
A Spark-Based Big Data Platform for Massive
Remote Sensing Data Processing

Zhongyi Sun1, Fengke Chen1, Mingmin Chi1,2(B), and Yangyong Zhu1

1 School of Computer Science, Shanghai Key Laboratory of Data Science,
Key Laboratory for Information Science of Electromagnetic Waves (MoE),

Fudan University, Shanghai, China
mmchi@fudan.edu.cn

2 State Key Laboratory of Satellite Ocean Environment Dynamics,
Second Institute of Oceanography (SOA), Hangzhou, China

Abstract. With the fast development of remote sensing techniques, the
volume of acquired data grows exponentially. This brings a big challenge
to process massive remote sensing data. In the paper, an in-memory
computing framework is proposed to address this problem. Here, Spark
is an open-source distributed computing platform with Hadoop YARN
as resource scheduler and HDFS as cloud storage system. On the Spark-
based platform, data loaded into memory in the first iteration can be
reused in the subsequent iterations. This mechanism makes Spark much
suitable for running multi-iteration algorithms compared to MapReduce
which has to load data in each iteration. The experiments are carried
out on massive remote sensing data using multi-iteration singular value
decomposition (SVD) algorithm. The results show that Spark-based SVD
can obtain significantly faster computation timethan that by MapRe-
duce, usually by one order of magnitude.

Keywords: Big data · Remote sensing · Spark · Hadoop

1 Introduction

With the fast development of remote sensing techniques, massive amounts of high
spacial and spectral resolution images can be acquired for various applications,
such as hazard monitoring and urban planning. This brings big opportunities
for various applications based on the massive remote sensing data but also big
challenges for big data storage and computation.

Usually, parallel and distributed computations are utilized to deal with the
computational challenges of big remote sensing data. The parallel computing
platform is often based on Compute Unified Device Architecture (CUDA) cre-
ated by NVIDIA and implemented by the graphics processing units (GPUs) [4].
Thanks to efficiency and programmability of the CUDA GPUs, the technique
has been successfully used in remote sensing applications, e.g., Cloud track-
ing and Reconstruction [9], remote sensing image fusion [17], and color balanc-
ing [15]. Similarly, the heterogeneous system OpenCL by combining multi-core
c© Springer International Publishing Switzerland 2015
C. Zhang et al. (Eds.): ICDS 2015, LNCS 9208, pp. 120–126, 2015.
DOI: 10.1007/978-3-319-24474-7 17



A Spark-Based Big Data Platform 121

GPU and CPU with operation system has been used to remote sensing data
processing [1,3].

Although GPUs are capable of speeding up remote sensing data processing, it
is still hard for a single computer, even a extremely expensive minicomputer or a
PC server to analyze the big remote sensing data. Hadoop [2,6] based distributed
storage and computing cluster provides a new resolution to the computation
problem of big data. The work in [8,14] demonstrated that the performance
in speed of MapReduce [6] based algorithm has an advantage over the single-
thread process algorithm. However, in the MapReduce-based platform, the entire
data set has to be loaded from hard disks to memory at each iteration, which
takes a lot of time when processing massive data by multi-iteration data analysis
algorithms.

To attack this problem, usually an open-source in-memory distributed com-
puting framework, namely, Spark [16] is exploited for distributed computation.
In the Spark-based platform, the data loaded into memory in the first itera-
tion can be reused in the subsequent iterations. This mechanism makes Spark
much suitable for running multi-iteration algorithms compared to MapReduce
which has to load data in each iteration. In [16], multi-iterations programs using
Spark based algorithm is up to 100x faster than Hadoop MapReduce in memory,
or 10x faster on disk. The Spark-based platform has been used to graph data
applications [10], large scale security monitoring [13], log analysis [12] and so on.

As we know, Spark has not been used for processing remote sensing big data.
In the paper, Spark-based platform is proposed to fulfil a multi-iteration algo-
rithm for remote sensing application. In particular, the Hadoop Distributed File
System (shorted as HDFS) is adopted and Hadoop YARN as resource scheduler.
Here, the feature extraction algorithm, i.e., singular value decomposition(shorted
as SVD) is implemented to evaluate the effectiveness of the proposed distributed
platform. The experiments are carried out on two real-world massive remote sens-
ing data. The results show that Spark-based SVD can obtain significantly faster
computation time than that by MapReduce, usually by one order of magnitude.

