
Chapter 3
Integration

Calculus has two components, and, thus far, we have been dealing with only one of
them, namely differentiation. Differentiation is a systematic procedure for disassem-
bling quantities at an infinitesimal level. Integration, which is the second component
and is the topic here, is a systematic procedure for assembling the same sort of quan-
tities. One of Newton’s great discoveries is that these two components complement
one another in a way that makes each of them more powerful.

3.1 Elements of Riemann Integration

Suppose that f : [a, b] −→ [0,∞) is a bounded function, and consider the region
Ω in the plane bounded below by the portion of the horizontal axis between (a, 0)
and (b, 0), the line segment between (a, 0) and

(
a, f (a)

)
on the left, the graph of

f above, and the line segment between
(
b, f (b)

)
and (b, 0) on the right. In order to

compute the area of this region, one might chop the interval [a, b] into n ≥ 1 equal
parts and argue that, if f is sufficiently continuous and therefore does not vary much
over small intervals, then, when n is large, the area of each slice

{
(x, y) ∈ Ω : x ∈ [a + m−1

n (b − a), a + m
n (b − a)

]
& 0 ≤ y ≤ f (x)

}
,

where 1 ≤ m ≤ n, should be well approximated by b−a
n f
(
a + m−1

n (b − a)
)
, the

area of the rectangle
[
a + m−1

n (b − a), a + m
n (b − a)

] × [0, f
(
a + m−1

n (b − a)
)]
.

Continuing this line of reasoning, one would then say that the area of Ω is obtained
by adding the areas of these slices and taking the limit

lim
n→∞

b − a

n

n∑

m=1

f
(
a + m−1

n (b − a)
)
.
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60 3 Integration

Of course, there are two important questions that should be asked about this
procedure. In the first place, does the limit exist and, secondly, if it does, is there a
compelling reason for thinking that it represents the area of Ω? Before addressing
these questions, we will reformulate the preceding in a more flexible form. Say that
two closed intervals are non-overlapping if their interiors are disjoint. Next, given a
finite collection C of non-overlapping closed intervals I �= ∅whose union is [a, b], a
choice function is a mapΞ : C −→ [a, b] such thatΞ(I ) ∈ I for each I ∈ C. Finally
given C andΞ , define the correspondingRiemann sum of a function f : [a, b] −→ R

to be
R( f ; C, Ξ) =

∑

I∈C
f
(
Ξ(I )

)|I |, where |I | is the length of I.

What we want to show is that, as the mesh size ‖C‖ ≡ max{|I | : I ∈ C} tends to 0,
for a large class of functions f these Riemann sums converge in the sense that there
is a number

∫ b
a f (x) dx ∈ R, which we will call the Riemann integral, or simply the

integral, of f on [a, b], such that for every ε > 0 one can find a δ > 0 for which

∣∣∣
∣R( f ; C, Ξ) −

∫ b

a
f (x) dx

∣∣∣
∣ ≤ ε

for all C with ‖C‖ ≤ δ and all associated choice functions Ξ . When such a limit
exists, we will say that f is Riemann integrable on [a, b].

In order to carry out this program, it is helpful to introduce the upper Riemann
sum

U( f ; C) =
∑

I∈C

(
sup

I
f

)
|I |, where sup

I
f = sup{ f (x) : x ∈ I },

and the lower Riemann sum

L( f ; C) =
∑

I∈C

(
inf

I
f

)
|I |, where inf

I
f = inf{ f (x) : x ∈ I }.

Lemma 3.1.1 Assume that f : [a, b] −→ R is bounded. For every C and choice
function Ξ , L( f ; C) ≤ R( f ; C, Ξ) ≤ U( f ; C). In addition, for any pair C and C ′,
L( f ; C) ≤ U( f ; C ′). Finally, for any C and ε > 0, there exists a δ > 0 such that

‖C ′‖ < δ =⇒ L( f ; C) ≤ L( f ; C ′) + ε and U( f ; C ′) ≤ U( f ; C) + ε,

and therefore

lim
‖C‖→0

L( f ; C) = sup
C

L( f ; C) ≤ inf
C
U( f ; C) = lim

‖C‖→0
U( f ; C).
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Proof The first assertion is obvious. To prove the second, begin by observing that
there is nothing to do if C ′ = C. Next, suppose that every I ∈ C is contained in some
I ′ ∈ C ′, in which case supI f ≤ supI ′ f . Therefore (cf. Lemma 5.1.1 for a detailed
proof), since each I ′ ∈ C ′ is the union of the I ’s in C which it contains,

U( f ; C ′) =
∑

I ′∈C′

⎛

⎜
⎝
∑

I∈C
I⊆I ′

(
sup

I ′
f

)
|I |
⎞

⎟
⎠

≥
∑

I ′∈C′

⎛

⎜
⎝
∑

I∈C
I⊆I ′

(
sup

I
f

)
|I |
⎞

⎟
⎠ =

∑

I∈C

(
sup

I
f

)
|I | = U( f ; C),

and, similarly, L( f ; C ′) ≤ L( f ; C). Now suppose that C and C ′ are given, and set

C ′′ ≡ {I ∩ I ′ : I ∈ C, I ′ ∈ C ′ & I ∩ I ′ �= ∅}.

Then for each I ′′ there exist I ∈ C and I ′ ∈ C ′ such that I ′′ ⊆ I and I ′′ ⊆ I ′, and
therefore

L( f ; C) ≤ L( f ; C ′′) ≤ U( f ; C ′′) ≤ U( f, C ′).

Finally, let C and ε > 0 be given, and choose a = c0 ≤ c1 ≤ · · · ≤ cK = b so that
C = {[ck−1, ck] : 1 ≤ k ≤ K }. Given C ′, letD be the set of I ′ ∈ C ′ with the property
that ck ∈ int(I ′) for at least one 1 ≤ k < K , and observe that, since the intervals are
non-overlapping, D can contain at most K − 1 elements. Then each I ′ ∈ C ′ \ D is
contained in some I ∈ C and therefore supI ′ f ≤ supI f . Hence

U( f ; C ′) =
∑

I ′∈D

(
sup

I ′
f

)
|I ′| +

∑

I∈C

∑

I ′∈C′\D
I ′⊆I

(
sup

I ′
f

)
|I ′|

≤
(

sup
[a,b]

| f |
)

(K − 1)‖C ′‖ +
∑

I∈C
sup

I
f

⎛

⎜⎜
⎝
∑

I ′∈C′
I ′⊆I

|I ′|

⎞

⎟⎟
⎠

≤
(

sup
[a,b]

| f |
)

(K − 1)‖C ′‖ + U( f ; C).

Therefore, if δ > 0 is chosen so that
(
sup[a,b] | f |) (K − 1)δ < ε, then U( f ; C ′) ≤

U( f ; C) + ε whenever ‖C ′‖ ≤ δ. Applying this to − f and noting that L( f ; C ′′) =
−U(− f ; C ′′) for any C ′′, one also has that L( f ; C) ≤ L( f ; C ′) + ε if ‖C ′‖ ≤ δ. �
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62 3 Integration

Theorem 3.1.2 If f : [a, b] −→ R is a bounded function, then it is Riemann
integrable if and only if for each ε > 0 there is a C such that

∑

I∈C
supI f −inf I f ≥ε

|I | < ε.

In particular, a bounded f will be Riemann integrable if it is continuous at all but
a finite number of points. In addition, if f : [a, b] −→ [c, d] is Riemann integrable
and ϕ : [c, d] −→ R is continuous, then ϕ ◦ f is Riemann integrable on [a, b].
Proof First assume that f is Riemann integrable. Given ε > 0, choose C so that

∣∣∣
∣R( f ; C, Ξ) −

∫ b

a
f (x) dx

∣∣∣
∣ <

ε2

6

for all choice functions Ξ . Next choose choice functions Ξ± so that

f
(
Ξ+(I )

)+ ε2

3(b − a)
≥ sup

I
f and f

(
Ξ−(I )

)− ε2

3(b − a)
≤ inf

I
f

for each I ∈ C. Then

U( f ; C) ≤ R( f ; C, Ξ+) + ε2

3
≤ R( f ; C, Ξ−) + 2ε2

3
≤ L( f ; C) + ε2,

and so

ε2 ≥ U( f ; C) − L( f ; C) =
∑

I∈C

(
sup

I
f − inf

I
f

)
|I | ≥ ε

∑

I∈C
supI f −inf I f ≥ε

|I |.

Next assume that for each ε > 0 there is a C such that

∑

I∈C
supI f −inf I f ≥ε

|I | < ε.

Given ε > 0, set ε′ = ε
(
4 sup[a,b] | f | + 2(b − a)

)−1
, and choose Cε so that

∑

I∈Cε
supI f −inf I f ≥ε′

|I | < ε′
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and therefore

U( f ; Cε) − L( f ; Cε) ≤
(

2 sup
[a,b]

| f |
)

∑

I∈Cε
supI f −inf I f ≥ε′

|I | + ε′(b − a) = ε

2
.

Now, using Lemma 3.1.1, choose δε > 0 so that U( f ; C) ≤ U( f ; Cε) + ε
2 and

L( f ; C) ≥ L( f ; Cε) − ε
2 when ‖C‖ < δε. Then

‖C‖ < δε =⇒ U( f ; C) ≤ L( f ; C) + ε,

and so, in conjunction with Lemma 3.1.1, we know that

lim
‖C‖→0

U( f ; C) = M = lim
‖C‖→0

L( f ; C) where M = sup
C

L( f ; C).

Since, for any C and associated Ξ , L( f ; C) ≤ R( f ; C, Ξ) ≤ U( f ; C), it follows
that f is Riemann integral and that M is its integral.

Turning to the next assertion, first suppose that f is continuous on [a, b]. Then,
because it is uniformly continuous there, for each ε > 0 there exists a δε > 0 such
that | f (y)− f (x)| < εwhenever x, y ∈ [a, b] and |y − x | ≤ δε. Hence, if ‖C‖ < δε,
then supI f − inf I f < ε for all I ∈ C, and so

∑

I∈C
supI f −inf I f ≥ε

|I | = 0.

Now suppose that f is continuous except at the points a ≤ c0 < · · · < cK ≤ b. For
each r > 0, f is uniformly continuous on Fr ≡ [a, b] \⋃K

k=0(ck − r, ck + r). Given
ε > 0, choose 0 < r < min{ck − ck−1 : 1 ≤ k ≤ K } so that 2r(K + 1) < ε, and
then choose δ > 0 so that | f (y) − f (x)| < ε for x, y ∈ Fr with |y − x | ≤ δ. Then
one can easily construct a C such that Ik ≡ [ck − r, ck + r ] ∩ [a, b] ∈ C for each
0 ≤ k ≤ K and all the other I ’s in C have length less than δ, and for such a C

∑

I∈C
supI f −inf I f ≥ε

|I | ≤
K∑

k=0

|Ik | ≤ 2r(K + 1) < ε.

Finally, to prove the last assertion, let ε > 0 be given and choose 0 < ε′ ≤ ε so
that |ϕ(η) − ϕ(ξ)| < ε if ξ, η ∈ [c, d] with |η − ξ| < ε′. Next choose C so that

∑

I∈C
supI f −inf I f ≥ε′

|I | < ε′,
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and conclude that
∑

I∈C
supI ϕ◦ f −inf I ϕ◦ f ≥ε

|I | ≤
∑

I∈C
supI f −inf I f ≥ε′

|I | ≤ ε′ ≤ ε.

