-stabilising sequence for M on the input language. N on input σ searches
for the least g-cost-stabilising sequence τ for M on content(σ), if any, of length at
most |content(σ)|. Note that one can check if such a stabilising sequence exists.
Now, N(σ) = (content(σ), hyp), where hyp is the hypothesis of M on input τ if
a τ as above exists; otherwise hyp is a canonical grammar for content(σ).

Priced Learning 49

For a finite language L ∈ L, whether there exists a g-cost-stabilising sequence
for M on L of length at most card(L) or not, the learner N will output a grammar
for L after it has received all the elements of L. Thus, N would Ex-learn L.

For an infinite language L ∈ L, there exists a g-cost-stabilising sequence for
M on L of finite length, and thus for large enough initial segment of any text
T for L, N will find the least g-cost-stabilising sequence τ . Then, N will output
the hypothesis of M on τ as its hypothesis. Thus, N would Ex-learn L.

As N defined above is set-driven, we have that L ∈ SD. ��
Theorem 9 and Theorem 11 along with SD = PricedgEx, for the g used in the
proof of Theorem 15, imply that PricedfEx = SD iff pricef (N) is finite.

6 Classes of Cost Functions

In this section we will consider priced learning when the price function might
be any of the functions in a class of price functions. In particular we look at the
classes of monotonic functions (MF) and finite-one functions (FF) which map
only finitely many inputs to the same output:

MF = {f ∈ R : ∀x [f(x) ≤ f(x + 1)] and f is unbounded};
FF = {f ∈ R : ∀y [card(f−1(y)) is finite]}.

The following lemma is useful for proving some results in this paper. It shows
that if L is Ex-learnable, then the cylindrification of L is PricedFFEx-learnable.

Lemma 16. If L ∈ Ex and L′ = {cyl(L) : L ∈ L} then L′ ∈ EffPricedFFEx.

The next theorem gives a class L that can be PricedfEx-learnt with respect
to every price function f in FF, even though L is not iteratively learnable.
Moreover, the PricedfEx-learner can be obtained effectively from an index
for f .

Theorem 17. EffPricedFFEx �⊆ ItEx.

Proof. The class L1 ∪ L2 with

L1 = {We : e = min(We) and ∀x [{2x, 2x + 1} �⊆ We]} and
L2 = {L : card(L) < ∞ and ∃x [{2x, 2x + 1} ⊆ L]}

is Ex-learnable: The learner, on input σ, checks whether there is an x with
2x, 2x + 1 ∈ content(σ). If so then the learner conjectures a canonical index for
content(σ) else the learner conjectures min(content(σ)). So, on a text T with
both 2x, 2x + 1 ∈ content(T), the learner converges to a canonical index of
content(T) whenever the latter is finite and thus the learner Ex-learns L2; on a
text T which contains at most one of 2x, 2x + 1 for any x, the learner converges
to the minimum of content(T) and thus the learner Ex-learns L1. Let

L = {cyl(L) : L ∈ L1 ∪ L2}.

50 S. Jain et al.

By Lemma 16, L ∈ EffPricedFFEx. Now it remains to show that L �∈ ItEx.
Suppose by way of contradiction that M ItEx-learns L. Then by Kleene’s recur-
sion theorem there exists an e such that We is the set of all x for which 〈x, 0〉
occurs in some σs which are defined below. Here, initially, σ0 = 〈e, 0〉 and in
stage s below, σs+1 is constructed.

Stage s.
1. Search for an extension τ of σs satisfying the following conditions:

(i) M(σs) �= M(τ);
(ii) for all x and i, if 〈2x, i〉 ∈ content(τ), then for all j, 〈2x + 1,

j〉 �∈ content(τ);
(iii) for all i, for all x < e, 〈x, i〉 �∈ content(τ).

2. If and when such a τ is found, let σs+1 be an extension of τ satisfying
the following conditions:

(i) ∀x, i [[〈x, i〉 ∈ content(τ)] ⇒ [∀j ≤ s [〈x, j〉 ∈
content(σs+1)]]];

(ii) ∀x, i [[〈x, i〉 ∈ content(σs+1)] ⇒ [∃j [〈x, j〉 ∈ content(τ)]]].
3. Go to stage s + 1.

End Stage s.

Now if there are infinitely many stages in the above construction, then T =⋃
s∈N

σs is a text for cyl(We), where We ∈ L1. However, M makes infinitely
many mind changes on T . On the other hand if stage s starts but does not
finish, then, for y > max({x : 〈x, 0〉 ∈ content(σs)}), let Ly = {x : 〈x, 0〉 ∈
content(σs)} ∪ {2y, 2y + 1}. Then for all texts T extending σs for any cyl(Ly)
with y > max({x : 〈x, 0〉 ∈ content(σs)}), M(T) converges to M(σs), and thus
it fails to ItEx-learn L, as all such Ly belong to L2. ��
The next theorem shows that some class L can be PricedfEx-learnt with respect
to every price function in MF, but not with respect to some price function in FF.
Furthermore, the PricedfEx learner for f ∈ MF can be obtained effectively
from an index for f .

Theorem 18. EffPricedMFEx �⊆ PricedFFEx.

Proof. Let F0, F1, . . . be an enumeration of disjoint finite sets such that F0 = {0},⋃
x Fx = N and for all i, if ϕi is total, then for all x > i, there exists a y > ϕi(x)

in Fx. Note that such an enumeration can be easily constructed.
Let L0 =

⋃
x>0 Fx. For e ∈ N, let Le+1 =

⋃
x∈De∪{0} Fx. Let L = {Le : e ∈ N}.

Claim. L ∈ EffPricedMFEx.

Let h be a recursive function such that for all i, ϕh(i)(x) is the first z found in a
search such that ϕi(z) > 2x. Now, if ϕi ∈ MF, then for all x > h(i), there exists
a y ∈ Fx such that y > ϕh(i)(x) and thus ϕi(y) > 2x.

Given an index i for a cost function g ∈ MF, consider the following learner
M obtained effectively from i. Learner M will have a finite set as its memory.
Initially, M’s memory is ∅. Whenever M receives y ∈ Fx as input, it adds x

Priced Learning 51

to the memory if x is not already in the memory and [x ≤ h(i) or g(y) > 2x];
otherwise the memory is unchanged. If the memory does not contain 0, then M
outputs a canonical grammar for L0. Otherwise it outputs a canonical grammar
for Le+1, where De = S − {0}, where S is the set in M’s memory. It is easy to
verify that for any text T , costM,g(T) is finite and M PricedgEx-learns L.

Claim. L �∈ PricedFFEx.

To see this, let g be such that g(y) = x, for y ∈ Fx. Suppose by way of contra-
diction that M PricedgEx-learns L. Now, consider M’s behaviour on text for
L0, where the elements are presented to it in order of elements from F1, F2,
If for every x, M makes mind change on some input from Fx, then clearly the
cost is infinite. Otherwise, for some x, M did not make any mind change on the
above text when presented with elements from Fx. Now, if after elements of Fx,
M only gets elements from F0, then M cannot distinguish between the input
being Le or Le′ , where De = {1, 2, . . . , x} and De′ = {1, 2, . . . , x − 1}.

The above two claims prove the theorem. ��
The following theorem shows that some class of languages L can be learnt with
respect to every price function in FF, but one cannot effectively obtain a learner
for even monotonic price functions.

Theorem 19. PricedFFEx �⊆ EffPricedMFEx.

Proof. We will define the class L in dependence of a set A ⊆ {〈x, r〉 : x ≥ 1,
r ∈ N} to be constructed below by letting

Lm = {0} ∪ (A ∩ {〈x, r〉 : x ≤ m, r ∈ N});
L = {A} ∪ {Lm : m ∈ N}.

We will have the property that for all g ∈ FF, for all but finitely many x, there
exists an r such that 〈x, r〉 ∈ A and g(〈x, r〉) > 2x.

The above property allows for easy learning of L in the model PricedFFEx.
To see this, for g ∈ FF, let Rg be the set of finitely many x such that for all
r, g(〈x, r〉) ≤ 2x. Then, the PricedgEx-learner M is defined as follows. The
memory of M is a finite set. The memory memσ of M after having seen input
σ consists of the following elements: (i) 0 if 0 ∈ content(σ), (ii) all x ∈ Rg such
that for some r ∈ N, 〈x, r〉 ∈ content(σ), and (iii) all x ≥ 1 such that for some
r ∈ N, 〈x, r〉 ∈ content(σ) and g(〈x, r〉) > 2x. Furthermore, the hypothesis of the
learner M after having seen input σ is: (a) a canonical index for A if 0 �∈ memσ,
and (b) a canonical index for Lm, if 0 ∈ memσ and m = max(memσ). It is easy
to verify that M is a PricedgEx-learner for L.

We will now construct A. For this we will define functions hi,j along with
sets Bi,j , for j < 2i+1. The functions hi,j , if total, will be in MF. Bi,j will be
finite, but may change over time. Let Bt

i,j denote its value at time t, where we
will only start with Bi,j at time t ≥ i (so it is assumed to be empty before that).

52 S. Jain et al.

Intuitively, aim of Bi,j and hi,j , j < 2i+1 is to make sure that ϕi does not
witness that L ∈ EffPricedMFEx. For j < 2i+1, Xi,j denotes the j-th subset
of {0, 1, 2, . . . , i}.

In the definitions below, we assume some steps to be atomic so that there is
no interference between different parts. For ease of notation we will write ϕi(hi,j)
below rather than ϕi(index for hi,j).

Definition of A.
Stage s

Each stage s is supposed to be atomic.
1. Enumerate 〈s, 0〉 into A.
2. For each i < s,

2.1. Let x < s be least, if any, such that
x �∈ ⋃

j<i,k<2j+1 Bs
j,k and

for all r such that 〈x, r〉 ∈ A enumerated up to now
[ϕi,s(〈x, r〉)↓ ≤ 2x or ϕi,s(〈x, r〉)↑].

2.2. If there is such an x as above and ∃r ≤ s [ϕi,s(〈x, r〉)↓ > 2x]
Then enumerate one such 〈x, r〉 into A.

End For
Go to stage s + 1

End Stage s

Note that the construction of different hi,j is run in parallel (in dovetailing way,
along with procedure for A above) for all i ∈ N, j < 2i+1.

Definition of hi,j .
Let hi,j(0) = 1.
Initially σi,j = Λ.
Loop
0. Let σi,j be extension of previous σi,j so that it contains all of A

enumerated up to now.
(Above step is assumed to be atomic.)

1. Suppose hi,j has already been defined on inputs ≤ w up to now,
and the maximum value in the range of hi,j up to now is z.

2. Pick Bi,j of size z + 2 containing elements > i + w, such that none
of the elements of Bi,j have been used in any Bi′,j′ at any earlier
point in the construction up to now and all the elements of Bi,j

are larger than any element enumerated by A up to now.
(We assume the above step to be atomic.)

3. Wait until for each y ∈ Bi,j ,
(i) 〈y, 0〉 is enumerated into A and
(ii) for each i′ ∈ Xi,j , a pair 〈y, r〉 is enumerated into A with

ϕi′(〈y, r〉) > 2y.
4. Extend hi,j monotonically (non-decreasing) so that hi,j(〈y, r〉) =

z +1, for each 〈y, r〉 ∈ A enumerated up to now such that y ∈ Bi,j .
(We assume above step to be atomic.)

Priced Learning 53

5. Keep extending hi,j strictly monotonically increasing, while search-
ing for an extension τ of σi,j such that
(i) content(τ) is contained in A, and
(ii) for each y ∈ Bi,j , there exists a 〈y, r〉 in content(τ) such

that Mϕi(hi,j) made a mind change / memory change when
it received 〈y, r〉 as input.

6. If such an extension τ is found, update σi,j to τ and go to the next
iteration of the loop. If no extension as above is found, then this
iteration of the loop never ends.

End Loop

For each j and k < 2j+1, let Bi,j denote the eventual value of Bi,j (if this value
does not exist, then let Bi,j be ∅).

Now consider any i such that ϕi ∈ FF. Let Ci =
⋃

i′<i,j′<2i′+1 Bi′,j′ . Note
that for x �∈ Ci, eventually some element of the form 〈x, r〉, with ϕi(〈x, r〉) > 2x

will be enumerated into A. Thus, we have that L ∈ PricedFFEx.
Now we show that L �∈ EffPricedMFEx. Suppose by way of contradiction

that ϕi witnesses L ∈ EffPricedMFEx, that is, for all k, if ϕk ∈ MF, then
Mϕi(k) is a Pricedϕk

Ex-learner for L. Let j be such that Xi,j is the set of i′ ≤ i
satisfying for all y �∈ ⋃

i′′<i′,j′′<2i′′+1 Bi′′,j′′ , some 〈y, r〉 with ϕi′(〈y, r〉) > 2y

is enumerated into A. Now consider the construction of hi,j . Now consider the
following cases.

Case 1: Some iteration of the Loop for hi,j does not terminate.
In this case we have that Mϕi(hi,j) fails to Pricedhi,j

Ex learn L. To see
this let σi,j be as in the iteration of the loop (for hi,j) which starts but does
not terminate. Consider τ which extends σi,j , and contains elements exactly
from content(σi,j) ∪ (A ∩ {〈y, r〉 : y ∈ Bi,j}), where these 〈y, r〉 appear in τ in
increasing order of y. Then by step 5 not succeeding in the loop, there exists
a y ∈ Bi,j , for which Mϕi(hi,j) did not make a mind change / memory change
when receiving 〈y, r〉 as input, for all 〈y, r〉 ∈ A. Thus, we can fool the learner
Mϕi(hi,j) by giving 0 just after giving the elements 〈y, r〉 corresponding to the
y above, and then extending it using all elements from Ly−1. Then, the learner
Mϕi(hi,j) is not able to distinguish between input being Ly−1 or Ly.

Case 2: All iterations of the loop for hi,j terminate.
In this case consider the loop executions in which for each y ∈ Bi,j (as defined

in step 2 of that iteration of loop) none of the i′ ≤ i, i′ �∈ Xi,j have a 〈y, r〉 ∈ A
with ϕi′(〈y, r〉) > 2y. Note that all but finitely many loop executions have this
property. In each of such executions, the construction would have found a mind
change / memory change which costs in total at least 1 to the learner (as in each
iteration, size of Bi,j is z + 2, and the cost of memory / mind change on 〈y, r〉,
y ∈ Bi,j is 1

z+2).

Thus, Mϕi(hi,j) does not PricedMFEx-learn L. ��

54 S. Jain et al.

7 Other Uniformity Criteria

In this section we consider some uniformity criteria for priced learning.

Definition 20. Suppose C ⊆ R.

(a) UniPricedCEx = {L : ∃M∀f ∈ C [M PricedfEx-learns L]}.
(b) EffBPricedCEx = {L : ∃g ∈ R∀i [if ϕi ∈ C then ∀b ≥ i [Mg(b)

Pricedϕi
Ex-learns L]]}.

(c) UniFPricedCEx = {L : ∃M [∀f ∈ C [card(L − PricedfEx(M)) is finite]
and M Ex-learns L]}.

Intuitively, for UniPricedCEx, the same learner M succeeds for all price func-
tions in C. For EffBPricedCEx-learning the learner can be obtained effectively
from a bound on the index for the price function.

For UniFPricedCEx-learning, the same learner M Ex-learns the class L
and for all price functions f in C, M PricedfEx-learns almost all the members
of the class L. Thus, the cost of learning can go infinite only for finitely many
languages in the class for each price function f ∈ C.

In addition we consider the case where the learner gets the cost function f as
input rather than via index for it. In ValPricedCEx learning of L, for all f ∈ C,
the same learner M PricedfEx-learn each member of L when, in each iteration,
instead of a single datum x the pair (x, f(x)) is presented to the learner in the
iteration, so that the learner knows how expensive it is to process a datum.

Theorem 21. (a) Let C be a class of price functions.
ValPricedCEx ⊆ EffPricedCEx ⊆ PricedCEx.

(b) EffPricedFFEx �⊆ ValPricedMFEx.

Theorem 22. ValPricedFFEx �⊆ EffBPricedMFEx.

Theorem 23. UniFPricedFFEx �⊆ PricedMFEx.

Corollary 24. UniFPricedFFEx �⊆ EffPricedMFEx ∪ ValPricedMFEx.

Theorem 25. UniFPricedMFEx �⊆ PricedFFEx ∪ UniFPricedFFEx.

Theorem 26. ValPricedFFEx �⊆ UniFPricedMFEx.

It is open whether UniPricedMFEx or UniPricedFFEx contain a class which
cannot be ItEx-learnt. Similarly, it is open whether EffBPricedMFEx or
EffBPricedFFEx contain a class which cannot be ItEx-learnt.

8 Conclusions

In this paper we considered a generalization of memory limited learning, called
priced learning, where the learner can update its memory based on any datum it
receives, but it has a cost 1

f(x)+1 associated with it, where f is the price function.

Priced Learning 55

The learning is said to be successful if the overall cost in the learning process
is finite. We gave a characterization that the classes learnable as above with
respect to some cost function are exactly the classes learnable by a set-driven
learner. We also gave complete picture of when different price functions lead
to different learnable classes. In addition we considered when priced learning
is possible for all price functions from a class of functions, and when a learner
can be effectively found from an index for a price function. It is open at present
whether there exists a single learner which learns a non iteratively learnable class
from all price functions which are monotonically non-decreasing and unbounded.
Similar question is also open for the price functions having each number in the
range only finitely often. These questions are open even for the case when the
learner is given a bound on an index for the price function.

Acknowledgments. We thank the referees for several helpful comments.

References

1. Blum, L., Blum, M.: Toward a mathematical theory of inductive inference.
Information and Control 28, 125–155 (1975)

2. Blum, M.: A machine independent theory of the complexity of recursive functions.
Journal of the Association of Computing Machinery 14, 322–336 (1967)

3. Case, J., Jain, S., Lange, S., Zeugmann, T.: Incremental concept learning for
bounded data mining. Information and Computation 152, 74–110 (1999)

4. Freivalds, R., Kinber, E., Smith, C.H.: On the impact of forgetting on learning
machines. Journal of the ACM 42, 1146–1168 (1995)

5. Fulk, M.: Prudence and other conditions on formal language learning. Information
and Computation 85, 1–11 (1990)

6. Mark, E.: Gold. Language identification in the limit. Information and Control 10,
447–474 (1967)

7. Kinber, E., Stephan, F.: Language learning from texts: mind changes, limited mem-
ory and monotonicity. Information and Computation 123, 224–241 (1995)

8. Lange, S., Zeugmann, T.: Incremental learning from positive data. Journal of
Computer and System Sciences 53, 88–103 (1996)

9. Osherson, D., Stob, M., Weinstein, S.: Learning strategies. Information and Control
53, 32–51 (1982)

10. Osherson, D., Stob, M., Weinstein, S.: Systems That Learn, An Introduction to
Learning Theory for Cognitive and Computer Scientists. Bradford - The MIT
Press, Cambridge (1986)

11. Rogers, H.: Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted by MIT Press in 1987

12. Schäfer-Richter, G.: Uber Eingabeabhängigkeit und Komplexität von Inferenzs-
trategien. Ph.D. Thesis, RWTH Aachen (1984)

13. Wexler, K., Culicover, P.W.: Formal Principles of Language Acquisition. The MIT
Press, Cambridge (1980)

14. Wiehagen, R.: Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
Elektronische Informationsverarbeitung und Kybernetik (EIK) 12, 93–99 (1976)

Combining Models of Approximation
with Partial Learning

Ziyuan Gao1(B), Frank Stephan2,3, and Sandra Zilles1

1 Department of Computer Science, University of Regina,
Regina, SK S4S 0A2, Canada

{gao257,zilles}@cs.uregina.ca
2 Department of Mathematics,

National University of Singapore, Singapore 119076, Singapore
3 Department of Computer Science,

National University of Singapore, Singapore 119076, Singapore
fstephan@comp.nus.edu.sg

Abstract. In Gold’s framework of inductive inference, the model of par-
tial learning requires the learner to output exactly one correct index
for the target object and only the target object infinitely often. Since
infinitely many of the learner’s hypotheses may be incorrect, it is not
obvious whether a partial learner can be modified to “approximate” the
target object.

Fulk and Jain (Approximate inference and scientific method. Infor-
mation and Computation 114(2):179–191, 1994) introduced a model of
approximate learning of recursive functions. The present work extends
their research and solves an open problem of Fulk and Jain by show-
ing that there is a learner which approximates and partially identifies
every recursive function by outputting a sequence of hypotheses which,
in addition, are also almost all finite variants of the target function.

The subsequent study is dedicated to the question how these find-
ings generalise to the learning of r.e. languages from positive data. Here
three variants of approximate learning will be introduced and investi-
gated with respect to the question whether they can be combined with
partial learning. Following the line of Fulk and Jain’s research, further
investigations provide conditions under which partial language learners
can eventually output only finite variants of the target language.

1 Introduction

Gold [8] considered a learning scenario where the learner is fed with piecewise
increasing amounts of finite data about a given target language L; at every
stage where a new input datum is given, the learner makes a conjecture about L.
If there is exactly one correct representation of L that the learner always outputs

F. Stephan was partially supported by NUS grants R146-000-181-112 and R146-000-
184-112; S. Zilles was partially supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 56–70, 2015.
DOI: 10.1007/978-3-319-24486-0 4

Combining Models of Approximation with Partial Learning 57

after some finite time (assuming that it never stops receiving data about L), then
the learner is said to have “identified L in the limit.” In this paper, it is assumed
that all target languages are encoded as recursively enumerable (r.e.) sets of
natural numbers, and that the learner uses Gödel numbers as its hypotheses.

Gold’s learning paradigm has been used as a basis for a variety of theoretical
models in subjects such as human language acquisition [12] and the theory of
scientific inquiry in the philosophy of science [4,11]. This paper is mainly con-
cerned with the partial learning model [13], which retains several features of
Gold’s original framework – the modelling of learners as recursive functions, the
use of texts as the mode of data presentation and the restriction of target classes
to the family of all r.e. sets – while liberalising the learning criterion by only
requiring the learner to output exactly one hypothesis of the target set infinitely
often while it must output any other hypothesis only finitely often. It is known
that partial learning is so powerful that the class of all r.e. languages can be
partially learnt [13].

However, the model of partial learning puts no further constraints on those
hypotheses that are output only finitely often. In particular, it offers no notion
of “eventually being correct” or even “approximating” the target object. From a
philosophical point of view, if partial learning is to be taken seriously as a model
of language acquisition, then it is quite plausible that learners are capable of
gradually improving the quality of their hypotheses over time. For instance, if
the learner M sees a sentence S in the text at some point, then it is conceivable
that after some finite time, M will only conjecture grammars that generate S.
This leads one to consider a notion of the learner “approximating” the target
language.

The central question in this paper is whether any partial learner can be
redefined in a way that it approximates the target object and still partially
learns it. The first results, in the context of partial learning, deal with Fulk and
Jain’s [5] notion of approximating recursive functions. Fulk and Jain proved the
existence of a learner that “approximates” every recursive function. This result
is generalised as follows: partial learners can always be made to approximate
recursive functions according to their model and, in addition, eventually output
only finite variants of the target function, that is, they can be designed as BC ∗

learners1. This result solves an open question posed by Fulk and Jain, namely
whether recursive functions can be approximated by BC ∗ learners. Note that
BC ∗ learning can also, in some sense, be considered a form of approximation,
as it requires that eventually all of the hypotheses (including those output only
finitely often) differ from the target object in only finitely many values. It thus
is interesting to see that partial learning can be combined not only with Fulk
and Jain’s model of approximation, but also with BC ∗ learning at the same
time. Note that in this paper, when two learning criteria A and B are said to
be combinable, it is generally not assumed that the new learner is effectively
constructed from the A-learner and the B-learner.

1 BC ∗ is mnemonic for “behaviourally correct with finitely many anomalies” [4].

58 Z. Gao et al.

This raises the question whether partial learners can also be turned into
approximate learners in the more general case of learning r.e. languages. Unfor-
tunately, Fulk and Jain’s model applies only to learning recursive functions. The
second contribution is the design of three notions of approximate learning of r.e.
languages, two of which are directly inspired by Fulk and Jain’s model. It is then
investigated under which conditions partial learners can be modified to fulfill the
corresponding constraints of approximate learning. These investigations are also
extended to partial learners with additional constraints, such as consistency and
conservativeness. It will be shown that while partial learners can always be con-
structed in a way so that for any given finite set D, their hypotheses will almost
always agree with the target language on D, the same does not hold if D must
be a finite variant of a fixed infinite set. Thus trade-offs between certain approx-
imate learning constraints and partial learning are sometimes unavoidable – an
observation that perhaps has a broader implication in the philosophy of language
learning.

Following the line of Fulk and Jain’s research, conditions are investigated
under which partial language learners can eventually output only finite variants
of the target function. While it remains open whether or not partial learners
for a given BC ∗-learnable class can be made BC ∗-learners for this class without
losing identification power, some natural conditions on a BC ∗ learner M are
provided under which all classes learnable by M can be learnt by some BC ∗

learner N that is at the same time a partial learner.
Figure 1 summarises the main results of this paper. RECPart and RECAppr -

oxBC ∗Part refer respectively to partial learning of recursive functions and
approximate BC ∗ partial learning of recursive functions. The remaining learn-
ing criteria are abbreviated (see Definitions 1, 2 and 6), and denote learning of
classes of r.e. languages. An arrow from criterion A to criterion B means that the
collection of classes learnable under model A is contained in that learnable under
model B. Each arrow is labelled with the Corollary/Example/Remark/Theorem
number(s) that proves (prove) the relationship represented by the arrow. If there
is no path from A to B, then the collection of classes learnable under model A
is not contained in that learnable under model B.

2 Preliminaries

The notation and terminology from recursion theory adopted in this paper fol-
lows in general the book of Rogers [14]. Background on inductive inference can be
found in [9]. The symbol N denotes the set of natural numbers, {0, 1, 2, . . .}. Let
ϕ0, ϕ1, ϕ2, . . . denote a fixed acceptable numbering [14] of all partial-recursive
functions over N. Given a set S, S∗ denotes the set of all finite sequences in
S. Wherever no confusion may arise, S will also denote its own characteristic
function, that is, for all x ∈ N, S(x) = 1 if x ∈ S and S(x) = 0 otherwise.
One defines the e-th r.e. set We as dom(ϕe) and the e-th canonical finite set by
choosing De such that

∑
x∈De

2x = e. This paper fixes a one-one padding func-
tion pad with Wpad(e,d) = We for all e, d. Furthermore, 〈x, y〉 denotes Cantor’s

Combining Models of Approximation with Partial Learning 59

Approx

WeakApprox

ApproxPart

WeakApproxPart

ApproxBC ∗Part

ConsvPart

FinApproxConsvPart

BC ∗

FinApprox

FinApproxPart

BC n

BC nPart

FinApproxConsPart ConsPart

Part

BC ∗Part

RECPartRECApproxBC ∗Part

Exmp 8

Thm 10, Exmp 8

Thm 10

Thm 15

Thm 15

Exmp 8

Thm 9, Exmp 8

Exmp 8

Exmp 8 Thm 16

Thm 13

Exmp 8

?

Exmp 8

Exmp 8

Exmp 8 Thm 17

[7, Exmp 12] Cor 12

Thm 10

Thm 5

Fig. 1. Learning hierarchy

pairing function, given by 〈x, y〉 = 1
2 (x + y)(x + y + 1) + y. A triple 〈x, y, z〉

denotes 〈〈x, y〉, z〉.
For any σ, τ ∈ (N ∪ {#})∗, σ � τ if and only if σ is a prefix of τ , σ ≺ τ if

and only if σ is a proper prefix of τ , and σ(n) denotes the element in the nth
position of σ, starting from n = 0. The concatenation of two strings σ and τ
shall be denoted by σ ◦ τ ; for convenience, and whenever there is no possibility
of confusion, this is occasionally denoted by στ . Let σ[n] denote the sequence
σ(0) ◦ σ(1) ◦ . . . ◦ σ(n − 1). The length of σ is denoted by |σ|.

3 Learning

The basic learning paradigms studied in the present paper are behaviourally
correct learning [2,3] and partial learning [13]. These learning models assume
that the learner is presented with just positive examples of the target language,
and that the learner is fed with a finite amount of data at every stage. They are
modifications of the model of explanatory learning (or “learning in the limit”),
first introduced by Gold [8], in which the learner must output in the limit a single
correct representation h of the target language L; if L is an r.e. set, then h is
usually an r.e. index of L with respect to the standard numbering W0,W1,W2, . . .
of all r.e. sets. Bārzdiņs̆ [2] and Case [3] considered the more powerful model of

60 Z. Gao et al.

behaviourally correct learning, whereby the learner must almost always output
a correct hypothesis of the input set, but some of the correct hypotheses may
be syntactically distinct. Case and Smith [4] also introduced a less stringent
variant of BC learning of recursive functions, BC ∗ learning, which only requires
the learner to output in the limit finite variants of the target recursive function.
Still more general is the criterion of partial learning that Osherson, Stob and
Weinstein [13] defined; in this model, the learner must output exactly one correct
index of the input set infinitely often and output any other conjecture only
finitely often.

One can also impose constraints on the quality of a learner’s hypotheses. For
example, Angluin [1] introduced the notion of consistency, which is the require-
ment that the learner’s hypotheses must enumerate at least all the data seen up to
the current stage. This seems to be a fairly natural demand on the learner, for it
only requires that the learner’s conjectures never contradict the available data on
the target language. Angluin [1] also introduced the learning constraint of conser-
vativeness; intuitively, a conservative learner never makes a mind change unless
its prior conjecture does not enumerate all the current data. These two learning
criteria have since been adapted to the partial learning model [6,7].

The learning criteria discussed so far (and, where applicable, their partial
learning analogues) are formally introduced below.

Let C be a class of r.e. sets. Throughout this paper, the mode of data pre-
sentation is that of a text, by which is meant an infinite sequence of natural
numbers and the # symbol. Formally, a text TL for some L in C is a map
TL : N → N ∪ {#} such that L = range(TL); here, TL[n] denotes the sequence
TL(0) ◦ TL(1) ◦ . . . ◦ TL(n − 1) and the range of a text T , denoted range(T), is
the set of numbers occurring in T . Analogously, for a finite sequence σ, range(σ)
is the set of numbers occurring in σ. A text, in other words, is a presentation
of positive data from the target set. A learner, denoted by M in the following
definitions, is a recursive function mapping (N ∪ {#})∗ into N.

Definition 1. (i) [13] M partially (Part) learns C if, for every L in C and
each text TL for L, there is exactly one index e such that M(TL[k]) = e
for infinitely many k; furthermore, if M outputs e infinitely often on TL,
then L = We.

(ii) [3] M behaviourally correctly (BC) learns C if, for every L in C and each
text TL for L, there is a number n for which L = WM(TL[j]) whenever
j ≥ n.

(iii) [1] M is consistent (Cons) if for all σ ∈ (N ∪ {#})∗, range(σ) ⊆ WM(σ).
(iv) [1] For any text T , M is consistent on T if range(T [n]) ⊆ WM(T [n]) for all

n > 0.
(v) [7] M is said to consistently partially (ConsPart) learn C if it partially

learns C from text and is consistent.
(vi) [6] M is said to conservatively partially (ConsvPart) learn C if it partially

learns C and outputs on each text for every L in C exactly one index e
with L ⊆ We.

Combining Models of Approximation with Partial Learning 61

(vii) [4] M is said to behaviourally correctly learn C with at most a anomalies
(BC a) iff for every L ∈ C and each text TL for L, there is a number n for
which |(WM(TL[j]) − L) ∪ (L − WM(TL[j]))| ≤ a whenever j ≥ n.

(viii) [4] M is said to behaviourally correctly learn C with finitely many anomalies
(BC ∗) iff for every L ∈ C and each text TL for L, there is a number n for
which |(WM(TL[j]) − L) ∪ (L − WM(TL[j]))| < ∞ whenever j ≥ n.

This paper will also consider combinations of different learning criteria; for learn-
ing criteria A1, . . . , An, a class C is said to be A1 . . . An-learnable iff there is a
learner M such that M Ai-learns C for all i ∈ {1, . . . , n}. Due to space con-
straints, some proofs of formal statements are omitted throughout this paper.
For the full version of the paper, see http://arxiv.org/abs/1507.01215.

4 Approximate Learning of Functions

Fulk and Jain [5] proposed a mathematically rigorous definition of approximate
inference, a notion originally motivated by studies in the philosophy of science.

Definition 2. [5] An approximate (Approx) learner outputs on the graph of a
function f a sequence of hypotheses such that there is a sequence S0, S1, . . . of
sets satisfying the following conditions:
(a) The Sn form an ascending sequence of sets such that their union is the set
of all natural numbers;
(b) There are infinitely many n such that Sn+1 − Sn is infinite;
(c) The n-th hypothesis is correct on all x ∈ Sn but nothing is said about the
x /∈ Sn.

The next proposition simplifies this set of conditions. The proof is omitted.

Proposition 3. M Approx learns a recursive function f iff the following con-
ditions hold:
(d) For all x and almost all n, M ’s n-th hypothesis is correct at x;
(e) There is an infinite set S such that for almost all n and all x ∈ S, M ’s n-th
hypothesis is correct at x.

Fulk and Jain interpreted their notion of approximation as a process in scientific
inference whereby physicists take the limit of the average result of a sequence of
experiments. Their result that the class of recursive functions is approximately
learnable seems to justify this view.

Theorem 4 (Fulk and Jain [5]). There is a learner M that Approx learns
every recursive function.

The following theorem answers an open question posed by Fulk and Jain [5] on
whether the class of recursive functions has a learner which outputs a sequence
of hypotheses that approximates the function to be learnt and almost always
differs from the target only on finitely many places.

http://arxiv.org/abs/1507.01215

62 Z. Gao et al.

Theorem 5. There is a learner M which learns the class of all recursive func-
tions such that (i) M is a BC ∗ learner, (ii) M is a partial learner and (iii) M
is an approximate learner.

Proof. Let ψ0, ψ1, . . . be an enumeration of all recursive functions and some
partial ones such that in every step s there is exactly one pair (e, x) for which
ψe(x) becomes defined at step s and this pair satisfies in addition that ψe(y) is
already defined by step s for all y < x. Furthermore, a function ψe is said to
make progress on σ at step s iff ψe(x) becomes defined at step s and x ∈ dom(σ)
and ψe(y) = σ(y) for all y ≤ x.

Now one defines for every σ a partial-recursive function ϑe,σ as follows:

– ϑe,σ(x) = σ(x) for all x ∈ dom(σ);
– Let et = e;
– Inductively for all s ≥ t, if some index d < es makes progress on σ at step

s + 1 then let es+1 = d else let es+1 = es;
– For each value x /∈ dom(σ), if there is a step s ≥ t + x for which ψes,s(x) is

defined then ϑe,σ(x) takes this value for the least such step s, else ϑe,σ(x)
remains undefined.

The learner M , now to be constructed, uses these functions as hypothesis space;
on input τ , M outputs the index of ϑe,σ for the unique e and shortest prefix σ
of τ such that the following three conditions are satisfied at some time t:

– t is the first time such that t ≥ |τ | and some function makes progress on τ ;
– ψe is that function which makes progress at τ ;
– for every d < e, ψd did not make progress on τ at any s ∈ {|σ|, . . . , t} and

either ψd,|σ| is inconsistent with σ or ψd,|σ|(x) is undefined for at least one
x ∈ dom(σ).

For finitely many strings τ there might not be any such function ϑe,σ, as τ
is required to be longer than the largest value up to which some function has
made progress at time |τ |, which can be guaranteed only for almost all τ . For
these finitely many exceptions, M outputs a default hypothesis, e.g., for the
everywhere undefined function. Now the three conditions (i), (ii) and (iii) of M
are verified. For this, let ψd be the function to be learnt, note that ψd is total.

Condition (i): M is a BC ∗ learner. Let d be the least index of the function ψd

to be learnt and let u be the last step where some ψe with e < d makes progress
on ψd. Then every τ � ψd with |τ | ≥ u + 1 satisfies that first M(τ) conjectures
a function ϑe,σ with e ≥ d and |σ| ≥ u + 1 and σ � ψd and second that almost
all es used in the definition of ϑe,σ are equal to d; thus the function computed
is a finite variant of ψd and M is a BC ∗ learner.

Condition (ii): M is a partial learner. Let t0, t1, . . . be the list of all times
where ψd makes progress on itself with u < t0 < t1 <; note that whenever
τ � ψd and |τ | = tk for some k then the conjecture ϑe,σ made by M(τ) satisfies
e = d and |σ| = u+1. As none of these conjectures make progress from step u+1
onwards on ψd, they also do not make progress on σ after step |σ| and ϑe,σ = ψd;
hence the learner outputs some index for ψd infinitely often. Furthermore, all

Combining Models of Approximation with Partial Learning 63

other indices ϑe,σ are output only finitely often: if e < d then ψe makes no
progress on the target function ψd after step u; if e > d then the length of σ
depends on the prior progress of ψd on itself, and if |τ | > tk then |σ| > tk.

Condition (iii): M is an approximate learner. Conditions (d) and (e) in Propo-
sition 3 are used. Now it is shown that, for all τ � ψd with tk ≤ |τ | < tk+1, the
hypothesis ϑe,σ issued by M(τ) is correct on the set {t0, t1, . . .}. If |τ | = tk then
the hypothesis is correct everywhere as shown under condition (ii). So assume
that e > d. Then |τ | > tk and |σ| > tk, hence ϑe,σ(x) = ψd(x) for all x ≤ tk. Fur-
thermore, as ψd makes progress on σ in step tk+1 and as no ψc with c < d makes
progress on σ beyond step |σ|, it follows that the es defined in the algorithm of
ϑe,σ all satisfy es = d for s ≥ tk+1; hence ϑe,σ(x) = ψd(x) for all x ≥ tk+1.

5 Approximate Learning of Languages

This section proposes three notions of approximation in language learning. The
first two notions, approximate learning and weak approximate learning, are adap-
tations of the set of conditions for approximately learning recursive functions
given in Proposition 3. Recall that a set V is a finite variant of a set W iff there
is an x such that for all y > x it holds that V (y) = W (y).

Definition 6. Let S be a class of languages. S is approximately (Approx) learn-
able iff there is a learner M such that for every language L ∈ S there is an
infinite set W such that for all texts T and all finite variants V of W and
almost all hypotheses H of M on T , H ∩ V = L ∩ V . S is weakly approximately
(WeakApprox) learnable iff there is a learner M such that for every language
L ∈ S and for every text T for L there is an infinite set W such that for all finite
variants V of W and almost all hypotheses H of M on T , H ∩ V = L ∩ V . S is
finitely approximately (FinApprox) learnable iff there is a learner M such that
for every language L ∈ S, all texts T for L, and any finite set D, it holds that
for almost all hypotheses H of M on T , H ∩ D = L ∩ D.

Remark 7. Jain, Martin and Stephan [10] defined a partial-recursive function
C to be an In-classifier for a class S of languages if, roughly speaking, for every
L ∈ S, every text T for L, every finite set D and almost all n, C on T [n] will
correctly “classify” all x ∈ D as either belonging to L or not belonging to L.
A learner M that FinApprox learns a class S may be translated into a total
In-classifier for S, and vice versa.

Approximate learning requires, for each target language, the existence of a set
W suitable for all texts, while in weakly approximate learning the set W may
depend on T . In the weakest notion, finitely approximate learning, on any text T
for a target language L the learner is only required to be almost always correct
on any finite set. As will be seen later, this model is so powerful that the whole
class of r.e. sets can be finitely approximated by a partial learner. The following
examples illustrate the models of approximate and weakly approximate learning.

64 Z. Gao et al.

Example 8. – If there is an infinite r.e. set W such that all members of
C contain W then C is Approx learnable: the learner simply conjectures
range(σ) ∪ W on any input σ. Such C is not necessarily BC ∗ learnable.

– If C consists only of coinfinite r.e. sets then C is Approx learnable.
– The class of all cofinite sets is BC ∗ learnable and WeakApproxBC ∗Part

learnable but neither Approx learnable nor BC n learnable for any n.
– The class of all infinite sets is WeakApprox learnable.
– Gold’s class consisting of the set of natural numbers and all sets {0, 1, . . . ,m}

is not WeakApprox learnable.

The proofs are omitted. These examples establish that, in contrast to the func-
tion learning case, approximate language learnability does not imply BC ∗ learn-
ability. BC ∗ learnability does not imply approximate learnability either, but
weakly approximate learning is powerful enough to cover all BC ∗ learnable
classes.

Theorem 9. If C is BC ∗ learnable then C is WeakApprox learnable.

Proof. By Example 8, there is a learner M that weakly approximates the class
of all infinite sets. Let O be a BC ∗ learner for C. Now the new learner N is given
as follows: On input σ, N(σ) outputs an index of the following set which first
enumerates range(σ) and then searches for some τ that satisfies the following
conditions: (1) range(τ) = range(σ); (2) |τ | = 2 ∗ |range(σ)|; (3) WO(τ#s)

enumerates at least |σ| many elements for all s ≤ |σ|. If all three conditions
are met then the set contains also all elements of WM(σ). Further details are
omitted.

6 Combining Partial Language Learning With Variants
of Approximate Learning

This section is concerned with the question whether partial learners can always
be modified to approximate the target language in the models introduced above.

6.1 Finitely Approximate Learning

The first results demonstrate the power of the model of finitely approximate
learning: there is a partial learner that finitely approximates every r.e. language.

Theorem 10. The class of all r.e. sets is FinApproxPart learnable.

Proof. Let M1 be a partial learner of all r.e. sets. Define a learner M2 as follows.
Given a text T , let en = M1(T [n+1]) for all n. On input T [n+1], M2 determines
the finite set D = range(T [n+1])∩{0, . . . ,m}, where m is the minimum m ≤ n
with em = en. M2 then outputs a canonical index for D ∪ (Wen

∩ {x : x > m}).
Suppose T is a text for some r.e. set L. Then there is a least l such that M1

on T outputs el infinitely often and Wel
= L. Furthermore, there is a least l′ such

Combining Models of Approximation with Partial Learning 65

that for all l′′ > l′, DL = range(T [l′′ + 1]) ∩ {0, . . . , l} = L ∩ {0, . . . , l}. Hence
M2 will output a canonical index for L = DL ∪ (Wel

∩ {x : x > l}) infinitely
often. On the other hand, since, for every h with eh �= el and eh �= eh′ for all
h′ < h, M1 outputs eh only finitely often, M2 will conjecture sets of the form
D′ ∪ (Weh

∩ {x : x > h}) only finitely often. Thus M2 partially learns L.
To see that M2 is also a finitely approximate learner, consider any number

x. Suppose that M1 on T outputs exactly one index e infinitely often; further,
We = L and j is the least index such that ej = e. Let s be sufficiently large so that
for all s′ > s, range(T [s′ +1])∩{0, . . . ,max({x, j})} = L∩{0, . . . ,max({x, j})}.
First, assume that M1 outputs only finitely many distinct indices on T . It follows
that M1 on T converges to e. Thus M2 almost always outputs a canonical index
for (L∩{0, . . . , j})∪(Wej

∩{y : y > j}), and so it approximately learns L. Second,
assume that M1 outputs infinitely many distinct indices on T . Let d1, . . . , dx be
the first x conjectures of M1 that are pairwise distinct and are not equal to e.
There is a stage t > s large enough so that et′ /∈ {d1, . . . , dx} for all t′ > t.
Consequently, whenever t′ > t, M2 on T [t′ +1] will conjecture a set W such that
W ∩{0, . . . , x} = L∩{0, . . . , x}. This establishes that M2 finitely approximately
learns any r.e. set.

Gao, Jain and Stephan [6] showed that consistently partial learners exist for
all and only the subclasses of uniformly recursive families; the next theorem
shows that such learners can even be finitely approximate at the same time, in
addition to being prudent. A learner M is prudent if it learns the class {WM(σ) :
σ ∈ (N∪ {#})∗,M(σ) �=?}, that is, if M learns every set it conjectures [12]; the
? symbol allows M to abstain from conjecturing at any stage..

Theorem 11. If C is a uniformly recursive family, then C is FinApproxCons-
Part learnable by a prudent learner.

Proof. Let C = {L0, L1, L2, . . . , } be a uniformly recursive family. On text T ,
define M at each stage s as follows:

If there are x ∈ N and i ∈ {0, 1, . . . , s} such that
– range(T [s + 1]) − range(T [s]) = {x},
– range(T [s + 1]) ⊆ Li ∪ {#} and
– range(T [s + 1]) ∩ {0, . . . , x} = Li ∩ {0, . . . , x}

Then M outputs the least such i
Else M outputs a canonical index for range(T [s + 1]) − {#}.

The consistency of M follows directly by construction. If T is a text for a finite set
then the “Else-Case” will apply almost always and M converges to a canonical
index for range(T). Now consider that T is a text for some infinite set Lm ∈ C
and m is the least index of itself. Let t be large enough so that for all t′ > t, all
x ∈ L − range(T [t + 1]) − {#} and all j < m, Lj ∩ {0, . . . , x} �= range(T [t′ + 1])
∩ {0, . . . , x}. There are infinitely many stages s > max({t,m}) at which T (s) /∈
range(T [s]) ∪ {#} and range(T [s + 1]) ∩ {0, . . . , T (s)} = L ∩ {0, . . . , T (s)}. At
each of these stages, M will conjecture Lm. Thus M conjectures Lm infinitely
often. Furthermore, for every x there is some sx such that for all y ∈ L −

66 Z. Gao et al.

range(T [sx + 1]), it holds that y > x. Thus whenever s′ > sx, M ’s conjecture
on T [s′ + 1] agrees with L on {0, . . . , x}. M is therefore a finitely approximate
learner, implying that it never conjectures any incorrect index infinitely often.

Corollary 12. If C is ConsPart learnable, then C is FinApproxConsPart learn-
able by a prudent learner.

The following result shows that also conservative partial learning may always be
combined with finitely approximate learning.

Theorem 13. If C is ConsvPart learnable, then C is FinApproxConsvPart
learnable.

Proof. Let M1 be a ConsvPart learner for C, and suppose that M1 outputs the
sequence of conjectures e0, e1, . . . on some given text T . The construction of a
new learner M2 is similar to that in Theorem 10; however, one has to ensure
that M2 does not output more than one index that is either equal to or a proper
superset of the target language. On input T [s+1], define M2(T [s+1]) as follows.

1. If range(T [s + 1]) ⊆ {#} then output a canonical index for ∅ else go to 2.
2. Let m ≤ s be the least number such that em = es. If Wes,s ∩ {0, . . . , m} =

range(T [s + 1]) ∩ {0, . . . , m} = D then output a canonical index for D ∪
(Wem

∩ {x : x > m}) else go to 3.
3. If s ≥ 1 then output M2(T [s]) else output a canonical index for ∅.

The details for verifying that M2 is a ConsvPart learner for C are omitted.

6.2 Weakly Approximate, Approximate and BC ∗ Learning

The next proposition shows that Theorem 11 cannot be improved and gives a
negative answer to the question whether partial or consistent partial learning
can be combined with weakly approximate learning.

Proposition 14. The uniformly recursive class {A : A = N or A contains
all even and finitely many odd numbers or A contains finitely many even and
all odd numbers} is WeakApprox learnable and ConsPart learnable, but not
WeakApproxPart learnable.

The next theorem shows that neither partial learning nor consistent partial learn-
ing can be combined with approximate learning. In fact, it establishes a stronger
result: consistent partial learnability and approximate learnability are insufficient
to guarantee both partial and weakly approximate learnability simultaneously.

Theorem 15. There is a class of r.e. sets with the following properties:
(i) The class is not BC ∗ learnable;
(ii) The class is not WeakApproxPart learnable;
(iii) The class is Approx learnable.

Combining Models of Approximation with Partial Learning 67

Proof. The key idea is to diagonalise against a list M0,M1, . . . of learners which
are all total and which contains for every learner to be considered a delayed
version. This permits to ignore the case that some learner is undefined on some
input.

The class witnessing the claim consists of all sets Ld such that for each d,
either Ld is {d, d+1, . . .} or Ld is a subset built by the following diagonalisation
procedure: One assigns to each number x ≥ d a level �(x).

– If some set Ld,e = {x ≥ d : �(x) ≤ e} is infinite then
– let Ld = Ld,e for the least such e and Md does not partially learn Ld

– else let Ld = {d, d + 1, . . .} and Md does not weakly approximate Ld.

The construction of the sets is inductive over stages. For each stage s = 0, 1, 2, . . .:

– Let τe be a sequence of all x ∈ {d, d + 1, . . . , d + s − 1} with �(x) = e in
ascending order;

– If there is an e < s such that e has not been cancelled in any previous
step and for each η � τe the intersection WMd(τ0τ1...τe−1η),s ∩ {y : d ≤ y <
d + s ∧ �(y) > e} contains at least |τe| elements

• Then choose the least such e and let �(d + s) = e and cancel all e′ with
e < e′ ≤ s

• Else let �(d + s) = s.

A text T = lime σe is defined as follows (where σ0 is the empty sequence):

– Let τe be the sequence of all x with �(x) = e in ascending order;
– If σe is finite then let σe+1 = σeτe else let σe+1 = σe.

In case some σe are infinite, let e be smallest such that σe is infinite. Then T = σe

and Ld = Ld,e and T is a text for Ld. As Ld,e is infinite, one can conclude that

∀η � σe ∀c [|WMd(τ0τ1...τe−1η) ∩ {y : �(y) > e}| ≥ c]

and thus Md outputs on T almost always a set containing infinitely many ele-
ments outside Ld; so Md does neither partially learn Ld nor BC ∗ learn Ld.

In case all σe are finite and therefore all Ld,e are finite there must be infinitely
many e that never get cancelled. Each such e satisfies

∃η � τe [WMd(τ0τ1...τe−1η) ∩ {y : �(y) > e} is finite]

and therefore e also satisfies ∃η � τe [WMd(τ0τ1...τe−1η) is finite]. Thus Md outputs
on the text T for the cofinite set Ld = {d, d + 1, . . .} infinitely often a finite set
and Md is neither weakly approximately learning Ld (as there is no infinite set
on which almost all conjectures are correct) nor BC∗-learning Ld. Thus claims
(i) and (ii) are true.

Next it is shown that the class of all Ld is approximately learnable by some
learner N . This learner N will on a text for Ld eventually find the minimum
d needed to compute the function �. Once N has found this d, N will on each
input σ conjecture the set

WN(σ) = {x : x ≥ max(range(σ)) ∨ ∃y ∈ range(σ) [�(x) ≤ �(y)]}

68 Z. Gao et al.

In case Ld = Ld,e for some e, Ld,e is infinite, and for each text for Le,d, almost all
prefixes σ of this text satisfy max{�(y) : y ∈ range(σ)} = e and Ld,e ⊆ WN(σ). So
almost all conjectures are correct on the infinite set Ld itself. Furthermore, WN(σ)

does not contain any x < max(range(σ)) with �(x) > e, hence N eventually
becomes correct also on any x /∈ Ld,e and therefore N approximates Ld,e = Ld.

In case Ld = {d, d + 1, . . .}, all Ld,e are finite. Then consider the infi-
nite set S = {x : ∀y > x [�(y) > �(x)]}. Let x ∈ S and consider any
σ with min(range(σ)) = d. If x ≥ max(range(σ)) then x ∈ WN(σ). If
x < max(range(σ)) then �(max(range(σ))) ≥ �(x) and again x ∈ WN(σ). Thus
WN(σ) contains S. Furthermore, for all x ≥ d and sufficiently long prefixes σ of
the text, �(max(range(σ))) ≥ �(x) and therefore all x ∈ WN(σ) for almost all
prefixes σ of the text. So again N approximates Ld. Thus claim (iii) is true.

One can further show that the class in the above proof is explanatorily learnable
if the learner has access to an oracle for the jump of the halting set.

While these negative results suggest that approximate and weakly approx-
imate learning imposes constraints that are too stringent for combining with
partial learning, at least partly positive results can be obtained. For example,
the following theorem shows that ConsvPart learnable classes are ApproxPart
learnable (thus dropping only the conservativeness constraint) by BC ∗ learners.
This considerably improves an earlier result by Gao, Stephan and Zilles [7] which
states that every ConsvPart learnable class is also BC ∗ learnable.

Theorem 16. If C is ConsvPart learnable then C is ApproxPart learnable by a
BC ∗ learner.

Proof. Let M be a ConsvPart learner for C. For a text T for a language L ∈
C, one considers the sequence e0, e1, . . . of distinct hypotheses issued by M ; it
contains one correct hypothesis while all others are not indices of supersets of
L. For each hypothesis en one has two numbers tracking its quality: bn,t is the
maximal s ≤ n + t such that all T (u) with u < s are in Wen,n+t ∪ {#} and
an,t = 1 + max{bm,t : m < n}.

Now one defines the hypothesis set Hen,σ for any sequence σ. Let en,0, en,1, . . .
be a sequence with en,0 = en and en,u be the em for the minimum m such that
m = n or Wem

has enumerated all members of range(σ) within u+ t time steps.
The set Hen,σ contains all x for which there is a u ≥ x with x ∈ Wen,u

.
An intermediate learner O now conjectures some canonical index of a set

Hen,σ at least k times iff there is a t with σ = T (0)T (1) . . . T (an,t) and bn,t > k.
Thus O conjectures Hen,σ infinitely often iff Wen

contains range(T) and an,t =
|σ| for almost all t.

If en is the correct index for the set to be learnt then, by conservative-
ness, the sets Wem

with m < n are not supersets of the target set. So the
values bm,t converge which implies that an,t converges to some s. It follows that
for the prefix σ of T of length s, the canonical index of Hen,σ is conjectured
infinitely often while no other index is conjectured infinitely often. Thus O is a
partial learner. Furthermore, for all sets Hem,τ conjectured after an,t has reached
its final value s, it holds that the em,u in the construction of Hem,τ converge

Combining Models of Approximation with Partial Learning 69

to en. Thus Hem,τ is the union of Wen
and a finite set. Hence O is a BC ∗ learner.

To guarantee the third condition on approximate learning, O will be translated
into another learner N .

Let d0, d1, . . . be the sequence of O output on the text T . Now N will copy
this sequence but with some delay. Assume that N(σk) = dk and σk is a prefix of
T . Then N will keep the hypothesis dk until the current prefix σk+1 considered
satisfies either range(σk+1) �⊆ range(σk) or Wdk,|σk+1| �= range(σk+1).

If range(T) is infinite, the sequence of hypotheses of N will be the same as
that of O, only with some additional delay. Furthermore, almost all Wdn

contain
range(T), thus the resulting learner N learns range(T) and is almost always
correct on the infinite set range(T); in addition, N learns range(T) partially
and is also BC ∗. If range(T) is finite, there will be some correct index that
equals infinitely many dn. There is a step t by which all elements of range(T)
have been seen in the text and enumerated into Wdn

. Therefore, when the learner
conjectures this correct index again, it will never withdraw it; furthermore, it
will replace eventually every incorrect conjecture due to the comparison of the
two sets. Thus the learner converges explanatorily to range(T) and is also in
this case learning range(T) in a BC ∗ way, partially and approximately. From
the proof of Theorem 10, one can see that N may be translated into a learner
satisfying all the three requirements (a), (b) and (c).

Case and Smith [4] published Harrington’s observation that the class of recursive
functions is BC ∗ learnable. This result does not carry over to the class of r.e.
sets; for example, Gold’s class consisting of the set of natural numbers and all
finite sets is not BC ∗ learnable. In light of Theorem 5, which established that
the class of recursive functions can be BC ∗ and Part learnt simultaneously, it
is interesting to know whether any BC ∗ learnable class of r.e. sets can be both
BC ∗ and Part learnt at the same time. While this question in its general form
remains open, the next result shows that BC n learning is indeed combinable
with partial learning.

Theorem 17. Let n ∈ N. If C is BC n learnable, then C is Part learnable by a
BC n learner.

Proof. Fix any n such that C is BC n learnable. Given a recursive BC n learner
M of C, one can construct a new learner N1 as follows. First, let F0, F1, F2, . . .
be a one-one enumeration of all finite sets such that |Fi| ≤ n for all i. Fix a text
T , and let e0, e1, e2, . . . be the sequence of M ’s conjectures on T .

For each set of the form Wei
∪ Fj (respectively Wei

− Fj), N1 outputs a
canonical index for Wei

∪ Fj (respectively Wei
− Fj) at least m times iff the

following two conditions hold.

1. There is a stage s > j for which the number of distinct x < j such that
either x ∈ Wei,s ∧ x /∈ range(T [s + 1]) or x ∈ range(T [s + 1]) ∧ x /∈ Wei,s

holds does not exceed n.
2. There is a stage t > m such that for all x < m, x ∈ Wei,t ∪ Fj iff x ∈

range(T [t + 1]) (respectively x ∈ Wei,t − Fj iff x ∈ range(T [t + 1])).

70 Z. Gao et al.

At any stage T [s+1] where no set of the form Wei
∪Fj or Wei

−Fj satisfies the
conditions above, or each such set has already been output the required number
of times (up to the present stage), N1 outputs M(T [s+1]). The details showing
that a BC nPart learner N for C can be constructed from N1 are omitted.

Theorems 18 and 19 show that partial BC ∗ learning is possible for classes that
can be BC ∗ learned by learners that satisfy some additional constraints. The
proofs are omitted.

Theorem 18. Assume that C is BC ∗ learnable by a learner that outputs on
each text for any L ∈ C at least once a fully correct hypothesis.Then C is Part
learnable by a BC ∗ learner.

Theorem 19. Suppose there is a recursive learner that BC ∗ learns C and out-
puts on every text for any L ∈ C at least one index infinitely often. Then there
is a recursive learner for C that BC ∗ and Part learns C.

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45(2), 117–135 (1980)

2. Bārzdiņs̆, J.: Two theorems on the limiting synthesis of functions. In: Theory of
Algorithms and Programs, vol. 1, pp. 82–88. Latvian State University (1974) (in
Russian)

3. Case, J., Lynes, C.: Machine inductive inference and language identification. In:
Nielsen, M., Schmidt, E.M. (eds.) Automata, Languages and Programming. LNCS,
vol. 140, pp. 107–115. Springer, Heidelberg (1982)

4. Case, J., Smith, C.: Comparison of identification criteria for machine inductive
inference. Theoretical Computer Science 25, 193–220 (1983)

5. Fulk, M., Jain, S.: Approximate inference and scientific method. Information and
Computation 114, 179–191 (1994)

6. Gao, Z., Jain, S., Stephan, F.: On conservative learning of recursively enumer-
able languages. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS,
vol. 7921, pp. 181–190. Springer, Heidelberg (2013)

7. Gao, Z., Stephan, F., Zilles, S.: Partial learning of recursively enumerable lan-
guages. In: Jain, S., Munos, R., Stephan, F., Zeugmann, T. (eds.) ALT 2013.
LNCS, vol. 8139, pp. 113–127. Springer, Heidelberg (2013)

8. Gold, E.M.: Language identification in the limit. Information and Control 10,
447–474 (1967)

9. Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems that learn: an introduction
to learning theory. MIT Press (1999)

10. Jain, S., Martin, E., Stephan, F.: Learning and classifying. Theoretical Computer
Science 482, 73–85 (2013)

11. Martin, E., Osherson, D.N.: Elements of scientific inquiry. MIT Press (1998)
12. Osherson, D.N., Stob, M., Weinstein, S.: Learning strategies. Information and Con-

trol 53, 32–51 (1982)
13. Osherson, D.N., Stob, M., Weinstein, S.: Systems that learn: an introduction to

learning theory for cognitive and computer scientists. MIT Press (1986)
14. Rogers, Jr., H.: Theory of recursive functions and effective computability. MIT

Press (1987)

Learning from Queries,
Teaching Complexity

Exact Learning of Multivalued Dependencies

Montserrat Hermo1 and Ana Ozaki2(B)

1 Languages and Information Systems,
University of the Basque Country, Leioa, Spain

montserrat.hermo@ehu.es
2 Department of Computer Science, University of Liverpool, Liverpool, UK

anaozaki@liverpool.ac.uk

Abstract. The transformation of a relational database schema into
fourth normal form, which minimizes data redundancy, relies on the cor-
rect identification of multivalued dependencies. In this work, we study
the learnability of multivalued dependency formulas (MVDF), which cor-
respond to the logical theory behind multivalued dependencies. As we
explain, MVDF lies between propositional Horn and 2-Quasi-Horn. We
prove that MVDF is polynomially learnable in Angluin et al.’s exact
learning model with membership and equivalence queries, provided that
counterexamples and membership queries are formulated as 2-Quasi-
Horn clauses. As a consequence, we obtain that the subclass of 2-Quasi-
Horn theories which are equivalent to MVDF is polynomially learnable.

1 Introduction

Among the models proposed to represent databases, since its presentation by
Codd [6], the relational model has been the most successful one. In this model,
data is represented by tuples which are grouped into relations. Different types
of formalisms based on the concept of data dependencies have been used to
design and analyse database schemas. Data dependencies can be classified as
functional [6], or multivalued [7,8] (also called tuple generating), where the latter
is a generalization of the first. Functional dependencies correspond to the Horn
fragment of propositional logic in the sense that one can map each functional
dependency to a Horn clause preserving the logical consequence relation [11,15].
The same correspondence can be established between multivalued dependencies
and multivalued dependency formulas (MVDF) [5,11]. They have long been
studied in the literature and it is well known that the transformation of a rela-
tional database schema into the fourth normal form (4NF), which minimizes
data redundancy, relies on the identification of multivalued dependencies [8].

In this work, we cast the problem of identifying data dependencies as a
learning problem and study the learnability of MVDF, which correspond to the
logical theory behind data dependencies. Identification of the Horn fragment
from interpretations in Angluin’s exact learning model is stated in [4], and later
an algorithm that learns Horn from entailments is presented in [9]. Furthermore,
a variant that learns sets of functional dependencies appears in [10]. Regarding
c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 73–88, 2015.
DOI: 10.1007/978-3-319-24486-0 5

74 M. Hermo and A. Ozaki

MVDF, it is known that this class cannot be learned either using equivalence
[3] or membership queries alone [13], and that a particular subclass of them is
learnable when both types of queries are allowed [12]. However, to the best of our
knowledge, there is no positive result for the general class MVDF using member-
ship and equivalence queries. One of main obstacles to find a learning algorithm
for MVDF is the fact the MVDF theories are not closed under intersection in
contrast to the Horn case [5]. In general, given a multivalued dependency for-
mula, there is not a unique minimal model that satisfies both the formula and a
particular set of variables, a property extensively exploited by Horn algorithms.

A major open problem in learning theory (and also within the exact learning
model) is whether the class CNF (or the class DNF) can be efficiently learnable.
Although it is known that this class cannot be polynomially learned using either
membership or equivalence queries alone [2,3], it is open whether CNF can be
learned using both types of queries. Several restrictions have been imposed on
both CNF and DNF in order to make them polynomially learnable. For instance,
the classes monotone DNF [2], i.e., DNF formulas with no negated variables, k-
term DNF or k-clause CNF [1], that is, DNF or CNF formulas with at most k
terms or k clauses, and read-twice DNF [14], which are DNF where each variable
occurs at most twice, are all polynomially learnable via queries.

One of the most important results concerning a restriction of the class CNF
appears in the mentioned article [4], where propositional Horn formulas are
learned using both types of queries. In fact, Horn is a special case of a class
called k-quasi-Horn, meaning that clauses may contain at most k unnegated
literals. However, it is pointed in [4] that, even for k = 2, learning the class
of k-quasi-Horn formulas is as hard as learning CNF. Thus, if exact learning
CNF is indeed intractable, the boundary of what can be learned in polynomial
time with queries lies between 1-quasi-Horn (or simply Horn) and 2-quasi-Horn
formulas. Since MVDF is a natural restriction of 2-quasi-Horn and a non-trivial
generalization of Horn, investigating how far this boundary can be extended con-
stitutes one of our main motivations and guide for this work, which is theoretical
in nature.

In this paper, we give a polynomial algorithm that exactly learns MVDF
using membership and equivalence queries. Membership queries and counterex-
amples given by the oracle are formulated as 2-quasi-Horn clauses. As a conse-
quence, an algorithm that efficiently learns the subclass of 2-quasi-Horn formulas
which are equivalent to multivalued dependency formulas is obtained. The paper
is organized as follows. In Section 2 we introduce some notation and give def-
initions for MVDF and the class of k-quasi-Horn formulas. Section 3 shows a
property that is crucial to learn the class MVDF: (although not unique) the
number of minimal models that satisfy a multivalued dependency formula and a
set of variables is polynomial in the size of the formula. In Section 4 we present
our algorithm that efficiently learns the class MVDF from 2-quasi-Horn clauses.
We end in Section 5 with some concluding remarks and open problems.

Exact Learning of Multivalued Dependencies 75

2 Preliminaries

Exact Learning. Let E be a set of examples (also called domain or instance
space). A concept over E is a subset of E and a concept class is a set C of
concepts over E. Each concept c over E induces a dichotomy of positive and
negative examples, meaning that e ∈ c is a positive example and e ∈ E \ c is a
negative example. For computational purposes, concepts need to be specified by
some representation. So we define a learning framework to be a triple (E,L, μ),
where E is a set of examples, L is a set of concept representations and μ is a
surjective function from L to a concept class C of concepts over E.

Given a learning framework (E,L, μ), for each l ∈ L, denote by MEMl,E the
oracle that takes as input some e ∈ E and returns ‘yes’ if e ∈ μ(l) and ‘no’
otherwise. A membership query is a call to an oracle MEMl,E with some e ∈ E
as input, for l ∈ L and E. Similarly, for every l ∈ L, we denote by EQl,E the
oracle that takes as input a concept representation h ∈ L and returns ‘yes’, if
μ(h) = μ(l), or a counterexample e ∈ μ(h) ⊕ μ(l), otherwise. An equivalence
query is a call to an oracle EQl,E with some h ∈ L as input, for l ∈ L and E.

We say that a learning framework (E,L, μ) is exact learnable if there is an
algorithm A such that for any target l ∈ L the algorithm A always halts and
outputs l′ ∈ L such that μ(l) = μ(l′) using membership and equivalence queries
answered by the oracles MEMl,E and EQl,E , respectively. A learning framework
(E,L, μ) is polynomially exact learnable if it is exact learnable by an algorithm
A such that at every step of computation the time used by A up to that step is
bounded by a polynomial p(|l|, |e|), where l is the target and e ∈ E is the largest
counterexample seen so far1.
Multivalued Dependencies and K-quasi-Horn Formulas. Let V be a set
of boolean variables. The logical constant true is represented by T and the logical
constant false is represented by F. An mvd clause is an implication X → Y ∨ Z,
where X, Y and Z are pairwise disjoint conjunctions of variables from V and
X ∪ Y ∪ Z = V . An mvd formula is a conjunction of mvd clauses. A k-quasi-
Horn clause is a propositional clause containing at most k unnegated literals.
A k-quasi-Horn formula is a conjunction of k-quasi-Horn clauses. To simplify
the notation, we treat sometimes conjunctions as sets and vice versa. Also, if
for example V = {v1, v2, v3, v4, v5, v6} is a set of variables and ϕ = (v1 →
(v2 ∧ v3) ∨ (v4 ∧ v5 ∧ v6)) ∧ ((v2 ∧ v3) → (v1 ∧ v5 ∧ v6) ∨ v4) is a formula then we
write ϕ in this shorter way: {1 → 23 ∨ 456, 23 → 156 ∨ 4}, where conjunctions
between variables are omitted and each propositional variable vi ∈ V is mapped
to i ∈ N. From the definitions above it is easy to see that:

1. any Horn clause is logically equivalent to a set of 2 mvd clauses. For instance,
the Horn clause 135 → 4, is equivalent to: {12356 → 4, 135 → 4 ∨ 26};

2. any mvd clause is logically equivalent to a conjunction of 2-quasi-Horn
clauses with size polynomial in the number of variables. For instance, the

1 We count each call to an oracle as one step of computation. Also, we assume some
natural notion of length for an example e and a concept representation l, denoted
by |e| and |l|, respectively.

76 M. Hermo and A. Ozaki

mvd clause 1 → 23 ∨ 456, by distribution, is equivalent to: {1 → 2 ∨ 4, 1 →
2 ∨ 5, 1 → 2 ∨ 6, 1 → 3 ∨ 4, 1 → 3 ∨ 5, 1 → 3 ∨ 6}.

Remark 1. Point 1 above means that w.l.o.g. we can assume that any mvd clause
is either V → F or V \ {v} → v or of the form X → Y ∨ Z with Y and Z non-
empty. We call Horn-like clauses of the form V \ {v} → v. Note that T → V ≡
{T → v | v ∈ V } and each T → v is equivalent to {T → V \{v}∨v, V \{v} → v}.

Formally, in this paper we study the learning framework FM = (EQ,LM , μM),
where EQ is the set of all 2-quasi-Horn clauses in the propositional variables V
under consideration, LM is MVDF, which is the set of all mvd formulas that can
be expressed in V and, for every T ∈ LM , μM (T) = {e ∈ EQ | T |= e}. Note
that learning MVDF from 2-quasi-Horn examples also corresponds to learning
the set of all 2-quasi-Horn formulas that can be constructed by distribution from
any mvd formula.

An interpretation I is a mapping from V ∪ {T,F} to {true, false}, where
I(T) = true and I(F) = false. We denote by true(I) the set of variables
assigned to true in I. In the same way, let false(I) be the set of variables assigned
to false in I. Observe that false(I) = V \ true(I). Let H and T be sets of mvd
clauses. If I |= H and I 	|= T then we say that I is a negative countermodel w.r.t.
T . We follow the terminology provided in [4] and say that an interpretation I
covers X → Y ∨ Z if X ⊆ true(I). An interpretation I violates X → Y ∨ Z
if I covers X → Y ∨ Z and: (a) Y and Z are non-empty and there are v ∈ Y
and w ∈ Z such that v, w ∈ false(I); or (b) there is v such that false(I) = {v}
and X → Y ∨ Z is the Horn-like clause V \ {v} → v; or (c) false(I) = ∅ and
X → Y ∨ Z is the clause V → F. Given two interpretations I and J , we define
I ∩ J to be the interpretation such that true(I ∩ J) = true(I) ∩ true(J).

3 Computing Minimal Models

In this section, we present Algorithm 1, which computes in polynomial time all
minimal models (i.e. models with minimal number of variables assigned to ‘true’)
satisfying both a set P of mvd clauses that have the form X ′ → Y ′ ∨ Z ′ with
Y ′ and Z ′ non-empty and a set of variables X (Horn-like clauses are treated
in Line 15). To ensure the existence of minimal models, we consider P such
that P does not contain V → F. Algorithm 1 receives P and X as input and
constructs a semantic tree, in the sense that each child node satisfies one of the
two consequents of an mvd clause. In each iteration of the main loop we ‘apply’
an mvd clause, meaning that, given a tree leaf node, we pick a (not used) mvd
clause X ′ → Y ′ ∨ Z ′ ∈ P and construct two child nodes, one of them containing
variables in Y ′ and the other variables in Z ′. We exhaustively apply mvd clauses
in P so that in the end each leaf node contains a set of variables that need to
be true in order to satisfy both X and P.

The following information is stored for each node i: a set Mi of mvd clauses
in P that have not yet been applied in the i-node path; a set Si of variables
implied by X and by mvd clauses that have already been applied (i.e. clauses

Exact Learning of Multivalued Dependencies 77

in P \ Mi); and, to simplify the presentation, we also use an auxiliary set Ni of
variables which are ‘new’ in the path, that is, if node a is predecessor of node
i in the tree then a does not have these variables in Sa. The following example
illustrates how the algorithm works.

Algorithm 1. Semantic Tree

1: Let S = ∅ be a set of interpretations
2: Let P be a set of mvd clauses without V → F and X a set of variables
3: function SemanticTree(P, X)
4: Create a node i = 0 with S0 = X, N0 = ∅ and M0 = P
5: repeat
6: Choose a leaf i and X ′ → Y ′ ∨ Z′ ∈ Mi with Y ′ �= ∅, Z′ �= ∅ and X ′ ⊆ Si

7: if there is v ∈ Y ′ ∪ Z′ such that v �∈ Si then
8: Create a new node 2i+ 1 as a child of i
9: S2i+1 = Si ∪ Y ′, N2i+1 = Y ′ \ Si, and M2i+1 = Mi \ {X ′ → Y ′ ∨ Z′}
10: Create a new node 2i+ 2 as a child of i
11: S2i+2 = Si ∪ Z′, N2i+2 = Z′ \ Si, and M2i+2 = Mi \ {X ′ → Y ′ ∨ Z′}
12: end if
13: until no more nodes can be created
14: for every node j that is a leaf do
15: Create I with true(I) = Sj ∪ {v | Sj = V \ {v} and V \ {v} → v ∈ P}
16: S := S ∪ {I}
17: end for
18: return (S)
19: end function

Example. Let X = {1, 2, 3, 4} and P = {c1 = 13 → 257 ∨ 468, c2 = 12 →
34 ∨ 5678, c3 = 145 → 26 ∨ 378, c4 = 1234567 → 8} be a set of mvd clauses. In

Line 6, the choice of an mvd clause made by Algorithm 1 is non-deterministic and

in this example we choose clauses in the same order they appear above. The root

of the semantic tree of P and X has S0 = {1, 2, 3, 4}, N0 = {1, 2, 3, 4}, and M0 =

{c1, c2, c3, c4}. Choosing the first clause c1 we have S1 = {1, 2, 3, 4, 5, 7}, N1 = {5, 7},
S2 = {1, 2, 3, 4, 6, 8}, N2 = {6, 8}, and M1 = M2 = {c2, c3, c4}. Now we choose the

second clause c2 to obtain S3 = S1, N3 = ∅, S4 = {1, 2, 3, 4, 5, 6, 7, 8}, N4 = {6, 8},
S5 = S2, N5 = ∅, S6 = S4, N6 = {5, 7} and M3 = M4 = M5 = M6 = {c3, c4}.

{1, 2, 3, 4}
{6, 8}{5, 7}

{5, 7}{}{6, 8}
{8}{6}

{}

Fig. 1. Semantic Tree

Finally, we choose third clause. Figure 1 illus-

trates the sets Ni, which represent the new vari-

ables in each node. In Line 15, Algorithm 1 checks

that the antecedent of c4 is satisfied in node 7

and adds variable 8 to its corresponding inter-

pretation. Algorithm 1, returns S = {I1, I2, I3},
with true(I1) = {1, 2, 3, 4, 5, 6, 7, 8}, true(I2) =

{1, 2, 3, 4, 5, 7, 8} and true(I3) = {1, 2, 3, 4, 6, 8}.
The following Theorem shows that Algo-

rithm 1 runs in polynomial time and that the returned set S includes all minimal
models satisfying P and X.

78 M. Hermo and A. Ozaki

Theorem 1. Let P be a set of mvd clauses and X a set of variables. One can
construct in polynomial time a set of interpretations S that verifies the following
properties:

1. if I ∈ S then I |= P;
2. if J |= P and X ⊆ true(J) then there is I ∈ S such that true(I) ⊆ true(J).

Proof. Let S be the return value of Algorithm 1 with P and X as input. Point
(1) is a corollary of a more general one: for all nodes i in a semantic tree, the
interpretation J defined as true(J) = Si is a model of the set of mvd clauses
X ′ → Y ′ ∨ Z ′ ∈ P \ Mi with Y ′ and Z ′ non-empty. The proof of this fact is
by induction in the number of levels of the semantic tree. (Algorithm 1 treats
Horn-like clauses in Line 15.) Point (2) is a corollary of a more general one: if
J |= P and X ⊆ true(J), then there exists a path from the root to a node k
that is leaf, in such a way that Sk ⊆ true(J). The proof of this fact is again by
induction in the number of levels of the semantic tree.

Now, it remains to show that the construction of S is in polynomial time.
Let n = |V | and m = |P|. The fact that the number of nodes of any semantic
tree for P and X is bounded by 2 × n × m follows from the next 3 claims.

Claim 1. For any level j whose nodes are j1, j2, . . . jk, the set {Nj1 , Nj2 , . . . , Njk}
is pairwise disjoint. .

Suppose at level j there are nodes a1 and a2 and a variable v such that
v ∈ Na1 ∩ Na2 . This means that in the lowest common ancestor c of both
nodes a1 and a2, we have that v 	∈ Sc. Then, by construction of the semantic
tree, this also means that exactly one of the two children b1 or b2 of the ancestor
c must have introduced v in Sb1 or in Sb2 . Therefore, it is not possible to find
v ∈ Na1 ∩ Na2 .

Claim 2. For any level j whose nodes are j1, j2, . . . jk, the set {Nj1 , Nj2 , . . . , Njk}
contains at most k/2 empty sets. .

In the execution of Algorithm 1, whenever two children of a node are created,
at least one new variable is introduced in at least one of the siblings.

Thus, the number of nodes in each level is bounded by 2 × n.

Claim 3. The depth of a semantic tree for P is bounded by m. .

This is because any mvd clause is used at most once along a branch. Note that
this claim also ensures termination. ❏

It is worth saying that Algorithm 1 allows us to decide whether a set of mvd
clauses P is satisfiable. Note that if V → F 	∈ P then P is trivially satisfiable.
Otherwise, we only need to set the input X as empty and check whether S
(the return of Algorithm 1) contains only I such that true(I) = V . If so then
P ∪ {V → F} is unsatisfiable.

Exact Learning of Multivalued Dependencies 79

4 Learning MVDF from 2-Quasi-Horn

In this section we present an algorithm that learns the class MVDF from 2-quasi-
Horn. More precisely, we show that the learning framework FM = (EQ,LM , μM)
(defined in the Preliminaries) is polynomially exact learnable.

Algorithm 2 maintains a sequence L of interpretations used to construct the
learner’s hypothesis H. In each iteration of the main loop, if H is not equivalent
to the target T then the oracle EQT ,EQ

provides the learner with a 2-quasi-Horn
clause c that is a positive counterexample. That is, T |= c and H 	|= c. The
assumption that the counterexample is positive is justified by the construction
of H, which ensures at all times that T |= H. Each positive counterexample is
used to construct a negative countermodel that either refines an element of L, or
is added to the end of L. In order to learn all of the clauses in T , we would like
the clauses induced by the elements in L to approximate distinct clauses in T .
This will happen if at most polynomially many elements in L violate the same
clause in T . As explained in [4], overzealous refinement may result in several
elements in L violating the same clause of T . This is avoided in Algorithm 2 by
(1) refining at most one (the first) element of L per iteration and (2) previously
refining the constructed countermodel with the elements of L.

The following notion essentially describes under which conditions we say that
it is ‘good’ to refine an interpretation (which can be either a countermodel or
an element of L). There are two cases this can happen in our algorithm: (1) an
element in L is refined with a countermodel (Line 10 of Algorithm 2) or (2) the
countermodel is refined with some element in L (Line 5 of Algorithm 3).

Definition 1. We say that a pair (I,J) of interpretations is a goodCandidate
if: (i) true(I ∩ J) ⊂ true(I); (ii) I ∩ J |= H; and (iii) I ∩ J 	|= T .

Algorithms for Horn formulas in [4,9] use a notion of ‘goodCandidate’ that
is more relaxed than ours. They only need conditions (i) and (iii). The reason
is that (ii) always holds because the intersection of two models of a set of Horn
clauses H is also a model of H. The lack of this property in the case of MVDF has
two consequences. The first one is that there is not a unique minimal model that
satisfies both an mvd formula and a particular set of variables. We solved this
problem in the previous section, by constructing a semantic tree. The second
consequence is that in the Horn algorithm [4] only a single interpretation of
the sequence that the algorithm maintains can violate a Horn clause from the
target. However, in our algorithm any mvd clause of the target T can be violated
by polynomially many interpretations of the sequence L. This fact causes that,
eventually, a polynomial amount of interpretations can be removed from L.

Remark 2. In the rest of this paper we consider interpretations I such that
|false(I)| ≥ 1. This is justified by the fact that in Line 1 of Algorithm 2 we check
whether T |= V → F and if so we add it to H0. Then, any negative countermodel
I computed in Line 6 is such that |false(I)| ≥ 1.

80 M. Hermo and A. Ozaki

Lemma 1 shows how the learner can decide Point (iii) of Definition 1 with
polynomially many 2-quasi-Horn entailment queries. It also shows how Line 6 of
Algorithm 2 can be implemented.

Lemma 1. Let I be an interpretation and T the target (set of mvd clauses).
One can decide in polynomial time whether I satisfies T using polynomially
many 2-quasi-Horn entailment queries.

Proof. Let C = {true(I) → v ∨ w | v, w ∈ false(I), T |= true(I) → v ∨ w} ∪
{true(I) → v | true(I) = V \ {v}, T |= true(I) → v}. We show that I does not
satisfy T if, and only if, there is c ∈ C such that T |= c. (⇒) If I does not satisfy
T then there is X → Y ∨ Z ∈ T that is violated by I. That is, X ⊆ true(I)
and: (a) Y and Z are non-empty and there are v ∈ Y and w ∈ Z such that
v, w ∈ false(I); or (b) there is v such that false(I) = {v} and X → Y ∨ Z is the
Horn-like clause V \ {v} → v. In case (a) we have that T |= true(I) → v ∨ w.
In case (b) we have T |= true(I) → v (meaning that T |= V \ {v} → v). (⇐)
Follows from the fact that for all c ∈ C, I 	|= c. ❏

In Line 5 Algorithm 2 calls a function that builds a semantic tree (Algo-
rithm 1) for H and the antecedent of the counterexample given in Line 4. Using
this tree, by Lemma 2, one can create in polynomial time a set of interpretations
S such that (i) for all I ∈ S, I |= H and (ii) there is an interpretation I ∈ S
such that I 	|= T . That is, there is I ∈ S such that I is a negative countermodel.

Lemma 2. Let c be a positive counterexample received in Line 4 of Algorithm
2. That is, T |= c and H 	|= c. One can construct in polynomial time a set of
interpretations S such that all elements of S satisfy H and, at least, one element
of S does not satisfy T .

Proof. Let S be return of Algorithm 1 with H and X as the input, where X is
the set of variables in the antecedent of c. S verifies the following properties: (1)
if I ∈ S then I |= H; (2) if J |= H and X ⊆ true(J) then there is I ∈ S such
that true(I) ⊆ true(J); and (3) there is an interpretation I ∈ S such that I 	|= T .
By Theorem 1 we have Points (1) and (2) and the fact that S is computed in
polynomial time w.r.t. |T |. For Point (3), we show that there is an interpretation
I ∈ S such that I 	|= T . As H 	|= c, there must exist an interpretation J such
that J |= H and J 	|= c. Thus, X ⊆ true(J) and by Points (1) and (2), there
must exist I |= H such that true(I) ⊆ true(J). Since for all I ∈ S, we have that
X ⊆ true(I), the latter fact ensures that I 	|= c and therefore I 	|= T . ❏

Given a set of 2-quasi-Horn clauses, Algorithm 4 transforms each 2-quasi-
Horn clause c into an mvd clause c′ such that {c′} |= c with polynomially many
2-quasi-Horn entailment queries. This property is exploited by the learner to
generate mvd clauses for the hypothesis in Line 15 of Algorithm 2. Lines 5-11 of
Algorithm 4 rely on Lemma 4. Lemma 4 requires the following technical lemma.

Lemma 3. Let T be a set of mvd clauses. If I1 and I2 are models such that
I1 |= T and I2 |= T , but I1 ∩ I2 	|= T , then true(I1) ∪ true(I2) = V .

Exact Learning of Multivalued Dependencies 81

Proof. If I1 |= T , I2 |= T and I1∩I2 	|= T then there is X → Y ∨Z ∈ T such that
X ⊆ true(I1 ∩ I2) and v, w ∈ false(I1 ∩ I2) with v ∈ Y and w ∈ Z. Suppose v 	∈
true(I1)∪ true(I2). Then, as I1 |= T and I2 |= T , we have that w ∈ true(I1∩I2).
This contradicts the fact that w ∈ false(I1 ∩ I2). Thus, either v ∈ true(I1) or
v ∈ true(I2). By the same argument we also have w ∈ true(I1) ∪ true(I2). As
v, w ∈ false(I1 ∩ I2) are arbitrary variables such that v ∈ Y and w ∈ Z, this
holds for any v, w with these properties. Since X ⊆ true(I1 ∩ I2), we also have
that X ⊆ true(I1) ∪ true(I2). Then true(I1) ∪ true(I2) = X ∪ Y ∪ Z = V . ❏

Lemma 4. Let T be a set of mvd clauses. If T |= V1 → V2 ∨ V3 then either
T |= V1 → V2{v} ∨ V3 or T |= V1 → V2 ∨ V3{v}, where V1, V2, V3, {v} ⊆ V and
V2, V3 are non-empty2.

Proof. We can assume that v 	∈ V1 and the proof is by reduction to the absurd:
suppose T |= V1 → V2 ∨V3 but T 	|= V1 → V2{v}∨V3 and T 	|= V1 → V2 ∨V3{v}.
Then, there are two models I1 and I2 such that: (a) I1 |= T and I2 |= T ; (b)
I1 |= V1 → V2 ∨ V3 and I2 |= V1 → V2 ∨ V3; and (c) I1 	|= V1 → V2{v} ∨ V3

and I2 	|= V1 → V2 ∨ V3{v}. If I is a model such that I 	|= V1 → V2 ∨ V3,
then V1 ⊆ true(I). Then, by Point (c), we can ensure that V1 ⊆ true(I1) ∩
true(I2) and using Point (b), also that: V2 ⊆ true(I1) or V3 ⊆ true(I1); and;
V2 ⊆ true(I2) or V3 ⊆ true(I2).

We analyze all possibilities: V3 ⊆ true(I1) and V2 ⊆ true(I2) do not occur
because it is a contradiction with Point (c). W.l.o.g. the only possibility is that:
V2 ⊆ true(I1), V3 ⊆ true(I2) and v 	∈ true(I1) ∩ true(I2). As v is neither in
true(I1) nor in true(I2), we have that true(I1)∪ true(I2) 	= V . By Lemma 3 and
Point (a), necessarily we have I1 ∩ I2 |= T . But this is a contradiction with our
assumption that T |= V1 → V2 ∨ V3, because we have found the model I1 ∩ I2,
which is a model of T , but is not a model of V1 → V2 ∨ V3. ❏

If Algorithm 2 terminates, then it obviously has found a H that is logically
equivalent to T . It thus remains to show that the algorithm terminates in poly-
nomial time. We can see the hypothesis H as a sequence of sets of entailments,
where each Hi corresponds to the transformation of the set “BuildClauses” with
Ii in L as input into mvd clauses (Line 15 of Algorithm 2). By Line 2 of Algo-
rithm 2 the number of entailments created by “BuildClauses” is bounded by
|V |2 + 1. Lemmas 5 to 10 show that at all times the number of interpretations
that violate a clause in T is bounded by |V |.
Lemma 5. Let L be the sequence produced by Algorithm 2. Assume an interpre-
tation I violates c ∈ T . For all Ii ∈ L such that Ii covers c, true(Ii) ⊆ true(I)
if, and only if, I 	|= BuildClauses(Ii).

Proof. Let c be the mvd clause X → Y ∨ Z. The (⇐) direction is trivial. Now,
suppose that true(Ii) ⊆ true(I) to prove (⇒). As I 	|= X → Y ∨ Z, we have
that X ⊆ true(I) and: (a) Y and Z are non-empty and there are v ∈ Y and

2 Vi{v} is the conjunction of variables in Vi and v, where i ∈ {1, 2}.

82 M. Hermo and A. Ozaki

Algorithm 2. Learning algorithm for MVDF by 2-quasi-Horn
1: Let H0 = {V → F | T |= V → F}, L = ∅, H = H0

2: Let BuildClauses(I) be the function that given an interpretation I with |false(I)| ≥
1 returns {true(I) → v ∨ w | v, w ∈ false(I), T |= true(I) → v ∨ w} ∪ {true(I) →
v | true(I) = V \ {v}, T |= true(I) → v}

3: while H �≡ T do
4: Let X → v ∨ w (or X → v) be a 2-quasi-Horn positive counterexample
5: Let S be the return value of SemanticTree(H, X)
6: Find I ∈ S such that I �|= T (we know that for all I ∈ S, I |= H)
7: J := RefineCounterModel(I)
8: if there is Ik ∈ L such that goodCandidate(Ik,J) then
9: Let Ii be the first in L such that goodCandidate(Ii,J)
10: Replace Ii by (Ii ∩ J)
11: Remove all Ij ∈ L such that Ij �|= BuildClauses(Ii ∩ J)
12: else
13: Append J to L

14: end if
15: Construct H = H0∪TransformMVDF(

⋃
I∈LBuildClauses(I))

16: end while

Algorithm 3. Function to Refine the Countermodel
1: function RefineCounterModel(I)
2: Let J := I
3: if there is Ik ∈ L such that goodCandidate(I, Ik) then
4: Let Ii be the first in L such that goodCandidate(I, Ii)
5: J :=RefineCounterModel(I ∩ Ii)
6: end if
7: return(J)
8: end function

w ∈ Z such that v, w ∈ false(I); or (b) there is v such that false(I) = {v} and
X → Y ∨Z is the Horn-like clause V \{v} → v. In case (a), as true(Ii) ⊆ true(I),
we have that v ∈ Y \ true(Ii) and w ∈ Z \ true(Ii). Since Ii covers X → Y ∨ Z,
X ⊆ true(Ii).Then T |= true(Ii) → v∨w. By definition of Hi, there is Xi → Yi∨
Zi ∈ Hi such that v ∈ Yi and w ∈ Zi. But this means that I 	|= BuildClauses(Ii).
Case (b) is similar, we have that {v} = false(Ii) and V \ {v} = true(Ii). Then
T |= true(Ii) → v and we also have I 	|= BuildClauses(Ii). ❏

Lemma 6. Let L be the sequence produced by Algorithm 2. Assume a negative
countermodel I violates c ∈ T . For all Ii ∈ L such that Ii covers c the following
holds: (1) true(Ii ∩ I) ⊂ true(Ii); and (2) Ii ∩ I 	|= T .

Proof. As I is a negative countermodel, I |= H, and then I |= BuildClauses(Ii).
By Lemma 5, true(Ii) 	⊆ true(I). Therefore, true(Ii ∩ I) ⊂ true(Ii). For Point 2,
as Ii covers c ∈ T and I violates c ∈ T , we have that Ii ∩ I violates c ∈ T .
Then, Ii ∩ I 	|= T . ❏

Exact Learning of Multivalued Dependencies 83

Algorithm 4. Transform a 2-quasi-Horn clause into an mvd clause
1: function TransformMVDF(H′)
2: H := {c ∈ H′ | c is of the form V \ {v} → v}
3: for every X → v ∨ w ∈ H′ do
4: Let W = V \ (X ∪ {v, w}), Y = {v} and Z = {w}
5: for each w′ ∈ W do
6: if T |= X → Y {w′} ∨ Z then
7: add w′ to Y
8: else
9: add w′ to Z
10: end if
11: end for
12: add X → Y ∨ Z to H
13: end for
14: return (H)
15: end function

Lemma 7. Let L be the sequence produced by Algorithm 2. At all times, for all
Ii ∈ L, Ii |= H \ Hi.

Proof. By Lemma 2 and Algorithm 3, the interpretation J computed in Line 7
of Algorithm 2 is a negative countermodel. So if Algorithm 2 executes Line 13
then it holds that J |= H. If there exists Ij ∈ L such that Ij 	|= BuildClauses(J),
then true(J) ⊂ true(Ij) and the pair (Ij ,J) is a goodCandidate. This contradicts
the fact that the algorithm did not replace some interpretation in L. Otherwise,
Algorithm 2 executes Line 10 and, then, an interpretation Ii ∈ L is replaced with
Ii ∩ J , where the pair (Ii,J) is a goodCandidate. In this case, by Definition 1
part (ii), Ii ∩ J |= H. It remains to check that for any other Ij ∈ L it holds
Ij |= BuildClauses(Ii ∩ J), but this is always true because of Line 11. ❏

Lemma 8. Let L be the sequence produced by Algorithm 2. If Algorithm 2
replaces some Ii ∈ L with I ∩ Ii then false(Ii) ⊆ false(I) (Ii before the replace-
ment).

Proof. If true(Ii ∩ I) = true(I) then false(Ii) ⊆ false(I). We thus suppose to
the contrary that (∗) true(I ∩ Ii) ⊂ true(I). If Algorithm 2 replaced Ii ∈ L
then (Ii, I) is a goodCandidate. Then, Ii ∩ I 	|= T and Ii ∩ I |= H. If (i)
true(I ∩ Ii) ⊂ true(I) (by (∗)), (ii) I ∩ Ii |= H and (iii) Ii ∩ I 	|= T ; then (I, Ii)
is a goodCandidate. This contradicts the condition in Line 3 of Algorithm 3, which
would not return I but make a recursive call with I ∩Ii and, thus, true(Ii∩I) =
true(I). ❏

Lemma 9. Let L be the sequence produced by Algorithm 2. At all times the
following holds. Let J be a countermodel computed in Line 7 of Algorithm 2
that violates c ∈ T . Then, either:

84 M. Hermo and A. Ozaki

– Algorithm 2 replaces some Ij ∈ L with J ∩ Ij, or
– Algorithm 2 appends J in L and, for all Ij ∈ L such that Ij covers c, we

have that false(Ij) ∩ false(J) = ∅.

Proof. If Algorithm 2 replaces some Ij ∈ L with J ∩ Ij or appends J in L and,
for all Ij ∈ L such that Ij covers c, we have that false(Ij) ∩ false(J) = ∅, then
we are done. Suppose this does not happen. Then,

– Algorithm 2 appends J in L, meaning that for all Ij ∈ L, (Ij ,J) is not a
goodCandidate; and

– there exists Ij ∈ L that covers c and false(Ij) ∩ false(J) 	= ∅.

By Lemma 6 we obtain conditions (i) and (iii) of Definition 1 (goodCandidate)
for the pair (Ij ,J): true(Ij ∩ J) ⊂ true(Ij); and Ij ∩ J 	|= T . By Lemma 7,
we have Ij |= H \ Hj . As J |= H and true(Ij ∩ J) ⊂ true(Ij), by Lemma 3,
if false(Ij) ∩ false(J) 	= ∅ then we have Ij ∩ J |= H. This is condition (ii) of
Definition 1, and therefore the pair (Ij ,J) is a goodCandidate. This contradicts
the fact that the algorithm did not refine some interpretation in L. ❏

Lemma 10. Let L be the sequence produced by Algorithm 2. At all times, for
all i 	= j, if Ii ∈ L and Ij ∈ L violate c ∈ T then false(Ii) ∩ false(Ij) = ∅.
Proof. Suppose Algorithm 2 modifies the sequence in response to receiving a
counterexample I. Consider the possibilities.

– If Algorithm 2 appends I and there is Ii ∈ L such that Ii violates c then,
by Lemma 9, false(Ii) ∩ false(I) = ∅.

– Otherwise, the Algorithm 2 replaces Ii by Ii∩I. Suppose the lemma fails to
hold. Then, we have that Ii ∩I and Ij violate c, false(Ij)∩ false(Ii ∩I) 	= ∅,
and Ij is not removed in Line 11.

The above means that Ij |= BuildClauses(Ii ∩ I), and by Lemma 5 true(Ii ∩
I) 	⊆ true(Ij). As Ii ∩ I = I (by Lemma 8), we actually have that: (a) I
violates c, (b) false(Ij) ∩ false(I) 	= ∅ and (c) true(I) 	⊆ true(Ij), or equivalently,
false(Ij) 	⊆ false(I). As I violates c (Point (a)), by Lemma 6, we obtain: true(Ij∩
I) ⊂ true(Ij) (condition (i) of Definition 1); and Ij ∩ I 	|= T (condition (iii) of
Definition 1). By Lemma 7, we have Ij |= H \ Hj . As I |= H and true(Ij ∩ I) ⊂
true(Ij), by Lemma 3 and Point (b) we have Ij ∩ I |= H. This is condition (ii)
of Definition 1, and therefore the pair (I, Ij) is a goodCandidate. So Algorithm
3 makes a recursive call with I ∩ Ij , which contradicts that false(Ij) 	⊆ false(I)
(Point (c)). ❏

By Lemma 10 if any two interpretations Ii, Ij ∈ L violate the same clause
in T then their sets of false variables are disjoint. As for each interpretation
|false(I)| ≥ 1, the number of mutually disjoint interpretations violating any mvd
clause in T is bounded by |V |. Since every Ii ∈ L is such that Ii 	|= T , we have
every Ii ∈ L violates at least one c ∈ T . This bounds the number of elements in
L to the number of mvd clauses in T .

Exact Learning of Multivalued Dependencies 85

Corollary 1. Let L be the sequence produced by Algorithm 2. At all times every
c ∈ T is violated by at most |V | interpretations Ii ∈ L.

Then, at all times the number of elements in L is bounded by |T | · |V |. As in each
replacement the number of variables in the antecedent is strictly smaller, we have
that the number of replacements that can be done for each Ii ∈ L is bounded by
the number of variables, |V |. To ensure the progress of the algorithm, we also need
to show that the number of iterations is polynomial in the size of T .

The rest of this section is devoted to show an upper bound polynomial in
|T | on the total number iterations of Algorithm 2. Before showing our upper
bound in Lemma 13, we need the following two lemmas. Essentially, Lemma 11
state the main property obtained by our refinement conditions (Definition 1).
Lemma 12 shows that (1) if an interpretation Ii is replaced and an element Ij

is removed from L then they are mutually disjoint; and (2) if any two elements
are removed then they are mutually disjoint.

Lemma 11. At all times the following holds. Let L be the sequence produced by
Algorithm 2. Let Ii, Ij ∈ L. W.l.o.g. assume i < j. Then, the pair (Ii, Ij) is not
a goodCandidate.

Proof. Consider the possibilities. If Algorithm 2 appends J to L, then for all
Ik ∈ L the pair (Ik,J) cannot be a goodCandidate, because the algorithm would
satisfy the condition in Line 8 and instead of appending J , it should replace an
interpretation Ik in L. Otherwise, either Algorithm 2 replaces (a) Ii by Ii∩J or
(b) Ij by Ij∩J . Suppose the lemma fails to hold in case (a). The pair ((Ii∩J), Ij)
is a goodCandidate. By Lemma 8, false(Ii) ⊆ false(J) and Ii ∩ J = J . Then,
the pair (J , Ij) is a goodCandidate too. This contradicts the condition in Line 3
of Algorithm 3, which would not return J but make a recursive call with J ∩Ij .
Now, suppose the lemma fails to hold in case (b). The pair (Ii, (Ij ∩ J)) is a
goodCandidate. By Lemma 8, false(Ij) ⊆ false(J) and Ij ∩ J = J . Therefore,
the pair (Ii,J) is a goodCandidate too. This contradicts the fact that in Line 9
of Algorithm 2, the first goodCandidate is replaced and since i < j, Ii should be
replaced instead of Ij . ❏

Lemma 12. Let L be the sequence produced by Algorithm 2. In Algorithm 2
Line 11, the following holds:

1. if Ij is removed during the replacement of some Ii ∈ L by Ii ∩ J (Line 10)
then false(Ii) ∩ false(Ij) = ∅ (Ii before the replacement);

2. if Ij , Ik with j < k are removed during the replacement of some Ii ∈ L by
Ii ∩ J (Line 10) then false(Ij) ∩ false(Ik) = ∅.

Proof. We argue that under the conditions stated by this lemma if false(Ii) ∩
false(Ij) = ∅ (respectively, false(Ij) ∩ false(Ik) = ∅) does not hold then the pair
(Ii, Ij) (respectively, (Ij , Ik)) is a goodCandidate (Definition 1), which contra-
dicts Lemma 11. In our proof by contradiction, we show that conditions (i), (ii)
and (iii) of Definition 1 hold for both (Ii, Ij) and (Ij , Ik).

86 M. Hermo and A. Ozaki

– For condition (i): assume to the contrary that true(Ii) ⊆ true(Ij). As Ij 	|=
BuildClauses(Ii ∩ J), there is c ∈ T such that Ij and Ii ∩ J violate c.
Therefore, Ii covers c and by Lemma 5, Ij 	|= BuildClauses(Ii), which
is a contradiction with Lemma 7. Similarly, assume to the contrary that
true(Ij) ⊆ true(Ik). As Ik 	|= BuildClauses(Ii ∩ J), there is c ∈ T such
that Ik and Ii ∩ J violate c. Therefore, Ii covers c and by Lemma 5, Ik 	|=
BuildClauses(Ii), which is a contradiction with Lemma 7.

– For condition (ii): as Ij |= H \ Hj (Lemma 7) we have Ij |= H \ (Hi ∪ Hj).
By the same argument Ii |= H \ (Hi ∪ Hj). If false(Ii) ∩ false(Ij) 	= ∅
then, by Lemma 3, Ii ∩ Ij |= H. Similarly, as Ij |= H \ Hj (Lemma 7) we
have Ij |= H \ (Hj ∪ Hk). By the same argument Ik |= H \ (Hj ∪ Hk). If
false(Ij) ∩ false(Ik) 	= ∅ then, by Lemma 3, Ij ∩ Ik |= H.

– For condition (iii): by Line 11 of Algorithm 2, Ij 	|=BuildClauses(Ii ∩ J).
Then there is c ∈ T such that Ij and Ii ∩ J violate c. If Ii ∩ J violates c
then Ii covers c. Then, Ii ∩ Ij 	|= T . Similarly, by Line 11 of Algorithm 2,
we have that Ik 	|=BuildClauses(Ii ∩ J). Then there is c ∈ T such that Ik

and Ii ∩ J violate c. As Ij 	|=BuildClauses(Ii ∩ J), false(Ij) ⊆ false(Ii ∩ J).
So Ij covers c. Then, Ik ∩ Ij 	|= T .

So conditions (i), (ii) and (iii) of Definition 1 hold for (Ii, Ij) and (Ij , Ik), which
contradicts Lemma 11. Then, false(Ii)∩false(Ij) = ∅ and false(Ij)∩false(Ik) = ∅.

❏

We present a polynomial upper bound on the number of iterations of the
main loop via a bound function. That is, an expression that decreases on every
iteration and is always ≥ 0 inside the loop body. Note that we obtain this upper
bound even though the learner does not know the size |T | of the target.

Lemma 13. Let L be the sequence produced by Algorithm 2. Let N be the constant
2 · |V | · |V | · |T |. The expressionE = |L|+(N −2 ·∑I∈L |false(I)|) always evaluates
to a natural number inside the loop body and decreases on every iteration.

Proof. By Corollary 1, the size of L is bounded at all times by |V | · |T |. Thus,
by Corollary 1, N is an upper bound for 2 · ∑

I∈L |false(I)|. There are three
possibilities: (1) an element I is appended. Then, |L| increases by one but
|false(I)| ≥ 1 and, therefore, E decreases; (2) an element is replaced and no
element is removed. Then, E trivially decreases. Otherwise, (3) we have that
an element Ii is replaced and p interpretations are removed from L in Line
11 of Algorithm 2. By Point 2 of Lemma 12, if Ii is replaced by Ii ∩ J and
Ij , Ik are removed then false(Ij) ∩ false(Ik) = ∅. This means that if p interpre-
tations are removed then their sets of false variables are all mutually disjoint.
By Point 1 of Lemma 12, if Ii is replaced by Ii ∩ J and some Ij is removed
then false(Ij) ∩ false(Ii) = ∅. Then, the p interpretations also have sets of false
variables disjoint from false(Ii). For each interpretation Ij removed we have
false(Ij) ⊆ false(J ∩Ii) (because Ij 	|=BuildClauses(J ∩Ii)). Then, the number
of ‘falses’ is at least as large as before. However |L| decreases and, thus, we can
ensure that E decreases. ❏

Exact Learning of Multivalued Dependencies 87

By Lemma 13, the total number of iterations of Algorithm 2 is bounded by
a polynomial in |T | and |V |. We now state our main result.

Theorem 2. The learning MVDF from 2-quasi-Horn framework FM is polyno-
mially exact learnable.

5 Conclusions and Open Problems

We presented an algorithm that exactly learns the class MVDF in polynomial time
from 2-quasi-Horn clauses. As this class is a generalization of Horn and a restric-
tion of 2-quasi-Horn, we extended the boundary between 1 and 2-quasi-Horn of
what can be efficiently learned in the exact model. We would like to find similar
algorithms where the examples are either mvd clauses or interpretations. A more
general open problem is whether the ideas presented here can be extended to han-
dle other restrictions of 2-quasi-Horn. Another direction is to use our algorithm to
develop software to support the design of database schemas in 4NF.

Acknowledgments. We thank the reviewers. Hermo was supported by the Spanish
Project TIN2013-46181-C2-2-R and the Basque Project GIU12/26 and grant UFI11/45.
Ozaki is supported by the Science without Borders scholarship programme.

References

1. Angluin, D.: Learning k-term dnf formulas using queries and counterexamples.
Technical report, Department of Computer Science, Yale University, August 1987

2. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)
3. Angluin, D.: Negative results for equivalence queries. Machine Learning 5, 121–150

(1990)
4. Angluin, D., Frazier, M., Pitt, L.: Learning conjunctions of Horn clauses. Machine

Learning 9, 147–164 (1992)
5. Balcázar, J.L., Baixeries, J.: Characterizations of multivalued dependencies and

related expressions. In: Suzuki, E., Arikawa, S. (eds.) DS 2004. LNCS (LNAI),
vol. 3245, pp. 306–313. Springer, Heidelberg (2004)

6. Codd, E.F.: A relational model of data for large shared data banks. Communica-
tions of the ACM 13(6), 377–387 (1970)

7. Delobel, C.: Normalization and hierarchical dependencies in the relational data
model. ACM Transactions on Database Systems 3(3), 201–222 (1978)

8. Fagin, R.: Multivalued dependencies and a new normal form for relational
databases. ACM Transactions on Database Systems 2, 262–278 (1977)

9. Frazier, M., Pitt, L.: Learning from entailment: an application to proposi-
tional Horn sentences. In: Machine Learning, Proceedings of the Tenth Interna-
tional Conference, University of Massachusetts, Amherst, MA, USA, June 27–29,
1993, pp. 120–127 (1993)

10. Hermo, M., Lav́ın, V.: Learning minimal covers of functional dependencies with
queries. In: Watanabe, O., Yokomori, T. (eds.) ALT 1999. LNCS (LNAI), vol. 1720,
p. 291. Springer, Heidelberg (1999)

11. Khardon, R., Mannila, H., Roth, D.: Reasoning with Examples: Propositional For-
mulae and Database Dependencies. Acta Informatica 36(4), 267–286 (1999)

88 M. Hermo and A. Ozaki

12. Lav́ın, V.: On learning multivalued dependencies with queries. Theor. Comput. Sci.
412(22), 2331–2339 (2011)

13. Lav́ın, V., Hermo, M.: Negative results on learning multivalued dependencies with
queries. Information Processing Letters 111(19), 968–972 (2011)

14. Pillaipakkamnatt, K., Raghavan, V.: Read-twice DNF formulas are properly learn-
able. Information and Computation 122(2), 236–267 (1995)

15. Sagiv, Y., Delobel, C., Parker Jr, D.S., Fagin, R.: An equivalence between relational
database dependencies and a fragment of propositional logic. Journal of the ACM
28(3), 435–453 (1981)

Non-adaptive Learning of a Hidden Hypergraph

Hasan Abasi1, Nader H. Bshouty1(B), and Hanna Mazzawi2

1 Department of Computer Science Technion, 32000 Haifa, Israel
bshouty@cs.technion.ac.il

2 Google, 76 Buckingham Palace Rd, London, USA

Abstract. We give a new deterministic algorithm that non-adaptively
learns a hidden hypergraph from edge-detecting queries. All previ-
ous non-adaptive algorithms either run in exponential time or have
non-optimal query complexity. We give the first polynomial time non-
adaptive learning algorithm for learning hypergraph that asks an almost
optimal number of queries.

1 Introduction

Let Gs,r be a set of all labeled hypergraphs of rank at most r (the maximum
size of an edge e ⊆ V in the hypergraph) on the set of vertices V = {1, 2, . . . , n}
with at most s edges. Given a hidden Sperner hypergraph1 G ∈ Gs,r, we need
to identify it by asking edge-detecting queries. An edge-detecting query QG(S),
for S ⊆ V is: Does S contain at least one edge of G? Our objective is to non-
adaptively learn the hypergraph G by asking as few queries as possible.

This problem has many applications in chemical reactions, molecular biology
and genome sequencing, where deterministic non-adaptive algorithms are most
desirable. In chemical reactions, we are given a set of chemicals, some of which
react and some which do not. When multiple chemicals are combined in one test
tube, a reaction is detectable if and only if at least one set of the chemicals in
the tube reacts. The goal is to identify which sets react using as few experiments
as possible. The time needed to compute which experiments to do is a secondary
consideration, though it is polynomial for the algorithms we present. See [2,4–
7,13,15,17–22,26,28,29,31,34] for more details and many other applications in
molecular biology.

In all of the above applications the rank of the hypergraph and the number
of edges are much smaller than the number of vertices n. Therefore, throughout
the paper, we will assume that n ≥ (max(r, s))2. In the full paper we show that
the results in this paper are also true for all values of r, s and2 n.

The above hypergraph Gs,r learning problem is equivalent to the problem of
exact learning a monotone DNF with at most s monomials (monotone terms),

1 The hypergraph is Sperner hypergraph if no edge is a subset of another. If it is not
Sperner hypergraph then learning is not possible.

2 It is easy to see from Lemma 4 that all the results in this paper are also true for any
r, s and n ≥ r + s.

c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 89–101, 2015.
DOI: 10.1007/978-3-319-24486-0 6

90 H. Abasi et al.

where each monomial contains at most r variables (s-term r-MDNF) from mem-
bership queries [1,7]. In this paper we will use the later terminology rather than
the hypergraph one.

The non-adaptive learnability of s-term r-MDNF was studied in [12,20,21,
25,28,29,34]. Torney, [34], first introduced the problem and gave some applica-
tions in molecular biology. The first explicit non-adaptive learning algorithm for
s-term r-MDNF was given by Gao et. al., [25]. They showed that this class can
be learned using a (n, (s, r))-cover-free family ((n, (s, r))-CFF). This family is a
set A ⊆ {0, 1}n of assignments such that for every distinct i1, . . . , is, j1, . . . , jr ∈
{1, . . . , n} there is a ∈ A such that ai1 = · · · = ais = 0 and aj1 = · · · = ajr = 1.
Given such a set, the “folklore algorithm” simply takes all the monomials M of size
at most r that satisfy (∀a ∈ A)(M(a) = 1 ⇒ f(a) = 1). The disjunction of all such
monomials is equivalent to the target function. Assuming a set of (n, (s, r))-CFF
of size N can be constructed in time T , this algorithm learns s-term r-MDNF with
N membership queries in time O(

(
n
r

)
+T). Notice that, no matter what is the time

complexity of constructing the (n, (s, r))-CFF, the folklore algorithm runs in time
at least nΘ(r), which is nonpolynomial for nonconstant r.

In [9,21], it is shown that any set A ⊂ {0, 1}n that non-adaptively learns
s-term r-MDNF is an (n, (s − 1, r))-CFF. We also show that A ⊂ {0, 1}n is an
(n, (s, r − 1))-CFF. Therefore, the minimum size of an (n, (s − 1, r))-CFF and
(n, (s, r−1))-CFF is also a lower bound for the number of queries (and therefore,
for the time complexity) of any non-adaptively learning algorithm for s-term r-
MDNF. It is known, [32], that any (n, (s, r))-CFF, n ≥ (max(r, s))2, must have
size at least Ω(N(s, r) log n) where

N(s, r) =
s + r

log
(
s+r

r

)
(

s + r

r

)
. (1)

Therefore, any non-adaptive algorithm for learning s-term r-DNF must ask at
least max(N(s − 1, r), N(s, r − 1)) log n = Ω(N(s, r) log n) membership queries
and runs in at least Ω(N(s, r)n log n) time.

To improve the query complexity of the folklore algorithm, many tried to
construct (n, (s, r))-CFF with optimal size in polynomial time. That is, time
poly(n,N(s, r)). Gao et. al. constructed an (n, (s, r))-CFF of size S = (2s log n/
log(s log n))r+1 in time Õ(S). It follows from [33] that an (n, (s, r))-CFF of
size O

(
(sr)log

∗ n log n
)

can be constructed in polynomial time. Polynomial time
almost optimal constructions of size N(s, r)1+o(1) log n for (n, (s, r))-CFF were
given in [10–12,24]. Those constructions give almost optimal query complex-
ity for the folklore algorithm, but still, the running time is nonpolynomial for
nonconstant r.

Chin et. al. claim in [20] that they have a polynomial time algorithm that
constructs an (n, (s, r))-CFF of optimal size. Their analysis is misleading.3 The
size is indeed optimal but the time complexity of the construction is O(

(
n

r+s

)
).

3 Some parts of the construction can indeed be performed in polynomial time, but not
the whole construction.

Non-adaptive Learning of a Hidden Hypergraph 91

But, as we mentioned above, even if an (n, (s, r))-CFF can be constructed in
polynomial time, the folklore learning algorithm still takes nonpolynomial time.

The first polynomial time randomized non-adaptive learning algorithm was
given by Macula et. al., [28,29]. They gave several randomized non-adaptive
algorithms that are not optimal in the number of queries but use a different
learning algorithm that runs in polynomial time. They show that for every s-
term r-MDNF f and for every monomial M in f there is an assignment a in a
(n, (s − 1, r))-CFF A such that M(a) = 1 and all the other monomials of f are
zero on a. To learn this monomial they compose every assignment in A with a
set of assignments that learns one monomial.

We first use the algorithm of Macula et. al., [28,29], combined with the
deterministic constructions of (n, (r, s))-CFF in [10–12,24] and the fact that
the assignments used in any non-adaptive algorithm must be (n, (s, r − 1))-
CFF and (n, (s − 1, r))-CFF to change their algorithm to a deterministic non-
adaptive algorithm and show that it asks N(s, r)1+o(1) log2 n queries and runs in
polynomial time. The query complexity of this algorithm is almost optimal in s
and r but quadratic in log n. We then use a new technique, similar to the one
in [16], that changes any non-adaptive learning algorithm that asks Q(r, s, n)
queries and runs in polynomial time to a non-adaptive learning algorithm that
asks (rs)2 · Q(r, s, (rs)2) log n queries and runs in polynomial time. This gives a
non-adaptive learning algorithm that asks N(s, r)1+o(1) log n queries and runs in
n log n · poly(N(s, r)) time. Notice that the time complexity of this algorithm is
almost linear in n compared to the folklore algorithm that runs in nonpolynomial
time nΘ(r) + n log n · N(s, r)1+o(1). Our algorithm has almost optimal query
complexity and time complexity.

The following table summarizes the results mentioned above for non-adaptive
learning algorithms for s-term r-MDNF. In the table we assume that n ≥
(max(r, s))2 and r = ω(1). For r = O(1) the folklore algorithm is almost optimal
and runs in polynomial time.4

References Query Complexity Time Complexity
[25] N(s, r) · (r log n/ log(s log n))r+1

(
n
r

)

[20] N(s, r) log n
(

n
r+s

)

[10–12,24] N(s, r)1+o(1) log n
(
n
r

)

Ours+[28,29]+[12] N(s, r)1+o(1) log2 n poly(n,N(s, r))
Ours N(s, r)1+o(1) log n (n log n) · poly(N(s, r))

Ours, r = o(s) N(s, r)1+o(1) log n (n log n) · N(s, r)1+o(1)

Lower Bound [21] N(s, r) log n (n log n) · N(s, r)

The adaptive learnability of s-term r-MDNF was already studied in many
papers which gave almost optimal algorithms [5–7,21]. In [5], Abasi et. al. gave
a polynomial time adaptive learning algorithm for s-term r-MDNF with almost
optimal query complexity.
4 The factor of n in the lower bound of the time complexity comes from the length n

of the queries.

92 H. Abasi et al.

This paper is organized as follows. Section 2 gives some definitions and pre-
liminary results that will be used throughout the paper. Section 3 gives the first
algorithm that asks N(s, r)1+o(1) log2 n membership queries and runs in time
poly(n,N(s, r)). Section 4 gives the reduction and shows how to use it to give
the second algorithm that asks N(s, r)1+o(1) log n membership queries and runs
in time (n log n) · N(s, r)1+o(1).

All the algorithms in this paper are deterministic. One can consider a ran-
domized construction of CFF that gives a randomized algorithm that slightly
improves (in the o(1) of the exponent) the query and time complexity.

2 Definitions

2.1 Monotone Boolean Functions

For a vector w, we denote by wi the ith entry of w. Let {e(i) | i = 1, . . . , n} ⊂
{0, 1}n be the standard basis. That is, e

(i)
j = 1 if i = j and e

(i)
j = 0 otherwise. For

a positive integer j, we denote by [j] the set {1, 2, . . . , j}. For two assignments
a, b ∈ {0, 1}n we denote by (a ∧ b) ∈ {0, 1}n the bitwise AND assignment. That
is, (a ∧ b)i = ai ∧ bi.