The rest of the paper is organized as follows. The next section describes
the preliminary knowledge of the proposed big data Architecture. The applied
remote sensing datasets and machine learning algorithms are briefly described
in Sect. 3. Section 3.2 reports and discusses the results provided by the SVD
algorithm and different data sets. Finally, Sect. 4 draws the conclusions of this
paper.

2 The Big Remote Sensing Data Architecture

In the paper, massive remote sensing data are dealt with in the big data process-
ing architecture. In the following, the proposed architecture is first described.
Then, the distributed computing models, i.e., MapReduce and Spark, and the
related storage system are briefly introduced as follows.



122 Z. Sun et al.

2.1 Big Remote Sensing Data Architecture

The big remote sensing data are acquired from different sources, such as remote
sensing data and data from the Internet and then input to the system. In the data
processing stage, HDFS is chosen as the distributed file system. Then, big data
in remote sensing are loaded to the HDFS at the beginning. In-memory based
Spark, is chosen as the main principal distributed computing framework. Mean-
while, Hadoop MapReduce is also been integrated into the platform. Apache
YARN is chosen as the scheduler responsible for allocating resources to various
running applications between the HDFS and the distributed computing pro-
gramming models, i.e., MapReduce and Spark. This means that the proposed
platform supports the algorithm implemented by both Spark and MapReduce to
process remote sensing data. Meanwhile, the set of data analysis algorithms, i.e.,
a machine learning library (MLlib) can be implemented in the Spark program-
ming model. Similarly, MapReduce builds Apache Mahout, a scalable machine
learning and data mining library. On top of the big data processing stage, differ-
ent remote sensing processing tasks can be fulfilled, e.g., feature extraction and
image classification.

2.2 Hadoop

Hadoop is a series of technology for distributed storage and processing of big
data. It is an open source framework developed by the Apache Software Founda-
tion. Hadoop is fault tolerant, scalable, and extremely simple to expand. Hadoop
is capable of processing massive amounts of data sets which are unable to be
dealt with or originally need expensive super-computers. Nowadays, Hadoop can
manage thousands of computers, storage and process massive data in a PeraByte
level. The core of Hadoop consists of two parts, a storage part Hadoop Distrib-
uted File System (shorted as HDFS) and a processing part MapReduce, which
are introduced as follows.

HDFS. HDFS [2] is a Java-based file system designed for large data storage
which was inspired from Google File System (shorted as GFS) [7]. The purpose
of HDFS is to enhance the I/O performance of data storage and to ensure that
the distributed storage system is scalable, fault tolerant. HDFS break data down
into smaller pieces which called blocks and distribute them throughout the clus-
ter. Each block of data is independently replicated at multiple servers. When a
duplicate of a block is lost due to a hardware failure, HDFS can automatically
provide the nearest duplicate instead and creates another duplicate of the block.
HDFS supports redundant data storage which not only offers the tolerance to
hardware failure, but also allows that Hadoop can divide a large task into small
pieces and runs them on separate servers.

MapReduce. MapReduce [6] is the core of Hadoop. It is a programming model
and an associated implementation for processing and generating large data sets.



A Spark-Based Big Data Platform 123

Before the invention of the MapReduce, open multi-processing (shorted as
OpenMP [5]) and many other models were popular in the field of distributed
computing. Most of these models require a very long learning curve to master.
However, MapReduce is a simplified data processing model. Users only need
to modify the Map and Reduce functions according to the requirements of the
task. A Map function processes a key/value pair to generate a set of intermediate
key/value pair, and a Reduce function merges all intermediate values associated
with the same intermediate key. This model can realize many real-world appli-
cations.

