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This book is dedicated to Elliot Gorokhovsky



Preface

This book started out as a set of notes that I wrote for a freshman high school
student named Elliot Gorokhovsky. I had volunteered to teach an informal seminar
at Fairview High School in Boulder, Colorado, but when it became known that
participation in the seminar would not be for credit and would not appear on any
transcript, the only student who turned up was Elliot.

Initially I thought that I could introduce Elliot to probability theory, but it soon
became clear that my own incompetence in combinatorics combined with his
ignorance of analysis meant that we would quickly run out of material.
Thus I proposed that I teach him some of the analysis that is required to understand
non-combinatorial probability theory. With this in mind, I got him a copy of
Courant’s venerable Differential and Integral Calculus. However, I felt that I ought
to supplement Courant’s book with some notes that presented the same material
from a more modern perspective. Rudin’s superb Principles of Mathematical
Analysis provides an excellent introduction to the material that I wanted Elliot to
learn, but it is too abstract for even a gifted high school freshman. I wanted Elliot to
see a rigorous treatment of the fundamental ideas on which analysis is built, but I
did not think that he needed to see them couched in great generality. Thus I ended
up writing a book that would be a hybrid: part Courant and part Rudin and a little of
neither. Perhaps the most closely related book is J. Marsden and M. Hoffman’s
Elements of Classical Analysis, although they cover a good deal more differential
geometry and do not discuss complex analysis.

The book starts with differential calculus, first for functions of one variable (both
real and complex). To provide the reader with interesting, concrete examples,
thorough treatments are given of the trigonometric, exponential, and logarithmic
functions. The next topic is the integral calculus for functions of a real variable, and,
because it is more intuitive than Lebesgue’s, I chose to develop Riemann’s
approach. The rest of the book is devoted to the differential and integral calculus for
functions of more than one variable. Here too I use Riemann’s integration theory,
although I spend more time than is usually allotted to questions that smack of
Lebesgue’s theory. Prominent space is given to polar coordinates and the
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divergence theorem, and these are applied in the final chapter to a derivation of
Cauchy’s integral formula. Several applications of Cauchy’s formula are given,
although in no sense is my treatment of analytic function theory comprehensive.
Instead, I have tried to whet the appetite of my readers so that they will want to find
out more. As an inducement, in the final section I present D.J. Newman’s “simple”
proof of the prime number theorem. If that fails to serve as an enticement,
nothing will.

As its title implies, the book is concise, perhaps to a degree that some may feel
makes it terse. In part my decision to make it brief was a reaction to the flaccid, 800
page calculus texts that are commonly adopted. A second motivation came from my
own teaching experience. At least in America, for many, if not most, of the students
who study mathematics, the language in which it is taught is not (to paraphrase
H. Weyl) the language that was sung to them in their cradles. Such students do not
profit from, and often do not even attempt to read, the lengthy explanations with
which those 800 pages are filled. For them a book that errs on the side of brevity is
preferable to one that errs on the side of verbosity. Be that as it may, I hope that this
book will be valuable to people who have some facility in mathematics and who
either never had a calculus course or were not satisfied by the one that they had.
It does not replace existing texts, but it may be a welcome supplement and, to some
extent, an antidote to them. If a few others approach it in the same spirit and with
the same joy as Elliot did, I will consider it a success.

Finally, I would be remiss to not thank Peter Landweber for his meticulous
reading of the multiple incarnations of my manuscript. Peter is a respected algebraic
topologist who, now that he has retired, is broadening his mathematical expertise.
Both I and my readers are the beneficiaries of his efforts.

Daniel W. Stroock
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Chapter 1
Analysis on the Real Line

1.1 Convergence of Sequences in the Real Line

Calculus has developed systematic procedures for handling problems in which rela-
tionships between objects evolve and become exact only after one passes to a limit.
As a consequence, one often ends up proving equalities between objects by what
looks at first like the absurd procedure of showing that the difference between them
is arbitrarily small. For example, consider the sequence of numbers 1

n for integers
n ≥ 1. Clearly, 1

n is not 0 for any integer. On the other hand, the larger n gets, the
closer 1

n is to 0. To describe this in a mathematically precise way, one says 1
n con-

verges to 0, by which one means that for any number ε > 0 there is an integer nε such
that

∣
∣ 1

n

∣
∣ < ε for all n ≥ nε. More generally, given a sequence {xn : n ≥ 1} ⊆ R,1 one

says that {xn : n ≥ 1} converges inR if there is an x ∈ Rwith the property that for all
ε > 0 there exists an nε ∈ Z

+ such that |xn − x | < εwhenever n ≥ nε, in which case
one says that {xn : n ≥ 1} converges to x and writes x = limn→∞ xn or xn → x . If
for all R > 0 there exists an nR such that xn ≥ R for all n ≥ nR , then one says that
{xn : n ≥ 1} converges to ∞ and writes limn→∞ xn = ∞ or xn → ∞. Similarly, if
{−xn : n ≥ 1} converges to ∞, then one says that {xn : n ≥ 1} converges to −∞
and writes limn→∞ xn = −∞ or xn → −∞. Until one gets accustomed to this sort
of thinking, it can be disturbing that the line of reasoning used to prove convergence
often leads to a conclusion like |xn − x | ≤ 5ε for sufficiently large n’s. However, as
long as this conclusion holds for all ε > 0, it should be clear that the presence of 5
or any other finite number makes no difference.

Given sequences {xn : n ≥ 1} and {yn : n ≥ 1} that converge, respectively,
to x ∈ R and y ∈ R, one can easily check that limn→∞(αxn + βyn) = αx + βy
for all α, β ∈ R and that limn→∞ xn yn = xy. To prove the first of these, simply
observe that

1We will use Z to denote the set of all integers, N to denote the set of non-negative integers, and
Z

+ to denote the set of positive integers. The symbol R denotes the set of all real numbers. Also,
we will use set theoretic notation to denote sequences even though a sequence should be thought
of as a function on its index set.

© Springer International Publishing Switzerland 2015
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2 1 Analysis on the Real Line

∣
∣(αxn + βyn) − (αx + βy)

∣
∣ ≤ |α||xn − x | + |β||yn − y| −→ 0 as n → ∞.

In the preceding,weused the triangle inequality,which is the easily verified statement
that |a + b| ≤ |a| + |b| for any pair of real numbers a and b. To prove the second,
begin by noting that, because |yn| = |y + (yn − y)| ≤ |y| + |yn − y| ≤ |y| + 1 for
large enough n’s, there is an M < ∞ such that |yn| ≤ M for all n ≥ 1. Hence,

|xn yn − xy| = |(xn − x)yn + x(yn − y)| ≤ |xn − x ||yn| + |x ||yn − y|
≤ M |xn − x | + |x ||yn − y| −→ 0 as n → ∞.

In both these we have used a frequently employed trick before applying the triangle
inequality. Namely, because we wanted to relate the size of yn to that of y and the
difference between yn and y, we added and subtracted y before applying the triangle
inequality. Similarly, because we wanted to estimate the size of xn yn − xy in terms
of sizes of xn − x and yn − y, it was convenient to add and subtract xyn . Finally,

xn −→ x �= 0 =⇒ 1

xn
−→ 1

x
.

Indeed, choose m so that |xn − x | ≤ |x |
2 for n ≥ m. Then

|xn| + |x |
2

≥ |xn| + |xn − x | ≥ |x |,

and so |xn| ≥ |x |
2 for n ≥ m. Hence

∣
∣
∣
∣

1

xn
− 1

x

∣
∣
∣
∣
= |xn − x |

|xn||x | ≤ 2|xn − x |
|x |2 for n ≥ m,

and so 1
xn

−→ 1
x .

Notice that if xn → x ∈ R and nε is chosen for ε > 0 as above, then

|xn − xm | ≤ |xn − x | + |x − xm | ≤ 2ε for m, n ≥ nε.

That is, if {xn : n ≥ 1} converges to some x ∈ R, then the xn’s must be getting
arbitrarily close to one another as n → ∞. Now suppose that {xn : n ≥ 1} is a
sequence whosemembers are getting arbitrarily close to one another in the preceding
sense. Then there are two possibilities. The first is that there is an empty hole in R

and the xn’s are all crowding around it, in which case there would be nothing for
them to converge to. The second possibility is that there are no holes in R and
therefore that xn’s cannot be getting arbitrarily close to one another unless there is
an x ∈ R to which they are converging. By giving a precise description of the real
numbers, one can show that no holes exist, but, because it would be distracting to
give such a description here, it has been deferred to the Appendix. For now we will
simply accept the consequence of there being no holes in R. That is, we will accept
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the statement, known as Cauchy’s convergence criterion, that there is an x ∈ R to
which {xn : n ≥ 1} converges if, for each ε > 0, there is an ne ≥ 1 such that
|xn′ − xn| ≤ ε whenever n, n′ ≥ nε. A space with a notion of convergence for
which Cauchy’s criterion guarantees convergence is said to be complete. Notice that,
because |xn′ − xn| ≤ |xn′ − xm | + |xn − xm |, {xn : n ≥ 1} satisfies Cauchy’s
criterion if and only if, for each ε > 0, there is an m such that |xn − xm | < ε for
all n > m.

As a consequence of Cauchy’s criterion, it is easy to show that a non-decreasing
sequence {xn : n ≥ 1} is convergent inR if it is bounded above (i.e., there is aC < ∞
such that xn ≤ xn+1 ≤ C for all n ≥ 1). Indeed, suppose that it didn’t and therefore
that there exists an ε > 0 with the property that for every m there is an n > m such
that xn − xm ≥ ε. Then we could choose 1 = n1 < n2 < · · · < nk < · · · so that
xnk+1 −xnk ≥ ε for all k, which wouldmean thatC ≥ xnk ≥ xn1 + kε for all k, which
is impossible. Similarly, if {xn : n ≥ 1} is non-increasing and bounded below (i.e.,
there is a C < ∞ such that −C ≤ xn+1 ≤ xn for all n), then {xn : n ≥ 1} converges
in R. In fact, this follows from the preceding by considering {−xn : n ≥ 1}. Finally,
if {xn : n ≥ 1} is non-decreasing and not bounded above, then xn → ∞, and if it is
non-increasing and not bounded below, then xn → −∞.

If {xn : n ≥ 1} is a sequence and 1 ≤ n1 < · · · < nk < · · · , then we say that
{xnk : k ≥ 1} is a subsequence of {xn : n ≥ 1}. It should be clear that if {xn : n ≥ 1}
converges in R or to ±∞, then so does every subsequence of {xn : n ≥ 1}. On
the other hand, even if {xn : n ≥ 1} doesn’t converge, nonetheless it may admit
subsequences that do. For instance, if xn = (−1)n , then x2n−1 → −1 and x2n → 1.
More generally, as will be shown in Theorem 1.3.3 below, if {xn : n ≥ 1} is bounded
(i.e., there is a C < ∞ such that |xn| ≤ C for all n), then {xn : n ≥ 1} admits a
convergent subsequence. Finally, x is said to be a limit point of {xn : n ≥ 1} if there
is a subsequence that converges to x .

1.2 Convergence of Series

One often needs to sum an infinite number of real numbers. That is, given a sequence
{am : m ≥ 0} ⊆ R, one would like to assign a meaning to

∞
∑

m=0

am = a0 + · · · + an + · · · .

To do this, one introduces the partial sum Sn =∑n
m=0 am ≡ a0 +· · ·+an and takes

∑∞
m=0 am = limn→∞ Sn when the limit exists, in which case one says that the series

∑∞
m=0 am converges. Observe that if

∑∞
m=0 am converges in R, then, by Cauchy’s

criterion, it must be true that an = Sn − Sn−1 −→ 0 as n → ∞.
The easiest series to deal with are those whose summands am are all non-negative.

In this case the sequence {Sn : n ≥ 0}of partial sums is non-decreasing and therefore,
depending onwhether or not it stays bounded, it converges either to a finite number or
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to+∞. This observation is useful evenwhen the summands am’s can take both signs.
Namely, given {am : m ≥ 0}, consider the series corresponding to {|am | : m ≥ 0}.
Clearly,

|Sn2 − Sn1 | =
∣
∣
∣
∣
∣
∣

n2∑

m=n1+1

am

∣
∣
∣
∣
∣
∣

≤
n2∑

m=n1+1

|am | =
∞
∑

m=0

|am | −
n1∑

m=0

|am |

for n1 < n2. Hence, if
∑∞

m=0 |am | < ∞ and therefore

∞
∑

m=0

|am | −
n1∑

m=0

|am | −→ 0 as n1 → ∞,

then {Sn : n ≥ 0} satisfies Cauchy’s criterion and is therefore convergent in
R. For this reason, one says that the series

∑∞
m=0 am is absolutely convergent if

∑∞
m=0 |am | < ∞.
It is important to recognize that a series may be convergent in R even if it is not

absolutely convergent.

Lemma 1.2.1 Suppose {an : n ≥ 0} is a non-increasing sequence that converges
to 0. Then the series

∑∞
m=0(−1)mam converges in R. In fact,

∣
∣
∣
∣
∣

∞
∑

m=0

(−1)mam −
n
∑

m=0

(−1)mam

∣
∣
∣
∣
∣
≤ an .

Proof Set

Tn =
n
∑

m=0

(−1)m =
{

1 if n is even

0 if n is odd.

Then (cf. Exercise 1.6 for a generalization of this argument)

n
∑

m=0

(−1)mam = a0 +
n
∑

m=1

(Tm − Tm−1)am = a0 +
n
∑

m=1

Tmam −
n−1
∑

m=0

Tmam+1

= Tnan +
n−1
∑

m=0

Tm(am − am+1),

and so

n2∑

m=0

(−1)mam −
n1∑

m=0

(−1)mam = Tn2an2 − Tn1an1 +
n2−1
∑

m=n1

Tm(am − am+1).
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Note that

0 ≤
n2−1
∑

m=n1

Tm(am − am+1) ≤
n2−1
∑

m=n1

(am − am+1) = an1 − an2 ≤ an1 ,

and therefore
∣
∣
∑n2

m=0(−1)mam −∑n1
m=0(−1)mam

∣
∣ ≤ 2an1 , which, by Cauchy’s cri-

terion, shows that the series converges in R. In addition, one has

−an ≤ −Tnan ≤
∞
∑

m=0

(−1)mam −
n
∑

m=0

(−1)mam ≤ an . �

Lemma 1.2.1 provides lots of examples of series that are convergent but not
absolutely convergent in R. Indeed, although we know that limm→∞ am = 0 if
∑∞

m=0 am converges inR,
∑∞

m=0 am need not converge inR just because am −→ 0.
For example, since

2�−1
∑

m=1

1

m
=

�−1
∑

k=0

⎛

⎝

2k+1−1
∑

m=2k

1

m

⎞

⎠ ≥ �

2
−→ ∞ as � → ∞,

the harmonic series
∑∞

m=1
1
m converges to ∞ and therefore does not converge in

R. Nonetheless, by Lemma 1.2.1,
∑∞

m=1
(−1)n

n does converge in R. In fact, see
Exercise 1.6 to find out what it converges to.

A series that converges in R but is not absolutely convergent is said to be condi-
tionally convergent. In general determining when a series is conditionally convergent
can be very tricky (cf. Exercise 1.5 below), but there are many useful criteria for
determining whether it is absolutely convergent. The basic reason is that if the series
∑∞

m=0 bm is absolutely convergent and if |am | ≤ C |bm | for some C < ∞ and all
m ≥ 0, then

∑∞
m=0 am is also absolutely convergent. This simple observation is

sometimes called the comparison test. One of its most frequent applications involves
comparing the series under consideration to the geometric series

∑∞
n=0 rm , where

0 < r < 1. If Sn =∑n
m=0 rm , then r Sn =∑n+1

m=1 rm = Sn +rn+1−1, and therefore

Sn = 1−rn+1

1−r , which shows that
∑∞

m=0 rm = 1
1−r < ∞. One reason why the geo-

metric series arises in applications of the comparison test is the following. Suppose
that {am : m ≥ 0} ⊆ R and that |am+1| ≤ r |am | for some r ∈ (0, 1) and all m ≥ m0.
Then |am | ≤ |am0 |rm−m0 for all m ≥ m0, and so, if C = r−m0 max{|a0|, . . . , |am0 |},
then |am | ≤ Crm for all m ≥ 0. For obvious reasons, the resulting criterion is called
the ratio test.

Series whose summands decay at least as fast as those of the geometric series
are considered to be converging very fast and by no means include all absolutely
convergent series. For example, let α > 1, and consider the series

∑∞
m=1

1
mα . To see

that this series is absolutely convergent, we use the same idea as we did when we
showed that the harmonic series diverges. That is,



6 1 Analysis on the Real Line

2�−1
∑

m=1

1

mα
=

�−1
∑

k=0

⎛

⎝

2k+1−1
∑

m=2k

1

mα

⎞

⎠ ≤
�−1
∑

k=0

2(1−α)k ≤ 1

1 − 21−α
< ∞.

Of course, if α ∈ [0, 1], then n−α ≥ n−1, and therefore
∑∞

n=1
1

nα = ∞ since
∑∞

n=1
1
n = ∞.

1.3 Topology of and Continuous Functions on R

A subset I ofR is called an interval if x ∈ I whenever there exist a, b ∈ I for which
a < x < b. In particular, if a, b ∈ R with a ≤ b, then

(a, b) = {x : a < x < b}, (a, b] = {x : a < x ≤ b},
[a, b) = {x : a ≤ x < b}, [a, b] = {x : a ≤ x ≤ b},
(−∞, a] = {x : x ≤ a}, (−∞, a) = {x : x < a},
[b,∞) = {x : x ≥ b}, and (b,∞) = {x : x > b}

(1.3.1)

are all intervals, as is R = (−∞,∞). Note that if a = b, then (a, b), (a, b], and
[a, b) are all empty. Thus, the empty set ∅ is an interval.

A subset G ⊆ R is said to be open if either G = ∅ or, for each x ∈ G, there is
a δ > 0 such that (x − δ, x + δ) ⊆ G. Clearly, the union of any number of open
sets is again open, and the intersection of a finite number of open sets is again open.
However, the countable intersection of open sets may not be open. For example, the
interval (a, b) is open for every a < b, but

{0} =
∞
⋂

n=1

(− 1
n , 1

n

)

is not open.
A subset F ⊆ R is said to be closed if its complement F� = R \ F is open. Thus,

the intersection of an arbitrary number of closed set is closed, as is the union of a
finite number of them. Given any set S ⊆ R, the interior int(S) of S is the largest
open subset of S. Equivalently, it is the union of all the open subsets of S. Similarly,
the closure S̄ of S is the smallest closed set containing S, or, equivalently, it is the
intersection of all the closed sets containing S. Clearly, an open set is equal to its
own interior, and any closed set is equal to its own closure.

Lemma 1.3.1 The subset F is closed if and only if x ∈ F whenever there exists a
sequence {xn : n ≥ 1} ⊆ F such that xn → x. Moreover, for any S ⊆ R, x ∈ int(S)

if and only if (x − δ, x + δ) ⊆ S for some δ > 0, and x ∈ S̄ if and only if there is a
sequence {xn : n ≥ 1} ⊆ S such that xn → x.
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Proof Suppose that F is closed, and set G = F�. Let {xn : n ≥ 1} ⊆ F be a
sequence that converges to x . If x were not in F , it would be an element of the open
set G. Thus there would exist a δ > 0 such that (x − δ, x + δ) ⊆ G. But, because
xn → x , |xn − x | < δ and therefore xn ∈ (x − δ, x + δ) for all sufficiently large
n’s, and this would mean that xn ∈ F ∩ G for all large enough n’s. Since F ∩ G is
empty, this shows that x must have been in F .

Now assume that x ∈ F whenever there exists a sequence {xn : n ≥ 1} ⊆ F
such that xn → x , and set G = F�. To see that G is open, suppose not. Then there
would be some x ∈ G with the property that for all n ≥ 1 there is an xn ∈ F such
that |x − xn| < 1

n . But this would mean that xn → x and therefore that x ∈ F .
Suppose that x ∈ int(S). Then there is an open G for which x ∈ G ⊆ S. Hence

there is a δ > 0 such that (x − δ, x + δ) ⊆ G ⊆ S. Conversely, if there is a δ > 0
for which (x − δ, x + δ) ⊆ S, then, since (x − δ, x + δ) is an open subset of S,
x ∈ int(S).

Finally, let x be an element of R to which no sequence {xn : n ≥ 1} ⊆ S
converges. Then there must exist a δ > 0 such that (x − δ, x + δ) ∩ S = ∅. To see
this, suppose that no such δ > 0 exists. Then, for each n ≥ 1, there would exist
an xn ∈ S such that |x − xn| < 1

n , which would mean that xn → x . Hence such a
δ > 0 exists. But if (x − δ, x + δ) ∩ S = ∅, then S is contained in the closed set
(x − δ, x + δ)�, and therefore x /∈ S̄. Conversely, if xn → x for some sequence
{xn : n ≥ 1} ⊆ S, then x ∈ F for every closed F ⊇ S, and therefore x ∈ S̄. �

It should be clear that (a, b) and [a, b] are, respectively, the interior and closure of
[a, b], (a, b], [a, b), and (a, b), that (a,∞) and [a,∞) are, respectively, the interior
and closure of [a,∞) and (a,∞), and that (−∞, b) and (−∞, b] are, respectively,
the interior and closure of (−∞, b) and (−∞, b]. Finally, R = (−∞,∞) and ∅ are
both open and closed.

Lemma 1.3.2 Given a non-empty S ⊆ R, set I = {y : y ≥ x for all x ∈ S}. Then
I is a closed interval. Moreover, if S is bounded above (i.e., there is an M < ∞
such that x ≤ M for all x ∈ S), then there is a unique element sup S ∈ R with the
property that y ≥ sup S ≥ x for all x ∈ S and y ∈ I . Equivalently, I = [sup S,∞).
Proof It is clear that I is a closed interval that is non-empty if S is bounded above.
In addition, if both y1 and y2 have the property specified for sup S, then y1 ≤ y2 and
y2 ≤ y1, and therefore y1 = y2.

Assuming that S is bounded above, we will now show that, for any δ > 0, there
exist an x ∈ S and a y ∈ I such that y − x < δ. Indeed, suppose this were not true.
Then there would exist a δ > 0 such that y ≥ x + 2δ for all x ∈ S and y ∈ I . Set
S′ = {x + δ : x ∈ S}. Then S′ ∩ I = ∅, and so for every x ∈ S there would exist
an x ′ ∈ S such that x ′ ≥ x + δ. But this would mean that for any x ∈ S and n ≥ 1,
there would exist an xn ∈ S such that xn ≥ x + nδ, which, because S is bounded
above, is impossible.

For each n ≥ 1, choose xn ∈ S and ηn ∈ I so that ηn ≤ xn + 1
n , and set

yn = η1 ∧ · · · ∧ ηn . Then {yn : n ≥ 1} is a non-increasing sequence in I , and so it
has a limit c ∈ I . Obviously, [c,∞) ⊆ I , and therefore x ≤ c for all x ∈ S. Finally,
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suppose that y ∈ I . Then y + 1
n ≥ xn + 1

n ≥ yn ≥ c for all n ≥ 1, and so y ≥ c.
Hence, c = sup S and I = [supI S,∞). �

The number sup S is called the supremum of S. If ∅ �= S ⊆ R is bounded below,
then there is a unique element inf S ∈ R, known as the infimum of S, such that
x ≥ inf S for all x ∈ S and y ≤ inf S if y ≤ x for all x ∈ S. To see this, simply
take inf S = − sup{−x : x ∈ S}. Starting from Lemma 1.3.2, it is an easy matter
to show that any non-empty interval I is one of the sets in (1.3.1), where a = inf I
if I is bounded below and b = sup I if I is bounded above. Notice that, although
one or both sup S and inf S may not be elements of S, whenever one of them exists,
it must be an element of S̄. When sup S ∈ S, it is often referred to as the maximum
of S and is written as max S instead of sup S. Similarly, when inf S ∈ S, it is called
the minimum of S and is denoted by min S. Finally, we will take sup S = ∞ if
S is unbounded above and inf S = −∞ if it is unbounded below. Notice that if
{xn : n ≥ 1} is non-decreasing, then xn −→ supn≥1 xn ≡ sup{xn : n ≥ 1}, and that
xn −→ infn≥1 xn if it is non-increasing.

Given a bounded sequence {xn : n ≥ 1} ⊆ R, set ym = inf{xn : n ≥ m} and
zm = sup{xn : n ≥ m}. Then {ym : m ≥ 1} is a non-decreasing sequence that
is bounded above, and {zm : m ≥ 1} is a non-increasing sequence that is bounded
below. Thus the limit inferior and limit superior, respectively,

lim
n→∞

xn ≡ lim
m→∞ inf{xn : n ≥ m} and lim

n→∞ xn ≡ lim
m→∞ sup{xn : n ≥ m}

exist in R. If {xn : n ≥ 1} is not bounded above, then limn→∞xn ≡ ∞, and if it is
unbounded below, then limn→∞xn ≡ −∞.

Theorem 1.3.3 Let {xn : n ≥ 1} be a bounded sequence. Then both limn→∞xn

and limn→∞xn are limit points of {xn : n ≥ 1}. Furthermore, every limit point lies
in between these two.

Proof Set zm = sup{xn : n ≥ m}. Then zm −→ z = limn→∞xn . Take m0 = 0,
and, given m0, . . . , mk−1, take mk > mk−1 so that |xmk − zmk−1+1| ≤ 1

k . Then,
since zmk−1 + 1 −→ z,

|xmk − z| ≤ |xmk − zmk−1 + 1| + |zmk−1 + 1 − z| ≤ 1
k + |zmk−1 + 1 − z| −→ 0

as k → ∞. After replacing {xn : n ≥ 1} by {−xn : n ≥ 1}, one gets the
same conclusion about limn→∞xn . Finally, if {xnk : k ≥ 1} is any subsequence
that converges to some x , then xnk ≤ znk and so x ≤ limn→∞xn . Similarly,
x ≥ limn→∞xn . �

A non-empty open set is said to be connected if and only if it cannot be writ-
ten as the union of two, disjoint, non-empty open sets. See Exercise 4.5 for more
information.

Lemma 1.3.4 Let G be a non-empty open set. Then G is connected if and only it is
an open interval.

http://dx.doi.org/10.1007/978-3-319-24469-3_4
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Proof Suppose that G is connected. If G were not an interval, then there would exist
a, b ∈ G and c /∈ G such that a < c < b. But then a ∈ G1 ≡ G ∩ (−∞, c),
b ∈ G2 ≡ G ∩ (c,∞), G1 and G2 are open, G1 ∩ G2 = ∅, and G = G1 ∪ G2. Thus
G must be an interval.

Now assume that G is a non-empty open interval, and suppose that G = G1∪G2,
where G1 and G2 are disjoint open sets. If G1 and G2 were non-empty, then we could
find a ∈ G1 and b ∈ G2, and, without loss in generality, we could assume that a < b.
Set c = inf{x ∈ (a, b) : x /∈ G1}. Because [a, b] ⊆ G, c ∈ G, and because G1�
is closed, c /∈ G1. Hence c ∈ G2. But G2 is open, and therefore there exists an
x ∈ G2 ∩ (a, c), which would mean that c �= inf{x ∈ (a, b) : x /∈ G1}. Thus, either
G1 or G2 must have been empty. �

If ∅ �= S ⊆ R and f : S −→ R (i.e., f is an R-valued function on S), then
f is said to be continuous at an x ∈ S if, for each ε > 0, there is a δ > 0 such
that | f (x ′) − f (x)| < ε whenever x ′ ∈ S and |x ′ − x | < δ. A function is said
to be continuous on S if it is continuous at each x ∈ S. For example, the function
f : R −→ [0,∞) given by f (x) = |x | is continuous because, by the triangle
inequality, |x | ≤ |y −x |+|y|, |y| ≤ |y −x |+|x |, and therefore ∣∣|y|−|x |∣∣ ≤ |y −x |.
Lemma 1.3.5 Let H be a non-empty subset of R and f : H −→ R. Then f is
continuous at x ∈ H if and only if f (xn) −→ f (x) for every sequence {xn :
n ≥ 1} ⊆ H with xn → x. Moreover, if H is open, then f is continuous on H if
and only if

f −1(G) ≡ {x ∈ H : f (x) ∈ G} is open for every open G ⊆ R.

Proof If f is continuous at x ∈ H and ε > 0, choose δ > 0 so that | f (x ′)− f (x)| < ε
when x ′ ∈ H ∩ (x − δ, x + δ). Given {xn : n ≥ 1} ⊆ H with xn −→ x , choose
nε so that |xn − x | < δ when n ≥ nε. Then | f (xn) − f (x)| < ε for all n ≥ nε.
Conversely, suppose that f (xn) −→ f (x) whenever {xn : n ≥ 1} ⊆ H converges
to x . If f were not continuous at x , then there would exist an ε > 0 such that, for
each n ≥ 1 there is an xn ∈ H ∩ (x − 1

n , x + 1
n

)

for which | f (xn) − f (x)| ≥ ε. But,
since xn → x , no such sequence can exist.

Suppose that H is open and that f is continuous on H , and let G be open. Given
x ∈ f −1(G), set y = f (x). Then, because G is open, there exists an ε > 0 such that
(y − ε, y + ε) ⊆ G, and because f is continuous and H is open, there is a δ > 0 such
that (x − δ, x + δ) ⊆ H and | f (ξ) − y| < ε whenever ξ ∈ (x − δ, x + δ). Hence
(x − δ, x + δ) ⊆ f −1(G). Conversely, assume that f −1(G) is open whenever G is.
To see that f must be continuous, suppose that x ∈ H , and set y = f (x). Given
ε > 0, x is an element of the open set f −1

(

(y − ε, y + ε)
)

, and so there exists a
δ > 0 such that (x − δ, x + δ) ⊆ f −1

(

(y − ε, y + ε)
)

. Hence | f (ξ) − f (x)| < ε
whenever |ξ − x | < δ. �

From the first part of Lemma 1.3.5 combined with the properties of convergent
sequences discussed in Sect. 1.1, it follows that linear combinations, products, and,
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as long as the denominator doesn’t vanish, quotients of continuous functions are
again continuous. In particular, it is easy to check that polynomials are continuous.

Theorem 1.3.6 (Intermediate Value Theorem) Suppose that −∞ < a < b < ∞
and that f : [a, b] −→ R is continuous. Then for every

y ∈ ( f (a) ∧ f (b), f (a) ∨ f (b)
)

there is an x ∈ (a, b) such that y = f (x). In particular, the interior of the image of
a open interval under a continuous function is again an open interval.

Proof There is nothing to do if f (a) = f (b), and so, without loss in generality,
assume that f (a) < f (b). Given y ∈ ( f (a), f (b)

)

, set

G1 = G ∩ {x ∈ (a, b) : f (x) < y} and G2 = G ∩ {x ∈ (a, b) : f (x) > y}.

ThenG1 andG2 are disjoint, non-empty subsets of sets (a, b)which, byLemma1.3.5,
are open. Hence, by Lemma 1.3.4, there exists an x ∈ (a, b)\ (G1∪G2), and clearly
y = f (x). �

Here is a second, less geometric, proof of this theorem.Assume that f (a) < f (b)

and that y ∈ (

f (a), f (b)
)

is not in the image of (a, b) under f . Define H =
{x ∈ [a, b] : f (x) < y}, and let c = sup H . By continuity, f (c) ≤ y. Suppose
ε ≡ y − f (c) > 0. Choose 0 < δ < b−c

2 so that | f (x) − f (c)| < ε whenever
0 < x−c < 2δ. Then f (c + δ) = f (c) + ( f (c + δ)− f (c)

)

< f (c) + y− f (c) = y,
and so c + δ ∈ H . But this leads to the contradiction c + δ ≤ sup H = c.

A function that has the property proved for continuous functions in this theorem
is said to have the intermediate value property, and, at one time, it was used as the
defining property for continuity because it is means that the graph of the function
can be drawn without “lifting the pencil from the page”. However, although it is
implied by continuity, it does not imply continuity. For example, consider the function
f : R −→ R given by f (x) = sin 1

x when x �= 0 and f (0) = 0. Obviously, f
is discontinuous at 0, but it nonetheless has the intermediate value property. See
Exercise 1.15 for a more general source of discontinuous functions that have the
intermediate value property.

Here is an interesting corollary.

Corollary 1.3.7 Let a < b and c < d, and suppose that f is a continuous, one-
to-one mapping that takes [a, b] onto [c, d]. Then either f (a) = c and f is strictly
increasing (i.e., f (x) < f (y) if x < y), or f (a) = d and f is strictly decreasing.

Proof We first show that f (a) must equal either c or d. To this end, suppose that
c = f (s) for some s ∈ (a, b), and choose 0 < δ < (b − s) ∧ (s − a). Then
both f (s − δ) and f (s + δ) lie in (c, d]. Choose c < t < f (s − δ) ∧ f (s + δ).
Then, by Theorem 1.3.6, there exist s1 ∈ (s − δ, s) and s2 ∈ (s, s + δ), such that
f (s1) = t = f (s2). But this would mean that f is not one-to-one, and therefore
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we know that f (s) �= c for any s ∈ (a, b). Similarly, f (s) �= d for any s ∈ (a, b).
Hence, either f (a) = c and f (b) = d or f (a) = d and f (b) = c.

Now assume that f (a) = c and f (b) = d. If f were not increasing, then there
would be a < s1 < s2 < b such that c < t2 = f (s2) < f (s1) = t1 < d. Choose
t2 < t < t1. Then, by Theorem 1.3.6, there would exist an s3 ∈ (a, s1) and an
s4 ∈ (s1, s2) such that f (s3) = t = f (s4), which would mean that f could not
be one-to-one. Hence f is non-decreasing, and because it is one-to-one, it must be
strictly increasing. Similarly, if f (a) = d and f (b) = c, then f must be strictly
decreasing. �

1.4 More Properties of Continuous Functions

A real-valued function f on a non-empty set S ⊆ R is said to be uniformly continuous
on S if for each ε > 0 there is a δ > 0 such that | f (x ′) − f (x)| < ε for all x, x ′ ∈ S
with |x ′ − x | < δ. In other words, the choice of δ depends only on ε and not on the
point under consideration.

Theorem 1.4.1 Let K be a bounded, closed, non-empty subset ofR. If f : K −→ R

is continuous on K , then it is bounded and uniformly continuous there. Moreover,
there is at least one point in K at which f achieves its maximum value, and at least
one at which it achieves its minimum value. Hence, if K is a bounded, closed interval,
then f takes every value between its maximum and minimum values.

Proof Suppose f were not uniformly continuous. Then, for some ε > 0, there would
exist sequences {xn : n ≥ 1} ⊆ K and {x ′

n : n ≥ 1} ⊆ K such that |x ′
n − xn| < 1

n
and yet | f (x ′

n)− f (xn)| ≥ ε. Moreover, by Theorem 1.3.3, we could and will assume
that xn → x ∈ K , in which case x ′

n → x as well. Now, set x ′′
2n−1 = xn and x ′′

2n = x ′
n

for n ≥ 1. Then x ′′
n → x and | f (x ′′

2n) − f (x ′′
2n−1)| ≥ ε, which is impossible since f

is continuous at x .
To see that f is bounded, suppose it is not. Then for each n ≥ 1 there exists an

xn ∈ K at which | f (xn)| ≥ n. Choose a subsequence {xnk : k ≥ 1} that converges
to a point x ∈ K . Then, because (cf. Exercise 1.9) | f | is continuous,

∞ > | f (x)| = lim
k→∞ | f (xnk )| ≥ lim

k→∞ nk = ∞,

which is impossible. Knowing that f is bounded, set M = sup{ f (x) : x ∈ K }, and
choose {xn : n ≥ 1} ⊆ K so that f (xn) −→ M as n → ∞. Now, just as before,
choose a subsequence that converges to a point x , and conclude that f (x) = M .
The same argument shows that f achieve its minimum value. Finally, when K is an
interval, Theorem 1.3.6 implies the concluding assertion. �

It is often important to knowwhen a function defined on a set admits a continuous
extension to the closure. With this in mind, say a subset D of a set S is dense in S if
D̄ ⊇ S.
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Lemma 1.4.2 Suppose that D is a dense subset of a non-empty closed set F and that
f : D −→ R is uniformly continuous. Then there is a unique extension f̄ : F −→ R

of f as a continuous function, and the extension is uniformly continuous on F.

Proof The uniqueness is obvious. Indeed, if f̄1 and f̄2 were two continuous exten-
sions and x ∈ F , choose {xn : n ≥ 1} ⊆ D so that xn → x and therefore
f̄1(x) = limn→∞ f (xn) = f̄2(x).
For each ε > 0 choose δε > 0 such that | f (x ′) − f (x)| < ε for all x, x ′ ∈ D

with |x ′ − x | < δε. Given x ∈ F , choose {xn : n ≥ 1} ⊆ D so the xn → x , and, for
ε > 0, choose nε so that |xn − x | < δ ε

2
if n ≥ nε. Then,

| f (xn) − f (xm)| ≤ | f (xn) − f (x)| + | f (x) − f (xm)| < ε for all m, n ≥ nε.

Hence, by Cauchy’s criterion, { f (xn) : n ≥ 1} is convergent in R. Furthermore, the
limit does not depend on the sequence chosen. In fact, given an x ′ ∈ F for which
|x ′ − x | < δε

3 and a sequence {x ′
n : n ≥ 1} ⊆ D that converges to x ′, choose n′

ε so

that |xn − x | ∨ |x ′
n − x ′| < δε

3 for n ≥ n′
ε. Then

|x ′
n − xn| ≤ |xn − x | + |x − x ′| + |x ′ − x ′

n| < δε

and therefore | f (x ′
n) − f (xn)| < ε for n ≥ n′

ε. Thus

∣
∣
∣ lim
n→∞ f (x ′

n) − lim
n→∞ f (xn)

∣
∣
∣ ≤ ε.

In particular, if x ′ = x , then limn→∞ f (x ′
n) = limn→∞ f (xn), and so we can

unambiguously define f̄ (x) = limn→∞ f (xn) using any {xn : n ≥ 1} ⊆ D with
xn → x . Moreover, if x ′ ∈ F and |x ′ − x | < δε

3 , then | f̄ (x ′) − f̄ (x)| ≤ ε, and so f̄
is uniformly continuous on F . �

The next theorem deals with the possibility of taking the inverse of functions onR.

Theorem 1.4.3 Let ∅ �= S ⊆ R, and suppose f : S −→ R is strictly increasing.
Then, for each y ∈ R, there is at most one x ∈ S such that y = f (x). Next
assume that f : [a, b] −→ R is strictly increasing and continuous. Then, there is
a unique function f −1 : [ f (a), f (b)

] −→ [a, b] such that f
(

f −1(y)
) = y for

y ∈ [ f (a), f (b)
]

. Moreover, f −1
(

f (x)
) = x for x ∈ [a, b], and f −1 is continuous

and strictly increasing.

Proof Since x1 < x2 =⇒ f (x1) < f (x2), it is clear that there is at most one x such
that y = f (x). Now assume that S = [a, b] and f is continuous. By Theorem 1.3.6
we know that for each y ∈ [ f (a), f (b)

]

there is a necessarily unique x ∈ [a, b] such
that y = f (x). Thus, we can define a function f −1 : [ f (a), f (b)

] −→ [a, b] so that
f −1(y) is the unique x ∈ [a, b] for which y = f (x). To see that f −1

(

f (x)
) = x for

x ∈ [a, b], set y = f (x) and x ′ = f −1(y). Then f (x ′) = y = f (x), and so x ′ = x .
Finally, to show that f −1 is continuous, suppose that {yn : n ≥ 1} ⊆ [

f (a), f (b)
]
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and that yn → y. Set xn = f −1(yn) and x = f −1(y). If xn �→ x , then there would
exist an ε > 0 and a subsequence {xnk : k ≥ 1} such that |xnk − x | ≥ ε. Further, by
Theorem 1.3.3, we could choose this subsequence to be convergent to some point
x ′. But this would mean that |x ′ − x | ≥ ε and yet f (x ′) = limk→∞ f (xnk ) =
limk→∞ ynk = f (x), which is impossible. �

We conclude this discussion about continuous functions with a result that shows
that continuity is preserved under a certain type of limit. Specifically, say that a
sequence { fn : n ≥ 1} on S converges uniformly on S to a function f on S if
limn→∞ supx∈S | fn(x) − f (x)| = 0.

Lemma 1.4.4 Suppose that { fn : n ≥ 1} is a sequence of continuous functions on a
set S. If { fn : n ≥ 1} converges uniformly on S to a function f , then f is continuous.
Furthermore, if

lim
m→∞ sup

n>m
sup
x∈S

| fn(x) − fm(x)| = 0,

then there is an f on S to which { fn : n ≥ 1} converges uniformly.

Proof Given ε > 0 and x ∈ S, choose n so that | fn(y) − f (y)| < ε
3 for all y ∈ S,

and choose δ > 0 so that | fn(y) − fn(x)| < ε
3 for y ∈ S ∩ (x − δ, x + δ). Then

| f (y) − f (x)| ≤ | f (y) − fn(y)| + | fn(y) − fn(x)| + | fn(x) − f (x)| < ε

for y ∈ S ∩ (x − δ, x + δ), which means that f is continuous.
To prove the second part, first note that, by Cauchy’s convergence criterion, for

each x ∈ S there is an f (x) to which { fn(x) : n ≥ 1} converges. Given ε > 0,
choose mε so that supx∈S | fn(x) − fm(x)| < ε if n > m ≥ mε. Then, for x ∈ S and
m ≥ mε,

| f (x) − fm(x)| = lim
n→∞ | fn(x) − fm(x)| ≤ ε. �

1.5 Differentiable Functions

A function f on an open set G is said to be differentiable at a point x ∈ G if the limit

f ′(x) = ∂ f (x) = d f

dx
(x) ≡ lim

y→x

f (y) − f (x)

y − x

exists in R. That is, for all ε > 0 there exists a δ > 0 such that

∣
∣
∣
∣

f (y) − f (x)

y − x
− f ′(x)

∣
∣
∣
∣
< ε if y ∈ G and 0 < |y − x | < δ.

Clearly, what f ′(x) represents is the instantaneous rate at which f is changing at x .
More geometrically, if one thinks in terms of the graph of f , then f (y)− f (x)

y−x is the
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slope of the line connecting
(

x, f (x)
)

to
(

y, f (y)
)

, and so, when y → x , this ratio
should represent the slope of the tangent line to the graph at

(

x, f (x)
)

. Alternatively,
thinking of x as time and f (x) as the distance traveled up to time x , f ′(x) is the
instantaneous velocity at time x .

When f ′(x) exists, it is called the derivative of f at x . Obviously, if f is differen-
tiable at x , then it is continuous there, and, in fact, the rate at which f (y) approaches
f (x) is commensurate with |y−x |. However, just because | f (y)− f (x)| ≤ C |y−x |
for some C < ∞ does not guaranty that f is differentiable at x . For example, if
f (x) = |x |, then ∣∣ f (y) − f (x)

∣
∣ ≤ |y − x | for all x, y ∈ R, but f is not differen-

tiable at 0, since f (y)− f (0)
y−0 is 1 when y > 0 and −1 when y < 0.

When f is differentiable at every x ∈ G it is said to be differentiable on G, and
when it is differentiable on G and its derivative f ′ is continuous there, f is said to
be continuously differentiable.

Differentiability is preserved under the basic arithmetic operations. To be precise,
assume that f and g are differentiable at x . If α, β ∈ R, then

∣
∣
∣
∣
∣

(

α f (y) + β f (y)
)− (α f (x) + βg(x)

)

y − x
− (α f ′(x) + βg′(y)

)

∣
∣
∣
∣
∣

≤ |α|
∣
∣
∣
∣

f (y) − f (x)

y − x
− f ′(x)

∣
∣
∣
∣
+ |β|

∣
∣
∣
∣

g(y) − g(x)

y − x
− g′(x)

∣
∣
∣
∣
,

and so (α f + βg)′(x) exists and is equal to α f ′(x) + βg′(x). More interesting, by
adding and subtracting f (x)g(y) in the numerator, one sees that

∣
∣
∣
∣

f (y)g(y) − f (x)g(x)

y − x
− ( f ′(x)g(x) + f (x)g′(x)

)
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

(

f (y) − f (x)
)

g(y)

y − x
− f ′(x)g(x)

∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣

f (x)
(

g(y) − g(x)
)

y − x
− f (x)g′(x)

∣
∣
∣
∣
∣
,

and therefore f g is differentiable at x and ( f g)′(x) = f ′(x)g(x) + f (x)g′(x). This
important fact is called the product rule or sometimes Leibniz’s formula. Finally, if
g(x) �= 0, then, since g is continuous at x , g(y) �= 0 for y sufficiently near x , and

∣
∣
∣
∣
∣

f
g (y) − f

g (x)

y − x
− f ′(x)g(x) − f (x)g′(x)

g(x)2

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣

f (y) − f (x)

(y − x)g(y)
− f ′(x)

g(x)

∣
∣
∣
∣
+
∣
∣
∣
∣
∣

f (x)
(

g(y) − g(x)
)

(y − x)g(x)g(y)
− f (x)g′(x)

g(x)2

∣
∣
∣
∣
∣
,
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which means that f
g is differentiable at x and that

( f
g

)′
(x) = f ′(x)g(x)− f (x)g′(x)

g(x)2
. This

is often called the quotient rule.
We now have enough machinery to show that lots of functions are continuously

differentiable. To begin with, consider the function fk(x) = xk for k ∈ N. Clearly,
f ′
0 = 0 and f ′

1 = 1. Using the product rule and induction on k ≥ 1, one can
show that f ′

k(x) = kxk−1. Indeed, if this is true for k, then, since fk+1 = f1 fk ,
f ′
k+1(x) = fk(x) + x f ′

k(x) = (k + 1)xk . Alternatively, one can use the identity

yk − xk = (y − x)
∑k

m=1 xm yk−m−1 to see that

∣
∣
∣
∣

yk − xk

y − x
− kxk−1

∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

k
∑

m=1

(xm yk−m−1 − xk−1)

∣
∣
∣
∣
∣
.

As a consequence, we now see that polynomials
∑n

m=0 am xm are continuously dif-
ferentiable on R and that

(
n
∑

m=0

am xm

)′
=

n
∑

m=1

mam xm−1.

In addition, if k ≥ 1 and x �= 0, then, by the quotient rule, (x−k)′ = ( 1
xk

)′ =
− kxk−1

x2k = −kx−k−1. Hence for any k ∈ Z, (xk)′ = kxk−1 with the understanding
that x �= 0 when k < 0.

A more challenging source of examples are the trigonometric functions sine and
cosine. For our purposes, sin and cos should be thought about in terms of the unit
circle (i.e., the perimeter of the disk of radius 1 centered at the origin) S1(0, 1) in
R
2. That is, if one starts at (1, 0) and travels counterclockwise along S

1(0, 1) for
a distance θ ≥ 0, then (cos θ, sin θ) is the Cartesian representation of the point
at which one arrives. Similarly, if θ < 0, then (cos θ, sin θ) is the point at which
one arrives if one travels from (1, 0) in the clockwise direction for a distance −θ.
We begin by showing the sin and cos are differentiable at 0 and that sin′ 0 = 1
and cos′ 0 = 0. Assume that 0 < θ < 1. Then (cf. the figure below), because
the shortest path between two point is a line, the line segment L given by t ∈
[0, 1] �−→ (1 − t)(1, 0) + t (cos θ, sin θ) has length less than θ, and therefore,
because t ∈ [0, 1] �−→ (1 − t)(cos θ, 0) + t (cos θ, sin θ) is one side of a right
triangle inwhich L is the hypotenuse, sin θ ≤ θ. Since 0 ≤ cos θ ≤ 1,we now see that
0 ≤ 1− cos θ ≤ 1− cos2 θ = sin2 θ ≤ θ2, which, because cos(−θ) = cos θ, proves
that cos is differentiable at 0 and cos′ 0 = 0. Next consider the region consisting
of the right triangle whose vertices are (0, 0), (cos θ, 0), and (cos θ, sin θ) and the
rectangle whose vertices are (cos θ, 0), (1, 0), (1, sin θ), and (cos θ, sin θ).
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•

(cos θ, 0)

(cos θ, sin θ)
(1, sin θ)

(1, 0)(0, 0)
θ

derivative of sine

This region contains the wedge cut out of the disk by the horizontal axis and the ray
from the origin to (cos θ, sin θ), and therefore its area is at least as large as that of
the wedge. Because the area of the whole disk is π and the arc cut out by the wedge
is θ

2π th of the whole circle, the area of the wedge is
θ
2 . Hence, the area of the region

is at least θ
2 . Since the area of the triangle is sin θ cos θ

2 and that of the rectangle is
(1 − cos θ) sin θ, this means that

θ

2
≤ sin θ cos θ

2
+ (1 − cos θ) sin θ ≤ sin θ

2
+ θ3

and therefore that 1 − 2θ2 ≤ sin θ
θ ≤ 1 when θ ∈ (0, 1), which, because sin(−θ) =

− sin θ, proves that 1− 2θ2 ≤ sin θ
θ ≤ 1 when θ ∈ (−1, 1). Thus sin is differentiable

at 0 and sin′ 0 = 1.
To show that sin and cos are differentiable on R, we will use the trigonometric

identities
sin(θ1 + θ2) = sin θ1 cos θ2 + sin θ2 cos θ1

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2.
(1.5.1)

From the first of these we have

sin(θ + h) − sin θ

h
= sin h

h
cos θ − sin θ

1 − cos h

h
,

which, bywhat we already know, tends to cos θ as h → 0. Similarly, from the second,

cos(θ + h) − cos θ

h
= cos θ

cos h − 1

h
− sin θ

sin h

h
−→ − sin θ

as h → 0. Thus, sin and cos are differentiable on R and

sin′ θ = cos θ and cos′ θ = − sin θ. (1.5.2)
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1.6 Convex Functions

If I is an interval and f : I −→ R, then f is said to be convex if

f
(

θx + (1 − θ)y
) ≤ θ f (x) + (1 − θ) f (y) for all x, y ∈ I and θ ∈ [0, 1].

That is, f is convex means that for any pair of points on its graph the line segment
joining those points lies above the portion of its graph between them as in:

graph of convex function

It is useful to observe that if N ≥ 2 and x1, . . . , xN ∈ I , then
∑N

m=1 θm xm ∈ I
for all θ1, . . . , θN ∈ [0, 1] with∑N

m=1 θm = 1. Indeed, this is trivial when N = 2.
Now assume it is true for N , and let x1, . . . , xN+1 ∈ I and θ1, . . . , θN+1 ∈ [0, 1]
be given. If θN+1 = 1, and therefore θm = 0 for 1 ≤ m ≤ N , there is nothing
to do. If θN+1 < 1, set ηm = θm

1−θN+1
for 1 ≤ m ≤ N . Then, by assumption,

y ≡∑N
m=1 ηm xm ∈ I , and so

N+1
∑

m=1

θm xm = (1 − θN+1)y + θN+1xN+1 ∈ I.

Hence, by induction, we now know the result for all N ≥ 2. Essentially the same
induction procedure shows that if f is convex on I , then

f

(
N
∑

m=1

θm xm

)

≤
N
∑

m=1

θm f (xm).

Lemma 1.6.1 If f is a continuous function on I , then it is convex if and only if

f
(

2−1x + 2−1y
) ≤ 2−1 f (x) + 2−1 f (y) for all x, y ∈ I.

Proof We will use induction to prove that, for any n ≥ 1 and x1, . . . , x2n ∈ I ,

(∗) f

⎛

⎝

2n
∑

m=1

2−n xm

⎞

⎠ ≤ 2−n
2n
∑

m=1

f (xm).

There is nothing to do when n = 1. Thus assume that (∗) holds for some n ≥ 1, and
let x1, . . . , x2n+1 ∈ I be given. Note that
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2n+1
∑

m=1

2−n−1xm = 2−1y + 2−1z

where y =
2n
∑

m=1

2−n xm ∈ I and z =
2n
∑

m=1

2−n xm+2n ∈ I.

Hence, f
(
∑2n+1

m=1 2
−n−1xm

)

≤ 2−1 f (y) + 2−1 f (z). Now apply the induction

hypothesis to y and z.
Knowing (∗), we have that f

(

θx + (1 − θ)y
) ≤ θ f (x) + (1 − θ) f (y) for all

x, y ∈ I and all θ of the form k2−n for n ≥ 1 and 0 ≤ k ≤ 2n . To see this, take
xm = x if 1 ≤ m ≤ k and xm = y if k + 1 ≤ m ≤ 2n . Then, by (∗), one has that
f
(

k2−n x + (1 − k2−n)y
) ≤ k2−n f (x) + (1 − k2−n) f (y).

Finally, because both θ � f
(

θx + (1 − θ)
)

and θ � θ f (x) + (1 − θ) f (y) are
continuous functions on [0, 1], the inequality when θ has the form k2−n implies the
inequality for all θ ∈ [0, 1]. Indeed, given θ ∈ (0, 1) and n ≥ 0, set

k = max{ j ∈ N : j ≤ 2nθ},

and observe that 0 ≤ θ − k2−n < 2−n . �

Lemma 1.6.2 Assume that f is a convex function on the open interval I . If x ∈ I ,
then2

D+ f (x) ≡ lim
y↘x

f (y) − f (x)

y − x
and D− f (x) ≡ lim

y↗x

f (y) − f (x)

y − x
exist in R.

Moreover, D− f (x) ≤ D+ f (x), and, if equality holds, then f is differentiable at x
and f ′(x) = D± f (x). Finally, if x, y ∈ I and x < y, then D+ f (x) ≤ D− f (y). In
particular, f is continuous, and both D− f and D+ f are non-decreasing functions
on I .

Proof All these assertions come from the inequality

f (y) ≤ z − y

z − x
f (x) + y − x

z − x
f (z) for x, y, z ∈ I with x < y < z. (1.6.1)

To prove (1.6.1), set θ = z−y
z−x , and observe that y = θx + (1 − θ)z. Thus f (y) ≤

θ f (x) + (1− θ) f (z), which is equivalent to (1.6.1). By subtracting f (x) from both
sides of (1.6.1), we get

f (y) − f (x)

y − x
≤ f (z) − f (x)

z − x
,

2We will use y ↘ x when y decreases to x . Similarly, y ↗ x means that y increases to x .
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which shows that the function y � f (y)− f (x)
y−x is a non-increasing on the set {y ∈ I :

y > x}. By subtracting f (y) from both sides of (1.6.1), we get

f (y) − f (x)

y − x
≤ f (z) − f (y)

z − y
for x, y, z ∈ I with x < y < z.

Hence, if a, y ∈ I and a < x < y, then

f (x) − f (a)

x − a
≤ f (y) − f (x)

y − x
,

which means that y � f (y)− f (x)
y−x is bounded below as well as non-increasing on

{y ∈ I : y > x}. Thus D+ f (x) exists in R, and essentially the same argument
shows that D− f (x) does also. Further, if y′ < x < y, then, again by (1.6.1), one
sees that f (y′)− f (x)

y′−x ≤ f (y)− f (x)
y−x and therefore that D− f (x) ≤ D+ f (x). In the case

when D± f (x) = a, for each ε > 0 a δ > 0 can be chosen so that

∣
∣
∣
∣

f (y) − f (x)

y − x
− a

∣
∣
∣
∣
< ε for y ∈ I with 0 < |y − x | < δ,

and so f is differentiable at x and f ′(x) = a.
Finally, suppose that x1, y1, y2, x2 ∈ I and that x1 < y1 < y2 < x2. Then, by

(1.6.1),
f (y1) − f (x1)

y1 − x1
≤ f (y2) − f (y1)

y2 − y1
≤ f (x2) − f (y2)

x2 − y2
,

and so
f (y1) − f (x1)

y1 − x1
≤ f (y2) − f (x2)

y2 − x2
.

