
Chapter 5
Integration in Higher Dimensions

Integration of functions in higher dimensions is much more difficult than it is in one
dimension. The basic reason is that in order to integrate a function, one has to know
how to measure the volume of sets. In one dimension, most sets can be decomposed
into intervals (cf. Exercise 1.21), and we took the length of an interval to be its
volume. However, already in R2 there is a vastly more diverse menagerie of shapes.
Thus knowing how to integrate over one shape does not immediately tell you how
to integrate over others. A second reason is that, even if one knows how to define
the integral of functions in RN , in higher dimensions there is no comparable deus ex
machina to replace The Fundamental Theorem of Calculus.

A thoroughly satisfactory theory that addresses the first issue was developed
by Lebesgue, but, because it takes too much time to explain, his is not the theory
presented here. Instead, we will stay with Riemann’s approach.

5.1 Integration Over Rectangles

The simplest analog in R
N of a closed interval is a closed rectangle R,1 a set of the

form

N∏

j=1

[a j , b j ] = [a1, b1] × · · · × [aN , bN ] = {x ∈ R
N : a j ≤ x j ≤ b j for 1 ≤ j ≤ N },

where a j ≤ b j for each j . Such rectangles have three great virtues. First, if one
includes the empty set ∅ as a rectangle, then the intersection of any two rectangles is
again a rectangle. Secondly, there is no question how to assign the volume |R| of a
rectangle, it’s got to be

∏N
j=1(b j −a j ), the product of the lengths of its sides. Finally,

rectangles are easily subdivided into other rectangles. Indeed, every subdivision of

1From now on, every rectangle will be assumed to be closed unless it is explicitly stated that it is
not.

© Springer International Publishing Switzerland 2015
D.W. Stroock, A Concise Introduction to Analysis,
DOI 10.1007/978-3-319-24469-3_5

127

http://dx.doi.org/10.1007/978-3-319-24469-3_1


128 5 Integration in Higher Dimensions

the intervals making up its sides leads to a subdivision of the rectangle into sub-
rectangles. With this in mind, we will now mimic the procedure that we carried out
in Sect. 3.1.

Much of what follows relies on the following, at first sight obvious, lemma. In its
statement, and elsewhere, two sets are said to be non-overlapping if their interiors
are disjoint.

Lemma 5.1.1 If C is a finite collection of non-overlapping rectangles each of which
is contained in the rectangle R, then |R| ≥ ∑

S∈C |S|. On the other hand, if C is
any finite collection of rectangles whose union contains a rectangle R, then |R| ≤∑

S∈C |S|.
Proof Since |S ∩ R| ≤ |S|, we may and will assume throughout that R ⊇ ⋃S∈C S.
Also, without loss in generality, we will assume that int(R) �= ∅.

The proof is by induction on N . Thus, suppose that N = 1. Given a closed
interval I , use aI and bI to denote its left and right endpoints. Determine the points
aR ≤ c0 < · · · < c� ≤ bR so that

{ck : 0 ≤ k ≤ �} = {aI : I ∈ C} ∪ {bI : I ∈ C},

and set Ck = {I ∈ C : [ck−1, ck] ⊆ I }. Clearly |I | =∑{k: I∈Ck }(ck − ck−1) for each

I ∈ C.2
When the intervals in C are non-overlapping, no Ck contains more than one I ∈ C,

and so

∑

I∈C
|I | =

∑

I∈C

∑

{k:I∈Ck }
(ck − ck−1) =

�∑

k=1

card(Ck)(ck − ck−1)

≤
�∑

k=1

(ck − ck−1) ≤ (bR − aR) = |R|.

If R = ⋃
I∈C I , then c0 = aR , c� = bR , and, for each 0 ≤ k ≤ �, there is an I ∈ C

for which I ∈ Ck . To prove this last assertion, simply note that if x ∈ (ck−1, ck) and
C � I � x , then [ck−1, ck] ⊆ I and therefore I ∈ Ck . Knowing this, we have

∑

I∈C
|I | =

∑

I∈C

∑

{k:I∈Ck }
(ck − ck−1) =

�∑

k=1

card(Ck)(ck − ck−1)

≥
�∑

k=1

(ck − ck−1) = (bR − aR) = |R|.

2Here, and elsewhere, the sum over the empty set is taken to be 0.
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Now assume the result for N . Given a rectangle S inRN+1, determine aS, bS ∈ R

and the rectangle QS in R
N so that S = QS × [aS, bS]. As before, choose points

aR ≤ c0 < · · · < c� ≤ bR for {[aS, bS] : S ∈ C}, and define

Ck = {S ∈ C : [ck−1, ck] ⊆ [aS, bS]}.

Then, for each S ∈ C,

|S| = |QS|(bS − aS) = |QS|
∑

{k:S∈Ck }
(ck − ck−1).

If the rectangles in C are non-overlapping, then, for each k, the rectangles in
{QS : S ∈ Ck} are non-overlapping. Hence, since⋃S∈Ck

QS ⊆ Q R , the induction
hypothesis implies

∑
S∈Ck

|QS| ≤ |Q R | for each 1 ≤ k ≤ �, and therefore

∑

S∈C
|S| =

∑

S∈C
|QS|

∑

{k: S∈Ck }
(ck − ck−1)

=
�∑

k=1

(ck − ck−1)
∑

S∈Ck

|QS| ≤ (bR − aR)|Q R| = |R|.

Finally, assume that R =⋃S∈C S. In this case, c0 = aR and c� = bR . In addition,
for each 1 ≤ k ≤ �, Q R =⋃S∈Ck

QS . To see this, note that if x = (x1, . . . , xN+1) ∈
R and xN+1 ∈ (ck−1, ck), then S � x =⇒ [ck−1, ck] ⊆ [aS, bS] and therefore
that S ∈ Ck . Hence, by the induction hypothesis, |Q R | ≤ ∑

S∈Ck
vol(QS) for each

1 ≤ k ≤ �, and therefore

∑

S∈C
|S| =

∑

S∈C
|QS|

∑

{k:S∈Ck }
(ck − ck−1)

=
�∑

k=1

(ck − ck−1)
∑

S∈Ck

|QS| ≥ (bR − aR)|Q R| = |R|.

�

Given a rectangle
∏N

j=1[a j , b j ], throughout this section C will be a finite col-

lection of non-overlapping, closed rectangles R whose union is
∏N

j=1[a j , b j ], and
the mesh size ‖C‖ will be max{diam(R) : R ∈ C}, where the diameter diam(R) of

R = ∏N
j=1[r j , s j ] equals

√∑N
j=1(s j − r j )2. For instance, C might be obtained by

subdividing each of the sides [a j , b j ] into n equal parts and taking C to be the set of
nN rectangles
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N∏

j=1

[
a j + m j −1

n (b j − a j ), a j + m j
n (b j − a j )

]
for 1 ≤ m1, . . . , m N ≤ n.

Next, say that Ξ : C −→ R
N is a choice function if Ξ(R) ∈ R for each R ∈ C, and

define the Riemann sum

R( f ; C,Ξ) =
∑

R∈C
f
(
Ξ(R)

)|R|

for bounded functions f : ∏N
j=1[a j , b j ] −→ R. Again, we say that f is Rie-

mann integrable if there exists a
∫
∏N

1 [a j ,b j ] f (x) dx ∈ R to which the Riemann

sums R( f ; C, Ξ) converge, in the same sense as before, as ‖C‖ → 0, in which
case

∫
∏N

1 [a j ,b j ] f (x) dx is called the Riemann integral or just the integral of f on
∏N

j=1[a j , b j ].
There are no essentially new ideas needed to analyze when a function is Riemann

integrable. As we did in Sect. 3.1, one introduces the upper and lower Riemann sums

U( f ; C) =
∑

R∈C

(
sup

R
f

)
|R| and L( f ; C) =

∑

R∈C

(
inf
R

f

)
|R|,

and, using the same reasoning as we did in the proof of Lemma 3.1.1, checks that
L( f ; C) ≤ R( f ; C,Ξ) ≤ U( f ; C) for any Ξ and L( f ; C) ≤ U( f ; C′) for any C′.
Further, one can show that for each C and ε > 0, there exists a δ > 0 such that

‖C′‖ < δ =⇒ U( f ; C′) ≤ U( f ; C) + ε and L( f ; C′) ≥ L( f ; C) − ε.

The proof that such a δ exists is basically the same as, but somewhat more involved
than, the corresponding one in Lemma 3.1.1. Namely, given δ > 0 and a rectangle
R =∏N

j=1[c j , d j ] ∈ C, define R−
k (δ) and R+

k (δ) to be the rectangles

⎛

⎝
∏

1≤ j<k

[a j , b j ]
⎞

⎠× [ak ∨ (ck − δ), bk ∧ (ck + δ)
]×

⎛

⎝
∏

k< j≤N

[a j , b j ]
⎞

⎠

and
⎛

⎝
∏

1≤ j<k

[a j , b j ]
⎞

⎠× [ak ∨ (dk − δ), bk ∧ (dk + δ)
]×

⎛

⎝
∏

k< j≤N

[a j , b j ]
⎞

⎠

for 1 ≤ k ≤ N , with the understanding that the first factor is absent if k = 1 and the
last factor is absent if k = N . Now suppose that ‖C′‖ < δ and R′ ∈ C′. Then either
R′ ⊆ R for some R ∈ C or there is an 1 ≤ k ≤ N and an R ∈ C such that the interior

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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of the kth side of R′ contains one of the end points of kth side of R, in which case
R′ ⊆ R−

k (δ) ∪ R+
k (δ). Thus, if D is the set of R′ ∈ C′ that are not contained in any

R ∈ C, then, because supR′ f ≤ supR f if R′ ⊆ R, one can use Lemma 5.1.1 to see
that

U( f ; C′) − U( f ; C) =
∑

R′∈C′

∑

R∈C

(
sup
R′

f − sup
R

f

)
|R′ ∩ R|

≤
∑

R′∈D

∑

R∈C

(
sup
R′

f − sup
R

f

)
|R′ ∩ R| ≤ 2‖ f ‖∏N

1 [a j ,b j ]
∑

R′∈D
|R′|

≤ 2‖ f ‖∏N
1 [a j ,b j ]

N∑

k=1

∑

R∈C

(|R−
k (δ)| + |R+

k (δ)|).

Since |R±
k (δ)| ≤ δ

∏
j �=k(b j − a j ), it follows that there exists a constant A < ∞

such that U( f ; C′) ≤ U( f ; C) + Aδ if ‖C′‖ < δ.
With these preparations, we now have the following analog of Theorem 3.1.2.

However, before stating the result, we need to make another definition. Namely, we
will say that a subset Γ of the rectangle

∏N
j=1[a j , b j ] is Riemann negligible if, for

each ε > 0 there is a C such that

∑

R∈C
Γ ∩R �=∅

|R| < ε.

Riemann negligible sets will play an important role in our considerations.

Theorem 5.1.2 Let f : ∏N
j=1[a j , b j ] −→ C be a bounded function. Then f is

Riemann integrable if and only if for each ε > 0 there is a C such that

∑

R∈C
supR f −infR f ≥ε

|R| < ε.

In particular, f is Riemann integrable if it is continuous off of a Riemann negligible
set. Finally if f is Riemann integrable and takes all its values in a compact set K ⊆ C

and ϕ : K −→ C is continuous, then ϕ ◦ f is Riemann integrable.

Proof Except for the one that says f is Riemann integrable if it is continuous off of
a Riemann negligible set, all these assertions are proved in exactly the same way as
the analogous statements in Theorem 3.1.2.

Now suppose that f is continuous off of the Riemann negligible set Γ . Given
ε > 0, choose C so that

∑
R∈D |R| < ε, where D = {R ∈ C : R ∩ Γ �= ∅}. Then

K = ⋃
R∈C\D R is a compact set on which f is continuous. Hence, we can find a

δ > 0 such that | f (y) − f (x)| < ε for all x, y ∈ K with |y − x | ≤ δ. Finally,
subdivide each R ∈ C\D into rectangles of diameter less than δ, and take C′ to be the

http://dx.doi.org/10.1007/978-3-319-24469-3_3
http://dx.doi.org/10.1007/978-3-319-24469-3_3
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cover consisting of the elements ofD and the sub-rectangles into which the elements
of C\D were subdivided. Then

∑

R′∈C′
supR′ f −infR′ f ≥ε

|R′| ≤
∑

R∈D
|R| < ε. �

We now have the basic facts about Riemann integration in R
N , and from them

follow the Riemann integrability of linear combinations and products of bounded
Riemann integrable functions as well as the obvious analogs of (3.1.1), (3.1.5),
(3.1.4), and Theorem 3.14. The replacement for (3.1.2) is

∫
∏N

1 [λa j ,λb j ]
f (x) dx = λN

∫
∏N

1 [a j ,b j ]
f (λx) dx (5.1.1)

for bounded, Riemann integrable functions on
∏N

j=1[λa j ,λb j ]. It is also useful to
note that Riemann integration is translation invariant in the sense that if f is a
bounded, Riemann integrable function on

∏N
j=1[c j + a j , c j + b j ] for some c =

(c1, . . . , cN ) ∈ R
N , then x � f (c + x) is Riemann integrable on

∏N
j=1[a j , b j ] and

∫
∏N

1 [c j +ak ,c j +b j ]
f (x) dx =

∫
∏N

1 [a j ,b j ]
f (c + x) dx, (5.1.2)

a property that follows immediately from the corresponding fact for Riemann sums.
In addition, by the sameprocedure asweused inSect. 3.1,we can extend the definition
of the Riemann integral to cover situations in which either the integrand f or the
region over which the integration is performed is unbounded. Thus, for example, if
f is a function that is bounded and Riemann integrable on bounded rectangles, then
one defines ∫

RN
f (x) dx = lim

a1∨···∨aN →−∞
b1∧···∧bN →∞

∫
∏N

1 [a j ,b j ]
f (x) dx

if the limit exists.

5.2 Iterated Integrals and Fubini’s Theorem

Evaluating integrals in N variables is hard and usually possible only if one can reduce
the computation to integrals in one variable. One way to make such a reduction is
to write an integral in N variables as N iterated integrals in one variable, one for
each dimension, and the following theorem, known as Fubini’s Theorem, shows this
can be done. In its statement, if x = (x1, . . . , xN ) ∈ R

N and 1 ≤ M < N , then
x(M)
1 ≡ (x1, . . . , xM ) and x(M)

2 ≡ (xM+1, . . . , xN ).

http://dx.doi.org/10.1007/978-3-319-24469-3_3
http://dx.doi.org/10.1007/978-3-319-24469-3_3
http://dx.doi.org/10.1007/978-3-319-24469-3_3
http://dx.doi.org/10.1007/978-3-319-24469-3_3
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Theorem 5.2.1 Suppose that f :∏N
j=1[a j , b j ] −→ C is a bounded, Riemann inte-

grable function. Further, for some 1 ≤ M < N and each x(M)
2 ∈ ∏N

j=M+1[a j , b j ],
assume that x(M)

1 ∈ ∏M
j=1[a j , b j ] �−→ f (x(M)

1 , x(M)
2 ) ∈ C is Riemann integrable.