�

The fact that a bounded function is Riemann integrable if it is continuous at all
but a finite number of points is important. For example, if f is a bounded, continu-
ous function on (a, b), then its integral on [a, b] can be unambiguously defined by
extending f to [a, b] in any convenient manner (e.g. taking f (a) = f (b) = 0), and
then taking its integral to be the integral of the extension. The result will be the same
no matter how the extension is made.

When applied to a non-negative, Riemann integrable function f on [a, b], Theo-
rem 3.1.2 should be convincing evidence that the procedure we suggested for com-
puting the area of the region Ω gives the correct result. Indeed, given any C, U( f ; C)

dominates the area of Ω and L( f ; C) is dominated by the area of Ω . Hence, since
by taking ‖C‖ small we can close the gap between U( f ; C) and L( f ; C), there can
be little doubt that

∫ b
a f (x) dx is the area of Ω . More generally, when f takes both

signs, one can interpret
∫ b

a f (x) dx as the difference between the area above the
horizontal axis and the area below.

The following corollary deals with several important properties of Riemann inte-
grals. In its statement and elsewhere, if f : S −→ C,

‖ f ‖S ≡ sup{| f (x)| : x ∈ S}

is the uniform norm of f on S. Observe that

‖ f g‖S ≤ ‖ f ‖S‖g‖S and ‖α f + βg‖S ≤ |α|‖ f ‖S + |β|‖g‖S

for all C-valued functions f and g on S and α, β ∈ C.

Corollary 3.1.3 If f : [a, b] −→ R is a bounded, Riemann integrable function and
a < c < b, then f is Riemann integrable on both [a, c] and [c, b], and

∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
g(x) dx for all c ∈ (a, b). (3.1.1)

Further, if λ > 0 and f is a bounded, Riemann integrable function on [λa,λb], then
x ∈ [a, b] �−→ f (λx) ∈ R is Riemann integrable and

∫ λb

λa
f (y) dy = λ

∫ b

a
f (λx) dx . (3.1.2)
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Next suppose that f and g are bounded, Riemann integrable functions on [a, b].
Then,

f ≤ g =⇒
∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx, (3.1.3)

and so, if f is a bounded, Riemann integrable function on [a, b], then

∣∣∣∣

∫ b

a
f (x) dx

∣∣∣∣ ≤
∣∣∣∣

∫ b

a
| f (x)| dx

∣∣∣∣ ≤ ‖ f ‖S|b − a|. (3.1.4)

In addition, f g is Riemann integrable on [a, b], and, for all α, β ∈ R, α f + βg is
also Riemann integrable and

∫ b

a

(
α f (x) + βg(x)

)
dx = α

∫ b

a
f (x) dx + β

∫ b

a
g(x) dx . (3.1.5)

Proof To prove the first assertion, for a given ε > 0 choose a non-overlapping cover
C of [a, b] so that ∑

I∈C
supI f −inf I f ≥ε

|I | < ε,

and set C ′ = {I ∩ [a, c] : I ∈ C}. Then, since

sup{ f (y) − f (x) : x, y ∈ I ∩ [a, c]} ≤ sup{ f (y) − f (x) : x, y ∈ I }

and |I ∩ [a, c]| ≤ |I |,
∑

I ′∈C′
supI ′ f −inf I ′ f ≥ε

|I ′| ≤
∑

I∈C
supI f −inf I f ≥ε

|I | < ε.

Thus, f is Riemann integrable on [a, c]. The proof that f is also Riemann integrable
on [c, b] is the same. As for (3.1.1), choose {Cn : n ≥ 1} and {C ′

n : n ≥ 1} and
associated choice functions {Ξn : n ≥ 1} and {Ξ ′

n : n ≥ 1} for [a, c] and [c, b] so
that ‖Cn‖ ∨ ‖C ′

n‖ ≤ 1
n , and set C ′′

n = Cn ∪ C ′
n and Ξ ′′

n (I ) = Ξn(I ) if I ∈ Cn and
Ξ ′′

n (I ) = Ξ ′
n(I ) if I ∈ C ′

n \ Cn . Then

∫ b

a
f (x) dx = lim

n→∞R( f ; C ′′
n , Ξ ′′

n ) = lim
n→∞R( f ; Cn, Ξn) + lim

n→∞R( f ; C ′
n, Ξ

′
n)

=
∫ c

a
f (x) dx +

∫ b

c
f (x) dx .

Turning to the second assertion, set fλ(x) = f (λx) for x ∈ [a, b] and, given
a cover C and a choice function Ξ , take Iλ = {λx : x ∈ I }, and define
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Cλ = {Iλ : I ∈ C} and Ξλ(Iλ) = λΞ(I ) for I ∈ C. Then Cλ is a non-overlapping
cover for [λa,λb], Ξλ is an associated choice function, ‖Cλ‖ = λ‖C‖, and

R( fλ; C, Ξ) =
∑

I∈C
f
(
λΞ(I )

)|I | = λ−1R( f ; Cλ, Ξλ) −→ λ−1
∫ λb

λa
f (y) dy

as ‖C‖ → 0.
Next suppose that f and g are bounded, Riemann integrable functions on [a, b].

Obviously, for all C and Ξ ,R( f ; C, Ξ) ≤ R(g; C, Ξ) if f ≤ g and

R(α f + βg; C, Ξ) = αR( f ; C, Ξ) + βR(g; C, Ξ)

for all α, β ∈ R. Starting from these and passing to the limit as ‖C‖ → 0, one
arrives at the conclusions in (3.1.3) and (3.1.5). Furthermore, (3.1.4) follows from
(3.1.3), since, by the last part of Theorem 3.1.2, | f | is Riemann integrable and
± f ≤ | f | ≤ ‖ f ‖[a,b]. Finally, to see that f g is Riemann integrable, note that, by
the preceding combined with the last part of Theorem 3.1.2, ( f + g)2 and ( f − g)2

are both Riemann integrable and therefore so is f g = 1
4

(
( f + g)2 − ( f − g)2

)
. �

There is a useful notation convention connected to (3.1.1). Namely, if a < b, then
one defines ∫ a

b
f (x) dx = −

∫ b

a
f (x) dx .

With this convention, if {ak : 0 ≤ k ≤ �} ⊆ R and f is function that is Riemann
integrable on [a0, a�] and [ak, ak+1] for each 0 ≤ k < �, one can use (3.1.1) to
check that ∫ a�

a0

f (x) dx =
�−1∑

k=0

∫ ak+1

ak

f (x) dx . (3.1.6)

Sometimes one wants to integrate functions that are complex-valued. Just as in
the real-valued case, one says that a bounded function f : [a, b] −→ C is Riemann
integrable and has integral

∫ b
a f (x) dx on [a, b] if the Riemann sums

R( f ; C, Ξ) =
∑

I∈C
f
(
Ξ(I )

)|I |

converge to
∫ b

a f (x) dx as ‖C‖ → 0. Writing f = u + iv, where u and v are real-
valued, one can easily check that f is Riemann integrable if and only if both u and
v are, in which case

∫ b

a
f (x) dx =

∫ b

a
u(x) dx + i

∫ b

a
v(x) dx .
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From this one sees that, except for (3.1.3), the obvious analogs of the assertions in
Corollary 3.1.3 continue to hold for complex-valued functions. Of course, one can
no longer use (3.1.3) to prove the first inequality in (3.1.4). Instead, one can use the
triangle inequality to show that |R( f ; C, Ξ)| ≤ R(| f |; C, Ξ) and then take the limit
as ‖C‖ → 0.

There are two closely related extensions of the Riemann integral. In the first place,
one often has to deal with an interval (a, b] on which there is a function f that is
unbounded but is bounded and Riemann integrable on [α, b] for each α ∈ (a, b).
Even though f is unbounded, it may be that the limit limα↘a

∫ b
α f (x) dx exists in C,

in which case one uses
∫
(a,b] f (x) dx to denote the limit. Similarly, if f is bounded

and Riemann integrable on [a,β] for each β ∈ (a, b) and limβ↗b
∫ β

a f (x) dx exists
or if f is bounded and Riemann integrable on [α,β] for all a < α < β < b and
limα↘a

β↗b

∫ β

α f (x) dx exists in C, then one takes
∫
[a,b)

f (x) dx or
∫
(a,b)

f (x) dx to be

the corresponding limit. The other extension is to situations when one or both of
the endpoints are infinite. In this case one is dealing with a function f which is
bounded and Riemann integrable on bounded, closed intervals of (−∞, b], [a,∞),
or (−∞,∞), and one takes

∫

(−∞,b]
f (x) dx,

∫

[a,∞)

f (x) dx, or
∫

(−∞,∞)

f (x) dx

to be

lim
a↘−∞

∫ b

a
f (x) dx, lim

b↗∞

∫ b

a
f (x) dx, or lim

b↗∞
a↘−∞

∫ b

a
f (x) dx

if the corresponding limit exists. Notice that in any of these situations, if f is non-
negative then the corresponding limits exist in [0,∞) if and only if the quantities
of which one is taking the limit stay bounded. More generally, if f is a C-valued
function on an interval J and if f is Riemann integrable on each bounded, closed
interval I ⊆ J , then

∫
J f (x) dx will exist if supI

∫
I | f (x)| dx < ∞, in which is

case f is said to be absolutely Riemann integrable on J . To check this, suppose that
J = (a, b]. Then, for a < α1 < α2 < b,

∣∣∣∣

∫ b

α2

f (x) dx −
∫ b

α1

f (x) dx

∣∣∣∣ =
∣∣∣∣

∫ α2

α1

f (x) dx

∣∣∣∣ ≤
∫ α2

α1

| f (x)| dx,

and so the existence of the limit limα↘a
∫ b
α f (x) dx ∈ C follows from the existence

of limα↘a
∫ b
α | f (x)| dx ∈ [0,∞). When J is [a, b), (a, b), [a,∞), (−∞, b], or

(−∞,∞), the argument is essentially the same.
The following theorem shows that integrals are continuouswith respect to uniform

convergence of their integrands.
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Theorem 3.1.4 If { fn : n ≥ 1} is a sequence of bounded, Riemann integrable C-
valued functions on [a, b] that converge uniformly to the function f : [a, b] −→ C,
then f is Riemann integrable and

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
f (x) dx .

Proof Observe that

|R( fn; C, Ξ) − R( f ; C, Ξ)| ≤ R(| fn − f |; C, Ξ
) ≤ (b − a)‖ fn − f ‖[a,b],

and conclude from this first that
{∫ b

a fn(x) dx : n ≥ 1
}
satisfies Cauchy’s conver-

gence criterion and second that, for each n,

lim
‖C‖→0

∣∣∣
∣R( f ; C, Ξ) −

∫ b

a
fn(x) dx

∣∣∣
∣ ≤ (b − a)‖ fn − f ‖[a,b].

Hence,
∫ b

a f (x) dx ≡ limn→∞
∫ b

a fn(x) dx exists, andR( f ; C, Ξ) −→ ∫ b
a f (x) dx

as ‖C‖ → 0. �

3.2 The Fundamental Theorem of Calculus

In the preceding section we developed a lot of theory for integrals but did not address
the problem of actually evaluating them. To see that the theory we have developed
thus far does little to make computations easy, consider the problem of computing∫ b

a xk dx for k ∈ N. When k = 0, it is obvious that every Riemann sum will be

equal to (b − a), and therefore
∫ b

a x0 dx = b − a. To handle k ≥ 1, first note that
∫ b

a xk dx = ∫ b
0 xk dx − ∫ a

0 xk dx and, for any c ∈ R

∫ −c

0
xk dx = (−1)k+1

∫ c

0
xk dx .

Hence, it suffices to compute
∫ c
0 xk dx for c > 0. Further, by the scaling property in

(3.1.2), ∫ c

0
xk dx = ck+1

∫ 1

0
xk dx .