After letting y1 ↘ x1 and y2 ↗ x2, we see that D+ f (x1) ≤ D− f (x2). �
Typical examples of convex functions are f (x) = x2 and f (x) = |x | for x ∈ R.

(See Exercise 1.16 below for a criterion with which to test for convexity.) Since both

of these are continuous, Lemma 1.6.1 says that it suffices to check that
( x+y

2

)2 ≤
x2
2 + y2

2 and |x+y|
2 ≤ |x |

2 + |y|
2 . To see the first of these, observe that, because

(x ± y)2 ≥ 0, 2|x ||y| ≤ x2 + y2 and therefore that

(
x + y

2

)2

= x2 + 2xy + y2

4
≤ x2 + y2

2
.

As for the second, it is an immediate consequence of the triangle inequality |x + y| ≤
|x |+|y|. When f (x) = x2, both D+ f (x) and D− f (x) equal 2x . When f (x) = |x |,
D+ f (x) and D− f (x) are equal to 1 or −1 depending on whether x > 0 or x < 0.
However, D+ f (0) = 1 but D− f (0) = −1.
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1.7 The Exponential and Logarithm Functions

Using Lemma 1.4.2, one can justify the extension of the familiar operations on the
set Q of rational numbers to the set R of real numbers. For example, although we
did not discuss it, we already made tacit use of such an extension in order to extend
arithmetic operations from Q to R. Namely, if x ∈ Q and fx : Q −→ Q is given
by fx (y) = x + y, then it is clear that | fx (y2) − fx (y1)| = |y2 − y1| and therefore
that fx is uniformly continuous on Q. Hence, there is a unique extension f̄x of
fx to R as a continuous function. Furthermore, if x1, x2 ∈ Q and y ∈ R, then
| f̄x2(y) − f̄x1(y)| = |x2 − x1|, and so, for each y ∈ R, there is a unique extension
x ∈ R �−→ F(x, y) ∈ R of x ∈ Q �−→ f̄x (y) ∈ R as a continuous function. That is,
F(x, y) is continuous with respect to each of its variables and is equal to x + y when
x, y ∈ Q. From these facts, it is easy to check that (x, y) ∈ R

2 �−→ F(x, y) ∈ R has
all the properties that (x, y) ∈ Q

2 �−→ x + y has. In particular, F(y, x) = F(x, y),
F(x,−x) = 0 ⇐⇒ y = −x , and F

(

F(x, y), z
) = F

(

x, F(y, z)
)

. For these
reasons, one continues to use the notation F(x, y) = x + y for x, y ∈ R. A similar
extension of the multiplication and division operations can be made, and, together,
all these extensions satisfy the same conditions as their antecedents.

A more challenging problem is that of extending exponentiation. That is, given
b ∈ (0,∞), what is the meaning of bx for x ∈ R? When x ∈ Z, the meaning is

clear. Moreover, if q ∈ Z0 ≡ Z \ {0}, then we would like to take b
1
q to be the unique

element a ∈ (0,∞) such that aq = b. To see that such an element exists and is
unique, suppose that q ≥ 1 and observe that x ∈ (0,∞) �−→ xq ∈ (0,∞) is strictly
increasing, continuous, and that xq ≥ x if x ≥ 1 and xq ≤ x if x ≤ 1. Hence, by
Theorem 1.3.6, (0,∞) = {xq : x ∈ (0,∞)}, and so, by Theorem 1.4.3, we know

not only that b
1
q exists and is unique, we also know that b � b

1
q is continuous.

Similarly, if q ≤ −1, there exists a unique, continuous choice of b � b
1
q . Notice

that, because bmn = (bm)n for m, n ∈ Z,

(

(b
1

q1 )
1
q 2
)q1q2 = (((b 1

q1 )
1

q2
)q2)q1 = b,

and therefore b
1

q1q2 = (b
1

q1 )
1

q2 . Similarly,

(

(b
1
q )p)q = (b

1
q )pq = ((b 1

q )q)p = bp = ((bp)
1
q
)q

,

and therefore (b
1
q )p = (bp)

1
q . Now define br = (b

1
q )p = (bp)

1
q when r = p

q , where
p ∈ Z and q ∈ Z0. To see that this definition is a good one (i.e., doesn’t depend
on the choice of p and q as long as r = p

q ), we must show that if n ∈ Z0, then

(b
1

nq )np = (b
1
q )p. But

(b
1

nq )np = (((b 1
q )

1
n
)n)p = (b

1
q )p.
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Now that we know how to define br for rational r , we need to check that it satisfies
the relations

(∗) br1r2 = (br1)r2 , (b1b2)
r = br

1br
2, and br1+r2 = br1br2 .

To check the first of these, observe that

(b
p1
q1 )

p2
q2 = (((bp1)

1
q1
) 1

q2
)p2 = (bp1)

p2
q1q2 = ((bp1)p2

) 1
q1q2 = (bp1 p2

) 1
q1q2 = b

p1 p2
q1q2 .

To prove the second, first note that
(

b
1
q
1 b

1
q
2

)q = b1b2, and therefore (b1b2)
1
q = b

1
q
1 b

1
q
2 .

Hence,

(b
p
q
1 )(b

p
q
2 ) = (b

1
q
1 b

1
q
2 )p = ((b1b2)

1
q
)p = (b1b2)

p
q .

Finally,

(b
p1
q1 b

p2
q2
) q1q2

p1q2+p2q1 = (bp1q2bp2q1)
1

p1q2+p2q1 = (bp1q2+p2q1)
1

p1q2+p2q1 = b,

and so b
p1
q1 b

p2
q2 = b

p1q2+p2q1
q1q2 = b

p1
q1

+ p2
q2 .

We are now in a position to show that there exists a continuous extension expb
to R of r ∈ Q �−→ br ∈ R. For this purpose, first note that 1r = 1 for all r ∈ Q,
and therefore that exp1 is the constant function 1. Now assume that b > 1. Then,
by the third part of (∗), bs − br = br (bs−r − 1) for r < s. Hence, if N ≥ 1 and
s, r ∈ [−N , N ] ∩ Q, then |bs − br | ≤ bN |bs−r − 1|, and so we will know that
r � br is uniformly continuous on [−N , N ] ∩Q once we show that for each ε > 0
there exists a δ > 0 such that |br − 1| < ε whenever r ∈ Q ∩ (−δ, δ). Furthermore,
since br > 1 and br |b−r − 1| = |1 − br | and therefore |b−r − 1| ≤ |br − 1| when
r > 0, we need only check that Δr ≡ br − 1 < ε for sufficiently small r > 0. To

this end, suppose that 0 < r < 1
n . Then b

1
n = b

1
n −r br ≥ br , and so

b ≥ (br )n = (1 + Δr )
n =

n
∑

m=0

(
n

m

)

Δm
r ≥ 1 + nΔr ,

which means that Δr ≤ b−1
n if 0 < r < 1

n . Hence, if we choose n so that b−1
n < ε,

then we can take δ = 1
n .

We now know that, for each N ≥ 1, r ∈ [−N , N ] ∩ Q �−→ br ∈ R has a unique
extension as a continuous function on [−N , N ]. Because on [−N , N ] the extension
corresponding to N +1 must equal the one corresponding to N , this means that there
is a unique continuous extension expb to the whole of R. The assumption that b > 1
causes no problem, since we can take expb(x) = exp 1

b
(−x) if b < 1. Notice that,

by continuity, each of the relations in (∗) extends. That is
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expb(x1x2) = expexpb(x1)(x2), expb1b2(x) = expb1(x) expb2(x),

and expb(x1 + x2) = expb(x1) expb(x2).

The exponential functions expb are among the most interesting and useful ones in
mathematics, and, because they are extensions of and share all the algebraic properties
of br , one often uses the notation bx instead of expb(x). We will now examine a few
of their analytic properties. The first observation is trivial, namely: depending on
whether if b > 1 or b < 1, x � expb(x) is strictly increasing or decreasing and
tends to infinity or 0 as x → ∞ and tends to 0 or infinity as x → −∞. We next note
that expb is convex. Indeed,

expb(x) + expb(y) − 2 expb

( x+y
2

) = (expb(2
−1x) − expb(2

−1y))2 ≥ 0,

and so expb

( x+y
2

) ≤ expb(x)+expb(y)

2 . Hence convexity follows immediately from
Lemma 1.6.1. ByLemma 1.6.2, we nowknow that D+ expb(x) and D− expb(x) exist
for all x ∈ R. At the same time, since expb(y)−expb(x) = expb(x)

(

expb(y−x)−1
)

,
D± expb(x) = (D± expb(0)

)

expb(x). Finally,

expb(−y) − 1

−y
= expb(−y)

expb(y) − 1

y
−→ D+ expb(0) as y ↘ 0,

and therefore D± expb(x) = (D+ expb(0)
)

expb(x) for all x ∈ R, which means that
expb is differentiable at all x ∈ R and that

exp′
b x = (log b) expb(x) where log b ≡ d expb

dx
(0). (1.7.1)

The choice of the notation log b is justified by the fact that, like any logarithm
function, log(b1b2) = log b1 + log b2. Indeed,

d expb1b2

dx
(0) = d(expb1 expb2)

dx
(0) = d expb1

dx
(0) + d expb2

dx
(0).

Of course, as yet we do not know whether it is the trivial logarithm function, the one
that is identically 0. To see that it is non-trivial, suppose that log 2 = 0. Then, for

any ε > 0, 2
1
n − 1 ≤ ε

n for sufficiently large n. But this would mean that

2 ≤ (1 + ε
n

)n = 1 +
n
∑

m=1

(
n

m

)
εm

nm
≤ 1 +

n
∑

m=1

εm

m! ≤ 1 + ε

∞
∑

m=1

1

m! for 0 < ε ≤ 1,

and, since, by the ratio test,
∑∞

m=1
1

m! < ∞, this would lead to the contradiction that
2 ≤ 1. Hence, we now know that log 2 > 0. Next note that because expexpb(λ)(x) =
expb(λx),

log
(

expb(λ)
) = λ log b. (1.7.2)
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In particular, log
(

exp2(λ)
) = λ log 2, and so if

e ≡ exp2

(
1

log 2

)

,

then log e = 1. If we now define exp = expe, then we see from (1.7.2) and (1.7.1)
that

exp′(x) = exp(x) for all x ∈ R. (1.7.3)

In addition, log
(

exp(x)
) = x log e = x . That is, log is the inverse of exp and, by

Theorem 1.4.3, this means that log is continuous. Notice that, because expexp y(x) =
exp(xy) and b = exp(log b),

bx = expb(x) = exp(x log b) for all b ∈ (0,∞) and x ∈ R. (1.7.4)

Euler made systematic use of the number e, and that accounts for the choice of
the letter “e” to denote it. It should be observed that even though we represented e
as exp2

1
log 2 , (1.7.4) shows that

e = expb

(
1

log b

)

for any b ∈ (0,∞) \ {1}.

Before giving another representation, we need to know that

lim
x→0

log(1 + x)

x
= 1. (1.7.5)

To prove this, note that since log is continuous and vanishes only at 1, and because
the derivative of exp is 1 at 0,

x

log(1 + x)
= exp

(

log(1 + x)
)− 1

log(1 + x)
−→ 1 as x → 0.

As an application, it follows that

n log
(

1 + x
n

) = x
log
(

1 + x
n

)

x
n

−→ x as n → ∞,

and therefore

(

1 + x
n

)n = exp
(

n log
(

1 + x
n

)) −→ exp(x) as n → ∞.
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Hence we have shown that

lim
n→∞

(

1 + x
n

)n = exp(x) = ex for all x ∈ R. (1.7.6)

In particular, e = limn→∞
(

1 + 1
n )n . Although we now have two very different look-

ing representations of e, neither of them is very helpful when it comes to estimating
e. We will get an estimate based on (1.8.4) in the following section.

Thepreceding computation also allowsus to show that log is differentiable and that

log′ x = 1

x
for x ∈ (0,∞). (1.7.7)

To see this, note that log y − log x = log y
x = log

(

1 + (
y
x − 1)

)

, and therefore, by
(1.7.5), that

log y − log x

y − x
= 1

x

log
(

1 + (
y
x − 1)

)

y
x − 1

−→ 1

x
as y → x .

See Exercise 3.8 for another approach, based on (1.7.7), to the logarithm function.

1.8 Some Properties of Differentiable Functions

Suppose that f is a differentiable function on an open set G. If f achieves its
maximum value at the point x ∈ G, then f ′(x) = 0. Indeed,

± f ′(x) = ± lim
h↘0

f (x ± h) − f (x)

±h
= lim

h↘0

f (x ± h) − f (x)

h
≤ 0,

and therefore f ′(x) = 0. Obviously, if f achieves its minimum value at x ∈ G, then
the preceding applied to − f shows that again f ′(x) = 0. This simple observation
has many practical consequences. For example, it shows that in order to find the
points at which f is at its maximum or minimum, one can restrict one’s attention to
points at which f ′ vanishes, a fact that is often called the first derivative test.

A more theoretical application is the following theorem.

Theorem 1.8.1 (Mean Value Theorem) Let f and g be continuous functions on
[a, b], and assume that g(b) �= g(a) and that both functions are differentiable on
(a, b). Then there is a θ ∈ (a, b) such that

f ′(θ) = g′(θ) f (b) − f (a)

g(b) − g(a)
,

and so, if g′(θ) �= 0, then

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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f (b) − f (a)

g(b) − g(a)
= f ′(θ)

g′(θ)
.

In particular,

f (b) − f (a) = f ′(θ)(b − a) for some θ ∈ (a, b). (1.8.1)

Proof Set

F(x) = f (x) − g(b) − g(x)

g(b) − g(a)
f (a) − g(x) − g(a)

g(b) − g(a)
f (b).

Then F is differentiable and vanishes at both a and b. Either F is identically 0, in
which case F ′ is also identically 0 and therefore vanishes at every θ ∈ (a, b), or there
is a point θ ∈ (a, b) at which F achieves either its maximum or minimum value, in
which case F ′(θ) = 0. Hence, there always exists some θ ∈ (a, b) at which

0 = F ′(θ) = f ′(θ) + g′(θ) f (a)

g(b) − g(a)
− g′(θ) f (b)

g(b) − g(a)
= f ′(θ) − g′(θ) f (b) − f (a)

g(b) − g(a)
,

from which the first, and therefore the second, assertion follows. Finally, (1.8.1)
follows from the preceding when one takes g(x) = x . �

The last part of Theorem 1.8.1 has a nice geometric interpretation in terms of the
graph of f . Namely, it says that there is a θ ∈ (a, b) at which the slope of the tangent
line to the graph at θ is the same as that of the line segment connecting the points
(

a, f (a)
)

and
(

b, f (b)
)

.
There aremany applications of Theorem 1.8.1. For one thing it says that if f (b) �=

f (a) then there must be a θ ∈ (0, 1) at which f ′(θ) �= 0. Thus, if f ′ = 0 on (a, b),
then f is constant on [a, b]. Similarly, f ′ ≥ 0 on (a, b) if and only if f is non-
decreasing, and f must be strictly increasing if f ′ > 0 on (a, b). As the function
f (x) = x3 shows, the converse of the second of these is not true, since this f is
strictly increasing, but its derivative vanishes at 0.

Another application is to a result, known as L’Hôpital’s rule, which says that if
f and g are continuously differentiable, R-valued functions on (a, b) which vanish
at some point c ∈ (a, b) and satisfy g(x)g′(x) �= 0 at x �= c, then

lim
x→c

f (x)

g(x)
= lim

x→c

f ′(x)

g′(x)
if lim

x→c

f ′(x)

g′(x)
exists in R. (1.8.2)

To prove this, apply Theorem 1.8.1 to see that, if x ∈ (a, b) \ {c}, then
f (x)

g(x)
= f (x) − f (c)

g(x) − g(c)
= f ′(θx )

g′(θx )

for some θx in the open interval between x and c.
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Given a function f on an open set G and n ≥ 0, we use induction to define what
it means for f to be n-times differentiable on G. Namely, say that any function f on
G is 0 times differentiable there, and use f (0)(x) = f (x) to denote its 0th derivative.
Next, for n ≥ 1, say that f is n-times differentiable if it is (n − 1) differentiable and
f (n−1) is differentiable on G, in which case f (n)(x) = ∂n f (x) ≡ ∂ f (n−1)(x) is its
nth derivative. Using induction, it is easy to check the higher order analogs of (1.8.2).
That is, if m ≥ 2 and f and g are m-times continuously differentiable functions that
satisfy f (�)(c) = g(�)(c) = 0 for 0 ≤ � < m and g(�)(x) �= 0 for 0 ≤ � ≤ m and
x �= c, then repeated applications of (1.8.2) lead to

lim
x→c

f (x)

g(x)
= lim

x→c

f (m)(x)

g(m)(x)
if lim

x→c

f (m)(x)

g(m)(x)
exists in R. (1.8.3)

For example, consider the functions 1 − cos x and x2 on
(

π
2 , π

2

)

. Then, by (1.5.2)
and (1.8.3) with m = 2, one has that

lim
x→0

1 − cos x

x2
= lim

x→0

cos x

2
= 1

2
.

The following is a very important extension of (1.8.1). Assuming that f is n-times
differentiable in an open set containing c, define

T f
n (x; c) =

n
∑

m=0

f (m)(c)

m! (x − c)m,

Notice that if n ≥ 0, then

(∗) ∂T f
n+1(x; c) = T f ′

n (x; c).

Theorem 1.8.2 (Taylor’s Theorem) If n ≥ 0 and f is (n + 1) times differentiable
on (c − δ, c + δ) for some c ∈ R and δ > 0, then for each x ∈ (c − δ, c + δ) different
from c there exists a θx in the open interval between c and x such that

f (x) =
n
∑

m=0

f (m)(c)

m! (x − c)m + f (n+1)(θx )

(n + 1)! (x − c)n+1

= T f
n (x) + f (n+1)(θx )

(n + 1)! (x − c)n+1.

Proof When n = 0 this is covered by (1.8.1). Now assume that it is true for some
n ≥ 0, and set F(x) = f (x)−T f

n+1(x; c). By the first part of Theorem 1.8.1 (applied
with f = F and g(x) = (x −c)n+2) and (∗), there is a ηx in the open interval between
c and x such that

f (x) − T f
n+1(x; c)

(x − c)n+2 = f ′(ηx ) − T f ′
n (ηx ; c)

(n + 2)(ηx − c)n+1 .
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By the assumed result for n applied to f ′, the numerator on the right hand side equals

f (n+2)(θx )

(n + 1)! (ηx − c)n+1 for some θx in the open interval between c and ηx .

Hence, f (x) − T f
n+1(x; c) = f (n+2)(θx )

(n+2)! (x − c)n+2. �

The polynomial x � T f
n (x; c) is called the nth order Taylor polynomial for f at

c, and the difference f − T f
n ( · ; c) is called the nth order remainder. Obviously, if

f is infinitely differentiable and the remainder term tends to 0 as n → ∞, then

f (x) = lim
n→∞

n
∑

m=0

f (m)(c)

m! (x − c)m =
∞
∑

m=0

f (m)(c)

m! (x − c)m .

To see how powerful a result Taylor’s theorem is, first note that the binomial
formula is a very special case. Namely, take f (x) = (1 + x)n , note that f (m)(x) =
n(n − 1) . . . (n − m + 1)(1 + x)n−m = n!

(n−m)! (1 + x)n−m for 0 ≤ m ≤ n and

f (n+1) = 0 everywhere, and conclude from Taylor’s theorem that

(a + b)n = an(1 + b
a

)n =
n
∑

m=0

(
n

m

)

ambn−m if a �= 0.

Next observe that the formula
∑∞

m=0 xm = 1
1−x for the sum the geometric series

with x ∈ (−1, 1) comes from Taylor’s theorem applied to f (x) = 1
1−x on (−1, 1).

Indeed, for this f , f (m)(0) = m!, and therefore Taylor’s theorem says that, for each
n ≥ 0

1

1 − x
=

n
∑

m=0

xm + θn+1
x for someθx with |θx | < |x |.

Hence, since |x | < 1, we get the geometric formula by letting n → ∞.
A more interesting example is the one when f = exp. As we saw in (1.7.3),

exp′ = exp, and from this it follows that exp is infinitely differentiable and that
exp(m) = exp for all m ≥ 0. Hence, for each n ≥ 0,

ex =
n
∑

m=0

xm

m! + xn+1eθx

(n + 1)! for some |θx | < |x |.

Since eθx ≤ e|x | and
∣
∣
∣
∣
∣
∣

xn+1

(n+1)!
xn

n!

∣
∣
∣
∣
∣
∣

= |x |
n + 1

≤ 1

2
when n ≥ 2|x |,



28 1 Analysis on the Real Line

the last term on the right tends to 0 as n → ∞, and therefore we have now proved that

ex =
∞
∑

m=0

xm

m! for all x ∈ R. (1.8.4)

The formula in (1.8.4) can also be derived from (1.7.6) and the binomial formula.
To see this, apply the binomial formula to see that

(

1 + x
n

)n =
n
∑

m=1

xm

m!
∏m−1

�=0 (n − �)

nm
=

n
∑

m=0

xm

m!
m−1
∏

�=0

(

1 − �
n

)

,

and so ∣
∣
∣
∣
∣

n
∑

m=0

xm

m! − (1 + x
n

)n

∣
∣
∣
∣
∣
≤

n
∑

m=0

|x |m
m!

(

1 −
m−1
∏

�=0

(

1 − �
n

)

)

.

For any N ≥ 1 and n ≥ N ,

n
∑

m=0

|x |m
m!

(

1 −
m−1
∏

�=0

(

1 − �
n

)

)

≤
N
∑

m=0

|x |m
m!

(

1 −
m−1
∏

�=0

(

1 − �
n

)

)

+
∞
∑

m=N+1

|x |m
m! ,

and therefore, for all N ≥ 1,

∣
∣
∣
∣
∣

∞
∑

m=0

xm

m! − ex

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

n
∑

m=0

xm

m! − (1 − x
n

)n

∣
∣
∣
∣
∣
≤

∞
∑

m=N+1

|x |m
m! .

Hence, since, by the ratio test,
∑∞

m=0
|x |n
m! < ∞, we arrive again at (1.8.4) after

letting N → ∞.
However one arrives at it, (1.8.4) can be used to estimate e. Indeed, observe that for

anym ≥ k ≥ 2,m! ≥ (k−1)!km+1−k . Hence, since
∑∞

m=k kk−m−1 =∑∞
m=1 k−m =

1
k−1 , we see that

k−1
∑

m=0

1

m! ≤ e ≤
k−1
∑

m=0

1

m! + 1

(k − 1)!(k − 1)
.

Taking k = 6, this yields 163
60 ≤ e ≤ 1631

600 . Since
163
60 ≥ 2.71 and 1631

600 ≤ 2.72,
2.71 ≤ e ≤ 2.72. Taking larger k′s, one finds that e is slightly larger than 2.718.
Nonetheless, e is very far from being a rational number. In fact, it was the first
number that was shown to be transcendental (i.e., no non-zero polynomial with
integer coefficients vanishes at it).

We next apply the same sort of analysis to the functions sin and cos. Recall
(cf. (1.5.2)) that sin′ = cos and cos′ = − sin. Hence, sin(2m) = (−1)m sin,
sin(2m+1) = (−1)m cos, cos(m) = (−1)m cos, and cos(2m+1) = (−1)m+1 sin.
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Since sin 0 = 0 and cos 0 = 1, we see that sin(2m) 0 = 0, sin(2m+1) 0 = (−1)m ,
cos(2m) 0 = (−1)m , and cos(2m+1) 0 = 0. Thus, just as in the preceding,

sin x =
∞
∑

m=0

(−1)m x2m+1

(2m + 1)! and cos x =
∞
∑

m=0

(−1)m x2m

(2m)! . (1.8.5)

Finally, we turn to log. Remember (cf. (1.7.7)) that log′ x = 1
x , and therefore

that log′(1 − x) = − 1
1−x for |x | < 1. Using our computation when we derived

the geometric formula, we now see that the mth derivative − dm

dxm log(1 − x) of
− log(1 − x) at x = 0 is (m − 1)! when m ≥ 1. Since log 1 = 0, Taylor’s theorem
says that, for each n ≥ 0 there exists a |θx | < |x | such that

− log(1 − x) =
n
∑

m=1

xm

m
+ θn+1

x

n + 1
.

Hence, we have that

log(1 − x) = −
∞
∑

m=1

xm

m
for x ∈ (−1, 1). (1.8.6)

It should be pointed out that there are infinitely differentiable functions for which
Taylor’s theorem gives essentially no useful information. To produce such an exam-
ple, we will use the following corollary of Theorem 1.8.1.

Lemma 1.8.3 Assume that a < c < b and that f : (a, b) −→ R is a continuous
function that is differentiable on (a, c) ∪ (c, b). If α = limx→c f ′(x) exists in R,
then f is differentiable at c and f ′(c) = α.

Proof For x ∈ (c, b), Theorem 1.8.1 says that f (x)− f (c)
x−c = f ′(θx ) for some θx ∈

(c, x). Hence, as x ↘ c, f (x)− f (c)
x−c −→ α. Similarly, f (x)− f (c)

x−c −→ α as x ↗ c,

and therefore limx→c
f (x)− f (c)

x−c = α. �

Now consider the function f given by f (x) = e− 1
|x | for x �= 0 and 0 when x = 0.

Obviously, f is continuous on R and infinitely differentiable on (−∞, 0) ∪ (0,∞).
Furthermore, by induction one sees that there are 2mth order polynomials Pm,+ and
Pm,− such that

f (m)(x) =
{

Pm,+(x−1) f (x) if x > 0

Pm,−(x−1) f (x) if x < 0.

Since, by (1.8.4), ex ≥ x2m+1

(2m+1)! for x ≥ 0, it follows that

lim
x↘0

f (m)(x) = lim
x↗∞

Pm,+(x)

ex
= 0.
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Similarly, limx↗0 f (m)(x) = 0. Hence, by Lemma 1.8.3, f has continuous deriva-
tives of all orders and all of them vanish at 0. As a result, when we apply Taylor’s
theorem to f at 0, all the Taylor polynomials vanish and therefore the remainder term
is equal to f . Since the whole point of Taylor’s theorem is that the Taylor polynomial
should be the dominant term nearby the place where the expansion is made, we see
that it gives no useful information at 0 when applied to this function.

A slightly different sort of application of Theorem 1.8.2 is the following. Suppose
that f is a continuously differentiable function and that its derivative is tending
rapidly to a finite constant as x → ∞. Then f (n + 1) − f (n) will be approximately
equal to f ′(n) for large n’s, and so f (n + 1) − f (0) will be approximately equal
to
∑n

n=0 f ′(m). Applying this idea to the function f (x) = log(1 + x), we are
guessing that log(n +1) is approximately equal to

∑n
m=1

1
m . To check this, note that,

by Taylor’s theorem, for n ≥ 1,

log(n + 1) − log n = log
(

1 + 1
n

) = 1

n
− 1

2(1 + θn)2n2 for some 0 < θn <
1

n
.

Therefore, if Δ0 = 0 and Δn =∑n
m=1

1
m − log(n + 1) for n ≥ 1, then

0 < Δn − Δn−1 ≤ 1

2n2 for n ≥ 1.

Hence {Δn : n ≥ 1} is a strictly increasing sequence of positive numbers that are
bounded above by C = 1

2

∑∞
m=1

1
m2 , and as such they converge to some γ ∈ (0, C].

In other words

0 <

n
∑

m=1

1

m
− log(n + 1) ↗ γ as n → ∞.

This result was discovered by Euler, and the constant γ is sometimes called Euler’s
constant. What it shows is that the partial sums of the harmonic series grow loga-
rithmically.

A more delicate example of the same sort is the one discovered by DeMoivre.
What he wanted to know is how fast n! grows. For this purpose, he looked at
log(n!) = ∑n

m=1 logm. Since log x = f ′(x) when f (x) = x log x − x , the pre-
ceding reasoning suggests that log(n!) should grow approximately like n log n − n.
However, because the first derivative of this f is not approaching a finite constant at
∞, one has to look more closely. By Theorem 1.8.1, f (n + 1) − f (n) = log θn for
some θn ∈ [n, n+1]. Thus, f (n+1)− f (n) ≥ log n and f (n)− f (n−1) ≤ log n, and
so, with luck, the average f (n+1)+ f (n)

2 should be a better approximation of log(n!)
than f (n) itself. Note that

f (n + 1) + f (n)

2
= (n + 1

2 ) log n − n + 1
2

(

(n + 1) log(1 + 1
n ) − 1

)
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and (cf. (1.7.5)) that the last expression tends to 0 as n → ∞. Hence, we are now
led to look at

Δn ≡ log(n!) − (n + 1
2

)

log n + n.

Clearly, Δn+1 − Δn equals

log(n + 1) − (n + 3
2

)

log(n + 1) + (n + 1
2

)

log n + 1 = 1 − (n + 1
2

)

log
(

1 + 1
n

)

.

By Taylor’s theorem, log
(

1+ 1
n

) = 1
n − 1

2n2
+ 1

3(1+θn)3n3
for some θn ∈ (0, 1

n

)

, and
therefore

(

n + 1
2

)

log
(

1 + 1
n

) = 1 − 1

4n2 + 2n + 1

6(1 + θn)3n3 .

Hence, we now know that

− 1

2n2 ≤ − 2n + 1

6(1 + θn)3n3 ≤ Δn+1 − Δn ≤ 1

4n2 ,

and therefore that

−1

2

n2−1
∑

m=n1

1

m2 ≤ Δn2 − Δn1 ≤ 1

4

n2−1
∑

m=n1

1

m2 for all 1 ≤ n1 < n2.

Since 1
m2 ≤ 2

m(m+1) = 2
( 1

m − 1
m+1

)

,
∑n2−1

m=n1
1

m2 ≤ 2
( 1

n1
− 1

n2

) ≤ 2
n1
, which means

that

|Δn2 − Δn1 | ≤ 1

n1
for 1 ≤ n1 < n2.

ByCauchy’s criterion, it follows that {Δn : n ≥ 1} converges to someΔ ∈ R and that
|Δ − Δn| = lim�→∞ |Δ� − Δn| ≤ 1

n . Because Δn = log n!en

nn+ 1
2
, this is equivalent to

eΔ− 1
n ≤ n!en

nn+ 1
2

≤ eΔ+ 1
n for all n ≥ 1. (1.8.7)

In other words, in that their ratio is caught between e− 2
n and e

2
n , n! is growing

very much like eΔ
√

n
( n

e

)n . In particular,

lim
n→∞

n!
eΔ

√
n
( n

e

)n = 1,

Such a limit result is called an asymptotic limit and is often abbreviated by n! ∼
eΔ

√
n
( n

e

)

. This was the result proved by DeMoivre. Shortly thereafter, Stirling

showed that eΔ = √
2π (cf. (3.2.4) and (5.2.5) below), and ever since the result has

(somewhat unfairly) been known as Stirling’s formula.

http://dx.doi.org/10.1007/978-3-319-24469-3_3
http://dx.doi.org/10.1007/978-3-319-24469-3_5
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It is worth thinking about the difference between this example and the preceding
one. In both examples we needed Δn+1 −Δn to be of order n−2. In the first example
we did this by looking at the first order Taylor polynomial for log(1 + x) and showing
that it gets canceled, leaving us with terms of order n−2. In the second example, we
needed to cancel the first two terms before being left with terms of order n−2, and it
was in the cancellation of the second term that the use of (n + 1

2 ) log(1+ 1
n ) instead

of n log(1 + 1
n ) played a critical role.

One often wants to look at functions that are obtained by composing one func-
tion with another. That is, if a function f takes values where the function g is
defined, then the composite function g ◦ f is the one for which g ◦ f (x) = g

(

f (x)
)

(cf. Exercise 1.9). Thinking of g as a machine that produces an output from its input
and of f (x) as measuring the quantity of input at time x , it is reasonable to think
that the derivative of g ◦ f should be the product of the rate at which the machine
produces its output times the rate at which input is being fed into the machine, and
the first part of the following theorem shows that this expectation is correct.

Theorem 1.8.4 Suppose that f : (a, b) −→ (c, d) and g : (c, d) −→ R are
continuously differentiable functions. Then g ◦ f is continuously differentiable and

(g ◦ f )′(x) = (g′ ◦ f )(x) f ′(x) for x ∈ (a, b).

Next, assume that f : [a, b] −→ R is continuous and continuously differentiable on
(a, b). If f ′ > 0, then f has an inverse f −1, f −1 is continuously differentiable on
(

f (a), f (b)
)

, and

d f −1

dy
(y) = 1

( f ′ ◦ f −1)(y)
for all y ∈ ( f (a), f (b)

)

.

Proof Given unequal x1, x2 ∈ (a, b), the last part of Theorem 1.8.1 implies that
there exists a θx1,x2 in the open interval between f (x1) and f (x2) such that

g ◦ f (x2) − g ◦ f (x1) = g′(θx1,x2)
(

f (x2) − f (x1)
)

.

Hence, as x2 → x1,

g ◦ f (x2) − g ◦ f (x1)

x2 − x1
= g′(θx1,x2)

f (x2) − f (x1)

x2 − x1
−→ (g′ ◦ f )(x1) f ′(x1).

To prove the second assertion, first note that, by (1.8.1), f is strictly increasing
and therefore has a continuous inverse. Now let y1, y2 ∈ ( f (a), f (b)

)

be unequal
points, and apply (1.8.1) to see that

y2 − y1 = f ◦ f −1(y2) − f ◦ f −1(y1) = f ′(θy1,y2)
(

f −1(y2) − f −1(y1)
)

for some θy1,y2 between f −1(y1) and f −1(y2). Hence
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f −1(y2) − f −1(y1)

y2 − y1
= 1

f ′(θy1,y2)
−→ 1

f ′( f −1(y1)
) as y2 → y1. �

The first result in Theorem 1.8.4 is called the chain rule. Notice that we could have
used the second part to prove that log is differentiable and that log′ x = 1

x . Indeed,
because exp′ = exp and log = exp−1, log′ x = 1

exp ◦ log(x)
= 1

x . An application of
the chain rule is provided by the functions x ∈ (0,∞) �−→ xα ∈ (0,∞) for any
α ∈ R. Because xα = exp(α log x), dxα

dx = α exp(α log x) 1x = αxα−1.

1.9 Infinite Products

Closely related to questions about the convergence of series are the analogous ques-
tions about the convergence of products, and, because the exponential and logarithmic
functions play a useful role in their answers, it seemed appropriate to postpone this
topic until we had those functions at our disposal.

Given a sequence {am : m ≥ 1} ⊆ R, consider the problem of giving ameaning to
their product. The procedure is very much like that for sums. One starts by looking
at the partial product

∏n
m=1 am = a1 × · · · × an of the first n factors, and then

asks whether the sequence
{∏n

m=1 am : n ≥ 1
}

of partial products converges in R

as n → ∞. Obviously, one should suspect that the convergence of these partial
products should be intimately related to the rate at which the am’s are tending to 1.
For example, suppose that am = 1 + 1

mα for someα > 0, and set Pn(α) =∏n
m=1 am .

Clearly 0 ≤ Pn(α) ≤ Pn+1(α), and so {Pn(α) : n ≥ 1} converges in R if and only
if supn≥1 Pn(α) < ∞. Furthermore, α � Pn(α) is non-increasing for each n, and
so

sup
n≥1

Pn(α) = ∞ =⇒ sup
n≥1

Pn(β) = ∞ if 0 < β < α.

Observe that log Pn(1) = n + 1 −→ ∞, and so supn≥1 Pn(α) = ∞ if α ∈ (0, 1].
On the other hand, if α > 1, then

log

(
n
∏

m=1

am

)

=
n
∑

m=1

log
(

1 + 1
mα

) =
n
∑

m=1

1
mα +

n
∑

m=1

(

log
(

1 + 1
mα

)− 1
mα

)

.

Since, by (1.8.6),

∣
∣log(1 + x) − x

∣
∣ =

∣
∣
∣
∣
∣

∞
∑

k=2

(−x)k

k

∣
∣
∣
∣
∣
≤ x2

2(1 − |x |) ≤ x2 for |x | ≤ 1
2 ,

it follows that that supn≥1 Pn(α) < ∞ if α > 1.
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There is an annoying feature here that didn’t arise earlier. Namely, if any one of the
am’s is 0, then regardless of what the other factors are, the limit will exist and be equal
to 0. Because we want convergence to reflect properties that do not depend on any
finite number of factors, we adopt the following, somewhat convoluted, definition.
Given {am : m ≥ 1} ⊆ R, we will now say that the infinite product

∏∞
m=1 am

converges if there exists an m0 such that am �= 0 for m ≥ m0 and the sequence
{∏n

m=m0
am : n ≥ m0

}

converges to a real number other than 0, in which case we
take the smallest such m0 and define

∞
∏

m=1

am =
{

0 if m0 > 1

limn→∞
∏n

m=1 am if m0 = 1.

It will be made clear in Lemma 1.9.1, which is the analog of Cauchy’s criterion for
series, below why we insist that the limit of non-zero factors not be 0 and say that
the product of non-zero factors diverges to 0 if the limit of its partial products is 0.

Lemma 1.9.1 Given {am : m ≥ 1} ⊆ R,
∏∞

m=1 am converges if and only if am = 0
for at most finitely many m ≥ 1 and

lim
n1→∞ sup

n2>n1

∣
∣
∣
∣
∣
∣

n2∏

m=n1+1

am − 1

∣
∣
∣
∣
∣
∣

= 0. (1.9.1)

Proof First suppose that
∏∞

m=1 am converges. Then, without loss in generality, we
will assume the am �= 0 for any m ≥ 1 and that there exists an α > 0 such that
∣
∣
∏n

m=1 am
∣
∣ ≥ α for all n ≥ 1. Hence, for n2 > n1,

∣
∣
∣
∣
∣

n2∏

m=1

am −
n1∏

m=1

am

∣
∣
∣
∣
∣
≥ α

∣
∣
∣
∣
∣
∣

n2∏

m=n1+1

am − 1

∣
∣
∣
∣
∣
∣

,

and therefore, by Cauchy’s criterion for the sequence
{∏n

m=1 am : n ≥ 1
}

, (1.9.1)
holds.

In proving the converse, we may and will again assume that am �= 0 for any
m ≥ 1. Set Pn = ∏n

m=1 am . By (1.9.1), we know that there exists an n1 such that
1
2 ≤∏n2

m=n1+1 am ≤ 2 and therefore

|Pn2 | = |Pn1 |
∣
∣
∣
∣
∣
∣

n2∏

m=n1+1

am

∣
∣
∣
∣
∣
∣

{

≥ |Pn1 |
2

≤ 2|Pn1 |
for n2 > n1,

from which it follows that there exists an α ∈ (0, 1) such that α ≤ |Pn| ≤ 1
α for all

n ≥ 1. Hence, since
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|Pn2 − Pn1 | = |Pn1 |
∣
∣
∣
∣
∣
∣

n2∏

m=n1+1

am − 1

∣
∣
∣
∣
∣
∣

⎧

⎪⎨

⎪⎩

≤ 1
α

∣
∣
∣

∏n2
m=n1+1 am − 1

∣
∣
∣

≥ α
∣
∣
∣

∏n2
m=n1+1 am − 1

∣
∣
∣ ,

{Pn : n ≥ 1} satisfies Cauchy’s convergence criterion and its limit cannot be 0. �

By taking n2 = n1 + 1 in (1.9.1), we see that a necessary condition for the
convergence of

∏∞
m=1 am is that am −→ 1 asm → ∞. On the other hand, this is not a

sufficient condition. For example, we already showed that
∏n

m=1 am = n+1 −→ ∞
when am = 1+ 1

m , and if am = 1 − 1
m+1 , then

∏n
m=1 am = 1

n+1 −→ 0. The situation
here is reminiscent of the one for series, and, as the following lemma shows, it is
closely related to the one for series.

Lemma 1.9.2 Suppose that am = 1 + bm, where bm ∈ R for all m ≥ 1. Then
∏∞

m=1 am converges if
∑∞

m=1 |bm | < ∞. Moreover, if bm ≥ 0 for all m ≥ 1,
∑∞

m=1 bm < ∞ if
∏∞

m=1 am converges.

Proof Begin by observing that

(∗)

n2∏

m=n1+1

(1 + bm) − 1 =
∑

∅�=F⊆Z+∩[n1+1,n2]
bF where bF =

∏

m∈F

bm .

If bm ≥ 0 for all m ≥ 1, this shows that
∏n

m=1(1 + bm) − 1 ≥ ∑n
m=1 bm for all

n ≥ 1 and therefore that
∑∞

m=1 bm < ∞ if
∏∞

m=1(1 + bm) converges. Conversely,
still assuming that bm ≥ 0 for all m ≥ 1,

0 ≤
n2∏

m=n1+1

(1 + bm) − 1 ≤ exp

⎛

⎝

n2∑

m=n1+1

bm

⎞

⎠− 1

since 1 + bm ≤ ebm , and therefore

∞
∑

m=1

bm < ∞ =⇒ lim
n1→∞ sup

n2>n1

∣
∣
∣
∣
∣
∣

n2∏

m=n1+1

(1 + bm) − 1

∣
∣
∣
∣
∣
∣

= 0,

which, by Lemma 1.9.1 with am = 1 + bm , proves that
∏∞

m=1(1 + bm) converges.
Finally, suppose that

∑∞
m=1 |bm | < ∞. To show that

∏∞
m=1(1 + bm) converges,

first note that, since bm −→ 0, 1+ bm = 0 for at most a finite number of m’s. Next,
use (∗) to see that
∣
∣
∣
∣
∣
∣

n2∏

m=n1+1

(1 + bm) − 1

∣
∣
∣
∣
∣
∣

≤
∑

∅�=F⊆Z+∩[n1+1,n2]
|bF | =

∣
∣
∣
∣
∣
∣

n2∏

m=n1+1

(1 + |bm |) − 1

∣
∣
∣
∣
∣
∣

.
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Hence, since
∏∞

m=1(1 + |bm |) converges, (1.9.1) holds with am = 1 + bm , and so,
by Lemma 1.9.1,

∏∞
m=1(1 + bm) converges. �

When
∑∞

m=1 |bm | < ∞, the product
∏∞

m=1(1 + bm) is said to be absolutely
convergent .

1.10 Exercises

Exercise 1.1 Show that

lim
n→∞

(

n
1
2 (1 + n)

1
2 − n

)

= 1

2
.

Exercise 1.2 Show that for any α > 0 and a ∈ (−1, 1), limn→∞ nαan = 0.

Exercise 1.3 Given {xn : n ≥ 1} ⊆ R, consider the averages An ≡
∑n

m=1 xm
n for

n ≥ 1. Show that if xn −→ x in R, then An −→ x . On the other hand, construct an
example for which {An : n ≥ 1} converges in R but {xn : n ≥ 1} does not.
Exercise 1.4 Althoughweknow that

∑∞
m=1

1
m2 converges, it is not so easy to findout

what it converges to. It turns out that it converges to π2

6 , but showing this requireswork
(cf. (3.4.6) below). On the other hand, show that

∑n
m=1

1
m(m+1) = 1 − 1

n+1 −→ 1.

Exercise 1.5 There is a profound distinction between absolutely convergent series
and those that are conditionally but not absolutely convergent. The distinction is that
the sum of an absolutely convergent series is, like that of a finite sum, the same for
all orderings of the summands. More precisely, show that if

∑∞
m=0 am is absolutely

convergent and its sum is s, then for each ε > 0 there is a finite set Fε ⊆ N such
that

∣
∣s −∑m∈S am

∣
∣ < ε for all S ⊆ N containing Fε. As a consequence, show that

s =∑∞
m=0 a+

m −∑∞
m=0 a−

m .
On the other hand, if

∑∞
m=0 am is conditionally but not absolutely convergent,

show that, for any s ∈ R, there is an increasing sequence {F� : � ≥ 1} of finite
subsets of N such that N = ⋃∞

�=1 F� and
∑

m∈F�
am −→ s as � → ∞. To prove

this second assertion, begin by showing that am −→ 0 and that both
∑∞

m=0 a+
m and

∑∞
m=0 a−

m are infinite. Next, given s ∈ [0,∞), take

n+ = min

{

n ≥ 0 :
n
∑

m=0

a+
m > s

}

, n− = min

{

n ≥ 0 :
n+∑

m=0

a+
m −

n
∑

m=0

a−
m < s

}

,

and define

F1 = {0 ≤ m ≤ n+ : am ≥ 0} and F2 = F1 ∪ {0 ≤ m ≤ n− : am < 0}.
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Proceeding by induction, given F1, . . . , F� for some � ≥ 2, take

n+ = min

⎧

⎪⎪⎨

⎪⎪⎩

n /∈ F� :
∑

m∈F�

am +
∑

1≤m≤n
m /∈F�

a+
m > s

⎫

⎪⎪⎬

⎪⎪⎭

and F�+1 = F� ∪ {m /∈ F� : 1 ≤ m ≤ n+ & am ≥ 0}

if � is even, and

n− = min

⎧

⎪⎪⎨

⎪⎪⎩

n /∈ F� :
∑

m∈F�

am −
∑

1≤m≤n
m /∈F�

a−
m < s

⎫

⎪⎪⎬

⎪⎪⎭

and F�+1 = F� ∪ {m /∈ F� : 1 ≤ m ≤ n− & am < 0}

if � is odd. Show thatN =⋃∞
�=1 F� and that, for each � ≥ 1,

∣
∣
∣s −∑m∈F�

am

∣
∣
∣ ≤ |an�

|
where n� = max{n : n ∈ F�}. If s < 0, the same argument works, only then one has
to get below s on odd steps and above s on even ones. Finally, notice that this line
of reasoning shows that if {am : m ≥ 0} ⊆ R is any sequence having the properties
that am −→ 0 and

∑∞
m=0 a+

m = ∑∞
m=0 a−

m = ∞, then for each s ∈ R there is a
permutation π of N such that

∑∞
m=0 aπ(m) converges to s.

Exercise 1.6 Let {am : m ≥ 0} and {bm : m ≥ 0} be a pair of sequences in R, and
set Sn =∑n

m=0 am . Show that

n
∑

m=0

ambm = Snbn +
n−1
∑

m=0

Sm(bm − bm+1),

a formula that is known as the summation by parts formula. Next, assume that
∑∞

m=0 am converges to S ∈ R, and show that

∞
∑

m=0

amλm − S = (1 − λ)

∞
∑

m=0

(Sm − S)λm if |λ| < 1.

Given ε > 0, choose nε ≥ 1 so that |Sn − S| < ε for n ≥ nε, and conclude first that

∣
∣
∣
∣
∣

∞
∑

m=0

amλm − S

∣
∣
∣
∣
∣
≤ (1 − λ)

nε−1
∑

m=0

|Sm − S|λm + ε if 0 < λ < 1

and then that

lim
λ↗1

∞
∑

m=0

amλm =
∞
∑

m=0

am . (1.10.1)
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This observation, which is usually attributed to Abel, requires that one know ahead
of time that

∑∞
m=0 am converges. Indeed, give an example of a sequence for which

the limit on the left exists inR but the series on the right diverges. To see how (1.10.1)
can be useful, use it to show that

∑∞
m=1

(−1)m

m = log 1
2 . A generalization of this idea

is given in part (v) of Exercise 3.16 below.

Exercise 1.7 Whatever procedure one uses to construct the real numbers starting
from the rational numbers, one can represent positive real numbers in terms of D-
bit expansions. That is, let D ≥ 2 be an integer, define Ω be the set of all maps
ω : N −→ {0, 1, . . . , D − 1}, and let Ω̃ denote the set of ω ∈ Ω such that ω(0) �= 0
and ω(k) < D − 1 for infinitely many k’s.

(i) Show for any n ∈ Z and ω ∈ Ω̃ ,
∑∞

k=0 ω(k)Dn−k converges to an element
of [Dn, Dn+1). In addition, show that for each x ∈ [Dn, Dn+1) there is a unique
ω ∈ Ω̃ such that x =∑∞

k=0 ω(k)Dn−k . Conclude that R has the same cardinality as
Ω̃ .

(ii) Show that Ω \ Ω̃ is countable and therefore that Ω̃ is uncountable if and only
if Ω is. Next show that Ω is uncountable by the following famous anti-diagonal
argument devised by Cantor. Suppose that Ω were countable, and let {ωn : n ≥ 0}
be an enumeration of its elements. Define ω ∈ Ω so that ω(k) = ωk(k) + 1 if
ωk(k) �= D−1 andω(k) = ωk(k)−1 ifωk(k) = D−1. Show thatω /∈ {ωn : n ≥ 1}
and therefore that there is no enumeration of Ω . In conjunction with (i), this proves
that R is uncountable.

(iii) Let n ∈ Z and ω ∈ Ω̃ be given, and set x = ∑∞
k=0 ω(k)Dn−k . Show that

x ∈ Z
+ if and only if n ≥ 0 and ω(k) = 0 for all k > n. Next, say the ω is eventually

periodic if there exists a k0 ≥ 0 and an � ∈ Z
+ such that

(

ω(k0 + m� + 1), . . . ,ω(k0 + m� + �)
) = (ω(k0 + 1), . . . ,ω(k0 + �)

)

for all m ≥ 1. Show that x > 0 is rational if and only if ω is eventually periodic.
The way to do the “only if” part is to write x = a

b , where a ∈ N and b ∈ Z
+, and

observe that is suffices to handle the case when a < b. Now think hard about how
long division works. Specifically, at each stage either there is nothing to do or one
of at most b possible numbers is be divided by b. Thus, either the process terminates
after finitely many steps or, by at most the bth step, the number that is being divided
by b is the same as one of the numbers that was divided by b at an earlier step.

Exercise 1.8 Here is a example, introduced by Cantor, of a set C ⊆ [0, 1] that is
uncountable but has an empty interior. Let C0 = [0, 1],

C1 = [0, 1] \ ( 13 , 2
3

) = [0, 1
3

] ∪ [ 23 , 1
]

,

and, more generally, Cn is the union of the 2n closed intervals that are obtained by
removing the open middle third from each of the 2n−1 of which Cn−1 consists. The
set C ≡ ⋂∞

n=0 Cm is called the Cantor set. Show that C is closed and int(C) = ∅.
Further, take Ω to be the set of maps ω : N −→ {0, 2}, and Ω1 equal to the set
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of ω ∈ Ω such that ω(m) = 0 for infinitely many m ∈ N. Show there the map
ω �

∑

m=0 ω(m)3−m−1 is one-to-one fromΩ1 onto [0, 1)∩⋂∞
n=0 int(Cn), and use

this to conclude that C is uncountable.

Exercise 1.9 Given R-valued continuous functions f and g on a non-empty set
S ⊆ R, show that f g and, for all α, β ∈ R, α f + βg are continuous. In addition,
assuming that g never vanishes, show that f

g is continuous. Finally, if f is a continuous
function on ∅ �= S1 ⊆ R with values in S2 ⊆ R and if g : S2 −→ R is continuous,
show that their composition g ◦ f is again continuous.

Exercise 1.10 Suppose that a function f : R −→ R satisfies

f (x + y) = f (x) + f (y) for all x, y ∈ R. (1.10.2)

Obviously, this equationwill hold if f (x) = f (1)x for all x ∈ R. Cauchy asked under
what conditions the converse is true, and for this reason (1.10.2) is sometimes called
Cauchy’s equation. Although the converse is known to hold in greater generality, the
goal of this exercise is to show that the converse holds if f is continuous.

(i) Show that f (mx) = m f (x) for any m ∈ Z and x ∈ R, and use this to show
that f

( x
n

) = 1
n f (x) for any n ∈ Z \ {0} and x ∈ R.

(ii) From (i) conclude that f
(m

n

) = m
n f (1) for all m ∈ Z and n ∈ Z \ {0}, and

then use continuity to show that f (x) = f (1)x for all x ∈ R.

Exercise 1.11 Let f be a function on one non-empty set S1 with values in another
non-empty set S2. Show that if {Aα : α ∈ I} is any collection of subsets of S2, then

f −1

(
⋃

α∈I
Aα

)

=
⋃

α∈I
f −1(Aα) and f −1

(
⋂

α∈I
Aα

)

=
⋂

α∈I
f −1(Aα).

In addition, show that f −1(B \ A) = f −1(B) \ f −1(A) for A ⊆ B ⊆ S. Finally,
give an example that shows that the second and last of these properties will not hold
in general if f −1 is replaced by f .

Exercise 1.12 Show that tan = sin
cos is differentiable on

(−π
2 , π

2

)

and that tan′ =
1 + tan2 = 1

cos2
there. Use this to show that tan is strictly increasing on

(−π
2 , π

2

)

,

and let arctan denote the inverse of tan there. Finally, show that arctan′ x = 1
1+x2

for
x ∈ R.

Exercise 1.13 Show that

lim
x→0

(
sin x

x

) 1
1−cos x = e− 1

3 .
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In doing this computation, you might begin by observing that it suffices to show that

lim
x→0

1

1 − cos x
log

(
sin x

x

)

= −1

3
.

At this point one can apply L’Hôpital’s rule, although it is probably easier to use
Taylor’s Theorem.

Exercise 1.14 Let f : (a, b) −→ R be a twice differentiable function. If f ′′ ≡ f (2)

is continuous at the point c ∈ (a, b), use Taylor’s theorem to show that

f ′′(c) ≡ ∂2 f (c) = lim
h→∞

f (c + h) + f (c − h) − 2 f (c)

h2 .

Use this to show that if, in addition, f achieves its maximum value at c, then f ′′(c) ≤
0. Similarly, show that f ′′(c) ≥ 0 if f achieves its minimum value at c. Hence, if
f is twice continuously differentiable and one wants to locate the points at which
f achieves its maximum (minimum) value, one need only look at points at which
f ′ = 0 and f ′′ ≤ 0 ( f ′′ ≥ 0). This conclusion is called the second derivative test.

Exercise 1.15 Suppose that f : (a, b) −→ R is differentiable at every x ∈
(a, b). Darboux showed that f ′ has the intermediate value property. That is, for
a < c < d < b and y between f ′(c) and f ′(d), there is an x ∈ [c, d] such that
f ′(x) = y. Darboux’s idea is the following. Without loss in generality, assume that
f ′(c) < y < f ′(d), and consider the function x � ϕ(x) ≡ f (x) − yx . The func-
tion ϕ is continuous on [c, d] and therefore achieves its minimum value at some
x ∈ [c, d]. Show that x ∈ (c, d) and therefore, by the first derivative test, that
0 = ϕ′(x) = f ′(x) − y. Finally, consider the function given by f (x) = x2 sin 1

x on
(−1, 1) \ {0} and 0 at 0, and show that f is differentiable at each x ∈ (−1, 1) but
that its derivative is discontinuous at 0.

Exercise 1.16 Let f : (a, b) −→ R be a differentiable function.Using (1.8.1), show
that if f ′ is non-decreasing, then f is convex. In particular, if f is twice differentiable
and f ′′ ≥ 0, conclude that f is convex.

Exercise 1.17 Show that − log is convex on (0,∞), and use this to show that if
{a1, . . . , an} ⊆ (0,∞) and {θ1, . . . , θn} ⊆ [0, 1] with∑n

m=1 θm = 1, then

aθ1
1 . . . aθn

n ≤
n
∑

m=1

θmam .

When θm = 1
n for all m, this is the classical arithmetic-geometric mean inequality.

Exercise 1.18 Show that exp grows faster than any power of x in the sense that
limx→∞ xα

ex = 0 for all α > 0. Use this to show that log x tends to infinity more

slowly than any power of x in the sense that limx→∞ log x
xα = 0 for all α > 0. Finally,

show that limx↘0 xα log x = 0 for all α > 0.
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Exercise 1.19 Show that
∏∞

m=1

(

1− (−1)n

n

)

converges but is not absolutely conver-
gent.