Then

x(M)
2 ∈

N∏

j=M+1

[a j , b j ] �−→ f (M)
1 (x(M)

2 ) ≡
∫
∏M

1 [a j ,b j ]
f (x(M)

1 , x(M)
2 ) dx(M)

1

is Riemann integrable and

∫
∏N

1 [a j ,b j ]
f (x) dx =

∫
∏N

M+1[a j ,b j ]
f (M)
1 (x(M)

2 ) dx(M)
2 .

In particular, this result applies if f is a bounded, Riemann integrable function with
the property that, for each x(M)

2 ∈ ∏N
j=M+1[a j , b j ], x(M)

1 ∈ ∏M
j=1[a j , b j ] �−→

f (x(M)
1 , x(M)

2 ) ∈ C is continuous at all but a Riemann negligible set of points.

Proof Given ε > 0, choose δ > 0 so that

‖C‖ < δ =⇒
∣∣∣∣∣

∫
∏N

1 [a j ,b j ]
f (x) dx − R( f ; C,Ξ)

∣∣∣∣∣ < ε

for every choice function Ξ . Next, let C(M)
2 be a cover of

∏N
j=M+1[a j , b j ] with

‖C(M)
2 ‖ < δ

2 , and let Ξ
(M)
2 be an associated choice function. Finally, because

x(M)
1 � f

(
x(M)
1 ,Ξ

(M)
2 (R2)

)
is Riemann integrable for each R2 ∈ C(M)

2 , we can

choose a cover C(M)
1 of

∏M
j=1[a j , b j ] with ‖C(M)

1 ‖ < δ
2 and an associated choice

function Ξ
(M)
1 such that

∑

R2∈C(M)
2

∣∣∣∣∣∣∣

∑

R1∈C(M)
1

f
(
Ξ

(M)
1 (R1),Ξ

(M)
2 (R2)

))|R1| − f (M)
1 (Ξ

(M)
2 (R2)

)
∣∣∣∣∣∣∣
|R2| < ε.

If
C = {R1 × R2 : R1 ∈ C(M)

1 & R2 ∈ C(M)
2 }

and Ξ
(
R1 × R2) = (Ξ (M)

1 (R1),Ξ
(M)
2 (R2)

)
, then ‖C‖ < δ and

R( f ; C,Ξ) =
∑

R1∈C(M)
1

∑

R2∈C(M)
2

f
(
Ξ

(M)
1 (R1),Ξ

(M)
2 (R2)

)|R1||R2|,
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and so
∣∣∣∣∣

∫
∏N

1 [a j ,b j ]
f (x) dx − R( f (M)

1 ; C(M)
2 ,Ξ

(M)
2 )

∣∣∣∣∣

≤
∣∣∣∣∣

∫
∏N

1 [a j ,b j ]
f (x) dx − R( f ; C,Ξ)

∣∣∣∣∣

+
∑

R2∈C(M)
2

∣∣∣∣∣∣∣

∑

R1∈C(M)
1

f
(
Ξ

(M)
1 (R1),Ξ

(M)
2 (R2)

)|R1| − f (M)
1 (Ξ

(M)
2 (R2)

)
∣∣∣∣∣∣∣
|R2|

is less than 2ε. Hence, R( f (M)
1 ; C(M)

2 ,Ξ
(M)
2

)
converges to

∫
∏N

1 [a j ,b j ] f (x) dx as

‖C(M)
2 ‖ → 0. �

It should be clear that the preceding result holds equally well when the roles of
x(M)
1 and x(M)

2 are reversed. Thus, if f :∏N
j=1[a j , b j ] �−→ C is a bounded, Riemann

integrable function such that x(M)
1 ∈ ∏M

j=1[a j , b j ] �−→ f (x(M)
1 , x(M)

2 ) ∈ C is Rie-

mann integrable for eachx(M)
2 ∈∏N

j=M+1[a j , b j ] andx(M)
2 ∈∏N

j=M+1[a j , b j ] �−→
f (x(M)

1 , x(M)
2 ) is Riemann integrable for each x(M)

1 ∈∏N
j=1[a j , b j ], then

∫
∏N

1 [a j ,b j ]
f (x) dx =

{∫
∏N

M+1[a j ,b j ] f (M)
1 (x(M)

2 ) dx(M)
2∫

∏M
1 [a j ,b j ] f (M)

2 (x(M)
2 ) dx(M)

1 ,
(5.2.1)

where

f (M)
1 (x(M)

2 ) =
∫
∏M

1 [a j ,b j ]
f (x(M)

1 , x(M)
2 ) dx(M)

1

and

f (M)
2 (x(M)

1 ) =
∫
∏N

M+1[a j ,b j ]
f (x(M)

1 , x(M)
2 ) dx(M)

2 .

Corollary 5.2.2 Let f be a continuous function on
∏N

j=1[a j , b j ]. Then for each
1 ≤ M < N,

x(M)
2 ∈

N∏

j=M+1

[a j , b j ] �−→ f (M)
1 (x(M)

2 ) ≡
∫
∏M

1 [a j ,b j ]
f (x(M)

1 , x(M)
2 ) dx(M)

1 ∈ C

is continuous. Furthermore,

f (M+1)
1 (x(M+1)

2 ) =
∫

[aM ,bM ]
f (M)
1 (xM , xM+1

2 ) dxM for 1 ≤ M < N − 1
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and ∫
∏N

1 [a j ,b j ]
f (x) dx =

∫

[aN ,bN ]
f (N−1)
1 (xN ) dxN .

Proof Once the first assertion is proved, the others follow immediately from
Theorem 5.2.1. But, because f is uniformly continuous, the first assertion follows
from the obvious higher dimensional analog of Theorem 3.1.4. �

By repeated applications of Corollary 5.2.2, one sees that

∫
∏N

j=1[a j ,b j ]
f (x) dx

=
∫ bN

aN

(
· · ·
(∫ b1

a1
f (x1, . . . , xN−1, xN ) dx1

)
· · ·
)

dxN .

The expression on the right is called an iterated integral. Of course, there is nothing
sacrosanct about the order in which one does the integrals. Thus

∫
∏N

j=1[a j ,b j ]
f (x) dx

=
bπ(N )∫

aπ(N )

⎛

⎜⎝· · ·
⎛

⎜⎝

bπ(1)∫

aπ(1)

f (x1, . . . , xN−1, xN ) dxπ(1)

⎞

⎟⎠ · · ·
⎞

⎟⎠ dxπ(N )

(5.2.2)

for any permutation π of {1, . . . , N }. In that it shows integrals in N variables can
be evaluated by doing N integrals in one variable, (5.2.2) makes it possible to bring
Theorem 3.2.1 to bear on the problem. However, it is hard enough to find one indef-
inite integral on R, much less a succession of N of them. Nonetheless, there is an
important consequence of (5.2.2). Namely, if f (x) =∏N

j=1 f j (x j ), where, for each
1 ≤ j ≤ N , f j is a continuous function on [a j , b j ], then

∫
∏N

1 [a j ,b j ]
f (x) dx =

N∏

j=1

∫

[a j ,b j ]
f j (x j ) dx j . (5.2.3)

In fact, starting from Theorem 5.2.1, it is easy to check that (5.2.3) holds when each
f j is bounded and Riemann integrable.
Looking at (5.2.2), one might be tempted to think that there is an analog of the

Fundamental Theorem of Calculus for integrals in several variables. Namely, taking
π to be the identity permutation that leaves the order unchanged and thinking of
the expression on the right as a function F of (b1, . . . , bN ), it becomes clear that
∂e1 . . . ∂eN F = f . However, what made this information valuable when N = 1 is
the fact that a function on R can be recovered, up to an additive constant, from its
derivative, and that is why we could say that F(b) − F(a) = ∫ b

a f (x) dx for any

http://dx.doi.org/10.1007/978-3-319-24469-3_3
http://dx.doi.org/10.1007/978-3-319-24469-3_3
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F satisfying F ′ = f . When N ≥ 2, the equality ∂e1 . . . ∂eN F = f provides much
less information. Indeed, even when N = 2, if F satisfies ∂e1∂e2 F = f , then so
does F(x1, x2) + F1(x1) + F2(x2) for any choice of differentiable functions F1 and
F2, and the ambiguity gets worse as N increases. Thus finding an F that satisfies
∂e1 . . . ∂eN F = f does little to advance one toward finding the integral of f .

To provide an interesting example of the way in which Fubini’s Theorem plays
an important role, define Euler’s Beta function B : (0,∞)2 −→ (0,∞) by

B(α,β) =
∫

(0,1)
xα−1(1 − x)β−1 dx .

It turns out that his Beta function is intimately related to his (cf. Exercise 3.3) Gamma
function. In fact,

B(α,β) = Γ (α)Γ (β)

Γ (α + β)
, (5.2.4)

which means that 1
B(α,β)

is closely related to the binomial coefficients in the same
sense that Γ (t) is related to factorials. Although (5.2.4) holds for all (α,β) ∈
(0,∞)2, in order to avoid distracting technicalities, we will prove it only for
(α,β) ∈ [1,∞)2. Thus let α, β ≥ 1 be given. Then, by (5.2.3) and (5.2.1),
Γ (α)Γ (β) equals

lim
r→∞

∫

[0,r ]2
xα−1
1 xβ−1

2 e−x1−x2 dx

= lim
r→∞

∫ r

0
xβ−1
2

(∫ r

0
xα−1
1 e−(x1+x2) dx1

)
dx2.

By (5.1.2),

∫ r

0
xα−1
1 e−(x1+x2) dx1 =

∫ r+x2

x2
(y1 − x2)

α−1e−y1 dy1,

and so
∫ r

0
xβ−1
2

(∫ r

0
xα−1
1 e−(x1+x2) dx1

)
dx2

=
∫ r

0
xβ−1
2

(∫ r+x2

x2
(y1 − x2)

α−1e−y1 dy1

)
dx2.

Now consider the function

f (y1, x2) =
{

(y1 − x2)α−1xβ−1
2 e−y1 if x2 ∈ [0, r ] & x2 ≤ y1 ≤ r + x2

0 otherwise

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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on [0, 2r ]×[0, r ]. Because the only discontinuities of f lie in the Riemann negligible
set {(r+x2, x2) : x2 ∈ [0, r ]}, it is Riemann integrable on [0, 2r ]×[0, r ]. In addition,
for each y1 ∈ [0, 2r ], x2 � f (y1, x2) and, for each x2 ∈ [0, r ], y1 � f (y1, x2)
have at most two discontinuities. We can therefore apply (5.2.1) to justify

∫ r

0
xβ−1
2

(∫ r+x2

x2
(y1 − x2)

α−1e−y1 dy1

)
dx2 =

∫ r

0

(∫ 2r

0
f (y1, x2) dy1

)
dx2

=
∫ 2r

0

(∫ r

0
f (y1, x2) dx2

)
dy1 =

∫ 2r

0
e−y1

⎛

⎜⎝
r∧y1∫

(y1−r)+
(y1 − x2)

α−1xβ−1
2 dx2

⎞

⎟⎠ dy1.

Further, by (3.1.2)

∫ r∧y1

(y1−r)+
(y1 − x2)

α−1xβ−1
2 dx2 = yα+β−1

1

∫ 1∧(y−1
1 r)

(1−y−1
1 r)+

(1 − y2)
α−1yβ−1

2 dy2.

Collecting these together, we have

Γ (α)Γ (β) = lim
r→∞

∫ 2r

0
yα+β−1
1 e−y1

(∫ 1∧(y−1
1 r)

(1−y−1
1 r)+

(1 − y2)
α−1yβ−1

2 dy2

)
dy1.

Finally,

∫ 2r

0
yα+β−1
1 e−y1

(∫ 1∧(y−1
1 r)

(1−y−1
1 r)+

(1 − y2)
α−1yβ−1

2 dy2

)
dy1

=
∫ r

0
yα+β−1
1 e−y1 dy1B(α,β)

+
∫ 2r

r
yα+β−1
1 e−y1

(∫ y−1
1 r

(1−y−1
1 r)

(1 − y2)
α−1yβ−1

2 dy2

)
dy1,

and, as r → ∞, the first term on the right tends to Γ (α + β) whereas the second
term is dominated by

∫∞
r yα+β−1

1 e−y1 dy1 and therefore tends to 0.
The preceding computation illustrates one of the trickier aspects of proper appli-

cations of Fubini’s Theorem. When one reverses the order of integration, it is very
important to figure out what are the resulting correct limits of integration. As in
the application above, the correct limits can look very different after the order of
integration is changed.

The Eq. (5.2.4) provides a proof of Stirling’s formula for the Gamma function as
a consequence of (1.8.7). Indeed, by (5.2.4), Γ (n + 1 + θ) = n!Γ (θ)

B(n+1,θ) for n ∈ Z
+

and θ ∈ [1, 2), and, by (3.1.2),

http://dx.doi.org/10.1007/978-3-319-24469-3_3
http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_3
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B(n + 1, θ) = n−θ
∫ n

0
yθ−1(1 − y

n

)n
dy.

Further, because 1 − x ≤ e−x for all x ∈ R,

∫ n

0
yθ−1(1 − y

n

)n
dy ≤

∫ ∞

0
yθ−1e−y dy = Γ (θ),

and, for all r > 0,

lim
n→∞

∫ n

0
yθ−1(1 − y

n

)n
dy ≥ lim

n→∞

∫ r

0
yθ−1(1 − y

n

)n
dy =

∫ r

0
yθ−1e−y dy.

Since the final expression tends to Γ (θ) as r → ∞ uniformly fast for θ ∈ [1, 2], we
now know that

Γ (θ)

nθ B(n + 1, θ)
−→ 1

uniformly fast for θ ∈ [1, 2]. Combining this with (1.8.7) we see that

lim
n→∞

Γ (n + θ + 1)√
2πn

( n
e

)n
nθ

−→ 1

uniformly fast for θ ∈ [1, 2]. Given t ≥ 3, determine nt ∈ Z
+ and θt ∈ [1, 2) so that

t = nt + θt . Then the preceding says that

lim
t→∞

Γ (t + 1)√
2πt

( t
e

)t

√
t

t − θt

(
t

t − θt

)t

e−θt = 1.