Let f(x1, x2, . . . , xn) be a boolean function from {0, 1}n to {0, 1}. For 1 ≤
i1 < i2 < · · · < ik ≤ n and σ1, . . . , σk ∈ {0, 1} ∪ {x1, . . . , xn} we denote by

f |xi1←σ1,xi2←σ2,··· ,xik
←σk

the function f(y1, . . . , yn) where yij = σj for all j ∈ [k] and yi = xi for all i ∈
[n]\{i1, . . . , ik}. We say that the variable xi is relevant in f if f |xi←0 �≡ f |xi←1.
A variable xi is irrelevant in f if it is not relevant in f . We say that the class is
closed under variable projections if for every f ∈ C and every two variables xi

and xj , i, j ≤ n, we have f |xi←xj
∈ C.

For two assignments a, b ∈ {0, 1}n, we write a ≤ b if for every i ∈ [n], ai ≤ bi.
A Boolean function f : {0, 1}n → {0, 1} is monotone if for every two assignments
a, b ∈ {0, 1}n, if a ≤ b then f(a) ≤ f(b). Recall that every monotone boolean
function f has a unique representation as a reduced monotone DNF, [1]. That is,
f = M1 ∨ M2 ∨ · · · ∨ Ms where each monomial Mi is an AND of input variables,
and for every monomial Mi there is a unique assignment a(i) ∈ {0, 1}n such that
f(a(i)) = 1 and for every j ∈ [n] where a

(i)
j = 1 we have f(a(i)|xj←0) = 0. We

call such assignment a minterm of the function f . Notice that every monotone
DNF can be uniquely determined by its minterms [1]. That is, a ∈ {0, 1}n is a
minterm of f iff M := ∧i∈{j:aj=1}xi is a monomial in f .

An s-term r-MDNF is a monotone DNF with at most s monomials, where
each monomial contains at most r variables. It is easy to see that the class s-term
r-MDNF is closed under variable projections.

Non-adaptive Learning of a Hidden Hypergraph 93

2.2 Learning from Membership Queries

Consider a teacher that has a target function f : {0, 1}n → {0, 1} that is s-term
r-MDNF. The teacher can answer membership queries. That is, when receiving
a ∈ {0, 1}n it returns f(a). A learning algorithm is an algorithm that can ask the
teacher membership queries. The goal of the learning algorithm is to exactly learn
(exactly find) f with a minimum number of membership queries and optimal
time complexity.

Let c and H ⊃ C be classes of boolean formulas. We say that C is learn-
able from H in time T (n) with Q(n) membership queries if there is a learning
algorithm that, for a target function f ∈ C, runs in time T (n), asks at most
Q(n) membership queries and outputs a function h in H that is equivalent to C.
When H = C then we say that C is properly learnable in time T (n) with Q(n)
membership queries.

In adaptive algorithms the queries can depend on the answers to the previous
queries where in non-adaptive algorithms the queries are independent of the
answers to the previous queries and therefore all the queries can be asked in
parallel, that is, in one step.

2.3 Learning a Hypergraph

Let Gs,r be a set of all labeled hypergraphs on the set of vertices V = {1, 2, . . . , n}
with s edges of rank (size) at most r. A hypergraph is called Sperner hypergraph
if no edge is a subset of another. Given a hidden Sperner hypergraph G ∈ Gs,r,
we need to identify it by asking edge-detecting queries. An edge-detecting query
QG(S), for S ⊆ V is: does S contain at least one edge of G? Our objective is to
learn (identify) the hypergraph G by asking as few queries as possible.

This problem is equivalent to learning s-term r-MDNF f from membership
queries. Each edge e in the hypergraph corresponds to the monotone term ∧i∈exi

in f and the edge-detecting query QG(S) corresponds to asking membership
queries of the assignment a(S) where a

(S)
i = 1 if and only if i ∈ S. Therefore,

the class Gs,r can be regarded as the set of s-term r-MDNF. The class of s-term
r-MDNF is denoted by G∗

s,r. Now it obvious that any learning algorithm for G∗
s,r

is also a learning algorithm for Gs,r.
The following example shows that learning is not possible for hypergraphs

that are not Sperner hypergraphs. Let G1 be a graph where V1 = {1, 2} and
E1 = {{1}, {1, 2}}. This graph corresponds to the function f = x1 ∨ x1x2 that
is equivalent to x1 which corresponds to the graph G2 where V2 = {1, 2} and
E2 = {{1}}. Also, no edge-detecting query can distinguish between G1 and G2.

We say that A ⊆ {0, 1}n is an identity testing set for G∗
s,r if for every two

distinct s-term r-MDNF f1 and f2 there is a ∈ A such that f1(a) �= f2(a).
Obviously, every identity testing set for G∗

s,r can be used as queries to non-
adaptively learns G∗

s,r. Also, if A is a nonadaptive algorithm that learns G∗
s,r

from membership queries A then A is identity testing set for G∗
s,r. We denote

by OPT(G∗
s,r) the minimum size of an identity testing set for G∗

s,r. We say that

94 H. Abasi et al.

a non-adaptive algorithm A is almost optimal if it runs in poly(OPT(G∗
s,r), n)

time and asks OPT(G∗
s,r)

1+o(1) queries.

2.4 Cover Free Families

An (n, (s, r))-cover free family ((n, (s, r))-CFF), [23], is a set A ⊆ {0, 1}n such
that for every 1 ≤ i1 < i2 < · · · < id ≤ n where d = s + r and every J ⊆ [d] of
size |J | = s there is a ∈ A such that aik = 0 for all k ∈ J and aij = 1 for all
j ∈ [d]\J . Denote by N(n, (s, r)) the minimum size of such set. The lower bound
in [30,32] is, for n ≥ (max(r, s))2,

N(n, (s, r)) ≥ Ω (N(s, r) · log n) (2)

where N(s, r) is as defined in (1). It is known that a set of random

m = O

(
r1.5

(
log

(s

r
+ 1

)) (
N(s, r) · log n +

N(s, r)
s + r

log
1
δ

))

= N(s, r)1+o(1)(log n + log(1/δ)) (3)

assignments a(i) ∈ {0, 1}n, where each a
(i)
j is 1 with probability r/(s + r), is an

(n, (s, r))-CFF with probability at least 1 − δ.
It follows from [10–12,24] that for n ≥ (rs)c, for some constant c, there is a

polynomial time (in the size of the CFF) deterministic construction algorithm
of (n, (s, r))-CFF of size

N(s, r)1+o(1) log n (4)

where the o(1) is with respect to r. When r = o(s) the construction runs in
linear time [10,12].

We now show

Lemma 1. For any r, s and n ≥ r + s, there is a polynomial time deterministic
construction algorithm of (n, (s, r))-CFF of size

N(s, r)1+o(1) log n.

Proof. For n ≥ (rs)c, for some constant c, the result follows from [10–12,24].
For r + s ≤ n ≤ (rs)c we construct the (n, (s, r))-CFF for N = (rs)c and
then truncate the vectors to length n. The size is N(s, r)1+o(1) log(rs)c =
N(s, r)1+o(1) log n. ��

2.5 Perfect Hash Function

Let H be a family of functions h : [n] → [q]. For d ≤ q we say that H is an
(n, q, d)-perfect hash family ((n, q, d)-PHF) [8] if for every subset S ⊆ [n] of size
|S| = d there is a hash function h ∈ H such that h|S is injective (one-to-one)
on S, i.e., |h(S)| = d.

Non-adaptive Learning of a Hidden Hypergraph 95

In [10] Bshouty shows

Lemma 2. Let q ≥ 2d2. There is a (n, q, d)-PHF of size

O

(
d2 log n

log(q/d2)

)

that can be constructed in time O(qd2n log n/ log(q/d2)).

We now give the following folklore results that will be used for randomized
learning algorithms

Lemma 3. Let q > d(d− 1)/2 be any integer. Fix any set S ⊂ [n] of d integers.
Consider

N :=
log(1/δ)

log
(

1
1−g(q,d)

) ≤ log(1/δ)
log 2q

d(d−1)

uniform random hash functions hi : [n] → [q], i = 1, . . . , N where

g(q, d) :=
(

1 − 1
q

)(
1 − 2

q

)
· · ·

(
1 − d − 1

q

)

With probability at least 1 − δ one of the hash functions is one-to-one on S.

2.6 A Lower Bound For Learning

In this subsection we prove the following lower bound

Lemma 4. Let n ≥ r + s. Any identity testing set A ⊆ {0, 1}n for s-term
r-MDNF is (n, (s, r − 1))-CFF and (n, (s − 1, r))-CFF.

In particular, for w = max(r, s) and d = min(r, s),

1. if n > w2 then |A| = Ω(N(s, r) log n),
2. if n = w1+ε for some 1/d < ε < 1, then |A| = Ω(N(s, r)/ logO(1/ε) w),
3. if r + s ≤ n ≤ w1+1/d then |A| = Ω

((
n
d

))
, and

4. for all n ≥ r + s we have |A| = Ω(
(
s+r

r

)
).

Proof. Consider any distinct 1 ≤ i1, · · · , ir+s−1 ≤ n. To be able to distinguish
between the two functions f1 = (xi1 · · · xir) ∨ xir+1 ∨ · · · ∨ xir+s−1 and f2 =
(xi1 · · · xir−1) ∨ xir+1 ∨ · · · ∨ xir+s−1 we must have an assignment a that satisfies
ai1 = · · · = air−1 = 1 and air = · · · = air+s−1 = 0. Therefore A is (n, (s, r − 1))-
CFF. To be able to distinguish between the two functions g1 = (xi1 · · · xir) ∨
xir+1 ∨ · · · ∨ xir+s−1 and g2 = xir+1 ∨ · · · ∨ xir+s−1 we must have an assignment
a that satisfies ai1 = · · · = air = 1 and air+1 = · · · = air+s−1 = 0. Therefore A is
(n, (s − 1, r))-CFF.

The bounds 1-4 follows from the lower bounds of (n, (s − 1, r))-CFF and
(n, (s, r − 1))-CFF in [3,32]. ��

96 H. Abasi et al.

2.7 The Folklore Algorithm

The “folklore algorithm” simply construct a (n, (s, r))-CFF, A, and takes all the
monomials M of size at most r that satisfy (∀a ∈ A)(M(a) = 1 ⇒ f(a) = 1). The
disjunction of all such monomials is equivalent to the target function. This follows
from the following two facts: (1) For any monomial M ′ where M ′ �⇒ f , there
is an assignment a ∈ A such that f(a) = 0 and M ′(a) = 1. (2) f = ∧M⇒fM .
Assuming a set of (n, (s, r))-CFF of size N can be constructed in time T , this
algorithm learns s-term r-MDNF with N membership queries in time O(

(
n
r

)
+T).

In particular we have

Lemma 5. Let n ≥ r + s. A (n, (s, r))-CFF is an identity testing set for s-term
r-MDNF.

We now show

Theorem 1. Let n ≥ r+s. For constant r or constant s there is a non-adaptive
proper learning algorithm for s-term r-MDNF that asks

N(s, r)1+o(1) log n

queries and runs in time poly(n,N(s, r)).
For n ≥ (max(r, s))2 the algorithm is almost optimal.

Proof. For constant r the folklore algorithm runs in polynomial time and, by
Lemma 1, asks N(s, r)1+o(1) log n queries. By Lemma 4 it is almost optimal for
n ≥ (max(r, s))2.

For constant s, every s-term r-MDNF is rs-clause s-MCNF. We first learn f as
rs-clause s-MCNF. This takes polynomial time and N(s, r)1+o(1) log n queries.5

We then change the target to s-term r-MDNF. This can be done in polynomial
time (rs)s. By Lemma 4, it is almost optimal for n ≥ (max(r, s))2. ��

3 The First Algorithm

In this section we give the first algorithm that asks N(s, r)1+o(1) log2 n queries
and runs in time poly(n,N(s, r))

The first algorithm is similar to the algorithm in [28,29] that were used to give
a Monte Carlo randomized algorithm. Here we use the deterministic construction
of CFF to change it to a deterministic algorithm and give a full analysis for its
complexity.

We first prove

Lemma 6. Let A be an (n, (1, r))-CFF and B be an (n, (s− 1, r))-CFF. There
is a non-adaptive proper learning algorithm for s-term r-MDNF that asks all the
queries in A ∧ B := {a ∧ b | a ∈ A, b ∈ B} and finds the target function in time
|A ∧ B| · n.

In particular, A ∧ B is an identity testing set for s-term r-MDNF.
5 To show that a clause C = xi1 ∨· · ·∨xis is not in f and f �⇒ C we need an assignment a

such that C(a) = 0 and f(a) = 1. Therefore, f can be learned with an (n, (s, r))-CFF.

Non-adaptive Learning of a Hidden Hypergraph 97

Proof. Let f be the target function. For every b ∈ B, let Ab = A∧b := {a∧b | a ∈
A}. Let Ib be the set of all i ∈ [n] such that (a ∧ b)i ≥ f(a ∧ b) for all a ∈ A. Let
Tb := ∧i∈Ibxi. We will show that

1. If T is a term in f then there is b ∈ B such that Tb ≡ T .
2. Either Tb = ∧i∈[n]xi or Tb is a subterm of one of terms of f .

To prove 1, let T be a term in f and let b ∈ B be an assignment that satisfies
T and does not satisfy the other terms. Such assignment exists because B is
(n, (s − 1, r))-CFF. Notice that f(x ∧ b) = T (x) = T (x ∧ b). If xi is in T and
f(a ∧ b) = 1 then T (a ∧ b) = T (a) = f(a ∧ b) = 1 and (a ∧ b)i = 1. Therefore
i ∈ Ib and xi in Tb. If xi not in T then since A is (n, (1, r))-CFF there is a′ ∈ A
such that T (a′) = 1 and a′

i = 0. Then (a′ ∧b)i = 0 where f(a′ ∧b) = 1. Therefore
i is not in Ib and xi is not in Tb. Thus, Tb ≡ T .

We now prove 2. We have shown in 1 that if b satisfies one term T then
Tb ≡ T . If b does not satisfy any one of the terms in f then f(a ∧ b) = 0 for all
a ∈ A and then Tb = ∧i∈[n]xi. Now suppose b satisfies at least two terms T1 and
T2. Consider any variable xi. If xi is not in T1 then as before xi will not be in
Tb. This shows that Tb is a subterm of T1. ��

This gives the following algorithm

Learn(G∗
s,r)

1) Construct an (n, (1, r))-CFF A and an (n, (s − 1, r))-CFF B.
2) Ask membership queries for all a ∧ b, a ∈ A and b ∈ B.
3) For every b ∈ B.
4) Tb ← 1.
5) For every i ∈ [n].
6) If for all a ∈ A, (a ∧ b)i ≥ f(a ∧ b)
7) then Tb ← Tb ∧ xi.
8) T ← T ∪ {Tb}.
9) Remove from T the term ∧i∈[n]xi

and all subterms of a larger term.

Fig. 1. An algorithm for learning G∗
s,r.

We now have

Theorem 2. Let n ≥ r + s. There is a non-adaptive proper learning algorithm
for s-term r-MDNF that asks

N(s, r)1+o(1) log2 n

queries and runs in time poly(n,N(s, r)).
For n ≥ (max(r, s))2 the algorithm is almost optimal.

98 H. Abasi et al.

Proof. For constant r or constant s the result follows from Theorem 1. Let
r, s = ω(1). By Lemma 1, constructing a (n, (1, r))-CFF of size |A| = r2 log n
and a (n, (s−1, r))-CFF of size |B| = N(s−1, r)1+o(1) log n = N(s, r)1+o(1) log n
takes poly(n,N(s, r)) time. By Lemma 6, the learning takes time |A∧B|·n = poly
(n,N(s, r)) time. The number of queries of the algorithm is |A∧B| ≤ |A| · |B| =
N(s, r)1+o(1) log2 n for r, s = ω(1).

By Lemma 4 the algorithm is almost optimal for n ≥ (max(r, s))2. ��
A randomized algorithm with a better query complexity can be obtained

using a randomized (n, (1, r))-CFF, B, and a randomized (n, (s− 1, r))-CFF, A.

4 The Second Algorithm

In this section we give the second algorithm
We first prove the following result

Lemma 7. Let C be a class of boolean functions that is closed under vari-
able projection. Let H be a class of boolean functions and suppose there is an
algorithm that, given f ∈ H as an input, finds the relevant variables of f in
time R(n).

If C is non-adaptively learnable from H in time T (n) with Q(n) membership
queries then C is non-adaptively learnable from H in time

O

(
qd2n log n +

d2 log n

log(q/(d + 1)2)
(T (q) + Q(q)n + R(q))

)

with

O

(
d2Q(q)

log(q/(d + 1)2)
log n

)

membership queries where d is an upper bound on the number of relevant vari-
ables in f ∈ C and q is any integer such that q ≥ 2(d + 1)2.

Proof. Consider the algorithm in Figure 2. Let A(n) be a non-adaptive algorithm
that learns C from H in time T (n) with Q(n) membership queries. Let f ∈ Cn

be the target function. Consider the (n, q, d + 1)-PHF P that is constructed in
Lemma 2 (Step 1 in the algorithm). Since C is closed under variable projection,
for every h ∈ P the function fh := f(xh(1), . . . , xh(n)) is in Cq. Since the mem-
bership queries to fh can be simulated by membership queries to f there is a
set of |P | · Q(q) assignments from {0, 1}n that can be generated from A(q) that
non-adaptively learn fh for all h ∈ P (Step 2 in the algorithm). The algorithm
A(q) learns f ′

h ∈ H that is equivalent to fh.
Then the algorithm finds the relevant variables of each f ′

h ∈ H (Step 3 in the
algorithm). Let Vh be the set of relevant variables of f ′

h and let dmax = maxh |Vh|.
Suppose xi1 , . . . , xid′ , d′ ≤ d are the relevant variables in the target function f .
There is a map h′ ∈ P such that h′(i1), . . . , h′(id′) are distinct and therefore f ′

h′

depends on d′ variables. In particular, d′ = dmax (Step 4 in the algorithm).

Non-adaptive Learning of a Hidden Hypergraph 99

After finding d′ = dmax we have: Every h for which f ′
h depends on d′

variables necessarily satisfies h(i1), . . . , h(id′) are distinct. Consider any other
non-relevant variable xj �∈ {xi1 , . . . , xid′ }. Since P is (n, q, d + 1)-PHF, there is
h′′ ∈ P such that h′′(j), h′′(i1), . . . , h′′(id′) are distinct. Then f ′

h′′ depends on
xh′′(i1), . . . , xh′′(id′) and not on xh′′(j). This way the non-relevant variables can
be eliminated. This is Step 6 in the algorithm. Since the above is true for every
non-relevant variable, after Step 6 in the algorithm, the set X contains only the
relevant variables of f . Then in Steps 7 and 8, the target function f can be
recovered from any f ′

h0
that satisfies |V (h0)| = d′. ��

Algorithm Reduction I
A(n) is a non-adaptive learning algorithm for C from H.
1) Construct an (n, q, d + 1)-PHF P .
2) For each h ∈ P

Run A(q) to learn fh := f(xh(1), . . . , xh(n)).
Let f ′

h ∈ H be the output of A(q).
3) For each h ∈ P

Vh ← the relevant variables in f ′
h

4) dmax ← maxh |Vh|.
5) X ← {x1, x2, . . . , xn}.
6) For each h ∈ P

If |Vh| = dmax then X ← X\{xi | xh(i) �∈ Vh}
7) Take any h0 with |Vh0 | = dmax

8) Replace each relevant variable xi in f ′
h0 by xj ∈ X where h0(j) = i.

9) Output the function constructed in step (8).

Fig. 2. Algorithm Reduction.

We now prove

Theorem 3. Let n ≥ r + s. There is a non-adaptive proper learning algorithm
for s-term r-MDNF that asks

N(s, r)1+o(1) log n

queries and runs in time (n log n) · poly(N(s, r)) time.
For n ≥ (max(r, s))2 the algorithm is almost optimal.

Proof. For constant r or constant s the result follows from Theorem 1. Let
r, s = ω(1). We use Lemma 7. C = H is the class of s-term r-MDNF. This
class is closed under variable projection. Given f that is s-term r-MDNF, one
can find all the relevant variables in R(n) = O(sr) time. The algorithm in
the previous section runs in time T (n) = poly(n,N(s, r)) and asks Q(n) =
N(s, r)1+o(1) log2 n queries. The number of variables in the target is bounded by

100 H. Abasi et al.

d = rs. Let q = 3r2s2 ≥ 2d2. By Lemma 7, and since r, s = ω(1), there is a
non-adaptive algorithm that runs in time

O

(
qd2n log n +

d2 log n

log(q/d2)
(T (q)n + R(q))

)
= (n log n)poly(N(r, s))

and asks

O

(
d2Q(q)

log(q/d2)
log n

)
= N(s, r)1+o(1) log n

membership queries.
By Lemma 4 the algorithm is almost optimal for n ≥ (max(r, s))2. ��
A randomized algorithm with a better query complexity can be obtained

using a randomized (n, q, d + 1)-PHF, a randomized (n, (1, r))-CFF, B, and a
randomized (n, (s − 1, r))-CFF, A.

Acknowledgments. We would like to thank the reviewers for their helpful comments.

References

1. Angluin, D.: Queries and Concept Learning. Machine Learning 2(4), 319–342
(1987)

2. Alon, N., Asodi, V.: Learning a Hidden Subgraph. SIAM J. Discrete Math. 18(4),
697–712 (2005)

3. Abdi, A.Z., Bshouty, N.H.: Lower Bounds for Cover-Free Families. CoRR
abs/1502.03578 (2015)

4. Alon, N., Beigel, R., Kasif, S., Rudich, S., Sudakov, B.: Learning a Hidden Match-
ing. SIAM J. Comput. 33(2), 487–501 (2004)

5. Abasi, H., Bshouty, N.H., Mazzawi, H.: On exact learning monotone DNF from
membership queries. In: Auer, P., Clark, A., Zeugmann, T., Zilles, S. (eds.) ALT
2014. LNCS, vol. 8776, pp. 111–124. Springer, Heidelberg (2014)

6. Angluin, D., Chen, J.: Learning a Hidden Hypergraph. Journal of Machine Learn-
ing Research 7, 2215–2236 (2006)

7. Angluin, D., Chen, J.: Learning a Hidden Graph using O(log n) Queries per Edge.
J. Comput. Syst. Sci. 74(4), 546–556 (2008)

8. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-
restrictions. ACM Transactions on Algorithms 2(2), 153–177 (2006)

9. Bshouty, N.H.: Exact learning from membership queries: some techniques, results
and new directions. In: Jain, S., Munos, R., Stephan, F., Zeugmann, T. (eds.) ALT
2013. LNCS, vol. 8139, pp. 33–52. Springer, Heidelberg (2013)

10. Bshouty, N.H.: Linear time constructions of some d-Restriction problems. In:
Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 74–88.
Springer, Heidelberg (2015)

11. Bshouty, N.H.: Testers and their Applications. Electronic Collouium on Computa-
tional Complexity (ECCC) 19:11 (2012). ITCS 2014, pp. 327–352 (2014)

12. Bshouty, N.H., Gabizon, A.: Almost Optimal Cover-Free Family (In preperation)

Non-adaptive Learning of a Hidden Hypergraph 101

13. Beigel, R., Alon, N., Kasif, S., Serkan Apaydin, M., Fortnow, L.: An optimal pro-
cedure for gap closing in whole genome shotgun sequencing. In: RECOMB 2001,
pp. 22–30 (2001)

14. Bshouty, N.H., Goldman, S.A., Hancock, T.R., Matar, S.: Asking Questions to
Minimize Errors. J. Comput. Syst. Sci. 52(2), 268–286 (1996)

15. Bouvel, M., Grebinski, V., Kucherov, G.: Combinatorial search on graphs moti-
vated by bioinformatics applications: a brief survey. In: Kratsch, D. (ed.) WG
2005. LNCS, vol. 3787, pp. 16–27. Springer, Heidelberg (2005)

16. Bshouty, N.H., Hellerstein, L.: Attribute-Efficient Learning in Query and Mistake-
bound Models. COLT 1996, 235–243 (1996)

17. Chang, H., Chen, H.-B., Fu, H.-L., Shi, C.-H.: Reconstruction of hidden graphs
and threshold group testing. J. Comb. Optim. 22(2), 270–281 (2011)

18. Chang, H., Fu, H.-L., Shih, C.-H.: Learning a hidden graph. Optim, Lett. (2014)
19. Chen, H.-B., Hwang, F.K.: A survey on nonadaptive group testing algorithms

through the angle of decoding. J. Comb. Optim. 15(1), 49–59 (2008)
20. Chin, F.Y.L., Leung, H.C.M., Yiu, S.-M.: Non-adaptive complex group testing with

multiple positive sets. Theor. Comput. Sci. 505, 11–18 (2013)
21. Du, D.Z., Hwang, F.: Pooling Design and Nonadaptive Group Testing: Important

Tools for DNA Sequencing. World Scientific, Singapore (2006)
22. D’yachkov, A., Vilenkin, P., Macula, A., Torney, D.: Families of finite sets in which

no intersection of � sets is covered by the union of s others. J. Comb Theory Ser
A. 99, 195–218 (2002)

23. Kautz, W.H., Singleton, R.C.: Nonrandom binary superimposed codes. IEEE
Trans. Inform. Theory 10(4), 363–377 (1964)

24. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient Computation of Representa-
tive Sets with Applications in Parameterized and Exact Algorithms. SODA 2014,
142–151 (2014)

25. Gao, H., Hwang, F.K., Thai, M.T., Wu, W., Znati, T.: Construction of d(H)-
disjunct matrix for group testing in hypergraphs. J. Comb. Optim. 12(3), 297–301
(2006)

26. Grebinski, V., Kucherov, G.: Reconstructing a Hamiltonian Cycle by Querying
the Graph: Application to DNA Physical Mapping. Discrete Applied Mathematics
88(1–3), 147–165 (1998)

27. Kleitman, D.J., Spencer, J.: Families of k-independent sets. Discrete Mathematics
6(3), 255–262 (1972)

28. Macula, A.J., Popyack, L.J.: A group testing method for finding patterns in data.
Discret Appl Math. 144, 149–157 (2004)

29. Macula, A.J., Rykov, V.V., Yekhanin, S.: Trivial two-stage group testing for
complexes using almost disjunct matrices. Discrete Applied Mathematics 137(1),
97–107 (2004)

30. Ma, X., Wei, R.: On Bounds of Cover-Free Families. Designs, Codes and Cryptog-
raphy 32, 303–321 (2004)

31. Reyzin, L., Srivastava, N.: Learning and verifying graphs using queries with a focus
on edge counting. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007.
LNCS (LNAI), vol. 4754, pp. 285–297. Springer, Heidelberg (2007)

32. Stinson, D.R., Wei, R., Zhu, L.: Some New Bounds for Cover free Families. Journal
of Combinatorial Theory, Series A 90(1), 224–234 (2000)

33. Stinson, D.R., Wei, R., Zhu, L.: New constructions for perfect hash families and
related structures using combintorial designs and codes. J. Combin. Designs 8(3),
189–200 (2000)

34. Torney, D.C.: Sets pooling designs. Ann. Comb. 3, 95–101 (1999)

On the Teaching Complexity of Linear Sets

Ziyuan Gao1(B), Hans Ulrich Simon2, and Sandra Zilles1

1 Department of Computer Science, University of Regina,
Regina, SK S4S 0A2, Canada

{gao257,zilles}@cs.uregina.ca
2 Horst Görtz Institute for IT Security and Faculty of Mathematics,

Ruhr-Universität Bochum, 44780 Bochum, Germany
hans.simon@rub.de

Abstract. Linear sets are the building blocks of semilinear sets, which
are in turn closely connected to automata theory and formal languages.
Prior work has investigated the learnability of linear sets and semilinear
sets in three models – Valiant’s PAC-learning model, Gold’s learning in
the limit model, and Angluin’s query learning model. This paper consid-
ers a teacher-learner model of learning families of linear sets, whereby
the learner is assumed to know all the smallest sets T1, T2, . . . of labelled
examples that are consistent with exactly one language in the class L to
be learnt, and is always presented with a sample S of labelled examples
such that S is contained in at least one of T1, T2, . . .; the learner then
interprets S according to some fixed protocol. In particular, we will apply
a generalisation of a recently introduced model – the recursive teaching
model of teaching and learning – to several infinite classes of linear sets,
and show that the maximum sample complexity of teaching these classes
can be drastically reduced if each of them is taught according to a care-
fully chosen sequence. A major focus of the paper will be on determining
two relevant teaching parameters, the teaching dimension and recursive
teaching dimension, for various families of linear sets.

1 Introduction

A linear set L is defined by a nonnegative lattice point (called a constant) and
a finite set of nonnegative lattice sets (called periods); the members of L are
generated by adding to the constant an arbitrary finite sequence of the periods
(allowing repetitions of the same period in the sequence). A semilinear set is a
finite union of linear sets. Semilinear sets are not only objects of mathematical
interest, but have also been linked to finite-state machines and formal languages.
One of the earliest and most important results on the connection between semi-
linear sets and context-free languages is Parikh’s theorem [9], which states that
any context-free language is mapped to a semilinear set via a function known as
the Parikh vector of a string. Another interesting result, due to Ibarra [6], char-
acterises semilinear sets in terms of reversal-bounded multicounter machines.
Moving beyond abstract theory, semilinear sets have also recently been applied
in the fields of DNA self-assembly [3] and membrane computing [7].
c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 102–116, 2015.
DOI: 10.1007/978-3-319-24486-0 7

On the Teaching Complexity of Linear Sets 103

The learnabilities of linear sets and semilinear sets have been investigated in
Valiant’s PAC-learning model [1], Gold’s learning in the limit model [12], and
Angluin’s query learning model [12]. Abe [1] showed that when the integers are
encoded in unary, the class of semilinear sets of dimension 1 or 2 is polynomially
PAC-learnable; on the other hand, the question as to whether classes of semilin-
ear sets of higher dimensions are PAC-learnable is open. Takada [12] established
that for any fixed dimension, the family of linear sets is learnable from positive
examples but the family of semilinear sets is not learnable from only positive
examples. Takada also showed the existence of a learning procedure via restricted
subset and restricted superset queries that identifies any semilinear set and halts;
however, he proved at the same time that any such algorithm must necessarily
be time consuming.

This paper is primarily concerned with the sample complexity of teaching
classes of linear sets with a fixed dimension, which we determine mainly with
two combinatorial parameters (and some variants), the teaching dimension (TD)
and the recursive teaching dimension (RTD). These teaching complexity mea-
sures are based on a variant of the online learning model in which a coop-
erative teacher selects the instances presented to the learner [5,11,13]. In the
teacher-learner model, the teacher must present a finite set of instances so that
the learner achieves exact identification of the target concept via some consis-
tent teaching-learning protocol. To preclude any unnatural collusion between the
teacher and learner that could arise from, say, encoding concepts in examples,
the teaching-learning protocol must, in some definite sense, be “collusion-free.”
To this end, Zilles, Lange, Holte and Zinkevich [13] proposed a rigorous definition
of a “collusion-free” teaching-learning protocol. They designed a protocol – the
recursive teaching protocol – that only exploits an inherent hierarchical structure
of any concept class, and showed that this protocol is collusion-free. The RTD
of a concept class is the maximum sample complexity derived by applying the
recursive teaching protocol to the class. The RTD possesses several regularity
properties and has been fruitfully applied to the analysis of pattern languages
[4,8]. A somewhat simpler protocol, the teaching set protocol [5,11], only requires
that the teacher present, for each target concept C, a sample S from C of small-
est possible size so that C is the only concept in the class consistent with S.
The teaching set protocol is also collusion-free, although the maximum sample
complexity in this case – the TD – is generally larger than the RTD.

Our results may be of interest from a formal language perspective as well as
from a computational learning theory perspective. First, they uncover a num-
ber of structural properties of linear sets, especially in the one-dimensional case,
which could be applied to study formal languages via the Parikh vector func-
tion. Consider, for example, the set L(π) of all words obtained by substituting
nonempty strings over {a} for variables in some nonempty string π of symbols
chosen from {a} ∪ X, where X is an infinite set of variables.1 As will be seen
later, the Parikh vector maps L(π) to a linear subset L of the natural num-
bers such that the sum of L’s periods does not exceed the constant associated

1 L(π) is known as a non-erasing pattern language.

104 Z. Gao et al.

to L. Thus one could determine various teaching complexity measures of any
non-erasing pattern language from the teaching complexity measures of a cer-
tain linear subset of the natural numbers. Second, the class of linear sets affords
quite a natural setting to study models of teaching and learning over infinite
concept classes. Besides showing that the RTD can be significantly lower than
the TD for many infinite classes of linear sets, we will consider a more stringent
variant of the RTD, the RTD+, which considers sequential teaching of classes
using only positive examples. It will be shown that there are natural classes of
linear sets that cannot even be taught sequentially using only positive exam-
ples while the RTD is finite; these examples illustrate how supplying negative
information may sometimes be indispensable to successful teaching and learning.

2 Preliminaries

N0 denotes the set of all nonnegative integers and N denotes the set of all positive
integers. For each integer m ≥ 1, let N

m
0 = N0 × . . . × N0 (m times). N

m
0 is

regarded as a subset of the vector space of all m-tuples of rational numbers
over the rational numbers. For each r ∈ N, [r] denotes {1, . . . , r}. For any v =
(a1, . . . , am) ∈ N

m
0 , define ‖v‖1 =

∑m
i=1 ai. 0 will denote the zero vector in N

m
0

when there is no possibility of confusion.

2.1 Linear Sets

A subset L of N
m
0 is said to be linear iff there exist an element c and a finite subset

P of N
m
0 such that L = c+〈P 〉 := {q : q = c+n1p1+ . . .+nkpk, ni ∈ N0, pi ∈ P}.

c is called the constant and each pi is called a period of c+〈P 〉. Denote 0+〈P 〉 by
〈P 〉. For any linear set L, if L = c+ 〈P 〉, then (c, P) is called a representation of
L. Any finite P ⊂ N

m
0 is independent iff for all P ′

� P , it holds that
〈
P ′〉 	= 〈P 〉.

A representation (c, P) of a linear set L is canonical iff P is independent. A linear
subset of N

m
0 will also be called a linear set of dimension m.

〈{p1, . . . , pk}
〉

will
often be written as 〈p1, . . . , pk〉 and d〈p1, . . . , pk〉 will denote 〈dp1, . . . , dpk〉.

Our paper will focus on the linear subsets of N0. The main classes of linear
sets investigated are denoted as follows. In these definitions, k ∈ N.

(i) LINSETk := {〈P 〉 : P ⊂ N0 ∧ ∃p ∈ P [p 	= 0] ∧ |P | ≤ k}.
(ii) LINSET :=

⋃
k∈N

LINSETk.
(iii) CF–LINSETk

2 := {〈P 〉 : ∅ 	= P ⊂ N ∧ gcd(P) = 1 ∧ |P | ≤ k}.
(iv) CF–LINSET :=

⋃
k∈N

CF–LINSETk.
(v) NE–LINSETk

3 := {c + 〈P 〉 : c ∈ N0 ∧ P ⊂ N0 ∧ |P | ≤ k ∧ ∑
p∈P p ≤ c}.

(vi) NE–LINSET :=
⋃

k∈N
NE–LINSETk.

Note that the classes in items (I) to (IV) exclude singleton linear sets; the
reason for this omission will be explained later. The motivation for studying
each subfamily in items (III) to (VI) will be explained as it is introduced in the
forthcoming sections.
2 CF stands for “cofinite.”
3 NE stands for “non-erasing.”

On the Teaching Complexity of Linear Sets 105

2.2 Teaching Dimension and Recursive Teaching Dimension

The two main teaching parameters studied in this paper are the teaching dimen-
sion and the recursive teaching dimension.

Let L be a family of subsets of N
m
0 . Let L ∈ L and T be a subset of N

m
0 ×

{+,−}. Furthermore, let T+ (resp. T−) be the set of vectors in T that are
labelled “+” (resp. “−”). X(T) is defined to be T+ ∪ T−. A subset L of N

m
0 is

said to be consistent with T iff T+ ⊆ L and T− ∩ L = ∅. T is a teaching set for
L w.r.t. L iff T is consistent with L and for all L′ ∈ L \ {L}, T is not consistent
with L′. Every element of N

m
0 × {+,−} is known as a labelled example.

Definition 1. [5,11] Let L be any family of subsets of N
m
0 . Let L ∈ L. The

size of a smallest teaching set for L w.r.t. L is called the teaching dimension
of L w.r.t. L, denoted by TD(L,L). The teaching dimension of L is defined as
sup{TD(L,L) : L ∈ L} and is denoted by TD(L).

Another complexity parameter recently studied in computational learning
theory is the recursive teaching dimension. It refers to the maximum size of
teaching sets in a series of nested subfamilies of the family.

Definition 2. (Based on [8,13]) Let L be any family of subsets of N
m
0 . A teach-

ing sequence for L is any sequence R = ((F0, d0), (F1, d1), . . .) where (i) the
families Fi form a partition of L and each Fi is nonempty, and (ii) di =
TD(L,L \ ⋃

0≤j<i Fj) for all i and all L ∈ Fi. sup{di : i ∈ N0} is called the
order of R, and is denoted by ord(R). The recursive teaching dimension of L
is defined as inf{ord(R) : R is a teaching sequence for L} and is denoted by
RTD(L).

One can also restrict the instances of the teaching sets in a teaching sequence
to positive examples; the best possible order of such a teaching sequence will be
denoted by RTD+.

Definition 3. Let L be any family of subsets of N
m
0 . A teaching sequence with

positive examples for L (or positive teaching sequence for L) is any sequence
P = ((F0, d0), (F1, d1), . . .) such that (i) the families Fi form a partition of
L and each Fi is nonempty, and (ii) for all i and all L ∈ Fi, there is a
subset SL ⊆ L with |SL| = di < ∞ such that for all L′ ∈ ⋃

j≥i Fj , it
holds that SL ⊆ L′ ⇒ L = L′. sup{di : i ∈ N0} is called the order of P ,
and is denoted by ord(P). If L has at least one teaching sequence with pos-
itive examples, then the positive recursive teaching dimension of L is defined
as inf{ord(P) : P is a teaching sequence with positive examples for L} and is
denoted by RTD+(L). If L does not have any teaching sequence with positive
examples, define RTD+(L) = ∞.

A teaching plan for L is a teaching sequence ((F0, d0), (F1, d1), . . .) for L such
that |Fi| = 1 for each i. A teaching plan (({L0}, d0), ({L1}, d1), ({L2}, d2), . . .)
for L will often be written as ((L0, S0), (L1, S1), (L2, S2), . . .), where Si is a teach-
ing set for Li w.r.t. L \ {Lj : 0 ≤ j < i}. A teaching plan with positive examples

106 Z. Gao et al.

for L is defined analogously. Note that for any family L, if TD(L,L) = ∞
for some L ∈ L, then any teaching plan for L must have an infinite order.
Moreover, TD,RTD and RTD+ are monotonic, that is, for all L′ ⊆ L and
K ∈ {TD,RTD,RTD+}, K(L′) ≤ K(L). Another useful fact is that for any
family L, inf{TD(L,L) : L ∈ L} ≤ RTD(L).

For any L′ ⊆ L, call R = ((F0, d0), (F1, d1), . . .) a teaching subsequence
for L covering L′ iff F0,F1, . . . are nonempty, pairwise disjoint subsets of L
such that L′ ⊆ ⋃

i∈N0
Fi and di = TD(L,L \ ⋃

0≤j<i Fj) for all i and all
L ∈ Fi. Define ord(R) = sup{di : i ∈ N0} and RTD(L′,L) = inf{ord(R) :
R is a teaching subsequence for L covering L′}.

A family L of subsets of N
m
0 is said to have finite thickness [2] iff for every

v ∈ N
m
0 , the class of linear sets in L that contain v is finite. Note that finite

thickness is a sufficient condition for families that do not contain the empty set
to have a teaching plan with positive examples. The proof is omitted.

Proposition 4. Let L be a family of subsets of N
m
0 such that L has finite thick-

ness and ∅ /∈ L. Then there exists a teaching plan with positive examples for L,
Q, such that ord(Q) = RTD+(L).

The next proposition provides a necessary condition for any family to have
a teaching sequence with positive examples. This condition will be used later to
establish the non-existence of positive teaching sequences for some families of
linear sets.

Proposition 5. Let L be a family of subsets of N
m
0 that has at least one posi-

tive teaching sequence. Then for every L ∈ L, there does not exist any infinite
descending chain H0 � H1 � H2 � . . . such that {H0,H1,H2, . . .} ⊆ L and
L � Hi for each i.

Proof. Suppose there is some L ∈ L for which there exists an infinite descending
chain H0 � H1 � H2 � . . . with {H0,H1,H2, . . .} ⊆ L and L � Hi for each
i. Assume by way of a contradiction that ((L0, d0), (L1, d1), . . .) were a positive
teaching sequence for L. Suppose L ∈ Li for some i. Note that for all j ∈
{0, . . . , i}, L � Hj implies that Hj ∈ Lkj

for some kj < i. Further, for all
j ∈ {0, . . . , i−1}, since Hj+1 � Hj , it must hold that kj < kj+1. This contradicts
the fact that 0 ≤ kj < i for all j ∈ {0, . . . , i}.

3 Linear Subsets of N0 With Constant 0

This section will analyse the class LINSET of linear subsets of N0 with constant
0. Even in the apparently simple one-dimensional case, the teaching complexity
measures can vary quite widely across families of linear sets. Many proofs will
exploit the fact that linear sets of dimension 1 are ultimately periodic, a property
that has no exact analogue for linear sets of higher dimensions.

Proposition 6. [10] Let P ⊂ N be a finite set such that gcd(P) = 1. Then
N \ 〈P 〉 is finite. The largest number in N \ 〈P 〉 is known as the Frobenius
number of 〈P 〉.

On the Teaching Complexity of Linear Sets 107

For any P = {p1, . . . , pk} with gcd(P) = 1, F (P) and F (p1, . . . , pk) will
denote the Frobenius number of 〈P 〉. We will characterise the teaching sets of
all linear sets 〈P 〉 such that gcd(P) = 1 with respect to LINSET in terms of P
and a certain (finite) subset of N \ 〈P 〉. The following variation of a notion from
the theory of numerical semigroups will help to formulate the characterisation.

The partial ordering induced by P (modified from [10]) is defined as follows:
x ≤P y ⇐⇒ ∃a ∈ N : y − ax ∈ 〈P 〉. We write x <P y as an abbreviation
of x ≤P y ∧ x 	= y. One has x ∈ 〈P 〉 ∧ x ≤P y ⇒ y ∈ 〈P 〉, or equivalently,
y /∈ 〈P 〉 ∧ x ≤P y ⇒ x /∈ 〈P 〉.

For the rest of this section, “maximal” (resp. “minimal”) always means “max-
imal w.r.t. ≤P ” (resp. “minimal w.r.t. ≤P ”) unless specified otherwise. Let
MAXP be the set of maximal elements in N \ 〈P 〉 and let MINP denote the
set of minimal elements in 〈P 〉 \ {0}. The following lemma collects some useful
known facts. Many of these facts are proven in [10], or may be directly deduced
from related results proven in [10].

Lemma 7. (i) N \ 〈P 〉 contains an infinite ascending chain x0 <P x1 <P

x2 <P . . . (e.g. xi = 1+ ip with an arbitrary choice of p ∈ P) iff gcd(P) >
1.

(ii) If H ⊆ 〈P 〉, then the following hold:
(a) 〈H〉 ⊆ 〈P 〉.
(b) The partial ordering ≤P is a refinement of the partial ordering ≤H ;

that is, for any x, y, x ≤H y implies x ≤P y.
(c) MINP ∩ 〈H〉 ⊆ MINH .

(iii) Let s = a1p1 + . . .+arpr ∈ 〈P 〉 and let I = {i ∈ [r]| ai 	= 0}. Then pi ≤P s
for each i ∈ I. This implies that MINP ⊆ P .

(iv) If p, p′ ∈ P and p <P p′, then p′ is superfluous, i.e., 〈P 〉 = 〈P \ {p′}〉.
(v) If P is independent, then P = MINP .

For the rest of this section, it will always be assumed that P is independent.
We now study teaching sets.

Lemma 8. 1. Let T be a teaching set for 〈P 〉 w.r.t. LINSET. Then P ⊆ T+.
2. Let T be a teaching set for 〈P 〉 w.r.t. LINSETk for k = |P | + 1. Then, for

each x ∈ N \ 〈P 〉, there exists y ∈ T− such that x ≤P y.

Proof.

1. Since the labelling in T is consistent with 〈P 〉, it follows that T+ ⊆ 〈P 〉
and T− ∩ 〈P 〉 = ∅. Therefore,

〈
T+

〉 ⊆ 〈P 〉 so that
〈
T+

〉
is consistent with

T . Since T is a teaching set for 〈P 〉, we may conclude that
〈
T+

〉
= 〈P 〉,

which implies that ≤T+ is the same partial ordering as ≤P . Since P (by the
general convention made above) is independent, it follows that P = MINP =
MINT+ ⊆ T+. Thus P ⊆ T+, as desired.

2. Pick an arbitrary but fixed x ∈ N \ 〈P 〉. We have to show that T− contains
some element y such that x ≤P y. Let P ′ = P ∪ {x}. Clearly, 〈P 〉 is a
proper subset of

〈
P ′〉 and

〈
P ′〉 is consistent with T+. Since T is a teaching

108 Z. Gao et al.

set for 〈P 〉 w.r.t. LINSETk and 〈P 〉, 〈P ′〉 ∈ LINSETk, it follows that T−

contains an element y ∈ 〈
P ′〉 \ 〈P 〉. Thus y can be written in the form

y = ax +
∑

p∈P a(p)p for some properly chosen a ∈ N and a(p) ∈ N0. It
follows that x ≤P y, as desired.

Corollary 9. If gcd(P) > 1 and k = 1 + |P |, then TD(〈P 〉,LINSETk) = ∞.

Proof. According to Lemma 7, N \ 〈P 〉 contains an infinite ascending chain
x1 <P x2 <P x3 <P According to the second assertion in Lemma 8, a
teaching set for 〈P 〉 must contain infinitely many elements of this chain.

Corollary 10. If gcd(P) = 1, then the set T (P) given by T (P)+ = P and
T (P)− = MAXP is the unique smallest teaching set for 〈P 〉 w.r.t. LINSET.

Proof. Suppose that 〈H〉 is consistent with T (P). We show that 〈H〉 = 〈P 〉
(implying that T (P) is a teaching set for 〈P 〉). Since P ⊆ 〈H〉 (by consistency),
it follows that 〈P 〉 ⊆ 〈H〉. Pick an arbitrary but fixed element x from N \ 〈P 〉.
Recall that N \ 〈P 〉 is finite. Thus, by the definition of MAXP , there must exist
an element y ∈ MAXP such that x ≤P y. From x ≤P y and 〈P 〉 ⊆ 〈H〉, we may
conclude that x ≤H y. The number y ∈ MAXP cannot belong to 〈H〉 (because
〈H〉 is consistent with T (P)). Now, x ≤H y implies that x /∈ 〈H〉. Thus, 〈H〉
does not contain any element outside 〈P 〉. It follows that 〈P 〉 = 〈H〉. Thus,
T (P) is a teaching set for 〈P 〉 w.r.t. LINSET, indeed. According to Lemma 8,
any other teaching set must contain T (P) as a subset.

Remark 11. If T is a teaching set for L′ ⊆ N
m
0 w.r.t. L, then for any c ∈ N

m
0 ,

c + T = {(c + x,+) : x ∈ T+} ∪ {(c + y,−) : y ∈ T−} is a teaching set for c + L′

w.r.t. L[n] = {c + L : L ∈ L}. Thus Lemma 8 and Corollaries 9 and 10 may be
readily generalised, mutatis mutandis, to the class LINSET[c] = {c + L : L ∈
LINSET} for any c ∈ N0.

The proof of [8, Theorem 6] provides a construction that may be slightly
modified to show that TD(LINSET1) = ∞ even though TD(〈q〉,LINSET1) < ∞
for any q > 0. By the monotonicity of TD, TD(LINSET) = TD(LINSETk) = ∞
for all k > 0.

By Corollary 9, LINSET contains infinitely many members that have an
infinite TD w.r.t. LINSET. Thus for any L ⊆ LINSET, it may be difficult to
interpret a value of ∞ for TD(L): (1) on the one hand, all cofinite subclasses of L
may have an infinite TD w.r.t. L; (2) on the other hand, there may be a cofinite
subclass of L that has a finite TD w.r.t. L. Intuitively, it seems that L in Case
(2) is unteachable in a weaker sense than in Case (1), but the TD makes no such
distinction. It shall be shown, however, that the RTD is a bit more well-behaved
when applied to LINSET. In particular, for all L ⊂ LINSET, RTD(L,LINSET)
grows only linearly with sup{min(P) : 〈P 〉 ∈ L ∧ min(P) > 0}. We will also
give a finer analysis of LINSETk for k ∈ {1, 2, 3}, showing that while LINSET2

does not have any positive teaching sequence, RTD(LINSETk) < ∞ for k ∈
{1, 2, 3}. In addition, RTD(LINSETk) grows at least linearly in k, implying that

On the Teaching Complexity of Linear Sets 109

RTD(LINSET) = ∞. The question of whether RTD(LINSETk) < ∞ for any
k > 3 remains open.

First, the following proposition explains why the singleton {0} was excluded
from the definition of LINSET. The proof is quite similar to that of Proposition
21, which will be proven later.

Proposition 12. RTD({{0}}, {{0}} ∪ LINSET1) = ∞.

Proposition 12 should be contrasted with the observation that RTD(LINSE-
T1) = 1: ((〈1〉, 1), (〈2〉, 1), . . .) is a teaching plan with positive examples for
LINSET1, where the ith linear set in the plan is 〈i〉 and {(i,+)} is a teaching set
for 〈i〉 w.r.t. {〈j〉 : j ≥ i}. The next theorem shows on the other hand that for
any finite L ⊂ LINSET, RTD(L,LINSET) < ∞; in fact, for any L ⊂ LINSET,
RTD(L,LINSET) is at most linear in sup{min(P) : 〈P 〉 ∈ L ∧ min(P) > 0}.

Theorem 13. Let Fn = {〈P 〉 : P is independent ∧ min(P) ≤ n}. Then
RTD(Fn,LINSET) ≤ 2n − 1.

Proof. (Sketch.) To streamline the proof, we will adopt some graph terminology.
Let L = LINSET. Let L �→ T (L) be a mapping that assigns a set of labelled
examples to every L ∈ L. Define the digraph induced by T as the graph G =
(VG, AG), where the nodes of G are identified with the members L of L, i.e.,
VG = L, and a pair (L′, L) ∈ L × L is included in AG iff L′ is consistent with
T (L). Define the depth of a node v in a digraph as the length of the longest
path ending in v (or as ∞ if the paths ending in v can become arbitrarily long).
Say that the mapping L �→ T (L) with L ranging over all members of L is RTD-
admissible for L if the digraph G induced by T is acyclic and every node in G
has a finite depth.

We shall use the following two facts (proofs omitted due to space constraints):
(1) there exists a partition of L into L0,L1, . . . such that, for all i and all L ∈ Li,
it holds that T (L) is a teaching set for L w.r.t.

⋃
j≥i Lj iff T is RTD-admissible;

(2) if P = {p1, . . . , pk} ⊆ N0 is independent, p1 = min(P) and d = gcd(P), then
k = |P | ≤ p1 and |MAXP | ≤ p1 − 1.

Let P range over finite independent subsets of N0. We shall show that the
mapping 〈P 〉 �→ T (〈P 〉) given by T (〈P 〉)+ = P and T (〈P 〉)− = MAXP is RTD-
admissible for L. It suffices to show that the digraph G = (L, A) induced by
the mapping 〈P 〉 �→ T (〈P 〉) is acyclic and every node 〈P 〉 ∈ L has a finite
depth. Suppose that (

〈
P ′〉, 〈P 〉) ∈ A. It follows from the construction of G that〈

P ′〉 is consistent with T (〈P 〉). The consistency with T (〈P 〉)+ = P implies that
d′ = gcd(P ′) is a divisor of d = gcd(P). It suffices to show that d′ is a proper
divisor of d since this implies that G is acyclic and that the depth of 〈P 〉 is
bounded by the number of prime power divisors of d = gcd(P). Suppose for sake
of contradiction that d′ = d so that

〈
P ′〉, 〈P 〉 ⊆ d · N0. Now we may argue as

follows. Since (
〈
P ′〉, 〈P 〉) ∈ A, the two linear sets do not coincide so that we may

pick a point u from their symmetric difference. Since both linear sets are subsets
of d · N0, there exists u′ ∈ N such that u = du′. But then u′ is in the symmetric
difference of (1/d)

〈
P ′〉 and (1/d)〈P 〉. On the other hand, since

〈
P ′〉 is consistent

110 Z. Gao et al.

with T (〈P 〉), it follows that (1/d)
〈
P ′〉 is consistent with (1/d)P labelled “+” and

(1/d)MAXP = MAX(1/d)P labelled “−”. According to Corollary 10, (1/d) · P
labelled “+” and MAX(1/d)P labelled “−” is a teaching set for (1/d)〈P 〉 w.r.t. L,
a contradiction.

Finally, observe that from Facts (1), (2), the RTD-admissibility of T for L,
and the condition that min(P) ≤ n for all 〈P 〉 ∈ Fn with P independent, one
can find a teaching subsequence for L covering Fn such that the order of this
teaching subsequence is at most n + (n − 1) = 2n − 1.

Theorem 15 (to be shown later) will imply that the order of any teaching
sequence for LINSET must necessarily be infinite. Nonetheless, the preceding
theorem shows roughly that the growth of RTD(L,LINSET) with L is relatively
modest if the minimum positive periods of all L ∈ L vary only linearly.

The next series of results will present a detailed study of CF–LINSETk for
each k and CF–LINSET, which comprises all linear sets 〈P 〉 such that P (= ∅)
is a finite subset of N and and gcd(P) = 1. By Proposition 6, this is precisely
the class of cofinite linear subsets of N0 with constant 0. Since LINSETk is a
union of classes of linear sets, each of which is isomorphic to CF–LINSETk, it is
hoped that investigating the teaching complexity of CF–LINSETk may lead to
some insights into the question of whether RTD(LINSETk) is finite for each k.
CF–LINSET is also perhaps interesting in its own right: on the one hand, the
teaching dimension of CF–LINSETk is finite for k ≤ 3 but infinite for k ≥ 5; on
the other hand, for all k, CF–LINSETk has a relatively simple teaching sequence
that gives it an RTD+ of k. The first result gives an almost complete analysis
of TD(CF–LINSETk) for all k; the case k = 4 is left open.

Theorem 14. (i) TD(CF–LINSET1) = 0;
(ii) TD(CF–LINSET2) = 3;
(iii) TD(CF–LINSET3) = 5;
(iv) for each k ≥ 5, TD(CF–LINSETk) = ∞.

Proof. The proofs of Assertions (III) and (IV) are quite long and will be omit-
ted. Assertion (I). Note that CF–LINSET1 = {〈1〉}. The empty set is a teaching
set for 〈1〉 w.r.t. CF–LINSET1.

Assertion (II). We first prove the upper bound. Note that N0 is the only
member of CF–LINSET2 that is generated by one number. {(1,+)} is a teaching
set for N0 w.r.t. CF–LINSET2, and so TD(N0) = 1. Now consider L = 〈p1, p2〉,
where gcd(p1, p2) = 1. We claim that T = {(p1,+), (p2,+), (p1p2 − p1 − p2,−)}
is a teaching set for L w.r.t. CF–LINSET2. Note that F (p1, p2) = p1p2 − p1 − p2
(see, for example, [10]), and so the labelling of T is consistent with L. For any
L′ ∈ CF–LINSET2 such that {p1, p2} ⊆ L′, it must hold that L′ ⊆ L. Suppose
further that L′ 	= L, and take any p3 ∈ L′ − L. Then there exists some k with
0 ≤ k ≤ p1 − 1 such that p3 ≡ kp2 (mod p1). Since p3 /∈ L, this means that
for some m ≥ 1, p3 = kp2 − mp1. As p1p2 − p1 − p2 = kp2 − mp1 + (m −
1)p1 + (p1 − k − 1)p2 = p3 + (m − 1)p1 + (p1 − k − 1)p2 ∈ 〈p1, p2, p3〉 ⊆ L′, it
follows that p1p2 − p1 − p2 ∈ L′, and so T cannot be consistent with L′. Hence
TD(CF–LINSET2) ≤ 3.

On the Teaching Complexity of Linear Sets 111

For the lower bound, choose primes p1, p2, p3 such that 2 < p1 < p2 < p3.
Note that 〈2, p1p2p3〉 � 〈2, p1p2〉 � 〈2, p1〉 is a chain in CF–LINSET2. Thus if
T is any teaching set for 〈2, p1p2〉 w.r.t. CF–LINSET2 such that |T | ≤ 2, then
T must contain exactly one positive example (x1,+) and exactly one negative
example (x2,−). Choose any prime p > max({x1, x2, 2, p1p2}). Then 〈x1, p〉 is
consistent with T but 〈2, p1p2〉 	= 〈x1, p〉. Hence |T | ≥ 3.

Theorem 15. For all k ≥ 1, RTD(CF–LINSETk) ∈ {k −1, k} and RTD+(CF–
LINSETk) = k. Moreover, RTD(CF–LINSET2) = 2.

Proof. (Sketch.) We prove RTD+(CF–LINSETk) = k. First, a teaching plan
with positive examples for CF–LINSETk is constructed. Let 〈P0〉, 〈P1〉, . . . be
a one-one enumeration of CF–LINSETk such that for all i, j with i < j, Pi is
independent and 〈Pi〉 	⊆ 〈Pj〉. Such an enumeration exists because for each 〈P 〉 ∈
CF–LINSETk, there are only finitely many

〈
P ′〉 ∈ CF–LINSETk such that

〈P 〉 ⊆ 〈
P ′〉, which implies that there are only finitely many chains C1, . . . such

that 〈P 〉 is the least member (with respect to set inclusion) of each Cl, and each of
these chains has finite length. Let Q be the teaching plan ((〈P0〉, S0), (〈P1〉, S1),
(〈P2〉, S2), . . .) where, for each Pi, Si = {(p,+) : p ∈ Pi}. Since 〈Pi〉 	⊆ 〈

Pj

〉
for

all j > i, Si is a teaching set for 〈Pi〉 w.r.t. {〈Pj〉 : j ≥ i}. Further, as |Si| ≤ k
for all i, Q is a teaching plan for CF–LINSETk of order at most k.

Now it is shown that RTD+(CF–LINSETk) ≥ k. Let P ={k, k+1, . . . , 2k−1},
and consider the class Ck = {H ∈ CF–LINSETk : H ⊆ 〈P 〉}. For any positive
teaching sequence Q′ of Ck, 〈P 〉 must be contained in the first nonempty subclass
of Ck removed. If 〈P 〉 has a teaching set with positive examples S (w.r.t. the
subclass of linear sets in Ck that do not occur before 〈P 〉 in Q′) such that |S| ≤
k − 1, then 〈X(S)〉 is a proper subset of 〈P 〉 that is consistent with S; further,
there exists some prime p /∈ X(S) such that

〈
X(S) ∪ {p}〉 ∈ CF–LINSETk and〈

X(S) ∪ {p}〉 � 〈P 〉. Hence |S| ≥ k. This proves that RTD+(CF–LINSETk) ≥
RTD+(Ck) ≥ k. We skip the proof that RTD(CF–LINSET2) = 2.

The construction that witnesses RTD(CF–LINSETk) ≥ k − 1 is based on
a hitherto unpublished proof [4]. For each k, let Lk = {〈k, p1, . . . , pk−1〉 : ∀i ∈
{1, . . . , k − 1}[pi ∈ {k + i, 2k + i}]}. One can show that RTD(CF–LINSETk) ≥
RTD(Lk) ≥ min({TD(L,Lk) : L ∈ Lk}) ≥ k − 1.

Corollary 16. TD(CF–LINSET) = RTD(CF–LINSET) = RTD+(CF–LINS-
ET) = RTD(LINSET) = ∞.

For each k ∈ {1, 2, 3}, the result on TD(CF–LINSETk) may be directly
applied to construct a teaching sequence of finite order for LINSETk.

Theorem 17. (i) LINSET2 does not have any positive teaching sequence.
(ii) RTD+(LINSET1) = RTD(LINSET1) = 1, RTD(LINSET2) = 3 and 3 ≤

RTD(LINSET3) ≤ 5.

Proof. Assertion (I). Let p1, p2, p3, . . . be a strictly increasing infinite sequence
of primes with p1 > 2. Note that for all j, 〈2〉 � 〈2, p1 . . . pj〉. Further, 〈2, p1〉 �

112 Z. Gao et al.

〈2, p1p2〉 � 〈2, p1p2p3〉 � . . . � 〈2, p1 . . . pj〉 � 〈2, p1 . . . pjpj+1〉 � . . . is an
infinite descending chain in LINSET2. Thus by Proposition 5, LINSET2 does
not have a positive teaching sequence.

Assertion (II). (Sketch.) We had described earlier (after Proposition 12) a
teaching plan with positive examples of order 1 for LINSET1. Here, a teaching
sequence for LINSET2 of order no more than 3 is given; a teaching sequence for
LINSET3 can be constructed analogously using teaching sets of size at most 5 for
linear sets in CF–LINSET3. Define the sequence ((L0, d0), (L1, d1), . . .) where,
for all i ∈ N0, Li = {〈p1, p2〉 : p1, p2 ∈ N ∧ gcd(p1, p2) = i + 1}. Consider any
〈p1, p2〉 ∈ Li. The proof of Assertion (II) in Theorem 14 gives a teaching set
T of size no more than 3 for

〈
p1
i+1 , p2

i+1

〉
w.r.t. CF–LINSET2. Now let T ′ =

{((i + 1)x,+) : x ∈ T+} ∪ {((i + 1)y,−) : y ∈ T−}. Note that since T ′ contains
the two positive examples (p1,+), (p2,+) and gcd(p1, p2) = i + 1, no linear set
〈P 〉 ∈ LINSET2 with gcd(P) > i + 1 can be consistent with T ′. Moreover, T ′ is
a teaching set for 〈p1, p2〉 w.r.t. all 〈P 〉 ∈ LINSET2 with gcd(P) = i + 1. Hence
di ≤ 3 for all i ∈ N0. We omit the proof that RTD(LINSET2) ≥ 3.

4 Linear Subsets of N0 with Bounded Period Sums

The present section will examine a special family of linear subsets of N0 that
arises from studying an invariant property of the class of non-erasing pattern
languages over varying unary alphabets. Recall that the commutative image, or
Parikh image, of w ∈ {a}∗ is the number of times that a appears in w, or the
length of w. Thus the commutative image of the language generated by a non-
erasing pattern ak0xk1

1 . . . xkn
n is the linear subset (k0+k1+. . .+kn)+〈k1, . . . , kn〉

of N0, which is in NE–LINSET. Conversely, any L ∈ NE–LINSET is the com-
mutative image of a non-erasing pattern language. This gives a one-to-one cor-
respondence between the class of non-erasing pattern languages and the class
NE–LINSET, so that the two classes have equivalent teachability properties.
The following theorem gives the exact value of RTD+(NE–LINSETk).

Theorem 18. RTD+(NE–LINSETk) = k + 1.

Proof. (Sketch.) Note that as NE–LINSETk has finite thickness and ∅ /∈ NE–LI-
NSETk, Proposition 4 implies that NE–LINSETk has a teaching plan with
positive examples. RTD+(NE–LINSETk) ≤ k + 1 is shown. A teaching plan
Q for NE–LINSETk is built in stages as follows. Let Qc denote the segment
of Q that has been defined up to stage c and let Ac denote the class of all
L ∈ NE–LINSETk such that Qc does not contain L. It is assumed inductively
that Ac does not contain any linear subset of N0 with constant less than c.
The idea of the construction is to design a teaching plan for the finite subclass
P 0
c = {c + 〈p1, . . . , pk〉 : p1 + . . . + pk ≤ c} at stage c.

Inductively, assume that P g
c has been defined for some g ≥ 0. If P g

c = ∅,
then the teaching plan for P 0

c is complete. Otherwise, suppose that P g
c is

nonempty. Choose c + 〈p1, . . . , pk〉 ∈ P g
c , the next linear set to be taught

in the teaching plan for P 0
c , so that c + 〈p1, . . . , pk〉 is maximal in P g

c with

On the Teaching Complexity of Linear Sets 113

respect to the subset inclusion relation. Set P g+1
c = P g

c \ {c + 〈p1, . . . , pk〉}.
We claim that S = {(c,+)} ∪ {(c + pi,+) : 1 ≤ i ≤ k} is a teaching set for
c + 〈p1, . . . , pk〉 w.r.t. P g

c ∪ (Ac \ P 0
c). Assume that {c} ∪ {c + ai : 1 ≤ i ≤ k} ⊆

c′ + 〈b1, . . . , bl〉 ∈ P g
c ∪ (Ac \ P 0

c). Since Ac does not contain any linear subset
of N0 with constant less than c, c′ = c and so c′ + 〈b1, . . . , bl〉 ∈ P g

c . Then for
all i ∈ {1, . . . , k}, ai =

∑l
i=1 qibi for some non-negative integers q1, . . . , ql, and

therefore c+〈a1, . . . , ak〉 ⊆ c+〈b1, . . . , bl〉. By the maximality of c+〈a1, . . . , ak〉,
one has c + 〈a1, . . . , ak〉 = c + 〈b1, . . . , bl〉. The construction continues until a
stage g′ is reached where P g′

c = ∅. Qc+1 is then defined as the concatenation of
Qc and the teaching plan for P 0

c (with Qc as the prefix). We omit the somewhat
long proof that RTD+(NE–LINSETk) ≥ k + 1.

The lower bound on RTD(NE–LINSETk) in the following theorem may be
obtained by adapting the proof of the corresponding result for CF–LINSETk;
the proof of [8, Theorem 6] immediately implies that TD(NE–LINSETk) = ∞.

Theorem 19. For all k ≥ 1, k − 1 ≤ RTD(NE–LINSETk) ≤ k + 1 and
TD(NE–LINSETk) = ∞.

Remark 20. Our results on NE–LINSET may be generalised to classes of linear
subsets of N

m
0 for any m > 1 in the following way. For each m, define

(i) NE–LINSETm
k := {c + 〈P 〉 : c ∈ N

m
0 ∧ P ⊂ N

m
0 ∧ |P | ≤ k ∧ ‖∑

p∈P p‖1 ≤
‖c‖1}.

(ii) NE–LINSETm :=
⋃

k∈N
NE–LINSETm

k .

Note that NE–LINSET1
k = NE–LINSETk and NE–LINSET1 = NE–LINS-

ET. Then one has RTD+(NE–LINSETm
k) = RTD+(NE–LINSETk) = k + 1, k −

1 ≤ RTD(NE–LINSET1
k) ≤ RTD(NE–LINSETm

k) and RTD(NE–LINSETm) =
RTD(NE–LINSET) = RTD+(NE–LINSETm) = RTD+(NE–LINSET) = ∞.

5 Linear Subsets of N
2
0 with Constant 0

Finally, we consider how our preceding results may be extended to general classes
of linear subsets of higher dimensions. Finding teaching sequences for families
of linear sets with dimension m > 1 seems to present a new set of challenges, as
many of the proof methods for the case m = 1 do not carry over directly to the
higher dimensional cases. The classes of linear subsets of N

2
0 briefly studied in

this section are denoted as follows. In the first definition, k ∈ N.

(i) LINSET2
k := {〈P 〉 : P ⊂ N

2
0 ∧ ∃p ∈ P [p 	= 0] ∧ |P | ≤ k}.

(ii) LINSET2
=2 := LINSET2

2 \ LINSET2
1.

The following result suggests that to identify interesting classes of linear
subsets of N

m
0 for m > 1 that have finite teaching complexity measures, it might

be a good idea to first exclude certain linear sets.

Proposition 21. RTD({〈(0, 1)
〉},LINSET2

2) = ∞.

114 Z. Gao et al.

Proof. Assume that R = ((L0, d0), (L1, d1), . . .) were a teaching subsequence for
LINSET2

2 covering {〈(0, 1)
〉}. Suppose that 〈(0, 1)〉 ∈ Li and T were a teaching

set for 〈(0, 1)〉 w.r.t. LINSET2
2\⋃

j<i Lj . Choose any N > max({dj : j < i}) such
that N is larger than every component of any instance (a, b) ∈ N

2
0 in T . Further,

let p0, . . . , pN+i be a strictly increasing sequence of primes. Observe that by the
choice of N , 〈(0, 1), p0 . . . pN+i(1, 1)〉 is consistent with T . Hence this linear set
occurs in some Lj0 with j0 < i. In addition, since, for any two distinct (N + i)-
subsets S, S′ of {p0, . . . , pN+i}, 〈(0, 1), p0 . . . pN+i(1, 1)〉 � 〈(0, 1),

∏
x∈S x(1, 1)〉

and 〈(0, 1),
∏

x∈S x(1, 1)〉 ∩ 〈(0, 1),
∏

x∈S′ x(1, 1)〉 ⊆ 〈(0, 1), p0 . . . pN+i(1, 1)〉, the
choice of N again gives that for some (N + i)-subset S1 of {p0, . . . , pN+i},
〈(0, 1),

∏
x∈S1

x(1, 1)〉 ∈ Lj1 for some j1 < j0. The preceding line of argu-
ment can be applied again to show that for some (N + i − 1)-subset S2

of S1, 〈(0, 1),
∏

x∈S2
x(1, 1)〉 ∈ Lj2 for some j2 < j1. Repeating the argu-

ment successively thus yields a chain S1 � S2 � . . . � Si of subsets of
{p0, . . . , pN+i} such that 〈(0, 1),

∏
x∈Sl

x(1, 1)〉 ∈ Ljl for all l ∈ {1, . . . , i}, where
ji < . . . < j1 < j0 < i, which is impossible as ji ≥ 0. Hence there is no teaching
subsequence of LINSET2

2 covering {〈(0, 1)
〉}.

One can define quite a meaningful subclass of LINSET2
2 that does have a

finite RTD. LINSET2
=2 consists of all linear sets in LINSET2

2 that are strictly
2-generated. Examples of strictly 2-generated linear subsets include 〈(1, 0), (0,
1)〉 and 〈(4, 6), (6, 9)〉. 〈(0, 1)〉 is not a strictly 2-generated linear subset.

Theorem 22. (i) TD(LINSET2
=2) = ∞.

(ii) LINSET2
=2 does not have any positive teaching sequence.

(iii) RTD(LINSET2
=2) ∈ {3, 4}.

Proof. Assertion (I). Observe from the proof of Proposition 21 that for any N
distinct primes p0, p1, . . . , pN−1, TD(

〈
(0, 1), p0p1 . . . pN−1(1, 0)

〉
,LINSET2

=2) ≥
N . Hence TD(L,LINSET2

=2) = ∞ for any cofinite subclass L of LINSET2
=2.

Assertion (II). Let p1, p2, p3, . . . be a strictly increasing infinite sequence
of primes. Note that for all j,

〈
(2, 0), (3, 0)

〉
�

〈
(1, 0), p1 . . . pj(0, 1)

〉
. Further,

〈(1, 0), p1(0, 1)〉 � 〈(1, 0), p1p2(0, 1)〉 � 〈(1, 0), p1p2p3(0, 1)〉 � . . . � 〈(1, 0), p1
. . . pj(0, 1)〉 � 〈(1, 0), p1 . . . pjpj+1(0, 1)〉 � . . . is an infinite descending chain in
LINSET2

=2. Thus by Proposition 5, LINSET2
=2 does not have a positive teaching

sequence.
Assertion (III). (Sketch.) The main idea is that for each strictly 2-generated

linear subset S of N
2
0 with canonical representation (0, P), if M denotes the

class of all S′ ∈ LINSET2
=2 for which each S′ ∈ M with canonical representation

(0, P ′) satisfies ‖∑
p′∈P ′ p′‖1 ≥ ‖∑

p∈P p‖1, then TD(S,M) ≤ 4. The sequence
((L0, d0), (L1, d1), . . .) defined by Li = {〈u1, u2〉 : ‖u1 + u2‖1 = i + 2} would
then be a teaching sequence for LINSET2

=2 of order at most 4. To prove this
assertion, it suffices to find a teaching set of size at most 4 for any 〈u1, u2〉 w.r.t.
the class of all S′ ∈ LINSET2

=2 such that if S′ has the canonical representation
(0, P ′), then ‖∑

p′∈P ′ p′‖1 ≥ ‖u1 + u2‖1.
Owing to space constraints, we will only give a proof for the case when {u1, u2}

is linearly independent. For a given linear set L with canonical representation

On the Teaching Complexity of Linear Sets 115

·

u1

u2

p1

p2

Fig. 1. p1 and p2 (not drawn to scale)

(c, P), call each p ∈ P a minimal period of L. Assume that u1 lies to the left of
u2. Consider the set A of linear sets L in M such that 〈u1, u2〉 � L. Since no sin-
gle vector in N

2
0 can generate two linearly independent vectors in N

2
0, each L ∈ A

must have two linearly independent periods p1 and p2, neither of which lies strictly
between u1 and u2; in addition, max({‖p1‖1, ‖p2‖1}) ≤ max({‖u1‖1, ‖u2‖1}).
ThusA is finite. Furthermore, for eachL ∈ Awith canonical representation (0, P ′),
at least one of the periods in P ′ is not parallel to u1 and also not parallel to u2,
for otherwise ‖∑

p′∈P ′ p′‖1 < ‖u1 + u2‖1. If A = ∅, then {(u1,+), (u2,+)} is
a teaching set for 〈u1, u2〉 w.r.t. M . Assume that A 	= ∅. Consider the set Q =⋃

L∈A{w : w is a minimal period of L not parallel to u1 and not parallel to u2}.
Choose some p1 among the periods in Q that are closest to u1 to the left of u1,
and choose p2 so that p2 is among the periods in Q that are closest to u2 to
the right of u2 (see Figure 1); note that at least one of p1, p2 exists. For every
L ∈ A with canonical representation (0, {v1, v2}), at least one of p1 and p2 lies
between (not necessarily strictly) v1 and v2, and {kp1, k

′p2} ∩ 〈u1, u2〉 = ∅ for all
k, k′ ∈ N. Thus there is a sufficiently large K ∈ N such that for all L ∈ A, either
Kp1 ∈ L\〈u1, u2〉 or Kp2 ∈ L\〈u1, u2〉. Therefore a teaching set for 〈u1, u2〉 w.r.t.
M is {(u1,+), (u2,+), (Kp1,−), (Kp2,−)}. If pi does not exist for exactly one i,
then remove (Kpi,−) from this teaching set.

6 Conclusion

We have studied two main teaching parameters, the TD and RTD (and its variant
RTD+), of classes of linear sets with a fixed dimension. Notice that in Table 1,
even though all the classes have an infinite TD, there are finer notions of teach-
ability that occasionally yield different finite sample complexity measures. In
particular, there are families of linear sets that have an infinite TD and RTD+

and yet have a finite RTD. We broadly interpret a class that has an infinite RTD
as being “unteachable” in a stronger sense than merely having an infinite TD.
Quite interestingly, the fact that some classes in Table 1 have an infinite RTD
contrasts with Takada’s [12] theorem that the family of linear subsets of N

m
0 is

learnable in the limit from just positive examples. One possible interpretation of
this contrast is that classes of linear sets may be generally harder to teach than
to learn. Further, a number of quantitative problems remain open. For example,
we did not solve the question of whether RTD(LINSETk) is finite for each k > 3.
A more precise analysis of the values of RTD for various families of linear sets
studied in the present paper (see Table 1) would also be desirable.

116 Z. Gao et al.

Table 1. Partial summary of results.

Class TD RTD RTD+

CF–LINSETk, k ≥ 5 ∞ (Thm 14(IV)) RTD ∈ {k − 1, k} (Thm 15) k (Thm 15)

LINSET1 ∞ (Rem 11) 1 (Thm 17(II)) 1 (Thm 17(II))

LINSET2 ∞ (Rem 11) 3 (Thm 17(II)) ∞ (Thm 17(I))

LINSET3 ∞ (Rem 11) RTD ∈ {3, 4, 5} (Thm 17(II)) ∞ (Thm 17(I))

LINSET ∞ (Rem 11) ∞ (Cor 16) ∞ (Thm 17(I))

NE–LINSETm
k ,m, k ≥ 1 ∞ (Thm 19) RTD ∈ {k − 1, k, k + 1} (Rem 20) k + 1 (Rem 20)

NE–LINSETm,m ≥ 1 ∞ (Thm 19) ∞ (Rem 20) ∞ (Rem 20)

LINSET2
=2 ∞ (Thm 22) RTD ∈ {3, 4} (Thm 22) ∞ (Thm 22)

Acknowledgments. We thank the referees of ALT 2015 for their critical reading of
the manuscript; special thanks go to one referee for pointing out an error in the original
version of Proposition 12 and for helping to simplify our definition of a teaching set.
Sandra Zilles was partially supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

References

1. Abe, N.: Polynomial learnability of semilinear sets. In: Computational Learning
Theory (COLT), pp. 25–40 (1989)

2. Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45(2), 117–135 (1980)

3. Doty, D., Patitz, M.J., Summers, S.M.: Limitations of self-assembly at temperature
1. Theoretical Computer Science 412(1–2), 145–158 (2011)

4. Gao, Z., Mazadi, Z., Meloche, R., Simon, H.U., Zilles, S.: Distinguishing pattern
languages with membership examples, Manuscript (2014)

5. Goldman, S.A., Kearns, M.J.: On the complexity of teaching. Journal of Computer
and System Sciences 50(1), 20–31 (1995)

6. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. Journal of the Association for Computing Machinery 25(1), 116–133 (1978)

7. Ibarra, O.H., Dang, Z., Egecioglu, O.: Catalytic P systems, semilinear sets, and
vector addition systems. Theoretical Computer Science 312(2–3), 379–399 (2004)

8. Mazadi, Z., Gao, Z., Zilles, S.: Distinguishing pattern languages with membership
examples. In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B.
(eds.) LATA 2014. LNCS, vol. 8370, pp. 528–540. Springer, Heidelberg (2014)

9. Parikh, R.J.: On context-free languages. Journal of the Association for Computing
Machinery 13(4), 570–581 (1966)

10. Rosales, J.C., Garćıa-Sánchez, P.A.: Numerical semigroups. Springer, New York
(2009)

11. Shinohara, A., Miyano, S.: Teachability in computational learning. New Generation
Computing 8(4), 337–347 (1991)

12. Takada, Y.: Learning semilinear sets from examples and via queries. Theoretical
Computer Science 104(2), 207–233 (1992)

13. Zilles, S., Lange, S., Holte, R., Zinkevich, M.: Models of cooperative teaching and
learning. Journal of Machine Learning Research 12, 349–384 (2011)

Computational Learning
Theory and Algorithms

Learning a Random DFA from Uniform Strings
and State Information

Dana Angluin and Dongqu Chen(B)

Department of Computer Science, Yale University, New Haven, CT 06520, USA
dongqu.chen@yale.edu

Abstract. Deterministic finite automata (DFA) have long served as a
fundamental computational model in the study of theoretical computer
science, and the problem of learning a DFA from given input data is
a classic topic in computational learning theory. In this paper we study
the learnability of a random DFA and propose a computationally efficient
algorithm for learning and recovering a random DFA from uniform input
strings and state information in the statistical query model. A random
DFA is uniformly generated: for each state-symbol pair (q ∈ Q, σ ∈ Σ),
we choose a state q′ ∈ Q with replacement uniformly and independently
at random and let ϕ(q, σ) = q′, where Q is the state space, Σ is the
alphabet and ϕ is the transition function. The given data are string-
state pairs (x, q) where x is a string drawn uniformly at random and q
is the state of the DFA reached on input x starting from the start state
q0. A theoretical guarantee on the maximum absolute error of the algo-
rithm in the statistical query model is presented. Extensive experiments
demonstrate the efficiency and accuracy of the algorithm.

Keywords: Deterministic finite automaton · Random DFA · Statistical
queries · Regular languages · PAC learning

1 Introduction

Deterministic finite automata are one of the most elementary computational
models in the study of theoretical computer science. The important role of DFA
leads to the classic problem in computational learning theory, the learnability of
DFA. The applications of this learning problem include formal verification, nat-
ural language processing, robotics and control systems, computational biology,
data mining and music. Exploring the learnability of DFA is significant to both
theoretical and applied realms. In the classic PAC learning model defined by
Valiant [21], unfortunately, the concept class of DFAs is known to be inherently
unpredictable [14,15]. In a modified version of Valiant’s model which allows the
learner to make membership queries, Angluin [1] has shown that the concept
class of DFAs is efficiently PAC learnable. Subsequent efforts have searched for
nontrivial properly PAC learnable subfamilies of regular languages [2,6,16].

Since learning all DFAs is computationally intractable, it is natural to ask
whether we can pursue positive results for “almost all” DFAs. This is addressed
c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 119–133, 2015.
DOI: 10.1007/978-3-319-24486-0 8

120 D. Angluin and D. Chen

by studying high-probability properties of uniformly generated random DFAs.
The same approach has been used for learning random decision trees and random
DNFs from uniform strings [11,12,17,18]. However, the learnability of random
DFAs has long been an open problem. Few formal results about random walks
on random DFAs are known. Grusho [9] was the first work establishing an inter-
esting fact about this problem. Since then, very little progress was made until
a recent subsequent work by Balle [4]. Our work connects these two problems
and contributes an algorithm for efficiently learning random DFAs, in addition
to positive theoretical results on random walks on random DFAs.

Trakhtenbrot and Barzdin [20] first introduced two random DFA models with
different sources of randomness: one with a random automaton graph, one with
random output labeling. In this paper we study the former model. A random
DFA is uniformly generated: for each state-symbol pair (q ∈ Q,σ ∈ Σ), we
choose a state q′ ∈ Q with replacement uniformly and independently at random
and let ϕ(q, σ) = q′, where Q is the state space, Σ is the alphabet and ϕ is
the transition function. Given data are of form (x, q) where x is a string drawn
uniformly at random and q is the state of the DFA reached on input x starting
from the start state q0.

Previous work by Freund et al. [8] has studied a different model under differ-
ent settings. First, the DFAs are generated with arbitrary transition graphs and
random output labeling, which is the latter model in [20]. Second, in their work,
the learner predicts and observes the exact label sequence of the states along
each walk. Such sequential data are crucial to the learner walking on the graph.
In our paper, the learner is given noisy statistical data on the ending state, with
no information about any intermediate states along the walk.

Like most spectral methods, the theoretical error bound of our algorithm
contains a spectral parameter (‖|P †

A|‖∞ in Section 4.1), which reflects the asym-
metry of the underlying graph. This leads to a potential future work of eliminat-
ing this parameter using random matrix theory techniques. Another direction
of subsequent works is to consider the more general case where the learner only
observes the accept/reject bits of the final states reached, which under arbi-
trary distributions has been proved to be hard in the statistical query model
by Angluin et al. [3] but remains open under the uniform distribution [4]. Our
contribution narrows this gap and pushes forward the study of the learnability
of random DFAs.

2 Preliminaries

Deterministic Finite Automaton (DFA) is a powerful and widely studied com-
putational model in computer science. Formally, a DFA is a quintuple A =
(Q,ϕ,Σ, q0, F) where Q is a finite set of states, Σ is the finite alphabet, q0 ∈ Q is
the start state, F ⊆ Q is the set of accepting states, and ϕ is the transition func-
tion: Q×Σ → Q. Let λ be the empty string. Define the extended transition func-
tion ϕ∗ : Q×Σ∗ → Q by ϕ∗(q, λ) = q and inductively ϕ∗(q, xσ) = ϕ(ϕ∗(q, x), σ)
where σ ∈ Σ and x ∈ Σ∗. Denote by s = |Σ| the size of the alphabet and by

Learning a Random DFA from Uniform Strings and State Information 121

n = |Q| the number of states. In this paper we assume s ≥ 2. Let G = (V,E)
be the underlying directed multi-graph of DFA A (also called an automaton
graph). We say a vertex set V0 ⊆ V is closed if for any u ∈ V0 and any v such
that (u, v) ∈ E, we must have v ∈ V0.

A walk on an automaton graph G is a sequence of states (v0, v1, . . . , v�) such
that (vi−1, vi) ∈ E for all 1 ≤ i ≤ �, where v0 is the corresponding vertex in
G of the start state q0. A random walk on graph G is defined by a transition
probability matrix P with P (u, v) = #{(u, v) ∈ E}·s−1 denoting the probability
of moving from vertex u to vertex v, where #{(u, v) ∈ E} is the number of edges
from u to v. For an automaton graph, a random walk always starts from the start
state q0. In this paper random walks on a DFA refer to the random walks on the
underlying automaton graph. A vertex u is aperiodic if gcd{t ≥ 1 | P t(u, u) >
0} = 1. Graph G (or a random walk on G) is irreducible if for every pair of
vertices u and v in V there exists a directed cycle in G containing both u and
v, and is aperiodic if every vertex is aperiodic. A distribution vector φ satisfying
φP = φ is called a Perron vector of the walk. An irreducible and aperiodic
random walk has a unique Perron vector φ and limt→+∞ P t(u, ·) = φ (called the
stationary distribution) for any u ∈ V . In the study of rapidly mixing walks, the
convergence rate in L2 distance ΔL2(t) = maxu∈V ‖P t(u, ·)−φ‖2 is often used. A
stronger notion in L1 distance is measured by the total variation distance, given
by ΔTV (t) = 1

2 maxu∈V

∑
v∈V |P t(u, v) − φ(v)|. Another notion of distance for

measuring convergence rate is the χ-square distance:

Δχ2(t) = max
u∈V

(
∑

v∈V

(P t(u, v) − φ(v))2

φ(v)

) 1
2

As the Cauchy-Schwarz inequality gives ΔL2(t) ≤ 2ΔTV (t) ≤ Δχ2(t), a conver-
gence upper bound for Δχ2(t) implies ones for ΔL2(t) and ΔTV (t).

Trakhtenbrot and Barzdin [20] first introduced the model of random DFA
by employing a uniformly generated automaton graph as the underlying graph
and labeling the edges uniformly at random. In words, for each state-symbol
pair (q ∈ Q,σ ∈ Σ), we choose a state q′ ∈ Q with replacement uniformly and
independently at random and let ϕ(q, σ) = q′.

In a computational learning model, an algorithm is usually given access to
an oracle providing information about the target concept. Kearns [13] modified
Valiant’s model and introduced the statistical query oracle STAT. Kearns’ oracle
takes as input a statistical query of the form (χ, τ). Here χ is any mapping of
a labeled example to {0, 1} and τ ∈ [0, 1] is called the noise tolerance. Let c be
the target concept and D be the distribution over the instance space. Oracle
STAT (c,D) returns to the learner an estimate for the expectation IEχ, that is,
the probability that χ = 1 when the labeled example is drawn according to
D. A statistical query can have a condition, in which case IEχ is a conditional
probability. This estimate is accurate within additive error τ . A statistical query
χ is legimate and feasible if and only if:

1. Query χ maps a labeled example 〈x, c(x)〉 to {0, 1};
2. Query χ can be efficiently evaluated in polynomial time;

122 D. Angluin and D. Chen

3. The condition of χ, if any, can be efficiently evaluated in polynomial time;
4. The probability of the condition of χ, if any, should be at least inverse

polynomially large.

Kearns [13] proved that the statistical query model is weaker than the classic
PAC model. That is, PAC learnability from oracle STAT implies PAC learnabil-
ity from the classic example oracle, but not vice versa.

3 Random Walks on a Random DFA

Random walks have proven to be a simple, yet powerful mathematical tool for
extracting information from well connected graphs. Since automaton graphs are
long known to be of strong connectivity with high probability [9], it’s interesting
to explore the possibilities of applying random walks to DFA learning. In this
section we will show that with high probability, a random walk on a random
DFA converges to the stationary distribution φ polynomially fast in χ-square
distance as in Theorem 1.

Theorem 1. With probability 1 − o(1), a random walk on a random DFA has
Δχ2(t) ≤ e−k after t ≥ 2C(C +1)sn1+C(log n+k) · logs n, where constant C > 0
depends on s and approaches unity with increasing s.

A standard proof of fast convergence consists of three parts: irreducibility, ape-
riodicity and convergence rate. Grusho [9] first proved the irreducibility of a
random automaton graph.

Lemma 1. With probability 1−o(1), a random automaton graph G has a unique
strongly connected component, denoted by G̃ = (Ṽ , Ẽ), of size ñ, and a) lim

n→+∞
ñ
n

= C for some constant C > 0.7968 when s ≥ 2 or some C > 0.999 when s > 6;
b) Ṽ is closed.

A subsequent work by Balle [4] proved the aperiodicity.

Lemma 2. With probability 1 − o(1), the strongly connected component G̃ in
Lemma 1 is aperiodic.

However, the order of the convergence rate of random walks on a random
DFA was left as an open question. One canonical technique for bounding the
convergence rate of a random walk is to bound the smallest nonzero eigenvalue
of the Laplacian matrix L of the graph G, defined by

L = I − Φ
1
2 PΦ− 1

2 + Φ− 1
2 P ∗Φ

1
2

2

where Φ is an n×n diagonal matrix with entries Φ(u, u) = φ(u) and P ∗ denotes
the transpose of matrix P . For a random walk P , define the Rayleigh quotient
for any function f : V → R as follows.

R(f) =
∑

u→v |f(u) − f(v)|2φ(u)P (u, v)∑
v |f(v)|2φ(v)

Learning a Random DFA from Uniform Strings and State Information 123

Chung [7] proved the connection between the Rayleigh quotient and the
Laplacian matrix of a random walk.

Lemma 3

R(f) = 2
〈gL, g〉
‖g‖22

where g = fΦ
1
2 and 〈·, ·〉 means the inner product of two vectors.

On top of this lemma we can further infer the relation between the Rayleigh
quotient and the Laplacian eigenvalues. Suppose the Laplacian matrix L has
eigenvalues 0 = λ0 ≤ λ1 ≤ . . . ≤ λn−1.

Lemma 4. For all 1 ≤ i ≤ n − 1, let vector ηi be the unit eigenvector of λi and
vector fi = ηiΦ

− 1
2 . Then λi = 1

2R(fi) and fi satisfies 〈fi, φ〉 = 0.

Proof. By Lemma 3 we know 1
2R(f) = 〈gL,g〉

‖g‖2 . From the symmetry of Laplacian
matrix L, there exists a set of eigenvectors of L that forms an orthogonal basis.
We denote this set of eigenvectors by η0, η1, . . . , ηn−1 where ηi is the correspond-
ing eigenvector of λi. Notice that for all 0 ≤ i ≤ n − 1 we have

1
2
R(ηiΦ

− 1
2) =

〈ηiL, ηi〉
‖ηi‖22

=
λi‖ηi‖22
‖ηi‖22

= λi

We let fi = ηiΦ
− 1

2 . According to the definition of R(f), we have R(f) ≥ 0. We
know λ0 = R(f0) = 0. Thus f0 is the all-one vector and η0 = φ

1
2 is the unit

eigenvector of eigenvalue 0. For all 1 ≤ i ≤ n − 1 we have 〈ηi, η0〉 = 0, i.e.,
(fiΦ

1
2) · φ

1
2 = 〈fi, φ〉 = 0. Hence, for all 1 ≤ i ≤ n − 1, we have λi = 1

2R(fi)
where fi satisfies 〈fi, φ〉 = 0. �

From this we can see that the Rayleigh quotient serves as an important tool
for bounding the Laplacian eigenvalues. A lower bound on R(f1) is equivalent
to one on λ1. We present a lower bound of λ1 in terms of the diameter and the
maximum out-degree of the vertices in the graph.

Lemma 5. For a random walk on a strongly connected graph G, let λ1 be the
smallest nonzero eigenvalue of its Laplacian matrix L. Denote by Diam the
diameter of graph G and by s0 the maximum out-degree of the vertices in the
graph. Then

λ1 ≥ 1
2n · Diam · s1+Diam

0

Proof. Denote u0 = arg maxx∈V φ(x) and v0 = arg minx∈V φ(x). Let �0 be
the distance from u0 to v0. As φP �0 = φ, we have φ(v0) ≥ P �0(u0, v0)φ(u0) ≥
s−�0
0 φ(u0) ≥ s−Diam

0 φ(u0). We then have 1 =
∑

x∈V φ(x) ≤ nφ(u0) ≤ nsDiam
0

φ(v0) and φ(v0) ≥ n−1s−Diam
0 .

124 D. Angluin and D. Chen

From Lemma 4 we have λ1 = 1
2R(f1) and 〈f1, φ〉 = 0. As φ(x) > 0 for any

vertex x ∈ V , there must exist some vertex u with f1(u) > 0 and some vertex
v whose f1(v) < 0. Let y = arg maxx∈V |f1(x)|. Then there must exist some
vertex z such that f1(y)f1(z) < 0. Let r = (y, x1, x2 . . . , x�−1, z) be the shortest
directed path from y to z, which must exist due to the strong connectivity. Then
the length of path r is �. Therefore,

λ1 =
1
2
R(f1) =

1
2

∑
u→v |f1(u) − f1(v)|2φ(u)P (u, v)∑

v |f1(v)|2φ(v)
(

due to min
x∈V

φ(x) ≥ n−1s−Diam
0 and min

(u,v)∈E
P (u, v) ≥ 1

s0

)

≥ 1
2ns1+Diam

0

∑
u→v |f1(u) − f1(v)|2∑

v |f1(v)|2φ(v)

≥ 1
2ns1+Diam

0

∑
u→v∈r |f1(u) − f1(v)|2∑

v |f1(v)|2φ(v)

(by letting x0 = y and x� = z)

=
1

2ns1+Diam
0

∑�−1
i=0 |f1(xi) − f1(xi+1)|2∑

v |f1(v)|2φ(v)

≥ 1
2ns1+Diam

0

[∑�−1
i=0(f1(xi) − f1(xi+1))

]2

� · ∑
v |f1(v)|2φ(v)

=
1

2ns1+Diam
0

[f1(y) − f1(z)]2

� · ∑
v |f1(v)|2φ(v)

(for f1(y)f1(z) < 0)

≥ 1
2n · Diam · s1+Diam

0

|f1(y)|2∑
v |f1(v)|2φ(v)

≥ 1
2n · Diam · s1+Diam

0

|f1(y)|2
|f1(y)|2 ∑

v φ(v)

=
1

2n · Diam · s1+Diam
0

which completes the proof. �

As a canonical technique, a lower bound of the smallest nonzero eigenvalue
of the Laplacian matrix implies a lower bound of the convergence rate. Chung
[7] proved

Theorem 2. A lazy random walk on a strongly connected graph G has con-
vergence rate of order 2λ−1

1 (− log minu φ(u)). Namely, after at most t ≥ 2λ−1
1

((− log minu φ(u)) + 2k) steps, we have Δχ2(t) ≤ e−k.

In the paper Chung used lazy walks to avoid periodicity. If the graph is
irreducible and aperiodic, we let P̂ = 1

2 (I + P) be the transition probability

Learning a Random DFA from Uniform Strings and State Information 125

matrix of the lazy random walk and vector φ̂ be its Perron vector, matrix Φ̂ be
the diagonal matrix of φ̂, matrix L̂ be its Laplacian matrix.

We know φ is the solution of φP = φ or equivalently φ(I − P) = 0 and∑
i φ(i) = 1. Similarly, φ̂ is the solution of φ̂(I − P̂) = 0 and

∑
i φ̂(i) = 1.

Observe that I − P̂ = I − 1
2 (I + P) = 1

2 (I − P) and φ̂(I − P̂) = 1
2 φ̂(IP) = 0,

which is equivalently φ̂(I − P) = 0. Thus φ̂ = φ and Φ̂ = Φ. Then

L̂ = I − 1
2

(
Φ̂

1
2 P̂ Φ̂− 1

2 + Φ̂− 1
2 P̂ ∗Φ̂

1
2

)

= I − 1
2

(
Φ

1
2 · 1

2
(I + P) · Φ− 1

2 + Φ− 1
2 · 1

2
(I + P ∗) · Φ

1
2

)

= I − 1
2

(
1
2
I +

1
2
Φ

1
2 PΦ− 1

2 +
1
2
I +

1
2
Φ− 1

2 P ∗Φ
1
2

)

= I − 1
2

(
I +

1
2
Φ

1
2 PΦ− 1

2 +
1
2
Φ− 1

2 P ∗Φ
1
2

)

=
1
2
I − 1

4

(
Φ

1
2 PΦ− 1

2 + Φ− 1
2 P ∗Φ

1
2

)

=
1
2
L

Let λ̂1 be the smallest positive eigenvalue of L̂. Then λ1 = 2λ̂1. Therefore,
combining this with Lemma 5, we have

Theorem 3. A random walk on a strongly connected and aperiodic directed
graph G has convergence rate of order 2n · Diam · s1+Diam

0 (log(nsDiam
0)), where

s0 = arg maxu∈V du is the maximum out-degree of a vertex in G. Namely, after
at most t ≥ 2n·Diam·s1+Diam

0 ((log(nsDiam
0)+2k)) steps, we have Δχ2(t) ≤ e−k.

However, the convergence rate is still exponential in s0 and Diam. Fortu-
nately, in our case s0 = s and Trakhtenbrot and Barzdin [20] proved the diameter
of a random DFA is logarithmic.

Theorem 4. With probability 1 − o(1), the diameter of a random automaton
graph is O(logs n).

With the logarithmic diameter we complete the poof of Theorem 1. The con-
stant C in Theorem 1 is the constant used in the proof of Theorem 4 by Trakhten-
brot and Barzdin [20]. It depends on s and approaches unity with increasing s.

Notice that the diameter of an automaton graph won’t increase after state-
merging operations, thus with high probability, a random DFA has at most
logarithmic diameter after DFA minimization. It is also easy to see an irreducible
DFA still maintains irreducibility after minimization. Besides, Balle [4] proved
DFA minimization preserves aperiodicity. Now we also have Corollary 1.

Corollary 1. With probability 1− o(1), a random walk on a random DFA after
minimization has Δχ2(t) ≤ e−k after t ≥ 2C(C + 1)sn1+C(log n + k) · logs n,
where constant C > 0 depends on s and approaches unity with increasing s.

126 D. Angluin and D. Chen

4 Reconstructing a Random DFA

In this section we present a computationally efficient algorithm for recovering
random DFAs from uniform input strings in the statistical query model with
a theoretical guarantee on the maximum absolute error and supporting experi-
mental results.

4.1 The Learning Algorithm

In our learning model, the given data are string-state pairs (x, q) where x is
a string drawn uniformly at random from Σt and q is the state of the DFA
reached on input x starting from the start state q0. Here t = poly(n, s) is the
length of the example strings. Our goal is to recover the unique irreducible and
closed component of the target DFA from the given data in the statistical query
model. The primary constraint on our learning model is the need to estimate
the distribution of the ending state, while the advantage is that our algorithm
reconstructs the underlying graph structure of the automaton. Let quintuple
A = (Q,ϕ,Σ, q0, F) be the target DFA we are interested in. We represent the
transition function ϕ as a collection of n × n binary matrices Mσ indexed by
symbols σ ∈ Σ as follows. For each pair of states (i, j), the element Mσ(i, j) is 1
if ϕ(i, σ) = j and 0 otherwise. For a string of m symbols y = y1y2 . . . ym, define
My to be the matrix product My = My1 · My2 . . . Mym

. Then My(i, j) is 1 if
ϕ∗(i, y) = j and 0 otherwise.

A uniform input string x ∈ Σt corresponds to a random walk of length
t on the states of the DFA A starting from the start state q0. By Lemma 1
and 2, we can assume the irreducibility and aperiodicity of the random walk.
Due to the uniqueness of the strongly connected component, the walk will finally
converge to the stationary distribution φ with any start state q0. For any string
y = y1y2 . . . ym, we define the distribution vector py over the state space Q
obtained by starting from the stationary distribution φ and inputting string y
to the automaton. That is, py = φMy and pλ = φ. Consequently, each string
y ∈ Σ∗ and symbol σ ∈ Σ contribute a linear equation pyMσ = pyσ where yσ
is the concatenation of y and σ. Due to Theorem 4, the diameter of a random
DFA is O(logs n) with high probability. The complete set of Θ(logs n)-step walks
should have already traversed the whole graph and no new information can be
retrieved after Θ(logs n) steps. Hence, we can only consider the equation set
{pyMσ = pyσ | y ∈ ΣO(logs n)} for each σ ∈ Σ. We further observe that the
equation system {pyMσ = pyσ | y ∈ ΣΘ(logs n)} shares the same solution with
{pyMσ = pyσ | y ∈ ΣO(logs n)}. Let vector z be the i-th column of matrix Mσ,
matrix PA be the sΘ(logs n) × n coefficient matrix whose rows are {py | y ∈
ΣΘ(logs n)} and vector b be the vector consisting of {pyσ(i) | y ∈ ΣΘ(logs n)}.
The task reduces to solving the linear equation system PAz = b for z. Let φt be
the distribution vector over Q after t steps of random walk. As the random walk
always starts from the start state q0, the initial distribution φ0 is a coordinate
vector whose entry of q0 is 1 and the rest are 0, for which

Learning a Random DFA from Uniform Strings and State Information 127

2‖φt − φ‖TV ≤
(

∑

v∈V

(φt(v) − φ(v))2

φ(v)

) 1
2

≤ max
u∈V

(
∑

v∈V

(P t(u, v) − φ(v))2

φ(v)

) 1
2

Theorem 1 claims that a polynomially large t0 = 2C(C + 1)sn1+C(log n +
log 2

τ) · logs n is enough to have the random walk converge to pλ = φ within any
polynomially small χ-square distance τ

2 with high probability where C > 0 is
the constant in the theorem. Let t = t0 + C logs n, which is still polynomially
large. We can estimate the stationary distribution for a state i by the fraction
of examples (x, q) such that q = i. In general, for any string y, we can estimate
the value of py for a state i as the ratio between the number of pairs (x, q) such
that y is a suffix of x and q = i and the number of examples (x, q) where y is a
suffix of x.

In the statistical query model we are unable to directly observe the data;
instead we are given access to the oracle STAT. Define a conditional statistical
query χy,i(x, q) = 1{q = i | y is a suffix of x} where 1 is the boolean indicator
function. It’s easy to see the legitimacy and feasibility of query χy,i(x, q) for
any y ∈ ΣΘ(logs n) because: (1) it is a boolean function mapping an example
(x, q) to {0, 1}; (2) the proposition 1{q = i} can be tested in O(1) time; (3)
the condition 1{y is a suffix of x} can be tested within Θ(logs n) time; (4) the
probability of the condition that y is a suffix of x is inverse polynomially large
s−|y| = s−Θ(logs n) = Θ(n−C) for some constant C > 0.

Let p̃λ be the distribution vector over the states after t steps and p̃y = p̃λMy.
Also denote by vector p̂y the query result returned by oracle STAT where p̂y(i)
is the estimate IEχy,i, and by P̂A and b̂ the estimates for PA and b respectively
from oracle STAT. We infer the solution z by solving the perturbed linear least
squares problem: minz ‖P̂Az − b̂‖2. Let ẑ be the solution we obtain from this
perturbed problem. According to the main theorem, the distance ‖pλ − p̃λ‖1 =
2‖φt − φ‖TV ≤ Δχ2(t) ≤ τ

2 . Then for any string y, ‖py − p̃y‖∞ = ‖(pλ −
p̃λ)My‖∞ ≤ ‖pλ − p̃λ‖1 ≤ τ

2 . If we do the statistical queries with tolerance τ
2 ,

the maximum additive error will be ‖p̃y − p̂y‖∞ ≤ τ
2 for any string y. Thus we

have ‖py − p̂y‖∞ ≤ τ . To conclude a theoretical upper bound on the error, we
use the following theorem by Björck [5], which was later refined by Higham [10].

Theorem 5. Let z be the optimal solution of least squares problem minz ‖Mz −
b‖2 and ẑ be the optimal solution of minz ‖M̂z − b̂‖2. If |M − M̂ | � ωE and
|b− b̂| � ωf for some element-wise non-negative matrix E and vector f , where |·|
refers to element-wise absolute value and � means element-wise ≤ comparison,
then

‖z − ẑ‖∞ ≤ ω(‖|M†|(E|z| + f)‖∞ + ‖|(M�M)−1|E�|Mz − b|‖∞) + O(ω2)

when M has full column rank, or

‖z − ẑ‖∞ ≤ ω(‖|M̂†|(E|ẑ| + f)‖∞ + ‖|(M̂�M̂)−1|E�|M̂ ẑ − b̂|‖∞) + O(ω2)

when M̂ has full column rank, where M† is the MoorePenrose pseudoinverse of
matrix M .

128 D. Angluin and D. Chen

Applying Theorem 5 to our case gives an upper bound on the maximum
absolute error.

Corollary 2. If PA has full rank with high probability,

‖z − ẑ‖∞ ≤ (1 + ε) log ns

log log ns
‖|P †

A|‖∞τ + O(τ2)

with probability 1 − o(1) for any constant ε > 0.

Proof. First in our case the offset |PAz − b| = 0 and ω = τ . Matrix E is the
all-one matrix and vector f is the all-one vector. As a consequence, ‖f‖∞ = 1
and ‖E|z|‖∞ = ‖z‖1. Now it remains to prove with high probability ‖z‖1 ≤
(1+ε) log ns
log log ns for all columns in all Mσ, σ ∈ Σ.

Let θ be the largest 1-norm of the columns in Mσ. According to the properties
of a random DFA, the probability of θ > n is 0 and Pr[θ = n] ≤ n · n−n is
exponentially small. For any k < n,

Pr[θ ≥ k] ≤ n · Pr[a particular column has 1-norm at least k]

≤n ·
(

n

k

)(
1
n

)k

≤
√

2πn
(

n
e

)n
e

1
12n

√
2πk

(
k
e

)k
e

1
12k+1 · √

2π(n − k)
(

n−k
e

)n−k
e

1
12(n−k)+1

· n

(
1
n

)k

≤
√

n3s2

2πk(n − k)s2
· e

1
12n (n)n

(nk)k(n − k)n−k

≤1
s

· elog ns+n log n−k log k−(n−k) log(n−k)−k log n+ 1
12n

We only need to choose a k such that the exponent goes to −∞, which is equal
to

log ns + k
(
1 − n

k

)
log

(
1 − k

n

)
− k log k +

1
12n

If k ≥ n then Pr[θ ≥ k] is exponentially small as discussed above. Otherwise
we have

(
1 − n

k

)
log

(
1 − k

n

) ≤ 1 in our case. Also notice that 1
12n ≤ 1. Let

k = (1+ε) log ns
log log ns . The expression is upper bounded by

log ns +
(1 + ε) log ns

log log ns
− (1 + ε) log ns

log log ns
log

(1 + ε) log ns

log log ns
+ 1

= log ns +
(1 + ε) log ns

log log ns
(1 − log(1 + ε) − log log ns + log log log ns) + 1

= − ε log ns +
(

1 − log(1 + ε)
log log ns

+
log log log ns

log log ns

)
(1 + ε) log ns + 1

With respect to n and s, the expression goes to −∞. There are in total s matrices
{Mσ | σ ∈ Σ}. Using a union bound we have ‖z‖1 ≤ (1+ε) log ns

log log ns for all columns

Learning a Random DFA from Uniform Strings and State Information 129

in all Mσ with probability 1 − o(1), and plugging this upper bound into the
conclusion of Theorem 5 completes the proof. �

This further implies that if we set the tolerance τ = log log ns

3‖|P †
A|‖∞ log ns

, the solu-

tion error ‖z − ẑ‖∞ < 1
2 with high probability. Based on the prior knowledge we

have on z, we could refine ẑ by rounding up ẑ to a binary vector z̃, i.e., for each
1 ≤ i ≤ n, z̃(i) = 1 if ẑ(i) > 1

2 and 0 otherwise, whereby we will have z̃(q) = z(q)
for any state q in the strongly connected component. A toy example is provided
in the appendices to demonstrate how the algorithm works.

Our algorithm only recovers the strongly connected component Ã of a random
DFA A because it relies on the convergence of the random walk and any state
q �∈ Ã will have zero probability after the convergence. We have no information
for reconstructing the disconnected part. In the positive direction, due to Lemma
1, with high probability we are able to recover at least 79.68% of the DFA for
any s ≥ 2 and at least 99.9% of the whole automaton if s > 6. Because Ã is
unique and closed, it is also a well defined DFA. In Section 3 we have proved
minq∈Q{pλ(q) | pλ(q) > 0} ≥ n−1s−Diam = n−C for some constant C > 0 with
high probability. This means we have a polynomially large gap so that we are
able to distinguish the recurrent states from the transient ones by making a
query to estimate p̃λ(q) for each state q ∈ Q. In our result ‖|P †

A|‖∞ is regarded
as a parameter. It might be possible to improve the result by polynomially
bounding ‖|P †

A|‖∞ with other given parameters n and s using random matrix
theory techniques. The full-rank assumption is reasonable because a random
matrix is usually well conditioned and full-rank. From the empirical results in
Section 4.2, the coefficient matrix PA is almost surely full-rank and ‖|P †

A|‖∞ is
conjecturally ≤ ns log s. Furthermore, according to Corollary 1, our algorithm
is also applicable to learning a random DFA after minimization.

4.2 Experiments and Empirical Results

In this section we present a series of experimental results to study the empirical
performance of the learning algorithm, which was run in MATLAB on a worksta-
tion built with Intel i5-2500 3.30GHz CPU and 8GB memory. To be more robust
against fluctuation from randomness, each test was run for 20 times and the medi-
ans were taken. The automata are generated uniformly at random as defined and
the algorithm solves the equation system {pyMσ = pyσ | y ∈ Σ≤
logs n�} using
the built-in linear least squares function in MATLAB. We simulate the statistical
query oracle with uniform additive noise. The experiments start with an empiri-
cal estimate for the norm ‖|P †

A|‖∞. We first vary the automaton size n from 32 to
4300 with fixed alphabet size s = 2. Figure 3 (in the appendices) shows the curve
of ‖|P †

A|‖∞ versus n with fixed s. Notice that the threshold phenomenon in the
plot comes from the ceiling operation in the algorithm configuration. When n is
much smaller than the threshold s
logs n�, the system is overdetermined with many
extra equations. Thus it is robust to perturbation and well-conditioned. When n
grows up and approaches the threshold s
logs n�, the system has fewer extra equa-

130 D. Angluin and D. Chen

Fig. 1. Maximum absolute error versus n with fixed s = 2

Fig. 2. Maximum absolute error versus s with fixed n = 256

tions and becomes relatively more sensitive to perturbations, for which the condi-
tion number increases until the automaton size reaches n = si of the next integer
i. One can avoid this threshold phenomenon by making the size of the equation
system grow smoothly as n increases. We then fix n to be 256 and vary s from
2 to 75, as shown in Figure 4 (in the appendices). Similarly there is the thresh-
old phenomenon resulting from the ceiling strategy. All peaks where n = si are
included and plotted. Meanwhile the rank of PA is measured to support the full-
rank assumption. Matrix PA is almost surely full-rank for large n or s and both fig-
ures suggest an upper bound ns log s for ‖|P †

A|‖∞. We set the query tolerance τ as
log log ns

ns log ns log2 s in the algorithm and measure the maximum absolute error ‖z − ẑ‖∞
at each run. Figures 1 and 2 demonstrate the experimental results. Along with
the error curve in each figure a function is plotted to approximate the asymptotic
order of the decline rate of the error. An empirical error bound is O(n−0.3) with
fixed s and O(s−0.3) with fixed n.

Learning a Random DFA from Uniform Strings and State Information 131

5 Discussion

In this paper we prove fast convergence of random walks on a random DFA
and apply this theoretical result to learning a random DFA in the statistical
query model. One potential future work is to validate the full-rank assumption
or to polynomially bound ‖|P †

A|‖∞ using the power of random matrix theory.
Note that ‖|P †

A|‖∞ reflects the asymmetry of the automaton graph. The class of
permutation automata [19] is one example that has symmetric graph structure
and degenerate PA. Another technical question on the fast convergence result is
whether it can be generalized to weighted random walks on random DFAs. An
immediate benefit from this generalization is the release from the requirement
of uniform input strings in the DFA learning algorithm. However, we conjecture
such generalization requires a polynomial lower bound on the edge weights in the
graph, to avoid exponentially small nonzero elements in the walk matrix P . A
further generalization is applying this algorithm to learning random probabilistic
finite automata. In this case we will have a similar linear equation system, but
the solution vector z can be continuous, not necessarily being a binary vector.

Acknowledgments. We thank Borja Balle Pigem for helpful discussions and the
anonymous reviewers of ALT 2015 for their valuable comments.

Appendix: A Toy Example

Suppose we consider the alphabet {0, 1} and a 3-state DFA with the following
transition matrices.

M0 =

⎛

⎝
0 1 0
1 0 0
1 0 0

⎞

⎠ and M1 =

⎛

⎝
0 1 0
0 0 1
0 1 0

⎞

⎠

For this automaton, the stationary distribution pλ is (1/3, 4/9, 2/9). Since

logs n� =
log2 3� = 2, the algorithm recovers the first column of matrix M0,
denoted by z = (M0(1, 1),M0(2, 1),M0(3, 1))�, by solving the overdetermined
equation system

⎧
⎪⎪⎨

⎪⎪⎩

p00 · z = p000(1)
p01 · z = p010(1)
p10 · z = p100(1)
p11 · z = p110(1)

, i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

1
3M0(1, 1) + 2

3M0(2, 1) + 0M0(3, 1) = 2
3

0M0(1, 1) + 2
3M0(2, 1) + 1

3M0(3, 1) = 1
1M0(1, 1) + 0M0(2, 1) + 0M0(3, 1) = 0
0M0(1, 1) + 4

9M0(2, 1) + 5
9M0(3, 1) = 1

Similarly the algorithm recovers all columns in M0 and M1 and reconstructs
the target automaton. Note that in the statistical query model the above equa-
tion system is perturbed but we showed the algorithm is robust to statistical
query noise.

132 D. Angluin and D. Chen

Appendix: Estimate of ‖|P †
A|‖∞

Fig. 3. ‖|P †
A|‖∞ versus n with fixed s = 2

Fig. 4. ‖|P †
A|‖∞ versus s with fixed n = 256

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Angluin, D., Aspnes, J., Eisenstat, S., Kontorovich, A.: On the learnability of
shuffle ideals. Journal of Machine Learning Research 14, 1513–1531 (2013)

3. Angluin, D., Eisenstat, D., Kontorovich, L.A., Reyzin, L.: Lower bounds on learn-
ing random structures with statistical queries. In: ALT (2010)

4. Balle, B.: Ergodicity of random walks on random DFA. CoRR, abs/1311.6830
(2013)

5. Björck, A.: Component-wise perturbation analysis and error bounds for linear least
squares solutions. BIT Numerical Mathematics 31(2), 237–244 (1991)

Learning a Random DFA from Uniform Strings and State Information 133

6. Chen, D.: Learning shuffle ideals under restricted distributions. In: NIPS (2014)
7. Chung, F.: Laplacians and the Cheeger inequality for directed graphs. Annals of

Combinatorics 9, 1–19 (2005)
8. Freund, Y., Kearns, M., Ron, D., Rubinfeld, R., Schapire, R.E., Sellie, L.: Efficient

learning of typical finite automata from random walks. In: STOC (1993)
9. Grusho, A.A.: Limit distributions of certain characteristics of random automaton

graphs. Mathematical notes of the Academy of Sciences of the USSR (1973)
10. Higham, N.J.: A survey of componentwise perturbation theory in numerical linear

algebra. In: Proceedings of symposia in applied mathematics (1994)
11. Jackson, J.C., Lee, H.K., Servedio, R.A., Wan, A.: Learning random monotone

DNF. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and
RANDOM 2008. LNCS, vol. 5171, pp. 483–497. Springer, Heidelberg (2008)

12. Jackson, J.C., Servedio, R.A.: Learning random log-depth decision trees under
uniform distribution. SIAM Journal on Computing 34(5), 1107–1128 (2005)

13. Kearns, M.: Efficient noise-tolerant learning from statistical queries. J. ACM 45(6),
983–1006 (1998)

14. Kearns, M., Valiant, L.: Cryptographic limitations on learning boolean formulae
and finite automata. J. ACM 41(1), 67–95 (1994)

15. Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be approx-
imated within any polynomial. J. ACM 40(1), 95–142 (1993)

16. Ruiz, J., Garcia, P.: Learning k-piecewise testable languages from positive data.
In: Grammatical Interference Learning Syntax from Sentences (1996)

17. Sellie, L.: Learning random monotone DNF under the uniform distribution. In:
COLT, pp. 181–192 (2008)

18. Sellie, L.: Exact learning of random DNF over the uniform distribution. In: STOC,
pp. 45–54. ACM (2009)

19. Thierrin, G.: Permutation automata. Theory of Computing Systems (1968)
20. Trakhtenbrot, B.A., Barzdin, I.M.: Finite automata; behavior and synthesis. Fun-

damental Studies in Computer Science 1 (1973)
21. Valiant, L.G.: A theory of the learnable. Commun. ACM (November 1984)

Hierarchical Design of Fast Minimum
Disagreement Algorithms

Malte Darnstädt, Christoph Ries(B), and Hans Ulrich Simon

Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany
{malte.darnstaedt,christoph.ries,hans.simon}@rub.de

Abstract. We compose a toolbox for the design of Minimum Disagree-
ment algorithms. This box contains general procedures which transform
(without much loss of efficiency) algorithms that are successful for some
d-dimensional (geometric) concept class C into algorithms which are suc-
cessful for a (d + 1)-dimensional extension of C. An iterative application
of these transformations has the potential of starting with a base algo-
rithm for a trivial problem and ending up at a smart algorithm for a
non-trivial problem. In order to make this working, it is essential that
the algorithms are not proper, i.e., they return a hypothesis that is not
necessarily a member of C. However, the “price” for using a super-class
H of C is so low that the resulting time bound for achieving accuracy ε
in the model of agnostic learning is significantly smaller than the time
bounds achieved by the up to date best (proper) algorithms.