2.3 Spark

The Apache Spark [16] is a fast and general engine for large-scale data processing
implemented in Scala [11]. Even though the MapReduce model has achieved
an unprecedented success in implementing many real-world distributed tasks,
it is not suitable for the applications built around a cyclic data flow model.
The Spark is proposed to handle these applications while retaining the similar
excellent properties of MapReduce, i.e., scalability and fault tolerance. Spark
has an advanced DAG execution engine that supports cyclic data flow and in-
memory computing. In some specific applications, Spark may work 100 times
faster than Hadoop [16].

The resilient distributed dataset (shorted as RDD) is used for the funda-
mental programming abstraction in Spark. The RDD is a logical collection of
data partitioned across machines and can be rebuilt if a partition is lost. An
RDD can be explicitly cached in memory across machines and reused for later
MapReduce-like parallel operations. For the algorithms whose main body is a
loop calculation, the intermediate RDD data sets do not need to read and to
write from the hard disk at each iterative manner. This is one of the major rea-
sons why Spark works faster. RDDs can be created in two ways, i.e., parallelizing
an existing RDD and referencing a dataset in an external storage system. RDDs
support many useful parallel operations in the latest release.

3 Experimental Results

To evaluate the effectiveness of the proposed big data platform for process-
ing massive remote sensing data, a multi-iteration singular value decomposition
(SVD) is implemented in both Spark and MapReduce platforms in terms of
hyperspectral remote sensing data in different magnitudes of spatial resolutions.

In the followings, the datasets utilized are firstly introduced and then the
corresponding experimental results are reported.

3.1 Datasets

The experiment is evaluated on two public remote sensing images briefly described
as follows:



124 Z. Sun et al.

Paiva: It is a hyperspectral and high-resolution (1.3 m) image taken over the
urban area of Pavia by the airborne ROSIS-03 optical sensor. The image consists
of 1096*715 pixels with 103 bands ranging from 0.43 to 0.86 µm in the center of
Pavia (denoted as (denoted as PaviaCenter), Pavia, Italy.

IndianPine: It is a hyperspectral image over the Indian Pine test site on June
1992 by the AVIRIS instrument. The image size is 145*145 pixels with 220 bands
from 0.37-2.5 µm.

Table 1. The details for the datasets used in the experiments.

Dataset Indian Pines Pavia

Number of pixels 34947 468666

Number of bands 200 102

The details of the datasets are summarized in Table 1.

3.2 Experiment Results

In order to evaluate the effectiveness of the proposed platform, the computation
times are compared in terms of the SVD algorithm based on both the Spark
and MapReduce platform. SVD is an effective algorithm for feature extraction
(reduction) but time-consuming. The implementation of SVD in the distributed
platform can greatly accelerate the algorithm. In the real environment of the
experiments, the computation time cost is significantly influenced by the status
of the experimental cluster. Accordingly, the results in a single trial could be
unreliable. To ensure the robustness of the experiment results, all time costs are
referred to the average ones over ten trials.

The time costs of implementing the SVD algorithms are shown in Fig. 1(a)
and (b) using the Mahout (MapReduce) and MLlib (Spark) for the datasets
Indian Pine and Paiva, Respectively. From the experiments, one can see that
the time cost of the SVD implemented by MapReduce is slightly faster than
that by Spark on the same datasets when the singular value is taken as 1 due to

(a) Indian Pines (b) Pavia

Fig. 1. Time costs for the SVD algorithm with Spark and MapReduce, respectively.



A Spark-Based Big Data Platform 125

the higher hardware resource requirements of Spark. In the following iterations,
the time costs of SVD implemented by MapReduce significantly increases due
to the I/O operations. However, the time costs for Spark only slightly increase
to run the decomposition computation in the distributed environment.

4 Conclusion

In the paper, a big data platform has been proposed to process massive remote
sensing data processing, where Spark is utilized for distributed computation to
avoid the expensive I/O operations compared to the MapReduce model as the
principle distributed computing framework. In particular, the proposed frame-
work is comporised of YRAN as distributed resource scheduler and HDFS as
distributed file system. To evaluate the effectiveness for massive remote sensing
processing, the multi-iteration Singular Value Decomposition (SVD) has been
implemented in the proposed platform by both Spark and MapReduce models.
The experiments show that the time cost on the Spark-based platform is far less
than that on the MapReduce platform.