Finally, it is obvious that, as t → ∞,
√

t
t−θt

tends to 1 and, because, by (1.7.5),

log

((
t

t − θt

)t

e−θt

)
= −t log

(
1 − θt

t

)
− θt −→ 0,

so does
(

t
t−θt

)t
e−θt . Hence we have shown that

Γ (t + 1) ∼ √
2πt

(
t

e

)t

as t → ∞ (5.2.5)

in the sense that limt→∞ Γ (t+1)√
2πt
(

t
e

)t = 1.

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_1


5.3 Volume of and Integration Over Sets 139

5.3 Volume of and Integration Over Sets

We motivated our initial discussion of integration by computing the area under the
graph of a non-negative function, and as we will see in this section, integration
provides a method for computing the volume of more general regions. However,
before we begin, we must first be more precise about what we will mean by the
volume of a region.

Although we do not know yet what the volume of a general set Γ is, we know a
few properties that volume should possess. In particular, we know that the volume
of a subset should be no larger than that of the set containing it. In addition, volume
should be additive in the sense that the volume of the union of disjoint sets should be
the sum of their volumes. Taking these comments into account, for a given bounded
set Γ ⊆ R

N , we define the exterior volume |Γ |e of Γ to be the infimum of the sums∑
R∈C |R| as C runs over all finite collections of non-overlapping rectangles whose

union contains Γ .3 Similarly, define the interior volume |Γ |i to be the supremum of
the sums

∑
R∈C |R| as C runs over finite collections of non-overlapping rectangles

each of which is contained in Γ . Clearly the notion of exterior volume is consistent
with the properties that we want volume to have. To see that the same is true of
interior volume, note that an equivalent description would have been that |Γ |i is
the supremum of

∑
R∈C |R| as C runs over finite collections of rectangles that are

mutually disjoint and each of which is contained in Γ . Indeed, given a C of the sort
in the definition of interior volume, shrink the sides of each R ∈ C with |R| > 0
by a factor θ ∈ (0, 1) and eliminate the ones with |R| = 0. The resulting rectangles
will be mutually disjoint and the sum of their volumes will be θN times that of the
original ones. Hence, by taking θ close enough to 1, we can get arbitrarily close to
the original sum.

Obviously Γ is Riemann negligible if and only if |Γ |e = 0. Next notice that
|Γ |i ≤ |Γ |e for all bounded Γ ’s. Indeed, suppose that C1 is a finite collection of non-
overlapping rectangles contained in Γ and that C2 is a finite collection of rectangles
whose union contains Γ . Then, by Lemma 5.1.1,

∑

R2∈C2
|R2| ≥

∑

R2∈C2

∑

R1∈C1
|R1 ∩ R2| =

∑

R1∈C1

∑

R2∈C2
|R1 ∩ R2| ≥

∑

R1∈C1
|R1|.

In addition, it is easy to check that

|Γ1|e ≤ |Γ2|e and |Γ1|i ≤ |Γ2|i if Γ1 ⊆ Γ2

|Γ1 ∪ Γ2|e ≤ |Γ1|e + |Γ2|e for all Γ1 & Γ2,

and |Γ1 ∪ Γ2|i ≥ |Γ1|i + |Γ2|i if Γ1 ∩ Γ2 = ∅.

3It is reasonable easy to show that |Γ |e would be the same if the infimum were taken over covers
by rectangles that are not necessarily non-overlapping.
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We will say that Γ is Riemann measurable if |Γ |i = |Γ |e, in which case we will
call vol(Γ ) ≡ |Γ |e the volume of Γ . Clearly |Γ |e = 0 implies that Γ is Riemann
measurable and vol(Γ ) = 0. In particular, if Γ is Riemann negligible and therefore
|Γ |e = 0, then Γ is Riemann measurable and has volume 0. In addition, if R
is a rectangle, |R|e ≤ |R| ≤ |R|i, and therefore R is Riemann measurable and
vol(R) = |R|.

One suspects that these considerations are intimately related to Riemann integra-
tion, and the following theorem justifies that suspicion. In its statement and elsewhere,
1Γ denotes the indicator function of a set Γ . That is, 1Γ (x) is 1 if x ∈ Γ and is 0 if
x /∈ Γ .

Theorem 5.3.1 Let Γ be a subset of
∏N

j=1[a j , b j ]. Then Γ is Riemann measurable

if and only if 1Γ is Riemann integrable on
∏N

j=1[a j , b j ], in which case

vol(Γ ) =
∫
∏N

j=1[a j ,b j ]
1Γ (x) dx.

Proof First observe that, without loss in generality, we may assume that all the
collections C entering the definitions of outer and inner volume can be taken to be
subsets of non-overlapping covers of

∏N
j=1[a j , b j ].

Now suppose that Γ is Riemann measurable. Given ε > 0, choose a non-
overlapping cover C1 of

∏N
j=1[a j , b j ] such that

∑

R∈C1
R∩Γ �=∅

|R| ≤ vol(Γ ) + ε
2 .

Then
U(1Γ ; C1) =

∑

R∈C1
R∩Γ �=∅

|R| ≤ vol(Γ ) + ε
2 .

Next, choose C2 so that ∑

R∈C2
R⊆Γ

|R| ≥ vol(Γ ) − ε
2 ,

and observe that then L(1Γ ; C2) ≥ vol(Γ ) − ε
2 . Hence if

C = {R1 ∩ R2 : R1 ∈ C1 & R2 ∈ C2},

then

U(1Γ ; C) ≤ U(1Γ ; C1) ≤ vol(Γ ) + ε
2 ≤ L(1Γ ; C2) + ε ≤ L(1Γ ; C) + ε,

and so not only is 1Γ Riemann integrable but also its integral is equal to vol(Γ ).
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Conversely, if 1Γ is Riemann integrable and ε > 0, choose C so that U(1Γ ; C) ≤
L(1Γ ; C) + ε. Define associated choice functions Ξ1 and Ξ2 so that Ξ1(R) ∈ Γ if
R ∩ Γ �= ∅ and Ξ2(R) /∈ Γ unless R ⊆ Γ . Then

|Γ |e ≤
∑

R∈C
R∩Γ �=∅

|R| = R(1Γ ; C,Ξ1) ≤ R(1Γ ; C,Ξ2) + ε =
∑

R∈C
R⊆Γ

|R| + ε ≤ |Γ |i + ε,

and so Γ is Riemann measurable. �

Corollary 5.3.2 If Γ1 and Γ2 are bounded, Riemann measurable sets, then so are
Γ1 ∪ Γ2, Γ1 ∩ Γ2, and Γ2\Γ1. In addition,

vol
(
Γ1 ∪ Γ2) = vol(Γ1) + vol(Γ2) − vol(Γ1 ∩ Γ2)

and
vol
(
Γ2\Γ1

) = vol
(
Γ2
)− vol

(
Γ1 ∩ Γ2

)
.

In particular, if vol(Γ1 ∩ Γ2) = 0, then vol(Γ1 ∪ Γ2) = vol(Γ1) + vol(Γ2). Finally,
Γ ⊆ ∏N

j=1[a j , b j ] is Riemann measurable if and only if for each ε > 0 there exist

Riemann measurable subsets A and B of
∏N

j=1[a j , b j ] such that A ⊆ Γ ⊆ B and
vol(B\A) < ε.

Proof By Theorem 5.3.1, 1Γ1 and 1Γ2 are Riemann integrable. Thus, since

1Γ1∩Γ2 = 1Γ11Γ2 and 1Γ1∪Γ2 = 1Γ1 + 1Γ2 − 1Γ1∩Γ2 ,

that same theorem implies that Γ1 ∪ Γ2 and Γ1 ∩ Γ2 are Riemann measurable. At the
same time,

1Γ2\Γ1 = 1Γ2 − 1Γ1∩Γ2 ,

and so Γ2\Γ1 is also Riemann measurable. Also, by Theorem 5.3.1, the equations
relating their volumes follow immediately for the equations relating their indicator
functions.

Turning to the final assertion, there is nothing to do if Γ is Riemann measurable
since we can then take A = Γ = B for all ε > 0. Now suppose that for each
ε > 0 there exist Riemann measurable sets Aε and Bε such that Aε ⊆ Γ ⊆ Bε ⊆∏N

j=1[a j , b j ] and vol(Bε\Aε) < ε. Then

|Γ |i ≥ vol(Aε) ≥ vol(Bε) − ε ≥ |Γ |e − ε,

and so Γ is Riemann measurable. �

It is reassuring that the preceding result is consistent with our earlier computation
of the area under a graph. In fact, we now have the following more general result.
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Theorem 5.3.3 Assume that f :∏N
j=1[a j , b j ] −→ R is continuous. Then the graph

G( f ) =
⎧
⎨

⎩
(
x, f (x)

) : x ∈
N∏

j=1

[a j , b j ]
⎫
⎬

⎭

is a Riemann negligible subset of R
N+1. Moreover, if, in addition, f is non-

negative and Γ = {
(x, y) ∈ R

N+1 : 0 ≤ y ≤ f (x)
}
, then Γ is Riemann

measurable and

vol(Γ ) =
∫
∏N

1 [a j ,b j ]
f (x) dx.

Proof Set r = ‖ f ‖∏N
1 [a j ,b j ], and for each ε > 0 choose δε > 0 so that

| f (y) − f (x)| < ε if |y − x| ≤ δε.

Next let C with ‖C‖ < δε be a cover of
∏N

1 [a j , b j ] by non-overlapping rectangles,
and choose K ∈ Z

+ so that r
K+1 < ε ≤ r

K . Then for each R ∈ C there is a
1 ≤ kR ≤ 2(K − 1) such that

{
(x, f (x)

) : x ∈ R
} ⊆ R × [−r + (kR−1)r

K ,−r + (kR+2)r
K

]
,

and therefore

|G( f )|e ≤ 3r

K

∑

R∈C
|R| ≤ 6

⎛

⎝
N∏

j=1

(b j − a j )

⎞

⎠ ε,

which proves that G( f ) is Riemann negligible.
Turning to the second assertion, note that all the discontinuities of 1Γ on∏N
j=1[a j , b j ] × [0, r ] are contained in G( f ), and therefore 1Γ is Riemann mea-

surable. In addition, for each x ∈ ∏N
j=1[a j , b j ], y ∈ [0, r ] �−→ 1Γ (x, y) ∈ {0, 1}

has at most one discontinuity. Hence, by Theorem 5.3.1 and (5.2.1),

vol(Γ ) =
∫
∏N

1 [a j ,b j ]

(∫ r

0
1Γ (x, y) dy

)
dx =

∫
∏N

1 [a j ,b j ]
f (x) dx. �

Theorem 5.3.3 allows us to confirm that the volume (i.e., the area) of the closed
unit ball B(0, 1) inR2 is π, the half period of the trigonometric sine function. Indeed,
B(0, 1) = H+ ∪ H−, where

H± =
{
(x1, x2) : 0 ≤ ±x2 ≤

√
1 − x21

}
.
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By Theorem 5.3.3 both H+ and H− are Riemann measurable, and each has area

∫ 1

−1

√
(1 − x2) dx = 2

∫ π
2

0
cos2 θ dθ =

∫ π
2

0

(
1 − cos 2θ

)
dθ = π

2
.

Finally, H+ ∩ H− = [−1, 1] × {0} is a rectangle with area 0. Hence, by Corollary
5.3.2, the desired conclusion follows.Moreover, because 1B(0,r)(x) = 1B(0,1)(r

−1x),
we can use (5.1.1) and (5.1.2) to see that

vol
(
B(c, r)

) = πr2 (5.3.1)

for balls in R2.
Having defined what we mean by the volume of a set, we now define what we will

mean by the integral of a function on a set. Given a bounded, Riemann measurable
set Γ , we say that a bounded function f : Γ −→ C is Riemann integrable on Γ if
the function

1Γ f ≡
{

f on Γ

0 off Γ

is Riemann integrable on some rectangle
∏N

j=1[a j , b j ] ⊇ Γ , in which case the
Riemann integral of f on Γ is

∫

Γ

f (x) dx ≡
∫
∏N

1 [a j ,b j ]
1Γ (x) f (x) dx.

In particular, if Γ is a bounded, Riemann measurable set, then every bounded, Rie-
mann integrable function on

∏N
j=1[a j , b j ] will be is Riemann integrable on Γ . In

particular, notice that if ∂Γ is Riemann negligible and f is a bounded function of
Γ that is continuous off of a Riemann negligible set, then f is Riemann integrable
on Γ . Obviously, the choice of the rectangle

∏N
j=1[a j , b j ] is irrelevant as long as it

contains Γ .
The following simple result gives an integral version of the intermediate value

theorem, Theorem 1.3.6.

Theorem 5.3.4 Suppose that K ⊆∏N
j=1[a j , b j ] is a compact, connected, Riemann

measurable set. If f : K −→ R is continuous, then there exists a ξ ∈ K such that

∫

K
f (x) dx = f (ξ)vol(K ).

Proof If vol(K ) = 0 there is nothing to do. Now assume that vol(K ) > 0. Then
1

vol(K )

∫
K f (x) dx lies between the minimum and maximum values that f takes on

K , and therefore, by Exercise 4.5 and Lemma 4.1.2, there exists a ξ ∈ K such that
f (ξ) = 1

vol(K )

∫
K f (x) dx. �

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_4
http://dx.doi.org/10.1007/978-3-319-24469-3_4
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5.4 Integration of Rotationally Invariant Functions

One of the reasons for our introducing the concepts in the preceding section is that
they encourage us to get away from rectangles when computing integrals. Indeed, if
Γ =⋃n

m=0 Γm where the Γm’s are bounded Riemann measurable sets, then, for any
bounded, Riemann integrable function f ,

∫

Γ

f (x) dx =
n∑

m=0

∫

Γm

f (x) dx if vol
(
Γm ∩ Γm′

) = 0 for m′ �= m, (5.4.1)

since

0 ≤
n∑

m=0

1Γm f − 1Γ f ≤ 2‖ f ‖u
∑

0≤m<m′≤n

1Γm∩Γm′ .

The advantage afforded by (5.4.1) is that a judicious choice of the Γm’s can simplify
computations. For example, suppose that f is a function on the closed ball B(0, r) in
R
2, and assume that f (x) = f̃ (|x|) for some continuous function f̃ : [0, r ] −→ C.

For each n ≥ 1, set Γ0,n = {0} and Γm,n = B
(
0, mr

n

)\B
(
0,

(m−1)r
n

)
if 1 ≤ m ≤ n.

By Corollary 5.3.2 and the considerations leading up to (5.3.1), we know that the
Γm,n’s are Riemann measurable, and, obviously, for each n ≥ 1 they are a cover of
B(0, r) by mutually disjoint sets. If we define

fn(x) =
n∑

m=0

f̃

(
(2m − 1)r

2n

)
1Γm,n ,

then fn is Riemann measurable, fn −→ f uniformly, and therefore

∫

B(0,r)

f (x) dx = lim
n→∞

∫

B(0,r)

fn(x) dx = lim
n→∞

n∑

m=1

f̃
(

(2m−1)r
2n

)
vol(Γm,n).