We evaluate the transformation technique for d = 2 on both artificial
and real-life data sets and demonstrate that it provides a fast algorithm,
which can successfully solve practical problems on large data sets.

1 Introduction

In this paper, we are concerned with the Minimum Disagreement problem (some-
times also called Maximum Weight problem) associated with a family C of sets
over some domain X : given a sequence S = [(x1, w1), . . . , (xn, wn)] ∈ (X × R)n

of points in X along with their weights, find a set C ∈ C whose total weight
WS(C) :=

∑
i:xi∈C wi is as large as possible. Note that WS(C) is maximized iff

ES(C) :=
∑

i:wi>0,xi /∈C

wi −
∑

i:wi<0,xi∈C

wi

is minimized. In learning theory, ES(C) is called the empirical error of C on S,
and this term plays a central role in statistical learning theory, especially in the
model of agnostic learning [10].

Although the Minimum Disagreement problem is intractable for a wide vari-
ety of classes [10,12], it has been noticed by several researchers in an early stage
of learning theory already that relatively simple and low-dimensional classifica-
tion rules (e.g. axis-parallel rectangles [16–18], unions of intervals [9], or 2-level
decision trees [1]) can be quite successful on benchmark data provided that these
c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 134–148, 2015.
DOI: 10.1007/978-3-319-24486-0 9

Hierarchical Design of Fast Minimum Disagreement Algorithms 135

rules are given in terms of the (few) most relevant attributes. For this reason a
couple of algorithms have been developed which solve the Minimum Disagree-
ment problem w.r.t. some simple classes and run in polynomial time [1,2,5,11].

It seems that efficient algorithms for the Minimum Disagreement problem
have been found in the past mainly for geometric classes of a relatively low dimen-
sion d. The run-time of these algorithms usually exhibits an exponential depen-
dence on d. Moreover, improving on the currently best time bounds does not
appear to be an easy job. For instance, the algorithm from [11] solves the Min-
imum Disagreement problem for axis-parallel rectangles in time1 O(n2 log(n)).
It was not until recently [2] that a faster algorithm has been found (time O(n2)
in case of axis-parallel rectangles or, more generally, time O(nd) in case of d-
dimensional axis-parallel hyper-rectangles). Thus, one may easily get the impres-
sion that the early attempts of designing efficient Minimum Disagreement algo-
rithms got stuck, and even modest improvements on the existing time bounds
are not easy to obtain.

One means of escape from the marshy grounds of intractability is opened up
by the usage of convex surrogate loss functions at the place of the discrete loss
function underlying the Minimum Disagreement problem. This option is taken,
for instance, by the Support Vector Machine [13,14]. In this paper, we investigate
another relaxation of the original problem: instead of searching for a set C ∈ C
with the smallest possible value of ES(C), we bring suitably chosen classes H
into play and search for a set H ∈ H such that ES(H) ≤ minC∈C ES(C). While
this approach is well known in the context of Boolean classes [12] and standard
in the theory of agnostic learning [10], it is apparently not exploited to full extent
in the context of geometric classes. Here is a short summary of our approach:

– We make use of the clever data structures that have been invented in the past
in order to solve the Minimum Disagreement problem for low-dimensional
geometric classes. We observe that these data structures naturally lead to the
concept of “flexible” algorithms. Here, “flexibility” means that the underly-
ing data structure can easily be updated in reaction to a modified weight
parameter.

– We show that a flexible algorithm which solves the Minimum Disagreement
problem for two d-dimensional classes, say C and H, can be transformed
(without much loss of efficiency) into a new flexible algorithm which solves
the Minimum Disagreement problem for two (more expressive) (d + 1)-
dimensional classes. An iterative application of these transformations has
the potential of starting with a base algorithm for a trivial problem and
ending up at a smart algorithm for a non-trivial problem.

– By a suitable choice of the class H, we obtain algorithms which achieve an
accuracy of ε in the model of agnostic learning considerably faster than the
best currently known algorithms do. For instance, we obtain a (non-proper)
algorithm that agnostically learns axis-parallel rectangles in time Õ(1/ε2)
while the learning procedure based on the up to date fastest proper algorithm

1 The machine model used throughout the paper is a random-access machine with
unit costs (even on real arithmetic).

136 M. Darnstädt et al.

from [2] needs time Õ(1/ε4). In this paper, Õ is defined as Landau’s O but
additionally hides factors logarithmic in its argument and the dependency
on confidence parameter δ.

It should be mentioned that fragments of our approach heavily builds on existing
work [5,11]; in particular, the employed data structures are a variant of Segment
Trees2 [3]. But it seems to be the combination of three factors—data structures
that provide flexibility, iteratively applicable transformations, clever choice of
the class H—which generates a surprising amount of additional horse power.

2 Definitions, Notations and Facts

Let X be a set. In the parlance of learning theory, any subset of X is called
a concept over the domain X or, alternatively, a hypothesis over X . A family
of concepts (resp. hypotheses) over X is called a concept class (resp. hypothesis
class) over X . A sequence of the form S = [(x1, w1), . . . , (xn, wn)] ∈ (X × R)n

is called a weighted sample over X . We will assume throughout the paper that
the domain X is equipped with a linear ordering and that S is ordered so that
x1 ≤ . . . ≤ xn.

Intuitively, a concept C “performs well” on a weighted sample S if it includes
the points of S with a positive weight and excludes the points in S with a negative
weight. The empirical error of C on S, denoted ES(C) and already defined in
Section 1, measures to which extent the concept C does not perform well.

Let C and H be two classes over the same domain X . The Minimum Dis-
agreement problem for C and H is denoted by MinDis(C,H) in the sequel. Recall
from Section 1 that it is the following problem: given a sorted weighted sample
S, find a hypothesis H ∈ H such that H does not perform worse on S than the
best concept in C does, i.e., ES(H) ≤ minC∈C ES(C).

Let P(k) denote the family of all ordered partitions of the reals into k
non-empty intervals, i.e., P(k) consists of all k-tuples (I1, . . . , Ik) such that
I1, . . . , Ik ⊆ R are pairwise disjoint non-empty intervals whose union equals
R, and the right endpoint of Ij coincides with the left endpoint of Ij+1 for
j = 1, . . . , k − 1. For instance ((−∞, 0), [0, 10), [10,∞)) is a member of the fam-
ily P(3).

Analogously, let P ′(k) denote the family of all ordered partitions of some
bounded non-empty interval of the reals into k consecutive non-empty sub-
intervals. For instance, ([−10, 0), [0, 10), [10, 20)) is a member of the family P ′(3).

A sub-interval [c, d] of [a, b] is said to be left-aligned (resp. right-aligned)
in [a, b] if c = a (resp. d = b). It is called a proper sub-interval of [a, b] if it does
not coincide with [a, b]. If [c, d] ⊆ (a, b) it is said to be located in the interior

2 A Segment Tree is a binary tree storing a set of intervals with endpoints from a finite
set of (sorted) real valued points. Each leaf of the tree corresponds to an elementary
interval (either a point itself or an open interval between two points) and each
internal node corresponds to the union of the intervals given by the children. Any
interval over the points can easily be represented by an antichain of vertices.

Hierarchical Design of Fast Minimum Disagreement Algorithms 137

of [a, b]. Clearly, a proper sub-interval of [a, b] is either left-aligned, right-aligned,
or located in the interior of [a, b]. In the first (resp. second or third) case, we say
that it is of type “L” (resp. of type “R” or of type “I”). For a, b ∈ R, we define
[a : b] := [a, b] ∩ Z.

Let B be a complete binary tree with root rB and with n leaves that are
numbered 1, . . . , n from left to right. For a node u ∈ B, let B(u) be the sub-tree
of B rooted at u, and let l(u) (resp. r(u)) be the smallest (resp. largest) number
of a leaf in B(u). Then [l(u) : r(u)] is called the interval represented by u. Every
maximal antichain V of nodes in B represents a partition of {1, . . . , n} in the
obvious manner. For instance V = {rB} represents the trivial partition with the
single equivalence class {1, . . . , n}. The set of leaves in B represents the partition
of {1, . . . , n} into n singletons {1}, . . . , {n}. The other maximal antichains induce
partitions which are in between these two extremes. The following result is not
hard to show:

Lemma 1. 1. For all 1 ≤ a ≤ b ≤ n, there exists an antichain V of size at
most 2�log n� in B such that [a : b] = ∪v∈V [l(v) : r(v)]. Moreover, given
B and a, b, the smallest antichain with this property can be found in time
O(log(n)).

2. Let k ≥ 2, �2(n) = �log n� + 1 and �k(n) = (k − 1) log(n) for k ≥ 3. Then,
for every partition (I1, . . . , Ik) ∈ P(k), there exists a maximal antichain V
of size at most �k(n) in B such that the partition represented by V is a
refinement of the partition induced by (I1, . . . , Ik) on {1, . . . , n}.

3 From Simple to More Complex Concept Classes

With each concept class C over domain X and with each k ≥ 1, we associate the
following concept classes over R × X :

C[k] =
{ k′⋃

j=1

(Ij × Cj) : 0 ≤ k′ ≤ k ∧ (I1, . . . , Ik′) ∈ P(k′) ∧ C1, . . . , Ck′ ∈ C
}

Analogously, let C′[k] be defined as C[k] with P replaced by P ′. Note that the
empty set is a member of C[k] and C′[k].

In the sequel, I denotes the class of bounded intervals over the domain R,
R denotes the class of bounded axis-parallel rectangles over the domain R

2, Ik

denotes the class of unions of at most k bounded intervals, and Rk denotes the
class of unions of at most k bounded axis-parallel rectangles.

Example 1. Let X = {x} and C1 = {X} and C2 = {∅,X}. We identify the
domain R × {x} with R in the obvious manner. Then, for each k ≥ 1, C′

1[k]
coincides with I and C′

2[2k − 1] coincides with Ik. Moreover, Ik is a subclass of
C2[2k + 1].

Example 2. Obviously, I ′[1] = R. The class I ′[k] with k ≥ 2 contains horizon-
tally connected sequences of at most k bounded axis-parallel rectangles, i.e., it
contains concepts of the form ∪k′

l=1(Il × Jl) with k′ ≤ k, (I1, . . . , Ik′) ∈ P ′(k′)
and J1, . . . , Jk′ ∈ I.

138 M. Darnstädt et al.

I′
4[7]: I1 I2 I3 I4 I5 I6 I7

I4[9]: I1 I2 I3 I4 I5 I6 I7 I8 I9

Fig. 1. An example showing that a union of 4 rectangles can be viewed as a concept
from I′

4[7] or as a concept from I4[9], respectively.

Example 3. Obviously, I ′
s[k] is the class over R2 whose concepts are of the form

∪k′
l=1(Il × Ul) with k′ ≤ k, (I1, . . . , Ik′) ∈ P ′(k′) and U1, . . . , Uk′ ∈ Is. It is easy

to see that Rk is a subclass of I ′
k[2k − 1] and Ik[2k + 1], respectively. See Fig. 1

for an illustration.

The VC-dimension of class H over domain X , denoted VCdim(H), is defined
as the cardinality of the largest subset M ⊆ X such that every subset of M can
be written in the form M ∩ H for some H ∈ H. If there is no bound on the size
of such sets M , then VCdim(H) = ∞. Let d = VCdim(H). It is well known that
the number of random examples, required for achieving ε-accuracy in the model
of agnostic learning, is of order Õ(d/ε2) [15], and a suitable hypothesis is found
by running a Minimum Disagreement algorithm A with hypothesis class H on a
random sample of this size. Thus, a time bound T (n) for A reads as Õ(T (d/ε2))
when written in terms of d and ε. We now analyze how much we have to pay in
terms of the VC-dimension for moving to more complex concept classes.

Theorem 1. Let C be a concept class of VC-dimension d over domain X such
that ∅ ∈ C. Then, for all k ≥ 1, we have that:

– VCdim(C[k]) ≤ VCdim(C′[k]) ≤ VCdim(C[k]) + 2
– dk ≤ VCdim(C[k]) ≤ (d + 1)k − 1
– dk ≤ VCdim(C′[k]) ≤ (d + 1)k + 1

(All these bounds can be shown to be tight.)

Proof. The inequalities dk ≤ VCdim(C[k]) ≤ VCdim(C′[k]) are rather obvi-
ous. Let S = [(z1, x1), . . . , (zs, xs)] be a sequence of instances from R × X
ordered according to non-decreasing z-coordinates. Suppose that S is shattered
by C′[k]. Thus each label combination (b1, . . . , bs) ∈ {0, 1}s can be realized by
some concept in C′[k]. Let ∪k′

j=1(I
′
j × Cj) ∈ C′[k] be a concept realizing the

bit pattern (1, b2, . . . , bs−1, 1) on S. Then the same bit pattern can be realized
by ∪k′

j=1(Ij × Cj) ∈ C[k] where I1 is the interval from −∞ to the right end-
point of I ′

1, Is is the interval from the left endpoint of I ′
s to ∞, and Ij = I ′

j

for j /∈ {1, s}. It follows that VCdim(C′[k]) ≤ VCdim(C[k]) + 2. We still have

Hierarchical Design of Fast Minimum Disagreement Algorithms 139

to show that the above sequence S of length s cannot be shattered by C[k] if
s = (d + 1)k. This can be seen as follows. Split S into k segments of length
d + 1. For each segment, choose a label combination that cannot be realized
by any concept from C. It is then easy to see that the resulting label combi-
nation for the full sequence S cannot be realized by any concept from C[k].3

From this discussion, it follows that VCdim(C[k]) ≤ (d + 1)k − 1 and therefore
VCdim(C′[k]) ≤ VCdim(C[k]) + 2 ≤ (d + 1)k + 1. ��

4 From Trivial to Smart Algorithms

An algorithm that solves MinDis(C, C) is called a proper Minimum Disagreement
algorithm for C. An algorithm A that solves MinDis(C,H) is called a flexible
Minimum Disagreement algorithm with time bounds T1, T2, T3 if the following
holds:

1. Given a sorted weighted sample S = [(x1, w1), . . . , (xn, wn)] ∈ (X × R)n, A
builds a data structure DS(S) in time T1(n).

2. After a modification of one of the weights in S, the data structure DS(S)
can be updated accordingly in time T2(n).

3. DS(S) implicitly represents a hypothesis H(S) ∈ H which satisfies

ES(H(S)) ≤ min
C∈C

ES(C) . (1)

Given DS(S) and x ∈ X , it can be decided in time T3(n) whether x ∈ H(S).
4. Given DS(S), the quantity ES(H(S)) can be computed in constant time.

Moreover we say that the data structure DS can be merged efficiently if, for every
pair S1, S2 of samples, the data structure for the composition of S1 and S2 can
be built in constant time from DS(S1) and DS(S2).

Here is a trivial example for a proper and flexible Minimum Disagreement
algorithm, that we will use as a building block for the design of clever and highly
non-trivial algorithms:

Example 4. Let C1 = {X} for X = {x} be the trivial class that we had considered
in Example 1 already. We claim that the (trivial) problem MinDis(C1, C1) can
be solved by a flexible algorithm with time bounds T1(n) = O(n), T2(n) = O(1)
and T3(n) = O(1):

– For S = [(x,w1), . . . , (x,wn)], set DS(S) := W−
S :=

∑
i:wi<0 wi. Thus, DS(S)

is simply a real number that can be determined in time O(n).
– If a weight wk is replaced by a new weight w′

k, then DS(S) is updated in
constant time by setting W−

S := W−
S + min{w′

k, 0} − min{wk, 0}.
– DS(S) represents H(S) := {x}, the only hypothesis in H. The evaluation

problem for H(S) is trivial.

3 The same argument was used in [10] in connection with a class of piecewise defined
functions over the real domain.

140 M. Darnstädt et al.

– Note that ES({x}) = |W−
S |. Thus, given DS(S) = W−

S , ES(H(S)) is com-
puted in constant time.

If the sample S is the composition of the samples S1 and S2, then W−
S = W−

S1
+

W−
S2

. Thus, the data structure DS can be merged efficiently.

Let C2 be the other trivial class that we had considered in Example 1. We
briefly note that there is a flexible algorithm for MinDis(C2, C2) which has the
same time bounds as the algorithm for MinDis(C1, C1).

In the sequel, we assume that Ti(n) = o(n) for i = 2, 3 and T1(n) is of the
form nh(n) for some monotonically non-decreasing function h(n) ≥ 1. From the
latter assumption, it follows that

s∑

i=1

ni = n =⇒
(

s∑

i=1

T1(ni) ≤
s∑

i=1

(nih(n)) = nh(n) = T1(n)

)
. (2)

Here comes the first main result of this section:

Theorem 2. A flexible algorithm A solving MinDis(C,H) with time bounds
T1, T2, T3 can be transformed into a flexible algorithm A′ that solves MinDis(C′[1],
H′[2�log n�]) with time bounds T ′

i (n) = O(log(n)Ti(n)) for i = 1, 2 and
T ′
3(n) = O(log(n) + T3(n)). Moreover, if the data structure used by A can be

merged efficiently, then the first two time bounds for A′ are even better, namely
T ′
1(n) = O(T1(n)) and T ′

2(n) = O(log(n) + T2(n)).

Proof. We write vectors from R × X in the form x′ = (z, x) with z ∈ R and
x ∈ X , and we equip R × X with the lexicographic ordering. Let

S′ = [(x′
1, w1), . . . , (x′

n, wn)] ∈ (R × X × R)n

be a lexicographically sorted weighted sample. Let S = [(x1, w1), . . . , (xn, wn)] ∈
(X ×R)n be the sequence obtained by stripping off the z-coordinates of the items
in S′. Note that segments of S with the same z-coordinate are sorted according
to the linear ordering of X . Let z′

1 < . . . < z′
n′ with n′ ≤ n be the sorted sequence

of distinct z-coordinates of the items in S′. For each interval [l : r] ⊆ [1 : n′], we
define S′[l : r] as the coherent sub-sequence of S′ consisting of all items in S′

whose z-coordinate lies in the interval [z′
l : z′

r], i.e.,

S′[l : r] = {(x′
k, wk) : z′

l ≤ zk ≤ z′
r} .

Let S[l : r] be the corresponding list with z-coordinates omitted. Let B be a
complete binary tree with n′ leaves which are numbered 1, . . . , n′ from left to
right. With each node u in B, we associate the following pieces of information:

1. l(u) ∈ [1 : n′] (resp. r(u) ∈ [1 : n′]) is the number of the leftmost (resp. right-
most) leaf in the sub-tree of B induced by u.

2. S(u) is defined as the “sorted version” of S[l(u) : r(u)], i.e., it contains
the same items as S[l(u) : r(u)] but in S(u) they are ordered according to
non-decreasing x-values.

Hierarchical Design of Fast Minimum Disagreement Algorithms 141

3. DS(u) = DS(S(u)), i.e., DS(u) is the data structure returned by the algo-
rithm A on input S(u).

4. d0(u) = ES(u)(∅). Note that d0(u) equals the sum of all positive weights that
are found in S(u).

5. Let H(u) = H(S(u)), i.e., H(u) is the hypothesis which is represented by the
data structure DS(u). Let d1(u) = ES(u)(H(u)). We may conclude from (1)
that, for all nodes u in B,

d1(u) = ES(u)(H(u)) ≤ min
C∈C

ES(u)(C) . (3)

6. Let J be a sub-interval of [l(u) : r(u)]. Let V [J] be the smallest antichain V
in B that satisfies J = ∪v∈V [l(v) : r(v)]. We say that

Hu
J =

⋃

v∈V [J]

[z′
l(v), z

′
r(v)] × H(v) (4)

is the hypothesis induced by J at node u. Note that |V [J]| ≤ 2�log n� accord-
ing to Lemma 1 so that Hu

J ∈ H′[2�log n�]. Given the convention min ∅ = ∞,
we set

dI(u) = min
(a,b):l(u)<a≤b<r(u)

ES(u)(Hu
[a:b]) ,

dL(u) = min
b:l(u)≤b<r(u)

ES(u)(Hu
[l(u):b]) ,

dR(u) = min
a:l(u)<a≤r(u)

ES(u)(Hu
[a:r(u)]) ,

i.e., dI(u) is the error on S(u) of the best hypothesis among the ones which
are induced by some sub-interval of [l(u) : r(u)] of type “I”. The analogous
remark applies to dL(u) and dR(u), respectively. The sub-interval J of [l(u) :
r(u)] of type “I” that satisfies dI(u) = ES(u)(Hu

J) is denoted JI(u) in what
follows. The notations JL(u) and JR(u) are understood analogously.

The tree B augmented by K = (K(u))u∈B for

K(u) = [l(u), r(u), DS(u),
d0(u), d1(u), dL(u), dR(u), dI(u),
JL(u), JR(u), JI(u)]

constitutes the data structure DS(S′). The remaining part of the proof is
sketched only. Leaving out of account the computation of K, B can be built
in time O(n). The additional pieces of information, K, can be computed as
follows:

1. The quantities (l(u), r(u), d0(u))u∈B are easy to compute within O(n) steps
in a bottom-up fashion. The sorted sequences (S(u))u∈B can be computed
bottom-up in time O(n log(n)) (in the same way as it is done by “Mergesort”).

142 M. Darnstädt et al.

2. Making use of (2), it is easy to show that, within T1(n) steps, we can compute
DS(u) for all nodes at a fixed level. Thus, it takes time O(T1(n) log(n)) to
compute (DS(u))u∈B . Moreover, if DS can be merged efficiently, then it is
easy to see that the sequences (S(u))u∈B are not needed because (DS(u))u∈B

can be computed directly in time O(T1(n) + n) = O(T1(n)).
3. Given (DS(u))u∈B , it is easy to compute (d1(u))u∈B in time O(n).
4. Given (d1(u))u∈B , we can compute the quantities (dL(u), dR(u), dI(u),

JL(u), JR(u), JI(u))u∈B in a bottom-up fashion in time O(n). For instance,
if u is a node with left child u0 and right child u1, then dR(u) is computed
according to dR(u) = min{d0(u0)+d1(u1), dR(u0)+d1(u1), d0(u0)+dR(u1)}.
Similar equations can be set up for dL(u) and dI(u). Moreover, for each
X ∈ {L,R, I}, the computation of JX(u) is just as easy as the computation
of dX(u).

It follows from the previous discussion that (K(u))u∈B can be computed in time
O(log(n)T1(n)). Moreover, if DS can be merged efficiently, then time O(T1(n))
is sufficient.

Suppose that for one item in S′, say the item (zk, xk, wk), the weight param-
eter is modified. Let j be the unique index with z′

j = zk and let v be the leaf
in B numbered j. Since K(u) need not be changed for all nodes in B but only
for those which are located on the path P from v to the root rB of B, it easily
follows that (K(u))u∈B can be updated in time O(log(n)T2(n)), or even in time
O(log(n) + T2(n)) if DS can be merged efficiently.

Let dmin = min{d0(rB), d1(rB), dL(rB), dR(rB), dI(rB)}. We now claim that
DS(S′) represents an easy-to-evaluate hypothesis H(S′) ∈ H[2�log n�] that sat-
isfies dmin = ES′(H(S′)). This can be seen as follows. If dmin = d0(rB), we set
H(S′) = ∅. If dmin = d1(rB), we set H(S′) = HrB

[1:n′]. Finally, if dmin = dX(rB)
for X ∈ {I, L,R}, then we set H(S′) = HrB

JX(rB). The evaluation problem for
H(S′) = ∅ is trivial. As for the remaining cases, note first that (z, x) ∈ HrB

[1:n′]
iff z ∈ [z′

1, z
′
n′] and x ∈ H(rB). Suppose now that dmin = dX(rB). Let

JX = [a : b]. If z /∈ [z′
a, z′

b], then clearly (z, x) /∈ HrB

a,b. Otherwise, we use B
as a search tree and follow the search path for z until we reach a node v satisfy-
ing d1(v) = min{d0(v), d1(v), dL(v), dR(v), dI(v)}. This must be a node from the
antichain V [a : b]. An inspection of (4) shows that (z, x) ∈ HrB

a,b iff x ∈ H(v). It
follows from this discussion that, in any case, the evaluation problem for H(S′)
can be solved in time O(log(n) + T3(n)).

Clearly, dmin is retrieved from DS(S′) in constant time. Making use of (3), it
is not hard to show that dmin ≤ minC∈C′[1] ES′(C), which concludes the proof.

��
Note that the proof of Theorem 2 is completely constructive. The minimum dis-
agreement and learning algorithms given in the following arise from an iterative
application of Theorem 2 and the trivial Example 4.

Recall that I denotes the class of bounded real intervals. As discussed in
Example 1, I = C′

1[1] = C′
1[2�log n�]. We immediately obtain the following result:

Hierarchical Design of Fast Minimum Disagreement Algorithms 143

Theorem 3. The transformation from Theorem 2 applied to the flexible algo-
rithm for MinDis(C1, C1) from Example 4 yields a flexible algorithm that solves
MinDis(I, I) with time bounds T1(n) = O(n) and Ti(n) = O(log(n)) for i = 2, 3.

The flexible algorithm for MinDis(I, I) resulting from Theorem 3 basically
coincides with the algorithm for MinDis(I, I) from [11]. However, since our trans-
formation is general and can be iterated, we can now go one step further and
obtain the following result:

Theorem 4. The problem MinDis(R, I ′[2�log n�]) can be solved by a flexible
algorithm with time bounds T1(n) = O(n log(n)), and T2(n) = O(log2(n)) and
T3(n) = O(log(n)).

Proof. Recall from Example 2 that R = I ′[1]. The theorem now follows imme-
diately from Theorems 2 and 3. ��

By following the construction in the paragraph before Theorem 1 and apply-
ing the bounds on the VC-dimension from Theorem 1 and on the running time T1

from Theorem 4, one immediately obtains the fast (non-proper) agnostic learner
for the class of axis-parallel rectangles promised in the introduction:

Theorem 5. Our algorithm for the problem MinDis(R, I ′[2�log n�]) agnosti-
cally learns concepts from class R with accuracy ε in time Õ(1/ε2) if a random
sample of size n = Õ(1/ε2) is provided.

The proof of the following result (omitted here because of space constraints)
bears some similarity to the proof of Theorem 2:

Theorem 6. Let the function �k(n) be defined as in Lemma 1. Suppose that
there is a flexible algorithm A for MinDis(C,H) with time bounds T1, T2, T3. Then
the problem MinDis(C[k],H[�k(n)]) can be solved by a flexible algorithm with
time bounds T ′

1(n) = O(log(n)T1(n) + k2n log2(n)), T ′
2(n) = O(log(n)T2(n) +

k2 log3(n)) and T ′
3(n) = O(k + log(n) + T3(n)). Moreover, if the data structure

used by A can be merged efficiently, then the first two time bounds are even better,
namely T ′

1(n) = O(T1(n) + k2n log2(n)) and T ′
2(n) = O(T2(n) + k2 log3(n)).

Recall that Ik denotes the class of unions of at most k bounded intervals.
As mentioned in Example 1, Ik is a subclass of C2[2k + 1]. A flexible algo-
rithm that successfully competes with the best concept from Ik is obtained
when we apply the transformation from Theorem 6 to the (trivial) flexible algo-
rithm for MinDis(C2, C2). The resulting time bounds are T1(n) = O(k2n log2(n)),
T2(n) = O(k2 log3(n)) and T3(n) = O(k+log(n)). However, the algorithm result-
ing from this general transformation is inferior to the algorithm from [11] (which
is specialized to the class Ik):4

4 In [11], flexibility of algorithms is not an issue. An inspection of the algorithm for
MinDis(Ik, Ik) reveals, however, that the underlying data structure provides flexi-
bility.

144 M. Darnstädt et al.

Theorem 7 ([11]). The problem MinDis(Ik, Ik) can be solved by a flexible algo-
rithm with T1(n, k) = O(k2n), T2(n, k) = O(k2 log(n)) and T3(n, k) = O(k).

As a final application, we consider unions of axis-parallel rectangles:

Theorem 8. Let the function �k(n) be defined as in Lemma 1. Then the problem
MinDis(Rk, Ik[�2k+1(n)]) can be solved by a flexible algorithm with T1(n, k) =
O(k2n log2(n)), T2(n, k) = O(k2 log3(n)) and T3(n, k) = O(k + log(n)).

Proof. Recall from Example 3 that Rk is a subclass of Ik[2k + 1]. Combin-
ing Theorems 7 and 6, we may conclude that the problem MinDis(Ik[2k +
1], Ik[�2k+1(n)]) can be solved by a flexible algorithm with time bounds as given
in the assertion of the theorem. ��

The transformations described in Theorems 2 and 6 preserve flexibility but
destroy properness. As for the transformation described in the following theorem,
we have the reverse situation:

Theorem 9. A flexible algorithm A for MinDis(C,H) with time bounds T1, T2,
T3 can be transformed into an algorithm A′ that solves the problem MinDis(C[2],
H[2]) in time O(n log(n) + T1(n) + nT2(n)).

Proof. Let S′ = [(x′
1, w1), . . . , (x′

n, wn)] = [(z1, x1, w1), . . . , (zn, xn, wn)] ∈ (R ×
X × R)n be a given instance of MinDis(C[2],H[2]). Let n′ be the number of
distinct z-coordinates in S′, and let z′

1 < z′
2 < . . . < z′

n′ be the corresponding
sorted sequence. For sake of convenience, let z′

n′+1 = z′
n′ +1. For k = 1, . . . , n′+1,

let S′
1(k) = {(x′

i, wi) : zi < z′
k} and S′

2(k) = {(x′
i, wi) : zi ≥ z′

k}. Similarly, let
S1(k) = {(xi, wi) : zi < z′

k} and S2(k) = {(xi, wi) : zi ≥ z′
k}.

Without loss of generality let C∗ = ((−∞, z′
k′) × C1) ∪ ([z′

k′ ,+∞) × C2) ∈
C[2] be the concept with the smallest empirical error on S′ among all concepts
from C[2]. For each k ∈ {1, . . . , n′ + 1}, let Hk

1 (resp. Hk
2) be the hypothesis

represented by DS(S1(k)) (resp. by DS(S2(k)). Let

Hk = ((−∞, z′
k) × Hk

1) ∪ ([z′
k,∞) × Hk

2) . (5)

Furthermore, let k′′ be a minimizer of

W (k) := ES1(k)(H
k
1) + ES2(k)(H

k
2) (6)

and let H∗ = Hk′′
. With these notations, we get

ES′(H∗) = ES1(k′′)(Hk′′
1) + ES2(k′′)(Hk′′

2) ≤ ES1(k′)(Hk′
1) + ES2(k′)(Hk′

2)
≤ ES1(k′)(C1) + ES2(k′)(C2) = ES′(C∗) .

Thus the empirical error of H∗ ∈ H[2] on S′ is not larger than the empirical error
of C∗ ∈ C[2] on S′. Suppose that we know the values W (k) for all k = 1, . . . , n′+1.
Then we can determine (a representation of) H∗ as follows:

1. Set k′′ := argmin{W (k) : k ∈ {1, . . . , n′ + 1}}. This takes O(n) steps.
2. Extract S1(k′′) and S2(k′′) from S′ and sort each of these two sequences

according to the x-coordinates of its items. This takes O(n log(n)) steps.

Hierarchical Design of Fast Minimum Disagreement Algorithms 145

3. Feed S1(k′′) (resp. S2(k′′)) into A and obtain the data structure DS(S1(k′′))
(resp. DS(S2(k′′))). This takes O(T1(n)) steps.

4. Recall that DS(Si(k′′)) represents Hk′′
i for i = 1, 2. These data structures

augmented by z′
k′′ form a suitable and easy-to-evaluate representation of H∗.

It remains to answer the question how the values W (k) for k = 1, . . . , n′ + 1 can
be computed efficiently. We observe first that the operation of deleting an item
(xk, wk) from a set S of (at most n) items can be simulated by setting wk = 0.
According to (6), W (k) is easy to compute from ES1(k)(H

k
1) and ES2(k)(H

k
2). For

reasons of symmetry, it suffices to describe how the values ES1(k)(H
k
1) for k =

1, . . . , n′ + 1 can be computed efficiently. This is done (similarly to a procedure
used in [1] for learning 2-level decision trees) as follows:

1. Given S′, let k := n′ + 1, S := S1(k) and sort this sequence according to
non-decreasing x-coordinates. This takes O(n log(n)) steps.

2. Feed S into A and obtain DS(S). This takes O(T1(n)) steps.
3. Given DS(S), compute ES(Hk

1) and store it in W (k). This takes O(1) steps.
4. If k = 1, then stop. Otherwise, set wk := 0, update the data structure DS(S)

accordingly, set k := k − 1 and go back to Step 3. This takes T2(n) steps.

The time complexity of the whole procedure for computing H∗ is dominated by
the amount of time needed for computing the quantities W (k) for k=1, . . . , n′+1,
and this takes O(n log(n) + T1(n) + nT2(n)) steps. ��

5 Experimental Results

We chose to investigate Minimum Disagreement algorithms for the class of axis-
aligned rectangles R in the following experiments, because we expect to observe a
considerable improvement in light of Theorem 4: the algorithm from Theorem 4
has an asymptotic worst-case time bound of only O(n log(n)), where n is the
number of examples, compared to the proper algorithms from [2,11] with a
running time of O(n2 log(n)) and O(n2), respectively. While O(n2) is clearly
better than O(n2 log(n)), we noticed that in the range of sample sizes used in
the following experiments (and for our implementation) the learner from [11] is
actually slightly faster than the one from [2]. Therefore, we compare our method
from Theorem 4, which we denote by TRANS, with the algorithm from [11], which
we denote by RECT. Note that—as in the theoretical analysis—we measured all
running times without taking the time for pre-sorting the training data into
account. This is justified as all considered algorithms rely on pre-sorted data.
The experiments were performed on a AMD Opteron 6234 processor, running
at 2400 MHz, with Oracle Java 1.8.0 31 under CentOS 6.6.

Data Sets. We are solving binary classification problems where the weight of
any instance is either −1 or +1. We use three different data sets: one artificially
generated data set, which is given by a mixture of two two-dimensional Gaussian
distributions—one distribution for each weight—with identical covariance matri-
ces. The “Glass” data set from [7], which consists of nine-dimensional instances

146 M. Darnstädt et al.

0 1,000 2,000 3,000

0.05

0.1

0.15
ε ≈ 0.024

sample size

er
ro

r
ra

te

100 101 102 103 104

0.05

0.1

0.15
ε ≈ 0.024

ε ≈ 0.008

running time in ms

Fig. 2. Error rates of RECT (in red) and TRANS (in blue) as a function of the sample size
(left-hand side) and of the running time (right-hand side) on the artificial Gaussian
distribution. The x-axis on the right-hand side is logarithmic to accommodate the vast
range of running times. The solid lines depict the error rates on the test set, while the
dashed lines show the error rate on the training set. Note that the accuracy ε from
Theorem 5 is proportional to the difference between these two error rates. All values
were measured on an independent test set of size 1000 and averaged over 50 runs.

from forensic examinations of glass samples. While the original data set con-
tains seven classes and 214 instances, we obtained a binary classification problem
with 163 instances by following [9] (merging classes one and three and remov-
ing all instances from class four to seven). The “MAGIC” data set from [4,6],
which consists of 19020 ten-dimensional instances of (simulated) observations
of a “Cherenkov gamma telescope”. The task is to discern gamma ray events
from background noise. The latter two data sets are available on the UC Irvine
Machine Learning Repository.

Experimental Results and Discussion. The results for the Gaussian mixture are
given in Fig. 2. The error rates as a function of the sample size, shown in the
left-hand side of Fig. 2, behave as expected: RECT, whose hypothesis class has the
smaller VC-dimension, achieves a smaller error on the test set for small sample
sizes and its error rates converge faster (as a function of the sample size). Note
that TRANS’ error rate outperforms RECT already at n ≈ 500 because its higher
estimation error is getting more than compensated by its lower approximation
error. When computation time is the resource of consideration, as depicted in
the right-hand side of Fig. 2, the differences become more drastic: TRANS consis-
tently outperforms the much slower RECT-algorithm. Furthermore, as predicted
by Theorem 5, TRANS’ error rates indeed converge much faster. We would like to
add that the measured running times nicely match the theoretical analysis.

The dimensions of the instances in both the Glass and MAGIC data sets are
larger than two, so we cannot directly apply RECT and TRANS. We followed [9]
and trained one hypothesis on every pair of coordinates choosing the hypothe-
sis with the smallest error on the training set. (Another approach would be to

Hierarchical Design of Fast Minimum Disagreement Algorithms 147

Table 1. Experimental results for the best instance pair using TRANS and RECT on the
Glass and MAGIC data sets (upper table), and for AdaBoost using TRANS as the base
learner on the MAGIC data set with different numbers of iterations T (lower table).
Data sets were randomly split 2:1 into a training and test set. All values are averages
over 50 runs, except for RECT on the MAGIC data set, which was run only 10 times.

error rate error rate
data set algorithm on training set on test set time

Glass TRANS 0.081 0.233 14 ms
RECT 0.160 0.252 393 ms

MAGIC TRANS 0.178 0.189 6 s
RECT 0.214 0.219 17256 s

error rate error rate
data set algorithm T on training set on test set time

MAGIC AdaBoost 1 0.178 0.189 6 s
(on TRANS) 5 0.153 0.167 29 s

10 0.138 0.156 59 s
20 0.124 0.151 117 s
40 0.107 0.149 235 s

iteratively transform the MinDis algorithm until we arrive at the desired dimen-
sion. However, this method introduces too much overhead using our implemen-
tation for 9 resp. 10 dimensions.) The results are given in the upper part of
Table 1 and show that—for both the smaller Glass data set with 108 training
instances and the larger MAGIC data set with 12680 training instances—TRANS’
error rates are smaller than the ones from RECT. As expected, TRANS is consider-
ably faster than RECT: notice the giant gap between six seconds and almost six
hours on the MAGIC data set. The mean error rate of 0.233 on the Glass data
set is in fact smaller than the rates reported in [9], which were 0.271 for a simple
one-dimensional hypothesis and 0.257 for a (more complex) decision tree. Our
mean error rate of 0.189 on the MAGIC data set is considerably larger than the
ones reported in [6], which were in the range of 0.16 to 0.138 (on the test set)
for different variants of decision trees. We try to close this gap in the following
by using the well-known AdaBoost [8] scheme with TRANS as the base learner.
The results for AdaBoost on the MAGIC data set are given in the lower part of
Table 1. Obviously, one round of boosting is equivalent to the previous approach
of choosing the hypothesis with the smallest empirical error. Note that already
twenty iterations provide an error rate on the test set that is comparable with
the rates from [6], and that TRANS is obviously fast enough for boosting to be
practical on 12680 instances. Furthermore, our boosted classifier surpasses all
methods considered in [4] in all but one measure of merit (we omit details due
to space constrains). Admittedly, we suspect that this is mostly due to boosting
and independent from the choice of base learners, as experiments using decision
stumps yield similar error rates with a larger number of iterations but a smaller
over-all running time.

148 M. Darnstädt et al.

References

1. Auer, P., Holte, R.C., Maass, W.: Theory and applications of agnostic PAC-
learning with small decision trees. In: ICML 1995, pp. 21–29 (1995)

2. Barbay, J., Chan, T.M., Navarro, G., Pérez-Lantero, P.: Maximum-weight planar
boxes in O(n2) time (and better). Information Processing Letters 114(8), 437–445
(2014)

3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications. Springer-Verlag, Santa Clara (2008)

4. Bock, R., Chilingarian, A., Gaug, M., Hakl, F., Hengstebeck, T., Jǐrina, M.,
Klaschka, J., Kotrč, E., Savický, P., Towers, S., Vaiciulis, A., Wittek, W.: Meth-
ods for multidimensional event classification: a case study using images from a
cherenkov gamma-ray telescope. Nuclear Instruments and Methods in Physics
Research A 516(2–3), 511–528 (2004)

5. Cortés, C., Dı́az-Báñez, J.M., Pérez-Lantero, P., Seara, C., Urrutia, J.,
Ventura, I.: Bichromatic separability with two boxes: A general approach. Journal
of Algorithms 64(2–3), 79–88 (2009)

6. Dvořák, J., Savický, P.: Softening splits in decision trees using simulated annealing.
In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA
2007. LNCS, vol. 4431, pp. 721–729. Springer, Heidelberg (2007)

7. Evett, I.W., Spiehler, E.J.: Rule induction in forensic science. Tech. rep, Central
Research Establishment, Home Office Forensic Science Service (1987)

8. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences 55(1),
119–139 (1997)

9. Holte, R.C.: Very simple classification rules perform well on most commonly used
datasets. Machine Learning 11(1), 63–91 (1993)

10. Kearns, M.J., Schapire, R.E., Sellie, L.M.: Toward efficient agnostic learning.
Machine Learning 17(2), 115–141 (1994)

11. Maass, W.: Efficient agnostic PAC-learning with simple hypothesis. In: COLT 1994,
pp. 67–75 (1994)

12. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. Jour-
nal of the Association on Computing Machinery 35(4), 965–984 (1988)

13. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press (2014)

14. Vapnik, V.: Statistical learning theory. Wiley & Sons (1998)
15. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequen-

cies of events to their probabilities. Theory of Probability and its Applications
XVI(2), 264–280 (1971)

16. Weiss, S.M., Galen, R.S., Tadepalli, P.: Maximizing the predictive value of produc-
tion rules. Artificial Intelligence 45(1–2), 47–71 (1990)

17. Weiss, S.M., Kapouleas, I.: An empirical comparison of pattern recognition, neural
nets, and machine learning classification methods. In: IJCAI 1989, pp. 781–787
(1989)

18. Weiss, S.M., Kulikowski, C.A.: Computer Systems That Learn: Classification and
Prediction Methods from Statistics, Neural Nets, Machine Learning and Expert
Systems. Morgan Kaufmann (1990)

Learning with a Drifting Target Concept

Steve Hanneke1(B), Varun Kanade2, and Liu Yang3

1 Princeton, NJ, USA
steve.hanneke@gmail.com

2 Département d’informatique, École normale supérieure, Paris, France
varun.kanade@ens.fr

3 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
yangli@us.ibm.com

Abstract. We study the problem of learning in the presence of a drift-
ing target concept. Specifically, we provide bounds on the error rate at a
given time, given a learner with access to a history of independent sam-
ples labeled according to a target concept that can change on each round.
One of our main contributions is a refinement of the best previous results
for polynomial-time algorithms for the space of linear separators under
a uniform distribution. We also provide general results for an algorithm
capable of adapting to a variable rate of drift of the target concept. Some
of the results also describe an active learning variant of this setting, and
provide bounds on the number of queries for the labels of points in the
sequence sufficient to obtain the stated bounds on the error rates.

1 Introduction

Much of the work on statistical learning has focused on learning settings in
which the concept to be learned is static over time. However, there are many
application areas where this is not the case. For instance, in the problem of
face recognition, the concept to be learned actually changes over time as each
individual’s facial features evolve over time. In this work, we study the problem
of learning with a drifting target concept. Specifically, we consider a statistical
learning setting, in which data arrive i.i.d. in a stream, and for each data point,
the learner is required to predict a label for the data point at that time. We
are then interested in obtaining low error rates for these predictions. The target
labels are generated from a function known to reside in a given concept space,
and at each time t the target function is allowed to change by at most some
distance Δt: that is, the probability the new target function disagrees with the
previous target function on a random sample is at most Δt.

This framework has previously been studied in a number of articles. The
classic works of [5,6,15,16] and [7] together provide a general analysis of a very-
much related setting. Though the objectives in these works are specified slightly
differently, the results established there are easily translated into our present
framework, and we summarize many of the relevant results in Section 3.

c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 149–164, 2015.
DOI: 10.1007/978-3-319-24486-0 10

150 S. Hanneke et al.

While the results in these classic works are general, the best guarantees on
the error rates are only known for methods having no guarantees of computa-
tional efficiency. In a more recent effort, the work of [8] studies this problem
in the specific context of learning a homogeneous linear separator, when all the
Δt values are identical. They propose a polynomial-time algorithm (based on
the modified Perceptron algorithm of [9]), and prove a bound on the number of
mistakes it makes as a function of the number of samples, when the data distri-
bution satisfies a certain condition called “λ-good” (which generalizes a useful
property of the uniform distribution on a sphere). However, their result is again
worse than that obtainable by the known computationally-inefficient methods.

Thus, the natural question is whether there exists a polynomial-time algo-
rithm achieving roughly the same guarantees on the error rates known for the
inefficient methods. In the present work, we resolve this question in the case
of learning homogeneous linear separators under the uniform distribution, by
proposing a polynomial-time algorithm that indeed achieves roughly the same
bounds on the error rates known for the inefficient methods in the literature.
This represents the main technical contribution of this work.

We also study the interesting problem of adaptivity of an algorithm to the
sequence of Δt values, in the setting where Δt may itself vary over time. Since
the values Δt might typically not be accessible in practice, it seems important
to have learning methods having no explicit dependence on the sequence Δt.
We propose such a method below, and prove that it achieves roughly the same
bounds on the error rates known for methods in the literature which require
direct access to the Δt values. Also in the context of variable Δt sequences, we
discuss conditions on the sequence Δt necessary and sufficient for there to exist
a learning method guaranteeing sublinear growth of the number of mistakes.

We additionally study an active learning extension to this framework, in
which, at each time, after making its prediction, the algorithm may decide
whether or not to request access to the label assigned to the data point at
that time. In addition to guarantees on the error rates (for all times, including
those for which the label was not observed), we are also interested in bounding
the number of labels we expect the algorithm to request, as a function of the
number of samples encountered thus far.

2 Definitions and Notation

Formally, in this setting, there is a fixed distribution P over the instance
space X , and there is a sequence of independent P-distributed unlabeled data
X1,X2, There is also a concept space C, and a sequence of target functions
h∗ = {h∗

1, h
∗
2, . . .} in C. Each t has an associated target label Yt = h∗

t (Xt).
In this context, a (passive) learning algorithm is required, on each round t, to
produce a classifier ĥt based on the observations (X1, Y1), . . . , (Xt−1, Yt−1), and
we denote by Ŷt = ĥt(Xt) the corresponding prediction by the algorithm for
the label of Xt. For any classifier h, we define ert(h) = P(x : h(x) �= h∗

t (x)).

Learning with a Drifting Target Concept 151

We also say the algorithm makes a “mistake” on instance Xt if Ŷt �= Yt; thus,
ert(ĥt) = P(Ŷt �= Yt|(X1, Y1), . . . , (Xt−1, Yt−1)).

For notational convenience, we will suppose the h∗
t sequence is chosen inde-

pendently from the Xt sequence (i.e., h∗
t is chosen prior to the “draw” of

X1,X2, . . . ∼ P), and is not random. In each results, we will suppose h∗ is chosen
from some set S of sequences in C. In particular, we are interested in describing
the sequence h∗ in terms of the magnitudes of changes in h∗

t from one time to the
next. Specifically, for any sequence Δ = {Δt}∞

t=2 in [0, 1], we denote by SΔ the
set of all sequences h∗ in C such that, ∀t ∈ N, P(x : ht(x) �= ht+1(x)) ≤ Δt+1.
Throughout this article, we denote by d the VC dimension of C [18], and we
suppose 1 ≤ d < ∞. Also, ∀x ∈ R, define Log(x) = ln(max{x, e}).

3 Background: (ε, S)-Tracking Algorithms

As mentioned, the classic literature on learning with a drifting target concept is
expressed in terms of a slightly different model. In order to relate those results to
our present setting, we first introduce the classic setting. Specifically, we consider
a model introduced by [15], presented here in a more-general form inspired by
[5]. For a set S of sequences {ht}∞

t=1 in C, and a value ε > 0, an algorithm A is
said to be (ε, S)-tracking if ∃tε ∈ N such that, for any choice of h∗ ∈ S, ∀T ≥ tε,
the prediction ŶT produced by A at time T satisfies P

(
ŶT �= YT

)
≤ ε. Note that

the value of this probability may be influenced by {Xt}T
t=1, {h∗

t }T
t=1, and any

internal randomness of the algorithm A.
The focus of the results expressed in this classical model is determining suf-

ficient conditions on the set S for there to exist an (ε, S)-tracking algorithm,
along with bounds on the sufficient size of tε. These conditions on S typically
take the form of an assumption on the drift rate, expressed in terms of ε. Below,
we summarize several of the strongest known results for this setting.

Bounded Drift Rate: The simplest, and perhaps most elegant, results for
(ε, S)-tracking algorithms is for the set S of sequences with a bounded drift rate.
Specifically, for any Δ ∈ [0, 1], define SΔ = SΔ, where Δ is such that Δt+1 = Δ
for every t ∈ N. The study of this problem was initiated in the original work
of [15]. The best known general results are due to [16]: namely, that for some
Δε = Θ(ε2/d), for every ε ∈ (0, 1], there exists an (ε, SΔ)-tracking algorithm
for all values of Δ ≤ Δε.1 This refined an earlier result of [15] by a logarithmic
factor. [16] further argued that this result can be achieved with tε = Θ(d/ε).
The algorithm itself involves a beautiful modification of the one-inclusion graph
prediction strategy of [14]; since its specification is somewhat involved, we refer
the interested reader to the original work of [16] for the details.

1 In fact, [16] also allowed the distribution P to vary gradually over time. For simplic-
ity, we will only discuss the case of fixed P.

152 S. Hanneke et al.

Varying Drift Rates (Nonadaptive Algorithm): In addition to the con-
crete bounds for the case h∗ ∈ SΔ, [15] additionally present an elegant general
result. Specifically, they argue that, for any ε > 0, and any m = Ω

(
d
ε Log 1

ε

)
, if∑m

i=1P(x :h∗
i (x) �=h∗

m+1(x))≤mε/24, then for ĥ=argminh∈C

∑m
i=11[h(Xi) �=Yi],

P(ĥ(Xm+1) �= h∗
m+1(Xm+1)) ≤ ε. This result immediately inspires an algorithm

A which, at every time t, chooses a value mt ≤ t−1, and predicts Ŷt = ĥt(Xt), for
ĥt = argminh∈C

∑t−1
i=t−mt

1[h(Xi) �= Yi]. We are then interested in choosing mt

to minimize the value of ε obtainable via the result of [15]. However, that method
is based on the values P(x : h∗

i (x) �= h∗
t (x)), which would typically not be acces-

sible to the algorithm. However, suppose instead we have access to a sequence
Δ such that h∗ ∈ SΔ. In this case, we could approximate P(x : h∗

i (x) �= h∗
t (x))

by its upper bound
∑t

j=i+1 Δj . In this case, we are interested choosing mt to
minimize the smallest value of ε such that

∑t−1
i=t−mt

∑t
j=i+1 Δj ≤ mtε/24 and

mt = Ω
(

d
ε Log 1

ε

)
. One can easily verify that this minimum is obtained at a value

mt = Θ

⎛

⎝ argmin
1≤m≤t−1

1
m

t−1∑

i=t−m

t∑

j=i+1

Δj +
dLog(m/d)

m

⎞

⎠ ,

and via the result of [15] (applied to Xt−mt
, . . . , Xt) the resulting algorithm has

P

(
Ŷt �= Yt

)
≤ O

⎛

⎝ min
1≤m≤t−1

1
m

t−1∑

i=t−m

t∑

j=i+1

Δj +
dLog(m/d)

m

⎞

⎠ . (1)

As a special case, if every t has Δt = Δ for a fixed value Δ ∈ [0, 1], this result
recovers the bound

√
dΔLog(1/Δ), which is only slightly larger than the best

bound of [16]. It also applies to far more general and more intersting sequences
Δ, including some that allow periodic large jumps (i.e., Δt = 1 for some indices
t), others where the sequence Δt converges to 0, and so on. Note, however, that
the algorithm obtaining this bound directly depends on the sequence Δ. One
of the contributions of the present work is to remove this requirement, while
maintaining essentially the same bound, though in a slightly different form.

Computational Efficiency: [15] also proposed a reduction-based approach,
which sometimes yields computationally efficient methods, though the tolerable
Δ value is smaller. Specifically, given any (randomized) polynomial-time algo-
rithm A that produces a classifier h ∈ C with

∑m
t=1 1[h(xt) �= yt] = 0 for any

sequence (x1, y1), . . . , (xm, ym) for which such a classifier h exists (called the
consistency problem), they propose a polynomial-time algorithm that is (ε, SΔ)-
tracking for all values of Δ ≤ Δ′

ε, where Δ′
ε = Θ

(
ε2

d2Log(1/ε)

)
. This is slightly

worse (by a factor of dLog(1/ε)) than the drift rate tolerable by the (typi-
cally inefficient) algorithm mentioned above. However, it does sometimes yield
computationally-efficient methods. For instance, there are known polynomial-
time algorithms for the consistency problem for the classes of linear separators,
conjunctions, and axis-aligned rectangles.

Learning with a Drifting Target Concept 153

Lower Bounds: [15] additionally prove lower bounds for specific concept
spaces: namely, linear separators and axis-aligned rectangles. They specifically
argue that, for C a concept space BASICn = {∪n

i=1[i/n, (i + ai)/n) : a ∈ [0, 1]n}
on [0, 1], under P the uniform distribution on [0, 1], for any ε ∈ [0, 1/e2] and
Δε ≥ e4ε2/n, for any algorithm A, and any T ∈ N, there exists a choice
of h∗ ∈ SΔε

such that the prediction ŶT produced by A at time T satisfies
P

(
ŶT �= YT

)
> ε. Based on this, they conclude that no (ε, SΔε

)-tracking algo-
rithm exists. They further observe that BASICn is embeddable in many common
concept spaces, including halfspaces and axis-aligned rectangles in R

n, so that
for C equal to either of these, there also is no (ε, SΔε

)-tracking algorithm.

4 Adapting to Arbitrarily Varying Drift Rates

This section presents a general bound on the error rate at each time, expressed
as a function of the rates of drift, which are allowed to be arbitrary. Most-
importantly, in contrast to the methods from the literature discussed above,
the method achieving this general result is adaptive to the drift rates, so that
it requires no information about the drift rates in advance. This is an appeal-
ing property, as it essentially allows the algorithm to learn under an arbitrary
sequence h∗ of target concepts; the difficulty of the task is then simply reflected
in the resulting bounds on the error rates: that is, faster-changing sequences of
target functions result in larger bounds on the error rates, but do not require a
change in the algorithm itself.

4.1 Adapting to a Changing Drift Rate

Recall that the method yielding (1) (based on the work of [15]) required access
to the sequence Δ of changes to achieve the stated guarantee on the expected
number of mistakes. That method is based on choosing a classifier to predict Ŷt

by minimizing the number of mistakes among the previous mt samples, where
mt is a value chosen based on the Δ sequence. Thus, the key to modifying
this algorithm to make it adaptive to the Δ sequence is to determine a suit-
able choice of mt without reference to the Δ sequence. The strategy we adopt
here is to use the data to determine an appropriate value m̂t to use. Roughly
(ignoring logarithmic factors for now), the insight that enables us to achieve
this feat is that, for the mt used in the above strategy, one can show that∑t−1

i=t−mt
1[h∗

t (Xi) �= Yi] is roughly Õ(d), and that making the prediction Ŷt with
any h ∈ C with roughly Õ(d) mistakes on these samples will suffice to obtain the
stated bound on the error rate (up to logarithmic factors). Thus, if we replace
mt with the largest value m for which minh∈C

∑t−1
i=t−m 1[h(Xi) �= Yi] is roughly

Õ(d), then the above observation implies m ≥ mt. This then implies that, for
ĥ = argminh∈C

∑t−1
i=t−m 1[h(Xi) �= Yi], we have that

∑t−1
i=t−mt

1[ĥ(Xi) �= Yi] is
also roughly Õ(d), so that the stated bound on the error rate will be achieved
(aside from logarithmic factors) by choosing ĥt as this classifier ĥ. There are a

154 S. Hanneke et al.

few technical modifications to this argument needed to get the logarithmic fac-
tors to work out properly, and for this reason the actual algorithm below (and
proof) is somewhat more involved. Specifically, consider the following algorithm
(the value of the universal constant K ≥ 1 will be specified below).

0. For T = 1, 2, . . .

1. Let m̂T =max
{

m∈{1, . . . , T −1} : min
h∈C

max
m′≤m

∑T −1
t=T −m′ 1[h(Xt) �=Yt]

dLog(m′/d)+Log(1/δ) < K

}

2. Let ĥT = argmin
h∈C

max
m′≤m̂T

∑T −1
t=T −m′ 1[h(Xt) �=Yt]

dLog(m′/d)+Log(1/δ)

Note that the classifiers ĥt chosen by this algorithm have no dependence
on Δ, or anything other than the data {(Xi, Yi) : i < t}, and the concept space
C. For space, the proof is deferred to the full version of this paper [13].

Theorem 1. Fix any δ ∈ (0, 1), and let A be the above algorithm. For any
sequence Δ in [0, 1], for any P and any choice of h∗ ∈ SΔ, for every T ∈ N\{1},
with probability at least 1 − δ,

erT

(
ĥT

)
≤ O

⎛

⎝ min
1≤m≤T−1

1
m

T−1∑

i=T−m

T∑

j=i+1

Δj +
dLog(m/d) + Log(1/δ)

m

⎞

⎠ .

One immediate implication of Theorem 1 is that, if the sum of Δt values
grows sublinearly, then there exists an algorithm achieving an expected number
of mistakes growing sublinearly in the number of predictions. Formally, we have
the following corollary. The proof is deferred to the full version [13].

Corollary 1. If
∑T

t=1 Δt = o(T), then there exists an algorithm A such that,

for every P and every choice of h∗ ∈ SΔ, E
[∑T

t=1 1
[
Ŷt �= Yt

]]
= o(T).

For many concept spaces of interest, the condition
∑T

t=1 Δt = o(T) in Corol-
lary 1 is also a necessary condition for any algorithm to guarantee a sublinear
number of mistakes. In the full version of this paper [13], we establish that for
the class of homogeneous linear separators on R

2 with P the uniform distribution
on the unit circle, there exists an algorithm with E

[∑T
t=1 1

[
Ŷt �= Yt

]]
= o(T)

for every choice of h∗ ∈ SΔ if and only if
∑T

t=1 Δt = o(T).

5 Polynomial-Time Algorithms for Linear Separators

In this section, we suppose Δt = Δ for every t ∈ N, for a fixed constant
Δ > 0, and we consider the special case of learning homogeneous linear sep-
arators in R

k under a uniform distribution on the origin-centered unit sphere. In
this case, the analysis of [15] mentioned in Section 3 implies that it is possible to
achieve a bound on the error rate that is Õ(d

√
Δ), using an algorithm that runs

Learning with a Drifting Target Concept 155

in time poly(d, 1/Δ, log(1/δ)) (and independent of t) for each prediction. This
also implies that it is possible to achieve expected number of mistakes among
T predictions that is Õ(d

√
Δ)T . [8]2 have since proven that a variant of the

Perceptron algorithm achieves an expected number of mistakes Õ((dΔ)1/4)T .
Below, we improve on this result by showing that there exists an efficient

algorithm that achieves a bound on the error rate that is Õ(
√

dΔ), as was possible
with the inefficient algorithm of [15,16]. This leads to a bound Õ(

√
dΔ)T on

the expected number of mistakes. Furthermore, our approach also allows us to
present the method as an active learning algorithm, and to bound the expected
number of queries, as a function of the number of samples T , by Õ(

√
dΔ)T . The

technique is based on modifying the algorithm of [15], replacing an ERM step
with (a modification of) the computationally-efficient algorithm of [1].

Formally, define the class of homogeneous linear separators as the set of
classifiers hw : Rd → {−1,+1}, for w ∈ R

d with ‖w‖ = 1, such that hw(x) =
sign(w · x) for every x ∈ R

d. We have the following result.

Theorem 2. When C is the space of homogeneous linear separators (with d ≥ 4)
and P is the uniform distribution on the surface of the origin-centered unit sphere
in R

d, for any fixed Δ > 0, for any δ ∈ (0, 1/e), there is an algorithm that runs
in time poly(d, 1/Δ, log(1/δ)) for each time t, such that for any h∗ ∈ SΔ, for
every sufficiently large t ∈ N, with probability at least 1 − δ,

ert(ĥt) = O

(√
Δd log

(
1
δ

))
.

Also, choosing δ =
√

Δd∧1/e, the expected number of mistakes among the first T

predictions is O
(√

Δd log
(

1
Δd

)
T

)
. Furthermore, the algorithm can be run as an

active learning algorithm, in which case, for this δ, the expected number of labels
requested by the algorithm among the first T instances is O

(√
Δd log3/2

(
1

Δd

)
T

)
.

We first state the algorithm used to obtain this result. It is primarily based
on a margin-based learning strategy of [1], combined with an initialization
step based on a modified Perceptron rule from [8,9]. For τ > 0 and x ∈ R,
define 	τ (x) = max

{
0, 1 − x

τ

}
. Consider the following algorithm and subrou-

tine; parameters δk, mk, τk, rk, bk, α, and κ will all be specified in the context
of the proof (see Lemmas 2 and 6); we suppose M =

∑	log2(1/α)

k=0 mk.

Algorithm: DriftingHalfspaces
0. Let h̃0 be an arbitrary classifier in C

1. For i = 1, 2, . . .
2. h̃i ← ABL(M(i − 1), h̃i−1)

2 This work in fact studies a much broader model of drift, which allows the distribution
P to vary with time as well. However, this Õ((dΔ)1/4)T result can be obtained from
their theorem by calculating the various parameters for this particular setting.

156 S. Hanneke et al.

Subroutine: ModPerceptron(t, h̃)
0. Let wt be any element of Rd with ‖wt‖ = 1
1. For m = t + 1, t + 2, . . . , t + m0

2. Choose ĥm = h̃ (i.e., predict Ŷm = h̃(Xm) as the prediction for Ym)
3. Request the label Ym

4. If hwm−1(Xm) �= Ym

5. wm ← wm−1 − 2(wm−1 · Xm)Xm

6. Else wm ← wm−1

7. Return wt+m0

Subroutine: ABL(t, h̃)
0. Let w0 be the return value of ModPerceptron(t, h̃)
1. For k = 1, 2, . . . , �log2(1/α)�
2. Wk ← {}
3. For s = t +

∑k−1
j=0 mj + 1, . . . , t +

∑k
j=0 mj

4. Choose ĥs = h̃ (i.e., predict Ŷs = h̃(Xs) as the prediction for Ys)
5. If |wk−1 ·Xs| ≤ bk−1, Request label Ys and let Wk ← Wk ∪{(Xs, Ys)}
6. Find vk ∈ R

d with ‖vk − wk−1‖ ≤ rk, 0 < ‖vk‖ ≤ 1, and∑
(x,y)∈Wk

	τk
(y(vk · x)) ≤ inf

v:‖v−wk−1‖≤rk

∑
(x,y)∈Wk

	τk
(y(v · x)) + κ|Wk|

7. Let wk = 1
‖vk‖vk

8. Return hw�log2(1/α)�−1

The general idea here is to replace empirical risk minimization in the method
of [15] discussed above with a computationally efficient method of [1]: namely, the
subroutine ABL above. For technical reasons, we apply this method to batches
of M samples at a time, and simply use the classifier learned from the previous
batch to make the predictions. The method of [1] was originally proposed for
the problem of agnostic learning, to error rate within a constant factor of the
optimal. To use this for our purposes, we set up an analogy between the best
achievable error rate in agnostic learning and a value O(ΔM) here (which bounds
the best achievable average error rate in a given batch).

The analysis of [1] required this method to be initialized with a reason-
ably accurate classifier (constant bound on its error rate). For this, we find (in
Lemma 1) that the modified Perceptron algorithm (of [8,9]) suffices. The ABL
algorithm then iteratively refines a hypothesis wk by taking a number of samples
within a slab of width bk−1 ∝ 2−k/

√
d around the previous hypothesis separator

wk−1, and optimizing a weighted hinge loss (subject to a constraint that the
new hypothesis not be too far from the previous). The analysis (Lemma 6) then
reveals that the hypothesis wk approaches a classifier w∗ with error rate O(ΔM)
with respect to all of the target concepts in the batch.

We note that, even with the above-described analogy between O(ΔM) and
the noise rate in agnostic learning, the analysis below does not follow immedi-
ately from that of [1]. This is because the sample size M that would be required
by the analysis of [1] to achieve error rate within a constant factor of the noise

Learning with a Drifting Target Concept 157

rate would be too large (by a factor of d) for our purposes. In particular, noting
that ΔM is increasing in M , converting that original analysis to our present
setting would result in a bound on ert(ĥt) larger than that stated in Theorem 2
by roughly a factor of

√
d. The analysis below refines several aspects of the anal-

ysis, using stronger concentration arguments for the weighted hinge loss, and
being more careful in bounding the error rate in terms of the weighted hinge loss
performance. We thereby reduce the bound to the result stated above.

We have a few lemmas that will be needed for the proof. With some effort,
the following result can be derived from the analysis of ModPerceptron by [8].
The details are included in the full version of this article [13].

Lemma 1. Suppose Δ ≤ π2

400·227(d+ln(4/δ)) . For m0 = max{�128(1/c1) ln(32)�,
�512 ln(4δ)�}, with probability at least 1 − δ/4, ModPerceptron(t, h̃) returns a
vector w with P(x : hw(x) �= h∗

t+m0+1(x)) ≤ 1/16.

Next, we consider the execution of ABL(t, h̃), and let the sets Wk be as in
that execution. We will denote by w∗ the weight vector with ‖w∗‖ = 1 such that
h∗

t+m0+1 = hw∗ . Also denote by M1 = M − m0.
The proof relies on a few results proven in the work of [1], which we summarize

in the following lemmas. Although the results were proven in a slightly different
setting in that work (agnostic learning under a fixed joint distribution), one can
easily verify that their proofs remain valid in our present context as well.

Lemma 2. [1] Fix any k ∈ {1, . . . , �log2(1/α)�}. For a universal constant

c7 > 0, suppose bk−1 = c721−k/
√

d, and let zk =
√

r2k/(d − 1) + b2k−1. For a
universal constant c1 > 0, if ‖w∗ − wk−1‖ ≤ rk,∣∣∣E

[∑
(x,y)∈Wk

	τk
(|w∗ ·x|)

∣∣∣wk−1, |Wk|
]

− E

[∑
(x,y)∈Wk

	τk
(y(w∗ ·x))

∣∣∣wk−1, |Wk|
]∣∣∣

≤ c1|Wk|
√

2kΔM1
zk

τk
.

Lemma 3. [4] ∀c > 0, there exists c′ > 0 depending only on c (i.e., not depend-
ing on d) such that, for any u, v ∈ R

d with ‖u‖ = ‖v‖ = 1, letting σ = P(x :
hu(x) �= hv(x)), if σ < 1/2, then P

(
x : hu(x) �= hv(x) and |v · x| ≥ c′ σ√

d

)
≤ cσ.

The following is a well-known lemma concerning concentration around the
equator for the uniform distribution (see e.g., [1,3,9]).

Lemma 4. For any C > 0, there are constants c2, c3 > 0 depending only on C
(i.e., independent of d) such that, for any w ∈ R

d with ‖w‖ = 1, ∀γ ∈ [0, C/
√

d],

c2γ
√

d ≤ P (x : |w · x| ≤ γ) ≤ c3γ
√

d.

Based on this lemma, [1] prove the following.

Lemma 5. [1] For X ∼ P, ∀w ∈ R
d with ‖w‖ = 1, ∀C > 0 and τ, b ∈ [0, C/

√
d],

for c2, c3 as in Lemma 4, E
[
	τ (|w∗ · X|)

∣∣∣|w · X| ≤ b
]

≤ c3τ
c2b .

158 S. Hanneke et al.

The following is a stronger version of a result of [1]; specifically, the size of
mk, and the bound on |Wk|, are smaller by a factor of d compared to the original.

Lemma 6. Fix any δ ∈ (0, 1/e). For universal constants c4, c5, c6, c7, c8, c9, c10∈
(0,∞), for an appropriate choice of κ ∈ (0, 1) (a universal constant), if α =

c9

√
Δd log

(
1
κδ

)
, for every k ∈ {1, . . . , �log2(1/α)�}, if bk−1 = c721−k/

√
d, τk =

c82−k/
√

d, rk = c102−k, δk = δ/(�log2(4/α)�−k)2, and mk =
⌈
c5

2k

κ2 d log
(

1
κδk

)⌉
,

and if P(x : hwk−1(x) �= hw∗(x)) ≤ 2−k−3, then with probability at least 1 −
(4/3)δk, |Wk| ≤ c6

1
κ2 d log

(
1

κδk

)
and P(x : hwk

(x) �= hw∗(x)) ≤ 2−k−4.

Proof. By Lemma 4, and a Chernoff and union bound, for an appropriately large
choice of c5 and any c7 > 0, letting c2, c3 be as in Lemma 4 (with C = c7∨(c8/2)),
with probability at least 1 − δk/3,

c2c72−kmk ≤ |Wk| ≤ 4c3c72−kmk. (2)

The claimed upper bound on |Wk| follows from this second inequality.
Next note that, if P(x : hwk−1(x) �= hw∗(x)) ≤ 2−k−3, then

max{	τk
(y(w∗ · x)) : x ∈ R

d, |wk−1 · x| ≤ bk−1, y ∈ {−1,+1}} ≤ c11
√

d

for some universal constant c11 > 0. Furthermore, since P(x : hwk−1(x) �=
hw∗(x)) ≤ 2−k−3, we know that the angle between wk−1 and w∗ is at most
2−k−3π, so that ‖wk−1 − w∗‖ =

√
2 − 2wk−1 · w∗ ≤

√
2 − 2 cos(2−k−3π) ≤√

2 − 2 cos2(2−k−3π) =
√

2 sin(2−k−3π) ≤ 2−k−3π
√

2. For c10 = π
√

22−3, this
is rk. By Hoeffding’s inequality (under the conditional distribution given |Wk|),
the law of total probability, Lemma 2, and linearity of conditional expectations,
with probability at least 1 − δk/3, for X ∼ P,

∑

(x,y)∈Wk

	τk
(y(w∗ · x)) ≤ |Wk|E [

	τk
(|w∗ · X|)∣∣wk−1, |wk−1 · X| ≤ bk−1

]

+ c1|Wk|
√

2kΔM1
zk

τk
+

√
|Wk|(1/2)c211d ln(3/δk). (3)

We bound each term on the right separately. By Lemma 5, the first term is at

most |Wk| c3τk

c2bk−1
= |Wk| c3c8

2c2c7
. Next, zk

τk
=

√
c2102

−2k/(d−1)+4c272
−2k/d

c82−k/
√

d
≤

√
2c210+4c27

c8
,

while 2k ≤ 2
α , so the second term is at most

√
2c1

√
2c210+4c27

c8
|Wk|

√
Δm
α . Noting

M1 =
	log2(1/α)
∑

k′=1

mk′ ≤ 32c5
κ2

1
αd log

(
1
κδ

)
, (4)

the second term on the right of (3) is at most
√

c5
c9

8c1
κ

√
2c210+4c27

c8
|Wk|

√
Δd log(1

κδ)
α2

= 8c1
√

c5
κ

√
2c210+4c27
c8c9

|Wk|. Since d ln(3/δk) ≤ 2d ln(1/δk) ≤ 2κ2

c5
2−kmk,

Learning with a Drifting Target Concept 159

and (2) implies 2−kmk ≤ 1
c2c7

|Wk|, the third term on the right
of (3) is at most |Wk| c11κ√

c2c5c7
. Altogether,

∑
(x,y)∈Wk

	τk
(y(w∗ · x)) ≤

|Wk|
(

c3c8
2c2c7

+ 8c1
√

c5
κ

√
2c210+4c27
c8c9

+ c11κ√
c2c5c7

)
. For c9 = 1/κ3, c8 = κ, this is at most

κ|Wk|
(

c3
2c2c7

+8c1
√

c5
√

2c210+4c27+ c11√
c2c5c7

)
.

Next, note that because hwk
(x) �= y ⇒ 	τk

(y(vk · x)) ≥ 1, and because (as
proven above) ‖w∗ − wk−1‖ ≤ rk, |Wk|erWk

(hwk
) ≤ ∑

(x,y)∈Wk
	τk

(y(vk · x)) ≤∑
(x,y)∈Wk

	τk
(y(w∗ · x)) + κ|Wk|. Combined with the above, we have

|Wk|erWk
(hwk

) ≤ κ|Wk|
(

1 + c3
2c2c7

+ 8c1
√

c5

√
2c210 + 4c27 + c11√

c2c5c7

)
.

Let c12 = 1+ c3
2c2c7

+8c1
√

c5
√

2c210+4c27+
c11√

c2c5c7
. Furthermore, |Wk|erWk

(hwk
)=∑

(x,y)∈Wk
1[hwk

(x) �=y] ≥ ∑
(x,y)∈Wk

1[hwk
(x) �=hw∗(x)]−∑

(x,y)∈Wk
1[hw∗(x) �=y].

For an appropriately large value of c5, by a Chernoff bound, with probability at

least 1 − δk/3,
∑t+

∑k
j=0 mj

s=t+
∑k−1

j=0 mj+1
1[hw∗(Xs) �= Ys] ≤ 2eΔM1mk + log2(3/δk). In

particular, this implies
∑

(x,y)∈Wk
1[hw∗(x) �= y] ≤ 2eΔM1mk + log2(3/δk), so

that
∑

(x,y)∈Wk
1[hwk

(x) �= hw∗(x)] ≤ |Wk|erWk
(hwk

)+ 2eΔM1mk + log2(3/δk).
Noting that (4) and (2) imply

ΔM1mk ≤ Δ 32c5
κ2

d log
(

1
κδ

)

c9

√

Δd log
(

1
κδ

)
2k

c2c7
|Wk| ≤ 32c5

c2c7c9κ2

√
Δd log

(
1
κδ

)
2k|Wk|

= 32c5
c2c7c29κ2 α2k|Wk| = 32c5κ4

c2c7
α2k|Wk| ≤ 32c5κ4

c2c7
|Wk|,

and (2) implies log2(3/δk) ≤ 2κ2

c2c5c7
|Wk|, altogether we have

∑

(x,y)∈Wk

1[hwk
(x) �= hw∗(x)] ≤ |Wk|erWk

(hwk
) + 64ec5κ4

c2c7
|Wk| + 2κ2

c2c5c7
|Wk|

≤ κ|Wk|
(
c12 + 64ec5κ3

c2c7
+ 2κ

c2c5c7

)
.

Letting c13=c12+ 64ec5
c2c7

+ 2
c2c5c7

, and noting κ ≤ 1, we have
∑

(x,y)∈Wk
1[hwk

(x) �=
hw∗(x)] ≤ c13κ|Wk|.

Applying a classic ratio-type VC bound (see [17], Section 4.9.2) under the
conditional distribution given |Wk|, combined with the law of total probability,
we have that with probability at least 1 − δk/3,

|Wk|P (
x : hwk

(x) �= hw∗(x)
∣∣|wk−1 · x| ≤ bk−1

)

≤
∑

(x,y)∈Wk

1[hwk
(x) �= hw∗(x)] + c14

√
|Wk|(d log(|Wk|/d) + log(1/δk)),

for a universal constant c14 > 0. Combined with the above, and the fact that (2)

implies log(1/δk) ≤ κ2

c2c5c7
|Wk| and d log(|Wk|/d) ≤ d log

(
8c3c5c7 log

(
1

κδk

)

κ2

)
≤

160 S. Hanneke et al.

d log(8c3c5c7
κ3δk

) ≤ 3 log(8max{c3, 1}c5)c5d log(1
κδk

) ≤ 3 log(8max{c3, 1})κ22−kmk

≤ 3 log(8max{c3,1})
c2c7

κ2|Wk|, we have |Wk|P(
x : hwk

(x) �= hw∗(x)
∣∣|wk−1 ·x| ≤ bk−1

)

≤ c13κ|Wk| + c14

√
|Wk|

(
3 log(8max{c3,1})

c2c7
κ2|Wk| + κ2

c2c5c7
|Wk|

)
. Letting c15 =

(
c13 + c14

√
3 log(8max{c3,1})

c2c7
+ 1

c2c5c7

)
, this is c15κ|Wk|, which implies

P (
x : hwk

(x) �= hw∗(x)
∣∣|wk−1 · x| ≤ bk−1

) ≤ c15κ. (5)

Next, note that ‖vk − wk−1‖2 = ‖vk‖2 + 1 − 2‖vk‖ cos(πP(x : hwk
(x) �=

hwk−1(x))). Thus, one implication of the fact that ‖vk−wk−1‖ ≤ rk is that ‖vk‖
2 +

1−r2
k

2‖vk‖ ≤ cos(πP(x : hwk
(x) �= hwk−1(x))); since the left hand side is positive, we

have P(x : hwk
(x) �= hwk−1(x)) < 1/2. Additionally, by differentiating, one

can easily verify that for φ ∈ [0, π], x �→ √
x2 + 1 − 2x cos(φ) is minimized at

x = cos(φ), in which case
√

x2 + 1 − 2x cos(φ) = sin(φ). Thus, ‖vk − wk−1‖ ≥
sin(πP(x : hwk

(x) �= hwk−1(x))). Since ‖vk − wk−1‖ ≤ rk, we have sin(πP(x :
hwk

(x) �= hwk−1(x))) ≤ rk. Since sin(πx) ≥ x for all x ∈ [0, 1/2], combining
this with the fact (proven above) that P(x : hwk

(x) �= hwk−1(x)) < 1/2 implies
P(x : hwk

(x) �= hwk−1(x)) ≤ rk.
In particular, we have that both P(x : hwk

(x) �= hwk−1(x)) ≤ rk and
P(x : hw∗(x) �= hwk−1(x)) ≤ 2−k−3 ≤ rk. Now Lemma 3 implies that, for
any universal constant c > 0, there exists a corresponding universal constant
c′ > 0 such that P(x : hwk

(x) �= hwk−1(x) and |wk−1 · x| ≥ c′ rk√
d
) ≤ crk and

P(x : hw∗(x) �= hwk−1(x) and |wk−1 · x| ≥ c′ rk√
d
) ≤ crk, so that P(x : hwk

(x) �=
hw∗(x) and |wk−1 · x| ≥ c′ rk√

d
) ≤ P(x : hwk

(x) �= hwk−1(x) and |wk−1 · x| ≥
c′ rk√

d
) + P(x : hw∗(x) �= hwk−1(x) and |wk−1 · x| ≥ c′ rk√

d
) ≤ 2crk. In par-

ticular, letting c7 = c′c10/2, we have c′ rk√
d

= bk−1. Combining this with (5),
Lemma 4, and a union bound, we have that P(x : hwk

(x) �= hw∗(x)) ≤ P(x :
hwk

(x) �= hw∗(x) and |wk−1·x| ≥ bk−1)+P(x : hwk
(x) �= hw∗(x) and |wk−1·x| ≤

bk−1) ≤ 2crk + P(x : hwk
(x) �= hw∗(x)

∣∣|wk−1 · x| ≤ bk−1)P(x : |wk−1 · x| ≤
bk−1) ≤ 2crk + c15κc3bk−1

√
d = (25cc10 + c15κc3c725)2−k−4. Taking c = 1

26c10

and κ = 1
26c3c7c15

, we have P(x : hwk
(x) �= hw∗(x)) ≤ 2−k−4, as required.

By a union bound, this occurs with probability at least 1 − (4/3)δk. ��
Proof (Proof of Theorem 2). We begin with the bound on the error rate. If Δ >

π2

400·227(d+ln(4/δ)) , the result trivially holds, since then 1 ≤ 400·227
π2

√
Δ(d+ln(4/δ)).

Otherwise, suppose Δ ≤ π2

400·227(d+ln(4/δ)) . Fix any i ∈ N. Lemma 1 implies that,
with probability at least 1 − δ/4, the w0 returned in Step 0 of ABL(M(i −
1), h̃i−1) satisfies P(x : hw0(x) �= h∗

M(i−1)+m0+1(x)) ≤ 1/16. Taking this as
a base case, Lemma 6 then inductively implies that, with probability at least
1 − δ

4 − ∑	log2(1/α)

k=1 (4/3) δ

2(log2(4/α)
−k)2 ≥ 1 − δ, ∀k ∈ {0, 1, . . . , �log2(1/α)�},

P(x : hwk
(x) �= h∗

M(i−1)+m0+1(x)) ≤ 2−k−4, (6)

Learning with a Drifting Target Concept 161

and furthermore the number of labels requested during ABL(M(i−1), h̃i−1) total
to at most (for appropriate universal constants ĉ1, ĉ2) m0 +

∑	log2(1/α)

k=1 |Wk|≤

ĉ1

(
d + ln

(
1
δ

)
+

∑	log2(1/α)

k=1 d log

(
(log2(4/α)
−k)2

δ

))
≤ ĉ2d log

(
1

Δd

)
log

(
1
δ

)
. In

particular, by a union bound, (6) implies that ∀k ∈ {1, . . . , �log2(1/α)�}, ∀m ∈{
M(i − 1) +

∑k−1
j=0 mj + 1, . . . , M(i − 1) +

∑k
j=0 mj

}
, P(x :hwk−1(x) �=h∗

m(x))≤
P(x :hwk−1(x) �=h∗

M(i−1)+m0+1(x))+P(x :h∗
M(i−1)+m0+1(x) �=h∗

m(x))≤2−k−3+ΔM .

Since M =
∑	log2(1/α)

k=0 mk = Θ
(
d+log(1δ)+

∑	log2(1/α)

k=1 2kd log

(
	log2(1/α)
−k

δ

))

= Θ
(
1
αd log(1δ)

)
= Θ(

√
(d/Δ) log(1/δ)), with probability at least 1 − δ, P(x :

hw�log2(1/α)�−1(x) �= h∗
Mi(x)) ≤ O (α + ΔM) = O(

√
Δd log(1/δ)). This implies

that, with probability at least 1 − δ, ∀t ∈ {Mi + 1, . . . , M(i + 1) − 1}, ert(ĥt) ≤
P(x : hw�log2(1/α)�−1(x) �= h∗

Mi(x))+P(x :h∗
Mi(x) �= h∗

t (x)) ≤ O(
√

Δd log(1/δ))+

ΔM = O
(√

Δd log
(
1
δ

))
, which completes the proof of the error rate bound.

Setting δ =
√

Δd, and noting that 1[Ŷt �= Yt] ≤ 1, we have that for any

t > M , P
(
Ŷt �= Yt

)
= E

[
ert(ĥt)

]
≤ O

(√
Δd log(1δ)

)
+ δ = O

(√
Δd log(1

Δd)
)
.

The bound on E
[∑T

t=1 1[Ŷt �= Yt]
]

follows by linearity of the expectation.
Furthermore, as mentioned, with probability at least 1 − δ, an execution of
ABL(M(i − 1), h̃i−1) requests at most O

(
d log

(
1

Δd

)
log

(
1
δ

))
labels. Thus, since

the number of queries during the execution of ABL(M(i−1), h̃i−1) cannot exceed
M , letting δ =

√
Δd, the expected number of queries during an execution is at

most O
(
d log2

(
1

Δd

))
+

√
ΔdM ≤ O

(
d log2

(
1

Δd

))
. The bound on the expected

number of queries among T samples follows by linearity of the expectation. ��

Remark: The original work of [8] additionally allowed some number K of jumps:
times t with Δt = 1. In the above algorithm, since the influence of each sample
is localized to the predictors trained within that batch of M instances, the effect
of allowing such jumps would only change the bound on the number of mistakes
to Õ(

√
dΔT +

√
d/ΔK). This compares favorably to the result of [8], which

is roughly O((dΔ)1/4T + d1/4

Δ3/4 K). However, that result was proven for a more
general setting, allowing certain nonuniform distributions P (though they do
require a relation between the angle between separators and the probability
mass they disagree on, similar to that holding for the uniform distribution). It
is not clear whether Theorem 2 generalizes to this larger family of distributions.

6 General Results for Active Learning

As mentioned, the above results on linear separators also provide results for the
number of queries in active learning. One can also state quite general results on
the expected number of queries and mistakes achievable by an active learning
algorithm. This section provides such results, for an algorithm based on the
the well-known strategy of disagreement-based active learning. Throughout this
section, we suppose h∗ ∈ SΔ, for a given Δ ∈ (0, 1].

162 S. Hanneke et al.

First, a few definitions. For any set H ⊆ C, define the region of disagreement :

DIS(H) = {x ∈ X : ∃h, g ∈ H s.t. h(x) �= g(x)}.

This section focuses on the following algorithm. The Active subroutine is from
the work of [12] (slightly modified here), and is a variant of the A2 (Agnostic
Acive) algorithm of [2]; the values of M and T̂k(·) are discussed below.

Algorithm: DriftingActive
0. For i = 1, 2, . . .
1. Active(M(i − 1))

Subroutine: Active(t)
0. Let ĥ0 be an arbitrary element of C, and let V0 ← C

1. Predict Ŷt+1 = ĥ0(Xt+1) as the prediction for the value of Yt+1

2. For k = 0, 1, . . . , log2(M/2)
3. Qk ← {}
4. For s = 2k + 1, . . . , 2k+1

5. Predict Ŷs = ĥk(Xs) as the prediction for the value of Ys

6. If Xs ∈ DIS(Vk)
7. Request the label Ys and let Qk ← Qk ∪ {(Xs, Ys)}
8. Let ĥk+1 = argminh∈Vk

∑
(x,y)∈Qk

1[h(x) �= y]

9. Let Vk+1 ← {h ∈ Vk :
∑

(x,y)∈Qk
1[h(x) �= y] − 1[ĥk+1(x) �= y] ≤ T̂k}

As in the DriftingHalfspaces algorithm above, this DriftingActive algorithm
proceeds in batches, and in each batch runs an active learning algorithm designed
to be robust to classification noise. This robustness to classification noise trans-
lates into our setting as tolerance for the fact that there is no classifier in C that
perfectly classifies all of the data. The specific algorithm employed here main-
tains a set Vk ⊆ C of candidate classifiers, and requests the labels of samples Xs

for which there is some disagreement on the classification among classifiers in
Vk. We maintain the invariant that there is a low-error classifier contained in Vk

at all times, and thus the points we query provide some information to help us
determine which among these remaining candidates has low error rate. Based on
these queries, we periodically (in Step 9) remove from Vk those classifiers making
a relatively excessive number of mistakes on the queried samples, relative to the
minimum among classifiers in Vk. Predictions are made with an element of Vk.

We establish an abstract bound on the number of labels requested by this
algorithm, expressed in terms of the disagreement coefficient [11]. Specifically, for
any r ≥ 0 and any classifier h, define B(h, r) = {g ∈ C : P(x : g(x) �= h(x)) ≤
r}. Then for r0 ≥ 0 and any classifier h, define the disagreement coefficient
of h with respect to C under P: θh(r0) = supr>r0

P(DIS(B(h,r)))
r . Usually, the

disagreement coefficient would be used with h equal the target concept; however,
since the target concept is not fixed in our setting, we will use the worst-case
value: θC(r0) = suph∈C

θh(r0). This quantity has been bounded for a variety of
C and P (see e.g., [4,10,11]). It is useful in bounding how quickly the region

Learning with a Drifting Target Concept 163

DIS(Vk) collapses in the algorithm. Thus, since the probability the algorithm
requests the label of the next instance is P(DIS(Vk)), the value θC(r0) naturally
arises in bounding the number of labels the algorithm requests. Specifically, we
have the following result. For space, the proof is deferred to the full version [13].

Theorem 3. For an appropriate universal constant c1 ∈ [1,∞), if h∗ ∈ SΔ for

a Δ ∈ (0, 1], then with3 M =
⌈
c1

√
d
Δ

⌉

2

and T̂k = log2(1/
√

dΔ)+22k+2eΔ, defin-

ing εΔ =
√

dΔLog(1/(dΔ)), among the first T instances, the expected number of
mistakes by DriftingActive is O (εΔLog(d/Δ)T) = Õ

(√
dΔ

)
T , and the expected

number of label requests is O (θC(εΔ)εΔLog(d/Δ)T) = Õ
(
θC(

√
dΔ)

√
dΔ

)
T .

References

1. Awasthi, P., Balcan, M.F., Long, P.M.: The power of localization for efficiently
learning linear separators with noise. arXiv:1307.8371v2 (2013)

2. Balcan, M.F., Beygelzimer, A., Langford, J.: Agnostic active learning. In: Proceed-
ings of the 23rd International Conference on Machine Learning (2006)

3. Balcan, M.-F., Broder, A., Zhang, T.: Margin based active learning. In:
Bshouty, N.H., Gentile, C. (eds.) COLT. LNCS (LNAI), vol. 4539, pp. 35–50.
Springer, Heidelberg (2007)

4. Balcan, M.F., Long, P.M.: Active and passive learning of linear separators under
log-concave distributions. In: Proceedings of the 26th Conference on Learning The-
ory (2013)

5. Bartlett, P.L., Ben-David, S., Kulkarni, S.R.: Learning changing concepts by
exploiting the structure of change. Machine Learning 41, 153–174 (2000)

6. Bartlett, P.L., Helmbold, D.P.: Learning changing problems (1996) (unpublished)
7. Barve, R.D., Long, P.M.: On the complexity of learning from drifting distributions.

Information and Computation 138(2), 170–193 (1997)
8. Crammer, K., Mansour, Y., Even-Dar, E., Vaughan, J.W.: Regret minimization

with concept drift. In: Proceedings of the 23rd Conference on Learning Theory,
pp. 168–180 (2010)

9. Dasgupta, S., Kalai, A., Monteleoni, C.: Analysis of perceptron-based active learn-
ing. Journal of Machine Learning Research 10, 281–299 (2009)

10. El-Yaniv, R., Wiener, Y.: Active learning via perfect selective classification. Journal
of Machine Learning Research 13, 255–279 (2012)

11. Hanneke, S.: A bound on the label complexity of agnostic active learning. In:
Proceedings of the 24th International Conference on Machine Learning (2007)

12. Hanneke, S.: Activized learning: Transforming passive to active with improved
label complexity. Journal of Machine Learning Research 13(5), 1469–1587 (2012)

13. Hanneke, S., Kanade, V., Yang, L.: Learning with a drifting target concept.
arXiv:1505.05215 (2015)

14. Haussler, D., Littlestone, N., Warmuth, M.: Predicting {0, 1}-functions on ran-
domly drawn points. Information and Computation 115, 248–292 (1994)

3 Here, we define �x�2 = 2�log2(x)�, for x ≥ 1.

http://arxiv.org/abs/1307.8371v2
http://arxiv.org/abs/1505.05215

164 S. Hanneke et al.

15. Helmbold, D.P., Long, P.M.: Tracking drifting concepts by minimizing disagree-
ments. Machine Learning 14(1), 27–45 (1994)

16. Long, P.M.: The complexity of learning according to two models of a drifting
environment. Machine Learning 37(3), 337–354 (1999)

17. Vapnik, V.: Statistical Learning Theory. John Wiley & Sons Inc., New York (1998)
18. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies

of events to their probabilities. Theory of Probability and its Applications 16,
264–280 (1971)

Interactive Clustering of Linear Classes
and Cryptographic Lower Bounds

Ádám D. Lelkes(B) and Lev Reyzin

Department of Mathematics, Statistics, and Computer Science,
University of Illinois at Chicago, Chicago, IL 60607, USA

{alelke2,lreyzin}@uic.edu

Abstract. We study an interactive model of supervised clustering intro-
duced by Balcan and Blum [7], where the clustering algorithm has query
access to a teacher. We give an efficient algorithm clustering linear func-
tionals over finite fields, which implies the learnability of parity functions
in this model. We also present an efficient clustering algorithm for hyper-
planes which are a natural generalization of the problem of clustering lin-
ear functionals over R

d. We also give cryptographic hardness results for
interactive clustering. In particular, we show that, under plausible cryp-
tographic assumptions, the interactive clustering problem is intractable
for the concept classes of polynomial-size constant-depth threshold cir-
cuits, Boolean formulas, and finite automata.

Keywords: Interactive clustering · Query learning · Parity function ·
Cryptographic lower bounds

1 Introduction

In this paper we consider the interactive clustering model proposed by Balcan
and Blum [7]. This clustering (and learning) model allows the algorithm to issue
proposed explicit clusterings to an oracle, which replies by requesting two of
the proposed clusters “merge” or that an impure cluster be “split”. This model
captures an interactive learning scenario, where one party has a target clustering
in mind and communicates this information via these simple requests.

Balcan and Blum [7] give the example of a human helping a computer cluster
news articles by topic by indicating to the computer which proposed different
clusters are really about the same topic and which need to be split. Another
motivating example is computer-aided image segmentation, where an algorithm
can propose image segmentations to a human, who can show the computer which
clusters need to be “fixed up” – this is likely to be much simpler than having
the human segment the image manually.

Many interesting results are already known for this model [5,7], including
the learnability of various concept classes and some generic, though inefficient,
algorithms (for an overview, see Sect. 3).

In this paper we extend the theory of interactive clustering. Among our main
results:
c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 165–176, 2015.
DOI: 10.1007/978-3-319-24486-0 11

166 Á.D. Lelkes and L. Reyzin

– We show efficient algorithms for clustering parities and, more generally, lin-
ear functionals over finite fields – parities are a concept class of central
importance in most models of learning. (Section 4)

– We also give an efficient algorithm for clustering hyperplanes, a generaliza-
tion of linear functionals over R

d. These capture a large and important set
of concept classes whose efficient clusterability was not known in this model.
(Section 5)

– We prove lower bounds for the interactive clustering model under plausible
cryptographic assumptions, further illustrating the richness of this model.
(Section 6)

2 The Model

In this section we describe the interactive clustering model of Balcan and
Blum [7]. In this model of clustering, no distributional assumptions are made
about the data; instead, it is assumed that the teacher knows the target cluster-
ing, but it is infeasible for him to label each data point by hand. Thus the goal of
the learner is to learn the target clustering by making a small number of queries
to the teacher. In this respect, the model is similar to the foundational query
learning models introduced by Angluin [2]. (As a consequence, the classes we
consider in this paper might be more familiar from the theory of query learning
than from the usual models of clustering.)

More specifically, the learner is given a sample S of m points, and knows
the number of target clusters which is denoted as k. The target clustering is an
element of a concept class C. In each round, the learner presents a hypothesis
clustering to the teacher. The answer of the teacher to this query is one of
the following: either that the hypothesis clustering is correct, or a split or
merge request. If this hypothesis is incorrect, that means that at least one of
the following two cases has to hold: either there are impure hypothesis clusters,
i.e. hypothesis clusters which contain points from more than one target cluster,
or there are more than one distinct hypothesis clusters that are subsets of the
same cluster. In the first case, the teacher can issue a split request to an
impure cluster, in the second case the teacher can issue a merge request to two
clusters that are both subsets of the same target cluster. If there are several valid
possibilities for split or merge requests, the teacher can arbitrarily choose one
of them.

Definition 1. An interactive clustering algorithm is called efficient if it runs
in O(poly(k,m, log |C|)) time and makes O(poly(k, log m, log |C|)) queries.

Observe that allowing the learner to make m queries would make the clus-
tering task trivial: by starting from the all singleton hypothesis clustering and
merging clusters according to the teacher’s requests, the target clustering can
be found in at most m rounds.

Interactive Clustering of Linear Classes and Cryptographic Lower Bounds 167

3 Previous Work

Extensive research on clustering has yielded a plethora of important theoreti-
cal results, including traditional hardness results [17,18], approximation algo-
rithms [3,4,9,13,16,20], and generative models [12,14]. More recently researchers
have examined properties of data that imply various notions of “clusterability” [1].
An ongoing research direction has been to find models that capture real-world
behavior and success of clustering algorithms, in which many foundational open
problems remain [11].

Inspired by models where clusterings satisfy certain natural relations with
the data, e.g. [6], Balcan and Blum [7] introduced the notion of interactive clus-
tering we consider in this paper – the data assumption here, of course, is that a
“teacher” has a clustering in mind that the data satisfies, while the algorithm is
aware of the space of possible clusterings.

In addition to defining the interactive clustering model, Balcan and Blum [7]
gave some of the first results for it. In particular, they showed how to efficiently
cluster intervals, disjunctions, and conjunctions (the latter only for constant
k). Moreover, they gave a general, but inefficient, version space algorithm for
clustering any finite concept class using O(k3 log |C|) queries. They also gave
a lower bound that showed efficient clustering was not possible if if the algo-
rithm is required to be proper, i.e. produce k-clusterings to the teacher. These
results contrast with our cryptographic lower bounds, which hold for arbitrary
hypothesis clusterings.

Awasthi and Zadeh [5] later improved the generic bound of O(k3 log |C|) to
O(k log |C|) queries using a simpler version space algorithm. They presented an
algorithm for clustering axis-aligned rectangles.

Awasthi and Zadeh [5] also introduced a noisy variant of this model.
In the noisy version, split requests are still only issued for impure clusters,
but merge requests might have “noise”: a merge request might be issued if at
least an η fraction of the points from both hypothesis clusters belong to the
same target cluster. Alternatively, a stricter version of the noisy model allows
arbitrary noise: the teacher might issue a merge request for two clusters even if
they both have only one point from some target cluster. Awasthi and Zadeh [5]
gave an example of a concept class that cannot be learned with arbitrary noise,
and presented an algorithm for clustering intervals in the η noise model. To
the best of our knowledge, our algorithm for clustering linear functionals over
finite fields, presented in Sect. 4, is the first algorithm for clustering a nontrivial
concept class under arbitrary noise.

Other interactive models of clustering have, of course, also been considered
[10,15]. In this paper, however, we keep our analysis to the Balcan and Blum [7]
interactive model.

4 Clustering Linear Functionals

In this section we present an algorithm for clustering linear functionals over
finite fields. That is, the instance space is X = GF (q)n for some prime power

168 Á.D. Lelkes and L. Reyzin

q and positive integer n, where GF (q) denotes the finite field of order q. The
concept class is the dual space (GF (q)n)∗ of linear operations mapping from
GF (q)n to GF (q). Thus the number of clusters is k = q. Recall that every linear
functional in (GF (q)n)∗ is of the form v �→ x·v, thus clustering linear functionals
is equivalent to learning this unknown vector x. For the special case of q = 2,
we get the concept class of parity functions over {0, 1}n, where there are two
classes/clusters (for the positively and negatively labeled points).

The idea of the algorithm is the following: in each round we output the largest
sets of elements that are already known to be pure, thus forcing the teacher
to make a merge request. A merge request for two clusters will yield a linear
equation for the target vector which is independent from all previously learned
equations. We use a graph on the data points to keep track of the learned linear
equations. Since the algorithm learns a independent equation in each round, it
finds the target vector in at most n rounds. The description of the algorithm
follows.

Algorithm 1. Cluster-Functional
initialize G = (V, ∅), with |V | = m, each vertex corresponding an element from the
sample.
initialize Q = ∅.
repeat

find the connected components of G and output them as clusters.
on a merge request to two clusters:
for each pair a, b of points in the union do

if (a − b) · x = 0 is independent from all equations in Q then
add (a − b) · x = 0 to Q.

end if
end for
for each non-edge (a, b), add (a, b) to G if (a− b) ·x = 0 follows from the equations
in Q.

until the target clustering is found

Theorem 1. Algorithm 1 finds the target clustering using at most n queries
and O(m2n4) time. Moreover, the query complexity of the algorithm is optimal:
every clustering algorithm needs to make at least n queries to find the target
clustering.

Proof. We claim that in each round we learn a linear equation that is indepen-
dent from all previously learned equations, thus in n rounds we learn the target
parity.

Assume for contradiction that there is a round where no independent equa-
tions are added. All hypothesis clusters are pure by construction so they can
never be split. If two clusters are merged, then let us pick an element a from one
of them and b from the other. Then (a− b) ·x = 0 has to be independent from Q

Interactive Clustering of Linear Classes and Cryptographic Lower Bounds 169

since otherwise the edge (a, b) would have been added in a previous round and
the two elements would thus belong to the same cluster.

Thus after at most n rounds G will consist of two marked cliques which will
give the correct clustering. Finding the connected components and outputting
the hypothesis clusters takes linear time. To update the graph, O(m2) Gaussian
elimination steps are needed. Hence the total running time is O(m2n4).

To show that at least n queries are necessary, notice that merge and split
requests are equivalent to linear equations and inequalities, respectively. Since
the dimension of the dual space is n, after less than n queries there are at least
two linearly independent linear functionals, and therefore at least two different
clusterings, that are consistent with all the queries. ��

Observe that for q > 2 this is in fact an efficient implementation of the generic
halving algorithm of Awasthi and Zadeh [5]. Every subset of element is either
known to be pure, in which case it is consistent with the entire version space, or
is possible impure, in which case a split request would imply that the target
vector satisfies a disjunction of linear equations. Thus in the latter case the set
is consistent with at most a 1

q < 1
2 fraction of the version space.

There are two other notable properties of the algorithm. One is that it works
without modification in the noisy setting of Awasthi and Zadeh [5]: if any pair
of elements from two pure sets belong to the same target cluster, then it follows
immediately by linearity that both sets are subsets of this target cluster.

The other notable property is that the algorithm never outputs impure
hypothesis clusters. This is because it is always the case that every subset of
the sample is either known to be pure, or otherwise it is consistent with at most
half of the version space. Any concept class that has a similar gap property can
be clustered using only pure clusters in the hypotheses. The following remark
formalizes this idea.

Remark 1. Consider the following generic algorithm: in each round, output the
maximal subsets of S that are known to be pure, i.e. are consistent with the entire
version space. The teacher cannot issue a split request since every hypothesis
cluster is pure. If there is an ε > 0 such that in each round every subset h ⊆ S
of the sample is consistent with either the entire version space or at most a
(1−ε) fraction of the version space, then on a merge request, by the maximality
of the hypothesis clusters, we can eliminate an ε fraction of the version space.
Therefore this algorithm finds the target clustering after k log 1

1−ε
|C| queries

using only pure clusters in the hypotheses.

5 Efficient Clustering of Hyperplanes

Now we turn to a natural generalization of linear functions over R
d, k hyper-

planes. Clustering geometric concept classes was one of the proposed open prob-
lems by Awasthi and Zadeh [5]; hyperplanes are an example of a very natural

170 Á.D. Lelkes and L. Reyzin

geometric concept class. The data are points in R
d and they are clustered (d−1)-

dimensional affine subspaces. Every point is assumed to lie on exactly one of k
hyperplanes.

First, observe that this is a nontrivial interactive clustering problem: even for
d = 2 the cardinality of the concept class can be exponentially large as a function
of k. For example, let k be an odd integer, and consider m−2(k −1) points on a
line and 2(k −1) points arranged as vertices of n squares such that no two edges
are on the same line. Then it is easy to see that the number of different possible
clusterings is at least 3k. Hence, if k = ω(polylog(m)), the target clustering
cannot be efficiently found by the halving algorithm of Awasthi and Zadeh [5]:
since the cardinality of the initial version space is superpolynomial in m, the
algorithm cannot keep track of the version space in polynomial time.

Nevertheless, the case of d = 2 can be solved by the following trivial algo-
rithm: start with the all-singleton hypothesis, and on a merge request, merge
all the points that are on the line going through the two points. This algorithm
will find the target clustering after k queries. However, this idea does not even
generalize to d = 3: the teacher might repeatedly tell the learner to merge pairs
of points that define parallel lines. In this case, it is not immediately clear which
pairs of lines span the planes of the target clustering, and there can be a linear
number of such parallel lines.

On the other hand, in the case of d = 3, coplanar lines either have to be in
the same target cluster, or they all have to be in different clusters. Therefore
if we have k + 1 coplanar lines, by the pigeonhole principle we know that the
plane containing them has to be one of the target planes. Moreover, since all
points are clustered by the k planes, it follows by the pigeonhole principle that
after k2 + 1 merge requests for singleton pairs we will get k + 1 coplanar lines.
This observation gives an algorithm of query complexity O(k3), although it is
not immediately clear how the coplanar lines can be found efficiently.

Algorithm 2, described below, is an efficient clustering algorithm based on a
similar idea which works for arbitrary dimension.

Algorithm 2. Cluster-Hyperplanes
let H = S.
for i = 1 to d − 1 do

for each affine subspace F of dimension i do
if at least ki + 1 elements of H are subsets of F then

replace these elements in H by F .
end if

end for
end for
repeat

output elements of H as hypothesis clusters.
on a merge request, merge the two clusters in H.

until the target clustering is found

Interactive Clustering of Linear Classes and Cryptographic Lower Bounds 171

Theorem 2. Algorithm 2 finds the target clustering using at most O(kd+1)
queries and O(d · md+1) time.

Proof. We claim that in each iteration of the for loop, it holds for every F that
every subset of ki−1 + 1 elements of H that lie on F spans F . The proof is by
induction. For i = 1 this is clear: all pairs of points on a line span the line.
Assume that the claim hold for i − 1. Consider ki−1 + 1 elements of H on an
affine subspace F of dimension i. If they spanned an affine subspace of dimension
less than i, then they would have been merged in a previous iteration. Hence
they have to span F .

Now if ki + 1 elements of H line on an i-dimensional affine subspace F for
i < d, then they have to be in the same target cluster. If they were not, no
hyperplane could contain more than ki−1 of the elements, and therefore the
k target hyperplanes could cover at most ki elements contained by F , which
contradicts the assumption that all points belong to a target cluster.

Hence, at the start of the repeat loop there can be at most kd+1 elements in
H: if there were more than kd+1 + 1 elements in H, by the pigeonhole principle
there would be a target cluster containing kd + 1 of them. However, this is not
possible since those kd + 1 elements would have been merged previously.

Therefore in the repeat loop we only need kd+1 queries to find the target
clustering. In each iteration of the outer for loop, we have to consider every
affine subspace of a certain dimension. Since every at most (d − 1)-dimensional
subspace is defined by d points, there are at most

(
m
d

)
subspaces. For each of

them, we have to count the elements that are contained by them, this takes m
time. Thus the total running time is O

(
d · (

m
d

) · m
)

= O(d · md+1). ��
Hence, for constant d, this is an efficient clustering algorithm.

6 Cryptographic Lower Bounds for Interactive Clustering

In this section, we show cryptographic lower bounds for interactive clustering.
In particular, we prove that, under plausible cryptographic assumptions, the
class of constant-depth polynomial-size threshold circuits and polynomial-size
Boolean formulas are not learnable in the interactive clustering model. These
lower bounds further go to show the richness of this model, which allows for
both positive and negative clusterability results.

It was first observed by Valiant [24] that the existence of certain crypto-
graphic primitives implies unlearnability results. Later, Kearns and Valiant [19]
showed that, assuming the intractability of specific problems such as invert-
ing the RSA function, some natural concept classes, for example the class of
constant-depth threshold circuits, are not efficiently PAC learnable.

The hardness results for PAC learning are based on the following observation:
if f is a trapdoor one-way function, and there is an efficient learning algorithm
which, after seeing polynomially many labeled examples of the form (f(x), x),
can predict the correct label f−1(y) of a new unlabeled data point y, then that
learning algorithm by definition breaks the one-way function f .

172 Á.D. Lelkes and L. Reyzin

This observation doesn’t apply to interactive clustering since here the learner
doesn’t have to make predictions about new examples and the teacher can give
information about any of the elements in the sample. Indeed, if the learner
were allowed to make a linear number of queries to the teacher, the clustering
task would be computationally trivial. Instead, our proofs are based on the
following counting argument: if the concept class is exponentially large in the
size of the sample, then there is an immediate information-theoretic exponential
lower bound on the required number of queries; therefore on average a learner
would have to make an exponential number of queries to learn a randomly chosen
clustering. If there exist certain pseudorandom objects, then one can construct
concept classes of subexponential size such that a randomly chosen concept from
the smaller class is computationally indistinguishable from a randomly chosen
concept from the exponential-size class. However, on the smaller concept class the
learner is only allowed to make a subexponential number of queries; consequently,
this smaller class is not efficiently learnable.

First let us recall some relevant definitions.
A one-way function is a function f : {0, 1}∗ → {0, 1}∗ such that for every

polynomial time algorithm A, every positive integer α, and every sufficiently
large integer n it holds that

Pr(f(A(f(x))) = f(x)) < n−α

where x is chosen uniformly at random from {0, 1}n.
A pseudorandom function family of hardness h(n) is a sequence Fn of sets

of efficiently computable functions An → Bn such that for every h(n) time-
bounded probabilistic algorithm A with oracle access to a function An → Bn

and every α > 0 it holds that

|Pr(Afn(1n) = 1) − Pr(Arn(1n) = 1)| < n−α

where fn and rn are chosen uniformly randomly from Fn and the set of all func-
tions An → Bn, respectively; and there is a probabilistic poly(n)-time algorithm
that on input 1n returns a uniformly randomly chosen element of Fn.

In this paper, we will pick An = {0, 1}n and Bn = {0, 1}. Sometimes it is
useful to consider keyed pseudorandom functions, i.e. pseudorandom function
families where Fn = {fK : K ∈ {0, 1}n} (and the sampling algorithm sim-
ply chooses a uniform K ∈ {0, 1}n and returns fK). The existence of one-way
functions implies the existence of pseudorandom function families of polynomial
hardness.

We will use the following information-theoretic lower bound to prove our
hardness result.

Lemma 1. For k = 2, every clustering algorithm has to make at least
Ω

(
log |C|
log m

)
queries to find the target clustering.

Proof. There are log |C| bits are needed to describe the clustering. To each query,
the answer is split or merge and the identifier of at most two clusters. Since

Interactive Clustering of Linear Classes and Cryptographic Lower Bounds 173

there are at most m clusters in any hypothesis, this means that the teacher gives
at most 2 log m + 1 bits of information per query. Thus the required number of
queries is Ω

(
log |C|
log m

)
. ��

We remark that Theorem 9 of Balcan and Blum [7] implies a worst-case
lower bound of Ω(log |C|). However, this weaker bound of Ω

(
log |C|
log m

)
holds for

teachers that are not necessarily adversarial.
As we noted above, the existence of pseudorandom function families that can

fool any polynomial time-bounded distinguishers is implied by the existence of
one-way functions. Unfortunately, this hardness does not seem enough to imply
a lower bound for interactive clustering for the following reason. If we take a
sample of size m from {0, 1}n, then if m = O(poly(n)), the learner is allowed to
make m queries which makes the clustering problem trivial. On the other hand,
if m is superpolynomial in n, the learner is allowed to take superpolynomial time,
therefore it might break pseudorandom functions that can only fool polynomial-
time adversaries.

However, if there exist pseudorandom functions that can fool distinguishers
that have slightly superpolynomial time, a hardness result for interactive clus-
tering follows. Candidates for pseudorandom functions or permutations used in
cryptographic practice are usually conjectured to have this property.

Theorem 3. If there exist strongly pseudorandom permutations that can fool
distinguishers which have nω(1) time, then there exists a concept class C which is
not learnable in the interactive clustering model with poly(log m, log |C|) queries
and poly(m, log C) time.

Proof. Let fK : {0, 1}n → {0, 1} be a keyed pseudorandom function that can fool
distinguishers which have t(n) time for some time-constructible t(n) = nω(1).
Without loss of generality, assume that t(n) = o(2n). Let us fix a time-
constructible function m(n) such that m(n) = nω(1) and poly(m(n)) = o(t(n)).
Let S be a subset of {0, 1}n of cardinality m = m(n) and let k = 2. Let Un be
a set of all functions {0, 1}n → {0, 1}, Fn = {fK : K ∈ {0, 1}n}.

Let us assume for contradiction that there is an efficient interactive clustering
algorithm A for the concept class C = Fn. Since |C| = 2n, this learner has to
make at most poly(n, log m(n)) = poly(n) queries and has poly(n,m(n)) =
poly(m(n)) time. Let us assume that the learner finds the target clustering after
O(nα) queries.

Let B be the following algorithm: given oracle access to a function f : {0, 1}n →
{0, 1}, pick a sample S of size m = m(n) from {0, 1}n, label the sample vectors
according to the value of f , and simulate the learner A for at most nα+1 queries.
Accept if the learner finds the target clustering and reject otherwise.

Since poly(m(n)) = o(t(n)), B runs in time t(n). If f is chosen from Fn,
B will accept with probability 1. On the other hand, if f is chosen from Un,
then since |Un| = 22

n

, by Lemma 1, we have a query lower bound of log |Un|
log m =

2n

log m(n) = ω(nα+1). Therefore after nα+1 queries there are at least two different

174 Á.D. Lelkes and L. Reyzin

clusterings in the version space, therefore B will reject with probability at least
1
2 . This contradicts the t(n)-hardness of fK . ��

Naor and Reingold [22] constructed pseudorandom functions with one-bit
output that are not only as secure as factoring Blum integers, but also com-
putable by TC0 circuits. Since log |TC0| = poly(n), this, together with Theo-
rem 3, implies the following corollary:

Corollary 1. If factoring Blum integers is hard for h(n)-time bounded algo-
rithms for some h(n) = nω(1) then the class TC0 of constant-depth polynomial-
size threshold circuits and the class of polynomial-size Boolean formulas are not
learnable in the interactive clustering model.

Proof. By Theorem 3, learning a pseudorandom function family of superpoly-
nomial hardness is hard in the interactive clustering model. If factoring Blum
integers is superpolynomially hard, then by the construction of Naor and Rein-
gold [22], TC0 contains such a pseudorandom function family. Furthermore,
log |TC0| = poly(n), the learner is still only allowed to have poly(n, log m)
queries and poly(n,m) time, therefore the Theorem 3 also applies to TC0. In
fact, this holds for TC0 circuits of size at most nα for some constant α (deter-
mined by the size of the circuits implementing the pseudorandom function). The
set of languages computable TC0 circuits of size nα is in turn a subset of the
languages computable by Boolean formulas of size at most nβ for some other
constant β. Thus our cryptographic lower bound also holds for polynomial-sized
Boolean formulas. ��
Remark 2. After Naor and Reingold’s first construction of pseudorandom func-
tions in TC0, several others showed that it is possible to construct even more effi-
cient PRFs, or PRFs based on different, possibly weaker cryptographic assump-
tions. For example, we refer the reader to the work of Lewko and Waters [21]
for a construction under the so-called “decisional k-linear assumption” which is
weaker than the assumption of Naor and Reingold [22], or to Banerjee et al. [8]
for a construction based on the “learning with errors” problem, against which
there is no known attack by efficient quantum algorithms.

Kearns and Valiant [19] used the results of Pitt and Warmuth [23] about
prediction-preserving reductions to show that in the PAC model, their crypto-
graphic hardness result for NC1 circuits also implies the intractability of learning
DFAs. Despite the fact the problem of interactive clustering is fundamentally dif-
ferent from prediction problems, we show that the ideas of Pitt and Warmuth [23]
can be applied to show that DFAs are hard to learn in this model as well. We
use the following theorem:

Theorem 4 (Pitt and Warmuth [23]). Let k be a fixed positive constant. If
T is a single-tape Turing machine of size at most s that runs in space at most
k log n on inputs of length n, then there exist polynomials p and q such that for
all positive integers n there exists a DFA M of size q(s, n) such that M accepts
g(w) = 1|w|0wp(|w|,s,n) if and only if T accepts w.

Interactive Clustering of Linear Classes and Cryptographic Lower Bounds 175

This theorem implies a hardness result for interactive clustering.

Corollary 2. If there are nω(1)-hard pseudorandom function families com-
putable in logarithmic space, then polynomial-size DFAs are not efficiently learn-
able in the interactive clustering model.

Proof. Let fK : {0, 1}n → {0, 1} be an nω(1)-hard keyed pseudorandom function.
If S ⊂ {0, 1}n has cardinality m(n) as defined in Theorem 3 and the concept
class is {fK : K ∈ {0, 1}}n, the interactive clustering task is hard.