Thus, everything comes down to computing
∫ 1
0 xk dx . To this end, we look at Rie-

mann sums of the form
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1

n

n∑

m=1

(m

n

)k = S(k)
n

nk+1
where S(k)

n ≡
n∑

m=1

mk .

When n is even, one can see that S(1)
n = n(n+1)

2 by adding the 1 to n, 2 to n − 1, etc.

When n is odd, one gets the same conclusion by adding n to S(1)
n−1. Hence, we have

shown that ∫ 1

0
x dx = lim

n→∞
n(n + 1)

2n2
= 1

2
,

which is what one would hope is the area of the right triangle with vertices (0, 0),
(0, 1), and (1, 1). When k ≥ 2 one can proceed as follows. Write the difference
(n + 1)k+1 − 1 as the telescoping sum

∑n
m=1

(
(m + 1)k+1 − mk+1

)
. Next, expand

(m + 1)k+1 using the binomial formula, and, after changing the order of summation,
arrive at

(n + 1)k+1 − 1 =
k∑

j=0

(
k + 1

j

)
S( j)

n .

Starting from this and using induction on k, one sees that limn→∞ S(k)
n

nk+1 = 1
k+1 . Hence,

we now know that
∫ 1
0 xk dx = 1

k+1 . Combining this with our earlier comments, we
have ∫ b

a
xk dx = bk+1 − ak+1

k + 1
for all k ∈ N and a < b. (3.2.1)

There is something that should be noticed about the result (3.2.1). Namely, if one
looks at

∫ b
a xk dx as a function of the upper limit b, then bk is its derivative. That is,

as a function of its upper limit, the derivative of this integral is the integrand. That
this is true in general is one of Newton’s great discoveries.1

Theorem 3.2.1 (Fundamental Theorem of Calculus) Let f : [a, b] −→ C be a
continuous function, and set F(x) = ∫ x

a f (t) dt for x ∈ [a, b]. Then F is continuous
on [a, b], continuously differentiable on (a, b), and F ′ = f there. Conversely, if
F : [a, b] −→ C is a continuous function that is continuously differentiable on
(a, b), then

F ′ = f on (a, b) =⇒ F(b) − F(a) =
∫ b

a
f (x) dx .

1Although it was Newton who made this result famous, it had antecedents in the work of James
Gregory and Newton’s teacher Isaac Barrow. Mathematicians are not always reliable historians,
and their attributions should be taken with a grain of salt.
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Proof Without loss in generality, we will assume that f is R-valued.
Let F be as in the first assertion. Then, by (3.1.1), for x, y ∈ [a, b],

F(y) − F(x) =
∫ y

x
f (t) dt = f (x)(y − x) +

∫ y

x

(
f (t) − f (x)

)
dt.

Given ε > 0, choose δ > 0 so that | f (t) − f (x)| < ε for t ∈ [a, b] with |t − x | < δ.
Then, by (3.1.4),

∣∣∣∣

∫ y

x

(
f (t) − f (x)

)
dt

∣∣∣∣ < ε|y − x | if |y − x | < δ,

and so
∣∣
∣∣

F(y) − F(x)

y − x
− f (x)

∣∣
∣∣ < ε for x, y ∈ [a, b] with 0 < |y − x | < δ.

This proves that F is continuous on [a, b], differentiable on (a, b), and F ′ = f there.
If f and F are as in the second assertion, set Δ(x) = F(x) − ∫ x

a f (t) dt . Then,
by the preceding, Δ is continuous of [a, b], differentiable on (a, b), and Δ′ = 0 on
(a, b). Hence, by (1.8.1), Δ(b) = Δ(a), and so, since Δ(a) = F(a), the asserted
result follows. �

It is hard to overstate the importance of Theorem 3.2.1. The hands-on method
we used to integrate xk is unable to handle more complicated functions. Instead,
given a function f , one looks for a function F such that F ′ = f and then applies
Theorem 3.2.1 to do the calculation. Such a function F is called an indefinite integral
of f . By Theorem 1.8.1, since the derivative of the difference between any two of its
indefinite integrals is 0, two indefinite integrals of a function can differ by at most
an additive constant. Once one has F , it is customary to write

∫ b

a
f (x) dx = F(x)

∣∣b
x=a ≡ F(b) − F(a).

Here are a couple of corollaries of Theorem 3.2.1.

Corollary 3.2.2 Suppose that f and g are continuous, C-valued functions on [a, b]
which are continuously differentiable on (a, b), and assume that their derivatives
are bounded. Then

∫ b

a
f ′(x)g(x) dx = f (x)g(x)

∣∣∣
b

x=a
−
∫ b

a
f (x)g′(x) dx

where f (x)g(x)

∣∣∣
b

x=a
≡ f (b)g(b) − f (a)g(a).

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_1
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Proof By the product rule, ( f g)′ = f ′g+g f ′, and so, by Theorem 3.2.1 and (3.1.5),

f (β)g(β) − f (α)g(α) =
∫ β

α

f ′(x)g(x) dx +
∫ b

a
f (x)g′(x) dx

for all a < α < β < b. Now let α ↘ a and β ↗ b. �

The equation in Corollary 3.2.2 is known as the integration by parts formula, and
it is among themost useful tools available for computing integrals. For instance, it can
be used to give another derivation of Taylor’s theorem, this time with the remainder
term expressed as an integral. To be precise, let f : (a, b) −→ C be an (n +1) times
continuously differentiable function. Then, for x, y ∈ (a, b),

f (y) =
n∑

m=0

(y − x)m

m! f (m)(x)

+ (y − x)n+1

n!
∫ 1

0
(1 − t)n f (n+1)

(
(1 − t)x + t y

)
dt.

(3.2.2)

To check this, set u(t) = f
(
(1 − t)x + t y

)
. Then

u(m)(t) = (y − x)m f (m)
(
(1 − t)x + t y

)
,

and, by Theorem 3.2.1, u(1) − u(0) = ∫ 10 u′(t) dt , which is (3.2.2) for n = 1. Next,
assume that

(∗) u(1) =
n−1∑

m=0

u(m)(0)

m! + 1

(n − 1)!
∫ 1

0
(1 − t)n−1u(n)(t) dt

for some n ≥ 1, and use integration by parts to see that

∫ 1

0
(1 − t)n−1u(n)(t) dt = − (1 − t)nu(n)(t)

n

∣
∣∣
1

t=0
+ 1

n

∫ 1

0
(1 − t)nu(n+1)(t) dt.

Hence, by induction, (3.2.2) holds for all n ≥ 1.
A second application of integration by parts is to the derivation ofWallis’s formula:

π

2
= lim

n→∞

n∏

m=1

2m

2m − 1

2m

2m + 1
= lim

n→∞
4n(n!)2

(2n + 1)
(∏n

m=1(2m − 1)
)2 . (3.2.3)
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To prove his formula, we begin by using integration by parts to see that

∫ π
2

0
cosm t dt =

∫ π
2

0
sin′ t cosm−1 t dt = (m − 1)

∫ π
2

0
sin2 t cosm−2 t dt

= (m − 1)
∫ π

2

0
cosm−2 t dt − (m − 1)

∫ π
2

0
cosm t dt,

and therefore that

∫ π
2

0
cosm t dt = m − 1

m

∫ π
2

0
cosm−2 t dt for m ≥ 2.

Since
∫ π

2
0 cos t dt = 1, this proves that

∫ π
2

0
cos2n+1 t dt =

n∏

m=1

2m

2m + 1
for n ≥ 1.

At the same time, it shows that
∫ π

2
0 cos2 t dt = π

4 and therefore that

∫ π
2

0
cos2n t dt = π

2

n∏

m=1

2m − 1

2m
for n ≥ 1.

Thus ∫ π
2
0 cos2n+1 t dt
∫ π

2
0 cos2n t dt

= 2

π

4n(n!)2
(2n + 1)

(∏n
m=1(2m − 1)

)2 .

Finally, since

1 ≥
∫ π

2
0 cos2n+1 t dt
∫ π

2
0 cos2n t dt

= 2n

2n + 1

∫ π
2
0 cos2n−1 t dt
∫ π

2
0 cos2n t dt

≥ 2n

2n + 1
,

(3.2.3) follows.
Aside from being a curiosity, as Stirling showed, Wallis’s formula allows one

to compute the constant eΔ in (1.8.7). To understand what he did, observe that∏n
m=1(2m − 1) = (2n)!

2nn! and therefore, by (1.8.7), that

4n(n!)2

(2n + 1)
(∏n+1

m=1(2m − 1)
)2 = 1

2n + 1

(
4n(n!)2
(2n)!

)2

∼ 1

2n + 1

(
4neΔn

(
n
e

)2n

√
2n
(
2n
e

)2n

)2

= e2Δn

4n + 2
.

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_1
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Hence, after letting n → ∞ and applying (3.2.3), one sees that e2Δ =2π and therefore
that (1.8.7) can be replaced by

√
2πe− 1

n ≤ n!en

nn+ 1
2

≤ √
2πe

1
n , (3.2.4)

or, more imprecisely, n! ∼ √
2πn
(

n
e

)n
.

Here is another powerful tool for computing integrals.

Corollary 3.2.3 Let ϕ : [a, b] −→ [c, d] be a continuous function, and assume
that ϕ is continuously differentiable on (a, b) and that its derivative is bounded. If
f : [c, d] −→ C is a continuous function, then

∫ b

a

(
f ◦ ϕ(t)

)
ϕ′(t) dt =

∫ ϕ(b)

ϕ(a)

f (x) dx .

In particular, if ϕ′ > 0 on (a, b) and ϕ(a) ≤ c < d ≤ ϕ(b), then for any continuous
f : [c, d] −→ C,

∫ d

c
f (x) dx =

∫ ϕ−1(d)

ϕ−1(c)

(
f ◦ ϕ(t)

)
ϕ′(t) dt.

Proof Set F(t) = ∫ ϕ(t)
ϕ(a)

f (x) dx . Then, F(a) = 0 and, by the chain rule and Theo-
rem 3.2.1, F ′ = ( f ◦ ϕ)ϕ′. Hence, again by Theorem 3.2.1,

F(b) =
∫ b

a

(
f ◦ ϕ(t)

)
ϕ′(t) dt. �

The equation in Corollary 3.2.3 is called the change of variables formula. In appli-
cations one often uses the mnemonic device of writing x = ϕ(t) and dx = ϕ′(t) dt .
For example, consider the integral

∫ 1
0

√
1 − x2 dx , and make the change of vari-

ables x = sin t . Then dx = cos t dt , 0 = arcsin 0, and π
2 = arcsin 1. Hence

∫ 1
0

√
1 − x2 dx = ∫ π

2
0 cos2 t dt , which, as we saw in connection with Wallis’s for-

mula, equals π
4 . In that

{(
x,

√
1 − x2

) : x ∈ [0, 1]} is the portion of the unit circle
in the first quadrant, this is the answer that one should have expected.

Here is a slightly more theoretical application of Theorem 3.2.1.

Corollary 3.2.4 Suppose that {ϕn : n ≥ 1} is a sequence of C-valued continuous
functions on [a, b] that are continuously differentiable on (a, b). Further, assume
that {ϕn : n ≥ 1} converges uniformly on [a, b] to a function ϕ and that there is
a function ψ on (a, b) such that ϕ′

n −→ ψ uniformly on [a + δ, b − δ] for each
0 < δ < b−a

2 . Then ϕ is continuously differentiable on (a, b) and ϕ′ = ψ.