Finally, by Corollary 5.3.2 and (5.3.1), vol(Γm,n) = (2m−1)πr2

n2
, and so

∫

Γm

fn(x) dx = 2πr

n

n∑

m=1

f̃
(

(2m−1)r
2n

)
(2m−1)r

2n = 2πR(g; Cn, Ξn),

where g(ρ) = ρ f̃ (ρ), Cn = {[
(m−1)r

n , mr
n

] : 1 ≤ m ≤ n
}
and Ξn

([
(m−1)r

n , mr
n

]) =
(2m−1)r

n . Hence, we have now proved that

∫

B(0,r)

f (x) dx = 2π
∫ r

0
f̃ (ρ)ρ dρ if f (x) = f̃ (|x|) (5.4.2)
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when f̃ : [0, r ] −→ C is continuous. The preceding is an example of how, by taking
advantage of symmetry properties, one can sometimes reduce the computation of
an integral in higher dimensions to one in lower dimensions. In this example the
symmetry was the rotational invariance of both the region of integration and the
integrand.

Here is a beautiful application of (5.4.2) to a famous calculation. It is known

that the function x � e− x2
2 does not admit an indefinite integral that can be writ-

ten as a concatenation of polynomials, trigonometric functions, and exponentials.
Nonetheless, by combining (5.2.1) with (5.4.2), we will now show that

∫

R

e− x2
2 dx = √

2π. (5.4.3)

Given r > 0, use (5.2.3) to write

(∫ r

−r
e− x2

2 dx

)2

=
∫ r

−r

(∫ r

−r
e− x21+x22

2 dx1

)
dx2 =

∫

[−r,r ]2
e− |x|2

2 dx.

Next observe that
∫

B(0,
√
2r)

e− |x|2
2 dx ≥

∫

[−r,r ]2
e− |x|2

2 dx ≥
∫

B(0,r)

e− |x|2
2 dx,

and that, by (5.4.2),

∫

B(0,R)

e− |x|2
2 dx = 2π

∫ R

0
e− ρ2

2 ρ dρ = 2π
(
1 − e− R2

2
)
.

Thus, after letting r → ∞, we arrive at (5.4.3). Once one has (5.4.3), there are lots of
other computations which follow. For example, one can compute (cf. Exercise 3.3)

Γ
( 1
2

) = ∫∞
0 x− 1

2 e−x dx . To this end, make the change of variables y = (2x)
1
2 to

see that

Γ
( 1
2

) = lim
r→∞

∫ r

r−1
x− 1

2 e−x dx = lim
r→∞ 2

1
2

∫ (2r)
1
2

(2r)
− 1
2

e− y2

2 dy

= 2
1
2

∫

[0,∞)

e− y2

2 dy = 2− 1
2

∫

R

e− y2

2 dy,

and conclude that
Γ
( 1
2

) = √
π. (5.4.4)

We will now develop the N -dimensional analog of (5.4.2) for other N ≥ 1.
Obviously, the 1-dimensional analog is simply the statement that

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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∫ r

−r
f (x) dx = 2

∫ r

0
f (ρ) dρ

for even functions f on [−r, r ]. Thus, assume that N ≥ 3, and begin by noting that
the closed ball B(0, r) of radius r ≥ 0 centered at the origin is Riemann measurable.
Indeed, B(0, r) is the union of the hemispheres

H+ ≡
⎧
⎨

⎩x : 0 ≤ xN ≤
√√√√

N−1∑

j=1

x2j

⎫
⎬

⎭ and H− ≡
⎧
⎨

⎩x : −
√√√√

N−1∑

j=1

x2j ≤ xN ≤ 0

⎫
⎬

⎭ ,

and so, by Theorem 5.3.3 and Corollary 5.3.2, B(0, r) is Riemann measurable. Fur-
ther, by (5.1.2) and (5.1.1), for any c ∈ R

N , B(c, r) is Riemann measurable and
vol
(
B(c, r)

) = vol
(
B(0, r)

)
ΩN r N , where ΩN is the volume of the closed unit ball

B(0, 1) in RN .
Proceeding in precisely the same way as we did in the derivation of (5.4.2) and

using the identity bN − aN = (b − a)
∑N−1

k=0 akbN−1−k , we see that, for any con-
tinuous f̃ : [0, r ] −→ C,

∫

B(0,r)

f̃ (|x|) dx = lim
n→∞

NΩN r

n
lim

n→∞

n∑

m=1

f̃
(
ξm,n)ξN−1

m,n ,

where

ξm,n = r

n

(
1

N

N−1∑

k=0

mk(m − 1)N−1−k

) 1
N−1

∈ [ (m−1)r
n , mr

n

]
,

and conclude from this that
∫

B(0,r)

f̃ (|x|) dx = NΩN

∫ r

0
f̃ (ρ)ρN−1 dρ. (5.4.5)

Combining (5.4.5) with (5.4.3), we get an expression for ΩN . By the same rea-
soning as we used to derive (5.4.3), one finds that

(2π)
N
2 =

(∫

R

e− x2
2 dx

)N

= lim
r→∞

∫

B(0,r)

e− |x|2
2 dx = NΩN

∫ ∞

0
ρN−1e− ρ2

2 dρ.

Next make the change of variables ρ = (2t)
1
2 to see that

∫

[0,∞)

ρN−1e− ρ2

2 dρ = 2
N
2 −1

∫ ∞

0
t

N
2 −1e−t dt = 2

N
2 −1Γ

( N
2

)
.
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Thus, we now know that

ΩN = 2π
N
2

NΓ
( N
2

) = π
N
2

Γ
( N
2 + 1

) .

By (5.4.4) and induction on N ,

Γ
( 2N+1

2

) = π
1
2 2−N

N∏

k=1

(2k − 1) = π
1
2
(2N )!
4N N ! ,

and therefore

Ω2N = πN

N ! and Ω2N−1 = 4N πN−1N !
(2N )! for N ≥ 1.

Applying (3.2.4), we find that

Ω2N ∼ (2πN )−
1
2

(πe

N

)N
and Ω2N−1 ∼ (

√
2π)−1

(πe

N

)N
.

Thus, as N gets large,ΩN , the volume of the unit ball inRN , is tending to 0 at a very
fast rate. Seeing as the volume of the cube [−1, 1]N that circumscribes B(0, 1) has
volume 2N , this means that the 2N corners of [−1, 1]N that are not in B(0, 1) take
up the lion’s share of the available space. Hence, if we lived in a large dimensional
universe, the biblical tradition that a farmer leave the corners of his field to be
harvested by the poor would be very generous.

5.5 Rotation Invariance of Integrals

Because they fit together so nicely, thus far we have been dealing exclusively with
rectangles whose sides are parallel to the standard coordinate axes. However, this
restriction obscures a basic property of integrals, the property of rotation invariance.
To formulate this property, recall that (e1, . . . , eN ) ∈ (RN )N is called anorthonormal
basis in RN if (ei , e j )RN = δi, j . The standard orthonormal basis (e01, . . . , e0N ) is the
one for which (e0i ) j = δi, j , but there are many others. For example, in R

2, for each
θ ∈ [0, 2π),

(
(cos θ, sin θ), (∓ sin θ,± cos θ)

)
is an orthonormal basis, and every

orthonormal basis in R2 is one of these.
A rotation4 in R

N is a map R : RN −→ R
N of the form R(x) = ∑N

j=1 x j e j

where (e1, . . . , eN ) is an orthonormal basis. Obviously R is linear in the sense that

4The terminology that I am using here is slightly inaccurate. The term rotation should be reserved
forR’s for which the determinant of the matrix

((
(ei , e0j )RN

))
is 1, and I have not made a distinction

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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R(αx + βy) = αR(x) + βR(y).

In addition,R preserves inner products:
(
R(x),R(y)

)
RN = (x, y)RN . To check this,

simply note that

(
R(x),R(y)

)
RN =

N∑

i, j=1

xi y j (ei , e j )RN =
N∑

i=1

xi yi = (x, y)RN .

In particular, |R(y) − R(x)| = |y − x|, and so it is clear that R is one-to-one
and continuous. Further, if R and R′ are rotations, then so is R′ ◦ R. Indeed, if
(e1, . . . , eN ) is the orthonormal basis for R, then

R′ ◦ R(x) =
N∑

j=1

x jR
′(e j ),

and, since (
R′(ei ),R

′(e j )
)
RN = (ei , e j )RN = δi, j ,

(
R′(e1), . . . ,R′(eN )

)
is an orthonormal basis. Finally, if R is a rotation, then there

is a unique rotationR−1 such thatR ◦R−1 = I = R−1 ◦R, where I is the identity
map: I(x) = x. To see this, let (e1, . . . , eN ) be the orthonormal bases forR, and set
ẽi = (

(e1)i , . . . , (eN )i
)
for 1 ≤ i ≤ N . Using (e01, . . . , e0N ) to denote the standard

orthonormal basis, we have that (ẽi , ẽ j )RN equals

N∑

k=1

(ek)i (ek) j =
N∑

k=1

(ek, e0i )RN (ek, e0j )RN = (R(e0i ),R(e0j )
)
RN = δi, j ,

and so (ẽ1, . . . , ẽN ) is an orthonormal basis. Moreover, if R̃ is the corresponding
rotation, then

R̃ ◦ R(x) =
N∑

i=1

xi R̃(ei ) =
N∑

i, j=1

xi (ei , e0j )RN ẽ j

=
N∑

i, j,k=1

xi (ei , e0j )RN (ek, e0j )RN e0k =
N∑

i,k=1

xi (ei , ek)RN e0k = x.

A similar computation shows that R ◦ R̃ = I, and so we can take R−1 = R̃.

(Footnote 4 continued)
between them and those for which it is −1. That is, I am calling all orthogonal transformations
rotations.
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Because R preserves lengths, it is clear that R
(
B(c, r)

) = B
(
R(c), r

)
. R also

takes a rectangle into a rectangle, but unfortunately the image rectangle may no
longer have sides parallel to the standard coordinate axes. Instead, they are parallel
to the axes for the corresponding orthonormal basis. That is,

(∗) R

⎛

⎝
N∏

j=1

[a j , b j ]
⎞

⎠ =
⎧
⎨

⎩

N∑

j=1

x j e j : x ∈
N∏

j=1

[a j , b j ]
⎫
⎬

⎭ .

Of course, we should expect that vol
(
R
(∏N

j=1[a j , b j ]
))

= ∏N
j=1(b j − a j ), but

this has to be checked, and for that purpose we will need the following lemma.

Lemma 5.5.1 Let G be a non-empty, bounded, open subset of RN , and assume that

lim
r↘0

∣∣(∂G)(r)
∣∣
i = 0

where (∂G)(r) is the set of y for which there exists an x ∈ ∂G such that |y − x| < r .
Then Ḡ is Riemann measurable and, for each ε > 0, there exists a finite set B of
mutually disjoint closed balls B̄ ⊆ G such that vol(Ḡ) ≤∑B∈B vol(B̄) + ε.

Proof First note that ∂G is Riemann negligible and therefore that Ḡ is Riemann
measurable. Next, given a closed cube Q = ∏N

j=1[c j − r, c j + r ], let B̄Q be the

closed ball B
(
c, r

2

)
.

For each n ≥ 1, let Kn be the collection of closed cubes Q of the form 2−nk +
[0, 2−n]N , wherek ∈ Z

N . Obviously, for each n, the cubes inKn are non-overlapping
and R

N =⋃Q∈Kn
Q.

Now choose n1 so that |(∂G)(2
N
2 −n1)|i ≤ 1

2vol(Ḡ), and set

C1 = {Q ∈ Kn1 : Q ⊆ G} and C′
1 = {Q ∈ Kn1 : Q ∩ G �= ∅}.

Then Ḡ ⊆⋃Q∈C′
1

Q,
⋃

Q∈C′
1\C1 Q ⊆ (∂G)(2

N
2 −n1 ), and therefore

∑

Q∈C1
|Q| =

∑

Q∈C′
1

|Q| −
∑

Q∈C′
1\C1

|Q| ≥ vol(Ḡ) − vol(Ḡ)

2
= vol(Ḡ)

2
.

Clearly the B̄Q’s for Q ∈ C1 are mutually disjoint, closed balls contained in G.
Furthermore, vol(B̄Q) = α|Q|, where α ≡ 4−N ΩN , and therefore

vol

⎛

⎝G\
⋃

Q∈C1
B̄Q

⎞

⎠ = vol(G)−
∑

Q∈C1
vol(B̄Q) = vol(G)−α

∑

Q∈C1
|Q| ≤ βvol(G),
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where β ≡ 1 − α
2 . Finally, set B1 = {B̄Q : Q ∈ C1}.

Set G1 = G\⋃B̄∈B1
B̄. Then G1 is again a non-empty, bounded, open set.

Furthermore, since (cf. Exercise 4.1) ∂G1 ⊆ ∂G ∪⋃B̄∈B1
∂ B̄, it is easy to see that

limr↘0
∣∣(∂G1)

(r)
∣∣
i = 0. Hence we can apply the same argument to G1 and thereby

produce a set B2 ⊇ B1 of mutually disjoint, closed balls B̄ such that B̄ ⊆ G1 for
B̄ ∈ B2\B1 and

vol

⎛

⎝G\
⋃

B̄∈B2

B̄

⎞

⎠ = vol

⎛

⎝G1\
⋃

B̄∈B2\B1

Bk

⎞

⎠ ≤ βvol(G1) ≤ β2vol(G).

After m iterations, we produce a collection Bm of mutually disjoint closed balls

B̄ ⊆ G such that vol
(

G\⋃B̄∈Bm
B̄
)

≤ βmvol(G). Thus, all that remains is to

choose m so that βmvol(G) < ε and then do m iterations. �

Lemma 5.5.2 If R is a rectangle and R is a rotation, then R(R) is Riemann mea-
surable and has the same volume as R.

Proof It is obvious that int(R) satisfies the hypotheses of Lemma 5.5.1, and, by using
(∗), it is easy to check that int

(
R(R)

)
does also.

Next assume that G ≡ int(R) �= ∅. Clearly G satisfies the hypotheses of
Lemma 5.5.1, and therefore for each ε > 0 we can find a collection B of mutu-
ally disjoint closed balls B̄ ⊆ G such that

∑
B̄∈B vol(B̄) + ε ≥ vol(Ḡ) = vol(R).

Thus, if B′ = {R(B̄) : B̄ ∈ B}, then B′ is a collection of mutually disjoint closed
balls B̄ ′ ⊆ R(R) such that

vol(R) ≤
∑

B̄∈B
vol(B̄) + ε =

∑

B̄′∈B′
vol(B̄ ′) + ε ≤ vol

(
R(R)

)+ ε,

and so vol
(
R(R)

) ≥ |R|. To prove that this inequality is an equality, apply the same
line of reasoning to G ′ = int

(
R(R)

)
and R−1 acting on R(R), and thereby obtain

vol(R) = vol
(
R−1 ◦ R(R)

) ≥ vol
(
R(R)

)
.