For all K ∈ {0, 1}n, let TK be a Turing machine of size at most s that runs
in space k log n and, given w as an imput, computes fK(w). It is easy to see
that there exists functions g, p and q defined as in Theorem 4 that work for
TK for all K. Consider the sample S′ = g(S) and the concept class C of DFAs
of size q(s, n). Since |S′| = m(n) and log |C| = poly(n), the hardness result of
Theorem 3 holds here as well. ��

7 Conclusion

In this paper we studied a model of clustering with interactive feedback. We pre-
sented efficient clustering algorithms for linear functionals over finite fields, of
which parity functions are a special case, and hyperplanes in R

d, thereby show-
ing that these two natural problems are learnable in the model. On the other
hand, we also demonstrated that under a standard cryptographic assumptions,
constant-depth polynomial-size threshold circuits, polynomial-size Boolean for-
mulas, and polynomial-size deterministic finite automata are not learnable.

We propose the following open problems.

1. It would be interesting to see if the exponential dependence on d in the
complexity of Algorithm 2 for clustering hyperplanes can be reduced.

2. Clustering half-spaces remains a natural and important open problem.

References

1. Ackerman, M., Ben-David, S.: Clusterability: A theoretical study. In: Proceedings
of the Twelfth International Conference on Artificial Intelligence and Statistics,
AISTATS 2009, Clearwater Beach, Florida, USA, April 16–18, pp. 1–8 (2009)

2. Angluin, D.: Queries and concept learning. Machine Learning 2(4), 319–342 (1988)
3. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for euclidean-medians

and related problems. In: STOC, pp. 106–113 (1998)
4. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local

search heuristics for k-median and facility location problems. SIAM J. Comput.
33(3), 544–562 (2004)

5. Awasthi, P., Zadeh, R.B.: Supervised clustering. In: Advances in Neural Informa-
tion Processing Systems, pp. 91–99 (2010)

6. Balcan, M., Blum, A., Vempala, S.: A discriminative framework for cluster-
ing via similarity functions. In: Proceedings of the 40th Annual ACM Sympo-
sium on Theory of Computing, Victoria, British Columbia, Canada, May 17–20,
pp. 671–680 (2008)

176 Á.D. Lelkes and L. Reyzin

7. Balcan, M.-F., Blum, A.: Clustering with interactive feedback. In: Freund, Y.,
Györfi, L., Turán, G., Zeugmann, T. (eds.) ALT 2008. LNCS (LNAI), vol. 5254,
pp. 316–328. Springer, Heidelberg (2008)

8. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 719–737. Springer, Heidelberg (2012)

9. Bartal, Y., Charikar, M., Raz, D.: Approximating min-sum-clustering in metric
spaces. In: STOC, pp. pp. 11–20 (2001)

10. Basu, S., Banerjee, A., Mooney, R.J.: Active semi-supervision for pairwise con-
strained clustering. In: Proceedings of the Fourth SIAM International Conference
on Data Mining, Lake Buena Vista, Florida, USA, April 22–24, pp. 333–344 (2004)

11. Ben-David, S.: Computational feasibility of clustering under clusterability assump-
tions. CoRR abs/1501.00437 (2015)

12. Brubaker, S.C., Vempala, S.I.: PCA and affine-invariant clustering. In: 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp. 25–28,
Philadelphia, PA, USA, pp. 551–560 (October 2008)

13. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation
algorithm for the k-median problem. J. Comput. Syst. Sci. 65(1), 129–149 (2002)

14. Dasgupta, A., Hopcroft, J., Kannan, R., Mitra, P.: Spectral clustering by recur-
sive partitioning. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168,
pp. 256–267. Springer, Heidelberg (2006)

15. Dasgupta, S., Ng, V.: Which clustering do you want? inducing your ideal clustering
with minimal feedback. J. Artif. Intell. Res. (JAIR) 39, 581–632 (2010)

16. de la Vega, W.F., Karpinski, M., Kenyon, C., Rabani, Y.: Approximation schemes
for clustering problems. In: STOC, pp. 50–58 (2003)

17. Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms.
J. Algorithms 31(1), 228–248 (1999)

18. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location
problems. In: STOC, pp. 731–740. ACM (2002)

19. Kearns, M., Valiant, L.: Cryptographic limitations on learning boolean formulae
and finite automata. Journal of the ACM (JACM) 41(1), 67–95 (1994)

20. Kumar, A., Sabharwal, Y., Sen, S.: Linear-time approximation schemes for clus-
tering problems in any dimensions. J. ACM 57, 2 (2010)

21. Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the decisional lin-
ear assumption and weaker variants. In: Proceedings of the 16th ACM Conference
on Computer and Communications Security, pp. 112–120. ACM (2009)

22. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. Journal of the ACM (JACM) 51(2), 231–262 (2004)

23. Pitt, L., Warmuth, M.K.: Prediction-preserving reducibility. Journal of Computer
and System Sciences 41(3), 430–467 (1990)

24. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11),
1134–1142 (1984)

Statistical Learning Theory
and Sample Complexity

On the Rademacher Complexity
of Weighted Automata

Borja Balle1(B) and Mehryar Mohri2,3

1 School of Computer Science, McGill University, Montréal, Canada
bballe@cs.mcgill.ca

2 Courant Institute of Mathematical Sciences, New York, NY, USA
3 Google Research, New York, NY, USA

Abstract. Weighted automata (WFAs) provide a general framework
for the representation of functions mapping strings to real numbers.
They include as special instances deterministic finite automata (DFAs),
hidden Markov models (HMMs), and predictive states representations
(PSRs). In recent years, there has been a renewed interest in weighted
automata in machine learning due to the development of efficient and
provably correct spectral algorithms for learning weighted automata.
Despite the effectiveness reported for spectral techniques in real-world
problems, almost all existing statistical guarantees for spectral learn-
ing of weighted automata rely on a strong realizability assumption.
In this paper, we initiate a systematic study of the learning guaran-
tees for broad classes of weighted automata in an agnostic setting. Our
results include bounds on the Rademacher complexity of three general
classes of weighted automata, each described in terms of different natural
quantities. Interestingly, these bounds underline the key role of different
data-dependent parameters in the convergence rates.

1 Introduction

Weighted finite automata (WFAs) provide a general and highly expressive frame-
work for representing functions mapping strings to real numbers. The properties of
WFAs or their mathematical counterparts, rational power series, have been exten-
sively studied in the past [12,17,25,30,33]. WFAs have also been used in a variety
of applications, including speech recognition [31], image compression [2], natural
language processing [23], model checking [3], and machine translation [19]. See also
[9] for a recent survey of algorithms for learning WFAs.

The recent developments in spectral learning [4,21] have triggered a renewed
interest in the use of WFAs in machine learning, with several recent successes
in natural language processing [6,7] and reinforcement learning [13,20]. The
interest in spectral learning algorithms for WFAs is driven by the many appealing
theoretical properties of such algorithms, which include their polynomial-time
complexity, the absence of local minima, statistical consistency, and finite sample
bounds à la PAC [21]. However, the typical statistical guarantees given for the
hypotheses used in spectral learning only hold in the realizable case. That is,
c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 179–193, 2015.
DOI: 10.1007/978-3-319-24486-0 12

180 B. Balle and M. Mohri

these analyses assume that the labeled data received by the algorithm is sampled
from some unknown WFA. While this assumption is a reasonable starting point
for theoretical analyses, the results obtained in this setting fail to explain the
good performance of spectral algorithms in many practical applications where
the data is typically not generated by a WFA.

There exists of course a vast literature in statistical learning theory providing
tools to analyze generalization guarantees for different hypothesis classes in clas-
sification, regression, and other learning tasks. These guarantees typically hold in
an agnostic setting where the data is drawn i.i.d. from an arbitrary distribution.
For spectral learning of WFAs, an algorithm-dependent agnostic generalization
bound was proven in [8] using a stability argument. This seems to have been the
first analysis to provide statistical guarantees for learning WFAs in an agnostic
setting. However, while [8] proposed a broad family of algorithms for learning
WFAs parametrized by several choices of loss functions and regularizations, their
bounds hold only for one particular algorithm within this family.

In this paper, we start the systematic development of algorithm-independent
generalization bounds for learning with WFAs, which apply to all the algorithms
proposed in [8], as well as to others using WFAs as their hypothesis class. Our
approach consists of providing upper bounds on the Rademacher complexity of
general classes of WFAs. The use of Rademacher complexity to derive general-
ization bounds is standard [24] (see also [11] and [32]). It has been successfully
used to derive statistical guarantees for classification, regression, kernel learn-
ing, ranking, and many other machine learning tasks (e.g. see [32] and references
therein). A key benefit of Rademacher complexity analyses is that the resulting
generalization bounds are data-dependent.

Our main results consist of upper bounds on the Rademacher complexity of
three broad classes of WFAs. The main difference between these classes is the
quantities used for their definition: the norm of the transition weight matrix or
initial and final weight vectors of a WFA; the norm of the function computed by
a WFA; and, the norm of the Hankel matrix associated to the function computed
by a WFA. The formal definitions of these classes is given in Section 3. Let us
point out that our analysis of the Rademacher complexity of the class of WFAs
described in terms of Hankel matrices directly yields theoretical guarantees for
a variety of spectral learning algorithms. We will return to this point when
discussing the application of our results.

Related Work. To the best of our knowledge, this paper is the first to pro-
vide general tools for deriving learning guarantees for broad classes of WFAs.
However, there exists some related work providing complexity bounds for some
sub-classes of WFAs in agnostic settings. The VC-dimension of deterministic
finite automata (DFAs) with n states over an alphabet of size k was shown by
[22] to be in O(kn log n). For probabilistic finite automata (PFAs), it was shown
by [1] that, in an agnostic setting, a sample of size Õ(kn2/ε2) is sufficient to learn
a PFA with n states and k symbols whose log-loss error is at most ε away from
the optimal one in the class. Learning bounds on the Rademacher complexity

On the Rademacher Complexity of Weighted Automata 181

of DFAs and PFAs follow as straightforward corollaries of the general results we
present in this paper.

Another recent line of work, which aims to provide guarantees for spectral
learning of WFAs in the non-realizable setting, is the so-called low-rank spec-
tral learning approach [27]. This has led to interesting upper bounds on the
approximation error between minimal WFAs of different sizes [26]. See [10] for a
polynomial-time algorithm for computing these approximations. This approach,
however, is more limited than ours for two reasons. First, because it is algorithm-
dependent. And second, because it assumes that the data is actually drawn from
some (probabilistic) WFA, albeit one that is larger than any of the WFAs in the
hypothesis class considered by the algorithm.

The following sections of this paper are organized as follows. Section 2 intro-
duces the notation and technical concepts used throughout. Section 3 describes
the three classes of WFAs for which we provide Rademacher complexity bounds,
and gives a brief overview of our results. Our learning bounds are formally stated
and proven in Sections 4, 5, and 6.

2 Preliminaries and Notation

2.1 Weighted Automata, Rational Functions, and Hankel Matrices

Let Σ be a finite alphabet of size k. Let ε denote the empty string and Σ∗ the
set of all finite strings over the alphabet Σ. The length of u ∈ Σ∗ is denoted by
|u|. Given an integer L ≥ 0, we denote by Σ≤L the set of all strings with length
at most L: Σ≤L = {x ∈ Σ∗ : |x| ≤ L}.

A WFA over the alphabet Σ with n ≥ 1 states is a tuple A = 〈α,β, {Aa}a∈Σ〉
where α,β ∈ R

n are the initial and final weights, and Aa ∈ R
n×n the transition

matrix whose entries give the weights of the transitions labeled with a. Every
WFA A defines a function fA : Σ∗ → R defined for all x = a1 · · · at ∈ Σ∗ by

fA(x) = fA(a1 · · · at) = α�Aa1 · · ·Aat
β = α�Axβ , (1)

where Ax = Aa1 · · ·Aat
. A function f : Σ∗ → R is said to be rational if there

exists a WFA A such that f = fA. The rank of f is denoted by rank(f) and
defined as the minimal number of states of a WFA A such that f = fA. Note that
minimal WFAs are not unique. In fact, it is not hard to see that, for any minimal
WFA A = 〈α,β, {Aa}〉 with f = fA and any invertible matrix Q ∈ R

n×n,
AQ = 〈Q�α,Q−1β, {Q−1AaQ}〉 is also a minimal WFA computing f . We
will sometimes write A(x) instead of fA(x) to emphasize the fact that we are
considering a specific parametrization of fA. Note that for the purpose of this
paper we only consider weighted automata over the familiar field of real numbers
with standard addition and multiplication (see [12,17,25,30,33] for more general
definitions of WFAs over arbitrary semirings). Functions mapping strings to real
numbers can also be viewed as non-commutative formal power series, which often
helps deriving rigorous proofs in formal language theory [12,25,33]. We will not

182 B. Balle and M. Mohri

favor that point of view here, however, since we will not make use of the algebraic
properties offered by that perspective.

An alternative method to represent rational functions independently of any
WFA parametrization is via their Hankel matrices. The Hankel matrix Hf ∈
R

Σ∗×Σ∗
of a function f : Σ∗ → R is the infinite matrix with rows and columns

indexed by all strings with Hf (u, v) = f(uv) for all u, v ∈ Σ∗. By the theorem
of Fliess [18] (see also [14] and [12]), Hf has finite rank n if and only if f is
rational and there exists a WFA A with n states computing f , that is, rank(f) =
rank(Hf).

2.2 Rademacher Complexity

Our objetive is to derive learning guarantees for broad families of weighted
automata or rational functions used as hypothesis sets in learning algorithms. To
do so, we will derive upper bounds on the Rademacher complexity of different
classes F of rational functions f : Σ∗ → R. Thus, we first briefly introduce the
definition of the Rademacher complexity of an arbitrary class of functions F . Let
D be a probability distribution over Σ∗. Suppose S = (x1, . . . , xm) iid∼ Dm is a
sample of m i.i.d. strings drawn from D. The empirical Rademacher complexity
of F on S is defined as follows:

R̂S(F) = E

[
sup
f∈F

1
m

m∑

i=1

σif(xi)

]
,

where the expectation is taken over the m independent Rademacher random
variables σi ∼ Unif({+1,−1}). The Rademacher complexity of F is defined as
the expectation of R̂S(F) over the draw of a sample S of size m:

Rm(F) = E
S∼Dm

[
R̂S(F)

]
.

Rademacher complexity bounds can be directly used to derive data-dependent
generalization bounds for a variety of learning tasks [11,24,32]. Since the deriva-
tion of these learning bounds from Rademacher complexity bounds is now stan-
dard and depends on the learning task, we will not provide them here explicitly.
Instead, we will discuss multiple applications of our techniques in an extended
version of this paper, which will also contain explicit generalization bounds for
several set-ups relevant to practical applications.

3 Classes of Rational Functions

In this section, we introduce three different classes of rational functions described
in terms of distinct quantities. These quantities, such as the number of states of
a WFA representation, the norm of the rational function, or that of its Hankel
matrix, control the complexity of the classes of rational functions in distinct ways
and each class admits distinct benefits in the analysis of learning with WFAs.

On the Rademacher Complexity of Weighted Automata 183

3.1 The Class An,p,r

We start by considering the case where each rational function is given by a fixed
WFA representation. Our learning bounds would then naturally depend on the
number of states and the weights of the WFA representations.

Fix an integer n > 0 and let An denote the set of all WFAs with n states.
Note that any A ∈ An is identified by the d = n(kn + 2) parameters required
to specify its initial, final, and transition weights. Thus, we can identify An

with the vector space R
d by suitably defining addition and scalar multiplication.

In particular, given A,A′ ∈ An and c ∈ R, we define:

A + A′ = 〈α,β, {Aa}〉 + 〈α′,β′, {A′
a}〉 = 〈α + α′,β + β′, {Aa + A′

a}〉
cA = c〈α,β, {Aa}〉 = 〈cα, cβ, {cAa}〉 .

We can view An as a normed vector space by endowing it with any norm from
the following family. Let p, q ∈ [1,+∞] be Hölder conjugates, i.e. p−1 + q−1 = 1.
It is easy to check that the following defines a norm on An:

‖A‖p,q = max
{

‖α‖p, ‖β‖q,max
a

‖Aa‖q

}
,

where ‖A‖q denotes the matrix norm induced by the corresponding vector norm,
that is ‖A‖q = sup‖v‖q=1 ‖Av‖q. Given p ∈ [1,+∞] and q = 1/(1 − 1/p),
we denote by An,p,r the set of all WFAs A with n states and ‖A‖p,q ≤ r.
Thus, An,p,r is the ball of radius r at the origin in the normed vector space
(An, ‖ · ‖p,q).

3.2 The Class Rp,r

Next, we consider an alternative quantity measuring the complexity of rational
functions that is independent of any WFA representation: their norm.

Given p ∈ [1,∞] and f : Σ∗ → R we use ‖f‖p to denote the p-norm of f
given by

‖f‖p =
[∑

x∈Σ∗
|f(x)|p

] 1
p

,

which in the case p = ∞ amounts to ‖f‖∞ = supx∈Σ∗ |f(x)|.
Let Rp denote the class of rational functions with finite p-norm: f ∈ Rp if

and only if f is rational and ‖f‖p < +∞. Given some r > 0 we also define Rp,r,
the class of functions with p-norm bounded by r:

Rp,r = {f : Σ∗ → R | f rational and ‖f‖p ≤ r} .

Note that this definition is independent of the WFA used to represent f .

184 B. Balle and M. Mohri

3.3 The Class Hp,r

Here, we introduce a third class of rational functions described via their Hankel
matrices, a quantity that is also independent of their WFA representations. To
do so, we represent a function f using its Hankel matrix Hf , interpret this matrix
as a linear operator Hf : RΣ∗ → R

Σ∗
on the free vector space R

Σ∗
, and consider

the Schatten p-norm of Hf as a measure of the complexity of f .
We now proceed to make this more precise. We identify a function g : Σ∗ → R

with an infinite vector g ∈ R
Σ∗

. It follows from the definition of a Hankel matrix
that we can interpret Hf as an operator given by

(Hfg)(x) =
∑

y∈Σ∗
f(xy)g(y) .

Note the similarity of the operation g �→ Hfg with a convolution between f and
g. The following result of [10] shows that ‖f‖1 < ∞ is a sufficient condition for
this operation to be defined.

Lemma 1. Let p ∈ [1,+∞]. Assume that f : Σ∗ → R satisfies the condition
‖f‖1 < ∞. Then, ‖g‖p < ∞ implies ‖Hfg‖p < ∞.

This shows that for f ∈ R1 the operator Hf : Rp → Rp is bounded for every
p ∈ [1,+∞]. By the Theorem of Fliess, the matrix Hf has finite rank when
f is rational. Thus, this implies (by considering the case p = 2) that the bi-
infinite matrix Hf admits a singular value decomposition whenever f ∈ R1. In
that case, it makes sense to define the Schatten–Hankel p-norm of f ∈ R1 as
‖f‖H,p = ‖(s1, . . . , sn)‖p, where si = si(Hf) is the ith singular value of Hf and
rank(Hf) = n. That is, the Schatten–Hankel p-norm of f is exactly the Schatten
p-norm of Hf .

Using this notation, we can define several classes of rational functions. For a
given p ∈ [1,+∞], we denote by Hp the class of rational functions with ‖f‖H,p <
∞ and, for any r > 0, by Hp,r the class of rational functions with ‖f‖H,p ≤ r.

3.4 Overview of Results

In addition to proving general bounds on the Rademacher complexity of the three
classes just described, we will also highlight their application in some important
special cases.

Here, we briefly discuss these special cases, stress different properties of the
classes of WFAs to which these results apply, and mention several well-known
sub-families within each class. We also briefly touch upon the problem of deciding
the membership of a given WFA in any of the particular classes defined above.

– An,p,r in the case r = 1 (Corollary 1): note that for r = 1 and p = 1,
An,p,r includes all DFAs and PFAs since for these classes of automata α
is either an indicator vector or a probability distribution over states, hence
‖α‖1 = 1; β has all its entries in [0, 1] since it consists of accept/reject labels

On the Rademacher Complexity of Weighted Automata 185

or stopping probabilities, hence ‖β‖∞ ≤ 1; and, for any a ∈ Σ and any
i ∈ [1, n], the inequality

∑
j |Aa(i, j)| ≤ 1 holds since the transitions can

reach at most one state per symbol, or represent a probability distribution
over next states, hence ‖Aa‖∞ ≤ 1.

– Rp,r in the cases p = 1 and p = 2 (Corollaries 3 and 2): we note here
that PFAs with stopping probabilities are contained in R1, while there are
PFAs without stopping probabilities in R2 \ R1. In general, given a WFA,
membership in R1,r is semi-decidable [5], while membership in R2,r can be
decided in polynomial time [15].

– Hp,r in the cases p = 1 and p = 2 (Corollaries 5 and 4): as mentioned above,
membership in R1 is sufficient to show membership in Hp for all 1 ≤ p ≤ ∞.
Assuming membership in H∞, it is possible to decide membership in Hp,r

in polynomial time [10].

4 Rademacher Complexity of An,p,r

In this section, we present an upper bound on the Rademacher complexity of
the class of WFAs An,p,r. To bound Rm(An,p,r), we will use an argument based
on covering numbers. We first introduce some notation, then state our general
bound and related corollaries, and finally prove the main result of this section.

Let S = (x1, . . . , xm) ∈ (Σ∗)m be a sample of m strings with maximum
length LS = maxi |xi|. The expectation of this quantity over a sample of m
strings drawn i.i.d. from some fixed distribution D will be denoted by Lm =
ES∼Dm [LS]. It is interesting at this point to note that Lm appears in our bound
and introduces a dependency on the distribution D which will exhibit different
growth rates depending on the behavior of the tails of D. For example, it is well
known that if the random variable |x| for x ∼ D is sub-Gaussian,1 then Lm =
O(

√
log m). Similarly, if the tail of D is sub-exponential, then Lm = O(log m)

and if the tail is a power-law with exponent s + 1, s > 0, then Lm = O(m1/s).
Note that in the latter case the distribution of |x| has finite variance if and only
if s > 1.

Theorem 1. The following inequality holds for every sample S ∈ (Σ∗)m:

R̂S(An,p,r) ≤ inf
η>0

⎛

⎜⎜⎝η + rLS+2

√√√√2n(kn + 2) log
(
2r + rLS+2(LS+2)

η

)

m

⎞

⎟⎟⎠ .

By considering the case r = 1 and choosing η = (LS + 2)/m we obtain the
following corollary.

1 Recall that a non-negative random variable X is sub-Gaussian if P[X > k] ≤
exp(−Ω(k2)), sub-exponential if P[X > k] ≤ exp(−Ω(k)), and follows a power-law
with exponent (s + 1) if P[X > k] ≤ O(1/ks+1).

186 B. Balle and M. Mohri

Corollary 1. For any m ≥ 1 and n ≥ 1 the following inequality holds:

Rm(An,p,1) ≤
√

2n(kn + 2) log(m + 2)
m

+
Lm + 2

m
.

4.1 Proof of Theorem 1

We begin the proof by recalling several well-known facts and definitions related
to covering numbers (see e.g. [16]). Let V ⊂ R

m be a set of vectors and S =
(x1, . . . , xm) ∈ (Σ∗)m a sample of size m. Given a WFA A, we define A(S) ∈ R

m

by A(S) = (A(x1), . . . , A(xm)) ∈ R
m. We say that V is an (�1, η)-cover for S

with respect to An,p,r if for every A ∈ An,p,r there exists some v ∈ V such that

1
m

‖v − A(S)‖1 =
1
m

m∑

i=1

|vi − A(xi)| ≤ η .

The �1-covering number of S at level η with respect to An,p,r is defined as follows:

N1(η,An,p,r, S) = min {|V | : V ⊂ R
m is an (�1, η)-cover for S w.r.t. An,p,r?} .

A typical analysis based on covering numbers would now proceed to obtain a
bound on the growth of N1(η,An,p,r, S) in terms of the number of strings m in S.
Our analysis requires a slightly finer approach where the size of S is characterized
by m and LS . Thus, we also define for every integer L ≥ 0 the following covering
number

N1(η,An,p,r,m,L) = max
S∈(Σ≤L)m

N1(η,An,p,r, S) .

The first step in the proof of Theorem 1 is to bound N1(η,An,p,r,m,L).
In order to derive such a bound, we will make use of the following technical
results.

Lemma 2 (Corollary 4.3 in [35]). A ball of radius R > 0 in a real d-
dimensional Banach space can be covered by Rd(2 + 1/ρ)d balls of radius ρ > 0.

Lemma 3. Let A,B ∈ An,p,r. Then the following hold for any x ∈ Σ∗:

1. |A(x)| ≤ r|x|+2 ,
2. |A(x) − B(x)| ≤ r|x|+1(|x| + 2)‖A − B‖p,q .

Proof. The first bound follows from applying Hölder’s inequality and the sub-
multiplicativity of the norms in the definition of ‖A‖p,q to (1). The second bound
was proven in [8]. ��
Combining these lemmas yields the following bound on the covering number
N1(η,An,p,r,m,L).

Lemma 4.

N1(η,An,p,r,m,L) ≤ rn(kn+2)

(
2 +

rL+1(L + 2)
η

)n(kn+2)

.

On the Rademacher Complexity of Weighted Automata 187

Proof. Let d = n(kn+2). By Lemma 2 and Lemma 3, for any ρ > 0, there exists
a finite set Cρ ⊂ An,p,r with |Cρ| ≤ rd(2 + 1/ρ)d such that: for every A ∈ An,p,r

there exists B ∈ Cρ satisfying |A(x) − B(x)| ≤ r|x|+1(|x| + 2)ρ for every x ∈ Σ∗.
Thus, taking ρ = η/(rL+1(L + 2)) we see that for every S ∈ (Σ≤L)m the set
V = {B(S) : B ∈ Cρ} ⊂ R

m is an η-cover for S with respect to An,p,r. ��
The last step of the proof relies on the following well-known result due to

Massart.

Lemma 5 (Massart [28]). Given a finite set of vectors V = {v1, . . . ,vN} ⊂
R

m, the following holds

1
m

E

[
max
v∈V

〈σ,v〉
]

≤
(

max
v∈V

‖v‖2
) √

2 log(N)
m

,

where the expectation is over the vector σ = (σ1, . . . , σm) whose entries are
independent Rademacher random variables σi ∼ Unif({+1,−1}).

Fix η > 0 and let VS,η be an (�1, η)-cover for S with respect to An,p,r. By
Massart’s lemma, we can write

R̂S(An,p,r) ≤ η +
(

max
v∈VS,η

‖v‖2
) √

2 log |VS,η|
m

. (2)

Since |A(xi)| ≤ rLS+2 by Lemma 3, we can restrict the search for (�1, η)-covers
for S to sets VS,η ⊂ R

m where all v ∈ VS,η must satisfy ‖v‖∞ ≤ rLS+2. By con-
struction, such a covering satisfies maxv∈VS,η

‖v‖2 ≤ rLS+2
√

m. Finally, plug-
ging in the bound for |VS,η| given by Lemma 4 into (2) and taking the infimum
over all η > 0 yields the desired result. ��

5 Rademacher Complexity of Rp,r

In this section, we study the complexity of rational functions from a different
perspective. Instead of analyzing their complexity in terms of the parameters
of WFAs computing them, we consider an intrinsic associated quantity: their
norm. We present upper bounds on the Rademacher complexity of the classes of
rational functions Rp,r for any p ∈ [1,+∞] and r > 0.

It will be convenient for our analysis to identify a rational function f ∈
Rp,r with an infinite-dimensional vector f ∈ R

Σ∗
with ‖f‖p ≤ r. That is, f is

an infinite vector indexed by strings in Σ∗ whose xth entry is fx = f(x). An
important observation is that using this notation, for any given x ∈ Σ∗, we can
write f(x) as the inner product 〈f , ex〉, where ex ∈ R

Σ∗
is the indicator vector

corresponding to string x.

Theorem 2. Let p−1 +q−1 = 1. Let S = (x1, . . . , xm) be a sample of m strings.
Then, the following holds for any r > 0:

R̂S(Rp,r) =
r

m
E

[∥∥∥∥
m∑

i=1

σiexi

∥∥∥∥
q

]
,

188 B. Balle and M. Mohri

where the expectation is over the m independent Rademacher random variables
σi ∼ Unif({+1,−1}).

Proof. In view of the notation just introduced described, we can write

R̂S(Rp,r) = E

[
sup

f∈Rp,r

1
m

m∑

i=1

〈f , σiexi
〉
]

=
1
m

E

[
sup

f∈Rp,r

〈
f ,

m∑

i=1

σiexi

〉]

=
r

m
E

[∥∥∥∥
m∑

i=1

σiexi

∥∥∥∥
q

]
,

where the last inequality holds by definition of the dual norm. ��
The next corollaries give non-trivial bounds on the Rademacher complexity in
the case p = 1 and the case p = 2.

Corollary 2. For any m ≥ 1 and any r > 0, the following inequalities hold:

r√
2m

≤ Rm(R2,r) ≤ r√
m

.

Proof. The upper bound follows directly from Theorem 2 and Jensen’s inequal-
ity:

E

[∥∥∥∥
m∑

i=1

σiexi

∥∥∥∥
2

]
≤

√√√√E

[∥∥∥∥
m∑

i=1

σiexi

∥∥∥∥
2

2

]
=

√
m .

The lower bound is obtained using Khintchine–Kahane’s inequality (see
appendix of [32]):

E

[∥∥∥∥
m∑

i=1

σiexi

∥∥∥∥
2

]2

≥ 1
2
E

[∥∥∥∥
m∑

i=1

σiexi

∥∥∥∥
2

2

]
=

m

2
,

which completes the proof. ��
The following definitions will be needed to present our next corollary. Given a
sample S = (x1, . . . , xm) and a string x ∈ Σ∗ we denote by sx = |{i : xi = x}|
the number of times x appears in S. Let MS = maxs∈Σ∗ sx. Given a probability
distribution D over Σ∗ we also define Mm = ES∼Dm [MS]. Note that Mm is the
expected maximum number of collisions (repeated strings) in a sample of size m
drawn from D, and that we have the straightforward bounds 1 ≤ MS ≤ m.

Corollary 3. For any m ≥ 1 and any r > 0, the following upper bound holds:

Rm(R1,r) ≤ r
√

2Mm log(2m)
m

.

On the Rademacher Complexity of Weighted Automata 189

Proof. Let S = (x1, . . . , xm) be a sample with m strings. For any x ∈ Σ� define
the vector vx ∈ R

m given by vx(i) = Ixi=x. Let V be the set of vectors vx

which are not identically zero, and note we have |V | ≤ m. Also note that by
construction we have maxvx∈V ‖vx‖2 =

√
MS . Now, by Theorem 2 we have

R̂S(R1,r) =
r

m
E

[∥∥∥∥
m∑

i=1

σiexi

∥∥∥∥
∞

]
=

r

m
E

[
max

vx∈V ∪(−V)
〈σ,vx〉

]
.

Therefore, using Massart’s Lemma we get

R̂S(R1,r) ≤ r
√

2MS log(2m)
m

.

The result now follows from taking the expectation over S and using Jensen’s
inequality to see that E[

√
MS] ≤ √

Mm. ��
Note in this case we cannot rely on the Khintchine–Kahane inequality to

obtain lower bounds on Rm(R1,r) because there is no version of this inequality
for the case q = ∞.

6 Rademacher Complexity of Hp,r

In this section, we present our last set of upper bounds on the Rademacher
complexity of WFAs. Here, we characterize the complexity of WFAs in terms of
the spectral properties of their Hankel matrix.

The Hankel matrix of a function f : Σ∗ → R is the bi-infinite matrix Hf ∈
R

Σ∗×Σ∗
whose entries are defined by Hf (u, v) = f(uv). Note that any string

x ∈ Σ∗ admits |x| + 1 decompositions x = uv into a prefix u ∈ Σ∗ and a suffix
v ∈ Σ∗. Thus, Hf contains a high degree of redundancy: for any x ∈ Σ∗, f(x)
is the value of at least |x| + 1 entries of Hf and we can write f(x) = e�

u Hfev

for any decomposition x = uv.
Let si(M) denote the ith singular value of a matrix M. For 1 ≤ p ≤ ∞, let

‖M‖S,p denote the p-Schatten norm of M defined by ‖M‖S,p =
[∑

i≥1 si(M)p
] 1

p .

Theorem 3. Let p, q ≥ 1 with p−1 + q−1 = 1 and let S = (x1, . . . , xm) be a
sample of m strings in Σ∗. For any decomposition xi = uivi of the strings in S
and any r > 0, the following inequality holds:

R̂S(Hp,r) ≤ r

m
E

[∥∥∥∥
m∑

i=1

σieui
e�

vi

∥∥∥∥
S,q

]
.

Proof. For any 1 ≤ i ≤ m, let xi = uivi be an arbitrary decomposition and let
R denote R =

∑m
i=1 σieui

e�
vi

. Then, in view of the identity f(xi) = e�
ui
Hfevi

,
we can write

R̂S(Hp,r) = E

[
sup

f∈Hp,r

1
m

m∑

i=1

σie�
ui
Hfevi

]

=
1
m

E

[
sup

f∈Hp,r

m∑

i=1

Tr
(
σievi

e�
ui
Hf

)
]

=
1
m

E

[
sup

f∈Hp,r

〈R,Hf 〉
]

.

190 B. Balle and M. Mohri

Then, by von Neumann’s trace inequality [29] and Hölder’s inequality, the fol-
lowing holds:

E

[
sup

f∈Hp,r

〈R,Hf 〉
]

≤ E

⎡

⎣ sup
f∈Hp,r

∑

j≥1

sj(R) · sj(Hf)

⎤

⎦

≤ E

[
sup

f∈Hp,r

‖R‖S,q‖Hf‖S,p

]
= rE

[‖R‖S,q

]
,

which completes the proof. ��
Note that, in this last result, the equality condition for von Neumann’s inequal-
ity cannot be used to obtain a lower bound on R̂S(Hp,r) since it requires the
simultaneous diagonalizability of the two matrices involved, which is difficult to
control in the case of Hankel matrices.

As in the previous sections, we now proceed to derive specialized versions
of the bound of Theorem 3 for the cases p = 1 and p = 2. First, note that
the corresponding q-Schatten norms have given names: ‖R‖S,2 = ‖R‖F is the
Frobenius norm, and ‖R‖S,∞ = ‖R‖op is the operator norm.

Corollary 4. For any m ≥ 1 and any r > 0, the Rademacher complexity of
H2,r can be bounded as follows:

Rm(H2,r) ≤ r√
m

.

Proof. In view of Theorem 3 and using Jensen’s inequality, we can write

Rm(H2,r) ≤ r

m
E

[‖R‖F
] ≤ r

m

√
E

[‖R‖2F
]

=
r

m

√√√√E

[m∑

i,j=1

σiσj〈eui
e�

vi
, euj

e�
vj

〉
]

=
r

m

√√√√E

[m∑

i=1

〈eui
e�

vi
, eui

e�
vi

〉
]

=
r√
m

,

which concludes the proof. ��
We now introduce a combinatorial number depending on S and the decom-

position selected for each string xi. Let US = maxu∈Σ∗ |{i : ui = u}| and
VS = maxv∈Σ∗ |{i : vi = v}|. Then, we define WS = min max{US , VS}, where
then minimum is taken over all possible decompositions of the strings in S. If S
is sampled from a distribution D, we also define Wm = ES∼Dm [WS]. It is easy
to show that we have the bounds 1 ≤ WS ≤ m. Indeed, for the case WS = m
consider a sample with m copies of the empty string, and for the case WS = 1
consider a sample with m different strings of length m. The following result can
be stated using this definition.

On the Rademacher Complexity of Weighted Automata 191

Corollary 5. There exists a universal constant C > 0 such that for any m ≥ 1
and any r > 0, the following inequality holds:

Rm(H1,r) ≤
Cr

(
log(m + 1) +

√
Wm log(m + 1)

)

m
.

Proof. First, note that by Corollary 7.3.2 of [34] applied to the random matrix
R, the following inequality holds:

E[‖R‖op] ≤ C
(
log(m + 1) +

√
μ log(m + 1)

)
,

where μ = max{‖∑
i eui

e�
ui

‖op, ‖
∑

i evi
e�

vi
‖op} and C > 0 is a constant. Next,

observe that D =
∑

i eui
e�

ui
∈ R

Σ∗×Σ∗
is a diagonal matrix with D(u, u) =∑

i Iu=ui
. Thus, ‖D‖op = maxu D(u, u) = maxu∈Σ∗ |{i : ui = u}| = US . Simi-

larly, we have ‖∑
i evi

e�
vi

‖op = VS . Thus, since the decomposition of the strings
in S is arbitrary, we can choose it such that μ = WS . In addition, Jensen’s
inequality implies ES [

√
WS] ≤ √

Wm. Applying Theorem 3 now yields the
desired bound. ��

7 Conclusion

We introduced three general classes of WFAs described via different natural
quantities and for each, proved upper bounds on their Rademacher complexity.
An interesting property of these bounds is the appearance of different combinato-
rial parameters tying the sample to the convergence rate, whose nature depends
on the way chosen to measure the complexity of the hypotheses: the length of
the longest string LS for An,p,r; the maximum number of collisions MS for Rp,r;
and, the minimum number of prefix or suffix collisions over all possible splits
WS for Hp,r.

Another important feature of our bounds for the classes Hp,r is that they
depend on spectral properties of Hankel matrices, which are commonly used in
spectral learning algorithms for WFAs [8,21]. We hope to exploit this connection
in the future to provide more refined analyses of these learning algorithms. Our
results can also be used to improve some aspects of existing spectral learning
algorithms. For example, it might be possible to use the analysis in Theorem 3
for deriving strategies to help choose which prefixes and suffixes to consider in
algorithms working with finite sub-blocks of an infinite Hankel matrix. This is a
problem of practical relevance when working with large amounts of data which
require balancing trade-offs between computation and accuracy [6].

Acknowledgments. This work was partly funded by the NSF award IIS-1117591 and
NSERC.

192 B. Balle and M. Mohri

References

1. Abe, N., Warmuth, M.K.: On the computational complexity of approximating
distributions by probabilistic automata. Machine Learning (1992)

2. Albert, J., Kari, J.: Digital image compression. In: Handbook of weighted
automata. Springer (2009)

3. Baier, C., Größer, M., Ciesinski, F.: Model checking linear-time properties of
probabilistic systems. In: Handbook of Weighted automata. Springer (2009)

4. Bailly, R., Denis, F., Ralaivola, L.: Grammatical inference as a principal compo-
nent analysis problem. In: ICML (2009)

5. Bailly, R., Denis, F.: Absolute convergence of rational series is semi-decidable.
Inf. Comput. (2011)

6. Balle, B., Carreras, X., Luque, F., Quattoni, A.: Spectral learning of weighted
automata: A forward-backward perspective. Machine Learning (2014)

7. Balle, B., Hamilton, W., Pineau, J.: Methods of moments for learning stochastic
languages: unified presentation and empirical comparison. In: ICML (2014)

8. Balle, B., Mohri, M.: Spectral learning of general weighted automata via con-
strained matrix completion. In: NIPS (2012)

9. Balle, B., Mohri, M.: Learning weighted automata. In: CAI (2015)
10. Balle, B., Panangaden, P., Precup, D.: A canonical form for weighted automata

and applications to approximate minimization. In: Logic in Computer Science
(LICS) (2015)

11. Bartlett, P.L., Mendelson, S.: Rademacher and gaussian complexities: risk bounds
and structural results. In: Helmbold, D.P., Williamson, B. (eds.) COLT 2001 and
EuroCOLT 2001. LNCS (LNAI), vol. 2111, pp. 224–240. Springer, Heidelberg
(2001)

12. Berstel, J., Reutenauer, C.: Noncommutative rational series with applications.
Cambridge University Press (2011)

13. Boots, B., Siddiqi, S., Gordon, G.: Closing the learning-planning loop with pre-
dictive state representations. In: RSS (2009)

14. Carlyle, J.W., Paz, A.: Realizations by stochastic finite automata. J. Comput.
Syst. Sci. 5(1) (1971)

15. Cortes, C., Mohri, M., Rastogi, A.: Lp distance and equivalence of probabilistic
automata. International Journal of Foundations of Computer Science (2007)

16. Devroye, L., Lugosi, G.: Combinatorial methods in density estimation. Springer
(2001)

17. Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press (1974)
18. Fliess, M.: Matrices de Hankel. Journal de Mathématiques Pures et Appliquées

53 (1974)
19. de Gispert, A., Iglesias, G., Blackwood, G., Banga, E., Byrne, W.: Hierarchi-

cal phrase-based translation with weighted finite-state transducers and shallow-n
grammars. Computational Linguistics (2010)

20. Hamilton, W.L., Fard, M.M., Pineau, J.: Modelling sparse dynamical systems
with compressed predictive state representations. In: ICML (2013)

21. Hsu, D., Kakade, S.M., Zhang, T.: A spectral algorithm for learning hidden
Markov models. In: COLT (2009)

22. Ishigami, Y., Tani, S.: Vc-dimensions of finite automata and commutative finite
automata with k letters and n states. Discrete Applied Mathematics (1997)

23. Knight, K., May, J.: Applications of weighted automata in natural language pro-
cessing. In: Handbook of Weighted Automata. Springer (2009)

On the Rademacher Complexity of Weighted Automata 193

24. Koltchinskii, V., Panchenko, D.: Rademacher processes and bounding the risk of
function learning. In: High Dimensional Probability II, pp. 443–459. Birkhäuser
(2000)

25. Kuich, W., Salomaa, A.: Semirings, automata, languages. In: EATCS. Mono-
graphs on Theoretical Computer Science, vol. 5. Springer-Verlag, Berlin-New York
(1986)

26. Kulesza, A., Jiang, N., Singh, S.: Low-rank spectral learning with weighted loss
functions. In: AISTATS (2015)

27. Kulesza, A., Rao, N.R., Singh, S.: Low-rank spectral learning. In: AISTATS (2014)
28. Massart, P.: Some applications of concentration inequalities to statistics. In:

Annales de la Faculté des Sciences de Toulouse (2000)
29. Mirsky, L.: A trace inequality of John von Neumann. Monatshefte für Mathematik

(1975)
30. Mohri, M.: Weighted automata algorithms. In: Handbook of Weighted Automata.

Monographs in Theoretical Computer Science, pp. 213–254. Springer (2009)
31. Mohri, M., Pereira, F.C.N., Riley, M.: Speech recognition with weighted finite-

state transducers. In: Handbook on Speech Processing and Speech Comm.
Springer (2008)

32. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of machine learning.
MIT press (2012)

33. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Springer-Verlag, New York (1978)

34. Tropp, J.A.: An Introduction to Matrix Concentration Inequalities (2015).
ArXiv abs/1501.01571

35. Vershynin, R.: Lectures in Geometrical Functional Analysis. Preprint (2009)

http://arxiv.org/abs/1501.01571

Multi-task and Lifelong Learning of Kernels

Anastasia Pentina1(B) and Shai Ben-David2

1 Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
apentina@ist.ac.at

2 School of Computer Science, University of Waterloo, Waterloo, ON, Canada
shai@uwaterloo.ca

Abstract. We consider a problem of learning kernels for use in SVM
classification in the multi-task and lifelong scenarios and provide general-
ization bounds on the error of a large margin classifier. Our results show
that, under mild conditions on the family of kernels used for learning,
solving several related tasks simultaneously is beneficial over single task
learning. In particular, as the number of observed tasks grows, assuming
that in the considered family of kernels there exists one that yields low
approximation error on all tasks, the overhead associated with learning
such a kernel vanishes and the complexity converges to that of learning
when this good kernel is given to the learner.

Keywords: Multi-task learning · Lifelong learning · Kernel learning

1 Introduction

State-of-the-art machine learning algorithms are able to solve many problems
sufficiently well. However, both theoretical and experimental studies have shown
that in order to achieve solutions of reasonable quality they need an access
to extensive amounts of training data. In contrast, humans are known to be
able to learn concepts from just a few examples. A possible explanation may
lie in the fact that humans are able to reuse the knowledge they have gained
from previously learned tasks for solving a new one, while traditional machine
learning algorithms solve tasks in isolation. This observation motivates an alter-
native, transfer learning approach. It is based on idea of transferring information
between related learning tasks in order to improve performance.

There are various formal frameworks for transfer learning, modeling different
learning scenarios. In this work we focus on two of them: the multi-task and
the lifelong settings. In the multi-task scenario, the learner faces a fixed set of
learning tasks simultaneously and its goal is to perform well on all of them.
In the lifelong learning setting, the learner encounters a stream of tasks and its
goal is to perform well on new, yet unobserved tasks.

For any transfer learning scenario to make sense (that is, to benefit from the
multiplicity of tasks), there must be some kind of relatedness between the tasks.
A common way to model such task relationships is through the assumption that
there exists some data representation under which learning each of the tasks
c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 194–208, 2015.
DOI: 10.1007/978-3-319-24486-0 13

Multi-task and Lifelong Learning of Kernels 195

is relatively easy. The corresponding transfer learning methods aim at learning
such a representation.

In this work we focus on the case of large-margin learning of kernels.
We consider sets of tasks and families of kernels and analyze the sample complex-
ity of finding a kernel in a kernel family that allows low expected error on average
over the set of tasks (in the multi-task scenario), or in expectation with respect
to some unknown task-generating probability distribution (in the lifelong sce-
nario). We provide generalization bounds for empirical risk minimization learners
for both settings. Under the assumption that the considered kernel family has
finite pseudodimension, we show that by learning several tasks simultaneously
the learner is guaranteed to have low estimation error with fewer training sam-
ples per task (compared to solving them independently). In particular, if there
exists a kernel with low approximation error for all tasks, then, as the number of
observed tasks grows, the problem of learning any specific task with respect to a
family of kernels converges to learning when the learner knows a good kernel in
advance - the multiplicity of tasks relieves the overhead associated with learn-
ing a kernel. Our assumption on finite pseudodimension of the kernel family is
satisfied in many practical cases, like families of Gaussian kernels with a learned
covariance matrix, and linear and convex combinations of a finite set of kernels
(see [4]). We also show that this is the case for families of all sparse combinations
of kernels from a large “dictionary” of kernels.

1.1 Related Previous Work

Multi-task and Lifelong Learning. A method for learning a common fea-
ture representation for linear predictors in the multi-task scenario was proposed
in [9]. A similar idea was also used by [10] and extended to the lifelong scenario
by [11]. A natural extension of representation learning approach was proposed
for kernel methods in [12,13], where the authors described a method for learning
a kernel that is shared between tasks as a combination of some base kernels using
maximum entropy discrimination approach. A similar approach, with additional
constraints on sparsity of kernel combinations, was used by [17]. These ideas were
later generalized to the case, when related tasks may use slightly different kernel
combinations [14,18], and successfully used in practical applications [15,16].

Despite intuitive attractiveness of the possibility of automatically learning a
suitable feature representation compared to learning with a fixed, perhaps high-
dimensional or just irrelevant set of features, relatively little is known about its
theoretical justifications. A seminal systematic theoretical study of the multi-
task/lifelong learning settings was done by Baxter in [6]. There the author pro-
vided sample complexity bounds for both scenarios under the assumption that the
tasks share a common optimal hypothesis class. The possible advantages of these
approaches according to Baxter’s results depend on the behavior of complexity
terms, which, however, due to the generality of the formulation, often can not be
inferred easily given a particular setting. Therefore, studying more specific scenar-
ios by using more intuitive complexity measures may lead to better understanding
of the possible benefits of the multi-task/lifelong settings, even if, in some sense,

196 A. Pentina and S. Ben-David

they can be viewed as particular cases of Baxter’s result. Along that line, Maurer
in [19] proved that learning a common low-dimensional representation in the case
of lifelong learning of linear least-squares regression tasks is beneficial.

Multiple Kernel Learning. The problem of multiple kernel learning in the
single-task scenario has been theoretically analyzed using different techniques.
By using covering numbers, Srebro et al in [4] have shown generalization bounds
with additive dependence on the pseudodimension of the kernel family. Another
bound with multiplicative dependence on the pseudodimension was presented
in [3], where the authors used Rademacher chaos complexity measure. Both
results have a form O(

√
d/m), where d is the pseudodimension of the kernel

family and m is the sample size. By carefully analyzing the growth rate of the
Rademacher complexity in the case of the linear combinations of finitely many
kernels with lp constraint on the weights, Cortes et al in [2] have improved the
above results. In particular, in the case of l1 constraints, the bound from [4]
has a form O(

√
k/m), where k in the total number of kernels, while the bound

from [2] is O(
√

log(k)/m). The fast rate analysis of the linear combinations of
kernels using local Rademacher complexities was performed by Kloft et al in [1].

In this work we utilize techniques from [4]. It allows us to formulate results
that hold for any kernel family with finite pseudodimension and not only for the
case of linear combinations, though at the price of potentially suboptimal depen-
dence on the number of kernels in the latter case. Moreover, additive dependence
on the pseudodimension is especially appealing for the analysis of the multi-task
and lifelong scenarios, as it allows obtaining bounds where that additional com-
plexity term vanishes as the number of tasks grows and therefore these bounds
clearly show possible advantages of transfer learning.

We start by describing the formal set up and preliminaries in Section 2.1,2.2
and providing a list of known kernel families with finite pseudodimensions,
including our new result for sparse linear combinations, in 2.3. In Section 3 we
provide the proof of the generalization bound for the multi-task case and extend
it to the lifelong setting in Section 4. We conclude by discussion in Section 5.

2 Preliminaries

2.1 Formal Setup

Throughout the paper we denote the input space by X and the output space by
Y = {−1, 1}. We assume that the learner (both in the multi-task and the lifelong
learning scenarios) has an access to n tasks represented by the corresponding
training sets z1, . . . , zn ∈ (X ×Y)m, where each zi = {(xi1, yi1), . . . , (xim, yim)}
consists of m i.i.d. samples from some unknown task-specific data distribution
Pi over Z = X × Y . In addition we assume that the learner is given a family K
of kernel functions1 defined on X × X and uses the corresponding set of linear

1
A function K : X × X → R is called a kernel, if there exist a Hilbert space H and a mapping
φ : X → H such that K(x, x′) = 〈φ(x), φ(x′)〉 for all x, x′ ∈ X.

Multi-task and Lifelong Learning of Kernels 197

predictors for learning. Formally, for every kernel K ∈ K we define FK to be
such set:

FK
def= {h : x �→ 〈w, φ(x)〉 | ‖w‖ ≤ 1,K(x, x′) = 〈φ(x), φ(x′)〉} (1)

and H to be the union of them: H = ∪K∈KFK .
In the multi-task scenario the data distributions P1, . . . , Pn are assumed to

be fixed and the goal of the learner is to identify a kernel K ∈ K that performs
well on all of them. Therefore we would like to bound the difference between the
expected error rate over the tasks:

er(FK) =
1
n

n∑

i=1

inf
h∈FK

E(x,y)∼Pi
�yh(x) < 0� (2)

and the corresponding empirical margin error rate:

êrγ
z (FK) =

1
n

n∑

i=1

inf
h∈FK

1
m

m∑

j=1

�yijh(xij) < γ�. (3)

Alternatively the learner may be interested in identifying a particular predictor
for every task. If we define Fn

K = {h = (h1, . . . , hn) : hi ∈ FK ∀i = 1 . . . n} and
H

n = ∪KFn
K , then it means finding some h ∈ H

n with low generalization error:

er(h) =
1
n

n∑

i=1

E(x,y)∼Pi
�yhi(x) < 0� (4)

based on its empirical margin performance:

êrγ
z (h) =

1
n

n∑

i=1

1
m

m∑

j=1

�yijhi(xij) < γ�. (5)

However, due to the following inequality, it is enough to bound the probability
of large estimation error for the second case and a bound for the first one will
follow immediately:

Pr
{

z ∈ Z(n,m) ∃ K ∈ K : er(FK) > êrγ
z (FK) + ε

}
≤

Pr
{

z ∈ Z(n,m) ∃ h ∈ H
n : er(h) > êrγ

z (h) + ε
}

.

For the lifelong learning scenario we adopt the notion of task environment
proposed in [6] and assume that there exists a set of possible data distributions
(i.e. tasks) P and that the observed tasks are sampled from it i.i.d. according to
some unknown distribution Q. The goal of the learner is to find a kernel K ∈ K
that would work well on future, yet unobserved tasks from the environment
(P, Q). Therefore we would like to bound the probability of large deviations
between the expected error rate on new tasks, given by:

er(FK) = EP∼Q inf
h∈FK

E(x,y)∼P �h(x)y < 0�, (6)

198 A. Pentina and S. Ben-David

and the corresponding empirical margin error rate êrγ
z (FK).

In order to obtain the generalization bounds in both cases we employ the
technique of covering numbers.

2.2 Covering Numbers and Pseudodimensions

In this subsection we describe the types of covering numbers we will need and
establish their connections to pseudodimensions of kernel families.

Definition 1. A subset Ã ⊂ A is called an ε-cover of A with respect to a distance
measure d, if for every a ∈ A there exists a ã ∈ Ã such that d(a, ã) < ε. The
covering number Nd(A, ε) is the size of the smallest ε-cover of A.

To derive bounds for the multi-task setting we will use covers of Hn with respect
to �∞ metric associated with a sample x ∈ X(n,m):

dx∞(h, h̃) = max
i=1...n

max
j=1...m

|hi(xij) − h̃i(xij)| < ε. (7)

The corresponding uniform covering number N(n,m)(Hn, ε) is given by consider-
ing all possible samples x ∈ X(n,m):

N(n,m)(Hn, ε) = max
x∈X(n,m)

Ndx∞(Hn, ε). (8)

In contrast, for the lifelong learning scenario we will need covers of the kernel
family K with respect to a probability distribution. For any probability distribu-
tion P over X ×Y , we denote its projection on X by PX and define the following
distance between the kernels:

DP (K, K̃)=max{ max
h∈FK

min
h′∈FK̃

E
x∼PX

|h(x)−h′(x)|, max
h′∈FK̃

min
h∈FK

E
x∼PX

|h(x)−h′(x)|}.

(9)
Similarly, for any set of n distributions P = (P1, . . . , Pn) we define:

DP(K, K̃) = max
i=1...n

DPi
(K, K̃). (10)

The minimal size of the corresponding ε-cover of a set of kernels K we will
denote by NDP

(K, ε) and the corresponding uniform covering number by by
N(D,n)(K, ε) = max(P1,...,Pn) NDP

(K, ε).
In order to make the guarantees given by the generalization bounds, that we

provide, more intuitively appealing we state them using a natural measure of
complexity of kernel families, namely, pseudodimension [4]:

Definition 2. The class K pseudo-shatters the set of n pairs of points
(x1, x

′
1), . . . , (xn, x′

n) if there exist thresholds t1, . . . , tn such that for any
b1, . . . , bn ∈ {−1,+1} there exists K ∈ K such that sign(K(xi, x

′
i) − ti) = bi.

The pseudodimension dφ(K) is the largest n such that there exists a set of n
pairs pseudo-shattered by K.

Multi-task and Lifelong Learning of Kernels 199

To do so we develop upper bounds on the covering numbers we use in terms
of the pseudodimension of the kernel family K. First, we prove the result for
N(n,m)(Hn, ε) that will be used in the multi-task setting:

Lemma 1. For any set K of kernels bounded by B(K(x, x) ≤ B for all K ∈ K
and all x) with pseudodimension dφ the following inequality holds:

N(n,m)(Hn, ε) ≤ 2n
(4en2m3B

ε2dφ

)dφ
(16mB

ε2

) 64Bn
ε2

log
(

eεm
8

√
B

)
.

In order to prove this result, we first introduce some additional notation. For a
sample x = (x1, . . . , xm) ∈ Xm we define l∞ distance between two functions:

dx∞(f1, f2) = max
i=1...m

|f1(xi) − f2(xi)|. (11)

Then the corresponding uniform covering number is:

Nm(F , ε) = sup
x∈Xm

Ndx∞(F , ε) (12)

We also define l∞ distance between kernels with respect to a sample x =
(x1, . . . ,xn) ∈ X(n,m) with the corresponding uniform covering number:

Dx
∞(K, K̂) = max

i
|Kxi

− K̂xi
|∞, N(n,m)(K, ε) = sup

x∈X(n,m)
NDx∞(K, ε).

In contrast, in [4] the distance between two kernels is defined based on a single
sample x = (x1, . . . , xm) of size m:

Dx
∞(K, K̂) = |Kx − K̂x|∞ (13)

and the corresponding covering number is Nm(K, ε). Note that this definition is
in strong relation with ours: N(n,m)(K, ε) ≤ Nmn(K, ε), and therefore, by Lemma
3 in [4]:

N(n,m)(K, ε) ≤ Nnm(K, ε) ≤
(en2m2B

εdφ

)dφ

(14)

for any kernel family K bounded by B with pseudodimension dφ. Now we can
prove Lemma 1:

Proof (of lemma 1). Fix x = (x1, . . . ,xn) ∈ X(n,m). Define εK = ε2/4m and
εF = ε/2. Let K̃ be an εK-net of K with respect to Dx

∞. For every K̃ ∈ K̃ and
every i = 1 . . . n let F̃ i

K̃
be an εF -net of F̃K̃with respect to dxi∞. Now fix some

f ∈ H
n. Then there exists a kernel K such that f = (f1, . . . , fn) ∈ Fn

K . Therefore
there exists a kernel K̃ ∈ K̃ such that |Kxi

− K̃xi
|∞ < εK for every i. By Lemma

1 in [4] fi(xi) = K
1/2
xi wi for some unit norm vector wi for every i. Therefore for

f̃i(xi)
def= K̃

1/2
xi wi ∈ FK̃ we obtain that:

dxi∞(fi, f̃i) = max
j

|fi(xij) − f̃i(xij)| ≤ ||fi(xi) − f̃i(xi)|| =

||K1/2
xi

wi − K̃1/2
xi

wi|| ≤
√

m|Kxi
− K̃xi

|∞ ≤ √
mεK .

200 A. Pentina and S. Ben-David

In addition, for every f̃i ∈ FK̃ there exists ˜̃
fi ∈ F̃ i

K̃
such that dxi∞(f̃i,

˜̃
fi) < εF .

Finally, if we define ˜̃
f = (˜̃

f1, . . . ,
˜̃
fn) ∈ F̃1

K̃
× · · · × F̃n

K̃
, we obtain:

dx∞(f,
˜̃
f) = max

i
dxi∞(fi,

˜̃
fi) ≤ max

i
(dxi∞(fi, f̃i) + dxi∞(f̃i,

˜̃
fi)) <

√
mεK + εF = ε.

The above shows that F̃K = ∪K̃∈K̃F̃1
K̃

× · · · × F̃n
K̃

is an ε-net of Hn with respect
to x. Now the statement follows from (14) and the fact that for any FK with
bounded by B kernel K([4,8]):

Nm(FK , ε) ≤ 2
(
4mB/ε2

) 16B
ε2

log2

(
εem
4

√
B

)
(15)

��
Analogously we develop an upper bound on the covering number N(D,n)(K, ε),
which we will use for the lifelong learning scenario:

Lemma 2. There exists a constant C such that for any kernel family K bounded
by B with pseudodimension dφ:

N(D,n)(K, ε) ≤
(
Cn5d5φ

(√
B/ε
)17)dφ

. (16)

The proof of this result is based on the following lemma that connects
sample-based and distribution-based covers of kernel families (for the proof see
Appendix A):

Lemma 3. For any probability distribution P over X × Y and any B-bounded
set of kernels K with pseudo-dimension dφ there exists a sample x of size m =
cd2φB5/2/ε5 for some constant c, such that for every K, K̃ if Dx

1 (K, K̃) < ε/2,
then DP (K, K̃) < ε (where Dx

1 is the same as DP , but all expectations over P
are substituted by empirical averages over x).

Proof (of lemma 2). Fix some set of probability distributions P = (P1, . . . , Pn).
For every Pi denote a sample described by Lemma 3 by xi. Let K̃ be an
ε/2n-cover of K with respect to Dx

1 , where x = (x1, . . . ,xn) ∈ Xmn and
m = cd2φB5/2/ε5. Then the following chain of inequalities holds:

max
h∈FK

min
h′∈FK̃

1
mn

n∑

i=1

m∑

j=1

|h(xij) − h′(xij)| ≤ max
h

min
h′

||h(x) − h′(x)|| ≤

max
w

||K 1
2
x w − K̃

1
2
x w|| ≤ ||K 1

2
x − K̃

1
2
x ||2 ≤

√
||Kx − K̃x||2 ≤

√
mn|Kx − K̃x|∞.

Consequently, by Lemma 3 in [4]:

|K̃| ≤ N(ε/2n,K,Dx
1) ≤

(
4em3n5B

ε2dφ

)dφ

=
(

Cn5d5φ

(√
B/ε
)17)dφ

. (17)

Multi-task and Lifelong Learning of Kernels 201

It is left to show that K̃ is an ε-cover of K with respect to DP. By definition,
for every K ∈ K there exists K̃ ∈ K̃ such that Dx

1 (K, K̃) < ε/2n. Therefore for
every i = 1 . . . n:

max
h∈FK

min
h′∈FK̃

1
m

m∑

j=1

|h(xij) − h′(xij)| ≤ max
h∈FK

min
h′∈FK̃

n

mn

∑

i,j

|h(xij) − h′(xij)|< ε

2
.

Consequently, by Lemma 3, DPi
(K, K̃) < ε for all i = 1 . . . n. ��

2.3 Pseudodimensions of Various Families of Kernels

In [4] the authors have shown the upper bounds on the pseudodimensions of
some families of kernels:

– convex or linear combinations of k kernels have pseudodimension at most k
– Gaussian families with learned covariance matrix in R

� have dφ ≤ �(�+1)/2
– Gaussian families with learned low-rank covariance have dφ ≤ kl log2(8ekl),

where k is the maximum rank of the covariance matrix

Here we extend their analysis to the case of sparse combinations of kernels.

Lemma 4. Let K1, . . . , KN be N kernels and let K = {∑N
i=1 wiKi :

∑N
i=1 wi =

1 and
∑N

i=1[wi �= 0] ≤ k}. Then:
dφ(K) ≤ 2k log(k) + 2k log(4eN) (18)

Proof. For every kernel K define a function BK : X × X × R → {−1, 1}:

BK(x, x̄, t) = sign(K(x, x̄) − t) (19)

and denote a set of such functions for all K ∈ K by B. Then dφ(K) = V Cdim(B).
For every index set 1 ≤ i1 < · · · < ik ≤ N define Ki to be a set of all linear

combinations of Ki1 , . . . , Kik
. Then: K = ∪iKi and dφ(Ki) ≤ k. Moreover, there

are
(
N
k

) ≤ (Ne
k

)k
of possible sets of indices i. Therefore B can also be seen as

a union of at most
(

Ne
k

)k
sets with VC-dimension at most k. VC-dimension of

a union of r classes of VC-dimension at most d is at most 4d log(2d) + 2 log(r).
The statement of the lemma is obtained by setting r =

(
Ne
k

)k
and d = k. ��

3 Multi-task Kernel Learning

We start with formulating the result using covering number N(n,m)(Hn, ε):

Theorem 1. For any ε > 0, if m > 2/ε2, we have that:

Pr {∃h ∈ H
n : er(h) > êrγ

z (h) + ε} ≤ 2N(n,2m)(Hn, γ/2) exp
(

−nmε2

8

)
. (20)

202 A. Pentina and S. Ben-David

Proof. We utilize the standard 3-steps procedure (see Theorem 10.1 in [8]). If
we denote:

Q =
{

z ∈ Z(n,m) : ∃h ∈ H
n : er(h) > êrγ

z (h) + ε
}

R =
{

z = (r, s) ∈ Z(n,m) × Z(n,m) : ∃h ∈ H
n : êrs(h) > êrγ

r (h) + ε/2
}

,

then according to the symmetrization argument Pr(Q) ≤ 2Pr(R). Therefore,
instead of bounding the probability of Q, we can bound the probability of R.

Next, we define Γ2m to be a set of permutations σ on the set
{(1, 1), . . . , (n, 2m)} such that {σ(i, j), σ(i,m+ j)} = {(i, j), (i,m+j)} for every
1 ≤ i ≤ n and 1 ≤ j ≤ m. Then Pr(R) ≤ maxz∈Z(2m,n) Prσ(σz ∈ R).

Now we proceed with the last step - reduction to a finite class. Fix z ∈ Z(n,2m)

and the corresponding x = (xij) ∈ X(n,2m). Let T be a γ/2-cover of Hn with
respect to dx∞ and fix σz ∈ R. By definition there exists h ∈ H

n such that
êrs(h) > êrγ

r (h) + ε/2, where (r, s) = σz. We can rewrite it as:

1
n

n∑

i=1

1
m

2m∑

j=m+1

�hi(xσ(ij))yσ(ij) < 0� >
1
n

n∑

i=1

1
m

m∑

j=1

�hi(xσ(ij))yσ(ij) < γ� + ε/2.

If we denote by h̃ the function in the cover T corresponding to h, then the
following inequalities hold:

if h̃i(xij)yij <
γ

2
, then hi(xij)yij < γ; if hi(xij)yij < 0, then h̃i(xij)yij <

γ

2
.

By combining them with the previous inequality we obtain that:

1
n

n∑

i=1

1
m

2m∑

j=m+1

�h̃i(xσ(ij))yσ(ij) <
γ

2
�>

1
n

n∑

i=1

1
m

m∑

j=1

�h̃i(xσ(ij))yσ(ij) <
γ

2
�+

ε

2
.

Now, if we define the following indicator: v(h̃, i, j) = �h̃i(xij)yij < γ/2�, then:

Pr
σ

{σz ∈R}≤Pr
σ

⎧
⎨

⎩∃h̃∈T :
1
n

n∑

i=1

1
m

m∑

j=1

(v(h̃, σ(i,m+j))−v(h̃, σ(i, j)))>
ε

2

⎫
⎬

⎭

≤ |T |max
h̃∈T

Pr
β

⎧
⎨

⎩
1
n

n∑

i=1

1
m

m∑

j=1

|v(h̃, i,m + j) − v(h̃, i, j)|βij > ε/2

⎫
⎬

⎭ = (∗),

where βij are independent random variables uniformly distributed over {−1, 1}.
Then {|v(h̃, i,m+ j)− v(h̃, i, j)|βij} are nm independent random variables that
take values between −1 and 1 and have zero mean. Therefore by Hoeffding’s
inequality:

(∗) ≤ |T | exp
(

−2(nm)2ε2/4
mn · 4

)
= |T | exp

(
−nmε2

8

)
.

By noting that |T | ≤ N(n,2m)(Hn, γ/2), we conclude the proof of Theorem 1. ��

Multi-task and Lifelong Learning of Kernels 203

By using the same technique as for proving Theorem 1, we can obtain a lower
bound on the difference between the empirical error rate êrγ

z (h) and the expected
error rate with double margin:

er2γ(h) =
1
n

n∑

i=1

E(x,y)∼Pi
�yhi(x) < 2γ�. (21)

Theorem 2. For any ε > 0, if m > 2/ε2, the following holds:

Pr
{∃h ∈ H

n : er2γ(h) < êrγ
z (h) − ε

}≤2N(n,2m)(Hn, γ/2) exp
(
−nmε2

8

)
. (22)

Now, by combining Theorems 1, 2 and Lemma 1 we can state the final result for
the multi-task scenario in terms of pseudodimensions:

Theorem 3. For any probability distributions P1, . . . , Pn over X × {−1,+1},
any kernel family K, bounded by B with pseudodimension dφ, and any fixed
γ > 0, for any ε > 0, if m > 2/ε2, then, for a sample z generated by Πn

i=1(Pi)m:

Pr
{∀ h ∈ H

n er2γ(h) + ε ≥ êrγ
z (h) ≥ er(h) − ε

} ≥ 1 − δ, (23)

where

ε =

√

8
2 log 2−log δ

n + log 2 + dφ

n log 128en2m3B
γ2dφ

+ 256B
γ2 log γem

8
√

B
log 128mB

γ2

m
. (24)

Discussion: The most significant implications of this result are for the case
where there exists some kernel K ∈ K that has low approximation error for
each of the tasks Pi (this is what makes the tasks “related” and, therefore, the
multi-task approach advantageous). In such a case, the kernel that minimizes
the average error over the set of tasks is a useful kernel for each of these tasks.

1. Maybe the first point to note about the above generalization result is that as
the number of tasks (n) grows, while the number of examples per task (m)
remains constant, the error bound behaves like the bound needed to learn
with respect to a single kernel. That is, if a learner wishes to learn some
specific task Pi, and all the learner knows is that in the big family of kernels
K, there exists some useful kernel K for Pi that is also good on average
over the other tasks, then the training samples from the other tasks allow
the learner of Pi to learn as if he had access to a specific good kernel K.

2. Another worthwhile consequence of the above theorem is that it shows the
usefulness of an empirical risk minimization approach. Namely,

Corollary 1. Let ĥ be a minimizer, over H
n, of the empirical γ-margin

loss, êrγ
z (h). Then for any h∗ ∈ H

n (and in particular for a minimizer over
H

n of the true 2γ-loss er2γ(h)):

er(ĥ) ≤ er2γ(h∗) + 2ε.

204 A. Pentina and S. Ben-David

Proof. The result is implied by the following chain of inequalities:

er(ĥ) − ε ≤1 êrγ(ĥ) ≤2 êrγ(h∗) ≤3 er2γ(h∗) + ε

where (≤1) and (≤3) follow from the above theorem and (≤2) follows from
the definition of an empirical risk minimizer. ��

4 Lifelong Kernel Learning

In this section we generalize the results of the previous section to the case of lifelong
learning in two steps. First, note that by using the same arguments as for proving
Theorem 1 we can obtain a bound on the difference between êr2γ

z (FK) and:

êrγ
P(FK) =

1
n

n∑

i=1

inf
h∈FK

E(x,y)∼Pi
�h(x)y < γ�. (25)

Therefore the only thing that is left is a bound on the difference between er(FK)
and êrγ

P(FK).
We will use the following notation:

erP (FK) = inf
h∈FK

E(x,y)∼P �h(x)y < 0�, erγ
P (FK) = inf

h∈FK

E(x,y)∼P �h(x)y < γ�

and proceed in a way analogous to the proof of Theorem 1. First, if we define:

Q = {P = (P1, . . . , Pn) ∈ Pn ∃FK : er(FK) > êrγ
P(FK) + ε}

R = {z = (r, s) ∈ P2n ∃FK : êrs(FK) > êrγ
r (FK) + ε/2},

then according to the symmetrization argument Pr(Q) ≤ 2Pr(R).
Now, if we define Γ2n to be a set of permutations σ on a set {1, 2, . . . , 2n},

such that {σ(i), σ(n + i)} = {i, n+ i} for all i = 1 . . . n, we obtain that Pr(R) ≤
maxz Prσ(σz ∈ R), if n > 2/ε2. So, the only thing that is left is reduction to a
finite class.

Fix z and denote by K̃ ⊂ K a set of kernels, such that for every K ∈ K there
exists a K̃ ∈ K̃ such that:

erγ
Pi

(FK) + ε/8 ≥ er
γ/2
Pi

(FK̃) ≥ erPi
(FK) − ε/8 ∀i = 1 . . . n. (26)

Then, if FK is such that êrs(FK) > êrγ
r (FK) + ε/2, then the corresponding K̃

satisfies êrγ/2
s (FK̃) > êrγ/2

r (FK̃) + ε/4. Therefore:

Prσ{σz ∈ R} ≤ Prσ

{
∃K ∈ K̃ :

1
n

n∑

i=1

(erγ/2
Pσ(n+i)

(FK) − er
γ/2
Pσ(i)

(FK)) > ε/4

}
≤

|K̃| max
K∈K̃

Prσ

{
1
n

n∑

i=1

(erγ/2
Pσ(n+i)

(FK) − er
γ/2
Pσ(i)

(FK)) > ε/4

}
=

|K̃| max
K∈K̃

Prβ

{
1
n

n∑

i=1

|erγ/2
Pn+i

(FK) − er
γ/2
Pi

(FK)|βi > ε/4

}
= (∗),

Multi-task and Lifelong Learning of Kernels 205

where βi are independent random variables uniformly distributed over {−1,+1}.
As in the previous section, {|erγ/2

Pn+i
(FK)−er

γ/2
Pi

(FK)|βi} are n independent ran-
dom variables that take values between −1 and 1 and have zero mean. Therefore
by applying Hoeffding’s inequality we obtain:

(∗) ≤ |K̃| exp
(

−2n2ε2/16
4n

)
= |K̃| exp

(
−nε2

32

)
. (27)

To conclude the proof we need to understand how |K̃| behaves. For that we prove
the following lemma:

Lemma 5. For any set of probability distributions P = (P1, . . . , Pn) there exists
K̃ that satisfies condition of equation (26) and |K̃| ≤ N(D,n)(K, εγ/16).

Proof. Fix a set of distributions P = (P1, . . . , Pn) and denote by K̃ an εγ/16-
cover of K with respect to DP. Then |K̃| ≤ N(D,n)(K, εγ/16). By definition of a
cover for any kernel K ∈ K there exists K̃ ∈ K̃ such that DP(K, K̃) < εγ/16.
Equivalently, it means that for every K ∈ K there exists K̃ ∈ K̃ such that the
following two conditions hold for every i = 1 . . . n:

1.∀ h ∈ FK ∃h′ ∈ FK̃ : E(x,y)∼Pi
(|h(x) − h′(x)|) <

εγ

16
, (28)

2.∀ h′ ∈ FK̃ ∃h ∈ FK : E(x,y)∼Pi
(|h(x) − h′(x)|) <

εγ

16
. (29)

Fix some K and the corresponding kernel K̃ from the cover and take any Pi. By
Markov’s inequality applied to the first condition we obtain that for every h ∈
FK there exists a h′ ∈ FK̃ such that Pr{x ∼ Pi : |h(x) − h′(x)| > γ/2} < ε/8.
Then er

γ/2
Pi

(h′) ≤ erγ
Pi

(h) + ε/8. By applying the same argument to the second
condition we conclude that for every h′ ∈ FK̃ there exists a h ∈ FK such that
Pr{x ∼ Pi : |h(x) − h′(x)| > γ/2} < ε/8. Then erPi

(h) ≤ er
γ/2
Pi

(h′) + ε/8.
By definition of infinum êr2γ

z (FK) for every δ there exists h ∈ FK such that
erγ

Pi
(FK) + δ > erγ

Pi
(h) ≥ erγ

Pi
(FK). By above construction for such h there

exists h′ ∈ FK̃ such that erγ
Pi

(h) ≥ er
γ/2
Pi

(h′) − ε/8 ≥ er
γ/2
Pi

(FK̃) − ε/8. By
combining these inequalities we obtain that for every δ > 0 erγ

Pi
(FK) + δ >

er
γ/2
Pi

(FK̃) − ε/8, or, equivalently, erγ
Pi

(FK) ≥ er
γ/2
Pi

(FK̃) − ε/8. Analogously we

can get that er
γ/2
Pi

(FK̃) ≥ erPi
(FK) − ε/8. So, we obtain condition (26). ��

By combining the above Lemma with (27) we obtain the following result (the
second inequality can be obtain in a similar manner):

Theorem 4. For any ε > 0, if n > 2/ε2, the following holds:

Pr {∃K ∈ K : er(FK) > êrγ
P(FK) + ε} ≤ 2N(D,n)(K, εγ/16) exp

(
−nε2

32

)
,

P r
{∃K ∈ K : er2γ(FK) < êrγ

P(FK) − ε
} ≤ 2N(D,n)(K, εγ/16) exp

(
−nε2

32

)
.

206 A. Pentina and S. Ben-David

Note that by exactly following the proof of Theorem 1 one can obtain that:

Pr
{

∃K ∈ K êr
γ/2
P (FK) − êrγ

z (FK) >
ε

2

}
< 2N(n,2m)(Hn, γ/4) exp

(
−nmε2

32

)
.

Therefore, by combining the above result with its equivalent in the opposite
direction with Theorem 4 and Lemmas 1 and 2 we obtain the final result for the
lifelong kernel learning:

Theorem 5. For any task environment, any kernel family K, bounded by B with
pseudodimension dφ, any fixed γ > 0 and any ε > 0, if n > 8/ε2 and m > 8/ε2,
then:

Pr
{∀K ∈ K er2γ(FK) + ε ≥ êrγ

z (FK) ≥ er(FK) − ε
} ≥ 1 − δ, (30)

where

δ = 2n+2

(
512en2m3B

γ2dφ

)dφ
(

512mB

γ2

) 1024Bn
γ2 log

(
eγm

16
√

B

)

exp
(

−nmε2

32

)
+

4

⎛

⎝Cn5d5φ

(
64

√
B

εγ

)17
⎞

⎠
dφ

exp
(

−nε2

128

)
.

Discussion: As for the multi-task case, the most significant implications of
this result are for the case where there exists some kernel K ∈ K that has low
approximation error for all tasks in the environment. In such a case, the kernel
that minimizes the average error over the set of observed tasks is a useful kernel
for all the tasks.

1. First, note, that the only difference between Theorem 5 and Theorem 3 is
the presence of the second term. This additional complexity comes from the
fact that for the lifelong learner we are bounding the expected error on new,
yet unobserved tasks. Therefore we have to pay additionally for not knowing
exactly what these new tasks are going to be.

2. Second, the behavior of the above result is similar to that of Theorem 3 in
the limit of infinitely many observed tasks (n → ∞). In this case, the second
term vanishes, because by observing large enough amount of tasks the learner
gets the full knowledge about the task environment. The first term behaves
exactly the same as the one in Theorem 3: its part that depends on dφ

vanishes and therefore it converges to the complexity of learning one task as
if the learner would know a good kernel in advance.

3. This theorem also shows the usefulness of an empirical risk minimization
approach as we can obtain a corollary of exactly the same form as Corollary 1.

Multi-task and Lifelong Learning of Kernels 207

5 Conclusions

Multi-task and lifelong learning have been a topic of significant interest of
research in recent years and attempts for solving these problems in different
directions have been made. Methods of learning kernels in these scenarios have
been shown to lead to effective algorithms and became popular in applications.
In this work, we have established sample complexity error bounds that justify
this approach. Our results show that, under mild conditions on the used family
of kernels, by solving multiple tasks jointly the learner can “spread out” the
overhead associated with learning a kernel and as the number of observed tasks
grows, the complexity converges to that of learning when a good kernel was
known in advance. This work constitutes a step forward better understanding of
the conditions under which multi-task/lifelong learning is beneficial.

A Proof of Lemma 3

Define G =
{

g : X → [0, 1] : g(x) = |h(x)−h′(x)|√
B

for some h, h′ ∈ ∪FK

}
. Then

(using Lemma 2 and 3 in [5] and Theorem 1 in [4]):

Pr
{
x ∈ Xm : ∃K, K̃ : |Dx

1 (K, K̃) − DP (K, K̃)| > ε/2
}

≤

Pr

{
x∈Xm : ∃h, h′ ∈∪FK :

∣∣∣∣∣
1
m

m∑

i=1

|h(xi)−h′(xi)| − E
(x,y)∼P

|h(x)−h′(x)|
∣∣∣∣∣>

ε

2

}
=

Pr

{
x ∈ Xm : ∃g, g′ ∈ G :

∣∣∣∣∣
1
m

m∑

i=1

g(xi) − E(x,y)∼P g(x)

∣∣∣∣∣ > ε/2
√

B

}
≤

4max
x

N(
ε/32√

B
,G, dx1)e− ε2m

512B ≤4max
x

N(
ε

64
√

B
,∪FK/

√
B, dx1)2e−ε2m/512B =

4max
x

N(ε/64,∪FK , dx1)2e−ε2m/512B ≤ 4max
x

N(ε/64,∪FK , dx∞)2e−ε2m/512B ≤

4 · 4 · N(K, ε2/(642 · 4m))2 ·
(

16mB642

ε2

) 2·643B
ε2

log
(

εem
64∗8

√
B

)

e−ε2m/512B ≤

16
(

214em3B

ε2dφ

)2dφ
(

216mB

ε2

) 219B
ε2

log
(

εem
29

√
B

)

e−ε2m/512B = (∗∗)

For big enough m (∗∗) is less than 1, which means that there is a sample x ∈ Xm

such that for all kernels K, K̃ we have |Dx
1 (K, K̃) − DP (K, K̃)| ≤ ε/2. More

precisely, m should be bigger than cd2φB5/2/ε5 for some constant c. ��

Acknowledgments. This work was in parts funded by the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-
2013)/ERC grant agreement no 308036.

208 A. Pentina and S. Ben-David

References

1. Kloft, M., Blanchard, G.: On the convergence rate of lp-norm multiple kernel
learning. Journal of Machine Learning Research (2012)

2. Cortes, C., Mohri, M., Rostamizadeh, A.: Generalization bounds for learning ker-
nels. In: Proceedings of the International Conference on Machine Learning (2010)

3. Ying, Y., Campbell, C.: Generalization bounds for learning the kernel. In: Pro-
ceedings of the Workshop on Computational Learning Theory (2009)

4. Srebro, N., Ben-David, S.: Learning bounds for support vector machines with
learned kernels. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI),
vol. 4005, pp. 169–183. Springer, Heidelberg (2006)

5. Bartlett, P.L., Kulkarni, S.R., Posner, S.E.: Covering Numbers for Real-Valued
Function Classes. IEEE Transactions on Information Theory 43, 1721–1724
(1997)

6. Baxter, J.: A Model of Inductive Bias Learning. Journal of Artificial Intelligence
Research 12, 149–198 (2000)

7. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proceedings of the
International Conference on Knowledge Discovery and Data Mining (2004)

8. Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical Foundations.
Cambridge University Press (1999)

9. Argyriou, A., Evgeniou, T., Pontil, M.: Convex Multi-task Feature Learning.
Machine Learning 73 (2008)

10. Kumar, A., Daumé III, H.: Learning task grouping and overlap in multi-task
learning. In: Proceedings of the International Conference on Machine Learning
(2012)

11. Eaton, E., Ruvolo, P.L.: ELLA: an efficient lifelong learning algorithm. In: Pro-
ceedings of the International Conference on Machine Learning (2013)

12. Jebara, T.: Multi-task feature and kernel selection for SVMs. In: Proceedings of
the International Conference on Machine Learning (2004)

13. Jebara, T.: Multitask Sparsity via Maximum Entropy Discrimination. Journal of
Machine Learning Research (2011)

14. Gönen, M., Kandemir, M., Kaski, S.: Multitask learning using regularized multiple
kernel learning. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part II.
LNCS, vol. 7063, pp. 500–509. Springer, Heidelberg (2011)

15. Lampert, C.H., Blaschko, M.B.: A multiple kernel learning approach to joint
multi-class object detection. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096,
pp. 31–40. Springer, Heidelberg (2008)

16. Samek, W., Binder, A., Kawanabe, M.: Multi-task learning via non-sparse multi-
ple kernel learning. In: Computer Analysis of Images and Patterns (2011)

17. Rakotomamonjy, A., Flamary, R., Gasso, G., Canu, S.: lp-lq penalty for sparse lin-
ear and sparse multiple kernel multi-task learning. IEEE Transactions on Neural
Networks (2011)

18. Zhou, Y., Jin, R., Hoi, S.C.H.: Exclusive lasso for multi-task feature selection. In:
Proceedings of the Conference on Uncertainty in Artificial Intelligence (2010)

19. Maurer, A.: Transfer bounds for linear feature learning. Machine Learning 75
(2009)

Permutational Rademacher Complexity

A New Complexity Measure for Transductive Learning

Ilya Tolstikhin1(B), Nikita Zhivotovskiy2,3, and Gilles Blanchard4

1 Max-Planck-Institute for Intelligent Systems, Tübingen, Germany
ilya@tuebingen.mpg.de

2 Moscow Institute of Physics and Technology, Moscow, Russia
3 Institute for Information Transmission Problems, Moscow, Russia

nikita.zhivotovskiy@phystech.edu
4 Department of Mathematics, Universität Potsdam, Potsdam, Germany

gilles.blanchard@math.uni-potsdam.de

Abstract. Transductive learning considers situations when a learner
observes m labelled training points and u unlabelled test points with
the final goal of giving correct answers for the test points. This paper
introduces a new complexity measure for transductive learning called
Permutational Rademacher Complexity (PRC) and studies its properties.
A novel symmetrization inequality is proved, which shows that PRC
provides a tighter control over expected suprema of empirical processes
compared to what happens in the standard i.i.d. setting. A number of
comparison results are also provided, which show the relation between
PRC and other popular complexity measures used in statistical learning
theory, including Rademacher complexity and Transductive Rademacher
Complexity (TRC). We argue that PRC is a more suitable complexity
measure for transductive learning. Finally, these results are combined
with a standard concentration argument to provide novel data-dependent
risk bounds for transductive learning.

Keywords: Transductive learning · Rademacher complexity · Statisti-
cal learning theory · Empirical processes · Concentration inequalities

1 Introduction

Rademacher complexities ([14], [2]) play an important role in the widely used
concentration-based approach to statistical learning theory [4], which is closely
related to the analysis of empirical processes [21]. They measure a complexity of
function classes and provide data-dependent risk bounds in the standard i.i.d.
framework of inductive learning, thanks to symmetrization and concentration
inequalities. Recently, a number of attempts were made to apply this machinery
also to the transductive learning setting [22]. In particular, the authors of [10]
introduced a notion of transductive Rademacher complexity and provided an
extensive study of its properties, as well as general transductive risk bounds
based on this new complexity measure.
c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 209–223, 2015.
DOI: 10.1007/978-3-319-24486-0 14

210 I. Tolstikhin et al.

In the transductive learning, a learner observes m labelled training points and
u unlabelled test points. The goal is to give correct answers on the test points.
Transductive learning naturally appears in many modern large-scale applica-
tions, including text mining, recommender systems, and computer vision, where
often the objects to be classified are available beforehand. There are two different
settings of transductive learning, defined by V. Vapnik in his book [22, Chap.8].
The first one assumes that all the objects from the training and test sets are gen-
erated i.i.d. from an unknown distribution P . The second one is distribution free,
and it assumes that the training and test sets are realized by a uniform and ran-
dom partition of a fixed and finite general population of cardinality N := m + u
into two disjoint subsets of cardinalities m and u; moreover, no assumptions are
made regarding the underlying source of this general population. The second
setting has gained much attention1 ([22], [9], [7], [10], [8], and [20]), probably
due to the fact that any upper risk bound for this setting directly implies a risk
bound also for the first setting [22, Theorem8.1]. In essence, the second setting
studies uniform deviations of risks computed on two disjoint finite samples. Fol-
lowing Vapnik’s discussion in [6, p.458], we would also like to emphasize that
the second setting of transductive learning naturally appears as a middle step
in proofs of the standard inductive risk bounds, as a result of symmetrization or
the so-called double-sample trick. This way better transductive risk bounds also
translate into better inductive ones.

An important difference between the two settings discussed above lies in the
fact that the m elements of the training set in the second setting are inter-
dependent, because they are sampled uniformly without replacement from the
general population. As a result, the standard techniques developed for induc-
tive learning, including concentration and Rademacher complexities mentioned
in the beginning, can not be applied in this setting, since they are heavily based
on the i.i.d. assumption. Therefore, it is important to study empirical processes
in the setting of sampling without replacement.

Previous Work. A large step in this direction was made in [10], where the
authors presented a version of McDiarmid’s bounded difference inequality [5]
for sampling without replacement together with the Transductive Rademacher
Complexity (TRC). As a main application the authors derived an upper bound
on the binary test error of a transductive learning algorithm in terms of TRC.
However, the analysis of [10] has a number of shortcomings. Most importantly,
TRC depends on the unknown labels of the test set. In order to obtain com-
putable risk bounds, the authors resorted to the contraction inequality [15],
which is known to be a loose step [17], since it destroys any dependence on the
labels.

Another line of work was presented in [20], where variants of Talagrand’s con-
centration inequality were derived for the setting of sampling without replace-
ment. These inequalities were then applied to achieve transductive risk bounds
with fast rates of convergence o(m−1/2), following a localized approach [1]. In
contrast, in this work we consider only the worst-case analysis based on the
1 For the extensive overview of transductive risk bounds we refer the reader to [18].

Permutational Rademacher Complexity 211

global complexity measures. An analysis under additional assumptions on the
problem at hand, including Mammen-Tsybakov type low noise conditions [4], is
an interesting open question and left for future work.

Summary of Our Results. This paper continues the analysis of empirical pro-
cesses indexed by arbitrary classes of uniformly bounded functions in the setting
of sampling without replacement, initiated by [10]. We introduce a new com-
plexity measure called permutational Rademacher complexity (PRC) and argue
that it captures the nature of this setting very well. Due to space limitations we
present the analysis of PRC only for the special case when the training and test
sets have the same size m = u, which is nonetheless sufficiently illustrative2.

We prove a novel symmetrization inequality (Theorem 2), which shows that
the expected PRC and the expected suprema of empirical processes when sam-
pling without replacement are equivalent up to multiplicative constants. Quite
remarkably, the new upper and lower bounds (the latter is often called desym-
metrization inequality) both hold without any additive terms when m = u, in
contrast to the standard i.i.d. setting, where an additive term of order O(m−1/2)
is unavoidable in the lower bound. For TRC even the upper symmetrization
inequality [10, Lemma4] includes an additive term of the order O(m−1/2) and
no desymmetrization inequality is known. This suggests that PRC may be a
more suitable complexity measure for transductive learning. We would also like
to note that the proof of our new symmetrization inequality is surprisingly sim-
ple, compared to the one presented in [10].

Next we compare PRC with other popular complexity measures used in sta-
tistical learning theory. In particular, we provide achievable upper and lower
bounds, relating PRC to the conditional Rademacher complexity (Theorem 3).
These bounds show that the PRC is upper and lower bounded by the conditional
Rademacher complexity up to additive terms of orders o(m−1/2) and O(m−1/2)
respectively, which are achievable (Lemma 1). In addition to this, Theorem 3
also significantly improves bounds on the complexity measure called maximum
discrepancy presented in [2, Lemma 3]. We also provide a comparison between
expected PRC and TRC (Corollary 1), which shows that their values are close
up to small multiplicative constants and additive terms of order O(m−1/2).

Finally, we apply these results to obtain a new computable data-dependent
risk bound for transductive learning based on the PRC (Theorem 5), which holds
for any bounded loss functions. We conclude by discussing the advantages of the
new risk bound over the previously best known one of [10].

2 Notations

We will use calligraphic symbols to denote sets, with subscripts indicating their
cardinalities: card(Zm) = m. For any function f we will denote its average value
computed on a finite set S by f̄(S). In what follows we will consider an arbitrary

2 All the results presented in this paper are also available for the general m �= u case,
but we defer them to a future extended version of this paper.

212 I. Tolstikhin et al.

space Z (for instance, a space of input-output pairs) and class F of functions
(for instance, loss functions) mapping Z to R. Most of the proofs are deferred
to the last section for improved readability.

Arguably, one of the most popular complexity measures used in statistical
learning theory is the Rademacher complexity ([15], [14], [2]):

Definition 1 (Conditional Rademacher complexity). Fix any subset
Zm = {Z1, . . . , Zm} ⊆ Z. The following random quantity is commonly known
as a conditional Rademacher complexity:

R̂m(F,Zm) = E
ε

[
2
m

sup
f∈F

m∑

i=1

εif(Zi)

]
,

where ε = {εi}mi=1 are i.i.d. Rademacher signs, taking values ±1 with probabilities
1/2. When the set Zm is clear from the context we will simply write R̂m(F).

As discussed in the introduction, Rademacher complexities play an important
role in the analysis of empirical processes and statistical learning theory. How-
ever, this measure of complexity was devised mainly for the i.i.d. setting, which
is different from our setting of sampling without replacement. The following
complexity measure was introduced in [10] to overcome this issue:

Definition 2 (Transductive Rademacher complexity). Fix any set ZN =
{Z1, . . . , ZN} ⊆ Z, positive integers m,u such that N = m + u, and p ∈ [

0, 1
2

]
.

The following quantity is called Transductive Rademacher complexity (TRC):

R̂td
m+u(F,ZN , p) =

(
1
m

+
1
u

)
E
σ

[
sup
f∈F

N∑

i=1

σif(Zi)

]
,

where σ = {σ1}m+u
i=1 are i.i.d. random variables taking values ±1 with probabili-

ties p and 0 with probability 1 − 2p.

We summarize the importance of these two complexity measures in the analysis
of empirical processes when sampling without replacement in the following result:

Theorem 1. Fix an N -element subset ZN ⊆ Z and let m < N elements of
Zm be sampled uniformly without replacement from ZN . Also let m elements of
Xm be sampled uniformly with replacement from ZN . Denote Zu := ZN \ Zm

with u := card(Zu) = N − m. The following upper bound in terms of the i.i.d.
Rademacher complexity was provided in [20]:

E
Zm

sup
f∈F

(
f̄(Zu) − f̄(Zm)

) ≤ E
Xm

[
R̂m(F,Xm)

]
. (1)

The following bound in terms of TRC was provided in [10]. Assume that func-
tions in F are uniformly bounded by B. Then for p0 := mu

N2 and c0 < 5.05:

E
Zm

sup
f∈F

(
f̄(Zu) − f̄(Zm)

) ≤ R̂td
m+u(F,ZN , p0) + c0B

N
√

min(m,u)
mu

. (2)

Permutational Rademacher Complexity 213

While (1) did not explicitly appear in [20], it can be immediately derived using
[20, Corollary8] and i.i.d. symmetrization of [13, Theorem 2.1].

Finally, we introduce our new complexity measure:

Definition 3 (Permutational Rademacher complexity). Let Zm ⊆ Z be
any fixed set of cardinality m. For any n ∈ {1, . . . , m− 1} the following quantity
will be called a permutational Rademacher complexity (PRC):

Q̂m,n(F,Zm) = E
Zn

sup
f∈F

(
f̄(Zk) − f̄(Zn)

)
,

where Zn is a random subset of Zm containing n elements sampled uniformly
without replacement and Zk := Zm \ Zn. When the set Zm is clear from the
context we will simply write Q̂m,n(F).

The name PRC is explained by the fact that if m is even then the definitions
of Q̂m,m/2(F) and R̂m(F) are very similar. Indeed, the only difference is that the
expectation in the PRC is over the randomly permuted sequence containing equal
number of “ − 1” and “ + 1”, whereas in Rademacher complexity the average is
w.r.t. all the possible sequences of signs. The term “permutation complexity” has
already appeared in [16], where it was used to denote a novel complexity measure
for a model selection. However, this measure was specific to the i.i.d. setting and
binary loss. Moreover, the bounds presented in [16] were of the same order as
the risk bounds based on the Rademacher complexity with worse constants in
the slack term.

3 Symmetrization and Comparison Results

We start with showing a version of the i.i.d. symmetrization inequality (refer-
ences can be found in [15], [13]) for the setting of sampling without replacement.
It shows that the expected supremum of empirical processes in this setting is up
to multiplicative constants equivalent to the expected PRC.

Theorem 2. Fix an N -element subset ZN ⊆ Z and let m < N elements of Zm

be sampled uniformly without replacement from ZN . Denote Zu := ZN \Zm with
u := card(Zu) = N −m. If m = u and m is even then for any n ∈ {1, . . . , m−1}:

1
2 E

Zm

[
Q̂m,m/2(F,Zm)

]
≤ E

Zm

sup
f∈F

(
f̄(Zu) − f̄(Zm)

) ≤ E
Zm

[
Q̂m,n(F,Zm)

]
.

The inequalities also hold if we include absolute values inside the suprema.

Proof. The proof can be found in Sect. 5.1.

This inequality should be compared to the previously known complexity bounds
of Theorem 1. First of all, in contrast to (1) and (2) the new bound provides
a two sided control, which shows that PRC is a “correct” complexity measure
for our setting. It is also remarkable that the lower bound (commonly known

214 I. Tolstikhin et al.

as the desymmetrization inequality) does not include any additive terms, since
in the standard i.i.d. setting the lower bound holds only up to an additive term
of order O(m−1/2) [13, Sect.2.1]. Also note that this result does not assume the
boundedness of functions in F , which is a necessary assumptions both in (2) and
in the i.i.d. desymmetrization inequality.

Next we compare PRC with the conditional Rademacher complexity:

Theorem 3. Let Zm ⊆ Z be any fixed set of even cardinality m. Then:

Q̂m,m/2(F,Zm) ≤
(

1 +
2√

2πm − 2

)
R̂m(F,Zm). (3)

Moreover, if the functions in F are absolutely bounded by B then
∣∣∣Q̂m,m/2(F,Zm) − R̂m(F,Zm)

∣∣∣ ≤ 2B√
m

. (4)

The results also hold if we include absolute values inside suprema in Q̂m,n, R̂m.

Proof. Conceptually the proof is based on the coupling between a sequence
{εi}mi=1 of i.i.d. Rademacher signs and a uniform random permutation {ηi}mi=1 of
a set containing m/2 plus and m/2 minus signs. This idea was inspired by the
techniques used in [11]. The detailed proof can be found in Sect. 5.2.

Note that a typical order of R̂m(F) is O(m−1/2), thus the multiplicative
upper bound (3) can be much tighter than the upper bound of (4). We would
also like to note that Theorem 3 significantly improves bounds of Lemma 3
in [2], which relate the so-called maximal discrepancy measure of the class F to
its Rademacher complexity (for the further discussion we refer to Appendix).

Our next result shows that bounds of Theorem 3 are essentially tight.

Lemma 1. Let Zm ⊆ Z with even m. There are two finite classes F ′
m and F ′′

m

of functions mapping Z to R and absolutely bounded by 1, such that:

Q̂m,m/2(F ′
m,Zm) = 0, (2m)−1/2 ≤ R̂m(F ′

m,Zm) ≤ 2m−1/2; (5)

Q̂m,m/2(F ′′
m,Zm) = 1, 1 −

√
2

πm
≤ R̂m(F ′′

m,Zm) ≤ 1 − 4
5

√
2

πm
. (6)

Proof. The proof can be found in Sect. 5.3.

Inequalities (5) simultaneously show that (a) the order O(m−1/2) of the additive
bound (4) can not be improved, and (b) the multiplicative upper bound (3) can
not be reversed. Moreover, it can be shown using (6) that the factor appearing
in (3) can not be improved to 1 + o(m−1/2).

Finally, we compare PRC to the transductive Rademacher complexity:

Lemma 2. Fix any set ZN = {Z1, . . . , ZN} ⊆ Z. If m = u and N = m + u:

R̂N (F,ZN) ≤ R̂td
m+u (F,ZN , 1/4) ≤ 2R̂N (F,ZN).

Permutational Rademacher Complexity 215

Proof. The upper bound was presented in [10, Lemma 1]. For the lower bound,
notice that if p = 1/4 the i.i.d. signs σi presented in Definition 2 have the same
distribution as εiηi, where εi are i.i.d. Rademacher signs and ηi are i.i.d. Bernoulli
random variables with parameters 1/2. Thus, Jensen’s inequality gives:

R̂td
m+u (F,ZN , 1/4) =

4
N

E
(ε,η)

[
sup
f∈F

m+u∑

i=1

εiηif(Zi)

]
≥ 4

N
E
ε

[
sup
f∈F

m+u∑

i=1

εi
1
2
f(Zi)

]
.

Together with Theorems 2 and 3 this result shows that when m = u the PRC
can not be much larger than transductive Rademacher complexity:

Corollary 1. Using notations of Theorem 2, we have:

E
Zm

[
Q̂m,m/2(F,Zm)

]
≤

(
2 +

4√
2πN − 2

)
R̂td

m+u(F,ZN , 1/4).

If functions in F are uniformly bounded by B then we also have a lower bound:

E
Zm

[
Q̂m,m/2(F,Zm)

]
≥ 1

2
R̂td

m+u(F,ZN , 1/4) +
2B√
N

.

Proof. Simply notice that EZm

[
supf∈F

(
f̄(Zu) − f̄(Zm)

)]
= Q̂N,m(F,ZN).

4 Transductive Risk Bounds

Next we will use the results of Sect. 3 to obtain a new transductive risk bound.
First we will shortly describe the setting.

We will consider the second, distribution-free setting of transductive learning
described in the introduction. Fix any finite general population of input-output
pairs ZN = {(xi, yi)}Ni=1 ⊆ X ×Y, where X and Y are arbitrary input and output
spaces. We make no assumptions regarding underlying source of ZN . The learner
receives the labeled training set Zm consisting of m < N elements sampled
uniformly without replacement from ZN . The remaining test set Zu := ZN \Zm

is presented to the learner without labels (we will use Xu to denote the inputs of
Zu). The goal of the learner is to find a predictor in the fixed hypothesis class
H based on the training sample Zm and unlabelled test points Xu, which has
a small test risk measured using bounded loss function � : Y × Y → [0, 1]. For
h ∈ H and (x, y) ∈ ZN denote �h(x, y) = �

(
h(x), y

)
and also denote the loss

class LH = {�h : h ∈ H}. Then the test and training risks of h ∈ H are defined
as erru(h) := �h(Zu) and errm(h) := �h(Zm) respectively.

Following risk bound in terms of TRC was presented in [10, Corollary 2]:

Theorem 4 ([10]). If m = u then with probability at least 1−δ over the random
training set Zm any h ∈ H satisfies:

erru(h) ≤ errm(h) + R̂td
m+u (LH,ZN , 1/4) + 11

√
2
N

+

√
2N log(1/δ)
(N − 1/2)2

. (7)

216 I. Tolstikhin et al.

Using results of Sect. 3 we obtain the following risk bound:

Theorem 5. If m = u and n ∈ {1, . . . , m − 1} then with probability at least
1 − δ over the random training set Zm any h ∈ H satisfies:

erru(h) ≤ errm(h) + E
Sm

[
Q̂m,n(LH,Zm)

]
+

√
2N log(1/δ)
(N − 1/2)2

. (8)

Moreover, with probability at least 1 − δ any h ∈ H satisfies:

erru(h) ≤ errm(h) + Q̂m,n(LH,Zm) + 2

√
2N log(2/δ)
(N − 1/2)2

. (9)

Proof. The proof can be found in Sect. 5.4.

We conclude by comparing risk bounds of Theorems 5 and 4:
1. First of all, the upper bound of (9) is computable. This bound is based

on the concentration argument, which shows that the expected PRC (appearing
in (8)) can be nicely estimated using the training set. Meanwhile, the upper
bound of (7) depends on the unknown labels of the test set through TRC.
In order to make it computable the authors of [10] resorted to the contraction
inequality, which allows to drop any dependence on the labels for Lipschitz losses,
which is known to be a loose step [17].

2. Moreover, we would like to note that for binary loss function TRC (as well
as the Rademacher complexity) does not depend on the labels at all. Indeed,
this can be shown by writing �01(y, y′) = (1 − yy′)/2 for y, y′ ∈ {−1,+1} and
noting that σi and σiy are identically distributed for σi used in Definition 2.
This is not true for PRC, which is sensitive to the labels even in this setting. As
a future work we hope to use this fact for analysis in the low noise setting [4].

3. The slack term appearing in (8) is significantly smaller than the one of (7).
For instance, if δ = 0.01 then the latter is 13 times larger. This is caused by the
additive term in symmetrization inequality (2). At the same time, Corollary 1
shows that the complexity term appearing in (8) is at most two times larger
than TRC, appearing in (7).

4. Comparison result of Theorem 3 shows that the upper bound of (9) is also
tighter than the one which can be obtained using (1) and conditional Rademacher
complexity.

5. Similar upper bounds (up to extra factor of 2) also hold for the excess risk
erru(hm) − infh∈H erru(h), where hm minimizes the training risk errm over H.
This can be proved using a similar argument to Theorem 5.

6. Finally, one more application of the concentration argument can simplify
the computation of PRC, by estimating the expected value appearing in Defini-
tion 3 with only one random partition of Zm.

Permutational Rademacher Complexity 217

5 Full Proofs

5.1 Proof of Theorem 2

Lemma 3. For 0 < m ≤ N let Sm := {s1, . . . , sm} be sampled uniformly with-
out replacement from a finite set of real numbers C = {c1, . . . , cN} ⊂ R. Then:

E
Sm

[
1
m

m∑

i=1

si

]
=

1(
N
m

)
∑

Sm⊆C

1
m

∑

z∈Sm

z =
1

m
(
N
m

)
N∑

i=1

(
N − 1
m − 1

)
ci =

1
N

N∑

i=1

ci.

Proof (of Theorem 2). Fix any positive integers n and k such that n + k = m,
which implies n < m and k < m = u. Note that Lemma 3 implies:

f̄(Zu) = E
Sk

[
f̄(Sk)

]
, f̄(Zm) = E

Sn

[
f̄(Sn)

]
,

where Sk and Sn are sampled uniformly without replacement from Zu and Zm

respectively. Using Jensen’s inequality we get:

E
Zm

sup
f∈F

(
f̄(Zu) − f̄(Zm)

)
= E

Zm

sup
f∈F

(
E
Sk

[
f̄(Sk)

] − E
Sn

[
f̄(Sn)

])

≤ E
(Zm,Sk,Sn)

sup
f∈F

(
f̄(Sk) − f̄(Sn)

)
. (10)

The marginal distribution of (Sk,Sn), appearing in (10), can be equivalently
described by first sampling Zm from ZN , then Sn from Zm (both times uniformly
without replacement), and setting Sk := Zm \ Sn (recall that n + k = m). Thus

E
(Zm,Sk,Sn)

sup
f∈F

(
f̄(Sk) − f̄(Sn)

)
= E

Zm

[

E
Sn

[
sup
f∈F

(
f̄(Zm \ Sn) − f̄(Sn)

)∣∣∣∣Zm

]]
,

which completes the proof of the upper bound.
We have shown that for n ∈ {1, . . . , m − 1} and k := m − n:

E
Zm

[
Q̂m,n(F,Zm)

]
= E

(Zk,Zn)
sup
f∈F

(
f̄(Zk) − f̄(Zn)

)
, (11)

where Zn and Zk are sampled uniformly without replacement from ZN and
ZN \ Zn respectively. Let Zm−n be sampled uniformly without replacement
from ZN \ (Zn ∪Zk) and let Zu−k be the remaining u−k elements of ZN . Using
Lemma 3 once again we get:

E

[
f̄(Zm−n)

∣∣(Zn,Zk)
]

= E

[
f̄(Zu−k)

∣∣(Zn,Zk)
]
.

We can rewrite the r.h.s. of (11) as:

E
(Zn,Zk)

sup
f∈F

(
f̄(Zk) − f̄(Zn) + E

[
f̄(Zu−k) − f̄(Zm−n)

∣∣(Zn,Zk)
])

≤ E sup
f∈F

(
f̄(Zk) − f̄(Zn) + f̄(Zu−k) − f̄(Zm−n)

)
,

218 I. Tolstikhin et al.

where we have used Jensen’s inequality. If we take n∗ = k∗ = m/2 we get

E
Zm

[
Q̂m,m/2(F,Zm)

]
≤ E sup

f∈F

(
2f̄(Zk∗ ∪ Zu−k∗) − 2f̄(Zn∗ ∪ Zm−n∗)

)
.

It is left to notice that the random subsets Zk∗ ∪ Zu−k∗ and Zn∗ ∪ Zm−n∗ have
the same distributions as Zu and Zm.

5.2 Proof of Theorem 3

Let m = 2 · n, ε = {εi}mi=1 be i.i.d. Rademacher signs, and η = {ηi}mi=1 be a
uniform random permutation of a set containing n plus and n minus signs. The
proof of Theorem 3 is based on the coupling of random variables ε and η, which
is described in Lemma 4. We will need a number of definitions. Consider binary
cube Bm := {−1,+1}m. Denote Sm := {v ∈ Bm :

∑m
i=1 vi = 0}, which is a set

of all the vectors in Bm having equal number of plus and minus signs. For any
v ∈ Bm denote ‖v‖1 =

∑m
i=1 |vi| and consider the following set:

T (v) = arg min
v′∈Sm

‖v − v′‖1,

which consists of the points in Sm closest to v in Hamming metric. For any
v ∈ Bm let t(v) be a random element of T (v), distributed uniformly. We will use
ti(v) to denote i-th coordinate of the vector t(v).

Remark 1. If v ∈ Sm then T (v) = {v}. Otherwise, T (v) will clearly contain
more than one element of Sm. Namely, it can be shown, that if for some positive
integer q it holds that

∑m
i=1 vi = q, then q is necessarily even and T (v) consists

of all the vectors in Sm which can be obtained by replacing q/2 of +1 signs in v

with −1 signs, and thus in this case card
(
T (v)

)
=

(
(m+q)/2

q/2

)
.

Lemma 4 (Coupling). Assume that m = 2 ·n. Then the random sequence t(ε)
has the same distribution as η.

Proof. Note that the support of t(ε) is equal to Sm. From symmetry it is easy
to conclude that the distribution of t(ε) is exchangable. This means that it is
invariant under permutations and as a consequence uniform on Sm.

Next result is in the core of the multiplicative upper bound (3).

Lemma 5. Assume that m = 2 · n. For any q ∈ {1, . . . , m} the following holds:

E[εq|t(ε)] =
(

1 − 2−m

(
m

n

))
tq(ε) ≥

(
1 − 2(2πm)−1/2

)
tq(ε).

Proof. We will first upper bound P{εq �= tq(ε)|t(ε) = e}, where e = {ei}mi=1 is
(w.l.o.g.) a sequence of n plus signs followed by a sequence of n minus signs.

P{εq �= tq(ε)|t(ε) = e} =
P{εq �= tq(ε) ∩ t(ε) = e}

P{t(ε) = e}
=

(
m

n

)
2−m

∑

s

P{εq �= tq(ε) ∩ t(ε) = e|ε = s}, (12)

Permutational Rademacher Complexity 219

where we have used Lemma 4 and the sum is over all different sequences of m
signs s = {si}mi=1. For any s denote S(s) =

∑n
j=1 sj and consider terms in (12)

corresponding to s with S(s) = 0, S(s) > 0, and S(s) < 0:
Case 1: S(s) = 0. These terms will be zero, since t(s) = s.
Case 2: S(s) > 0. This means that s “has more plus signs than it should” and

according to Remark 1 the mapping t(·) will replace several of “+1” with “-1”. In
particular, if sq = −1 then tq(s) = sq and thus the corresponding terms will be
zero. If sq = 1 and in the same time eq = 1 the event {εq �= tq(ε)∩ t(ε) = e} also
can not hold. Moreover, note that identity e = t(s) can hold only if e ∈ T (s),
which necessarily leads to

{
j ∈ {1, . . . , m} : sj = −1

} ⊆ {
j ∈ {1, . . . , m} : ej = −1

}
. (13)

From this we conclude that if q ∈ {1, . . . , n} then all the terms corresponding
to s with S(s) > 0 are zero. We will use Uq(e) to denote the subset of Bm

consisting of sequences s, such that (a) S(s) > 0, (b) sq = 1, and (c) condition
(13) holds. It can be seen that if s ∈ Uq(e) then:

P{εq �= tq(ε) ∩ t(ε) = e|ε = s} =
(

n + S(s)/2
S(s)/2

)−1

.

This holds since, according to Remark 1, t(ε) can take exactly
(
n+S(s)/2
S(s)/2

)
different

values, while only one of them is equal to e.
Let us compute the cardinality of Uq(e) for q ∈ {n + 1, . . . , m}. It is easy to

check that condition S(s) = 2j for some positive integer j implies that s has
exactly n − j minus signs. Considering the fact that sq = 1 for s ∈ Uq(e) we
have:

card
(
Uq(e)

)
=

(
n − 1
n − j

)
.

Combining everything together we have:

∑

s : S(s)>0

P{εq �= tq(ε) ∩ t(ε) = e|ε = s} = 1{q > n}
n∑

j=1

(
n−1
n−j

)
(
n+j
j

) .

Finally, it is easy to show using induction that:

n∑

j=1

(
n−1
n−j

)
(
n+j
j

) =
1
2
.

Case 3: S(s) < 0. We can repeat all the steps of the previous case and get:
∑

s : S(s)<0

P{εq �= tq(ε) ∩ t(ε) = e|ε = s} =
1
2
1{q ≤ n}.

Accounting for these three cases in (12) we conclude that

P{εq �= tq(ε)|t(ε) = e} =
1
2

(
m

n

)
2−m ≤ 1√

2πm
,

220 I. Tolstikhin et al.

where we have used the upper bound on the binomial coefficient from [19, Corol-
lary2.4]. We can conclude the proof of lemma by writing:

E[εq|t(ε)] = tq(ε) (1 − 2P{εq �= tq(ε)|t(ε)}) ≥ tq(ε)
(
1 − 2(2πm)−1/2

)
.

Proof (of Theorem 3). First we prove (3). Let Zm = {z1, . . . , zm}. We can write:

Q̂m,n(F) = E

[
sup
f∈F

2
m

m∑

i=1

ti(ε)f(zi)

]
(14)

≤ (
1 − 2(2πm)−1/2

)−1
E

[
sup
f∈F

2
m

m∑

i=1

E[εi|t(ε)]f(zi)

]
(15)

≤
(

1 +
2√

2πm − 2

)
E

[
sup
f∈F

2
m

m∑

i=1

εif(zi)

]
, (16)

where we have used coupling Lemma 4 in (14), Lemma 5 in (15), and Jensen’s
inequality in (16). This completes the proof of (3).

Next we prove (4). We have:

∣∣∣Q̂m,n(F) − R̂m(F)
∣∣∣ =

∣∣∣∣∣Eη

[
sup
f∈F

2
m

m∑

i=1

ηif(zi)

]
− E

ε

[
sup
f∈F

2
m

m∑

i=1

εif(zi)

]∣∣∣∣∣ .

Using Lemma 4 and Jensen’s inequality we further get:
∣∣∣Q̂m,n(F) − R̂m(F)

∣∣∣

=

∣∣∣∣∣Eε

[

E
t

[
sup
f∈F

2
m

m∑

i=1

ti(ε)f(zi)
∣∣∣∣ε

]]
− E

ε

[
sup
f∈F

2
m

m∑

i=1

εif(zi)

]∣∣∣∣∣

≤ E
ε

[

E
t

[∣∣∣∣∣sup
f∈F

2
m

m∑

i=1

ti(ε)f(zi) − sup
f∈F

2
m

m∑

i=1

εif(zi)

∣∣∣∣∣

∣∣∣∣ε
]]

, (17)

where we have, perhaps misleadingly, denoted the conditional expectation with
respect to the uniform choice from T (ε) given ε using Et[· |ε]. Next we have:

∣∣∣∣∣sup
f∈F

2
m

m∑

i=1

ti(ε)f(zi) − sup
f∈F

2
m

m∑

i=1

εif(zi)

∣∣∣∣∣ ≤
∣∣∣∣∣∣
sup
f∈F

4
m

∑

i∈S(ε,t)

εif(zi)

∣∣∣∣∣∣
, (18)

where S(ε, t) ⊆ {1, . . . , m} is a subset of indices, s.t.
(
t(ε)

)
i
�= εi iff i ∈ S(ε, t).

We can continue by writing
∣∣∣∣∣sup
f∈F

2
m

m∑

i=1

ti(ε)f(zi) − sup
f∈F

2
m

m∑

i=1

εif(zi)

∣∣∣∣∣ ≤ 4
m

sup
f∈F

∑

i∈S(ε,t)

|f(zi)|. (19)

Permutational Rademacher Complexity 221

Note that since functions in F are absolutely bounded by B:

sup
f∈F

∑

i∈S(ε,t)

|f(zi)| ≤ B · card (S(ε, t)) .

Returning to (17) and using Remark 1 we obtain:

∣∣∣Q̂m,n(F) − 2R̂m(F)
∣∣∣ ≤ 4B

m
E
ε

[
E
t
[card (S(ε, t)) |ε]

]
= E

ε

[
1
2

∣∣∣∣∣

m∑

i=1

εi

∣∣∣∣∣

]
.

Khinchin’s inequality [15, Lemma4.1] together with the best known constant due
to [12] gives Eε [|∑m

i=1 εi|] ≤ √
m, which completes the proof of (4).

5.3 Proof of Lemma 5

Proof. Let Zm = {z1, . . . , zm}. Take F ′
m to be a set of two constant functions,

f1(z) = 1 and f2(z) = 0 for all z ∈ Z. Clearly, Q̂m,n(F ′
m) = 0. In the same time:

E
ε

[
sup
f∈F ′

m

2
m

m∑

i=1

εif(zi)

]
= E

ε

[
max

{
0,

2
m

m∑

i=1

εi

}]
≤ E

ε

[∣∣∣∣∣
2
m

m∑

i=1

εi

∣∣∣∣∣

]
≤ 2√

m
,

where we used Khinchin’s inequality. Finally, Khinchin’s inequality also gives:

E
ε

[
max

{
0,

2
m

m∑

i=1

εi

}]
=

1
2 E

ε

[∣∣∣∣∣
2
m

m∑

i=1

εi

∣∣∣∣∣

]
≥ 1√

2m
.