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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Proof Given x ∈ (a, b), choose 0 < δ < b−a
2 so that x ∈ (a + δ, b − δ). Then

ϕ(x) − ϕ(a + δ) = lim
n→∞

∫ x

a+δ

ϕ′
n(y) dy =

∫ x

a+δ

ψ(y) dy,

and so ϕ is differentiable at x and ϕ′(x) = ψ(x). �

3.3 Rate of Convergence of Riemann Sums

In applications it is often very important to have an estimate on the rate at which
Riemann sums are converging to the integral of a function. There aremany results that
deal with this question, and in this section we will show that there are circumstances
in which the convergence is faster than one might have expected.

Given a continuous function f : [0, 1] −→ C, it is obvious that

∣∣
∣
∣
∣
R( f ; C, Ξ) −

∫ 1

0
f (x) dx

∣∣
∣
∣
∣
≤ sup

{| f (y) − f (x)| : x, y ∈ [0, 1] with |y − x | ≤ ‖C‖}

for any finite collection C of non-overlapping closed intervals whose union is [0, 1]
and any choice function Ξ . Hence, if f is continuously differentiable on (0, 1), then

∣∣∣∣R( f ; C, Ξ) −
∫ 1

0
f (x) dx

∣∣∣∣ ≤ ‖ f ′‖(0,1)‖C‖.

Moreover, even if f has more derivatives, this is the best that one can say in general.
On the other hand, as we will now show, one can sometimes do far better.

For n ≥ 1, take Cn = {Im,n : 1 ≤ m ≤ n}, where Im,n = [m−1
n , m

n

]
, Ξn(Im,n) =

m
n , and, for continuous f : [0, 1] −→ C, set

Rn( f ) ≡ R( f ; Cn, Ξn) = 1

n

n∑

m=1

f
(

m
n

)
.

Next, assume that f has a bounded, continuous derivative on (0, 1), and apply inte-
gration by parts to each term, to see that

∫ 1

0
f (x) dx − Rn( f ) =

n∑

m=1

∫ m
n

m−1
n

(
f (x) − f

(
m
n

))
dx

=
∞∑

m=1

∫

Im,n

(
x − m−1

n

)′(
f (x) − f

(
m
n

))
dx = −

n∑

m=1

∫ m
n

m−1
n

(
x − m−1

n

)
f ′(x) dx .



3.3 Rate of Convergence of Riemann Sums 75

Now add the assumption that f (1) = f (0). Then
∫ 1
0 f ′(x) dx = f (1) − f (0) = 0,

and so

n∑

m=1

∫ m
n

m−1
n

(
x − m−1

n

)
f ′(x) dx =

n∑

m=1

∫ m
n

m−1
n

(
x − m−1

n − c
)

f ′(x) dx

for any constant c. In particular, by taking c = 1
2n to make each of the integrals

∫ m
n

m−1
n

(
x − m−1

n − c
)

dx = 0, we can write

∫ m
n

m−1
n

(
x − m−1

n − 1
2n

)
f ′(x) dx =

∫ m
n

m−1
n

(
x − m−1

n − 1
2n

)(
f ′(x) − f ′(m

n )
)

dx,

and thereby conclude that

∫ 1

0
f (x) dx − Rn( f ) = −

n∑

m=1

∫ m
n

m−1
n

(
x − m−1

n − 1
2n

)(
f ′(x) − f ′(m

n )
)

dx .

This already represents progress. Indeed, because
∫ m

n
m−1

n

∣∣x − m−1
n − 1

2n

∣∣ dx = 1
4n2 for

each 1 ≤ m ≤ n, we have shown that

∣∣
∣∣

∫ 1

0
f (x) dx − Rn( f )

∣∣
∣∣ ≤

sup
{| f ′(y) − f ′(x)| : |y − x | ≤ 1

n

}

4n

if f is continuously differentiable and f (1) = f (0). Hence, if in addition, f is twice
differentiable, then | f ′(y) − f ′(x)| ≤ ‖ f ′′‖(0,1)|y − x | and the preceding leads to

(∗)

∣∣∣
∣

∫ 1

0
f (x) dx − Rn( f )

∣∣∣
∣ ≤

‖ f ′′‖(0,1)

4n2
.

Before proceeding, it is important to realize how crucial a role the choice of both
Cn andΞn play. The role that Cn plays is reasonably clear, since it is what allowed us to
choose the constant c independent of the intervals. The role of Ξn is more subtle. To
see that it is essential, consider the function f (x) = ei2πx , which is both smooth and
satisfies f (1) = f (0). Furthermore, ‖ f ′‖[0,1] = 2π and

∫ 1
0 f (x) dx = 0. However,

if Ξ̃n(Im,n) = m(n−1)
n2 , then

R( f ; Cn, Ξ̃n) = 1

n

n∑

m=1

ei2π m(n−1)
n2 = ei2π n−1

n2

n

1 − ei2π n−1
n

1 − ei2π n−1
n2

.
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Since n
(
1 − ei2π n−1

n
) = n

(
1 − e−i2π 1

n
) −→ i2π and n

(
1 − ei2π n−1

n2
) −→ −i2π, it

follows that

lim
n→∞ n

∣∣∣∣R( f ; Cn, Ξ̃n) −
∫ 1

0
f (x) dx

∣∣∣∣ = 1.

Thus, the analog of (∗) does not hold if one replaces Ξn by Ξ̃n .
To go further, we introduce the notation

Δ(k)
n ( f ) ≡ 1

k!
n∑

m=1

∫ m
n

m−1
n

(
x − m−1

n

)k(
f (x) − f (m

n )
)

dx for k ≥ 0.

Obviously, Δ(0)
n ( f ) = ∫ 10 f (x) dx − Rn( f ). Furthermore, what we showed when

f is continuously differentiable and f (1) = f (0) is that Δ(0)
n ( f ) = 1

2n Δ(0)
n ( f ′) −

Δ(1)
n ( f ′). By essentially the same argument, what we will now show is that, under

the same assumptions on f ,

Δ(k)
n ( f ) = 1

(k + 2)!nk+1
Δ(0)

n ( f ′) − Δ(k+1)
n ( f ′) for k ≥ 0. (3.3.1)

The first step is to integrate each term by parts and thereby get

Δ(k)
n ( f ) = − 1

(k + 1)!
n∑

m=1

∫ m
n

m−1
n

(
x − m−1

n

)k+1
f ′(x) dx . (3.3.2)

Because
∫ 1
0 f ′(x) dx = 0, the right hand side does not change if one subtracts

1
(k+2)nk+1 from each

(
x − m−1

n

)k+1
, and, once this subtraction is made, one can, with

impunity, subtract f ′(m
n ) from f ′(x) in each term. In this way one arrives at

Δ(k)
n ( f ) = − 1

(k + 1)!
n∑

m=1

∫ m
n

m−1
n

((
x − m−1

n

)k+1 − 1
(k+2)nk+1

)(
f ′(x) − f ′(m

n )
)

dx,

which, after rearrangement, is (3.3.1).
We will say that a function ϕ : R −→ C is periodic2 if ϕ(x + 1) = ϕ(x) for all

x ∈ R. Notice that if ϕ : R −→ C is a bounded periodic function that is Riemann
integrable on bounded intervals, then, by (3.1.6),

∫ a+1

a
ϕ(ξ) dξ =

∫ 1

0
ϕ(ξ) dξ for all a ∈ R. (3.3.3)

2In general, a function f : R −→ C is said to be periodic if there is some α > 0 such that
f (x + α) = f (x) for all x ∈ R, in which case α is said to be a period of f . Here, without further
comment, wewill always be dealingwith the casewhenα = 1 unless some other period is specified.
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To check this, suppose that n ≤ a < n + 1. Then, by (3.1.6),

∫ a+1

a
ϕ(ξ) dξ =

∫ n+1

a
ϕ(ξ) dξ +

∫ a+1

n+1
ϕ(ξ) dξ

=
∫ n+1

a
ϕ(ξ) dξ +

∫ a

n
ϕ(ξ) ξ =

∫ n+1

n
ϕ(ξ) dξ =

∫ 1

0
ϕ(ξ) dξ.

Now assume that f : R −→ C is periodic and has � ≥ 1 continuous derivatives.
Starting from (3.3.1) and working by induction on �, we see that

Δ(0)
n ( f ) = 1

n�

�∑

k=0

ak,�nk+1Δ(k)
n ( f (�)),

where

a0,0 = 1, a0,�+1 =
�∑

k=0

ak,�

(k + 2)! , and ak,�+1 = −ak−1,� for 1 ≤ k ≤ �.

The preceding can be simplified by observing that ak,� = (−1)ka0,�−k for 0 ≤ k ≤ �,
which means that

Δ(0)
n ( f ) = 1

n�+1

�∑

k=0

(−1)kb�−knk+1Δ(k)
n ( f (�))

where b0 = 1 and b�+1 =
�∑

k=0

(−1)k

(k + 2)!b�−k .

(3.3.4)

If we now assume that f is (�+1) times continuously differentiable, then, by (3.3.2),

∣∣Δ(k)
n ( f (�))

∣∣ ≤ 1

(k + 1)!
n∑

m=1

∫ m
n

m−1
n

(
x − m−1

n

)k+1| f (�+1)(x)| dx ≤ ‖ f (�+1)‖[0,1]
(k + 2)!nk+1

,

and so (3.3.4) leads to the estimate (see Exercise 3.13 for a related estimate)

∣∣∣∣

∫ 1

0
f (x) dx − Rn( f )

∣∣∣∣ ≤
K�‖ f (�+1)‖[0,1]

n�+1
where K� =

�∑

k=0

|b�−k |
(k + 2)! (3.3.5)

for periodic functions f having (� + 1) continuous derivatives. In other words, if
f is periodic and has (� + 1) continuous derivatives, then the Riemann sum Rn( f )

differs from
∫ 1
0 f (x) dx by at most the constant K� times ‖ f (�+1)‖[0,1]n−�−1.

To get a feeling for how K� grows with �, begin by taking f (x) = ei2πx . Then
Δ

(0)
1 ( f ) = −1, ‖ f (�+1)‖[0,1] = (2π)�+1, and so (3.3.5) says that K� ≥ (2π)−�−1. To
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get a crude upper bound, let α be the unique element of (0, 1) for which e
1
α = 1+ 2

α
,

and use induction on � to see that |b�| ≤ α�. Hence, we now know that

(2π)−�−1 ≤ K� ≤ e
1
α α�+2.

Below we will get a much more precise result (cf. (3.4.9)), but in the meantime it
should be clear that (3.3.5) is saying that the convergence ofRn( f ) to

∫ 1
0 f (x) dx is

very fast when f is periodic, smooth, and the successive derivatives of f are growing
at a moderate rate.

3.4 Fourier Series

Taylor’s Theorem provides a systematic method for finding polynomial approxima-
tions to a function by scrutinizing in great detail the behavior of the function at a
point. Although the method has many applications, it also has flaws. In fact, as we
saw in the discussion following Lemma 1.8.3, there are circumstances in which it
yields no useful information. As that example shows, the problem is that the beha-
vior of a function away from a point cannot always be predicted from the behavior
of it and its derivatives at the point. Speaking metaphorically, Taylor’s method is
analogous to attempting to lift an entire plank from one end.