Finally, if R = ∅ there is nothing to do.On the other hand, if R �= ∅but int(R) = ∅,
for each ε > 0 let R(ε) be the set of points y ∈ R

N such that max1≤ j≤N |y j −x j | ≤ ε
for some x ∈ R. Then R(ε) is a closed rectangle with non-empty interior containing
R, and so vol

(
R(R)

) ≤ vol
(
R(R(ε))

) = |R(ε)|. Since vol(R) = 0 = limε↘0 |R(ε)|,
it follows that vol(R) = vol

(
R(R)

)
in this case also. �

Theorem 5.5.3 If Γ is a bounded, Riemann measurable subset and R is a rotation,
then R(Γ ) is Riemann measurable and vol

(
R(Γ )

) = vol(Γ ).

http://dx.doi.org/10.1007/978-3-319-24469-3_4


5.5 Rotation Invariance of Integrals 151

Proof Given ε > 0, choose C1 to be a collection of non-overlapping rectangles
contained in Γ such that vol(Γ ) ≤ ∑R∈C1 |R| + ε, and choose C2 to be a cover of
Γ by non-overlapping rectangles such that vol(Γ ) ≥∑R∈C2 |R| − ε. Then

|R(Γ )|i ≥
∑

R∈C1
vol
(
R(R)

) =
∑

R∈C1
|R| ≥ vol(Γ ) − ε ≥

∑

R∈C2
|R| − 2ε

=
∑

R∈C2
vol
(
R(R)

)− 2ε ≥ |R(Γ )|e − 2ε.

Hence, |R(Γ )|e ≤ vol(Γ ) + 2ε and |R(Γ )|i ≥ vol(Γ ) − 2ε for all ε > 0. �

Corollary 5.5.4 Let f : B(0, r) −→ C be a bounded function that is continuous
off of a Riemann negligible set. Then, for each rotation R, f ◦ R is continuous off
of a Riemann negligible set and

∫

B(0,r)

f ◦ R(x) dx =
∫

B(0,r)

f (x) dx.

Proof Without loss in generality, we will assume throughout that f is real-valued.
If D is a Riemann negligible set off of which f is continuous, thenR−1(D) con-

tains the setwhere f ◦R is discontinuous.Hence, since vol
(
R−1(D)

) = vol(D) = 0,
f ◦ R is continuous off of a Riemann negligible set.
Set g = 1B(0,r) f . Then, by the preceding, both g and g ◦ R are Riemann inte-

grable. By (5.4.1), for any cover C of [−r, r ]N by non-overlapping rectangles and
any associated choice function Ξ ,

∫

B(0,r)

f ◦ R(x) dx =
∑

R∈C

∫

R−1(R)

g ◦ R(x) dx

= R(g; C,Ξ) +
∑

R∈C

∫

R−1(R)

ΔR(x) dx,

where ΔR(x) = g(x) − g
(
Ξ(R)

)
. Since R(g; C,Ξ) tends to

∫
B(0,r)

f (x) dx as
‖C‖ → 0, what remains to be shown is that the final term tends to 0 as ‖C‖ → 0.
But |ΔR(x)| ≤ supR g − inf R g and therefore

∣∣∣∣∣
∑

R∈C

∫

R−1(R)

ΔR(x) dx

∣∣∣∣∣ ≤
∑

R∈C

(
sup

R
g − inf

R
g

)
|R| = U(g; C) − L(g; C),

which tends to 0 as ‖C‖ → 0. �

Here is an example of the way in which one can use rotation invariance to make
computations.
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Lemma 5.5.5 Let 0 ≤ r1 < r2 and 0 ≤ θ1 < θ2 < 2π be given. Then the region

{
(r cos θ, r sin θ) : (r, θ) ∈ [r1, r2] × [θ1, θ2]

}

has a Riemann negligible boundary and volume
r22−r21

2 (θ2 − θ1).

Proof Because this region can be constructed by taking the intersection of differ-
ences of balls with half spaces, its boundary is Riemann negligible. Furthermore, to
compute its volume, it suffices to treat the case when r1 = 0 and r2 = 1, since the
general case can be reduced to this one by taking differences and scaling.

Now define u(θ) = vol
(
W (θ)

)
where

W (θ) ≡ {(r cosω, r sinω) : (r,ω) ∈ [0, 1] × [0, θ]}.

Obviously, u is a non-decreasing function of θ ∈ [0, 2π] that is equal to 0 when
θ = 0 and π when θ = 2π. In addition, u(θ1 + θ2) = u(θ1) + u(θ2) if θ1 +
θ2 ≤ 2π. To see this, letRθ1 be the rotation corresponding to the orthonormal basis(
(cos θ1, sin θ1), (− sin θ1, cos θ1)

)
, and observe that

W (θ1 + θ2) = W (θ1) ∪ Rθ1

(
W (θ2)

)

and that int
(
W (θ1)

) ∩ int
(
Rθ1

(
W (θ2)

)) = ∅. Hence, the equality follows from the
facts that the boundaries of W (θ1) and R

(
W (θ2)

)
are Riemann negligible and that

Rθ1

(
W (θ2)

)
has the same volume as W (θ2). After applying this repeatedly, we get

nu
( 2π

n

) = π and then that u
( 2πm

n

) = mu
( 2π

n

)
for n ≥ 1 and 0 ≤ m ≤ n. Hence,

u
( 2πm

n

) = πm
n for all n ≥ 1 and 0 ≤ m ≤ n. Now, given any θ ∈ (0, 2π), choose

{mn ∈ N : n ≥ 1} so that 0 ≤ θ − 2πmn
n < 2π

n . Then, for all n ≥ 1,

∣∣u(θ) − θ
2

∣∣ ≤ ∣∣u(θ) − u
( 2πmn

n

)∣∣+ ∣∣πmn
n − θ

2

∣∣ ≤ u
( 2π

n

)+ π
n ≤ 2π

n ,

and so u(θ) = θ
2 .

Finally, given any 0 ≤ θ1 < θ2 ≤ 2π, set θ = θ2 − θ1, and observe that
W (θ2)\int(W (θ1) = Rθ1

(
W (θ)

)
and therefore that W (θ2)\int(W (θ1) has the same

volume as W (θ). �

5.6 Polar and Cylindrical Coordinates

Changing variables in multi-dimensional integrals is more complicated than in one
dimension. From the standpoint of the theory that we have developed, the primary
reason is that, in general, even linear changes of coordinates take rectangles into par-
allelograms that are not in general rectangles with respect to any orthonormal basis.
Starting from the formula in terms of determinants for the volume of parallelograms,



5.6 Polar and Cylindrical Coordinates 153

Jacobi worked out a general formula that says how integrals transform under contin-
uously differentiable changes that satisfy a suitable non-degeneracy condition, but
his theory relies on a familiarity with quite a lot of linear algebra and matrix theory.
Thus, we will restrict our attention to changes of variables for which his general
theory is not required.

We will begin with polar coordinates for R2. To every point x ∈ R
2\{0} there

exists a unique point (ρ,ϕ) ∈ (0,∞) × [0, 2π) such that x1 = ρ cosϕ and x2 =
ρ sinϕ. Indeed, if ρ = |x|, then x

ρ ∈ S
1(0, 1), and so ϕ is the distance, measured

counterclockwise, one travels along S1(0, 1) to get from (1, 0) to x
ρ . Thus we can use

the variables (ρ,ϕ) ∈ (0,∞) × [0, 2π) to parameterize R2\{0}. We have restricted
our attention to R

2\{0} because this parameterization breaks down at 0. Namely,
0 = (0 cosϕ, 0 sinϕ) for every ϕ ∈ [0, 2π). However, this flaw will not cause us
problems here.

Given a continuous function f : B(0, r) −→ C, it is reasonable to ask whether
the integral of f over B(0, r) can bewritten as an integral with respect to the variables
(ρ,ϕ). In fact, we have already seen in (5.4.2) that this is possible when f depends
only on |x|, and wewill now show that it is always possible. To this end, for θ ∈ R, let
Rθ be the rotation in R2 corresponding to the basis

(
(cos θ, sin θ), (− sin θ, cos θ)

)
.

That is,
Rθx = (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ

)
.

Using (1.5.1), it is easy to check that Rθ ◦ Rϕ = Rθ+ϕ. In particular, R2π+ϕ =
Rϕ.

Lemma 5.6.1 Let f : B(0, r) −→ C be a continuous function, and define

f̃ (ρ) = 1

2π

∫ 2π

0
f
(
ρ cosϕ, ρ sinϕ

)
dϕ for ρ ∈ [0, r ].

Then, for all x ∈ B(0, r),

f̃ (|x|) = 1

2π

∫ 2π

0
f
(
Rϕx

)
dϕ.

Proof Set ρ = |x| and choose θ ∈ [0, 1) so that x = (
ρ cos(2πθ), ρ sin(2πθ)

)
.

Equivalently, x = R2πθ(ρ, 0). Then by the preceding remarks about rotations in R2

and (3.3.3) applied to the periodic function ξ � f
(
R2πξ(ρ, 0)

)
,

1

2π

∫ 2π

0
f
(
Rϕx

)
dϕ = 1

2π

∫ 2π

0
f
(
R2πθ+ϕ(ρ, 0)

)

=
∫ 1

0
f
(
R2π(θ+ϕ)(ρ, 0)

)
dϕ =

∫ 1

0
f
(
R2πϕ(ρ, 0)

)
dϕ = f̃ (ρ). �

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_3


154 5 Integration in Higher Dimensions

Theorem 5.6.2 If f is a continuous function on the ball B(0, r) in R
2, then

∫

B(0,r)

f (x) dx =
∫ r

0
ρ

(∫ 2π

0
f
(
ρ cosϕ, ρ sinϕ

)
dϕ

)
dρ

=
∫ 2π

0

(∫ r

0
f
(
ρ cosϕ, ρ sinϕ

)
ρ dρ

)
dϕ.

Proof By (5.4.2), ∫

B(0,r)

f (x) dx =
∫

B(0,r)

f
(
Rϕx

)
dx

for all ϕ. Hence, by (5.2.1), Lemma 5.6.1, and (5.4.2),

∫

B(0,r)

f (x) dx = 1

2π

∫ 2π

0

(∫

B(0,r)

f
(
Rϕx

)
dx
)

dϕ

=
∫

B(0,r)

f̃ (|x|) dx =
∫ r

0
f̃ (ρ)ρ dρ,

which is the first equality. The second equality follows from the first by another
application of (5.2.1). �

As a preliminary application of this theorem, we will use it to compute integrals
over a star shaped region, a region G for which there exists a c ∈ R

2, known as
the center, and a continuous function, known as the radial function, r : [0, 2π] −→
(0,∞) such that r(0) = r(2π) and

G = {c + re(ϕ) : ϕ ∈ [0, 2π) & r ∈ [0, r(ϕ)
)}

, (5.6.1)

where e(ϕ) ≡ (cosϕ, sinϕ). For instance, if G is a non-empty, bounded, convex
open set, then for any c ∈ G, G is star shaped with center at c and

r(ϕ) = max{r > 0 : c + re(ϕ) ∈ Ḡ}.

Observe that
∂G = {c + r(ϕ)e(ϕ) : ϕ ∈ [0, 2π)

}
.

and, as a consequence, we can show that ∂G is Riemann negligible. Indeed, for a
given ε ∈ (0, 1] choose n ≥ 1 so that |r(ϕ2) − r(ϕ1)| < ε if |ϕ2 − ϕ1| ≤ 2π

n and,
for 1 ≤ m ≤ n, set

Am = {c + ρe(ϕ) : 2π(m−1)
n ≤ ϕ < 2πm

n &
∣∣ρ − r

( 2πm
n

)∣∣ ≤ ε
}
.
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Then ∂G ⊆⋃n
m=1 Am,n and, by Lemma 5.5.5,

vol(Am) = 2π2

n

((
r
( 2πm

n

)+ ε
)2 − (r( 2πm

n

)− ε
)2) ≤ 8π2‖r‖[0,2π]ε

n
,

and therefore there is a constant K < ∞ such that |∂G|e ≤ K ε for all ε ∈ (0, 1].
Finally, notice that G is path connected and therefore, by Exercise 4.5 is connected.

The following is a significant extension of Theorem 5.6.2.

Corollary 5.6.3 If G is the region in (5.6.1) and f : Ḡ −→ C is continuous, then

∫

Ḡ
f (x) dx =

∫ 2π

0

(∫ r(ϕ)

0
f (c + ρe(ϕ)) ρdρ

)
dϕ.

Proof Without loss in generality, we will assume that c = 0. Set r− = min{r(ϕ) :
ϕ ∈ [0, 2π]} and r+ = max{r(ϕ) : ϕ ∈ [0, 2π]}. Given n ≥ 1, define ηn : R −→
[0, 1] by

ηn(t) =

⎧
⎪⎨

⎪⎩

0 if t ≤ 0
nt
r− if 0 < t ≤ r−

n

1 if t >
r−
n ,

and define αn and βn on R2 by

αn(ρe(ϕ)) = ηn
(
r(ϕ) − ρ

)
and βn(ρe(ϕ)) = ηn

(
r(ϕ) + r−

n − ρ
)

Then both αn and βn are continuous functions, αn vanishes off of G and βn equals
1 on Ḡ. Finally define

fn(x) ≡
{

αn(x) f (x) if x ∈ G

0 if x /∈ G.

Then fn is continuous and therefore, by Theorem 5.6.2,

∫

Ḡ
fn(x) dx =

∫

B(0,r+)

fn(x) dx =
∫ 2π

0

(∫ r+

0
fn(ρe(ϕ))ρ dρ

)
dϕ

=
∫ 2π

0

(∫ r(ϕ)

0
fn(ρe(ϕ))ρ dρ

)
dϕ.

Clearly, again by Theorem 5.6.2,

http://dx.doi.org/10.1007/978-3-319-24469-3_4
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∣∣∣∣
∫

Ḡ
f (x) dx −

∫

Ḡ
fn(x) dx

∣∣∣∣ ≤ ‖ f ‖Ḡ

∫

Ḡ

(
1 − αn(x)

)
dx

≤ ‖ f ‖Ḡ

∫

B(0,2r+)

βn(x)
(
1 − αn(x)

)
dx

= ‖ f ‖Ḡ

∫ 2π

0

(∫ 2r+

0
ηn
(
r(ϕ) + r−

n − ρ
)(
1 − ηn

(
r(ϕ) − ρ

))
ρ dρ

)
dϕ

= ‖ f ‖Ḡ

∫ 2π

0

(∫ r(ϕ)+ r−
n

r(ϕ)− r−
n

ηn
(
r(ϕ) + r−

n − ρ
)(
1 − ηn

(
r(ϕ) − ρ

))
ρ dρ

)
dϕ

≤ 8π‖ f ‖Ḡr+r−
n

.