Next, let F ′′
m contain

(
m

m/2

)
functions, such that their projections on Zm recover

all the permutations of binary vector containing equal number of 0 and 1. Clearly,
in this case Q̂m,n(F ′′

m) = 1. Straightforward calculations show that in the same
time R̂m(F ′′

m) = 1 − 2−m
(
m
n

)
and we conclude the proof using upper and lower

bounds on the binomial coefficient from [19, Corollary 2.4].

5.4 Proof of Theorem 5

The following version of McDiarmid’s bounded difference inequality for the set-
ting of sampling without replacement was presented in [10, Lemma 2] and further
improved in [8, Theorem 5]:

Theorem 6 ([10], [8]). Let Zm be sampled uniformly without replacement from
a fixed set Zm+u ⊆ Z of m+u elements. Let g : Zm → R be a symmetric function
s.t. for all i = 1, . . . , m and for all z1, . . . , zm ∈ Z and z′

1, . . . , z
′
m ∈ Z,

∣∣∣g(z1, . . . , zm) − g(z1, . . . , zi−1, z
′
i, zi+1, . . . , zm)

∣∣∣ ≤ c. (20)

Then if m = u with probability not less than 1 − δ the following holds:

g ≤ E[g] +

√
c2N3 log(1/δ)
8(N − 1/2)2

.

222 I. Tolstikhin et al.

Note that function suph∈H (errh(Zu) − errh(Zm)) maps (X ×Y)m to R and is of
course symmetric. Straightforward calculations show that this function satisfies
bounded difference condition (20) with c = 1

m + 1
u ([10, Inequality 9]). Theorem 6

states that with probability not less than 1 − δ:

sup
h∈H

(erru(h) − errm(h)) ≤ E
Sm

[
sup
h∈H

(erru(h) − errm(h))
]
+

√
2N log(1/δ)
(N − 1/2)2

. (21)

Using upper bound of Theorem 2 with LH in place of F we complete the proof
of (8). Next, consider a symmetric function −Q̂m,n(LH,Zm) which also maps
(X ×Y)m to R. It can be shown again that it satisfies bounded difference condi-
tion (20) with c = 2

m . And thus, Theorem 6 gives that with probability not less
than 1 − δ:

E
Sm

[
Q̂m,n(LH,Zm)

]
≤ Q̂m,n(LH,Zm) +

√
2N log(1/δ)
(N − 1/2)2

. (22)

Using this inequality together with (8) in a union bound we obtain the second
inequality of the theorem.

Appendix: Improving Lemma 3 of [2]

Let μ be a probability distribution on Z and Xm := {X1, . . . , Xm} be i.i.d.
samples selected according to μ. Maximal discrepancy of F was defined in [2] as:

D̂m(F,Xm) = sup
f∈F

⎛

⎝ 2
m

m/2∑

i=1

f(Xi) − 2
m

m∑

i=m/2+1

f(Xi)

⎞

⎠ .

It was shown in [2] that if functions in F are uniformly bounded by 1 then:

1
2 E

[
R̂m(F,Xm)

]
− 2

√
2
m

≤ E

[
D̂m(F,Xm)

]
≤ E

[
R̂m(F,Xm)

]
+ 4

√
2
m

. (23)

Since elements in Xm are i.i.d. the distribution of D̂m is invariant under their
permutations and thus E

[
D̂m(F,Xm)

]
= E

[
Q̂m,m/2(F,Xm)

]
. Now we can use

Theorem 3 to significantly improve bounds in (23):

E

[
R̂m(F,Xm)

]
− 2√

m
≤ E

[
D̂m(F,Xm)

]
≤

(
1 +

2√
2πm − 2

)
E

[
R̂m(F,Xm)

]
.

Acknowledgments. The authors are thankful to Marius Kloft and Ruth Urner for
useful discussions and to the anonymous reviewers for their comments. GB aknowledges
support of the DFG through the FOR-1735 grant. NZ was supported solely by the
Russian Science Foundation grant (project 14-50-00150).

Permutational Rademacher Complexity 223

References

1. Bartlett, P., Bousquet, O., Mendelson, S.: Local rademacher complexities. The
Annals of Statistics 33(4), 1497–1537 (2005)

2. Bartlett, P., Mendelson, S.: Rademacher and Gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research 3, 463–482 (2001)

3. Blum, A., Langford, J.: PAC-MDL bounds. In: Schölkopf, B., Warmuth, M.K.
(eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 344–357. Springer,
Heidelberg (2003)

4. Boucheron, S., Lugosi, G., Bousquet, O.: Theory of classification: a survey of
recent advances. ESAIM: Probability and Statistics 9, 323–375 (2005)

5. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymp-
totic Theory of Independence. Oxford University Press (2013)

6. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press (2006)
7. Cortes, C., Mohri, M.: On transductive regression. In: NIPS 2006, pp. 305–312

(2007)
8. Cortes, C., Mohri, M., Pechyony, D., Rastogi, A.: Stability analysis and learning

bounds for transductive regression algorithms (2009). CoRR abs/0904.0814
9. Derbeko, P., El-Yaniv, R., Meir, R.: Explicit learning curves for transduction

and application to clustering and compression algorithms. Journal of Artificial
Intelligence Research 22(1), 117–142 (2004)

10. El-Yaniv, R., Pechyony, D.: Transductive rademacher complexity and its applica-
tions. Journal of Artificial Intelligence Research 35(1), 193–234 (2009)

11. Gross, D., Nesme, V.: Note on sampling without replacing from a finite collection
of matrices (2010). http://arxiv.org/abs/1001.2738v2

12. Haagerup, U.: The best constants in Khinchine inequality. Studia Mathematica
70(3), 231–283 (1981)

13. Koltchinskii, V.: Oracle inequalities in empirical risk minimization and sparse
recovery problems. Springer (2011)

14. Koltchinskii, V., Panchenko, D.: Rademacher processes and bounding the risk of
function learning. In: Gine. D.E., Wellner, J. (eds.) High Dimensional Probability,
II, pp. 443–457. Birkhauser (1999)

15. Ledoux, M., Talagrand, M.: Probability in Banach Space. Springer-Verlag (1991)
16. Magdon-Ismail, M.: Permutation complexity bound on out-sample error. In:

Advances in Neural Information Processing Systems (NIPS 2010), pp. 1531–1539
(2010)

17. Mendelson, S.: Learning without Concentration (2014). CoRR abs/1401.0304
18. Pechyony, D.: Theory and Practice of Transductive Learning. PhD thesis (2008)
19. Stanica, P.: Good lower and upper bounds on binomial coefficients. Journal of

Inequalities in Pure and Applied Mathematics 2(3) (2001)
20. Tolstikhin, I., Blanchard, G., Kloft, M.: Localized complexities for transductive

learning. In: COLT 2014, pp. 857–884 (2014)
21. Van der Vaart, A.W., Wellner, J.: Weak Convergence and Empirical Processes:

With Applications to Statistics. Springer (2000)
22. Vapnik, V.: Statistical Learning Theory. John Wiley & Sons (1998)

http://abs/0904.0814
http://arxiv.org/abs/1001.2738v2
http://arxiv.org/abs/1401.0304

Subsampling in Smoothed Range Spaces

Jeff M. Phillips and Yan Zheng(B)

University of Utah, Salt Lake City, UT, USA
{jeffp,yanzheng}@cs.utah.edu

Abstract. We consider smoothed versions of geometric range spaces, so
an element of the ground set (e.g. a point) can be contained in a range
with a non-binary value in [0, 1]. Similar notions have been considered
for kernels; we extend them to more general types of ranges. We then
consider approximations of these range spaces through ε-nets and ε-
samples (aka ε-approximations). We characterize when size bounds for
ε-samples on kernels can be extended to these more general smoothed
range spaces. We also describe new generalizations for ε-nets to these
range spaces and show when results from binary range spaces can carry
over to these smoothed ones.

1 Introduction

This paper considers traditional sample complexity problems but adapted to
when the range space (or function space) smoothes out its boundary. This is
important in various scenarios where either the data points or the measuring
function is noisy. Similar problems have been considered in specific contexts of
functions classes with a [0, 1] range or kernel density estimates. We extend and
generalize various of these results, motivated by scenarios like the following.

(S1) Consider maintaining a random sample of noisy spatial data points (say
twitter users with geo-coordinates), and we want this sample to include
a witness to every large enough event. However, because the data coordi-
nates are noisy we use a kernel density estimate to represent the density.
And moreover, we do not want to consider regions with a single or con-
stant number of data points which only occurred due to random variations.
In this scenario, how many samples do we need to maintain?

(S2) Next consider a large approximate (say high-dimensional image feature [1])
dataset, where we want to build a linear classifier. Because the features are
approximate (say due to feature hashing techniques), we model the classifier
boundary to be randomly shifted using Gaussian noise. How many samples
from this dataset do we need to obtain a desired generalization bound?

(S3) Finally, consider one of these scenarios in which we are trying to create an
informative subset of the enormous full dataset, but have the opportunity to
do so in ways more intelligent than randomly sampling. On such a reduced

Thanks to supported by NSF CCF-1350888, IIS-1251019, and ACI-1443046.

c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 224–238, 2015.
DOI: 10.1007/978-3-319-24486-0 15

Subsampling in Smoothed Range Spaces 225

dataset one may want to train several types of classifiers, or to estimate the
density of various subsets. Can we generate a smaller dataset compared to
what would be required by random sampling?

The traditional way to study related sample complexity problems is through
range spaces (a ground set X, and family of subsets A) and their associated
dimension (e.g., VC-dimension [25]). We focus on a smooth extension of range
spaces defined on a geometric ground set. Specifically, consider the ground set
P to be a subset of points in R

d, and let A describe subsets defined by some
geometric objects, for instance a halfspace or a ball. Points p ∈ R

d that are
inside the object (e.g., halfspace or ball) are typically assigned a value 1, and
those outside a value 0. In our smoothed setting points near the boundary are
given a value between 0 and 1, instead of discretely switching from 0 to 1.

In learning theory these smooth range spaces can be characterized by
more general notions called P -dimension [22] (or Pseudo dimension) or
V -dimension [24] (or “fat” versions of these [2]) and can be used to learn real-
valued functions for regression or density estimation, respectively.

In geometry and data structures, these smoothed range spaces are of inter-
est in studying noisy data. Our work extends some recent work [12,21] which
examines a special case of our setting that maps to kernel density estimates, and
matches or improves on related bounds for non-smoothed versions.

Main Contributions. We next summarize the main contributions in this paper.

• We define a general class of smoothed range spaces (Sec 3.1), with application
to density estimation and noisy agnostic learning, and we show that these
can inherit sample complexity results from linked non-smooth range spaces
(Corollary 1).

• We define an (ε, τ)-net for a smoothed range space (Sec 3.3). We show how
this can inherit sampling complexity bounds from linked non-smooth range
spaces (Theorem 2), and we relate this to non-agnostic density estimation
and hitting set problems.

• We provide discrepancy-based bounds and constructions for ε-samples on
smooth range spaces requiring significantly fewer points than uniform sam-
pling approaches (Theorems 4 and 5), and also smaller than discrepancy-
based bounds on the linked binary range spaces.

2 Definitions and Background

Recall that we will focus on geometric range spaces (P,A) where the ground
set P ⊂ R

d and the family of ranges A are defined by geometric objects. It is
common to approximate a range space in one of two ways, as an ε-sample (aka
ε-approximation) or an ε-net. An ε-sample for a range space (P,A) is a subset
Q ⊂ P such that

max
A∈A

∣∣∣∣
|A ∩ P |

|P | − |Q ∩ A|
|Q|

∣∣∣∣ ≤ ε.

226 J.M. Phillips and Y. Zheng

An ε-net of a range space (P,A) is a subset Q ⊂ P such that

for all A ∈ A such that
|P ∩ A|

|P | ≥ ε then A ∩ Q �= ∅.

Given a range space (P,A) where |P | = m, then πA(m) describes the maximum
number of possible distinct subsets of P defined by some A ∈ A. If we can
bound, πA(m) ≤ Cmν for absolute constant C, then (P,A) is said to have
shatter dimension ν. For instance the shatter dimension of H halfspaces in R

d

is d, and for B balls in R
d is d + 1. For a range space with shatter dimension ν,

a random sample of size O((1/ε2)(ν +log(1/δ))) is an ε-sample with probability
at least 1− δ [14,25], and a random sample of size O((ν/ε) log(1/εδ)) is an ε-net
with probability at least 1 − δ [11,18].

An ε-sample Q is sufficient for agnostic learning with generalization error ε,
where the best classifier might misclassify some points. An ε-net Q is sufficient
for non-agnostic learning with generalization error ε, where the best classifier is
assumed to have no error on P .

The size bounds can be made deterministic and slightly improved for certain
cases. An ε-sample Q can be made of size O(1/ε2ν/(ν+1)) [15] and this bound
can be no smaller [16] in the general case. For balls B in R

d which have shatter-
dimension ν = d + 1, this can be improved to O(1/ε2d/(d+1) logd/(d+1)(1/ε)) [4,
16], and the best known lower bound is O(1/ε2d/(d+1)). For axis-aligned rect-
angles R in R

d which have shatter-dimension ν = 2d, this can be improved to
O((1/ε) logd+1/2(1/ε)) [13].

For ε-nets, the general bound of O((ν/ε) log(1/ε)) can also be made determin-
istic [15], and for halfspaces in R

4 the size must be at least Ω((1/ε) log(1/ε)) [19].
But for halfspaces in R

3 the size can be O(1/ε) [10,17], which is tight. By a sim-
ple lifting, this also applies for balls in R

2. For other range spaces, such as
axis-aligned rectangles in R

2, the size bound is Θ((1/ε) log log(1/ε)) [3,19].

2.1 Kernels

A kernel is a bivariate similarity function K : Rd × R
d → R

+, which can be
normalized so K(x, x) = 1 (which we assume through this paper). Examples
include ball kernels (K(x, p) = {1 if ‖x − p‖ ≤ 1 and 0 otherwise}), trian-
gle kernels (K(x, p) = max{0, 1 − ‖x − p‖}), Epanechnikov kernels (K(x, p) =
max{0, 1−‖x−p‖2}), and Gaussian kernels (K(x, p) = exp(−‖x−p‖2), which is
reproducing). In this paper we focus on symmetric, shift invariant kernels which
depend only on z = ‖x − p‖, and can be written as a single parameter func-
tion K(x, p) = k(z); these can be parameterized by a single bandwidth (or just
width) parameter w so K(x, p) = kw(‖x − p‖/w).

Given a point set P ⊂ R
d and a kernel, a kernel density estimate kdeP is

the convolution of that point set with K. For any x ∈ R
d we define kdeP (x) =

1
|P |

∑
p∈P K(x, p).

A kernel range space [12,21] (P,K) is an extension of the combinatorial
concept of a range space (P,A) (or to distinguish it we refer to the classic notion

Subsampling in Smoothed Range Spaces 227

as a binary range space). It is defined by a point set P ⊂ R
d and a kernel K. An

element Kx of K is a kernel K(x, ·) applied at point x ∈ R
d; it assigns a value

in [0, 1] to each point p ∈ P as K(x, p). If we use a ball kernel, then each value
is exactly {0, 1} and we recover exactly the notion of a binary range space for
geometric ranges defined by balls.

The notion of an ε-kernel sample [12] extends the definition of ε-sample.
It is a subset Q ⊂ P such that

max
x∈Rd

|kdeP (x) − kdeQ(x)| ≤ ε.

A binary range space (P,A) is linked to a kernel range space (P,K) if the
set {p ∈ P | K(x, p) ≥ τ} is equal to P ∩ A for some A ∈ A, for any threshold
value τ . [12] showed that an ε-sample of a linked range space (P,A) is also an ε-
kernel sample of a corresponding kernel range space (P,K). Since all range spaces
defined by symmetric, shift-invariant kernels are linked to range spaces defined
by balls, they inherit all ε-sample bounds, including that random samples of size
O((1/ε2)(d+log(1/δ)) provide an ε-kernel sample with probability at least 1−δ.
Then [21] showed that these bounds can be improved through discrepancy-based
methods to O(((1/ε)

√
log(1/εδ))2d/(d+2)), which is O((1/ε)

√
log(1/εδ)) in R

2.
A more general concept has been studied in learning theory on real-valued

functions, where a function f as a member of a function class F describes a
mapping from R

d to [0, 1] (or more generally R). A kernel range space where
the linked binary range space has bounded shatter-dimension ν is said to have
bounded V-dimension [24] (see [2]) of ν. Given a ground set X, then for (X,F)
this describes the largest subset Y of X which can be shattered in the following
sense. Choose any value s ∈ [0, 1] for all points y ∈ Y , and then for each subset
of Z ⊂ Y there exists a function f ∈ F so f(y) > s if y ∈ Z and f(y) < s if
y /∈ Z. The best sample complexity bounds for ensuring Q is an ε-sample of P
based on V-dimension are derived from a more general sort of dimension (called
a P-dimension [22] where in the shattering definition, each y may have a distinct
s(y) value) requires |Q| = O((1/ε2)(ν + log(1/δ))) [14]. As we will see, these
V-dimension based results are also general enough to apply to the to-be-defined
smooth range spaces.

3 New Definitions

In this paper we extend the notion of a kernel range spaces to other smoothed
range spaces that are “linked” with common range spaces, e.g., halfspaces. These
inherent the construction bounds through the linking result of [12], and we show
cases where these bounds can also be improved. We also extend the notion of
ε-nets to kernels and smoothed range spaces, and showing linking results for
these as well.

3.1 Smoothed Range Spaces

Here we will define the primary smoothed combinatorial object we will examine,
starting with halfspaces, and then generalizing. Let Hw denote the family of

228 J.M. Phillips and Y. Zheng

w w p1

p3

p2

0 1

p1G

p3G

p2G

10

p2

p1
w w

p3

F

p1F

p2F

p3F
2w

2w

Gaussian

Triangle

G
‖p − pF ‖ ?(p ∈ h) vh(p)

p1 3w/2 true 1
p2 3w/4 true 7/8
p3 w/2 false 1/4

Fig. 1. Illustration of the smoothed halfspace, and smoothed polynomial surface, with
function value of three points {p1, p2, p3} defined using a triangle kernel.

smoothed halfspaces with width parameter w, and let (P,Hw) be the associated
smoothed range space where P ⊂ R

d. Given a point p ∈ P , then smoothed
halfspace h ∈ Hw maps p to a value vh(p) ∈ [0, 1] (rather than the traditional
{0, 1} in a binary range space).

We first describe a specific mapping to the function value vh(p) that will be
sufficient for the development of most of our techniques. Let F be the (d − 1)-
flat defining the boundary of halfspace h. Given a point p ∈ R

d, let pF =
arg minq∈F ‖p − q‖ describe the point on F closest to p. Now we define

vh,w(p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 p ∈ h and ‖p − pF ‖ ≥ w
1
2 + 1

2
‖p−pF ‖

w p ∈ h and ‖p − pF ‖ < w
1
2 − 1

2
‖p−pF ‖

w p /∈ h and ‖p − pF ‖ < w

0 p /∈ h and ‖p − pF ‖ ≥ w.

These points within a slab of width 2w surrounding F can take on a value
between 0 and 1, where points outside of this slab revert back to the binary
values of either 0 or 1.

We can make this more general using a shift-invariant kernel k(‖p − x‖) =
K(p, x), where kw(‖p − x‖) = k(‖p − x‖/w) allows us to parameterize by w.
Define vh,w(p) as follows.

vh,w(p) =

{
1 − 1

2kw(‖p − pF ‖) p ∈ h
1
2kw(‖p − pF ‖) p /∈ h.

For brevity, we will omit the w and just use vh(p) when clear. These definitions
are equivalent when using the triangle kernel. But for instance we could also use
a Epanechnikov kernel or Gaussian kernel. Although the Gaussian kernel does
not satisfy the restriction that only points in the width 2w slab take non {0, 1}
values, we can use techniques from [21] to extend to this case as well. This is
illustrated in Figure 1. Another property held by this definition which we will
exploit is that the slope ς of these kernels is bounded by ς = O(1/w) = c/w, for
some constant c; the constant c = 1/2 for triangle and Gaussian, and c = 1 for
Epanechnikov.

Finally, we can further generalize this by replacing the flat F at the boundary
of h with a polynomial surface G. The point pG = arg minq∈G ‖p − q‖ replaces

Subsampling in Smoothed Range Spaces 229

pF in the above definitions. Then the slab of width 2w is replaced with a curved
volume in R

d; see Figure 1. For instance, if G defines a circle in R
d, then vh

defines a disc of value 1, then an annulus of width 2w where the function value
decreases to 0. Alternatively, if G is a single point, then we essentially recover the
kernel range space, except that the maximum height is 1/2 instead of 1. We will
prove the key structural results for polynomial curves in Section 5, but otherwise
focus on halfspaces to keep the discussion cleaner. The most challenging elements
of our results are all contained in the case with F as a (d − 1)-flat.

3.2 ε-Sample in a Smoothed Range Space

It will be convenient to extend the notion of a kernel density estimate to these
smoothed range space. A smoothed density estimate sdeP is defined for any
h ∈ Hw as

sdeP (h) =
1

|P |
∑

p∈P

vh(p).

An ε-sample Q of a smoothed range space (P,Hw) is a subset Q ⊂ P such that

max
h∈Hw

|sdeP (h) − sdeQ(h)| ≤ ε.

Given such an ε-sample Q, we can then consider a subset H̄w of Hw with bounded
integral (perhaps restricted to some domain like a unit cube that contains all
of the data P). If we can learn the smooth range ĥ = arg maxh∈H̄w

sdeQ(h),
then we know sdeP (h∗)−sdeQ(ĥ) ≤ ε, where h∗ = arg maxh∈H̄w

sdeP (h), since
sdeQ(ĥ) ≥ sdeQ(h∗) ≥ sdeP (h∗)−ε. Thus, such a set Q allows us to learn these
more general density estimates with generalization error ε.

We can also learn smoothed classifiers, like scenario (S2) in the introduction,
with generalization error ε, by giving points in the negative class a weight of −1;
this requires separate (ε/2)-samples for the negative and positive classes.

3.3 (ε, τ)-Net in a Smoothed Range Space

We now generalize the definition of an ε-net. Recall that it is a subset Q ⊂ P
such that Q “hits” all large enough ranges (|P ∩A|/|P | ≥ ε). However, the notion
of “hitting” is now less well-defined since a point q ∈ Q may be in a range but
with value very close to 0; if a smoothed range space is defined with a Gaussian
or other kernel with infinite support, any point q will have a non-zero value for
all ranges! Hence, we need to introduce another parameter τ ∈ (0, ε), to make
the notion of hitting more interesting in this case.

A subset Q ⊂ P is an (ε, τ)-net of smoothed range space (P,Hw) if for any
smoothed range h ∈ Hw such that sdeP (h) ≥ ε, then there exists a point q ∈ Q
such that vh(q) ≥ τ .

The notion of ε-net is closely related to that of hitting sets. A hitting set of a
binary range space (P,A) is a subset Q ⊂ P so every A ∈ A (not just the large
enough ones) contains some q ∈ Q. To extend these notions to the smoothed
setting, we again need an extra parameter τ ∈ (0, ε), and also need to only

230 J.M. Phillips and Y. Zheng

consider large enough smoothed ranges, since there are now an infinite number
even if P is finite. A subset Q ⊂ P is an (ε, τ)-hitting set of smoothed range
space (P,Hw) if for any h ∈ Hw such that sdeP (h) ≥ ε, then sdeQ(h) ≥ τ .

In the binary range space setting, an ε-net Q of a range space (P,A) is
sufficient to learn the best classifier on P with generalization error ε in the non-
agnostic learning setting, that is assuming a perfect classifier exists on P from A.
In the density estimation setting, there is not a notion of a perfect classifier, but
if we assume some other properties of the data, the (ε, τ)-net will be sufficient to
recover them. For instance, consider (like scenario (S1) in the introduction) that
P is a discrete distribution so for some “event” points p ∈ P , there is at least an
ε-fraction of the probability distribution describing P at p (e.g., there are more
than ε|P | points very close to p). In this setting, we can recover the location of
these points since they will have probability at least τ in the (ε, τ)-net Q.

4 Linking and Properties of (ε, τ)-Nets

First we establish some basic connections between ε-sample, (ε, τ)-net, and (ε, τ)-
hitting set in smoothed range spaces. In binary range spaces an ε-sample Q is
also an ε-net, and a hitting set is also an ε-net; we show a similar result here up
to the covering constant τ .

Lemma 1. For a smoothed range space (P,Hw) and 0 < τ < ε < 1, an (ε, τ)-
hitting set Q is also an (ε, τ)-net of (P,Hw).

Proof. The (ε, τ)-hitting set property establishes for all h ∈ Hw with sdeP (h) ≥
ε, then also sdeQ(h) ≥ τ . Since sdeQ(h) = 1

|Q|
∑

q∈Q vh(q) is the average over
all points q ∈ Q, then it implies that at least one point also satisfies vh(q) ≥ τ .
Thus Q is also an (ε, τ)-net. ��

In the other direction an (ε, τ)-net is not necessarily an (ε, τ)-hitting set since
the (ε, τ)-net Q may satisfy a smoothed range h ∈ Hw with a single point q ∈ Q
such that vh(q) ≥ τ , but all others q′ ∈ Q \ {q} having vh(q′)
 τ , and thus
sdeQ(h) < τ .

Theorem 1. For 0 < τ < ε < 1, an (ε − τ)-sample Q in smoothed range space
(P,Hw) is an (ε, τ)-hitting set in (P,Hw), and thus also an (ε, τ)-net of (P,Hw).

Proof. Since Q is the (ε − τ)-sample in the smoothed range space, for any
smoothed range h ∈ Hw we have |sdeP (h) − sdeQ(h)| ≤ ε − τ . We consider
the upper and lower bound separately.

If sdeP (h) ≥ ε, when sdeP (h) ≥ sdeQ(h), we have

sdeQ(h) ≥ sdeP (h) − (ε − τ) ≥ ε − (ε − τ) = τ.

And more simply when sdeQ(h) ≥ sdeP (h) and sdeP (h) ≥ ε ≥ τ , then
sdeQ(h) ≥ τ . Thus in both situations, Q is an (ε, τ)-hitting set of (P,Hw).
And then by Lemma 1 Q is also an (ε, τ)-net of (P,Hw). ��

Subsampling in Smoothed Range Spaces 231

4.1 Relations Between Smoothed Range Spaces and Linked Binary
Range Spaces

Consider a smoothed range space (P,Hw), and for one smoothed range h ∈ Hw,
examine the range boundary F (e.g. a (d − 1)-flat, or polynomial surface) along
with a symmetric, shift invariant kernel K that describes vh. The superlevel
set (vh)τ is all points x ∈ R

d such that vh(x) ≥ τ . Then recall a smoothed
range space (P,Hw) is linked to a binary range space (P,A) if every set {p ∈
P | vh(p) ≥ τ} for any h ∈ Hw and any τ > 0, is exactly the same as some
range A ∩ P for A ∈ A. For smoothed range spaces defined by halfspaces, then
the linked binary range space is also defined by halfspaces. For smoothed range
spaces defined by points, mapping to kernel range spaces, then the linked binary
range spaces are defined by balls.

Joshi et al. [12] established that given a kernel range space (P,K), a linked
binary range space (P,A), and an ε-sample Q of (P,A), then Q is also an ε-
kernel sample of (P,K). An inspection of the proof reveals the same property
holds directly for smoothed range spaces, as the only structural property needed
is that all points p ∈ P , as well as all points q ∈ Q, can be sorted in decreasing
function value K(p, x), where x is the center of the kernel. For smoothed range
space, this can be replaced with sorting by vh(p).

Corollary 1 ([12]). Consider a smoothed range space (P,Hw), a linked binary
range space (P,A), and an ε-sample Q of (P,A) with ε ∈ (0, 1). Then Q is an
ε-sample of (P,Hw).

We now establish a similar relationship to (ε, τ)-nets of smoothed range
spaces from (ε − τ)-nets of linked binary range spaces.

Theorem 2. Consider a smoothed range space (P,Hw), a linked binary range
space (P,A), and an (ε − τ)-net Q of (P,A) for 0 < τ < ε < 1. Then Q is an
(ε, τ)-net of (P,Hw).

Proof. Let |P | = n. Then since Q is an (ε−τ)-net of (P,A), for any range A ∈ A,
if |P ∩ A| ≥ (ε − τ)n, then Q ∩ A �= ∅.

Suppose h ∈ Hw has sdeP (h) ≥ ε and we want to establish that sdeQ(h) ≥
τ . Let A ∈ A be the range such that (ε − τ)n points with largest vh(pi) values
are exactly the points in A. We now partition P into three parts (1) let P1 be
the (ε − τ)n − 1 points with largest vh values, (2) let y be the point in P with
(ε − τ)nth largest vh value, and (3) let P2 be the remaining n − n(ε − τ) points.
Thus for every p1 ∈ P1 and every p2 ∈ P2 we have vh(p2) ≤ vh(y) ≤ vh(p1) ≤ 1.

Now using our assumption n · sdeP (h) ≥ nε we can decompose the sum

n · sdeP (h) =
∑

p1∈P1

vh(p1) + vh(y) +
∑

p2∈P2

vh(p2) ≥ nε,

and hence using upper bounds vh(p1) ≤ 1 and vh(p2) ≤ vh(y),

vh(y) ≥ nε −
∑

p1∈P1

vh(p1) −
∑

p2∈P2

vh(p2)

≥ nε − (n(ε − τ) − 1) · 1 − (n − n(ε − τ))vh(y).

232 J.M. Phillips and Y. Zheng

Solving for vh(y) we obtain

vh(y) ≥ nτ + 1
n − n(ε − τ) + 1

≥ nτ

n − n(ε − τ)
≥ nτ

n
= τ.

Since (P,A) is linked to (P,Hw), there exists a range A ∈ A that includes
precisely P1 ∪ y (or more points with the same vh(y) value as y). Because Q is
an (ε − τ)-net of (P,A), Q contains at least one of these points, lets call it q.
Since all of these points have function value vh(p) ≥ vh(y) ≥ τ , then vh(q) ≥ τ .
Hence Q is also an (ε, τ)-net of (P,Hw), as desired. ��

This implies that if τ ≤ cε for any constant c < 1, then creating an (ε, τ)-net
of a smoothed range space, with a known linked binary range space, reduces to
computing an ε-net for the linked binary range space. For instance any linked
binary range space with shatter-dimension ν has an ε-net of size O(ν

ε log 1
ε),

including halfspaces in R
d with ν = d and balls in R

d with ν = d + 1; hence
there exists (ε, ε/2)-nets of the same size. For halfspaces in R

2 or R
3 (linked to

smoothed halfspaces) and balls in R
2 (linked to kernels), the size can be reduced

to O(1/ε) [10,17,23].

5 Min-cost Matchings Within Cubes

Before we proceed with our construction for smaller ε-samples for smoothed
range spaces, we need to prepare some structural results about min-cost match-
ings. Following some basic ideas from [21], these matchings will be used for
discrepancy bounds on smoothed range spaces in Section 6.

In particular, we analyze some properties of the interaction of a min-cost
matching M and some basic shapes ([21] considered only balls). Let P ⊂ R

d

be a set of 2n points. A matching M(P) is a decomposition of P into n pairs
{pi, qi} where pi, qi ∈ P and each pi (and qi) is in exactly one pair. A min-cost
matching is the matching M that minimizes cost1(M,P) =

∑n
i=1 ‖pi − qi‖. The

min-cost matching can be computed in O(n3) time by [9] (using an extension of
the Hungarian algorithm from the bipartite case). In R

2 it can be calculated in
O(n3/2 log5 n) time [26].

Following [21], again we will base our analysis on a result of [5] which says that
if P ⊂ [0, 1]d (a unit cube) then for d a constant, costd(M,P) =

∑n
i=1 ‖pi−qi‖d =

O(1), where M is the min-cost matching. We make no attempt to optimize
constants, and assume d is constant.

One simple consequence, is that if P is contained in a d-dimensional cube of
side length
, then costd(M,P) =

∑n
i=1 ‖pi − qi‖d = O(
d).

We are now interested in interactions with a matching M for P in a d-
dimensional cube of side length
 C�,d (call this shape an (
, d)-cube), and more
general objects; in particular Cw a (w, d)-cube and, Sw a slab of width 2w, both
restricted to be within C�,d. Now for such an object Ow (which will either be Cw

or Sw) and an edge {p, q} where line segment pq intersects Ow define point pB

(resp. qB) as the point on segment pq inside Ow closest to p (resp. q). Note if p
(resp. q) is inside O then pB = p (resp. qB = q), otherwise it is on the boundary
of Ow. For instance, see C20w in Fig 2.

Subsampling in Smoothed Range Spaces 233

20w

p

qq

20w

w

p

qB qB

pB pB

Fig. 2. (T3) edges

Define the length of a matching M restricted to an
object Ow ⊂ R

d as

ρ(Ow,M) =
∑

(q,p)∈M

min
{
(2w)d, ‖pB − qB‖d

}
.

Note this differs from a similar definition by [21]
since that case did not need to consider when both
p and q were both outside of Ow, and did not
need the min{(2w)d, . . .} term because all objects had
diameter 2.

Lemma 2. Let P ⊂ C�,d, where d is constant, and M be its min-cost matching.
For any (w, d)-cube Cw ⊂ C�,d we have ρ(Cw,M) = O(wd).

Proof. We cannot simply apply the result of [5] since we do not restrict that
P ⊂ Cw. We need to consider cases where either p or q or both are outside of
Cw. As such, we have three types of edges we consider, based on a cube C20w of
side length 20w and with center the same as Cw.

(T1) Both endpoints are within C20w of edge length at most
√

d20w.
(T2) One endpoint is in Cw, the other is outside C20w.
(T3) Both endpoints are outside C20w.

For all (T1) edges, the result of Bern and Eppstein can directly bound their
contribution to ρ(Cw,M) as O(wd) (scale to a unit cube, and rescale). For all
(T2) edges, we can also bound their contribution to ρ(Cw,M) as O(wd), by
extending an analysis of [21] when both Cw and C20w are similarly proportioned
balls. This analysis shows there are O(1) such edges.

We now consider the case of (T3) edges, restricting to those that also intersect
Cw. We argue there can be at most O(1) of them. In particular consider two
such edges {p, q} and {p′, q′}, and their mappings to the boundary of C20w as
pB , qB , p′

B , q′
B ; see Figure 2. If ‖pB − p′

B‖ ≤ 10w and ‖qB − q′
B‖ ≤ 10w, then we

argue next that this cannot be part of a min-cost matching since ‖p− p′‖+ ‖q −
q′‖ < ‖p − q‖ + ‖p′ − q′‖, and it would be better to swap the pairing. Then it
follows from the straight-forward net argument below that there can be at most
O(1) such pairs.

We first observe that ‖pB − p′
B‖ + ‖qB − q′

B‖ ≤ 10w + 10w < 20w + 20w ≤
‖pB − qB‖ + ‖p′

B − q′
B‖. Now we can obtain our desired inequality using that

‖p − q‖ = ‖p − pB‖ + ‖pB − qB‖ + ‖qB − q‖ (and similar for ‖p′ − q′‖) and that
‖p − p′‖ ≤ ‖p − pB‖ + ‖pB − p′

B‖ + ‖p′
B − p′‖ by triangle inequality (and similar

for ‖q − q′‖).
Next we describe the net argument that there can be at most O(d2 · 22d) =

O(1) such pairs with ‖pB−p′
B‖ > 10w and ‖qB−q′

B‖ > 10w. First place a 5w-net
Nf on each (d − 1)-dimensional face f of C20w so that any point x ∈ f is within
5w of some point η ∈ Nf . We can construct Nf of size O(2d) with a simple grid.
Then let N =

⋃
f Nf as the union of the nets on each face; its size is O(d · 2d).

234 J.M. Phillips and Y. Zheng

Now for any point p /∈ C20w let η(p) = arg minη∈N ‖pB − η‖ be the closest point
in N to pB . If two points p and p′ have η(p) = η(p′) then ‖p − p′‖ ≤ 10w. Hence
there can be at most O((d · 2d)2) edges with {p, q} mapping to unique η(p) and
η(q) if no other edge {p′, q′} has ‖pB − p′

B‖ ≤ 10w and ‖qB − q′
B‖ ≤ 10w.

Concluding, there can be at most O(d2 ·22d) = O(1) edges in M of type (T3),
and the sum of their contribution to ρ(Cw,M) is at most O(wd), completing the
proof. ��
Lemma 3. Let P ⊂ C�,d, where d is constant, and let M be its min-cost match-
ing. For any width 2w slab Sw restricted to C�,d we have ρ(Sw,M) = O(
d−1w).

Proof. We can cover the slab Sw with O((
/w)d−1) (w, d)-cubes. To make this
concrete, we cover C�,d with �
/w�d cubes on a regular grid. Then in at least one
basis direction (the one closest to orthogonal to the normal of F) any column
of cubes can intersect Sw in at most 4 cubes. Since there are �
/w�d−1 such
columns, the bound holds. Let Cw be the set of these cubes covering Sw.

Restricted to any one such cube Cw, the contribution of those edges to
ρ(Sw,M) is at most O(wd) by Lemma 2. Now we need to argue that we can just
sum the effect of all covering cubes. The concern is that an edge goes through
many cubes, only contributing a small amount to each ρ(Cw,M) term, but when
the total length is taken to the dth power it is much more. However, since each
edge’s contribution is capped at (2w)2, we can say that if any edge goes through
more than O(1) cubes, its length must be at least w, and its contribution in
one such cube is already Ω(w), so we can simply inflate the effect of each cube
towards ρ(Sw,M) by a constant.

In particular, consider any edge pq that has p ∈ Cw. Each cube has 3d − 1
neighboring cubes, including through vertex incidence. Thus if edge pq passes
through more than 3d cubes, q must be in a cube that is not one of C ′

w’s neigh-
bors. Thus it must have length at least w; and hence its length in at least one
cube C ′

w must be at least w/3d, with its contribution to ρ(C ′
w,M) > wd/(3d2

).
Thus we can multiply the effect of each edge in ρ(Cw,M) by 3d2

2d = O(1) and
be sure it is at least as large as the effect of that edge in ρ(Sw,M). Hence

ρ(Sw,M) ≤ 3d2
2d

∑

Cw∈Cw

ρ(Cw,M) ≤ O(1)
∑

Cw∈Cw

O(wd)

= O((
/w)d−1) · O(wd) = O(
d−1w). ��

We can apply the same decomposition as used to prove Lemma 3 to also prove
a result for a w-expanded volume Gw around a degree g polynomial surface G.
A degree g polynomial surface can intersect a line at most g times, so for some
C�,d the expanded surface Gw ∩ C�,d can be intersected by O(g(
/w)d−1) (w, d)-
cubes. Hence we can achieve the following bound.

Corollary 2. Let P ⊂ C�,d, where d is constant, and let M be its min-cost
matching. For any volume Gw defined by a polynomial surface of degree g
expanded by a width w, restricted to C�,d we have ρ(Gw,M) = O(g
d−1w).

Subsampling in Smoothed Range Spaces 235

6 Constructing ε-Samples for Smoothed Range Spaces

In this section we build on the ideas from [21] and the new min-cost match-
ing results in Section 5 to produce new discrepancy-based ε-sample bounds for
smoothed range spaces. The basic construction is as follows. We create a min-
cost matching M on P , then for each pair (p, q) ∈ M , we retain one of the two
points at random, halving the point set. We repeat this until we reach our desired
size. This should not be unfamiliar to readers familiar with discrepancy-based
techniques for creating ε-samples of binary range spaces [6,16]. In that literature
similar methods exist for creating matchings “with low-crossing number”. Each
such matching formulation is specific to the particular combinatorial range space
one is concerned with. However, in the case of smoothed range spaces, we show
that the min-cost matching approach is a universal algorithm. It means that
an ε-sample Q for one smoothed range space (P,Hw) is also an ε-sample for
any other smoothed range space (P,H′

w), perhaps up to some constant factors.
We also show how these bounds can sometimes improve upon ε-sample bounds
derived from linked range spaces; herein the parameter w will play a critical role.

6.1 Discrepancy for Smoothed Halfspaces

To simplify arguments, we first consider P ⊂ R
2 extending to R

d in Section 6.4.
Let χ : P → {−1,+1} be a coloring of P , and define the discrepancy

of (P,Hw) with coloring χ as discχ(P,Hw) = maxh∈Hw
|∑p∈P χ(p)vh(p)|.

Restricted to one smoothed range h ∈ Hw this is discχ(P, h) = |∑p∈P χ(p)vh(p)|.
We construct a coloring χ using the min-cost matching M of P ; for each
{pi, qi} ∈ M we randomly select one of pi or qi to have χ(pi) = +1, and the
other χ(qi) = −1. We next establish bounds on the discrepancy of this coloring
for a ς-bounded smoothed range space (P,Hw), i.e., where the gradient of vh is
bounded by ς ≤ c1/w for a constant c1 (see Section 3.1).

For any smoothed range h ∈ Hw, we can now define a random variable
Xj = χ(pj)vh(pj) + χ(qj)vh(qj) for each pair {pj , qj} in the matching M . This
allows us to rewrite discχ(P, h) = |∑j Xj |. We can also define a variable Δj =
2|vh(pj)− vh(qj)| such that Xj ∈ {−Δj/2,Δj/2}. Now following the key insight
from [21] we can bound

∑
j Δ2

j using results from Section 5, which shows up in
the following Chernoff bound from [8]: Let {X1,X2, . . .} be independent random
variables with E[Xj] = 0 and Xj = {−Δj/2,Δj/2} then

Pr
[
discχ(P, h) ≥ α

]
= Pr

[∣∣∣
∑

j

Xj

∣∣∣ ≥ α
]

≤ 2 exp

(
−2α2

∑
j Δ2

j

)
. (1)

Lemma 4. Assume P ⊂ R
2 is contained in some cube C�,2 and with min-cost

matching M defining χ, and consider a ς-bounded smoothed halfspace h ∈ Hw

associated with slab Sw. Let ρ(Sw,M) ≤ c2(
w) for constant c2 (see definition

of ρ in Section 5). Then Pr
[
discχ(P, h) > C

√
�
w log(2/δ)

]
≤ δ for any δ > 0

and constant C = c1
√

2c2.

236 J.M. Phillips and Y. Zheng

Proof. Using the gradient of vh is at most ς = c1/w and |vh(pj) − vh(qj)| ≤
ς max{2w, ‖pj − qj‖} we have
∑

j

Δ2
j =

∑

j

4(vh(pj) − vh(qj))2 ≤ 4ς2ρ(Sw,M) ≤ 4c21/w2 · c2
w = 4c21c2
/w,

where the second inequality follows by Lemma 3 which shows that ρ(Sw,M) =∑
j max{(2w)2, ‖pj − qj‖2} ≤ c2(
w).
We now study the random variable discχ(P, h) = |∑i Xi| for a single h ∈ Hw.

Invoking (1) we can bound Pr[discχ(P, h) > α] ≤ 2 exp(−α2/(2c21c2
/w)). Setting

C = c1
√

2c2 and α = C
√

�
w log(2/δ) reveals Pr

[
discχ(P, h) > C

√
�
w log(2/δ)

]
≤

δ. ��

6.2 From a Single Smoothed Halfspace to a Smoothed Range Space

The above theorems imply small discrepancy for a single smoothed halfspace
h ∈ Hw, but this does not yet imply small discrepancy discχ(P,Hw), for all
choices of smoothed halfspaces simultaneously. And in a smoothed range space,
the family Hw is not finite, since even if the same set of points have vh(p) = 1,
vh(p) = 0, or are in the slab Sw, infinitesimal changes of h will change sdeP (h).
So in order to bound discχ(P,Hw), we will show that there are polynomial in
n number of smoothed halfspaces that need to be considered, and then apply a
union bound across this set. The proof is deferred to the full version.

Theorem 3. For P ⊂ R
2 of size n, for Hw, and value Ψ(n, δ) = O

(√
�
w log n

δ)
)

for δ > 0, we can choose a coloring χ such that Pr[discχ(P,Hw) > Ψ(n, δ)] ≤ δ.

6.3 ε-Samples for Smoothed Halfspaces

To transform this discrepancy algorithm to ε-samples, let f(n) = discχ(P,Hw)/n
be the value of ε in the ε-samples generated by a single coloring of a set of size

n. Solving for n in terms of ε, the sample size is s(ε) = O(1ε
√

�
w log �

wεδ). We
can then apply the MergeReduce framework [7]; iteratively apply this random
coloring in O(log n) rounds on disjoint subsets of size O(s(ε)). Using a generalized
analysis (c.f., Theorem 3.1 in [20]), we have the same ε-sample size bound.

Theorem 4. For P ⊂ C�,2 ⊂ R
2, with probability at least 1−δ, we can construct

an ε-sample of (P,Hw) of size O(1ε
√

�
w log �

wεδ).

To see that these bounds make rough sense, consider a random point set
P in a unit square. Then setting w = 1/n will yield roughly O(1) points in
the slab (and should roughly revert to the non-smoothed setting); this leads to
discχ(P,Hw) = O(

√
n
√

log(n/δ)) and an ε-sample of size O((1/ε2)
√

log(1/εδ)),
basically the random sampling bound. But setting w = ε so about εn points

Subsampling in Smoothed Range Spaces 237

are in the slab (the same amount of error we allow in an ε-sample) yields
discχ(P,Hw) = O((1/

√
εn) · √

log(n/δ)) and the size of the ε-sample to be
O(1ε

√
log(1/εδ)), which is a large improvement over O(1/ε4/3), and the best

bound known for non-smoothed range spaces [16].
However, the assumption that P ⊂ C�,2 (although not uncommon [16]) can

be restrictive. In the full version we relax the condition for well clustered data.

6.4 Generalization to d Dimensions

We now extend from R
2 to R

d for d > 2. Using results from Section 5 we implic-
itly get a bound on

∑
j Δd

j , but the Chernoff bound we use requires a bound on∑
j Δ2

j . As in [21], we can attain a weaker bound using Jensen’s inequality over
at most n terms

⎛

⎝
∑

j

1
n

Δ2
j

⎞

⎠
d/2

≤
∑

j

1
n

(
Δ2

j

)d/2
so

∑

j

Δ2
j ≤ n1−2/d

⎛

⎝
∑

j

Δd
j

⎞

⎠
2/d

. (2)

Replacing this bound and using ρ(Sw,M) ≤ O(
d−1w) in Lemma 4 and con-
sidering ς = c1/w for some constant c1 results in the next lemma. Its proof is
deferred to the full version.

Lemma 5. Assume P ⊂ R
d is contained in some cube C�,d and with min-cost

matching M , and consider a ς-bounded smoothed halfspace h ∈ Hw associated
with slab Sw. Let ρ(Sw,M) ≤ c2(
d−1w) for constant c2. Then Pr

[
discχ(P, h) >

Cn1/2−1/d(
/w)1−1/d
√

log(2/δ)
] ≤ δ for any δ > 0 and C =

√
2c1(c2)1/d.

For all choices of smoothed halfspaces, applying the union bound, the discrep-
ancy is increased by a

√
log n factor, with the following probabilistic guarantee,

Pr[discχ(P,Hw) > Cn1/2−1/d(
/w)1−1/d
√

log(n/δ)] ≤ δ.

Ultimately, we can extend Theorem 4 to the following.

Theorem 5. For P ⊂ C�,d ⊂ R
d, where d is constant, with probability at least

1 − δ, we can construct an ε-sample of (P,Hw) of size O
(
(
/w)2(d−1)/(d+2) ·

(
1
ε

√
log �

wεδ

)2d/(d+2))
.

Note this result addresses scenario (S3) from the introduction where we want
to find a small set (the ε-sample) so that it could be much smaller than the
d/ε2 random sampling bound, and allows generalization error O(ε) for agnostic
learning as described in Section 3.2. When
/w is constant, the exponents on
1/ε are also better than those for binary ranges spaces (see Section 2).

238 J.M. Phillips and Y. Zheng

References

1. Fitzgibbon, A., Bergamo, A., Torresani, L.: Picodes: learning a compact code for
novel-category recognition. In: NIPS (2011)

2. Alon, N., Ben-David, S., Cesa-Bianchi, N., Haussler, D.: Scale-sensitive dimen-
sions, uniform convergence, and learnability. Journal of ACM 44, 615–631 (1997)

3. Aronov, B., Ezra, E., Sharir, M.: Small size ε-nets for axis-parallel rectangles and
boxes. Siam Journal of Computing 39, 3248–3282 (2010)

4. Beck, J.: Irregularities of distribution I. Acta Mathematica 159, 1–49 (1987)
5. Bern, M., Eppstein, D.: Worst-case bounds for subadditive geometric graphs. In:

SOCG (1993)
6. Chazelle, B.: The Discrepancy Method. Cambridge (2000)
7. Chazelle, B., Matousek, J.: On linear-time deterministic algorithms for optimiza-

tion problems in fixed dimensions. J. Algorithms 21, 579–597 (1996)
8. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of

Randomized Algorithms. Cambridge (2009)
9. Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17,

449–467 (1965)
10. Har-Peled, S., Kaplan, H., Sharir, M., Smorodinksy, S.: ε-nets for halfspaces revis-

ited. Technical report (2014). arXiv:1410.3154
11. Haussler, D., Welzl, E.: epsilon-nets and simplex range queries. Disc. & Comp.

Geom. 2, 127–151 (1987)
12. Joshi, S., Kommaraju, R.V., Phillips, J.M., Venkatasubramanian, S.: Comparing

distributions and shapes using the kernel distance. In: SOCG (2011)
13. Larsen, K.G.: On range searching in the group model and combinatorial discrep-

ancy. In: FOCS (2011)
14. Li, Y., Long, P.M., Srinivasan, A.: Improved bounds on the samples complexity

of learning. J. Comp. and Sys. Sci. 62, 516–527 (2001)
15. Matoušek, J.: Tight upper bounds for the discrepancy of halfspaces. Discrete &

Computational Geometry 13, 593–601 (1995)
16. Matoušek, J.: Geometric Discrepancy. Springer (1999)
17. Matoušek, J., Seidel, R., Welzl, E.: How to net a lot with little: small ε-nets for

disks and halfspaces. In: SOCG (1990)
18. Pach, J., Agarwal, P.K.: Combinatorial geometry. Wiley, Wiley-Interscience series

in discrete mathematics and optimization (1995)
19. Pach, J., Tardos, G.: Tight lower bounds for the size of epsilon-nets. Journal of

American Mathematical Society 26, 645–658 (2013)
20. Phillips, J.M.: Algorithms for ε-approximations of terrains. In: Automata, Lan-

guages and Programming, pp. 447–458. Springer (2008)
21. Phillips, J.M.: Eps-samples for kernels. In: SODA (2013)
22. Pollard, D.: Emperical processes: theory and applications. In: NSF-CBMS

REgional Confernece Series in Probability and Statistics (1990)
23. Pyrga, E., Ray, S.: New existence proofs ε-nets. In: SOCG (2008)
24. Vapnik, V.: Inductive principles of the search for empirical dependencies. In:

COLT (1989)
25. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies

of events to their probabilities. Theory of Probability and its Applications 16,
264–280 (1971)

26. Varadarajan, K.R.: A divide-and-conquer algorithm for min-cost perfect matching
in the plane. In: FOCS (1998)

http://arxiv.org/abs/1410.3154

Information Preserving Dimensionality
Reduction

Shrinu Kushagra(B) and Shai Ben-David

School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
skushagr@uwaterloo.ca, shai@cs.uwaterloo.ca

Abstract. Dimensionality reduction is a very common preprocessing
approach in many machine learning tasks. The goal is to design data rep-
resentations that on one hand reduce the dimension of the data (therefore
allowing faster processing), and on the other hand aim to retain as much
task-relevant information as possible. We look at generic dimensionality
reduction approaches that do not rely on much task-specific prior knowl-
edge. However, we focus on scenarios in which unlabeled samples are
available and can be utilized for evaluating the usefulness of candidate
data representations.

We wish to provide some theoretical principles to help explain the
success of certain dimensionality reduction techniques in classification
prediction tasks, as well as to guide the choice of dimensionality reduc-
tion tool and parameters. Our analysis is based on formalizing the often
implicit assumption that “similar instances are likely to have similar
labels”. Our theoretical analysis is supported by experimental results.

1 Introduction

Many successful machine learning tools are essentially heuristic, in the sense
that while they work well for many practical tasks, we do not have a solid
formal explanation to why that is the case. Various reduction tools fall into that
category. For example, while we know that PCA retains as much of the data
variance as possible (within the constraints of the linearity of the transformation
and upper bounding the dimension of the resulting data representation), it is
not explicitly clear as to why this property should suffice for the purpose of
classification prediction. We propose a step in the direction of providing such
formal explanation, based on some generally conceivable assumptions about the
nature of a given classification task.

Most, if not all, of the practical learning algorithms are based on the assump-
tion that similar instances have similar labels. Assuming that the data repre-
sentation on a given task enjoys such a property (otherwise there is very little
chance that learning will succeed), one would like to retain it when changing the
representation (such as when applying dimensionality reduction tool).

We propose a notion of metric (distance) retention that is, on one hand,
formal and quantifiable, and on the other hand reflects the properties of practi-
cally common data representation techniques. We show that common techniques
c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 239–253, 2015.
DOI: 10.1007/978-3-319-24486-0 16

240 S. Kushagra and S. Ben-David

like Random Projections and PCA have this property. Furthermore, motivated
by the availability of abundant unlabeled data in many real world tasks, we
show that the proposed notion can be reliably estimated from sufficiently large
unlabeled samples.

The second key component in our analysis is a formal tool for quantifying
the degree by which a given classification task meets the “similar instances are
likely to have similar labels” requirement. A notion of Probabilistic Lipschitzness
(PL) was introduced by Urner et. al [1] to capture this intuition. We propose a
new variant of PL, and show that it controls the error rates of Nearest Neighbor
learning rules.

We then combine the two notions to show that a distance retaining embed-
ding also preserves PL. That is, we prove that if PL property exists in a higher
dimension and an embedding retains distance then the PL property exists in
the reduced dimension as well. Hence, we are able to show that an embedding
which has the metric retention preserves nearest neighbor learnability. Nearest
neighbor learning suffers from the curse of dimensionality as the number of sam-
ples needed is exponential in the dimension of the space. We show that if an
embedding has metric retention, then we can first use the embedding to reduce
the dimension and then do nearest neighbor which leads to exponential sample
savings.

Finally, we provide experiments which show how the PL property captures
the usefulness of a learned/reduced representation. This also has some inter-
esting implications for some deep feature learning algorithms like RBMs. More
concretely, we show that successful features have better PL property.

1.1 Related Work

Dimensionality reduction aims to transform data from high dimensional space
to low dimensional space while preserving important properties (like inter-
point distances) of the data. Dimensionality reduction techniques are used in
many domains of Machine Learning as a preprocessing step. Some of the pop-
ular dimensionality reduction techniques include Principal Component Anal-
ysis (PCA), Laplacian Eigenmaps, Multidimensional Scaling, Isomap, Neural
Autoencoders, K-means based Dimensionality Reduction and many more. [2]
and [3] present a nice overview of these techniques.

The task of finding embeddings which preserve inter-point distances for all
the pairs of points has been extensively addressed. A notion of Metric Distortion
is used to quantify the change in the metric due to an embedding. More formally,

Definition 1 (Metric Distortion). Let f be any embedding from a metric
space (X, d) to a metric space (X ′, d′). Then the distortion of the embedding f
is defined as

dist(f) = max
{

sup
x,y

d(x, y)
d′(f(x), f(y))

, sup
x,y

d′(f(x), f(y))
d(x, y)

}

Information Preserving Dimensionality Reduction 241

A common algorithmic task is to find an embedding of a given data set into
a “well behaved” metric space (like low dimensional Euclidean space) while min-
imizing the distortion. A classical and perhaps the most important result in this
area is the Johnson-Lindenstrauss Lemma [4]. It says that n points can be embed-
ded in dimension O(ε−2 log n) with distortion 1+ ε. Moreover, this embedding can
be found using a linear map and in randomized polynomial time. The algorithmic
version of the Johnson-Lindenstrauss Lemma is stated as Lemma 1 in Section 4.1.

A natural relaxation to metric distortion was considered by Abraham
et. al [5]. They introduce the notion of average distortion where the goal is
to construct embeddings which have small average distortion rather than small
maximum distortion. Another relaxation was considered by Chan et. al [6]. They
introduce ε-slack distortion. They construct embeddings such that distortion is
small for 1 − ε fraction of the pairs of points. Our notion of Metric Retention is
very closely related to this notion of ε-slack distortion.

Another direction of work which is related to ours is Probabilistic Lipschitzness
(PL) [1]. An assumption inherent in many machine learning paradigms is that close
points tend to have the same labels. To model this property, PL was introduced by
Urner et. al [1]. Under PL Assumptions, they showed that Nearest Neighbor has
bounded sample complexity [7]. Not only that, they show thatPLassumptions lead
to sample savings, i.e., faster learning from nicer distributions [7]. They also show
that under PL assumptions, proper semi-supervised learning has reduced sample
complexity.

2 Metric Retention (MR)

Framework - Given a domain set X ⊆ R
N , a probability distribution P over

X and R
n respectively and an embedding E which maps points from R

N to
R

n. Define d(x, y) = ‖x − y‖ and d′(x, y) = ‖E(x) − E(y)‖/K where K is some
positive normalization constant.

Definition 2 (ε-slack Distortion [6]). Given a finite sample S, an embed-
ding E has distortion D(ε) with ε-slack if all but an ε-fraction of distances have
distortion at most D(ε) under E.

d(x, y) ≤ d′(x, y) ≤ D(ε)d(x, y)

Our definition of metric retention is based on Def. 2 but with few important
distinctions. We want to give guarantees for the data distribution P and not only a
given sample S. Hence, instead of talking about fractions of pairs of points, we talk
of probabilities over pairs of points. Also, we don’t normalize the distance d(x, y)
by a constant K. But rather consider violations of distortion in both directions.

Definition 3 (Metric Retention). We say that an embedding E has (ψ1, ψ2)
- metric retention, if for all ε ∈ (0, 1):

P
[
d′(x, y) < (1 − ε) d(x, y)

] ≤ ψ1(ε) and P
[
d′(x, y) > (1 + ε) d(x, y)

] ≤ ψ2(ε)

where the probability is over the pairs of points (x, y) generated i.i.d by P 2 and
over the randomness (if any) in the embedding E.

242 S. Kushagra and S. Ben-David

Example 1 (Comparison with Metric Distortion). Let P be the probability
distribution over [0, 1] × {0, 2} defined by picking (x, 0) with probability 1 − δ
uniformly over [0, 1] × 0 and picking (x, 2) with probability δ uniformly over
[0, 1]×2. Let the dimensionality reduction technique be such that it always projects
points along the x-axis.

Then for such a reduction technique, ψ1(ε) = 2δ(1 − δ) and ψ2(ε) = 0.
However, with very high probability, the distortion for this technique would be
large (> 2) for large datasets.

Example 2 (Comparison with Average Distortion). Consider a sample
S ⊆ R2. S = {(1/n, 0), (2/n, 0), (3/n, 0), . . . , (1, 0), (1/2, n)} where n is an odd
integer. Let the embedding be such that it always projects points along the x-axis.

It is easy to see that the average distortion for this embedding is > 4. On the
other hand, assuming that the distribution is uniform over the domain S, we get
the metric retention functions ψ1 = 2n/(n + 1)2 and ψ2 = 0.

3 Estimating Metric Retention Parameters

Before choosing a dimensionality reduction technique, we would like to estimate
how “good” is it at preserving inter-point distances. Hence, we would like to
estimate the probabilities in Def. 3 from only a sample S.

This can be done by the following procedure. Let S = {(x1, y1), . . . , (xm, ym)}
be a sample of m pairs of points where each pair is generated independently and
identically by the distribution P 2. Now, denote by

f1(ε) = Fraction of pairs
of points in S

[d′ < (1 − ε)d] and f2(ε) = Fraction of pairs
of points in S

[d′ > (1 + ε)d]

where S is generated i.i.d by P 2. We will now prove that f1 and f2 as defined
above are ‘close to’ to the true probabilities in Def. 3. Before we do that, we
need the following result on ε-approximations from VC-Theory.

Theorem 1 (Vapnik and Chervonenkis [8]). Let X be a domain set and
D a probability distribution over X. Let H be a class of subsets of X of finite
VC-dimension d. Let ε, δ ∈ (0, 1). Let S ⊆ X be picked i.i.d according to D of
size m. If m > c

ε2 (d log d
ε + log 1

δ), then with probability 1 − δ over the choice of
S, we have that ∀h ∈ H ∣∣∣∣

|h ∩ S|
|S| − P (h)

∣∣∣∣ < ε

Theorem 2. Let f1, f2 be as defined above. Let S be an i.i.d sample generated
by P 2 of size m. Given α, β ∈ (0, 1). If m > 1

α2 (log 1
α + 1

β), then with probability
at least 1 − β, we have that for all ε ∈ (0, 1)

∣∣∣f1(ε) − Pr
x,y∼P

[
d′(x, y) < (1 − ε) d(x, y)

]∣∣∣ < α

A similar result holds for f2(ε) as well.

Information Preserving Dimensionality Reduction 243

Proof. Let hε = {(x, y) : d′(x, y) < (1−ε)d(x, y)}. Let H = {hε : ε ∈ (0, 1)}. It is
easy to see that for ε′ < ε, hε ⊆ hε′ . Hence, H is a union of hypothesis which are
ordered by inclusion. It is easy to see that VCDim(H) = 1. Now, using Theorem
1 gives the desired result.

Observe that such an estimation can be done in an unsupervised manner by
just looking at the unlabeled examples and then evaluating the dimensionality
reduction technique.

4 Embeddings with Metric Retention

4.1 Random Projections (RP) have MR

The use of random projections for dimensionality reduction is based on a classical
and a very important theorem popularly known as the JL-Lemma [4]. It states
that m points can be embedded in lower dimension of size O(ε−2 log m) while
preserving the Euclidean 2-norm (small distortion). We do not state the actual
JL-Lemma here but another useful lemma.

Lemma 1. Let v ∈ RN and let W ∈ Rn,N be a random matrix such that each
Wi,j is an independent standard normal random variable (mean 0 and variance
1). Then, for every ε ∈ (0, 3) we have

Pr

[‖Wv‖2
‖v‖2 ≤ (1 − ε)n

]
≤ e−ε2n/6 and Pr

[‖Wv‖2
‖v‖2 ≥ (1 + ε)n

]
≤ e−ε2n/6

Proof. The proof of this lemma can be found in [4] or Lemma 23.3 in [9].

Note that the actual JL-Lemma which we do not state here is a rather straight-
forward consequence of Lemma 1. We now show that Random Projections have
the Metric Retention property. Consider the following Random Projection (RP)
algorithm. Construct a matrix W ∈ Rn,N such that each Wi,j is an independent
normal variable. Now, given any point x, output RP (x) := 1√

n
Wx. Observe that

in this framework, d(x, y) = ‖x − y‖ and d′(x, y) = 1√
n
‖Wx − Wy‖.

Theorem 3. Let domain be X ⊆ RN generated i.i.d by some distribution P .
Let RP (x) = 1√

n
Wx take points from RN to Rn where W is as defined above.

Then RP retains distance with ψ1(ε) = e−ε2n/6 and ψ2(ε) = e−ε2n/6.

Proof. Using v = x − y in Lemma 1 and ε ∈ (0, 1), we get that Pr
[
(x, y) : d′ ≤

(1 − ε)d
] ≤ Pr

[
(x, y) : d′ ≤ (1 − ε)1/2d

] ≤ e−ε2n/6. Similarly, Pr
[
(x, y) : d′ ≥

(1 + ε)d
] ≤ Pr

[
(x, y) : d′ ≤ (1 + ε)1/2d

] ≤ e−ε2n/6

Discussion. We see that for a large enough n both the functions ψ1 and ψ2 are
small. Hence, the fraction of pairs of points which have large distortion is small.
Theorem 3 provides a way explaining why JL works in practice.

244 S. Kushagra and S. Ben-David

4.2 PCA has MR

PCA is one of the most popular dimensionality reduction techniques. PCA
projects the original N -dimensional data along the n principal directions on
an n-dimensional linear subspace. For background and more details on PCA, we
refer the reader to [3] or any standard machine learning text.

From the point of view of real-world applications, the important decision
here is the choice of n, the dimensionality of the space to which the data should
be reduced. Practitioners often choose n such that “most” of the variance of
the data is captured. A dimension n which retains 99% of the variance is often
considered a good choice. Intuitively, capturing the variance seems equivalent to
capturing the relevant variations and information inherent in the data.

Let us assume that PCA projects the data along the n orthogonal unit
vectors given by v1, . . . , vn. Let vn+1, . . . , vN be some other vectors such that
v1, . . . , vN form an orthogonal basis for the original N -dimensional space. Then
PCA is equivalent to choosing the first n dimensions amongst the N given dimen-
sions in this space. Let the distance functions be the standard Euclidean dis-
tances. Hence, in this framework d(x, y) =

√
(x1 − y1)2 + . . . + (xN − yN)2 and

d′(x, y) =
√

(x1 − y1)2 + . . . + (xn − yn)2.

Theorem 4. Let the domain X ⊆ R
N be generated i.i.d by some unknown

probability distribution P . Let var(Pi) < δ,∀n + 1 ≤ i ≤ N . In addition, let
Pr[(x, y) : d(x, y) < t] ≤ c for some constants t, c. Then PCA retains distances
with ψ1(ε) = c + 8 (N−n)2 δ2

t2ε2 and ψ2(ε) = 0.

Proof. Please refer to the appendix for the proof of this theorem.

Discussion. We see that ψ1(ε) ∈ O(δ2) and ψ2(ε) = 0. Hence, as more variance
is captured by the n principal directions, the smaller is δ and hence smaller is ψ1

implying that the metric retention property of PCA improves. Hence, our notion
is able to model PCA using similar assumptions and intuitions which are used
in practice. In a sense, we also provide justification for something which is used
in practice. Note that, the metric distortion of PCA would be large. Since for
some of pairs of points the distortion may be large. However, Theorem 4 shows
that for most of the pairs of points the distortion is small.

5 Probabilistic Lipschitzness (PL)

The notion of Probabilistic Lipschitzness was introduced by Urner et. al [1].
The PL assumption says that the probability of two close points having differ-
ent labels is bounded and small. Such a relation is inherent in many Machine
Learning paradigms.

In this work, we consider a slightly different definition of PL. We show that
the sample complexity bounds for Nearest Neighbor that were obtained using
the original definition can also be obtained using our definition. We will refer to
our definition of PL as PL-Conditional and the original definition as PL-Unary.

Information Preserving Dimensionality Reduction 245

Definition 4 (PL-Unary [7]). The labeling function l satisfies φ-Probabilistic
Lipschitzness w.r.t to the original definition, if for all λ > 0

Pr
x∼P

[
Pr
y∼P

[d(x, y) < λ ∧ l(x)
= l(y)] > 0
]

≤ φ(λ)

Definition 5 (PL-Conditional). We say that the labeling function l satisfies
φ-PL-Conditional if for all λ > 0

Pr
x,y∼P

[
l(x)
= l(y) | d(x, y) < λ

] ≤ φ(λ)

Throughout the remainder of the section, we bound the sample complexity of
Nearest Neighbour learning (mNN) w.r.t the class of all distributions that satisfy
PL assumptions and have deterministic labeling functions. ε, δ denote the usual
accuracy and confidence parameters respectively.

Theorem 5 (Urner and Ben-David [7]). Let the domain be X ⊆ [0, 1]N

generated i.i.d by some distribution P and labeled by some deterministic function
l which satisfies PL-Unary with function φ . Then the sample complexity of
Nearest Neighbor mNN is upper bounded by

mNN (ε, δ) ≤ 2
εδe

.

(√
N

φ−1(ε/2)

)N

(1)

They also showed that PL-Unary leads to faster learning from nicer
distributions. Here, we show that similar results can also be obtained under
PL-Conditional assumptions.

5.1 Sample Complexity Bounds for Nearest Neighbor under
PL-Conditional

Theorem 6. Let the domain be X ⊆ [0, 1]N generated i.i.d by some distribution
P and labeled by some deterministic function l which satisfies PL-Conditional
with function φ . Then the sample complexity of Nearest Neighbor mNN is upper
bounded by

mNN (ε, δ) ≤ 2
εδe

.

(√
N

φ−1(εδ/2)

)N

(2)

Proof. Please refer to the appendix for the proof of this theorem.

Faster Learning from Nicer Distributions. We now look at learning rates
for distributions which satisfy PL-Conditional with function φ(λ) = λa for some
a ∈ N. In this case, we see that the upper bound in Thm. 6 evaluates to

O

((
1
ε

)N
a +1(1

δ

)N
a +1

)
(3)

Hence, we see that the nicer the distribution (large a), the faster is the
convergence of nearest neighbor.

246 S. Kushagra and S. Ben-David

5.2 Comparison of Convergence Rates for Nearest Neighbor

PL-Conditional vs PL-Unary. First, we want to compare convergence rates
for Nearest Neighbor (mNN) under PL-Unary and PL-Conditional assumptions.
Thm. 7 which is stated below shows that both the notions are orthogonal to one
another. That is, there are examples for which PL-Unary is smaller and there
are examples for which PL-Conditional is smaller. Hence, none always leads to
faster learning as compared to the other.

Theorem 7. Let the domain be X ⊆ [0, 1]. Denote by φPLC the function which
parametrizes our definition (Eq. 5) and by φPLU the function which parametrizes
the earlier definition (Eq. 4). Then there exists distributions D1 and D2 such
that φPLC < φPLU for D1 and φPLU < φPLC for D2.

PL-Conditional vs Lipschitzness. In our analysis, we assumed that the
labeling function is deterministic. The Lipschitz assumption works with the
non-deterministic case and hence is not directly related to the present work.
In this case, there is conditional probability function over the labels, η defined
as, η(x) = P[y = 1|x]. Assuming that η satisfies c-Lipschitzness, Thm 19.3 in [9]
shows that the sample complexity of nearest neighbor learning is upper bounded

by mNN (ε, δ) ≤
(

4c
√

N
εδ

)N+1

, that is the sample complexity evaluates to

O

((
1
ε

)N+1(1
δ

)N+1
)

(4)

Hence, comparing Eqns. 3 and 4, we see that for a > 1, PL-Conditional leads to
faster learning than the Lipschitz assumption.

5.3 Estimating φ PL-Conditional

Given a labelled sample, we would like to evaluate how label homogeneous it is.
Probabilistic Lipschitzness provides a way to quantify this. Specifically, we would
like to estimate the probability P[l(x)
= l(y)|d(x, y) < λ] from some sample S.

This can be done by the following procedure. Let S = {(x1, y1), . . . , (xm, ym)}
be a sample of m pairs of points where each pair is generated independently and
identically by the distribution P 2. Now, denote by

f1(λ) = Fraction of pairs
of points in S

[l(x)
= l(y) ∩ d < λ] and g1(λ) = Fraction of pairs
of points in S

[d < λ]

We will prove that given a large enough sample, f1, g1 are good estimates of
P[l(x)
= l(y) ∩ d(x, y) < λ] and P[d(x, y) < λ] respectively.

Theorem 8. Let f1(λ), g1(λ) be as defined above. Let S be an i.i.d sample gen-
erated by P 2 of size m. Given α, β ∈ (0, 1) and λ > 0. If m > 1

2α2 log 4
β , then

with probability atleast 1 − β, we have that
∣∣∣f1(λ) − P

[
l(x)
= l(y) ∩ d(x, y) < λ]

∣∣∣ < α and
∣∣∣g1(λ) − P

[
d(x, y) < λ]

∣∣∣ < α

Information Preserving Dimensionality Reduction 247

Proof. Denote by PLA(λ) = P
[
l(x)
= l(y) ∩ d(x, y) < λ]. Using standard con-

centration bounds (Hoeffding’s inequality), we get that

P[|f1(λ) − PLC(λ)| > α] ≤ 2 exp(−2mα2)

Same bound holds for g1 as well. Substituting m > log(4/β)
2α2 gives the result.

Theorem 8 forms the basis for our experiments in Section 7. It shows that
given a large enough sample with high probability f1(λ) is an accurate estimate
of the corresponding probability. Alg. 1 shows a procedure of how to evaluate
f = f1/g1 for different datasets.

One important point to note is that we do not evaluate f(λ) for very small
values of λ. This is because for very small λ, we expect f1, g1 to be very close
to zero. In such a case, even a small additive error of α, might imply large
multiplicative error.

6 Metric Retention and PL-Conditional

6.1 Metric Retention Preserves PL-Conditional

An embedding which has metric retention property preserves some of the nice
properties of the distribution as well. Thm. 9 and Lemma 2 together show that
if we have PL-Conditional in the original dimension then any dimensionality
reduction technique which has metric retention preserves the PL-Conditional
property as well. Ex. 3 shows that the same is not true for PL-Unary.

Another way of stating our results is that, Nearest Neighbor has bounded
sample complexity in the reduced dimension space as well. There are certain
conditions under which Nearest Neighbor has bounded sample complexity. We
want to show that under a metric distance retaining reduction, if those conditions
are true in the original dimension, then those conditions are true in the reduced
dimension as well. PL-Conditional and PL-Unary are such conditions and hence
we investigate as to which of these also hold in the reduced dimension.

We break the PL-Conditional definition into two statements. The first is that
the probability of the ‘and’ condition is upper bounded and that the denomi-
nator is lower bounded by some function of λ. More formally, we assume that
Pr

x,y∼P

[
l(x)
= l(y) ∧ d(x, y) < λ

] ≤ α(λ) and Pr
x,y∼P

[
d(x, y) < λ

] ≥ β(λ)

where φ = α
β . We will now show that these quantities are bounded in the reduced

dimension space as well.

Theorem 9. Consider the framework as in the Def. 3. Domain set X ⊆ R
N

generated by some probability distribution P , distance functions d and d′, embed-
ding E which has metric retention w.r.t functions ψ1 and ψ2 and a labeling
function l. If Pr

x,y∼P

[
l(x)
= l(y) ∧ d(x, y) < λ

] ≤ α(λ) then Pr
x,y∼P

[
l(x)
=

l(y) ∧ d′(x, y) < λ
] ≤ α1(λ) where α1(λ) = ψ1(ε) + α(λ

1−ε) and ε ∈ (0, 1).

248 S. Kushagra and S. Ben-David

Proof.

Pr
x,y∼P

[
d′(x, y) < λ ∧ l(x)
= l(y)

]

≤ Pr
x,y∼P

[
d(x, y) <

λ

1 − ε
∧ l(x)
= l(y)

]
+ Pr

x,y∼P

[
d′(x, y) < (1 − ε)d(x, y)

]

≤ α
(λ

1 − ε

)
+ ψ1(ε) =: α1(λ)

Lemma 2. Consider the framework as in Theorem 9. If Pr
x,y∼P

[d(x, y) < λ] ≥
β(λ), then
Pr

x,y∼P
[d′(x, y) < λ] ≥ β1(λ) where β1(λ) = β(λ

1+ε) − ψ2(ε) and ε ∈ (0, 1).

Proof. The proof is left as an exercise for the reader.

In our discussion in this chapter, one slight detail is missing. Note that Prob-
abilistic Lipschitzness is sensitive to the scale of the data. To obtain bounds for
Nearest Neighbor under PL, we needed an implicit assumption on the diameter
of the data. This is because we assumed that the domain was [0, 1]N . Hence, we
should upper bound the diameter in the reduced dimension as well. The next
lemma bounds this quantity.

Lemma 3. Denote by dmax the diameter of the data in the original dimension.
Then, Pr

x,y∼P
[d′(x, y) > (1 + ε)dmax] ≤ ψ2(ε).

Proof. Pr[d′(x, y) > (1 + ε)dmax] ≤ Pr[d′(x, y) > (1 + ε)d(x, y)] ≤ ψ2(ε)

Example 3 (Metric Retention does not preserve PL-Unary). Consider
points in 2-dimensional plane. Fix some 0 < λ < 1. Let the distribution P be such
that it generates points y = 0 and x ∈ (0, λ) ∪ (λ, 2λ) ∪ . . . ∪ ((R − 1)λ,Rλ) with
probability 1− δ uniformly with label 1 and points y = 2 and x ∈ {λ, 2λ, . . . , Rλ}
with probability δ/R with label 0. Let the dimensionality reduction technique be
such that it always projects points along the x-axis.

In the original representation, it is easy to see that φPLU (λ) = 0. Also,
ψ1(ε) = 2(1 − δ)δ and ψ2(ε) = 0. In the reduced representation, φPLU (λ) = 1 as
for all points there exists another point of opposite label at distance < λ.

6.2 Sample Complexity Benefits

One of the benefits of dimensionality reduction is the computational cost of
classification. As an example, as the dimension reduces the computational cost of
nearest neighbor also decreases. However, if the embedding has metric retention
then we get statistical benefits (sample complexity) as well.

The sample complexity of nearest neighbor is given by O
(√

N
N

(φ−1(εδ/2))N

)
. Intu-

itively, when an embedding has MR, it leads to a slight worsening in the φ func-
tion as given by Thm. 9 and Lemma 2. However the exponential dependence on
dimension improves which should lead to reduction in sample complexity.

Information Preserving Dimensionality Reduction 249

Example 4. Let α, β be as defined in Thm 9 and Lemma 2. Let α(λ) = λ2a

and β(λ) = λa for some a ∈ N. Let ψ1(ε) = ε and ψ2(ε) = 0 for all ε ∈ (0, 1)
(Note, this is true for PCA).

Choose an ε s.t. ε ≤ 1−2−1/a

1+2−1/a . Then, we have that φ1(λ) = α1(λ)/β1(λ) ≤
2λa + ε(1 + ε)aλ−a < 3λa. Hence, we see that the sample complexity in the
original dimension is

O

(√
N

N

(εδ)N/a+1

)
which reduces to O

(√
n

n

(εδ)n/a+1

)

Hence, we have an exponential decrease in the number of samples needed.

7 Experiments

We now describe the experiments we ran to validate and compare the different
notions we introduced in this work. We ran all our experiments on a standard
Linux distribution running Ubuntu 14.04 with 16GBs Main Memory. We have
used Matlab and C++ to implement all our algorithms. We implemented our
algorithms on two different datasets namely, MNIST, ISOLET [10].

7.1 Probabilistic Lipschitzness Captures Usefulness

How related the labels are to its marginal distribution is type of information
which is stored in a representation. PL is a measure which tries to quantify
this information. Let us consider any binary classification task. In this case,
the “best” representation or the “best” feature learning algorithm would be one
which gives all points of label 0 as the same representation (say 0) and all points
of label 1 the same representation (say 1). For such a representation both PL-
Conditional and PL-Unary measures are 0 implying perfect label homogeneity.

Hence, PL has implications for feature learning algorithms as well. The goal is
to give experimental evidence supporting the claim that “Better representations
should have better PL”. Also, better feature learning algorithms should produce
features which have better PL.

We present experiments related to PL-Conditional and show how it is able to
capture the usefulness of a representation. We need to compute φ (Def. 5) which
depends on knowledge of the distribution. This is never available in practical sit-
uations. Hence, instead of calculating probabilities, we calculate the fraction of
pairs of points over which the predicate is satisfied. The procedure is defined in
Alg. 1. A formal justification of this approach is provided in Sec. 5.3, Thm. 8.

Deep Belief Network (DBN) have become quite popular and successful as
feature learning algorithms especially for vision related tasks (Hinton et. al [11]).
We used the DeepBNet Toolbox (Keyvanrad et. al [12]) to train a deep belief
network with 3 hidden layers of sizes 500, 500 and 2000 respectively on the
MNIST dataset and obtained the learned features.

250 S. Kushagra and S. Ben-David

Algorithm 1. Evaluating a learned representation
Input: Unlabelled data set X ⊆ R

N

Output: f(λ) for different values of λ.
1: Let S = {(x1, y1), . . . , (xm, ym)} where each pair of points is independently and

identically uniformly generated.
2: Let f(λ) = Fraction of pairs of points [l(x) �= l(y) | d(x, y) < λ]
3: Compute f for a particular λ on the set S.
4: Repeat 1-3 for different values of λ.

Hence, we get four different learned feature representations. We first compute
the f values (Alg. 1). Next, we run three classification algorithms namely, Nearest
Neighbor, Regression, Linear SVM on these representations. We then calculate
the accuracy difference between the original and the learned representations
averaged over these three classification algorithms. This we call the “performance
gap”. Intuitively, better features will perform better on different classification
algorithms and hence should have larger performance gap.

λ
0 0.2 0.4 0.6 0.8 1

f 1
(λ
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layer1
Layer2
Layer3
Layer4

Fig. 1. Fraction of points which have different labels
given their distance is (< λ) for the given represen-
tation.

Table 1. Difference of classifica-
tion accuracy (test) of PCA rep-
resentation vs Original representa-
tion on different datasets averaged
over 3 different algorithms

Features
Accuracy
Gap(in %)

Layer-1 0.00
Layer-2 3.23
Layer-3 3.76
Layer-4 3.91

Fig. 1 shows the plot of f (Alg. 1) for the features learned from different lay-
ers. Table 1 gives the average classification accuracy gap between the different
layers (using layer-1 features as the base). The f plot is noisy but the general
trend is that it increases with increasing distance (λ). Observe the nice correla-
tion between the f values and the accuracy gap. We observe that as the depth
of the network increases, the features computed by DBNs have better PL (more
label homogeneous). The observation that deeper layers are more label homoge-
neous is not new. Figures 3(B) and 4(B) in Hinton et. al [11] visualize a trained
autoencoder with 784-1000-500-250-2 layers and obtain similar conclusions for
the features of the output layer (dimension 2). However, for higher dimensions
(> 3) such a visualization is not possible. Probabilistic Lipschitzness (f plots)
provides a way to measure and visualize the same.

Information Preserving Dimensionality Reduction 251

8 Conclusion and Future Work

We introduced a new notion to model data embeddings which preserve inter-
point distances with high probability, called Metric Retention (Def. 3). We
showed that common techniques like PCA and Random Projections satisfy this
property (Thm. 4). We then showed that an embedding which satisfies metric
retention also preserves essential niceness properties of the distribution, namely
the PL-Conditional property (Thm. 9). Our experiments showed some correla-
tion between the usefulness of a representation and its PL-Conditional measure.

In future, we want to identify assumptions under which other embeddings
such as Neural Autoencoders might retain distance. Another direction is using
PL-Conditional or some similar niceness assumption to obtain sample complexity
bounds for other popular learning paradigms like Linear Classification, SVMs etc.

References

1. Urner, R., Ben-David, S., Shalev-Shwartz, S.: Access to unlabeled data can speed
up prediction time. In: ICML (2011)

2. van der Maaten, L.J., Postma, E.O., van den Herik, H.J.: Dimensionality reduction:
A comparative review. Journal of Machine Learning Research 10(1–41), 66–71
(2009)

3. Ghodsi, A.: Dimensionality reduction a short tutorial. Department of Statistics
and Actuarial Science, Univ. of Waterloo, Ontario, Canada (2006)

4. Johnson, W.B., Lindenstrauss, J.: Extensions of lipschitz mappings into a hilbert
space. Contemporary Mathematics 26(189–206), 1 (1984)

5. Abraham, I., Bartal, Y., Neiman, O.: On embedding of finite metric spaces into
hilbert space. Tech. Report, Technical report (2006)

6. Chan, T.H.H., Dhamdhere, K., Gupta, A., Kleinberg, J., Slivkins, A.: Met-
ric embeddings with relaxed guarantees. SIAM Journal on Computing 38(6),
2303–2329 (2009)

7. Urner, R., Ben-David, S.: Probabilistic lipschitzness a niceness assumption for
deterministic labels. In: Learning Faster from Easy Data-Workshop@ NIPS (2013)

8. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequen-
cies of events to their probabilities. Theory of Probability & Its Applications 16(2),
264–280 (1971)

9. Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning (2014)
10. Bache, K., Lichman, M.: UCI machine learning repository (2013)
11. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-

ral networks. Science 313(5786), 504–507 (2006)
12. Keyvanrad, M.A., Homayounpour, M.M.: A brief survey on deep belief networks

and introducing a new object oriented matlab toolbox (deebnet) (2014). arXiv
preprint arXiv:1408.3264

13. Knuth, D.E.: The art of computer programming: Fundamental algorithms, vol. i
(1968)

http://arxiv.org/abs/1408.3264

252 S. Kushagra and S. Ben-David

A Proof of Theorems

Proof of Thm. 4. We first show that P[d − d′ > λ] is small.

Pr
x,y∼P

[
d(x, y) − d′(x, y) ≥ λ

] ≤ Pr
x,y∼P

[∃i : (xi − yi)2 ≥ λ2

N − n

]

≤
N∑

i=n+1

Pr
x,y∼P

[|xi − μi| + |yi − μi| ≥ λ√
N − n

]
where μi = mean(Pi).

= 2
N∑

i=n+1

Pr
xi∼Pi

[|xi − μi| ≥ λ

2
√

N − n

]
. Using Chebyshev’s Inequality [13],

≤
N∑

i=n+1

8 (N − n) var2(Pi)
λ2

≤ 8 (N − n)2 δ2

λ2
(5)

Now, using Eqn. 5 we will bound the probability of the actual event.

P[d′(x, y) ≤ (1 − ε)d(x, y)] = P[d(x, y) − d′(x, y) ≥ εd(x, y)]

≤ P[d(x, y) − d′(x, y) ≥ ελ] + P[d(x, y) < λ] ≤ c +
8(N − n)2δ2

ε2λ2

Proof of Thm. 6. Partition the domain X = [0, 1]N into r = (
√

N/λ)N axis-
aligned boxes C1, . . . , Cr each of length λ/

√
N and diameter λ for some λ (to

be chosen later). For any x ∈ [0, 1]N denote by C(x) the region in which x lies
and by πS(x) the Nearest Neighbor of x in S.

ErrP (NN(S)) = Pr
x∼P

[l(πS(x))
= l(x)]

≤ Pr
x∼P

[C(x) ∩ S = φ] + Pr
x∼P

[C(x) ∩ S
= φ ∧ l(πS(x))
= l(x)]

=
∑

i:Ci∩S=φ

Pr
x∼P

[x ∈ Ci] +
∑

i:Ci∩S �=φ

Pr
x∼P

[x ∈ Ci ∧ l(πS(x))
= l(x)]

=
∑

i:Ci∩S=φ

P[Ci] +
∑

i:Ci∩S �=φ

P[Ci] Pr
x∼PCi

[l(πS(x))
= l(x)] (6)

where P[Ci] := Pr
x∼P

[x ∈ Ci] and PCi
denotes the distribution P restricted to

the set Ci. Observe that, since Ci ∩S
= φ, we have that d(x, πS(x)) ≤ λ. Denote
a(x, y) := (l(x)
= l(y)). Now consider the expectation over the sample S of the
quantity on the extreme right of Equation 6.

Exp
S∼Pm

[
∑

i:Ci∩S �=φ

P[Ci] Pr
x∼PCi

[a(πS(x), x)]

]

≤
r∑

i=1

P[Ci]Exp
S∼Pm

[
Pr

x∼PCi

[
a(πS(x), x)

]
]

=
r∑

i=1

P[Ci] Pr
S∼Pm

x∼PCi

[
a(πS(x), x)

]
(7)

Information Preserving Dimensionality Reduction 253

Denote PS [πxj
] := Pr

S∼Pm

x∼PCi

[πS(x) = xj]. Now, observe that the labeling function l

is independent of the choice of the nearest Neighbor πS(x) which depends only
on the distance function d. Hence, we get

Pr
S∼Pm

x∼PCi

[
a(πS(x), x)

]
≤

m∑

j=1

PS [πxj
] Pr

x1,...,xm∼P
x∼PCi

[
a(xj , x)

]

=
m∑

j=1

PS [πxj
] Pr

xj∼P
x∼PCi

[
l(xj)
= l(x)

] ≤
m∑

j=1

PS [πxj
]φ(λ) ≤ φ(λ). Hence,

Exp
S∼Pm

[∑

i:Ci∩S �=φ

P[Ci] Pr
x∼PCi

[NN(S)(x)
= l(x)]
]

≤ φ(λ) (8)

Now, using Equations 6 and 8 together with Lemma 19.2 from [9], we get that

Exp
S∼Pm

[
ErrP (NN(S))

] ≤ r

me
+ φ(λ). Now, using Markov’s inequality

Pr
S∼Pm

[
ErrP (NN(S)) > ε

] ≤ 1
meε

(√
N

λ

)N

+
φ(λ)

ε

Using λ = φ−1(εδ/2), we get the result of the Theorem. ��
Proof of Thm. 7. We first construct a distribution such that φPLC is small
but φPLU = 1 (Example 5). Next we construct another distribution such that
φPLC = 1 but φPLU is small. (Example 6). This completes the proof of our
theorem.

Example 5. (PL-Conditional but not PL-Unary) Let λ and γ << λ be
constants. Let Xk = [kλ − γ, kλ + γ] for some k ∈ N. Let the domain X = ∪Xk

for all k such that Xk ⊆ [0, 1]. Let the labeling function be such that all points of
the form kλ where k ∈ N are labeled 1 and all the other points are labeled 0. Now,
consider the following distribution P over the domain X. All the subintervals are
given equal weight of 1

n . Within the subinterval, the point of the form kλ (center)
is given a weight of 1−γ

n and the remaining weight of γ
n is spread uniformly over

the remaining points.
Now, observe that, given any point x there exists another point y with finite

probability such that d(x, y) < λ and l(x)
= l(y). Hence, φPLU = 1. Standard
calculations show that for the above example φPLC = 4γ

λ .

Example 6. (PL-Unary but not PL-Conditional) Let λ << 1 be some
small constant. Let S = {λ, . . . , kλ} be the maximal set such that k ∈ N and
S ⊆ [0, 1]. Let the domain X = S ∪ (k + 1

2λ). Let n be the number of points in
the domain X. Then 1

λ ≤ n ≤ 1
λ + 1. Let P be the uniform distribution over the

domain X. Let the labeling function be such that it labels all points in S as 1 and
the point (k + 1

2λ) as 0. It is easy to see that in this case, φPLC(λ) = 1 whereas
φPLU (λ) = 2λ.

Learning with Deep Cascades

Giulia DeSalvo1(B), Mehryar Mohri1,2, and Umar Syed2

1 Courant Institute of Mathematical Sciences, 251 Mercer Street,
New York, NY 10012, USA
desalvo@cims.nyu.edu

2 Google Research, 111 8th Avenue, New York, NY 10011, USA

Abstract. We introduce a broad learning model formed by cascades of
predictors, Deep Cascades, that is structured as general decision trees in
which leaf predictors or node questions may be members of rich function
families. We present new data-dependent theoretical guarantees for learn-
ing with Deep Cascades with complex leaf predictors and node questions
in terms of the Rademacher complexities of the sub-families composing
these sets of predictors and the fraction of sample points reaching each
leaf that are correctly classified. These guarantees can guide the design
of a variety of different algorithms for deep cascade models and we give
a detailed description of two such algorithms. Our second algorithm uses
as node and leaf classifiers SVM predictors and we report the results
of experiments comparing its performance with that of SVM combined
with polynomial kernels.

Keywords: Decision trees · Learning theory · Supervised learning

1 Introduction

Decision trees are learning models commonly used in classification, regression,
and clustering applications [6,23]. They can be defined as binary trees augmented
with indicator functions at each internal node and assignment functions at each
leaf. A sample point is processed by a decision tree by answering questions at
each node of a tree until a leaf is reached. The label assignment at that leaf then
determines the value returned by the tree for that point.

In standard decision trees, the node questions are selected from a fixed fam-
ily of functions and similarly for the leaf predictors [6,23]. The complexity of a
decision tree directly depends on these two families of functions and the depth of
the tree. Thus, in practice, to limit the risk of overfitting, relatively simple fam-
ilies of functions are used: node questions are typically selected to be threshold
functions based on the input features, leaf predictors often chosen to be constant
functions.

This paper considers a significantly broader learning model formed by cas-
cades of predictors, Deep Cascades, structured as a decision tree. In this model,
the leaf predictors can be chosen out of a complex hypothesis set H and, sim-
ilarly, the node questions from a family Q. For some difficult learning tasks,
c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 254–269, 2015.
DOI: 10.1007/978-3-319-24486-0 17

Learning with Deep Cascades 255

the flexibility of allowing leaf predictors to be selected from a more complex set
H (or node questions from Q) may be needed to achieve a high performance.
However, cascades with leaf predictors freely selected from H are likely to be
prone to overfitting, even with a relatively large number of training samples. Can
we preserve the flexibility of using complex leaf predictors (or node questions)
and yet avoid overfitting?

Suppose H can be decomposed as the union of p distinct hypothesis sets
H1, . . . , Hp with increasing complexity. For example, Hk could be the family
of threshold functions based on feature monomials of degree k, or polynomial
functions of degree k, or Hk could be the family of linear classifiers based on
polynomial kernels of degree k. The simpler form of our theoretical analysis
shows that, remarkably, it is possible to choose a leaf predictor function from
Hk with a relatively large k while benefitting from strong learning guarantees, so
long as the fraction of training sample points reaching that leaf is small compared
to the complexity of Hk. Our full analysis provides finer guarantees that we will
describe in detail.

We present data-dependent theoretical guarantees for learning with Deep
Cascades with leaf predictors chosen from the hypothesis sets Hk and node ques-
tion functions selected from different hypothesis sets Qj . Our learning bounds
are expressed in terms of the Rademacher complexities of the families of leaf
predictors Hk and the families of node questions Qj . These general guarantees
can guide the design of a variety of different algorithms for deep cascade models.
We describe in depth two such algorithms for learning deep cascades. Our sec-
ond algorithm uses as node and leaf classifiers SVM predictors and we report the
results of experiments comparing its performance with that of SVM combined
with polynomial kernels.

Our theory and algorithm have many connections with the wide literature on
decision trees and some more recent publications on cascades of classifiers. They
are also related to classification with reject option and to a series of articles
about combining decision trees with the SVM algorithm. We briefly discuss
some of these connections and highlight our contributions here. A more detailed
discussion of the previous work is presented in the full version of the paper [11].

Several types of generalization bounds have been given in the past for decision
trees. Mansour and McAllester [19] provided non-trivial generalization bounds
for decision trees where the node questions are selected from a single hypothesis
set and where the leaves are simply labeled with zero or one. These are special
cases of the deep cascades we are considering. As in our analysis, their bounds
depend on the actual training sample and the tree structure, but the complexity
term of their bound is the size of the tree, while ours are expressed in terms
of the empirical Rademacher complexities of the hypothesis sets used. A simi-
lar approach was adopted by Nobel [21] who further proved the consistency of
pruned trees under certain assumptions. Golea et al. [13] gave generalization
bounds in terms of the VC-dimension of the node functions and the number
of leaves but the trees analyzed are much less general than the deep cascades.

256 G. DeSalvo et al.

Lastly, Scott and Nowak [26] presented an analysis of a specific family of decision
trees, Dyadic Decision Trees (DDT).

Cascades have been extensively used in object detection starting with the
work of Viola and Jones [28] who introduced attentional cascades and com-
bined complex classifiers in a linear structure to create a highly accurate face
detector. Their work inspired a number of variants of their training procedures
[8,16,22,25]. Most of these papers focus on finding the best trade-off between
computational cost and classification accuracy, which differs from our main
objective here. Additionally, the deep cascades we consider admit a more general
structure than those considered by this previous work.

Since one of our deep cascade algorithms uses SVMs, we also review the
related previous work on combining SVMs with decision trees. Bennett and
Blue [5] used SVMs as node questions in decision trees. They did not present a
theoretical analysis of these models and did not address the issue of overfitting,
but they proposed an optimization problem for which they gave a heuristic solu-
tion and presented preliminary empirical results. Some of the papers in this area
focus on multi-class classification [12,18,27]. However, they partition the feature
space in a different way from our cascade models. Other articles attempted to
increase SVM’s computational speeds by using decision trees [1,2,7,15?], but
both the splitting criteria and class assignments are very different from ours.

The layout of the paper is as follows. We introduce the notation adopted
throughout the paper and give a formal definition of the family of deep cascades
in Section 2. Next, in Section 3, we present data-dependent learning bounds for
deep cascades, first in the case of leaf functions taking values in {−1,+1}, and
later in the more general case where they take values in the interval [−1,+1].
In Section 4, we describe two binary classification algorithms whose design
is guided by these bounds and which benefit from these learning guarantees.
We report the results of several experiments using one of these algorithms in
Section 5.

2 Preliminaries

Let X denote the input space. We consider the standard supervised learning
scenario where the training and test points are drawn i.i.d. according to some
distribution D over X × {−1,+1} and denote by S = ((x1, y1), . . . , (xm, ym)) a
training sample of size m drawn according to Dm.

Let l ≥ 1. For any k ∈ [1, l], let Sk denote a family of functions mapping X

to {0, 1} and let H denote a family of p hypothesis sets of functions mapping X

to [0, 1]. A deep cascade with l ≥ 1 leaves is a tree of classifiers which, in the
most generic view, can be defined by a triplet (H, s,h) where

– H = (H1, . . . , Hl) is an element of Hl which determines, for all k, the hypoth-
esis set Hk used at leaf k;

– s : X × [1, l] → {0, 1} is a leaf selector, that is s(x, k) = 1 if x is assigned to
leaf k, s(x, k) = 0 otherwise; for each k, function s(·, k) is an element of Sk;

Learning with Deep Cascades 257

– h = (h1, . . . , hl), with hk : X → [−1,+1] the leaf classifier for leaf k, which
is an element of the family of functions Hk.

We denote by Hk = {x �→ s(x, k)hk(x) : s(·, k) ∈ Sk, hk ∈ Hk} the family com-
posed of products of a k-leaf selector and a k-leaf classifier.

We will later assume, as in standard decision trees, that the leaf selector s
can be decomposed into node questions (or their complements): for any x ∈ X

and k ∈ [1, p], s(x, k) =
∏dk

j=1 qj(x), where dk is the depth of node k and where
each function qj : X → {0, 1} is an element of a family Qj .1 Yet much of our
analysis holds without this assumption.

Each triplet (H, s,h) defines a deep cascade function f : X → [−1,+1] as
follows:

∀x ∈ X, f(x) =
l∑

k=1

s(x, k)hk(x). (1)

We denote by Tl the family of all deep cascade functions f with l leaves thereby
defined. We also denote by R(f) = E(x,y)∼D[1yf(x)≤0] the binary classification
error of a function f ∈ Tl, by R̂S(f) = E(x,y)∼S [1yf(x)≤0] its empirical error
and, for any ρ > 0, by R̂S,ρ(f) = E(x,y)∼S [1yf(x)≤ρ] its empirical margin error
over a labeled sample S, where the notation (x, y) ∼ S means that (x, y) is
drawn according to the empirical distribution defined by S. We further denote
by Rm(H) the Rademacher complexity and by R̂S(H) the empirical Rademacher
complexity of a hypothesis set H [3,14].

3 Data-dependent Learning Guarantees

In this section, we present data-dependent learning guarantees for deep cascades
that depend, for each leaf k, on the Rademacher complexity of the family Hk

and on the fraction of the points in the training sample that reach leaf k and
that are correctly classified, denoted by m+

k /m. m+
k is thus defined by m+

k =
|{i : yihk(xi) > 0, s(xi, k) = 1}|. Similarly, the number of points that reach
leaf k that are incorrectly classified is denoted by m−

k and defined by m−
k =

|{i : yihk(xi) ≤ 0, s(xi, k) = 1}|.
We first analyse the case where the leaf classifiers hk take values in {−1,+1}

(Section 3.1), and next consider the more general case where they take values
in [−1,+1] (Section 3.2). In the full version of this paper [11], we further extend
our analysis and data-dependent learning guarantees to the setting of multi-class
classification.

3.1 Leaf Classifiers Taking Values in {−1,+1}
The main result of this section is Theorem 1, which provides a data-dependent
generalization bound for deep cascade functions in the case where leaf classifiers
1 Each qj is either a node question q or its complement q̄ defined by q̄(x) = 1 iff

q(x) = 0. The family Qj is assumed symmetric: it contains q̄ when it contains q.

258 G. DeSalvo et al.

take values in {−1,+1}. The following is a simpler form of that result: with high
probability, for all f ∈ Tl,

R(f) ≤ R̂S(f) +
l∑

k=1

min
(
4 R̂S(Hk),

m+
k

m

)
+ Õ

(
l

√
log pl

m

)
. (2)

Remarkably, this suggests that a strong learning guarantee holds even when a very
complex hypothesis set Hk is used in a deep cascade model, so long as m+

k /m, the
fraction of the points in the training sample that reach leaf k and are correctly
classified, is relatively small. Observe that the result remains remarkable and non-
trivial even if we upper boundm+

k bymk, the total number of points reaching leaf k.
The fraction of the points in the training sample that reach leaf k and are correctly
classified depends on the choice of the cascade. Thus, the bound can provide a
quantitative guide for the choice of the best deep cascade. Even for p = 1, the
result is striking since, while in the worst case the complexity term could be in
O(lR̂S(H1)), this data-dependent result suggests that it can be substantially less
for some deep cascades since we may have m+

k /m 	 R̂S(H1) for many leaves.
Also, note that the dependency of the bound on the number of distinct hypothesis
sets p is only logarithmic. In Section 4, we present several algorithms exploiting
this generalization bound for deep cascades.

For clarity, we will sometimes use the shorthand rk = R̂S(Hk) for any k ∈ [1, l].
We will assume without loss of generality that the leaves are numbered in order of
increasing depth and will denote byK the set of leaves k whose fraction of correctly
classified sample points is greater than 4rk: K = {k ∈ [1, l] : m+

k

m > 4rk}.

Theorem 1. Fix ρ > 0. Assume that for all k ∈ [1, l], the functions in Hk take
values in {−1,+1}. Then, for any δ > 0, with probability at least 1 − δ over the
choice of a sample S of size m ≥ 1, the following holds for all l ≥ 1 and all
cascade functions f ∈ Tl defined by (H, s,h):

R(f) ≤ R̂S(f) +
l∑

k=1

min
(
4R̂S(Hk),

m+
k

m

)

+ min
L⊆K

|L|≥|K|− 1
ρ

∑

k∈L

[m+
k

m
− 4R̂S(Hk)

]
+ C(m, p, ρ) +

√
log 4

δ

2m
,

where C(m, p, ρ) = 2
ρ

√
log pl

m +
√

log pl
ρ2m log

[
ρ2m
log pl

]
= Õ

(
1
ρ

√
log pl

m

)
.

Proof. First, observe that the classification error of a deep cascade function
f ∈ Tl only depends on its sign sgn(f). Let Δ denote the simplex in R

l and
int(Δ) its interior. For any α ∈ int(Δ), define gα by

∀x ∈ X, gα(x) =
l∑

k=1

αks(x, k)hk(x). (3)

Learning with Deep Cascades 259

Then, sgn(f) coincides with sgn(gα) since s(x, k) is non-zero for exactly one
value of k. We can therefore analyze R(gα) instead of R(f), for any α ∈ int(Δ).

Now, since gα is a convex combination of the functions x �→ s(x, k)hk(x), we
can apply to the set of functions gα the learning guarantees for convex ensembles
with multiple hypothesis sets given by [9]:

R(f) ≤ inf
α∈int(Δ)

[
R̂S,ρ(gα) +

4
ρ

l∑

k=1

αkR̂S(Hk)
]
+ C(m, p, ρ) +

√
log 4

δ

2m
. (4)

This bound is not explicit and depends on the choice of α ∈ int(Δ). The crux of
our proof now consists of removing α and deriving an explicit bound. The first
term of the right-hand side of (4) can be re-written as infα∈int(Δ) A(α) with

A(α) =
1
m

l∑

k=1

∑

s(xi,k)=1

1yiαkhk(xi)<ρ +
4
ρ

l∑

k=1

αkR̂S(Hk), (5)

since R̂S,ρ(gα) = 1
m

∑l
k=1

∑
s(xi,k)=1 1yiαkhk(xi)<ρ. Observe that function A can

be decoupled as a sum, A(α) =
∑l

k=1 Ak(αk), where

Ak(αk) =
1
m

∑

s(xi,k)=1

1yiαkhk(xi)<ρ +
4
ρ
αkrk

with rk = R̂S(Hk). For any k ∈ [1, l], Ak(αk) can be rewritten as follows

in terms of m−
k and m+

k : Ak(αk) = m−
k

m + m+
k

m 1αk<ρ + 4
ραkrk. This implies

infαk>0 Ak(αk) = m−
k

m + min
(

m+
k

m , 4rk

)
. However, we need to ensure the global

condition
∑l

k=1 αk ≤ 1. First, we let l′ = min(|K|, 1
ρ). For any J ⊆ K with

|J| ≤ l′, we choose αk = ρ for k ∈ J, αk → 0 otherwise, which guarantees∑l
k=1 αk = ρl′ ≤ 1 and gives the infimum

inf
α∈int(Δ)

A(α) = min
J⊆K
|J|≤l′

(
4
∑

k∈J

rk +
∑

k∈K−J

m+
k

m

)
+

l∑

k=1

m−
k

m
+

∑

k 	∈K

m+
k

m
.

In order to simplify the bound, observe that the following equalities hold:

min
J

(
4
∑
k∈J

rk +
∑

k∈K−J

m+
k

m

)
= min

J

(
4
∑
k∈J

rk +
∑

k∈K−J

m+
k

m
+
∑

k∈K−J

4rk −
∑

k∈K−J

4rk

)

= min
J

(
4
∑
k∈K

rk +
∑

k∈K−J

m+
k

m
− 4rk

)
= 4

∑
k∈K

rk +min
J

(∑
k∈K−J

m+
k

m
− 4rk

)
.

By definition,
∑

k∈K 4rk+
∑

k 	∈K
m+

k

m =
∑l

k=1 min
(
4rk,

m+
k

m

)
. Now, let L = K−

J and since |J| ≤ l′, |L| = |K|−|J| ≥ |K|−l′ = |K|−min(|K|, 1
ρ) = max(0, |K|− 1

ρ)

260 G. DeSalvo et al.

thus, |L| ≥ |K| − 1
ρ . Finally, we write the bound in the following simpler form:

inf
α∈int(Δ)

A(α) =
l∑

k=1

min
(
4rk,

m+
k

m

)
+ min

L⊆K
|L|≥|K|− 1

ρ

(∑

k∈L

m+
k

m
−4rk

)
+

l∑

k=1

m−
k

m
.

Since R̂S(f) =
∑l

k=1
m−

k

m , this coincides with the bound of the theorem. ��
These learning bounds are not straightforward and cannot be derived from stan-
dard Rademacher complexity bounds. A finer analysis is used in the proof to
relate deep cascades to convex ensembles with multiple hypothesis sets [9].

We already commented on the simpler form (2) of this generalization bound.
Our comments apply a fortiori to this finer version of the bound. Let us add that
the theorem also provides new learning guarantees in the special case of decision
trees. The result may seem surprising since it suggests that the complexity term
depends on m+

k /m when this ratio is sufficiently small; however, for such nodes,
typically the fraction of points mk/m would also be small, where mk denotes
the number of points at leaf k. At a deeper level, these guarantees suggest that
for cascades, the complexity of the hypothesis sets may not be the most critical
measure, but rather a balance of those complexities and the fractions of points.

The bound of the theorem can be generalized to hold uniformly for all ρ > 0

at the price of an additional term in O
(

log log2
1
ρ

m

)
. For |K| ≤ 1

ρ , choosing L = ∅
yields:

R(f) ≤ R̂S(f) +
l∑

k=1

min
(
4 R̂S(Hk),

m+
k

m

)
+ C(m, p, ρ) +

√
log 4

δ

2m
. (6)

As mentioned above, these learning bounds can be generalized to hold uniformly
over all ρ > 0: thus, we can choose ρ = 1

|K| at the price of an additional term

in the bound varying only in O
(

log log2 |K|
m

)
≤ O

(
log log2 l

m

)
. This gives the sim-

pler form (2) of the bound of Theorem 1, using C(m, p, ρ) = C(m, p, 1
|K|) ≤

C(m, p, 1
l).

The learning bounds just presented are given in terms of the empirical
Rademacher complexities R̂S(Hk). To derive more explicit guarantees, we must
bound each of these quantities in terms of R̂S(Hk) and R̂S(Sk). The following
lemma helps us achieve that.

Lemma 1. Let G1 be a family of functions mapping X to {0, 1} and let G2 be a
family of functions mapping X to {−1,+1}. Let G = {g1g2 : g1 ∈ G1, g2 ∈ G2}.
Then, the empirical Rademacher complexity of G for any sample S of size m
can be bounded as follows:

R̂S(G) ≤ R̂S(G1) + R̂S(G2).

Learning with Deep Cascades 261

Proof. Observe that for g1 ∈ G1 and g2 ∈ G2, g1g2 = |g1 + g2| − 1. Since
x �→ |x|−1 is 1-Lipschitz over [−1, 2], by Talagrand’s lemma in [20], the following
holds: R̂S(G) ≤ R̂S(G1 + G2) ≤ R̂S(G1) + R̂S(G2). ��

Thus, in view of the lemma, for any k ∈ [1, p], we can use the upper bound
R̂S(Hk) ≤ R̂S(Hk) + R̂S(Sk).

We now assume, as previously discussed, that leaf selectors are defined via
node questions qj : X → {0, 1}, with qj ∈ Qj . Thus, to derive more explicit
guarantees in that case, we need to bound R̂S(Sk) in terms of the Rademacher
complexities R̂S(Qj).

Lemma 2. Let H1 and H2 be two families of functions mapping X to {0, 1} and
let H = {h1h2 : h1 ∈ H1, h2 ∈ H2}. Then, the empirical Rademacher complexity
of H for any sample S of size m can be bounded as follows:

R̂S(H) ≤ R̂S(H1) + R̂S(H2).

Proof. Observe that for any h1 ∈ H1 and h2 ∈ H2, we can write h1h2 = (h1 +
h2 −1)1h1+h2−1≥0 = (h1 +h2 −1)+. Since x �→ (x−1)+ is 1-Lipschitz over [0, 2],
by Talagrand’s lemma in [20], the following holds: R̂S(H) ≤ R̂S(H1 + H2) ≤
R̂S(H1) + R̂S(H2). ��

In view of Lemmas 2 and 1, the Rademacher complexities of the hypothe-
sis sets Hk can be explicitly bounded as follows for any k ∈ [1, l]: R̂S(Hk) ≤∑dk

j=1 R̂S(Qj) + R̂S(Hk). Clearly, if the same hypothesis set is used for all node
questions, that is Qj = Q for all j for some Q, then the bound admits the follow-
ing simpler form: R̂S(Hk) ≤ dkR̂S(Q) + R̂S(Hk). The Rademacher complexity
of the hypothesis sets Hk can also be bounded in terms of the growth function
of Hk and of Qj (see full paper [11]).

To the best of our knowledge, Lemmas 2 and 1 are both novel and can be
used as general tools for the analysis of the Rademacher complexity of other
families. In the full version of this paper [11], we also provide a lower bound for
the Rademacher complexity of the product of two hypothesis sets as a linear
combination of the Rademacher complexity of the two sets. This shows that the
upper bounds given by Lemma 2 cannot be significantly improved in general.

3.2 Leaf Classifiers Taking Values in [−1,+1]

A similar but somewhat more complex analysis can be given in the case where
the leaf classifiers take values in [−1,+1]. Define ρk = min{yihk(xi) : yihk(xi) >
0, s(xi, k) = 1} as the smallest confidence value over the correctly classified
sample points at leaf k. If there are no correctly classified points, then define
ρk = 0. Let K̃ =

{
k ∈ [1, l] : m+

k

m > 4rk

ρk

}
and denote its weighted cardinality as

|K̃|w̃ =
∑l

k=1
1
ρk

. Then, it can be shown that for any δ > 0, for |K̃|w̃ ≤ 1
ρ , the

262 G. DeSalvo et al.

following holds with probability at least 1 − δ:

R(f) ≤ R̂S(f) +
l∑

k=1

min
(

4R̂S(Hk)
ρk

,
m+

k

m

)
+ Õ

(
l

√
log pl

m

)
, (7)

which is the analogue of the learning bound (2) obtained in the case of leaf
classifiers taking values in {−1,+1}. The full proof of this result, as well as that
of more refined results, is given in the full version of this paper in [11]. As in
the discrete case, to derive an explicit bound, we need to upper bound for all
k ∈ [1, l] the Rademacher complexity R̂S(Hk) in terms of those of Hk and Qj .
To do so, we will need a new tool provided by the following lemma.

Lemma 3. Let H1 and H2 be two families of functions mapping X to [0,+1]
and let F1 and F2 be two families of functions mapping X to [−1,+1]. Let H =
{h1h2 : h1 ∈ H1, h2 ∈ H2} and let F = {f1f2 : f1 ∈ F1, f2 ∈ F2}. Then, the
empirical Rademacher complexities of H and F for any sample S of size m are
bounded as follows:

R̂S(H) ≤ 3
2
(
R̂S(H1) + R̂S(H2)

)
R̂S(F) ≤ 2

(
R̂S(F1) + R̂S(F2)

)
.

Proof. Observe that for any h1 ∈ H1 and h2 ∈ H2, we can write h1h2 = 1
4 [(h1 +

h2)2 − (h1 −h2)2]. For bounding the term (h1 +h2)2, note that the function x �→
1
4x2 is 1-Lipschitz over [0, 2]. For the term (h1 − h2)2, observe that the function
x �→ 1

4x2 is 1/2-Lipschitz over [−1, 1]. Thus, by Talagrand’s lemma (see [20]),
R̂S(H) ≤ R̂S(H1+H2)+ 1

2R̂S(H1−H2) ≤ 3
2

(
R̂S(H1)+R̂S(H2)

)
. Similarly, the

same equation holds for the product f1f2 with f1 ∈ F1 and f2 ∈ F2, but now the
function x �→ 1

4x2 is 1-Lipschitz over [−2, 2]. Thus, by Talagrand’s lemma [20],
the following holds: R̂S(F) ≤ R̂S(F1+F2)+R̂S(F1−F2) ≤ 2

(
R̂S(F1)+R̂S(F2)

)
,

which completes the proof. ��
Lemma 2 and Lemma 3 yield the following explicit bound for R̂(Hk) for any
k ∈ [1, l]: R̂S(Hk) ≤ 2

∑dk

j=1 R̂S(Qj) + 2R̂S(Hk). When the same hypothesis set
is used for all node questions, that is Qj = Q for all j for some Q, then the
bound admits the following simpler form: R̂S(Hk) ≤ 2dkR̂S(Q) + 2R̂S(Hk).

4 Algorithms

There are several algorithms that could be derived from the learning guarantees
presented in the previous section. Here, we will describe two algorithms based
on the simplest bound (2) of Section 3.1, which we further bound more explicitly
by using the results from the previous section:

R(f) ≤ R̂S(f)+
l∑

k=1

min
(

4
[dk∑

j=1

R̂S(Qj)+R̂S(Hk)
]
,
m+

k

m

)
+Õ

(
l

√
log pl

m

)
. (8)

For both of our algorithms, we fix the topology of the deep cascade to be binary
trees where every left child is a leaf as shown by Figure 2. Other more general
tree topologies can be considered, which could further improve our results.

Learning with Deep Cascades 263

q1(x)

h1(x)

µ1

µ2

1− µ3

1− µ2

1− µ1

Node 1:

Leaf 1:

µ3

Fig. 1. Tree Topology of deep cascades for DeepCascade and DeepCascadeSVM
Algorithm. The node question at node 1 is denoted by q1(x) and the leaf classifier at
leaf 1 denoted by h1(x). A μk fraction of the points at node k is sent to the right child,
and the remaining (1 − μk) fraction of points to the left child. For DeepCascade, all
μks are set to be equal: μk = μ for all k.

4.1 DeepCascade

In this section, we describe a generic algorithm for deep cascades, named Deep-
Cascade. The algorithm first generates several deep cascades and then chooses
the best among them by minimizing the generalization bound (8).

Let H be a set of p hypothesis sets from which the hypothesis sets Hk are
selected. Here, we similarly allow each hypothesis set Qk to be chosen out of a
family of hypothesis sets Q of cardinality p – it is not hard to see that this affects
our learning bound only by the log(pl) factors being changed into l log(p) and
leaves the main terms we are minimizing unchanged; moreover, since we will be
considering cascades with a relatively small depth, say l ≤ 4, the effect will be
essentially insignificant.