Exercise 1.20 Just as is the case for absolutely convergent series (cf. Exercise 1.5),
absolutely convergent products have the property that their products do not depend
on the order in which their factors of multiplied. To see this, for a given ε > 0, choose
mε ∈ Z

+ so that ∣
∣
∣
∣
∣
∣

∞
∏

m=mε+1

(1 + |bm |) − 1

∣
∣
∣
∣
∣
∣

< ε,

and conclude that if F is a finite subset of Z+ that contains {1, . . . , mε}, then
∣
∣
∣
∣
∣

∏

m∈F

(1 + bm) −
∞
∏

m=1

(1 + bm)

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

∏

m∈F

(1 + bm)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
1 −

∏

m /∈F

(1 + bm)

∣
∣
∣
∣
∣

≤
∞
∏

m=1

(1 + |bm |)
∣
∣
∣
∣
∣
∣

1 −
∞
∏

m=mε+1

(1 + |bm |)
∣
∣
∣
∣
∣
∣

< ε

∞
∏

m=1

(1 + |bm |).

Use this to show that if {S� : � ≥ 1} is an increasing sequence of subsets of Z+ and
Z

+ =⋃∞
�=1 S�, then lim�→∞

∏

m∈S�
(1 + bm) =∏∞

m=1(1 + bm).

Exercise 1.21 Show that every open subset G of R is the union of an at most
countable number of mutually disjoint open intervals. To do this, for each rational
numbers r ∈ G, let Ir be the set of x ∈ G such that [r, x] ⊆ G if x ≥ r or [x, r ] ⊆ G if
x ≤ r . Show that Ir is an open interval and that either Ir = Ir ′ or Ir ∩ Ir ′ = ∅. Finally,
let {rn : n ≥ 1} be an enumeration of the rational numbers in G, choose {nk : k ≥ 1}
so that n1 = 1 and, for k ≥ 2, nk = inf{n > nk−1 : Irn �= Irm for 1 ≤ m ≤ nk−1}.
Show that G = ⋃K

k=1 Ink if nK < ∞ = nK+1 and G = ⋃∞
k=1 Ink if nk < ∞

for all k ≥ 1.



Chapter 2
Elements of Complex Analysis

It is frustrating that there is no x ∈ R for which x2 = −1. In this chapter we will
introduce a structure that provides an extension of the real numbers in which this
equation has solutions.

2.1 The Complex Plane

To construct an extension of the real numbers in which solutions to x2 = −1 exist,
one has to go to the plane R2 and introduce a notion of addition and multiplication
there. Namely, given (x1, x2) and (x2, y2), define their sum (x1, y1) + (x2, y2) and
product (x1, y1)(x2, y2) to be

(x1 + x2, y1 + y2) and (x1x2 − y1y2, x1y2 + x2y1).

Using the corresponding algebraic properties of the real numbers, one can easily
check that

(x1, y1) + (x2, y2) = (x2, y2) + (x1, y1), (x1, y1)(x2, y2) = (x2, y2)(x1, y1),
(

(x1, y1)(x2, y2)
)

(x3, y3) = (x1, y1)
(

(x2, y2)(x3, y3)
)

,

and
(

(x1, y1) + (x2, y2)
)

(x3, y3) = (x1, y1)(x3, y3) + (x2, y2)(x3, y3).

Furthermore, (0, 0)(x, y) = (0, 0) and (1, 0)(x, y) = (x, y), and

(x1, x2) + (y1, y2) = (0, 0) ⇐⇒ x1 = −x2 & y1 = −y2,

(x1, x2) �= (0, 0) =⇒
[

(x1, x2)(y1, y2) = (0, 0) ⇐⇒ (y1, y2) = (0, 0)
]

.
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Thus, these operations onR2 satisfy all the basic properties of addition and multipli-
cation on R. In addition, when restricted to points of the form (x, 0), they are given
by addition and multiplication on R:

(x1, 0) + (x2, 0) = (x1 + x2, 0) and (x1, 0)(x2, 0) = (x1x2, 0).

Hence, we can think of R with its additive and multiplicative structure as embedded
by the map x ∈ R �−→ (x, 0) ∈ R

2 in R
2 with its additive and multiplicative

structure. The huge advantage of the structure on R
2 is that the equation (x, y)2 =

(−1, 0) has solutions, namely, (0, 1) and (0,−1) both solve it. In fact, they are the
only solutions, since

(x, y)2 = (−1, 0) =⇒ x2 − y2 = −1 &2xy = 0

=⇒ x2 = −1 & y = 0 or x = 0 & y2 = 1 =⇒ x = 0 & y = ±1.

The geometric interpretation of addition in the plane is that of vector addition:
one thinks of (x1, y1) and (x2, y2) as vectors (i.e., arrows) pointing from the origin
(0, 0) to the points in R

2 that they represent, and one obtains (x1 + x2, y1 + y2) by
translating, without rotation, the vector for (x2, y2) to the vector that begins at the
point of the vector for (x1, y1).

(0, 0)

(x1, y1)
(x1 + x2, y1 + y2)

vector addition

To develop a feeling for multiplication, first observe that (r, 0)(x, y) = (r x, r y), and
so multiplication of (x, y) by (r, 0) when r ≥ 0 simply rescales the length of the
vector for (x, y) by a factor of r . To understand what happens in general, remember
that any point (x, y) in the plane has a polar representation (r cos θ, r sin θ), where
r is the length

√

x2 + y2 of the vector for (x, y) and θ is the angle that vector makes
with the positive horizontal axis. If (x1, y1) = (r1 cos θ1, r1 sin θ1) and (x2, y2) =
(r2 cos θ2, r2 sin θ2), then, by (1.5.1),

(x1, y1)(x2, y2) = (r1 cos θ1, r1 sin θ1)(r2 cos θ2, r2 sin θ2)

= (r1r2 cos θ1 cos θ2 − r1r2 sin θ1 sin θ2, r1r2 cos θ1 sin θ2 + r1r2 sin θ1 cos θ2)

= (

r1r2 cos(θ1 + θ2), r1r2 sin(θ1 + θ2)
)

= (

r1, 0)
(

r2 cos(θ1 + θ2), r2 sin(θ1 + θ2)
)

.

Hence, multiplying (x2, y2) by (x1, y1) rotates the vector for (x2, y2) through the
angle θ1 and rescales the length of the rotated vector by the factor r1. Using this
representation, it is evident that if (x, y) = (r cos θ, r sin θ) �= (0, 0) and
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(x ′, y′) = (

r−1 cos(−θ), r−1 sin(−θ)
) = (r−1 cos θ,−r−1 sin θ),

then (x ′, y′)(x, y) = (1, 0). Equivalently, if (x, y) �= (0, 0) themultiplicative inverse

of (x, y) is
(

x
x2+y2

,− y
x2+y2

)

.

Since R along with its arithmetic structure can be identified with {(x, 0) : x∈R}
and its arithmetic structure, it is conventional to use the notation x instead of
(x, 0) = x(1, 0). Hence, if we set i = (0, 1), then, with this convention, (x, y) =
x + iy. When we use this notation, it is natural to think of (x, y) = x + iy as some
sort of number z. Of course z is not a “real” number, since it is an element of R2,
not R, and for that reason it is called a complex number and the set C of all complex
numbers with the additive and multiplicative structure that we have been discussing
is called the complex plane. For obvious reasons, the x in z = x + iy is called the
real part of z, and, because i is not a real number and for a long time people did not
know how to rationalize its existence, the y is called the imaginary part of z.

Given z = x + iy, we will use R(z) = x and I(z) = y to denote its real and
imaginary parts, and |z| will denote its length √

x2 + y2 (i.e., the distance between
(x, y) and the origin). Either directly or using the polar representation of z, one
can check that |z1z2| = |z1||z2|. In addition, because the sum of the lengths of two
sides of a triangle is at least the length of the third, one has the triangle inequality
|z1 + z2| ≤ |z1| + |z2|. Finally, in many computations involving complex numbers
it is useful to consider the complex conjugate z̄ ≡ x − iy of a complex number
z = x + iy. For instance, R(z) = z+z̄

2 , I(z) = z−z̄
i2 , and |z|2 = |z̄|2 = zz̄. In terms

of the polar representation z = r
(

cos θ + i sin θ
)

, z̄ = r
(

cos θ − i sin θ
)

, and from
this it is easy to check that zζ = z̄ζ̄. Using these considerations, one can give another
proof of the triangle inequality. Namely,

|z + ζ|2 = (z + ζ)(z̄ + ζ̄) = |z|2 + 2R(zζ̄) + |ζ|2 ≤ |z|2 + 2|zζ̄| + |ζ|2 = (|z| + |ζ|)2.

Since |z2 − z1|measures the distance between z1 and z2, it is only reasonable that
we say that the sequence {zn : n ≥ 1} converges to z ∈ C if, for each ε > 0, there
exists an nε such that |z − zn| < ε whenever n ≥ nε. Again, just as was the case for
R, there is a z to which {zn : n ≥ 1} converges if and only if {zn : n ≥ 1} satisfies
Cauchy’s criterion: for all ε > 0 there is an nε such that |zn − zm | < ε whenever
n, m ≥ nε. That is, C is complete. Indeed, the “only if” statement follows from the
triangle inequality, since |zn − zm | ≤ |zn − z|+|z − zm | < ε if n, m ≥ n ε

2
. To go the

other direction, write zn = xn + iyn and note that |xn − xm |∨ |yn − ym | ≤ |zn − zm |.
Thus if {zn : n ≥ 1} satisfies Cauchy’s criterion, so do both {xn : n ≥ 1} and
{yn : n ≥ 1}. Hence, there exist x, y ∈ R such that xn → x and yn → y. Now let
ε > 0 be given and choose nε so that |xn − x | ∨ |yn − y| < ε√

2
for n ≥ nε. Then

|zn − z|2 < ε2

2 + ε2

2 = ε2 and therefore |zn − z| < ε for n ≥ nε. The same sort
of reduction allows one to use Theorem 1.3.3 to show that every bounded sequence
{zn : n ≥ 1} in C has a convergent subsequence.
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All the results in Sect. 1.2 about series and Sect. 1.9 about products extend more
or less immediately to the complex numbers. In particular, if {am : m ≥ 1} ⊆ C,
then

∑∞
m=1 am converges if

∑∞
m=1 |am | < ∞, in which case

∑∞
m=1 am is said to

be absolutely convergent, and (cf. Exercise 1.5) the sum does not depend on the
order in which the summands are added. Similarly, if {bm : m ≥ 1} ⊆ C, then
∏∞

m=1(1 + bm) converges if
∑∞

m=1 |bm | < ∞, in which case
∏∞

m=1(1+ bm) is said
to be absolutely convergent and (cf. Exercise 1.20) the product does not depend on
the order in which the factors are multiplied.

Just as in the case ofR, this notion of convergence has associated notions of open
and closed sets. Namely, let D(z, r) ≡ {ζ : |ζ − z| < r} be the open disk1 of radius
r centered at z, say that G ⊆ C is open if either G = ∅ or for each z ∈ G there is an
r > 0 such that D(z, r) ⊆ G, and say that F ⊆ C is closed if F� is open. Further,
given S ⊆ C, the interior int(S) of S is its largest open subset, and the closure S̄ is its
smallest closed superset. The connections between convergence and these concepts
are examined in Exercises 2.1 and 2.4.

2.2 Functions of a Complex Variable

We next think about functions of a complex variable. In view of the preceding, we
say that if ∅ �= S ⊆ C and f : S −→ C, then f is continuous at a point z ∈ S if
for all ε > 0 there exists a δ > 0 such that | f (w) − f (z)| < ε whenever w ∈ S and
|w − z| < δ.

Using the triangle inequality, one sees that
∣
∣|z2|− |z1|

∣
∣ ≤ |z2 − z1|, and therefore

z ∈ C �−→ |z| ∈ [0,∞) is continuous. In addition, by exactly the same argument
as we used to prove Lemma 1.3.5, one can show that f is continuous at z ∈ S if
and only if f (zn) −→ f (z) whenever {zn : n ≥ 1} ⊆ S tends to z. Thus, it is easy
to check that linear combinations, products, and, if the denominator doesn’t vanish,
quotients of continuous functions are again continuous. In particular, polynomials
of z with complex coefficients are continuous. Also, by the same arguments with
which we proved Lemma 1.4.4 and Theorem 1.4.1, one can show that the uniform
limit of continuous functions is again a continuous function and (cf. Exercise 2.4)
that a continuous function on a bounded, closed set must be bounded and uniformly
continuous.

We can now vastly increase the number of continuous functions of z that we know
how to define by taking limits of polynomials. For this purpose, we introduce power
series. That is, given {am : m ≥ 0} ⊆ C, consider the series

∑∞
m=0 am zm on the set

of z ∈ C for which it converges. Notice that if z ∈ C\{0} and∑∞
m=0 am zm converges,

then limm→∞ am zm = 0, and so there is aC < ∞ such that |am | ≤ C |z|−m for allm.
Therefore, if r = |ζ|

|z| , then |amζm | ≤ Crm for all m ≥ 0. Hence, by the comparison

1Of course, thinking of C in terms of R2, if z = x + iy, then D(z, r) is the ball of radius r centered
at (x, y). However, to emphasize that we are thinking of C as the complex numbers, we will reserve
the name disk and the notation D(z, r) for balls in C.
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test, we see that if
∑∞

m=0 am zm converges for some z, then
∑∞

m=0 amζm is absolutely
convergent for all ζ with |ζ| < |z|. As a consequence, we know that the interior of
the set of z for which

∑∞
m=0 am zm converges is an open disk centered at 0, and the

radius of that disk is called the radius of convergence of
∑∞

m=0 am zm . Equivalently,
the radius of convergence is the supremum of the set of |z| for which ∑∞

m=0 am zm

converges.

Lemma 2.2.1 Given a sequence {am : m ≥ 0} ⊆ C, the radius of convergence of
∑∞

m=0 am zm is equal to the reciprocal of limm→∞ |am | 1
m , when the reciprocal of 0

is interpreted as ∞ and that of ∞ is interpreted as 0. Furthermore, if R ∈ (0,∞)

is strictly smaller than the radius of convergence, then there exists a CR < ∞ and
θR ∈ (0, 1) such that

∞
∑

m=n

|am ||z|m ≤ CRθn
R for all n ≥ 0 and |z| ≤ R,

and so
∑∞

m=0 am zm converges absolutely and uniformly on D(0, R) to a continuous
function.

Proof First suppose that 1
R < limm→∞ |am | 1

m . Then |am |Rm ≥ 1 for infinitelymany
m’s, and so am Rm does not tend to 0 and therefore

∑∞
m=0 am Rm cannot converge.

Hence R is greater than or equal to the radius of convergence. Next suppose that
1
R > limm→∞ |am | 1

m . Then there is an m0 such that |am |Rm ≤ 1 for all m ≥ m0.

Hence, if |z| < R and θ = |z|
R , then |am zm | ≤ θm for m ≥ m0, and so

∑∞
m=0 am zm

converges. Thus, in this case, R is less than or equal to the radius of convergence.
Together these two imply the first assertion.

Finally, assume that R > 0 is strictly smaller that the radius of convergence. Then
there exists an r > R and m0 ∈ Z

+ such that |am | ≤ r−m for all m ≥ m0, which
means that there exists an A < ∞ such that |am | ≤ Ar−m for all m ≥ 1. Thus, if
θ = R

r , then

|z| ≤ R =⇒
∞
∑

m=n

|am zm | ≤ Aθn
∞
∑

m=0

θm = A

1 − θ
θn . �

We will now apply these considerations to extend to C some of the functions that
we dealt with earlier, and we will begin with the function exp. Because 1

m! ≥ 0 and

we already know that
∑∞

m=0
xm

m! converges of all x ∈ R,
∑∞

m=0
zm

m! has an infinite
radius of convergence. We can therefore define

exp(z) = ez =
∞
∑

m=0

zm

m! for all z ∈ C,
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in which case we know that exp is a continuous function on C. Because we obtained
exp on C as a natural extension of exp on R, it is reasonable to hope that some of
the basic properties will extend as well. In particular, we would like to know that
ez1+z2 = ez1ez2 .

Lemma 2.2.2 Given sequences {an : n ≥ 0} and {bn : n ≥ 0} in C, define
cn = ∑n

m=0 ambn−m. Then the radii of convergence for
∑∞

m=0(am + bm)zm and
∑∞

m=0 cm zm are at least as large as the smaller of the radii of convergence for
∑∞

m=0 am zm and
∑∞

m=0 bm zm. Moreover, if |z| is strictly smaller than the radii of
convergence for

∑∞
m=0 am zm and

∑∞
m=0 bm zm, then

∞
∑

m=0

am zm +
∞
∑

m=0

bm zm =
∞
∑

m=0

(am + bm)zm

and ( ∞
∑

m=0

am zm

) ( ∞
∑

m=0

bm zm

)

=
∞
∑

m=0

cm zm .

Proof Because verification of the assertions involving {an + bn : n ≥ 0} is very
easy, we will deal only with the assertions involving {cn : n ≥ 0}.

Suppose that R > 0 is strictly smaller than the radii of convergence of both
∑∞

m=0 am zm and
∑∞

m=0 bm zm . Then |an| ∨ |bn| ≤ C R−n for some 0 < C < ∞,
and so

|cn| ≤
n

∑

m=0

|am ||bn−m | ≤ C2(n + 1)R−n .

Hence |cn| 1n ≤ C
2
n (n + 1)

1
n R−1, and so, since (cf. Exercise 1.18) 1

n log n −→ 0,
we know that the radius of convergence of

∑∞
m=0 cm zm is at least R and that the first

assertion is proved. To prove the second assertion, let z �= 0 of the specified sort be
given. Then there exists an R > |z| such that |an| ∨ |bn| ≤ C R−n for some C < ∞.
Observe that, for each n,

(
n

∑

m=0

am zm

) (
n

∑

m=0

bm zm

)

=
2n
∑

m=0

zm
∑

0≤k,�≤n
k+�=m

akb�

=
n

∑

m=0

cm zm +
2n
∑

m=n+1

zm
n

∑

k=m−n

akbm−k .

The product on the left tends to
(∑∞

m=0 am zm
) (∑∞

m=0 bm zm
)

as n → ∞, and the

first sum in the second line tends to
∑∞

m=0 cm zm . Finally, if θ = |z|
R , then the second

term in the second line is dominated by

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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C2
2n
∑

m=n+1

mθm ≤ 2C2nθn+1

1 − θ
.

Since θ ∈ (0, 1), α ≡ − log θ > 0, and so nθn+1 ≤ n
eαn ≤ 2n

α2n2
−→ 0 as

n → ∞. �

Setan = zn
1

n! and bn = zn
2

n! . By the same reasoning aswe used to show that
∑∞

m=0
zm

m!
has an infinite radius of convergence, one sees that

∑∞
m=0 am zm and

∑∞
m=0 bm zm do

also. Next observe that

n
∑

m=0

ambn−m =
n

∑

m=0

zm
1 zn−m

2

m!(n − m)! = 1

n!
n

∑

m=0

(
n

m

)

zm
1 zn−m

2 = (z1 + z2)n

n! ,

and therefore, by Lemma 2.2.2 with z = 1,

ez1ez2 =
∞
∑

n=0

(z1 + z2)n

n! = ez1+z2 .

Our next goal is to understandwhat ez really is, and, since ez = ex eiy , the problem
comes down to understanding ez for purely imaginary z. For this purpose, note that
if θ ∈ R, then

eiθ =
∞
∑

m=0

im θm

m! =
∞
∑

m=0

(−1)m θ2m

(2m)! + i
∞
∑

m=0

(−1)m θ2m+1

(2m + 1)! ,

which, by (1.8.5), means that

eiθ = cos θ + i sin θ for θ ∈ R, (2.2.1)

a remarkable equation known as Euler’s formula in recognition of its discoverer. As
a consequence, we know that when z = x + iy, then ez corresponds to the point in
R
2 where the circle of radius ex centered at the origin intersects the ray from the

origin that passes through the point (cos y, sin y).
With this information, we can now show that the equation zn = w has a solution

for all n ≥ 1 andw ∈ C. Indeed, ifw = 0 then z = 0 is the one and only solution. On
the other hand, if w �= 0, and we write w = r(cos θ + i sin θ) where θ ∈ (−π,π],
thenw = elog r+iθ, and so z = en−1(log r+iθ) = r

1
n e

iθ
n satisfies zn = w. However, this

isn’t the only solution. Namely, we could havewrittenw as exp
(

log r + i(θ + 2mπ)
)

for any m ∈ Z, in which case we would have concluded that

zm ≡ r
1
n exp

(

in−1(θ + 2mπ)
)

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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is also a solution. Of course, zm1 = zm2 ⇐⇒ (m2 − m1) is divisible by n, and so
we really have only n distinct solutions, z0, . . . , zn−1. That this list contains all the
solutions follows from a simple algebraic lemma.

Lemma 2.2.3 Suppose that n ≥ 1 and f (z) = ∑n
m=0 am zm where an �= 0. If

f (ζ) = 0, then f (z) = (z − ζ)g(z), where g(z) = ∑n−1
m=0 bm zm for some choice of

b0, . . . , bn−1 ∈ C. In particular, there can be no more than n distinct solutions to
f (z) = 0. (See the fundamental theorem of algebra in Sect.6.2 for more information).

Proof If f (0) = 0, then a0 = 0, and so f (z) = z
∑n−1

m=0 am+1zm . Next suppose that
f (ζ) = 0 for some ζ �= 0, and consider fζ(z) = f (z +ζ). By the binomial theorem,
fζ is again an nth order polynomial, and clearly fζ(0) = 0. Hence f (z + ζ) =
zgζ(z), where gζ is a polynomial of order (n − 1), which means that we can take
g(z) = gζ(z − ζ).

Given the first part, the second part follows easily. Indeed, if f (ζm) = 0 for distinct
ζ1, . . . , ζn+1, then, by repeated application of the first part, f (z) = an

∏n
m=1(z−ζm).

However, becausean �= 0 and ζn+1 �= ζm for any1 ≤ m ≤ n, thismeans that f (ζn+1)

could not have been 0. �

We have now found all the solutions to zn = w. When w = 1, the solutions are
ei 2πm

n for 0 ≤ m < n, and these are called the n roots of unity. Obviously, for any
w �= 0, all solutions can be generated from any particular solution by multiplying it
by the roots of unity.

Another application of (2.2.1) is the extension of log to C \ {0}. For this purpose,
think of log on (0,∞) as the inverse of exp onR. Then, (2.2.1) tells us how to extend
log to C \ {0} as the inverse of exp on C. Indeed, given z �= 0, set r = |z| and
take θ to be the unique element of (−π,π] for which z = reiθ. Then, if we take
log z = log r + iθ, it is obvious that elog z = z. To get a more analytic description,
note that cos is a strictly decreasing function from (0,π) onto (−1, 1), define arccos
on (−1, 1) to be its inverse, and extend arccos as a continuous function on [−1, 1]
by taking arccos(−1) = π and arccos 1 = 0. Then

log z = 1
2 log(x2 + y2) + i

⎧

⎨

⎩

arccos x√
x2+y2

if y ≥ 0

−arccos x√
x2+y2

if y < 0
(2.2.2)

for z = x + iy �= 0. Observe that, although log is defined on the whole of C \ {0},
it is continuous only on C \ (−∞, 0], where (−∞, 0] here denotes the subset of C
corresponding to the subset {(x, 0) : x ≤ 0} of R2.

2.3 Analytic Functions

Given a non-empty, open set G ⊆ C and a function f : G −→ C, say that f is
differentiable in the direction θ at z ∈ G if the limit

http://dx.doi.org/10.1007/978-3-319-24469-3_6
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f ′
θ(z) ≡ lim

t→0

f (z + teiθ) − f (z)

t
exists.

If f is differentiable at z ∈ G in every direction, it is said to be differentiable at z,
and if f is differentiable at every z ∈ G it is said to the differentiable on G. Further,
if f ′

θ is continuous at z for every θ, then we say that f is continuously differentiable
at z, and when f is continuously differentiable at every z ∈ G, we say that it is
continuously differentiable on G.

Say that an open set G ⊆ C is connected if it cannot be written as the union of
two non-empty, disjoint open sets. (See Exercise 4.5 for more information.)

Lemma 2.3.1 Let z ∈ C, R > 0, and f : D(z, R) −→ C be given, and assume
that f is differentiable in the directions 0 and π

2 at every point in D(z, R). If both f ′
0

and f ′
π
2

are continuous at z, then f is continuously differentiable at z and

f ′
θ(z) = f ′

0(z) cos θ + f ′
π
2
(z) sin θ for each θ ∈ (−π,π].

Furthermore, if f ′
0 and f ′

π
2

are continuous on D(z, R), then f is continuously differ-

entiable on D(z, R) and

lim
t→0

sup
θ∈(−π,π]

∣
∣
∣
∣
∣

f
(

z + teiθ
) − f (z)

t
− f ′

θ(z)

∣
∣
∣
∣
∣
= 0.

Finally, if G ⊆ C is a connected open set and f is differentiable on G with f ′
θ = 0

on G for all θ ∈ (−π,π], then f is constant on G.

Proof First observe that f determines functions u : D(z, R) −→ R and
v : D(z, R) −→ R such that f = u + iv and that, for any θ ∈ (−π,π], f ′

θ(ζ)

exists at a point ζ ∈ D(z, R) if and only if both u′
θ(ζ) and v′

θ(ζ) do, in which case
f ′
θ(ζ) = u′

θ(ζ) + iv′
θ(ζ). Furthermore, if ζ ∈ D(z, R) and f ′

θ exists on D(ζ, r) for
some 0 < r < R − |ζ − z|, then f ′

θ is continuous at ζ if and only if both u′
θ and v′

θ
are. Thus, without loss in generality, from now on we may and will assume that f is
R-valued.

First assume that f ′
0 and f ′

π
2
are continuous at z. Then, by Theorem 1.8.1, for

0 < |t | < R,

f (z + teiθ) − f (z)

= f (z + t cos θ + i t sin θ) − f (z + i t sin θ) + f (z + i t sin θ) − f (z)

= t f ′
0(z + τ1 cos θ + i t sin θ) cos θ + t f ′

π
2
(z + iτ2 sin θ) sin θ

for some choice of τ1 and τ2 with |τ1| ∨ |τ2| < |t |. Hence, after dividing through
by t and then letting t → 0, we see that f ′

θ(z) exists and is equal to f ′
0(z) cos θ +

f ′
π
2
(z) sin θ.

http://dx.doi.org/10.1007/978-3-319-24469-3_4
http://dx.doi.org/10.1007/978-3-319-24469-3_1


52 2 Elements of Complex Analysis

Next assume that f ′
0 and f ′

π
2
are continuous on D(z, R). Then, by Theorem 1.8.1

and the preceding,

f (z + teiθ) − f (z) − t f ′
θ(z)

= t
(

f ′
0(z + τeiθ) − f ′

0(z)
)

cos θ + t
(

f ′
π
2
(z + τeiθ) − f ′

π
2
(z)

)

sin θ

for some 0 < |τ | < t . Hence, if for a given ε > 0 we choose δ > 0 so that
| f ′

0(z + ζ) − f ′
0(z)| ∨ | f ′

π
2
(z + ζ) − f ′

π
2
(z)| < ε

2 when |ζ| < δ, then

sup
θ∈(−π,π]

∣
∣
∣
∣
∣

f (z + teiθ) − f (z)

t
− f ′

θ(z)

∣
∣
∣
∣
∣
< ε for all t ∈ (−δ, δ) \ {0}.

Finally, assume that, for each θ, f ′
θ exists and is equal to 0 on a connected open set

G, let ζ ∈ G, and set c = f (ζ). Obviously, G1 ≡ {z ∈ G : f (z) �= c} is open. Next
suppose f (z) = c, and choose R > 0 so that D(z, R) ⊆ G. Given z′ ∈ D(z, R)\{z},
express z′ − z as reiθ, apply (1.8.1) to see that f (z′) − f (z) = f ′

θ(z + ρeiθ)r for
some 0 < |ρ| < r , and conclude that f (z′) = c. Hence, G2 ≡ {z ∈ G : f (z) = c}
is also open, and therefore, since G = G1 ∪ G2 and ζ ∈ G2, G1 = ∅. �

We now turn our attention to a very special class of differentiable functions f
on C, those that depend on z thought of as a number rather than as a vector in R

2.
To be more precise, we will be looking at f ’s with the property that the amount
f (z + ζ) − f (z) by which f changes when z is displaced by a sufficiently small ζ
is, to first order, given by a number f ′(z) ∈ C times ζ. That is, if f is a C-valued
function on an open set G ⊆ C and z ∈ G, then

f ′(z) ≡ lim
ζ→0

f (z + ζ) − f (z)

ζ
exists.

Further we will assume that f ′ is continuous on G. Such functions are said to be
analytic on G. It is important to recognize that most differentiable functions are not
analytic. Indeed, a continuously differentiable function on G is analytic there if and
only if

f ′
θ(z) = eiθ f ′

0(z) for all z ∈ G and θ ∈ (−π,π].

To see this, first suppose that f is continuously differentiable on G and that the
preceding holds. Then, by Lemma 2.3.1, for any z ∈ G

lim
r↘0

sup
θ∈(−π,π]

∣
∣
∣
∣
∣

f (z + reiθ) − f (z)

r
− eiθ f ′

0(z)

∣
∣
∣
∣
∣
= 0,

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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and so, after dividing through by eiθ, one sees that f is analytic and that f ′(z) =
f ′
0(z). Conversely, suppose that f is analytic on G. Then

e−iθ f ′
θ(z) = lim

r↘0

f (z + reiθ) − f (z)

reiθ
= f ′(z),

and so f ′
θ(z) = eiθ f ′(z) = eiθ f ′

0(z).Writing f = u+iv,whereu andv areR-valued,
and taking θ = π

2 , one sees that, for analytic f ’s, u′
π
2

+ iv′
π
2

= ei π
2 (u′

0 + iv′
0) =

iu′
0 − v′

0 and therefore
u′
0 = v′

π
2
and u′

π
2

= −v′
0. (2.3.1)

Conversely, if f = u + iv is continuously differentiable on G and (2.3.1) holds,
then, by Lemma 2.3.1

f ′
θ = f ′

0 cos θ + f ′
π
2
sin θ = u′

0 cos θ + iv′
0 cos θ + u′

π
2
sin θ + iv′

π
2
sin θ

= (cos θ + i sin θ)u′
0 + i(cos θ + i sin θ)v′

0 = eiθ f ′
0,

and so f is analytic. The equations in (2.3.1) are called the Cauchy–Riemann equa-
tions, and using them one seeswhy so few functions are analytic. For instance, (2.3.1)
together with the last part of Lemma 2.3.1 show that the onlyR-valued analytic func-
tions on a connected open set are constant.

The obvious challenge now is that of producing interesting examples of analytic
functions. Without any change in the argument used in the real-valued case, it is
easy to see that if f (z) = ∑n

m=0 am zm , then f is analytic on C and f ′(z) =
∑n−1

m=0(m +1)am+1zm . As the next theorem shows, the same is true for power series.

Theorem 2.3.2 Given {am : m ≥ 0} ⊆ C and a function ψ : N −→ C satisfying
1 ≤ |ψ(m)| ≤ Cmk for some C < ∞ and k ∈ N,

∑∞
n=0 ψ(n)anzn has the same

radius of convergence as
∑∞

m=0 am zm. Moreover, if R > 0 is strictly less than the
radius of convergence of

∑∞
m=0 am zm and f (z) = ∑∞

m=0 am zm for z ∈ D(0, R),
then f is analytic on D(0, R) and f ′(z) = ∑∞

m=0(m + 1)am+1zm.

Proof Set bm = ψ(m)am . Obviously limm→∞ |bm | 1
m ≥ limm→∞ |am | 1

m . At the

same time, |bm | 1
m ≤ C

1
m m

k
m |am | 1

m and, by Exercise 1.18,

log(C
1
m m

k
m ) = 1

m

(

logC + k logm
) −→ 0 as m → ∞.

Hence, limm→∞ |bm | 1
m ≤ limm→∞ |am | 1

m . By Lemma 2.2.1, this completes the
proof of the first assertion.

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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Turning to the second assertion, let z, ζ ∈ D(0, r) for some 0 < r < R. Then

f (ζ) − f (z) =
∞
∑

m=0

am(ζm − zm) = (ζ − z)
∞
∑

m=1

am

m
∑

k=1

ζk−1zm−k

= (ζ − z)
∞
∑

m=1

mam zm−1 + (ζ − z)
∞
∑

m=1

am

m
∑

k=1

(

ζk−1zm−k − zm−1).

Hence, what remains is to show that
∑∞

m=1 am
∑m

k=1

(

ζk−1zm−k − zm−1
) −→ 0 as

ζ → z. But there exists a C < ∞ such that, for any M ,

∣
∣
∣
∣
∣

∞
∑

m=1

am

m
∑

k=1

(

ζk−1zm−k − zm−1)
∣
∣
∣
∣
∣

≤
M

∑

m=0

|am |
m

∑

k=1

|ζk−1zm−k − zm−1| + C
∞
∑

m=M+1

m
( r

R

)m−1
.

Since, for each M , the first term on the right tends to 0 as ζ → z, it suffices to show
that the second term tends to 0 as M → ∞. But this follows immediately from the
first part of this lemma and the observation that r

R is strictly smaller than the radius
of convergence of the geometric series. �

As a consequence of Theorem 2.3.2, we know that

exp(z) =
∞
∑

m=0

zm

m! , sin z ≡
∞
∑

m=0

(−1)m z2m+1

(2m + 1)! , and cos z ≡
∞
∑

m=0

(−1)m z2m

(2m)!

are all analytic functions on the whole of C. In addition, it remains true that eiz =
cos z + i sin z for all z ∈ C. Therefore, since sin(−z) = − sin z and cos(−z) = cos z,
cos z = eiz+e−i z

2 and sin z = eiz−e−i z

2i . The functions sinh x ≡ −i sin(i x) = ex −e−x

2

and cosh x ≡ cos(i x) = ex +e−x

2 for x ∈ R are called the hyperbolic sine and cosine
functions.

Notice that when f (z) = ∑∞
m=0 am zm as in Theorem 2.3.2, not only f but also

all its derivatives are analytic in D(0, R). Indeed, for k ≥ 1, the kth derivative f (k)

will be given by
∞
∑

m=k

m(m − 1) · · · (m − k + 1)am zm−k,

and so am = f (m)(0)
m! . Hence, the series representation of this f can be thought of

as a Taylor series. It turns out that this is no accident. As we will show in Sect. 6.2
(cf.Theorem 6.2.2), every analytic function f in a disk D(ζ, R) has derivatives of

http://dx.doi.org/10.1007/978-3-319-24469-3_6
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all orders, the radius of convergence of
∑∞

m=0
f (n)(ζ)

n! zn is at least R, and f (z) =
∑∞

m=0
f (m)(ζ)

m! (z − ζ)m for all z ∈ D(ζ, R).
The function log on G = C \ (−∞, 0] provides a revealing example of what is

going on here. By (2.2.2), log z = u(z) + iv(z), where u(z) = 1
2 log(x2 + y2) and

v(z) = ± arccos x√
x2+y2

, the sign being the same as that of y. By a straightforward

application of the chain rule, one can show that u′
0(z) = x

x2+y2
and u′

π
2
(z) = y

x2+y2
.

Before computing the derivatives of v, we have to know how to differentiate arccos.
Since − arccos is strictly increasing on (0,π), Theorem 1.8.4 applies and says that
− arccos′ ξ = 1

sin(arccos ξ) for ξ ∈ (−1, 1). Next observe that sin = ±√
1 − cos2

and therefore, because sin > 0 on (0,π), arccos′ ξ = − 1√
1−ξ2

for ξ ∈ (−1, 1).

Applying the chain rule again, one sees that v′
0(z) = − y

x2+y2
and v′

π
2
(z) = x

x2+y2
,

first for y �= 0 and then, by Lemma 1.8.3, for all y ∈ R. Hence, u and v satisfy the
Cauchy–Riemann equations and so log is analytic on G. In fact,

log′ z = u′
0(z) + iv′

0(z) = x − iy

x2 + y2
= z̄

|z|2 ,

and so

log′ z = 1

z
for z ∈ C \ (−∞, 0].

With this information, we can now show that

log ζ = −
∞
∑

m=1

(1 − ζ)m

m
for ζ ∈ D(1, 1). (2.3.2)

To check this, note that the derivative of the right hand side is equal to

∞
∑

m=1

(−1)m−1(ζ − 1)m−1 =
∞
∑

m=0

(1 − ζ)m = 1

ζ
.

Hence, the difference g between the two sides of (2.3.2) is an analytic function on
D(1, 1) whose derivative vanishes. Since g′

θ = eiθg′ and (cf. Exercise 4.5) G is
connected, the last part of Lemma 2.3.1 implies that g is constant, and so, since
g(1) = 0, (2.3.2) follows. Given (2.3.2), one can now say that if z ∈ G and R =
inf{|ξ − z| : ξ ≤ 0}, then

log ζ = log z −
∞
∑

m=1

(z − ζ)m

mzm
for ζ ∈ D(z, R).

Indeed,

ζ = z ζ
z = elog zelog

ζ
z = elog z+log ζ

z ,

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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from which we conclude that ϕ(ζ) ≡ log ζ−log z−log ζ
z

i2π must be an integer for each
ζ ∈ D(z, R). But ϕ is a continuous function on D(z, R) and ϕ(z) = 0. Thus if
ϕ(ζ) �= 0 for some ζ ∈ D(z, R) and if u(t) = ϕ

(

(1 − t)z + tζ
)

, then u would
be a continuous, integer-valued function on [0, 1] with u(0) = 0 and |u(1)| ≥ 1,
which, by Theorem 1.3.6, would lead to the contradiction that |u(t)| = 1

2 for some

t ∈ (0, 1). Therefore, we know that log ζ = log z + log ζ
z and, since |ζ − z| < |z|

and therefore
∣
∣ ζ

z − 1
∣
∣ < 1, we can apply (2.3.2) to complete the calculation.

2.4 Exercises

Exercise 2.1 Many of the results about open sets, convergence, and continuity for
R have easily proved analogs for C, and these are the topic of this and Exercise 2.4.
Show that F is closed if and only if z ∈ F whenever there is a sequence in F that
converges to z. Next, given S ⊆ C, show that z ∈ int(S) if and only if D(z, r) ⊆ S
for some r > 0, and show that z ∈ S̄ if and only if there is a sequence in S that
converges to z. Finally, define the notion of subsequence in the same way as we did
for R, and show that if K is a bounded (i.e., there is an M such that |z| ≤ M for all
z ∈ K ), closed set, then every sequence in K admits a subsequence that converges
to some point in K .

Exercise 2.2 Let R > 0 be given, and consider the circles S1(0, R) and S1(2R, R).
These two circles touch at the point ζ(0) = (R, 0). Now imagine rolling S1(2R, R)

counter clockwise along S
1(0, R) for a distance θ so that it becomes the circle

S
1(2Reiθ, R), and let ζ(θ) denote the point towhich ζ(0) is moved. Show that ζ(θ) =

R
(

2eiθ − ei2θ
)

. Because it is somewhat heart shaped, the path {ζ(θ) : θ ∈ [0, 2π)}
is called a cardiod. Next set z(θ) = ζ(θ)− R, and show that z(θ) = 2R(1−cos θ)eiθ.

Exercise 2.3 Given sequences {an : n ≥ 1} and {bn : n ≥ 1} of complex numbers,
prove Schwarz’s inequality

∞
∑

m=0

|am ||bm | ≤
√
√
√
√

∞
∑

m=0

|am |2
√
√
√
√

∞
∑

m=0

|bm |2.

Clearly, it suffices to treat the case when all the an’s and bn’s are non-negative and
there is an N such that an = bn = 0 for n > N and

∑N
n=1 a2

n > 0. In that case
consider the function

ϕ(t) =
N

∑

n=1

(ant + bn)2 = t2
N

∑

n=1

a2
n + 2t

N
∑

n=1

anbn +
N

∑

n=1

b2n for t ∈ R.

Observe that ϕ(t) is non-negative for all t and that

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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ϕ(t0) = −
(∑

n=1 anbn
)2

∑N
n=1 a2

n

+
N

∑

n=1

b2n if t0 = −
∑N

n=1 anbn
∑N

n=1 a2
n

.

Exercise 2.4 If H �= ∅ is open and f : H −→ C, show that f is continuous
if and only if f −1(G) is open whenever G is. If K is closed and bounded and if
f : K −→ C is continuous, show that f is bounded (i.e., supz∈K | f (z)| < ∞) and
is uniformly continuous in the sense that for each ε > 0 there exists a δ > 0 such
that | f (ζ) − f (z)| < ε whenever z, ζ ∈ K with |ζ − z| < δ.

Exercise 2.5 Here is an interesting, totally non-geometric characterization of the
trigonometric functions. Thus, in doing this exercise, forget about the geometric
description of the sine and cosine functions.

(i) Using Taylor’s theorem, show that for each a, b ∈ R the one and only twice
differentiable f : R −→ R that satisfies f ′′ = − f , f (0) = a, and f ′(0) = b is the
function f (x) = ac(x) + bs(x), where

c(x) ≡
∞
∑

m=0

(−1)m x2m

(2m)! and s(x) ≡
∞
∑

m=0

(−1)m x2m+1

(2m + 1)! .

(ii) Show that c′ = −s and s′ = c, and conclude that c2 + s2 = 1.

(iii) Using (i) and (ii), show that

c(x + y) = c(x)c(y) − s(x)s(y) and s(x + y) = s(x)c(y) + s(y)c(x).

(iv) Show that c(x) ≥ 1
2 and therefore that s(x) ≥ x

2 for x ∈ [

0, 1
2

]

. Thus, if
L > 1

2 and c ≥ 0 on [0, L], then s(x) ≥ 1
4 on

[ 1
2 , L

]

, and so

0 ≤ c(L) ≤ c
( 1
2

) − 1
4

(

L − 1
2

) ≤ 1 − 2L−1
8 .

Therefore L ≤ 9
2 , which means that there is an α ∈ ( 1

2 ,
9
2

]

such that c(α) = 0 and
c(x) > 0 for x ∈ [0,α). Show that s(α) = 1.

(v) By combining (ii) and (iv), show that c(α+ x) = −s(x) and s(α+ x) = c(x),
and conclude that

c(2α + x) = −s(x) s(2α + x) = −c(x) c(3α + x) = s(x)

s(3α + x) = −c(x) c(4α + x) = c(x) s(4α + x) = s(x).

In particular, this shows that c and s are periodic with period 4α.
Clearly, by uniqueness, c(x) = cos x and s(x) = sin x , where cos and sin are

defined geometrically in terms of the unit circle. Thus, α = π
2 , one fourth the

circumference of the unit disk. See the discussion preceding Corollary 3.2.4 for a
more satisfying treatment of this point.

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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Exercise 2.6 Given ω ∈ C \ {0}, define

sinω x = eωx − e−ωx

2ω
and cosω x = eωx + e−ωx

2

for x ∈ R. Obviously, sin and cos are sini and cosi , and sinh and cosh are sin1 and
cos1. Show that sinω and cosω satisfy the equation u′′

ω = ω2u on R and that if u is
any solution to this equation then u(x) = u(0) cosω x + u′(0) sinω x .

Exercise 2.7 Show that if f and g are analytic functions on an open set G, then
α f + βg is analytic for all α, β ∈ C as is f g. In fact, show that (α f + βg)′ =
α f ′ + βg′ and ( f g)′ = f ′g + f g′. In addition, if g never vanishes, show that f

g

is analytic and
( f

g

)′ = f ′g− f g′
g2

. Finally, show that if f is an analytic function on an
open set G1 with values in an open set G2 and if g is an analytic function on G2,
then their composition g ◦ f is analytic on G1 and (g ◦ f )′ = (g′ ◦ f ) f ′. Hence, for
differentiation of analytic functions, linearity as well as the product, quotient, and
chain rules hold.

Exercise 2.8 Given ω ∈ [0, 2π), set �ω = C \ {reiω : r ≥ 0} and show that there
is a way to define logω on �ω so that exp ◦ logω(z) = z for all z ∈ �ω and logω
is analytic on �ω . What we denoted by log in (2.2.2) is one version of logπ , and
any other version differs from that one by i2πn for some n ∈ Z. The functions logω
are called branches of the logarithm function, and the one in (2.2.2) is sometimes
called the principal branch. For eachω, the function logω would have an irremovable
discontinuity if one attempted to continue it across the ray {reiω : r > 0}, and so one
tries to choose the branch so that this discontinuity does the least harm. In an attempt
to remove this inconvenience, Riemann introduced a beautiful geometric structure,
known as a Riemann surface, that enabled him to fit all the branches together into
one structure.



Chapter 3
Integration

Calculus has two components, and, thus far, we have been dealing with only one of
them, namely differentiation. Differentiation is a systematic procedure for disassem-
bling quantities at an infinitesimal level. Integration, which is the second component
and is the topic here, is a systematic procedure for assembling the same sort of quan-
tities. One of Newton’s great discoveries is that these two components complement
one another in a way that makes each of them more powerful.

3.1 Elements of Riemann Integration

Suppose that f : [a, b] −→ [0,∞) is a bounded function, and consider the region
Ω in the plane bounded below by the portion of the horizontal axis between (a, 0)
and (b, 0), the line segment between (a, 0) and

(
a, f (a)

)
on the left, the graph of

f above, and the line segment between
(
b, f (b)

)
and (b, 0) on the right. In order to

compute the area of this region, one might chop the interval [a, b] into n ≥ 1 equal
parts and argue that, if f is sufficiently continuous and therefore does not vary much
over small intervals, then, when n is large, the area of each slice

{
(x, y) ∈ Ω : x ∈ [a + m−1

n (b − a), a + m
n (b − a)

]
& 0 ≤ y ≤ f (x)

}
,

where 1 ≤ m ≤ n, should be well approximated by b−a
n f
(
a + m−1

n (b − a)
)
, the

area of the rectangle
[
a + m−1

n (b − a), a + m
n (b − a)

] × [0, f
(
a + m−1

n (b − a)
)]
.

Continuing this line of reasoning, one would then say that the area of Ω is obtained
by adding the areas of these slices and taking the limit

lim
n→∞

b − a

n

n∑

m=1

f
(
a + m−1

n (b − a)
)
.
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Of course, there are two important questions that should be asked about this
procedure. In the first place, does the limit exist and, secondly, if it does, is there a
compelling reason for thinking that it represents the area of Ω? Before addressing
these questions, we will reformulate the preceding in a more flexible form. Say that
two closed intervals are non-overlapping if their interiors are disjoint. Next, given a
finite collection C of non-overlapping closed intervals I �= ∅whose union is [a, b], a
choice function is a mapΞ : C −→ [a, b] such thatΞ(I ) ∈ I for each I ∈ C. Finally
given C andΞ , define the correspondingRiemann sum of a function f : [a, b] −→ R

to be
R( f ; C, Ξ) =

∑

I∈C
f
(
Ξ(I )

)|I |, where |I | is the length of I.

What we want to show is that, as the mesh size ‖C‖ ≡ max{|I | : I ∈ C} tends to 0,
for a large class of functions f these Riemann sums converge in the sense that there
is a number

∫ b
a f (x) dx ∈ R, which we will call the Riemann integral, or simply the

integral, of f on [a, b], such that for every ε > 0 one can find a δ > 0 for which

∣∣∣
∣R( f ; C, Ξ) −

∫ b

a
f (x) dx

∣∣∣
∣ ≤ ε

for all C with ‖C‖ ≤ δ and all associated choice functions Ξ . When such a limit
exists, we will say that f is Riemann integrable on [a, b].

In order to carry out this program, it is helpful to introduce the upper Riemann
sum

U( f ; C) =
∑

I∈C

(
sup

I
f

)
|I |, where sup

I
f = sup{ f (x) : x ∈ I },

and the lower Riemann sum

L( f ; C) =
∑

I∈C

(
inf

I
f

)
|I |, where inf

I
f = inf{ f (x) : x ∈ I }.

Lemma 3.1.1 Assume that f : [a, b] −→ R is bounded. For every C and choice
function Ξ , L( f ; C) ≤ R( f ; C, Ξ) ≤ U( f ; C). In addition, for any pair C and C ′,
L( f ; C) ≤ U( f ; C ′). Finally, for any C and ε > 0, there exists a δ > 0 such that

‖C ′‖ < δ =⇒ L( f ; C) ≤ L( f ; C ′) + ε and U( f ; C ′) ≤ U( f ; C) + ε,

and therefore

lim
‖C‖→0

L( f ; C) = sup
C

L( f ; C) ≤ inf
C
U( f ; C) = lim

‖C‖→0
U( f ; C).
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Proof The first assertion is obvious. To prove the second, begin by observing that
there is nothing to do if C ′ = C. Next, suppose that every I ∈ C is contained in some
I ′ ∈ C ′, in which case supI f ≤ supI ′ f . Therefore (cf. Lemma 5.1.1 for a detailed
proof), since each I ′ ∈ C ′ is the union of the I ’s in C which it contains,

U( f ; C ′) =
∑

I ′∈C′

⎛

⎜
⎝
∑

I∈C
I⊆I ′

(
sup

I ′
f

)
|I |
⎞

⎟
⎠

≥
∑

I ′∈C′

⎛

⎜
⎝
∑

I∈C
I⊆I ′

(
sup

I
f

)
|I |
⎞

⎟
⎠ =

∑

I∈C

(
sup

I
f

)
|I | = U( f ; C),

and, similarly, L( f ; C ′) ≤ L( f ; C). Now suppose that C and C ′ are given, and set

C ′′ ≡ {I ∩ I ′ : I ∈ C, I ′ ∈ C ′ & I ∩ I ′ �= ∅}.

Then for each I ′′ there exist I ∈ C and I ′ ∈ C ′ such that I ′′ ⊆ I and I ′′ ⊆ I ′, and
therefore

L( f ; C) ≤ L( f ; C ′′) ≤ U( f ; C ′′) ≤ U( f, C ′).

Finally, let C and ε > 0 be given, and choose a = c0 ≤ c1 ≤ · · · ≤ cK = b so that
C = {[ck−1, ck] : 1 ≤ k ≤ K }. Given C ′, letD be the set of I ′ ∈ C ′ with the property
that ck ∈ int(I ′) for at least one 1 ≤ k < K , and observe that, since the intervals are
non-overlapping, D can contain at most K − 1 elements. Then each I ′ ∈ C ′ \ D is
contained in some I ∈ C and therefore supI ′ f ≤ supI f . Hence

U( f ; C ′) =
∑

I ′∈D

(
sup

I ′
f

)
|I ′| +

∑

I∈C

∑

I ′∈C′\D
I ′⊆I

(
sup

I ′
f

)
|I ′|

≤
(

sup
[a,b]

| f |
)

(K − 1)‖C ′‖ +
∑

I∈C
sup

I
f

⎛

⎜⎜
⎝
∑

I ′∈C′
I ′⊆I

|I ′|

⎞

⎟⎟
⎠

≤
(

sup
[a,b]

| f |
)

(K − 1)‖C ′‖ + U( f ; C).

Therefore, if δ > 0 is chosen so that
(
sup[a,b] | f |) (K − 1)δ < ε, then U( f ; C ′) ≤

U( f ; C) + ε whenever ‖C ′‖ ≤ δ. Applying this to − f and noting that L( f ; C ′′) =
−U(− f ; C ′′) for any C ′′, one also has that L( f ; C) ≤ L( f ; C ′) + ε if ‖C ′‖ ≤ δ. �

http://dx.doi.org/10.1007/978-3-319-24469-3_5
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Theorem 3.1.2 If f : [a, b] −→ R is a bounded function, then it is Riemann
integrable if and only if for each ε > 0 there is a C such that

∑

I∈C
supI f −inf I f ≥ε

|I | < ε.

In particular, a bounded f will be Riemann integrable if it is continuous at all but
a finite number of points. In addition, if f : [a, b] −→ [c, d] is Riemann integrable
and ϕ : [c, d] −→ R is continuous, then ϕ ◦ f is Riemann integrable on [a, b].
Proof First assume that f is Riemann integrable. Given ε > 0, choose C so that

∣
∣
∣
∣R( f ; C, Ξ) −

∫ b

a
f (x) dx

∣
∣
∣
∣ <

ε2

6

for all choice functions Ξ . Next choose choice functions Ξ± so that

f
(
Ξ+(I )

)+ ε2

3(b − a)
≥ sup

I
f and f

(
Ξ−(I )

)− ε2

3(b − a)
≤ inf

I
f

for each I ∈ C. Then

U( f ; C) ≤ R( f ; C, Ξ+) + ε2

3
≤ R( f ; C, Ξ−) + 2ε2

3
≤ L( f ; C) + ε2,

and so

ε2 ≥ U( f ; C) − L( f ; C) =
∑

I∈C

(
sup

I
f − inf

I
f

)
|I | ≥ ε

∑

I∈C
supI f −inf I f ≥ε

|I |.

Next assume that for each ε > 0 there is a C such that

∑

I∈C
supI f −inf I f ≥ε

|I | < ε.

Given ε > 0, set ε′ = ε
(
4 sup[a,b] | f | + 2(b − a)

)−1
, and choose Cε so that

∑

I∈Cε
supI f −inf I f ≥ε′

|I | < ε′
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and therefore

U( f ; Cε) − L( f ; Cε) ≤
(

2 sup
[a,b]

| f |
)

∑

I∈Cε
supI f −inf I f ≥ε′

|I | + ε′(b − a) = ε

2
.

Now, using Lemma 3.1.1, choose δε > 0 so that U( f ; C) ≤ U( f ; Cε) + ε
2 and

L( f ; C) ≥ L( f ; Cε) − ε
2 when ‖C‖ < δε. Then

‖C‖ < δε =⇒ U( f ; C) ≤ L( f ; C) + ε,

and so, in conjunction with Lemma 3.1.1, we know that

lim
‖C‖→0

U( f ; C) = M = lim
‖C‖→0

L( f ; C) where M = sup
C

L( f ; C).

Since, for any C and associated Ξ , L( f ; C) ≤ R( f ; C, Ξ) ≤ U( f ; C), it follows
that f is Riemann integral and that M is its integral.

Turning to the next assertion, first suppose that f is continuous on [a, b]. Then,
because it is uniformly continuous there, for each ε > 0 there exists a δε > 0 such
that | f (y)− f (x)| < εwhenever x, y ∈ [a, b] and |y − x | ≤ δε. Hence, if ‖C‖ < δε,
then supI f − inf I f < ε for all I ∈ C, and so

∑

I∈C
supI f −inf I f ≥ε

|I | = 0.

Now suppose that f is continuous except at the points a ≤ c0 < · · · < cK ≤ b. For
each r > 0, f is uniformly continuous on Fr ≡ [a, b] \⋃K

k=0(ck − r, ck + r). Given
ε > 0, choose 0 < r < min{ck − ck−1 : 1 ≤ k ≤ K } so that 2r(K + 1) < ε, and
then choose δ > 0 so that | f (y) − f (x)| < ε for x, y ∈ Fr with |y − x | ≤ δ. Then
one can easily construct a C such that Ik ≡ [ck − r, ck + r ] ∩ [a, b] ∈ C for each
0 ≤ k ≤ K and all the other I ’s in C have length less than δ, and for such a C

∑

I∈C
supI f −inf I f ≥ε

|I | ≤
K∑

k=0

|Ik | ≤ 2r(K + 1) < ε.