At the same time,

∣∣∣∣∣

∫ 2π

0

(∫ r(ϕ)

0
f (ρe(ϕ))ρ dρ

)
dϕ −

∫ 2π

0

(∫ r(ϕ)

0
fn(ρe(ϕ))ρ dρ

)
dϕ

∣∣∣∣∣

≤ ‖ f ‖Ḡ

∫ 2π

0

(∫ r(ϕ)

r(ϕ)− r−
n

ρ dρ

)
dϕ ≤ 4π‖ f ‖Ḡr+r−

n
.

Thus, the asserted equality follows after one lets n → ∞. �

We turn next to cylindrical coordinates in R
3. That is, we represent points in R

3

as (ρe(ϕ), ξ), where ρ ≥ 0, ϕ ∈ [0, 2π), and ξ ∈ R. Again the correspondence fails
to be one-to-one everywhere. Namely, ϕ is not uniquely determined for x ∈ R

3 with
x1 = x2 = 0, but, as before, this will not prevent us from representing integrals in
terms of the variables (ρ,ϕ, ξ).

Theorem 5.6.4 Let ψ : [a, b] −→ [0,∞) be a continuous function, and set

Γ = {x ∈ R
3 : x3 ∈ [a, b] & x21 + x22 ≤ ψ(x3)

2}.

Then Γ is Riemann measurable and

∫

Γ

f (x) dx =
∫ b

a

(∫ ψ(ξ)

0
ρ

(∫ 2π

0
f
(
ρe(ϕ), ξ

)
dϕ

)
dρ

)
dξ

for any continuous function f : Γ −→ C.

Proof Given n ≥ 1, define cm,n = (
1 − m

n

)
a + m

n b for 0 ≤ m ≤ n, and set
Im,n = [cm−1,n, cm,n] and Γm,n = {x ∈ Γ : x3 ∈ Im,n} for 1 ≤ m ≤ n. Next, for
each 1 ≤ m ≤ n, set κm,n = minIm,n ψ, Km,n = maxIm,n ψ, and

Dm,n = {x : κ2
m,n ≤ x21 + x22 ≤ K 2

m,n & x3 ∈ Im,n}.
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To see that Γ is Riemann measurable, we will show that its boundary is Rie-
mann negligible. Indeed, ∂Γm,n ⊆ Dm,n , and therefore, by Theorem 5.2.1 and

Lemma 5.5.5, |∂Γm,n|e ≤ π(K 2
m,n−κ2m,n)(b−a)

n . Since

lim
n→∞ max

1≤m≤n
(Km,n − κm,n) = 0 and |∂Γ |e ≤

n∑

m=1

|∂Γm,n|e,

it follows that |∂Γ |e = 0. Of course, since each Γm,n is a set of the same form as Γ ,
each of them is also Riemann measurable.

Now let f be given. Then

∫

Γ

f (x) dx =
n∑

m=1

∫

Γm,n

f (x) dx =
n∑

m=1

∫

Cm,n

f (x) dx −
n∑

m=1

∫

Γm,n\Cm,n

f (x) dx,

where Cm,n ≡ {x : x21 + x22 ≤ κm,n & x3 ∈ Im,n}. Since Γm,n\Cm,n ⊆ Dm,n , the
computation in the preceding paragraph shows that

∣∣∣∣∣

n∑

m=1

∫

Γm,n\Cm,n

f (x) dx

∣∣∣∣∣ ≤
‖ f ‖Γ π(b − a)

n

n∑

m=1

(
K 2

m,n − κ2
m,n

) −→ 0

as n → ∞. Next choose ξm,n ∈ Im,n so that ψ(ξm,n) = κm,n , and set

εn = max
1≤m≤n

sup
x∈Cm,n

| f (x) − f (x1, x2, ξm,n)|.

Then
∣∣∣∣∣

n∑

m=1

∫

Cm,n

f (x) dx −
n∑

m=1

∫

Cm,n

f (x1, x2, ξm, n) dx

∣∣∣∣∣ ≤ εnvol(Γ ) −→ 0.

Finally, observe that
∫

Cm, n
f (x1, x2, ξm, n) dx = b−a

n g(ξm, n) where g is the contin-
uous function on [a, b] given by

g(ξ) ≡
∫ ψ(ξ)

0
ρ

(∫ 2π

0
f
(
ρe(ϕ), ξ

)
dϕ

)
dρ.

Hence,
∑n

m=1

∫
Cm,n

f (x) dx = R(g; Cn, Ξn) where Cn = {Im,n : 1 ≤ m ≤ n} and
Ξn(Im,n) = ξm,n . Now let n → ∞ to get the desired conclusion. �

Integration over balls in R
3 is a particularly important example to which

Theorem 5.6.4 applies. Namely, take a = −r , b = r , and ψ(ξ) = √
r2 − ξ2 for

ξ ∈ [−r, r ]. Then Theorem 5.6.4 says that
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∫

B(0,r)

f (x) dx

=
∫ r

−r

(∫ √
r2−ξ2

0
ρ

(∫ 2π

0
f
(
ρ cosϕ, ρ sinϕ, ξ

)
dϕ

)
dρ

)
dξ.

(5.6.2)

There is a beautiful application of (5.6.2) to a famous observationmade byNewton
about his law of gravitation. According to his law, the force exerted by a particle of
mass m1 at y ∈ R

3 on a particle of mass m2 at b ∈ R
3\{x} is equal to

Gm1m2

|y − b|3 (y − b),

where G is the gravitational constant. Next, suppose that Ω is a bounded, closed,
Riemann measurable region on which mass is continuously distributed with density
μ. Then the force that the mass in Ω exerts on a particle of mass m at b /∈ Ω is given
by ∫

Ω

Gmμ(y)

|y − b|3 (y − b) dy.

Newton’s observation was that ifΩ is a ball and themass density depends only on the
distance from the center of the ball, then the force felt by a particle outside the ball
is the same as the force exerted on it by a particle at the center of the ball with mass
equal to the total mass of the ball. That is, if Ω = B(c, r) and μ : [0, r ] −→ [0,∞)

is continuous, then for b /∈ B(c, r),

∫

B(c,r)

Gmμ(|y − c|)
|y − b|3 (y − b) dy = G Mm

|c − b|3 (c − b)

where M =
∫

B(c,r)

μ
(|y − c|) dy.

(5.6.3)

(See Exercise 5.8 for the case when b lies inside the ball).
Using translation and rotations, one can reduce the proof of (5.6.3) to the case

when c = 0 and b = (0, 0,−D) for some D > r . Further, without loss in generality,
we will assume that Gm = 1. Next observe that, by rotation invariance applied to
the rotations that take (y1, y2, y3) to (∓y1,±y2, y3),

∫

B(0,r)

μ(|y|)
|y − b|3 yi dy = −

∫

B(0,r)

μ(|y|)
|y − b|3 yi dy

and therefore ∫

B(0,r)

μ(|y|)
|y − b|3 yi dy = 0 for i ∈ {1, 2}.
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Thus, it remains to show that

(∗)

∫

B(0,r)

μ(|y|)
|y − b|3 y3 dy = D−2

∫

B(0,r)

μ(|y|) dy.

To prove (∗), we apply (5.6.2) to the function

f (x) = μ(|x|)(x3 + D)
(
x21 + x22 + (x3 + D)2

) 3
2

to write the left hand side as 2πJ where

J ≡
∫ r

−r

⎛

⎝
∫ √

r2−ξ2

0

ρμ(
√

ρ2 + ξ2)(ξ + D)
(
ρ2 + (ξ + D)2

) 3
2

dρ

⎞

⎠ dξ.

Now make the change of variables σ = √ρ2 + ξ2 in the inner integral to see that

J =
∫ r

−r
(ξ + D)

(∫ r

|ξ|
σμ(σ)

(σ2 + 2ξD + D2)
3
2

dσ

)
dξ,

and then apply (5.2.1) to obtain

J =
∫ r

0
σμ(σ)

(∫ σ

−σ

D + ξ

(σ2 + 2ξD + D2)
3
2

dξ

)
dσ.

Use the change of variables η = σ2 + 2ξD + D2 in the inner integral to write it as

1

4D2

∫ (D+σ)2

(D−σ)2

(
η− 1

2 + (D2 − σ2)η− 3
2
)

dη = 2σ

D2 .

Hence,

2πJ = 4π

D2

∫ r

0
μ(σ)σ2 dσ.

Finally, note that 3Ω3 = 4π, and apply (5.4.5) with N = 3 to see that

4π
∫ r

0
μ(σ)σ2 dσ =

∫

B(0,r)

μ(|x|) dx.
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We conclude this section by using (5.6.2) to derive the analog of Theorem 5.6.2
for integrals over balls in R

3. One way to introduce polar coordinates for R3 is to
think about the use of latitude and longitude to locate points on a globe. To begin
with, one has to choose a reference axis, which in the case of a globe is chosen to
be the one passing through the north and south poles. Given a point q on the globe,
consider a plane Pq containing the reference axis that passes through q. (There will
be only one unless q is a pole.) Thinking of points on the globe as vectors with base
at the center of the earth, the latitude of a point is the angle that q makes in Pq with
the north pole N. Before describing the longitude of q, one has to choose a reference
point q0 that is not on the reference axis. In the case of a globe, the standard choice
is Greenwich, England. Then the longitude of q is the angle between the projections
of q and q0 in the equatorial plane, the plane that passes through the center of the
earth and is perpendicular to the reference axis.

Now let x ∈ R
3\{0}. With the preceding in mind, we say that the polar angle of

x = (x1, x2, x3) is the θ ∈ [0,π] such that cos θ = (x,N)
R3|x| , where N = (0, 0, 1).

Assuming that σ =
√

x21 + x22 > 0, the azimuthal angle of x is the ϕ ∈ [0, 2π) such
that (x1, x2) = (σ cosϕ,σ sinϕ). In other words, in terms of the globe model, we
have taken the center of the earth to lie at the origin, the north pole and south poles
to be (0, 0, 1) and (0, 0,−1), and “Greenwich” to be located at (1, 0, 0). Thus the
polar angle gives the latitude and the azimuthal angle gives the longitude.

The preceding considerations lead to the parameterization

(ρ, θ,ϕ) ∈ [0,∞) × [0,π] × [0, 2π)

�−→ x(ρ,θ,ϕ) ≡ (ρ sin θ cosϕ, ρ sin θ sinϕ, ρ cos θ
) ∈ R

3

of points in R3. Assuming that ρ > 0, θ is the polar angle of x(ρ,θ,ϕ), and, assuming
that ρ > 0 and θ /∈ {0,π}, ϕ is its azimuthal angle. On the other hand, when ρ = 0,
then x(ρ,θ,ϕ) = 0 for all (θ,ϕ) ∈ [0,π] × [0, 2π), and when ρ > 0 but θ ∈ {0,π},
θ is uniquely determined but ϕ is not. In spite of these ambiguities, if x = x(ρ,θ,ϕ),
then (ρ, θ,ϕ) are called the polar coordinates of x, and as we are about to show,
integrals of functions over balls in R3 can be written as integrals with respect to the
variables (ρ, θ,ϕ).

Let f : B(0, r) −→ C be a continuous function. Then, by (5.6.2) and (5.2.2), the
integral of f over B(0, r) equals

∫ 2π

0

(∫ r

−r

(∫ √
r2−ξ2

0
σ fϕ

(
σ, ξ

)
dσ

)
dξ

)
dϕ,
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where fϕ(σ, ξ) = f
(
σ cosϕ,σ sinϕ, ξ

)
. Observe that

∫ r

−r

(∫ √
r2−ξ2

0
σ fϕ

(
σ, ξ

)
dσ

)
dξ

=
∫ r

0

(∫ √
r2−ξ2

0
σ fϕ

(
σ, ξ

)
dσ

)
dξ +

∫ 0

−r

(∫ √
r2−ξ2

0
σ fϕ

(
σ, ξ

)
dσ

)
dξ

=
∫ r

0
σ

(∫ √
r2−σ2

0
fϕ
(
σ, ξ

)
dξ

)
dσ +

∫ r

0
σ

(∫ √
r2−σ2

0
fϕ
(
σ,−ξ

)
dξ

)
dσ,

and make the change of variables ξ = √ρ2 − σ2 to write

∫ √
r2−σ2

0
fϕ
(
σ,±ξ

)
dξ =

∫

(σ,r ]
fϕ
(
σ,±

√
ρ2 − σ2

) ρ√
ρ2 − σ2

dρ.

Hence, we now know that

∫ r

−r

(∫ √
r2−ξ2

0
σ fϕ

(
σ, ξ

)
dσ

)
dξ

=
∫ r

0
σ

(∫

(σ,r ]

(
fϕ
(
σ,
√

ρ2 − σ2
)+ fϕ

(
σ,−

√
ρ2 − σ2

)) ρ√
ρ2 − σ2

dρ

)
dσ

=
∫ r

0
ρ

(∫

[0,ρ)

(
fϕ
(
σ,
√

ρ2 − σ2
)+ fϕ

(
σ,−

√
ρ2 − σ2

)) σ√
ρ2 − σ2

dσ

)
dρ,

where we have made use of the obvious extension of Fubini’s Theorem to integrals
that are limits of Riemann integrals. Finally, use the change of variables σ = ρ sin θ
in the inner integral to conclude that

∫ r

−r

(∫ √
r2−ξ2

0
σ fϕ

(
σ, ξ

)
dσ

)
dξ =

∫ r

0
ρ2
(∫ π

0
fϕ
(
ρ sin θ, ρ cos θ

)
dθ

)
dρ

and therefore, after an application of (5.2.2), that

∫

B(0,r)

f (x) dx

=
∫ r

0
ρ2
(∫ π

0

(∫ 2π

0
f
(
ρ sin θ cosϕ, ρ sin θ sinϕ, ρ cos θ

)
dϕ

)
dθ

)
dρ.

(5.6.4)
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5.7 The Divergence Theorem in R
2

Integration by parts in more than one dimension takes many forms, and in order
to even state these results in generality one needs more machinery than we have
developed. Thus, we will deal with only a couple of examples and not attempt to
derive a general statement.