At any node k, the question qk is selected so that a μ fraction of the points
is sent to the right child. We assume for simplicity that for any node k and any
choice μ, there exists a unique node question qk with that property. For the
topology of Figure 2, it is not hard to see that for any k, m+

k

m is at most μk−1.
The parameter μ controls the fraction of points that proceed deeper into the
tree and is introduced in order to find the best trade-off between the complexity

Algorithm 1. DeepCascade(L,M)
S1 ← S
for l ∈ [1, . . . , L], μ ∈ M, (Hk)1≤k≤l ⊆ H, (Qk)1≤k≤l ⊆ Q do

for k = 1 to l do
qk ← argq∈Qk

{|q−1(1) ∩ Sk| = μ|Sk|}
Sk+1 ← q−1

k (1) ∩ Sk

hk ← argminh∈Hk
{R̂S̄k+1

(h) : S̄k+1 = q−1
k (0) ∩ Sk}

end for
f ←∑l−1

k=1(
∏k−1

j=1 qj)qkhk + (
∏l

j=1 qj)hl

F ← F ∪ {f}
end for

f∗ ← argminf∈F RS(f) +
∑l

k=1 min
(
4
(∑dk

j=1 R̂S(Qf,j) + R̂S(Hf,k)
)
,
m+

k
m

)

return f∗

264 G. DeSalvo et al.

µ1 fraction of
points

h1

Hyperplane

q1 = 1
q1 = 0

Node
Question

Fig. 2. Illustration of the first step of DeepCascadeSVM. The hyperplane h1 is
learned using the SVM algorithm over sample points S1. The node question q1 equals
one in the green area and zero otherwise. The green area contains a μ1 fraction of the
data points that will proceed to the next node.

term and fraction of points at each node. The subsample of the points reaching
the internal node k is denoted by Sk and the subsample of those reaching leaf k
is denoted by S̄k+1, with |S̄k+1| = mk. The leaf classifier hk is chosen to be the
minimizer of the empirical error over S̄k+1 since, in this way, it further minimizes
bound (8).

Algorithm 1 gives the pseudocode of DeepCascade. The algorithm takes as
input the maximum depth L for all the deep cascades generated and the set M

of different fraction values for the parameter μ. For any depth l ∈ [1, . . . , L], any
μ ∈ M, and any sequence of leaf hypothesis sets (Hk)1≤k≤l ⊆ H and sequence
of node question hypothesis sets (Qk)1≤k≤l ⊆ Q, the algorithm defines a new
deep cascade function f . At each node k, the question qk ∈ Qk is selected with
the μ-property already discussed and the leaf hypothesis hk ∈ Hk is selected
to minimize the error over the leaf sample. For each f , we denote by Qf,k

the question hypothesis set at node k that served to define f and similarly Hf,k

the hypothesis set at leaf k that was used to define f . The algorithm returns the
deep cascade function f∗ among these cascade functions f that minimizes the
bound (8).

The empirical risk minimization (ERM) method used to determine the leaf
classifiers hk is intractable for some hypothesis sets. In the next section, we
present an alternative algorithm using SVMs which can be viewed as an efficient
instantiation of this generic algorithm.

4.2 DeepCascadeSVM

In this section, we describe an algorithm for learning deep cascades that makes
use of SVMs and that we named DeepCascadeSVM. In short, as with Deep-
Cascade, DeepCascadeSVM first generates different deep cascade functions,
but it uses the SVM algorithm at each node of the cascade and chooses the best
among them by minimizing an upper bound of the generalization bound (8).

Learning with Deep Cascades 265

Algorithm 2. DeepCascadeSVM(L, M, γ)
for l ∈ [1, . . . , L], (μk)1≤k≤l ⊆ M, (δk)1≤k≤l ⊆ G do

S1 ← S
for k = 1 to l do

hk ← SVM(δk, Sk)
qk ← argq∈Qk

{|q−1(1) ∩ Sk| = μk|Sk|}
Sk+1 ← q−1

k (1) ∩ Sk

end for
f(·) =

∑l−1
k=1(
∏k−1

j=1 qj)qkhk + (
∏l

j=1 qj)hlhk(·)
F ← F ∪ {f}

end for

f∗ ← argmin
f∈F

R̂S(f) +
l∑

k=1

min

(

4γ

[
dk∑

j=1

√
df,j log

(
em
df,j

)

m
+

√
df,k log

(
em
df,k

)

m

]

,
m+

k

m

)

return f∗

The deep cascade functions generated by the algorithm are based on repeat-
edly using SVMs combined with polynomial kernels of different degree. The
leaf hypothesis sets Hk are decision surfaces defined by polynomial kernels.
The hypothesis hk ∈ Hk is learned via the SVM algorithm with a polynomial
kernel degree δk on subsample Sk. Note that in the pseudocode of Algorithm
2, we denote this step by SVM(δk, Sk). The node question hypothesis set Qk is
defined to be the set of indicator functions of dist(hk, x) ≤ c, where dist(hk, x)
is the Euclidian distance of point x to hyperplane hk in the feature space. The
node question qk ∈ Qk is chosen to be the indicator function of dist(hk, x) ≤ ck

where ck is such that |qk(1)−1 ∩ Sk| = μk|Sk|, meaning the number of points
in Sk that are within a distance ck to hyperplane hk equals μk|Sk|. In other
words, after learning the hyperplane via the SVM algorithm on subsample Sk,
the algorithm

1. extracts a μk fraction of points closest to the hyperplane;
2. on the next node in the cascade, retrains on this extracted subsample using

the SVM algorithm with a polynomial kernel of another degree.

We extract the fraction of points closest to the hyperplane because these points
can be harder to classify correctly. Hence, these points will proceed deeper into
the cascade in hope to find a better trade-off between the complexity and the
fraction of correctly classified points.

The algorithm generates several cascades functions with a given depth
l ∈ [1, . . . , L]. For any depth l ∈ [1, . . . , L], any sequence of fraction values
(μk)1≤k≤l ⊆ M and sequence of degree values (δk)1≤k≤l ⊆ G, the algorithm
defines a new deep cascade function f . At each node k, the question qk ∈ Qk

and leaf hypothesis hk ∈ Hk are selected as already discussed. Similarly, as
before, for each f , we denote by Qf,k the question hypothesis set at node k that
served to define f and similarly Hf,k the hypothesis set at leaf k that was used
to define f . The best cascade f∗ is chosen by minimizing an upper bound of

266 G. DeSalvo et al.

the generalization bound (8). More precisely, we first bound the Rademacher
complexity in terms of the VC-dimension of the hypothesis set:

dk∑

j=1

R̂S(Qf,j) + R̂S(Hf,k) ≤
dk∑

j=1

√
df,j log(em

df,j
)

m
+

√
df,k log(em

df,k
)

m
,

where df,k is the VC-dimension of Hf,k and where we used the fact that
VCdim(Qf,j) ≤ Pdim(Hf,j) = VCdim(Hf,j) = df,j . Then, we rescale the com-
plexity term by a parameter γ, which we will determine by cross-validation.
Thus, for a given γ, we chose the deep cascade with the smallest value of the
generalization bound :

R(f)≤ R̂S(f)+
l∑

k=1

min

⎛

⎝4γ

⎡

⎣
dk∑

j=1

√
df,j log(em

df,j
)

m
+

√
df,k log(em

df,k
)

m

⎤

⎦ ,
m+

k

m

⎞

⎠ . (9)

DeepCascadeSVM can be seen as a tractable version of the generic Deep-
Cascade algorithm with some minor differences in the following ways. Instead
of choosing hk to be the minimizer of the empirical error as done in DeepCas-
cade, the DeepCascadeSVM chooses the hk that minimizes a surrogate loss
(hinge loss) of the empirical error by using the SVM algorithm. In fact, the γ
parameter is introduced because the hinge loss used in the SVM algorithm needs
to be re-scaled. Note that hk is learned via the SVM algorithm on Sk and not
on S̄k+1, namely the points that reach leaf k, as in the DeepCascade algo-
rithm. One could retrain SVM on the points reaching the leaf to be consistent
with the first algorithm, but this typically will not change the hypothesis hk.
The generic node question qk of DeepCascade are picked to be the distance to
the classification hyperplane hk for a given fraction μk of points in DeepCas-
cadeSVM algorithm. Technically, in the DeepCascade, the μ fractions are the
same, but this was done to simplify the exposition of the DeepCascade algo-
rithm. DeepCascade minimizes exactly bound (8), while DeepCascadeSVM
minimizes an upper bound in terms of the VC-dimension.

5 Experiments

This section reports the results of some preliminary experiments with the Deep-
CascadeSVM algorithm on several UC Irvine data sets. Since DeepCas-
cadeSVM uses only polynomial kernels as predictors, we similarly compared
our results with those achieved by the SVM algorithm with polynomial kernels
over the set G of polynomial degrees. Of course, a similar set of experiments can
be carried out by using both Gaussian kernels or other kernels, which we plan
to do in the future.

For our experiments, we used five different data sets from UC Irvine’s data
repository, http://archive.ics.uci.edu/ml/datasets.html: breastcancer, german

(numeric), ionosphere, splice, and a1a. Table 1 gives the sample size and the

http://archive.ics.uci.edu/ml/datasets.html

Learning with Deep Cascades 267

Table 1. Results for DeepCascadeSVM algorithm. The table reports the average test
error and standard deviation for DeepCascadeSVM(γ∗) and for the SVM algorithm.
For each data set, the table also indicates the sample size, the number of features, and
the depth of the cascade.

Dataset Number of Number of SVM Algorithm DeepCascadeSVM Cascade
Examples Features Depth

breastcancer 683 10 0.0426 ± 0.0117 0.0353 ± 0.00975 4
german 1,000 24 0.297 ± 0.0193 0.256 ± 0.0324 4
splice 1,000 60 0.205 ± 0.0134 0.175 ± 0.0152 3
ionosphere 351 34 0.0971 ± 0.0167 0.117 ± 0.0229 4
a1a 1,000 123 0.195 ± 0.0217 0.209± 0.0233 2

number of features for each of these data sets. For each of them, we randomly
divided the set into five folds and ran the algorithm five times using a different
assignment of folds to the training set, validation set, and test set. For each
j ∈ {0, 1, 2, 3, 4}, the sample points from the fold j was used for testing, the
fold j +1 (mod 5) used for validation, and the remaining sample points used for
training.

The following are the parameters used for DeepCascadeSVM: the maxi-
mum tree depth was set to L = 4, the set of fraction values was selected to be
M = { i

10 : i = 1, · · · , 10} and the set of polynomial degrees G = {1, . . . , 4}. The
regularization parameter Cδ ∈ {10i : i = −3, · · · , 2} of SVMs was selected via
cross-validation for each polynomial degree δ ∈ G. To avoid a grid search at each
node, for cascades, the regularization parameter Cδk

for SVMs at node k was
simply defined to be

√
mk

m Cδ when using a polynomial degree δk.
For each value of the parameter γ ∈ {10i : i = −2, . . . , 0}, we generated

several deep cascades and then chose the one that minimized the bound (9).
Thus, for each γ, there was a corresponding deep cascade f∗

γ . The parameter γ
was chosen via cross-validation. More precisely, we chose the best γ∗ by finding
the deep cascade f∗

γ∗ that had the smallest validation error among the deep
cascade functions f∗

γ . We report the average test error of the deep cascade f∗
γ∗

in Table 1. For SVMs, we report the test errors for the polynomial degree and
regularization parameter with the smallest validation error.

The results of Table 1 show that DeepCascadeSVM outperforms SVMs for
three out of the five data sets: breastcancer, german, and splice. The german and
splice results are statistically significant at the 5% level using a one-sided paired
t-test while breastcancer result is not statistically significant. For the remaining
two data sets where SVMs outperforms DeepCascadeSVM, the a1a result is
statistically significant at the 5% level while it is not statistically significant for
the ionosphere data set.

Overall, the results demonstrate the benefits of DeepCascadeSVM in
several data sets. Note also that SVMs can be viewed as a special instance
of the deep cascades with depth one. It is conceivable of course that for some
data sets such simpler cascades would provide a better performance. There are
several components in our algorithm that could be optimized more effectively to
further improve performance. This includes optimizing over the regularization

268 G. DeSalvo et al.

parameter C at each node of the cascade, testing polynomial degrees higher than
4, or searching over larger sets of μ fraction values and γ values. Yet, even with
this rudimentary implementation of an algorithm that minimizes the simplest
form of our bound (8), it is striking that it outperforms SVMs for several of the
data sets and finds a comparable accuracy for the remaining data sets. More
extensive experiments with other variants of the algorithms would be interesting
to investigate in the future.

6 Conclusion

We presented two algorithms for learning Deep Cascades, a broad family of hier-
archical models which offer the flexibility of selecting node or leaf functions from
unions of complex hypothesis sets. We further reported the results of experi-
ments demonstrating the performance for one of our algorithms using different
data sets. Our algorithms benefit from data-dependent learning guarantees we
derived, which are expressed in terms of the Rademacher complexities of the
sub-families composing these sets of predictors and the fraction of sample points
correctly classified at each leaf. Our theoretical analysis is general and can help
guide the design of many other algorithms: different sub-families of leaf or node
questions can be chosen and alternative cascade topologies and parameters can
be selected. For the design of our algorithms, we used a simpler version of our
guarantees. Finer algorithms could be devised to more closely exploit the quan-
tities appearing in our learning bounds, which could further improve prediction
accuracy.

Acknowledgments. We thank Vitaly Kuznetsov and Andrés Muñoz Medina for com-
ments on an earlier draft of this paper. This work was partly funded by the NSF award
IIS-1117591 and an NSF Graduate Research Fellowship.

References

1. Arreola, K., Fehr, J., Burkhardt, H.: Fast support vector machine classification
using linear SVMs. In: ICPR (2006)

2. Arreola, K., Fehr, J., Burkhardt, H.: Fast support vector machine classification
of very large datasets. In: GfKl Conference (2007)

3. Bartlett, P., Mendelson, S.: Rademacher and Gaussian complexities: Risk bounds
and structural results. JMLR (2002)

4. Bengio, S., Weston, J., Weston, D.: Label embedding trees for large multi-class
tasks. In: NIPS, Vancouver, Canada (2010)

5. Bennet, K., Blue, J.: A support vector machine approach to decision trees. In:
IJCNN, Anchorage, Alaska (1998)

6. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth and Brooks, Monterey (1984)

7. Chang, F., Guo, C., Lin, X., Lu, C.: Tree decomposition for large-scale SVM
problems. JMLR (2010)

8. Chen, M., Xu, Z., Kedem, D., Chapelle, O.: Classifier cascade for minimizing
feature evaluation cost. In: AISTATS, La Palma, Canary Islands (2012)

Learning with Deep Cascades 269

9. Cortes, C., Mohri, M., Syed, U.: Deep boosting. In: ICML (2014)
10. Deng, J., Satheesh, S., Berg, A., Fei-Fei, L.: Fast and balanced: efficient label tree

learning for large scale object recognition. In: NIPS (2011)
11. DeSalvo, G., Mohri, M., Syed, U.: Learning with Deep Cascades. arXiv (2015)
12. Dong, G., Chen, J.: Study on support vector machine based decision tree and

application. In: ICNC-FSKD, Jinan, China (2008)
13. Golea, M., Bartlett, P., Lee, W., Mason, L.: Generalization in decision trees and

DNF: does size matter? In: NIPS (1997)
14. Koltchinskii, V., Panchenko, D.: Empirical margin distributions and bounding

the generalization error of combined classifiers. Annals of Statistics 30 (2002)
15. Kumar, A., Gopal, M.: A hybrid SVM based decision tree. JPR (2010)
16. Lefakis, L., Fleuret, F.: Joint cascade optimization using a product of boosted

classifiers. In: NIPS (2010)
17. Littman, M., Li, L., Walsh, T.: Knows what it knows: a framework for self-aware

learning. In: ICML (2008)
18. Madjarov, G., Gjorgjevikj, D.: Hybrid decision tree architecture utilizing local

SVMs for multi-label classification. In: Corchado, E., Snášel, V., Abraham, A.,
Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part II. LNCS, vol. 7209,
pp. 1–12. Springer, Heidelberg (2012)

19. Mansour, Y., McAllester, D.: Generalization bounds for decision trees. In: COLT
(2000)

20. Mohri, M., Rostamizadeh, R., Talwalkar, A.: Foundations of Machine Learning.
The MIT Press (2012)

21. Nobel, A.: Analysis of a complexity based pruning scheme for classification trees.
IEEE Trans. Inf. Theory (2002)

22. Pujara, J., Daume, H., Getoor, L.: Using classifier cascades for scalable e-mail
classification. In: CEAS (2011)

23. Quinlan, J.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)
24. Rodriguez-Lujan, I., Cruz, C., Huerta, R.: Hierarchical linear SVM. JPR (2012)
25. Saberian, M., Vasconcelos, N.: Boosting classifier cascades. In: NIPS, Canada

(2010)
26. Scott, C., Nowak, R.: On adaptive properties of decision trees. In: NIPS, Canada

(2005)
27. Takahashi, F., Abe, S.: Decision tree based multiclass SVMs. In: ICONIP (2002)
28. Viola, P., Jones, M.: Robust real-time face detection. IJCV (2004)
29. Wang, J., Saligrama, V.: Local supervised learning through space partitioning.

In: NIPS (2012)
30. Xu, Z., Kusner, M., Weinberger, K., Chen, M.: Cost-sensitive tree of classifiers.

In: ICML, Altanta, USA (2013)

Bounds on the Minimax Rate for Estimating
a Prior over a VC Class from Independent

Learning Tasks

Liu Yang1(B), Steve Hanneke2(B), and Jaime Carbonell3

1 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
yangli@us.ibm.com

2 Princeton, NJ, USA
steve.hanneke@gmail.com

3 Carnegie Mellon University, Pittsburgh, PA, USA
jgc@cs.cmu.edu

Abstract. We study the optimal rates of convergence for estimating a
prior distribution over a VC class from a sequence of independent data
sets respectively labeled by independent target functions sampled from
the prior. We specifically derive upper and lower bounds on the optimal
rates under a smoothness condition on the correct prior, with the num-
ber of samples per data set equal the VC dimension. These results have
implications for the improvements achievable via transfer learning. We
additionally extend this setting to real-valued function, where we estab-
lish consistency of an estimator for the prior, and discuss an additional
application to a preference elicitation problem in algorithmic economics.

1 Introduction

In the transfer learning setting, we are presented with a sequence of learning
problems, each with some respective target concept we are tasked with learning.
The key question in transfer learning is how to leverage our access to past learn-
ing problems in order to improve performance on learning problems we will be
presented with in the future.

Among the several proposed models for transfer learning, one particularly
appealing model supposes the learning problems are independent and identically
distributed, with unknown distribution, and the advantage of transfer learning
then comes from the ability to estimate this shared distribution based on the
data from past learning problems [2,11]. For instance, when customizing a speech
recognition system to a particular speaker’s voice, we might expect the first few
people would need to speak many words or phrases in order for the system to
accurately identify the nuances. However, after performing this for many dif-
ferent people, if the software has access to those past training sessions when
customizing itself to a new user, it should have identified important properties
of the speech patterns, such as the common patterns within each of the major
dialects or accents, and other such information about the distribution of speech
c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 270–284, 2015.
DOI: 10.1007/978-3-319-24486-0 18

Bounds on the Minimax Rate for Estimating a Prior over a VC Class 271

patterns within the user population. It should then be able to leverage this infor-
mation to reduce the number of words or phrases the next user needs to speak in
order to train the system, for instance by first trying to identify the individual’s
dialect, then presenting phrases that differentiate common subpatterns within
that dialect, and so forth.

In analyzing the benefits of transfer learning in such a setting, one important
question to ask is how quickly we can estimate the distribution from which the
learning problems are sampled. In recent work, [11] have shown that under mild
conditions on the family of possible distributions, if the target concepts reside in
a known VC class, then it is possible to estimate this distribution using only a
bounded number of training samples per task: specifically, a number of samples
equal the VC dimension. However, that work left open the question of quantifying
the rate of convergence of the estimate, in terms of the number of tasks. This
rate of convergence can have a direct impact on how much benefit we gain
from transfer learning when we are faced with only a finite sequence of learning
problems. As such, it is certainly desirable to derive tight characterizations of
this rate of convergence.

The present work continues that of [11], bounding the rate of convergence for
estimating this distribution, under a smoothness condition on the distribution.
We derive a generic upper bound, which holds regardless of the VC class the
target concepts reside in. The proof of this result builds on that earlier work, but
requires several interesting innovations to make the rate of convergence explicit,
and to dramatically improve the upper bound implicit in the proofs of those
earlier results. We further derive a nontrivial lower bound that holds for certain
constructed scenarios, which illustrates a lower limit on how good of a general
upper bound we might hope for in results expressed only in terms of the number
of tasks, the smoothness conditions, and the VC dimension.

We additionally include an extension of the results of [11] to the setting of
real-valued functions, establishing consistency (at a uniform rate) for an esti-
mator of a prior over any VC subgraph class. In addition to the application
to transfer learning, analogous to the original work of [11], we also discuss an
application of this result to a preference elicitation problem in algorithmic eco-
nomics, in which we are tasked with allocating items to a sequence of customers
to approximately maximize the customers’ satisfaction, while permitted access
to the customer valuation functions only via value queries.

2 The Setting

Let (X ,BX) be a measurable space [7] (where X is called the instance space),
and let D be a distribution on X (called the data distribution). Let C be a VC
class of measurable classifiers h : X → {−1,+1} (called the concept space),
and denote by d the VC dimension of C [9]. We suppose C is equipped with its
Borel σ-algebra B induced by the pseudo-metric ρ(h, g) = D({x ∈ X : h(x) �=
g(x)}). Though our results can be formulated for general D (with somewhat
more complicated theorem statements), to simplify the statement of results we
suppose ρ is actually a metric.

272 L. Yang et al.

For any two probability measures μ1, μ2 on a measurable space (Ω,F), define
the total variation distance

‖μ1 − μ2‖ = sup
A∈F

μ1(A) − μ2(A).

For a set function μ on a finite measurable space (Ω,F), we abbreviate μ(ω) =
μ({ω}), ∀ω ∈ Ω. Let ΠΘ = {πθ : θ ∈ Θ} be a family of probability measures on
C (called priors), where Θ is an arbitrary index set (called the parameter space).
We suppose there exists a probability measure π0 on C (the reference measure)
such that every πθ is absolutely continuous with respect to π0, and therefore has
a density function fθ given by the Radon-Nikodym derivative dπθ

dπ0
[7].

We consider the following type of estimation problem. There is a collection
of C-valued random variables {h∗

tθ : t ∈ N, θ ∈ Θ}, where for any fixed θ ∈ Θ
the {h∗

tθ}∞
t=1 variables are i.i.d. with distribution πθ. For each θ ∈ Θ, there is

a sequence Zt(θ) = {(Xt1, Yt1(θ)), (Xt2, Yt2(θ)), . . .}, where {Xti}t,i∈N are i.i.d.
D, and for each t, i ∈ N, Yti(θ) = h∗

tθ(Xti). We additionally denote by Zt
k(θ) =

{(Xt1, Yt1(θ)), . . . , (Xtk, Ytk(θ))} the first k elements of Zt(θ), for any k ∈ N, and
similarly Xtk = {Xt1, . . . , Xtk} and Ytk(θ) = {Yt1(θ), . . . , Ytk(θ)}. Following the
terminology used in the transfer learning literature, we refer to the collection of
variables associated with each t collectively as the tth task. We will be concerned
with sequences of estimators θ̂Tθ = θ̂T (Z1

k(θ), . . . ,ZT
k (θ)), for T ∈ N, which are

based on only a bounded number k of samples per task, among the first T tasks.
Our main results specifically study the case of d samples per task. For any such
estimator, we measure the risk as E

[
‖πθ̂T θ�

− πθ�
‖
]
, and will be particularly

interested in upper-bounding the worst-case risk supθ�∈Θ E

[
‖πθ̂T θ�

− πθ�
‖
]

as a
function of T , and lower-bounding the minimum possible value of this worst-case
risk over all possible θ̂T estimators (called the minimax risk).

In previous work, [11] showed that, if ΠΘ is a totally bounded family, then
even with only d number of samples per task, the minimax risk (as a function
of the number of tasks T) converges to zero. In fact, that work also proved
this is not necessarily the case in general for any number of samples less than
d. However, the actual rates of convergence were not explicitly derived in that
work, and indeed the upper bounds on the rates of convergence implicit in that
analysis may often have fairly complicated dependences on C, ΠΘ, and D, and
furthermore often provide only very slow rates of convergence.

To derive explicit bounds on the rates of convergence, in the present work we
specifically focus on families of smooth densities. The motivation for involving a
notion of smoothness in characterizing rates of convergence is clear if we consider
the extreme case in which ΠΘ contains two priors π1 and π2, with π1({h}) =
π2({g}) = 1, where ρ(h, g) is a very small but nonzero value; in this case, if we
have only a small number of samples per task, we would require many tasks (on
the order of 1/ρ(h, g)) to observe any data points carrying any information that
would distinguish between these two priors (namely, points x with h(x) �= g(x));
yet ‖π1 −π2‖ = 1, so that we have a slow rate of convergence (at least initially).
A total boundedness condition on ΠΘ would limit the number of such pairs

Bounds on the Minimax Rate for Estimating a Prior over a VC Class 273

present in ΠΘ, so that for instance we cannot have arbitrarily close h and g, but
less extreme variants of this can lead to slow asymptotic rates of convergence
as well. Specifically, in the present work we consider the following notion of
smoothness. For L ∈ (0,∞) and α ∈ (0, 1], a function f : C → R is (L,α)-Hölder
smooth if

∀h, g ∈ C, |f(h) − f(g)| ≤ Lρ(h, g)α.

3 An Upper Bound

We now have the following theorem, holding for an arbitrary VC class C and
data distribution D; it is the main result of this work.

Theorem 1. For ΠΘ any class of priors on C having (L,α)-Hölder smooth
densities {fθ : θ ∈ Θ}, for any T ∈ N, there exists an estimator θ̂Tθ =
θ̂T (Z1

d(θ), . . . ,ZT
d (θ)) such that

sup
θ�∈Θ

E‖πθ̂T
− πθ�

‖ = Õ

(
LT− α2

2(d+2α)(α+2(d+1))

)
.

Proof. By the standard PAC analysis [3,8], for any γ > 0, with probability
greater than 1 − γ, a sample of k = O((d/γ) log(1/γ)) random points will par-
tition C into regions of width less than γ (under L1(D)). For brevity, we omit
the t subscripts and superscripts on quantities such as Zt

k(θ) throughout the
following analysis, since the claims hold for any arbitrary value of t.

For any θ ∈ Θ, let π′
θ denote a (conditional on X1, . . . , Xk) distribution

defined as follows. Let f ′
θ denote the (conditional on X1, . . . , Xk) density function

of π′
θ with respect to π0, and for any g ∈ C, let f ′

θ(g) = πθ({h∈C:∀i≤k,h(Xi)=g(Xi)})
π0({h∈C:∀i≤k,h(Xi)=g(Xi)})

(or 0 if π0({h ∈ C : ∀i ≤ k, h(Xi) = g(Xi)}) = 0). In other words, π′
θ has

the same probability mass as πθ for each of the equivalence classes induced by
X1, . . . , Xk, but conditioned on the equivalence class, simply has a constant-
density distribution over that equivalence class. Note that every h ∈ C has
f ′

θ(h) between the smallest and largest values of fθ(g) among g ∈ C with
∀i ≤ k, g(Xi) = h(Xi); therefore, by the smoothness condition, on the event
(of probability greater than 1 − γ) that each of these regions has diameter less
than γ, we have ∀h ∈ C, |fθ(h) − f ′

θ(h)| < Lγα. On this event, for any θ, θ′ ∈ Θ,

‖πθ − πθ′‖ = (1/2)
∫

|fθ − fθ′ |dπ0 < Lγα + (1/2)
∫

|f ′
θ − f ′

θ′ |dπ0.

Furthermore, since the regions that define f ′
θ and f ′

θ′ are the same (namely, the
partition induced by X1, . . . , Xk), we have

(1/2)
∫

|f ′
θ − f ′

θ′ |dπ0 = (1/2)
∑

y1,...,yk∈{−1,+1}
|πθ({h ∈ C : ∀i ≤ k, h(Xi) = yi})

− πθ′({h ∈ C : ∀i ≤ k, h(Xi) = yi})|
= ‖PYk(θ)|Xk

− PYk(θ′)|Xk
‖.

274 L. Yang et al.

Thus, we have that with probability at least 1 − γ,

‖πθ − πθ′‖ < Lγα + ‖PYk(θ)|Xk
− PYk(θ′)|Xk

‖.

Following analogous to the inductive argument of [11], suppose I ⊆
{1, . . . , k}, fix x̄I ∈ X |I| and ȳI ∈ {−1,+1}|I|. Then the ỹI ∈ {−1,+1}|I|

for which ‖ȳI − ỹI‖1 is minimal, subject to the constraint that no h ∈ C has
h(x̄I) = ỹI , has (1/2)‖ȳI − ỹI‖1 ≤ d + 1; also, for any i ∈ I with ȳi �= ỹi, letting
ȳ′

j = ȳj for j ∈ I \ {i} and ȳ′
i = ỹi, we have

PYI(θ)|XI
(ȳI |x̄I) = PYI\{i}(θ)|XI\{i}(ȳI\{i}|x̄I\{i}) − PYI(θ)|XI

(ȳ′
I |x̄I),

and similarly for θ′, so that

|PYI(θ)|XI
(ȳI |x̄I) − PYI(θ′)|XI

(ȳI |x̄I)|
≤ |PYI\{i}(θ)|XI\{i}(ȳI\{i}|x̄I\{i}) − PYI\{i}(θ′)|XI\{i}(ȳI\{i}|x̄I\{i})|

+ |PYI(θ)|XI
(ȳ′

I |x̄I) − PYI(θ′)|XI
(ȳ′

I |x̄I)|.

Now consider that these two terms inductively define a binary tree. Every time
the tree branches left once, it arrives at a difference of probabilities for a set I
of one less element than that of its parent. Every time the tree branches right
once, it arrives at a difference of probabilities for a ȳI one closer to an unrealized
ỹI than that of its parent. Say we stop branching the tree upon reaching a set
I and a ȳI such that either ȳI is an unrealized labeling, or |I| = d. Thus, we
can bound the original (root node) difference of probabilities by the sum of the
differences of probabilities for the leaf nodes with |I| = d. Any path in the tree
can branch left at most k − d times (total) before reaching a set I with only d
elements, and can branch right at most d+1 times in a row before reaching a ȳI

such that both probabilities are zero, so that the difference is zero. So the depth
of any leaf node with |I| = d is at most (k−d)d. Furthermore, at any level of the
tree, from left to right the nodes have strictly decreasing |I| values, so that the
maximum width of the tree is at most k − d. So the total number of leaf nodes
with |I| = d is at most (k − d)2d. Thus, for any ȳ ∈ {−1,+1}k and x̄ ∈ X k,

|PYk(θ)|Xk
(ȳ|x̄) − PYk(θ′)|Xk

(ȳ|x̄)|
≤ (k − d)2d · max

ȳd∈{−1,+1}d
max

D∈{1,...,k}d
|PYd(θ)|Xd

(ȳd|x̄D) − PYd(θ′)|Xd
(ȳd|x̄D)|.

Since

‖PYk(θ)|Xk
− PYk(θ′)|Xk

‖ = (1/2)
∑

ȳk∈{−1,+1}k

|PYk(θ)|Xk
(ȳk) − PYk(θ′)|Xk

(ȳk)|,

and by Sauer’s Lemma this is at most

(ek)d max
ȳk∈{−1,+1}k

|PYk(θ)|Xk
(ȳk) − PYk(θ′)|Xk

(ȳk)|,

Bounds on the Minimax Rate for Estimating a Prior over a VC Class 275

we have that

‖PYk(θ)|Xk
− PYk(θ′)|Xk

‖
≤ (ek)dk2d max

ȳd∈{−1,+1}d
max

D∈{1,...,k}d
|PYd(θ)|XD

(ȳd) − PYd(θ′)|XD
(ȳd)|.

Thus, we have that

‖πθ − πθ′‖ = E‖πθ − πθ′‖

< γ+Lγα+(ek)dk2dE

[
max

ȳd∈{−1,+1}d
max

D∈{1,...,k}d
PYd(θ)|XD

(ȳd) − PYd(θ′)|XD
(ȳd)|

]
.

Note that

E

[
max

ȳd∈{−1,+1}d
max

D∈{1,...,k}d
|PYd(θ)|XD

(ȳd) − PYd(θ′)|XD
(ȳd)|

]

≤
∑

ȳd∈{−1,+1}d

∑

D∈{1,...,k}d

E
[|PYd(θ)|XD

(ȳd) − PYd(θ′)|XD
(ȳd)|]

≤ (2k)d max
ȳd∈{−1,+1}d

max
D∈{1,...,k}d

E
[|PYd(θ)|XD

(ȳd) − PYd(θ′)|XD
(ȳd)|],

and by exchangeability, this last line equals

(2k)d max
ȳd∈{−1,+1}d

E
[|PYd(θ)|Xd

(ȳd) − PYd(θ′)|Xd
(ȳd)|] .

[11] showed that E
[|PYd(θ)|Xd

(ȳd) − PYd(θ′)|Xd
(ȳd)|] ≤ 4

√‖PZd(θ) − PZd(θ′)‖, so
that in total we have ‖πθ − πθ′‖ < (L+1)γα +4(2ek)2d+2

√‖PZd(θ)−PZd(θ′)‖.
Plugging in the value of k = c(d/γ) log(1/γ), this is

(L+1)γα + 4
(
2ec

d

γ
log

(
1
γ

))2d+2√
‖PZd(θ)−PZd(θ′)‖.

Thus, it suffices to bound the rate of convergence (in total variation dis-
tance) of some estimator of PZd(θ�). If N(ε) is the ε-covering number of
{PZd(θ) : θ ∈ Θ}, then taking θ̂Tθ�

as the minimum distance skeleton esti-
mate of [5,13] achieves expected total variation distance ε from PZd(θ�), for
some T = O((1/ε2) log N(ε/4)). We can partition C into O((L/ε)d/α) cells of
diameter O((ε/L)1/α), and set a constant density value within each cell, on
an O(ε)-grid of density values, and every prior with (L,α)-Hölder smooth den-
sity will have density within ε of some density so-constructed; there are then
at most (1/ε)O((L/ε)d/α) such densities, so this bounds the covering numbers of
ΠΘ. Furthermore, the covering number of ΠΘ upper bounds N(ε) [11], so that
N(ε) ≤ (1/ε)O((L/ε)d/α).

Solving T =O(ε−2(L/ε)d/α log(1/ε)) for ε, we have ε=O

(
L
(

log(TL)
T

) α
d+2α

)
.

So this bounds the rate of convergence for E‖PZd(θ̂T) − PZd(θ�)‖, for θ̂T the

276 L. Yang et al.

minimum distance skeleton estimate. Plugging this rate into the bound on the
priors, combined with Jensen’s inequality, we have

E‖πθ̂T
− πθ�

‖ < (L + 1)γα + 4
(

2ec
d

γ
log

(
1
γ

))2d+2

× O

(
L

(
log(TL)

T

) α
2d+4α

)
.

This holds for any γ > 0, so minimizing this expression over γ > 0 yields a
bound on the rate. For instance, with γ = Õ

(
T− α

2(d+2α)(α+2(d+1))

)
, we have

E‖πθ̂T
− πθ�

‖ = Õ

(
LT− α2

2(d+2α)(α+2(d+1))

)
.

�
4 A Minimax Lower Bound

One natural quesiton is whether Theorem 1 can generally be improved. While
we expect this to be true for some fixed VC classes (e.g., those of finite size),
and in any case we expect that some of the constant factors in the exponent
may be improvable, it is not at this time clear whether the general form of
T−Θ(α2/(d+α)2) is sometimes optimal. One way to investigate this question is to
construct specific spaces C and distributions D for which a lower bound can be
obtained. In particular, we are generally interested in exhibiting lower bounds
that are worse than those that apply to the usual problem of density estimation
based on direct access to the h∗

tθ�
values (see Theorem 3 below).

Here we present a lower bound that is interesting for this reason. However,
although larger than the optimal rate for methods with direct access to the
target concepts, it is still far from matching the upper bound above, so that the
question of tightness remains open. Specifically, we have the following result.

Theorem 2. For any integer d ≥ 1, any L > 0, α ∈ (0, 1], there is a
value C(d, L, α) ∈ (0,∞) such that, for any T ∈ N, there exists an instance
space X , a concept space C of VC dimension d, a distribution D over X ,
and a distribution π0 over C such that, for ΠΘ a set of distributions over C

with (L,α)-Hölder smooth density functions with respect to π0, any estimator
θ̂T = θ̂T (Z1

d(θ�), . . . ,ZT
d (θ�)) has

sup
θ�∈Θ

E

[
‖πθ̂T

− πθ�
‖
]

≥ C(d, L, α)T− α
2(d+α) .

Proof. (Sketch) We proceed by a reduction from the task of determining the bias
of a coin from among two given possibilities. Specifically, fix any γ ∈ (0, 1/2),
n ∈ N, and let B1(p), . . . , Bn(p) be i.i.d Bernoulli(p) random variables, for each
p ∈ [0, 1]; then it is known that, for any (possibly nondeterministic) decision rule
p̂n : {0, 1}n → {(1 + γ)/2, (1 − γ)/2},

1
2

∑

p∈{(1+γ)/2,(1−γ)/2}
P(p̂n(B1(p), . . . , Bn(p)) �= p)

≥ (1/32) · exp
{−128γ2n/3

}
. (1)

Bounds on the Minimax Rate for Estimating a Prior over a VC Class 277

This easily follows from the results of [1], combined with a result of [6] bounding
the KL divergence (see also [10])

To use this result, we construct a learning problem as follows. Fix some
m ∈ N with m ≥ d, let X = {1, . . . , m}, and let C be the space of all classifiers
h : X → {−1,+1} such that |{x ∈ X : h(x) = +1}| ≤ d. Clearly the VC dimen-
sion of C is d. Define the distribution D as uniform over X . Finally, we specify
a family of (L,α)-Hölder smooth priors, parameterized by Θ = {−1,+1}(m

d),
as follows. Let γm = (L/2)(1/m)α. First, enumerate the

(
m
d

)
distinct d-sized

subsets of {1, . . . , m} as X1,X2, . . . ,X(m
d). Define the reference distribution π0

by the property that, for any h ∈ C, letting q = |{x : h(x) = +1}|, π0({h}) =
(12)d

(
m−q
d−q

)
/
(
m
d

)
. For any b = (b1, . . . , b(m

d)) ∈ {−1, 1}(m
d), define the prior πb as

the distribution of a random variable hb specified by the following generative
model. Let i∗ ∼ Uniform({1, . . . ,

(
m
d

)}), let Cb(i∗) ∼ Bernoulli((1 + γmbi∗)/2);
finally, hb ∼ Uniform({h ∈ C : {x : h(x) = +1} ⊆ Xi∗ ,Parity(|{x : h(x) =
+1}|) = Cb(i∗)}), where Parity(n) is 1 if n is odd, or 0 if n is even. We
will refer to the variables in this generative model below. For any h ∈ C,
letting H = {x : h(x) = +1} and q = |H|, we can equivalently express

πb({h}) = (12)d
(
m
d

)−1∑(m
d)

i=1 1[H ⊆ Xi](1 + γmbi)Parity(q)(1 − γmbi)1−Parity(q).
From this explicit representation, it is clear that, letting fb = dπb

dπ0
, we have

fb(h) ∈ [1− γm, 1+ γm] for all h ∈ C. The fact that fb is Hölder smooth follows
from this, since every distinct h, g ∈ C have D({x : h(x) �= g(x)}) ≥ 1/m =
(2γm/L)1/α.

Next we set up the reduction as follows. For any estimator π̂T = π̂T (Z1
d(θ�),

. . . ,ZT
d (θ�)), and each i ∈ {1, . . . ,

(
m
d

)}, let hi be the classifier with {x : hi(x) =
+1} = Xi; also, if π̂T ({hi}) > (12)d/

(
m
d

)
, let b̂i = 2Parity(d) − 1, and otherwise

b̂i = 1 − 2Parity(d). We use these b̂i values to estimate the original bi values.
Specifically, let p̂i = (1 + γmb̂i)/2 and pi = (1 + γmbi)/2, where b = θ�. Then

‖π̂T − πθ�
‖ ≥ (1/2)

(m
d)∑

i=1

|π̂T ({hi}) − πθ�
({hi})|

≥ (1/2)
(m

d)∑

i=1

γm

2d
(
m
d

) |b̂i − bi|/2 = (1/2)
(m

d)∑

i=1

1
2d
(
m
d

) |p̂i − pi|.

Thus, we have reduced from the problem of deciding the biases of these
(
m
d

)

independent Bernoulli random variables. To complete the proof, it suffices to
lower bound the expectation of the right side for an arbitrary estimator.

Toward this end, we in fact study an even easier problem. Specifically, con-
sider an estimator q̂i = q̂i(Z1

d(θ�), . . . ,ZT
d (θ�), i∗1, . . . , i

∗
T), where i∗t is the i∗ ran-

dom variable in the generative model that defines h∗
tθ�

; that is, i∗t ∼ Uniform({1,

. . . ,
(
m
d

)}), Ct ∼ Bernoulli((1 + γmbi∗
t
)/2), and h∗

tθ�
∼ Uniform({h ∈ C : {x :

h(x) = +1} ⊆ Xi∗
t
,Parity(|{x : h(x) = +1}|) = Ct}), where the i∗t are

278 L. Yang et al.

independent across t, as are the Ct and h∗
tθ�

. Clearly the p̂i from above can
be viewed as an estimator of this type, which simply ignores the knowledge
of i∗t . The knowledge of these i∗t variables simplifies the analysis, since given
{i∗t : t ≤ T}, the data can be partitioned into

(
m
d

)
disjoint sets, {{Zt

d(θ�) :
i∗t = i} : i = 1, . . . ,

(
m
d

)}, and we can use only the set {Zt
d(θ�) : i∗t = i} to

estimate pi. Furthermore, we can use only the subset of these for which Xtd =
Xi, since otherwise we have zero information about the value of Parity(|{x :
h∗

tθ�
(x) = +1}|). That is, given i∗t = i, any Zt

d(θ�) is conditionally independent
from every bj for j �= i, and is even conditionally independent from bi when
Xtd is not completely contained in Xi; specifically, in this case, regardless of bi,
the conditional distribution of Ytd(θ�) given i∗t = i and given Xtd is a product
distribution, which deterministically assigns label −1 to those Ytk(θ�) with Xtk /∈
Xi, and gives uniform random values to the subset of Ytd(θ�) with their respective
Xtk ∈ Xi. Finally, letting rt = Parity(|{k ≤ d : Ytk(θ�) = +1}|), we note that
given i∗t = i, Xtd = Xi, and the value rt, bi is conditionally independent from
Zt

d(θ�). Thus, the set of values CiT (θ�) = {rt : i∗t = i,Xtd = Xi} is a sufficient
statistic for bi (hence for pi). Recall that, when i∗t = i and Xtd = Xi, the value of
rt is equal to Ct, a Bernoulli(pi) random variable. Thus, we neither lose nor gain
anything (in terms of risk) by restricting ourselves to estimators q̂i of the type
q̂i = q̂i(Z1

d(θ�), . . . ,ZT
d (θ�), i∗1, . . . , i

∗
T) = q̂′

i(CiT (θ�)), for some q̂′
i [7]: that is,

estimators that are a function of the NiT (θ�) = |CiT (θ�)| Bernoulli(pi) random
variables, which we should note are conditionally i.i.d. given NiT (θ�).

Thus, by (1), for any n ≤ T ,

1
2

∑

bi∈{−1,+1}
E

[
|q̂i − pi|

∣∣∣NiT (θ�) = n
]

=
1
2

∑

bi∈{−1,+1}
γmP

(
q̂i �= pi

∣∣∣NiT (θ�) = n
)

≥ (γm/32) · exp
{−128γ2

mNi/3
}

.

Also, ∀i, E[Ni] = d!(1/m)d

(m
d) T ≤ (d/m)2dT = d2d(2γm/L)2d/αT . Thus, Jensen’s

inequality, linearity of expectation, and the law of total expectation imply

1
2

∑

bi∈{−1,+1}
E [|q̂i − pi|] ≥ (γm/32) · exp

{
−43(2/L)2d/αd2dγ2+2d/α

m T
}

.

Thus, by linearity of the expectation,

(
1
2

)(m
d) ∑

b∈{−1,+1}(
m
d)
E

⎡

⎢⎣
(m

d)∑

i=1

1
2d
(
m
d

) |q̂i − pi|

⎤

⎥⎦ =
(m

d)∑

i=1

1
2d
(
m
d

) 1
2

∑

bi∈{−1,+1}
E [|q̂i − pi|]

≥ (γm/(32 · 2d)) · exp
{

−43(2/L)2d/αd2dγ2+2d/α
m T

}
.

Bounds on the Minimax Rate for Estimating a Prior over a VC Class 279

In particular, taking m =
⌈
(L/2)1/α

(
43(2/L)2d/αd2dT

) 1
2(d+α)

⌉
, we have γm =

Θ
((

43(2/L)2d/αd2dT
)− α

2(d+α)
)
, so that

(
1
2

)(m
d) ∑

b∈{−1,+1}(
m
d)
E

⎡

⎢⎣
(m

d)∑

i=1

1
2d
(
m
d

) |q̂i − pi|

⎤

⎥⎦=Ω

(
2−d

(
43(2/L)2d/αd2dT

)− α
2(d+α)

)
.

In particular, this implies there exists some b for which

E

⎡

⎢⎣
(m

d)∑

i=1

1
2d
(
m
d

) |q̂i − pi|

⎤

⎥⎦ = Ω

(
2−d

(
43(2/L)2d/αd2dT

)− α
2(d+α)

)
.

Applying this lower bound to the estimator p̂i above yields the result.
�
It is natural to wonder how these rates might potentially improve if we allow

θ̂T to depend on more than d samples per data set. To establish limits on such
improvements, we note that in the extreme case of allowing the estimator to
depend on the full Zt(θ�) data sets, we may recover the known results lower
bounding the risk of density estimation from i.i.d. samples from a smooth density,
as indicated by the following result.

Theorem 3. For any integer d ≥ 1, there exists an instance space X , a concept
space C of VC dimension d, a distribution D over X , and a distribution π0

over C such that, for ΠΘ the set of distributions over C with (L,α)-Hölder
smooth density functions with respect to π0, any sequence of estimators, θ̂T =
θ̂T (Z1(θ�), . . . ,ZT (θ�)) (T = 1, 2, . . .), has

sup
θ�∈Θ

E

[
‖πθ̂T

− πθ�
‖
]

= Ω
(
T− α

d+2α
)
.

The proof is a simple reduction from the problem of estimating πθ�
based on

direct access to h∗
1θ�

, . . . , h∗
Tθ�

, which is essentially equivalent to the standard
model of density estimation, and indeed the lower bound in Theorem 3 is a well-
known result for density estimation from T i.i.d. samples from a Hölder smooth
density in a d-dimensional space [5].

5 Real-Valued Functions and an Application in
Algorithmic Economics

In this section, we present results generalizing the analysis of [11] to classes of
real-valued functions. We also present an application of this generalization to a
preference elicitation problem.

280 L. Yang et al.

5.1 Consistent Estimation of Priors over Real-Valued Functions at
a Bounded Rate

In this section, we let B denote a σ-algebra on X × R, and again let BX denote
the corresponding σ-algebra on X . Also, for measurable functions h, g : X → R,
let ρ(h, g) =

∫ |h − g|dPX , where PX is a distribution over X . Let F be a
class of functions X → R with Borel σ-algebra BF induced by ρ. Let Θ be
a set, and for each θ ∈ Θ, let πθ denote a probability measure on (F ,BF).
We suppose {πθ : θ ∈ Θ} is totally bounded in total variation distance, and that
F is a uniformly bounded VC subgraph class with pseudodimension d. We also
suppose ρ is a metric when restricted to F .

As above, let {Xti}t,i∈N be i.i.d. PX random variables. For each θ ∈ Θ,
let {h∗

tθ}t∈N be i.i.d. πθ random variables, independent from {Xti}t,i∈N. For
each t ∈ N and θ ∈ Θ, let Yti(θ) = h∗

tθ(Xti) for i ∈ N, and let Zt(θ) =
{(Xt1, Yt1(θ)), (Xt2, Yt2(θ)), . . .}; for each k ∈ N, define Zt

k(θ) = {(Xt1, Yt1(θ)),
. . . , (Xtk, Ytk(θ))}, Xtk = {Xt1, . . . , Xtk}, and Ytk(θ) = {Yt1(θ), . . . , Ytk(θ)}.

We have the following result. The proof parallels that of [11] (who studied
the special case of binary functions), with a few important twists (in particular,
a significantly different approach in the analogue of their Lemma 3). Due to
space restrictions, the formal details are omitted; we refer the interested reader
to the full version of this article online [12].

Theorem 4. There exists an estimator θ̂Tθ�
= θ̂T (Z1

d(θ�), . . . ,ZT
d (θ�)), and

functions R : N0 × (0, 1] → [0,∞) and δ : N0 × (0, 1] → [0, 1] such that, for any
α > 0, lim

T→∞
R(T, α) = lim

T→∞
δ(T, α) = 0 and for any T ∈ N0 and θ� ∈ Θ,

P

(
‖πθ̂T θ�

− πθ�
‖ > R(T, α)

)
≤ δ(T, α) ≤ α.

5.2 Maximizing Customer Satisfaction in Combinatorial Auctions

Theorem 4 has a clear application in the context of transfer learning, following
analogous arguments to those given in the special case of binary classification
by [11]. In addition to that application, we can also use Theorem 4 in the context
of the following problem in algorithmic economics, where the objective is to serve
a sequence of customers so as to maximize their satisfaction.

Consider an online travel agency, where customers go to the site with some
idea of what type of travel they are interested in; the site then poses a series
of questions to each customer, and identifies a travel package that best suits
their desires, budget, and dates. There are many options of travel packages, with
options on location, site-seeing tours, hotel and room quality, etc. Because of this,
serving the needs of an arbitrary customer might be a lengthy process, requiring
many detailed questions. Fortunately, the stream of customers is typically not
a worst-case sequence, and in particular obeys many statistical regularities: in
particular, it is not too far from reality to think of the customers as being
independent and identically distributed samples. With this assumption in mind,
it becomes desirable to identify some of these statistical regularities so that we

Bounds on the Minimax Rate for Estimating a Prior over a VC Class 281

can pose the questions that are typically most relevant, and thereby more quickly
identify the travel package that best suits the needs of the typical customer. One
straightforward way to do this is to directly estimate the distribution of customer
value functions, and optimize the questioning system to minimize the expected
number of questions needed to find a suitable travel package.

One can model this problem in the style of Bayesian combinatorial auctions,
in which each customer has a value function for each possible bundle of items.
However, it is slightly different, in that we do not assume the distribution of
customers is known, but rather are interested in estimating this distribution;
the obtained estimate can then be used in combination with methods based
on Bayesian decision theory. In contrast to the literature on Bayesian auctions
(and subjectivist Bayesian decision theory in general), this technique is able
to maintain general guarantees on performance that hold under an objective
interpretation of the problem, rather than merely guarantees holding under an
arbitrary assumed prior belief. This general idea is sometimes referred to as
Empirical Bayesian decision theory in the machine learning and statistics litera-
tures. The ideal result for an Empirical Bayesian algorithm is to be competitive
with the corresponding Bayesian methods based on the actual distribution of
the data (assuming the data are random, with an unknown distribution); that
is, although the Empirical Bayesian methods only operate with a data-based
estimate of the distribution, the aim is to perform nearly as well as methods
based on the true (unobservable) distribution. In this work, we present results
of this type, in the context of an abstraction of the aforementioned online travel
agency problem, where the measure of performance is the expected number of
questions to find a suitable package.

The specific application we are interested in here may be expressed abstractly
as a kind of combinatorial auction with preference elicitation. Specifically, we
suppose there is a collection of items on a menu, and each possible bundle of
items has an associated fixed price. There is a stream of customers, each with a
valuation function that provides a value for each possible bundle of items. The
objective is to serve each customer a bundle of items that nearly-maximizes his
or her surplus value (value minus price). However, we are not permitted direct
observation of the customer valuation functions; rather, we may query for the
value of any given bundle of items; this is referred to as a value query in the
literature on preference elicitation in combinatorial auctions (see Chapter 14
of [4], [14]). The objective is to achieve this near-maximal surplus guarantee,
while making only a small number of queries per customer. We suppose the
customer valuation function are sampled i.i.d. according to an unknown distri-
bution over a known (but arbitrary) class of real-valued functions having finite
pseudo-dimension. Reasoning that knowledge of this distribution should allow
one to make a smaller number of value queries per customer, we are interested
in estimating this unknown distribution, so that as we serve more and more cus-
tomers, the number of queries per customer required to identify a near-optimal
bundle should decrease. In this context, we in fact prove that in the limit, the

282 L. Yang et al.

expected number of queries per customer converges to the number required of a
method having direct knowledge of the true distribution of valuation functions.

Formally, suppose there is a menu of n items [n] = {1, . . . , n}, and each
bundle B ⊆ [n] has an associated price p(B) ≥ 0. Suppose also there is a sequence
of customers, each with a valuation function vt : 2[n] → R. We suppose these vt

functions are i.i.d. samples. We can then calculate the satisfaction function for
each customer as st(x), where x ∈ {0, 1}n, and st(x) = vt(Bx) − p(Bx), where
Bx ⊆ [n] contains element i ∈ [n] iff xi = 1.

Now suppose we are able to ask each customer a number of questions before
serving up a bundle Bx̂t

to that customer. More specifically, we are able to ask
for the value st(x) for any x ∈ {0, 1}n. This is referred to as a value query in
the literature on preference elicitation in combinatorial auctions (see Chapter
14 of [4], [14]). We are interested in asking as few questions as possible, while
satisfying the guarantee that E[st(x̂t) − maxx st(x)] ≤ ε.

Now suppose, for every π and ε, we have a method A(π, ε) such that, given
that π is the actual distribution of the st functions, A(π, ε) guarantees that
the x̂t value it selects has E[maxx st(x) − st(x̂t)] ≤ ε; also let N̂t(π, ε) denote
the actual (random) number of queries the method A(π, ε) would ask for the st

function, and let Q(π, ε) = E[N̂t(π, ε)]. We suppose the method never queries
any st(x) value twice for a given t, so that its number of queries for any given t
is bounded.

Also suppose F is a VC subgraph class of functions mapping X = {0, 1}n

into [−1, 1] with pseudodimension d, and that {πθ : θ ∈ Θ} is a known totally
bounded family of distributions over F such that the st functions have dis-
tribution πθ�

for some unknown θ� ∈ Θ. For any θ ∈ Θ and γ > 0, let
B(θ, γ) = {θ′ ∈ Θ : ‖πθ − πθ′‖ ≤ γ}.

Suppose, in addition to A, we have another method A′(ε) that is not π-
dependent, but still provides the ε-correctness guarantee, and makes a bounded
number of queries (e.g., in the worst case, we could consider querying all 2n

points, but in most cases there are more clever π-independent methods that
use far fewer queries, such as O(1/ε2)). Consider the method described in
Algorithm 1; the quantities θ̂Tθ�

, R(T, α), and δ(T, α) from Theorem 4 are here
considered with respect PX taken as the uniform distribution on {0, 1}n.

The following theorem indicates that Algorithm 1 is correct, and furthermore
that the long-run average number of queries is not much worse than that of a
method that has direct knowledge of πθ�

. The proof of this result parallels that
of [11] for the transfer learning setting, but is included here for completeness.

Theorem 5. In Algorithm 1, ∀t ≤ T,E[maxx st(x) − st(x̂t)] ≤ ε. Furthermore,
if ST (ε) is the total number of queries made by the method, then

lim sup
T→∞

E[ST (ε)]
T

≤ Q(πθ�
, ε/4) + d.

Proof. By Theorem 4, for any t ≤ T , if R(t−1, ε/2) ≤ ε/8, then with probability
at least 1 − ε/2, ‖πθ�

− πθ̂(t−1)θ�
‖ ≤ R(t − 1, ε/2), so that a triangle inequality

Bounds on the Minimax Rate for Estimating a Prior over a VC Class 283

Algorithm 1. An algorithm for sequentially maximizing expected customer
satisfaction.

for t = 1, 2, . . . , T do
Pick points Xt1, Xt2, . . . , Xtd uniformly at random from {0, 1}n

if R(t − 1, ε/2) > ε/8 then
Run A′(ε)
Take x̂t as the returned value

else
Let θ̌tθ� ∈ B

(
θ̂(t−1)θ� , R(t − 1, ε/2)

)
be such that

Q(πθ̌tθ�
, ε/4) ≤ min

θ∈B(θ̂(t−1)θ�
,R(t−1,ε/2))

Q(πθ, ε/4) +
1
t

Run A(πθ̌tθ�
, ε/4) and let x̂t be its return value

end if
end for

implies ‖πθ�
− πθ̌tθ�

‖ ≤ 2R(t − 1, ε/2) ≤ ε/4. Thus, E [maxx st(x) − st(x̂t)] ≤
ε/2 +E

[
E

[
maxx st(x) − st(x̂t)

∣∣∣θ̌tθ�

]
1
[
‖πθ̌tθ�

−πθ�
‖≤ε/2

]]
. For θ ∈ Θ, let x̂tθ

denote the point x that would be returned by A(πθ̌tθ�
, ε/4) when queries are

answered by some stθ ∼ πθ instead of st (and supposing st = stθ�
). If ‖πθ̌tθ�

−
πθ�

‖ ≤ ε/4, then

E

[
max

x
st(x) − st(x̂t)

∣∣∣θ̌tθ�

]
= E

[
max

x
stθ�

(x) − stθ�
(x̂t)

∣∣∣θ̌tθ�

]

≤ E

[
max

x
stθ̌tθ�

(x) − stθ̌tθ�
(x̂tθ̌tθ�

)
∣∣∣θ̌tθ�

]
+‖πθ̌tθ�

− πθ�
‖ ≤ ε/4 + ε/4 = ε/2.

Plugging into the above bound, we have E [maxx st(x) − st(x̂t)] ≤ ε.
For the result on ST (ε), first note that R(t − 1, ε/2) > ε/8 only finitely

many times (due to R(t, α) = o(1)), so that we can ignore those values of t
in the asymptotic calculation (as the number of queries is always bounded),
and rely on the correctness guarantee of A′. For the remaining values t, let Nt

denote the number of queries made by A(πθ̌tθ�
, ε/4). then lim sup

T→∞
E[ST (ε)]

T ≤ d +

lim sup
T→∞

∑T
t=1

E[Nt]
T . Since lim

T→∞
1
T

∑T
t=1 E

[
Nt1[‖πθ̂(t−1)θ�

− πθ�
‖ > R(t − 1, ε/2)]

]

≤ lim
T→∞

1
T

∑T
t=1 2n

P

(
‖πθ̂(t−1)θ�

− πθ�
‖ > R(t − 1, ε/2)

)
≤ 2n lim

T→∞
1
T

∑T
t=1 δ(t −

1, ε/2) = 0, we have lim sup
T→∞

∑T
t=1

E[Nt]
T = lim sup

T→∞
1
T

∑T
t=1 E

[
Nt1[‖πθ̂(t−1)θ�

−πθ�
‖≤

R(t−1, ε/2)]
]
. For t ≤ T , let Nt(θ̌tθ�

) denote the number of queries A(πθ̌tθ�
, ε/4)

would make if queries were answered with stθ̌tθ�
instead of st. On the event

‖πθ̂(t−1)θ�
−πθ�

‖ ≤ R(t−1, ε/2), we have E
[
Nt

∣∣∣θ̌tθ�

]
≤ E

[
Nt(θ̌tθ�

)
∣∣∣θ̌tθ�

]
+2R(t−

1, ε/2) = Q(πθ̌tθ�
, ε/4)+2R(t−1, ε/2) ≤ Q(πθ�

, ε/4)+2R(t−1, ε/2)+1/t. There-

fore, lim sup
T→∞

1
T

∑T
t=1 E

[
Nt1[‖πθ̂(t−1)θ�

− πθ�
‖ ≤ R(t − 1, ε/2)]

]
≤ Q(πθ�

, ε/4) +

lim sup
T→∞

1
T

∑T
t=1 2R(t − 1, ε/2) + 1/t = Q(πθ�

, ε/4).
�

284 L. Yang et al.

In many cases, this result will even continue to hold with an infinite number
of goods (n = ∞), since Theorem 4 has no dependence on the cardinality of X .

6 Open Problems

There are several interesting questions that remain open at this time. Can either
the lower bound or upper bound be improved in general? If, instead of d samples
per task, we instead use m ≥ d samples, how does the minimax risk vary with
m? Related to this, what is the optimal value of m to optimize the rate of
convergence as a function of mT , the total number of samples? More generally,
if an estimator is permitted to use N total samples, taken from however many
tasks it wishes, what is the optimal rate of convergence as a function of N?

References

1. Bar-Yossef, Z.: Sampling lower bounds via information theory. In: Proceedings
of the 35th Annual ACM Symposium on the Theory of Computing, pp. 335–344
(2003)

2. Baxter, J.: A Bayesian/information theoretic model of learning to learn via mul-
tiple task sampling. Machine Learning 28, 7–39 (1997)

3. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Learnability and
the Vapnik-Chervonenkis dimension. Journal of the Association for Computing
Machinery 36(4), 929–965 (1989)

4. Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. The MIT Press
(2006)

5. Devroye, L., Lugosi, G.: Combinatorial Methods in Density Estimation. Springer,
New York (2001)

6. Poland, J., Hutter, M.: MDL convergence speed for Bernoulli sequences. Statistics
and Computing 16, 161–175 (2006)

7. Schervish, M.J.: Theory of Statistics. Springer, New York (1995)
8. Vapnik, V.: Estimation of Dependencies Based on Empirical Data. Springer-

Verlag, New York (1982)
9. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies

of events to their probabilities. Theory of Probability and its Applications 16,
264–280 (1971)

10. Wald, A.: Sequential tests of statistical hypotheses. The Annals of Mathematical
Statistics 16(2), 117–186 (1945)

11. Yang, L., Hanneke, S., Carbonell, J.: A theory of transfer learning with applica-
tions to active learning. Machine Learning 90(2), 161–189 (2013)

12. Yang, L., Hanneke, S., Carbonell, J.: Bounds on the minimax rate for estimating
a prior over a vc class from independent learning tasks. arXiv:1505.05231 (2015)

13. Yatracos, Y.G.: Rates of convergence of minimum distance estimators and Kol-
mogorov’s entropy. The Annals of Statistics 13, 768–774 (1985)

14. Zinkevich, M., Blum, A., Sandholm, T.: On polynomial-time preference elicitation
with value queries. In: Proceedings of the 4th ACM Conference on Electronic
Commerce, pp. 175–185 (2003)

http://arxiv.org/abs/1505.05231

Online learning, Stochastic
Optimization

Scale-Free Algorithms for Online Linear
Optimization

Francesco Orabona and Dávid Pál(B)

Yahoo Labs, 11th Floor, 229 West 43rd Street, New York, NY 10036, USA
francesco@orabona.com, dpal@yahoo-inc.com

Abstract. We design algorithms for online linear optimization that have
optimal regret and at the same time do not need to know any upper or
lower bounds on the norm of the loss vectors. We achieve adaptiveness
to norms of loss vectors by scale invariance, i.e., our algorithms make
exactly the same decisions if the sequence of loss vectors is multiplied by
any positive constant. Our algorithms work for any decision set, bounded
or unbounded. For unbounded decisions sets, these are the first truly
adaptive algorithms for online linear optimization.

1 Introduction

Online Linear Optimization (OLO) is a problem where an algorithm repeat-
edly chooses a point wt from a convex decision set K, observes an arbitrary,
or even adversarially chosen, loss vector �t and suffers loss 〈�t, wt〉. The goal of
the algorithm is to have a small cumulative loss. Performance of an algorithm
is evaluated by the so-called regret, which is the difference of cumulative losses
of the algorithm and of the (hypothetical) strategy that would choose in every
round the same best point in hindsight.

OLO is a fundamental problem in machine learning [3,18]. Many learning
problems can be directly phrased as OLO, e.g., learning with expert advice
[2,9,21], online combinatorial optimization [7]. Other problems can be reduced
to OLO, e.g. online convex optimization [18, Chapter 2], online classification
and regression [3, Chapters 11 and 12], multi-armed problems [3, Chapter 6],
and batch and stochastic optimization of convex functions [12]. Hence, a result
in OLO immediately implies other results in all these domains.

The adversarial choice of the loss vectors received by the algorithm is what
makes the OLO problem challenging. In particular, if an OLO algorithm commits
to an upper bound on the norm of future loss vectors, its regret can be made
arbitrarily large through an adversarial strategy that produces loss vectors with
norms that exceed the upper bound.

For this reason, most of the existing OLO algorithms receive as an input—or
explicitly assume—an upper bound B on the norm of the loss vectors. The input
B is often disguised as the learning rate, the regularization parameter, or the
parameter of strong convexity of the regularizer. Examples of such algorithms
include the Hedge algorithm or online projected gradient descent with fixed
learning rate. However, these algorithms have two obvious drawbacks.
c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 287–301, 2015.
DOI: 10.1007/978-3-319-24486-0 19

288 F. Orabona and D. Pál

Table 1. Selected results for OLO. Best results in each column are in bold.

Algorithm Decisions Set(s) Regularizer(s) Scale-Free

Hedge [5] Probability Simplex Negative Entropy No

GIGA [23] Any Bounded 1
2
‖w‖22 No

RDA [22] Any Any Strongly Convex No

FTRL-Proximal [10,11] Any Bounded 1
2
‖w‖22+ any convex func. Yes

AdaGrad MD [4] Any Bounded 1
2
‖w‖22+ any convex func. Yes

AdaGrad FTRL [4] Any 1
2
‖w‖22+ any convex func. No

AdaHedge [15] Probability Simplex Negative Entropy Yes

Optimistic MD [14] supu,v∈K Bf (u, v) < ∞ Any Strongly Convex Yes

NAG [16] {u : maxt〈�t, u〉 ≤ C} 1
2
‖w‖22 Partially1

Scale invariant algo-
rithms [13]

Any 1
2
‖w‖2p+ any convex func.

1 < p ≤ 2
Partially1

AdaFTRL [this paper] Any Bounded Any Strongly Convex Yes

SOLO FTRL [this paper] Any Any Strongly Convex Yes

First, they do not come with any regret guarantee for sequences of loss vectors
with norms exceeding B. Second, on sequences where the norm of loss vectors
is bounded by b � B, these algorithms fail to have an optimal regret guarantee
that depends on b rather than on B.

There is a clear practical need to design algorithms that adapt automatically
to norms of the loss vectors. A natural, yet overlooked, design method to achieve
this type of adaptivity is by insisting to have a scale-free algorithm. That is,
the sequence of decisions of the algorithm does not change if the sequence of loss
vectors is multiplied by a positive constant.

A summary of algorithms for OLO is presented in Table 1. While the scale-
free property has been looked at in the expert setting, in the general OLO
setting this issue has been largely ignored. In particular, the AdaHedge [15]
algorithm, for prediction with expert advice, is specifically designed to be scale-
free. A notable exception in the OLO literature is the discussion of the “off-
by-one” issue in [10], where it is explained that even the popular AdaGrad
algorithm [4] is not completely adaptive; see also our discussion in Section 4.
In particular, existing scale-free algorithms cover only some norms/regularizers
and only bounded decision sets. The case of unbounded decision sets, prac-
tically the most interesting one for machine learning applications, remains com-
pletely unsolved.

Rather than trying to design strategies for a particular form of loss vectors
and/or decision sets, in this paper we explicitly focus on the scale-free property.
Regret of scale-free algorithms is proportional to the scale of the losses, ensuring
optimal linear dependency on the maximum norm of the loss vectors.

The contribution of this paper is twofold. First, in Section 3 we show that
the analysis and design of AdaHedge can be generalized to the OLO scenario

1 These algorithms attempt to produce an invariant sequence of predictions 〈wt, �t〉,
rather than a sequence of invariant wt.

Scale-Free Algorithms for Online Linear Optimization 289

and to any strongly convex regularizer, in an algorithm we call AdaFTRL,
providing a new and rather interesting way to adapt the learning rates to have
scale-free algorithms. Second, in Section 4 we propose a new and simple algo-
rithm, SOLO FTRL, that is scale-free and is the first scale-free online algo-
rithm for unbounded sets with a non-vacuous regret bound. Both algorithms are
instances of Follow The Regularized Leader (FTRL) with an adaptive learning
rate. Moreover, our algorithms show that scale-free algorithms can be obtained
in a “native” and simple way, i.e. without using “doubling tricks” that attempt
to fix poorly designed algorithms rather than directly solving the problem.

For both algorithms, we prove that for bounded decision sets the regret

after T rounds is at most O(
√∑T

t=1 ‖�t‖2∗). We show that the
√∑T

t=1 ‖�t‖2∗
term is necessary by proving a Ω(D

√∑T
t=1 ‖�t‖2∗) lower bound on the regret

of any algorithm for OLO for any decision set with diameter D with respect
to the primal norm ‖ · ‖. For the SOLO FTRL algorithm, we prove an
O(maxt=1,2,...,T ‖�t‖∗

√
T) regret bound for any unbounded decision set.

Our algorithms are also any-time, i.e., do not need to know the number of
rounds in advance and our regret bounds hold for all time steps simultaneously.

2 Notation and Preliminaries

Let V be a finite-dimensional real vector space equipped with a norm ‖ · ‖. We
denote by V ∗ its dual vector space. The bi-linear map associated with (V ∗, V)
is denoted by 〈·, ·〉 : V ∗ × V → R. The dual norm of ‖ · ‖ is ‖ · ‖∗.

In OLO, in each round t = 1, 2, . . . , the algorithm chooses a point wt in the
decision set K ⊆ V and then the algorithm observes a loss vector �t ∈ V ∗. The
instantaneous loss of the algorithm in round t is 〈�t, wt〉. The cumulative loss of
the algorithm after T rounds is

∑T
t=1〈�t, wt〉. The regret of the algorithm with

respect to a point u ∈ K is

RegretT (u) =
T∑

t=1

〈�t, wt〉 −
T∑

t=1

〈�t, u〉,

and the regret with respect to the best point is RegretT = supu∈K RegretT (u).
We assume that K is a non-empty closed convex subset of V . Sometimes we will
assume that K is also bounded. We denote by D its diameter with respect to
‖ · ‖, i.e. D = supu,v∈K ‖u − v‖. If K is unbounded, D = +∞.

Convex Analysis. The Bregman divergence of a convex differentiable function
f is defined as Bf (u, v) = f(u) − f(v) − 〈∇f(v), u − v〉. Note that Bf (u, v) ≥ 0
for any u, v which follows directly from the definition of convexity of f .

The Fenchel conjugate of a function f : K → R is the function f∗ : V ∗ →
R∪ {+∞} defined as f∗(�) = supw∈K (〈�, w〉 − f(w)). The Fenchel conjugate of
any function is convex (since it is a supremum of affine functions) and satisfies
for all w ∈ K and all � ∈ V ∗ the Fenchel-Young inequality f(w)+f∗(�) ≥ 〈�, w〉.

290 F. Orabona and D. Pál

Algorithm 1. FTRL with Varying Regularizer

Require: Sequence of regularizers {Rt}∞
t=1

1: Initialize L0 ← 0
2: for t = 1, 2, 3, . . . do
3: wt ← argminw∈K (〈Lt−1, w〉 + Rt(w))
4: Predict wt

5: Observe �t ∈ V ∗

6: Lt ← Lt−1 + �t
7: end for

Monotonicity of Fenchel conjugates follows easily from the definition: If f, g :
K → R satisfy f(w) ≤ g(w) for all w ∈ K then f∗(�) ≥ g∗(�) for every � ∈ V ∗.

Given λ > 0, a function f : K → R is called λ-strongly convex with respect
to a norm ‖ · ‖ if and only if, for all x, y ∈ K,

f(y) ≥ f(x) + 〈∇f(x), y − x〉 +
λ

2
‖x − y‖2 ,

where ∇f(x) is any subgradient of f at point x.
The following proposition relates the range of values of a strongly convex

function to the diameter of its domain. The proof can be found in Appendix A.

Proposition 1 (Diameter vs. Range). Let K ⊆ V be a non-empty bounded
closed convex subset. Let D = supu,v∈K ‖u − v‖ be its diameter with respect to
‖ · ‖. Let f : K → R be a non-negative lower semi-continuous function that is
1-strongly convex with respect to ‖ · ‖. Then, D ≤ √

8 supv∈K f(v).

Fenchel conjugates and strongly convex functions have certain nice proper-
ties, which we list in Proposition 2 below.

Proposition 2 (Fenchel Conjugates of Strongly Convex Functions). Let
K ⊆ V be a non-empty closed convex set with diameter D := supu,v∈K ‖u − v‖.
Let λ > 0, and let f : K → R be a lower semi-continuous function that is
λ-strongly convex with respect to ‖ · ‖. The Fenchel conjugate of f satisfies:

1. f∗ is finite everywhere and differentiable.
2. ∇f∗(�) = argminw∈K (f(w) − 〈�, w〉)
3. For any � ∈ V ∗, f∗(�) + f(∇f∗(�)) = 〈�,∇f∗(�)〉.
4. f∗ is 1

λ -strongly smooth i.e. for any x, y ∈ V ∗, Bf∗(x, y) ≤ 1
2λ‖x − y‖2∗.

5. f∗ has 1
λ -Lipschitz continuous gradients i.e. ‖∇f∗(x)−∇f∗(y)‖ ≤ 1

λ‖x−y‖∗
for any x, y ∈ V ∗.

6. Bf∗(x, y) ≤ D‖x − y‖∗ for any x, y ∈ V ∗.
7. ‖∇f∗(x) − ∇f∗(y)‖ ≤ D for any x, y ∈ V ∗.
8. For any c > 0, (cf(·))∗ = cf∗(·/c).

Except for properties 6 and 7, the proofs can be found in [17]. Property 6 is
proven in Appendix A. Property 7 trivially follows from property 2.

Scale-Free Algorithms for Online Linear Optimization 291

Generic FTRL with Varying Regularizer. Our scale-free online learning
algorithms are versions of the Follow The Regularized Leader (FTRL)
algorithm with varying regularizers, presented as Algorithm 1. The following
lemma bounds its regret.

Lemma 1 (Lemma 1 in [13]). For any sequence {Rt}∞
t=1 of strongly convex

lower semi-continuous regularizers, regret of Algorithm 1 is upper bounded as

RegretT (u) ≤ RT+1(u)+R∗
1(0)+

T∑

t=1

BR∗
t
(−Lt,−Lt−1)−R∗

t (−Lt)+R∗
t+1(−Lt) .

The lemma allows data dependent regularizers. That is, Rt can depend on the
past loss vectors �1, �2, . . . , �t−1.

3 AdaFTRL

In this section we generalize the AdaHedge algorithm [15] to the OLO setting,
showing that it retains its scale-free property. The analysis is very general and
based on general properties of strongly convex functions, rather than specific
properties of the entropic regularizer like in AdaHedge.

Assume that K is bounded and that R(w) is a strongly convex lower semi-
continuous function bounded from above. We instantiate Algorithm 1 with the
sequence of regularizers

Rt(w) = Δt−1R(w) where Δt =
t∑

i=1

Δi−1BR∗

(
− Li

Δi−1
,− Li−1

Δi−1

)
. (1)

The sequence {Δt}∞
t=0 is non-negative and non-decreasing. Also, Δt as a

function of {�s}t
s=1 is positive homogenous of degree one, making the algorithm

scale-free.
If Δi−1 = 0, we define Δi−1BR∗(−Li

Δi−1
, −Li−1

Δi−1
) as lima→0+ aBR∗(−Li

a , −Li−1
a)

which always exists and is finite; see Appendix B. Similarly, when Δt−1 = 0,
we define wt = argminw∈K〈Lt−1, w〉 where ties among minimizers are broken by
taking the one with the smallest value of R(w), which is unique due to strong
convexity; this is the same as wt = lima→0+ argminw∈K(〈Lt−1, w〉 + aR(w)).

Our main result is an O(
√∑T

t=1 ‖�t‖2∗) upper bound on the regret of the
algorithm after T rounds, without the need to know before hand an upper bound
on ‖�t‖∗. We prove the theorem in Section 3.1.

Theorem 1 (Regret Bound). Suppose K ⊆ V is a non-empty bounded closed
convex subset. Let D = supx,y∈K ‖x − y‖ be its diameter with respect to a norm
‖ · ‖. Suppose that the regularizer R : K → R is a non-negative lower semi-
continuous function that is λ-strongly convex with respect to ‖ · ‖ and is bounded
from above. The regret of AdaFTRL satisfies

RegretT (u) ≤
√

3 max
{

D,
1√
2λ

}
√√√√

T∑

t=1

‖�t‖2∗ (1 + R(u)) .

292 F. Orabona and D. Pál

The regret bound can be optimized by choosing the optimal multiple of the
regularizer. Namely, we choose regularizer of the form λf(w) where f(w) is
1-strongly convex and optimize over λ. The result of the optimization is the
following corollary. Its proof can be found in Appendix C.

Corollary 1 (Regret Bound). Suppose K ⊆ V is a non-empty bounded closed
convex subset. Suppose f : K → R is a non-negative lower semi-continuous
function that is 1-strongly convex with respect to ‖ ·‖ and is bounded from above.
The regret of AdaFTRL with regularizer

R(w) =
f(w)

16 · supv∈K f(v)
satisfies RegretT ≤ 5.3

√√√√sup
v∈K

f(v)
T∑

t=1

‖�t‖2∗ .

3.1 Proof of Regret Bound for AdaFTRL

Lemma 2 (Initial Regret Bound). AdaFTRL, for any u ∈ K and any u ≥ 0,
satisfies RegretT (u) ≤ (1 + R(u))ΔT .

Proof. Let Rt(w) = Δt−1R(w). Since R is non-negative, {Rt}∞
t=1 is non-

decreasing. Hence, R∗
t (�) ≥ R∗

t+1(�) for every � ∈ V ∗ and thus R∗
t (−Lt) −

R∗
t+1(−Lt) ≥ 0. So, by Lemma 1,

RegretT (u) ≤ RT+1(u) + R∗
1(0) +

T∑

t=1

BR∗
t
(−Lt,−Lt−1) . (2)

Since, BR∗
t
(u, v) = Δt−1BR∗(u

Δt−1
, v

Δt−1
) by definition of Bregman divergence

and Part 8 of Proposition 2, we have
∑T

t=1 BR∗
t
(−Lt,−Lt−1) = ΔT .

Lemma 3 (Recurrence). Let D = supu,v∈K ‖u − v‖ be the diameter of K.
The sequence {Δt}∞

t=1 generated by AdaFTRL satisfies for any t ≥ 1,

Δt ≤ Δt−1 + min
{

D‖�t‖∗,
‖�t‖2∗

2λΔt−1

}
.

Proof. The inequality results from strong convexity of Rt(w) and Proposition 2.

Lemma 4 (Solution of the Recurrence). Let D be the diameter of K. The
sequence {Δt}∞

t=0 generated by AdaFTRL satisfies for any T ≥ 0,

ΔT ≤
√

3 max
{

D,
1√
2λ

}
√√√√

T∑

t=1

‖�t‖2∗ .

Proof of the Lemma 4 is deferred to Appendix C. Theorem 1 follows from Lem-
mas 2 and 4.

Scale-Free Algorithms for Online Linear Optimization 293

4 SOLO FTRL

The closest algorithm to a scale-free one in the OLO literature is the AdaGrad
algorithm [4]. It uses a regularizer on each coordinate of the form

Rt(w) = R(w)

⎛

⎝δ +

√√√√
t−1∑

s=1

‖�s‖2∗

⎞

⎠ .

This kind of regularizer would yield a scale-free algorithm only for δ = 0.
Unfortunately, the regret bound in [4] becomes vacuous for such setting in the
unbounded case. In fact, it requires δ to be greater than ‖�t‖∗ for all time steps t,
requiring knowledge of the future (see Theorem 5 in [4]). In other words, despite
of its name, AdaGrad is not fully adaptive to the norm of the loss vectors. Iden-
tical considerations hold for the FTRL-Proximal in [10,11]: the scale-free setting
of the learning rate is valid only in the bounded case.

One simple approach would be to use a doubling trick on δ in order to
estimate on the fly the maximum norm of the losses. Note that a naive strategy
would still fail because the initial value of δ should be data-dependent in order to
have a scale-free algorithm. Moreover, we would have to upper bound the regret
in all the rounds where the norm of the current loss is bigger than the estimate.
Finally, the algorithm would depend on an additional parameter, the “doubling”
power. Hence, even guaranteeing a regret bound2, such strategy would give the
feeling that FTRL needs to be “fixed” in order to obtain a scale-free algorithm.

In the following, we propose a much simpler and better approach. We propose
to use Algorithm 1 with the regularizer

Rt(w) = R(w)

√√√√
t−1∑

s=1

‖�s‖2∗ ,

where R : K → R is any strongly convex function. Through a refined analysis,
we show that the regularizer suffices to obtain an optimal regret bound for any
decision set, bounded or unbounded. We call such variant Scale-free Online
Linear Optimization FTRL algorithm (SOLO FTRL). Our main result is
the following Theorem, which is proven in Section 4.1.

Theorem 2 (Regret of SOLO FTRL). Suppose K ⊆ V is a non-empty
closed convex subset. Let D = supu,v∈K ‖u − v‖ be its diameter with respect to
a norm ‖ · ‖. Suppose that the regularizer R : K → R is a non-negative lower
semi-continuous function that is λ-strongly convex with respect to ‖·‖. The regret
of SOLO FTRL satisfies

RegretT (u) ≤
(

R(u) +
2.75
λ

)
√√√√

T∑

t=1

‖�t‖2∗ + 3.5min
{√

T − 1
λ

,D

}
max
t≤T

‖�t‖∗.

2 For lack of space, we cannot include the regret bound for the doubling trick version.
It would be exactly the same as in Theorem 2, following a similar analysis, but with
the additional parameter of the doubling power.

294 F. Orabona and D. Pál

When K is bounded, we can choose the optimal multiple of the regularizer.
We choose R(w) = λf(w) where f is a 1-strongly convex function and optimize
λ. The result of the optimization is Corollary 2; the proof is in Appendix D. It is
similar to Corollary 1 for AdaFTRL. The scaling however is different in the two
corollaries. In Corollary 1, λ ∼ 1/(supv∈K f(v)) while in Corollary 2 we have
λ ∼ 1/

√
supv∈K f(v).

Corollary 2 (Regret Bound for Bounded Decision Sets). Suppose K ⊆ V
is a non-empty bounded closed convex subset. Suppose that f : K → R is a non-
negative lower semi-continuous function that is 1-strongly convex with respect to
‖ · ‖. SOLO FTRL with regularizer

R(w) =
f(w)

√
2.75√

supv∈K f(v)
satisfies RegretT ≤ 13.3

√√√√sup
v∈K

f(v)
T∑

t=1

‖�t‖2∗ .

4.1 Proof of Regret Bound for SOLO FTRL

The proof of Theorem 2 relies on an inequality (Lemma 5). Related and weaker
inequalities were proved by [1] and [6]. The main property of this inequality is

that on the right-hand side C does not multiply the
√∑T

t=1 a2
t term. We will

also use the well-known technical Lemma 6.

Lemma 5 (Useful Inequality). Let C, a1, a2, . . . , aT ≥ 0. Then,

T∑

t=1

min

⎧
⎨

⎩a2
t /

√√√√
t−1∑

s=1

a2
s, Cat

⎫
⎬

⎭ ≤ 3.5C max
t=1,2,...,T

at + 3.5

√√√√
T∑

t=1

a2
t .

Proof. Without loss of generality, we can assume that at > 0 for all t. Since
otherwise we can remove all at = 0 without affecting either side of the inequality.
Let Mt = max{a1, a2, . . . , at} and M0 = 0. We prove that for any α > 1

min

⎧
⎨

⎩
a2

t√∑t−1
s=1 a2

s

, Cat

⎫
⎬

⎭ ≤ 2
√

1 + α2

⎛

⎝

√√√√
t∑

s=1

a2
s −

√√√√
t−1∑

s=1

a2
s

⎞

⎠+
Cα(Mt − Mt−1)

α − 1

from which the inequality follows by summing over t = 1, 2, . . . , T and choosing
α =

√
2. The inequality follows by case analysis. If a2

t ≤ α2
∑t−1

s=1 a2
s, we have

min

⎧
⎨

⎩
a2

t√∑t−1
s=1 a2

s

, Cat

⎫
⎬

⎭ ≤ a2
t√∑t−1

s=1 a2
s

=
a2

t√
1

1+α2

(
α2

∑t−1
s=1 a2

s +
∑t−1

s=1 a2
s

)

≤ a2
t

√
1 + α2

√
a2

t +
∑t−1

s=1 a2
s

=
a2

t

√
1 + α2

√∑t
s=1 a2

s

≤ 2
√

1 + α2

⎛

⎝

√√√√
t∑

s=1

a2
s −

√√√√
t−1∑

s=1

a2
s

⎞

⎠

Scale-Free Algorithms for Online Linear Optimization 295

where we have used x2/
√

x2 + y2 ≤ 2(
√

x2 + y2 −
√

y2) in the last step. On the
other hand, if a2

t > α2
∑t−1

t=1 a2
s, we have

min

⎧
⎨

⎩
a2

t√∑t−1
s=1 a2

s

, Cat

⎫
⎬

⎭ ≤ Cat = C
αat − at

α − 1
≤ C

α − 1

⎛

⎝αat − α

√√√√
t−1∑

s=1

a2
s

⎞

⎠

=
Cα

α − 1

⎛

⎝at −
√√√√

t−1∑

s=1

a2
s

⎞

⎠ ≤ Cα

α − 1
(at − Mt−1) =

Cα

α − 1
(Mt − Mt−1)

where we have used that at = Mt and
√∑t−1

s=1 a2
s ≥ Mt−1.

Lemma 6 (Lemma 3.5 in [1]). Let a1, a2, . . . , aT be non-negative real num-
bers. If a1 > 0 then,

T∑

t=1

at/

√√√√
t∑

s=1

as ≤ 2

√√√√
T∑

t=1

at .

Proof (Proof of Theorem 2). Let ηt = 1√∑t−1
s=1 ‖�s‖2∗

, hence Rt(w) = 1
ηt

R(w). We

assume without loss of generality that ‖�t‖∗ > 0 for all t, since otherwise we can
remove all rounds t where �t = 0 without affecting regret and the predictions of
the algorithm on the remaining rounds. By Lemma 1,

RegretT (u) ≤ 1
ηT+1

R(u) +
T∑

t=1

(BR∗
t
(−Lt,−Lt−1) − R∗

t (−Lt) + R∗
t+1(−Lt)

)
.

We upper bound the terms of the sum in two different ways. First, by Proposi-
tion 2, we have

BR∗
t
(−Lt,−Lt−1) − R∗

t (−Lt) + R∗
t+1(−Lt) ≤ BR∗

t
(−Lt,−Lt−1) ≤ ηt‖�t‖2∗

2λ
.

Second, we have

BR∗
t
(−Lt,−Lt−1) − R∗

t (−Lt) + R∗
t+1(−Lt)

= BR∗
t+1

(−Lt,−Lt−1) + R∗
t+1(−Lt−1) − R∗

t (−Lt−1)

+ 〈∇R∗
t (−Lt−1) − ∇R∗

t+1(−Lt−1), �t〉
≤ 1

2ληt+1‖�t‖2∗ + ‖∇R∗
t (−Lt−1) − ∇R∗

t+1(−Lt−1)‖ · ‖�t‖∗
= 1

2ληt+1‖�t‖2∗ + ‖∇R∗(−ηtLt−1) − ∇R∗(−ηt+1Lt−1)‖ · ‖�t‖∗

≤ ηt+1‖�t‖2∗
2λ

+ min
{

1
λ

‖Lt−1‖∗ (ηt − ηt+1) ,D

}
‖�t‖∗ ,

where in the first inequality we have used the fact that R∗
t+1(−Lt−1) ≤

R∗
t (−Lt−1), Hölder’s inequality, and Proposition 2. In the second inequality we

296 F. Orabona and D. Pál

have used properties 5 and 7 of Proposition 2. Using the definition of ηt+1 we
have

‖Lt−1‖∗(ηt − ηt+1)
λ

≤ ‖Lt−1‖∗

λ
√∑t−1

i=1 ‖�i‖2∗
≤

∑t−1
i=1 ‖�i‖∗

λ
√∑t−1

i=1 ‖�i‖2∗
≤

√
t − 1
λ

≤
√

T − 1
λ

.

Denoting by H = min
{√

T−1
λ ,D

}
we have

RegretT (u) ≤ 1

ηT+1
R(u) +

T∑

t=1

min

{
ηt‖�t‖2

∗
2λ

, H‖�t‖∗ +
ηt+1‖�t‖2

∗
2λ

}

≤ 1

ηT+1
R(u) +

1

2λ

T∑

t=1

ηt+1‖�t‖2
∗ +

1

2λ

T∑

t=1

min
{
ηt‖�t‖2

∗, 2λH‖�t‖∗
}

=
1

ηT+1
R(u) +

1

2λ

T∑

t=1

‖�t‖2
∗√∑t

s=1 ‖�t‖2∗
+

1

2λ

T∑

t=1

min

⎧
⎨

⎩

‖�t‖2
∗√∑t−1

s=1 ‖�s‖2∗
, 2λH‖�t‖∗

⎫
⎬

⎭
.

We bound each of the three terms separately. By definition of ηT+1, the first

term is 1
ηT+1

R(u) = R(u)
√∑T

t=1 ‖�t‖2∗. We upper bound the second term using
Lemma 6 as

1
2λ

T∑

t=1

‖�t‖2∗√∑t
s=1 ‖�t‖2∗

≤ 1
λ

√√√√
T∑

t=1

‖�t‖2∗ .

Finally, by Lemma 5 we upper bound the third term as

1
2λ

T∑

t=1

min

⎧
⎨

⎩
‖�t‖2∗√∑t−1
s=1 ‖�s‖2∗

, 2λ‖�t‖∗H

⎫
⎬

⎭ ≤ 3.5H max
t≤T

‖�t‖∗ +
1.75
λ

√√√√
T∑

t=1

‖�t‖2∗ .

Putting everything together gives the stated bound.

5 Lower Bound

We show a lower bound on the worst-case regret of any algorithm for OLO. The
proof is a standard probabilistic argument, which we present in Appendix E.

Theorem 3 (Lower Bound). Let K ⊆ V be any non-empty bounded closed
convex subset. Let D = supu,v∈K ‖u−v‖ be the diameter of K. Let A be any (pos-
sibly randomized) algorithm for OLO on K. Let T be any non-negative integer
and let a1, a2, . . . , aT be any non-negative real numbers. There exists a sequence
of vectors �1, �2, . . . , �T in the dual vector space V ∗ such that ‖�1‖∗ = a1, ‖�2‖∗ =
a2, . . . , ‖�T ‖∗ = aT and the regret of algorithm A satisfies

RegretT ≥ D√
8

√√√√
T∑

t=1

‖�t‖2∗ . (3)

Scale-Free Algorithms for Online Linear Optimization 297

The upper bounds on the regret, which we have proved for our algorithms,
have the same dependency on the norms of loss vectors. However, a gap remains
between the lower bound and the upper bounds.

Our upper bounds are of the form O(
√

supv∈K f(v)
∑T

t=1 ‖�t‖2∗) where f is
any 1-strongly convex function with respect to ‖ · ‖. The same upper bound
is also achieved by FTRL with a constant learning rate when the number of
rounds T and

∑T
t=1 ‖�t‖2∗ is known upfront [18, Chapter2]. The lower bound is

Ω(D
√∑T

t=1 ‖�t‖2∗).
The gap between D and

√
supv∈K f(v) can be substantial. For example, if K

is the probability simplex in R
d and f(w) = ln(d) +

∑d
i=1 wi ln wi is the shifted

negative entropy, the ‖ · ‖1-diameter of K is 2, f is non-negative and 1-strongly
convex w.r.t. ‖ · ‖1, but supv∈K f(v) = ln(d). On the other hand, if the norm
‖ · ‖2 =

√〈·, ·〉 arises from an inner product 〈·, ·〉, the lower bound matches the
upper bounds within a constant factor. The reason is that for any K with ‖ · ‖2-
diameter D, the function f(w) = 1

2‖w − w0‖22, where w0 is an arbitrary point in
K, is 1-strongly convex w.r.t. ‖ · ‖2 and satisfies that

√
supv∈K f(v) ≤ D. This

leads to the following open problem (posed also in [8]):

Given a bounded convex set K and a norm ‖·‖, construct a non-negative
function f : K → R that is 1-strongly convex with respect to ‖ · ‖ and
minimizes supv∈K f(v).

As shown in [19], the existence of f with small supv∈K f(v) is equivalent to the
existence of an algorithm for OLO with Õ(

√
T supv∈K f(v)) regret assuming

‖�t‖∗ ≤ 1. The Õ notation hides a polylogarithmic factor in T .

6 Per-Coordinate Learning

An interesting class of algorithms proposed in [11] and [4] are based on the so-
called per-coordinate learning rates. As shown in [20], our algorithms, or in fact
any algorithm for OLO, can be used with per-coordinate learning rates as well.

Abstractly, we assume that the decision set is a Cartesian product K = K1×
K2×· · ·×Kd of a finite number of convex sets. On each factor Ki, i = 1, 2, . . . , d,
we can run any OLO algorithm separately and we denote by Regret(i)T (ui) its
regret with respect to ui ∈ Ki. The overall regret with respect to any u =
(u1, u2, . . . , ud) ∈ K can be written as

RegretT (u) =
d∑

i=1

Regret(i)T (ui) .

If the algorithm for each factor is scale-free, the overall algorithm is clearly scale-
free as well. Using AdaFTRL or SOLO FTRL for each factor Ki, we generalize
and improve existing regret bounds [4,11] for algorithms with per-coordinate
learning rates.

298 F. Orabona and D. Pál

References

1. Auer, P., Cesa-Bianchi, N., Gentile, C.: Adaptive and self-confident on-line learn-
ing algorithms. Journal of Computer and System Sciences 64(1), 48–75 (2002)

2. Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D.P., Schapire, R.E., War-
muth, M.K.: How to use expert advice. J. ACM 44(3), 427–485 (1997)

3. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge Uni-
versity Press, Cambridge (2006)

4. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

5. Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algo-
rithm. Mach. Learn. 37(3), 277–296 (1999)

6. Jaksch, T., Ortner, R., Auer, P.: Near-optimal regret bounds for reinforcement
learning. J. Mach. Learn. Res. 11, 1563–1600 (2010)

7. Koolen, W.M., Warmuth, M.K., Kivinen, J.: Hedging structured concepts. In:
Proc. of COLT, pp. 93–105 (2010)

8. Kwon, J., Mertikopoulos, P.: A continuous-time approach to online optimization,
February 2014. arXiv:1401.6956

9. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Information
and Computation 108(2), 212–261 (1994)

10. McMahan, H.B.: Analysis techniques for adaptive online learning (2014).
arXiv:1403.3465

11. McMahan, H.B., Streeter, J.M.: Adaptive bound optimization for online convex
optimization. In: Proc. of COLT, pp. 244–256 (2010)

12. Nemirovski, A., Yudin, D.B.: Problem complexity and method efficiency in opti-
mization. Wiley (1983)

13. Orabona, F., Crammer, K., Cesa-Bianchi, N.: A generalized online mirror descent
with applications to classification and regression. Mach. Learn. 99, 411–435 (2014)

14. Rakhlin, A., Sridharan, K.: Optimization, learning, and games with predictable
sequences. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

15. de Rooij, S., van Erven, T., Grünwald, P.D., Koolen, W.M.: Follow the leader if
you can, hedge if you must. J. Mach. Learn. Res. 15, 1281–1316 (2014)

16. Ross, S., Mineiro, P., Langford, J.: Normalized online learning. In: Proc. of UAI
(2013)

17. Shalev-Shwartz, S.: Online Learning: Theory, Algorithms, and Applications.
Ph.D. thesis, Hebrew University, Jerusalem (2007)

18. Shalev-Shwartz, S.: Online learning and online convex optimization. Foundations
and Trends in Machine Learning 4(2), 107–194 (2011)

19. Srebro, N., Sridharan, K., Tewari, A.: On the universality of online mirror descent.
In: Advances in Neural Information Processing Systems (2011)

20. Streeter, M., McMahan, H.B.: Less regret via online conditioning (2010).
arXiv:1002.4862

21. Vovk, V.: A game of prediction with expert advice. Journal of Computer and
System Sciences 56, 153–173 (1998)

22. Xiao, L.: Dual averaging methods for regularized stochastic learning and online
optimization. J. Mach. Learn. Res. 11, 2543–2596 (2010)

23. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient
ascent. In: Proc. of ICML, pp. 928–936 (2003)

http://arxiv.org/abs/1401.6956
http://arxiv.org/abs/1403.3465
http://arxiv.org/abs/1002.4862

Scale-Free Algorithms for Online Linear Optimization 299

A Proofs for Preliminaries

Proof (Proof of Proposition 1). Let S = supu∈K f(u) and v∗ = argminv∈K f(v).
The minimizer v∗ is guaranteed to exist by lower semi-continuity of f and com-
pactness of K. Optimality condition for v∗ and 1-strong convexity of f imply
that for any u ∈ K,

S ≥ f(u) − f(v∗) ≥ f(u) − f(v∗) − 〈∇f(v∗), u − v∗〉 ≥ 1
2
‖u − v∗‖2 .

In other words, ‖u − v∗‖ ≤ √
2S. By triangle inequality,

D = sup
u,v∈K

‖u − v‖ ≤ sup
u,v∈K

(‖u − v∗‖ + ‖v∗ − v‖) ≤ 2
√

2S =
√

8S .

Proof (Proof of Property 6 of Proposition 2). To bound Bf∗(x, y) we add a non-
negative divergence term Bf∗(y, x).

Bf∗(x, y) ≤ Bf∗(x, y) + Bf∗(y, x) = 〈x − y,∇f∗(x) − ∇f∗(y)〉
≤ ‖x − y‖∗ · ‖∇f∗(x) − ∇f∗(y)‖ ≤ D‖x − y‖∗ ,

where we have used Hölder’s inequality and Part 7 of the Proposition.

B Limits

Lemma 7. Let K be a non-empty bounded closed convex subset of a finite
dimensional normed real vector space (V, ‖ ·‖). Let R : K → R be a strongly con-
vex lower semi-continuous function bounded from above. Then, for any x, y ∈ V ∗,

lim
a→0+

aBR∗(x/a, y/a) = 〈x, u − v〉

where

u = lim
a→0+

argmin
w∈K

(aR(w) − 〈x,w〉) and v = lim
a→0+

argmin
w∈K

(aR(w) − 〈y, w〉) .

Proof. Using Part 3 of Proposition 2 we can write the divergence

aBR∗(x/a, y/a) = aR∗(x/a) − aR∗(y/a) − 〈x − y, ∇R∗(y/a)〉
= a [〈x/a, ∇R∗(x/a)〉 − R(∇R∗(x/a))]

− a [〈y/a, ∇R∗(y/a)〉 − R(∇R∗(y/a))] − 〈x − y, ∇R∗(y/a)〉
= 〈x, ∇R∗(x/a) − ∇R∗(y/a)〉 − aR(∇R∗(x/a)) + aR(∇R∗(y/a)) .

Part 2 of Proposition 2 implies that

u = lim
a→0+

∇R∗(x/a) = lim
a→0+

argmin
w∈K

(aR(w) − 〈x,w〉) ,

v = lim
a→0+

∇R∗(y/a) = lim
a→0+

argmin
w∈K

(aR(w) − 〈y, w〉) .

300 F. Orabona and D. Pál

The limits on the right exist because of compactness of K. They are simply the
minimizers u = argminw∈K −〈x,w〉 and v = argminw∈K −〈y, w〉 where ties in
argmin are broken according to smaller value of R(w).

By assumption R(w) is upper bounded. It is also lower bounded, since it is
defined on a compact set and it is lower semi-continuous. Thus,

lim
a→0+

aBR∗(x/a, y/a)

= lim
a→0+

〈x,∇R∗(x/a) − ∇R∗(y/a)〉 − aR(∇R∗(x/a)) + aR(∇R∗(y/a))

= lim
a→0+

〈x,∇R∗(x/a) − ∇R∗(y/a)〉 = 〈x, u − v〉 .

C Proofs for AdaFTRL

Proof (Proof of Corollary 1). Let S = supv∈K f(v). Theorem 1 applied to the
regularizer R(w) = c

S f(w) and Proposition 1 gives

RegretT ≤
√

3(1 + c)max
{√

8,
1√
2c

}
√√√√S

T∑

t=1

‖�t‖2∗ .

It remains to find the minimum of g(c) =
√

3(1 + c)max{√8, 1/
√

2c}. The
function g is strictly convex on (0,∞) and has minimum at c = 1/16 and g(1

16) =√
3(1 + 1

16)
√

8 ≤ 5.3.

Proof (Proof of Lemma 4). Let at = ‖�t‖∗ max{D, 1/
√

2λ}. The statement of

the lemma is equivalent to ΔT ≤
√

3
∑T

t=1 a2
t which we prove by induction on

T . The base case T = 0 is trivial. For T ≥ 1, we have

ΔT ≤ ΔT−1 + min
{

aT ,
a2

T

ΔT−1

}
≤
√√√√3

T−1∑

t=1

a2
t + min

⎧
⎨

⎩aT ,
a2

T√
3
∑T−1

t=1 a2
t

⎫
⎬

⎭

where the first inequality follows from Lemma 3, and the second inequality from
the induction hypothesis and the fact that f(x) = x + min{aT , a2

T /x} is an
increasing function of x. It remains to prove that

√√√√3
T−1∑

t=1

a2
t + min

⎧
⎨

⎩aT ,
a2

T√
3
∑T−1

t=1 a2
t

⎫
⎬

⎭ ≤
√√√√3

T∑

t=1

a2
t .

Dividing through by aT and making substitution z =
√∑T−1

t=1 a2
t

aT
, leads to

z
√

3 + min
{

1,
1

z
√

3

}
≤
√

3 + 3z2

which can be easily checked by considering separately the cases z ∈ [0, 1√
3
) and

z ∈ [1√
3
,∞).

Scale-Free Algorithms for Online Linear Optimization 301

D Proofs for SOLO FTRL

Proof (Proof of Corollary 2). Let S = supv∈K f(v). Theorem 2 applied to the
regularizer R(w) = c√

S
f(w), together with Proposition 1 and a crude bound

maxt=1,2,...,T ‖�t‖∗ ≤
√∑T

t=1 ‖�t‖2∗, give

RegretT ≤
(

c +
2.75

c
+ 3.5

√
8
)
√√√√S

T∑

t=1

‖�t‖2∗ .

We choose c by minimizing g(c) = c + 2.75
c + 3.5

√
8. Clearly, g(c) has minimum

at c =
√

2.75 and has minimal value g(
√

2.75) = 2
√

2.75 + 3.5
√

8 ≤ 13.3.

E Lower Bound Proof

Proof (Proof of Theorem 3). Pick x, y ∈ K such that ‖x − y‖ = D. This is
possible since K is compact. Since ‖x − y‖ = sup{〈�, x − y〉 : � ∈ V ∗, ‖�‖∗ = 1}
and the set {� ∈ V ∗ : ‖�‖∗ = 1} is compact, there exists � ∈ V ∗ such that

‖�‖∗ = 1 and 〈�, x − y〉 = ‖x − y‖ = D .

Let Z1, Z2, . . . , ZT be i.i.d. Rademacher variables, that is, Pr[Zt = +1] =
Pr[Zt = −1] = 1/2. Let �t = Ztat�. Clearly, ‖�t‖∗ = at. The lemma will
be proved if we show that (3) holds with positive probability. We show a
stronger statement that the inequality holds in expectation, i.e. E[RegretT] ≥
D√
8

√∑T
t=1 a2

t . Indeed,

E [RegretT] ≥ E

[
T∑

t=1

〈�t, wt〉
]

− E

[
min

u∈{x,y}

T∑

t=1

〈�t, u〉
]

= E

[
T∑

t=1

Ztat〈�, wt〉
]

+ E

[
max

u∈{x,y}

T∑

t=1

−Ztat〈�, u〉
]

= E

[
max

u∈{x,y}

T∑

t=1

−Ztat〈�, u〉
]

= E

[
max

u∈{x,y}

T∑

t=1

Ztat〈�, u〉
]

=
1
2
E

[
T∑

t=1

Ztat〈�, x + y〉
]

+
1
2
E

[∣∣∣∣∣

T∑

t=1

Ztat〈�, x − y〉
∣∣∣∣∣

]

=
D

2
E

[∣∣∣∣∣

T∑

t=1

Ztat

∣∣∣∣∣

]
≥ D√

8

√√√√
T∑

t=1

a2
t

where we used that E[Zt] = 0, the fact that distributions of Zt and −Zt are the
same, the formula max{a, b} = (a + b)/2 + |a − b|/2, and Khinchin’s inequality
in the last step (Lemma A.9 in [3]).

Online Learning in Markov Decision Processes
with Continuous Actions

Yi-Te Hong(B) and Chi-Jen Lu

Institute of Information Science, Academia Sinica, Taipei, Taiwan
{ted0504,cjlu}@iis.sinica.edu.tw

Abstract. We consider the problem of online learning in a Markov deci-
sion process (MDP) with finite states but continuous actions. This gen-
eralizes both the traditional problem of learning an MDP with finite
actions and states, as well as the so-called continuum-armed bandit prob-
lem which has continuous actions but with no state involved. Based on
previous works for these two problems, we propose a new algorithm for
our problem, which dynamically discretizes the action spaces and learns
to play strategies over these discretized actions that evolve over time.
Our algorithm is able to achieve a T -step regret of about the order of

T
d+1
d+2 with high probability, where d is a newly defined near-optimality

dimension we introduce to capture the hardness of learning the MDP.

1 Introduction

We consider the problem of online learning in a Markov decision process (MDP),
in which an agent needs to repeatedly play an action and receive a reward in
the following way, for some number T of steps. At step t, the agent is in some
state st and needs to choose some action at to play. After playing the action,
the agent immediately receives a one-step reward r(st, at) randomly drawn from
some distribution over [0, 1] with unknown mean r̄(st, at), and then goes into
some state st+1 according to some unknown transition probability p(st+1|st, at).
A natural goal of the agent is to maximize her (or his) total reward accumulated
through T steps, or equivalently to minimize her regret, defined as the gap
between her total reward and that of the best fixed policy in hindsight. Following
[3], we consider the so-called bandit setting, in which the only information the
agent gets to know is the one-step rewards she receives as well as the states she
visits. For this problem in the finite setting, with a finite state space of size S
as well as a finite action space of size A, the best regret upper bound currently
known is about the order of DS

√
AT (ignoring a logarithmic factor), achieved

by [3], where D is the diameter of the MDP. In this paper, we generalize this
problem to the infinite setting, in which the action space is now allowed to be
infinite.

Note that traditional reinforcement learning (RL) algorithms, in both the
offline and the online models, were mostly designed for the finite setting, and
there has been much theory developed to support them. However, many real-
world applications of RL today have to deal with state and action spaces which
c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 302–316, 2015.
DOI: 10.1007/978-3-319-24486-0 20

Online Learning in Markov Decision Processes with Continuous Actions 303

are huge or even infinite (see for example the survey paper by [5]). In this regime,
those traditional algorithms no longer seem appropriate and very little theory
seems to be known. Aiming for better theoretical understanding, we start by
considering MDP’s which still have finite states but can have infinite actions
that satisfy some smoothness property. More precisely, we require that with
respect to the actions, the rewards as well as the transition probabilities only
change smoothly. One natural approach to handle this infinite actions case is
to reduce it to the finite case by discretizing the action space into a finite one.
That is, one partitions the action space into finite parts, represents each part
by an action in it, and feeds the resulting discretized MDP to a traditional RL
algorithm. However, without prior knowledge of the MDP, such an approach
may be problematic. For example, if the discretization is too coarse, one can
not distinguish a large region of actions which have rather different effects. On
the other hand, if the discretization is too fine, one will waste time and memory
to collect and store statistics for a large number of actions with only marginal
benefits. To remedy this, it would be better to use an adaptive discretization
scheme, which can discretize the action space in an online and data driven way,
with regions of better actions having higher resolutions.

Such issues in fact have been studied before, for the so called continuum-
armed bandit problem, which has no state involved and can be seen as a special
case of our MDP problem. More precisely, the continuum-armed bandit problem
is a generalization of the finite-armed bandit problem, from the setting with finite
arms (actions) to the setting with continuous arms. As there are infinitely many
arms, it seems hopeless to achieve nontrivial regret bound unless the reward
function behaves somewhat nicely and satisfies some additional properties. One
property commonly assumed is that the expected reward is a “smooth” func-
tion of the arms (for example, satisfying some Lipschitz condition). With such
an assumption, [4] showed that for a generic metric space, a regret about the
order of T

d+1
d+2 can be achieved, where d is the so-called zooming dimension of

the expected reward function, which captures in some way the hardness of the
learning problem. Later, [2] and [6] achieved regret bounds of a similar form,
but according to a different dimension d called near-optimality dimension. As
it turns out, the continuum-armed bandit problem is much harder than the
finite-armed one. For the latter, it is known that logarithmic regret is achievable
(see e.g. [1]), while for the former, the regret bounds in typical cases grow as
some positive power of T .

To solve our MDP problem with continuous actions, we would like to build
on the work for the the continuum-armed bandit problem. A natural approach,
which we follow, is to associate each state with a continuum-armed bandit, run
for example the algorithm of [2] to adaptively discretize the action space for
each state separately, and call for example the algorithm of [3] on the MDP
with the discretized action sets. However, there are some issues arising from this
approach. First, the MDP considered in [3] has a fixed action set while we have
action sets changing over time, so it is not clear if we can still follow their regret
analysis. Second, it is not clear if the discretization rule of [2] works for our MDP

304 Y.-T. Hong and C.-J. Lu

case involving states. This is because for a continuum-armed bandit, a region
of actions is worthy of further discretization if it contains a good action, which
can be determined solely by its own reward distribution. On the other hand, in
an MDP, whether an action is good or not depends on others—it is good if it
can be coupled with actions for other states to form a good policy. Third, the
regret achieved by [3] depends on the number of actions, and it is not clear if we
will produce too many actions when we keep discretizing our action space using
the discretization rule of [2]. Finally, the algorithm of [3] divides time steps into
episodes and its regret depends on the number of episodes. As we now have a
large number of actions, produced by our discretization, which actually grows
with time, it is not clear if the criterion used by [3] to stop an episode still works
here, without resulting in too many episodes.

Fortunately, we are able to resolve the issues discussed above by coming
up with a criterion for stopping an episode as well as a criterion for further dis-
cretization, which can work well together. As a result, we obtain a new algorithm
for our problem, which can achieve a regret of about the order of

D
d+3
d+2 S

2
d+2 T

d+1
d+2

with high probability, where d here is a new dimension we introduce to capture
the hardness of the MDP learning problem. Note that for the case with actions
from an Euclidean space of dimension d̄, a simple uniform discretization can
achieve a regret bound of a similar form, but with d̄ in place of d. However, as
shown later in Example 1, our dimension d can be much smaller than d̄, which
allows our algorithm to achieve a much smaller regret. Moreover, our work can
be seen as a generalization of two different lines of works: that for learning finite
MDP’s and that for the continuum-armed bandits. In fact, with finite actions
and no need for discretization, our algorithm and regret bound become similar to
those in [3], while with S = D = 1 for continuum-armed bandits, our algorithm
and regret bound become similar to those in [2]. On the other hand, our result
is incomparable to that of [7] which considered the setting of finite actions but
continuous states using uniform discretization.

Our regret analysis conceptually can be seen as following that for the finite-
armed bandits as well as its generalization to the continuum-armed bandits.
Recall that in [1,2], the arms are divided into good and bad ones according to
their reward distributions, and the regret is guaranteed by showing that each
bad arm is only played for a small number of steps and the number of bad arms
is small. To follow this approach in our MDP setting, by seeing policies as arms,
we would like to divide the policies into good and bad ones according to their
average gains. However, even though one can still show that each bad policy is
only played for a small number of steps, it turns out that the number of bad
policies can be too large for us in general. Instead, we take a slightly different
route, by showing that when counting the total number of steps played by all
the bad policies together, the number is indeed small. That is, although there
are a huge number of potential bad policies, most of them actually will not be
selected by our algorithm to play.

Online Learning in Markov Decision Processes with Continuous Actions 305

2 Preliminaries

2.1 Problem Statement

In a Markov Decision Process (MDP) M = (S,X , p, r), with a set S of states and
a set X of actions, an agent when taking an action a ∈ X in a state s ∈ S will
reach a state s′ ∈ S with probability p(s′|s, a) and receive a reward r(s, a) ∈ [0, 1]
drawn from some distribution with mean r̄(s, a). Given such an MDP, a standard
task in reinforcement learning is to learn a good policy π : S → X with a good
average gain, defined as

ρ(π) = lim
T→∞

1
T

T∑

t=1

r̄(st, π(st)),

where st denotes the state reached at time step t when following the stationary
policy π.1 As in [3], we consider the following online learning problem in the
bandit setting. In the setting, the distributions of p and r of the MDP are
unknown to the agent, and the only information she can receive at each step is
the state she is in as well the reward she receives. The agent will play in the MDP
for some number T of steps, and the goal is to maximize her cumulative reward∑T

t=1 r(st, at), where st is the state she is in and at is action she takes at step
t. Note that here the agent is allowed to use different policies at different time
steps. A standard way to measure the performance of an agent is to compare her
cumulative reward with that of the best offline policy π∗. Here, the same offline
policy π∗ has to be used to select the action at each step, and its cumulative
reward is

∑T
t=1 r(st, π

∗(st)), which can be easily shown to approach ρ∗T with
high probability as T grows, where we denote ρ∗ = ρ(π∗). Following [3], we
define the T -step regret as

RegretT = ρ∗T −
T∑

t=1

r(st, at),

which is the measure we want to minimize.
While previous works focused on the finite setting with finite S and X , here

we generalize the setting to allow a continuous action space X . More precisely,
we assume that S = |S| < ∞ and that the continuous action space X is compact
with some distance measure between any two points a, a′ ∈ X , denoted as ‖a −
a′‖. Following [2] and [3], we will make some assumptions, as discussed next.

2.2 Assumptions

First, we assume that the one-step reward and the state transition probability
are both smooth with respect to the action.
1 More precisely, we start from state s1, and when in state st at step t, we take
the action π(st) and go to the next state st+1, which happens with probability
p(st+1|st, π(st)).

306 Y.-T. Hong and C.-J. Lu

Assumption 1. For any s, s′ ∈ S, both p(s′|s, a) and r̄(s, a) are 1-Lipschitz2

continuous functions with respect to a. That is, for any a, a′ ∈ X ,

|p(s′|s, a) − p(s′|s, a′)| ≤ ‖a − a′‖ and |r̄(s, a) − r̄(s, a′)| ≤ ‖a − a′‖.

Next, we assume that the MDP has a finite diameter.

Assumption 2. There is a parameter D < ∞ such that for any states s, s′ ∈ S,
there is a policy π : S → X such that the expected number of steps for reaching
s′ from s following π is at most D.

Finally, as in [2], we assume that the action space X is equipped with a tree of
coverings, which is an infinite binary tree such that each node represents some
subset A of X and the subsets represented by its children form a partition of
A. Note that the leaf nodes of any subtree of the tree form a partition of X .
Moreover, we assume that the tree satisfies the following condition.

Assumption 3. There are real numbers ν1 > 0, ν2 > 0 and 0 < β < 1 such
that any node representing some A ⊆ X at depth � of the tree

– has diameter at most ν1β
� (i.e., ∀a, a′ ∈ A, ‖a − a′‖ ≤ ν1β

�), and
– contains a ball of radius at least ν2β

� (i.e., ∃a, {a′ : ‖a − a′‖ ≤ ν2β
�} ⊆ A).

2.3 Near-optimal Region and Near-Optimality Dimension

As in [2], we also need the notion of near-optimal region and near-optimality
dimension for our MDP setting. For an MDP with optimal gain ρ∗ and for
ε ∈ (0, 1), let us define the ε-optimal region as

Πε =
{
π ∈ X S : ρ∗ − ρ(π) ≤ ε

}
.

One possible way to generalize the near-optimality dimension from the X -arm
case of [2] to our MDP setting is to consider the logarithm of the packing number
of Πε by small balls of X S . However, the dimension defined in this way may
usually depend on the number of states of the MDP, which we would like to
avoid. Instead, we consider a different definition. For a state s, let Πs

ε ⊆ X be
the projection of Πε in the s-th dimension. Note that Πs

ε represents a region of
actions for state s which can be coupled with actions for other states to form
an ε-optimal policy. Let N (Πs

ε , ε′) denote the maximal number of disjoint balls
of radius ε′ in X that can be packed inside of Πs

ε . Then we define our near-
optimality dimension as follows.

Definition 1. For c > 0, let the c-optimality dimension of an MDP be the
smallest real number d ≥ 0 such that for some constants c0, ε0 > 0,

max
s∈S

N (Πs
cε, ε) ≤ c0cε

−d for any ε ≤ ε0.