Finally, to prove the last assertion, let ε > 0 be given and choose 0 < ε′ ≤ ε so
that |ϕ(η) − ϕ(ξ)| < ε if ξ, η ∈ [c, d] with |η − ξ| < ε′. Next choose C so that

∑

I∈C
supI f −inf I f ≥ε′

|I | < ε′,
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and conclude that
∑

I∈C
supI ϕ◦ f −inf I ϕ◦ f ≥ε

|I | ≤
∑

I∈C
supI f −inf I f ≥ε′

|I | ≤ ε′ ≤ ε.

�

The fact that a bounded function is Riemann integrable if it is continuous at all
but a finite number of points is important. For example, if f is a bounded, continu-
ous function on (a, b), then its integral on [a, b] can be unambiguously defined by
extending f to [a, b] in any convenient manner (e.g. taking f (a) = f (b) = 0), and
then taking its integral to be the integral of the extension. The result will be the same
no matter how the extension is made.

When applied to a non-negative, Riemann integrable function f on [a, b], Theo-
rem 3.1.2 should be convincing evidence that the procedure we suggested for com-
puting the area of the region Ω gives the correct result. Indeed, given any C, U( f ; C)

dominates the area of Ω and L( f ; C) is dominated by the area of Ω . Hence, since
by taking ‖C‖ small we can close the gap between U( f ; C) and L( f ; C), there can
be little doubt that

∫ b
a f (x) dx is the area of Ω . More generally, when f takes both

signs, one can interpret
∫ b

a f (x) dx as the difference between the area above the
horizontal axis and the area below.

The following corollary deals with several important properties of Riemann inte-
grals. In its statement and elsewhere, if f : S −→ C,

‖ f ‖S ≡ sup{| f (x)| : x ∈ S}

is the uniform norm of f on S. Observe that

‖ f g‖S ≤ ‖ f ‖S‖g‖S and ‖α f + βg‖S ≤ |α|‖ f ‖S + |β|‖g‖S

for all C-valued functions f and g on S and α, β ∈ C.

Corollary 3.1.3 If f : [a, b] −→ R is a bounded, Riemann integrable function and
a < c < b, then f is Riemann integrable on both [a, c] and [c, b], and

∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
g(x) dx for all c ∈ (a, b). (3.1.1)

Further, if λ > 0 and f is a bounded, Riemann integrable function on [λa,λb], then
x ∈ [a, b] �−→ f (λx) ∈ R is Riemann integrable and

∫ λb

λa
f (y) dy = λ

∫ b

a
f (λx) dx . (3.1.2)
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Next suppose that f and g are bounded, Riemann integrable functions on [a, b].
Then,

f ≤ g =⇒
∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx, (3.1.3)

and so, if f is a bounded, Riemann integrable function on [a, b], then

∣∣∣
∣

∫ b

a
f (x) dx

∣∣∣
∣ ≤
∣∣∣
∣

∫ b

a
| f (x)| dx

∣∣∣
∣ ≤ ‖ f ‖S|b − a|. (3.1.4)

In addition, f g is Riemann integrable on [a, b], and, for all α, β ∈ R, α f + βg is
also Riemann integrable and

∫ b

a

(
α f (x) + βg(x)

)
dx = α

∫ b

a
f (x) dx + β

∫ b

a
g(x) dx . (3.1.5)

Proof To prove the first assertion, for a given ε > 0 choose a non-overlapping cover
C of [a, b] so that ∑

I∈C
supI f −inf I f ≥ε

|I | < ε,

and set C ′ = {I ∩ [a, c] : I ∈ C}. Then, since

sup{ f (y) − f (x) : x, y ∈ I ∩ [a, c]} ≤ sup{ f (y) − f (x) : x, y ∈ I }

and |I ∩ [a, c]| ≤ |I |,
∑

I ′∈C′
supI ′ f −inf I ′ f ≥ε

|I ′| ≤
∑

I∈C
supI f −inf I f ≥ε

|I | < ε.

Thus, f is Riemann integrable on [a, c]. The proof that f is also Riemann integrable
on [c, b] is the same. As for (3.1.1), choose {Cn : n ≥ 1} and {C ′

n : n ≥ 1} and
associated choice functions {Ξn : n ≥ 1} and {Ξ ′

n : n ≥ 1} for [a, c] and [c, b] so
that ‖Cn‖ ∨ ‖C ′

n‖ ≤ 1
n , and set C ′′

n = Cn ∪ C ′
n and Ξ ′′

n (I ) = Ξn(I ) if I ∈ Cn and
Ξ ′′

n (I ) = Ξ ′
n(I ) if I ∈ C ′

n \ Cn . Then

∫ b

a
f (x) dx = lim

n→∞R( f ; C ′′
n , Ξ ′′

n ) = lim
n→∞R( f ; Cn, Ξn) + lim

n→∞R( f ; C ′
n, Ξ

′
n)

=
∫ c

a
f (x) dx +

∫ b

c
f (x) dx .

Turning to the second assertion, set fλ(x) = f (λx) for x ∈ [a, b] and, given
a cover C and a choice function Ξ , take Iλ = {λx : x ∈ I }, and define
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Cλ = {Iλ : I ∈ C} and Ξλ(Iλ) = λΞ(I ) for I ∈ C. Then Cλ is a non-overlapping
cover for [λa,λb], Ξλ is an associated choice function, ‖Cλ‖ = λ‖C‖, and

R( fλ; C, Ξ) =
∑

I∈C
f
(
λΞ(I )

)|I | = λ−1R( f ; Cλ, Ξλ) −→ λ−1
∫ λb

λa
f (y) dy

as ‖C‖ → 0.
Next suppose that f and g are bounded, Riemann integrable functions on [a, b].

Obviously, for all C and Ξ ,R( f ; C, Ξ) ≤ R(g; C, Ξ) if f ≤ g and

R(α f + βg; C, Ξ) = αR( f ; C, Ξ) + βR(g; C, Ξ)

for all α, β ∈ R. Starting from these and passing to the limit as ‖C‖ → 0, one
arrives at the conclusions in (3.1.3) and (3.1.5). Furthermore, (3.1.4) follows from
(3.1.3), since, by the last part of Theorem 3.1.2, | f | is Riemann integrable and
± f ≤ | f | ≤ ‖ f ‖[a,b]. Finally, to see that f g is Riemann integrable, note that, by
the preceding combined with the last part of Theorem 3.1.2, ( f + g)2 and ( f − g)2

are both Riemann integrable and therefore so is f g = 1
4

(
( f + g)2 − ( f − g)2

)
. �

There is a useful notation convention connected to (3.1.1). Namely, if a < b, then
one defines ∫ a

b
f (x) dx = −

∫ b

a
f (x) dx .

With this convention, if {ak : 0 ≤ k ≤ �} ⊆ R and f is function that is Riemann
integrable on [a0, a�] and [ak, ak+1] for each 0 ≤ k < �, one can use (3.1.1) to
check that ∫ a�

a0

f (x) dx =
�−1∑

k=0

∫ ak+1

ak

f (x) dx . (3.1.6)

Sometimes one wants to integrate functions that are complex-valued. Just as in
the real-valued case, one says that a bounded function f : [a, b] −→ C is Riemann
integrable and has integral

∫ b
a f (x) dx on [a, b] if the Riemann sums

R( f ; C, Ξ) =
∑

I∈C
f
(
Ξ(I )

)|I |

converge to
∫ b

a f (x) dx as ‖C‖ → 0. Writing f = u + iv, where u and v are real-
valued, one can easily check that f is Riemann integrable if and only if both u and
v are, in which case

∫ b

a
f (x) dx =

∫ b

a
u(x) dx + i

∫ b

a
v(x) dx .
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From this one sees that, except for (3.1.3), the obvious analogs of the assertions in
Corollary 3.1.3 continue to hold for complex-valued functions. Of course, one can
no longer use (3.1.3) to prove the first inequality in (3.1.4). Instead, one can use the
triangle inequality to show that |R( f ; C, Ξ)| ≤ R(| f |; C, Ξ) and then take the limit
as ‖C‖ → 0.

There are two closely related extensions of the Riemann integral. In the first place,
one often has to deal with an interval (a, b] on which there is a function f that is
unbounded but is bounded and Riemann integrable on [α, b] for each α ∈ (a, b).
Even though f is unbounded, it may be that the limit limα↘a

∫ b
α f (x) dx exists in C,

in which case one uses
∫
(a,b] f (x) dx to denote the limit. Similarly, if f is bounded

and Riemann integrable on [a,β] for each β ∈ (a, b) and limβ↗b
∫ β

a f (x) dx exists
or if f is bounded and Riemann integrable on [α,β] for all a < α < β < b and
limα↘a

β↗b

∫ β

α f (x) dx exists in C, then one takes
∫
[a,b)

f (x) dx or
∫
(a,b)

f (x) dx to be

the corresponding limit. The other extension is to situations when one or both of
the endpoints are infinite. In this case one is dealing with a function f which is
bounded and Riemann integrable on bounded, closed intervals of (−∞, b], [a,∞),
or (−∞,∞), and one takes

∫

(−∞,b]
f (x) dx,

∫

[a,∞)

f (x) dx, or
∫

(−∞,∞)

f (x) dx

to be

lim
a↘−∞

∫ b

a
f (x) dx, lim

b↗∞

∫ b

a
f (x) dx, or lim

b↗∞
a↘−∞

∫ b

a
f (x) dx

if the corresponding limit exists. Notice that in any of these situations, if f is non-
negative then the corresponding limits exist in [0,∞) if and only if the quantities
of which one is taking the limit stay bounded. More generally, if f is a C-valued
function on an interval J and if f is Riemann integrable on each bounded, closed
interval I ⊆ J , then

∫
J f (x) dx will exist if supI

∫
I | f (x)| dx < ∞, in which is

case f is said to be absolutely Riemann integrable on J . To check this, suppose that
J = (a, b]. Then, for a < α1 < α2 < b,

∣∣∣∣

∫ b

α2

f (x) dx −
∫ b

α1

f (x) dx

∣∣∣∣ =
∣∣∣∣

∫ α2

α1

f (x) dx

∣∣∣∣ ≤
∫ α2

α1

| f (x)| dx,

and so the existence of the limit limα↘a
∫ b
α f (x) dx ∈ C follows from the existence

of limα↘a
∫ b
α | f (x)| dx ∈ [0,∞). When J is [a, b), (a, b), [a,∞), (−∞, b], or

(−∞,∞), the argument is essentially the same.
The following theorem shows that integrals are continuouswith respect to uniform

convergence of their integrands.
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Theorem 3.1.4 If { fn : n ≥ 1} is a sequence of bounded, Riemann integrable C-
valued functions on [a, b] that converge uniformly to the function f : [a, b] −→ C,
then f is Riemann integrable and

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
f (x) dx .

Proof Observe that

|R( fn; C, Ξ) − R( f ; C, Ξ)| ≤ R(| fn − f |; C, Ξ
) ≤ (b − a)‖ fn − f ‖[a,b],

and conclude from this first that
{∫ b

a fn(x) dx : n ≥ 1
}
satisfies Cauchy’s conver-

gence criterion and second that, for each n,

lim
‖C‖→0

∣
∣
∣
∣R( f ; C, Ξ) −

∫ b

a
fn(x) dx

∣
∣
∣
∣ ≤ (b − a)‖ fn − f ‖[a,b].

Hence,
∫ b

a f (x) dx ≡ limn→∞
∫ b

a fn(x) dx exists, andR( f ; C, Ξ) −→ ∫ b
a f (x) dx

as ‖C‖ → 0. �

3.2 The Fundamental Theorem of Calculus

In the preceding section we developed a lot of theory for integrals but did not address
the problem of actually evaluating them. To see that the theory we have developed
thus far does little to make computations easy, consider the problem of computing∫ b

a xk dx for k ∈ N. When k = 0, it is obvious that every Riemann sum will be

equal to (b − a), and therefore
∫ b

a x0 dx = b − a. To handle k ≥ 1, first note that
∫ b

a xk dx = ∫ b
0 xk dx − ∫ a

0 xk dx and, for any c ∈ R

∫ −c

0
xk dx = (−1)k+1

∫ c

0
xk dx .

Hence, it suffices to compute
∫ c
0 xk dx for c > 0. Further, by the scaling property in

(3.1.2), ∫ c

0
xk dx = ck+1

∫ 1

0
xk dx .

Thus, everything comes down to computing
∫ 1
0 xk dx . To this end, we look at Rie-

mann sums of the form
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1

n

n∑

m=1

(m

n

)k = S(k)
n

nk+1
where S(k)

n ≡
n∑

m=1

mk .

When n is even, one can see that S(1)
n = n(n+1)

2 by adding the 1 to n, 2 to n − 1, etc.

When n is odd, one gets the same conclusion by adding n to S(1)
n−1. Hence, we have

shown that ∫ 1

0
x dx = lim

n→∞
n(n + 1)

2n2
= 1

2
,

which is what one would hope is the area of the right triangle with vertices (0, 0),
(0, 1), and (1, 1). When k ≥ 2 one can proceed as follows. Write the difference
(n + 1)k+1 − 1 as the telescoping sum

∑n
m=1

(
(m + 1)k+1 − mk+1

)
. Next, expand

(m + 1)k+1 using the binomial formula, and, after changing the order of summation,
arrive at

(n + 1)k+1 − 1 =
k∑

j=0

(
k + 1

j

)
S( j)

n .

Starting from this and using induction on k, one sees that limn→∞ S(k)
n

nk+1 = 1
k+1 . Hence,

we now know that
∫ 1
0 xk dx = 1

k+1 . Combining this with our earlier comments, we
have ∫ b

a
xk dx = bk+1 − ak+1

k + 1
for all k ∈ N and a < b. (3.2.1)

There is something that should be noticed about the result (3.2.1). Namely, if one
looks at

∫ b
a xk dx as a function of the upper limit b, then bk is its derivative. That is,

as a function of its upper limit, the derivative of this integral is the integrand. That
this is true in general is one of Newton’s great discoveries.1

Theorem 3.2.1 (Fundamental Theorem of Calculus) Let f : [a, b] −→ C be a
continuous function, and set F(x) = ∫ x

a f (t) dt for x ∈ [a, b]. Then F is continuous
on [a, b], continuously differentiable on (a, b), and F ′ = f there. Conversely, if
F : [a, b] −→ C is a continuous function that is continuously differentiable on
(a, b), then

F ′ = f on (a, b) =⇒ F(b) − F(a) =
∫ b

a
f (x) dx .

1Although it was Newton who made this result famous, it had antecedents in the work of James
Gregory and Newton’s teacher Isaac Barrow. Mathematicians are not always reliable historians,
and their attributions should be taken with a grain of salt.
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Proof Without loss in generality, we will assume that f is R-valued.
Let F be as in the first assertion. Then, by (3.1.1), for x, y ∈ [a, b],

F(y) − F(x) =
∫ y

x
f (t) dt = f (x)(y − x) +

∫ y

x

(
f (t) − f (x)

)
dt.

Given ε > 0, choose δ > 0 so that | f (t) − f (x)| < ε for t ∈ [a, b] with |t − x | < δ.
Then, by (3.1.4),

∣
∣
∣
∣

∫ y

x

(
f (t) − f (x)

)
dt

∣
∣
∣
∣ < ε|y − x | if |y − x | < δ,

and so
∣
∣
∣
∣

F(y) − F(x)

y − x
− f (x)

∣
∣
∣
∣ < ε for x, y ∈ [a, b] with 0 < |y − x | < δ.

This proves that F is continuous on [a, b], differentiable on (a, b), and F ′ = f there.
If f and F are as in the second assertion, set Δ(x) = F(x) − ∫ x

a f (t) dt . Then,
by the preceding, Δ is continuous of [a, b], differentiable on (a, b), and Δ′ = 0 on
(a, b). Hence, by (1.8.1), Δ(b) = Δ(a), and so, since Δ(a) = F(a), the asserted
result follows. �

It is hard to overstate the importance of Theorem 3.2.1. The hands-on method
we used to integrate xk is unable to handle more complicated functions. Instead,
given a function f , one looks for a function F such that F ′ = f and then applies
Theorem 3.2.1 to do the calculation. Such a function F is called an indefinite integral
of f . By Theorem 1.8.1, since the derivative of the difference between any two of its
indefinite integrals is 0, two indefinite integrals of a function can differ by at most
an additive constant. Once one has F , it is customary to write

∫ b

a
f (x) dx = F(x)

∣∣b
x=a ≡ F(b) − F(a).

Here are a couple of corollaries of Theorem 3.2.1.

Corollary 3.2.2 Suppose that f and g are continuous, C-valued functions on [a, b]
which are continuously differentiable on (a, b), and assume that their derivatives
are bounded. Then

∫ b

a
f ′(x)g(x) dx = f (x)g(x)

∣∣
∣
b

x=a
−
∫ b

a
f (x)g′(x) dx

where f (x)g(x)

∣
∣∣
b

x=a
≡ f (b)g(b) − f (a)g(a).

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_1


3.2 The Fundamental Theorem of Calculus 71

Proof By the product rule, ( f g)′ = f ′g+g f ′, and so, by Theorem 3.2.1 and (3.1.5),

f (β)g(β) − f (α)g(α) =
∫ β

α

f ′(x)g(x) dx +
∫ b

a
f (x)g′(x) dx

for all a < α < β < b. Now let α ↘ a and β ↗ b. �

The equation in Corollary 3.2.2 is known as the integration by parts formula, and
it is among themost useful tools available for computing integrals. For instance, it can
be used to give another derivation of Taylor’s theorem, this time with the remainder
term expressed as an integral. To be precise, let f : (a, b) −→ C be an (n +1) times
continuously differentiable function. Then, for x, y ∈ (a, b),

f (y) =
n∑

m=0

(y − x)m

m! f (m)(x)

+ (y − x)n+1

n!
∫ 1

0
(1 − t)n f (n+1)

(
(1 − t)x + t y

)
dt.

(3.2.2)

To check this, set u(t) = f
(
(1 − t)x + t y

)
. Then

u(m)(t) = (y − x)m f (m)
(
(1 − t)x + t y

)
,

and, by Theorem 3.2.1, u(1) − u(0) = ∫ 10 u′(t) dt , which is (3.2.2) for n = 1. Next,
assume that

(∗) u(1) =
n−1∑

m=0

u(m)(0)

m! + 1

(n − 1)!
∫ 1

0
(1 − t)n−1u(n)(t) dt

for some n ≥ 1, and use integration by parts to see that

∫ 1

0
(1 − t)n−1u(n)(t) dt = − (1 − t)nu(n)(t)

n

∣
∣∣
1

t=0
+ 1

n

∫ 1

0
(1 − t)nu(n+1)(t) dt.

Hence, by induction, (3.2.2) holds for all n ≥ 1.
A second application of integration by parts is to the derivation ofWallis’s formula:

π

2
= lim

n→∞

n∏

m=1

2m

2m − 1

2m

2m + 1
= lim

n→∞
4n(n!)2

(2n + 1)
(∏n

m=1(2m − 1)
)2 . (3.2.3)
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To prove his formula, we begin by using integration by parts to see that

∫ π
2

0
cosm t dt =

∫ π
2

0
sin′ t cosm−1 t dt = (m − 1)

∫ π
2

0
sin2 t cosm−2 t dt

= (m − 1)
∫ π

2

0
cosm−2 t dt − (m − 1)

∫ π
2

0
cosm t dt,

and therefore that

∫ π
2

0
cosm t dt = m − 1

m

∫ π
2

0
cosm−2 t dt for m ≥ 2.

Since
∫ π

2
0 cos t dt = 1, this proves that

∫ π
2

0
cos2n+1 t dt =

n∏

m=1

2m

2m + 1
for n ≥ 1.

At the same time, it shows that
∫ π

2
0 cos2 t dt = π

4 and therefore that

∫ π
2

0
cos2n t dt = π

2

n∏

m=1

2m − 1

2m
for n ≥ 1.

Thus ∫ π
2
0 cos2n+1 t dt
∫ π

2
0 cos2n t dt

= 2

π

4n(n!)2
(2n + 1)

(∏n
m=1(2m − 1)

)2 .

Finally, since

1 ≥
∫ π

2
0 cos2n+1 t dt
∫ π

2
0 cos2n t dt

= 2n

2n + 1

∫ π
2
0 cos2n−1 t dt
∫ π

2
0 cos2n t dt

≥ 2n

2n + 1
,

(3.2.3) follows.
Aside from being a curiosity, as Stirling showed, Wallis’s formula allows one

to compute the constant eΔ in (1.8.7). To understand what he did, observe that∏n
m=1(2m − 1) = (2n)!

2nn! and therefore, by (1.8.7), that

4n(n!)2

(2n + 1)
(∏n+1

m=1(2m − 1)
)2 = 1

2n + 1

(
4n(n!)2
(2n)!

)2

∼ 1

2n + 1

(
4neΔn

(
n
e

)2n

√
2n
(
2n
e

)2n

)2

= e2Δn

4n + 2
.

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_1
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Hence, after letting n → ∞ and applying (3.2.3), one sees that e2Δ =2π and therefore
that (1.8.7) can be replaced by

√
2πe− 1

n ≤ n!en

nn+ 1
2

≤ √
2πe

1
n , (3.2.4)

or, more imprecisely, n! ∼ √
2πn
(

n
e

)n
.

Here is another powerful tool for computing integrals.

Corollary 3.2.3 Let ϕ : [a, b] −→ [c, d] be a continuous function, and assume
that ϕ is continuously differentiable on (a, b) and that its derivative is bounded. If
f : [c, d] −→ C is a continuous function, then

∫ b

a

(
f ◦ ϕ(t)

)
ϕ′(t) dt =

∫ ϕ(b)

ϕ(a)

f (x) dx .

In particular, if ϕ′ > 0 on (a, b) and ϕ(a) ≤ c < d ≤ ϕ(b), then for any continuous
f : [c, d] −→ C,

∫ d

c
f (x) dx =

∫ ϕ−1(d)

ϕ−1(c)

(
f ◦ ϕ(t)

)
ϕ′(t) dt.

Proof Set F(t) = ∫ ϕ(t)
ϕ(a)

f (x) dx . Then, F(a) = 0 and, by the chain rule and Theo-
rem 3.2.1, F ′ = ( f ◦ ϕ)ϕ′. Hence, again by Theorem 3.2.1,

F(b) =
∫ b

a

(
f ◦ ϕ(t)

)
ϕ′(t) dt. �

The equation in Corollary 3.2.3 is called the change of variables formula. In appli-
cations one often uses the mnemonic device of writing x = ϕ(t) and dx = ϕ′(t) dt .
For example, consider the integral

∫ 1
0

√
1 − x2 dx , and make the change of vari-

ables x = sin t . Then dx = cos t dt , 0 = arcsin 0, and π
2 = arcsin 1. Hence

∫ 1
0

√
1 − x2 dx = ∫ π

2
0 cos2 t dt , which, as we saw in connection with Wallis’s for-

mula, equals π
4 . In that

{(
x,

√
1 − x2

) : x ∈ [0, 1]} is the portion of the unit circle
in the first quadrant, this is the answer that one should have expected.

Here is a slightly more theoretical application of Theorem 3.2.1.

Corollary 3.2.4 Suppose that {ϕn : n ≥ 1} is a sequence of C-valued continuous
functions on [a, b] that are continuously differentiable on (a, b). Further, assume
that {ϕn : n ≥ 1} converges uniformly on [a, b] to a function ϕ and that there is
a function ψ on (a, b) such that ϕ′

n −→ ψ uniformly on [a + δ, b − δ] for each
0 < δ < b−a

2 . Then ϕ is continuously differentiable on (a, b) and ϕ′ = ψ.

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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Proof Given x ∈ (a, b), choose 0 < δ < b−a
2 so that x ∈ (a + δ, b − δ). Then

ϕ(x) − ϕ(a + δ) = lim
n→∞

∫ x

a+δ

ϕ′
n(y) dy =

∫ x

a+δ

ψ(y) dy,

and so ϕ is differentiable at x and ϕ′(x) = ψ(x). �

3.3 Rate of Convergence of Riemann Sums

In applications it is often very important to have an estimate on the rate at which
Riemann sums are converging to the integral of a function. There aremany results that
deal with this question, and in this section we will show that there are circumstances
in which the convergence is faster than one might have expected.

Given a continuous function f : [0, 1] −→ C, it is obvious that

∣∣∣∣∣
R( f ; C, Ξ) −

∫ 1

0
f (x) dx

∣∣∣∣∣
≤ sup

{| f (y) − f (x)| : x, y ∈ [0, 1] with |y − x | ≤ ‖C‖}

for any finite collection C of non-overlapping closed intervals whose union is [0, 1]
and any choice function Ξ . Hence, if f is continuously differentiable on (0, 1), then

∣∣∣∣R( f ; C, Ξ) −
∫ 1

0
f (x) dx

∣∣∣∣ ≤ ‖ f ′‖(0,1)‖C‖.

Moreover, even if f has more derivatives, this is the best that one can say in general.
On the other hand, as we will now show, one can sometimes do far better.

For n ≥ 1, take Cn = {Im,n : 1 ≤ m ≤ n}, where Im,n = [m−1
n , m

n

]
, Ξn(Im,n) =

m
n , and, for continuous f : [0, 1] −→ C, set

Rn( f ) ≡ R( f ; Cn, Ξn) = 1

n

n∑

m=1

f
(

m
n

)
.

Next, assume that f has a bounded, continuous derivative on (0, 1), and apply inte-
gration by parts to each term, to see that

∫ 1

0
f (x) dx − Rn( f ) =

n∑

m=1

∫ m
n

m−1
n

(
f (x) − f

(
m
n

))
dx

=
∞∑

m=1

∫

Im,n

(
x − m−1

n

)′(
f (x) − f

(
m
n

))
dx = −

n∑

m=1

∫ m
n

m−1
n

(
x − m−1

n

)
f ′(x) dx .
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Now add the assumption that f (1) = f (0). Then
∫ 1
0 f ′(x) dx = f (1) − f (0) = 0,

and so

n∑

m=1

∫ m
n

m−1
n

(
x − m−1

n

)
f ′(x) dx =

n∑

m=1

∫ m
n

m−1
n

(
x − m−1

n − c
)

f ′(x) dx

for any constant c. In particular, by taking c = 1
2n to make each of the integrals

∫ m
n

m−1
n

(
x − m−1

n − c
)

dx = 0, we can write

∫ m
n

m−1
n

(
x − m−1

n − 1
2n

)
f ′(x) dx =

∫ m
n

m−1
n

(
x − m−1

n − 1
2n

)(
f ′(x) − f ′(m

n )
)

dx,

and thereby conclude that

∫ 1

0
f (x) dx − Rn( f ) = −

n∑

m=1

∫ m
n

m−1
n

(
x − m−1

n − 1
2n

)(
f ′(x) − f ′(m

n )
)

dx .

This already represents progress. Indeed, because
∫ m

n
m−1

n

∣∣x − m−1
n − 1

2n

∣∣ dx = 1
4n2 for

each 1 ≤ m ≤ n, we have shown that

∣∣
∣∣

∫ 1

0
f (x) dx − Rn( f )

∣∣
∣∣ ≤

sup
{| f ′(y) − f ′(x)| : |y − x | ≤ 1

n

}

4n

if f is continuously differentiable and f (1) = f (0). Hence, if in addition, f is twice
differentiable, then | f ′(y) − f ′(x)| ≤ ‖ f ′′‖(0,1)|y − x | and the preceding leads to

(∗)

∣∣∣
∣

∫ 1

0
f (x) dx − Rn( f )

∣∣∣
∣ ≤

‖ f ′′‖(0,1)

4n2
.

Before proceeding, it is important to realize how crucial a role the choice of both
Cn andΞn play. The role that Cn plays is reasonably clear, since it is what allowed us to
choose the constant c independent of the intervals. The role of Ξn is more subtle. To
see that it is essential, consider the function f (x) = ei2πx , which is both smooth and
satisfies f (1) = f (0). Furthermore, ‖ f ′‖[0,1] = 2π and

∫ 1
0 f (x) dx = 0. However,

if Ξ̃n(Im,n) = m(n−1)
n2 , then

R( f ; Cn, Ξ̃n) = 1

n

n∑

m=1

ei2π m(n−1)
n2 = ei2π n−1

n2

n

1 − ei2π n−1
n

1 − ei2π n−1
n2

.
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Since n
(
1 − ei2π n−1

n
) = n

(
1 − e−i2π 1

n
) −→ i2π and n

(
1 − ei2π n−1

n2
) −→ −i2π, it

follows that

lim
n→∞ n

∣∣∣∣R( f ; Cn, Ξ̃n) −
∫ 1

0
f (x) dx

∣∣∣∣ = 1.

Thus, the analog of (∗) does not hold if one replaces Ξn by Ξ̃n .
To go further, we introduce the notation

Δ(k)
n ( f ) ≡ 1

k!
n∑

m=1

∫ m
n

m−1
n

(
x − m−1

n

)k(
f (x) − f (m

n )
)

dx for k ≥ 0.

Obviously, Δ(0)
n ( f ) = ∫ 10 f (x) dx − Rn( f ). Furthermore, what we showed when

f is continuously differentiable and f (1) = f (0) is that Δ(0)
n ( f ) = 1

2n Δ(0)
n ( f ′) −

Δ(1)
n ( f ′). By essentially the same argument, what we will now show is that, under

the same assumptions on f ,

Δ(k)
n ( f ) = 1

(k + 2)!nk+1
Δ(0)

n ( f ′) − Δ(k+1)
n ( f ′) for k ≥ 0. (3.3.1)

The first step is to integrate each term by parts and thereby get

Δ(k)
n ( f ) = − 1

(k + 1)!
n∑

m=1

∫ m
n

m−1
n

(
x − m−1

n

)k+1
f ′(x) dx . (3.3.2)

Because
∫ 1
0 f ′(x) dx = 0, the right hand side does not change if one subtracts

1
(k+2)nk+1 from each

(
x − m−1

n

)k+1
, and, once this subtraction is made, one can, with

impunity, subtract f ′(m
n ) from f ′(x) in each term. In this way one arrives at

Δ(k)
n ( f ) = − 1

(k + 1)!
n∑

m=1

∫ m
n

m−1
n

((
x − m−1

n

)k+1 − 1
(k+2)nk+1

)(
f ′(x) − f ′(m

n )
)

dx,

which, after rearrangement, is (3.3.1).
We will say that a function ϕ : R −→ C is periodic2 if ϕ(x + 1) = ϕ(x) for all

x ∈ R. Notice that if ϕ : R −→ C is a bounded periodic function that is Riemann
integrable on bounded intervals, then, by (3.1.6),

∫ a+1

a
ϕ(ξ) dξ =

∫ 1

0
ϕ(ξ) dξ for all a ∈ R. (3.3.3)

2In general, a function f : R −→ C is said to be periodic if there is some α > 0 such that
f (x + α) = f (x) for all x ∈ R, in which case α is said to be a period of f . Here, without further
comment, wewill always be dealingwith the casewhenα = 1 unless some other period is specified.
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To check this, suppose that n ≤ a < n + 1. Then, by (3.1.6),

∫ a+1

a
ϕ(ξ) dξ =

∫ n+1

a
ϕ(ξ) dξ +

∫ a+1

n+1
ϕ(ξ) dξ

=
∫ n+1

a
ϕ(ξ) dξ +

∫ a

n
ϕ(ξ) ξ =

∫ n+1

n
ϕ(ξ) dξ =

∫ 1

0
ϕ(ξ) dξ.

Now assume that f : R −→ C is periodic and has � ≥ 1 continuous derivatives.
Starting from (3.3.1) and working by induction on �, we see that

Δ(0)
n ( f ) = 1

n�

�∑

k=0

ak,�nk+1Δ(k)
n ( f (�)),

where

a0,0 = 1, a0,�+1 =
�∑

k=0

ak,�

(k + 2)! , and ak,�+1 = −ak−1,� for 1 ≤ k ≤ �.

The preceding can be simplified by observing that ak,� = (−1)ka0,�−k for 0 ≤ k ≤ �,
which means that

Δ(0)
n ( f ) = 1

n�+1

�∑

k=0

(−1)kb�−knk+1Δ(k)
n ( f (�))

where b0 = 1 and b�+1 =
�∑

k=0

(−1)k

(k + 2)!b�−k .

(3.3.4)

If we now assume that f is (�+1) times continuously differentiable, then, by (3.3.2),

∣∣Δ(k)
n ( f (�))

∣∣ ≤ 1

(k + 1)!
n∑

m=1

∫ m
n

m−1
n

(
x − m−1

n

)k+1| f (�+1)(x)| dx ≤ ‖ f (�+1)‖[0,1]
(k + 2)!nk+1

,

and so (3.3.4) leads to the estimate (see Exercise 3.13 for a related estimate)

∣∣∣∣

∫ 1

0
f (x) dx − Rn( f )

∣∣∣∣ ≤
K�‖ f (�+1)‖[0,1]

n�+1
where K� =

�∑

k=0

|b�−k |
(k + 2)! (3.3.5)

for periodic functions f having (� + 1) continuous derivatives. In other words, if
f is periodic and has (� + 1) continuous derivatives, then the Riemann sum Rn( f )

differs from
∫ 1
0 f (x) dx by at most the constant K� times ‖ f (�+1)‖[0,1]n−�−1.

To get a feeling for how K� grows with �, begin by taking f (x) = ei2πx . Then
Δ

(0)
1 ( f ) = −1, ‖ f (�+1)‖[0,1] = (2π)�+1, and so (3.3.5) says that K� ≥ (2π)−�−1. To
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get a crude upper bound, let α be the unique element of (0, 1) for which e
1
α = 1+ 2

α
,

and use induction on � to see that |b�| ≤ α�. Hence, we now know that

(2π)−�−1 ≤ K� ≤ e
1
α α�+2.

Below we will get a much more precise result (cf. (3.4.9)), but in the meantime it
should be clear that (3.3.5) is saying that the convergence ofRn( f ) to

∫ 1
0 f (x) dx is

very fast when f is periodic, smooth, and the successive derivatives of f are growing
at a moderate rate.

3.4 Fourier Series

Taylor’s Theorem provides a systematic method for finding polynomial approxima-
tions to a function by scrutinizing in great detail the behavior of the function at a
point. Although the method has many applications, it also has flaws. In fact, as we
saw in the discussion following Lemma 1.8.3, there are circumstances in which it
yields no useful information. As that example shows, the problem is that the beha-
vior of a function away from a point cannot always be predicted from the behavior
of it and its derivatives at the point. Speaking metaphorically, Taylor’s method is
analogous to attempting to lift an entire plank from one end.

Fourier introduced a very different approximation procedure, one in which the
approximation is in terms of waves rather than polynomials. He took the trigonomet-
ric functions {cos(2πmx) : m ≥ 0} and {sin(2πmx) : m ≥ 1} as the model waves
into which he wanted to resolve other functions. That is, he wanted to write a general
continuous function f : [0, 1] −→ C as a usually infinite linear combination of the
form

f (x) =
∞∑

m=0

am cos(2πmx) +
∞∑

m=1

bm sin(2πmx),

where the coefficients am and bm are complex numbers. Using (2.2.1), one sees that
by taking f̂0 = a0, f̂m = am−ibm

2 for m ≥ 1, and f̂m = a−m+ib−m

2 for m ≤ −1, an
equivalent and more convenient expression is

f (x) =
∞∑

m=−∞
f̂mem(x) where em(x) ≡ ei2πmx . (3.4.1)

One of Fourier’s key observations is that if one assumes that f can be represented
in this way and that the series converges well enough, then the coefficients f̂m are
given by

f̂m ≡
∫ 1

0
f (x)e−m(x) dx . (3.4.2)

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_2
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To see this, observe that (cf. Exercise 3.7 for an alternative method)

∫ 1

0
em(x)e−n(x) dx

=
∫ 1

0

(
cos(2πmx) cos(2πnx) + sin(2πmx) sin(2πnx)

)
dx

+ i
∫ 1

0

(− cos(2πmx) sin(2πnx) + sin(2πmx) cos(2πnx)
)

dx

=
∫ 1

0
cos
(
2π(m − n)x

)
dx + i

∫ 1

0
sin
(
2π(m − n)x

)
dx =

{
1 if m = n

0 if m �= n,

where, in the passage to the last line, we used (1.5.1). Hence, if the exchange in the
order of summation and integration is justified, (3.4.2) follows from (3.4.1).

We now turn to the problem of justifying Fourier’s idea. That is, if f̂m is given
by (3.4.2), we want to examine to what extent it is true that f is represented by
(3.4.1). Thus let a continuous f : [0, 1] −→ C be given, determine f̂m accordingly
by (3.4.2), and define

fr (x) =
∞∑

m=−∞
r |m| f̂mem(x) for r ∈ [0, 1) and x ∈ R. (3.4.3)

Because | f̂m | ≤ ‖ f ‖[0,1], the series defining fr is absolutely convergent. In order to
understand what happens when r ↗ 1, observe that

n∑

m=−n

r |m| f̂mem(x) =
∫ 1

0

(
n∑

m=0

(
re1(x − y)

)m
)

f (y) dy

+
∫ 1

0

(
n∑

m=1

(
re1(y − x)

)m
)

f (y) dy

=
∫ 1

0

(
1 − rn+1en+1(x − y)

1 − re1(x − y)
+ re1(y − x) − rn+1en+1(y − x)

1 − re1(y − x)

)
f (y)dy

=
∫ 1

0

1 − r2 − rn+1 cos
(
2π(n + 1)(x − y)

)+ rn+2 cos(2πn(x − y))

|1 − re1(x − y)|2 f (y) dy.

Hence, by Theorem 3.1.4,

fr (x) =
∞∑

m=−∞
r |m| f̂mem(x) =

∫ 1

0
pr (x − y) f (y) dy

where pr (ξ) ≡ 1 − r2

|1 − re1(ξ)|2 for ξ ∈ R. (3.4.4)

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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Obviously the function pr is positive, periodic, and even: pr (−ξ) = pr (ξ). Further-
more, by taking f = 1 and noting that then f̂0 = 1 and f̂m = 0 for m �= 0, we see
from (3.4.4) and evenness that

∫ 1
0 pr (x − y) dy = 1. Finally, note that if δ ∈ (0, 1

2

)

and ξ /∈⋃∞
n=−∞[n − δ, n + δ], then

(∗) |1 − re1(ξ)|2 ≥ 2
(
1 − cos(2πξ)

) ≥ ω(δ) ≡ 2
(
1 − cos(2πδ)

)
> 0

and therefore pr (ξ) ≤ 1−r2

ω(δ)
.

Given a function f : [0, 1] −→ C, its periodic extension to R is the function f̃
given by f̃ (x) = f (x − n) for n ≤ x < n + 1. Clearly, f̃ will be continuous if and
only if f is continuous and f (0) = f (1). In addition, if � ≥ 1, then f̃ will be � times
continuously differentiable if and only if f is � times continuously differentiable on
(0, 1) and the limits limx↘0 f (k)(x) and limx↗1 f (k)(x) exist and are equal for each
0 ≤ k ≤ �.

Theorem 3.4.1 Let f : [0, 1] −→ C be a continuous function, and define fr

for r ∈ [0, 1) as in (3.4.3). Then, for each r ∈ [0, 1), fr is a periodic func-
tion with continuous derivatives of all orders. In fact, for each k ≥ 0, the series∑∞

m=−∞(i2π|m|)kr |m| f̂mem(x) is absolutely and uniformly convergent to f (k)
r (x).

Furthermore, for each δ ∈ (0, 1
2

)
, fr −→ f as r ↗ 1 uniformly on [δ, 1 − δ].

Finally, if f (0) = f (1), then fr −→ f uniformly on [0, 1].
Proof Since each term in the sum defining fr is periodic, it is obvious that fr is also.
In addition, since the sum converges uniformly on [0, 1], fr is continuous. To prove
that fr has continuous derivatives of all orders, we begin by applying Theorem 2.3.2
to see that

∑∞
m=−∞ |m|kr |m| ≤ 2

∑∞
m=0 mkrm < ∞.

In view of the preceding, we know that
∑∞

m=−∞(i2π|m|)r |m| f̂mem(x) con-
verges uniformly for x ∈ [0, 1] to a function ψ. At the same time, if ϕn(x) ≡∑n

m=−n r |m| f̂ em(x), then ϕn converges uniformly to fr and ϕ′
n=
∑n

m=−n(i2πm)r |m|

f̂mem(x) converges uniformly toψ. Hence, byCorollary 3.2.4, fr is differentiable and
f ′
r = ψ. More generally, assume that fr has k continuous derivatives and that f (k)

r =∑∞
m=−∞ r |m|(i2π|m|)k f̂mem . Then a repetition of the preceding argument shows that

f (k)
r is differentiable and that its derivative is

∑∞
m=−∞ r |m|(i2π|m|)k+1 f̂mem .

Now take f̃ to be the periodic extension of f to R. Since f̃ is bounded and
Riemann integrable on bounded intervals, (3.3.3) together with

∫ 1
0 pr (x − y) dy = 1

show that

fr (x) − f (x) =
∫ 1

0
pr (x − y)

(
f (y) − f (x)

)
dy

=
∫ 1−x

−x
pr (ξ)

(
f (ξ + x) − f (x)

)
dξ =

∫ 1
2

− 1
2

pr (ξ)
(

f̃ (ξ + x) − f̃ (x)
)

dξ

http://dx.doi.org/10.1007/978-3-319-24469-3_2
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=
∫ −δ

− 1
2

pr (ξ)
(

f̃ (ξ + x) − f̃ (x)
)

dξ +
∫ δ

−δ

pr (ξ)
(

f̃ (ξ + x) − f̃ (x)
)

dξ

+
∫ 1

2

δ

pr (ξ)
(

f̃ (ξ + x) − f̃ (x)
)

dξ

for x ∈ [0, 1] and 0 < δ < 1
2 . Using (∗), one sees that the first and third terms in the

final expression are dominated by 2‖ f ‖[0,1] 1−r2

ω(δ)
and therefore tend to 0 as r ↗ 1.

As for the second term, it is dominated by sup{| f̃ (y)− f̃ (x)| : |y − x | ≤ δ}. Hence,
if f̃ is continuous at x , as it will be if x ∈ (0, 1), then

lim
r↗1

∣
∣ fr (x) − f (x)

∣
∣ = lim

r↗1

∣
∣
∣
∣

∫ 1

0
pr (x − y)

(
f (y) − f (x)

)
dy

∣
∣
∣
∣ = 0.

Moreover, the convergence is uniform on the interval [δ, 1 − δ], and if
f (0) = f (1) and therefore f̃ is continuous everywhere, then the convergence is
uniform on [0, 1]. �

Even though the preceding result is a weakened version of it, we now know that
Fourier’s idea is basically sound. One important fact to which this weak version leads
is the identity

∫ 1

0
f (x)g(x) dx =

∞∑

m=−∞
f̂m ĝm . (3.4.5)

To prove this, first observe that, because
∫ 1
0 em1(x)e−m2(x) dx is 0 if m1 �= m2 and 1

if m1 = m2, one can use Theorem 3.1.4 to justify

∫ 1

0
fr (x)gr (x) dx =

∞∑

m1,m2=−∞
r |m1|+|m2| f̂m1 ĝm2

∫ 1

0

∫ 1

0
em1(x)e−m2(x) dx

=
∞∑

m=−∞
r2|m| f̂m ĝm .

At the same time, for each δ ∈ (0, 1
2

)
,

lim
r↗1

∫ 1

0

∣∣ fr (x)gr (x) − f (x)g(x)
∣∣ dx

≤ lim
r↗1

∫ δ

0

∣
∣ fr (x)gr (x) − f (x)g(x)

∣
∣ dx + lim

r↗1

∫ 1

1−δ

∣
∣ fr (x)gr (x) − f (x)g(x)

∣
∣ dx

≤ 4‖ f ‖[0,1]‖g‖[0,1]δ,
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and so limr↗1
∫ 1
0 fr (x)gr (x) dx = ∫ 10 f (x)g(x) dx . Taking g = f , we conclude

that ∫ 1

0
| f (x)|2 dx = lim

r↗1

∞∑

m=−∞
r2|m|| f̂m |2,

and therefore that
∑∞

m=−∞ | f̂m |2 < ∞. Hence, by Schwarz’s inequality (cf. Exer-
cise 2.3),

∞∑

m=−∞
| f̂m ||ĝm | ≤

√√
√
√

∞∑

m=−∞
| f̂m |2

√√
√
√

∞∑

m=−∞
|ĝm |2 < ∞,

and so the series
∑∞

m=−∞ f̂m ĝm is absolutely convergent. Thus, when we apply
(1.10.1), we find that

∞∑

m=−∞
f̂m ĝm = lim

r↗1

∞∑

m=−∞
r2|m| f̂m ĝm =

∫ 1

0
f (x)g(x) dx .

The identity in (3.4.5) is known as Parseval’s equality, and it has many interesting
applications of which the following is an example. Take f (x) = x . Obviously,
f̂0 = 1

2 , and, using integration by parts, one sees that f̂m = 1
i2πm for m �= 0. Hence,

by (3.4.5),

1

3
=
∫ 1

0
| f (x)|2 dx = 1

4
+ 1

4π2

∑

m �=0

1

m2
= 1

4
+ 1

2π2

∞∑

m=1

1

m2
,

from which we see that ∞∑

m=1

1

m2
= π2

6
. (3.4.6)

The function ζ(z) given by
∑∞

m=1
1

mz when the real part of z is greater than 1 is
the famous Riemann zeta function which plays an important role in number theory
(cf. Sect. 6.3). We now know the value of ζ at z = 2, and, as we will show below,
we can also find its value at all positive, even integers. However, in order to do
that computation, we will need to discuss when the Fourier series

∑∞
m=−∞ f̂mem(x)

converges to f . This turns out to be a very delicate question, and we will not attempt
to describe any of the refined answers that have been found. Instead, we will deal
only with the most elementary case.

Theorem 3.4.2 Let f : [0, 1] −→ C be a continuous function. If
∑∞

m=−∞ | f̂m |
< ∞, then f (0) = f (1) and

∑∞
m=−∞ f̂mem converges uniformly to f . In partic-

ular, if f (1) = f (0) and f has a bounded, continuous derivative on (0, 1), then∑∞
m=−∞ | f̂m | < ∞ and therefore

∑∞
m=−∞ f̂mem converges uniformly to f .

http://dx.doi.org/10.1007/978-3-319-24469-3_2
http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_6
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Proof We already know that fr (x) −→ f (x) for all x ∈ (0, 1), and therefore, by
(1.10.1), if x ∈ (0, 1) and

∑∞
m=−∞ f̂mem(x) converges, it must converge to f (x).

Thus, since | f̂mem(x)| ≤ | f̂m | if ∑∞
m=−∞ | f̂m | < ∞,

∑∞
m=−∞ f̂mem(x) converges

absolutely and uniformly on [0, 1] to a continuous, periodic function, and, because
that function coincides with f on (0, 1), it must be equal to f on [0, 1].

Now assume that f (1) = f (0) is and that f has a bounded, continuous derivative
f ′ on (0, 1). Using integration by parts and Exercise 3.7, we see that, for m �= 0,

f̂m = lim
δ↘0

∫ 1−δ

δ

f (x)e−m(x) dx

= lim
δ↘0

1

i2πm

(
f (δ)e−m(δ) − f (1 − δ)e−m(1 − δ) +

∫ 1−δ

δ

f ′(x)e−m(x) dx

)

= f̂ ′
m

i2πm
.

Hence, by Schwarz’s inequality, Parseval’s equality, and (3.4.6),

∑

m �=1

| f̂m | ≤ 1

2π

⎛

⎝
∑

m �=0

1

m2

⎞

⎠

1
2
⎛

⎝
∑

m �=0

| f̂ ′
m |2
⎞

⎠

1
2

≤
√

1

24

(∫ 1

0
| f ′(x)|2 dx

) 1
2

. �

Notice that the integration by parts step in the preceding has the following easy
extension. Namely, suppose that f : [0, 1] −→ C is continuous and that f has
� ≥ 1 bounded, continuous derivatives on (0, 1). Further, assume that f (k)(0) ≡
limx↘0 f (k)(x) and f (k)(1) ≡ limx↗1 f (x) exist and are equal for 0 ≤ k < �. Then,
by iterating the argument given above, one sees that

f̂m = (i2πm)−�(̂ f (�))m for m ∈ Z \ {0}.

Returning to the computation of ζ(2�), recall the numbers bk introduced in (3.3.4),
and set

P�(x) =
�∑

k=0

(−1)kb�−k

k! xk for � ≥ 0 and x ∈ R.

Then P0 ≡ 1 and P� = −P ′
�+1. In addition, if � ≥ 2, then

P�(1) = b� − b�−1 +
�∑

k=2

(−1)kb�−k

k!

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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and, by (3.3.4),
�∑

k=2

(−1)kb�−k

k! =
�−2∑

k=0

(−1)kb�−2−k

(k + 2)! = b�−1.

Hence P�(1) = b� = P�(0) for all � ≥ 2. In particular, these lead to

(P̂�)0 = −
∫ 1

0
P ′

�+1(x) dx = P�+1(0) − P�+1(1) = 0 for � ≥ 1

and
(P̂�)m = (−1)�−1(i2πm)1−�(P̂1)m for � ≥ 2 and m �= 0.

Since P1(x) = b1 − b0x = 1
2 − x , we can use integration by parts to see that

(P̂1)m = −
∫ 1

0
xe−i2πmx dx = (i2πm)−1 for m �= 0,

and therefore

P�(x) = −
(

i

2π

)�∑

m �=0

em(x)

m�
for � ≥ 2 and x ∈ [0, 1]. (3.4.7)

Taking x = 0 in (3.4.7), we have that

b2�+1 = 0 and b2� = (−1)�+12ζ(2�)

(2π)2�
(3.4.8)

for � ≥ 1. Knowing that b� = 0 for odd � ≥ 3, the recursion relation in (3.3.4) for
b� simplifies to

b� =

⎧
⎪⎨

⎪⎩

2−� if � ∈ {0, 1}
1
2�! −∑ �−2

2
k=0

b2k
(�−2k+1)! if � ≥ 2 is even

0 if � ≥ 2 is odd.

(3.4.9)

Now we can go the other direction and use (3.4.8) and (3.4.9) to compute ζ at even
integers:

ζ(2�) = (−1)�+122�−1π2�b2� for � ≥ 1. (3.4.10)

Finally, starting from (3.4.10), one sees that the K�’s in (3.3.5) satisfy
lim�→∞(K�)

1
� = (2π)−1.
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In the literature, the numbers �!b� are called the Bernoulli numbers, and they have
an interesting history. Using (3.4.9) together with (3.4.10), one recovers (3.4.6) and
sees that ζ(4) = π4

90 and ζ(6) = π6

945 . Using these relations to compute ζ at larger even
integers is elementary but tedious. Perhaps more interesting than such computations
is the observation that, when � ≥ 2, P�(x) is an �th order polynomial whose periodic
extension from [0, 1] is (� − 2) times differentiable. That such polynomials exist is
not obvious.

3.5 Riemann–Stieltjes Integration

The topic of this concluding section is an easy but important generalization, due to
Stieltjes, of Riemann integration. Namely, given bounded, R-valued functions ϕ and
ψ on [a, b], a finite cover C of [a, b] by non-overlapping closed intervals I , and an
associated choice function Ξ , set

R(ϕ|ψ; C, Ξ) =
∑

I∈C
ϕ
(
Ξ(I )

)
ΔI ψ,

where ΔI ψ denotes the difference between the value of ψ at the right hand end point
of I and its value at the left hand end point. We will say that ϕ is Riemann–Stieltjes
integrable on [a, b]with respect to ψ if there exists a number

∫ b
a ϕ(x) dψ(x), known

as the Riemann–Stieltjes of ϕ with respect to ψ, such that for each ε > 0 there is a
δ > 0 for which ∣

∣∣∣R(ϕ|ψ; C, Ξ) −
∫ b

a
ϕ(x) dψ(x)

∣
∣∣∣ < ε

whenever ‖C‖ < δ and Ξ is any associated choice function for C. Obviously, when
ψ(x) = x , this is just Riemann integration. In addition, it is clear that if ϕ1 and
ϕ2 are Riemann–Stieltjes integrable with respect to ψ, then, for all α1, α2 ∈ R,
α1ϕ1 + α2ϕ2 is also and

∫ b

a

(
α1ϕ1(x) + α2ϕ2(x)

)
dψ(x) = α1

∫ b

a
ϕ1(x) dψ(x) + α2

∫ b

a
ϕ2(x) dψ(x).

Also, if ψ̌(x) = ψ(a + b − x) and ϕ is Riemann–Stieltjes integrable with respect to
ψ, then x � ϕ(a + b − x) is Riemann–Stieltjes integrable with respect to ψ̌ and

∫ b

a
ϕ(a + b − x) dψ̌(x) = −

∫ b

a
ϕ(x) dψ(x). (3.5.1)



86 3 Integration

In general it is hard to determine which functions ϕ are Riemann–Stieltjes inte-
grable with respect to a given function ψ. Nonetheless, the following simple lemma
shows that there is an inherent symmetry between the roles of ϕ and ψ.

Lemma 3.5.1 If ϕ is Riemann–Stieltjes integrable with respect to ψ, then ψ is
Riemann–Stieltjes integrable with respect to ϕ and

∫ b

a
ϕ(x) dψ(x) = ϕ(b)ψ(b) − ϕ(a)ψ(b) −

∫ b

a
ψ(x) dϕ(x). (3.5.2)

Proof Let C = {[αm−1,αm] : 1 ≤ m ≤ n
}
, where a = α0 ≤ · · · ≤ αn = b,

and let Ξ be an associated choice function. Set β0 = a, βm = Ξ([αm−1,αm]) for
1 ≤ m ≤ n, and βn+1 = b, and define C ′ = {[βm−1,βm] : 1 ≤ m ≤ n + 1} and
Ξ ′([βm−1,βm]) = αm−1 for 1 ≤ m ≤ n + 1. Then

R(ψ|ϕ; C, Ξ) =
n∑

m=1

ψ(βm)
(
ϕ(αm) − ϕ(αm−1)

)

=
n∑

m=1

ψ(βm)ϕ(αm) −
n−1∑

m=0

ψ(βm+1)ϕ(αm)

= ψ(βn)ϕ(αn) −
n−1∑

m=1

ϕ(αm)
(
ψ(βm+1) − ψ(βm)

)− ψ(β1)ϕ(α0)

= ψ(b)ϕ(b) − ψ(a)ϕ(a) −
n∑

m=0

ϕ(αm)
(
ψ(βm+1) − ψ(βm)

)

= ψ(b)ϕ(b) − ψ(a)ϕ(a) − R(ϕ|ψ; C ′, Ξ ′).

Noting that ‖C ′‖ ≤ 2‖C‖, one now sees that ifϕ is Riemann–Stieltjes integrable with
respect to ψ, then ψ is Riemann–Stieltjes integrable with respect to ϕ and (3.5.2)
holds. �

As we will see, Lemma 3.5.1 is an interesting generalization of the integration by
parts, but it does little to advance us toward an understanding of the basic problem.
In addressing that problem, the following analog of Theorem 3.1.2 will play a central
role.

Lemma 3.5.2 If ψ is non-decreasing on [a, b], then ϕ is Riemann–Stieltjes inte-
grable with respect to ψ if and only if for each ε > 0 there exists a δ > 0 such
that

‖C‖ < δ =⇒
∑

I∈C
supI ϕ−inf I ϕ>ε

ΔI ψ < ε.
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In particular, every continuous function ϕ is Riemann–Stieltjes integrable with
respect to ψ. In addition, if ϕ is Riemann–Stieltjes integrable with respect to ψ
and c ∈ (a, b), then it is Riemann–Stieltjes integrable with respect of ψ on both
[a, c] and [c, b] and

∫ b

a
ϕ(x) dψ(x) =

∫ c

a
ϕ(x) dψ(x) +

∫ b

c
ϕ(x) dψ(x).