Fourier introduced a very different approximation procedure, one in which the
approximation is in terms of waves rather than polynomials. He took the trigonomet-
ric functions {cos(2πmx) : m ≥ 0} and {sin(2πmx) : m ≥ 1} as the model waves
into which he wanted to resolve other functions. That is, he wanted to write a general
continuous function f : [0, 1] −→ C as a usually infinite linear combination of the
form

f (x) =
∞∑

m=0

am cos(2πmx) +
∞∑

m=1

bm sin(2πmx),

where the coefficients am and bm are complex numbers. Using (2.2.1), one sees that
by taking f̂0 = a0, f̂m = am−ibm

2 for m ≥ 1, and f̂m = a−m+ib−m

2 for m ≤ −1, an
equivalent and more convenient expression is

f (x) =
∞∑

m=−∞
f̂mem(x) where em(x) ≡ ei2πmx . (3.4.1)

One of Fourier’s key observations is that if one assumes that f can be represented
in this way and that the series converges well enough, then the coefficients f̂m are
given by

f̂m ≡
∫ 1

0
f (x)e−m(x) dx . (3.4.2)

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_2
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To see this, observe that (cf. Exercise 3.7 for an alternative method)

∫ 1

0
em(x)e−n(x) dx

=
∫ 1

0

(
cos(2πmx) cos(2πnx) + sin(2πmx) sin(2πnx)

)
dx

+ i
∫ 1

0

(− cos(2πmx) sin(2πnx) + sin(2πmx) cos(2πnx)
)

dx

=
∫ 1

0
cos
(
2π(m − n)x

)
dx + i

∫ 1

0
sin
(
2π(m − n)x

)
dx =

{
1 if m = n

0 if m �= n,

where, in the passage to the last line, we used (1.5.1). Hence, if the exchange in the
order of summation and integration is justified, (3.4.2) follows from (3.4.1).

We now turn to the problem of justifying Fourier’s idea. That is, if f̂m is given
by (3.4.2), we want to examine to what extent it is true that f is represented by
(3.4.1). Thus let a continuous f : [0, 1] −→ C be given, determine f̂m accordingly
by (3.4.2), and define

fr (x) =
∞∑

m=−∞
r |m| f̂mem(x) for r ∈ [0, 1) and x ∈ R. (3.4.3)

Because | f̂m | ≤ ‖ f ‖[0,1], the series defining fr is absolutely convergent. In order to
understand what happens when r ↗ 1, observe that

n∑

m=−n

r |m| f̂mem(x) =
∫ 1

0

(
n∑

m=0

(
re1(x − y)

)m
)

f (y) dy

+
∫ 1

0

(
n∑

m=1

(
re1(y − x)

)m
)

f (y) dy

=
∫ 1

0

(
1 − rn+1en+1(x − y)

1 − re1(x − y)
+ re1(y − x) − rn+1en+1(y − x)

1 − re1(y − x)

)
f (y)dy

=
∫ 1

0

1 − r2 − rn+1 cos
(
2π(n + 1)(x − y)

)+ rn+2 cos(2πn(x − y))

|1 − re1(x − y)|2 f (y) dy.

Hence, by Theorem 3.1.4,

fr (x) =
∞∑

m=−∞
r |m| f̂mem(x) =

∫ 1

0
pr (x − y) f (y) dy

where pr (ξ) ≡ 1 − r2

|1 − re1(ξ)|2 for ξ ∈ R. (3.4.4)

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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Obviously the function pr is positive, periodic, and even: pr (−ξ) = pr (ξ). Further-
more, by taking f = 1 and noting that then f̂0 = 1 and f̂m = 0 for m �= 0, we see
from (3.4.4) and evenness that

∫ 1
0 pr (x − y) dy = 1. Finally, note that if δ ∈ (0, 1

2

)

and ξ /∈⋃∞
n=−∞[n − δ, n + δ], then

(∗) |1 − re1(ξ)|2 ≥ 2
(
1 − cos(2πξ)

) ≥ ω(δ) ≡ 2
(
1 − cos(2πδ)

)
> 0

and therefore pr (ξ) ≤ 1−r2

ω(δ)
.

Given a function f : [0, 1] −→ C, its periodic extension to R is the function f̃
given by f̃ (x) = f (x − n) for n ≤ x < n + 1. Clearly, f̃ will be continuous if and
only if f is continuous and f (0) = f (1). In addition, if � ≥ 1, then f̃ will be � times
continuously differentiable if and only if f is � times continuously differentiable on
(0, 1) and the limits limx↘0 f (k)(x) and limx↗1 f (k)(x) exist and are equal for each
0 ≤ k ≤ �.

Theorem 3.4.1 Let f : [0, 1] −→ C be a continuous function, and define fr

for r ∈ [0, 1) as in (3.4.3). Then, for each r ∈ [0, 1), fr is a periodic func-
tion with continuous derivatives of all orders. In fact, for each k ≥ 0, the series∑∞

m=−∞(i2π|m|)kr |m| f̂mem(x) is absolutely and uniformly convergent to f (k)
r (x).

Furthermore, for each δ ∈ (0, 1
2

)
, fr −→ f as r ↗ 1 uniformly on [δ, 1 − δ].

Finally, if f (0) = f (1), then fr −→ f uniformly on [0, 1].
Proof Since each term in the sum defining fr is periodic, it is obvious that fr is also.
In addition, since the sum converges uniformly on [0, 1], fr is continuous. To prove
that fr has continuous derivatives of all orders, we begin by applying Theorem 2.3.2
to see that

∑∞
m=−∞ |m|kr |m| ≤ 2

∑∞
m=0 mkrm < ∞.

In view of the preceding, we know that
∑∞

m=−∞(i2π|m|)r |m| f̂mem(x) con-
verges uniformly for x ∈ [0, 1] to a function ψ. At the same time, if ϕn(x) ≡∑n

m=−n r |m| f̂ em(x), then ϕn converges uniformly to fr and ϕ′
n=
∑n

m=−n(i2πm)r |m|

f̂mem(x) converges uniformly toψ. Hence, byCorollary 3.2.4, fr is differentiable and
f ′
r = ψ. More generally, assume that fr has k continuous derivatives and that f (k)

r =∑∞
m=−∞ r |m|(i2π|m|)k f̂mem . Then a repetition of the preceding argument shows that

f (k)
r is differentiable and that its derivative is

∑∞
m=−∞ r |m|(i2π|m|)k+1 f̂mem .

Now take f̃ to be the periodic extension of f to R. Since f̃ is bounded and
Riemann integrable on bounded intervals, (3.3.3) together with

∫ 1
0 pr (x − y) dy = 1

show that

fr (x) − f (x) =
∫ 1

0
pr (x − y)

(
f (y) − f (x)

)
dy

=
∫ 1−x

−x
pr (ξ)

(
f (ξ + x) − f (x)

)
dξ =

∫ 1
2

− 1
2

pr (ξ)
(

f̃ (ξ + x) − f̃ (x)
)

dξ

http://dx.doi.org/10.1007/978-3-319-24469-3_2
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=
∫ −δ

− 1
2

pr (ξ)
(

f̃ (ξ + x) − f̃ (x)
)

dξ +
∫ δ

−δ

pr (ξ)
(

f̃ (ξ + x) − f̃ (x)
)

dξ

+
∫ 1

2

δ

pr (ξ)
(

f̃ (ξ + x) − f̃ (x)
)

dξ

for x ∈ [0, 1] and 0 < δ < 1
2 . Using (∗), one sees that the first and third terms in the

final expression are dominated by 2‖ f ‖[0,1] 1−r2

ω(δ)
and therefore tend to 0 as r ↗ 1.

As for the second term, it is dominated by sup{| f̃ (y)− f̃ (x)| : |y − x | ≤ δ}. Hence,
if f̃ is continuous at x , as it will be if x ∈ (0, 1), then

lim
r↗1

∣∣ fr (x) − f (x)
∣∣ = lim

r↗1

∣∣∣∣

∫ 1

0
pr (x − y)

(
f (y) − f (x)

)
dy

∣∣∣∣ = 0.

Moreover, the convergence is uniform on the interval [δ, 1 − δ], and if
f (0) = f (1) and therefore f̃ is continuous everywhere, then the convergence is
uniform on [0, 1]. �

Even though the preceding result is a weakened version of it, we now know that
Fourier’s idea is basically sound. One important fact to which this weak version leads
is the identity

∫ 1

0
f (x)g(x) dx =

∞∑

m=−∞
f̂m ĝm . (3.4.5)

To prove this, first observe that, because
∫ 1
0 em1(x)e−m2(x) dx is 0 if m1 �= m2 and 1

if m1 = m2, one can use Theorem 3.1.4 to justify

∫ 1

0
fr (x)gr (x) dx =

∞∑

m1,m2=−∞
r |m1|+|m2| f̂m1 ĝm2

∫ 1

0

∫ 1

0
em1(x)e−m2(x) dx

=
∞∑

m=−∞
r2|m| f̂m ĝm .

At the same time, for each δ ∈ (0, 1
2

)
,

lim
r↗1

∫ 1

0

∣∣ fr (x)gr (x) − f (x)g(x)
∣∣ dx

≤ lim
r↗1

∫ δ

0

∣
∣ fr (x)gr (x) − f (x)g(x)

∣
∣ dx + lim

r↗1

∫ 1

1−δ

∣
∣ fr (x)gr (x) − f (x)g(x)

∣
∣ dx

≤ 4‖ f ‖[0,1]‖g‖[0,1]δ,
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and so limr↗1
∫ 1
0 fr (x)gr (x) dx = ∫ 10 f (x)g(x) dx . Taking g = f , we conclude

that ∫ 1

0
| f (x)|2 dx = lim

r↗1

∞∑

m=−∞
r2|m|| f̂m |2,

and therefore that
∑∞

m=−∞ | f̂m |2 < ∞. Hence, by Schwarz’s inequality (cf. Exer-
cise 2.3),

∞∑

m=−∞
| f̂m ||ĝm | ≤

√√√√
∞∑

m=−∞
| f̂m |2

√√√√
∞∑

m=−∞
|ĝm |2 < ∞,

and so the series
∑∞

m=−∞ f̂m ĝm is absolutely convergent. Thus, when we apply
(1.10.1), we find that

∞∑

m=−∞
f̂m ĝm = lim

r↗1

∞∑

m=−∞
r2|m| f̂m ĝm =

∫ 1

0
f (x)g(x) dx .

The identity in (3.4.5) is known as Parseval’s equality, and it has many interesting
applications of which the following is an example. Take f (x) = x . Obviously,
f̂0 = 1

2 , and, using integration by parts, one sees that f̂m = 1
i2πm for m �= 0. Hence,

by (3.4.5),

1

3
=
∫ 1

0
| f (x)|2 dx = 1

4
+ 1

4π2

∑

m �=0

1

m2
= 1

4
+ 1

2π2

∞∑

m=1

1

m2
,

from which we see that ∞∑

m=1

1

m2
= π2

6
. (3.4.6)

The function ζ(z) given by
∑∞

m=1
1

mz when the real part of z is greater than 1 is
the famous Riemann zeta function which plays an important role in number theory
(cf. Sect. 6.3). We now know the value of ζ at z = 2, and, as we will show below,
we can also find its value at all positive, even integers. However, in order to do
that computation, we will need to discuss when the Fourier series

∑∞
m=−∞ f̂mem(x)

converges to f . This turns out to be a very delicate question, and we will not attempt
to describe any of the refined answers that have been found. Instead, we will deal
only with the most elementary case.

Theorem 3.4.2 Let f : [0, 1] −→ C be a continuous function. If
∑∞

m=−∞ | f̂m |
< ∞, then f (0) = f (1) and

∑∞
m=−∞ f̂mem converges uniformly to f . In partic-

ular, if f (1) = f (0) and f has a bounded, continuous derivative on (0, 1), then∑∞
m=−∞ | f̂m | < ∞ and therefore

∑∞
m=−∞ f̂mem converges uniformly to f .

http://dx.doi.org/10.1007/978-3-319-24469-3_2
http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_6
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Proof We already know that fr (x) −→ f (x) for all x ∈ (0, 1), and therefore, by
(1.10.1), if x ∈ (0, 1) and

∑∞
m=−∞ f̂mem(x) converges, it must converge to f (x).