The most basic result is a simple application of The Fundamental Theorem of
Calculus, Theorem 3.2.1. Namely, consider a rectangle R = ∏N

j=[a j , b j ], where
N ≥ 2, and let ϕ be a C-valued function which is continuously differentiable on
int(R) and has bounded derivatives there. Given ξ ∈ R

N , one has

∫

R
∂ξϕ(x) dx =

N∑

j=1

ξ j

(∫

R j (b j )

ϕ(y) dσy −
∫

R j (a j )

ϕ(y) dσy

)

where R j (c) ≡
⎛

⎝
j−1∏

i=1

[ai , bi ]
⎞

⎠× {c} ×
⎛

⎝
N∏

i= j+1

[a j , b j ]
⎞

⎠ ,

(5.7.1)

where the integral
∫

R j (c)
ψ(y) dσy of a function ψ over R j (c) is interpreted as the

(N − 1)-dimensional integral

∫

∏
i �= j [ai ,bi ]

ψ(y1, . . . , y j−1, c, y j+1, . . . , yN ) dy1 · · · dy j−1dy j+1 · · · dyN .

Verification of (5.7.1) is easy. First write ∂ξϕ as
∑N

j=1 ξ j∂e j ϕ. Second, use (5.2.2)
with the permutation that exchanges j and 1 but leaves the ordering of the other
indices unchanged, and apply Theorem 3.2.1.

In many applications one is dealing with an R
N -valued function F and is inte-

grating its divergence

divF ≡
N∑

j=1

∂e j Fj

over R. By applying (5.7.1) to each coordinate, one arrives at

∫

R
divF(x) dx =

N∑

j=1

∫

R j (b j )

Fj (y) dσy −
N∑

j=1

∫

R j (a j )

Fj (y) dσy, (5.7.2)

but there is a more revealing way to write (5.7.2). To explain this alternative version,
let ∂G be the boundary of a bounded open subset G in R

N . Given a point x ∈ ∂G,
say that ξ ∈ R

N is a tangent vector to ∂G at x if there is a continuously differentiable
path γ : (−1, 1) −→ ∂G such that x = γ(0) and ξ = γ̇(0) ≡ dγ

dt (0). That is, ξ

http://dx.doi.org/10.1007/978-3-319-24469-3_3
http://dx.doi.org/10.1007/978-3-319-24469-3_3
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is the velocity at the time when a path on ∂G passes through x. For instance, when
G = int(R) and x ∈ R j (a j ) ∪ R j (b j ) is not on one of the edges, then it is obvious
that ξ is tangent to x if and only if (ξ, e j )RN = 0. If x is at an edge, (ξ, e j )RN will
be 0 for every tangent vector ξ, but there will be ξ’s for which (ξ, e j )RN = 0 and yet
there is no continuously differentiable path that stays on ∂G, passes through x, and
has derivative ξ when it does. When G = B(0, r) and x ∈ S

N−1(0, r) ≡ ∂B(0, r),
then ξ is tangent to ∂G if and only if (ξ, x)RN = 0.5 To see this, first suppose that ξ
is tangent to ∂G at x, and let γ be an associated path. Then

0 = ∂t |γ(t)|2 = 2
(
γ(t), γ̇(t)

)
RN = 2(x, ξ)RN at t = 0.

Conversely, suppose that (x, ξ)RN = 0. If ξ = 0, then we can take γ(t) = x for
all t . If ξ �= 0, define γ(t) = (

cos(r−1|ξ|t))x + r
|ξ|
(
sin(r−1|ξ|t))ξ, and check that

γ(t) ∈ S
N−1(0, r) for all t , γ(0) = x, and γ̇(0) = ξ.

Having definedwhat it means for a vector to be tangent to ∂G at x, we now say that
a vector η is a normal vector to ∂G at x if (η, ξ)RN = 0 for every tangent vector ξ at
x. For nice regions like balls, there is essentially only one normal vector at a point.
Indeed, as we saw, ξ is tangent to x ∈ ∂B(0, r) if and only if (ξ, x)RN = 0, and so
every normal vector there will have the form αx for some α ∈ R. In particular, there
is a unique unit vector, known as the outward pointing unit normal vector n(x), that is
normal to ∂B(0, r) at x and is pointing outward in the sense that x + tn(x) /∈ B(0, r)

for t > 0. In fact, n(x) = x
|x| . Similarly, when x ∈ R j (a j ) ∪ R j (b j ) is not on an

edge, every normal vector will be of the form αe j , and the outward pointing normal
unit normal at x will be −e j or e j depending on whether x ∈ R j (a j ) or x ∈ R j (b j ).
However,when x is at an edge, there are too few tangent vectors to uniquely determine
an outward pointing unit normal vector at x.

normal to rectangle and circle

Fortunately, because this flaw is present only on a Riemann negligible set, it is not
fatal for the application that we will make of these concepts to (5.7.2). To be precise,
define n(x) = 0 for x ∈ ∂R that are on an edge, note that n is continuous off of a
Riemann negligible subset of RN−1, and observe that (5.7.2) can be rewritten as

5This fact accounts for the notation S
N−1 when referring to spheres in R

N . Such surfaces are said
to be (N − 1)-dimensional because there are only N − 1 linearly independent directions in which
one can move without leaving them.
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∫

R
divF(x) dx =

∫

∂R

(
F(y), n(y)

)
RN dσy, (5.7.3)

where ∫

∂R
ψ(y) dσy ≡

N∑

j=1

(∫

R j (a j )

ψ(y) dσy +
∫

R j (b j )

ψ(y) dσy

)
.

Besides being more aesthetically pleasing than (5.7.2), (5.7.3) has the advantage
that it is in a form that generalizes and has a nice physical interpretation. In fact, once
one knows how to interpret integrals over the boundary of more general regions, one
can show that ∫

G
div
(
F(x)

)
dx =

∫

∂G

(
F(y), n(y)

)
RN dσy (5.7.4)

holds for quite general regions, and this generalization is known as the divergence
theorem. Unfortunately, understanding of the physical interpretation requires one to
know the relationship between divF and the flow that F determines, and, although
a rigorous explanation of this connection is beyond the scope of this book, here is
the idea. In Sect. 4.5 we showed that if F satisfies (4.5.4), then it determines a map
X : R × R

N −→ R
N by the equation

Ẋ(t, x) = F
(
X(t, x)

)
with X(0, x) = x.

In other words, for each x, t � X(t, x) is the path that passes through x at time t = 0
and has velocity F

(
X(t, x)

)
for all t . Now think about mass that is initially uniformly

distributed in a bounded region G and that is flowing along these paths. If one
monitors the region to determine how much mass is lost or gained as a consequence
of the flow, one can show that the rate at which change is taking place is given by
the integral of divF over G. If instead of monitoring the region, one monitors the
boundary and measures how much mass is passing through it in each direction, then
one finds that the rate of change is given by the integral of

(
F(x), n(x)

)
RN over the

boundary. Thus, (5.7.4) is simply stating that these two methods of measurement
give the same answer.

Wewill now verify (5.7.4) for a special class of regions inR2. Themain reason for
working in R

2 is that regions there are likely to have boundaries that are piecewise
parameterized curves, which, by the results in Sect. 4.4, means that we know how to
integrate over them. The regions G withwhichwewill deal are piecewise smooth star
shaped regions in R

2 given by (5.6.1) with a continuous function ϕ ∈ [0, 2π] �−→
r(ϕ) ∈ (0,∞) that satisfies r(0) = r(2π) and is piecewise smooth. Clearly the
boundary of such a region is a piecewise parameterized curve. Indeed, consider
the path p(ϕ) = c + r(ϕ)e(ϕ) where, as before, e(ϕ) = (cosϕ, sinϕ). Then the
restriction p1 of p to [0,π] and the restriction p2 of p to [π, 2π] parameterize non-
overlapping parameterized curves whose union is ∂G. Moreover, by (4.4.2), since

http://dx.doi.org/10.1007/978-3-319-24469-3_4
http://dx.doi.org/10.1007/978-3-319-24469-3_4
http://dx.doi.org/10.1007/978-3-319-24469-3_4
http://dx.doi.org/10.1007/978-3-319-24469-3_4
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ṗ(ϕ) = r ′(ϕ)e(ϕ) + r(ϕ)ė(ϕ),
(
e(ϕ), ė(ϕ)

)
R2 = 0, and |e(ϕ)| = |ė(ϕ)| = 1,

we have that

∫

∂G
f (y) dσy =

∫ 2π

0
f
(
c + r(ϕ)e(ϕ)

)√
r(ϕ)2 + r ′(ϕ)2 dϕ.

Next observe that,

t(ϕ) ≡ (r ′(ϕ) cosϕ − r(ϕ) sinϕ, r ′(ϕ) sinϕ + r(ϕ) cosϕ
)

is tangent to ∂G at p(ϕ), and therefore that the outward pointing unit normal to ∂G
at p(ϕ) is

n
(
p(ϕ)

) = ±
(
r(ϕ) cosϕ + r ′(ϕ) sinϕ, r(ϕ) sinϕ − r ′(ϕ) cosϕ

)
√

r(ϕ)2 + r ′(ϕ)2
(5.7.5)

for ϕ ∈ [0, 2π] in intervals where r is continuously differentiable. Further, since

(
n
(
p(ϕ)

)
, p(ϕ) − c

)
R2 = r(ϕ)2√

r(ϕ)2 + r ′(ϕ)2
> 0

and therefore
|p(ϕ) + tn(ϕ) − c|2 > r(ϕ)2 for t > 0,

we know that the plus sign is the correct one. Taking all these into account, we see
that (5.7.4) for G is equivalent to

∫

G
divF(x) dx =

∫ 2π

0

(
r(ϕ) cosϕ + r ′(ϕ) sinϕ

)
F1
(
c + r(ϕ)e(ϕ)

)
dϕ

+
∫ 2π

0

(
r(ϕ) sinϕ − r ′(ϕ) cosϕ

)
F2
(
c + r(ϕ)e(ϕ)

)
dϕ.

(5.7.6)

In proving (5.7.6), we will assume, without loss in generality, that c = 0. Hence,
what we have to show is that

(∗)

∫

G
∂e1 f (x) dx =

∫ 2π

0

(
r(ϕ) cosϕ + r ′(ϕ) sinϕ

)
f
(
r(ϕ)e(ϕ)

)
dϕ

∫

G
∂e2 f (x) dx =

∫ 2π

0

(
r ′(ϕ) sinϕ − r ′(ϕ)

)
f
(
r(ϕ)e(ϕ)

)
dϕ

To perform the required computation, it is important to write derivatives in terms of
the variables ρ andϕ. For this purpose, suppose that f is a continuously differentiable
function on an open subset of R2, and set g(ρ,ϕ) = f (ρ cosϕ, ρ sinϕ). Then
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∂ρg(ρ,ϕ) = cosϕ∂e1 f (ρ cosϕ, ρ sinϕ) + sinϕ∂e2 f (ρ cosϕ, ρ sinϕ)

and

∂ϕg(ρ,ϕ) = −ρ sinϕ∂e1 f (ρ cosϕ, ρ sinϕ) + ρ cosϕ∂e2 f (ρ cosϕ, ρ sinϕ),

and therefore

ρ∂e1 f (ρe(ϕ)) = ρ cosϕ∂ρg(ρ,ϕ) − sinϕ∂ϕg(ρ,ϕ)

and
ρ∂e2 f (ρe(ϕ)) = ρ sinϕ∂ρg(ρ,ϕ) + cosϕ∂ϕg(ρ,ϕ).

Thus, if f is a continuous function on Ḡ that has bounded, continuous first order
derivatives on G, then ∫

G
∂e1 f (x) dx = I − J,

where

I =
∫ 2π

0
cosϕ

(∫ r(ϕ)

0
ρ∂ρg(ρ, θ) dρ

)
dϕ

and

J =
∫ 2π

0
sinϕ

(∫ r(ϕ)

0
∂ϕg(ρ, θ) dρ

)
dϕ.

Applying integration by parts to the inner integral in I , we see that

I =
∫ 2π

0
cosϕ g

(
r(ϕ),ϕ

)
r(ϕ) dϕ −

∫ 2π

0
cosϕ

(∫ r(ϕ)

0
g(ρ,ϕ) dρ

)
dϕ.

Dealing with J is more challenging. The first step is to write it as J1 + J2, where J1
and J2 are, respectively,

∫ 2π

0
sinϕ

(∫ r−

0
∂ϕg(ρ,ϕ) dρ

)
dϕ and

∫ 2π

0
sinϕ

(∫ r(ϕ)

r−
∂ϕg(ρ,ϕ) dρ

)
dϕ,

and r− ≡ min{r(ϕ) : ϕ ∈ [0, 2π}. By (5.2.1) and integration by parts,

J1 =
∫ r−

0

(∫ 2π

0
sinϕ∂ϕg(ρ,ϕ) dϕ

)
dρ = −

∫ r−

0

(∫ 2π

0
cosϕ g(ρ,ϕ) dϕ

)
dρ.
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To handle J2, choose θ0 ∈ [0, 2π] so that r(θ0) = r−, and choose θ1, . . . , θ� ∈
[0, 2π] so that r ′ is continuous on each of the open intervals with end points θk and
θk+1, where θ�+1 = θ0. Now use (3.1.6) to write J2 as

∑�
k=0 J2,k , where

J2,k =
∫ 2π

0
sinϕ

(∫ r(ϕ∧θk+1)

r(ϕ∧θk )

∂ϕg(ρ,ϕ) dρ

)
dϕ,

and then make the change of variables ρ = r(θ) and apply (5.2.1) to obtain

J2,k =
∫ 2π

0
sinϕ

(∫ ϕ∧θk+1

ϕ∧θk

∂ϕg
(
r(θ),ϕ

)
r ′(θ) dθ

)
dϕ

=
∫ θk+1

θk

r ′(θ)
(∫ 2π

θ
sinϕ∂ϕg

(
r(θ),ϕ

)
dϕ

)
dθ.

Hence,

J2 =
∫ 2π

0
r ′(θ)

(∫ 2π

θ
sinϕ∂ϕg

(
r(θ),ϕ

)
dϕ

)
dθ,

which, after integration by parts is applied to the inner integral, leads to

J2 = −
∫ 2π

0
sin θ g

(
r(θ), θ)r ′(θ) dθ −

∫ 2π

0
r ′(θ)

(∫ 2π

θ
cosϕ g

(
r(θ),ϕ

)
dϕ

)
dθ.

After applying (5.2.1) and undoing the change of variables in the second integral on
the right, we get

J2 = −
∫ 2π

0
sin θ g

(
r(θ), θ)r ′(θ) dθ −

∫ 2π

0
cosϕ

(∫ r(ϕ)

r−
g(ρ,ϕ) dρ

)
dϕ

and therefore

J = −
∫ 2π

0
sinϕ g

(
r(ϕ),ϕ

)
r ′(ϕ) dϕ −

∫ 2π

0
cosϕ

(∫ r(ϕ)

0
g(ρ,ϕ) dρ

)
dϕ.