Finally, if ϕ : [a, b] −→ [c, d] is Riemann–Stieltjes integrable with respect to ψ and
f : [c, d] −→ R is continuous, then f ◦ ϕ is again Riemann–Stieltjes integrable
with respect to ψ.

Proof Once the first part is proved, the other assertions follow in exactly the same
way as the analogous assertions followed from Theorem 3.1.2.

In proving the first part, we will assume, without loss in generality, that Δ ≡
Δ[a,b]ψ > 0. Now suppose that ϕ is Riemann–Stieltjes integrable with respect to ψ.
Given ε > 0, choose δ > 0 so that

‖C‖ ≤ δ =⇒
∣∣
∣∣R(ϕ|ψ; C, Ξ) −

∫ b

a
ϕ(x) dψ(x)

∣∣
∣∣ ≤

ε2

4

for all associated choice functions Ξ . Next, given C, choose, for each I ∈ C,
Ξ1(I ), Ξ2(I ) ∈ I so that ϕ

(
Ξ1(I )

) ≥ supI ϕ − ε2

4Δ and ϕ
(
Ξ2(I )

) ≤ inf I ϕ + ε2

4Δ .
Then ‖C‖ < δ implies that

ε2

2
≥ R(ϕ|ψ; C, Ξ1) − R(ϕ|ψ; C, Ξ2) ≥

∑

I∈C

(
sup

I
ϕ − inf

I
ϕ

)
ΔI ψ − ε2

2
,

and so
ε2 ≥ ε

∑

I∈C
supI ϕ−inf I ϕ>ε

ΔI ψ.

To prove the converse, we introduce the upper and lower Riemann–Stieltjes sums

U(ϕ|ψ; C) =
∑

I∈C
sup

I
ϕΔI ψ and L(ϕ|ψ; C) =

∑

I∈C
inf

I
ϕΔI ψ.

Just as in the Riemann case, one sees that

L(ϕ|ψ; C) ≤ R(ϕ|ψ; C, Ξ) ≤ U(ϕ|ψ; C)

for all C and associated rate functions Ξ , and L(ϕ|ψ; C) ≤ U(ϕ|ψ; C ′) for all C and
C ′. Further,
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U(ϕ|ψ; C) − L(ϕ|ψ; C) =
∑

I∈C

(
sup

I
ϕ − inf

I
ϕ

)
ΔI ψ

≤ εΔ + 2‖ϕ‖[a,b]
∑

I∈C
supI ϕ−inf I ϕ>ε

ΔI ψ,

and so, under the stated condition, for each ε > 0 there exists a δ > 0 such that

‖C‖ < δ =⇒ U(ϕ|ψ; C) − L(ϕ|ψ; C) < ε.

As a consequence, we know that if ‖C‖ < δ then, for any C ′

U(ϕ|ψ; C) ≤ L(ϕ|ψ; C) + ε ≤ U(ϕ|ψ; C ′) + ε,

and similarly, L(ϕ|ψ; C) ≥ L(ϕ|ψ; C ′) − ε. From these it follows that M ≡
infC U(ϕ|ψ; C) = supC L(ϕ|ψ; C) and

lim
‖C‖→0

U(ϕ|ψ; C) = M = lim
‖C‖→0

L(ϕ|ψ; C),

and at this point the rest of the argument is the same as the one in the proof of
Theorem 3.1.2. �

The reader should take note of the distinction between the first assertion here and
the analogous one in Theorem 3.1.2. Namely, in Theorem 3.1.2, the condition for
Riemann integrability was that there exist some C for which

∑

I∈C
supI f −inf I f >ε

|I | < ε,

whereas here we insist that

‖C‖ < δ =⇒
∑

I∈C
supI ϕ−inf I ϕ>ε

ΔI ψ < ε.

The reason for this is that the analog of the final assertion in Lemma 3.1.1 is true for
ψ only if ψ is continuous. When ψ is continuous, then the condition that ‖C‖ < δ
can be removed from the first assertion in Lemma 3.5.2.

In order to deal with ψ’s that are not monotone, we introduce the quantity

var[a,b](ψ) ≡ sup
C

∑

I∈C
|ΔI ψ| < ∞,

where C denotes a generic finite cover of [a, b] by non-overlapping closed intervals,
and say that ψ has finite variation on [a, b] if var[a,b](ψ) < ∞. It is easy to check
that
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var[a,b](ψ1 + ψ2) ≤ var[a,b](ψ1) + var[a,b](ψ2) and that var[a,b](ψ) = |ψ(b) − ψ(a)|
if ψ is monotone (i.e., it is either non-decreasing or non-increasing). Thus, if ψ can
be written as the difference between two non-increasing functions ψ+ and ψ−, then
it has bounded variation and

var[a,b](ψ) ≤ (ψ+(b) − ψ+(a)
)+ (ψ−(b) − ψ−(a)

)
.

We will now show that every function of bounded variation admits such a represen-
tation. To this end, define

var±[a,b](ψ) = sup
C

∑

I∈C
(ΔI ψ)±.

Lemma 3.5.3 If ψ has bounded variation on [a, b], then

Δ[a,b]ψ = var+[a,b](ψ) − var−[a,b](ψ) and var[a,b](ψ) = var+[a,b](ψ) + var−[a,b](ψ).

Proof Obviously,

∑

I∈C
|ΔI ψ| =

∑

I∈C
(ΔI ψ)+ +

∑

I∈C
(ΔI ψ)−

and

Δ[a,b]ψ =
∑

I∈C
(ΔI ψ)+ −

∑

I∈C
(ΔI ψ)−.

From the first of these, it is clear that var[a,b](ψ) ≤ var+[a,b](ψ) + var−[a,b](ψ). From
the second we see that var±[a,b](ψ) ≤ var∓[a,b](ψ) ± Δ[a,b]ψ, and therefore that
Δ[a,b]ψ = var+[a,b](ψ)− var−[a,b](ψ). Hence, if limn→∞

∑
I∈Cn

(ΔI ψ)+ = var+[a,b](ψ),
then limn→∞

∑
I∈Cn

(ΔI ψ)− = var−[a,b](ψ), and so

var[a,b](ψ) ≥ lim
n→∞

⎛

⎝
∑

I∈Cn

(ΔI ψ)+ +
∑

I∈Cn

(ΔI ψ)−
⎞

⎠ = var+[a,b](ψ) + var−[a.b](ψ).

�

Given a functionψ of bounded variation on [a, b], define Vψ(x) = var[a,x](ψ) and
V ±

ψ (x) = var±[a,x](ψ) for x ∈ [a, b]. Then Vψ , V +
ψ , and V −

ψ are all non-decreasing
functions that vanish at a, and, by Lemma 3.5.3, ψ(x) = ψ(a) + V +

ψ (x) − V −
ψ (x)

and Vψ(x) = V +
ψ (x) + V −

ψ (x) for x ∈ [a, b].
Theorem 3.5.4 Let ψ be a function of bounded variation on [a, b], and refer to the
preceding. If ϕ : [a, b] −→ R is a bounded function, then ϕ is Riemann–Stieltjes
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integrable with respect to Vψ if and only if it is Riemann–Stieltjes integrable with
respect to both V +

ψ and V −
ψ , in which case

∫ b

a
ϕ(x) dVψ(x) =

∫ b

a
ϕ(x) dV +

ψ (x) +
∫ b

a
ϕ(x) dV −

ψ (x).

Moreover, if ϕ is Riemann–Stieltjes integrable with respect to Vψ , then it is Riemann–
Stieltjes integrable with respect to ψ,

∫ b

a
ϕ(x) dψ(x) =

∫ b

a
ϕ(x) dV +

ψ (x) −
∫ b

a
ϕ(x) dV −

ψ (x),

and ∣
∣
∣
∣

∫ b

a
ϕ(x) dψ(x)

∣
∣
∣
∣ ≤
∫ b

a
|ϕ(x)| dVψ(x) ≤ ‖ϕ‖[a,b]var[a,b](ψ).

Proof Since Vψ = V +
ψ + V −

ψ , it is clear that

∑

I∈C
supI ϕ−inf I ϕ>ε

ΔVψ < ε ⇐⇒

∑

I∈C
supI ϕ−inf I ϕ>ε

ΔV +
ψ +

∑

I∈C
supI ϕ−inf I ϕ>ε

ΔV −
ψ < ε,

and therefore, by Lemma 3.5.2, ϕ is Riemann–Stieltjes integrable with respect to Vψ

if and only if it is with respect to V +
ψ and V −

ψ . Furthermore, because

R(ϕ|Vψ; C, Ξ) = R(ϕ|V +
ψ ; C, Ξ) + R(ϕ|V −

ψ ; C, Ξ)

and
R(ϕ|ψ; C, Ξ) = R(ϕ|V +

ψ ; C, Ξ) − R(ϕ|V −
ψ ; C, Ξ),

the other assertions follow easily. �

Finally, there is an important case in which Riemann–Stieltjes integrals reduce to
Riemann integrals. Namely, if ψ is continuous on [a, b] and continuously differen-
tiable on (a, b), then, by (1.8.1),

∑

I∈C
|ΔI ψ| ≤ ‖ψ′‖(a.b)(b − a),

and so ψ will have bounded variation if ψ′ is bounded. Furthermore, if ψ′ is bounded
and ϕ : [a, b] −→ R is a bounded function which is Riemann integrable on [a, b],
then ϕ is Riemann–Stieltjes integrable with respect to ψ and

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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∫ b

a
ϕ(x) dψ(x) =

∫ b

a
ϕ(x)ψ′(x) dx . (3.5.3)

To prove this, note that if I ∈ C, then one can apply (1.8.1) to find an η(I ) ∈ I such
that ΔI ψ = ψ′(η(I )

)|I |. Thus

R(ϕ|ψ; C, Ξ) =
∑

I∈C
ϕ
(
η(I )
)
ψ′(η(I )

)|I | +
∑

I∈C

(
ϕ
(
Ξ(I )

)− ϕ
(
η(I )
))

ψ′(η(I )
)|I |

and
∣
∣
∣
∣
∣

∑

I∈C

(
ϕ
(
Ξ(I )

)− ϕ
(
η(I )
))

ψ′(η(I )
)|I |
∣
∣
∣
∣
∣
≤ ‖ψ′‖(a,b)

(U(ϕ; C) − L(ϕ; C)
)
,

which, since ϕ is Riemann integrable, tends to 0 as ‖C‖ → 0. Hence, since ϕψ′, as
the product of two Riemann integrable functions, is Riemann integrable, we see that
R(ϕ|ψ; C, Ξ) −→ ∫ b

a ϕ(x)ψ′(x) dx as ‖C‖ → 0. The content of (3.5.3) is often
abbreviated by the equation dψ(x) = ψ′(x) dx . Notice that when ϕ and ψ are both
continuously differentiable on (a, b), then (3.5.2) is the integration by parts formula.

3.6 Exercises

Exercise 3.1 Most integrals defy computation. Here are a few that don’t. In each
case, compute the following integrals.

(i)
∫
[1,∞)

1
x2 dx (ii)

∫
[0,∞)

e−x dx

(iii)
∫ b

a sin x dx (iv)
∫ b

a cos x dx
(v)
∫ 1
0

1√
1−x2 dx (vi)

∫
[0,∞)

1
1+x2 dx

(vii)
∫ π

2
0 x2 sin x dx (viii)

∫ 1
0

x
x4+1 dx

Exercise 3.2 Here are some integrals that play a role in Fourier analysis. In evalu-
ating them, it may be helpful to make use of (1.5.1). Compute

(i)
∫ 2π
0 sin(mx) cos(nx) dx (ii)

∫ 2π
0 sin2(mx) dx

(iii)
∫ 2π
0 cos2(mx) dx,

for m, n ∈ N.

Exercise 3.3 For t > 0, define Euler’s Gamma function Γ (t) for t > 0 by

Γ (t) =
∫

(0,∞)

xt−1e−x dx .

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_1
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Show that Γ (t +1) = tΓ (t), and conclude that Γ (n +1) = n! for n ≥ 1. See (5.4.4)
for the evaluation of Γ

(
1
2

)
.

Exercise 3.4 Find indefinite integrals for the following functions:

(i) xα for α ∈ R & x ∈ (0,∞) (ii) log x
(iii) 1

x log x for x ∈ (0,∞) \ {1} (iv) (log x)n

x for n ∈ Z
+ & x ∈ (0,∞).

Exercise 3.5 Let α, β ∈ R, and assume that (αa) ∨ (αb) ∨ (βa) ∨ (βb) < 1.
Compute

∫ b
a

1
(1−αx)(1−βx)

dx . When α = β = 0, there is nothing to do, and when

α = β �= 0, it is obvious that
(
α(1 − αx)

)−1
is an indefinite integral. When α �= β,

one can use the method of partial fractions and write

1

(1 − αx)(1 − βx)
= 1

α − β

(
α

1 − αx
− β

1 − βx

)
.

See Theorem 6.3.2 for a general formulation of this procedure.

Exercise 3.6 Suppose that f : (a, b) −→ [0,∞) has continuous derivatives of
all orders. Then f is said to be absolutely monotone if it and all its derivatives are
non-negative. If f is absolutely monotone, show that for each c ∈ (a, b)

f (x) =
∞∑

m=0

f (m)(c)

m! (x − c)m for x ∈ [c, b),

an observation due to S. Bernstein. In doing this problem, reduce to the case when
c = 0 ∈ (a, b), and, using (3.2.2), observe that f (y) dominates

yn

(n − 1)!
∫ 1

0
(1 − t)n−1 f (n)(t y) dt ≥

( y

x

)n xn

(n − 1)!
∫ 1

0
(1 − t)n−1 f (n)(t x) dt

for n ≥ 1 and 0 < x < y < b.

Exercise 3.7 For α ∈ R \ {0}, show that

∫ b

a
eiαt dt = eiαb − eiαa

iα
.

Next, write cos t = eit +e−i t

2 , and apply the preceding and the binomial formula to
show that ∫ 2π

0
cosn t dt =

{
0 if n ∈ N is odd

2−n+1π
(n

n
2

)
if n ∈ N is even.

By combining this with (3.2.4), show that limn→∞ n
1
2
∫ 2π
0 cos2n t dt = 2π

1
2 .

http://dx.doi.org/10.1007/978-3-319-24469-3_5
http://dx.doi.org/10.1007/978-3-319-24469-3_6
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Exercise 3.8 A more conventional way to introduce the logarithm function is to
define it by

(∗) log y =
∫ y

1

1

t
dt for y ∈ (0,∞).

The purpose of this exercise is to show, without knowing our earlier definition, that
this definition works.

(i) Suppose that � : (0,∞) −→ R is a continuous function with the properties
that �(xy) = �(x) + �(y) for all x, y ∈ (0,∞) and �(a) > 0 for some a > 1. By
applying Exercise 1.10 to the function f (x) = �(ax ), show that �

(
ax
) = x�(a).

(ii) Referring to (i), show that � is strictly increasing, tends to ∞ as y → ∞ and
to −∞ as y ↘ 0. Conclude that there is a unique b ∈ (1,∞) such that �(b) = 1.

(iii) Continuing (i) and (ii), and again usingExercise 1.10, conclude that �(bx ) = x
for x ∈ R and b�(y) = y for y ∈ (0,∞). That is, � is the logarithm function with
base b

(iv) Show that the function log given by (∗) satisfies the conditions in (i) and
therefore that there exists a unique e ∈ (1,∞) for which it is the logarithm function
with base e.

Exercise 3.9 Show that

lim
x→∞

log x

x

∫ x

e

1

log t
dt = 1.

Exercise 3.10 Let f : [0, 1] −→ C be a continuous function whose periodic exten-
sion is continuously differentiable. Show that

∫ 1

0

∣∣∣
∣ f (x) −

∫ 1

0
f (y) dy

∣∣∣
∣

2

dx =
∫ 1

0
| f (x)|2 dx −

∣∣∣
∣

∫ 1

0
f (y) dy

∣∣∣
∣

2

=
∑

m �=0

| f̂m |2

≤ (2π)−2
∑

m �=0

(2πm)2| f̂m |2 = (2π)−2
∫ 1

0
| f ′(x)|2 dx .

As a consequence, one has the Poincaré inequality

∫ 1

0

∣
∣∣∣ f (x) −

∫ 1

0
f (y) dy

∣
∣∣∣

2

dx ≤ (2π)−2
∫ 1

0
| f ′(x)|2 dx

for any function whose periodic extension is continuously differentiable.

Exercise 3.11 Let f : [a, b] −→ C be a continuous function, and set L = b − a.
If δ ∈ (0, L

2

)
, show that, as r ↗ 1,

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_1
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1

L

∞∑

m=−∞
r |m|
(∫ b

a
f (y)e−m

( y
L

)
dy

)
em
(

x
L

)

converges to f (x) uniformly for x ∈ [a + δ, b − δ
]
and that the convergence is

uniform for x ∈ [a, b] if f (b) = f (a). Perhaps the easiest way to do this is to
consider the function g(x) = f (a + Lx) and apply Theorem 3.4.1 to it. Next,
assume that f (a) = f (b) and that f has a bounded, continuous derivative on (a, b).
Show that

f (x) = 1

L

∞∑

m=−∞

(∫ b

a
f (y)e−m

( y
L

)
dy

)
em
(

x
L

)
,

where the convergence is absolute and uniform on [a, b].
Exercise 3.12 Let f : [0, 1] −→ C be a continuous function, and show that, as
r ↗ 1,

fr (x) ≡ 2
∞∑

m=1

rm

(∫ 1

0
f (y) sin(mπy) dy

)
sin πx

converges uniformly to f on [δ, 1 − δ] for each δ ∈ (0, 1
2

)
. One way to do this is

to define g : [−1, 1] −→ C so that g = f on [0, 1] and g(x) = − f (−x) when
x ∈ [−1, 0), and observe that

∫ 1

−1
g(y)e−m

( y
2 ) dy = −2i

∫ 1

0
f (y) sin(mπy) dy.

If f (0) = 0 and therefore g is continuous, one need only apply Exercise 3.11 to g
to see that fr −→ f uniformly on [0, 1− δ] for each δ ∈ (0, 1

2

)
. When f (0) �= and

therefore g is discontinuous at 0, after examining the proof of Theorem 3.4.1, one
can show that fr −→ f on [δ, 1 − δ] because g is uniformly continuous there.

Next show that if f : [0, 1] −→ C is continuous, then

∫ 1

0
| f (x)|2 dx = 2

∞∑

m=1

∣
∣∣∣

∫ 1

0
f (x) sin(mπx) dx

∣
∣∣∣

2

.

Finally, assuming that f (0) = 0 = f (1) and that f has a bounded, continuous
derivative on (0, 1), show that

f (x) = 2
∞∑

m=1

(∫ 1

0
f (y) sin πy dy

)
sin πx,

where the convergence of the series is absolute and uniform on [0, 1].
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Exercise 3.13 Fourier series provide an alternative and more elegant approach to
proving estimates like the one in (3.3.5). To see this, suppose that f : [0, 1] −→ C

is a function whose periodic extension is � ≥ 1 times continuously differentiable.
Then, as we have shown,

f (x) =
∫ 1

0
f (y) dy +

∑

m �=0

(̂ f (�))m

(i2πm)�
em(x),

where the series converges uniformly and absolutely. After showing that

1

n

n∑

k=1

em
(

k
n

) =
{
1 ifm is divisible by n

0 otherwise,

conclude that

Rn( f ) −
∫ 1

0
f (y) dy =

∑

m �=0

(̂ f (�))mn

(i2πmn)�
,

and from this show that

∣∣
∣∣Rn( f ) −

∫ 1

0
f (y) dy

∣∣
∣∣ ≤

2‖ f (�)‖[0,1]ζ(�)

(2πn)�
.

Finally, use Schwarz’s inequality and (3.4.5) to derive the estimate

∣∣∣∣Rn( f ) −
∫ 1

0
f (y) dy

∣∣∣∣ ≤
√
2ζ(2�)

(2πn)�

√∫ 1

0
| f (x)|2 dx .

Exercise 3.14 Think of the unit circle S
1(0, 1) as a subset of C, and let ϕ :

S
1(0, 1) −→ R be a continuous function. The goal of this exercise is to show that

there exists an analytic function f on D(0, 1) such that limz→ζ R
(

f (z)
) = ϕ(ζ) for

all ζ ∈ S
1(0, 1).

(i) Set

am =
∫ 1

0
ϕ
(
ei2πθ
)
e−m(θ) dθ for m ∈ Z,

and show that am = a−m . Next define the function u on D(0, 1) by

u
(
rei2π

) =
∞∑

m=−∞
r |m|amem(θ) for r ∈ [0, 1) and θ ∈ [0, 1).

Show that u is a continuous, R-valued function and, using Theorem 3.4.1, that
limz→ζ u(z) = ϕ(ζ) for ζ ∈ S

1(0, 1).
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(ii) Define v on D(0, 1) by

v
(
rei2πθ

) = −i
∞∑

m=1

rm
(
amem(θ) − a−me−m(θ)

)
.

and show that v is a continuous, R-valued function. Next, set f = u + iv, and show
that

f (z) = a0 + 2
∞∑

m=1

am zm for z ∈ D(0, 1).

In particular, conclude that f is analytic and that limz→ζ R
(

f (z)
) = ϕ(ζ) for ζ ∈

S
1(0, 1).

(iii) Assume that
∑∞

m=−∞ |am | < ∞, and define Hϕ on S
1(0, 1) by

Hϕ
(
ei2πθ
) = −i

∞∑

m=1

(
amem(θ) − a−me−m(θ)

)
.

If f is the function in (ii), show that limz→ζ I
(

f (z)
) = Hϕ(ζ) for ζ ∈ S

1(0, 1). The
function Hϕ is called the Hilbert transform of ϕ, and it plays an important role in
harmonic analysis.

Exercise 3.15 Let {xn : n ≥ 1} be a sequence of distinct elements of (a, b], and set
S(x) = {n ≥ 1 : xn ≤ x} for x ∈ [a, b]. Given a sequence {cn : n ≥ 1} ⊆ R for
which

∑∞
n=1 |cn| < ∞, define ψ : [a, b] −→ R so that ψ(x) = ∑n∈S(x) cn . Show

that ψ has bounded variation and that ‖ψ‖var =∑∞
n=1 |cn|. In addition, show that if

ϕ : [a, b] −→ R is continuous, then

∫ b

a
ϕ(x) dψ(x) =

∞∑

n=1

ϕ(xn)cn.

Exercise 3.16 Suppose that F : [a, b] −→ R is a function of bounded variation.
(i) Show that, for each ε > 0,

lim
h↘0

∣∣F(x + h) − F(x)
∣∣ ∨ |F(x − h) − F(x)| ≥ ε

for at most a finite number of x ∈ (a, b), and use this to show that F is Riemann
integrable on [a, b].

(ii) Assume that ϕ : [a, b] −→ R is a continuous function that has a bounded,
continuous derivative on (a, b). Prove the integration by parts formula

∫ b

a
ϕ(t) d F(t) = ϕ(b)F(b) − ϕ(a)F(a) −

∫ b

a
ϕ′(t)F(t) dt.
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(iii) Let ψ : [0,∞) −→ [0,∞) be a function whose restriction to [0, T ] has
bounded variation for each T > 0. Assuming thatψ(0) = 0 and that supt≥1 t−α|ψ(t)|
< ∞ for some α ≥ 0, use (ii) to show that

L(λ) ≡
∫

[0,∞)

e−λt dψ(t) = lim
T →∞

∫ T

0
e−λt dψ(t) = λ

∫

[0,∞)

e−λtψ(t) dt

for all λ > 0. The function λ � L(λ) is called the Laplace transform of ψ.
(iv) Refer to (iii), and assume that a = limt→∞ t−αψ(t) ∈ R exists. Show that,

for each T > 0, λαL(λ) equals

λ1+α

∫ T

0
e−λtψ(t) dt + λ1+α

∫

[T,∞)

tαe−λt
(
t−αψ(t) − a

)
dt + a

∫ ∞

[λT,∞)

tαe−t dt,

and use this to conclude that (cf. Exercise 3.3)

(∗) a = lim
λ↘0

λαL(λ)

Γ (1 + α)
.

This equation is an example of the general principle that the behavior of ψ near
infinity reflects the behavior of its Laplace transform at 0.

(v) The equation in (∗) is an integral version of the Abel limit procedure in 1.10.1,
and it generalizes 1.10.1. To see this, let {cn : n ≥ 1} ⊆ R be given, and define

ψ(t) =
∑

1≤n≤t

cn for t ∈ [0,∞).

Assuming that supn≥1 n−α|ψ(n)| < ∞, use Exercise 3.15 to show that

∫

[0,∞)

e−λt dψ(t) =
∞∑

n=1

e−λncn for λ > 0.

Next, assume that a = limn→∞ n−αψ(n) ∈ R exists, and use (∗) to conclude that

a = lim
λ↘0

λα

Γ (1 + α)

∞∑

n=1

e−λncn.

When α = 0, this is equivalent to 1.10.1.

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_1


Chapter 4
Higher Dimensions

Many of the ideas that we developed for R and C apply equally well to R
N when

N ≥ 3. However, when N ≥ 3, there is no multiplicative structure that has the
properties that ordinary multiplication has in R or that the multiplication that we
introduced in R

2 has there. Nonetheless, there is a natural linear structure. That is, if
x = (x1, . . . , xN ) and y = (y1, . . . , yN ) are elements of R

N , then for any α, β ∈ R,
the operation αx + βy ≡ (αx1 + βy1, . . . ,αyN + βyN ) turns R

N into a linear
space. Further, the geometric interpretation of this operation is the same as it was
for R

2. To be precise, think of x as a vector based at the origin and pointing toward
(x1, . . . , xN ) ∈ R

N . Then, −x is the vector obtained by reversing the direction of
x, and, when α ≥ 0, αx is obtained from x by rescaling its length by the factor α.
When α < 0, αx = |α|(−x) is the vector obtained by first reversing the direction of
x and then rescaling its length by the factor of |α|. Finally, if the end of the vector
corresponding to y is moved to the point of the vector corresponding to x, then the
point of the y-vector will be at x + y.

4.1 Topology in R
N

In addition to its linear structure, R
N has a natural notion of length. Namely, given

x = (x1, . . . , xN ), define its Euclidean length |x| =
√

x21 + · · · + x2n . The analysis
of this quantity is simplified by the introduction of what is called the inner product
(x, y)RN ≡∑N

j=1 x j y j . Obviously, |x|2 = (x, x)RN . Further, by Schwarz’s inequal-
ity (cf. Exercise 2.3), it is clear that

|(x, y)RN | ≤
N
∑

j=1
|x j ||y j | ≤ |x||y|,

© Springer International Publishing Switzerland 2015
D.W. Stroock, A Concise Introduction to Analysis,
DOI 10.1007/978-3-319-24469-3_4
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which means that |(x, y)RN | ≤ |x||y|, an inequality that is also called Schwarz’s
inequality or sometimes the Cauchy–Schwarz inequality. Further, equality holds in
Schwarz’s inequality if and only if there is a t ∈ R such that either y = tx or x = ty.
If x = 0, this is completely trivial. Thus, assume that x �= 0, and notice that, for any
t ∈ R, y = tx if and only if

0 = |y− tx|2 = t2|x|2 − 2t (x, y)RN + |y|2.

By the quadratic formula, such a t must equal

(x, y)RN ±
√

(x, y)2
RN − |x|2|y|2

|x|2 ,

which, since t ∈ R, is possible if and only if (x, y)2
RN − |x|2|y|2 ≥ 0. Since

(x, y)2
RN ≤ |x|2y|2, if follows that t exists if and only if (x, y)2

RN = |x|2|y|2.
Knowing Schwarz’s inequality, we see that

|x + y|2 = |x|2 + 2(x, y)RN + |y|2 ≤ |x|2 + 2|x||y| + |y|2 = (|x| + |y|)2,

and therefore |x + y| ≤ |x| + |y|, which is known as the triangle inequality since,
when thought about in terms of vectors, it says that the length of the third side of a
triangle is less than or equal to the sum of the lengths of the other two sides.

Just as we did for R and R
2, we will say the sequence {xn : n ≥ 1} ⊆ R

N

converges to x ∈ R
N if for each ε > 0 there exists an nε such that |xn − x| < ε

for all n ≥ nε, in which case we write xn −→ x or x = limn→∞ xn . Writing xn =
(x1,n, . . . , xN ,n) and x = (x1, . . . , xN ), it is easy to check that xn −→ x if and only
if |x j,n−x j | −→ 0 for each 1 ≤ j ≤ N . Thus, since limm→∞ supn≥m |xn−xm | = 0
if and only if limm→∞ supn≥m |x j,n − x j,m | = 0 for each 1 ≤ j ≤ N , it follows that
Cauchy’s criterion holds in this context. That is, RN is complete.

Given x and r > 0, the open ball B(x, r) of radius r is the set of y ∈ R
N such

that |y − x| < r . A set G ⊆ R
N is said to be open if, for each x ∈ G there is an

r > 0 such that B(x, r) ⊆ G, and a subset F is said to be closed if its complement is
open. In particular, R

N and ∅ are both open and closed. Further, the interior int(S)

and closure S̄ of an S ⊆ R
N are, respectively, the largest open set contained in S

and the smallest closed set containing it. By the same reasoning as was used to prove
Lemma 1.3.1, x ∈ int(S) if and only if B(x, r) ⊆ S for some r > 0 and x ∈ S̄ if and
only if there is a {xn : n ≥ 1} ⊆ S such that xn −→ x.

A set K ⊆ R
N is said to be bounded if supx∈K |x| < ∞, and it is said to be

compact if every sequence {xn : n ≥ 1} ⊆ K admits a subsequence {xnk : k ≥ 1}
that converges to some point x ∈ K .

The following lemma is sometimes called the Heine–Borel theorem.

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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Lemma 4.1.1 If {xn : n ≥ 1} is a bounded sequence in R
N , then it admits a

convergent subsequence {xnk : k ≥ 1}. In particular, K ⊆ R
N is compact if and

only if K is closed and bounded. (See Exercise 4.9 for more information.)

Proof Suppose xn = (x1,n, . . . , xN ,n) for each n ≥ 1. Then, for each 1 ≤ j ≤ N ,
{x j,n : n ≥ 1} is a bounded sequence in R, and so, by Theorem 1.3.3, there exists a
subsequence {x

1,n(1)
k
: k ≥ 1} of {x1,n : n ≥ 1} that converges to an x1 ∈ R. Next,

again by Theorem 1.3.3, there is a subsequence {x
2,n(2)

k
: k ≥ 1} of the sequence

{x
1,n(1)

k
: k ≥ 1} that converges to an x2 ∈ R. Proceeding in this way, we can produce

subsequences {x
n( j)

k
: k ≥ 1} for 1 ≤ j ≤ N such that, for each 1 ≤ j < N ,

{x
n( j+1)

k
: k ≥ 1} is a subsequence of {x

n( j)
k
: k ≥ 1} and x

j,n( j)
k
−→ x j ∈ R for

each 1 ≤ j ≤ N . Hence, {x
n(N )

k
: k ≥ 1} converges to x = (x1, . . . , xN ).

Now suppose that K ⊆ R
N , and let {xn : n ≥ 1} ⊆ K . If K is closed and

bounded, then {xn : n ≥ 1} is bounded and therefore, by the preceding, admits
a convergent subsequence whose limit is necessarily is in K since K is closed.
Conversely, if K is compact and xn −→ x, then x must be in K since there is a
subsequence of {xn : n ≥ 1} that converges to a point in K . In addition, if K were
unbounded, then there would be a sequence {xn : n ≥ 1} ⊆ K such that |xn| ≥ n
for all n ≥ 1. Further, because K is compact, {xn : n ≥ 1} could be chosen so that it
converges to a point x ∈ K . But then |x| = ∞, and so no such sequence can exist. �

If ∅ �= S ⊆ R
N and f : S −→ C, then f is said to be continuous at a point

x ∈ S if for each ε > 0 there is a δ > 0 with the property that | f (y) − f (x)| < ε
whenever y ∈ S ∩ B(x, δ). Just as in Lemma 1.3.5, f is continuous at x ∈ S if and
only if f (xn) −→ f (x) whenever {xn : n ≥ 1} ⊆ S converges to x, and, when S
is open, f is continuous on S if and only if f −1(G) is open for all open G ⊆ C.
Also, using Lemma 4.1.1 and arguing in the same way as we did in Theorem 1.4.1,
one can show that if f is a continuous function on a compact subset K , then it is
bounded (i.e., supx∈S | f (x)| < ∞) and uniformly continuous in the sense that, for
each ε > 0, there is a δ > 0 such that | f (y) − f (x)| < ε whenever x ∈ K and
y ∈ K ∩ B(x, δ). Further, if f is R-valued, it achieves both its maximum and a
minimum values, and the reasoning in Lemma 1.4.4 applies equally well here and
shows that if { fn : n ≥ 1} is a sequence of continuous functions on S ⊆ R

N and if
{ fn : n ≥ 1} converges uniformly on S to a function f , then f is also continuous.
Finally, if F = (F1, . . . , FM ) : S −→ R

M , then we say that F is continuous at x if
for each ε > 0 there is a δ > 0 such that |F(y) − F(x)| < ε when y ∈ S ∩ B(x, δ).
It is easy to check that F is continuous at x if and only if Fj is for each 1 ≤ j ≤ M .

Say that S ⊆ R
N is path connected (cf. Exercise 4.5) if for all x0 and x1 in S there

is a continuous path γ : [0, 1] −→ S such that x0 = γ(0) and x1 = γ(1).

Lemma 4.1.2 Assume that S is path connected and that f : S −→ R is continuous.
For all x0, x1 ∈ S and y ∈ [ f (x0) ∧ f (x1), f (x0) ∨ f (x1)

]

, there exists an x ∈ S
such that f (x) = y. In particular, if K is a path connected, compact subset of R

N

and f : K −→ R is continuous, then for all y ∈ [m, M] there is an x ∈ K such that
f (x) = y where m = min{ f (x) : x ∈ K } and M = max{ f (x) : x ∈ K }.

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_1
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Proof To prove the first assertion, assume, without loss in generality, that f (x0) <

f (x1), choose γ for x0 and x1, and set u(t) = f
(

γ(t)
)

. Then u is continuous on
[0, 1], u(0) = f (x0), and u(1) = f (x1). Hence, by Theorem 1.3.6, for each y ∈
[

f (x0), f (x1)
]

there exists a t ∈ [0, 1] such that u(t) = y, and so we can take
x = γ(t).

Given the first part, the second part follows immediately from the fact that f
achieves both its minimum and maximum values on K . �

4.2 Differentiable Functions in Higher Dimensions

In view of the discussion of differentiable functions on C, it should come as no
surprise thatwe say that aC-valued function f on anopen setG inR

N isdifferentiable
at x ∈ G in the direction ξ ∈ R

N if the limit

∂ξ f (x) ≡ lim
t→0

f (x + tξ)− f (x)

t

exists in C, in which case ∂ξ f (x) is called the directional derivative of f in
the direction ξ. When f is differentiable at x in all directions, we say that it is
differentiable there. Now let (e1, . . . , eN ) be the standard basis in R

N . That is,
e j = (δ1, j , . . . , δN , j ), where theKronecker delta δi, j equals 1 if i = j and 0 if i �= j .
Clearly, ξ =∑N

j=1(ξ, e j )RN e j and |ξ|2 =∑N
j=1(ξ, e j )

2
RN for every ξ ∈ R

N . Next
suppose f is an R-valued function that is differentiable at every point in G in each
direction e j . If ∂e j f is continuous at x for each 1 ≤ j ≤ N , then, for any ξ ∈ R

N ,

f (x + tξ)− f (x)

t
=

N
∑

j=1

f
(

x j (t)+ t (ξ, e j )RN e j
)− f

(

x j (t)
)

t
,

where

x j (t) =
{

x + t
∑ j−1

i=1 (ξ, ei )RN ei if 2 ≤ j ≤ N

x if j = 1.

By Theorem 1.8.1, for each 1 ≤ j ≤ N there exists a τ j,t between 0 and t such that

f
(

x j (t)+ t (ξ, e j )RN e j
)− f

(

x j (t)
)

t
= (ξ, e j )RN ∂e j f

(

x j (t)+ τ j,t (ξ, e j )RN e j
)

.

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_1
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Hence, by Schwarz’s inequality,

∣
∣
∣
∣
∣
∣

f
(

x + tξ
)− f (x)

t
−

N
∑

j=1
(ξ, e j )RN ∂e j f (x)

∣
∣
∣
∣
∣
∣

≤ |ξ|
⎛

⎝

N
∑

j=1

∣
∣∂e j f

(

x j (t)+ τ j,t (ξ, e j )RN e j
)− ∂e j f (x)

∣
∣
2

⎞

⎠

1
2

and so, for each R ∈ (0,∞),

lim
t→0

sup
|ξ|≤R

∣
∣
∣
∣
∣
∣

f
(

x + tξ
)− f (x)

t
−

N
∑

j=1
(ξ, e j )RN ∂e j f (x)

∣
∣
∣
∣
∣
∣

= 0. (4.2.1)

In particular, f is differentiable at x and

∂ξ f (x) =
N
∑

j=1
(ξ, e j )RN ∂e j f (x), (4.2.2)

which, as (4.2.1) makes clear, means that f is continuous at x. (See Exercise 4.13
for an example that shows that (4.2.2) will not hold in general unless the ∂e j f ’s
are continuous at x.) When f is C-valued, one can reach the same conclusions by
applying the preceding to its real and imaginary parts.

When f is differentiable at each point in an open set G, we say that it is dif-
ferentiable on G, and when it is differentiable on G and ∂ξ f is continuous for all
ξ ∈ R

N , then we say that it is continuously differentiable on G. In view of (4.2.2), it
is obvious that f is continuously differentiable on G if ∂e j f is continuous for each
1 ≤ j ≤ N . When f : G −→ R is differentiable at x, it is often convenient to
introduce its gradient

∇ f (x) ≡ (∂e1 f (x), . . . , ∂eN f (x)
) ∈ R

N

there. For example, if f is continuously differentiable, then (4.2.2) can be written as
∂ξ f (x) = (∇ f (x), ξ

)

RN . Finally, given f : G −→ C and n ≥ 2, we say that f is
n-times differentiable on G if, for all ξ1, . . . , ξn−1 ∈ R

N , f is differentiable on G
and ∂ξm

· · · ∂ξ1 f is differentiable on G for each 1 ≤ m ≤ n − 1.
Just as in one dimension, derivatives simplify the search for places where an R-

valued function achieves its extreme values (i.e., either a maximum or minimum
value). Namely, suppose that an R-valued function f on a non-empty open set G
achieves its maximum value at a point x ∈ G. If f is differentiable at x, then
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±∂ξ f (x) = lim
t↘0

f (x ± tξ)− f (x)

t
≤ 0 for all ξ ∈ R

N ,

and so ∂ξ f (x) = 0. The same reasoning applies to minima and shows that ∂ξ f (x) =
0 at an x where f achieves its minimum value. Hence, when looking for points at
which f achieves extreme values, one need only look at points where its derivatives
vanishes in all directions. In particular, when f is continuously differentiable, this
means that, when searching for the places at which f achieves its extreme values,
one can restrict one’s attention to those x at which ∇ f (x) = 0. This is the form
that the first derivative test takes in higher dimensions. Next suppose that f is twice
continuously differentiable on G and that it achieves its maximum value at a point
x ∈ G. Then (cf. Exercise 1.14)

∂2
ξ f (x) = lim

t→0

f (x + tξ)+ f (x − tξ)− 2 f (x)

t2
≤ 0 for all ξ ∈ R

N .

Similarly, ∂2
ξ f (x) ≥ 0 if f achieves its minimum value at x, which is the second

derivative test in higher dimensions.
Higher derivatives of functions on R

N bring up an interesting question. Namely,
given ξ andη and a function f that is twice differentiable at x, what is the relationship
between ∂η∂ξ f (x) and ∂ξ∂η f (x)?

Theorem 4.2.1 Let f : G −→ C be a twice differentiable function on an open
G �= ∅. If ξ, η ∈ R

N and both ∂ξ∂η f and ∂η∂ξ f are continuous at the point
x ∈ G, then ∂ξ∂η f (x) = ∂η∂ξ f (x).

Proof First observe that it suffices to treat the case when f is R-valued. Second, by
replacing f with

y � f (x + y)− f (x)−
N
∑

j=1
(y, e j )∂e j f (x),

we can reduce to the case when x = 0 and f (0) = ∂ξ f (0) = ∂η f (0) = 0. Thus,
we will proceed under these assumptions.

Using Taylor’s theorem, we know that, for small enough t �= 0,

f (tξ + tη) = f (tξ)+ t∂η f (tξ)+ t2

2
∂2

η f (tξ + θtη)

= t2

2
∂2

ξ f (θ′tξ)+ t2∂ξ∂η f (θ′′t ξ)+ t2

2
∂2

η f (tξ + θtη)

for some choice of θt , θ′t , θ′′t lying between 0 and t . Similarly,

f (tξ + tη) = t2

2
∂2

η f (ω′tη)+ t2∂η∂ξ f (ω′′t η)+ t2

2
∂2

ξ f (ωtξ + tη)

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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for some choice of ωt , ω′t , ω′′t lying between 0 and t . Hence,

1
2∂

2
ξ f (θ′′t ξ)+ ∂ξ∂η f (θ′′t ξ)+ 1

2∂
2
η f (tξ + θtη)

= 1
2∂

2
η f (ω′tη)+ ∂η∂ξ f (ω′′t η)+ 1

2∂
2
ξ f (ωtξ + tη),

and, after letting t → 0, we arrive at ∂ξ∂η f (0) = ∂η∂ξ f (0). �

The result in Theorem 4.2.1 means that if f is n times continuously differentiable
and ξ1, . . . , ξn ∈ R

N , then ∂ξπ(1)
· · · ∂ξπ(n)

f is the same for all permutations π of
{1, . . . , n}. This fact can be useful inmany calculations, since a judicious choice of the
order in which one performs the derivatives can greatly simplify the task. Another
important application of this observation combined with (4.2.2) is the following.
Given m = (m1, . . . , m N ) ∈ N

N , define ‖m‖ = ∑N
j=1 m j , m! = ∏N

j=1(m j !),
ξm = ∏N

j=1(ξ, e j )
m j

RN for ξ ∈ R
N , and ∂m f = ∂m1

e1 · · · ∂m N
eN f for ‖m‖ times

differentiable f ’s, where ∂0
ξ f ≡ f for any ξ. Then, for any m ≥ 0, ξ ∈ R

N , and m
times continuously differentiable f ,

∂m
ξ f =

∑

‖m‖=m

m!
m!ξ

m∂m f. (4.2.3)

To check (4.2.3), use (4.2.2) to see that

∂m
ξ f =

∑

( j1,..., jm )∈{1,...,N }m

(
m
∏

i=1

(

ξ, e ji

)

RN

)

∂e j1
· · · ∂e jm

f.

Next, given m with ‖m‖ = m, let S(m) be the set of ( j1, . . . , jm) ∈ {1, . . . , N }m
such that, for each 1 ≤ j ≤ N , exactly m j of the ji ’s are equal to j , and observe
that, for all ( j1, . . . , jm) ∈ S(m),

∏m
i=1(ξ, e ji )RN = ξm and ∂e j1

· · · ∂e jm
= ∂m f .

Thus
∂m

ξ f =
∑

‖m‖=m

card
(

S(m)
)

ξm∂m f.

Finally, to compute the number of elements in S(m), let ( j01 , . . . , j0m) be the element
of S(m) in which the first m1 entries are 1, the next m2 are 2, etc. Then all the other
elements of S(m) can be obtained by at least one of them! permutations of the indices
of ( j01 , . . . , j0m). However, m! of these permutations will result in the same element,
and so S(m) has m!

m! elements.
If f is a twice continuously differentiable function, define the Hessian H f (x) of

f at x to be the mapping of R
N into R

N given by

H f (x)ξ =
N
∑

i=1

⎛

⎝

N
∑

j=1
∂e j ∂e j f (x)(ξ, e j )RN

⎞

⎠ ei .
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Then ∂ξ∂η f (x) = (ξ, H f (x)η
)

RN , and, from Theorem 4.2.1, we see that H f (x) is
symmetric in the sense that

(

ξ, H f (x)η
)

RN =
(

η, H f (x)ξ
)

RN . In this notation, the
second derivative test becomes the statement that f achieves a maximum at x only
if
(

ξ, H f (x)ξ
)

RN ≤ 0 for all ξ ∈ R
N . There are many results (cf. Exercise 4.14)

in linear algebra that provide criteria with which to determine when this kind of
inequality holds.

Theorem 4.2.2 (Taylor’s Theorem for R
N ) Let f be an (n+ 1) times differentiable

R-valued function on the open ball B(x, r) in R
N . Then for each y ∈ B(x, r) there

exists a θ ∈ (0, 1) such that

f (y) =
∑

‖m‖≤n

∂m f (x)

m! (y− x)m + ∂n+1
y−x f

(

(1− θ)x + θy
)

(n + 1)! .

Moreover, if f is (n+ 1) times continuously differentiable, then the last term can be
replaced by

∑

‖m‖=n+1

∂m f
(

(1− θ)x + θy
)

m! (y− x)m.

Proof Set ξ = y− x. Then, by Theorem 1.8.2 applied to t � f (x + tξ),

f (y) = f (x + ξ) =
n
∑

m=0

∂m
ξ f (x)

m! + ∂n+1
ξ f (x + θξ)

(n + 1)!

for some θ ∈ (0, 1). Since f being (n + 1) times differentiable on B(x, r) implies
that it is n times continuously differentiable there, (4.2.3) implies the first assertion.
As for the second assertion, when f is (n + 1) times continuously differentiable,
another application of (4.2.3) yields the desired result. �

4.3 Arclength of and Integration Along Paths

One of the many applications of integration is to the computation of lengths of
paths in R

N . That is, given a continuous path p : [a, b] −→ R
N , we want a way to

compute its length. If p is linear, in the sense that p(t)−p(a) = tv for some v ∈ R
N ,

then it is the trajectory of a particle that is moving in a straight line with constant
velocity v. Hence its length should be the distance that the particle traveled, namely,
(b − a)|v|. Further, when p is piecewise linear, in the sense that it can be obtained
by concatenating a finite number of linear paths, then its length should be the sum of
the lengths of the linear paths out of which it is made. With this in mind, we adopt

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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the following procedure for computing the length of a general path. Given a finite
cover C of [a, b] by non-overlapping closed intervals, define pC to be the piecewise
linear path which, for each I ∈ C, is linear on I and agrees with p at the endpoints.
That is, if I = [aI , bI ] where aI < bI , then

pC(t) = bI − t

bI − aI
p(aI )+ t − aI

bI − aI
p(bI ) for t ∈ I.

Clearly pC tends uniformly fast to p as ‖C‖ → 0, and its length is

∑

I∈C
|ΔI p| where ΔI p = p(bI )− p(aI ).

Thus a good definition of the length of p would be

Lp
([a, b]) = lim

‖C‖→0

∑

I∈C
|ΔI p|. (4.3.1)

However, we first have to check that this limit exists.

Lemma 4.3.1 Referring to the preceding, the limit in (4.3.1) exists and is equal to

sup
C

∑

I∈C
|ΔI p|.

Proof To prove this result, what we have to show is that for each C and ε > 0 there
is a δ > 0 such that

(∗)
∑

I∈C
|ΔI p| ≤

∑

I ′∈C′
|ΔI ′p| + ε if ‖C′‖ < δ.

Without loss in generality, we will assume that r = min{|I | : I ∈ C} > 0. Take
0 < δ < r so that |t − s| < δ =⇒ |p(t) − p(s)| < ε

2n , where n is the number of
elements in C. If C′ with ‖C′‖ < δ is given, then, by the triangle inequality,

∑

I∈C
|ΔI p| ≤

∑

I∈C

∑

I ′∈C′
|ΔI∩I ′p|.

Clearly,

∑

I∈C

∑

I ′∈C′
I ′⊆I

|ΔI∩I ′p| =
∑

I ′∈C′

∑

I∈C
I⊇I ′

|ΔI∩I ′p| ≤
∑

I ′∈C′
|ΔI ′p|.
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At the same time, since, for any I ∈ C, there are most two I ′ ∈ C′ for which
ΔI ′∩I p �= 0 but I ′ � I ,

∑

I∈C

∑

I ′∈C′
I ′∩I �=∅

I ′�I

|ΔI∩I ′p| ≤ 2n max{|p(t)− p(s)| : |t − s| < δ} < ε,

and so (∗) holds. �

Now that we know that the limit on the right hand side of (4.3.1) exists, we will
say that the arclength of p is the number Lp

([a, b]). Notice that Lp
([a, b]) need not

be finite. For example, consider the function f : [0, 1] −→ [−1, 1] defined by

f (t) =
{

(n + 1)−1 sin(4n+1πt) if 1− 2−n ≤ t < 1− 2−n−1 for n ≥ 0

0 if t = 1,

and set p(t) = (t, f (t)
)

. Then p is a continuous path in R
2. However, because, for

each n ≥ 0, f takes the values −(n + 1)−1 and (n + 1)−1 2n times in the interval
[1− 2−n, 1− 2−n−1], it is easy to check that Lp

([0, 1]) = ∞.
We show next that length is additive in the sense that

Lp
([a, b]) = Lp

([a, c])+ Lp
([c, b]) for c ∈ (a, b). (4.3.2)

To this end, first observe that if C1 is a cover for [a, c] and C2 is a cover for [c, b],
then C = C1 ∪ C2 is a cover for [a, b] and therefore

Lp
([a, b]) ≥

∑

I∈C1
|ΔI p| +

∑

I∈C2
|ΔI p|.

Hence, the left hand side of (4.3.2) dominates the right hand side. To prove the
opposite inequality, suppose that C is a cover for [a, b]. If c /∈ int(I ) for any I ∈ C,
then C = C1 ∪ C2, where C1 = {I ∈ C : I ⊆ [a, c]} and C2 = {I ∈ C : I ⊆ [c, b]}.
In addition, C1 is a cover for [a, c] and C2 is a cover for [c, b]. Hence

∑

I∈C
|ΔI p| =

∑

I∈C1
|ΔI p| +

∑

I∈C2
|ΔI p| ≤ Lp

([a, c])+ Lp
([c, b])

in this case. Next assume that c ∈ int(I ) for some I ∈ C. Because the elements of C
are non-overlapping, there is precisely one such I , and we will use J to denote it. If
J− = J ∩ [a, c] and J+ = J ∩ [c, b], then

C1 = {I ∈ C : I ⊆ [a, c]} ∪ {J−} and C2 = {I ∈ C : I ⊆ [c, b]} ∪ {J+}
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are non-overlapping covers of [a, c] and [c, b]. Since |ΔJ p| ≤ |ΔJ−p| + |ΔJ+p|, it
follows that

Lp
([a, c])+ Lp

([c, b]) ≥
∑

I∈C1
|ΔI p| +

∑

I∈C2
|ΔI p| ≥

∑

I∈C
|ΔI p|,

and this completes the proof of (4.3.2).
We now have enough information to describe what we will mean by integration of

functions along a path of finite length. Suppose thatp : [a, b] �−→ R
N is a continuous

path for which Lp
([a, b]) <∞, and let f : p([a, b]) −→ C be a bounded function.

Given a finite cover C of [a, b] by non-overlapping, closed intervals and an associated
choice function Ξ , consider the quantity

∑

I∈C
( f ◦ p)

(

Ξ(I )
)

Lp(I ).

If, as ‖C‖ → 0, these quantities converge inR to a limit, then that limit iswhatwewill
call the integral of f along p. Because of (4.3.2), the problem of determining when
such a limit exists and of understanding its properties when it does can be solved
using Riemann–Stieltjes integration. Indeed, define Fp : [a, b] −→ [0,∞) by

Fp(t) = Lp
([a, t]) for t ∈ [a, b], (4.3.3)

Clearly Fp is a non-decreasing function,1 and, by (4.3.2), Lp(I ) = ΔI Fp. Thus a
limit will exist precisely when f ◦ p is Riemann–Stieltjes integrable with respect to
Fp on [a, b], in which case

lim
‖C‖→0

∑

I∈C
( f ◦ p)

(

Ξ(I )
)

Lp(I ) =
∫ b

a
( f ◦ p)(t) d Fp(t).

The following lemma provides an important computational tool.

Lemma 4.3.2 If p : [a, b] −→ R
N is continuous path of finite length which is

continuously differentiable on (a, b) and 2

ṗ(t) = (p′1(t), . . . , p′N (t)
)

for t ∈ (a, b),

1Although we will not prove it, Fp is also continuous. For those who know about such things,
one way to prove this is to observe that, because p has finite length, each coordinate p j is a
continuous function of bounded variation. Hence the variation of p j over an interval is a continuous
function of the endpoints of the interval, and from this it is easy to check the continuity of Fp. See
Exercise 1.2.22 in my book Essentials of Integration Theory of Analysts, Springer-Verlag GTM262,
for more details.
2The use of a “dot” to denote the time derivative of a vector valued function goes back to Newton.

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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then

∫ b

a
( f ◦ p)(t) d Fp(t) =

∫

(a,b)

( f ◦ p)(t)|ṗ(t)| dt

for continuous functions f : [a, b] −→ R.

Proof By (3.5.3), all that we have to show is that Fp is differentiable on (a, b) and
that |ṗ| is its derivative there. Hence, by the Fundamental of Calculus, it suffices to
show that

(∗) Fp(t)− Fp(s) =
∫ t

s
|ṗ(τ )| dτ for a < s < t < b.

Given a < s < t < b, let C be a non-overlapping cover for [s, t]. Then, by
Theorem 1.8.1, for each I = [aI , bI ] ∈ C there exist ξ1,I , . . . , ξN ,I ∈ I such that

ΔI p = (p′1(ξ1, I ), . . . , p′N (ξN , I )
)|I |

= (p′1(aI ), . . . , p′N (aI )
)|I | + (p′1(ξ1,I )− p′1(aI ), . . . , p′N (ξN ,I )− p′N (aI )

)|I |.

Hence, if

ω(δ) = max
1≤ j≤N

sup
{|p′j (τ )− p′j (σ)| : s ≤ σ < τ ≤ t & τ − σ ≤ δ

}

,

then, by the triangle and Schwarz’s inequalities,

∣
∣
∣|ΔI p| − |ṗ(aI )||I |

∣
∣
∣ ≤ ∣∣ΔI p− |I |ṗ(aI )

∣
∣ ≤ N

1
2 ω(‖C‖)|I |,

and so

Fp(t)− Fp(s) = lim
‖C‖→0

∑

I∈C
|ΔI p| = lim

‖C‖→0

∑

I∈C
|ṗ(aI )||I | =

∫ t

s
|ṗ(τ )| dτ .

�

4.4 Integration on Curves

The reader might well be wondering why we defined integrals along paths the way
that we did instead of simply as

∫ b
a ( f ◦ p)(t) dt , but the explanation will become

clear in this section (cf. Lemma 4.4.1).
We will say that a compact subset C ofR

N is a continuously parameterized curve
if C = p([a, b]) for some one-to-one, continuous map p : [a, b] −→ R

N , called a

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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parameterization of C . Given a continuous function f : C −→ C, we want to know
what meaning to give the integral

∫

C f (y) dσy of f over C . Here the notation dσy is
used to emphasize that the integral is being taken over C and is not a usual integral
in Euclidean space, but one that is intrinsically defined on C .