Thus, since | f̂mem(x)| ≤ | f̂m | if ∑∞
m=−∞ | f̂m | < ∞,

∑∞
m=−∞ f̂mem(x) converges

absolutely and uniformly on [0, 1] to a continuous, periodic function, and, because
that function coincides with f on (0, 1), it must be equal to f on [0, 1].

Now assume that f (1) = f (0) is and that f has a bounded, continuous derivative
f ′ on (0, 1). Using integration by parts and Exercise 3.7, we see that, for m �= 0,

f̂m = lim
δ↘0

∫ 1−δ

δ

f (x)e−m(x) dx

= lim
δ↘0

1

i2πm

(
f (δ)e−m(δ) − f (1 − δ)e−m(1 − δ) +

∫ 1−δ

δ

f ′(x)e−m(x) dx

)

= f̂ ′
m

i2πm
.

Hence, by Schwarz’s inequality, Parseval’s equality, and (3.4.6),

∑

m �=1

| f̂m | ≤ 1

2π

⎛

⎝
∑

m �=0

1

m2

⎞

⎠

1
2
⎛

⎝
∑

m �=0

| f̂ ′
m |2
⎞

⎠

1
2

≤
√

1

24

(∫ 1

0
| f ′(x)|2 dx

) 1
2

. �

Notice that the integration by parts step in the preceding has the following easy
extension. Namely, suppose that f : [0, 1] −→ C is continuous and that f has
� ≥ 1 bounded, continuous derivatives on (0, 1). Further, assume that f (k)(0) ≡
limx↘0 f (k)(x) and f (k)(1) ≡ limx↗1 f (x) exist and are equal for 0 ≤ k < �. Then,
by iterating the argument given above, one sees that

f̂m = (i2πm)−�(̂ f (�))m for m ∈ Z \ {0}.

Returning to the computation of ζ(2�), recall the numbers bk introduced in (3.3.4),
and set

P�(x) =
�∑

k=0

(−1)kb�−k

k! xk for � ≥ 0 and x ∈ R.

Then P0 ≡ 1 and P� = −P ′
�+1. In addition, if � ≥ 2, then

P�(1) = b� − b�−1 +
�∑

k=2

(−1)kb�−k

k!

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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and, by (3.3.4),
�∑

k=2

(−1)kb�−k

k! =
�−2∑

k=0

(−1)kb�−2−k

(k + 2)! = b�−1.

Hence P�(1) = b� = P�(0) for all � ≥ 2. In particular, these lead to

(P̂�)0 = −
∫ 1

0
P ′

�+1(x) dx = P�+1(0) − P�+1(1) = 0 for � ≥ 1

and
(P̂�)m = (−1)�−1(i2πm)1−�(P̂1)m for � ≥ 2 and m �= 0.

Since P1(x) = b1 − b0x = 1
2 − x , we can use integration by parts to see that

(P̂1)m = −
∫ 1

0
xe−i2πmx dx = (i2πm)−1 for m �= 0,

and therefore

P�(x) = −
(

i

2π

)�∑

m �=0

em(x)

m�
for � ≥ 2 and x ∈ [0, 1]. (3.4.7)

Taking x = 0 in (3.4.7), we have that

b2�+1 = 0 and b2� = (−1)�+12ζ(2�)

(2π)2�
(3.4.8)

for � ≥ 1. Knowing that b� = 0 for odd � ≥ 3, the recursion relation in (3.3.4) for
b� simplifies to

b� =

⎧
⎪⎨

⎪⎩

2−� if � ∈ {0, 1}
1
2�! −∑ �−2

2
k=0

b2k
(�−2k+1)! if � ≥ 2 is even

0 if � ≥ 2 is odd.

(3.4.9)

Now we can go the other direction and use (3.4.8) and (3.4.9) to compute ζ at even
integers:

ζ(2�) = (−1)�+122�−1π2�b2� for � ≥ 1. (3.4.10)

Finally, starting from (3.4.10), one sees that the K�’s in (3.3.5) satisfy
lim�→∞(K�)

1
� = (2π)−1.
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In the literature, the numbers �!b� are called the Bernoulli numbers, and they have
an interesting history. Using (3.4.9) together with (3.4.10), one recovers (3.4.6) and
sees that ζ(4) = π4

90 and ζ(6) = π6

945 . Using these relations to compute ζ at larger even
integers is elementary but tedious. Perhaps more interesting than such computations
is the observation that, when � ≥ 2, P�(x) is an �th order polynomial whose periodic
extension from [0, 1] is (� − 2) times differentiable. That such polynomials exist is
not obvious.

3.5 Riemann–Stieltjes Integration

The topic of this concluding section is an easy but important generalization, due to
Stieltjes, of Riemann integration. Namely, given bounded, R-valued functions ϕ and
ψ on [a, b], a finite cover C of [a, b] by non-overlapping closed intervals I , and an
associated choice function Ξ , set

R(ϕ|ψ; C, Ξ) =
∑

I∈C
ϕ
(
Ξ(I )

)
ΔI ψ,

where ΔI ψ denotes the difference between the value of ψ at the right hand end point
of I and its value at the left hand end point. We will say that ϕ is Riemann–Stieltjes
integrable on [a, b]with respect to ψ if there exists a number

∫ b
a ϕ(x) dψ(x), known

as the Riemann–Stieltjes of ϕ with respect to ψ, such that for each ε > 0 there is a
δ > 0 for which ∣

∣∣∣R(ϕ|ψ; C, Ξ) −
∫ b

a
ϕ(x) dψ(x)

∣
∣∣∣ < ε

whenever ‖C‖ < δ and Ξ is any associated choice function for C. Obviously, when
ψ(x) = x , this is just Riemann integration. In addition, it is clear that if ϕ1 and
ϕ2 are Riemann–Stieltjes integrable with respect to ψ, then, for all α1, α2 ∈ R,
α1ϕ1 + α2ϕ2 is also and

∫ b

a

(
α1ϕ1(x) + α2ϕ2(x)

)
dψ(x) = α1

∫ b

a
ϕ1(x) dψ(x) + α2

∫ b

a
ϕ2(x) dψ(x).

Also, if ψ̌(x) = ψ(a + b − x) and ϕ is Riemann–Stieltjes integrable with respect to
ψ, then x � ϕ(a + b − x) is Riemann–Stieltjes integrable with respect to ψ̌ and

∫ b

a
ϕ(a + b − x) dψ̌(x) = −

∫ b

a
ϕ(x) dψ(x). (3.5.1)
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In general it is hard to determine which functions ϕ are Riemann–Stieltjes inte-
grable with respect to a given function ψ. Nonetheless, the following simple lemma
shows that there is an inherent symmetry between the roles of ϕ and ψ.

Lemma 3.5.1 If ϕ is Riemann–Stieltjes integrable with respect to ψ, then ψ is
Riemann–Stieltjes integrable with respect to ϕ and

∫ b

a
ϕ(x) dψ(x) = ϕ(b)ψ(b) − ϕ(a)ψ(b) −

∫ b

a
ψ(x) dϕ(x). (3.5.2)

Proof Let C = {[αm−1,αm] : 1 ≤ m ≤ n
}
, where a = α0 ≤ · · · ≤ αn = b,

and let Ξ be an associated choice function. Set β0 = a, βm = Ξ([αm−1,αm]) for
1 ≤ m ≤ n, and βn+1 = b, and define C ′ = {[βm−1,βm] : 1 ≤ m ≤ n + 1} and
Ξ ′([βm−1,βm]) = αm−1 for 1 ≤ m ≤ n + 1. Then

R(ψ|ϕ; C, Ξ) =
n∑

m=1

ψ(βm)
(
ϕ(αm) − ϕ(αm−1)

)

=
n∑

m=1

ψ(βm)ϕ(αm) −
n−1∑

m=0

ψ(βm+1)ϕ(αm)

= ψ(βn)ϕ(αn) −
n−1∑

m=1

ϕ(αm)
(
ψ(βm+1) − ψ(βm)

)− ψ(β1)ϕ(α0)

= ψ(b)ϕ(b) − ψ(a)ϕ(a) −
n∑

m=0

ϕ(αm)
(
ψ(βm+1) − ψ(βm)

)

= ψ(b)ϕ(b) − ψ(a)ϕ(a) − R(ϕ|ψ; C ′, Ξ ′).

Noting that ‖C ′‖ ≤ 2‖C‖, one now sees that ifϕ is Riemann–Stieltjes integrable with
respect to ψ, then ψ is Riemann–Stieltjes integrable with respect to ϕ and (3.5.2)
holds. �

As we will see, Lemma 3.5.1 is an interesting generalization of the integration by
parts, but it does little to advance us toward an understanding of the basic problem.
In addressing that problem, the following analog of Theorem 3.1.2 will play a central
role.

Lemma 3.5.2 If ψ is non-decreasing on [a, b], then ϕ is Riemann–Stieltjes inte-
grable with respect to ψ if and only if for each ε > 0 there exists a δ > 0 such
that

‖C‖ < δ =⇒
∑

I∈C
supI ϕ−inf I ϕ>ε

ΔI ψ < ε.
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In particular, every continuous function ϕ is Riemann–Stieltjes integrable with
respect to ψ. In addition, if ϕ is Riemann–Stieltjes integrable with respect to ψ
and c ∈ (a, b), then it is Riemann–Stieltjes integrable with respect of ψ on both
[a, c] and [c, b] and

∫ b

a
ϕ(x) dψ(x) =

∫ c

a
ϕ(x) dψ(x) +

∫ b

c
ϕ(x) dψ(x).

Finally, if ϕ : [a, b] −→ [c, d] is Riemann–Stieltjes integrable with respect to ψ and
f : [c, d] −→ R is continuous, then f ◦ ϕ is again Riemann–Stieltjes integrable
with respect to ψ.

Proof Once the first part is proved, the other assertions follow in exactly the same
way as the analogous assertions followed from Theorem 3.1.2.

In proving the first part, we will assume, without loss in generality, that Δ ≡
Δ[a,b]ψ > 0. Now suppose that ϕ is Riemann–Stieltjes integrable with respect to ψ.
Given ε > 0, choose δ > 0 so that

‖C‖ ≤ δ =⇒
∣∣
∣∣R(ϕ|ψ; C, Ξ) −

∫ b

a
ϕ(x) dψ(x)

∣∣
∣∣ ≤

ε2

4

for all associated choice functions Ξ . Next, given C, choose, for each I ∈ C,
Ξ1(I ), Ξ2(I ) ∈ I so that ϕ

(
Ξ1(I )

) ≥ supI ϕ − ε2

4Δ and ϕ
(
Ξ2(I )

) ≤ inf I ϕ + ε2

4Δ .
Then ‖C‖ < δ implies that

ε2

2
≥ R(ϕ|ψ; C, Ξ1) − R(ϕ|ψ; C, Ξ2) ≥

∑

I∈C

(
sup

I
ϕ − inf

I
ϕ

)
ΔI ψ − ε2

2
,

and so
ε2 ≥ ε

∑

I∈C
supI ϕ−inf I ϕ>ε

ΔI ψ.

To prove the converse, we introduce the upper and lower Riemann–Stieltjes sums

U(ϕ|ψ; C) =
∑

I∈C
sup

I
ϕΔI ψ and L(ϕ|ψ; C) =

∑

I∈C
inf

I
ϕΔI ψ.