Acknowledgement. This work was supported in part by Natural Science Founda-
tion of China under contract 71331005, in part by Shanghai Science and Technology
Development Funds (13dz2260200, 13511504300), and in part by the Open Foundation
of Second Institute of Oceanography (SOA).

References

1. Bilotta, G., Sánchez, R.Z., Ganci, G.: Optimizing satellite monitoring of volcanic
areas through gpus and multi-core cpus image processing: An opencl case study.
Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal
of 6(6), 2445–2452 (2013)

2. Borthakur, D.: The hadoop distributed file system: architecture and design.
Hadoop Project Website 11, 21 (2007)

3. Callico, G., Lopez, S., Aguilar, B., Lopez, J., Sarmiento, R.: Parallel implementa-
tion of the modified vertex component analysis algorithm for hyperspectral unmix-
ing using opencl (2014)

4. CUDA: http://www.nvidia.com/object/cuda home new.html/
5. Dagum, L., Menon, R.: Openmp: an industry standard api for shared-memory

programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)
6. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.

Commun. ACM 51(1), 107–113 (2008)
7. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: ACM SIGOPS

Operating Systems Review, vol. 37, pp. 29–43. ACM (2003)
8. Golpayegani, N., Halem, M.: Cloud computing for satellite data processing on high

end compute clusters. In: IEEE International Conference on Cloud Computing,
2009. CLOUD 2009, pp. 88–92. IEEE (2009)

9. Grauer-Gray, S., Kambhamettu, C., Palaniappan, K.: Gpu implementation of belief
propagation using cuda for cloud tracking and reconstruction. In: IAPR Workshop
on Pattern Recognition in Remote Sensing (PRRS 2008), vol. 4, p. 2 (2008)

http://www.nvidia.com/object/cuda_home_new.html/


126 Z. Sun et al.

10. Johnpaul, C., Thampi, N.S.: Distributed in-memory cluster computing approach
in scala for solving graph data applications. In: 2014 International Conference on
Advances in Electronics, Computers and Communications (ICAECC), pp. 1–6.
IEEE (2014)

11. Programming Language, S.: http://www.scala-lang.org
12. Lin, X., Wang, P., Wu, B.: Log analysis in cloud computing environment with

hadoop and spark. In: 2013 5th IEEE International Conference on Broadband
Network & Multimedia Technology (IC-BNMT), pp. 273–276. IEEE (2013)

13. Marchal, S., Jiang, X., State, R., Engel, T.: A big data architecture for large scale
security monitoring. In: 2014 IEEE International Congress on Big Data (BigData
Congress), pp. 56–63. IEEE (2014)

14. Pan, X., Zhang, S.: A remote sensing image cloud processing system based on
hadoop. In: 2012 IEEE 2nd International Conference on Cloud Computing and
Intelligent Systems (CCIS), vol. 1, pp. 492–494. IEEE (2012)

15. Tan, Y.K.A., Tan, W.J., Kwoh, L.K.: Fast colour balance adjustment of ikonos
imagery using cuda. In: IEEE International Geoscience and Remote Sensing Sym-
posium, 2008. IGARSS 2008, vol. 2, pp. II-1052. IEEE (2008)

16. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing, pp. 10–10 (2010)

17. Zhao, J., Zhou, H.: Design and optimization of remote sensing image fusion parallel
algorithms based on cpu-gpu heterogeneous platforms. In: 2011 4th International
Congress on Image and Signal Processing (CISP), vol. 3, pp. 1623–1627. IEEE
(2011)

http://www.scala-lang.org

	A Spark-Based Big Data Platform for Massive Remote Sensing Data Processing
	1 Introduction
	2 The Big Remote Sensing Data Architecture
	2.1 Big Remote Sensing Data Architecture
	2.2 Hadoop
	2.3 Spark

	3 Experimental Results
	3.1 Datasets
	3.2 Experiment Results

	4 Conclusion
	References