One possibility that suggests itself is to take (cf. (4.3.3))

∫

C
f (y) dσy =

∫ b

a
f
(

p(t)
)

d Fp(t) (4.4.1)

at least when Lp
([a, b]) < ∞. However, to justify defining integrals over C by

(4.4.1), we have to make sure that the right hand side depends only on C in the sense
that it is the same for all parameterizations of C .

Lemma 4.4.1 Suppose that p : [a, b] −→ C and q : [c, d] −→ C are two para-
meterizations of C. Then Lp

([a, b]) = Lq
([c, d]), and, if Lp

([a, b]) <∞, then

∫ b

a
f
(

p(t)
)

d Fp(t) =
∫ d

c
f
(

q(t)
)

d Fq(t)

for all continuous functions f : C −→ C.

Proof First observe that, because q is one-to-one onto C , it admits an inverse q−1
taking C onto [c, d]. Furthermore, q−1 is continuous, since if xn −→ x in C and
tn = q−1(xn), then every limit point of the sequence {tn : n ≥ 1} is mapped by q to
x and therefore (cf. Exercise 4.2) tn −→ q−1(x). Now define α(s) = q−1 ◦ p(s) for
s ∈ [a, b].

[a,b] C [c,d]
p q−1

α

commutative diagram

Then, since q−1 and p are continuous, one-to-one, and onto, α is a continuous, one-
to-one map of [a, b] onto [c, d]. Thus, by Corollary 1.3.7, either α(a) = c and α is
strictly increasing, or α(a) = d and α is strictly decreasing.

Assuming that α(a) = c, we now show that

(∗) Lp(J ) = Lq
(

α(J )
)

for each closed interval J ⊆ [a, b].

To this end, let C be a cover of J by non-overlapping closed intervals I . Then
C′ = {α(I ) : I ∈ C} is a non-overlapping cover of α(J ) (cf. Theorem 1.3.6 and
Exercise 4.6) by non-overlapping closed intervals, and ‖C′‖ → 0 as ‖C‖ → 0.
Hence, since Δα(I )q = ΔI p,

Lq
(

α(J )
) = lim

‖C‖→0

∑

I∈C
|Δα(I )q| = lim

‖C‖→0

∑

I∈C
|ΔI p| = Lp(J ).

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_1
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Obviously, thefirst assertion follows immediately by taking J = [a, b] in (∗). Further,
if Lp

([a, b]) < ∞, (∗) implies that Fp(s) = Fq
(

α(s)
)

. Now suppose that f is a
continuous function onC . Given a cover C of [a, b] and an associated choice function
Ξ , set C′ = {α(I ) : I ∈ C} and Ξ ′

(

α(I )
) = Ξ(I ) for I ∈ C. Then

R( f |Fq; C′, Ξ ′) =
∑

I∈C
f ◦ q

(

Ξ ′(α(I )
)

Δα(I )Fq = R( f |Fp; C, Ξ),

and so the Riemann–Stieltjes integrals of f with respect to Fp and Fq are equal.

When α(a) = d, set q̃(t) = q(c + d − t). Since q̃−1 ◦ p = α̃(s), where
α̃(s) = α(a + b − s), the preceding says that Lp

([a, b]) = L q̃
([c, d]) and, when

Lp
([a, b]) <∞,

∫ b

a
f
(

p(s)
)

d Fp(s) =
∫ d

c
f
(

q̃(t)
)

d Fq̃(t).

Clearly Lq
([c, d]) = L q̃

([c, d]). Moreover, if Lp
([a, b]) < ∞, then Fq̃(t) =

Fq(b)− Fq(a + b − t), and so, by (3.5.1),

∫ d

c
f
(

q(t)
)

d Fq(t) =
∫ d

c
f
(

q̃(t)
)

d Fq̃(t). �

In view of the preceding, it makes sense to say that the length of C is the length
of a, and therefore any, parameterization of C . In addition, if C has finite length and
p is a parameterization, then we can use (4.4.1) to define

∫

C f (y) dσy, and it makes
no difference which parameterization we use. In many applications, the freedom to
choose the parameterization when performing integrals along parameterized curves
of finite length can greatly simplify computations. In particular, if C has finite length
and admits a parameterization p : [a, b] −→ C that is continuously differentiable
on (a, b), then, by Lemma 4.3.2,

∫

C
f (y) dσy =

∫ b

a
f
(

p(t)
)|ṗ(t)| dt. (4.4.2)

Here is an example that illustrates the point being made. Let C be the semi-circle
{x ∈ R

2 : |x| = 1 & x2 ≥ 0}. Then there are two parameterizations that suggest
themselves. The first is t ∈ [−1, 1] �−→ p(t) = (t,√1− t2

) ∈ C , and the second
is t ∈ [0,π] �−→ q(t) = (cos t, sin t). Note that

Fp(t) =
∫

(−1,t]

√

1+ τ2

1−τ2
dτ =

∫

(−1,t]
1√

1− τ2
dτ = π − arccos t,

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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where arccos t is the θ ∈ [0,π] for which cos θ = t , and Fq(t) = t for t ∈ [0,π].
Hence, in this case, the equality between integrals along p and integrals along q
comes from the change of variables t = cos s in the integral along p.

Before closing this section, we need to discuss an important extension of these
ideas. Namely, one often wants to deal with curves C that are best presented as the
union of parameterized curves that are non-overlapping in the sense that if p on
[a, b] is a parameterization of one and q on [c, d] is a parameterization of another,
then p(s) �= q(t) for any s ∈ (a, b) and t ∈ (c, d). For example, the unit circle
S
1(0, 1) = {x ∈ R

2 : |x| = 1} cannot be parameterized because no continuous path
p froma closed interval ontoS

1(0, 1) could be one-to-one.On the other hand,S1(0, 1)
is the union of two non-overlapping parameterized curves: {x ∈ S

1(0, 1) : x2 ≥ 0}
and {x ∈ S

1(0, 1) : x2 ≤ 0}. The obvious way to integrate over such a curve is to
sum the integrals over its parameterized parts. That is, if C = C1 ∪ · · · ∪ CM , the
Cm’s being non-overlapping, parameterized curves, then one says thatC is piecewise
parameterized, takes its length to be the sum of the lengths of its parameterized
components, and, when its length is finite, the integral of a continuous function f
over C to be

∫

C
f (y) dσy =

M
∑

m=1

∫

Cm

f (y) dσy,

the sum of the integrals of f over its components. Of course, one has to make
sure that these definitions lead to the same answer for all decompositions of C into
non-overlapping parameterized components. However, if C ′1, . . . , C ′M ′ is a second
decomposition, then one can consider the decomposition whose components are of
the form Cm ∩ C ′m′ for m and m′ corresponding to overlapping components. Using
Lemma4.4.1, one sees that both of the original decompositions give the same answers
on the components of this third one, and from this it is an easy step to show that our
definitions of length and integrals on C do not depend on the way in which C is
decomposed into non-overlapping, parameterized curves.

4.5 Ordinary Differential Equations3

One way to think about a function F : R
N −→ R

N is as a vector field. That is, to
each x ∈ R

N , F assigns the vector F(x) at x:

3The adjective “ordinary” is used to distinguish differential equations in which, as opposed to
“partial” differential equations, the derivatives are all taken with respect to one variable.
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and one can ask whether there exists a path X : R −→ R
N for which F

(

X(t)
)

is
the velocity of X(t) at each time t ∈ R. That is, Ẋ(t) ≡ d

dt X(t) = F
(

X(t)
)

. In fact,
it is reasonable to hope that, under appropriate conditions on F, for each x ∈ R

N

there will be precisely one path t � X(t, x) that passes through x at time t = 0
and has velocity F

(

X(t, x)
)

at all times t ∈ R. The most intuitive way to go about
constructing such a path is to pretend thatF

(

X(t, x)
)

is constant during time intervals
of length 1

n . In other words, consider the path t � Xn(t, x) such that Xn(0, x) = x
and

Ẋn(t, x) = F
(

Xn
( k

n , x
))

for

{

t ∈ [ k
n , k+1

n

)

if t ≥ 0

t ∈ ( k−1
n , k

n

]

if t < 0.

Equivalently, if

�t�n ≡ max
{

k ∈ Z : k
n ≤ t

}

n
and �t�n ≡ min

{

k ∈ Z : k
n ≥ t

}

n
,

then

Xn(t, x) =
{

Xn
(�t�n, x

)+ F
(

Xn
(�t�n, x

)(

t − �t�n
)

if t > 0

Xn
(�t�n, x

)+ F
(

Xn
(�t�n, x

)(

t − �t�n
)

if t < 0,

which can be also written as

Xn(t, x) = x +
{∫ t

0 F
(

Xn
(�τ�n, x

))

dτ if t ≥ 0

− ∫ −t
0 F

(

Xn
(−�−τ�n, x

)

dτ if t < 0.
(4.5.1)

The hope is that, as n →∞, the paths t � Xn(t, x) will converge to a solution to
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X(t, x) = x +
∫ t

0
F
(

X(τ , x)
)

dτ , (4.5.2)

which, by the Fundamental Theorem of Calculus, is that same as saying it is a
solution to

Ẋ(t, x) = F
(

X(t, x)
)

with X(0, x) = x. (4.5.3)

Notice that t � X(−t, x) and, for each n ≥ 1, t � Xn(−t, x) are given by the
same prescription as t � X(t, x) and t � Xn(t, x) with F replaced by −F. Hence,
it suffices to handle t ≥ 0.

To carry out this program, we will make frequent use of the following lemma,
known as Gromwall’s inequality.

Lemma 4.5.1 Suppose that α : [0,∞) −→ R and β : [0,∞) −→ R are contin-
uous functions and that α is non-decreasing. If T > 0 and u : [0, T ] −→ R is a
continuous function that satisfies

u(t) ≤ α(t)+
∫ t

0
β(τ )u(τ ) dτ for t ∈ [0, T ],

then

u(T ) ≤ α(0)eB(T ) +
∫ T

0
eB(T )−B(τ ) dα(τ ) where B(t) ≡

∫ t

0
β(τ ) dτ .

Proof Set U (t) = ∫ t
0 β(τ )u(τ ) dτ . Then U̇ (t) ≤ α(t)β(t)+ β(t)U (t), and so

d

dt

(

e−B(t)U (t)
) ≤ α(t)β(t)e−B(t).

Integrating both sides over [0, T ] and applying part (ii) of Exercise 3.16, we obtain

e−B(T )U (t) ≤
∫ T

0
α(τ )β(τ )e−B(τ ) dτ = −α(T )e−B(T ) + α(0) +

∫ T

0
e−B(τ ) dα(τ ).

Hence the required result follows from u(T ) ≤ α(T )+U (T ). �

Our first application of Lemma 4.5.1 provides an estimate on the size of Xn .

Lemma 4.5.2 Assume that there exist a ≥ 0 and b > 0 such that |F(x)| ≤ a+ b|x|
for all x ∈ R

N . If Xn(t, x) is given by (4.5.1), then

sup
n≥1
|Xn(t, x)| ≤ |x|eb|t | + a

(

eb|t | − 1)

b
for all t ∈ R.

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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Proof By our observation about t � Xn(−t, x), it suffices to handle t ≥ 0.
Set un(t) = max{|Xn(τ , x)| : t ∈ [0, t]}. Then

|Xn(t, x)| ≤ |x| +
∫ t

0

∣
∣F
(

Xn
(�τ�n, x

))∣
∣ dτ ≤ |x| + at + b

∫ t

0
un(τ ) dτ

and therefore

un(t) ≤ |x| + at + b
∫ t

0
un(τ ) dτ for t ≥ 0.

Thus the desired estimate follows by Gromwall’s inequality. �

From now on we will be assuming that F is globally Lipschitz continuous. That
is, there exists an L ∈ [0,∞), called the Lipschitz constant, such that

|F(y)− F(x)| ≤ L|y− x| for all x, y ∈ R
N . (4.5.4)

By Schwarz’s inequality, (4.5.4) will hold if F is continuously differentiable and

L =
√
√
√
√ sup

x∈RN

N
∑

j=1
|∇Fj (x)|2 <∞.

We will now show that (4.5.2) has at most one solution when (4.5.4) holds. To
this end, suppose that t � X(t, x) and t � X̃(t, x) are two solutions, and set
u(t) = |X(t, x)− X̃(t, x)|. Then

u(t) ≤
∫ t

0

∣
∣F
(

X(τ , x)
)− F

(

X̃(τ , x)
)∣
∣ dτ ≤ L

∫ t

0
u(τ ) dτ for t ≥ 0,

and therefore by Gromwall’s inequality with α ≡ 0 and β ≡ L , we know that
u(t) = 0 for all t ≥ 0. To handle t < 0, use the observation about t � X(−t, x).

Theorem 4.5.3 Assume that F satisfies (4.5.4). Then for each x ∈ R
N there is a

unique solution t � X(t, x) to (4.5.2). Furthermore, for each R > 0 there exists a
CR <∞, depending only on the Lipschitz constant L in (4.5.4), such that

sup
{|X(t, x)− Xn(t, x) : |t | ∨ |x| ≤ R

} ≤ CR

n
. (4.5.5)

Finally,

|X(t, y)− X(t, x)| ≤ eL|t ||y− x| for all t ∈ R and x, y ∈ R
N .
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Proof The uniqueness assertion was proved above. To prove the existence of
t � X(t, x), set um,n(t, x) = |Xn(t, x) − Xm(t, x)| for t ≥ 0 and 1 ≤ m < n.
Then

um,n(t, x) ≤
∫ t

0

∣
∣F
(

Xn
(�τ�n, x

))− F
(

Xm
(�τ�m, x

))∣
∣ dτ

≤ L
∫ t

0

(

|Xn
(�τ�n, x

)− Xn(τ , x)| + |Xm
(�τ�m, x

)− Xm(τ , x)|
)

dτ

+ L
∫ t

0
um,n(τ , x) dτ .

Next observe that |F(x)| ≤ |F(0)| + L|x|, and therefore, by Lemma 4.5.2,

|Xk(t, x)| ≤ ReL R + |F(0)|(eL R − 1
)

L
for k ≥ 1 and (t, x) ∈ [0, R] × B(0, R).

Thus, if AR = |F(0)| + (L R + |F(0)|(1− e−L R)
)

eL R , then

∣
∣Xk
(�τ�k, x

)− Xk(τ , x)
∣
∣ ≤

∫ t

�τ�k

∣
∣F
(

Xk(σ, x)
)∣
∣ dσ ≤ AR

k

for k ≥ 1 and (τ , x) ∈ [0, R] × B(0, R). Hence, we now know that, if (t, x) ∈
[0, T ] × B(0, R), then

um,n(t, x) ≤ 2AR

m
+ L

∫ t

0
um,n(τ , x) dτ ,

and therefore, by Gromwall’s inequality,

(∗) sup
(t,x)∈[0,R]×B(0,R)

|Xn(t, x)− Xm(t, x)| ≤ CR

m
,

where CR = 2AReL R .
From (∗) it is clear that, for each t ≥ 0, {Xn(t, x) : n ≥ 1} satisfies Cauchy’s

convergence criterion and therefore converges to some X(t, x). Further, because,
again from (∗),

sup
(t,x)∈[0,R]×B(0,R)

|X(t, x)− Xm(t, x)| ≤ CR

m
,

(4.5.5) holds with this CR . Hence, by Lemma 1.4.4, t � X(t, x) is continuous, and
by Theorem 3.1.4, (4.5.2) follows from (4.5.1) for t ≥ 0. To prove the same result
for t < 0, one again uses the observation made earlier.

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_3


118 4 Higher Dimensions

Finally, observe that

|X(t, y)− X(t, x)| ≤ |y− x| + L
∫ |t |

0
|X(τ , y)− X(τ , x)| dτ for t ∈ R,

and now proceed as before, via Gromwall’s inequality, to get the estimate in the
concluding assertion. �

Theorem 4.5.3 is a basic result that guarantees the existence and uniqueness of
solutions to the ordinary differential equation (4.5.3). It should be pointed out that
the existence result holds under much weaker assumptions (cf. Exercise 4.19). For
example, solutions will exist if F is continuous and |F(x)| ≤ a+ b|x| for some non-
negatives constants a and b. On the other hand, uniqueness can fail when F is not

Lipschitz continuous. To wit, consider the equation Ẋ(t) = |X (t)| 12 with X (0) = 0.
Obviously, one solution is X (t) = 0 for all t ∈ R. On the other hand, a second
solution is

X (t) =
{

t2
4 if t ≥ 0

− t2
4 if t < 0.

For many purposes, the uniqueness is just as important as existence. In particular,
it allows one to prove that

X(s + t, x) = X
(

t, X(s, x)
)

for all s, t ∈ R and x ∈ R
N . (4.5.6)

Indeed, observe that t � Y(t) ≡ X(s + t, x) satisfies Ẏ(t) = F
(

Y(t)
)

with Y(0) =
X(s, x), and therefore Y(t) = X

(

t, X(s, x)
)

. The equality in (4.5.6) is called the
flow property and reflects the fact that once one knows where a solution to (4.5.3)
is at a time s its position at any other time is completely determined. An important
consequence of (4.5.6) is that, for any t ∈ R, y � X(−t, y) is the inverse of
x � X(t, x) and therefore, when F satisfies (4.5.4), that x � X(t, x) and its inverse
are continuous, one-to-one maps of R

N onto itself.

Corollary 4.5.4 Assume that F : R
N −→ R

N is continuously differentiable and
that ∂e j F is bounded for each 1 ≤ j ≤ N. Then, for each t ∈ R, x � X(t, x) is
continuously differentiable and

∂e j X(t, x)i = δi, j +
∫ t

0

(

∇Fi
(

X(τ , x)
)

, ∂e j X(τ , x)
)

RN
dτ . (4.5.7)

Proof Since, as we have seen, results for t ≤ 0 can be obtained from the ones for
t ≥ 0, we will restrict our attention to t ≥ 0

First observe that, for each n ≥ 1 and t ≥ 0, x � Xn(t, x) is continuously
differentiable and satisfies (cf. Exercise 4.7)

∂e j Xn(t, x)i = δi, j +
∫ t

0

(

∇Fi
(

Xn
(�τ�n, x), ∂e j Xn

(�τ�n, x
))

RN
dτ .
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Thus

|∂e j Xn(t, x)| ≤ 1+ A
∫ t

0
|∂e j Xn(�τ�n, x)| dτ

for n ≥ 1 and (t, x) ∈ [0,∞)×R
N , where A = ‖ |∇Fi | ‖RN <∞. Hence, arguing

as we did in the proof of Lemma 4.5.2, we see that |∂e j Xn(t, x)| ≤ eAt , and therefore
that there exists a B <∞ such that

∣
∣∂e j Xn(t, x)− ∂e j Xn(s, x)

∣
∣ ≤ BeAt |t − s|

for n ≥ 1 and 0 ≤ s < t and x ∈ R
N . Combining this with (4.5.5) and the fact the

first derivatives of F are continuous, we conclude that

sup
n>m

sup
t∨|x|≤R

max
1≤i≤N

∣
∣∇Fi

(

Xn(�t�n, x)
)− ∇Fi

(

Xm(�t�m, x)
)∣
∣

tends to 0 as m → ∞. Hence there exist {εm(R) : m ≥ 1} ⊆ (0,∞) such that
εm(R)↘ 0 as m →∞ and

∣
∣∂e j Xn(t, x)− ∂e j Xm(t, x)

∣
∣ ≤ εm(R)+ AN

1
2

∫ t

0

∣
∣∂e j Xn(τ , x)− ∂e j Xm(τ , x)

∣
∣ dτ

for 1 ≤ m < n and t ∨ |x| ≤ R. Therefore, by Gromwall’s inequality, we now know
that

sup
n>m

∣
∣∂e j Xn(t, x)− ∂e j Xm(t, x)

∣
∣ −→ 0

uniformly for t ∨ |x| ≤ R.
Fromhere, the rest of the argument is easy.ByCauchy’s criterion andLemma1.4.4,

there exists a continuous Y j : [0,∞) × R
N −→ R

N to which ∂e j Xn(t, x) con-
verges uniformly on bounded subsets of [0,∞) × R

N , and so, by Corollary 3.2.4,
x � X(t, x) is continuously differentiable and ∂e j X(t, x) = Y j (t, x). Furthermore,
by Theorem 3.1.4, t � ∂e j X(t, x) satisfies (4.5.7). �

The following corollary gives one of the reasons why it is important to have these
results for vector fields on R

N instead of just functions.

Corollary 4.5.5 Suppose that F : R
N −→ R satisfies (4.5.4) for some L < ∞.

Then for each x ∈ R
N there is precisely one function t ∈ R �−→ X (t, x) ∈ R such

that
∂N

t X (t, x) = F
(

X (t, x), ∂1
t X (t, x), . . . , ∂N−1

t X (t, x)
)

with ∂k
t X (0, x) = xk+1 for 0 ≤ k < N ,

(4.5.8)

where ∂k
t X (t, x) denotes the kth derivative of X ( ·, x) with respect to t .

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_3
http://dx.doi.org/10.1007/978-3-319-24469-3_3
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Proof Define F(x) = (x2, . . . , xN , F(x)
)

for x ∈ R
N . Then F satisfies (4.5.4), and

therefore there is precisely one solution to

(∗) Ẋ(t, x) = F
(

X(t, x)
)

with X(0, x) = x.

Furthermore, t � X(t, x) satisfies (∗) if and only if Ẋk(t, x) = Xk+1(t, x) for
0 ≤ k < N , Ẋ N (t, x) = F

(

X(t, x)
)

, and Xk(0, x) = xk+1 for 1 ≤ k < N . Hence,
if X (t, x) ≡ X1(t, x), then ∂k

t X (t, x) = Xk+1(t, x) for 0 ≤ k < N and

∂N
t X (t, x) = F

(

X (t, x), ∂1
t X (t, x), . . . , ∂N−1

t X (t, x)
)

,

which means that t � X (t, x) is a solution to (4.5.8). Conversely, if t � X (t, x) is
a solution to (4.5.8) and

X(t, x) = (X (t, x), ∂1
t X (t, x), . . . , ∂N−1

t X (t, x)
)

,

then t � X(t, x) is a solution to (∗), and so t � X (t, x) is the only solution to
(4.5.8). �

The idea on which the preceding proof is based was introduced by physicists to
study Newton’s equation of motion, which is a second order equation. What they
realized is that the analysis of his equation is simplified if one moves to what they
called phase space, in which points represent the position and velocity of a particle
and Newton’s equation becomes a first order equation.

4.6 Exercises

Exercise 4.1 Given a set S ⊆ R
N , the set ∂S ≡ S̄ \ int(S) is called the boundary of

S. Show that x ∈ ∂S if and only if B(x, r) ∩ S �= ∅ and B(x, r) ∩ S� �= ∅ for every
r > 0. Use this characterization to show that ∂S = ∂(S�), ∂(S1 ∪ S2) ⊆ ∂S1 ∪ ∂S2,
∂(S1 ∩ S2) ⊆ ∂S1 ∪ ∂S2, and ∂(S2 \ S1) ⊆ ∂S1 ∪ ∂S2.

Exercise 4.2 Suppose that {xn : n ≥ 1} is a bounded sequence in R
N . Show that

{xn : n ≥ 1} converges if and only if it has only one limit point. That is, xn −→ x
if and only if every convergent subsequence {xnk : k ≥ 1} converges to x.

Exercise 4.3 Let F1 and F2 be a pair of disjoint, closed subsets of R
N . Assuming

that at least one of them is bounded, show that there exist x1 ∈ F1 and x2 ∈ F2 such
that

|x2 − x1| = |F2 − F1| ≡ inf{|y2 − y1| : y1 ∈ F1 & y2 ∈ F2},

and conclude that |F2 − F1| > 0. On the other hand, give an example of disjoint,
closed subsets F1 and F2 of R such that |F1 − F1| = 0.
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Exercise 4.4 Given a pair of closed sets F1 and F2, set

F1 + F2 = {x1 + x2 : x1 ∈ F1 & x2 ∈ F2}.

Show that F1 + F2 is closed if at least one of the sets F1 and F2 is bounded but that
it need not be closed if neither is bounded.

Exercise 4.5 Given a non-empty open subset G of R
N and a point x ∈ G, let Gx be

the set of y ∈ G to which x is connected in the sense that there exists a continuous
path γ : [a, b] −→ G such that x = γ(a) and y = γ(b). Show that both Gx and
G \Gx are open. Next, say that G is connected if it cannot be written as the union of
two non-empty open sets, and show that G is connected if and only if Gx = G for
every x ∈ G. Thus G is connected if and only if it path connected.

Exercise 4.6 Suppose that K is a compact subset of R
N and that F is an R

M -valued
continuous function on K . Show that F(K ) is a compact subset of R

M . The fact that
F(K ) is bounded is obvious, what is interesting is that it is closed. Indeed, give an
example of a continuous function f : R −→ R for which f (R) is not closed.

Exercise 4.7 Suppose that G1 and G2 are non-empty, open subsets of R
N1 and

R
N2 respectively. Further, assume that F1, . . . , FN2 are continuously differentiable

functions on G1 and that F(x) ≡ (F1(x), . . . , FN2(x)
) ∈ G2 for all x ∈ G1. Finally,

let g : G2 −→ C be continuously differentiable, and define g ◦ F(x) = g
(

F(x)
)

for
x ∈ G1. Show that

∂ξ(g ◦ F)(x) =
N2∑

j=1
(∂e j g) ◦ F(x) ∂ξ Fj (x)

for x ∈ G1 and ξ ∈ R
N1 . This is the form that the chain rule takes for functions of

several variables.

Exercise 4.8 Let G be a collection of open subsets of R
N . The goal of this exercise

is to show that there exists a sequence {Gk : k ≥ 1} ⊆ G such that
⋃∞

k=1 Gk =⋃

G∈G G. This is sometimes called the Lindelöf property ofR
N . Here are some steps

that you might take.
(i) Let A be the set of pairs (q, �) where q is an element of R

N with rational
coordinates and � ∈ Z

+. Show that A is countable.
(ii) Given an open set G, let BG be the set of balls B

(

q, 1
�

)

such that (q, �) ∈ A
and B

(

q, 1
�

) ⊆ G. Show that G =⋃B∈BG
B.

(iii) Given a collection G of open sets, let BG =
⋃

G∈G BG . Show that BG is
countable and that

⋃

B∈BG B = ⋃

G∈G G. Finally, for each B ∈ BG , choose a
G B ∈ G so that B ⊆ G B , and observe that

⋃

B∈BG G B =⋃G∈G G.

Exercise 4.9 According to Lemma 4.1.1, a set K ⊆ R
N is compact if and only if

it is closed and bounded. In this exercise you are to show that K is compact if and
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only if for each collection of open sets G that covers K (i.e., K ⊆⋃G∈G G) there is
a finite sub-cover {G1, . . . , Gn} ⊆ G which covers K (i.e., K ⊆ ⋃n

m=1 Gm). Here
is one way that you might proceed.

(i) Assume that every cover G of K by open sets admits a finite sub-cover. To show
that K is bounded, take G = {B(x, 1) : x ∈ K } and pass to a finite sub-cover. To
see that K is closed, suppose that y /∈ K , and, for m ≥ 1, define Gm to be the set of
x ∈ R

N such that |y−x| > 1
m . Show that each Gm is open and that K ⊆⋃∞m=1 Gm ,

and choose n ≥ 1 so that K ⊆⋃n
m=1 Gm . Show that B

(

y, 1
n

)∩K = ∅ and therefore
that y /∈ K̄ . Hence K = K̄ .

(ii) Assume that K is compact, and let G be a cover of K by open sets. Using
Exercise 4.8, choose {Gm : m ≥ 1} ⊆ G so that K ⊆ ⋃∞m=1 Gm . Suppose that
K �

⋃n
m=1 Gm for any n ≥ 1, and, for each n ≥ 1, choose xn ∈ K so that

xn /∈ ⋃n
m=1 Gm . Now let {xn j : j ≥ 1} be a subsequence that converges to a point

x ∈ K , and choose m ≥ 1 such that x ∈ Gm . Then there would exist a j ≥ 1 such
that n j ≥ m and xn j ∈ Gm , which is impossible.

Exercise 4.10 Here is a typical example that shows how the result in Exercise 4.9
gets applied. Given a set S ⊆ R

N and a family F of functions f : S −→ C, one
says that F is equicontinuous at x ∈ S if, for each ε > 0, there is a δ > 0 such
that | f (y) − f (x)| < ε for all y ∈ S ∩ B(x, δ) and all f ∈ F . Show that if F is
equicontinuous at each x in a compact set K , then it is uniformly equicontinuous in
the sense that for each ε > 0 there is a δ > 0 such that | f (y) − f (x)| < ε for all
x, y ∈ K with |y− x| < δ and all f ∈ F . The idea is to begin by choosing for each
x ∈ K a δx > 0 such that sup f ∈F | f (y) − f (x)| < ε

2 for all y ∈ K ∩ B(x, 2δx ).
Next, choose x1, . . . , xn ∈ K so that K ⊆ ⋃n

m=1 B(xm, δxm ). Finally, check that
δ = min{δxm : 1 ≤ m ≤ n} has the required property.

Exercise 4.11 Another application of Exercise 4.9 is provided by Dini’s lemma.
Suppose that { fn : n ≥ 1} is a non-increasing sequence of R-valued, continuous
functions on a compact set K , and assume that f is a continuous function of K
to which they converge pointwise. Show that fn −→ f uniformly on K . In doing
this problem, first reduce to the case when f = 0. Then, given ε > 0, for each
x ∈ K choose nx ∈ Z

+ and rx > 0 so that fnx(y) ≤ ε for y ∈ B(x, rx). Now apply
Exercise 4.9 to the cover {B(x, rx) : x ∈ K }.
Exercise 4.12 In this exercise you are to construct a space-filling curve. That is, for
each N ≥ 2, a continuous mapX that takes the interval [0, 1] onto the square [0, 1]N .
Such a curve was constructed originally in the 19th Century by G. Peano, but the one
suggested here is much simpler than Peano’s and was introduced by I. Scheonberg.
Let f : R −→ [0, 1] be any continuous function with the properties that f (t) = 0
if
[

0, 1
3

]

, f (t) = 1 if t ∈ [ 23 , 1
]

, f (2) = 0, and f (t + 2) = f (t) for all t ∈ R. For
example, one can take f (t) = 0 for t ∈ [0, 1

3 ], f (t) = 3
(

t − 1
3

)

for t ∈ [ 13 , 2
3

]

,
f (t) = 1 for t ∈ [ 23 , 1

]

, f (t) = 2−t for t ∈ [1, 2], and then define f (t) = f (t−2n)

for n ∈ Z and 2n ≤ t < 2(n + 1). Next, define X(t) = (X1(t), . . . , X N (t)
)

where
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X j (t) =
∞
∑

n=0
2−n−1 f

(

3nN+ j−1) for 1 ≤ j ≤ N .

Given x = (x1, . . . , xN ) ∈ [0, 1]N , choose ω : N −→ {0, 1} so that

x j =
∞
∑

n=0
2−n−1ω(nN + j − 1) for 1 ≤ j ≤ N ,

set s = 2
∑∞

n=0 3−n−1ω(n), and show that X(s) = x. To this end, observe that, for
each m ∈ N, there is a bm ∈ N such that

2bm + 2ω(m)

3
≤ 3ms ≤ 2bm + 2ω(m)

3
+ 1

3

and therefore that f (3ms) = ω(m).
Obviously, X is very far from being one-to-one, and there are good topological

reasons why it cannot be. Finally, recall the Cantor set C in Exercise 1.8, and show
that the restriction of X to C is a one-to-one map onto [0, 1]N . This, of course, gives
another proof that C is uncountable.

Exercise 4.13 Define f : R
2 −→ R so that, for x = (x1, x2), f (x) = x21 x22

x41+x42
if x �= 0 and f (x) = 0 if x = 0. Show that f is differentiable at 0 and that
∂ξ f (0) = f (ξ). Conclude in particular that for this f it is not true that ∂ξ f (0) =
(ξ, e1)R2∂e1 f (0)+ (ξ, e2)R2∂e2 f (0) for all ξ.

Exercise 4.14 Let a, b, c ∈ R, and show that

aξ2 + 2bξη + cη2 ≥ 0 for all ξ, η ∈ R ⇐⇒ a + c ≥ 0 and ac ≥ b2.

Now let f : G −→ R be a twice continuously differentiable function on a non-empty
open set G ⊆ R

2, and, given x ∈ G, show that ∂2
ξ f (x) = (ξ, H f (x)ξ)R2 ≥ 0 for

all ξ ∈ R
2 if and only if

∂2
e1 f (x)+ ∂2

e2 f (x) ≥ 0 and ∂2
e1 f (x)∂2

e2 f (x) ≥ (∂e1∂e2 f (x)
)2

.

Exercise 4.15 A set C ⊆ R
N is said to be convex if (1 − θ)x + θy ∈ C whenever

x, y ∈ C and θ ∈ [0, 1]. In other words, C contains the line segment connecting
any pair of points in C . Show that C̄ is convex if C is. Next, if f is an R-valued
function on a convex set C , f is called a convex function if f

(

(1 − θ)x + θy
) ≤

(1 − θ) f (x) + θ f (y) for all x, y ∈ C and θ ∈ [0, 1]. Now let G be a non-empty
open, convex set, set C = Ḡ, and assume that f : C −→ R is continuous. If f is
differentiable on G, show that f is convex on C if and only if for each x ∈ G and
r > 0 such that B(x, r) ⊆ G, t ∈ [0, r) �−→ ∂e f (x + te) ∈ R is non-decreasing
for all e ∈ R

N with |e| = 1. In particular, conclude that if f is twice continuously

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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differentiable on G, then f is convex on C if and only if
(

ξ, H f (x)ξ
)

RN ≥ 0 for all
x ∈ G and ξ ∈ R

N .

Exercise 4.16 Prove theR
N -version of (3.2.2). That is, if f is aC-valued function on

an open set G ⊆ R
N is (n+1)-times continuously differentiable and (1− t)x + ty ∈

G for t ∈ [0, 1], show that

f (y) =
∑

‖m‖≤n

∂m f (x)

m! (y− x)m

+ 1

n!
∫ 1

0
(1− t)n∂n+1

t f
(

(1− t)x + ty
)

dt.

Exercise 4.17 Consider equations of the sort in Corollary 4.5.5. Even though one
is looking for R-valued solutions, it is sometimes useful to begin by looking for
C-valued ones. For example, consider the equation

(∗) ∂N
t Z(t) =

N−1
∑

n=0
an∂n

t Z(t),

where a0, . . . , aN−1 ∈ R.
(i) Show that if Z is a C-valued solution to (∗), then so is Z̄ . In addition, show

that if Z1 and Z2 are two C-valued solutions, then, for all c1, c2 ∈ C, c1Z1 + c2Z2
is again a C-valued solution. Conclude that if Z is a C-valued solution, then both the
real and the imaginary parts of Z are R-valued solutions.

(ii) Set P(z) = zN −∑N−1
n=0 anzn for z ∈ C. Show that

(∗∗)
(

∂N
t −

N−1
∑

n=0
∂n

t

)

ezt = P(z)ezt .

Next, assume that λ ∈ C is an �th order root of P (i.e., P(z) = (z − λ)�Q(z) for
some polynomial Q) for some 1 ≤ � < N , and use (∗∗) to show that tkeλt and tkeλ̄t

are solutions for each 0 ≤ k < �. In particular, if λ = α+ iβ where α, β ∈ R, then
both tkeαt cosβt and tkeαt sin βt are R-valued solutions for each 0 ≤ k < �.

(iii) Consider the equation

Ẍ(t) = a Ẋ(t)+ bX (t) where a, b ∈ R,

and set D = a2 + 4b. Define

X0(t) = e
at
2 ×

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cosh

(√

D
2 t

)

− a
√

1
2D sinh

(√

D
2 t

)

if D > 0

1− at
2 if D = 0

cos

(√
|D|
2 t

)

− a
√

1
2|D| sin

(√
|D|
2 t

)

if D < 0

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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and

X1(t) = e
at
2 ×

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√

2
D sinh

(√

D
2 t

)

if D > 0

t if D = 0
√

1
2|D| sin

(√
|D|
2 t

)

if D < 0,

and show that X : R −→ R is a solution if and only if

X (t) = X (0)X0(t)+ Ẋ(0)X1(t).

Exercise 4.18 When the condition in Lemma 4.5.2 fails to hold, solutions to (4.5.2)
may “explode”. For example, suppose that Ẋ(t) = X (t)|X (t)|α for some α > 0. If

X (0) = x > 0, show that X (t) = (x − αt)− 1
α for t ∈ (−∞, x

α

)

and therefore that
X (t) tends to∞ as t ↗ x

α .

Exercise 4.19 As was already mentioned, solutions to (4.5.3) exist under a much
weaker condition than that in (4.5.4), although uniqueness may not hold. Here we
will examine a case in which both existence and uniqueness hold in the absence of
(4.5.4). Namely, let F : R −→ (0,∞) be a continuous function with the property
that

∫

(−∞,0]
1

F(s)
ds =

∫

[0,∞)

1

F(s)
ds = ∞,

and set

Tx (s) =
∫ s

0

1

F(x + σ)
dσ for s, x ∈ R.

Show that, for each x ∈ R, Tx is a strictly increasing map of R onto itself, and define
X (t, x) = x + T−1x (t). Also, show that Ẋ(t) = F

(

X (t)
)

with X (0) = x if and only
if X (t) = X (t, x) for all t ∈ R. In other words, solutions to this equations are simply
the path t � x + t run with the “clock” t � T−1x (t). The reason why things are
so simple here is that, aside from the rate at which it is traveled, there is only one
increasing, continuous path in R.

Exercise 4.20 What motivated Fourier to introduce his representation of functions
was that he wanted to use it to find solutions to partial differential equations. To see
what he had in mind, suppose that f : [0, 1] −→ C is a continuous function, and
show that the function u : [0, 1] × (0,∞) −→ C given by

u(x, t) = 2
∞
∑

m=1
e−(mπ)2t

(∫ 1

0
f (y) sin(mπy) dy

)

sin(mπx)
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solves the heat equation ∂t u(x, t) = ∂2
x u(x, t) in (0, 1) × (0,∞) with boundary

conditions u(0, t) = 0 = u(1, t) and initial condition limt↘0 u(x, t) = f (x) for
x ∈ (0, 1).



Chapter 5
Integration in Higher Dimensions

Integration of functions in higher dimensions is much more difficult than it is in one
dimension. The basic reason is that in order to integrate a function, one has to know
how to measure the volume of sets. In one dimension, most sets can be decomposed
into intervals (cf. Exercise 1.21), and we took the length of an interval to be its
volume. However, already in R2 there is a vastly more diverse menagerie of shapes.
Thus knowing how to integrate over one shape does not immediately tell you how
to integrate over others. A second reason is that, even if one knows how to define
the integral of functions in RN , in higher dimensions there is no comparable deus ex
machina to replace The Fundamental Theorem of Calculus.

A thoroughly satisfactory theory that addresses the first issue was developed
by Lebesgue, but, because it takes too much time to explain, his is not the theory
presented here. Instead, we will stay with Riemann’s approach.

5.1 Integration Over Rectangles

The simplest analog in R
N of a closed interval is a closed rectangle R,1 a set of the

form

N
∏

j=1

[a j , b j ] = [a1, b1] × · · · × [aN , bN ] = {x ∈ R
N : a j ≤ x j ≤ b j for 1 ≤ j ≤ N },

where a j ≤ b j for each j . Such rectangles have three great virtues. First, if one
includes the empty set ∅ as a rectangle, then the intersection of any two rectangles is
again a rectangle. Secondly, there is no question how to assign the volume |R| of a
rectangle, it’s got to be

∏N
j=1(b j −a j ), the product of the lengths of its sides. Finally,

rectangles are easily subdivided into other rectangles. Indeed, every subdivision of

1From now on, every rectangle will be assumed to be closed unless it is explicitly stated that it is
not.
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the intervals making up its sides leads to a subdivision of the rectangle into sub-
rectangles. With this in mind, we will now mimic the procedure that we carried out
in Sect. 3.1.

Much of what follows relies on the following, at first sight obvious, lemma. In its
statement, and elsewhere, two sets are said to be non-overlapping if their interiors
are disjoint.

Lemma 5.1.1 If C is a finite collection of non-overlapping rectangles each of which
is contained in the rectangle R, then |R| ≥ ∑

S∈C |S|. On the other hand, if C is
any finite collection of rectangles whose union contains a rectangle R, then |R| ≤
∑

S∈C |S|.
Proof Since |S ∩ R| ≤ |S|, we may and will assume throughout that R ⊇ ⋃S∈C S.
Also, without loss in generality, we will assume that int(R) �= ∅.

The proof is by induction on N . Thus, suppose that N = 1. Given a closed
interval I , use aI and bI to denote its left and right endpoints. Determine the points
aR ≤ c0 < · · · < c� ≤ bR so that

{ck : 0 ≤ k ≤ �} = {aI : I ∈ C} ∪ {bI : I ∈ C},

and set Ck = {I ∈ C : [ck−1, ck] ⊆ I }. Clearly |I | =∑{k: I∈Ck }(ck − ck−1) for each

I ∈ C.2
When the intervals in C are non-overlapping, no Ck contains more than one I ∈ C,

and so

∑

I∈C
|I | =

∑

I∈C

∑

{k:I∈Ck }
(ck − ck−1) =

�
∑

k=1

card(Ck)(ck − ck−1)

≤
�
∑

k=1

(ck − ck−1) ≤ (bR − aR) = |R|.

If R = ⋃

I∈C I , then c0 = aR , c� = bR , and, for each 0 ≤ k ≤ �, there is an I ∈ C
for which I ∈ Ck . To prove this last assertion, simply note that if x ∈ (ck−1, ck) and
C � I � x , then [ck−1, ck] ⊆ I and therefore I ∈ Ck . Knowing this, we have

∑

I∈C
|I | =

∑

I∈C

∑

{k:I∈Ck }
(ck − ck−1) =

�
∑

k=1

card(Ck)(ck − ck−1)

≥
�
∑

k=1

(ck − ck−1) = (bR − aR) = |R|.

2Here, and elsewhere, the sum over the empty set is taken to be 0.

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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Now assume the result for N . Given a rectangle S inRN+1, determine aS, bS ∈ R

and the rectangle QS in R
N so that S = QS × [aS, bS]. As before, choose points

aR ≤ c0 < · · · < c� ≤ bR for {[aS, bS] : S ∈ C}, and define

Ck = {S ∈ C : [ck−1, ck] ⊆ [aS, bS]}.

Then, for each S ∈ C,

|S| = |QS|(bS − aS) = |QS|
∑

{k:S∈Ck }
(ck − ck−1).

If the rectangles in C are non-overlapping, then, for each k, the rectangles in
{QS : S ∈ Ck} are non-overlapping. Hence, since⋃S∈Ck

QS ⊆ Q R , the induction
hypothesis implies

∑

S∈Ck
|QS| ≤ |Q R | for each 1 ≤ k ≤ �, and therefore

∑

S∈C
|S| =

∑

S∈C
|QS|

∑

{k: S∈Ck }
(ck − ck−1)

=
�
∑

k=1

(ck − ck−1)
∑

S∈Ck

|QS| ≤ (bR − aR)|Q R| = |R|.

Finally, assume that R =⋃S∈C S. In this case, c0 = aR and c� = bR . In addition,
for each 1 ≤ k ≤ �, Q R =⋃S∈Ck

QS . To see this, note that if x = (x1, . . . , xN+1) ∈
R and xN+1 ∈ (ck−1, ck), then S � x =⇒ [ck−1, ck] ⊆ [aS, bS] and therefore
that S ∈ Ck . Hence, by the induction hypothesis, |Q R | ≤ ∑

S∈Ck
vol(QS) for each

1 ≤ k ≤ �, and therefore

∑

S∈C
|S| =

∑

S∈C
|QS|

∑

{k:S∈Ck }
(ck − ck−1)

=
�
∑

k=1

(ck − ck−1)
∑

S∈Ck

|QS| ≥ (bR − aR)|Q R| = |R|.

�

Given a rectangle
∏N

j=1[a j , b j ], throughout this section C will be a finite col-

lection of non-overlapping, closed rectangles R whose union is
∏N

j=1[a j , b j ], and
the mesh size ‖C‖ will be max{diam(R) : R ∈ C}, where the diameter diam(R) of

R = ∏N
j=1[r j , s j ] equals

√
∑N

j=1(s j − r j )2. For instance, C might be obtained by
subdividing each of the sides [a j , b j ] into n equal parts and taking C to be the set of
nN rectangles
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N
∏

j=1

[

a j + m j −1
n (b j − a j ), a j + m j

n (b j − a j )
]

for 1 ≤ m1, . . . , m N ≤ n.

Next, say that Ξ : C −→ R
N is a choice function if Ξ(R) ∈ R for each R ∈ C, and

define the Riemann sum

R( f ; C,Ξ) =
∑

R∈C
f
(

Ξ(R)
)|R|

for bounded functions f : ∏N
j=1[a j , b j ] −→ R. Again, we say that f is Rie-

mann integrable if there exists a
∫
∏N

1 [a j ,b j ] f (x) dx ∈ R to which the Riemann

sums R( f ; C, Ξ) converge, in the same sense as before, as ‖C‖ → 0, in which
case

∫
∏N

1 [a j ,b j ] f (x) dx is called the Riemann integral or just the integral of f on
∏N

j=1[a j , b j ].
There are no essentially new ideas needed to analyze when a function is Riemann

integrable. As we did in Sect. 3.1, one introduces the upper and lower Riemann sums

U( f ; C) =
∑

R∈C

(

sup
R

f

)

|R| and L( f ; C) =
∑

R∈C

(

inf
R

f

)

|R|,

and, using the same reasoning as we did in the proof of Lemma 3.1.1, checks that
L( f ; C) ≤ R( f ; C,Ξ) ≤ U( f ; C) for any Ξ and L( f ; C) ≤ U( f ; C′) for any C′.
Further, one can show that for each C and ε > 0, there exists a δ > 0 such that

‖C′‖ < δ =⇒ U( f ; C′) ≤ U( f ; C) + ε and L( f ; C′) ≥ L( f ; C) − ε.

The proof that such a δ exists is basically the same as, but somewhat more involved
than, the corresponding one in Lemma 3.1.1. Namely, given δ > 0 and a rectangle
R =∏N

j=1[c j , d j ] ∈ C, define R−
k (δ) and R+

k (δ) to be the rectangles

⎛

⎝
∏

1≤ j<k

[a j , b j ]
⎞

⎠× [ak ∨ (ck − δ), bk ∧ (ck + δ)
]×

⎛

⎝
∏

k< j≤N

[a j , b j ]
⎞

⎠

and
⎛

⎝
∏

1≤ j<k

[a j , b j ]
⎞

⎠× [ak ∨ (dk − δ), bk ∧ (dk + δ)
]×

⎛

⎝
∏

k< j≤N

[a j , b j ]
⎞

⎠

for 1 ≤ k ≤ N , with the understanding that the first factor is absent if k = 1 and the
last factor is absent if k = N . Now suppose that ‖C′‖ < δ and R′ ∈ C′. Then either
R′ ⊆ R for some R ∈ C or there is an 1 ≤ k ≤ N and an R ∈ C such that the interior

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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of the kth side of R′ contains one of the end points of kth side of R, in which case
R′ ⊆ R−

k (δ) ∪ R+
k (δ). Thus, if D is the set of R′ ∈ C′ that are not contained in any

R ∈ C, then, because supR′ f ≤ supR f if R′ ⊆ R, one can use Lemma 5.1.1 to see
that

U( f ; C′) − U( f ; C) =
∑

R′∈C′

∑

R∈C

(

sup
R′

f − sup
R

f

)

|R′ ∩ R|

≤
∑

R′∈D

∑

R∈C

(

sup
R′

f − sup
R

f

)

|R′ ∩ R| ≤ 2‖ f ‖∏N
1 [a j ,b j ]

∑

R′∈D
|R′|

≤ 2‖ f ‖∏N
1 [a j ,b j ]

N
∑

k=1

∑

R∈C

(|R−
k (δ)| + |R+

k (δ)|).

Since |R±
k (δ)| ≤ δ

∏

j �=k(b j − a j ), it follows that there exists a constant A < ∞
such that U( f ; C′) ≤ U( f ; C) + Aδ if ‖C′‖ < δ.

With these preparations, we now have the following analog of Theorem 3.1.2.
However, before stating the result, we need to make another definition. Namely, we
will say that a subset Γ of the rectangle

∏N
j=1[a j , b j ] is Riemann negligible if, for

each ε > 0 there is a C such that

∑

R∈C
Γ ∩R �=∅

|R| < ε.

Riemann negligible sets will play an important role in our considerations.

Theorem 5.1.2 Let f : ∏N
j=1[a j , b j ] −→ C be a bounded function. Then f is

Riemann integrable if and only if for each ε > 0 there is a C such that

∑

R∈C
supR f −infR f ≥ε

|R| < ε.

In particular, f is Riemann integrable if it is continuous off of a Riemann negligible
set. Finally if f is Riemann integrable and takes all its values in a compact set K ⊆ C

and ϕ : K −→ C is continuous, then ϕ ◦ f is Riemann integrable.

Proof Except for the one that says f is Riemann integrable if it is continuous off of
a Riemann negligible set, all these assertions are proved in exactly the same way as
the analogous statements in Theorem 3.1.2.

Now suppose that f is continuous off of the Riemann negligible set Γ . Given
ε > 0, choose C so that

∑

R∈D |R| < ε, where D = {R ∈ C : R ∩ Γ �= ∅}. Then
K = ⋃

R∈C\D R is a compact set on which f is continuous. Hence, we can find a
δ > 0 such that | f (y) − f (x)| < ε for all x, y ∈ K with |y − x | ≤ δ. Finally,
subdivide each R ∈ C\D into rectangles of diameter less than δ, and take C′ to be the

http://dx.doi.org/10.1007/978-3-319-24469-3_3
http://dx.doi.org/10.1007/978-3-319-24469-3_3
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cover consisting of the elements ofD and the sub-rectangles into which the elements
of C\D were subdivided. Then

∑

R′∈C′
supR′ f −infR′ f ≥ε

|R′| ≤
∑

R∈D
|R| < ε. �

We now have the basic facts about Riemann integration in R
N , and from them

follow the Riemann integrability of linear combinations and products of bounded
Riemann integrable functions as well as the obvious analogs of (3.1.1), (3.1.5),
(3.1.4), and Theorem 3.14. The replacement for (3.1.2) is

∫

∏N
1 [λa j ,λb j ]

f (x) dx = λN
∫

∏N
1 [a j ,b j ]

f (λx) dx (5.1.1)

for bounded, Riemann integrable functions on
∏N

j=1[λa j ,λb j ]. It is also useful to
note that Riemann integration is translation invariant in the sense that if f is a
bounded, Riemann integrable function on

∏N
j=1[c j + a j , c j + b j ] for some c =

(c1, . . . , cN ) ∈ R
N , then x � f (c + x) is Riemann integrable on

∏N
j=1[a j , b j ] and

∫

∏N
1 [c j +ak ,c j +b j ]

f (x) dx =
∫

∏N
1 [a j ,b j ]

f (c + x) dx, (5.1.2)

a property that follows immediately from the corresponding fact for Riemann sums.
In addition, by the sameprocedure asweused inSect. 3.1,we can extend the definition
of the Riemann integral to cover situations in which either the integrand f or the
region over which the integration is performed is unbounded. Thus, for example, if
f is a function that is bounded and Riemann integrable on bounded rectangles, then
one defines ∫

RN
f (x) dx = lim

a1∨···∨aN →−∞
b1∧···∧bN →∞

∫

∏N
1 [a j ,b j ]

f (x) dx

if the limit exists.

5.2 Iterated Integrals and Fubini’s Theorem

Evaluating integrals in N variables is hard and usually possible only if one can reduce
the computation to integrals in one variable. One way to make such a reduction is
to write an integral in N variables as N iterated integrals in one variable, one for
each dimension, and the following theorem, known as Fubini’s Theorem, shows this
can be done. In its statement, if x = (x1, . . . , xN ) ∈ R

N and 1 ≤ M < N , then
x(M)
1 ≡ (x1, . . . , xM ) and x(M)

2 ≡ (xM+1, . . . , xN ).

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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http://dx.doi.org/10.1007/978-3-319-24469-3_3
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Theorem 5.2.1 Suppose that f :∏N
j=1[a j , b j ] −→ C is a bounded, Riemann inte-

grable function. Further, for some 1 ≤ M < N and each x(M)
2 ∈ ∏N

j=M+1[a j , b j ],
assume that x(M)

1 ∈ ∏M
j=1[a j , b j ] �−→ f (x(M)

1 , x(M)
2 ) ∈ C is Riemann integrable.

Then

x(M)
2 ∈

N
∏

j=M+1

[a j , b j ] �−→ f (M)
1 (x(M)

2 ) ≡
∫

∏M
1 [a j ,b j ]

f (x(M)
1 , x(M)

2 ) dx(M)
1

is Riemann integrable and

∫

∏N
1 [a j ,b j ]

f (x) dx =
∫

∏N
M+1[a j ,b j ]

f (M)
1 (x(M)

2 ) dx(M)
2 .

In particular, this result applies if f is a bounded, Riemann integrable function with
the property that, for each x(M)

2 ∈ ∏N
j=M+1[a j , b j ], x(M)

1 ∈ ∏M
j=1[a j , b j ] �−→

f (x(M)
1 , x(M)

2 ) ∈ C is continuous at all but a Riemann negligible set of points.

Proof Given ε > 0, choose δ > 0 so that

‖C‖ < δ =⇒
∣
∣
∣
∣
∣

∫

∏N
1 [a j ,b j ]

f (x) dx − R( f ; C,Ξ)

∣
∣
∣
∣
∣
< ε

for every choice function Ξ . Next, let C(M)
2 be a cover of

∏N
j=M+1[a j , b j ] with

‖C(M)
2 ‖ < δ

2 , and let Ξ
(M)
2 be an associated choice function. Finally, because

x(M)
1 � f

(

x(M)
1 ,Ξ

(M)
2 (R2)

)

is Riemann integrable for each R2 ∈ C(M)
2 , we can

choose a cover C(M)
1 of

∏M
j=1[a j , b j ] with ‖C(M)

1 ‖ < δ
2 and an associated choice

function Ξ
(M)
1 such that

∑

R2∈C(M)
2

∣
∣
∣
∣
∣
∣
∣

∑

R1∈C(M)
1

f
(

Ξ
(M)
1 (R1),Ξ

(M)
2 (R2)

))|R1| − f (M)
1 (Ξ

(M)
2 (R2)

)

∣
∣
∣
∣
∣
∣
∣

|R2| < ε.