Just as in the Riemann case, one sees that

L(ϕ|ψ; C) ≤ R(ϕ|ψ; C, Ξ) ≤ U(ϕ|ψ; C)

for all C and associated rate functions Ξ , and L(ϕ|ψ; C) ≤ U(ϕ|ψ; C ′) for all C and
C ′. Further,
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U(ϕ|ψ; C) − L(ϕ|ψ; C) =
∑

I∈C

(
sup

I
ϕ − inf

I
ϕ

)
ΔI ψ

≤ εΔ + 2‖ϕ‖[a,b]
∑

I∈C
supI ϕ−inf I ϕ>ε

ΔI ψ,

and so, under the stated condition, for each ε > 0 there exists a δ > 0 such that

‖C‖ < δ =⇒ U(ϕ|ψ; C) − L(ϕ|ψ; C) < ε.

As a consequence, we know that if ‖C‖ < δ then, for any C ′

U(ϕ|ψ; C) ≤ L(ϕ|ψ; C) + ε ≤ U(ϕ|ψ; C ′) + ε,

and similarly, L(ϕ|ψ; C) ≥ L(ϕ|ψ; C ′) − ε. From these it follows that M ≡
infC U(ϕ|ψ; C) = supC L(ϕ|ψ; C) and

lim
‖C‖→0

U(ϕ|ψ; C) = M = lim
‖C‖→0

L(ϕ|ψ; C),

and at this point the rest of the argument is the same as the one in the proof of
Theorem 3.1.2. �

The reader should take note of the distinction between the first assertion here and
the analogous one in Theorem 3.1.2. Namely, in Theorem 3.1.2, the condition for
Riemann integrability was that there exist some C for which

∑

I∈C
supI f −inf I f >ε

|I | < ε,

whereas here we insist that

‖C‖ < δ =⇒
∑

I∈C
supI ϕ−inf I ϕ>ε

ΔI ψ < ε.

The reason for this is that the analog of the final assertion in Lemma 3.1.1 is true for
ψ only if ψ is continuous. When ψ is continuous, then the condition that ‖C‖ < δ
can be removed from the first assertion in Lemma 3.5.2.

In order to deal with ψ’s that are not monotone, we introduce the quantity

var[a,b](ψ) ≡ sup
C

∑

I∈C
|ΔI ψ| < ∞,

where C denotes a generic finite cover of [a, b] by non-overlapping closed intervals,
and say that ψ has finite variation on [a, b] if var[a,b](ψ) < ∞. It is easy to check
that
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var[a,b](ψ1 + ψ2) ≤ var[a,b](ψ1) + var[a,b](ψ2) and that var[a,b](ψ) = |ψ(b) − ψ(a)|
if ψ is monotone (i.e., it is either non-decreasing or non-increasing). Thus, if ψ can
be written as the difference between two non-increasing functions ψ+ and ψ−, then
it has bounded variation and

var[a,b](ψ) ≤ (ψ+(b) − ψ+(a)
)+ (ψ−(b) − ψ−(a)

)
.

We will now show that every function of bounded variation admits such a represen-
tation. To this end, define

var±[a,b](ψ) = sup
C

∑

I∈C
(ΔI ψ)±.

Lemma 3.5.3 If ψ has bounded variation on [a, b], then

Δ[a,b]ψ = var+[a,b](ψ) − var−[a,b](ψ) and var[a,b](ψ) = var+[a,b](ψ) + var−[a,b](ψ).

Proof Obviously,

∑

I∈C
|ΔI ψ| =

∑

I∈C
(ΔI ψ)+ +

∑

I∈C
(ΔI ψ)−

and

Δ[a,b]ψ =
∑

I∈C
(ΔI ψ)+ −

∑

I∈C
(ΔI ψ)−.

From the first of these, it is clear that var[a,b](ψ) ≤ var+[a,b](ψ) + var−[a,b](ψ). From
the second we see that var±[a,b](ψ) ≤ var∓[a,b](ψ) ± Δ[a,b]ψ, and therefore that
Δ[a,b]ψ = var+[a,b](ψ)− var−[a,b](ψ). Hence, if limn→∞

∑
I∈Cn

(ΔI ψ)+ = var+[a,b](ψ),
then limn→∞

∑
I∈Cn

(ΔI ψ)− = var−[a,b](ψ), and so

var[a,b](ψ) ≥ lim
n→∞

⎛

⎝
∑

I∈Cn

(ΔI ψ)+ +
∑

I∈Cn

(ΔI ψ)−
⎞

⎠ = var+[a,b](ψ) + var−[a.b](ψ).

�

Given a functionψ of bounded variation on [a, b], define Vψ(x) = var[a,x](ψ) and
V ±

ψ (x) = var±[a,x](ψ) for x ∈ [a, b]. Then Vψ , V +
ψ , and V −

ψ are all non-decreasing
functions that vanish at a, and, by Lemma 3.5.3, ψ(x) = ψ(a) + V +

ψ (x) − V −
ψ (x)

and Vψ(x) = V +
ψ (x) + V −

ψ (x) for x ∈ [a, b].
Theorem 3.5.4 Let ψ be a function of bounded variation on [a, b], and refer to the
preceding. If ϕ : [a, b] −→ R is a bounded function, then ϕ is Riemann–Stieltjes
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integrable with respect to Vψ if and only if it is Riemann–Stieltjes integrable with
respect to both V +

ψ and V −
ψ , in which case

∫ b

a
ϕ(x) dVψ(x) =

∫ b

a
ϕ(x) dV +

ψ (x) +
∫ b

a
ϕ(x) dV −

ψ (x).

Moreover, if ϕ is Riemann–Stieltjes integrable with respect to Vψ , then it is Riemann–
Stieltjes integrable with respect to ψ,

∫ b

a
ϕ(x) dψ(x) =

∫ b

a
ϕ(x) dV +

ψ (x) −
∫ b

a
ϕ(x) dV −

ψ (x),

and ∣∣∣∣

∫ b

a
ϕ(x) dψ(x)

∣∣∣∣ ≤
∫ b

a
|ϕ(x)| dVψ(x) ≤ ‖ϕ‖[a,b]var[a,b](ψ).

Proof Since Vψ = V +
ψ + V −

ψ , it is clear that

∑

I∈C
supI ϕ−inf I ϕ>ε

ΔVψ < ε ⇐⇒

∑

I∈C
supI ϕ−inf I ϕ>ε

ΔV +
ψ +

∑

I∈C
supI ϕ−inf I ϕ>ε

ΔV −
ψ < ε,

and therefore, by Lemma 3.5.2, ϕ is Riemann–Stieltjes integrable with respect to Vψ

if and only if it is with respect to V +
ψ and V −

ψ . Furthermore, because

R(ϕ|Vψ; C, Ξ) = R(ϕ|V +
ψ ; C, Ξ) + R(ϕ|V −

ψ ; C, Ξ)

and
R(ϕ|ψ; C, Ξ) = R(ϕ|V +

ψ ; C, Ξ) − R(ϕ|V −
ψ ; C, Ξ),

the other assertions follow easily. �

Finally, there is an important case in which Riemann–Stieltjes integrals reduce to
Riemann integrals. Namely, if ψ is continuous on [a, b] and continuously differen-
tiable on (a, b), then, by (1.8.1),

∑

I∈C
|ΔI ψ| ≤ ‖ψ′‖(a.b)(b − a),

and so ψ will have bounded variation if ψ′ is bounded. Furthermore, if ψ′ is bounded
and ϕ : [a, b] −→ R is a bounded function which is Riemann integrable on [a, b],
then ϕ is Riemann–Stieltjes integrable with respect to ψ and

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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∫ b

a
ϕ(x) dψ(x) =

∫ b

a
ϕ(x)ψ′(x) dx . (3.5.3)

To prove this, note that if I ∈ C, then one can apply (1.8.1) to find an η(I ) ∈ I such
that ΔI ψ = ψ′(η(I )

)|I |. Thus

R(ϕ|ψ; C, Ξ) =
∑

I∈C
ϕ
(
η(I )
)
ψ′(η(I )

)|I | +
∑

I∈C

(
ϕ
(
Ξ(I )

)− ϕ
(
η(I )
))

ψ′(η(I )
)|I |

and
∣∣∣∣∣

∑

I∈C

(
ϕ
(
Ξ(I )

)− ϕ
(
η(I )
))

ψ′(η(I )
)|I |
∣∣∣∣∣
≤ ‖ψ′‖(a,b)

(U(ϕ; C) − L(ϕ; C)
)
,

which, since ϕ is Riemann integrable, tends to 0 as ‖C‖ → 0. Hence, since ϕψ′, as
the product of two Riemann integrable functions, is Riemann integrable, we see that
R(ϕ|ψ; C, Ξ) −→ ∫ b

a ϕ(x)ψ′(x) dx as ‖C‖ → 0. The content of (3.5.3) is often
abbreviated by the equation dψ(x) = ψ′(x) dx . Notice that when ϕ and ψ are both
continuously differentiable on (a, b), then (3.5.2) is the integration by parts formula.

3.6 Exercises

Exercise 3.1 Most integrals defy computation. Here are a few that don’t. In each
case, compute the following integrals.

(i)
∫
[1,∞)

1
x2 dx (ii)

∫
[0,∞)

e−x dx

(iii)
∫ b

a sin x dx (iv)
∫ b

a cos x dx
(v)
∫ 1
0

1√
1−x2 dx (vi)

∫
[0,∞)

1
1+x2 dx

(vii)
∫ π

2
0 x2 sin x dx (viii)

∫ 1
0

x
x4+1 dx

Exercise 3.2 Here are some integrals that play a role in Fourier analysis. In evalu-
ating them, it may be helpful to make use of (1.5.1). Compute

(i)
∫ 2π
0 sin(mx) cos(nx) dx (ii)

∫ 2π
0 sin2(mx) dx

(iii)
∫ 2π
0 cos2(mx) dx,

for m, n ∈ N.

Exercise 3.3 For t > 0, define Euler’s Gamma function Γ (t) for t > 0 by

Γ (t) =
∫

(0,∞)

xt−1e−x dx .

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_1


92 3 Integration

Show that Γ (t +1) = tΓ (t), and conclude that Γ (n +1) = n! for n ≥ 1. See (5.4.4)
for the evaluation of Γ

(
1
2

)
.

Exercise 3.4 Find indefinite integrals for the following functions:

(i) xα for α ∈ R & x ∈ (0,∞) (ii) log x
(iii) 1

x log x for x ∈ (0,∞) \ {1} (iv) (log x)n

x for n ∈ Z
+ & x ∈ (0,∞).

Exercise 3.5 Let α, β ∈ R, and assume that (αa) ∨ (αb) ∨ (βa) ∨ (βb) < 1.
Compute

∫ b
a

1
(1−αx)(1−βx)

dx . When α = β = 0, there is nothing to do, and when

α = β �= 0, it is obvious that
(
α(1 − αx)

)−1
is an indefinite integral. When α �= β,

one can use the method of partial fractions and write

1

(1 − αx)(1 − βx)
= 1

α − β

(
α

1 − αx
− β

1 − βx

)
.

See Theorem 6.3.2 for a general formulation of this procedure.

Exercise 3.6 Suppose that f : (a, b) −→ [0,∞) has continuous derivatives of
all orders. Then f is said to be absolutely monotone if it and all its derivatives are
non-negative. If f is absolutely monotone, show that for each c ∈ (a, b)

f (x) =
∞∑

m=0

f (m)(c)

m! (x − c)m for x ∈ [c, b),

an observation due to S. Bernstein. In doing this problem, reduce to the case when
c = 0 ∈ (a, b), and, using (3.2.2), observe that f (y) dominates

yn

(n − 1)!
∫ 1

0
(1 − t)n−1 f (n)(t y) dt ≥

( y

x

)n xn

(n − 1)!
∫ 1

0
(1 − t)n−1 f (n)(t x) dt

for n ≥ 1 and 0 < x < y < b.