2 In fact, we only need r̄(s, a) to be “weakly-Lipschitz” as in [2]; we use the stronger
assumption here just to simplify our presentation.

Online Learning in Markov Decision Processes with Continuous Actions 307

Let us remark that in the definition above, we allow the bound on the packing
number N (Πs

cε, ε) to depend on c, which will make our regret slightly larger. We
choose to use such a definition because we will use the bound with c of the order
of D, the diameter of the MDP, and it would seem cheating if our definition
does not include such a dependency.3 Note that in the X -armed bandit case,
one can take D = 1 as there is no state involved, and in that case, our definition
coincides with that of [2]. Moreover, as in [2], our dimension in the MDP case
can be much smaller than the Euclidean dimension, when having an Euclidian
action space. A simple example is the following.

Example 1. Consider the MDP with action space X = [0, 1]d̄, expected one-step
rewards r̄(s, a) = 1 − ‖a‖2, and transition probabilities p(s′|s, a) ≥ q for some
q > 0, for any s, a, s′. Then for any s, Πs

cε ⊆ {a ∈ X : ‖a‖2 ≤ cε/q} and
N (Πs

cε, ε) ≤ (cε/q)d̄/εd̄ = (c/q)d̄. Thus, the c-optimality dimension is 0, even
when given an arbitrarily large d̄.

2.4 Notation

To make our presentation cleaner, we will treat the numbers ν1, ν2, β as con-
stants, and focus on the parameters D, S, d, and T . We will use the standard
asymptotic notations O(·), Ω(·), Θ(·), and o(·) to hide the factors of those con-
stants, and we will use the notation Õ(·) which is similar to O(·) but further
hides a logarithmic factor of T .

3 Our Algorithm

We would like to extend the UCRL2 algorithm of [3] from the case with finite
action spaces to our general case with continuous action spaces. One naive app-
roach is to choose a fixed finite subset of actions and use the UCRL2 algorithm
on this subset, but this does not seem to yield a good enough result. Instead, we
borrow the idea from [2], which allows us to partition the action spaces dynami-
cally and use different finite action sets at different time steps. Note that for each
part of a partition, we will use an arbitrary action in that part to represent it, and
we will simply refer to a part of actions as an action. Following [3], we divide the
time steps into episodes, and during each episode, we play a fixed policy over some
finite action sets at every step, but the main difference is that we allow different
finite action sets for different episodes. More precisely, during each episode, we
associate each state s with a tree T s, which corresponds to a subtree of the tree of
covering given in Assumption 3. Note that the leaves of T s form a partition of X ,
and we let them constitute the finite action set of state s for that episode (recall
that we represent each part of actions by an action in it). The key in designing

3 The linear dependency of course is not the only plausible one; we use it here simply
as a demonstration. If one alternatively assumes that maxs∈S N (Πs

cε, ε) ≤ c0c
fε−d

for some f , then one can check that the subsequent analysis still follows similarly

and the corresponding regret bound becomes Õ(D
f+d+2

d+2 S
2

d+2 T
d+1
d+2).

308 Y.-T. Hong and C.-J. Lu

Algorithm 1. Modified UCRL2 for continuous action space X
1: Input: state space S, continuous action space X , and diameter D of the MDP;

confidence parameter δ; number of steps T .
2: Set M1 to contain all possible models with action sets As

1 = {T s} = {X}, ∀s ∈ S.
3: Set t = 0 and observe the first state s1.
4: for episodes k = 1, 2, ..., do
5: Set tk ← t + 1.
6: Get optimistic policy πk and its optimistic average gain ρ∗

k from Mk.
7: repeat
8: Set t ← t + 1.
9: Play action πk(st), receive reward rt, and observe next state st+1.
10: Update empirical estimates according to (1) and (2).

11: until
(∑t

τ=tk

ρ∗
k−rτ

t−tk+1
≥ c1D

√
log(T/δ)
t−tk+1

)

12: for s ∈ S do
13: for a in current action set As

k satisfying the discretization criterion (5) do
14: Split the node a ∈ T s to have two children a1 and a2.
15: Set the confidence regions of each (s, ai) according to (6) and (7).

16: Set the next action set As
k+1 of state s to be the leaves of T s.

17: Set Mk+1 to contain all models falling within the confidence regions.

our algorithm then is to decide when to stop an episode and how to update these
trees after each episode. For convenience, we will refer to a node a of a tree Ts as
a node (s, a), and we will refer to the number of steps that state s is visited and
action a is played as the number of visits to the node (s, a).

Our algorithm is summarized in Algorithm 1, and for simplicity of presen-
tation, let us assume that the number of steps T is known to our algorithm.4

Initially, we let every tree Ts contain only one node X , and let the action set As
1

contain only that node. For any such a node (s, a), we let the confidence region
R(s, a) for r̄(s, a) be the whole interval [0, 1], and let the confidence region P(s, a)
for p(·|s, a) contain all possible probability distributions. When entering episode
k ≥ 1, we will first compute an optimistic policy πk from the set Mk of plausible
models. Then at each step of the episode, we play this policy, update the empir-
ical estimates after receiving the reward, and then decide if we should stop the
current episode and start a new one. Moreover, when the episode stops, we will
decide whether or not to refine the current action sets by splitting some nodes,
and then update the confidence regions as well as the set of plausible models.
Next, we elaborate these points in more details.

3.1 Computing an Optimistic Policy

Following [3], we can combine all MDPs from Mk into a single MDP and then
apply the algorithm of extended value iteration. From this, we can obtain a
4 It is not hard to check that this assumption can be easily lifted by slightly modifying
our algorithm, with the factor log(T/δ) in Step 11 replaced by log(t/δ), and by
computing the failure probability in a more careful way, as done by [3].

Online Learning in Markov Decision Processes with Continuous Actions 309

near-optimistic policy πk as well as a near-optimistic model Mk, and let ρ∗
k be

the average gain of πk with respect to Mk. Note that according to [3], we can have
πk arbitrarily close to an optimistic one so that the additional regret resulting
from this approximation is small enough. Therefore, to make our presentation
cleaner, we will assume that πk is actually the optimistic policy, so that ρ∗ ≤ ρ∗

k

whenever M ∈ Mk. Then during episode k, our algorithm will execute this fixed
policy πk for every step.

3.2 Updating the Empirical Estimates

At step t in episode k, our algorithm in state st will play the action at =
πk(st) and suppose the next state is st+1. Then, after receiving a reward rt =
r(st, at), our algorithm will update the empirical estimates (initially set to zero)
for r̄(st, at) and p(st+1|st, at), respectively, as

γ(st, at) =
t∑

τ=1

rτ1{sτ=st,aτ=at}
n(st, at)

and (1)

φ(st+1|st, at) =
t∑

τ=1

1{sτ=st,aτ=at,sτ+1=st+1}
n(st, at)

, (2)

where n(s, a) =
∑t

τ=1 1{sτ=s,aτ=a} is the number of steps till now that the node
(s, a) has been visited.

3.3 Stopping Rule for Each Episode

For an episode k, let tk be the first step in episode k. Our algorithm terminates
episode k when the estimated optimistic gain ρ∗

k of πk no longer appears accurate
as there is a gap from it to the empirical estimate of ρk = ρ(πk), which suggests
that πk may not be a good policy as we originally believed. More precisely, we
stop the k-th episode at step t once

t∑

τ=tk

ρ∗
k − rτ

t − tk + 1
≥ c1αt,k, with αt,k = D

√
log(T/δ)
t − tk + 1

, (3)

where c1 is a large enough fixed constant. This stopping condition provides the
following guarantee on the length of the episode.

Proposition 1. For any k with M ∈ Mk, the number of steps in episode k is
Θ(D2 log(T/δ)/(ρ∗

k − ρk)2) with probability at least 1 − δ/T 3.

To prove the proposition, we need the following, which can be derived from [3,
page 1577] by observing that the average of rt approaches ρk and using Azuma
inequality as well as Chernoff bound.

310 Y.-T. Hong and C.-J. Lu

Lemma 1. Let G be any set of episodes and let NG be the total number of steps
over the episodes in G. Then with probability at least 1 − δ/T 3, we have

∣∣∣∣∣
∑

k∈G

∑

t∈Ik

(ρk − rt)

∣∣∣∣∣ ≤ O
(
D

√
NG log(T/δ)

)
+ D|G|.

We state the lemma in a form more general than needed by the proposition, since
we will need this form later. With this lemma, we can now prove the proposition.

Proof (of Proposition1). Let t = tk+1 − 2 so that episode k has not stopped at
step t. Then

ρ∗
k − ρk =

t∑

τ=tk

ρ∗
k − rτ

t − tk + 1
+

t∑

τ=tk

rτ − ρk

t − tk + 1
, (4)

where the first sum in (4) is at most c1αt,k since the stopping criterion has
not yet been met. The second sum in (4) is at most c1αt,k with probability
1 − δ/T 3 according to Lemma 1, for a large enough constant c1. As a result,
with probability 1 − δ/T 3, we have

ρ∗
k − ρk = Θ(αt,k) = Θ

⎛

⎝D

√
log(T/δ)
t − tk + 1

⎞

⎠ ,

which implies that tk+1 − tk = Θ(t − tk + 1) = Θ(D2 log(T/δ)/(ρ∗
k − ρk)2). �

Let us remark that we will need both the upper bound and the lower bound
given by the proposition. This is because we do not want a bad policy to be
executed for too many steps, and we also do not want to switch policies too
often and have too many episodes, both of which will be needed in our regret
analysis later. Note that an alternative criterion following that of [3] is to stop an
episode as soon as some node has been visited during the episode for a number
steps enough to cut its confidence substantially (say by a half). However, this
alternative may be too aggressive and it seems to result in too many episodes for
us. Finally, note that the stopping rule requires the knowledge of the diameter
parameter D. If this knowledge is not available, we can use an alternative rule
with D omitted from (3). One can check that the same upper bound in the
proposition still holds but the lower bound now becomes smaller by a D2 factor,
which results in a similar regret bound as that in the next section, but with a
slightly worse dependence on D.

3.4 Splitting Nodes

Immediately after the termination of episode k, our algorithm examines whether
or not it should move on to a “higher resolution” of the action spaces for episode
k + 1. We use the following criterion: we split any leaf node (s, a) at depth � if
it has been visited n(s, a) times with

c2

√
S log(T/δ)

n(s, a)
≤ ν1β

�, (5)

Online Learning in Markov Decision Processes with Continuous Actions 311

where ν1 and β are the parameters given in Assumption 3, and c2 is a large
enough fixed constant. For a large enough c2, we immediately have the following
by Assumption 1 and standard large deviation bounds, as was done by [3, proof
of Lemma 17 in Appendix C.1].

Proposition 2. When a node (s, a) at depth � is split, we have with probability
1−δ/T 3 that for any action a′ in the node, both |r̄(s, a′)−γ(s, a)| and ‖p(·|s, a′)−
φ(·|s, a)‖1 are at most 2ν1β

�.

When we split a node (s, a), which corresponds to a node a in tree T s, we
append two nodes a1 and a2 as children of a in T s, where a1 and a2 are the
children of a in the tree of covering in Assumption 3 (recall that each node ai is
actually associated with a subset of actions and we represent the subset by an
action in it). For each of these two new nodes, we set its confidence regions as

R(s, ai) =
{
r̃(s, ai) : |r̃(s, ai) − γ(s, a)| ≤ 2ν1β

�
}

, (6)

P(s, ai) =
{
p̃(·|s, ai) : ‖p̃(·|s, ai) − φ(·|s, a)‖1 ≤ 2ν1β

�
}

. (7)

After all the splits, we let the new action set As
k+1 be the leaves of the new

tree T s. Then we update Mk+1, the set of plausible models for the next episode,
to contain all the models with reward r̃(s, a) ∈ R(s, a) and state transition
probability p̃(·|s, a) ∈ P(s, a) for any state s and action a ∈ As

k+1. If no node
has been split in episode k, we have As

k+1 = As
k for every s, and in this case,

we choose not to update the confidence regions, and note that in this case we
have Mk+1 = Mk.5 With this update rule, one can easily show the following,
by induction on k.

Proposition 3. Consider any episode k such that M ∈ Mk. Then any leaf node
(s, a) at depth � of Ts must have both |r̂(s, a)− r̄(s, a)| and ‖p̂(·|s, a)− p(·|s, a)‖1
upper bounded by 4ν1β

�−1, where r̂(s, a) and p̂(·|s, a) are the reward and the
probability distribution of the optimistic model Mk we obtain.

4 Regret Analysis

In this section, we analyze the regret of our algorithm. Our main result is the
following.

Theorem 1. Consider any MDP with S ≥ 2 states which satisfies the assump-
tions in Section 2 and has diameter D and c-optimality dimension d, with
c = 9D(ν1/ν2)β−2. Then for T ≥ 4DS2 ≥ 16, the T -step regret achieved by
our algorithm in such an MDP is with high probability at most

Õ
(
D

d+3
d+2 S

2
d+2 T

d+1
d+2

)
.

5 This turns out to work fine for us although a slightly better result could be achieved
by updating the confidence regions to refine the models as done in [3].

312 Y.-T. Hong and C.-J. Lu

Let us make some remarks about the theorem. First, the assumption T ≥
4DS2 ≥ 16 can be seen as without loss of generality, because for the problem,
one typically assumes that T is large enough and dominates other parameters,
and the focus is usually on minimizing the regret in terms of T . Next, although
a uniform discretization of X , when X ⊆ R

d̄, can achieve a regret bound of
a similar form, but with d̄ in place of d, we know from Example 1 that there
are cases with d much smaller than d̄, in which cases Theorem 1 gives a much
smaller regret bound. Finally, observe the curious property of our regret bound
that as d grows, the factors involving D and S actually becomes smaller, although
the overall regret bound still increases. We have not yet fully understand this
phenomenon and we do not know if this is the nature of the problem or a
feature of our algorithm. One attempt to understand this is that even though the
number of actions involved in ε-optimal policies grows in the order of ε−d, which
increases as d increases, by choosing ε properly, in the form of Dc1Sc2/T c3 for
some c1, c2, c3 > 0, the factors involving D and S indeed decrease as d increases.
This can be seen when we minimize the bound (10) in our regret analysis later.

Before proceeding to prove the theorem, let us introduce some notation.
Let m denote the number of episodes taken by our algorithm, and let [m] =
{1, . . . , m} be the set of episodes. For an episode k ∈ [m], let ρk = ρ(πk), let
Ik = {tk, . . . , tk+1 − 1} be the set of steps in episode k, and for t ∈ Ik, let
rt = r(st, πk(st)) be the reward received at step t. Recall that δ ∈ (0, 1) is the
confidence parameter, which bounds the failure probability of our algorithm.

Our proof of the theorem conceptually follows a standard regret analysis
of the well-known UCB algorithm for the multi-armed bandit (MAB) problem.
That is, by seeing a policy in MDP as an arm in MAB, we will separate policies
into good and bad ones and show that bad policies will not be executed for too
many steps. Before we can do that, some preprocessing work is needed.

First, following [3], we can focus on the set

G = {k ∈ [m] : M ∈ Mk}

of good episodes, as the regret can be expressed as
∑

k∈[m]

∑

t∈Ik

(ρ∗ − rt) =
∑

k∈G

∑

t∈Ik

(ρ∗ − rt) +
∑

k∈[m]\G

∑

t∈Ik

(ρ∗ − rt), (8)

where the last sum can be bounded by the following.

Lemma 2. With probability 1 − δ/4, we have
∑

k∈[m]\G

∑

t∈Ik

(ρ∗ − rt) ≤
√

T .

We omit the proof as it can be easily derived from [3, Section4.2], which is based
on showing that each Mk fails to include M with a small probability, according
to Proposition 2.

Online Learning in Markov Decision Processes with Continuous Actions 313

The first sum in the righthand side of (8) can be further decomposed as
∑

k∈G

∑

t∈Ik

(ρ∗ − ρk) +
∑

k∈G

∑

t∈Ik

(ρk − rt), (9)

where the last sum in (9) can be upper bounded by O(D
√

T log(T/δ)) + Dm
with probability 1 − δ/T 3 ≥ 1 − δ/4, using Lemma 1 with the trivial upper
bounds NG ≤ T and |G| ≤ m.

Now let us turn to bound the first sum in (9), which is the critical part in
our regret analysis. As discussed before, we would like to divide the policies into
good and bad ones, and show that bad policies will not be played for too many
steps. For that, let us partition the episodes into buckets B1, B2, . . . , with the
b-th bucket defined as

Bb =
{
k ∈ G : 9Dν1β

b−1 < ρ∗
k − ρk ≤ 9Dν1β

b−2
}

,

where recall that ρ∗
k is the optimistic average gain calculated for the policy πk

with respect to the optimistic model Mk. Note that for any k ∈ Bb, we have
M ∈ Mk, which implies that

ρ∗ − ρk ≤ ρ∗
k − ρk ≤ 9Dν1β

b−2.

We see policies πk with k ∈ Bb as good policies, for b larger than some threshold
H to be determined later, since their average gain is close enough to the optimal
ρ∗, and we see the remaining ones as bad policies. Then our key lemma is the
following, to be proved in Subsection 4.1, which allows us to bound the number
of steps taken by bad policies.

Lemma 3. For any b, the total number of steps taken by all episodes in Bb is
at most Õ(DS2β−b(d+2)) + O(|Bb|β−b) with probability 1 − 2δ/T 2.

According to this lemma together with a union bound, we know that the
contribution of bad policies to the first sum in (9) is

∑

b≤H

∑

k∈Bb

∑

t∈Ik

(ρ∗ − ρk) ≤
∑

b≤H

(
Õ

(
DS2β−b(d+2)

)
+ O

(|Bb|β−b
)) · 9Dν1β

b−2

≤ Õ
(
D2S2β−H(d+1)

)
+ O(Dm)

with probability 1 − 2δ/T ≥ 1 − δ/4. On the other hand, the contribution from
good policies can be easily bounded as

∑

b>H

∑

k∈Bb

∑

t∈Ik

(ρ∗ − ρk) ≤ T · 9Dν1β
H−1 ≤ O

(
DTβH

)
.

Consequently, the first sum in (9) can be bounded as
∑

k∈G

∑

t∈Ik

(ρ∗ − ρk) ≤ Õ
(
D2S2β−H(d+1)

)
+ O(Dm) + O

(
DTβH

)
(10)

314 Y.-T. Hong and C.-J. Lu

with probability 1 − δ/4. By choosing H such that βH = (DS2/T)
1

d+2 for the
bound above, and then by combining all the bounds obtained so far, we can
conclude that with probability 1 − 3δ/4, the regret of our algorithm is at most

Õ
(
D

d+3
d+2 S

2
d+2 T

d+1
d+2

)
+ O(Dm).

Finally, Theorem 1 follows from the following, which provides a bound for
m, the number of episodes. We prove the lemma in Subsection 4.2.

Lemma 4. With probability 1 − δ/4, we have

m ≤ Õ
(
(DS2)

1
d+2 T

d+1
d+2

)
.

4.1 Proof of Lemma 3

Fix any b, and let N denote the total number of steps taken by all the episodes
in Bb, which is the number we want to bound. Our approach is the following.
First, according to the definition of Bb, we have

N · 9Dν1β
b−1 ≤

∑

k∈Bb

∑

t∈Ik

(ρ∗
k − ρk). (11)

On the other hand, we also have
∑

k∈Bb

∑

t∈Ik

(ρ∗
k − ρk) =

∑

k∈Bb

∑

t∈Ik

(ρ∗
k − rt) +

∑

k∈Bb

∑

t∈Ik

(rt − ρk)

≤
∑

k∈Bb

∑

t∈Ik

(ρ∗
k − rt) + O

(
D

√
N log(T/δ)

)
+ D|Bb| (12)

with probability 1 − δ/T 3 by Lemma 1. The key is to show that the sum in (12)
is also small with high probability, so that by combining it with the bound in
(11), we can conclude that N is small with high probability.

To bound the sum in (12), we rely on the following, which can be derived
easily from [3, Sections 4.3.1 & 4.3.2], so we omit the proof.

Lemma 5. Let v(s, a) denote the number of steps over episodes in Bb that visit
the node (s, a). Let σ(s, a) be an upper bound for both |r̂(s, a) − r̄(s, a)| and
‖p̂(·|s, a)−p(·|s, a)‖1, where r̂(s, a) and p̂(·|s, a) are the reward and the probability
of the optimistic model Mk we obtain. Then with probability 1 − δ/T 3,

∑

k∈Bb

∑

t∈Ik

(ρ∗
k − rt) ≤ 2D

∑

s,a

v(s, a)σ(s, a) + O
(
D

√
N log(T/δ)

)
+ D|Bb|.

Note that in our case, we have by Proposition 3 that σ(s, a) ≤ 4ν1β
�−1 for

any node (s, a) at depth �, which is small when � is large. To bound the sum∑
s,a v(s, a)σ(s, a) in the lemma, let us decompose it into two parts as V1 + V2,

where V1 is the sum over (s, a) in depth at least b and V2 is the sum over the rest.
It is easy to see that V1 ≤ N · 4ν1β

b−1. To bound V2, we rely on the following
two propositions, which we will prove later.

Online Learning in Markov Decision Processes with Continuous Actions 315

Proposition 4. For any � ≤ b, any node in depth � with probability 1− δ/T 3 is
visited for at most Õ(Sβ−2b) steps during all the episodes in Bb.

Proposition 5. For any � ≤ b, the number of different nodes in depth � visited
during all the episodes in Bb is at most Õ(DSβ−�d).

According to these two propositions, together with a union bound, we have with
probability 1 − δ/T 2 that

V2 ≤
∑

�≤b

4ν1β
�−1 · Õ

(
Sβ−2b

) · Õ
(
DSβ−�d

) ≤ Õ
(
DS2β−b(d+1)

)
.

Substituting the bounds for V1 and V2 into Lemma 5, we obtain a bound for the
sum in (12). Thus, with probability 1 − δ/T 2 − 2δ/T 3 ≥ 1 − 2δ/T 2, we have

∑

k∈Bb

∑

t∈Ik

(ρ∗
k − ρk)

≤ 2DV1 + 2DV2 + O
(
D

√
N log(T/δ)

)
+ 2D|Bb|

≤ N · 8Dν1β
b−1 + Õ

(
D2S2β−b(d+1)

)
+ O

(
D

√
N log(T/δ)

)
+ 2D|Bb|.

Finally, by combing this upper bound with the lower bound in (11), we have
with probability 1 − 2δ/T 2 that

N · 9Dν1β
b−1

≤ N · 8Dν1β
b−1 + Õ

(
D2S2β−b(d+1)

)
+ O

(
D

√
N log(N/δ)

)
+ 2D|Bb|,

which implies that N ≤ Õ
(
DS2β−b(d+2)

)
+O

(|Bb|β−b
)
. To complete the proof

of Lemma 3, it remains to prove the two propositions, which we do next.

Proof (of Proposition 4). To count the number of steps visiting such a node,
let us divide them into two parts: those steps in the last episode visiting the
node and those steps before that episode. The number of steps in the first part
is at most the length of that episode, which according to Proposition 1 is at
most Õ(D2/(D2β2b)) ≤ Õ(β−2b) with probability 1 − δ/T 3, using the fact that
ρ∗

k − ρk ≥ Ω(Dβb−1) for any episode k ∈ Bb. To bound the number of steps in
the second part, note that as the node has not been split, this number must be
at most Õ(Sβ−2�) ≤ Õ(Sβ−2b) according to the algorithm’s discretization rule
in (5). Combining these two bounds together, we have the proposition. �

Proof (of Proposition 5). When any such a node is visited during an episode k ∈
Bb, it is part of the policy πk with ρ∗ − ρ(πk) ≤ ρ∗

k − ρk ≤ 9Dν1β
b−2 ≤ cε, with

c = 9D(ν1/ν2)β−2 and ε = ν2β
�. That is, such a policy πk is in the cε-optimal

region. As all such nodes are disjoint, each of which contains a ball of radius
ν2β

� = ε by Assumption 3, the number of such nodes is at most
∑

s∈S N (Πs
cε, ε).

According to Definition 1, each N (Πs
cε, ε) is at most O(cε−d) ≤ Õ(Dβ−�d), if

ε ≤ ε0, for the constant ε0 associated with d, and at most N (X , ε0) ≤ Õ(1)
otherwise. Thus, the the number of such nodes is at most Õ(DSβ−�d). �

316 Y.-T. Hong and C.-J. Lu

4.2 Proof of Lemma 4

Recall from Lemma 3 that for any b, the total number of steps over episodes in
Bb is at most Õ(DS2β−b(d+2))+O(|Bb|β−b) with probability 1−2δ/T 2. On the
other hand, recall from Proposition 1 that the number of steps in any such an
episode is at least Ω(β−2b log(T/δ)) with probability 1− δ/T 3. Combining these
two bounds together, we have with probability 1 − 3δ/T 2 that

|Bb| ≤ Õ
(
DS2β−bd

)
+ o(|Bb|) ≤ Õ

(
DS2β−bd

)
.

The above bound is good for a small b but may not be so when b is large. For
all the Bb’s with b > H, for some threshold H to be determined in a moment,
we can bound the number of all such episodes by

∑

b>H

|Bb| ≤ T

Ω (β−2H log(T/δ))
≤ O

(
Tβ2H

)

with probability 1 − δ/T 2, because the total number of steps in these episodes
is at most T while each such episode takes at least Ω(β−2H log(T/δ)) steps with
probability 1 − δ/T 3. As a result, the total number of episodes is

m ≤ O
(
Tβ2H

)
+

∑

b≤H

Õ
(
DS2β−bd

) ≤ O
(
Tβ2H

)
+ Õ

(
DS2β−Hd

)

with probability 1 − δ/T 2 − 3δ/T ≥ 1 − δ/4 by recalling that T ≥ 4DS2 ≥ 16.
Then by choosing H such that βH = (DS2/T)

1
d+2 , we have with probability

1 − δ/4 that

m ≤ Õ
((

DS2
) 2

d+2 T
d

d+2

)
≤ Õ

((
DS2

) 1
d+2 T

d+1
d+2

)
.

References

1. Auer, P., Cesa-Bianchi, N., Schapire, R.: Finite-Time Analysis of the Multi-Armed
Bandit Problem. SIAM Journal on Computing 32(1), 48–77 (2002)

2. Bubeck, S., Munos, R., Stoltz, G., Szepesvári, C.: X -Armed Bandits. Journal of
Machine Learning Research 12 (2011)

3. Jaksch, T., Ortner, R., Auer, P.: Near-Optimal Regret Bounds for Reinforcement
Learning. Journal of Machine Learning Research 11 (2010)

4. Kleinberg, R., Slivkins, A., Upfal, E.: Multi-armed bandits in metric spaces. In:
ACM Symp. on Theory of Computing (STOC) (2008)

5. Kober, J., Bagnell, J.A., Peters J.: Reinforcement Learning in Robotics: A Survey.
International Journal of Robotic Research 32 (2013)

6. Munos, R.: From Bandits to Monte-Carlo Tree Search: The Optimistic Princi-
ple Applied to Optimization and Planning. Foundations and Trends in Machine
Learning 7(1), 1–130 (2014)

7. Ortner, R., Ryabko, D.: Online Regret Bounds for Undiscounted Continuous
Reinforcement Learning. Advances in Neural Information Processing Systems 25,
1772–1780 (2012)

Adaptive Sampling for Incremental
Optimization Using Stochastic Gradient Descent

Guillaume Papa, Pascal Bianchi(B), and Stephan Clémençon

Institut Mines Telecom - Telecom ParisTech,
LTCI Telecom ParisTech and CNRS No. 5141, Paris, France

{guillaume.papa,pascal.bianchi,stephan.clemencon}@telecom-paristech.fr

Abstract. A wide collection of popular statistical learning methods,
ranging from K-means to Support Vector Machines through Neural
Networks, can be formulated as a stochastic gradient descent (SGD)
algorithm in a specific setup. In practice, the main limitation of this incre-
mental optimization technique is due to the stochastic noise induced by
the choice at random of the data involved in the gradient estimate com-
putation at each iteration. It is the purpose of this paper to introduce a
novel implementation of the SGD algorithm, where the data subset used
at a given step is not picked uniformly at random among all possible
subsets but drawn from a specific adaptive sampling scheme, depend-
ing on the past iterations in a Markovian manner, in order to refine
the current statistical estimation of the gradient. Beyond an algorithmic
description of the approach we propose, rate bounds are established and
illustrative numerical results are displayed in order to provide theoretical
and empirical evidence of its statistical performance, compared to more
“naive” SGD implementations. Computational issues are also discussed
at length, revealing the practical advantages of the method promoted.

1 Introduction

In this paper, we consider the generic minimization problem

min
θ∈Θ

f(θ) = min
θ∈Θ

1
N

N∑

i=1

fi(θ), (1)

where Θ is a Euclidean space, typically R
d with d ≥ 1, and f1, . . . , fN form a

collection of real-valued convex continuously differentiable functions on Θ. Such
an optimization problem typically arises in a broad variety of statistical learning
problems, in particular supervised tasks, where the goal pursued is to learn a
predictive model, fully determined by a parameter θ, in order to predict a random
variable Y (the response/output) from an input observation X taking its values
in a feature space X . The performance of the predictive function defined by θ
is measured by the expectation R(θ) = E[�(θ; (X,Y))], referred to as the risk,
where � is a loss function assumed convex w.r.t. θ. The distribution (X,Y) being
unknown in practice, the risk functional is replaced by its statistical counterpart,
the empirical risk namely, given by

c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 317–331, 2015.
DOI: 10.1007/978-3-319-24486-0 21

318 G. Papa et al.

R̂N (θ) =
1
N

N∑

i=1

�(θ; (Xi, Yi)), (2)

based on N ≥ 1 supposedly available independent training examples (X1, Y1),
. . ., (XN , YN), copies of the random pair (X,Y). The minimization problem (2)
can be solved incrementally, by means of variants of the stochastic approximation
method originally introduced in the seminal contribution of [7]. This consists in
computing successive estimates of a minimizer of (2) using the recursive equation

θt+1 = θt − γtr̂t(θt) (3)

from a preliminarily picked initial value θ0 ∈ Θ, where r̂t denotes an estimate
of the gradient ∇θR̂N and γt is the learning rate or stepsize. In contrast to the
batch approach, where all the data are used to estimate the gradient at each
iteration (i.e. r̂t(θ) = ∇θR̂N (θ) for all t ≥ 0 and θ ∈ Θ), subsets of the data
sample only are involved in the gradient estimation steps of sampled incremental
algorithms, with the aim to reduce computational cost when N is large. In the
most commonly used implementation of the stochastic gradient descent (SGD)
algorithm, the gradient estimate is computed from a subset of reduced size S ≤ N
uniformly drawn without replacement among all possible subsets of the dataset
of size S at each step t ≥ 0.

It is the major goal of the present paper to introduce a specific variant of
the SGD algorithm with an adaptive sampling scheme, in the sense that it may
possibly be different from sampling without replacement (SWOR) and vary with
t, depending on the past iterations. Rate bounds and limit theorems guaran-
teeing the theoretical validity of the methodology we propose are established
at length. In addition, the Markovian dynamics governing the evolution of the
instrumental sampling distribution is shown to offer crucial advantages regard-
ing computational efficiency. Finally, very encouraging experimental results are
displayed, supporting the relevance of our method, in comparison to the usual
mini-batch SGD implementation or alternative SGD techniques standing for
natural competitors.

The paper is structured as follows. A short review of the SGD methods
documented in the literature, those based on non SWOR sampling schemes in
particular, can be found in section 2. A description of the specific variant we pro-
pose in this paper is given in section 3, together with a detailed discussion about
the computational cost inherent to its implementation. The analysis assessing
the validity of the estimate output by the algorithm proposed is carried out in
section 4, whereas illustrative experiments are presented in section 5. Finally,
some concluding remarks are collected in section 6.

2 Non Uniform Sampling (NUS) - State of the Art

We start off with a brief review of sampled incremental optimization algorithms,
whose archetype is the celebrated SGD algorithm ([7]). Although relevant refer-
ences in this area are much too numerous to be listed in an exhaustive manner,

An Adaptive Sampling Scheme for Stochastic Gradient Descent 319

we point out that significant advances have been recently made in the design
of efficient incremental methods, see for instance [10],[13],[16],[14] or [2] that
achieve better performances than the traditional SGD method (for instance, by
having the variance of the estimator going to 0 as in [13], [2]). In order to study
adaptative sampling scheme, we only considered the classical framework of SGD
and did not compare to theses methods. In the original implementation of the
SGD algorithms, a single observation (i.e. S = 1), indexed by it+1 say, is chosen
uniformly at random in {1, . . . , N} at each iteration t + 1 to form the gradient
estimate ∇fit+1(θt), its convergence following then from basic stochastic approx-
imation theory. More recently, several papers have shown the possible gain from
the use of non-uniform sampling, that is, choosing it+1 according to a non-trivial
distribution p well-suited to the specific optimization problem considered: this
approach boils down to finding an optimal distribution, in the sense that it min-
imizes an upper bound on the convergence rate of the estimator [18],[4],[15].
As far as NUS is concerned, it is natural to ask what relevant choice of the prob-
ability distribution must be chosen in order to achieve the smallest expected
risk: for instance, the sampling scheme may depend on the Lipschitz constant of
the gradient as proposed in [4] or on upperbounds for the norm of the gradient,
see [18]. Despite these recent contributions, some questions remain open. 1) In
general, usual analyses of NUS algorithms do not fully grasp the impact of the
sampling scheme on the performance. For instance, [2] establish performance
bounds which prove the convergence of NUS scheme for SAGA. Although the
attractivity of NUS is demonstrated in the simulations, the bound itself does
not fully reveal the performance gain w.r.t. uniform sampling. 2) As opposed
to uniform sampling, the choice of an index it+1 according to a non-trivial
distribution on {1, . . . , N} is obviously more demanding in terms of computa-
tional time. The question of an efficient sampling implementation remains posed.
In particular, it is important to quantify the increased complexity caused by
NUS. 3) Proposed rules for choosing the sampling distribution p depend on
global properties of the functions fi (namely the Lipschitz constants Li). They
do not build upon the amount of information gathered on the optimization
problem as the algorithm proceeds. An alternative is to use adaptive sampling,
updating the sampling distribution p = pt at each iteration t in a Markovian
fashion, as in the algorithm described below.

As shall be seen in the subsequent analysis, the NUS approach proposed in
this paper has theoretical and practical advantages regarding all these aspects.
Whereas rate bound analysis by means of standard tools is poorly informative in
general in the present setting, the asymptotic viewpoint developed in this paper
clearly highlights the benefit to using the specific NUS method we promote.

3 Adaptive Sampling SGD (AS-SGD)

We now turn to the description of the variant of SGD method considered in this
paper. The main novelty arises from the use of a specific instrumental sampling
distribution evolving at each iteration. We also provide some insight into the

320 G. Papa et al.

gain one may expect from such a method and discuss the computational issues
related to its implementation. Here and throughout, if I = (i1, . . . , iS) is a
S-uplet on {1, . . . , N} and h is a function on {1, . . . , N}, we use the (slightly
abusive) notation

∑
i∈I h(i) to represent the sum

∑S
n=1 h(in).

3.1 The Algorithmic Principle

Let S ≤ N be fixed. At each iteration t ≥ 1, the generic AS-SGD is implemented
in three steps as follows:

1. Compute the instrumental probability distribution pt on {1, . . . , N} from
the information available at iteration t.

2. Form a random sequence of S indexes It+1 = (i(1)t+1, . . . , i
(S)
t+1) by sampling

independently S times according to distribution pt.
3. Update the estimate using the equation

θt+1 = ΠK(θt − γt

S

∑

i∈It+1

∇fi(θt)
Npt,i

) . (4)

where K is a compact convex set. Let Ft = σ(I1, . . . , It) be the σ-algebra
generated by the past variables up to time t. Conditioned upon Ft, we have:
i
(1)
t , . . . , i

(S)
t

i.i.d.∼ pt. Set pt,j = P(i(1)t+1 = j|Ft) for j = 1, . . . , N. Equipped
with these notations, observe that the original SGD algorithm corresponds to the
case where S = 1 and pt,j ≡ 1/N . When S > 1, notice that, in contrast to the
mini-batch SGD (based on the SWOR scheme), one samples with replacement
here and, due to the fact that the pt,j ’s are not equal in general, it is necessary to
normalize the individual gradients by Npt,i in order to guarantee the unbiased-
ness condition of the increment, which is classically required to ensure proper
convergence of the algorithm, see [7], [4], [18], [15]:

E

⎛

⎝ 1
S

∑

i∈It+1

∇fi(θt)
Npt,i

∣∣∣∣ Ft

⎞

⎠ =
N∑

j=1

pt,j
∇fj(θt)
Npt,j

= ∇f(θt) . (5)

3.2 Ideal Sampling Distribution

In order to provide some insight into the specific dynamics we propose to build
the successive sampling distributions pt, we first evaluate a bound on the amount
of decrease of the functional. We assume that hypothesis below is fulfilled.

Assumption 1. For all i ∈ {1, . . . , N}, the function fi is convex, continuously
differentiable and its gradient ∇fi is Li-Lipschitz continuous with Li < +∞.

Let θt be the sequence defined by (4) and K = Θ. By virtue of Assumption 1 and
Theorem 2.1.5 in [11], we have f(θt+1) ≤ f(θt)+〈∇f(θt), θt+1−θt〉+ L̄

2 ‖θt+1−θt‖2
where L̄ = 1

N

∑
i Li. Taking the conditional expectation, we obtain that

E(f(θt+1)|Ft) ≤ f(θt) − γt‖∇f(θt)‖2 +
L̄γ2

t Δ(θt, pt)
2N2

,

An Adaptive Sampling Scheme for Stochastic Gradient Descent 321

where

Δ(θt, pt) = E

⎛

⎜⎝

∥∥∥∥∥∥
1
S

∑

i∈It+1

∇fi(θt)
pt,i

∥∥∥∥∥∥

2 ∣∣∣∣Ft

⎞

⎟⎠

=
1
S

N∑

i=1

‖∇fi(θt)‖2
pt,i

+
N2(S − 1)‖∇f(θt)‖2

S
.

At iteration t, the probability p∗
t = p∗

t (θt) ensuring the steepest descent on
the above bound is clearly given by p∗

t = arg minp Δ(θt, p) or equivalently by
p∗

t,i = ‖∇fi(θt)‖/
∑N

j=1 ‖∇fj(θt)‖ for i ∈ {1, . . . , N}, as mentionned in [18]
and [15]. Unfortunately, practical implementation of the above sampling scheme
is prohibitively complex, as it would require to evaluate all gradients to calculate
the norms ‖∇f1(θt)‖, . . . , ‖∇fN (θt)‖ at each iteration which is precisely what
we try to avoid. The crucial point is therefore to propose a sampling scheme
approximating p∗

t without requiring any additional gradient evaluations.

3.3 A Practical Sampling Distribution - Our Proposal

The main idea is to replace each unknown gradient norm ‖∇fi(θt)‖ by a (possibly
outdated) norm gt,i = ‖∇fi(θk)‖ at some former instant k = k(i, t) correspond-
ing to the last time k ≤ t when the ith component was picked. More formally,
we define the random sequence gt as

gt+1,i =
{

‖∇fi(θt+1)‖ if i ∈ {i
(1)
t+1, . . . , i

(S)
t+1}

gt,i otherwise.
(6)

Then, a natural way to approximate p∗
t is to set for each i

p̄t,i =
gt,i∑N

j=1 gt,j

. (7)

It turns out that convergence cannot be guaranteed with the choice (7), because
a certain component p̄t,i can get arbitrarily close to zero, so that the i-th index is
too rarely, or even never, picked1. A possible remedy is to enforce a greedy sam-
pling scheme or, as we will refer to it, a Doeblin-like condition on the transition
kernel of the underlying Markov chain, see [17]:

∀i ∈ {1, . . . , N}, pt,i = ρνi + (1 − ρ)p̄t,i, (8)

where ν = (ν1, . . . , νN) is an arbitrary probability distribution satisfying νi > 0
for 1 ≤ i ≤ N , and 0 < ρ ≤ 1. This condition has the following interpreta-
tion: pt is a mixture between two laws of probability and one of this law (ν) is
independent from the past. The AS-SGD is summarized in Algorithm 1 below.
1 Consider for instance the case N = 2, X = R, f1(θ) = θ2, f2(θ) = (θ − 1)2 and

θ0 = 0.

322 G. Papa et al.

Algorithm 1. AS-SGD

Input: θ0, ρ, T , S, (γt)
T−1
t=0 , ν

Initialization:
for i = 1 to N do

Set g0,t = ‖∇fi(θ0)‖
end for
A0 = buildtree(g0)
for t = 0 to T − 1 do

Define p̄t and pt according to (7) and (8)
It+1 = sample(p̄t, S, ρ, ν, At)

θt+1 = ΠK(θt − γt
NS

∑
i∈It+1

∇fi(θt)
pt,i

)

Update gt+1 according to (6)
At+1 = updatetree(At, It+1, gt+1)

end for
Return θT

3.4 Computationally Efficient Sampling

We point out that there is an additional computational price to pay when imple-
menting NUS instead of uniform sampling. Given a non uniform distribution
p = (p1, ..., pN) on {1, . . . , N}, the simulation time needed to generate a r.v.
with distribution p is larger than in the case of uniform distribution. Indeed, one
may resort to the inversion method (see [3] for instance), which boils down to
inserting of an element in the sorted vector p̃ = (p1, p1 + p2, ..., p1 + ...pN) and
requires
log2(N)� operations. Unfortunately, changing the i-th component of p
(just like in the algorithm we propose) changes N − i components in the vector
p̃. Our approach based on the notion of binary research tree is inspired from [3]
and overcome this difficulty.

Building/Updating a Tree. For simplicity, assume that N is even. Define a
tree At with N terminal leaves in correspondence with the indexes in {1, . . . , N}
the weight gt,i is assigned to the leaf No. i. Each pair (2k+1, 2(k+1)) of adjacent
terminal leaves, k ∈ {0, . . . , N/2}, admits a common ancestor, which the weight
gt,i + gt,i+1 is assigned to. Continuing this way in a “bottom-up” fashion, the
weight St =

∑
i gt,i is assigned to the root node. The function buildtree used in

Algorithm 1 generates such a tree from scratch and is used at the initialization
t = 0. At step t+1, gt+1 is essentially identical to gt except for a few S elements
which have been updated. The tree At+1 being close to At, it does not have to
be rebuilt from scratch. The routine updatetree given in the Appendix provides
a computationally efficient way to update the tree At+1 from At.

Simulating a Random Index. Suppose that we seek to generate a r.v., say
i
(1)
t+1, according to distribution p̄t. Using a r.v. U generated according to the

uniform distribution on [0, 1], a path is generated from the root to one of the
leaves by comparing U to successive thresholds. The generated variable i

(1)
t+1

is defined as the index of the obtained leaf. The procedure is detailed in the
subroutines sample and sample tree (see the Appendix). Therefore updating

An Adaptive Sampling Scheme for Stochastic Gradient Descent 323

g1 + ...+ g4

g1 + g2

g1 g2

g3 + g4

g3 g4

Fig. 1. A binary tree for N = 4.

an element i of the distribution is equivalent to update the path from i to the root
of the tree and takes
log2(N)� operations, while sampling from our distribution
is equivalent to follow a path from the root of the tree to one of its leaves. Table 1
summarizes the iteration complexity of the proposed method.

Table 1. Comparison of iteration complexities of AS-SGD and SGD with uniform
sampling: c = complexity of pointwise gradient computation, S = sample size.

SGD AS − SGD

Complexity Sc S(c + (2 − ρ)�log2(N)�)

4 Performance Analysis

We start off by giving a rate bound analysis of the algorithm we proposed and
then study the asymptotic behavior of the estimator θt produced by our algo-
rithms.

4.1 Preliminary Results

In our analysis, we assume that

Assumption 2. i) The function f is α-strongly convex, ii) The minimizer θ∗

of f belongs to the interior of K.

The lemma stated below provides a bound on the MSE at = E(‖θt−θ∗‖2), where
θt is generated by Algorithm 1. Its proof is strongly inspired by [5] and [1], where
similar bounds are provided.

Lemma 1. Let Assumptions 1 and 2 hold true. Set γt = γ1t
−β where β ∈ (0, 1]

and assume γ1 > β/(2α). For each t ∈ N
∗,

at ≤ Cγt/ρ, (9)

where C = max(2B2
νγ1

2αγ1−1 , a1
γ1

) when β = 1 and C = max(B2
νγ1
2α , a1

γ1
) otherwise, with

Bν =
1

SN2

N∑

i=1

ν−1
i sup

θ∈K
‖∇fi(θ)‖2 .

324 G. Papa et al.

Remark 1. One mights easily check that choosing ν so as to minimize Bν would
lead to take νi ∼ supθ∈K ‖∇fi(θ)‖ which is the sampling distribution proposed
in [18].

We emphasize the fact that sharper bounds on at can be obtained. One could
for instance easily generalize the approach of [5] which provides bounds on at

which are not only tighter but also valid under weaker assumptions on the step
size. This would come at the price of a rather tedious bound in (9). As explained
below, such an involved bound would actually be unnecessary for our purpose,
and Lemma 1 is in fact sufficient to derive the main result of the next paragraph.
It also admits a simpler proof provided in Appendix B. Before skipping to the
main result, we first discuss the bound in (9). Lemma 1 establishes that the
adaptive sampling scheme preserves the convergence rate in O(t−β) obtained
in the uniform sampling case. Nevertheless, Lemma 1 is merely a sanity check,
because unfortunately, the bound does not suggest that adaptive non-uniform
sampling generates a performance improvement: the minimum of the RHS in (9)
is attained for ρ = 1 which boils down to selecting a constant sampling probabil-
ity. This is in contradiction with numerical results, which suggest on the opposite
that strong benefits can be obtained by adaptively selecting the sampling prob-
ability. In order to obtain results that fully grasp the benefits of our adaptive
sampling strategy, we investigate from now on the asymptotic regime t → ∞. The
following Lemma provides an estimate of the value bt,i = E[‖gi

t − ∇fi(θt−1)‖2],
which quantifies the mean square gap between the current (unobserved) gradi-
ents and the outdated gradients used to generate the next samples.

Lemma 2. Suppose that the assumptions of Lemma 1 hold true. For any t ∈ N
∗,

bt,i � (2Li)22β

1 − (1 − ρνi)S

C

ρtβ
+ o(t−β) . (10)

4.2 Main Results

We now turn to the analysis of the asymptotic behavior and prove how our
algorithm improve on SGD.

Assumption 3. The function f is twice differentiable in a neighborhood of θ∗.

We introduce the sampling probability given by π∗ = ρν + (1 − ρ)π̄∗, where,

π̄∗
i =

‖∇fi(θ∗)‖
∑N

j=1 ‖∇fj(θ∗)‖
(11)

for any i = 1, . . . , N . We define Q∗ =
∑N

i=1 ∇fi(θ∗)∇fi(θ∗)T /(SN2π∗
i) and

denote by H = ∇2f(θ∗) the Hessian at point θ∗.

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold true and that the
stepsize satisfies the condition of Lemma 1. Then the sequence (θt − θ∗)/

√
γt

An Adaptive Sampling Scheme for Stochastic Gradient Descent 325

converges in distribution to a zero-mean Gaussian variable whose covariance
matrix Σ = Σ(ρ, ν) is the solution to the following Lyapunov equation

ΣH + HΣ = Q∗ (if β < 1)
Σ(Id + 2γ1H) + (Id + 2γ1H)Σ = 2γ1Q

∗ (if β = 1) .

The proof is provided in Appendix D. The following Corollary is directly obtained
by use of the second order delta-method [12]. We denote by tr(A) the trace of
any square matrix A.

Corollary 1. Under the assumptions of Theorem 1, γ−1
t (f(θt) − f(θ∗)) con-

verges in distribution to the r.v. V = (1/2)ZT Σ(ρ, ν)1/2HΣ(ρ, ν)1/2Z where Z
is a Gaussian vector N (0, Id). In addition, we have E(V) = tr(HΣ(ρ, ν))/2.

We now use Corollary 1 to compare our method with the best possible fixed
choice of a sampling distribution. Note that the search for an optimal fixed
distribution is also discussed in [15].

When the distribution is fixed, say to p, the asymptotic covariance of the
normalized error is given by Σ(1, p) as defined in Theorem 1. Motivated by
Corollary 1, we refer to the optimal fixed sampling distribution as the distribu-
tion p minimizing tr(HΣ(1, p)). It is straightforward to show that

arg min
p

tr(HΣ(1, p)) = π̄∗,

where π̄∗ is defined in (11). We also set σ2
∗ = tr(HΣ(1, π̄∗)). The following

proposition follows from standard algebra and its proof is omitted due to the
lack of space.

Proposition 1. Let Σ(ρ, ν) be the asymptotic covariance matrix defined in The-
orem 1. Then,

σ2
∗ ≤ tr(HΣ(ρ, ν)) ≤ σ2

∗(1 + Sρ/(1 − ρ)).

Proposition 1 implies that the asymptotic performance of the proposed AS-SGA
can be made arbitrarily closed to the one associated with the best sampling
distribution provided that ρ is chosen closed to zero. It is of course tempting to
set ρ = 0 in (8) however in this case, the statement of Theorem 1 would be no
longer valid.

5 Numerical Experiments

We consider the l2-regularized logistic regression problem. Denoting by N the
number of observations and by d the number of features, the optimization prob-
lem can be formulated as follows:

326 G. Papa et al.

min
θ∈Rd

1
T

N∑

i=1

f(yi, xi, θ) +
λ

2
‖θ‖2, (12)

where f(x, y, θ) = log(1 + exp(−yxT θ) the (yi)N
i=1 are in {−1,+1}, the (xi)N

i=1

are in R
d and λ > 0 is a scalar. Note that for this problem one mights easily

have access to the quantities Li and Bi = supθ∈Rd ‖∇fi(θ)‖ .We used the bench-
mark dataset covtype with N = 581012, d = 54, λ = 1√

N
and γt = γ1

1+γ1λt as
proposed in [9] , where γ1 is determined using a small sample of the training
set. We considered the cases νi = 1

N (ASGD), νi ∼ Li (ASGD-Lip) and νi ∼ Bi

(ASG-B), ran the algorithm for different values of the parameter ρ and com-
pared it to the usual stochastic gradient descent with uniform sampling (SGD),
lipschitz sampling (SGD-Lip) and upper-bound sampling (SGD-B) for the same
parameters. In this scenario, C ∼ d , the computational times related to the
SGD and the AS-SGD are comparable (see Table 1). Experiments suggest that
choosing νi ∼ Li leads to better performances and that using a small value
of ρ leads to poor (respectively good) performance when θ1 is far (respectively
close) from θ∗ . This suggests that a strategy could consist in running a classical
SGD to get closer to θ∗ and then run AS-SGD. One could also use the AS-SGD
with a decreasing step-size policy. We dit not study these policies due to space
limitations.

Fig. 2. Evolution of f(θt) with S = 10 and ρ = 0.7

An Adaptive Sampling Scheme for Stochastic Gradient Descent 327

Fig. 3. Evolution of f(θt) with different values of ρ (νi ∼ Li, S = 10) (left) and
different sampling strategies (ρ = 0.7, S = 10) (right)

6 Conclusion

Motivated by recent work on SGD with non uniform probability, we introduced
a novel implementation of the SGD algorithm with an adaptative sampling. We
proposed a specific adaptive sampling scheme, depending on the past iterations
in a Markovian manner that achieves low simulation cost. We also proposed a
rigorous analysis to justify our approach and gave sufficient conditions to obtain
theoretical guarantees.

Acknowledgments. This work has been supported by Chair Machine Learning for
Big Data at Telecom ParisTech and by the Orange/Telecom ParisTech think tank
phi-TAB.

A Algorithms for Efficient NUS

In this Appendix, we provide the main procedures called by Algorithm 1 to
efficiently generate a collection of S iid random indexes on {1, . . . , N}. If A is
a tree with N leaves and e is a node, we denote by w(e) the weight of node e.
The root of A is denoted by root(e). Father(e) is the father of a node e (and
the empty set if e =root(A). Son(e) is the list of sons of e (and the emptyset
if e is a leaf) and the elements of the list are refered to as son(e)[1], son(e)[2].
The functions isroot(e) and isleaf(e) return boolean values equal to one if e is
the root or a leaf respectively. Finally, if e is a leaf, label(e) returns the index
of the leaf e in {1, . . . , N}. The procedure buildtree is omitted but discussed
in Section 3.4. The algorithm Sample simply consists in writing the probability
distribution as a mixture and is also omitted.

328 G. Papa et al.

Algorithm 2. Sample tree
Input: A
e =root(A)
Draw U ∼ Uniform([0, w(e)])
repeat

if U < w(son(e)[1]) then
e ← son(e)[1])

else
U ← U − w(son(e)[1])
e ← son(e)[2]

end if
until isleaf(e)
Return label(e)

Algorithm 3. Update tree
Input: A, I, g
for i ∈ I do

e =leaf(A, i)
δ = gi − w(e)
w(e) ← gi

repeat
e ←father(e)
w(e) ← w(e) + δ

until isroot(e)
end for
Return A

B Proof of Lemma 1

Using the non expansiveness of the projection, the strong convexity and the
definition of Bν , we get at+1 � (1 − 2αγt)at + γ2

t
B2

ν

ρ . We will now prove the
lemma by induction. The property is checked for t = 1 by defintion of C. Assume
the result holds true for at then, we have at+1 � ((1 − 2αγt)γtC + γ2

t B2)/ρ and
it is sufficient to show that (1 − 2αγt)γtC + γ2

t B2 � γt+1C which is equivalent
to γ2

t B2
ν � C(γt+1 − γt + 2αγ2

t). If β = 1, then, using 2αγ1 > 1, we get: γt+1 −
γt + 2αγ2

t � (2αγ1−1)γ1
t(t+1)) > 0 and therefore

B2
νγ2

t

γt+1 − γt + 2αγ2
t

� B2
νγ1
t2

t(t + 1)
(2αγ1 − 1)

� 2B2
νγ1

2αγ1 − 1
, (13)

which gives the result. If 0 < β < 1,

γt+1 − γt + 2αγ2
t = γ1

t+1∫

t

−β

u1+β
+ 2α

γ2
1

t2β
� 2α

γ2
1

t2β
− γ1β

tβ+1

� γ1(2αγ1t
1−β − β)

tβ+1
> 0

since 2αγ1 > β. We get

B2γ2
t

γt+1 − γt + 2αγ2
t

� B2γ1
t2β

tβ+1

(2αγ1t1−β − β))
<

B2

2α
,

which concludes the proof.

C Proof of Lemma 2

We consider a stepsize γt such that

at � Cγt+1

ρ
, (14)

An Adaptive Sampling Scheme for Stochastic Gradient Descent 329

and we denote by IA the indicator function of any event A i.e., the r.v. equal
to one on this event and to 0 elsewhere. Consider any index i and instant t and
let Ai

k,t the event “the index i has not been picked since instant k”. Using the
Doeblin Condition we have:

P(Ai
k,t) = E[Iεi

t=0...Iεi
k+1=0Iεi

k �=0] � E[E[Iεi
t=0|Ft−1]...Iεi

k+1=0]

� (1 − ρνi)S
E[Iεi

t−1=0...Iεi
k+1=0] � (1 − ρνi)S(t−k)

Conditionaly upon Ai
k,t, we have gt,i = ∇fi(θk−1). Since (Ai

k,t)k�t is a parti-
tion of the state space, the law of total probability combined with Assump-
tion 1 and the independence induced by the Doeblin Condition yields :
E(‖gt,i − ∇fi(θt−1)‖2) � L2

i

∑t
k=1 E(‖θk−1 − θt−1‖2)(1 − ρνi)S(t−k). Using

E(‖θk−1 − θt−1‖2) � 2at−1 + 2ak−1 � 4Cγk/ρ leads to:

E[‖gt,i − ∇fi(θt−1)‖2] � 4(Li)2
C

ρ

t∑

k=1

γk(1 − ρνi)S(t−k)

= 4(Li)2
C

ρ

t−1∑

k=0

γt−k(1 − ρνi)Sk.

For all 1 < t0 < t, we have by splitting the sum in two terms:

t−1∑

k=0

γt−k(1 − ρνi)Sk � γt−t0

1 − (1 − ρνi)S
+ (1 − ρνi)St0

t−1∑

k=t0

γt−k.

Taking 2t0 ∼ t for instance and using the classical integral test for convergence
gives the result.

D Proof of Theorem 1

The proof is prefaced by the following Lemma, whose proof is given at the end
of this section.

Lemma 3. Under the Assumptions of Theorem 1, the sequence (θt, pt) con-
verges to (θ∗, π∗) with probability one.

We now prove the main result. We use the decomposition θt+1 = θt −γt∇f(θt)+
γtet+1 + γtηt+1, where we set Dt+1 = (1/S)

∑
i∈It+1

∇fi(θt)/(Npt,i), et+1 =
∇f(θt) − Dt+1, ηt+1 = (ΠK(φt+1) − φt+1)/γt, φt+1 = θt − γtDt+1.

We next check Conditions C1 to C4 in [6]. Conditions C1 and C4 are
immediate consequences of Assumptions 2 and 3. We check that et satisfies
Condition C2. First, by virtue of(5), (et) is a martingale increment sequence
adapted to Ft i.e., E(et+1|Ft) = 0. Second, for all t ∈ N

∗ and i = 1, . . . , N ,
pt,i ≥ ρνi > 0 with probability one. Therefore, it is straightforward to
check that ‖et‖ ≤ M a.s. for some constant M , which only depends on ρ,

330 G. Papa et al.

ν and B1, . . . , BN . Third, we analyze the asymptotic behavior of the condi-
tional covariance Qt = E(et+1e

T
t+1|Ft). After some algebra, we obtain that

Qt = (1/N2)
∑N

i=1(1/(Spt,i))(∇fi(θt) − ∇f(θt))(∇fi(θt) − ∇f(θt))T . Using
Lemma 3 along with the continuity of ∇fi for each i, we directly obtain that Qt

tends to Q∗ with probability one. Condition C2 in [6] is thus fulfilled. Turning
to Condition C3, we shall prove that γ

−1/2
t ηt+1 converges to 0 in L1. Using

Cauchy-Schwarz inequality :

E(‖γ
−1/2
t ηt+1‖) = E(‖γ

−1/2
t ηt+1‖Iηt+1 �=0)

≤ E(‖ηt+1‖2)1/2
(
γ−1

t P(ηt+1 �= 0)
)1/2

.

Defining ut = E(‖ηt+1‖2) and vt = P(ηt+1 �= 0), the above inequality reads

E(‖γ
−1/2
t ηt+1‖) ≤ √

ut

√
vt

γt
. (15)

We first analyze ut. Observe that

‖ηt+1‖2 = γ−2
t ‖ΠK(φt+1) − φt+1‖2 ≤ 2γ−2

t (‖ΠK(φt+1) − θt‖2 + ‖φt+1 − θt‖2)
≤ 4γ−2

t ‖φt+1 − θt‖2 = 4‖Dt+1‖2,

where the last inequality is due to the non-expansiveness of the projection opera-
tor. Therefore Since pt,i admits a fixed deterministic minorant for each i and since
the gradients ∇fi are bounded on K, there exists a deterministic constant M ′

such that ‖Dt+1‖2 ≤ M ′. In particular, the sequence ‖ηt+1‖2 is uniformly inte-
grable. We now prove that ηt+1 → 0 almost surely. Consider an ε > 0 such that
the ball B(θ∗, 2ε) of center θ∗ and radius ε is contained in K. By Lemma 3, for all
ω on a set of probability one, there exists N0(ω) such that ‖θt+1(ω)−θ∗‖ ≤ ε for
all t ≥ N0(ω). Using again that ‖Dt+1(ω)‖ is a bounded sequence and γt → 0,
it is clear that γt‖Dt+1(ω)‖ < ε for t large enough. Thus, for t large enough,
φt+1(ω) ∈ K which implies that ηt+1(ω) = 0. Almost surely, the sequence ηt+1

converges to zero. Putting all pieces together, ‖ηt+1‖2 is a uniformly integrable
sequence which tends a.s. to zero. As a consequence, ut = E(‖ηt+1‖2) tends to
zero as t → ∞. We now analyze vt = P(ηt+1 �= 0). For ε > 0 be defined as above,
note that the event {ηt+1 �= 0} is included in the event {‖φt+1 − θ∗‖ ≥ ε}. By
Markov inequality,

vt ≤ ε−2
E(‖φt+1 − θ∗‖2) ≤ 2ε−2(E(‖φt+1 − θt‖2) + E(‖θt − θ∗‖2))

≤ 2ε−2

(
γ2

t E(‖Dt+1‖2) +
Cγt

ρ

)
,

where we used Lemma 1 to obtain the last inequality. Recalling that Dt+1 is
bounded, it is clear that vt/γt is a bounded sequence. Finally, by inequality (15),
we conclude that E(‖γ

−1/2
t ηt+1‖) tends to zero. Condition C3 in [6] is satisfied.

This completes the proof of Theorem 1.

An Adaptive Sampling Scheme for Stochastic Gradient Descent 331

Proof of Lemma 3
Almost sure convergence of θt to θ∗ directly follows from the Robbins-Siegmund
Lemma and follows the same line of reasoning than [8]: it is therefore omit-
ted. It remains to show that for each j = 1, . . . , N , p̄t,j → π̄∗

j a.s., where
π̄∗

j = ‖∇fj(θ∗)‖/
∑

j ‖∇fj(θ∗)‖. Let Aj denote the event that index j is
picked infinitely often (i.e., there exists an infinite sequence (tk, nk)k∈N on
N

∗ × {1, . . . , S} such that i
(nk)
tk

= j). As can be easily checked, the Doeblin
condition pt,j ≥ ρνi ensures that Aj has probability one. For a fixed ω ∈ Aj and
using the continuity of ∇fj , we obtain that gt,j(ω) converges to ‖∇fj(θ∗)‖. As
a consequence, p̄t,j(ω) → π̄∗

j (ω) and the result follows.

References

1. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approxima-
tion approach to stochastic programming. SIAM J. Optim. (2009)

2. Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A Fast Incremental Gradient
Method With Support for Non-Strongly Convex Composite Objectives (2014)

3. Devroye, L.: Non-uniform random variate generation (1986)
4. Needell, D., Srebro, N., Ward, R.: Stochastic gradient descent, weighted sampling

and the randomized kaczmarz algorithm
5. Bach, F., Moulines, E.: Non-asymptotic analysis of stochastic approximation algo-

rithms for machine learning. In: NIPS, pp. 451–459 (2011)
6. Fort, G.: Central limit theorems for stochastic approximation with controlled

Markov Chain. EsaimPS (2014)
7. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Statist.

22 (1951)
8. Bottou, L.: Online algorithms and stochastic approximations. In: Online Learning

and Neural Networks
9. Bottou, L.: Stochastic gradient tricks. In: Neural Networks, Tricks of the Trade,

Reloaded (2012)
10. Mairal, J.: Incremental Majorization-Minimization Optimization with Applica-

tion to Large-Scale Machine Learning (2014)
11. Nesterov, Y., Nesterov, I.U.E.: Introductory Lectures on Convex Optimization:

A Basic Course. Applied Optimization. Springer (2004)
12. Pelletier, M.: Weak convergence rates for stochastic approximation with applica-

tion to multiple targets and simulated annealing. Ann. Appl. Prob (1998)
13. Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive

variance reduction. In: NIPS, pp. 315–323 (2013)
14. Schmidt, M.W., Le Roux, N., Bach, F.: Minimizing finite sums with the stochastic

average gradient. CoRR (2013)
15. Clemencon, S., Bertail, P., Chautru, E.: Scaling up m-estimation via sampling

designs: The horvitz-thompson stochastic gradient descent. In: 2014 IEEE Big
Data (2014)

16. Shalev-Shwartz, S., Zhang, T.: Stochastic Dual Coordinate Ascent Methods for
Regularized Loss Minimization (2012)

17. Meyn, S., Tweedie, R.L.: Markov Chains and Stochastic Stability (2009)
18. Zhao, P., Zhang, T.: Stochastic Optimization with Importance Sampling (2014)

Online Linear Optimization for Job Scheduling
Under Precedence Constraints

Takahiro Fujita, Kohei Hatano(B), Shuji Kijima, and Eiji Takimoto

Department of Informatics, Kyushu University, Fukuoka, Japan
{takahiro.fujita,hatano,kijima,eiji}@inf.kyushu-u.ac.jp

Abstract. We consider an online job scheduling problem on a single
machine with precedence constraints under uncertainty. In this problem,
for each trial t = 1, . . . , T , the player chooses a total order (permutation)
of n fixed jobs satisfying some prefixed precedence constraints. Then, the
adversary determines the processing time for each job, 9 and the player
incurs as loss the sum of the processing time and the waiting time. The
goal of the player is to perform as well as the best fixed total order of jobs
in hindsight. We formulate the problem as an online linear optimization
problem over the permutahedron (the convex hull of permutation vectors)
with specific linear constraints, in which the underlying decision space is
written with exponentially many linear constraints. We propose a polyno-
mial time online linear optimization algorithm; it predicts almost as well
as the state-of-the-art offline approximation algorithms do in hindsight.

1 Introduction

Job scheduling is a fundamental problem in the field of computer science and
operations research, and it has been studied extensively for decades. It has broad
applications in operating systems, assignments of tasks to workers, manufactur-
ing systems, and many other areas.

Studies of how to schedule jobs that use a single machine under precedence
constraints is well studied in the mathematical programming literature. More
precisely, assume that there are n fixed jobs and a single processor. Let [n] =
{1, . . . , n} be the set of jobs. Each job i needs processing time �i to be completed
by the processor. A schedule is a permutation over n jobs, and the processor
does the jobs sequentially according to the schedule. For a given schedule, the
completion time of job i is the sum of the waiting time (the sum of the processing
times of the jobs finished before completing job i) and the processing time of
job i. There are precedence constraints over n jobs. For example, job 1 needs
to be completed before job 3, and job 2 needs to be completed before job 5.
The constraints are represented as a set of binary relations A ⊂ [n] × [n], e.g.,
A = {(1, 3), (2, 5)}. Given the processing time of n jobs and the precedence
constraints A, the typical goal is to find a schedule that minimizes the sum of
the (weighted) completion times of the n jobs, subject to the constraints A. This
problem is categorized as 1|prec|∑j Cj in the literature1. It is known that this
problem is NP-hard [18,19].
1 The weighted version is known as 1|prec| ∑j wjCj .

c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 332–346, 2015.
DOI: 10.1007/978-3-319-24486-0 22

Online Linear Optimization for Job Scheduling 333

For further developments, see, e.g., [2,9]. Several 2-approximation algorithms
have been proposed for the offline setting [6,7,14,22,25] and a stochastic set-
ting [24,26]. In this paper, we consider a different scenario for the classical prob-
lem. What if the processing time of each job is unknown when we determine
the schedule? This question is quite natural in many application areas that cope
with uncertainty and in which the processing time of each job is uncertain or
varies in time. It is impossible to solve this problem directly without knowing
the processing time, so we consider an iterative scenario. Each day t = 1, . . . , T ,
we determine a total order of n fixed jobs satisfying some prefixed precedence
constraints. Then, after processing all n jobs according to the schedule, the
processing time of each job is revealed. The goal is to minimize the sum of the
completion times over all jobs and all T days under fixed precedence constraints,
where the completion time of job i at day t is the sum of processing times of all
jobs prior to i and the processing time of job i.

Now, let us formulate the problem in a formal way. A permutation σ is a
bijection from [n] to [n]. Another representation of a permutation σ over the
set [n] is a vector in [n]n, defined as σ = (σ(1), . . . , σ(n)), which corresponds
to σ. For example, (3, 2, 1, 4) is a representation of a permutation for n = 4.
The vector representation of permutations is convenient, since the sum of the
completion times of the jobs according to some permutation σ is expressed as
the inner product σ · �, where � is the vector consisting of the processing times
of the jobs. For example, there are 4 jobs to be processed according to the order
4, 1, 2, 3. Each processing time is given as � = (�1, �2, �3, �4). The completion
times of jobs i = 4, 1, 2, 3 are �4, �4 + �1, �4 + �1 + �2, and �4 + �1 + �2 + �3,
respectively, and the sum of completion times is 4�4 + 3�1 + 2�2 + �3. Note that
the completion time exactly corresponds to σ · �, the inner product of � and
the permutation vector σ=(3, 2, 1, 4). Here, component σi of the permutation σ
represents the priority of job i.

Let Sn be the set of all permutations over [n], i.e., Sn = {σ ∈ [n]n| σ is a
permutation over [n]}. In particular, the convex hull of all permutations is called
the permutahedron, denoted as Pn. The set A of precedence constraints is given
as A = {(ik, jk) ∈ [n] × [n] | ik �= jk, k = 1, . . . , m}, meaning that object ik is
preferred to object jk. The set A induces the set defined by the linear constraints
Precons(A) = {p ∈ R

n
+ | pi ≥ pj for (i, j) ∈ A}. We further assume that there

exists a linear ordering consistent with A. In other words, we assume there to
exist a permutation σ ∈ Sn ∩ Precons(A).

The online job scheduling problem can be formulated as the following online
linear optimization problem over Sn ∩ Precons(A). For each trial t = 1, . . . , T ,
(i) the player predicts a permutation σt ∈ Sn ∩ Precons(A), (ii) the adversary
returns a loss vector �t ∈ [0, 1]n, and (iii) the player incurs loss σt · �t. The goal
of the player is to minimize the α-regret for some small α ≥ 1:

α-Regret =
T∑

t=1

σt · �t − α min
σ∈Sn∩Precons(A)

T∑

t=1

σ · �t.

334 T. Fujita et al.

In this paper, we propose an online linear optimization algorithm over Pn ∩
Precons(A) whose the α-regret is O(n2

√
T) for α = 2−2/(n+1). For each trial,

our algorithm runs in polynomial time in n and m. More precisely, the running
time at each trial is O(n4). Further, we show that a lower bound of the 1-regret
is Ω(n2

√
T).

In addition, we prove that there is no polynomial time algorithm with
α-regret poly(n,m)

√
T with α < 2 − 2/(n + 1) unless there exists a random-

ized approximation algorithm with approximation α < 2 − 2/(n + 1) for the
corresponding offline problem. Thus far, the state-of-the-art approximation algo-
rithms have an approximation ratio 2 − 2/(n + 1), and it is a longstanding open
problem to find an approximation algorithm with a better ratio [30]. It has been
determined that there is no polynomial-time (1 + ε)-approximation algorithm
(PTAS) for any constant ε > 0 under some standard assumption of the com-
plexity theory [3]. Therefore, the regret bound is optimal among any polynomial
algorithms unless there exists a better approximation algorithm for the offline
problem.

Note that our online algorithm is deterministic, so some reader might worry
that the algorithm works without any randomization. We show that our problem
can be reduced to online problem over continuous space and rounding problem.
For the online algorithm, some deterministic algorithms are known and can
achieve a good regret bound. Therefore, there is no reason that our algorithm is
stochastic.

2 Related Research

There has been related research on the online prediction of permutations. The
earliest approach was to directly design online prediction algorithms for permuta-
tions. Helmbold and Warmuth [15] were the first to do this, and in their setting, a
permutation is given as a permutation matrix, which is a more generic expression
than a permutation vector (i.e., permutation matrices can encode permutation
vectors). Thus, their algorithm can be used for our problem without precedence
constraints. Yasutake et al. [31] proposed an online linear optimization algorithm
over the permutahedron when there are no precedence constraints. Ailon pro-
posed another online optimization algorithm with improved regret bound and
time complexity [1]. Suehiro et al. [28] extended the result of Yasutake et al. [31]
to the submodular base polyhedron; this can be used not only for permuta-
tions, but also for other combinatorial objects, such as spanning trees. These
algorithms, however, are not designed for precedence-constrained problems.

The second approach is to transform an offline algorithm to an online opti-
mization algorithm. By using the conversion method of Kakade et al. [16] or
that of Fujita et al. [13], we can construct online optimization algorithms with
α-regret that are similar to ours.

However, with the method of Kakade et al. [16], the resulting time complexity
per trial is linear in T , which is not desirable. For the method of Fujita et al., the
α-regret is proved to be α = 2 − 2/(n − 1) + ε, which is slightly inferior to that

Online Linear Optimization for Job Scheduling 335

of our method. The running time per trial is poly(n, 1/ε), which is independent
of T but depends on 1/ε. Also, Fujita et al. showed that if an offline algorithm
use an LP-relaxation and a metarounding, then FPL with the algorithm can
achieve good bounds on the α-regret. But, the LP-relaxation based algorithm of
previous work cannot be directly applied to our problem, because its rounding
algorithm is not metarounding.

Our approach is completely different from previous offline algorithms.
The known offline approximation algorithms rely on formulations that use
completion-time variables or linear-ordering variables. In the first formulation, n
variables indicate the time at which the job is completed. In this case, the relaxed
problem is formulated as a linear program with exponentially many constraints
(see, e.g., [14,25]). The problem can be approximately solved in polynomial time
by using the ellipsoid method. In the second case, there are

(
n
2

)
variables, which

represent relative comparisons between pairs of jobs. The relaxed problem is
also formulated as a linear program with O(n2) variables and O(n3) linear con-
straints (e.g., [7]). In both formulations, the set of linear constraints and asso-
ciated rounding methods require knowledge of the processing times of the jobs,
and these are not available in the online setting. Our approach uses some geo-
metric properties of the permutahedron, and thus it is totally different from
the previous approaches. As a result, our rounding algorithm does not require
knowledge of the processing times of the jobs. Thus, our approach is suitable for
the online problem. On the other hand, a shortcoming of our approach is that it
is only able to deal with the online problem of minimizing the unweighted total
sum of the completion times.

Online learning approaches for job scheduling problems are not new. In par-
ticular, Even-Dar et al. [10] considered an online optimization problem with
global functions, and its applications schedule jobs for several machines in order
to minimize the makespan (the time at which the final job is completed). Both
the objectives and the techniques of Even-Dar et al. [10] are different from
ours. For online multi-task learning, Lugosi et al. considered some class of con-
straints [20]. For some natural class of constraints, they showed that the online
task can be reduced to the shortest path problem, which is efficiently solvable.
However, the constraints in our setting are much complicated and their method
does not seem to be applicable to our problem.

3 Online Linear Optimization Algorithm over the
Permutations

In this section, we propose our algorithm PermLearnPrec and prove its α-regret
bound. We will use the notion of the permutahedron. The permutahedron Pn is the
convex hull of the set of permutations Sn. It is known that Pn can be represented
as the set of points p ∈ R

n
+ satisfying

∑
i∈S pi ≤ ∑|S|

i=1(n + 1 − i) for any S ⊂ [n],
and

∑n
i=1 pi = n(n + 1)/2. For further discussion of the permutahedron, see, e.g.,

[12,32].

336 T. Fujita et al.

3.1 Main Structure

Our algorithm PermLearnPrec is shown as Algorithm 1. The algorithm maintains
a weight vector pt in R

n
+, which represents a mixture of the permutations in Sn.

At each trial t, it “rounds” (see next section for description) a vector pt into
a permutation σt so that σt ≤ αpt for some α ≥ 1. After the loss vector
�t is given, PermLearnPrec updates the weight vector pt in an additive way
and successively projects it onto the set of linear constraints representing the
precedence constraints Precons(A) and the intersection of the permutahedron
Pn and Precons(A).

The main structure of our algorithm is built on a standard online convex opti-
mization algorithm known as online gradient descent (OGD) [33]. OGD consists
of an additive update of the weight vectors, followed by projection to some con-
vex set of interest. In our case, the convex set is Pn ∩ Precons(A). Using these
procedures, the regret bound of OGD can be proved to be O(n2

√
T). Thus,

the successive projections are apparently redundant, and only one projection to
Pn ∩ Precons(A) would suffice. However, the projection onto Pn ∩ Precons(A) is
not known to be tractable, and it contains exponentially many linear constraints.
Thus, we take a different approach. Instead of performing the projection directly,
we use successive projections onto Precons(A) and Pn ∩ Precons(A). Below, we
will show that these successive projections are the key to an efficient implemen-
tation of our algorithm. First, we will prove an α-regret bound of the proposed
algorithm, and then we will show that our algorithm can be efficiently realized.

Algorithm 1. PermLearnPrec
Input: parameter η > 0.

1. Let p1 = ((n + 1)/2, . . . , (n + 1)/2) ∈ [0, n]n.
2. For t = 1, . . . , T

(a) (Rounding) Run Rounding(pt) and get σt ∈ Sn such that σt ≤ (2 − 2/(n +
1))pt.

(b) Incur a loss σt · �t.
(c) Update pt+ 1

3
as pt+ 1

3
= pt − η�t.

(d) (1st projection) Let pt+ 2
3

be the Euclidean projection onto the set Precons(A),

.i.e.,
pt+ 2

3
= arg min

p∈Precons(A)
‖p − pt+ 1

3
‖2
2.

(e) (2nd projection) Let pt+1 be the projection of pt+ 2
3

onto the set Pn ∩
Precons(A), that is,

pt+1 = arg min
p∈Pn∩Precons(A)

‖p − pt+ 2
3
‖2
2.

We begin our analysis of PermLearnPrec with the following lemma. The
lemma guarantees the progression of pt towards any vector in Pn ∩ Precons(A),
as measured by the Euclidean norm squared.

Online Linear Optimization for Job Scheduling 337

Lemma 1. For any q ∈ Pn ∩ Precons(A) and for any t ≥ 1,

‖q − pt‖22 − ‖q − pt+1‖22 ≥ 2η(q − pt) · �t − η2‖�t‖22.
Proof. By using the generalized Pythagorean theorem (e.g., [5]),

‖q − pt+ 2
3
‖22 ≥ ‖q − pt+1‖22 + ‖pt+1 − pt+ 2

3
‖22

and

‖q − pt+ 1
3
‖22 ≥ ‖q − pt+ 2

3
‖22 + ‖pt+ 2

3
− pt+ 1

3
‖22.

By combining these, we obtain

‖q − pt‖22 − ‖q − pt+1‖22
≥ ‖q − pt‖22 − ‖q − pt+ 1

3
‖22 + ‖pt+1 − pt+ 2

3
‖22 + ‖pt+ 2

3
− pt+ 1

3
‖22

≥ ‖q − pt‖22 − ‖q − pt+ 1
3
‖22, (1)

where the last inequality follows since Euclidean distance is nonnegative.
Then, because pt+ 1

3
= pt − η�t, the right-hand side of inequality (1) is

‖q − pt‖22 − ‖q − pt+ 1
3
‖22 = 2η(q − pt) · �t − η2‖�t‖22. (2)

By combining (1) and (2), we complete the proof.

Lemma 2 (Cf. Zinkevich [33]). For any T ≥ 1 and η = (n + 1)/(2
√

T),

T∑

t=1

pt · �t ≤ min
p∈Pn∩Precons(A)

T∑

t=1

p · �t +
n(n + 1)

2

√
T .

Proof. By Lemma 1, summing the inequality from t = 1 to T and rearranging,
we obtain that for any q ∈ Pn ∩ Precons(A),

T∑

t=1

(pt − q) · �t ≤ 1
2η

T∑

t=1

(‖q − pt‖22 − ‖q − pt+1‖22) +
η

2

T∑

t=1

‖�t‖22

=
1
2η

(‖q − p1‖22 − ‖q − pT ‖22) +
η

2

T∑

t=1

‖�t‖22

≤ 1
2η

n(
n + 1

2
)2 +

η

2
nT,

where the last inequality holds since for any i ∈ [n], (qi − pi,1)2 is at most
p21,i = (n+1

2)2, and �t ∈ [0, 1]n. By setting η = (n + 1)/(2
√

T), we have the
cumulative loss bound as desired.

4 Efficient Implementations of Projection and Rounding

In this section, we propose efficient algorithms for successive projections onto
Precons(A) and Pn ∩ Precons(A). We then show an implementation of the pro-
cedure Rounding.

338 T. Fujita et al.

4.1 Projection onto the Set Precons(A) of the Precedence
Constraints

The problem of projection onto Precons(A) is described as follows:

min
p∈Rn

‖p − q‖22
sub.to: pi ≥ pj , for (i, j) ∈ A.

This problem is known as the isotonic regression problem [21,23,27]. Previ-
ously known algorithms for the isotonic regression run in O(mn2 log n) or O(n4)
time (see [21] for details), where m = |A|.

4.2 Projection of a Point in Precons(A) onto Pn ∩ Precons(A)

In this subsection, we show an efficient algorithm, which we will call Projection,
for computing the projection a point in Precons(A) onto the intersection of the
permutahedron Pn and the set Precons(A) of the precedence constraints. In fact,
we will show that the problem can be reduced to projection onto Pn only, and
thus we can use the algorithm of Suehiro et al. [28] for finding the projection
onto Pn. This is shown as Algorithm 2.

Formally, the problem is stated as follows:

min
p∈Rn

‖p − q‖22

sub. to:
∑

j∈S

pj ≤
|S|∑

j=1

(n + 1 − j), for any S ⊂ [n],

n∑

j=1

pj =
n(n + 1)

2
,

pi ≥ pj , for (i, j) ∈ A.

Without loss of generality, we may assume that elements in q are sorted
in descending order, i.e., q1 ≥ q2 ≥ · · · ≥ qn. This can be achieved in time
O(n log n) by sorting q. First, we show that this projection preserves the order
in q.

Lemma 3 (Order Preserving Lemma [28]). Let p∗ be the projection of q
onto Pn s.t. q1 ≥ q2 ≥ · · · ≥ qn. Then, the projection p∗ also satisfies p∗

1 ≥ p∗
2 ≥

... ≥ p∗
n.

Furthermore, we need to show that the projection onto Pn preserves equality,
and this is guaranteed by the following lemma.

Lemma 4 (Equality Preserving Lemma). Let p∗ be the projection of q onto
Pn. Then, the projection p∗ satisfies pi = pj if qi = qj.

Online Linear Optimization for Job Scheduling 339

Proof. Assume that the lemma is false. Then, there exists a pair i and j such that
qi = qj and p∗

i < p∗
j . Let p′ be the vector obtained by letting p′

i = p′
j = (p∗

i +p∗
j)/2

and p′
k = p∗

k for k �= i, j. It can be easily verified that p′s ∈ Pn. Now, observe
that

‖p∗ − q‖22 − ‖p′ − q‖22 =p∗2
i + p∗2

j − p
′2
i − p

′2
j + 2p′ · q − 2p∗ · q

=p∗2
i + p∗2

j − (p∗
i + p∗

j)
2/2 + 2(p′

i − p∗
i)qi + 2(p′

j − p∗
j)qj

=
1
2
(p∗

i − p∗
j)

2 + 2(p′
i + p′

j − p∗
i − p∗

j)qi

=
1
2
(p∗

i − p∗
j)

2 > 0,

which contradicts the fact that p∗ is the projection.

Now we are ready to show one of our main technical lemmas.

Lemma 5. For any q ∈ Precons(A),

arg min
p∈Pn

‖p − q‖ = arg min
p∈Pn∩Precons(A)

‖p − q‖.

Proof. Let p∗ = arg minp∈Pn
‖p − q‖. By definition of the projection, for any

p ∈ Pn ∩Precons(A) ⊆ Pn, ‖p−q‖ ≥ ‖p∗ −q‖. Further, by Lemmas 3 and 4, p∗

preserves the order and equality in q. That is, p∗ also satisfies the constraints
defined by Precons(A). Therefore, we have p∗ ∈ Precons(A). These facts imply
that p∗ is indeed the projection of q onto Pn ∩ Precons(A).

So, by Lemma 2, when a vector q ∈ Precons(A) is given, we can compute
the projection of q onto Pn ∩ Precons(A) by computing the projection of q
onto Pn only. By applying the projection algorithm of Suehiro et al. [28] for the
base polyhedron (which generalizes the permutahedron), we obtain the following
result.

Theorem 1. There exists an algorithm with input q ∈ Precons(A) that outputs
the projection of q onto Pn ∩ Precons(A) in time O(n2) and space O(n).

4.3 Rounding

Algorithm 3 is Rounding. The algorithm is simple. Roughly speaking, if the
input p ∈ Pn ∩ Precons(A) is sorted as p1 ≥ · · · ≥ pn, the algorithm outputs σ
such that σ1 ≥ · · · ≥ σn, i.e., σ = (n, n − 1, . . . , 1). Note that we need to break
ties in p to construct σ. Let A∗ be the transitive closure of A. Then, given an
equivalence set {j | pi = pj}, we break ties so that if (i, j) ∈ A∗, σi ≥ σj . This
can be done by, e.g., quicksort. First, we will show that Rounding guarantees
that for each i ∈ [n], σi ≤ (2−2/(n+1))pi, and then discuss its time complexity.

We prove the following lemma for Rounding.

340 T. Fujita et al.

Algorithm 2. Projection onto Pn ∩ Precons(A)
Input: q ∈ Precons(A) s.t. q1 ≥ q2 ≥ · · · ≥ qn.
Output: projection x of q onto Pn.

1. Let i0 = 0.
2. For k = 1, . . . ,

(a) Let Ck(i) =
g(i)−g(ik−1)−

∑i
j=ik−1+1 qj

i−ik−1
,

where g(i) =
∑i

j=1(n + 1 − j),

and ik = arg mini:ik−1+1≤i≤n Ck(i);
if there are multiple minimizers, choose the largest one as ik.

(b) Set xi = qi + Ct(ik) (for ik−1 + 1 ≤ i ≤ ik).
(c) If ik = n, then break.

3. Output x.

Algorithm 3. Rounding
Input: p ∈ Pn ∩ Precons(A) satisfying p1 ≥ p2 ≥ · · · ≥ pn and the transitive closure
A∗ of A
Output: Permutation σ ∈ Sn ∩ Precons(A)

1. Sort elements of p in the descending order, where for elements i, j such that pi = pj ,
i is larger than j if (i, j) ∈ A∗, otherwise beak the tie arbitrarily.

2. Output the permutation σ s.t. σi = (n + 1) − ri, where ri is the ordinal of i in the
above order.

Lemma 6. For any p ∈ Pn ∩Precons(A) s.t. p1 ≥ · · · ≥ pn, given p, the output
σ of Rounding satisfies that for each i ∈ [n], σi ≤ (2 − 2/(n + 1))pi.

Proof. For each i ∈ [n], by definition of the permutahedron, we have

i∑

j=1

pj ≤
i−1∑

j=1

j =
i(i − 1)

2
. (3)

By the assumption that p1 ≥ · · · ≥ pn, the average of pi + pi+1 + · · · + pn is not
larger than pi. Thus, we have

pi ≥
∑n

j=i pj

n + 1 − i
=

∑n
j=1 pj − ∑i−1

j=1 pj

n + 1 − i
≥ (n + i)(n + 1 − i)

2(n + 1 − i)
=

n + i

2
,

where the second inequality follows from (3). Thus, for each i ∈ [n],

σi

pi
≤ n − i + 1

1
2 (n + i)

=
2(n + i − 1)

n + i
= 2 − 4i − 2

n + i
.

Online Linear Optimization for Job Scheduling 341

Here, the second term 4i−2
n+i is minimized when i = 1. Therefore, σi/pi ≤ 2 −

2/(n + 1), as claimed.

For computing Rounding, we need to construct the transitive closure A∗ of
A before the protocol begins. It is well known that a transitive closure can be
computed by using algorithms for all-pairs shortest paths. For this problem, the
Floyd-Warshall algorithm can be used; it runs in time O(n3) and space O(n2)
(see, e.g., [8]). When A is small, for example, m << n2, we can use Johnson’s
algorithm, which runs in time O(n2 log n + nm) and space O(m2).

The time complexity of Rounding is O(n2), which is due to the sorting.
The space complexity is O(n2), if we use the Floyd-Warshall algorithm with an
adjacency matrix. The space complexity can be reduced to O(m2) if we employ
Johnson’s algorithm, which uses an adjacency list. On the other hand, we need
an extra O(log m) factor in the time complexity since we need O(log m) time to
check if (i, j) ∈ A∗ when A∗ is given as an adjacency list.

4.4 Main Result

We are now ready to prove the main result. From Lemma 2, Lemma 6,
Theorem 1 and the fact that for any x ∈ R

n
+, minp∈Pn∩Precons(A) p · x ≤

minσ∈Sn∩Precons(A) σ · x, we immediately get the following theorem.

Theorem 2. There exists an online linear optimization algorithm over Pn ∩
Precons(A) such that

1. its (2 − 2/(n + 1))-regret is O(n2
√

T), and
2. its per-trial running time is O(n4).

5 Lower Bound

In this section, we derive a lower bound for the regret for our online prediction
problem over the permutahedron Pn. Here, we consider the special case of no
precedence constraint being given.

Theorem 3. For our prediction problem over the permutahedron Pn, the 1-
regret is Ω(n2

√
T).

Proof. We consider an adversary who makes random choices. More precisely, at
each trial t, the adversary randomly chooses a loss vector �t from �0, �1, where �0

(�1) is the loss vector in which the first n
2 elements are 0s (1s) and the remaining

elements are 1s (0s). Then, for any online optimization algorithm that outputs
σt ∈ St at trial t,

E[
T∑

t=1

σt · �t] =
n(n + 1)T

4
.

342 T. Fujita et al.

Now, let us consider the best fixed permutation. Let σ0 = (n, n − 1, n −
2, . . . , 1) and σ1 = (1, 2, 3, 4, . . . , n). Suppose that �0 appears more frequently
than �1 by k. The best permutation is σ0, and its cumulative loss is

n
2∑

i=1

i

(
T

2
+

k

2

)
+

n∑

i=n
2 +1

i

(
T

2
− k

2

)

=
n(n + 1)T

4
+

k

2

(
2

n
2 (n2 + 1)

2
− n(n + 1)

2

)
k

2

=
n(n + 1)T

4
− k

2
n

(
n + 1

2
−

n
2 + 1

2

)

=
n(n + 1)T

4
− k

2
n2

4
.

The same argument follows for the opposite case, where �1 is more frequent by
k. In fact, k can be expressed as k =

∑T
t=1 δt, where each δt is a discrete uniform

random variable that takes values of ±1. Then, the expected regret of any online
optimization algorithm is at least n2

8 E
[∣∣∣

∑T
t=1 δt

∣∣∣
]
. By the central limit theorem,

the distribution of
∑T

t=1 δt converges to a Gaussian distribution with mean 0 and
variance

√
T . Thus, for sufficiently large T , Pr[|∑T

t=1 δt| ≥ √
T] is a constant: c

(0 < c < 1). Therefore, the expected regret bound has a lower bound of n2

8 c
√

T .
This implies that there exists a sequence of loss vectors that enforces any online
optimization algorithm to incur regret that is at least Ω(n2

√
T).

In general, this lower bound on 1-regret is tight, since there are online algo-
rithms that achieve a 1-regret with O(n2

√
T) ([1,28]).

It is natural to ask if the (2 − 2/(n + 1))-regret O(n2
√

T) is
tight under precedence constraints. We do not yet have a lower bound
for this case, but we will show that our algorithm is optimal unless there is
an offline algorithm with an approximation ratio α < 2.

Theorem 4. If there exists a polynomial-time online linear optimization algo-
rithm with an α-regret of poly(n,m)

√
T , then there also exists a randomized

polynomial-time algorithm for the offline problem with an approximation ratio α.

Proof. The proof is based on standard online-to-offline conversion methods that
can be found in the online learning literature (see, e.g., [11]). Let A be such an
online linear optimization algorithm, and let its output at each trial t be denoted
as σt. Let � ∈ [0, 1]n be the loss vector in the offline problem. We consider an
adversary who returns �t = � at each trial t. Then, the cumulative loss of A
divided by T is bounded as follows:

1
T

T∑

t=1

σt · � ≤ α min
σ∈Sn∩Precons(A)

σ · � +
poly(n,m)

T
.

Online Linear Optimization for Job Scheduling 343

Now, let σ̂ be a uniformly and randomly chosen permutation from {σ1, . . . ,σT }.
Then,

E[σ̂ · �] ≤ α min
σ∈Sn∩Precons(A)

σ · � +
poly(n,m)

T
.

By setting T = poly(n,m), the expected cumulative loss of σ̂ is at most α times
the cumulative loss of the best permutation (with a constant additive term),
which completes the proof.

6 Experiments

In this section, we show preliminary experiments with artificial data sets in order
to compare the performance of our algorithm with other methods. The experi-
ments were performed on a server with four cores of Intel Xeon CPU X5560 2.80
GHz and a memory of 198 GB. We implemented the programs using Matlab with
its Optimization Toolbox. To generate the loss vector at each trial t, we indepen-
dently and randomly specified each element �t,i of the loss vector �t as follows:
Let �t,i = 1 with probability ri and �t,i = 0, otherwise. We set ri = i/n so that
E[�t] = (1/n, 2/n, ..., 1). We constructed random acyclic precedence constraints
on n jobs in the following way. First, we constructed a random total order over
n jobs (vertices). Then, we constructed an acyclic directed graph over n vertices
by adding

(
n
2

)
directed edges according to the total order. Finally, we kept each

edge (i, j) alive with probability π = 0.2, and otherwise, we removed the edge.
The resulting directed graph represented the set of precedence constraints.

Using the above method, for each fixed n and T , we constructed three random
sequences of loss vectors and three random sets of precedence constraints. The
results (cumulative loss or computation time) were then averaged.

We compared our algorithm PermLearnPrec (PLP) to the following algo-
rithms. We used the offline-to-online conversion techniques of Kakade et al. [16]
(KKL) and the metarounding technique of Fujita et al. [13] combined with (FPL)
([17]; FPLM). For the metarounding of Fujita et al., we set ε = 0.01 to guar-
antee (α + ε)-regret when using an α-approximation offline algorithm. We used
the linear programming (LP) relaxation-based scheduling algorithm of Chudak
and Hochbaum [7] as the offline algorithm. This algorithm solves a minimum-cut
problem on a network with O(n2) nodes and O(n3) arcs. We used the maxflow
algorithm of Boykov and Kolmogorov [4] to solve the minimum-cut problem.
In our PLP algorithm, we solved the isotonic regression by using the standard
quadratic programming (QP) solver in Matlab.

In Figure 1, we summarize the cumulative losses and total computation times,
both averaged over three random data sets. As can be seen, the cumulative losses
of all of the algorithms are quite similar. KKL performed slightly better than the
other two algorithms, which is not surprising since they have almost identical
α-regret bounds. On the other hand, if we consider the computation times of the
algorithms, there is a very large difference. Our algorithm runs roughly 20 to 30
times faster than the other methods. The reason for this is that since the data are

344 T. Fujita et al.

T
0 50 100 150 200 250

c
u
m
u
l
a
t
i
v
e

l
o
s
s

×104

0

5

10

15
FPLM
PLP
KKL

n
0 50 100 150 200 250

c
o
m
p
u
t
a
t
i
o
n

t
i
m
e

(
s
e
c
.
)

0

20

40

60

80

100
FPLM
KKL
PLP

Fig. 1. Upper panel: cumulative losses of the three algorithms with the artificial data
set for n = 50 and T = 10, 20, 50, 100, 200, 250; lower panel: total computation times
of the three algorithms with T = 50 with n = 10, 20, 50, 100, 200, 250.

relatively “easy,” the best permutation might not change frequently over time.
Thus, in many trials, the projections onto the set of precedence constraints are
already satisfied, and if this is the case, our algorithm can skip this step, whereas
the other methods must compute the precedence constraints for every trial.

7 Conclusion

In this paper, we propose a polynomial-time online linear optimization algorithm
over the permutahedron under precedence constraints. Our algorithm achieves
a (2 − 2/(n + 1))-regret bound O(n2

√
T), which means that it can predict as

well as the state-of-the art offline approximation algorithms in hindsight. The
approximation algorithm for which the approximation ratio is strictly less than
2 − 2/(n + 1).

An interesting open question is how our online framework can be extended
to minimize the sum of weighted completion times. We note that Woeginger [29]
showed that the offline problem of minimizing the sum of weighted completion
time can be reduced to that of minimizing the unweighted sum. This reduction
might be useful for designing an online version.

Acknowledgments. We thank anonymous reviewers for useful comments. Hatano is
grateful to the supports from JSPS KAKENHI Grant Number 25330261. Takimoto is
grateful to the supports from JSPS KAKENHI Grant Number 15H02667. In addition,
the authors acknowledge the support from MEXT KAKENHI Grant Number 24106010
(the ELC project).

References

1. Ailon, N.: Improved bounds for online learning over the permutahedron and other
ranking polytopes. In: Proceedings of 17th International Conference on Artificial
Intelligence and Statistics (AISTAT 2014), pp. 29–37 (2014)

Online Linear Optimization for Job Scheduling 345

2. Ambühl, C., Mastrolilli, M., Mutsanas, N., Svensson, O.: On the Approximability
of Single-Machine Scheduling with Precedence Constraints Christoph Ambühl.
Mathematics of Operations Research 36(4), 653–669 (2011)

3. Ambühl, C., Mastrolilli, M., Swensson, O.: Inapproximability results for spars-
est cut, optimal linear arrangement, and precedence constrained scheduling. In:
Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2007), pp. 329–337 (2007)

4. Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-Cut/Max-
Flow Algorithms for Energy Minimization in Computer Vision. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)

5. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge Uni-
versity Press (2006)

6. Chekuri, C., Motwani, R.: Precedence constrained scheduling to minimize sum of
weighted completion times on a single machine. Discrete Applied Mathematics
98(1–2), 29–38 (1999)

7. Chudak, F.A., Hochbaum, D.S.: A half-integral linear programming relaxation for
scheduling precedence-constrained jobs on a single machine. Operations Research
Letters 25, 199–204 (1999)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Clifford, S.: Introduction to Algo-
rithms, 3rd edn. The MIT Press (2009)

9. Correa, J.R., Schulz, A.S.: Single-machine scheduling with precedence constraints.
Mathematics of Operations Research 30(4), 1005–1021 (2005)

10. Even-Dar, E., Kleinberg, R., Mannor, S., Mansour, Y.: Online learning for global
cost functions. In: Proceedings of the 22nd Conference on Learning Theory (COLT
2009) (2009)

11. Freund, Y., Schapire, R.E.: Large Margin Classification Using the Perceptron
Algorithm. Machine Learning 37(3), 277–299 (1999)

12. Fujishige, S.: Submodular functions and optimization, 2nd edn. Elsevier Science
(2005)

13. Fujita, T., Hatano, K., Takimoto, E.: Combinatorial online prediction via
metarounding. In: Jain, S., Munos, R., Stephan, F., Zeugmann, T. (eds.) ALT
2013. LNCS, vol. 8139, pp. 68–82. Springer, Heidelberg (2013)

14. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to Minimize Average
Completion Time: Off-Line and On-Line Approximation Algorithms. Mathemat-
ics of Operations Research 22(3), 513–544 (1997)

15. Helmbold, D.P., Warmuth, M.K.: Learning Permutations with Exponential
Weights. Journal of Machine Learning Research 10, 1705–1736 (2009)

16. Kakade, S., Kalai, A.T., Ligett, L.: Playing games with approximation algorithms.
SIAM Journal on Computing 39(3), 1018–1106 (2009)

17. Kalai, A., Vempala, S.: Efficient algorithms for online decision problems. Journal
of Computer and System Sciences 71(3), 291–307 (2005)

18. Lawler, E.L.: On Sequencing jobs to minimize weighted completion time subject
to precedence constraints. Annals of Discrete Mathematics 2(2), 75–90 (1978)

19. Lenstra, J.K., Kan, A.H.G.R.: Complexity of scheduling under precedence con-
straints. Operations Research 26, 22–35 (1978)

20. Lugosi, G., Papaspiliopoulos, O., Stoltz, G.: Online multi-task learning with hard
constraints. In: Proceedings of the 22nd Conference on Learning Theory (COLT
2009) (2009)

21. Luss, R., Rosset, S., Shahar, M.: Efficient regularized isotonic regression with
application to gene-gene interaction search. Annals of Applied Statistics 6(1)
(2012)

346 T. Fujita et al.

22. Margot, F., Queyranne, M., Wang, Y.: Decompositions, Network Flows, and
a Precedence Constrained Single-Machine Scheduling ProblemDecompositions,
Network Flows, and a Precedence Constrained Single-Machine Scheduling Prob-
lem. Operations Research 51(6), 981–992 (2003)

23. Maxwell, W., Muckstadt, J.: Establishing consistent and realistic reorder intervals
in production-distribution systems. Operations Research 33, 1316–1341 (1985)

24. Mohring, H.R., Schulz, A.S., Uetz, M.: Approximation in Stochastic Scheduling:
The Power of LP-based Priority Policies. Journal of the ACM 46(6), 924–942
(1999)

25. Schulz, A.S.: Scheduling to minimize total weighted completion time: perfor-
mance guarantees of LP-based heuristics and lower bounds. In: Cunningham,
W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084,
pp. 301–315. Springer, Heidelberg (1996)

26. Skutella, M., Uetz, M.: Stochastic Machine Scheduling with Precedence Con-
straints. SIAM Journal on Computing 34(4), 788–802 (2005)

27. Spouge, J., Wan, H., Wilbur, W.: Least squares isotonic regression in two dimen-
sions. J. Optimization Theory and Apps. 117, 585–605 (2003)

28. Suehiro, D., Hatano, K., Kijima, S., Takimoto, E., Nagano, K.: Online prediction
under submodular constraints. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeug-
mann, T. (eds.) ALT 2012. LNCS, vol. 7568, pp. 260–274. Springer, Heidelberg
(2012)

29. Woeginger, G.J.: On the approximability of average completion time scheduling
under precedence constraints. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.)
ICALP 2001. LNCS, vol. 2076, pp. 887–897. Springer, Heidelberg (2001)

30. Woeginger, G.J., Schuurman, P.: Polynomial time approximation algorithms for
machine scheduling: Ten open problems. Journal of Scheduling 2, 203–213 (1999)

31. Yasutake, S., Hatano, K., Kijima, S., Takimoto, E., Takeda, M.: Online lin-
ear optimization over permutations. In: Asano, T., Nakano, S., Okamoto, Y.,
Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 534–543. Springer, Hei-
delberg (2011)

32. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152.
Springer-Verlag (1995)

33. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient
ascent. In: Proceedings of the Twentieth International Conference on Machine
Learning (ICML 2003), pp. 928–936 (2003)

Kolmogorov Complexity,
Algorithmic Information

Theory

Solomonoff Induction Violates Nicod’s Criterion

Jan Leike(B) and Marcus Hutter

Australian National University, Canberra, Australia
{jan.leike,marcus.hutter}@anu.edu.au

Abstract. Nicod’s criterion states that observing a black raven is evi-
dence for the hypothesis H that all ravens are black. We show that
Solomonoff induction does not satisfy Nicod’s criterion: there are time
steps in which observing black ravens decreases the belief in H. More-
over, while observing any computable infinite string compatible with
H, the belief in H decreases infinitely often when using the unnormal-
ized Solomonoff prior, but only finitely often when using the normalized
Solomonoff prior. We argue that the fault is not with Solomonoff induc-
tion; instead we should reject Nicod’s criterion.

Keywords: Bayesian reasoning · Confirmation · Disconfirmation ·
Hempel’s paradox · Equivalence condition · Solomonoff normalization

1 Introduction

Inductive inference, how to generalize from examples, is the cornerstone of
scientific investigation. But we cannot justify the use of induction on the grounds
that it has reliably worked before, because this argument presupposes induction.
Instead, we need to give deductive (logical) arguments for the use of induction.
Today we know a formal solution to the problem of induction: Solomonoff’s the-
ory of learning [16,17], also known as universal induction or Solomonoff induc-
tion. It is a method of induction based on Bayesian inference [9] and algorithmic
probability [11]. Because it is solidly founded in abstract mathematics, it can be
justified purely deductively.

Solomonoff defines a prior probability distribution M that assigns to a string
x the probability that a universal monotone Turing machine prints something
starting with x when fed with fair coin flips. Solomonoff’s prior encompasses
Ockham’s razor by favoring simple explanations over complex ones: algorithmi-
cally simple strings have short programs and are thus assigned higher probability
than complex strings that do not have short programs. Moreover, Solomonoff’s
prior respects Epicurus’ principle of multiple explanation by never discarding
possible explanations: any possible program that explains the string contributes
to the probability [8].

For data drawn from a computable probability distribution μ, Solomonoff
induction will converge to the correct belief about any hypothesis [1]. Moreover,
this can be used to produce reliable predictions extremely fast: Solomonoff induc-
tion will make a total of at most E+O(

√
E) errors when predicting the next data

c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 349–363, 2015.
DOI: 10.1007/978-3-319-24486-0 23

350 J. Leike and M. Hutter

points, where E is the number of errors of the informed predictor that knows
μ [7]. In this sense, Solomonoff induction solves the induction problem [15]. It
is incomputable, hence it can only serve as an ideal that any practical learning
algorithm should strive to approximate.

But does Solomonoff induction live up to this ideal? Suppose we entertain
the hypothesis H that all ravens are black. Since this is a universally quantified
statement, it is refuted by observing one counterexample: a non-black raven.
But at any time step, we have observed only a finite number of the potentially
infinite number of possible cases. Nevertheless, Solomonoff induction maximally
confirms the hypothesis H asymptotically.

This paper is motivated by a problem of inductive inference extensively dis-
cussed in the literature: the paradox of confirmation, also known as Hempel’s
paradox [5]. It relies on the following three principles.

– Nicod’s criterion [14, p.67]: observing an F that is a G increases our belief
in the hypothesis that all F s are Gs.

– The equivalence condition: logically equivalent hypothesis are confirmed or
disconfirmed by the same evidence.

– The paradoxical conclusion: a green apple confirms H.

The argument goes as follows. The hypothesis H is logically equivalent to the
hypothesis H ′ that all non-black objects are non-ravens. According to Nicod’s
criterion, any non-black non-raven, such as a green apple, confirms H ′. But then
the equivalence condition entails the paradoxical conclusion.

The paradox of confirmation has been discussed extensively in the literature
on the philosophy of science [3–6,12,13,19]; see [18] for a survey. Support for
Nicod’s criterion is not uncommon [6,12,13] and no consensus is in sight.

Using results from algorithmic information theory we show that Solomonoff
induction avoids the paradoxical conclusion because it does not fulfill Nicod’s cri-
terion. There are time steps when (counterfactually) observing a black raven dis-
confirms the hypothesis that all ravens are black (Theorem 7 and Corollary 12).
In the deterministic setting Nicod’s criterion is even violated infinitely often
(Theorem 8 and Corollary 13). However, if we normalize Solomonoff’s prior and
observe a deterministic computable infinite string, Nicod’s criterion is violated at
most finitely many times (Theorem 11). Our results are independent of the choice
of the universal Turing machine. A list of notation can be found on page 363.

2 Preliminaries

Let X be some finite set called alphabet. The set X ∗ :=
⋃∞

n=0 X n is the set of all
finite strings over the alphabet X , and the set X ∞ is the set of all infinite strings
over the alphabet X . The empty string is denoted by ε, not to be confused with
the small positive rational number ε. Given a string x ∈ X ∗, we denote its length
by |x|. For a (finite or infinite) string x of length ≥ k, we denote with x1:k the
first k characters of x, and with x<k the first k −1 characters of x. The notation

Solomonoff Induction Violates Nicod’s Criterion 351

x1:∞ stresses that x is an infinite string. We write x � y iff x is a prefix of y,
i.e., x = y1:|x|.

A semimeasure over the alphabet X is a probability measure on the proba-
bility space X � := X ∗ ∪ X∞ whose σ-algebra is generated by the cylinder sets
Γx := {xz | z ∈ X �} [11, Ch.4.2]. If a semimeasure assigns zero probability to
every finite string, then it is called a measure. Measures and semimeasures are
uniquely defined by their values on cylinder sets. For convenience we identify a
string x ∈ X ∗ with its cylinder set Γx.

For two functions f, g : X ∗ → R we use the notation f
×≥ g iff there is a

constant c > 0 such that f(x) ≥ cg(x) for all x ∈ X ∗. Moreover, we define f
×≤ g

iff g
×≥ f and we define f ×= g iff f

×≤ g and f
×≥ g. Note that f ×= g does not

imply that there is a constant c such that f(x) = cg(x) for all x.
Let U denote some universal Turing machine. The Kolmogorov complexity

K(x) of a string x is the length of the shortest program on U that prints x
and then halts. A string x is incompressible iff K(x) ≥ |x|. We define m(t) :=
minn≥t K(n), the monotone lower bound on K. Note that m grows slower than
any unbounded computable function. (Its inverse is a version of the busy beaver
function.) We also use the same machine U as a monotone Turing machine by
ignoring the halting state and using a write-only output tape. The monotone
Kolmogorov complexity Km(x) denotes the length of the shortest program on
the monotone machine U that prints a string starting with x. Since monotone
complexity does not require the machine to halt, there is a constant c such that
Km(x) ≤ K(x) + c for all x ∈ X∗.

Solomonoff’s prior M [16] is defined as the probability that the universal
monotone Turing machine computes a string when fed with fair coin flips in the
input tape. Formally,

M(x) :=
∑

p: x�U(p)

2−|p|.

Equivalently, the Solomonoff prior M can be defined as a mixture over all lower
semicomputable semimeasures [20].

The function M is a lower semicomputable semimeasure, but not computable
and not a measure [11, Lem.4.5.3]. It can be turned into a measure Mnorm using
Solomonoff normalization [11, Sec.4.5.3]: Mnorm(ε) := 1 and for all x ∈ X ∗ and
a ∈ X ,

Mnorm(xa) := Mnorm(x)
M(xa)∑

b∈X M(xb)
(1)

since M(x) > 0 for all x ∈ X ∗.
Every program contributes to M , so we have that M(x) ≥ 2−Km(x). However,

the upper bound M(x)
×≤ 2−Km(x) is generally false [2]. Instead, the following

weaker statement holds.

Lemma 1 ([10] as cited in [2, p.75]). Let E ⊂ X ∗ be a recursively enu-
merable and prefix-free set. Then there is a constant cE ∈ N such that M(x) ≤
2−Km(x)+cE for all x ∈ E.

352 J. Leike and M. Hutter

Proof. Define

ν(x) :=

{
M(x), if x ∈ E, and
0, otherwise.

The semimeasure ν is lower semicomputable because E is recursively enumerable.
Furthermore,

∑
x∈X ∗ ν(x) ≤ 1 because M is a semimeasure and E is prefix-free.

Therefore ν is a discrete semimeasure. Hence there are constant c and c′ such
that Km(x) ≤ K(x)+c ≤ − log ν(x)+c+c′ = − log M(x)+c+c′ [11, Cor.4.3.1].

�
Lemma 2 ([11, Sec.4.5.7]). For any computable measure μ the set of μ-
Martin-Lf-random sequences has μ-probability one:

μ({x ∈ X ∞ | ∃c∀t. M(x1:t) ≤ cμ(x1:t)}) = 1.

3 Solomonoff and the Black Ravens

Setup. In order to formalize the black raven problem (in line with [15, Sec.7.4]),
we define two predicates: blackness B and ravenness R. There are four possible
observations: a black raven BR, a non-black raven BR, a black non-raven BR,
and a non-black non-raven BR. Therefore our alphabet consists of four symbols
corresponding to each of the possible observations, X := {BR,BR,BR,BR}. We
will not make the formal distinction between observations and the symbols that
represent them, and simply use both interchangeably.

We are interested in the hypothesis ‘all ravens are black’. Formally, it corre-
sponds to the set

H := {x ∈ X � | xt �= BR ∀t} = {BR,BR,BR}�, (2)

the set of all finite and infinite strings in which the symbol BR does not occur.
Let Hc := X � \H be the complement hypothesis ‘there is at least one non-black
raven’. We fix the definition of H and Hc for the rest of this paper.

Using Solomonoff induction, our prior belief in the hypothesis H is

M(H) =
∑

p:U(p)∈H

2−|p|,

the cumulative weight of all programs that do not print any non-black ravens.
In each time step t, we make one observation xt ∈ X . Our history x<t =
x1x2 . . . xt−1 is the sequence of all previous observations. We update our belief
with Bayes’ rule in accordance with the Bayesian framework for learning [9]: our
posterior belief in the hypothesis H is

M(H | x1:t) =
M(H ∩ x1:t)

M(x1:t)
.

We say that the observation xt confirms the hypothesis H iff M(H | x1:t) >
M(H | x<t) (the belief in H increases), and we say that the observation xt

disconfirms the hypothesis H iff M(H | x1:t) < M(H | x<t) (the belief in H
decreases). If M(H | x1:t) = 0, we say that H is refuted, and if M(H | x1:t) → 1
as t → ∞, we say that H is (maximally) confirmed asymptotically.

Solomonoff Induction Violates Nicod’s Criterion 353

Confirmation and Refutation. Let the sequence x1:∞ be sampled from a com-
putable measure μ, the true environment. If we observe a non-black raven,
xt = BR, the hypothesis H is refuted since H ∩ x1:t = ∅ and this implies
M(H | x1:t) = 0. In this case, our enquiry regarding H is settled. For the rest of
this paper, we focus on the interesting case: we assume our hypothesis H is in
fact true in μ (μ(H) = 1), i.e., μ does not generate any non-black ravens. Since
Solomonoff’s prior M dominates all computable measures, there is a constant
wμ such that

∀x ∈ X ∗ M(x) ≥ wμμ(x). (3)

Thus Blackwell and Dubins’ famous merging of opinions theorem [1] implies

M(H | x1:t) → 1 as t → ∞ with μ-probability one.1 (4)

Therefore our hypothesis H is confirmed asymptotically [15, Sec.7.4]. However,
convergence to 1 is extremely slow, slower than any unbounded computable
function, since 1 − M(H | x1:t)

×≥ 2−m(t) for all t.
In our setup, the equivalence condition holds trivially: a logically equivalent

way of formulating a hypothesis yields the same set of infinite strings, therefore in
our formalization it constitutes the same hypothesis. The central question of this
paper is Nicod’s criterion, which refers to the assertion that BR and BR confirm
H, i.e., M(H | x1:tBR) > M(H | x<t) and M(H | x1:tBR) > M(H | x<t) for all
strings x<t.

4 Disconfirming H

We first illustrate the violation of Nicod’s criterion by defining a particular uni-
versal Turing machine.

Example 3 (Black Raven Disconfirms). The observation of a black raven can
falsify a short program that supported the hypothesis H. Let ε > 0 be a small
rational number. We define a semimeasure ρ as follows.

ρ(BR
∞

) := 1
2 ρ(BR∞) := 1

4 ρ(BR BR
∞

) := 1
4 − ε ρ(x) := 0 otherwise.

To get a universally dominant semimeasure ξ, we mix ρ with the universally
dominant semimeasure M .

ξ(x) := ρ(x) + εM(x).

For computable ε, the mixture ξ is a lower semicomputable semimeasure. Hence
there is a universal monotone Turing machine whose Solomonoff prior is equal
to ξ [20, Lem.13]. Our a priori belief in H at time t = 0 is

ξ(H | ε) = ξ(H) ≥ ρ(BR
∞

) + ρ(BR∞) = 75%,

1 Blackwell-Dubins’ theorem refers to (probability) measures, but technically M is
a semimeasure. However, we can view M as a measure by introducing an extra
symbol to our alphabet [11, p.264]. This preserves dominance (3), and hence absolute
continuity, which is the precondition for Blackwell-Dubins’ theorem.

354 J. Leike and M. Hutter

M(·) H Hc

⋃
a�=xt

Γx<ta A B

Γx1:t C D

{x<t} E 0

A :=
∑

a�=xt

M(x<ta ∩ H)

B :=
∑

a�=xt

M(x<ta ∩ Hc)

C := M(x1:t ∩ H)

D := M(x1:t ∩ Hc)

E := M(x<t) −
∑

a∈X
M(x<ta)

Fig. 1. The definitions of the values A, B, C, D, and E. Note that by assumption, x<t

does not contain non-black ravens, therefore M({x<t} ∩ Hc) = M(∅) = 0.

while our a posteriori belief in H after seeing a black raven is

ξ(H | BR) =
ξ(H ∩ BR)

ξ(BR)
≤ ρ(BR∞) + ε

ρ(BR∞) + ρ(BRBR
∞

)
=

1
4 + ε
1
2 − ε

< 75%

for ε ≤ 7%. Hence observing a black raven in the first time step disconfirms the
hypothesis H. ♦

The rest of this section is dedicated to show that this effect occurs indepen-
dent of the universal Turing machine U and on all computable infinite strings.

4.1 Setup

At time step t, we have seen the history x<t and now update our belief using
the new symbol xt. To understand what happens, we split all possible programs
into five categories.

(a) Programs that never print non-black ravens (compatible with H), but
become falsified at time step t because they print a symbol other than xt.

(b) Programs that eventually print a non-black raven (contradict H), but
become falsified at time step t because they print a symbol other than xt.

(c) Programs that never print non-black ravens (compatible with H), and pre-
dict xt correctly.

(d) Programs that eventually print a non-black raven (contradict H), and pre-
dict xt correctly.