If
C = {R1 × R2 : R1 ∈ C(M)

1 & R2 ∈ C(M)
2 }

and Ξ
(

R1 × R2) = (Ξ (M)
1 (R1),Ξ

(M)
2 (R2)

)

, then ‖C‖ < δ and

R( f ; C,Ξ) =
∑

R1∈C(M)
1

∑

R2∈C(M)
2

f
(

Ξ
(M)
1 (R1),Ξ

(M)
2 (R2)

)|R1||R2|,
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and so
∣
∣
∣
∣
∣

∫

∏N
1 [a j ,b j ]

f (x) dx − R( f (M)
1 ; C(M)

2 ,Ξ
(M)
2 )

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫

∏N
1 [a j ,b j ]

f (x) dx − R( f ; C,Ξ)

∣
∣
∣
∣
∣

+
∑

R2∈C(M)
2

∣
∣
∣
∣
∣
∣
∣

∑

R1∈C(M)
1

f
(

Ξ
(M)
1 (R1),Ξ

(M)
2 (R2)

)|R1| − f (M)
1 (Ξ

(M)
2 (R2)

)

∣
∣
∣
∣
∣
∣
∣

|R2|

is less than 2ε. Hence, R( f (M)
1 ; C(M)

2 ,Ξ
(M)
2

)

converges to
∫
∏N

1 [a j ,b j ] f (x) dx as

‖C(M)
2 ‖ → 0. �

It should be clear that the preceding result holds equally well when the roles of
x(M)
1 and x(M)

2 are reversed. Thus, if f :∏N
j=1[a j , b j ] �−→ C is a bounded, Riemann

integrable function such that x(M)
1 ∈ ∏M

j=1[a j , b j ] �−→ f (x(M)
1 , x(M)

2 ) ∈ C is Rie-

mann integrable for eachx(M)
2 ∈∏N

j=M+1[a j , b j ] andx(M)
2 ∈∏N

j=M+1[a j , b j ] �−→
f (x(M)

1 , x(M)
2 ) is Riemann integrable for each x(M)

1 ∈∏N
j=1[a j , b j ], then

∫

∏N
1 [a j ,b j ]

f (x) dx =
{∫
∏N

M+1[a j ,b j ] f (M)
1 (x(M)

2 ) dx(M)
2

∫
∏M

1 [a j ,b j ] f (M)
2 (x(M)

2 ) dx(M)
1 ,

(5.2.1)

where

f (M)
1 (x(M)

2 ) =
∫

∏M
1 [a j ,b j ]

f (x(M)
1 , x(M)

2 ) dx(M)
1

and

f (M)
2 (x(M)

1 ) =
∫

∏N
M+1[a j ,b j ]

f (x(M)
1 , x(M)

2 ) dx(M)
2 .

Corollary 5.2.2 Let f be a continuous function on
∏N

j=1[a j , b j ]. Then for each
1 ≤ M < N,

x(M)
2 ∈

N
∏

j=M+1

[a j , b j ] �−→ f (M)
1 (x(M)

2 ) ≡
∫

∏M
1 [a j ,b j ]

f (x(M)
1 , x(M)

2 ) dx(M)
1 ∈ C

is continuous. Furthermore,

f (M+1)
1 (x(M+1)

2 ) =
∫

[aM ,bM ]
f (M)
1 (xM , xM+1

2 ) dxM for 1 ≤ M < N − 1
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and ∫

∏N
1 [a j ,b j ]

f (x) dx =
∫

[aN ,bN ]
f (N−1)
1 (xN ) dxN .

Proof Once the first assertion is proved, the others follow immediately from
Theorem 5.2.1. But, because f is uniformly continuous, the first assertion follows
from the obvious higher dimensional analog of Theorem 3.1.4. �

By repeated applications of Corollary 5.2.2, one sees that

∫

∏N
j=1[a j ,b j ]

f (x) dx

=
∫ bN

aN

(

· · ·
(∫ b1

a1
f (x1, . . . , xN−1, xN ) dx1

)

· · ·
)

dxN .

The expression on the right is called an iterated integral. Of course, there is nothing
sacrosanct about the order in which one does the integrals. Thus

∫

∏N
j=1[a j ,b j ]

f (x) dx

=
bπ(N )∫

aπ(N )

⎛

⎜
⎝· · ·

⎛

⎜
⎝

bπ(1)∫

aπ(1)

f (x1, . . . , xN−1, xN ) dxπ(1)

⎞

⎟
⎠ · · ·

⎞

⎟
⎠ dxπ(N )

(5.2.2)

for any permutation π of {1, . . . , N }. In that it shows integrals in N variables can
be evaluated by doing N integrals in one variable, (5.2.2) makes it possible to bring
Theorem 3.2.1 to bear on the problem. However, it is hard enough to find one indef-
inite integral on R, much less a succession of N of them. Nonetheless, there is an
important consequence of (5.2.2). Namely, if f (x) =∏N

j=1 f j (x j ), where, for each
1 ≤ j ≤ N , f j is a continuous function on [a j , b j ], then

∫

∏N
1 [a j ,b j ]

f (x) dx =
N
∏

j=1

∫

[a j ,b j ]
f j (x j ) dx j . (5.2.3)

In fact, starting from Theorem 5.2.1, it is easy to check that (5.2.3) holds when each
f j is bounded and Riemann integrable.
Looking at (5.2.2), one might be tempted to think that there is an analog of the

Fundamental Theorem of Calculus for integrals in several variables. Namely, taking
π to be the identity permutation that leaves the order unchanged and thinking of
the expression on the right as a function F of (b1, . . . , bN ), it becomes clear that
∂e1 . . . ∂eN F = f . However, what made this information valuable when N = 1 is
the fact that a function on R can be recovered, up to an additive constant, from its
derivative, and that is why we could say that F(b) − F(a) = ∫ b

a f (x) dx for any

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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F satisfying F ′ = f . When N ≥ 2, the equality ∂e1 . . . ∂eN F = f provides much
less information. Indeed, even when N = 2, if F satisfies ∂e1∂e2 F = f , then so
does F(x1, x2) + F1(x1) + F2(x2) for any choice of differentiable functions F1 and
F2, and the ambiguity gets worse as N increases. Thus finding an F that satisfies
∂e1 . . . ∂eN F = f does little to advance one toward finding the integral of f .

To provide an interesting example of the way in which Fubini’s Theorem plays
an important role, define Euler’s Beta function B : (0,∞)2 −→ (0,∞) by

B(α,β) =
∫

(0,1)
xα−1(1 − x)β−1 dx .

It turns out that his Beta function is intimately related to his (cf. Exercise 3.3) Gamma
function. In fact,

B(α,β) = Γ (α)Γ (β)

Γ (α + β)
, (5.2.4)

which means that 1
B(α,β)

is closely related to the binomial coefficients in the same
sense that Γ (t) is related to factorials. Although (5.2.4) holds for all (α,β) ∈
(0,∞)2, in order to avoid distracting technicalities, we will prove it only for
(α,β) ∈ [1,∞)2. Thus let α, β ≥ 1 be given. Then, by (5.2.3) and (5.2.1),
Γ (α)Γ (β) equals

lim
r→∞

∫

[0,r ]2
xα−1
1 xβ−1

2 e−x1−x2 dx

= lim
r→∞

∫ r

0
xβ−1
2

(∫ r

0
xα−1
1 e−(x1+x2) dx1

)

dx2.

By (5.1.2),

∫ r

0
xα−1
1 e−(x1+x2) dx1 =

∫ r+x2

x2
(y1 − x2)

α−1e−y1 dy1,

and so
∫ r

0
xβ−1
2

(∫ r

0
xα−1
1 e−(x1+x2) dx1

)

dx2

=
∫ r

0
xβ−1
2

(∫ r+x2

x2
(y1 − x2)

α−1e−y1 dy1

)

dx2.

Now consider the function

f (y1, x2) =
{

(y1 − x2)α−1xβ−1
2 e−y1 if x2 ∈ [0, r ] & x2 ≤ y1 ≤ r + x2

0 otherwise

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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on [0, 2r ]×[0, r ]. Because the only discontinuities of f lie in the Riemann negligible
set {(r+x2, x2) : x2 ∈ [0, r ]}, it is Riemann integrable on [0, 2r ]×[0, r ]. In addition,
for each y1 ∈ [0, 2r ], x2 � f (y1, x2) and, for each x2 ∈ [0, r ], y1 � f (y1, x2)
have at most two discontinuities. We can therefore apply (5.2.1) to justify

∫ r

0
xβ−1
2

(∫ r+x2

x2
(y1 − x2)

α−1e−y1 dy1

)

dx2 =
∫ r

0

(
∫ 2r

0
f (y1, x2) dy1

)

dx2

=
∫ 2r

0

(∫ r

0
f (y1, x2) dx2

)

dy1 =
∫ 2r

0
e−y1

⎛

⎜
⎝

r∧y1∫

(y1−r)+
(y1 − x2)

α−1xβ−1
2 dx2

⎞

⎟
⎠ dy1.

Further, by (3.1.2)

∫ r∧y1

(y1−r)+
(y1 − x2)

α−1xβ−1
2 dx2 = yα+β−1

1

∫ 1∧(y−1
1 r)

(1−y−1
1 r)+

(1 − y2)
α−1yβ−1

2 dy2.

Collecting these together, we have

Γ (α)Γ (β) = lim
r→∞

∫ 2r

0
yα+β−1
1 e−y1

(
∫ 1∧(y−1

1 r)

(1−y−1
1 r)+

(1 − y2)
α−1yβ−1

2 dy2

)

dy1.

Finally,

∫ 2r

0
yα+β−1
1 e−y1

(
∫ 1∧(y−1

1 r)

(1−y−1
1 r)+

(1 − y2)
α−1yβ−1

2 dy2

)

dy1

=
∫ r

0
yα+β−1
1 e−y1 dy1B(α,β)

+
∫ 2r

r
yα+β−1
1 e−y1

(
∫ y−1

1 r

(1−y−1
1 r)

(1 − y2)
α−1yβ−1

2 dy2

)

dy1,

and, as r → ∞, the first term on the right tends to Γ (α + β) whereas the second
term is dominated by

∫∞
r yα+β−1

1 e−y1 dy1 and therefore tends to 0.
The preceding computation illustrates one of the trickier aspects of proper appli-

cations of Fubini’s Theorem. When one reverses the order of integration, it is very
important to figure out what are the resulting correct limits of integration. As in
the application above, the correct limits can look very different after the order of
integration is changed.

The Eq. (5.2.4) provides a proof of Stirling’s formula for the Gamma function as
a consequence of (1.8.7). Indeed, by (5.2.4), Γ (n + 1 + θ) = n!Γ (θ)

B(n+1,θ) for n ∈ Z
+

and θ ∈ [1, 2), and, by (3.1.2),

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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B(n + 1, θ) = n−θ
∫ n

0
yθ−1(1 − y

n

)n
dy.

Further, because 1 − x ≤ e−x for all x ∈ R,

∫ n

0
yθ−1(1 − y

n

)n
dy ≤

∫ ∞

0
yθ−1e−y dy = Γ (θ),

and, for all r > 0,

lim
n→∞

∫ n

0
yθ−1(1 − y

n

)n
dy ≥ lim

n→∞

∫ r

0
yθ−1(1 − y

n

)n
dy =

∫ r

0
yθ−1e−y dy.

Since the final expression tends to Γ (θ) as r → ∞ uniformly fast for θ ∈ [1, 2], we
now know that

Γ (θ)

nθ B(n + 1, θ)
−→ 1

uniformly fast for θ ∈ [1, 2]. Combining this with (1.8.7) we see that

lim
n→∞

Γ (n + θ + 1)√
2πn

( n
e

)n
nθ

−→ 1

uniformly fast for θ ∈ [1, 2]. Given t ≥ 3, determine nt ∈ Z
+ and θt ∈ [1, 2) so that

t = nt + θt . Then the preceding says that

lim
t→∞

Γ (t + 1)√
2πt

( t
e

)t

√
t

t − θt

(
t

t − θt

)t

e−θt = 1.

Finally, it is obvious that, as t → ∞,
√

t
t−θt

tends to 1 and, because, by (1.7.5),

log

((
t

t − θt

)t

e−θt

)

= −t log
(

1 − θt
t

)

− θt −→ 0,

so does
(

t
t−θt

)t
e−θt . Hence we have shown that

Γ (t + 1) ∼ √
2πt

(
t

e

)t

as t → ∞ (5.2.5)

in the sense that limt→∞ Γ (t+1)√
2πt
(

t
e

)t = 1.
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5.3 Volume of and Integration Over Sets

We motivated our initial discussion of integration by computing the area under the
graph of a non-negative function, and as we will see in this section, integration
provides a method for computing the volume of more general regions. However,
before we begin, we must first be more precise about what we will mean by the
volume of a region.

Although we do not know yet what the volume of a general set Γ is, we know a
few properties that volume should possess. In particular, we know that the volume
of a subset should be no larger than that of the set containing it. In addition, volume
should be additive in the sense that the volume of the union of disjoint sets should be
the sum of their volumes. Taking these comments into account, for a given bounded
set Γ ⊆ R

N , we define the exterior volume |Γ |e of Γ to be the infimum of the sums
∑

R∈C |R| as C runs over all finite collections of non-overlapping rectangles whose
union contains Γ .3 Similarly, define the interior volume |Γ |i to be the supremum of
the sums

∑

R∈C |R| as C runs over finite collections of non-overlapping rectangles
each of which is contained in Γ . Clearly the notion of exterior volume is consistent
with the properties that we want volume to have. To see that the same is true of
interior volume, note that an equivalent description would have been that |Γ |i is
the supremum of

∑

R∈C |R| as C runs over finite collections of rectangles that are
mutually disjoint and each of which is contained in Γ . Indeed, given a C of the sort
in the definition of interior volume, shrink the sides of each R ∈ C with |R| > 0
by a factor θ ∈ (0, 1) and eliminate the ones with |R| = 0. The resulting rectangles
will be mutually disjoint and the sum of their volumes will be θN times that of the
original ones. Hence, by taking θ close enough to 1, we can get arbitrarily close to
the original sum.

Obviously Γ is Riemann negligible if and only if |Γ |e = 0. Next notice that
|Γ |i ≤ |Γ |e for all bounded Γ ’s. Indeed, suppose that C1 is a finite collection of non-
overlapping rectangles contained in Γ and that C2 is a finite collection of rectangles
whose union contains Γ . Then, by Lemma 5.1.1,

∑

R2∈C2
|R2| ≥

∑

R2∈C2

∑

R1∈C1
|R1 ∩ R2| =

∑

R1∈C1

∑

R2∈C2
|R1 ∩ R2| ≥

∑

R1∈C1
|R1|.

In addition, it is easy to check that

|Γ1|e ≤ |Γ2|e and |Γ1|i ≤ |Γ2|i if Γ1 ⊆ Γ2

|Γ1 ∪ Γ2|e ≤ |Γ1|e + |Γ2|e for all Γ1 & Γ2,

and |Γ1 ∪ Γ2|i ≥ |Γ1|i + |Γ2|i if Γ1 ∩ Γ2 = ∅.

3It is reasonable easy to show that |Γ |e would be the same if the infimum were taken over covers
by rectangles that are not necessarily non-overlapping.
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We will say that Γ is Riemann measurable if |Γ |i = |Γ |e, in which case we will
call vol(Γ ) ≡ |Γ |e the volume of Γ . Clearly |Γ |e = 0 implies that Γ is Riemann
measurable and vol(Γ ) = 0. In particular, if Γ is Riemann negligible and therefore
|Γ |e = 0, then Γ is Riemann measurable and has volume 0. In addition, if R
is a rectangle, |R|e ≤ |R| ≤ |R|i, and therefore R is Riemann measurable and
vol(R) = |R|.

One suspects that these considerations are intimately related to Riemann integra-
tion, and the following theorem justifies that suspicion. In its statement and elsewhere,
1Γ denotes the indicator function of a set Γ . That is, 1Γ (x) is 1 if x ∈ Γ and is 0 if
x /∈ Γ .

Theorem 5.3.1 Let Γ be a subset of
∏N

j=1[a j , b j ]. Then Γ is Riemann measurable

if and only if 1Γ is Riemann integrable on
∏N

j=1[a j , b j ], in which case

vol(Γ ) =
∫

∏N
j=1[a j ,b j ]

1Γ (x) dx.

Proof First observe that, without loss in generality, we may assume that all the
collections C entering the definitions of outer and inner volume can be taken to be
subsets of non-overlapping covers of

∏N
j=1[a j , b j ].

Now suppose that Γ is Riemann measurable. Given ε > 0, choose a non-
overlapping cover C1 of

∏N
j=1[a j , b j ] such that

∑

R∈C1
R∩Γ �=∅

|R| ≤ vol(Γ ) + ε
2 .

Then
U(1Γ ; C1) =

∑

R∈C1
R∩Γ �=∅

|R| ≤ vol(Γ ) + ε
2 .

Next, choose C2 so that ∑

R∈C2
R⊆Γ

|R| ≥ vol(Γ ) − ε
2 ,

and observe that then L(1Γ ; C2) ≥ vol(Γ ) − ε
2 . Hence if

C = {R1 ∩ R2 : R1 ∈ C1 & R2 ∈ C2},

then

U(1Γ ; C) ≤ U(1Γ ; C1) ≤ vol(Γ ) + ε
2 ≤ L(1Γ ; C2) + ε ≤ L(1Γ ; C) + ε,

and so not only is 1Γ Riemann integrable but also its integral is equal to vol(Γ ).
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Conversely, if 1Γ is Riemann integrable and ε > 0, choose C so that U(1Γ ; C) ≤
L(1Γ ; C) + ε. Define associated choice functions Ξ1 and Ξ2 so that Ξ1(R) ∈ Γ if
R ∩ Γ �= ∅ and Ξ2(R) /∈ Γ unless R ⊆ Γ . Then

|Γ |e ≤
∑

R∈C
R∩Γ �=∅

|R| = R(1Γ ; C,Ξ1) ≤ R(1Γ ; C,Ξ2) + ε =
∑

R∈C
R⊆Γ

|R| + ε ≤ |Γ |i + ε,

and so Γ is Riemann measurable. �

Corollary 5.3.2 If Γ1 and Γ2 are bounded, Riemann measurable sets, then so are
Γ1 ∪ Γ2, Γ1 ∩ Γ2, and Γ2\Γ1. In addition,

vol
(

Γ1 ∪ Γ2) = vol(Γ1) + vol(Γ2) − vol(Γ1 ∩ Γ2)

and
vol
(

Γ2\Γ1
) = vol

(

Γ2
)− vol

(

Γ1 ∩ Γ2
)

.

In particular, if vol(Γ1 ∩ Γ2) = 0, then vol(Γ1 ∪ Γ2) = vol(Γ1) + vol(Γ2). Finally,
Γ ⊆ ∏N

j=1[a j , b j ] is Riemann measurable if and only if for each ε > 0 there exist

Riemann measurable subsets A and B of
∏N

j=1[a j , b j ] such that A ⊆ Γ ⊆ B and
vol(B\A) < ε.

Proof By Theorem 5.3.1, 1Γ1 and 1Γ2 are Riemann integrable. Thus, since

1Γ1∩Γ2 = 1Γ11Γ2 and 1Γ1∪Γ2 = 1Γ1 + 1Γ2 − 1Γ1∩Γ2 ,

that same theorem implies that Γ1 ∪ Γ2 and Γ1 ∩ Γ2 are Riemann measurable. At the
same time,

1Γ2\Γ1 = 1Γ2 − 1Γ1∩Γ2 ,

and so Γ2\Γ1 is also Riemann measurable. Also, by Theorem 5.3.1, the equations
relating their volumes follow immediately for the equations relating their indicator
functions.

Turning to the final assertion, there is nothing to do if Γ is Riemann measurable
since we can then take A = Γ = B for all ε > 0. Now suppose that for each
ε > 0 there exist Riemann measurable sets Aε and Bε such that Aε ⊆ Γ ⊆ Bε ⊆
∏N

j=1[a j , b j ] and vol(Bε\Aε) < ε. Then

|Γ |i ≥ vol(Aε) ≥ vol(Bε) − ε ≥ |Γ |e − ε,

and so Γ is Riemann measurable. �

It is reassuring that the preceding result is consistent with our earlier computation
of the area under a graph. In fact, we now have the following more general result.
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Theorem 5.3.3 Assume that f :∏N
j=1[a j , b j ] −→ R is continuous. Then the graph

G( f ) =
⎧

⎨

⎩

(

x, f (x)
) : x ∈

N
∏

j=1

[a j , b j ]
⎫

⎬

⎭

is a Riemann negligible subset of R
N+1. Moreover, if, in addition, f is non-

negative and Γ = {

(x, y) ∈ R
N+1 : 0 ≤ y ≤ f (x)

}

, then Γ is Riemann
measurable and

vol(Γ ) =
∫

∏N
1 [a j ,b j ]

f (x) dx.

Proof Set r = ‖ f ‖∏N
1 [a j ,b j ], and for each ε > 0 choose δε > 0 so that

| f (y) − f (x)| < ε if |y − x| ≤ δε.

Next let C with ‖C‖ < δε be a cover of
∏N

1 [a j , b j ] by non-overlapping rectangles,
and choose K ∈ Z

+ so that r
K+1 < ε ≤ r

K . Then for each R ∈ C there is a
1 ≤ kR ≤ 2(K − 1) such that

{

(x, f (x)
) : x ∈ R

} ⊆ R × [−r + (kR−1)r
K ,−r + (kR+2)r

K

]

,

and therefore

|G( f )|e ≤ 3r

K

∑

R∈C
|R| ≤ 6

⎛

⎝

N
∏

j=1

(b j − a j )

⎞

⎠ ε,

which proves that G( f ) is Riemann negligible.
Turning to the second assertion, note that all the discontinuities of 1Γ on

∏N
j=1[a j , b j ] × [0, r ] are contained in G( f ), and therefore 1Γ is Riemann mea-

surable. In addition, for each x ∈ ∏N
j=1[a j , b j ], y ∈ [0, r ] �−→ 1Γ (x, y) ∈ {0, 1}

has at most one discontinuity. Hence, by Theorem 5.3.1 and (5.2.1),

vol(Γ ) =
∫

∏N
1 [a j ,b j ]

(∫ r

0
1Γ (x, y) dy

)

dx =
∫

∏N
1 [a j ,b j ]

f (x) dx. �

Theorem 5.3.3 allows us to confirm that the volume (i.e., the area) of the closed
unit ball B(0, 1) inR2 is π, the half period of the trigonometric sine function. Indeed,
B(0, 1) = H+ ∪ H−, where

H± =
{

(x1, x2) : 0 ≤ ±x2 ≤
√

1 − x21

}

.
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By Theorem 5.3.3 both H+ and H− are Riemann measurable, and each has area

∫ 1

−1

√

(1 − x2) dx = 2
∫ π

2

0
cos2 θ dθ =

∫ π
2

0

(

1 − cos 2θ
)

dθ = π

2
.

Finally, H+ ∩ H− = [−1, 1] × {0} is a rectangle with area 0. Hence, by Corollary
5.3.2, the desired conclusion follows.Moreover, because 1B(0,r)(x) = 1B(0,1)(r

−1x),
we can use (5.1.1) and (5.1.2) to see that

vol
(

B(c, r)
) = πr2 (5.3.1)

for balls in R2.
Having defined what we mean by the volume of a set, we now define what we will

mean by the integral of a function on a set. Given a bounded, Riemann measurable
set Γ , we say that a bounded function f : Γ −→ C is Riemann integrable on Γ if
the function

1Γ f ≡
{

f on Γ

0 off Γ

is Riemann integrable on some rectangle
∏N

j=1[a j , b j ] ⊇ Γ , in which case the
Riemann integral of f on Γ is

∫

Γ

f (x) dx ≡
∫

∏N
1 [a j ,b j ]

1Γ (x) f (x) dx.

In particular, if Γ is a bounded, Riemann measurable set, then every bounded, Rie-
mann integrable function on

∏N
j=1[a j , b j ] will be is Riemann integrable on Γ . In

particular, notice that if ∂Γ is Riemann negligible and f is a bounded function of
Γ that is continuous off of a Riemann negligible set, then f is Riemann integrable
on Γ . Obviously, the choice of the rectangle

∏N
j=1[a j , b j ] is irrelevant as long as it

contains Γ .
The following simple result gives an integral version of the intermediate value

theorem, Theorem 1.3.6.

Theorem 5.3.4 Suppose that K ⊆∏N
j=1[a j , b j ] is a compact, connected, Riemann

measurable set. If f : K −→ R is continuous, then there exists a ξ ∈ K such that

∫

K
f (x) dx = f (ξ)vol(K ).

Proof If vol(K ) = 0 there is nothing to do. Now assume that vol(K ) > 0. Then
1

vol(K )

∫

K f (x) dx lies between the minimum and maximum values that f takes on
K , and therefore, by Exercise 4.5 and Lemma 4.1.2, there exists a ξ ∈ K such that
f (ξ) = 1

vol(K )

∫

K f (x) dx. �

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_4
http://dx.doi.org/10.1007/978-3-319-24469-3_4
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5.4 Integration of Rotationally Invariant Functions

One of the reasons for our introducing the concepts in the preceding section is that
they encourage us to get away from rectangles when computing integrals. Indeed, if
Γ =⋃n

m=0 Γm where the Γm’s are bounded Riemann measurable sets, then, for any
bounded, Riemann integrable function f ,

∫

Γ

f (x) dx =
n
∑

m=0

∫

Γm

f (x) dx if vol
(

Γm ∩ Γm′
) = 0 for m′ �= m, (5.4.1)

since

0 ≤
n
∑

m=0

1Γm f − 1Γ f ≤ 2‖ f ‖u
∑

0≤m<m′≤n

1Γm∩Γm′ .

The advantage afforded by (5.4.1) is that a judicious choice of the Γm’s can simplify
computations. For example, suppose that f is a function on the closed ball B(0, r) in
R
2, and assume that f (x) = f̃ (|x|) for some continuous function f̃ : [0, r ] −→ C.

For each n ≥ 1, set Γ0,n = {0} and Γm,n = B
(

0, mr
n

)\B
(

0,
(m−1)r

n

)

if 1 ≤ m ≤ n.
By Corollary 5.3.2 and the considerations leading up to (5.3.1), we know that the
Γm,n’s are Riemann measurable, and, obviously, for each n ≥ 1 they are a cover of
B(0, r) by mutually disjoint sets. If we define

fn(x) =
n
∑

m=0

f̃

(
(2m − 1)r

2n

)

1Γm,n ,

then fn is Riemann measurable, fn −→ f uniformly, and therefore

∫

B(0,r)

f (x) dx = lim
n→∞

∫

B(0,r)

fn(x) dx = lim
n→∞

n
∑

m=1

f̃
(

(2m−1)r
2n

)

vol(Γm,n).

Finally, by Corollary 5.3.2 and (5.3.1), vol(Γm,n) = (2m−1)πr2

n2
, and so

∫

Γm

fn(x) dx = 2πr

n

n
∑

m=1

f̃
(

(2m−1)r
2n

)
(2m−1)r

2n = 2πR(g; Cn, Ξn),

where g(ρ) = ρ f̃ (ρ), Cn = {[
(m−1)r

n , mr
n

] : 1 ≤ m ≤ n
}

and Ξn
([

(m−1)r
n , mr

n

]) =
(2m−1)r

n . Hence, we have now proved that

∫

B(0,r)

f (x) dx = 2π
∫ r

0
f̃ (ρ)ρ dρ if f (x) = f̃ (|x|) (5.4.2)
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when f̃ : [0, r ] −→ C is continuous. The preceding is an example of how, by taking
advantage of symmetry properties, one can sometimes reduce the computation of
an integral in higher dimensions to one in lower dimensions. In this example the
symmetry was the rotational invariance of both the region of integration and the
integrand.

Here is a beautiful application of (5.4.2) to a famous calculation. It is known

that the function x � e− x2
2 does not admit an indefinite integral that can be writ-

ten as a concatenation of polynomials, trigonometric functions, and exponentials.
Nonetheless, by combining (5.2.1) with (5.4.2), we will now show that

∫

R

e− x2
2 dx = √

2π. (5.4.3)

Given r > 0, use (5.2.3) to write

(∫ r

−r
e− x2

2 dx

)2

=
∫ r

−r

(∫ r

−r
e− x21+x22

2 dx1

)

dx2 =
∫

[−r,r ]2
e− |x|2

2 dx.

Next observe that
∫

B(0,
√
2r)

e− |x|2
2 dx ≥

∫

[−r,r ]2
e− |x|2

2 dx ≥
∫

B(0,r)

e− |x|2
2 dx,

and that, by (5.4.2),

∫

B(0,R)

e− |x|2
2 dx = 2π

∫ R

0
e− ρ2

2 ρ dρ = 2π
(

1 − e− R2
2
)

.

Thus, after letting r → ∞, we arrive at (5.4.3). Once one has (5.4.3), there are lots of
other computations which follow. For example, one can compute (cf. Exercise 3.3)

Γ
( 1
2

) = ∫∞
0 x− 1

2 e−x dx . To this end, make the change of variables y = (2x)
1
2 to

see that

Γ
( 1
2

) = lim
r→∞

∫ r

r−1
x− 1

2 e−x dx = lim
r→∞ 2

1
2

∫ (2r)
1
2

(2r)
− 1
2

e− y2

2 dy

= 2
1
2

∫

[0,∞)

e− y2

2 dy = 2− 1
2

∫

R

e− y2

2 dy,

and conclude that
Γ
( 1
2

) = √
π. (5.4.4)

We will now develop the N -dimensional analog of (5.4.2) for other N ≥ 1.
Obviously, the 1-dimensional analog is simply the statement that

http://dx.doi.org/10.1007/978-3-319-24469-3_3


146 5 Integration in Higher Dimensions

∫ r

−r
f (x) dx = 2

∫ r

0
f (ρ) dρ

for even functions f on [−r, r ]. Thus, assume that N ≥ 3, and begin by noting that
the closed ball B(0, r) of radius r ≥ 0 centered at the origin is Riemann measurable.
Indeed, B(0, r) is the union of the hemispheres

H+ ≡
⎧

⎨

⎩
x : 0 ≤ xN ≤

√
√
√
√

N−1
∑

j=1

x2j

⎫

⎬

⎭
and H− ≡

⎧

⎨

⎩
x : −

√
√
√
√

N−1
∑

j=1

x2j ≤ xN ≤ 0

⎫

⎬

⎭
,

and so, by Theorem 5.3.3 and Corollary 5.3.2, B(0, r) is Riemann measurable. Fur-
ther, by (5.1.2) and (5.1.1), for any c ∈ R

N , B(c, r) is Riemann measurable and
vol
(

B(c, r)
) = vol

(

B(0, r)
)

ΩN r N , where ΩN is the volume of the closed unit ball
B(0, 1) in RN .

Proceeding in precisely the same way as we did in the derivation of (5.4.2) and
using the identity bN − aN = (b − a)

∑N−1
k=0 akbN−1−k , we see that, for any con-

tinuous f̃ : [0, r ] −→ C,

∫

B(0,r)

f̃ (|x|) dx = lim
n→∞

NΩN r

n
lim

n→∞

n
∑

m=1

f̃
(

ξm,n)ξN−1
m,n ,

where

ξm,n = r

n

(

1

N

N−1
∑

k=0

mk(m − 1)N−1−k

) 1
N−1

∈ [ (m−1)r
n , mr

n

]

,

and conclude from this that
∫

B(0,r)

f̃ (|x|) dx = NΩN

∫ r

0
f̃ (ρ)ρN−1 dρ. (5.4.5)

Combining (5.4.5) with (5.4.3), we get an expression for ΩN . By the same rea-
soning as we used to derive (5.4.3), one finds that

(2π)
N
2 =

(∫

R

e− x2
2 dx

)N

= lim
r→∞

∫

B(0,r)

e− |x|2
2 dx = NΩN

∫ ∞

0
ρN−1e− ρ2

2 dρ.

Next make the change of variables ρ = (2t)
1
2 to see that

∫

[0,∞)

ρN−1e− ρ2

2 dρ = 2
N
2 −1

∫ ∞

0
t

N
2 −1e−t dt = 2

N
2 −1Γ

( N
2

)

.
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Thus, we now know that

ΩN = 2π
N
2

NΓ
( N
2

) = π
N
2

Γ
( N
2 + 1

) .

By (5.4.4) and induction on N ,

Γ
( 2N+1

2

) = π
1
2 2−N

N
∏

k=1

(2k − 1) = π
1
2
(2N )!
4N N ! ,

and therefore

Ω2N = πN

N ! and Ω2N−1 = 4N πN−1N !
(2N )! for N ≥ 1.

Applying (3.2.4), we find that

Ω2N ∼ (2πN )−
1
2

(πe

N

)N
and Ω2N−1 ∼ (

√
2π)−1

(πe

N

)N
.

Thus, as N gets large,ΩN , the volume of the unit ball inRN , is tending to 0 at a very
fast rate. Seeing as the volume of the cube [−1, 1]N that circumscribes B(0, 1) has
volume 2N , this means that the 2N corners of [−1, 1]N that are not in B(0, 1) take
up the lion’s share of the available space. Hence, if we lived in a large dimensional
universe, the biblical tradition that a farmer leave the corners of his field to be
harvested by the poor would be very generous.

5.5 Rotation Invariance of Integrals

Because they fit together so nicely, thus far we have been dealing exclusively with
rectangles whose sides are parallel to the standard coordinate axes. However, this
restriction obscures a basic property of integrals, the property of rotation invariance.
To formulate this property, recall that (e1, . . . , eN ) ∈ (RN )N is called anorthonormal
basis in RN if (ei , e j )RN = δi, j . The standard orthonormal basis (e01, . . . , e0N ) is the
one for which (e0i ) j = δi, j , but there are many others. For example, in R

2, for each
θ ∈ [0, 2π),

(

(cos θ, sin θ), (∓ sin θ,± cos θ)
)

is an orthonormal basis, and every
orthonormal basis in R2 is one of these.

A rotation4 in R
N is a map R : RN −→ R

N of the form R(x) = ∑N
j=1 x j e j

where (e1, . . . , eN ) is an orthonormal basis. Obviously R is linear in the sense that

4The terminology that I am using here is slightly inaccurate. The term rotation should be reserved
forR’s for which the determinant of the matrix

((

(ei , e0j )RN

))

is 1, and I have not made a distinction

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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R(αx + βy) = αR(x) + βR(y).

In addition,R preserves inner products:
(

R(x),R(y)
)

RN = (x, y)RN . To check this,
simply note that

(

R(x),R(y)
)

RN =
N
∑

i, j=1

xi y j (ei , e j )RN =
N
∑

i=1

xi yi = (x, y)RN .

In particular, |R(y) − R(x)| = |y − x|, and so it is clear that R is one-to-one
and continuous. Further, if R and R′ are rotations, then so is R′ ◦ R. Indeed, if
(e1, . . . , eN ) is the orthonormal basis for R, then

R′ ◦ R(x) =
N
∑

j=1

x jR
′(e j ),

and, since
(

R′(ei ),R
′(e j )

)

RN = (ei , e j )RN = δi, j ,

(

R′(e1), . . . ,R′(eN )
)

is an orthonormal basis. Finally, if R is a rotation, then there
is a unique rotationR−1 such thatR ◦R−1 = I = R−1 ◦R, where I is the identity
map: I(x) = x. To see this, let (e1, . . . , eN ) be the orthonormal bases forR, and set
ẽi = (

(e1)i , . . . , (eN )i
)

for 1 ≤ i ≤ N . Using (e01, . . . , e0N ) to denote the standard
orthonormal basis, we have that (ẽi , ẽ j )RN equals

N
∑

k=1

(ek)i (ek) j =
N
∑

k=1

(ek, e0i )RN (ek, e0j )RN = (R(e0i ),R(e0j )
)

RN = δi, j ,

and so (ẽ1, . . . , ẽN ) is an orthonormal basis. Moreover, if R̃ is the corresponding
rotation, then

R̃ ◦ R(x) =
N
∑

i=1

xi R̃(ei ) =
N
∑

i, j=1

xi (ei , e0j )RN ẽ j

=
N
∑

i, j,k=1

xi (ei , e0j )RN (ek, e0j )RN e0k =
N
∑

i,k=1

xi (ei , ek)RN e0k = x.

A similar computation shows that R ◦ R̃ = I, and so we can take R−1 = R̃.

(Footnote 4 continued)
between them and those for which it is −1. That is, I am calling all orthogonal transformations
rotations.
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Because R preserves lengths, it is clear that R
(

B(c, r)
) = B

(

R(c), r
)

. R also
takes a rectangle into a rectangle, but unfortunately the image rectangle may no
longer have sides parallel to the standard coordinate axes. Instead, they are parallel
to the axes for the corresponding orthonormal basis. That is,

(∗) R

⎛

⎝

N
∏

j=1

[a j , b j ]
⎞

⎠ =
⎧

⎨

⎩

N
∑

j=1

x j e j : x ∈
N
∏

j=1

[a j , b j ]
⎫

⎬

⎭
.

Of course, we should expect that vol
(

R
(
∏N

j=1[a j , b j ]
))

= ∏N
j=1(b j − a j ), but

this has to be checked, and for that purpose we will need the following lemma.

Lemma 5.5.1 Let G be a non-empty, bounded, open subset of RN , and assume that

lim
r↘0

∣
∣(∂G)(r)

∣
∣
i = 0

where (∂G)(r) is the set of y for which there exists an x ∈ ∂G such that |y − x| < r .
Then Ḡ is Riemann measurable and, for each ε > 0, there exists a finite set B of
mutually disjoint closed balls B̄ ⊆ G such that vol(Ḡ) ≤∑B∈B vol(B̄) + ε.

Proof First note that ∂G is Riemann negligible and therefore that Ḡ is Riemann
measurable. Next, given a closed cube Q = ∏N

j=1[c j − r, c j + r ], let B̄Q be the

closed ball B
(

c, r
2

)

.
For each n ≥ 1, let Kn be the collection of closed cubes Q of the form 2−nk +

[0, 2−n]N , wherek ∈ Z
N . Obviously, for each n, the cubes inKn are non-overlapping

and R
N =⋃Q∈Kn

Q.

Now choose n1 so that |(∂G)(2
N
2 −n1)|i ≤ 1

2vol(Ḡ), and set

C1 = {Q ∈ Kn1 : Q ⊆ G} and C′
1 = {Q ∈ Kn1 : Q ∩ G �= ∅}.

Then Ḡ ⊆⋃Q∈C′
1

Q,
⋃

Q∈C′
1\C1 Q ⊆ (∂G)(2

N
2 −n1 ), and therefore

∑

Q∈C1
|Q| =

∑

Q∈C′
1

|Q| −
∑

Q∈C′
1\C1

|Q| ≥ vol(Ḡ) − vol(Ḡ)

2
= vol(Ḡ)

2
.

Clearly the B̄Q’s for Q ∈ C1 are mutually disjoint, closed balls contained in G.
Furthermore, vol(B̄Q) = α|Q|, where α ≡ 4−N ΩN , and therefore

vol

⎛

⎝G\
⋃

Q∈C1
B̄Q

⎞

⎠ = vol(G)−
∑

Q∈C1
vol(B̄Q) = vol(G)−α

∑

Q∈C1
|Q| ≤ βvol(G),
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where β ≡ 1 − α
2 . Finally, set B1 = {B̄Q : Q ∈ C1}.

Set G1 = G\⋃B̄∈B1
B̄. Then G1 is again a non-empty, bounded, open set.

Furthermore, since (cf. Exercise 4.1) ∂G1 ⊆ ∂G ∪⋃B̄∈B1
∂ B̄, it is easy to see that

limr↘0
∣
∣(∂G1)

(r)
∣
∣
i = 0. Hence we can apply the same argument to G1 and thereby

produce a set B2 ⊇ B1 of mutually disjoint, closed balls B̄ such that B̄ ⊆ G1 for
B̄ ∈ B2\B1 and

vol

⎛

⎝G\
⋃

B̄∈B2

B̄

⎞

⎠ = vol

⎛

⎝G1\
⋃

B̄∈B2\B1

Bk

⎞

⎠ ≤ βvol(G1) ≤ β2vol(G).

After m iterations, we produce a collection Bm of mutually disjoint closed balls

B̄ ⊆ G such that vol
(

G\⋃B̄∈Bm
B̄
)

≤ βmvol(G). Thus, all that remains is to

choose m so that βmvol(G) < ε and then do m iterations. �

Lemma 5.5.2 If R is a rectangle and R is a rotation, then R(R) is Riemann mea-
surable and has the same volume as R.

Proof It is obvious that int(R) satisfies the hypotheses of Lemma 5.5.1, and, by using
(∗), it is easy to check that int

(

R(R)
)

does also.
Next assume that G ≡ int(R) �= ∅. Clearly G satisfies the hypotheses of

Lemma 5.5.1, and therefore for each ε > 0 we can find a collection B of mutu-
ally disjoint closed balls B̄ ⊆ G such that

∑

B̄∈B vol(B̄) + ε ≥ vol(Ḡ) = vol(R).
Thus, if B′ = {R(B̄) : B̄ ∈ B}, then B′ is a collection of mutually disjoint closed
balls B̄ ′ ⊆ R(R) such that

vol(R) ≤
∑

B̄∈B
vol(B̄) + ε =

∑

B̄′∈B′
vol(B̄ ′) + ε ≤ vol

(

R(R)
)+ ε,

and so vol
(

R(R)
) ≥ |R|. To prove that this inequality is an equality, apply the same

line of reasoning to G ′ = int
(

R(R)
)

and R−1 acting on R(R), and thereby obtain

vol(R) = vol
(

R−1 ◦ R(R)
) ≥ vol

(

R(R)
)

.

Finally, if R = ∅ there is nothing to do.On the other hand, if R �= ∅but int(R) = ∅,
for each ε > 0 let R(ε) be the set of points y ∈ R

N such that max1≤ j≤N |y j −x j | ≤ ε
for some x ∈ R. Then R(ε) is a closed rectangle with non-empty interior containing
R, and so vol

(

R(R)
) ≤ vol

(

R(R(ε))
) = |R(ε)|. Since vol(R) = 0 = limε↘0 |R(ε)|,

it follows that vol(R) = vol
(

R(R)
)

in this case also. �

Theorem 5.5.3 If Γ is a bounded, Riemann measurable subset and R is a rotation,
then R(Γ ) is Riemann measurable and vol

(

R(Γ )
) = vol(Γ ).

http://dx.doi.org/10.1007/978-3-319-24469-3_4
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Proof Given ε > 0, choose C1 to be a collection of non-overlapping rectangles
contained in Γ such that vol(Γ ) ≤ ∑R∈C1 |R| + ε, and choose C2 to be a cover of
Γ by non-overlapping rectangles such that vol(Γ ) ≥∑R∈C2 |R| − ε. Then

|R(Γ )|i ≥
∑

R∈C1
vol
(

R(R)
) =

∑

R∈C1
|R| ≥ vol(Γ ) − ε ≥

∑

R∈C2
|R| − 2ε

=
∑

R∈C2
vol
(

R(R)
)− 2ε ≥ |R(Γ )|e − 2ε.

Hence, |R(Γ )|e ≤ vol(Γ ) + 2ε and |R(Γ )|i ≥ vol(Γ ) − 2ε for all ε > 0. �

Corollary 5.5.4 Let f : B(0, r) −→ C be a bounded function that is continuous
off of a Riemann negligible set. Then, for each rotation R, f ◦ R is continuous off
of a Riemann negligible set and

∫

B(0,r)

f ◦ R(x) dx =
∫

B(0,r)

f (x) dx.

Proof Without loss in generality, we will assume throughout that f is real-valued.
If D is a Riemann negligible set off of which f is continuous, thenR−1(D) con-

tains the setwhere f ◦R is discontinuous.Hence, since vol
(

R−1(D)
) = vol(D) = 0,

f ◦ R is continuous off of a Riemann negligible set.
Set g = 1B(0,r) f . Then, by the preceding, both g and g ◦ R are Riemann inte-

grable. By (5.4.1), for any cover C of [−r, r ]N by non-overlapping rectangles and
any associated choice function Ξ ,

∫

B(0,r)

f ◦ R(x) dx =
∑

R∈C

∫

R−1(R)

g ◦ R(x) dx

= R(g; C,Ξ) +
∑

R∈C

∫

R−1(R)

ΔR(x) dx,

where ΔR(x) = g(x) − g
(

Ξ(R)
)

. Since R(g; C,Ξ) tends to
∫

B(0,r)
f (x) dx as

‖C‖ → 0, what remains to be shown is that the final term tends to 0 as ‖C‖ → 0.
But |ΔR(x)| ≤ supR g − inf R g and therefore

∣
∣
∣
∣
∣

∑

R∈C

∫

R−1(R)

ΔR(x) dx

∣
∣
∣
∣
∣
≤
∑

R∈C

(

sup
R

g − inf
R

g

)

|R| = U(g; C) − L(g; C),

which tends to 0 as ‖C‖ → 0. �

Here is an example of the way in which one can use rotation invariance to make
computations.
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Lemma 5.5.5 Let 0 ≤ r1 < r2 and 0 ≤ θ1 < θ2 < 2π be given. Then the region

{

(r cos θ, r sin θ) : (r, θ) ∈ [r1, r2] × [θ1, θ2]
}

has a Riemann negligible boundary and volume
r22−r21

2 (θ2 − θ1).

Proof Because this region can be constructed by taking the intersection of differ-
ences of balls with half spaces, its boundary is Riemann negligible. Furthermore, to
compute its volume, it suffices to treat the case when r1 = 0 and r2 = 1, since the
general case can be reduced to this one by taking differences and scaling.

Now define u(θ) = vol
(

W (θ)
)

where

W (θ) ≡ {(r cosω, r sinω) : (r,ω) ∈ [0, 1] × [0, θ]}.

Obviously, u is a non-decreasing function of θ ∈ [0, 2π] that is equal to 0 when
θ = 0 and π when θ = 2π. In addition, u(θ1 + θ2) = u(θ1) + u(θ2) if θ1 +
θ2 ≤ 2π. To see this, letRθ1 be the rotation corresponding to the orthonormal basis
(

(cos θ1, sin θ1), (− sin θ1, cos θ1)
)

, and observe that

W (θ1 + θ2) = W (θ1) ∪ Rθ1

(

W (θ2)
)

and that int
(

W (θ1)
) ∩ int

(

Rθ1

(

W (θ2)
)) = ∅. Hence, the equality follows from the

facts that the boundaries of W (θ1) and R
(

W (θ2)
)

are Riemann negligible and that
Rθ1

(

W (θ2)
)

has the same volume as W (θ2). After applying this repeatedly, we get
nu
( 2π

n

) = π and then that u
( 2πm

n

) = mu
( 2π

n

)

for n ≥ 1 and 0 ≤ m ≤ n. Hence,
u
( 2πm

n

) = πm
n for all n ≥ 1 and 0 ≤ m ≤ n. Now, given any θ ∈ (0, 2π), choose

{mn ∈ N : n ≥ 1} so that 0 ≤ θ − 2πmn
n < 2π

n . Then, for all n ≥ 1,

∣
∣u(θ) − θ

2

∣
∣ ≤ ∣∣u(θ) − u

( 2πmn
n

)∣
∣+ ∣∣πmn

n − θ
2

∣
∣ ≤ u

( 2π
n

)+ π
n ≤ 2π

n ,

and so u(θ) = θ
2 .

Finally, given any 0 ≤ θ1 < θ2 ≤ 2π, set θ = θ2 − θ1, and observe that
W (θ2)\int(W (θ1) = Rθ1

(

W (θ)
)

and therefore that W (θ2)\int(W (θ1) has the same
volume as W (θ). �

5.6 Polar and Cylindrical Coordinates

Changing variables in multi-dimensional integrals is more complicated than in one
dimension. From the standpoint of the theory that we have developed, the primary
reason is that, in general, even linear changes of coordinates take rectangles into par-
allelograms that are not in general rectangles with respect to any orthonormal basis.
Starting from the formula in terms of determinants for the volume of parallelograms,
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Jacobi worked out a general formula that says how integrals transform under contin-
uously differentiable changes that satisfy a suitable non-degeneracy condition, but
his theory relies on a familiarity with quite a lot of linear algebra and matrix theory.
Thus, we will restrict our attention to changes of variables for which his general
theory is not required.

We will begin with polar coordinates for R2. To every point x ∈ R
2\{0} there

exists a unique point (ρ,ϕ) ∈ (0,∞) × [0, 2π) such that x1 = ρ cosϕ and x2 =
ρ sinϕ. Indeed, if ρ = |x|, then x

ρ ∈ S
1(0, 1), and so ϕ is the distance, measured

counterclockwise, one travels along S1(0, 1) to get from (1, 0) to x
ρ . Thus we can use

the variables (ρ,ϕ) ∈ (0,∞) × [0, 2π) to parameterize R2\{0}. We have restricted
our attention to R

2\{0} because this parameterization breaks down at 0. Namely,
0 = (0 cosϕ, 0 sinϕ) for every ϕ ∈ [0, 2π). However, this flaw will not cause us
problems here.

Given a continuous function f : B(0, r) −→ C, it is reasonable to ask whether
the integral of f over B(0, r) can bewritten as an integral with respect to the variables
(ρ,ϕ). In fact, we have already seen in (5.4.2) that this is possible when f depends
only on |x|, and wewill now show that it is always possible. To this end, for θ ∈ R, let
Rθ be the rotation in R2 corresponding to the basis

(

(cos θ, sin θ), (− sin θ, cos θ)
)

.
That is,

Rθx = (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ
)

.

Using (1.5.1), it is easy to check that Rθ ◦ Rϕ = Rθ+ϕ. In particular, R2π+ϕ =
Rϕ.

Lemma 5.6.1 Let f : B(0, r) −→ C be a continuous function, and define

f̃ (ρ) = 1

2π

∫ 2π

0
f
(

ρ cosϕ, ρ sinϕ
)

dϕ for ρ ∈ [0, r ].

Then, for all x ∈ B(0, r),

f̃ (|x|) = 1

2π

∫ 2π

0
f
(

Rϕx
)

dϕ.

Proof Set ρ = |x| and choose θ ∈ [0, 1) so that x = (

ρ cos(2πθ), ρ sin(2πθ)
)

.
Equivalently, x = R2πθ(ρ, 0). Then by the preceding remarks about rotations in R2

and (3.3.3) applied to the periodic function ξ � f
(

R2πξ(ρ, 0)
)

,

1

2π

∫ 2π

0
f
(

Rϕx
)

dϕ = 1

2π

∫ 2π

0
f
(

R2πθ+ϕ(ρ, 0)
)

=
∫ 1

0
f
(

R2π(θ+ϕ)(ρ, 0)
)

dϕ =
∫ 1

0
f
(

R2πϕ(ρ, 0)
)

dϕ = f̃ (ρ). �

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_3
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Theorem 5.6.2 If f is a continuous function on the ball B(0, r) in R
2, then

∫

B(0,r)

f (x) dx =
∫ r

0
ρ

(∫ 2π

0
f
(

ρ cosϕ, ρ sinϕ
)

dϕ

)

dρ

=
∫ 2π

0

(∫ r

0
f
(

ρ cosϕ, ρ sinϕ
)

ρ dρ

)

dϕ.

Proof By (5.4.2),
∫

B(0,r)

f (x) dx =
∫

B(0,r)

f
(

Rϕx
)

dx

for all ϕ. Hence, by (5.2.1), Lemma 5.6.1, and (5.4.2),

∫

B(0,r)

f (x) dx = 1

2π

∫ 2π

0

(∫

B(0,r)

f
(

Rϕx
)

dx
)

dϕ

=
∫

B(0,r)

f̃ (|x|) dx =
∫ r

0
f̃ (ρ)ρ dρ,

which is the first equality. The second equality follows from the first by another
application of (5.2.1). �

As a preliminary application of this theorem, we will use it to compute integrals
over a star shaped region, a region G for which there exists a c ∈ R

2, known as
the center, and a continuous function, known as the radial function, r : [0, 2π] −→
(0,∞) such that r(0) = r(2π) and

G = {c + re(ϕ) : ϕ ∈ [0, 2π) & r ∈ [0, r(ϕ)
)}

, (5.6.1)

where e(ϕ) ≡ (cosϕ, sinϕ). For instance, if G is a non-empty, bounded, convex
open set, then for any c ∈ G, G is star shaped with center at c and

r(ϕ) = max{r > 0 : c + re(ϕ) ∈ Ḡ}.

Observe that
∂G = {c + r(ϕ)e(ϕ) : ϕ ∈ [0, 2π)

}

.

and, as a consequence, we can show that ∂G is Riemann negligible. Indeed, for a
given ε ∈ (0, 1] choose n ≥ 1 so that |r(ϕ2) − r(ϕ1)| < ε if |ϕ2 − ϕ1| ≤ 2π

n and,
for 1 ≤ m ≤ n, set

Am = {c + ρe(ϕ) : 2π(m−1)
n ≤ ϕ < 2πm

n &
∣
∣ρ − r

( 2πm
n

)∣
∣ ≤ ε

}

.
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Then ∂G ⊆⋃n
m=1 Am,n and, by Lemma 5.5.5,

vol(Am) = 2π2

n

((

r
( 2πm

n

)+ ε
)2 − (r( 2πm

n

)− ε
)2
)

≤ 8π2‖r‖[0,2π]ε
n

,

and therefore there is a constant K < ∞ such that |∂G|e ≤ K ε for all ε ∈ (0, 1].
Finally, notice that G is path connected and therefore, by Exercise 4.5 is connected.

The following is a significant extension of Theorem 5.6.2.

Corollary 5.6.3 If G is the region in (5.6.1) and f : Ḡ −→ C is continuous, then

∫

Ḡ
f (x) dx =

∫ 2π

0

(
∫ r(ϕ)

0
f (c + ρe(ϕ)) ρdρ

)

dϕ.

Proof Without loss in generality, we will assume that c = 0. Set r− = min{r(ϕ) :
ϕ ∈ [0, 2π]} and r+ = max{r(ϕ) : ϕ ∈ [0, 2π]}. Given n ≥ 1, define ηn : R −→
[0, 1] by

ηn(t) =

⎧

⎪⎨

⎪⎩

0 if t ≤ 0
nt
r− if 0 < t ≤ r−

n

1 if t >
r−
n ,

and define αn and βn on R2 by

αn(ρe(ϕ)) = ηn
(

r(ϕ) − ρ
)

and βn(ρe(ϕ)) = ηn
(

r(ϕ) + r−
n − ρ

)

Then both αn and βn are continuous functions, αn vanishes off of G and βn equals
1 on Ḡ. Finally define

fn(x) ≡
{

αn(x) f (x) if x ∈ G

0 if x /∈ G.

Then fn is continuous and therefore, by Theorem 5.6.2,

∫

Ḡ
fn(x) dx =

∫

B(0,r+)

fn(x) dx =
∫ 2π

0

(∫ r+

0
fn(ρe(ϕ))ρ dρ

)

dϕ

=
∫ 2π

0

(
∫ r(ϕ)

0
fn(ρe(ϕ))ρ dρ

)

dϕ.

Clearly, again by Theorem 5.6.2,

http://dx.doi.org/10.1007/978-3-319-24469-3_4
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∣
∣
∣
∣

∫

Ḡ
f (x) dx −

∫

Ḡ
fn(x) dx

∣
∣
∣
∣
≤ ‖ f ‖Ḡ

∫

Ḡ

(

1 − αn(x)
)

dx

≤ ‖ f ‖Ḡ

∫

B(0,2r+)

βn(x)
(

1 − αn(x)
)

dx

= ‖ f ‖Ḡ

∫ 2π

0

(∫ 2r+

0
ηn
(

r(ϕ) + r−
n − ρ

)(

1 − ηn
(

r(ϕ) − ρ
))

ρ dρ

)

dϕ

= ‖ f ‖Ḡ

∫ 2π

0

(
∫ r(ϕ)+ r−

n

r(ϕ)− r−
n

ηn
(

r(ϕ) + r−
n − ρ

)(

1 − ηn
(

r(ϕ) − ρ
))

ρ dρ

)

dϕ

≤ 8π‖ f ‖Ḡr+r−
n

.

At the same time,

∣
∣
∣
∣
∣

∫ 2π

0

(
∫ r(ϕ)

0
f (ρe(ϕ))ρ dρ

)

dϕ −
∫ 2π

0

(
∫ r(ϕ)

0
fn(ρe(ϕ))ρ dρ

)

dϕ

∣
∣
∣
∣
∣

≤ ‖ f ‖Ḡ

∫ 2π

0

(
∫ r(ϕ)

r(ϕ)− r−
n

ρ dρ

)

dϕ ≤ 4π‖ f ‖Ḡr+r−
n

.