Exercise 3.7 For α ∈ R \ {0}, show that

∫ b

a
eiαt dt = eiαb − eiαa

iα
.

Next, write cos t = eit +e−i t

2 , and apply the preceding and the binomial formula to
show that ∫ 2π

0
cosn t dt =

{
0 if n ∈ N is odd

2−n+1π
(n

n
2

)
if n ∈ N is even.

By combining this with (3.2.4), show that limn→∞ n
1
2
∫ 2π
0 cos2n t dt = 2π

1
2 .

http://dx.doi.org/10.1007/978-3-319-24469-3_5
http://dx.doi.org/10.1007/978-3-319-24469-3_6
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Exercise 3.8 A more conventional way to introduce the logarithm function is to
define it by

(∗) log y =
∫ y

1

1

t
dt for y ∈ (0,∞).

The purpose of this exercise is to show, without knowing our earlier definition, that
this definition works.

(i) Suppose that � : (0,∞) −→ R is a continuous function with the properties
that �(xy) = �(x) + �(y) for all x, y ∈ (0,∞) and �(a) > 0 for some a > 1. By
applying Exercise 1.10 to the function f (x) = �(ax ), show that �

(
ax
) = x�(a).

(ii) Referring to (i), show that � is strictly increasing, tends to ∞ as y → ∞ and
to −∞ as y ↘ 0. Conclude that there is a unique b ∈ (1,∞) such that �(b) = 1.

(iii) Continuing (i) and (ii), and again usingExercise 1.10, conclude that �(bx ) = x
for x ∈ R and b�(y) = y for y ∈ (0,∞). That is, � is the logarithm function with
base b

(iv) Show that the function log given by (∗) satisfies the conditions in (i) and
therefore that there exists a unique e ∈ (1,∞) for which it is the logarithm function
with base e.

Exercise 3.9 Show that

lim
x→∞

log x

x

∫ x

e

1

log t
dt = 1.

Exercise 3.10 Let f : [0, 1] −→ C be a continuous function whose periodic exten-
sion is continuously differentiable. Show that

∫ 1

0

∣∣∣
∣ f (x) −

∫ 1

0
f (y) dy

∣∣∣
∣

2

dx =
∫ 1

0
| f (x)|2 dx −

∣∣∣
∣

∫ 1

0
f (y) dy

∣∣∣
∣

2

=
∑

m �=0

| f̂m |2

≤ (2π)−2
∑

m �=0

(2πm)2| f̂m |2 = (2π)−2
∫ 1

0
| f ′(x)|2 dx .

As a consequence, one has the Poincaré inequality

∫ 1

0

∣
∣∣∣ f (x) −

∫ 1

0
f (y) dy

∣
∣∣∣

2

dx ≤ (2π)−2
∫ 1

0
| f ′(x)|2 dx

for any function whose periodic extension is continuously differentiable.

Exercise 3.11 Let f : [a, b] −→ C be a continuous function, and set L = b − a.
If δ ∈ (0, L

2

)
, show that, as r ↗ 1,

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_1
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1

L

∞∑

m=−∞
r |m|
(∫ b

a
f (y)e−m

( y
L

)
dy

)
em
(

x
L

)

converges to f (x) uniformly for x ∈ [a + δ, b − δ
]
and that the convergence is

uniform for x ∈ [a, b] if f (b) = f (a). Perhaps the easiest way to do this is to
consider the function g(x) = f (a + Lx) and apply Theorem 3.4.1 to it. Next,
assume that f (a) = f (b) and that f has a bounded, continuous derivative on (a, b).
Show that

f (x) = 1

L

∞∑

m=−∞

(∫ b

a
f (y)e−m

( y
L

)
dy

)
em
(

x
L

)
,

where the convergence is absolute and uniform on [a, b].
Exercise 3.12 Let f : [0, 1] −→ C be a continuous function, and show that, as
r ↗ 1,

fr (x) ≡ 2
∞∑

m=1

rm

(∫ 1

0
f (y) sin(mπy) dy

)
sin πx

converges uniformly to f on [δ, 1 − δ] for each δ ∈ (0, 1
2

)
. One way to do this is

to define g : [−1, 1] −→ C so that g = f on [0, 1] and g(x) = − f (−x) when
x ∈ [−1, 0), and observe that

∫ 1

−1
g(y)e−m

( y
2 ) dy = −2i

∫ 1

0
f (y) sin(mπy) dy.

If f (0) = 0 and therefore g is continuous, one need only apply Exercise 3.11 to g
to see that fr −→ f uniformly on [0, 1− δ] for each δ ∈ (0, 1

2

)
. When f (0) �= and

therefore g is discontinuous at 0, after examining the proof of Theorem 3.4.1, one
can show that fr −→ f on [δ, 1 − δ] because g is uniformly continuous there.

Next show that if f : [0, 1] −→ C is continuous, then

∫ 1

0
| f (x)|2 dx = 2

∞∑

m=1

∣
∣∣∣

∫ 1

0
f (x) sin(mπx) dx

∣
∣∣∣

2

.

Finally, assuming that f (0) = 0 = f (1) and that f has a bounded, continuous
derivative on (0, 1), show that

f (x) = 2
∞∑

m=1

(∫ 1

0
f (y) sin πy dy

)
sin πx,

where the convergence of the series is absolute and uniform on [0, 1].



3.6 Exercises 95

Exercise 3.13 Fourier series provide an alternative and more elegant approach to
proving estimates like the one in (3.3.5). To see this, suppose that f : [0, 1] −→ C

is a function whose periodic extension is � ≥ 1 times continuously differentiable.
Then, as we have shown,

f (x) =
∫ 1

0
f (y) dy +

∑

m �=0

(̂ f (�))m

(i2πm)�
em(x),

where the series converges uniformly and absolutely. After showing that

1

n

n∑

k=1

em
(

k
n

) =
{
1 ifm is divisible by n

0 otherwise,

conclude that

Rn( f ) −
∫ 1

0
f (y) dy =

∑

m �=0

(̂ f (�))mn

(i2πmn)�
,

and from this show that

∣∣
∣∣Rn( f ) −

∫ 1

0
f (y) dy

∣∣
∣∣ ≤

2‖ f (�)‖[0,1]ζ(�)

(2πn)�
.

Finally, use Schwarz’s inequality and (3.4.5) to derive the estimate

∣∣∣∣Rn( f ) −
∫ 1

0
f (y) dy

∣∣∣∣ ≤
√
2ζ(2�)

(2πn)�

√∫ 1

0
| f (x)|2 dx .

Exercise 3.14 Think of the unit circle S
1(0, 1) as a subset of C, and let ϕ :

S
1(0, 1) −→ R be a continuous function. The goal of this exercise is to show that

there exists an analytic function f on D(0, 1) such that limz→ζ R
(

f (z)
) = ϕ(ζ) for

all ζ ∈ S
1(0, 1).

(i) Set

am =
∫ 1

0
ϕ
(
ei2πθ
)
e−m(θ) dθ for m ∈ Z,

and show that am = a−m . Next define the function u on D(0, 1) by

u
(
rei2π

) =
∞∑

m=−∞
r |m|amem(θ) for r ∈ [0, 1) and θ ∈ [0, 1).

Show that u is a continuous, R-valued function and, using Theorem 3.4.1, that
limz→ζ u(z) = ϕ(ζ) for ζ ∈ S

1(0, 1).
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(ii) Define v on D(0, 1) by

v
(
rei2πθ

) = −i
∞∑

m=1

rm
(
amem(θ) − a−me−m(θ)

)
.

and show that v is a continuous, R-valued function. Next, set f = u + iv, and show
that

f (z) = a0 + 2
∞∑

m=1

am zm for z ∈ D(0, 1).

In particular, conclude that f is analytic and that limz→ζ R
(

f (z)
) = ϕ(ζ) for ζ ∈

S
1(0, 1).

(iii) Assume that
∑∞

m=−∞ |am | < ∞, and define Hϕ on S
1(0, 1) by

Hϕ
(
ei2πθ
) = −i

∞∑

m=1

(
amem(θ) − a−me−m(θ)

)
.

If f is the function in (ii), show that limz→ζ I
(

f (z)
) = Hϕ(ζ) for ζ ∈ S

1(0, 1). The
function Hϕ is called the Hilbert transform of ϕ, and it plays an important role in
harmonic analysis.

Exercise 3.15 Let {xn : n ≥ 1} be a sequence of distinct elements of (a, b], and set
S(x) = {n ≥ 1 : xn ≤ x} for x ∈ [a, b]. Given a sequence {cn : n ≥ 1} ⊆ R for
which

∑∞
n=1 |cn| < ∞, define ψ : [a, b] −→ R so that ψ(x) = ∑n∈S(x) cn . Show

that ψ has bounded variation and that ‖ψ‖var =∑∞
n=1 |cn|. In addition, show that if

ϕ : [a, b] −→ R is continuous, then

∫ b

a
ϕ(x) dψ(x) =

∞∑

n=1

ϕ(xn)cn.

Exercise 3.16 Suppose that F : [a, b] −→ R is a function of bounded variation.
(i) Show that, for each ε > 0,

lim
h↘0

∣∣F(x + h) − F(x)
∣∣ ∨ |F(x − h) − F(x)| ≥ ε

for at most a finite number of x ∈ (a, b), and use this to show that F is Riemann
integrable on [a, b].

(ii) Assume that ϕ : [a, b] −→ R is a continuous function that has a bounded,
continuous derivative on (a, b). Prove the integration by parts formula

∫ b

a
ϕ(t) d F(t) = ϕ(b)F(b) − ϕ(a)F(a) −

∫ b

a
ϕ′(t)F(t) dt.
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(iii) Let ψ : [0,∞) −→ [0,∞) be a function whose restriction to [0, T ] has
bounded variation for each T > 0. Assuming thatψ(0) = 0 and that supt≥1 t−α|ψ(t)|
< ∞ for some α ≥ 0, use (ii) to show that

L(λ) ≡
∫

[0,∞)

e−λt dψ(t) = lim
T →∞

∫ T

0
e−λt dψ(t) = λ

∫

[0,∞)

e−λtψ(t) dt

for all λ > 0. The function λ � L(λ) is called the Laplace transform of ψ.
(iv) Refer to (iii), and assume that a = limt→∞ t−αψ(t) ∈ R exists. Show that,

for each T > 0, λαL(λ) equals

λ1+α

∫ T

0
e−λtψ(t) dt + λ1+α

∫

[T,∞)

tαe−λt
(
t−αψ(t) − a

)
dt + a

∫ ∞

[λT,∞)

tαe−t dt,

and use this to conclude that (cf. Exercise 3.3)

(∗) a = lim
λ↘0

λαL(λ)

Γ (1 + α)
.

This equation is an example of the general principle that the behavior of ψ near
infinity reflects the behavior of its Laplace transform at 0.

(v) The equation in (∗) is an integral version of the Abel limit procedure in 1.10.1,
and it generalizes 1.10.1. To see this, let {cn : n ≥ 1} ⊆ R be given, and define

ψ(t) =
∑

1≤n≤t

cn for t ∈ [0,∞).

Assuming that supn≥1 n−α|ψ(n)| < ∞, use Exercise 3.15 to show that

∫

[0,∞)

e−λt dψ(t) =
∞∑

n=1

e−λncn for λ > 0.

Next, assume that a = limn→∞ n−αψ(n) ∈ R exists, and use (∗) to conclude that

a = lim
λ↘0

λα

Γ (1 + α)

∞∑

n=1

e−λncn.

When α = 0, this is equivalent to 1.10.1.
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