Finally, when we subtract J from I , we arrive at

∫

G
∂e1 f (x) dx =

∫ 2π

0

(
r(ϕ) cosϕ + r ′(ϕ) sinϕ

)
g
(
r(ϕ),ϕ

)
dϕ.

Proceeding in exactly the same way, one can derive the second equation in (∗),
and so we have proved the following theorem.

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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Theorem 5.7.1 If G ⊆ R
2 is a piecewise smooth star shaped region and if

F : Ḡ −→ R
2 is continuous on Ḡ and has bounded, continuous first order deriv-

atives on G, then (5.7.5), and therefore (5.7.4) with n : ∂G −→ S
1(0, 1) given by

(5.7.5), hold.

Corollary 5.7.2 Let G be as in Theorem 5.7.1, and suppose that a1, . . . , a� ∈ G and
r1, . . . , r� ∈ (0,∞) have the properties that B(ak, rk) ⊆ G for each 1 ≤ k ≤ � and
that B(ak, rk) ∩ B(ak′ , rk′) = ∅ for 1 ≤ k < k′ ≤ �. Set H = G\⋃�

k=1 B(ak, rk).
If F : H̄ −→ R

2 is a continuous function that has bounded, continuous first order
derivatives on H, then

∫
H divF(x) dx equals

∫

∂G

(
F(y), n(y)

)
R2 dσy

−
�∑

k=1

rk

∫ 2π

0

(
F1
(
ak + rke(ϕ)

)
cosϕ + F2

(
ak + rke(ϕ)

)
sinϕ

)
dϕ.

Proof First assume that F has bounded, continuous derivatives on the whole of G.
Then Theorem 5.7.1 applies to F on Ḡ and its restriction to each ball B(ak, rk), and
so the result follows from Theorem 5.7.1 when one writes the integral of divF over
H̄ as ∫

Ḡ
divF(x) dx −

�∑

k=1

∫

B(ak ,rk )

divF(x) dx.

To handle the general case, define η : R −→ [0, 1] by

η(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if t ≤ 0
1+sin

(
π(t− 1

2 )
)

2 if 0 < t ≤ 1

1 if t > 1.

Then η is continuously differentiable. For each 1 ≤ k ≤ �, choose Rk > rk so that
B(ak, Rk) ⊆ G and B(ak, Rk) ∩ B(ak′ , Rk′) = ∅ for 1 ≤ k < k′ ≤ �. Define

ψk(x) = η

(
|x − ak |2 − r2k

R2
k − r2k

)
for x ∈ R

2

and

F̃(x) =
�∑

k=1

ψk(x)F(x)
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if x ∈ H̄ and F̃(x) = 0 if x ∈ ⋃�
k=1 B(ak, rk). Then F̃ is continuous on Ḡ

and has bounded, continuous first order derivatives on G. In addition, F̃ = F on
G\⋃�

k=1 B(ak, Rk). Hence, if H ′ = Ḡ\⋃�
k=1 B(ak, Rk), then, by the preceding,∫

H ′ divF(x) dx equals

∫

∂G

(
F(y), n(y)

)
R2

−
�∑

k=1

Rk

∫ 2π

0

(
F1
(
ak + Rke(ϕ)

)
cosϕ + F2

(
ak + Rke(ϕ)

)
sinϕ

)
dϕ,

and so the asserted result follows after one lets each Rk decrease to rk . �

We conclude this section with an application of Theorem 5.7.1 that plays a role
in many places. One of the consequence of the Fundamental Theorem of Calculus
is that every continuous function f on an interval (a, b) is the derivative of a con-
tinuously differentiable function F on (a, b). Indeed, simply set c = a+b

2 and take
F(x) = ∫ x

c f (t) dt . With this in mind, one should ask whether an analogous state-
ment holds inR2. In particular, given a connected open set G ⊆ R

2 and a continuous
function F : G −→ R

2, is it true that there is a continuously differentiable function
f : G −→ R such that F is the gradient of f ? That the answer is no in general
can be seen by assuming that F is continuously differentiable and noticing that if f
exists then

∂e2 F1 = ∂e2∂e1 f = ∂e1∂e2 f = ∂e1 F2.

Hence, a necessary condition for the existence of f is that ∂e2 F1 = ∂e1 F2, and when
this condition holds F is said to be exact. It is known that exactness is sufficient as
well as necessary for a continuously differentiable F on G to be the gradient of a
function when G is what is called a simply connected region, but to avoid technical
difficulties, we will restrict ourselves to star shaped regions.

Corollary 5.7.3 Assume that G is a star shaped region inR2 and that F : G −→ R
2

is a continuously differentiable function. Then there exists a continuously differen-
tiable function f : G −→ R such that F = ∇ f if and only if F is exact.

Proof Without loss in generality, we will assume that 0 is the center of G. Further,
since the necessity has already been shown, we will assume that F is exact.

Define f : G −→ R by f (0) = 0 and

f
(
re(ϕ)) =

∫ r

0

(
F1(ρe(ϕ)) cosϕ + F2(ρe(ϕ)) sinϕ

)
dρ

for ϕ ∈ [0, 2π) and 0 < r < r(ϕ). Clearly F1(0) = ∂e1 f (0) and F2(0) = ∂e2 f (0).
Wewill now show that F1 = ∂e1 f at any point (ξ0, η0) ∈ G\{0}. This is easywhen

η0 = 0, since f (ξ, 0) = ∫ ξ
0 F1(t, 0) dt . Thus assume that η0 �= 0, and consider points
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(ξ, η0)not equal to (ξ0, η0)but sufficiently close that (t, η0) ∈ G if ξ∧ξ0 ≤ t ≤ ξ∨ξ0.
What we need to show is that

(∗) f (ξ, η0) − f (ξ0, η0) =
∫ ξ

ξ0

F1(t, η0) dt.

To this end, define F̃ = (F2,−F1). Then, because F is exact, divF̃ = 0 on G.
Next consider the region H that is the interior of the triangle whose vertices are 0,
(ξ0, η0), and (ξ, η0). Then H is a piecewise smooth star shaped region and so, by
Theorem 5.7.1, the integral of (F̃, n)R2 over ∂H is 0. Thus, if we write (ξ0, η0) and
(ξ, η0) as r0e(ϕ0) and re(ϕ), then

0 =
∫

∂H

(
F̃(y), n(y)

)
R2 dy =

∫ r0

0

(
F̃
(
ρe(ϕ0)

)
, n
(
ρe(ϕ0)

))

R2
dρ

+
∫ r

0

(
F̃
(
ρe(ϕ)

)
, n
(
ρe(ϕ)

))

R2
dρ

+
∫ ξ∨ξ0

ξ∧ξ0

(
F̃(t, η0), n(t, η0)

)
R2 dt.

If η0 > 0 and ξ > ξ0, then

n
(
ρe(ϕ)

) = (sinϕ,− cosϕ), n
(
ρe(ϕ0)

) = (− sinϕ0, cosϕ0),

and n(t, η0) = (0, 1), and therefore

f (ξ, η0) =
∫ r

0

(
F̃
(
ρe(ϕ)

)
, n
(
ρe(ϕ)

))

R2
dρ,

f (ξ0, η0) = −
∫ r0

0

(
F̃
(
ρe(ϕ0)

)
, n
(
ρe(ϕ0)

))

R2
dρ,

∫ ξ

ξ0

F1(t, η0) dt = −
∫ ξ∨ξ0

ξ∧ξ0

(
F̃(t, η0), n(t, η0)

)
R2 dt,

and so (∗) holds. If η0 > 0 and ξ < ξ0, then the sign of n changes in each term, and
therefore we again get (∗), and the cases when η0 < 0 are handled similarly.

The proof that F2 = ∂e2 f follows the same line of reasoning and is left as an
exercise. �

5.8 Exercises

Exercise 5.1 Let x, y ∈ R
2\{0}. Then Schwarz’s inequality says that the ratio

ρ ≡ (x, y)R2

|x||y|
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is in the open interval (−1, 1) unless x and y lie on the same line, in which case ρ ∈
{−1, 1}. Euclidean geometry provides a good explanation for this. Indeed, consider
the triangle whose vertices are 0, x, and y. The sides of this triangle have lengths |x|,
|y|, and |y − x|. Thus, by the law of the cosine, |y − x|2 = |x|2 +|y|2 −2|x||y| cos θ,
where θ is the angle in the triangle between x and y. Use this to show that ρ = cos θ.
The same explanation applies in higher dimensions since there is a plane in which x
and y lie and the analysis can be carried out in that plane.

Exercise 5.2 Show that
∫

R

eλx e− x2
2 dx = √

2πe
λ2
2 for all λ ∈ R.

One way to do this is to make the change of variables y = x − λ to see that

∫

R

eλx e− x2
2 dx = e

λ2
2

∫

R

e− (y−λ)2

2 dy,

and then use (5.1.2) and (5.4.3).

Exercise 5.3 Show that |Γ |e = |R(Γ )|e and |Γ |i = |R(Γ )|i for all bounded sets
Γ ⊆ R

N and all rotationsR, and conclude thatR(Γ ) is Riemann measurable if and
only if Γ is. Use this to show that if Γ is a bounded subset of RN for which there
exists a x0 ∈ R

N and an e ∈ S
N−1(0, 1) such that (x − x0, e)RN = 0 for all x ∈ Γ ,

then Γ is Riemann negligible.

Exercise 5.4 An integral that arises quite often is one of the form

I (a, b) ≡
∫

(0,∞)

t−
1
2 e−a2t− b2

t dt,

where a, b ∈ (0,∞). To evaluate this integral, make the change of variables ξ =
at

1
2 − bt− 1

2 . Then ξ2 = at − 2ab + t−1 and t
1
2 = ξ+

√
ξ2+4ab
2a , the plus being

dictated by the requirement that t ≥ 0. After making this substitution, arrive at

I (a, b) = e−2ab

a

∫

R

e−ξ2
(
1 + (ξ2 + 4ab)−

1
2 ξ
)

dξ = e−2ab

a

∫

R

e−ξ2 dξ,

from which it follows that I (a, b) = π
1
2 e−2ab

a . Finally, use this to show that

∫

(0,∞)

t−
3
2 e−a2t− b2

t dt = π
1
2 e−2ab

b
.
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Exercise 5.5 Recall the cardiod described in Exercise 2.2, and consider the region
that it encloses. Using the expression z(θ) = 2R(1 − cos θ)eiθ for the boundary of
this region after translating by −R, show that the area enclosed by the cardiod is
6πR2. Finally, show that the arc length of the cardiod is 16R, a computation in which
you may want to use (1.5.1) to write 1 − cos θ as a square.

Exercise 5.6 Given a1, a2, a3 ∈ (0,∞), consider the region Ω in R
3 enclosed by

the ellipsoid
∑3

i=1
x2i
a2i

= 1. Show that the boundary of Ω is Riemann negligible and

that the volume of Ω is 4πa1a2a3
3 . When computing the volume V , first show that

V = 2a3

∫

Ω̃

√
1 − x21

a21
− x22

a22
dx1dx2 where Ω̃ =

{
x ∈ R

2 : x21
a21

+ x22
a22

≤ 1
}
.

Next, use Fubini’s Theorem and a change of variables in each of the coordinates to
write the integral as a1a2

∫
B(0,1)

√
1 − |x|2 dx, where B(0, 1) is the unit ball in R

2.
Finally, use (5.6.2) to complete the computation.

Exercise 5.7 Let Ω be a bounded, closed region in R
3 with Riemann negligible

boundary, and let μ : Ω −→ [0,∞) be a continuous function. Thinking of μ as a
mass density, one says that the center of gravity of Ω with mass distribution μ is the
point c ∈ R

3 such that
∫
Ω

μ(y)(y − c) dy = 0. The reason for the name is that if Ω

is supported at this point c, then the net effect of gravity will be 0 and so the region
will be balanced there. Of course, c need not lie inΩ , in which case one should think
of Ω being attached to c by weightless wires.

Obviously, c =
∫
Ω μ(y)y dy

M , where M = ∫
Ω

μ(y) dy is the totalmass.Nowsuppose
that Ω = {y ∈ R

3 : x21 + x22 ≤ x3 ≤ h}, where h > 0, has a constant mass density.
Show that c = (0, 0, 3h

4

)
.

Exercise 5.8 We showed that for a ball B(c, r) in R
3 with a continuous mass dis-

tribution that depends only of the distance to c, the gravitational force it exerts on
a particle of mass m at a point b /∈ B(c, r) is given by (5.6.3). Now suppose that
b ∈ B(c, r), and set D = |b − c|. Show that

∫

B(c,r)

Gmμ(|y − c|)
|y − b| dy = Gm MD

D2 (c − b)

where MD =
∫

B(c,D)

μ(|y − c|) dy.

In other words, the forces produced by the mass that lies further than b from c cancel
out, and so the particle feels only the force coming from the mass between it and the
center of the ball.

http://dx.doi.org/10.1007/978-3-319-24469-3_2
http://dx.doi.org/10.1007/978-3-319-24469-3_1
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Exercise 5.9 Let B(0, r) be the ball of radius r in RN centered at the origin. Using
rotation invariance, show that

∫

B(0,r)

xi dx = 0 and
∫

B(0,r)

xi x j dx = ΩN r N+2

N + 2
δi, j for 1 ≤ i, j ≤ N .

Next, suppose that f : R
N −→ R is twice continuously differentiable, and let

A( f, r) = (ΩN r N )−1
∫

B(0,r)
f (x) dx be the average value of f on B(0, r). As an

application of the preceding, show that A( f,r)− f (0)

r2
−→ 1

2(N+2)

∑N
i=1 ∂2

ei
f (0) as

r ↘ 0.

Exercise 5.10 Suppose that G is an open subset of R2 and that F : G −→ R
2 is

continuous. If F = ∇ f for some continuously differentiable f : G −→ R and
p : [a, b] −→ G is a piecewise smooth path, show that

f (b) − f (a) =
∫ b

a

(
F
(
p(t)

)
, ṗ(t)

)

RN
dt

and therefore that
∫ b

a

(
F
(
p(t)

)
, ṗ(t)

)

RN
dt = 0 ifp is closed (i.e.,p(b) = p(a)).Now

assume that G is connected and that
∫ b

a

(
F
(
p(t)

)
, ṗ(t)

)

RN
dt = 0 for all piecewise

smooth, closed paths p : [a, b] −→ G. Using Exercise 4.5, show that for each
x, y ∈ G there is a piecewise smooth path in G that starts at x and ends at y. Given
a reference point x0 ∈ G and an x ∈ G, show that

f (x) ≡
∫ b

a

(
F
(
p(t)

)
, ṗ(t)

)

RN
dt

is the same for all piecewise smooth paths p : [a, b] −→ G such that p(a) = x0 and
p(b) = x. Finally, show that f is continuously differentiable and that F = ∇ f .
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