(e) Programs that do not print additional symbols after printing x<t (because
they go into an infinite loop).

Let A, B, C, D, and E denote the cumulative contributions of these five cate-
gories of programs to M . A formal definition is given in Figure 1, and implicitly
depends on the current time step t and the observed string x1:t. The values of A,

Solomonoff Induction Violates Nicod’s Criterion 355

B, C, D, and E are in the interval [0, 1] since they are probabilities. Moreover,
the following holds.

M(x<t) = A + B + C + D + E M(x1:t) = C + D (5)
M(x<t ∩ H) = A + C + E M(x1:t ∩ H) = C (6)

M(H | x<t) =
A + C + E

A + B + C + D + E
M(H | x1:t) =

C

C + D
(7)

We use results from algorithmic information theory to derive bounds on A,
B, C, D, and E. This lets us apply the following lemma which states a necessary
and sufficient condition for confirmation/disconfirmation at time step t.

Lemma 4 (Confirmation Criterion). Observing xt confirms (disconfirms)
the hypothesis H if and only if AD + DE < BC (AD + DE > BC).

Proof. The hypothesis H is confirmed if and only if

M(H | x1:t) − M(H | x<t)
(7)
= C

C+D − A+C+E
A+B+C+D+E = BC−AD−DE

(A+B+C+D+E)(C+D)

is positive. Since the denominator is positive, this is equivalent to BC > AD +
DE.
�
Example 5 (Confirmation Criterion Applied to Example 3). In Example 3 we
picked a particular universal prior and x1 = BR. In this case, the values for A,
B, C, D, and E are

A ∈ [12 , 1
2 + ε] B ∈ [0, ε] C ∈ [14 , 1

4 + ε] D ∈ [14 − ε, 1
4] E ∈ [0, ε].

We invoke Lemma 4 with ε := 7% to get that x1 = BR disconfirms H:

AD + DE ≥ 1
8 − ε

2 = 0.09 > 0.0224 = ε
4 + ε2 ≥ BC. ♦

Lemma 6 (Bounds on ABCDE). Let x1:∞ ∈ H be some computable infinite
string. The following statements hold for every time step t.

(i) 0 < A,B,C,D,E < 1
(ii) A + B

×≤ 2−K(t)

(iii) A,B
×≥ 2−K(t)

(iv) C
×≥ 1

(v) D
×≥ 2−m(t)

(vi) D → 0 as t → ∞
(vii) E → 0 as t → ∞

Proof. Let p be a program that computes the infinite string x1:∞.

(i) Each of A,B,C,D,E is a probability value and hence bounded between
0 and 1. These bounds are strict because for any finite string there is a
program that prints that string.

356 J. Leike and M. Hutter

(ii) A proof is given in the appendix of [8]. Let a �= xt and let q be the shortest
program for the string x<ta, i.e., |q| = Km(x<ta). We can reconstruct t by
running p and q in parallel and counting the number of characters printed
until their output differs. Therefore there is a constant c independent of t
such that K(t) ≤ |p| + |q| + c = |p| + Km(x<ta) + c. Hence

2−Km(x<ta) ≤ 2−K(t)+|p|+c (8)

The set E := {x<ta | t ∈ N, a �= xt} is recursively enumerable and prefix-
free, so Lemma 1 yields a constant cE such that

M(x<ta) ≤ 2−Km(x<ta)+cE
(8)

≤ 2−K(t)+|p|+c+cE .

With A + B ≤ (#X − 1)maxa	=xt
M(x<ta) follows the claim.

(iii) Let a �= xt and let q be the shortest program to compute t, i.e., |q| = K(t).
We can construct a program that prints x<taBR by first running q to get
t and then running p until it has produced a string of length t − 1, and
then printing aBR. Hence there is a constant c independent of t such that
Km(x<taBR) ≤ |q| + |p| + c = K(t) + |p| + c. Therefore

M(x<ta ∩ Hc) ≥ M(x<taBR) ≥ 2−Km(x<taBR) ≥ 2−K(t)−|p|−c.

For the bound on M(x<ta∩H) we proceed analogously except that instead
of printing BR the program goes into an infinite loop.

(iv) Since by assumption the program p computes x1:∞ ∈ H, we have that
M(x1:t ∩ H) ≥ 2−|p|.

(v) Let n be an integer such that K(n) = m(t). We proceed analogously to
(iii) with a program q that prints n such that |q| = m(t). Next, we write
a program that produces the output x1:nBR, which yields a constant c
independent of t such that

M(x1:t ∩ Hc) ≥ M(x1:nBR) ≥ 2−Km(x1:nBR) ≥ 2−|q|−|p|−c = 2−m(t)−|p|−c.

(vi) This follows from Blackwell and Dubins’ result (4):

D = (C + D)
(
1 − C

C+D

)
≤ (1 + 1)(1 − M(H | x1:t)) → 0 as t → ∞.

(vii)
∑∞

t=1 M({x<t}) = M({x<t | t ∈ N}) ≤ 1, thus E = M({x<t}) → 0.
�
Lemma 6 states the bounds that illustrate the ideas to our results informally:

From A ×= B ×= 2−K(t) (iii,iii) and C ×= 1 (iv) we get

AD ×= 2−K(t)D, BC ×= 2−K(t).

According to Lemma 4, the sign of AD + DE − BC tells us whether our belief
in H increases (negative) or decreases (positive).

Since D → 0 (vi), the term AD ×= 2−K(t)D will eventually be smaller than
BC ×= 2−K(t). Therefore it is crucial how fast E → 0 (vii). If we use M , then
E → 0 slower than D → 0 (v), therefore AD+DE−BC is positive infinitely often
(Theorem 8). If we use Mnorm instead of M , then E = 0 and hence AD + DE −
BC = AD − BC is negative except for a finite number of steps (Theorem 11).

Solomonoff Induction Violates Nicod’s Criterion 357

4.2 Unnormalized Solomonoff Prior

Theorem 7 (Counterfactual Black Raven Disconfirms H). Let x1:∞ be
a computable infinite string such that x1:∞ ∈ H (x1:∞ does not contain any
non-black ravens) and xt �= BR infinitely often. Then there is a time step t ∈ N

(with xt �= BR) such that M(H | x<tBR) < M(H | x<t).

Proof. Let t be time step such that xt �= BR. From the proof of Lemma 6 (iii)
we get M(Hc ∩ x<tBR) ≥ 2−K(t)−c and thus

M(H | x<tBR) ≤ M(H ∩ x<tBR) + M(Hc ∩ x<tBR) − 2−K(t)−c

M(x<tBR)

= 1 − 2−K(t)−c

M(x<tBR)
≤ 1 − 2−K(t)−c

A + B

(iii)
≤ 1 − 2−c−c′

.

From (4) there is a t0 such that for all t ≥ t0 we have M(H | x<t) > 1−2−c−c′ ≥
M(H | x<tBR). Since xt �= BR infinitely often according to the assumption,
there is a xt �= BR for t ≥ t0.
�

Note that the black raven in Theorem 7 that we observe at time t is coun-
terfactual, i.e., not part of the sequence x1:∞. If we picked the binary alphabet
{BR,BR} and denoted only observations of ravens, then Theorem 7 would not
apply: the only infinite string in H is BR∞ and the only counterfactual observa-
tion is BR, which immediately falsifies the hypothesis H. The following theorem
gives an on-sequence result.

Theorem 8 (Disconfirmation Infinitely Often for M). Let x1:∞ be a com-
putable infinite string such that x1:∞ ∈ H (x1:∞ does not contain any non-black
ravens). Then M(H | x1:t) < M(H | x<t) for infinitely many time steps t ∈ N.

Proof. We show that there are infinitely many n ∈ N such that for each n there
is a time step t > n where the belief in H decreases. The ns are picked to have
low Kolmogorov complexity, while the ts are incompressible. The crucial insight
is that a program that goes into an infinite loop at time t only needs to know n
and not t, thus making this program much smaller than K(t) ≥ log t.

Let qn be a program that starting with t = n + 1 incrementally outputs x1:t

as long as K(t) < log t. Formally, let φ(y, k) be a computable function such that
φ(y, k + 1) ≤ φ(y, k) and limk→∞ φ(y, k) = K(y).

program qn :
t := n + 1
output x<t

while true :
k := 0
while φ(t, k) ≥ log t :

k := k + 1
output xt

t := t + 1

358 J. Leike and M. Hutter

The program qn only needs to know p and n, so we have that |qn| ≤ K(n)+c for
some constant c independent of n and t. For the smallest t > n with K(t) ≥ log t,
the program qn will go into an infinite loop and thus fail to print a t-th character.
Therefore

E = M({x<t}) ≥ 2−|qn| ≥ 2−K(n)−c. (9)
Incompressible numbers are very dense, and a simple counting argument

shows that there must be one between n and 4n [11, Thm.3.3.1(i)]. Furthermore,
we can assume that n is large enough such that m(4n) ≤ m(n)+1 (since m grows
slower than the logarithm). Then

m(t) ≤ m(4n) ≤ m(n) + 1 ≤ K(n) + 1. (10)

Since the function m grows slower than any unbounded computable function,
we find infinitely many n such that

K(n) ≤ 1
2 (log n − c − c′ − c′′ − 1), (11)

where c′ and c′′ are the constants from Lemma 6 (iii,v). For each such n, there
is a t > n with K(t) ≥ log t, as discussed above. This entails

m(t)+K(n)+ c+ c′′ (10)

≤ 2K(n)+1+ c+ c′′ (11)

≤ log n− c′ ≤ log t− c′ ≤ K(t)− c′.
(12)

From Lemma 6 we get

AD + DE
(i)
> DE

(9),(v)

≥ 2−m(t)−c−K(n)−c′′ (12)

≥ 2−K(t)+c′ (i,iii)
≥ BC.

With Lemma 4 we conclude that xt disconfirms H.
�
To get that M violates Nicod’s criterion infinitely often, we apply Theorem 8

to the computable infinite string BR∞.

4.3 Normalized Solomonoff Prior

In this section we show that for computable infinite strings, our belief in the
hypothesis H is non-increasing at most finitely many times if we normalize M .

For this section we define A′, B′, C ′, D′, and E′ analogous to A, B, C, D,
and E as given in Figure 1 with Mnorm instead of M .

Lemma 9 (Mnorm ≥ M). Mnorm(x) ≥ M(x) for all x ∈ X ∗.

Proof. We use induction on the length of x: Mnorm(ε) = 1 = M(ε) and

Mnorm(xa) =
Mnorm(x)M(xa)∑

b∈X M(xb)
≥ M(x)M(xa)∑

b∈X M(xb)
≥ M(x)M(xa)

M(x)
= M(xa).

The first inequality holds by induction hypothesis and the second inequality uses
the fact that M is a semimeasure.
�
The following lemma states the same bounds for Mnorm as given in Lemma 6
except for (i) and (vii).

Lemma 10 (Bounds on A′B′C ′D′E′). Let x1:∞ ∈ H be some infinite string
computed by program p. The following statements hold for all time steps t.

Solomonoff Induction Violates Nicod’s Criterion 359

(i) A ≤ A′, B ≤ B′,
C ≤ C ′, D ≤ D′

(ii) A′ + B′ ×≤ 2−K(t)

(iii) A′, B′ ×≥ 2−K(t)

(iv) C ′ ×≥ 1
(v) D′ ×≥ 2−m(t)

(vi) D′ → 0 as t → ∞
(vii) E′ = 0

Proof. (i) Follows from Lemma 9.
(ii) Let a �= xt. From Lemma 6 (iii) we have M(x<ta)

×≤ 2−K(t). Thus

Mnorm(x<ta)
(1)
=

Mnorm(x<t)M(x<ta)∑
b∈X M(x<tb)

×≤ Mnorm(x<t)2−K(t)

∑
b∈X M(x<tb)

×≤ 2−K(t).

The last inequality follows from
∑

b∈X M(x<tb) ≥ M(x1:t)
×≥ 1 (Lemma 6

(iv)) and Mnorm(x<t) ≤ 1.
(iii-v) This is a consequence of (i) and Lemma 6 (iii-v).
(vi) Blackwell and Dubins’ result also applies to Mnorm, therefore the proof of

Lemma 6 (vi) goes through unchanged.
(vii) Since Mnorm is a measure, it assigns zero probability to finite strings, i.e.,

Mnorm({x<t}) = 0, hence E′ = 0.
�
Theorem 11 (Disconfirmation Finitely Often for Mnorm). Let x1:∞ be
a computable infinite string such that x1:∞ ∈ H (x1:∞ does not contain any
non-black ravens). Then there is a time step t0 such that Mnorm(H | x1:t) >
Mnorm(H | x<t) for all t ≥ t0.

Intuitively, at time step t0, Mnorm has learned that it is observing the infi-
nite string x1:∞ and there are no short programs remaining that support the
hypothesis H but predict something other than x1:∞.

Proof. We use Lemma 10 (iii,iii,iv,vii) to conclude

A′D′+D′E′−B′C ′ ≤ 2−K(t)+cD′+0−2−K(t)−c′−c′′ ≤ 2−K(t)+c(D′−2−c−c′−c′′
).

From Lemma 10 (vi) we have that D′ → 0, so there is a t0 such that for all
t ≥ t0 we have D′ < 2−c−c′−c′′

. Thus A′D′ + D′E′ − B′C ′ is negative for t ≥ t0.
Now Lemma 4 entails that the belief in H increases.
�

Interestingly, Theorem 11 does not hold for M since that would contradict
Theorem 8. The reason is that there are quite short programs that produce x<t,
but do not halt after that. However, from p and x<t we cannot reconstruct t,
hence a program for x<t does not give us a bound on K(t).

Since we get the same bounds for Mnorm as in Lemma 6, the result of
Theorem 7 transfers to Mnorm:

Corollary 12 (Counterfactual Black Raven Disconfirms H). Let x1:∞
be a computable infinite string such that x1:∞ ∈ H (x1:∞ does not contain any
non-black ravens) and xt �= BR infinitely often. Then there is a time step t ∈ N

(with xt �= BR) such that Mnorm(H | x<tBR) < Mnorm(H | x<t).

360 J. Leike and M. Hutter

For incomputable infinite strings the belief in H can decrease infinitely often:

Corollary 13 (Disconfirmation Infinitely Often for Mnorm). There is an
(incomputable) infinite string x1:∞ ∈ H such that Mnorm(H | x1:t) < Mnorm(H |
x<t) infinitely often as t → ∞.

Proof. We iterate Corollary 12: starting with BR
∞

, we get a time step t1 such
that observing BR at time t1 disconfirms H. We set x1:t1 := BR

t1−1
BR and

apply Corollary 12 to x1:t1BR
∞

to get a time step t2 such that observing BR at
time t2 disconfirms H. Then we set x1:t2 := x1:t1BR

t2−t1−1
BR, and so on.
�

4.4 Stochastically Sampled Strings

The proof techniques from the previous subsections do not generalize to strings
that are sampled stochastically. The main obstacle is the complexity of counter-
factual observations x<ta with a �= xt: for deterministic strings Km(x<ta) → 0,
while for stochastically sampled strings Km(x<ta) � 0. Consider the following
example.

Example 14 (Uniform IID Observations). Let λH be a measure that generates
uniform i.i.d. symbols from {BR,BR,BR}. Formally,

λH(x) :=

{
0 if BR ∈ x, and
3−|x| otherwise.

By construction, λH(H) = 1. By Lemma 2 we have A,C,E ×= 3−t and B,D ×=
3−t2−m(t) with λH -probability one. According to Lemma 4, the sign of AD +
DE − BC is indicative for the change in belief in H. But this is inconclusive
both for M and Mnorm since each of the summands AD, BC, and DE (in case
E �= 0) go to zero at the same rate:

AD ×= DE ×= BC ×= 3−2t2−m(t).

Whether H gets confirmed or disconfirmed thus depends on the universal Turing
machine and/or the probabilistic outcome of the string drawn from λH . ♦

5 Discussion

We chose to present our results in the setting of the black raven problem to make
them more accessible to intuition and more relatable to existing literature. But
these results hold more generally: our proofs follow from the bounds on A, B,
C, D, and E given in Lemma 6 and Lemma 10. These bounds rely on the fact
that we are observing a computable infinite string and that at any time step t
there are programs consistent with the observation history that contradict the
hypothesis and there are programs consistent with the observation history that

Solomonoff Induction Violates Nicod’s Criterion 361

are compatible with the hypothesis. No further assumptions on the alphabet,
the hypothesis H, or the universal Turing machine are necessary.

In our formalization of the raven problem given in Section 3, we used an
alphabet with four symbols. Each symbol indicates one of four possible types
of observations according to the two binary predicates blackness and ravenness.
One could object that this formalization discards important structure from the
problem: BR and BR have more in common than BR and BR, yet as symbols
they are all the same. Instead, we could use the latin alphabet and spell out
‘black’, ‘non-black’, ‘raven’, and ‘non-raven’. The results given in this paper
would still apply analogously.

Our result that Solomonoff induction does not satisfy Nicod’s criterion is
not true for every time step, only for some of them. Generally, whether Nicod’s
criterion should be adhered to depends on whether the paradoxical conclusion is
acceptable. A different Bayesian reasoner might be tempted to argue that a green
apple does confirm the hypothesis H, but only to a small degree, since there are
vastly more non-black objects than ravens [3]. This leads to the acceptance of the
paradoxical conclusion, and this solution to the confirmation paradox is known
as the standard Bayesian solution. It is equivalent to the assertion that blackness
is equally probable regardless of whether H holds: P (black|H) ≈ P (black) [19].
Whether or not this holds depends on our prior beliefs.

The following is a very concise example against the standard Bayesian solu-
tion [4]: There are two possible worlds, the first has 100 black ravens and a
million other birds, while the second has 1000 black ravens, one white raven,
and a million other birds. Now we draw a bird uniformly at random, and it
turns out to be a black raven. Contrary to what Nicod’s criterion claims, this
is strong evidence that we are in fact in the second world, and in this world
non-black ravens exist.

For another, more intuitive example: Suppose you do not know anything
about ravens and you have a friend who collects atypical objects. If you see a
black raven in her collection, surely this would not increase your belief in the
hypothesis that all ravens are black.

We must conclude that violating Nicod’s criterion is not a fault of Solomonoff
induction. Instead, we should accept that for Bayesian reasoning Nicod’s criterion,
in its generality, is false! Quoting the great Bayesian master E. T. Jaynes [9, p.144]:

In the literature there are perhaps 100 ‘paradoxes’ and controversies
which are like this, in that they arise from faulty intuition rather than
faulty mathematics. Someone asserts a general principle that seems to
him intuitively right. Then, when probability analysis reveals the error,
instead of taking this opportunity to educate his intuition, he reacts by
rejecting the probability analysis.

Acknowledgments. This work was supported by ARC grant DP150104590.

362 J. Leike and M. Hutter

References

1. Blackwell, D., Dubins, L.: Merging of opinions with increasing information. The
Annals of Mathematical Statistics, 882–886 (1962)

2. Gács, P.: On the relation between descriptional complexity and algorithmic prob-
ability. Theoretical Computer Science 22(1–2), 71–93 (1983)

3. Good, I.J.: The paradox of confirmation. British Journal for the Philosophy of
Science, 145–149 (1960)

4. Good, I.J.: The white shoe is a red herring. The British Journal for the Philosophy
of Science 17(4), 322–322 (1967)

5. Hempel, C.G.: Studies in the logic of confirmation (I.). Mind, 1–26 (1945)
6. Hempel, C.G.: The white shoe: No red herring. The British Journal for the Phi-

losophy of Science 18(3), 239–240 (1967)
7. Hutter, M.: New error bounds for Solomonoff prediction. Journal of Computer and

System Sciences 62(4), 653–667 (2001)
8. Hutter, M.: On universal prediction and Bayesian confirmation. Theoretical Com-

puter Science 384(1), 33–48 (2007)
9. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University

Press (2003)
10. Levin, L.A.: Laws of information conservation (nongrowth) and aspects of the foun-

dation of probability theory. Problemy Peredachi Informatsii 10(3), 30–35 (1974)
11. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Appli-

cations. Texts in Computer Science, 3rd edn. Springer (2008)
12. Mackie, J.L.: The paradox of confirmation. British Journal for the Philosophy of

Science, 265–277 (1963)
13. Maher, P.: Inductive logic and the ravens paradox. Philosophy of Science, 50–70

(1999)
14. Nicod, J.: Le Problème Logique de L’Induction. Presses Universitaires de France

(1961)
15. Rathmanner, S., Hutter, M.: A philosophical treatise of universal induction.

Entropy 13(6), 1076–1136 (2011)
16. Solomonoff, R.: A formal theory of inductive inference. Parts 1 and 2. Information

and Control 7(1), 1–22 and 224–254 (1964)
17. Solomonoff, R.: Complexity-based induction systems: Comparisons and conver-

gence theorems. IEEE Transactions on Information Theory 24(4), 422–432 (1978)
18. Swinburne, R.G.: The paradoxes of confirmation: A survey. American Philosophical

Quarterly, 318–330 (1971)
19. Vranas, P.B.: Hempel’s raven paradox: A lacuna in the standard Bayesian solution.

The British Journal for the Philosophy of Science 55(3), 545–560 (2004)
20. Wood, I., Sunehag, P., Hutter, M.: (Non-)equivalence of universal priors. In:

Dowe, D.L. (ed.) Solomonoff Festschrift. LNCS, vol. 7070, pp. 417–425. Springer,
Heidelberg (2013)

Solomonoff Induction Violates Nicod’s Criterion 363

List of Notation

:= defined to be equal
#A the cardinality of the set A, i.e., the number of elements
X a finite alphabet
X ∗ the set of all finite strings over the alphabet X
X ∞ the set of all infinite strings over the alphabet X
X � X � := X ∗ ∪ X ∞, the set of all finite and infinite strings over the

alphabet X
Γx the set of all finite and infinite strings that start with x
x, y finite or infinite strings, x, y ∈ X �

x � y the string x is a prefix of the string y
ε the empty string
ε a small positive rational number
t (current) time step
n natural number
K(x) Kolmogorov complexity of the string x: the length of the shortest

program that prints x and halts
m(t) the monotone lower bound on K, formally m(t) := minn≥t K(n)
Km(x) monotone Kolmogorov complexity of the string x: the length of the

shortest program on the monotone universal Turing machine that
prints something starting with x

BR a symbol corresponding to the observation of a black raven
BR a symbol corresponding to the observation of a non-black raven
BR a symbol corresponding to the observation of a black non-raven
BR a symbol corresponding to the observation of a non-black non-raven
H the hypothesis ‘all ravens are black’, formally defined in (2)
U the universal (monotone) Turing machine
M the Solomonoff prior
Mnorm the normalized Solomonoff prior, defined according to (1)
p, q programs on the universal (monotone) Turing machine

On the Computability of Solomonoff Induction
and Knowledge-Seeking

Jan Leike(B) and Marcus Hutter

Australian National University, Canberra, Australia
{jan.leike,marcus.hutter}@anu.edu.au

Abstract. Solomonoff induction is held as a gold standard for learning,
but it is known to be incomputable. We quantify its incomputability
by placing various flavors of Solomonoff’s prior M in the arithmetical
hierarchy. We also derive computability bounds for knowledge-seeking
agents, and give a limit-computable weakly asymptotically optimal rein-
forcement learning agent.

Keywords: Solomonoff induction · Exploration · Knowledge-seeking
agents · General reinforcement learning · Asymptotic optimality ·
Computability · Complexity · Arithmetical hierarchy · Universal tur-
ing machine · AIXI · BayesExp

1 Introduction

Solomonoff’s theory of learning [11,19,20], commonly called Solomonoff induc-
tion, arguably solves the induction problem [18]: for data drawn from any com-
putable measure μ, Solomonoff induction will converge to the correct belief about
any hypothesis [1]. Moreover, convergence is extremely fast in the sense that the
expected number of prediction errors is E + O(

√
E) compared to the number of

errors E made by the informed predictor that knows μ [4].
In reinforcement learning an agent repeatedly takes actions and receives

observations and rewards. The goal is to maximize cumulative (discounted)
reward. Solomonoff’s ideas can be extended to reinforcement learning, leading
to the Bayesian agent AIXI [3,5]. However, AIXI’s trade-off between exploration
and exploitation includes insufficient exploration to get rid of the prior’s bias [9],
which is why the universal agent AIXI does not achieve asymptotic optimal-
ity [13,15].

For extra exploration, we can resort to Orseau’s knowledge-seeking agents.
Instead of rewards, knowledge-seeking agents maximize entropy gain [14,16] or
expected information gain [17]. These agents are apt explorers, and asymptoti-
cally they learn their environment perfectly [16,17].

A reinforcement learning agent is weakly asymptotically optimal if the value
of its policy converges to the optimal value in Cesro mean [7]. Weak asymptotic
optimality stands out because it currently is the only known nontrivial objective
notion of optimality for general reinforcement learners [7,9,15]. Lattimore defines
c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 364–378, 2015.
DOI: 10.1007/978-3-319-24486-0 24

On the Computability of Solomonoff Induction and Knowledge-Seeking 365

Table 1. The computability results on M , Mnorm, M , and Mnorm proved in Section 3.
Lower bounds on the complexity of M and Mnorm are given only for specific universal
Turing machines.

P {(x, q) ∈ X ∗ × Q | P (x) > q} {(x, y, q) ∈ X ∗ × X ∗ × Q | P (xy | x) > q}
M Σ0

1 \ Δ0
1 Δ0

2 \ (Σ0
1 ∪ Π0

1)

Mnorm Δ0
2 \ (Σ0

1 ∪ Π0
1) Δ0

2 \ (Σ0
1 ∪ Π0

1)

M Π0
2 \ Δ0

2 Δ0
3 \ (Σ0

2 ∪ Π0
2)

Mnorm Δ0
3 \ (Σ0

2 ∪ Π0
2) Δ0

3 \ (Σ0
2 ∪ Π0

2)

the agent BayesExp by grafting a knowledge-seeking component on top of AIXI
and shows that BayesExp is a weakly asymptotically optimal agent in the class
of all stochastically computable environments [6, Ch. 5].

The purpose of models such as Solomonoff induction, AIXI, and knowledge-
seeking agents is to answer the question of how to solve (reinforcement) learning
in theory. These answers are useless if they cannot be approximated in practice,
i.e., by a regular Turing machine. Therefore we posit that any ideal model must
at least be limit computable (Δ0

2).
Limit computable functions are the functions that admit an anytime algo-

rithm. More generally, the arithmetical hierarchy specifies different levels of com-
putability based on oracle machines: each level in the arithmetical hierarchy is
computed by a Turing machine which may query a halting oracle for the respec-
tive lower level.

In previous work [10] we established that AIXI is limit computable if
restricted to ε-optimal policies, and placed various versions of AIXI, AINU,
and AIMU in the arithmetical hierarchy. In this paper we investigate the
(in-)computability of Solomonoff induction and knowledge-seeking. The uni-
versal prior M is lower semicomputable and hence its conditional is limit
computable. But M is a semimeasure: it assigns positive probability that the
observed string has only finite length. This can be circumvented by normalizing
M . Solomonoff’s normalization Mnorm preserves the ratio M(x1)/M(x0) and is
limit computable. If we remove the contribution of programs that compute only
finite strings, we get a semimeasure M , which can be normalized to Mnorm by
multiplication with a constant. We show that both M and Mnorm are not limit
computable. Our results on the computability of Solomonoff induction are stated
in Table 1 and proved in Section 3. In Section 4 we show that for finite horizons
both the entropy-seeking and the information-seeking agent are Δ0

3-computable
and have limit-computable ε-optimal policies. The weakly asymptotically opti-
mal agent BayesExp relies on optimal policies that are generally not limit com-
putable [10, Thm.16]. In Section 5 we give a weakly asymptotically optimal agent
based on BayesExp that is limit computable. A list of notation can be found on
page 377.

366 J. Leike and M. Hutter

2 Preliminaries

We use the setup and notation from [10].

2.1 The Arithmetical Hierarchy

A set A ⊆ N is Σ0
n iff there is a computable relation S such that

k ∈ A ⇐⇒ ∃k1∀k2 . . . Qnkn S(k, k1, . . . , kn) (1)

where Qn = ∀ if n is even, Qn = ∃ if n is odd [12, Def. 1.4.10]. A set A ⊆ N is
Π0

n iff its complement N \ A is Σ0
n. We call the formula on the right hand side

of (1) a Σ0
n-formula, its negation is called Π0

n-formula. It can be shown that
we can add any bounded quantifiers and duplicate quantifiers of the same type
without changing the classification of A. The set A is Δ0

n iff A is Σ0
n and A is

Π0
n. We get that Σ0

1 as the class of recursively enumerable sets, Π0
1 as the class

of co-recursively enumerable sets and Δ0
1 as the class of recursive sets.

We say the set A ⊆ N is Σ0
n-hard (Π0

n-hard, Δ0
n-hard) iff for any set B ∈ Σ0

n

(B ∈ Π0
n, B ∈ Δ0

n), B is many-one reducible to A, i.e., there is a computable
function f such that k ∈ B ↔ f(k) ∈ A [12, Def. 1.2.1]. We get Σ0

n ⊂ Δ0
n+1 ⊂

Σ0
n+1 ⊂ . . . and Π0

n ⊂ Δ0
n+1 ⊂ Π0

n+1 ⊂ This hierarchy of subsets of natural
numbers is known as the arithmetical hierarchy.

By Post’s Theorem [12, Thm. 1.4.13], a set is Σ0
n if and only if it is recursively

enumerable on an oracle machine with an oracle for a Σ0
n−1-hard set.

2.2 Strings

Let X be some finite set called alphabet. The set X ∗ :=
⋃∞

n=0 X n is the set of
all finite strings over the alphabet X , the set X ∞ is the set of all infinite strings
over the alphabet X , and the set X � := X ∗ ∪ X ∞ is their union. The empty
string is denoted by ε, not to be confused with the small positive real number ε.
Given a string x ∈ X ∗, we denote its length by |x|. For a (finite or infinite) string
x of length ≥ k, we denote with x1:k the first k characters of x, and with x<k

the first k − 1 characters of x. The notation x1:∞ stresses that x is an infinite
string. We write x
 y iff x is a prefix of y, i.e., x = y1:|x|.

2.3 Computability of Real-Valued Functions

We fix some encoding of rational numbers into binary strings and an encoding
of binary strings into natural numbers. From now on, this encoding will be done
implicitly wherever necessary.

Definition 1 (Σ0
n-, Π0

n-, Δ0
n-computable). A function f : X ∗ → R is called

Σ0
n-computable (Π0

n-computable, Δ0
n-computable) iff the set {(x, q) ∈ X ∗ × Q |

f(x) > q} is Σ0
n (Π0

n, Δ0
n).

On the Computability of Solomonoff Induction and Knowledge-Seeking 367

Table 2. Connection between the computability of real-valued functions and the
arithmetical hierarchy.

{(x, q) | f(x) > q} {(x, q) | f(x) < q}
f is computable Δ0

1 Δ0
1

f is lower semicomputable Σ0
1 Π0

1

f is upper semicomputable Π0
1 Σ0

1

f is limit computable Δ0
2 Δ0

2

f is Δ0
n-computable Δ0

n Δ0
n

f is Σ0
n-computable Σ0

n Π0
n

f is Π0
n-computable Π0

n Σ0
n

A Δ0
1-computable function is called computable, a Σ0

1 -computable function is
called lower semicomputable, and a Π0

1 -computable function is called upper semi-
computable. A Δ0

2-computable function f is called limit computable, because
there is a computable function φ such that

lim
k→∞

φ(x, k) = f(x).

The program φ that limit computes f can be thought of as an anytime algorithm
for f : we can stop φ at any time k and get a preliminary answer. If the program
φ ran long enough (which we do not know), this preliminary answer will be close
to the correct one.

Limit-computable sets are the highest level in the arithmetical hierarchy that
can be approached by a regular Turing machine. Above limit-computable sets
we necessarily need some form of halting oracle. See Table 2 for the definition
of lower/upper semicomputable and limit-computable functions in terms of the
arithmetical hierarchy.

Lemma 2 (Computability of Arithmetical Operations). Let n > 0 and
let f, g : X ∗ → R be two Δ0

n-computable functions. Then

(i) {(x, y) | f(x) > g(y)} is Σ0
n,

(ii) {(x, y) | f(x) ≤ g(y)} is Π0
n,

(iii) f + g, f − g, and f · g are Δ0
n-computable,

(iv) f/g is Δ0
n-computable if g(x) �= 0 for all x, and

(v) log f is Δ0
n-computable if f(x) > 0 for all x.

3 The Complexity of Solomonoff Induction

A semimeasure over the alphabet X is a function ν : X ∗ → [0, 1] such that
(i) ν(ε) ≤ 1, and (ii) ν(x) ≥ ∑

a∈X ν(xa) for all x ∈ X ∗. A semimeasure is called
(probability) measure iff for all x equalities hold in (i) and (ii).

368 J. Leike and M. Hutter

M(xy | x) > q ⇐⇒ ∀�∃k
φ(xy, k)

φ(x, �)
> q ⇐⇒ ∃k∃�0∀� ≥ �0

φ(xy, k)

φ(x, �)
> q

Fig. 1. A Π0
2 -formula and an equivalent Σ0

2 -formula defining conditional M . Here
φ(x, k) denotes a computable function that lower semicomputes M(x).

Solomonoff’s prior M [19] assigns to a string x the probability that the
reference universal monotone Turing machine U [11, Ch. 4.5.2] computes a string
starting with x when fed with uniformly random bits as input. Formally,

M(x) :=
∑

p: x�U(p)

2−|p|. (2)

The function M is a lower semicomputable semimeasure, but not computable
and not a measure [11, Lem. 4.5.3]. A semimeasure ν can be turned into a
measure νnorm using Solomonoff normalization: νnorm(ε) := 1 and for all x ∈ X ∗

and a ∈ X ,

νnorm(xa) := νnorm(x)
ν(xa)∑

b∈X ν(xb)
. (3)

By definition, Mnorm and Mnorm are measures [11, Sec. 4.5.3]. Moreover, since
Mnorm ≥ M , normalization preserves universal dominance. Hence Solomonoff’s
theorem implies that Mnorm predicts just as well as M .

The measure mixture M [2, p. 74] is defined as

M(x) := lim
n→∞

∑

y∈X n

M(xy). (4)

The measure mixture M is the same as M except that the contributions by
programs that do not produce infinite strings are removed: for any such program
p, let k denote the length of the finite string generated by p. Then for |xy| > k,
the program p does not contribute to M(xy), hence it is excluded from M(x).

Similarly to M , the measure mixture M is not a (probability) measure since
M(ε) < 1, but in this case normalization (3) is just multiplication with the
constant 1/M(ε), leading to the normalized measure mixture Mnorm. When
using the Solomonoff prior M (or one of its sisters Mnorm, M , or Mnorm) for
sequence prediction, we need to compute the conditional probability M(xy |
x) := M(xy)/M(x) for finite strings x, y ∈ X ∗. Because M(x) > 0 for all finite
strings x ∈ X ∗, this quotient is well-defined.

Theorem 3 (Complexity of M , Mnorm, M , and Mnorm).
(i) M(x) is lower semicomputable
(ii) M(xy | x) is limit computable
(iii) Mnorm(x) is limit computable
(iv) Mnorm(xy | x) is limit computable

(v) M(x) is Π0
2 -computable

(vi) M(xy | x) is Δ0
3-computable

(vii) Mnorm(x) is Δ0
3-computable

(viii) Mnorm(xy | x) is Δ0
3-computable

On the Computability of Solomonoff Induction and Knowledge-Seeking 369

Proof. (i) By [11, Thm. 4.5.2]. Intuitively, we can run all programs in parallel
and get monotonely increasing lower bounds for M(x) by adding 2−|p| every
time a program p has completed outputting x.

(ii) From (i) and Lemma 2 (iv), since M(x) > 0 (see also Figure 1).
(iii) By Lemma 2 (iii,iv) and M(x) > 0.
(iv) By (iii) and Lemma 2 (iv), since Mnorm(x) ≥ M(x) > 0.
(v) Let φ be a computable function that lower semicomputes M . Since M is a

semimeasure, M(xy) ≥ ∑
z M(xyz), hence

∑
y∈X n M(xy) is nonincreasing

in n and thus M(x) > q iff ∀n∃k
∑

y∈X n φ(xy, k) > q.
(vi) From (v) and Lemma 2 (iv), since M(x) > 0.
(vii) From (v) and Lemma 2 (iv).
(viii) From (vi) and Lemma 2 (iv), since Mnorm(x) ≥ M(x) > 0. ��

We proceed to show that these bounds are in fact the best possible ones. If
M were Δ0

1-computable, then so would be the conditional semimeasure M(· | ·).
Thus we could compute the M -adversarial sequence z1z2 . . . defined by

zt :=

{
0 if M(1 | z<t) > 1

2 ,

1 otherwise.

The sequence z1z2 . . . corresponds to a computable deterministic measure μ.
However, we have M(z1:t) ≤ 2−t by construction, so dominance M(x) ≥ wμμ(x)
with wμ > 0 yields a contradiction with t → ∞:

2−t ≥ M(z1:t) ≥ wμμ(z1:t) = wμ > 0

By the same argument, the normalized Solomonoff prior Mnorm cannot be Δ0
1-

computable. However, since it is a measure, Σ0
1 - or Π0

1 -computability would
entail Δ0

1-computability.
For M and Mnorm we prove the following two lower bounds for specific uni-

versal Turing machines.

Theorem 4 (M is not Limit Computable). There is a universal Turing
machine U ′ such that the set {(x, q) | MU ′(x) > q} is not in Δ0

2.

Proof. Assume the contrary, let A be Π0
2 but not Δ0

2, and let S be a computable
relation such that

n ∈ A ⇐⇒ ∀k∃i S(n, k, i). (5)

For each n ∈ N, we define the program pn as follows.

output 1n+10
k := 0
while true :

i := 0
while not S(n, k, i) :

i := i + 1
k := k + 1
output 0

370 J. Leike and M. Hutter

Each program pn always outputs 1n+10. Furthermore, the program pn outputs
the infinite string 1n+10∞ if and only if n ∈ A by (5). We define U ′ as follows
using our reference machine U .

– U ′(1n+10): Run pn.
– U ′(00p): Run U(p).
– U ′(01p): Run U(p) and bitwise invert its output.

By construction, U ′ is a universal Turing machine. No pn outputs a string start-
ing with 0n+11, therefore MU ′(0n+11) = 1

4

(
MU (0n+11) + MU (1n+10)

)
. Hence

MU ′(1n+10) = 2−n−21A(n) + 1
4MU (1n+10) + 1

4MU (0n+11)

= 2−n−21A(n) + MU ′(0n+11)

If n /∈ A, then MU ′(1n+10) = MU ′(0n+11). Otherwise, we have |MU ′(1n+10) −
MU ′(0n+11)| = 2−n−2.

Now we assume that MU ′ is limit computable, i.e., there is a computable
function φ : X ∗ × N → Q such that limk→∞ φ(x, k) = MU ′(x). We get that

n ∈ A ⇐⇒ lim
k→∞

φ(0n+11, k) − φ(1n+10, k) > 2−n−3,

thus A is limit computable, a contradiction. ��
Corollary 5 (Mnorm is not Σ0

2- or Π0
2 -computable). There is a universal

Turing machine U ′ such that {(x, q) | MnormU ′(x) > q} is not in Σ0
2 or Π0

2 .

Proof. Since Mnorm = c · M , there exists a k ∈ N such that 2−k < c (even if we
do not know the value of k). We can show that the set {(x, q) | MnormU ′(x) > q}
is not in Δ0

2 analogously to the proof of Theorem 4, using

n ∈ A ⇐⇒ lim
k→∞

φ(0n+11, k) − φ(1n+10, k) > 2−k−n−3.

If Mnorm were Σ0
2 -computable or Π0

2 -computable, this would imply that Mnorm

is Δ0
2-computable since Mnorm is a measure, a contradiction. ��

Since M(ε) = 1, we have M(x | ε) = M(x), so the conditional probability
M(xy | x) has at least the same complexity as M . Analogously for Mnorm and
Mnorm since they are measures. For M , we have that M(x | ε) = Mnorm(x), so
Corollary 5 applies. All that remains to prove is that conditional M is not lower
semicomputable.

Theorem 6 (Conditional M is not Lower Semicomputable). The set
{(x, xy, q) | M(xy | x) > q} is not recursively enumerable.

Proof. Assume to the contrary that M(xy | x) is lower semicomputable. Accord-
ing to [8, Thm. 12] there is an infinite string z1:∞ such that z2t = z2t−1 for all
t > 0 and

lim inf
t→∞ M(z1:2t | z<2t) < 1. (6)

On the Computability of Solomonoff Induction and Knowledge-Seeking 371

Define the semimeasure

ν(x1:t) :=

{∏	t/2

k=1 M(x<2k | x<2k−1) if ∀0 < 2k ≤ t x2k = x2k−1

0 otherwise.

Since we assume M(x<2k | x<2k−1) to be lower semicomputable, ν is lower
semicomputable. Therefore there is a constant c > 0 such that M(x) ≥ cν(x)
for all x ∈ X ∗. With the chain rule we get for even-lengthed x with x2k = x2k−1

c ≤ M(x)
ν(x)

=
∏t

i=1 M(x1:i | x<i)
∏t/2

k=1 M(x<2k | x<2k−1)
=

t/2∏

k=1

M(x1:2k | x<2k).

Plugging in the sequence z1:∞, we get a contradiction with (6):

0 < c ≤
t∏

k=1

M(z1:2k | z<2k) t→∞−−−→ 0 ��

4 The Complexity of Knowledge-Seeking

In general reinforcement learning the agent interacts with an environment in
cycles: at time step t the agent chooses an action at ∈ A and receives a percept
et = (ot, rt) ∈ E consisting of an observation ot ∈ O and a real-valued reward
rt ∈ R; the cycle then repeats for t + 1. A history is an element of (A × E)∗. We
use æ ∈ A × E to denote one interaction cycle, and æ1:t to denote a history of
length t. A policy is a function π : (A × E)∗ → A mapping each history to the
action taken after seeing this history. We assume A and E to be finite.

The environment can be stochastic, but is assumed to be semicomputable. In
accordance with the AIXI literature [5], we model environments as lower semi-
computable chronological conditional semimeasures (LSCCCSs). The class of of
all LSCCCSs is denoted with M. A conditional semimeasure ν takes a sequence
of actions a1:t as input and returns a semimeasure ν(· ‖ a1:t) over E�. A con-
ditional semimeasure ν is chronological iff percepts at time t do not depend on
future actions, i.e., ν(e1:t ‖ a1:k) = ν(e1:t ‖ a1:t) for all k > t. Despite their name,
conditional semimeasures do not specify conditional probabilities; the environ-
ment ν is not a joint probability distribution on actions and percepts. Here
we only care about the computability of the environment ν; for our purposes,
chronological conditional semimeasures behave just like semimeasures.

Equivalently to (2), the Solomonoff prior M can be defined as a mixture
over all lower semicomputable semimeasures using a lower semicomputable uni-
versal prior [21]. We generalize this representation to chronological conditional
semimeasures: we fix the lower semicomputable universal prior (wν)ν∈M with
wν > 0 for all ν ∈ M and

∑
ν∈M wν ≤ 1, given by the reference machine U

according to wν := 2−KU (ν) [5, Sec. 5.1.2]. The universal prior w gives rise to
the universal mixture ξ, which is a convex combination of all LSCCCSs M:

ξ(e<t ‖ a<t) :=
∑

ν∈M
wνν(e<t ‖ a<t)

372 J. Leike and M. Hutter

The universal mixture ξ is analogous to the Solomonoff prior M but defined for
reactive environments. Analogously to Theorem 3 (i), the universal mixture ξ
is lower semicomputable [5, Sec. 5.10]. Moreover, we have ξnorm ≥ ξ, preserving
universal dominance analogously to M .

4.1 Knowledge-Seeking Agents

We discuss two variants of knowledge-seeking agents: entropy-seeking agents
(Shannon-KSA) [14,16] and information-seeking agents (KL-KSA) [17]. The en-
tropy-seeking agent maximizes the Shannon entropy gain, while the information-
seeking agent maximizes the expected Bayesian information gain (KL-
divergence) in the universal mixture ξ. These quantities are expressed in the
value function.

In this section we use a finite lifetime m (possibly dependent on time step t):
the knowledge-seeking agent maximizes entropy/information received up to and
including time step m. We assume that the function m (of t) is computable.

Definition 7 (Entropy-Seeking Value Function [16, Sec. 6]). The entro-
py-seeking value of a policy π given history æ<t is

V π
H(æ<t) :=

∑

et:m

−ξnorm(e1:m | e<t ‖ a1:m) log2 ξnorm(e1:m | e<t ‖ a1:m)

where ai := π(e<i) for all i ≥ t.

Definition 8 (Information-Seeking Value Function [17, Def. 1]). The
information-seeking value of a policy π given history æ<t is

V π
I (æ<t) :=

∑

et:m

∑

ν∈M
wν

ν(e1:m ‖ a1:m)
ξnorm(e<t ‖ a<t)

log2
ν(e1:m | e<t ‖ a1:m)

ξnorm(e1:m | e<t ‖ a1:m)

where ai := π(e<i) for all i ≥ t.

We use V π in places where either of the entropy-seeking or the information-
seeking value function can be substituted.

Definition 9 ((ε-)Optimal Policy). The optimal value function V ∗ is defined
as V ∗(æ<t) := supπ V π(æ<t). A policy π is optimal iff V π(æ<t) = V ∗(æ<t) for
all histories æ<t ∈ (A×E)∗. A policy π is ε-optimal iff V ∗(æ<t)−V π(æ<t) < ε
for all histories æ<t ∈ (A × E)∗.

An entropy-seeking agent is defined as an optimal policy for the value func-
tion V ∗

H and an information-seeking agent is defined as an optimal policy for the
value function V ∗

I .
The entropy-seeking agent does not work well in stochastic environments

because it gets distracted by noise in the environment rather than trying to
distinguish environments [17]. Moreover, the unnormalized knowledge-seeking
agents may fail to seek knowledge in deterministic semimeasures as the following
example demonstrates.

On the Computability of Solomonoff Induction and Knowledge-Seeking 373

Example 10 (Unnormalized Entropy-Seeking). Suppose we use ξ instead of ξnorm
in Definition 7. Fix A := {α, β}, E := {0, 1}, and m := 1 (we only care about
the entropy of the next percept). We illustrate the problem on a simple class of
environments {ν1, ν2}:

ν1α/0/0.1 β/0/0.5 ν2α/1/0.1 β/0/0.5

where transitions are labeled with action/percept/probability. Both ν1 and ν2
return a percept deterministically or nothing at all (the environment ends).
Only action α distinguishes between the environments. With the prior wν1 :=
wν2 := 1/2, we get a mixture ξ for the entropy-seeking value function V π

H . Then
V ∗

H(α) ≈ 0.432 < 0.5 = V ∗
H(β), hence action β is preferred over α by the entropy-

seeking agent. But taking action β yields percept 0 (if any), hence nothing is
learned about the environment. ♦

Solomonoff’s prior is extremely good at learning: with this prior a Bayesian
agent learns the value of its own policy asymptotically (on-policy value con-
vergence) [5, Thm. 5.36]. However, generally it does not learn the result of
counterfactual actions that it does not take. Knowledge-seeking agents learn
the environment more effectively, because they focus on exploration. Both the
entropy-seeking agent and the information-seeking agent are strongly asymptot-
ically optimal in the class of all deterministic computable environments [16,17,
Thm. 5]: the value of their policy converges to the optimal value in the sense that
V π → V ∗ almost surely. Moreover, the information-seeking agent also learns to
predict the result of counterfactual actions [17, Thm. 7].

4.2 Knowledge-Seeking is Limit Computable

We proceed to show that ε-optimal knowledge-seeking agents are limit com-
putable, and optimal knowledge-seeking agents are in Δ0

3.

Theorem 11 (Computability of Knowledge-Seeking). There are limit-
computable ε-optimal policies and Δ0

3-computable optimal policies for entropy-
seeking and information-seeking agents.

Proof. Since ξ, ν, and wν are lower semicomputable, the value functions V ∗
H and

V ∗
I are Δ0

2-computable according to Lemma 2 (iii-v). The claim now follows from
the following lemma. ��
Lemma 12 (Complexity of (ε-)Optimal Policies [10, Thm. 8 & 11]). If
the optimal value function V ∗ is Δ0

n-computable, then there is an optimal policy
π∗ that is in Δ0

n+1, and there is an ε-optimal policy πε that is in Δ0
n.

5 A Weakly Asymptotically Optimal Agent in Δ0
2

In reinforcement learning we are interested in reward-seeking policies. Rewards
are provided by the environment as part of each percept et = (ot, rt) where

374 J. Leike and M. Hutter

ot ∈ O is the observation and rt ∈ [0, 1] is the reward. In this section we fix a
computable discount function γ : N → R with γ(t) ≥ 0 and

∑∞
t=1 γ(t) < ∞.

The discount normalization factor is defined as Γt :=
∑∞

i=t γ(i). The effective
horizon Ht(ε) is a horizon that is long enough to encompass all but an ε of the
discount function’s mass:

Ht(ε) := min{k | Γt+k/Γt ≤ ε}.

Definition 13 (Reward-Seeking Value Function [10, Def. 20]). The re-
ward-seeking value of a policy π in environment ν given history æ<t is

V π
ν (æ<t) :=

1
Γt

∞∑

m=t

∑

et:m

γ(m)rmν(e1:m | e<t ‖ a1:m)

if Γt > 0 and V π
ν (æ<t) := 0 if Γt = 0 where ai := π(e<i) for all i ≥ t.

Definition 14 (Weak Asymptotic Optimality [7, Def. 7]). A policy π is
weakly asymptotically optimal in the class of environments M iff the reward-
seeking value converges to the optimal value on-policy in Cesro mean, i.e.,

1
t

t∑

k=1

(
V ∗

ν (æ<k) − V π
ν (æ<k)

) t→∞−−−→ 0 ν-almost surely for all ν ∈ M.

Not all discount functions admit weakly asymptotically optimal policies [7, Thm.
8]; a necessary condition is that the effective horizon grows sublinearly [6, Thm.
5.5]. This is satisfied by geometric discounting, but not by harmonic or power
discounting [5, Tab. 5.41].

This condition is also sufficient [6, Thm. 5.6]: Lattimore defines a weakly
asymptotically optimal agent called BayesExp [6, Ch. 5]. BayesExp alternates
between phases of exploration and phases of exploitation: if the optimal in-
formation-seeking value is larger than εt, then BayesExp starts an exploration
phase, otherwise it starts an exploitation phase. During an exploration phase,
BayesExp follows an optimal information-seeking policy for Ht(εt) steps. During
an exploitation phase, BayesExp follows an ξ-optimal reward-seeking policy for
one step [6, Alg. 2].

Generally, optimal reward-seeking policies are Π0
2 -hard [10, Thm.16], and for

optimal knowledge-seeking policies we only proved that they are Δ0
3. Therefore

we do not know BayesExp to be limit computable, and we expect it not to
be. However, we can approximate it using ε-optimal policies preserving weak
asymptotic optimality.

Theorem 15 (A Limit-Computable Weakly Asymptotically Optimal
Agent). If there is a nonincreasing computable sequence of positive reals (εt)t∈N

such that εt → 0 and Ht(εt)/(tεt) → 0 as t → ∞, then there is a limit-
computable policy that is weakly asymptotically optimal in the class of all com-
putable stochastic environments.

On the Computability of Solomonoff Induction and Knowledge-Seeking 375

Proof. Analogously to Theorem 3 (i) we get that ξ is lower semicomputable,
and hence the optimal reward-seeking value function V ∗

ν is limit computable [10,
Lem. 21]. Hence by Lemma 12, there is a limit-computable 2−t-optimal reward-
seeking policy πξ for the universal mixture ξ [10, Cor. 22]. By Theorem 11 there
are limit-computable εt/2-optimal information-seeking policies πt

I with lifetime
t+Ht(εt). We define a policy π analogously to BayesExp with πt

I and πξ instead
of the optimal policies:

If V ∗
I (æ<t) > εt for lifetime t + Ht(εt), then follow πt

I for Ht(εt) steps.
Otherwise, follow πξ for one step.

Since V ∗
I , πI , and πξ are limit computable, the policy π is limit computable.

Furthermore, πξ is 2−t-optimal and 2−t → 0, so V
πξ

ξ (æ<t) → V ∗
ξ (æ<t) as t → ∞.

Now we can proceed analogously to the proof of [6, Thm. 5.6], which consists
of three parts. First, it is shown that the value of the ξ-optimal reward-seeking
policy π∗

ξ converges to the optimal value for exploitation time steps (second

branch in the definition of π) in the sense that V
π∗

ξ
μ → V ∗

μ . This carries over to
the 2−t-optimal policy πξ, since the key property is that on exploitation steps,
V ∗

I < εt; i.e., π only exploits if potential knowledge-seeking value is low. In short,
we get for exploitation steps

V
πξ

ξ (æ<t) → V
π∗

ξ

ξ (æ<t) → V
π∗

ξ
μ (æ<t) → V ∗

μ (æ<t) as t → ∞.

Second, it is shown that the density of exploration steps vanishes. This result
carries over since the condition V ∗

I (æ<t) > εt that determines exploration steps
is exactly the same as for BayesExp and πt

I is εt/2-optimal.
Third, the results of part one and two are used to conclude that π is weakly

asymptotically optimal. This part carries over to our proof. ��

6 Summary

When using Solomonoff’s prior for induction, we need to evaluate conditional
probabilities. We showed that conditional M and Mnorm are limit computable
(Theorem 3), and that M and Mnorm are not limit computable (Theorem 4 and
Corollary 5); see Table 1 on page 365. This result implies that we can approxi-
mate M or Mnorm for prediction, but not the measure mixture M or Mnorm.

In some cases, normalized priors have advantages. As illustrated in Exam-
ple 10, unnormalized priors can make the entropy-seeking agent mistake the
entropy gained from the probability assigned to finite strings for knowledge.
From Mnorm ≥ M we get that Mnorm predicts just as well as M , and by Theo-
rem 3 we can use Mnorm without losing limit computability.

Any method that tries to tackle the reinforcement learning problem has
to balance between exploration and exploitation. AIXI strikes this balance in
the Bayesian way. However, this does not lead to enough exploration [9,15].
Our agent cares more about the present than the future—hence an investment in

376 J. Leike and M. Hutter

form of exploration is discouraged. To counteract this, we can add a knowledge-
seeking component to the agent. In Section 4 we discussed two variants of
knowledge-seeking agents: entropy-seekers [16] and information-seekers [17]. We
showed that ε-optimal knowledge-seeking agents are limit computable and opti-
mal knowledge-seeking agents are Δ0

3 (Theorem 11).
We set out with the goal of finding a perfect reinforcement learning agent that

is limit computable. Weakly asymptotically optimal agents can be considered a
suitable candidate, since they are currently the only known general reinforce-
ment learning agents which are optimal in an objective sense [9]. We discussed
Lattimore’s BayesExp [6, Ch. 5], which relies on Solomonoff induction to learn its
environment and on a knowledge-seeking component for extra exploration. Our
results culminated in a limit-computable weakly asymptotically optimal agent
(Theorem 15). based on Lattimore’s BayesExp. In this sense our goal has been
achieved.

Acknowledgments. This work was supported by ARC grant DP150104590. We
thank Tom Sterkenburg for feedback on the proof of Theorem 6.

References

1. Blackwell, D., Dubins, L.: Merging of opinions with increasing information. The
Annals of Mathematical Statistics, 882–886 (1962)

2. Gács, P.: On the relation between descriptional complexity and algorithmic prob-
ability. Theoretical Computer Science 22(1–2), 71–93 (1983)

3. Hutter, M.: A theory of universal artificial intelligence based on
algorithmic complexity. Technical Report cs.AI/0004001 (2000).
http://arxiv.org/abs/cs.AI/0004001

4. Hutter, M.: New error bounds for Solomonoff prediction. Journal of Computer and
System Sciences 62(4), 653–667 (2001)

5. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based on Algo-
rithmic Probability. Springer (2005)

6. Lattimore, T.: Theory of General Reinforcement Learning. PhD thesis, Australian
National University (2013)

7. Lattimore, T., Hutter, M.: Asymptotically optimal agents. In: Kivinen, J.,
Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS, vol. 6925,
pp. 368–382. Springer, Heidelberg (2011)

8. Lattimore, T., Hutter, M., Gavane, V.: Universal prediction of selected bits. In:
Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS,
vol. 6925, pp. 262–276. Springer, Heidelberg (2011)

9. Leike, J., Hutter, M.: Bad universal priors and notions of optimality. In: Conference
on Learning Theory (2015)

10. Leike, J., Hutter, M.: On the computability of AIXI. In: Uncertainty in Artificial
Intelligence (2015)

11. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Appli-
cations. Texts in Computer Science, 3rd edn. Springer (2008)

12. Nies, A.: Computability and Randomness. Oxford University Press (2009)
13. Orseau, L.: Optimality issues of universal greedy agents with static priors. In:

Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) Algorithmic Learning
Theory. LNCS, vol. 6331, pp. 345–359. Springer, Heidelberg (2010)

http://arxiv.org/abs/cs.AI/0004001

On the Computability of Solomonoff Induction and Knowledge-Seeking 377

14. Orseau, L.: Universal knowledge-seeking agents. In: Kivinen, J., Szepesvári, C.,
Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS, vol. 6925, pp. 353–367.
Springer, Heidelberg (2011)

15. Orseau, L.: Asymptotic non-learnability of universal agents with computable hori-
zon functions. Theoretical Computer Science 473, 149–156 (2013)

16. Orseau, L.: Universal knowledge-seeking agents. Theoretical Computer Science
519, 127–139 (2014)

17. Orseau, L., Lattimore, T., Hutter, M.: Universal knowledge-seeking agents for
stochastic environments. In: Jain, S., Munos, R., Stephan, F., Zeugmann, T. (eds.)
ALT 2013. LNCS, vol. 8139, pp. 158–172. Springer, Heidelberg (2013)

18. Rathmanner, S., Hutter, M.: A philosophical treatise of universal induction.
Entropy 13(6), 1076–1136 (2011)

19. Solomonoff, R.: A formal theory of inductive inference. Parts 1 and 2. Information
and Control 7(1), 1–22 and 224–254 (1964)

20. Solomonoff, R.: Complexity-based induction systems: Comparisons and conver-
gence theorems. IEEE Transactions on Information Theory 24(4), 422–432 (1978)

21. Wood, I., Sunehag, P., Hutter, M.: (Non-)equivalence of universal priors. In: Dowe,
D.L. (ed.) Solomonoff Festschrift. LNCS, vol. 7070, pp. 417–425. Springer, Heidel-
berg (2013)

List of Notation

:= defined to be equal
N the natural numbers, starting with 0
A,B sets of natural numbers
1A the characteristic function that is 1 if its argument is an element of the

set A and 0 otherwise
X ∗ the set of all finite strings over the alphabet X
X ∞ the set of all infinite strings over the alphabet X
X � X � := X ∗ ∪X ∞, the set of all finite and infinite strings over the alphabet

X
x, y finite or infinite strings, x, y ∈ X �

x
 y the string x is a prefix of the string y
ε the empty string, the history of length 0
ε a small positive real number
A the (finite) set of possible actions
O the (finite) set of possible observations
E the (finite) set of possible percepts, E ⊂ O × R

M Solomonoff’s prior defined in (2)
M the measure mixture defined in (4)
νnorm Solomonoff normalization of the semimeasure ν defined in (3)
α, β two different actions, α, β ∈ A
at the action in time step t
et the percept in time step t
ot the observation in time step t

378 J. Leike and M. Hutter

rt the reward in time step t, bounded between 0 and 1
æ<t the first t − 1 interactions, a1e1a2e2 . . . at−1et−1

γ the discount function γ : N → R≥0

Γt a discount normalization factor, Γt :=
∑∞

i=t γ(i)
Ht(ε) the effective horizon, Ht(ε) = min{H | Γt+H/Γt ≤ ε}
π a policy, i.e., a function π : (A × E)∗ → A
V π

H the entropy-seeking value of the policy π (see Theorem 7)
V π

I the information-seeking value of the policy π (see Theorem 8)
V π

ν the reward-seeking value of policy π in environment ν (see Theorem 13)
V π the entropy-seeking/information-seeking/reward-seeking value of policy

π
V ∗ the optimal entropy-seeking/information-seeking/reward-seeking value
φ a computable function
S a computable relation over natural numbers
n, k, i natural numbers
t (current) time step
m lifetime of the agent (a function of the current time step t)
M the class of all lower semicomputable chronological conditional semimea-

sures; our environment class
ν lower semicomputable semimeasure
μ computable measure, the true environment
ξ the universal mixture over all environments in M

Open Questions

1. Can the upper bound of Δ0
3 for knowledge-seeking policies be improved?

2. Is BayesExp limit computable?
3. Does the lower given in Theorem 4 and Theorem 5 hold for any universal

Turing machine?

We expect the answers to questions 1 and 2 to be negative and the answer to
question 3 to be positive.

Two Problems for Sophistication

Peter Bloem(B), Steven de Rooij, and Pieter Adriaans

System and Network Engineering Group, University of Amsterdam,
Amsterdam, The Netherlands

uva@peterbloem.nl, steven.de.rooij@gmail.com, p.w.adriaans@uva.nl

Abstract. Kolmogorov complexity measures the amount of information
in data, but does not distinguish structure from noise. Kolmogorov’s
definition of the structure function was the first attempt to measure
only the structural information in data, by measuring the complexity
of the smallest model that allows for optimal compression of the data.
Since then, many variations of this idea have been proposed, for which
we use sophistication as an umbrella term. We describe two fundamental
problems with existing proposals, showing many of them to be unsound.
Consequently, we put forward the view that the problem is fundamental:
it may be impossible to objectively quantify the sophistication.

1 Introduction

Kolmogorov complexity gives us a sound definition of the amount of informa-
tion contained in a binary string. It does not, however, capture what most people
would consider complexity. For example, a sequence of a million coin flips will
almost certainly have maximal Kolmogorov complexity, even though there is
nothing complex about flipping a coin repeatedly. Many scholars have defined
additional measures in the spirit of Kolmogorov complexity, aimed at quantify-
ing not all information in a binary string, but only the meaningful. While this
concept has been given many names, we use sophistication as an umbrella term.
In this paper, we investigate two serious problems with sophistication. We con-
clude with two arguments suggesting the problems are fundamental, explaining
our belief that sophistication cannot be defined in a satisfactory manner.

The Kolmogorov complexity C(x) of a binary string x is, informally, the
length of the shortest computer program to print x. This length depends on the
choice of programming language, but, by the invariance theorem [15, Section 2.1],
only by a constant, independent of x. For sufficiently complex objects, the
choice of programming language becomes irrelevant and Kolmogorov complexity
becomes an objective measure. A definition of sophistication S(x) in the spirit
of C(x) should have similar guarantees:

1. S(x) should count the bits required for an effective description of the struc-
tural properties of a binary string.

2. An analogue of invariance should hold: there must be strict limits on how
much sophistication can be affected by a change in programming language.

c© Springer International Publishing Switzerland 2015
K. Chaudhuri et al. (Eds.): ALT 2015, LNAI 9355, pp. 379–394, 2015.
DOI: 10.1007/978-3-319-24486-0 25

380 P. Bloem et al.

Fig. 1. (left) Two-part representations of x by the two components of their code.
The Kolmogorov complexity C(x), appearing as a black diagonal, provides a lower
bound on the total codelength. We consider only representations that are close to this
optimum—called candidates—with the threshold represented by a dashed line. The
size of the smallest model below the threshold is the sophistication of the data. (right)
The same image, after a constant perturbation in the model complexity caused by a
change in numbering.

3. There should be no constant c such that S(x) ≤ c for every input x. If
sophistication is bounded, then knowing its value under one programming
language provides no constraints on its value under another language (except
it is also bounded).

4. Similarly, there should be no constant c such that |C(x) − S(x)| ≤ c for all x,
because then sophistication would be equivalent to Kolmogorov complexity.

There have been many proposals for such a measure, all based on a two-part
code: we encode a model in the first part of the code, which is interpreted as a
representation of x’s structural properties. The model does not fully specify x,
but when combined with the second part of the code, which specifies the noise,
the original string becomes fully determined.1

For any string x, there may be many different two-part codes. The total
length can never be less than the Kolmogorov complexity, but it can come close.
Figure 1 illustrates the principle. The key to sophistication is to take the repre-
sentations that come close to the Kolmogorov complexity, the candidates, and
define the sophistication as the size of the smallest model in this set. However,
for most definitions, we can prove that they fail one of the conditions above.
For others, we cannot prove they conflict with our requirements, but we show
these methods only assign substantial sophistication to strings that require an
enormous amount of processing to construct.

A valid definition of S(x) must contend with two important issues. First,
the details of the way the model is encoded are important. There are two tech-
nically distinct approaches; in one of these one has to deal with the so-called
1 Some variants deviate from the two-part coding format, see Section 4.3.

Two Problems for Sophistication 381

“nickname problem” that strangely remains unresolved in several publications.
These definitions yield a sophistication that is highly dependent on the chosen
programming language, unless special care is taken, as discussed in Section 3.

The second issue is that of striking the right balance between under- and
overfitting, which we consider in Section 4. Overfitting is a common problem in
statistics, that refers to the tendency to choose a complex model that provides a
very good fit to the observed data, but does not generalise well to unseen data.
In the case of sophistication, overfitting occurs if the model that determines the
sophistication contains much or even all of the noise. In statistics, overfitting is
often addressed by penalising complex models. In sophistication, however, such
penalties tend to break the balance between structural information and noise,
and lead to the opposite problem: underfitting.

Underfitting occurs when the selected model is simple, but fails to capture
all structure in the data. This is also a problem for sophistication because the
models under consideration are so powerful. In particular, in any programming
language, there are programs that implement an interpreter for another lan-
guage. Such universal models are simple, since they can be described with a
relatively small number of bits, yet are able to represent any data using a code
within a constant from the Kolmogorov complexity. Such a two-part representa-
tion essentially encodes all information as noise. If complex models are penalized,
then the problem becomes to make sure that universal models are not always
preferred for complex data. The usual workaround is to restrict the set of allowed
models, for instance to total functions. While this excludes universal models, it is
questionable whether it adequately solves the problem of underfitting in general.

Finally, in Section 5 we argue that while two-part coding can yield useful
insights into the structure of the data and identifies some models as poor rep-
resentations, it is probably not possible to objectively separate structure from
noise and identify a single model as “best”: many models of different complexi-
ties may be reasonable representations. Rather than doggedly trying to “fix” this
property of algorithmic statistics, we propose embracing the idea that the data
allows for multiple, equivalent interpretations of which information is structured,
and which is random, and that there is no such thing as sophistication.

2 Notation

The following notation allows us to generalize across all definitions and variants,
save the occasional exception which we will highlight individually.

Let B = {0, 1}∗. We deal with partial computable functions f : B × B → B,
which we also call models. f is called prefix if domz(f) = {y : f(y, z) �= ∞},
is a prefix free set for all z, i.e. no string in domz(f) is a prefix of another. A
function f is total if ∀zdomz(f) = B. In most cases, we do not use the second
argument, and let f(x) = f(x, ε).

A numbering is an enumeration of the partial computable functions, denoted
by ψ1, ψ2, . . . or simply ψ. We fix one canonical numbering φ, chosen to be
effective: ie. given i and y, we can effectively compute φi(y). We call a numbering

382 P. Bloem et al.

ψ acceptable if there exist total, computable functions a, b : N → N with ∀ : i,
φi = ψb(i) and ψi = φa(i).

A model class is a set of indices in a numbering ψ. We define four classes:

– The indices of the partial computable functions C = N.
– The total functions T = {i : ψi is total}. Note that T is not computably

enumerable.
– K is an enumerable set such that {ψi : i ∈ K} is the set of all partial

computable prefix functions.
– The finite sets: F is an enumerable set such that {ψi : i ∈ F} is the set of

uniform codes for all finite sets.2

Let x denote the prefix-encoded representation for x. We require that the
mapping satisfies |x| = |x| + O(log |x|) (see eg. [15, Section 1.4]). To simplify
notation, we will sometimes conflate natural numbers and binary strings, implic-
itly using the ordering (0, ε), (1, 0), (2, 1), (3, 00), (4, 01), . . .

For technical reasons, we deviate slightly from the traditional notation of
Kolmogorov complexity: let M be a model class and ψ an acceptable numbering,
then let CM,ψ(x | z) = min{|̄ıy| : ψi(y, z) = x, i ∈ M}, with CM,ψ(x) =
CM,ψ(x | ε). We omit the numbering when the distinction is not relevant. CC(x)
corresponds to the plain Kolmogorov complexity C(x) and CK(x) corresponds
to the prefix-free version K(x). Note that the notation C{i},ψ(x) represents the
smallest two-part description of x using model ψi.

We use the principle of a numbering for the purpose normally served by the
universal Turing machine. We prefer to work with numberings as it highlights
an important issue: while Kolmogorov complexity is invariant to the choice of
numbering this property does not immediately carry over to sophistication: for
some treatments, the result is highly dependent on the chosen numbering, as we
will see in the next section.

3 Inefficient Indices

The simplest approach to sophistication would be to ‘open up’ the Kolmogorov
complexity and to see which program achieves the smallest description length:
the program that witnesses the Kolmogorov complexity. This witness is a two-
part coding; it consists of a model and an input.

Definition 1 (Index sophistication). Let ψ be an acceptable numbering. Let
M be the model class from which candidates are chosen, and let N be the model
class that determines the minimum achievable complexity. Let c be a fixed con-
stant. The index sophistication is:

SM,N,ψ,c
index (x) = min

{
|i| : C{i},ψ(x) ≤ CN,ψ(x) + c, i ∈ M

}
.

When M = N, we will use SM,ψ,c
index . If the set over which the minimum is taken

is empty, the sophistication is undefined.
2 A uniform code for a set F is a surjective prefix function f : {0, 1}�log |F |� → F .

Two Problems for Sophistication 383

Koppel and Atlan’s treatment [13,14], where the name sophistication originates,
follows this basic logic, although it contains idiosyncracies like the use of mono-
tonic models, and an extension to infinite strings. As the subsequent history of
sophistication has discarded these, we will not discuss them here.

In [4,3] Koppel’s principle is limited to finite strings, with T as a model class.
The definition is similar to ST,C,ψ,c

index , except the total complexity of a witness (i, y)
is measured as |i| + |y| without the cost of delimiting the two. This difference is
not relevant to the current discussion. The restriction to T is a common approach,
which avoids underfitting, as discussed in the next section.

Lemma 1. Let Sψ
index denote any index sophistication with respect to numbering

ψ (with any choice for M, N and c). There are acceptable numberings ψ and ξ

such that for all x: |Sψ
index(x) − Sξ

index(x)| ≥ 1
2 min{Sψ

index(x), Sξ
index(x)}.

Proof. Let zi ∈ B consist of 2i − 1 zeroes followed by a one. Define ψ, ξ such
that ψj(x) = φi(x) for j = z2i and ξj(x) = φi(x) for j = z2i+1, with all other
functions returning ∞ for all inputs. Choose any x and assume w.l.o.g. that
Sψ
index(x) ≤ Sξ

index(x). By construction, we have 2Sψ
index(x) ≤ Sξ

index(x). 	

Thus, the length of the index is a very poor indicator of model complexity. For
a robust measure, we define the complexity of a function f as in [11,20] by

CM,ψ(f) = min{CM,ψ(i) : ψi = f} . (1)

Lemma 3 in the appendix shows that CC(f) and CK(f) are invariant. Note that
the perversely inefficient numberings of Lemma 1 are no issue for Kolmogorov
complexity: we can use a UTM with a more efficient numbering as a model at
only a constant penalty. For sophistication, however, the numbering is crucial.

There are two ways to use CM(f) for more robust attempts to define sophis-
tication. Confusingly, both are used in the literature. First, we can measure the
complexity of the model φi as CK(φi), which is then the size of the first part of
a two-part code describing the data. This approach is used in [7,8,20,9].

Second, we can stick to using the length of the index as the measure of
sophistication, but restrict the allowed numberings to those that can represent a
given function efficiently. This approach is taken by Adriaans in [1], who defines
facticity as SC,ψ,0

index , but only allows faithful numberings. Formally, a faithful num-
bering has the property that ∀i∃j : ψi = ψj , |j| ≤ CC(ψj) + c, for some constant
c. Essentially, this means that a faithful numbering can represent a function f
with an index the same length as the Kolmogorov complexity CC(f).

We prove in the appendix that—contrary to Adriaans’ suggestion—there do
exist faithful, acceptable numberings (Lemma 4). However, even choosing a faith-
ful numbering is not enough. The Kolmogorov complexity uses representations of
the form ı̄y, with ψi(y) = x, where the bar denotes some straightforward prefix
encoding to delimit the model description i from its input y. If we define a second
prefix encoding ı̃, with |̄ı|− |̃ı| unbounded, we can define a second representation
ūı̃y, with ψu(̃ıy) = ψi(y), at a constant overhead |u|, and gain more than |u| for
sufficiently complex strings, resulting again in a bounded sophistication.

384 P. Bloem et al.

We continue with a sophistication that avoids the issues of inefficient indices
and of inefficient prefix encodings. We change the definition of index sophistica-
tion so that its two-part representations use CK(φi) bits for the representation
of the model. We first introduce the following notation for the M-Kolmogorov
complexity using such compact two-part representations:

CM,ψ
comp(x) = min{CK,ψ(ψi) + |y| : ψi(y) = x, i ∈ M} .

For model classes K and C this is equivalent to the existing definition and invari-
ant to the numbering. Note that again, we use C

{i},ψ
comp (x) to represent the smallest

two-part code using model ψi.

Definition 2 (Sophistication).

SM,N,ψ,c(x) = min
{

CK(φi) : C{i},ψ
comp ≤ CN,ψ

comp(x) + c, i ∈ M
}

.

4 Balancing Under- and Overfitting

In the last section, we began to see the delicate balance between the two code
components. We will study this balance, starting with the variant SK,ψ,c, which
is not used in the literature, but helps to illustrate the issues we wish to discuss.

K has optimal representations with all but a constant part of the information
in the input and it has optimal representations with all information in the model.
The downside to this balance is that it becomes easy to show a lack of invariance.
We can tweak the numbering so that models in a specific subset M′ ⊂ K become
cheaper to represent by an arbitrary amount relative to others: we can ensure
that a model in M′ always determines the sophistication. For instance, if we let
M′ contain only a universal model we get a bounded sophistication.

Theorem 1 (Underfitting). Let M,N be model classes with M ⊆ N and let
M contain a universal model φu, with the property that ∃c∀i ∈ N, x ∈ B :
C

{u},φ
comp (x) ≤ CN,φ

comp(x) + c. Then, for some numbering ψ, SM,N,ψ,c is bounded.

This problem is well known and many treatments avoid it by restricting the
model class. Less well known, perhaps, is that the same holds in the other direc-
tion: if M′ is the set of singleton models—those models that output a single x for
an empty input—we get a sophistication equal to the Kolmogorov complexity.

Theorem 2 (Overfitting). Let X ⊆ B. Let M ⊆ N ⊆ K be model classes
where for every x ∈ X there is a singleton model i ∈ M with φi(ε) = x. Then
there is a numbering ψ, and a constant c, such that for all x ∈ X we have
CK(x) − SM,N,ψ,c(x) ≤ c.

The proofs of both theorems rely on a simple principle: there exist numberings
which have the effect of penalizing CK(φi) for any model outside M′ by an arbi-
trary constant amount. We can use this to effectively ‘push’ these models outside
of the range of candidates, ensuring that, under this numbering, a model in M′

always determines the sophistication. The requirements for M′ are somewhat
complex. The following lemma gives a set of sufficient conditions.

Two Problems for Sophistication 385

Lemma 2. Let M and N be any model class, let X be any set of binary strings
and let D : B → N be a partial computable decoding function with a prefix-free
domain that maps function descriptions to their indices in φ. Let M′ = range(D).
Further assume there is a constant c such that:

(a) ∀m∈M′ : min{|p| : φD(p) = φm} ≤ CK,φ(φm) + c

(b) ∀x∈X : CM′,φ
comp(x) − CN,φ

comp(x) ≤ c.
Then, there is a ψ such that if SM,N,ψ,k(x) is defined, then SM,N,ψ,k(x) =
SM′,N,ψ,k(x) up to a constant.

Proof. Pick any x ∈ X. Let f and g be φ-indices such that f ∈ M′ and g /∈ M′

nor is φg equivalent to any function indexed by M′. Furthermore let C
{f},φ
comp (x)

and C
{g},φ
comp (x) both be within a constant q of CN,φ

comp(x). Assumption (b) ensures
that M′ always provides such an f .

We will show that for every integer r, there is a numbering ψ such that
C

{g′},ψ
comp (x) − C

{f ′},ψ
comp (x) ≥ r for all x ∈ X, where f ′ and g′ are the ψ-indices

equivalent to f and g. Thus, for large enough r, φg is eliminated as a candidate
model, while φf remains in place. Thus, under ψ, a member of M′ determines
the sophistication, or the sophistication is undefined.

Let d be a positive constant. We will show later how to choose it to achieve
the required result. We define ψ as follows:

ψ0(p) = 0d1D(p), ψ0d1i(p) = φi(p), ψj(·) = ∞ if j �= 0 and j �= 0d1 . . .

The key to the proof is the way that the function complexity CK(·) changes
when we change the numbering from φ to ψ. For f , the value increases by no
more than a fixed constant, but for g, it increases by a constant that we can
arbitrarily increase by increasing d.

We will first show that for f , the value does not increase by more than a
constant cf . Assume w.l.o.g. that 0 ∈ K.

CK,ψ(φf) = min
{|j̄q| : ψψj(q) = φf , j ∈ K

}
rewriting (1)

≤ min
{|0q| : ψψ0(q) = φf

}
choose j = 0

= min
{|q| : φD(q) = φf

}
+ |0|

≤ CK,φ(φf) + cf by assumption (a).

In order to show that for g, we can increase the difference by an arbitrary
constant, we first show that, for any z not in the range of ψ0, the Kolmogorov
complexity itself increases by at least d when we switch from φ to ψ:

386 P. Bloem et al.

CK,ψ(z) = min {|̄ıy| : ψi(y) = z, i ∈ K} by definition

= min
{

|0d1jy| : ψ0d1j(y) = z
}

since z /∈ range(ψ0)

≥ min {|j̄y| : φj(y) = z} + d

= CK,φ(z) + d . (2)

We now show the increase in model complexity for g. First, assume φg �= ψ0:

CK,ψ(φg) = min
{
CK,ψ(i) : ψi = φg

}

= min
{
CK,ψ(0d1j) : φj = φg

}

= CK,ψ(0d1j)

≥ CK,φ(0d1j) + d by (2)

≥ CK,φ(j) − cg + d since CK(j) ≤ CK(0d1j) + c0

≥ CK,φ(φg) − cg + d .

Now assume φg = ψ0. We have CK,ψ(φg) = min
{
CK,ψ(i) : ψi = ψ0

} ≥ d. This
follows from the fact that the minimum is achieved either at i = 0 or at i = 0d1m
with m /∈ M′. Neither have a representation using a function with a ψ-index
without the 0d1 prefix.

Choosing d ≥ r + max
{
CK,φ(ψ0), cg

}
+ cf + 2q ensures that for both cases,

we have CK,ψ(φg) ≥ CK,φ(φg) + r + cf + 2q. While CK(ψ0) depends on the
choice of d, we have CK(ψ0) ≤ CK(d) + CK(D), up to a constant, which is in
O(log d), so we can choose d to satisfy the inequality.

Finally, we can show the result:

C{g′},ψ
comp (x) − C{f ′},ψ

comp (x)

= CK,ψ(φg) + min{|y| : φg(y) = x} − CK,ψ(φf) − min{|y| : φf (y) = x}
≥ CK,φ(φg) + r + cf + 2q + min{|y| : φg(y) = x}

− CK,φ(φf) − cf − min{|y| : φf (y) = x}
= C{g},φ

comp (x) − C{f},φ
comp (x) + r + 2q ≥ r . 	

Theorems 1 and 2 follow as corollaries. For Theorem 1:

Proof. Let D be a prefix function as in Lemma 2 that returns the index of u for
the argument ε and ∞ for any other argument. That is, M′ = {u}. This con-
struction satisfies the conditions 1 and 2 from Lemma 2. Invoking it, we find that
there exists an acceptable numbering ψ for which SM,N,ψ,k(x) = SM′,N,φ,k(x)+c.
Since M′ contains only a single model, SM′,N,φ,c(x) is constant. 	

Two Problems for Sophistication 387

And for Theorem 2:

Proof. Let x be any string. Given a description of x, we construct some index
i such that φi(ε) = x (a singleton for x). Thus, CK,ψ(φi) ≤ CK,ψ(x) up to a
constant. Likewise, given φ we can produce x, so that |CK,φ(φi) − CK,φ(x)| ≤ c
for some constant c.

We now define a computable function D by D(̄ıy) = j where φj(ε) = φi(y)
and i ∈ K, and let M′ be its range. We will show that the two conditions of
Lemma 2 hold for the prefix function D.

(a) Let f ∈ M′ with φf (ε) = x. Then min{|p| : ψD(p) = φf} = min{|̄ıq| :
φi(q) = x} = CK(x) ≤ CK(φf) + c. (b) On the one hand CM′,ψ

comp (x) ≤ CK(φf) +
|ε| ≤ CK(x) + c. On the other hand, the witness to CM,ψ

comp(x) is an effective
description of x, so CK(x) is at most a constant larger.

Now, by Lemma 2 there is a numbering ψ such that we have SM,N,ψ,k(x) =
SM′,N,ψ,k(x) + c. We observed that |CK(φi) − CK(x)| ≤ c0 for all singletons, so
SM′,N,ψ,k(x) ≥ CK,ψ(x) − c0. This proves the theorem. 	

Thus, in this balanced sophistication, there is no invariance: all information can
be seen as structure, or as noise, depending on the numbering. To avoid these
issues, existing proposals upset the balance to exclude or penalize the universal
models, and possibly the singleton models.

4.1 Overfitting

We will now review the treatments in the literature that show overfitting. The
first is the structure function, proposed by Kolmogorov, most likely the first
attempt at separating structure from noise in an objective manner. Kolmogorov
defined the following function, using the finite sets F as models:

hx(α) = min
{
log |F | : x ∈ F,CK(F) ≤ α

}

and suggested that the smallest set for which CK(F)+log |F | ≤ CK(x)+c holds
for some pre-chosen constant c, can be seen as capturing all the structure in x
[7]. This is equivalent to the sophistication SF,K,ψ,c(x). Theorem 2 shows there
are numberings for which this sophistication is always equal to CK(x). Thus,
either this is true for all numberings, or this sophistication is not invariant.

In [8] the structure function is extended to an algorithmic sufficient statistic.
This is, again, essentially the witness to the sophistication SF,K,ψ,c(x). A prob-
abilistic version is also introduced, which uses the model class P, which indexes
the set of functions that compute computable probability semimeasures up to a
multiplicative constant error, yielding SP,K,ψ,c(x). For both, Lemma 2 gives us
a numbering such that the singleton is always the minimal sufficient statistic.

It may be argued that the slack parameter c in the sophistication, which
determines the allowed gap between a candidate representation and the com-
plexity, should depend on the numbering, but this dependence has not been
mentioned in the literature and there is no obvious method to choose this con-
stant for a given numbering.

388 P. Bloem et al.

In traditional statistics, overfitting is often addressed by a penalty on complex
models. As we have seen, a strong penalty, such as the one imposed by an inef-
ficient prefix encoding of the model, will cause underfitting. A more subtle app-
roach is to allow descriptions that are not self-delimiting. The gap between the
smallest self-delimiting description and the smallest non self-delimiting descrip-
tion grows without bound [15, Section 4.5.5], so that some information ends up
in the noise, since placing all information in the model results in a self-delimiting,
and thus non-optimal description. This eliminates the singletons as viable candi-
dates. This approach is taken by Vitányi [20] and by Adriaans [1]. Such measures
reduce the overfitting problem, but they only increase the tendency to underfit.
We also pay the price that the models can no longer be equated with probability
measures, weakening the link to traditional statistics.

4.2 Underfitting

Universal models are a widely acknowledged problem for sophistication, and
most proposals avoid them by limiting the allowed models to exclude them. It is
known that there are strings x for which SF,K,ψ,c(x), ST,ψ,c(x) and ST,K,ψ,c(x)
are close to |x| (up to a logarithmic term). Proofs can be found in [8], [4] and [20]
respectively. These are the absolutely non-stochastic strings [17]. The existence
of these strings is independent of the numbering.

However, the problem of the singletons remains. Only one model class elimi-
nates both the singletons and the universal model: T. The only proposal we are
aware of that uses an efficient model representation and excludes the universal
models and excludes the singletons is: ST,K,ψ,c, from [20]. While this avoids our
proofs of boundedness, there is no evidence that ST,K,ψ,c is actually invariant.

While high sophistication strings exist for ST,K,ψ,c, they may not conform to
sophistication’s motivating intuition. To show this, we use the concept of depth:

Definition 3 (Depth[5,2]). Let U be some universal Turing machine, so that
U (̄ıy) = φi(y). Let U t be a simulation of this machine, which is allowed to
run for at most t steps, and returns 0 if it has not yet finished at that point.
Let CM

t (x) = min{|̄ıy| : U t(̄ıy) = x, φi ∈ M}. The c-depth is dM,c(x) =
min

{
t : CM

t (x) − CM(x) ≤ c
}
.

Deep strings are those that can only be optimally compressed with a great
investment of time. We note that it is exceedingly unlikely that a deep string is
sampled from a shallow distribution [6,5].

Theorem 3. Let A(n) be the single-argument Ackermann function and cd some
constant. For all k, there is a numbering ψ such that for all strings with depth
dC,cd(x) ≤ A(CC(x)) the sophistication ST,K,ψ,k(x) is bounded.

Proof. Let U (̄ıy) be some universal Turing machine, and let UA(̄ıy) be a sim-
ulation of that machine which outputs 0 if the number of steps taken exceeds
A(|̄ıy|). Let u be the index of the function UA in the standard enumeration.

Two Problems for Sophistication 389

Let D(ε) = u. We can instantiate Lemma 2 with D, M′ = {u} and X = {x :
dC,cd(x) ≤ A(CC(x))}. This tells us that there exists a numbering ψ for which
ST,K,ψ,k(x) = SM′,K,ψ,k(x) + |0̄| ≤ c for all x ∈ X. 	

This shows that while high-sophistication strings exist, they do not behave as
expected. Consider a string that is typical for a shallow model, say some elaborate
probabilistic automaton. Under ST,K,ψ,c, no matter how high the complexity of
the automaton, the sophistication is bounded. We could encode the collected
works of Shakespeare in its transition graph, and this information would be
counted as noise. Any structure simple enough to be exploited within the time
bound of the Ackermann function will not be seen as ‘meaningful information’.
Only structure so deep that it would take beyond the lifetime of the universe to
decompress would count towards sophistication. In the remainder we will refer
to strings x with dC,c(x) ≤ A(CC(x)) as shallow strings. Note that any string
whose shortest program can be run in any time bound represented by a primitive
recursive function is shallow.

The relation between S(x) and d(x) is also investigated in [3], where it is
shown that within a logarithmic error term on the sophistication and the slack,
they are identical. Our point is not the similarity between the two, but that for
all practical strings, the sophistication is bounded. This contradicts the intuition
that sophistication measures structure, as it seems to suggest that all strings we
can possibly hope to understand or generate contain no structure, save a constant
amount. The alternative is that under other numberings these strings do have
structure, but then the sophistication is not invariant.

As for the strings with high sophistication, they have the property that they
can be compressed far better with partial functions than with total: they are non-
typical for the model class T. This suggests that the ‘non-stochastic’ property of
strings with high sophistication [17,19] says more about depth and totality than
it does about structure and noise.

4.3 Other Variants

By moving away from the idea of two-part coding, the mechanics of lemma 2
can be avoided. In [16], the naive sophistication is introduced. We will define a
generic version, parametrized by model class. Let Cψi

(x) = min {|y| : ψi(y) = x}.
Then we define the naive sophistication as:

SM,ψ,c
naive (x) = min

{
CK,ψ(ψi) : Cψi

(x) − CK,ψ(x | i) ≤ c, i ∈ M
}

.

The condition now is not that the two-part code length is minimal, but that the
randomness deficiency Cψi

(x) − CK,ψ(x | i) is less than a constant. SF,ψ,c
naive (x)

corresponds to the version in [16]. The switch to the randomness deficiency
avoids Theorem 2, but we end up with the same problem as in Theorem 3: for
shallow strings ST,ψ,c

naive is defined by the model UA, and thus bounded.
We cannot show that SF,ψ,c

naive (x) is bounded for shallow strings, but this is
only a consequence of the use of sets, not of the switch to randomness deficiency

390 P. Bloem et al.

as a condition. Any set sophistication is necessarily lower-bounded by the func-
tion set(x) = min

{
CK(F) : x ∈ F

}
and if this function were bounded, it would

suggest that a finite amount of finite sets contained all strings.

Theorem 4. Let ψ be any acceptable numbering. Then for all shallow x and
large enough c, ST,K,ψ,c

naive (x) is bounded and for come constant cF , we have:

set(x) ≤ SF,K,ψ,c
naive (x) ≤ CK,ψ(CK,ψ(x)) + cF .

Proof. Let ψ be any acceptable numbering. Let the Turing machine U be defined
as U (̄ıy) = ψi(y) if i ∈ K, and U (̄ıy) = ∞ otherwise. Let UA be derived from U
as in section in Section 4.2 and let φu compute UA.

For the first part we have Cψu
(x) − CK,ψ(x | u) ≤ c0 for some c0, thus

for large enough c, ST,ψ,c
naive (x) ≤ CK(ψu). For the second part, let CK,ψ(x) = k

and FA
k = {x | ∃p : UA(p) = x, |p| = k}. |FA

k | ≤ |{p : |p| = k}|, so that
log |FA

k | ≤ k, which gives us log |FA
k | − CK,ψ(x | FA

k) ≤ c1. Thus, for large
enough c, SF,ψ,c

naive (x) ≤ CK(FA
k). From a description of k, we can compute FA

k

with a finite program, so that CK,ψ(FA
k) ≤ CK,ψ(k) + cF , which completes the

proof. 	

Note that the constant c only needs to be large enough to ensure that CK,ψ(x)−
CK,ψ(x | u) ≤ c and CK,ψ(x)−CK,ψ(x | FA

k) ≤ c. Since u and FA
k are generally

of no value in computing x, c is likely very small.
Another approach is the coarse sophistication [4], defined in [16] as:

SM,N,ψ
coarse (x) = min

c

{
SM,N,ψ,c(x) + c

}
.

Again, this variant avoids the pitfalls of Theorem 2. If there are candidates that
are as good as the singletons but with smaller size by more than a constant, the
constant penalty c will eventually be much less than the gain for the simpler
witness, and the singletons will not determine the coarse sophistication. The
coarse sophistication is within a logarithmic term of the busy beaver depth [4].
As with the naive sophistication, we can show that for shallow strings, the total
function version is bounded, and the set version grows very slowly:

Theorem 5. Let ψ be any acceptable numbering. For all shallow x, ST,K,ψ
coarse (x)

is bounded and there is a constant cF such that:

set(x) ≤ sF,K,ψ
coarse (x) ≤ 2CK,ψ(CK,ψ(x)) + cF .

Proof. Let ψ be any acceptable numbering and define UA, φu and FA
k as in

the proof of Theorem 4. For the first part, we know that for some constant c0,
C

{u},ψ
comp (x) ≤ CK,ψ

comp(x) + c0 so that ST,K,ψ,c0(x) ≤ CK,ψ(φu), thus ST,K,ψ
coarse (x) ≤

CK,ψ(φu) + c0. For the second part, we know that for some c1, CK,ψ(FA
k) +

log |FA
k | ≤ CK,ψ(k) + CK,ψ(x) + c1, so that SF,K,ψ,CK(k)+c1(x) ≤ CK,ψ(FA

k).
Thus, SF,K,ψ

coarse (x) ≤ CK,ψ(FA
k) + CK,ψ(k) + c1 = 2CK,ψ(CK,ψ(x)) + cF . 	

Two Problems for Sophistication 391

In [18], Vereshchagin proposes a strongly algorithmic sufficient statistic. Where
the regular algorithmic sufficient statistic F from [8] has CK(F | x) constant, the
strong variant imposes the stronger requirement that CT(F | x) is also constant.
This reduces the problems of underfitting discussed in this section, but since
CT({x} | x) is bounded, by Theorem 2, overfitting remains a problem: there
exist numberings under which the singletons are the only candidates.

Finally, effective complexity [9], proposed by Gell-Man and Lloyd, was for-
mulated from the perspective of physics, but fits the mold of sophistication. The
model class consists of all computable probability distributions on finite sets. The
complexity of the model is measured by its Kolmogorov complexity, avoiding the
problems of Section 3. Theorem 2, however, still applies to effective complexity.
Unlike other sophistication measures, it is not the candidate with the smallest
model which is chosen, but the one which reproduces the data within the short-
est time. Thus, if there are multiple candidates, this approach would likely favor
the singletons. In [10], the authors abandon this approach, and note that the
choice from the set of candidates is a subjective one, which depends on context,
which is in line with the view we express in the next section.

5 Discussion and Conclusion

We have criticized existing measures of sophistication and shown technical prob-
lems with all of them. But that does not in itself mean that it should be impossi-
ble to come up with a sound measure. The common intuition, starting with the
structure function, appears to be that the crucial property is whether a string
is typical for a model, and that this typicality can be tested: another random
choice from that model should select a string with the same structure. This idea
is bold, but not unreasonable. Nevertheless, we offer the opinion that such a
clean-cut separation cannot be made to work. We provide two arguments.

For the first argument, we take a generative perspective. We can generate
data from a model φi, i ∈ K, by feeding it random bits until it produces an
output. We will call the resulting probability distribution pi. Call a sophistication
consistent if, for sufficiently large data, it reflects the complexity of the source
of the data. Now, let φu(̄ıy) = φi(y) and sample from pu. Then the initial
bits will determine the prefix encoded index ı̄ of the function φi that φu will
subsequently emulate, and the remaining bits are used as inputs to φi. We now
ask, what should be the sophistication of the resulting data?

Certainly, if we have to judge based only on the data, we cannot exclude
the possibility that the data was sampled from pu: after all, it was. Yet, neither
can we deny that it may have came from pi, as again, it did! Eliminating the
universal models does not solve this problem: the same argument holds if φu

indexes, for instance, only those models computable by finite automata. Any
model that dominates a set of other models creates this kind of ambiguity.

Consider the following metaphor. We are given a a bitmap image of the
painting Impression of a Sunrise. There are many good models for this string,
from very generic to very specific. Sophistication suggests that we can choose

392 P. Bloem et al.

one of these as the objective, intrinsic model of the data. The universal model
says that it is ‘some compressible, finite object’. Another might say that it is
‘an image’. Even more specific would be ‘a painting’, ‘a Monet’, or specifically
‘the painting Impression of a Sunrise’. A sound sophistication should be able
to select one of these as the proper representation of structure in the data, and
disqualify the others as over- or underfitting. But how should we be able to say
that the data is intrinsically more of a painting than an image? More of a Monet
than a painting? Intuitively, such distinctions require further assumptions, or a
second sample from the same distribution.

The second reason we doubt sophistication is more technical. Consider the
set of all possible two-part representations of x. When the numbering is changed,
the codelength of the model part of all these representations will change. This is
illustrated in the second diagram in Figure 1. The invariance theorem expresses
that this change is limited by a constant term. However, even this small shift can
push some representations out of the acceptable region (indicated by the dashed
line), and pull others in. This may lead to a different representation determining
the sophistication, one whose total codelength is close to what it was before,
but whose model codelength can be anywhere between 0 and CC(x). If such
jumps can occur, the sophistication is not invariant. And while we cannot prove
in general that such jumps can always occur, there seems to be no reason to
believe that they do not. Indeed, in [3] it is shown that logarithmic changes in
the slack parameter can already cause these effects.

So we take a skeptical view of sophistication. Note that part of the theory is
fine: there is nothing wrong with evaluating models for the data by comparing
their two-part code lengths. In fact, the randomness deficiency − log pi(x) −
CK(x | i) has a direct statistical interpretation as a measure of counterevidence—
under pi, the probability of a randomness deficiency above k is less than 2−k

[6, Lemma 6]. In the Monet example above, this will allow us to disqualify the
model expressing that the data is actually, say, a recording of jazz music.

But fundamental problems arise as soon as a hard cut-off is introduced on
how far we are allowed to deviate from the minimum determined by the Kol-
mogorov complexity. In our opinion, a lot of measures taken in the literature,
such as restricting the model class or introducing model penalties, complicate
the method and make problems harder to analyse, without actually addressing
the fundamental issue. This is dangerous: if such ad-hoc fixes result in a theory
that is hard to prove either wrong or right, it creates an artificial dead end for
a valuable area of research. When the hard cut-off on candidates is avoided,
however, all such measures are no longer necessary. What remains is an elegant
theory that can be used to sift through all possible models, disproving most while
retaining a select number of interesting candidates for our further consideration.

Acknowledgments. This publication was supported by the Dutch national program
COMMIT and by the Netherlands eScience center. We thank Tom Sterkenburg for
interesting discussions.

Two Problems for Sophistication 393

References

1. Adriaans, P.: Facticity as the amount of self-descriptive information in a data set
(2012). arXiv:1203.2245

2. Antunes, L., Fortnow, L., van Melkebeek, D., Vinodchandran, N.V.: Computational
depth: concept and applications. Th. Comp. Sc. 354(3), 391–404 (2006)

3. Antunes, L.F.C., Bauwens, B., Souto, A., Teixeira, A.: Sophistication vs logical
depth (2013). http://arxiv.org/abs/1304.8046

4. Antunes, L.F.C., Fortnow, L.: Sophistication revisited. Theory Comput. Syst.
45(1), 150–161 (2009)

5. Bennett, C.H.: Logical depth and physical complexity. In: The Universal Turing
Machine: A Half-Century Survey. Oxford University Press (1988)

6. Bloem, P., Mota, F., de Rooij, S., Antunes, L., Adriaans, P.: A safe approximation
for kolmogorov complexity. In: Auer, P., Clark, A., Zeugmann, T., Zilles, S. (eds.)
ALT 2014. LNCS, vol. 8776, pp. 336–350. Springer, Heidelberg (2014)

7. Cover, T.M.: Kolmogorov complexity, data compression, and inference. In: The
Impact of Processing Techniques on Communications, pp. 23–33. Springer (1985)

8. Gács, P., Tromp, J., Vitányi, P.M.B.: Algorithmic statistics. IEEE Tr. Inf. Th.
47(6), 2443–2463 (2001)

9. Gell-Mann, M., Lloyd, S.: Information measures, effective complexity, and total
information. Complexity 2(1), 44–52 (1996)

10. Gell-Mann, M., Lloyd, S.: Effective complexity. Nonextensive Entropy-
Interdisciplinary Applications, by Edited by Murray Gell-Mann and C Tsallis,
pp. 440. Oxford University Press, Apr 2004. ISBN-10: 0195159764. ISBN-13:
9780195159769, 1 (2004)

11. Grünwald, P., Vitányi, P.M.B.: Shannon information and Kolmogorov complexity
(2004). arXiv:cs/0410002

12. Kleene, S.C.: On notation for ordinal numbers. J. Symb. Log., 150–155 (1938)
13. Koppel, M.: Structure. In: The Universal Turing Machine: A Half-Century Survey.

Oxford University Press (1988)
14. Koppel, M., Atlan, H.: An almost machine-independent theory of program-length

complexity, sophistication, and induction. Inf. Sci. 56(1–3), 23–33 (1991)
15. Li, M., Vitányi, P.M.B.: An introduction to Kolmogorov complexity and its

applications. Springer-Verlag (1993)
16. Mota, F., Aaronson, S., Antunes, L., Souto, A.: Sophistication as randomness

deficiency. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp.
172–181. Springer, Heidelberg (2013)

17. Shen, A.K.: The concept of (α, β)-stochasticity in the Kolmogorov sense, and its
properties. Soviet Math. Dokl 28(1), 295–299 (1983)

18. Vereshchagin, N.: Algorithmic minimal sufficient statistics: a new approach. Theory
of Computing Systems, 1–19 (2015)

19. Vereshchagin, N.K., Vitányi, P.M.B.: Kolmogorov’s structure functions and model
selection. IEEE Tr. Inf. Th. 50(12), 3265–3290 (2004)

20. Vitányi, P.M.B.: Meaningful information. IEEE Tr. Inf. Th. 52(10) (2004)

http://arxiv.org/abs/1203.2245
http://arxiv.org/abs/1304.8046
http://arxiv.org/abs/cs/0410002

394 P. Bloem et al.

A Appendix

Lemma 3 (Invariance of function complexity). Let ψ and η be any two
acceptable numberings Let f be any partial computable function. There exists a
constant c independent of f such that

∣∣CK,ψ(f) − CK,η(f)
∣∣ ≤ c and

∣∣CC,ψ(f) − CC,η(f)
∣∣ ≤ c .

Proof. Let g(i) be the function such that ψi = ηg(i).

CC,ψ(f) = min
{
CC,ψ(i) : ψi = f

} ≥ min
{
CC,η(i) : ψi = f

} − c

= min
{
CC,η(i) : ηg(i) = f

} − c = min
{
CC,η(g(i)) : ηg(i) = f

} − c′

≥ min
{
CC,η(j) : ηj = f

} − c′ = CC,η(f).

Reverse ψ and η for the opposite inequality. The same proof holds for CK. 	

Lemma 4. There are faithful acceptable numberings.

Proof. Let d ∈ N be an index such that φd(y) = ∞ for all y. Define

ψq =

{
φφi(p) if q can be written as ı̄p and φi(p) < ∞,
φd otherwise.

It may seem that the second line requires a test whether φi(p) halts, for ψ to be
acceptable, but as we will show below, this is not the case.

To show that ψ is faithful, pick any function f . Then

CC,φ(f) = min{CC,φ(i) : φi = f} = min{min{|āb| : φa(b) = i} : φi = f}
= min{|āb| : φφa(b) = f} = min{|āb| : ψāb = f}.

This shows there is a sufficiently small ψ index.
To show that ψ is acceptable, let φj(z) = z. Then a φ-index i can be mapped

to a ψ-index with r(i) = j̄i, so that ψr(i)(y) = ψj̄i(y) = φi(y). For the reverse,
define φv (̄ıp, y) = φφi(p)(y). For fixed ı̄p, the sn

m-theorem [12] states that we can
compute the h such that φh(y) = φv (̄ıp, y). Let h(̄ıp) denote this index as a
function of the program; further define h(q) = d if q cannot be expressed as ı̄p.
By construction h is total and computable. To check that the mapping returns
the correct function, rewrite φh(ı̄p)(y) = φv (̄ıp, y) = φφi(p)(y) = ψı̄p(y). Note
that if q can be written as ı̄p, but φi(p) diverges, h(q) will still return a function,
but one which doesn’t halt, making it equivalent to φd as required. 	

Author Index

Abasi, Hasan 89
Adriaans, Pieter 379
Anandkumar, Anima 19
Angluin, Dana 119

Balle, Borja 179
Ben-David, Shai 194, 239
Bianchi, Pascal 317
Blanchard, Gilles 209
Bloem, Peter 379
Bshouty, Nader H. 89

Carbonell, Jaime 270
Chen, Dongqu 119
Clémençon, Stephan 317

Darnstädt, Malte 134
de Rooij, Steven 379
DeSalvo, Giulia 254
Dhillon, Inderjit S. 3

Fujita, Takahiro 332

Gao, Ziyuan 56, 102
Ge, Rong 19

Hanneke, Steve 149, 270
Hatano, Kohei 332
Hermo, Montserrat 73
Hong, Yi-Te 302
Hsu, Daniel 19
Hutter, Marcus 349, 364

Jain, Prateek 3
Jain, Sanjay 41

Kakade, Sham M. 19
Kanade, Varun 149

Kijima, Shuji 332
Kushagra, Shrinu 239

Leike, Jan 349, 364
Lelkes, Ádám D. 165
Lu, Chi-Jen 302

Ma, Junqi 41
Mazzawi, Hanna 89
Mohri, Mehryar 179, 254

Orabona, Francesco 287
Ozaki, Ana 73

Pál, Dávid 287
Papa, Guillaume 317
Pentina, Anastasia 194
Phillips, Jeff M. 224

Reyzin, Lev 165
Ries, Christoph 134

Simon, Hans Ulrich 102, 134
Stephan, Frank 41, 56
Syed, Umar 254

Takimoto, Eiji 332
Telgarsky, Matus 19
Tolstikhin, Ilya 209

Yang, Liu 149, 270

Zheng, Yan 224
Zhivotovskiy, Nikita 209
Zhong, Kai 3
Zilles, Sandra 56, 102

	Preface
	Organization
	Abstracts of Invited Talks
	Efficient Matrix Sensing Using Rank-1 Gaussian Measurements

	Tensor Decompositions for Learning Latent Variable Models(a survey for ALT)

	Turning Prediction Tools Into Decision Tools
	Overcoming Obstacles to the Adoption of Machine Learning by Domain Experts

	Contents
	I Invited Papers
	Efficient Matrix Sensing Using Rank-1 Gaussian Measurements
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Rank-one Independent Gaussian Operator
	3.2 Rank-one Dependent Gaussian Operator

	4 Rank-one Matrix Sensing via Alternating Minimization
	4.1 General Theoretical Guarantee for Alternating Minimization
	4.2 Independent Gaussian Measurements
	4.3 Dependent Gaussian Measurements
	4.4 Computational Complexity for Alternating Minimization

	5 Rank-one Matrix Sensing via Nuclear Norm Minimization
	5.1 Recovery Guarantee for Nuclear-norm Minimization
	5.2 Computational Complexity for Nuclear-norm Minimization

	6 Experiments
	References

	Tensor Decompositions for Learning Latent Variable Models (A Survey for ALT)
	1 Introduction
	1.1 Related Work
	1.2 Organization

	2 Preliminaries
	3 Tensor Structure in Latent Variable Models
	3.1 Exchangeable Single Topic Models
	3.2 Beyond Raw Moments
	3.3 Multi-view Models

	4 Orthogonal Tensor Decompositions
	4.1 Review: The Matrix Case
	4.2 The Tensor Case
	4.3 Estimation via Orthogonal Tensor Decompositions

	5 Tensor Power Method
	5.1 Convergence Analysis for Orthogonally Decomposable Tensors
	5.2 Perturbation Analysis of a Robust Tensor Power Method

	References

	I Inductive Inference
	Priced Learning
	1 Introduction
	2 Notations and Preliminaries
	3 Models of Learning
	4 General Cost Functions
	5 Priced Learning and Set-Drivenness
	6 Classes of Cost Functions
	7 Other Uniformity Criteria
	8 Conclusions
	References

	Combining Models of Approximation with Partial Learning
	1 Introduction
	2 Preliminaries
	3 Learning
	4 Approximate Learning of Functions
	5 Approximate Learning of Languages
	6 Combining Partial Language Learning With Variants of Approximate Learning
	6.1 Finitely Approximate Learning
	6.2 Weakly Approximate, Approximate and BC* Learning

	References

	I Learning from Queries, Teaching Complexity
	Exact Learning of Multivalued Dependencies
	1 Introduction
	2 Preliminaries
	3 Computing Minimal Models
	4 Learning MVDF from 2-Quasi-Horn
	5 Conclusions and Open Problems
	References

	Non-adaptive Learning of a Hidden Hypergraph
	1 Introduction
	2 Definitions
	2.1 Monotone Boolean Functions
	2.2 Learning from Membership Queries
	2.3 Learning a Hypergraph
	2.4 Cover Free Families
	2.5 Perfect Hash Function
	2.6 A Lower Bound For Learning
	2.7 The Folklore Algorithm

	3 The First Algorithm
	4 The Second Algorithm
	References

	On the Teaching Complexity of Linear Sets
	1 Introduction
	2 Preliminaries
	2.1 Linear Sets
	2.2 Teaching Dimension and Recursive Teaching Dimension

	3 Linear Subsets of N0 With Constant 0
	4 Linear Subsets of N0 with Bounded Period Sums
	5 Linear Subsets of N02 with Constant 0
	6 Conclusion
	References

	Computational LearningTheory and Algorithms
	Learning a Random DFA from Uniform Strings and State Information
	1 Introduction
	2 Preliminaries
	3 Random Walks on a Random DFA
	4 Reconstructing a Random DFA
	4.1 The Learning Algorithm
	4.2 Experiments and Empirical Results

	5 Discussion
	References

	Hierarchical Design of Fast Minimum Disagreement Algorithms
	1 Introduction
	2 Definitions, Notations and Facts
	3 From Simple to More Complex Concept Classes
	4 From Trivial to Smart Algorithms
	5 Experimental Results
	References

	Learning with a Drifting Target Concept
	1 Introduction
	2 Definitions and Notation
	3 Background: (,S)-Tracking Algorithms
	4 Adapting to Arbitrarily Varying Drift Rates
	4.1 Adapting to a Changing Drift Rate

	5 Polynomial-Time Algorithms for Linear Separators
	6 General Results for Active Learning
	References

	Interactive Clustering of Linear Classes and Cryptographic Lower Bounds
	1 Introduction
	2 The Model
	3 Previous Work
	4 Clustering Linear Functionals
	5 Efficient Clustering of Hyperplanes
	6 Cryptographic Lower Bounds for Interactive Clustering
	7 Conclusion
	References

	Statistical Learning Theoryand Sample Complexity
	On the Rademacher Complexity of Weighted Automata
	1 Introduction
	2 Preliminaries and Notation
	2.1 Weighted Automata, Rational Functions, and Hankel Matrices
	2.2 Rademacher Complexity

	3 Classes of Rational Functions
	3.1 The Class An,p,r
	3.2 The Class Rp,r
	3.3 The Class Hp,r
	3.4 Overview of Results

	4 Rademacher Complexity of An,p,r
	4.1 Proof of Theorem 1

	5 Rademacher Complexity of Rp,r
	6 Rademacher Complexity of Hp,r
	7 Conclusion
	References

	Multi-task and Lifelong Learning of Kernels
	1 Introduction
	1.1 Related Previous Work

	2 Preliminaries
	2.1 Formal Setup
	2.2 Covering Numbers and Pseudodimensions
	2.3 Pseudodimensions of Various Families of Kernels

	3 Multi-task Kernel Learning
	4 Lifelong Kernel Learning
	5 Conclusions
	A Proof of Lemma 3
	References

	Permutational Rademacher Complexity
	1 Introduction
	2 Notations
	3 Symmetrization and Comparison Results
	4 Transductive Risk Bounds
	5 Full Proofs
	5.1 Proof of Theorem 2
	5.2 Proof of Theorem 3
	5.3 Proof of Lemma 5
	5.4 Proof of Theorem 5

	References

	Subsampling in Smoothed Range Spaces
	1 Introduction
	2 Definitions and Background
	2.1 Kernels

	3 New Definitions
	3.1 Smoothed Range Spaces
	3.2 -Sample in a Smoothed Range Space
	3.3 (,)-Net in a Smoothed Range Space

	4 Linking and Properties of (,)-Nets
	4.1 Relations Between Smoothed Range Spaces and Linked Binary Range Spaces

	5 Min-cost Matchings Within Cubes
	6 Constructing -Samples for Smoothed Range Spaces
	6.1 Discrepancy for Smoothed Halfspaces
	6.2 From a Single Smoothed Halfspace to a Smoothed Range Space
	6.3 -Samples for Smoothed Halfspaces
	6.4 Generalization to d Dimensions

	References

	Information Preserving Dimensionality Reduction
	1 Introduction
	1.1 Related Work

	2 Metric Retention (MR)
	3 Estimating Metric Retention Parameters
	4 Embeddings with Metric Retention
	4.1 Random Projections (RP) have MR
	4.2 PCA has MR

	5 Probabilistic Lipschitzness (PL)
	5.1 Sample Complexity Bounds for Nearest Neighbor under PL-Conditional
	5.2 Comparison of Convergence Rates for Nearest Neighbor
	5.3 Estimating PL-Conditional

	6 Metric Retention and PL-Conditional
	6.1 Metric Retention Preserves PL-Conditional
	6.2 Sample Complexity Benefits

	7 Experiments
	7.1 Probabilistic Lipschitzness Captures Usefulness

	8 Conclusion and Future Work
	References
	A Proof of Theorems

	Learning with Deep Cascades
	1 Introduction
	2 Preliminaries
	3 Data-dependent Learning Guarantees
	3.1 Leaf Classifiers Taking Values in {-1, +1}
	3.2 Leaf Classifiers Taking Values in [-1, +1]

	4 Algorithms
	4.1 DeepCascade
	4.2 DeepCascadeSVM

	5 Experiments
	6 Conclusion
	References

	Bounds on the Minimax Rate for Estimating a Prior over a VC Class from Independent Learning Tasks
	1 Introduction
	2 The Setting
	3 An Upper Bound
	4 A Minimax Lower Bound
	5 Real-Valued Functions and an Application in Algorithmic Economics
	5.1 Consistent Estimation of Priors over Real-Valued Functions at a Bounded Rate
	5.2 Maximizing Customer Satisfaction in Combinatorial Auctions

	6 Open Problems
	References

	Online learning, StochasticOptimization
	Scale-Free Algorithms for Online Linear Optimization
	1 Introduction
	2 Notation and Preliminaries
	3 AdaFTRL
	3.1 Proof of Regret Bound for AdaFTRL

	4 SOLO FTRL
	4.1 Proof of Regret Bound for SOLO FTRL

	5 Lower Bound
	6 Per-Coordinate Learning
	References
	A Proofs for Preliminaries
	B Limits
	C Proofs for AdaFTRL
	D Proofs for SOLO FTRL
	E Lower Bound Proof

	Online Learning in Markov Decision Processes with Continuous Actions
	1 Introduction
	2 Preliminaries
	2.1 Problem Statement
	2.2 Assumptions
	2.3 Near-optimal Region and Near-Optimality Dimension
	2.4 Notation

	3 Our Algorithm
	3.1 Computing an Optimistic Policy
	3.2 Updating the Empirical Estimates
	3.3 Stopping Rule for Each Episode
	3.4 Splitting Nodes

	4 Regret Analysis
	4.1 Proof of Lemma 3
	4.2 Proof of Lemma 4

	References

	Adaptive Sampling for Incremental Optimization Using Stochastic Gradient Descent
	1 Introduction
	2 Non Uniform Sampling (NUS) - State of the Art
	3 Adaptive Sampling SGD (AS-SGD)
	3.1 The Algorithmic Principle
	3.2 Ideal Sampling Distribution
	3.3 A Practical Sampling Distribution - Our Proposal
	3.4 Computationally Efficient Sampling

	4 Performance Analysis
	4.1 Preliminary Results
	4.2 Main Results

	5 Numerical Experiments
	6 Conclusion
	A Algorithms for Efficient NUS
	B Proof of Lemma 1
	C Proof of Lemma 2
	D Proof of Theorem 1
	References

	Online Linear Optimization for Job Scheduling Under Precedence Constraints
	1 Introduction
	2 Related Research
	3 Online Linear Optimization Algorithm over the Permutations
	3.1 Main Structure

	4 Efficient Implementations of Projection and Rounding
	4.1 Projection onto the Set Precons(A) of the Precedence Constraints
	4.2 Projection of a Point in Precons(A) onto Pn Precons(A)
	4.3 Rounding
	4.4 Main Result

	5 Lower Bound
	6 Experiments
	7 Conclusion
	References

	Kolmogorov Complexity,Algorithmic InformationTheory
	Solomonoff Induction Violates Nicod's Criterion
	1 Introduction
	2 Preliminaries
	3 Solomonoff and the Black Ravens
	4 Disconfirming H
	4.1 Setup
	4.2 Unnormalized Solomonoff Prior
	4.3 Normalized Solomonoff Prior
	4.4 Stochastically Sampled Strings

	5 Discussion
	References

	On the Computability of Solomonoff Induction and Knowledge-Seeking
	1 Introduction
	2 Preliminaries
	2.1 The Arithmetical Hierarchy
	2.2 Strings
	2.3 Computability of Real-Valued Functions

	3 The Complexity of Solomonoff Induction
	4 The Complexity of Knowledge-Seeking
	4.1 Knowledge-Seeking Agents
	4.2 Knowledge-Seeking is Limit Computable

	5 A Weakly Asymptotically Optimal Agent in ?°2
	6 Summary
	References

	Two Problems for Sophistication
	1 Introduction
	2 Notation
	3 Inefficient Indices
	4 Balancing Under- and Overfitting
	4.1 Overfitting
	4.2 Underfitting
	4.3 Other Variants

	5 Discussion and Conclusion
	A Appendix

	Author Index