Thus, the asserted equality follows after one lets n → ∞. �

We turn next to cylindrical coordinates in R
3. That is, we represent points in R

3

as (ρe(ϕ), ξ), where ρ ≥ 0, ϕ ∈ [0, 2π), and ξ ∈ R. Again the correspondence fails
to be one-to-one everywhere. Namely, ϕ is not uniquely determined for x ∈ R

3 with
x1 = x2 = 0, but, as before, this will not prevent us from representing integrals in
terms of the variables (ρ,ϕ, ξ).

Theorem 5.6.4 Let ψ : [a, b] −→ [0,∞) be a continuous function, and set

Γ = {x ∈ R
3 : x3 ∈ [a, b] & x21 + x22 ≤ ψ(x3)

2}.

Then Γ is Riemann measurable and

∫

Γ

f (x) dx =
∫ b

a

(
∫ ψ(ξ)

0
ρ

(∫ 2π

0
f
(

ρe(ϕ), ξ
)

dϕ

)

dρ

)

dξ

for any continuous function f : Γ −→ C.

Proof Given n ≥ 1, define cm,n = (

1 − m
n

)

a + m
n b for 0 ≤ m ≤ n, and set

Im,n = [cm−1,n, cm,n] and Γm,n = {x ∈ Γ : x3 ∈ Im,n} for 1 ≤ m ≤ n. Next, for
each 1 ≤ m ≤ n, set κm,n = minIm,n ψ, Km,n = maxIm,n ψ, and

Dm,n = {x : κ2
m,n ≤ x21 + x22 ≤ K 2

m,n & x3 ∈ Im,n}.
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To see that Γ is Riemann measurable, we will show that its boundary is Rie-
mann negligible. Indeed, ∂Γm,n ⊆ Dm,n , and therefore, by Theorem 5.2.1 and

Lemma 5.5.5, |∂Γm,n|e ≤ π(K 2
m,n−κ2m,n)(b−a)

n . Since

lim
n→∞ max

1≤m≤n
(Km,n − κm,n) = 0 and |∂Γ |e ≤

n
∑

m=1

|∂Γm,n|e,

it follows that |∂Γ |e = 0. Of course, since each Γm,n is a set of the same form as Γ ,
each of them is also Riemann measurable.

Now let f be given. Then

∫

Γ

f (x) dx =
n
∑

m=1

∫

Γm,n

f (x) dx =
n
∑

m=1

∫

Cm,n

f (x) dx −
n
∑

m=1

∫

Γm,n\Cm,n

f (x) dx,

where Cm,n ≡ {x : x21 + x22 ≤ κm,n & x3 ∈ Im,n}. Since Γm,n\Cm,n ⊆ Dm,n , the
computation in the preceding paragraph shows that

∣
∣
∣
∣
∣

n
∑

m=1

∫

Γm,n\Cm,n

f (x) dx

∣
∣
∣
∣
∣
≤ ‖ f ‖Γ π(b − a)

n

n
∑

m=1

(

K 2
m,n − κ2

m,n

) −→ 0

as n → ∞. Next choose ξm,n ∈ Im,n so that ψ(ξm,n) = κm,n , and set

εn = max
1≤m≤n

sup
x∈Cm,n

| f (x) − f (x1, x2, ξm,n)|.

Then
∣
∣
∣
∣
∣

n
∑

m=1

∫

Cm,n

f (x) dx −
n
∑

m=1

∫

Cm,n

f (x1, x2, ξm, n) dx

∣
∣
∣
∣
∣
≤ εnvol(Γ ) −→ 0.

Finally, observe that
∫

Cm, n
f (x1, x2, ξm, n) dx = b−a

n g(ξm, n) where g is the contin-
uous function on [a, b] given by

g(ξ) ≡
∫ ψ(ξ)

0
ρ

(∫ 2π

0
f
(

ρe(ϕ), ξ
)

dϕ

)

dρ.

Hence,
∑n

m=1

∫

Cm,n
f (x) dx = R(g; Cn, Ξn) where Cn = {Im,n : 1 ≤ m ≤ n} and

Ξn(Im,n) = ξm,n . Now let n → ∞ to get the desired conclusion. �

Integration over balls in R
3 is a particularly important example to which

Theorem 5.6.4 applies. Namely, take a = −r , b = r , and ψ(ξ) = √

r2 − ξ2 for
ξ ∈ [−r, r ]. Then Theorem 5.6.4 says that
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∫

B(0,r)

f (x) dx

=
∫ r

−r

(
∫

√
r2−ξ2

0
ρ

(∫ 2π

0
f
(

ρ cosϕ, ρ sinϕ, ξ
)

dϕ

)

dρ

)

dξ.

(5.6.2)

There is a beautiful application of (5.6.2) to a famous observationmade byNewton
about his law of gravitation. According to his law, the force exerted by a particle of
mass m1 at y ∈ R

3 on a particle of mass m2 at b ∈ R
3\{x} is equal to

Gm1m2

|y − b|3 (y − b),

where G is the gravitational constant. Next, suppose that Ω is a bounded, closed,
Riemann measurable region on which mass is continuously distributed with density
μ. Then the force that the mass in Ω exerts on a particle of mass m at b /∈ Ω is given
by

∫

Ω

Gmμ(y)

|y − b|3 (y − b) dy.

Newton’s observation was that ifΩ is a ball and themass density depends only on the
distance from the center of the ball, then the force felt by a particle outside the ball
is the same as the force exerted on it by a particle at the center of the ball with mass
equal to the total mass of the ball. That is, if Ω = B(c, r) and μ : [0, r ] −→ [0,∞)

is continuous, then for b /∈ B(c, r),

∫

B(c,r)

Gmμ(|y − c|)
|y − b|3 (y − b) dy = G Mm

|c − b|3 (c − b)

where M =
∫

B(c,r)

μ
(|y − c|) dy.

(5.6.3)

(See Exercise 5.8 for the case when b lies inside the ball).
Using translation and rotations, one can reduce the proof of (5.6.3) to the case

when c = 0 and b = (0, 0,−D) for some D > r . Further, without loss in generality,
we will assume that Gm = 1. Next observe that, by rotation invariance applied to
the rotations that take (y1, y2, y3) to (∓y1,±y2, y3),

∫

B(0,r)

μ(|y|)
|y − b|3 yi dy = −

∫

B(0,r)

μ(|y|)
|y − b|3 yi dy

and therefore ∫

B(0,r)

μ(|y|)
|y − b|3 yi dy = 0 for i ∈ {1, 2}.
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Thus, it remains to show that

(∗)

∫

B(0,r)

μ(|y|)
|y − b|3 y3 dy = D−2

∫

B(0,r)

μ(|y|) dy.

To prove (∗), we apply (5.6.2) to the function

f (x) = μ(|x|)(x3 + D)
(

x21 + x22 + (x3 + D)2
) 3
2

to write the left hand side as 2πJ where

J ≡
∫ r

−r

⎛

⎝

∫
√

r2−ξ2

0

ρμ(
√

ρ2 + ξ2)(ξ + D)
(

ρ2 + (ξ + D)2
) 3
2

dρ

⎞

⎠ dξ.

Now make the change of variables σ = √ρ2 + ξ2 in the inner integral to see that

J =
∫ r

−r
(ξ + D)

(
∫ r

|ξ|
σμ(σ)

(σ2 + 2ξD + D2)
3
2

dσ

)

dξ,

and then apply (5.2.1) to obtain

J =
∫ r

0
σμ(σ)

(
∫ σ

−σ

D + ξ

(σ2 + 2ξD + D2)
3
2

dξ

)

dσ.

Use the change of variables η = σ2 + 2ξD + D2 in the inner integral to write it as

1

4D2

∫ (D+σ)2

(D−σ)2

(

η− 1
2 + (D2 − σ2)η− 3

2
)

dη = 2σ

D2 .

Hence,

2πJ = 4π

D2

∫ r

0
μ(σ)σ2 dσ.

Finally, note that 3Ω3 = 4π, and apply (5.4.5) with N = 3 to see that

4π
∫ r

0
μ(σ)σ2 dσ =

∫

B(0,r)

μ(|x|) dx.
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We conclude this section by using (5.6.2) to derive the analog of Theorem 5.6.2
for integrals over balls in R

3. One way to introduce polar coordinates for R3 is to
think about the use of latitude and longitude to locate points on a globe. To begin
with, one has to choose a reference axis, which in the case of a globe is chosen to
be the one passing through the north and south poles. Given a point q on the globe,
consider a plane Pq containing the reference axis that passes through q. (There will
be only one unless q is a pole.) Thinking of points on the globe as vectors with base
at the center of the earth, the latitude of a point is the angle that q makes in Pq with
the north pole N. Before describing the longitude of q, one has to choose a reference
point q0 that is not on the reference axis. In the case of a globe, the standard choice
is Greenwich, England. Then the longitude of q is the angle between the projections
of q and q0 in the equatorial plane, the plane that passes through the center of the
earth and is perpendicular to the reference axis.

Now let x ∈ R
3\{0}. With the preceding in mind, we say that the polar angle of

x = (x1, x2, x3) is the θ ∈ [0,π] such that cos θ = (x,N)
R3|x| , where N = (0, 0, 1).

Assuming that σ =
√

x21 + x22 > 0, the azimuthal angle of x is the ϕ ∈ [0, 2π) such
that (x1, x2) = (σ cosϕ,σ sinϕ). In other words, in terms of the globe model, we
have taken the center of the earth to lie at the origin, the north pole and south poles
to be (0, 0, 1) and (0, 0,−1), and “Greenwich” to be located at (1, 0, 0). Thus the
polar angle gives the latitude and the azimuthal angle gives the longitude.

The preceding considerations lead to the parameterization

(ρ, θ,ϕ) ∈ [0,∞) × [0,π] × [0, 2π)

�−→ x(ρ,θ,ϕ) ≡ (ρ sin θ cosϕ, ρ sin θ sinϕ, ρ cos θ
) ∈ R

3

of points in R3. Assuming that ρ > 0, θ is the polar angle of x(ρ,θ,ϕ), and, assuming
that ρ > 0 and θ /∈ {0,π}, ϕ is its azimuthal angle. On the other hand, when ρ = 0,
then x(ρ,θ,ϕ) = 0 for all (θ,ϕ) ∈ [0,π] × [0, 2π), and when ρ > 0 but θ ∈ {0,π},
θ is uniquely determined but ϕ is not. In spite of these ambiguities, if x = x(ρ,θ,ϕ),
then (ρ, θ,ϕ) are called the polar coordinates of x, and as we are about to show,
integrals of functions over balls in R3 can be written as integrals with respect to the
variables (ρ, θ,ϕ).

Let f : B(0, r) −→ C be a continuous function. Then, by (5.6.2) and (5.2.2), the
integral of f over B(0, r) equals

∫ 2π

0

(
∫ r

−r

(
∫

√
r2−ξ2

0
σ fϕ

(

σ, ξ
)

dσ

)

dξ

)

dϕ,
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where fϕ(σ, ξ) = f
(

σ cosϕ,σ sinϕ, ξ
)

. Observe that

∫ r

−r

(
∫

√
r2−ξ2

0
σ fϕ

(

σ, ξ
)

dσ

)

dξ

=
∫ r

0

(
∫

√
r2−ξ2

0
σ fϕ

(

σ, ξ
)

dσ

)

dξ +
∫ 0

−r

(
∫

√
r2−ξ2

0
σ fϕ

(

σ, ξ
)

dσ

)

dξ

=
∫ r

0
σ

(
∫

√
r2−σ2

0
fϕ
(

σ, ξ
)

dξ

)

dσ +
∫ r

0
σ

(
∫

√
r2−σ2

0
fϕ
(

σ,−ξ
)

dξ

)

dσ,

and make the change of variables ξ = √ρ2 − σ2 to write

∫
√

r2−σ2

0
fϕ
(

σ,±ξ
)

dξ =
∫

(σ,r ]
fϕ
(

σ,±
√

ρ2 − σ2
) ρ
√

ρ2 − σ2
dρ.

Hence, we now know that

∫ r

−r

(
∫

√
r2−ξ2

0
σ fϕ

(

σ, ξ
)

dσ

)

dξ

=
∫ r

0
σ

(
∫

(σ,r ]

(

fϕ
(

σ,
√

ρ2 − σ2
)+ fϕ

(

σ,−
√

ρ2 − σ2
)) ρ
√

ρ2 − σ2
dρ

)

dσ

=
∫ r

0
ρ

(
∫

[0,ρ)

(

fϕ
(

σ,
√

ρ2 − σ2
)+ fϕ

(

σ,−
√

ρ2 − σ2
)) σ
√

ρ2 − σ2
dσ

)

dρ,

where we have made use of the obvious extension of Fubini’s Theorem to integrals
that are limits of Riemann integrals. Finally, use the change of variables σ = ρ sin θ
in the inner integral to conclude that

∫ r

−r

(
∫

√
r2−ξ2

0
σ fϕ

(

σ, ξ
)

dσ

)

dξ =
∫ r

0
ρ2
(∫ π

0
fϕ
(

ρ sin θ, ρ cos θ
)

dθ

)

dρ

and therefore, after an application of (5.2.2), that

∫

B(0,r)

f (x) dx

=
∫ r

0
ρ2
(∫ π

0

(∫ 2π

0
f
(

ρ sin θ cosϕ, ρ sin θ sinϕ, ρ cos θ
)

dϕ

)

dθ

)

dρ.

(5.6.4)
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5.7 The Divergence Theorem in R
2

Integration by parts in more than one dimension takes many forms, and in order
to even state these results in generality one needs more machinery than we have
developed. Thus, we will deal with only a couple of examples and not attempt to
derive a general statement.

The most basic result is a simple application of The Fundamental Theorem of
Calculus, Theorem 3.2.1. Namely, consider a rectangle R = ∏N

j=[a j , b j ], where
N ≥ 2, and let ϕ be a C-valued function which is continuously differentiable on
int(R) and has bounded derivatives there. Given ξ ∈ R

N , one has

∫

R
∂ξϕ(x) dx =

N
∑

j=1

ξ j

(
∫

R j (b j )

ϕ(y) dσy −
∫

R j (a j )

ϕ(y) dσy

)

where R j (c) ≡
⎛

⎝

j−1
∏

i=1

[ai , bi ]
⎞

⎠× {c} ×
⎛

⎝

N
∏

i= j+1

[a j , b j ]
⎞

⎠ ,

(5.7.1)

where the integral
∫

R j (c)
ψ(y) dσy of a function ψ over R j (c) is interpreted as the

(N − 1)-dimensional integral

∫

∏

i �= j [ai ,bi ]
ψ(y1, . . . , y j−1, c, y j+1, . . . , yN ) dy1 · · · dy j−1dy j+1 · · · dyN .

Verification of (5.7.1) is easy. First write ∂ξϕ as
∑N

j=1 ξ j∂e j ϕ. Second, use (5.2.2)
with the permutation that exchanges j and 1 but leaves the ordering of the other
indices unchanged, and apply Theorem 3.2.1.

In many applications one is dealing with an R
N -valued function F and is inte-

grating its divergence

divF ≡
N
∑

j=1

∂e j Fj

over R. By applying (5.7.1) to each coordinate, one arrives at

∫

R
divF(x) dx =

N
∑

j=1

∫

R j (b j )

Fj (y) dσy −
N
∑

j=1

∫

R j (a j )

Fj (y) dσy, (5.7.2)

but there is a more revealing way to write (5.7.2). To explain this alternative version,
let ∂G be the boundary of a bounded open subset G in R

N . Given a point x ∈ ∂G,
say that ξ ∈ R

N is a tangent vector to ∂G at x if there is a continuously differentiable
path γ : (−1, 1) −→ ∂G such that x = γ(0) and ξ = γ̇(0) ≡ dγ

dt (0). That is, ξ

http://dx.doi.org/10.1007/978-3-319-24469-3_3
http://dx.doi.org/10.1007/978-3-319-24469-3_3
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is the velocity at the time when a path on ∂G passes through x. For instance, when
G = int(R) and x ∈ R j (a j ) ∪ R j (b j ) is not on one of the edges, then it is obvious
that ξ is tangent to x if and only if (ξ, e j )RN = 0. If x is at an edge, (ξ, e j )RN will
be 0 for every tangent vector ξ, but there will be ξ’s for which (ξ, e j )RN = 0 and yet
there is no continuously differentiable path that stays on ∂G, passes through x, and
has derivative ξ when it does. When G = B(0, r) and x ∈ S

N−1(0, r) ≡ ∂B(0, r),
then ξ is tangent to ∂G if and only if (ξ, x)RN = 0.5 To see this, first suppose that ξ
is tangent to ∂G at x, and let γ be an associated path. Then

0 = ∂t |γ(t)|2 = 2
(

γ(t), γ̇(t)
)

RN = 2(x, ξ)RN at t = 0.

Conversely, suppose that (x, ξ)RN = 0. If ξ = 0, then we can take γ(t) = x for
all t . If ξ �= 0, define γ(t) = (

cos(r−1|ξ|t))x + r
|ξ|
(

sin(r−1|ξ|t))ξ, and check that

γ(t) ∈ S
N−1(0, r) for all t , γ(0) = x, and γ̇(0) = ξ.

Having definedwhat it means for a vector to be tangent to ∂G at x, we now say that
a vector η is a normal vector to ∂G at x if (η, ξ)RN = 0 for every tangent vector ξ at
x. For nice regions like balls, there is essentially only one normal vector at a point.
Indeed, as we saw, ξ is tangent to x ∈ ∂B(0, r) if and only if (ξ, x)RN = 0, and so
every normal vector there will have the form αx for some α ∈ R. In particular, there
is a unique unit vector, known as the outward pointing unit normal vector n(x), that is
normal to ∂B(0, r) at x and is pointing outward in the sense that x + tn(x) /∈ B(0, r)

for t > 0. In fact, n(x) = x
|x| . Similarly, when x ∈ R j (a j ) ∪ R j (b j ) is not on an

edge, every normal vector will be of the form αe j , and the outward pointing normal
unit normal at x will be −e j or e j depending on whether x ∈ R j (a j ) or x ∈ R j (b j ).
However,when x is at an edge, there are too few tangent vectors to uniquely determine
an outward pointing unit normal vector at x.

normal to rectangle and circle

Fortunately, because this flaw is present only on a Riemann negligible set, it is not
fatal for the application that we will make of these concepts to (5.7.2). To be precise,
define n(x) = 0 for x ∈ ∂R that are on an edge, note that n is continuous off of a
Riemann negligible subset of RN−1, and observe that (5.7.2) can be rewritten as

5This fact accounts for the notation S
N−1 when referring to spheres in R

N . Such surfaces are said
to be (N − 1)-dimensional because there are only N − 1 linearly independent directions in which
one can move without leaving them.
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∫

R
divF(x) dx =

∫

∂R

(

F(y), n(y)
)

RN dσy, (5.7.3)

where
∫

∂R
ψ(y) dσy ≡

N
∑

j=1

(
∫

R j (a j )

ψ(y) dσy +
∫

R j (b j )

ψ(y) dσy

)

.

Besides being more aesthetically pleasing than (5.7.2), (5.7.3) has the advantage
that it is in a form that generalizes and has a nice physical interpretation. In fact, once
one knows how to interpret integrals over the boundary of more general regions, one
can show that ∫

G
div
(

F(x)
)

dx =
∫

∂G

(

F(y), n(y)
)

RN dσy (5.7.4)

holds for quite general regions, and this generalization is known as the divergence
theorem. Unfortunately, understanding of the physical interpretation requires one to
know the relationship between divF and the flow that F determines, and, although
a rigorous explanation of this connection is beyond the scope of this book, here is
the idea. In Sect. 4.5 we showed that if F satisfies (4.5.4), then it determines a map
X : R × R

N −→ R
N by the equation

Ẋ(t, x) = F
(

X(t, x)
)

with X(0, x) = x.

In other words, for each x, t � X(t, x) is the path that passes through x at time t = 0
and has velocity F

(

X(t, x)
)

for all t . Now think about mass that is initially uniformly
distributed in a bounded region G and that is flowing along these paths. If one
monitors the region to determine how much mass is lost or gained as a consequence
of the flow, one can show that the rate at which change is taking place is given by
the integral of divF over G. If instead of monitoring the region, one monitors the
boundary and measures how much mass is passing through it in each direction, then
one finds that the rate of change is given by the integral of

(

F(x), n(x)
)

RN over the
boundary. Thus, (5.7.4) is simply stating that these two methods of measurement
give the same answer.

Wewill now verify (5.7.4) for a special class of regions inR2. Themain reason for
working in R

2 is that regions there are likely to have boundaries that are piecewise
parameterized curves, which, by the results in Sect. 4.4, means that we know how to
integrate over them. The regions G withwhichwewill deal are piecewise smooth star
shaped regions in R

2 given by (5.6.1) with a continuous function ϕ ∈ [0, 2π] �−→
r(ϕ) ∈ (0,∞) that satisfies r(0) = r(2π) and is piecewise smooth. Clearly the
boundary of such a region is a piecewise parameterized curve. Indeed, consider
the path p(ϕ) = c + r(ϕ)e(ϕ) where, as before, e(ϕ) = (cosϕ, sinϕ). Then the
restriction p1 of p to [0,π] and the restriction p2 of p to [π, 2π] parameterize non-
overlapping parameterized curves whose union is ∂G. Moreover, by (4.4.2), since

http://dx.doi.org/10.1007/978-3-319-24469-3_4
http://dx.doi.org/10.1007/978-3-319-24469-3_4
http://dx.doi.org/10.1007/978-3-319-24469-3_4
http://dx.doi.org/10.1007/978-3-319-24469-3_4
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ṗ(ϕ) = r ′(ϕ)e(ϕ) + r(ϕ)ė(ϕ),
(

e(ϕ), ė(ϕ)
)

R2 = 0, and |e(ϕ)| = |ė(ϕ)| = 1,

we have that

∫

∂G
f (y) dσy =

∫ 2π

0
f
(

c + r(ϕ)e(ϕ)
)√

r(ϕ)2 + r ′(ϕ)2 dϕ.

Next observe that,

t(ϕ) ≡ (r ′(ϕ) cosϕ − r(ϕ) sinϕ, r ′(ϕ) sinϕ + r(ϕ) cosϕ
)

is tangent to ∂G at p(ϕ), and therefore that the outward pointing unit normal to ∂G
at p(ϕ) is

n
(

p(ϕ)
) = ±

(

r(ϕ) cosϕ + r ′(ϕ) sinϕ, r(ϕ) sinϕ − r ′(ϕ) cosϕ
)

√

r(ϕ)2 + r ′(ϕ)2
(5.7.5)

for ϕ ∈ [0, 2π] in intervals where r is continuously differentiable. Further, since

(

n
(

p(ϕ)
)

, p(ϕ) − c
)

R2 = r(ϕ)2
√

r(ϕ)2 + r ′(ϕ)2
> 0

and therefore
|p(ϕ) + tn(ϕ) − c|2 > r(ϕ)2 for t > 0,

we know that the plus sign is the correct one. Taking all these into account, we see
that (5.7.4) for G is equivalent to

∫

G
divF(x) dx =

∫ 2π

0

(

r(ϕ) cosϕ + r ′(ϕ) sinϕ
)

F1
(

c + r(ϕ)e(ϕ)
)

dϕ

+
∫ 2π

0

(

r(ϕ) sinϕ − r ′(ϕ) cosϕ
)

F2
(

c + r(ϕ)e(ϕ)
)

dϕ.

(5.7.6)

In proving (5.7.6), we will assume, without loss in generality, that c = 0. Hence,
what we have to show is that

(∗)

∫

G
∂e1 f (x) dx =

∫ 2π

0

(

r(ϕ) cosϕ + r ′(ϕ) sinϕ
)

f
(

r(ϕ)e(ϕ)
)

dϕ

∫

G
∂e2 f (x) dx =

∫ 2π

0

(

r ′(ϕ) sinϕ − r ′(ϕ)
)

f
(

r(ϕ)e(ϕ)
)

dϕ

To perform the required computation, it is important to write derivatives in terms of
the variables ρ andϕ. For this purpose, suppose that f is a continuously differentiable
function on an open subset of R2, and set g(ρ,ϕ) = f (ρ cosϕ, ρ sinϕ). Then
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∂ρg(ρ,ϕ) = cosϕ∂e1 f (ρ cosϕ, ρ sinϕ) + sinϕ∂e2 f (ρ cosϕ, ρ sinϕ)

and

∂ϕg(ρ,ϕ) = −ρ sinϕ∂e1 f (ρ cosϕ, ρ sinϕ) + ρ cosϕ∂e2 f (ρ cosϕ, ρ sinϕ),

and therefore

ρ∂e1 f (ρe(ϕ)) = ρ cosϕ∂ρg(ρ,ϕ) − sinϕ∂ϕg(ρ,ϕ)

and
ρ∂e2 f (ρe(ϕ)) = ρ sinϕ∂ρg(ρ,ϕ) + cosϕ∂ϕg(ρ,ϕ).

Thus, if f is a continuous function on Ḡ that has bounded, continuous first order
derivatives on G, then ∫

G
∂e1 f (x) dx = I − J,

where

I =
∫ 2π

0
cosϕ

(
∫ r(ϕ)

0
ρ∂ρg(ρ, θ) dρ

)

dϕ

and

J =
∫ 2π

0
sinϕ

(
∫ r(ϕ)

0
∂ϕg(ρ, θ) dρ

)

dϕ.

Applying integration by parts to the inner integral in I , we see that

I =
∫ 2π

0
cosϕ g

(

r(ϕ),ϕ
)

r(ϕ) dϕ −
∫ 2π

0
cosϕ

(
∫ r(ϕ)

0
g(ρ,ϕ) dρ

)

dϕ.

Dealing with J is more challenging. The first step is to write it as J1 + J2, where J1
and J2 are, respectively,

∫ 2π

0
sinϕ

(∫ r−

0
∂ϕg(ρ,ϕ) dρ

)

dϕ and
∫ 2π

0
sinϕ

(
∫ r(ϕ)

r−
∂ϕg(ρ,ϕ) dρ

)

dϕ,

and r− ≡ min{r(ϕ) : ϕ ∈ [0, 2π}. By (5.2.1) and integration by parts,

J1 =
∫ r−

0

(∫ 2π

0
sinϕ∂ϕg(ρ,ϕ) dϕ

)

dρ = −
∫ r−

0

(∫ 2π

0
cosϕ g(ρ,ϕ) dϕ

)

dρ.
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To handle J2, choose θ0 ∈ [0, 2π] so that r(θ0) = r−, and choose θ1, . . . , θ� ∈
[0, 2π] so that r ′ is continuous on each of the open intervals with end points θk and
θk+1, where θ�+1 = θ0. Now use (3.1.6) to write J2 as

∑�
k=0 J2,k , where

J2,k =
∫ 2π

0
sinϕ

(
∫ r(ϕ∧θk+1)

r(ϕ∧θk )

∂ϕg(ρ,ϕ) dρ

)

dϕ,

and then make the change of variables ρ = r(θ) and apply (5.2.1) to obtain

J2,k =
∫ 2π

0
sinϕ

(
∫ ϕ∧θk+1

ϕ∧θk

∂ϕg
(

r(θ),ϕ
)

r ′(θ) dθ

)

dϕ

=
∫ θk+1

θk

r ′(θ)
(∫ 2π

θ
sinϕ∂ϕg

(

r(θ),ϕ
)

dϕ

)

dθ.

Hence,

J2 =
∫ 2π

0
r ′(θ)

(∫ 2π

θ
sinϕ∂ϕg

(

r(θ),ϕ
)

dϕ

)

dθ,

which, after integration by parts is applied to the inner integral, leads to

J2 = −
∫ 2π

0
sin θ g

(

r(θ), θ)r ′(θ) dθ −
∫ 2π

0
r ′(θ)

(∫ 2π

θ
cosϕ g

(

r(θ),ϕ
)

dϕ

)

dθ.

After applying (5.2.1) and undoing the change of variables in the second integral on
the right, we get

J2 = −
∫ 2π

0
sin θ g

(

r(θ), θ)r ′(θ) dθ −
∫ 2π

0
cosϕ

(
∫ r(ϕ)

r−
g(ρ,ϕ) dρ

)

dϕ

and therefore

J = −
∫ 2π

0
sinϕ g

(

r(ϕ),ϕ
)

r ′(ϕ) dϕ −
∫ 2π

0
cosϕ

(
∫ r(ϕ)

0
g(ρ,ϕ) dρ

)

dϕ.

Finally, when we subtract J from I , we arrive at

∫

G
∂e1 f (x) dx =

∫ 2π

0

(

r(ϕ) cosϕ + r ′(ϕ) sinϕ
)

g
(

r(ϕ),ϕ
)

dϕ.

Proceeding in exactly the same way, one can derive the second equation in (∗),
and so we have proved the following theorem.

http://dx.doi.org/10.1007/978-3-319-24469-3_3
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Theorem 5.7.1 If G ⊆ R
2 is a piecewise smooth star shaped region and if

F : Ḡ −→ R
2 is continuous on Ḡ and has bounded, continuous first order deriv-

atives on G, then (5.7.5), and therefore (5.7.4) with n : ∂G −→ S
1(0, 1) given by

(5.7.5), hold.

Corollary 5.7.2 Let G be as in Theorem 5.7.1, and suppose that a1, . . . , a� ∈ G and
r1, . . . , r� ∈ (0,∞) have the properties that B(ak, rk) ⊆ G for each 1 ≤ k ≤ � and
that B(ak, rk) ∩ B(ak′ , rk′) = ∅ for 1 ≤ k < k′ ≤ �. Set H = G\⋃�

k=1 B(ak, rk).
If F : H̄ −→ R

2 is a continuous function that has bounded, continuous first order
derivatives on H, then

∫

H divF(x) dx equals

∫

∂G

(

F(y), n(y)
)

R2 dσy

−
�
∑

k=1

rk

∫ 2π

0

(

F1
(

ak + rke(ϕ)
)

cosϕ + F2
(

ak + rke(ϕ)
)

sinϕ
)

dϕ.

Proof First assume that F has bounded, continuous derivatives on the whole of G.
Then Theorem 5.7.1 applies to F on Ḡ and its restriction to each ball B(ak, rk), and
so the result follows from Theorem 5.7.1 when one writes the integral of divF over
H̄ as

∫

Ḡ
divF(x) dx −

�
∑

k=1

∫

B(ak ,rk )

divF(x) dx.

To handle the general case, define η : R −→ [0, 1] by

η(t) =

⎧

⎪⎪⎨

⎪⎪⎩

0 if t ≤ 0
1+sin

(

π(t− 1
2 )
)

2 if 0 < t ≤ 1

1 if t > 1.

Then η is continuously differentiable. For each 1 ≤ k ≤ �, choose Rk > rk so that
B(ak, Rk) ⊆ G and B(ak, Rk) ∩ B(ak′ , Rk′) = ∅ for 1 ≤ k < k′ ≤ �. Define

ψk(x) = η

(

|x − ak |2 − r2k
R2

k − r2k

)

for x ∈ R
2

and

F̃(x) =
�
∑

k=1

ψk(x)F(x)
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if x ∈ H̄ and F̃(x) = 0 if x ∈ ⋃�
k=1 B(ak, rk). Then F̃ is continuous on Ḡ

and has bounded, continuous first order derivatives on G. In addition, F̃ = F on
G\⋃�

k=1 B(ak, Rk). Hence, if H ′ = Ḡ\⋃�
k=1 B(ak, Rk), then, by the preceding,

∫

H ′ divF(x) dx equals

∫

∂G

(

F(y), n(y)
)

R2

−
�
∑

k=1

Rk

∫ 2π

0

(

F1
(

ak + Rke(ϕ)
)

cosϕ + F2
(

ak + Rke(ϕ)
)

sinϕ
)

dϕ,

and so the asserted result follows after one lets each Rk decrease to rk . �

We conclude this section with an application of Theorem 5.7.1 that plays a role
in many places. One of the consequence of the Fundamental Theorem of Calculus
is that every continuous function f on an interval (a, b) is the derivative of a con-
tinuously differentiable function F on (a, b). Indeed, simply set c = a+b

2 and take
F(x) = ∫ x

c f (t) dt . With this in mind, one should ask whether an analogous state-
ment holds inR2. In particular, given a connected open set G ⊆ R

2 and a continuous
function F : G −→ R

2, is it true that there is a continuously differentiable function
f : G −→ R such that F is the gradient of f ? That the answer is no in general
can be seen by assuming that F is continuously differentiable and noticing that if f
exists then

∂e2 F1 = ∂e2∂e1 f = ∂e1∂e2 f = ∂e1 F2.

Hence, a necessary condition for the existence of f is that ∂e2 F1 = ∂e1 F2, and when
this condition holds F is said to be exact. It is known that exactness is sufficient as
well as necessary for a continuously differentiable F on G to be the gradient of a
function when G is what is called a simply connected region, but to avoid technical
difficulties, we will restrict ourselves to star shaped regions.

Corollary 5.7.3 Assume that G is a star shaped region inR2 and that F : G −→ R
2

is a continuously differentiable function. Then there exists a continuously differen-
tiable function f : G −→ R such that F = ∇ f if and only if F is exact.

Proof Without loss in generality, we will assume that 0 is the center of G. Further,
since the necessity has already been shown, we will assume that F is exact.

Define f : G −→ R by f (0) = 0 and

f
(

re(ϕ)) =
∫ r

0

(

F1(ρe(ϕ)) cosϕ + F2(ρe(ϕ)) sinϕ
)

dρ

for ϕ ∈ [0, 2π) and 0 < r < r(ϕ). Clearly F1(0) = ∂e1 f (0) and F2(0) = ∂e2 f (0).
Wewill now show that F1 = ∂e1 f at any point (ξ0, η0) ∈ G\{0}. This is easywhen

η0 = 0, since f (ξ, 0) = ∫ ξ
0 F1(t, 0) dt . Thus assume that η0 �= 0, and consider points
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(ξ, η0)not equal to (ξ0, η0)but sufficiently close that (t, η0) ∈ G if ξ∧ξ0 ≤ t ≤ ξ∨ξ0.
What we need to show is that

(∗) f (ξ, η0) − f (ξ0, η0) =
∫ ξ

ξ0

F1(t, η0) dt.

To this end, define F̃ = (F2,−F1). Then, because F is exact, divF̃ = 0 on G.
Next consider the region H that is the interior of the triangle whose vertices are 0,
(ξ0, η0), and (ξ, η0). Then H is a piecewise smooth star shaped region and so, by
Theorem 5.7.1, the integral of (F̃, n)R2 over ∂H is 0. Thus, if we write (ξ0, η0) and
(ξ, η0) as r0e(ϕ0) and re(ϕ), then

0 =
∫

∂H

(

F̃(y), n(y)
)

R2 dy =
∫ r0

0

(

F̃
(

ρe(ϕ0)
)

, n
(

ρe(ϕ0)
))

R2
dρ

+
∫ r

0

(

F̃
(

ρe(ϕ)
)

, n
(

ρe(ϕ)
))

R2
dρ

+
∫ ξ∨ξ0

ξ∧ξ0

(

F̃(t, η0), n(t, η0)
)

R2 dt.

If η0 > 0 and ξ > ξ0, then

n
(

ρe(ϕ)
) = (sinϕ,− cosϕ), n

(

ρe(ϕ0)
) = (− sinϕ0, cosϕ0),

and n(t, η0) = (0, 1), and therefore

f (ξ, η0) =
∫ r

0

(

F̃
(

ρe(ϕ)
)

, n
(

ρe(ϕ)
))

R2
dρ,

f (ξ0, η0) = −
∫ r0

0

(

F̃
(

ρe(ϕ0)
)

, n
(

ρe(ϕ0)
))

R2
dρ,

∫ ξ

ξ0

F1(t, η0) dt = −
∫ ξ∨ξ0

ξ∧ξ0

(

F̃(t, η0), n(t, η0)
)

R2 dt,

and so (∗) holds. If η0 > 0 and ξ < ξ0, then the sign of n changes in each term, and
therefore we again get (∗), and the cases when η0 < 0 are handled similarly.

The proof that F2 = ∂e2 f follows the same line of reasoning and is left as an
exercise. �

5.8 Exercises

Exercise 5.1 Let x, y ∈ R
2\{0}. Then Schwarz’s inequality says that the ratio

ρ ≡ (x, y)R2

|x||y|



5.8 Exercises 171

is in the open interval (−1, 1) unless x and y lie on the same line, in which case ρ ∈
{−1, 1}. Euclidean geometry provides a good explanation for this. Indeed, consider
the triangle whose vertices are 0, x, and y. The sides of this triangle have lengths |x|,
|y|, and |y − x|. Thus, by the law of the cosine, |y − x|2 = |x|2 +|y|2 −2|x||y| cos θ,
where θ is the angle in the triangle between x and y. Use this to show that ρ = cos θ.
The same explanation applies in higher dimensions since there is a plane in which x
and y lie and the analysis can be carried out in that plane.

Exercise 5.2 Show that
∫

R

eλx e− x2
2 dx = √

2πe
λ2
2 for all λ ∈ R.

One way to do this is to make the change of variables y = x − λ to see that

∫

R

eλx e− x2
2 dx = e

λ2
2

∫

R

e− (y−λ)2

2 dy,

and then use (5.1.2) and (5.4.3).

Exercise 5.3 Show that |Γ |e = |R(Γ )|e and |Γ |i = |R(Γ )|i for all bounded sets
Γ ⊆ R

N and all rotationsR, and conclude thatR(Γ ) is Riemann measurable if and
only if Γ is. Use this to show that if Γ is a bounded subset of RN for which there
exists a x0 ∈ R

N and an e ∈ S
N−1(0, 1) such that (x − x0, e)RN = 0 for all x ∈ Γ ,

then Γ is Riemann negligible.

Exercise 5.4 An integral that arises quite often is one of the form

I (a, b) ≡
∫

(0,∞)

t−
1
2 e−a2t− b2

t dt,

where a, b ∈ (0,∞). To evaluate this integral, make the change of variables ξ =
at

1
2 − bt− 1

2 . Then ξ2 = at − 2ab + t−1 and t
1
2 = ξ+

√
ξ2+4ab
2a , the plus being

dictated by the requirement that t ≥ 0. After making this substitution, arrive at

I (a, b) = e−2ab

a

∫

R

e−ξ2
(

1 + (ξ2 + 4ab)−
1
2 ξ
)

dξ = e−2ab

a

∫

R

e−ξ2 dξ,

from which it follows that I (a, b) = π
1
2 e−2ab

a . Finally, use this to show that

∫

(0,∞)

t−
3
2 e−a2t− b2

t dt = π
1
2 e−2ab

b
.
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Exercise 5.5 Recall the cardiod described in Exercise 2.2, and consider the region
that it encloses. Using the expression z(θ) = 2R(1 − cos θ)eiθ for the boundary of
this region after translating by −R, show that the area enclosed by the cardiod is
6πR2. Finally, show that the arc length of the cardiod is 16R, a computation in which
you may want to use (1.5.1) to write 1 − cos θ as a square.

Exercise 5.6 Given a1, a2, a3 ∈ (0,∞), consider the region Ω in R
3 enclosed by

the ellipsoid
∑3

i=1
x2i
a2i

= 1. Show that the boundary of Ω is Riemann negligible and

that the volume of Ω is 4πa1a2a3
3 . When computing the volume V , first show that

V = 2a3

∫

Ω̃

√

1 − x21
a21

− x22
a22

dx1dx2 where Ω̃ =
{

x ∈ R
2 : x21

a21
+ x22

a22
≤ 1
}

.

Next, use Fubini’s Theorem and a change of variables in each of the coordinates to
write the integral as a1a2

∫

B(0,1)

√

1 − |x|2 dx, where B(0, 1) is the unit ball in R
2.

Finally, use (5.6.2) to complete the computation.

Exercise 5.7 Let Ω be a bounded, closed region in R
3 with Riemann negligible

boundary, and let μ : Ω −→ [0,∞) be a continuous function. Thinking of μ as a
mass density, one says that the center of gravity of Ω with mass distribution μ is the
point c ∈ R

3 such that
∫

Ω
μ(y)(y − c) dy = 0. The reason for the name is that if Ω

is supported at this point c, then the net effect of gravity will be 0 and so the region
will be balanced there. Of course, c need not lie inΩ , in which case one should think
of Ω being attached to c by weightless wires.

Obviously, c =
∫

Ω μ(y)y dy
M , where M = ∫

Ω
μ(y) dy is the totalmass.Nowsuppose

that Ω = {y ∈ R
3 : x21 + x22 ≤ x3 ≤ h}, where h > 0, has a constant mass density.

Show that c = (0, 0, 3h
4

)

.

Exercise 5.8 We showed that for a ball B(c, r) in R
3 with a continuous mass dis-

tribution that depends only of the distance to c, the gravitational force it exerts on
a particle of mass m at a point b /∈ B(c, r) is given by (5.6.3). Now suppose that
b ∈ B(c, r), and set D = |b − c|. Show that

∫

B(c,r)

Gmμ(|y − c|)
|y − b| dy = Gm MD

D2 (c − b)

where MD =
∫

B(c,D)

μ(|y − c|) dy.

In other words, the forces produced by the mass that lies further than b from c cancel
out, and so the particle feels only the force coming from the mass between it and the
center of the ball.

http://dx.doi.org/10.1007/978-3-319-24469-3_2
http://dx.doi.org/10.1007/978-3-319-24469-3_1
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Exercise 5.9 Let B(0, r) be the ball of radius r in RN centered at the origin. Using
rotation invariance, show that

∫

B(0,r)

xi dx = 0 and
∫

B(0,r)

xi x j dx = ΩN r N+2

N + 2
δi, j for 1 ≤ i, j ≤ N .

Next, suppose that f : R
N −→ R is twice continuously differentiable, and let

A( f, r) = (ΩN r N )−1
∫

B(0,r)
f (x) dx be the average value of f on B(0, r). As an

application of the preceding, show that A( f,r)− f (0)

r2
−→ 1

2(N+2)

∑N
i=1 ∂2

ei
f (0) as

r ↘ 0.

Exercise 5.10 Suppose that G is an open subset of R2 and that F : G −→ R
2 is

continuous. If F = ∇ f for some continuously differentiable f : G −→ R and
p : [a, b] −→ G is a piecewise smooth path, show that

f (b) − f (a) =
∫ b

a

(

F
(

p(t)
)

, ṗ(t)
)

RN
dt

and therefore that
∫ b

a

(

F
(

p(t)
)

, ṗ(t)
)

RN
dt = 0 ifp is closed (i.e.,p(b) = p(a)).Now

assume that G is connected and that
∫ b

a

(

F
(

p(t)
)

, ṗ(t)
)

RN
dt = 0 for all piecewise

smooth, closed paths p : [a, b] −→ G. Using Exercise 4.5, show that for each
x, y ∈ G there is a piecewise smooth path in G that starts at x and ends at y. Given
a reference point x0 ∈ G and an x ∈ G, show that

f (x) ≡
∫ b

a

(

F
(

p(t)
)

, ṗ(t)
)

RN
dt

is the same for all piecewise smooth paths p : [a, b] −→ G such that p(a) = x0 and
p(b) = x. Finally, show that f is continuously differentiable and that F = ∇ f .

http://dx.doi.org/10.1007/978-3-319-24469-3_4


Chapter 6
A Little Bit of Analytic Function Theory

In this concluding chapter we will return to the topic introduced in Chap. 2, and, as
we will see, the divergence theorem will allow us to prove results here that were out
of reach earlier.

Before getting started, now that we have introduced directional derivatives, it will
be useful to update the notation used in Chap. 2. In particular, what we denoted by f ′

0
and f ′

π
2

there are the directional derivatives of f in the directions e1 and e2. However,

because we will be identifying R
2 with C and will be writing z ∈ C as z = x + iy, in

the following we will use ∂x f and ∂y f to denote f ′
0 = ∂e1 f and f ′

π
2

= ∂e2 f . Thus,
for example, in this notation, the Cauchy–Riemann equations in (2.3.1) become

∂x u = ∂yv and ∂xv = −∂yu. (6.0.1)

In this connection, it will be convenient to introduce the operator given by ∂̄ =
1
2 (∂x + i∂y) (i.e., 2∂̄ f = ∂x f + i∂y f ) and to notice that if f = u + iv then
2∂̄ f = (∂x u − ∂yv) + i

(

∂xv + ∂yu). Hence u and v satisfy (6.0.1) if and only if
∂̄ f = 0. Equivalently, f is analytic if and only if ∂̄ f = 0. As a consequence, it is
easy to check the properties of analytic functions discussed in Exercise 2.7.

6.1 The Cauchy Integral Formula

This section is devoted to the derivation of a formula, discovered by Cauchy, which is
the key to everything that follows. There are several direct proofs of his formula, but
we will give one that is based on (5.7.4). For this purpose, suppose that f = u + iv,
and observe that 2∂̄ f = divF + i divF̃, where F = (u,−v

)

and F̃ = (v, u
)

. Hence,
if G is the piecewise smooth star shaped region in (5.6.1), and f : Ḡ −→ C is a
continuous function that has a bounded, continuous first order derivatives on G, then,
by Theorem 5.7.1,

© Springer International Publishing Switzerland 2015
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DOI 10.1007/978-3-319-24469-3_6
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2
∫

Ḡ
∂̄ f (x) dx =

∫

∂G

(

F(y) + i F̃(y), n(y)
)

R2
dσy.

Now let c be the center of G and r : [0, 2π] −→ (0,∞) the associated radial function
(cf. (5.6.1)). Then, by using (5.7.5), we can write the integral on the right hand side
of the preceding as

∫ 2π

0

((

u
(

c + r(ϕ)e(ϕ)
)+ iv

(

c + r(ϕ)e(ϕ)
))(

r(ϕ) cos ϕ + r ′(ϕ) sin ϕ
)

+
(

−v
(

c + r(ϕ)e(ϕ)
)+ iu

(

c + r(ϕ)e(ϕ)
))(

r(ϕ) sin ϕ − r ′(ϕ) cos ϕ
)
)

dϕ,

where e(ϕ) ≡ (cos ϕ, sin ϕ). Thinking of R2 as C and taking c = c1 + ic2, the
preceding becomes

∫ 2π

0
f
(

c + r(ϕ)eiϕ
)((

r(ϕ) cos ϕ+ r ′(ϕ) sin ϕ
)+ i

(

r(ϕ) sin ϕ− r ′(ϕ) cos ϕ
))

dϕ.

Finally, observing that

d

dϕ
r(ϕ)eiϕ = i

((

r(ϕ) cos ϕ + r ′(ϕ) sin ϕ
)+ i

(

r(ϕ) sin ϕ − r ′(ϕ) cos ϕ
))

,

we arrive at

2i
∫

G
∂̄ f (z) dx dy =

∫ 2π

0
f
(

zG(ϕ)
)

z′
G(ϕ) dϕ, (6.1.1)

where zG(ϕ) = c + r(ϕ)eiϕ and, as we will throughout, we have used dx dy instead
of dx = dx1dx2 to indicate Riemann integration on R

2 when we are thinking of R2

as C.
Suppose that G and {D(ak, rk) : 1 ≤ k ≤ �} (we are thinking of R

2 as C,
and so the ball B(ak, rk) in R

2 is replaced by the disk D(ak, rk) in C where ak is
the complex number determined by ak) are as in Corollary 5.7.2. The same line of
reasoning that led to (6.1.1) shows that if H = G\⋃�

k=1 D(ak, rk) then, again with
zG(ϕ) = c + r(ϕ)eiϕ,

2i
∫

H
∂̄ f (z) dx dy =

∫ 2π

0
f
(

zG(ϕ)
)

z′
G(ϕ) dϕ

− i
�
∑

k=1

rk

∫ 2π

0
f
(

ak + rkeiϕ
)

eiϕ dϕ

(6.1.2)

for continuous functions f : H̄ −→ C that have bounded, continuous first order
derivatives on H .

http://dx.doi.org/10.1007/978-3-319-24469-3_5
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Theorem 6.1.1 Let G be the piecewise smooth star shaped region given by (5.6.1)
with center c and radial function r : [0, 2π] −→ (0,∞), and define zG(ϕ) =
c + r(ϕ)eiϕ as in (6.1.1). If f : Ḡ −→ C is a continuous function which is analytic
on G, then

∫ 2π

0
f
(

zG(ϕ)
)

z′
G(ϕ) dϕ = 0. (6.1.3)

Furthermore, if z1, . . . , z� ∈ G and r1, . . . , r� > 0 satisfy D(zk, rk) ⊆ G and
D(zk, rk) ∩ D(zk ′, rk ′) = ∅ for all 1 ≤ k < k ′ ≤ �, then for any continuous
f : Ḡ\⋃�

k=1 D(zk, rk) −→ C which is analytic on G\⋃�
k=1 D(zk, rk),

∫ b

a
f
(

zG(ϕ)
)

z′
G(ϕ) dϕ = i

�
∑

k=1

rk

∫ 2π

0
f
(

zk + rkeiϕ
)

eiϕ dϕ. (6.1.4)

Proof Clearly (6.1.3) and (6.1.4) follow from (6.1.1) and (6.1.2), respectively,
when the first derivatives of f have continuous extensions to Ḡ\⋃�

k=1 D(zk, rk).
More generally, choose 0 < δ < min{r(ϕ) : ϕ ∈ [0, 2π]} so that
D(zk, rk + δ) ∩ D(zk ′, rk ′ + δ) = ∅ for 1 ≤ k < k ′ ≤ � and

�
⋃

k=1

D(zk, rk + δ) ⊆ Gδ ≡ {c + reiϕ : ϕ ∈ [0, 2π] & 0 ≤ r < r(ϕ) − δ}.

Then (6.1.3) and (6.1.4) hold with G replaced by Gδ and each D(zk, rk) replaced by
D(zk, rk + δ). Finally, let δ ↘ 0. �

The equality in (6.1.3) is a special case of what is called Cauchy’s equation,
although, as we saw in Exercise 1.10, there is another equation, namely (1.10.2),that
bears his name. However, the one here is much more significant.

Even more famous than the preceding is the following application of (6.1.4).

Theorem 6.1.2 Continue in the setting of Theorem 6.1.1. Then for any continuous
f : Ḡ −→ C that is analytic on G and any z ∈ G

f (z) = 1

i2π

∫ 2π

0

f
(

zG(ϕ)
)

zG(ϕ) − z
z′

G(ϕ) dϕ. (6.1.5)

Proof Apply (6.1.4) to the function ζ � f (ζ)

ζ−z to see that for small r > 0

∫ 2π

0

f
(

zG(ϕ)
)

zG(ϕ) − z
z′

G(ϕ) dϕ = i
∫ 2π

0
f
(

z + reiϕ
)

dϕ,

and therefore, after letting r ↘ 0, that (6.1.5) holds. �

http://dx.doi.org/10.1007/978-3-319-24469-3_5
http://dx.doi.org/10.1007/978-3-319-24469-3_1
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The equality in (6.1.5) is special case of the renowned Cauchy integral formula, a
formula that is arguably the most profound expression of the remarkable properties
of analytic functions.

Before moving to applications of these results, there is an important comment that
should be made about the preceding. Namely, one should realize that (6.1.3) need
not hold in general unless the function is analytic on the entire region. For example,
if z ∈ G, then the function ζ � 1

ζ−z is analytic on G\{z} and yet (6.1.5) with f = 1
shows that ∫ 2π

0

1

zG(ϕ) − z
z′

G(ϕ) dϕ = i2π. (6.1.6)

One might think that the failure of (6.1.3) for this function is due to its having a
singularity at z. However, the reason is more subtle. To wit,

∫ 2π

0

1

(zG(ϕ) − z)n
z′

G(ϕ) dϕ = 0 for n ≥ 2 (6.1.7)

even though ζ � 1
(ζ−z)n is more singular than ζ � 1

ζ−z . To prove (6.1.7), note that

∂ζ(ζ − z)−n+1 = (1 − n)(ζ − z)−n , and therefore

(1 − n)−1 d

dϕ

(

zG(ϕ) − z
)−n+1 = (zG(ϕ) − z

)−n
z′

G(ϕ).

Hence, by the Fundamental Theorem of Calculus,

∫ 2π

0

1

(zG(ϕ) − z)n
z′

G(ϕ) dϕ =
((

zG(b) − z
)−n+1 − (zG(a) − z

)−n+1
)

1 − n
= 0

since zG(a) = zG(b). Of course, one might say that the same reasoning should work
for ζ � (ζ − z)−1 since ∂ζ log(ζ − z) = (ζ − z)−1. But unlike ζ � (ζ − z)−n+1,
log is not well defined on the whole of C\{z} and must be restricted to a set like
C\(−∞, 0] before it can be given an unambiguous definition. In particular, if one
evaluates log along a path like zG that has circled counterclockwise once around a
point when it returns to its starting point, then the value of log when the path returns
to its starting point will differ from its initial value by i2π, and this is the i2π in
(6.1.6). To see this, consider the path ϕ ∈ [0, 2π] −→ z(ϕ) ≡ zG(ϕ) − c ∈ C\{0}.
This path is closed and circles the origin once counterclockwise. Using the definition
of log in (2.2.2), one sees that

log z(ϕ) = log r(ϕ) + i

{

ϕ if ϕ ∈ [0,π]
ϕ − 2π if ϕ ∈ (π, 2π].

http://dx.doi.org/10.1007/978-3-319-24469-3_2
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Thus, since r(2π) = r(0),

∫ 2π

0

1

zG(ϕ) − c
z′

G(ϕ) dϕ =
∫ π

0

z′(ϕ)

z(ϕ)
dϕ + lim

δ↘0

∫ 2π−δ

π+δ

z′(ϕ)

z(ϕ)
dϕ

= log
r(π)

r(0)
+ iπ + lim

δ↘0

(

log
r(2π − δ)

r(π + δ)
+ iπ

)

= i2π.

Another way to prove (6.1.6) is to use (6.1.7) to see that

∂z

∫ 2π

0

1

zG(ϕ) − z
z′

G(ϕ) dϕ =
∫ 2π

0

1

(zG(ϕ) − z)2
z′(ϕ) dϕ = 0.

Thus if (6.1.6) holds for one z ∈ G, then it holds for all z ∈ G, and, because it is
obvious when z = c, this completes the proof.

6.2 A Few Theoretical Applications and an Extension

There are so many applications of (6.1.3) and (6.1.5) that one is at a loss when
trying to choose among them. One of the most famous is the fundamental theorem of
algebra which says that if p is a polynomial of degree n ≥ 1 then it has a root (i.e., a
z ∈ C such that p(z) = 0). To prove this, first observe that, by applying (6.1.5) with
G = D(z, R) and zG(ϕ) = z + Reiϕ, one has the mean value theorem

f (z) = 1

2π

∫ 2π

0
f
(

z + Reiϕ
)

dϕ (6.2.1)

for any f that is continuous on D(z, R) and analytic on D(z, R). Now suppose that
p is an nth order polynomial for some n ≥ 1. Then |p(z)| −→ ∞ as |z| → ∞.
Thus, if p never vanished, f = 1

p would be an analytic function on C that tends to
0 as |z| → ∞. But then, because (6.2.1) holds for all R > 0, after letting R → ∞
one would get the contradiction that f (z) = 0 for all z ∈ C, and so there must be a
z ∈ C for which p(z) = 0. In conjunction with Lemma 2.2.3, this means that every
nth order polynomial p is equal to b

∏�
j=1(z − a j )

d j , where b is the coefficient of
zn , a1, . . . , a� are the distinct roots of p, and d j is the multiplicity of a j . That is, d j

is the order to which p vanishes at a j in the sense that limz→a j

p(z)
(z−a j )

d j
∈ C\{0}.

As a by-product of the preceding argument, we know that if f is analytic onC and
tends to 0 at infinity, then f is identically 0. A more refined version of this property
is the following.

http://dx.doi.org/10.1007/978-3-319-24469-3_2
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Theorem 6.2.1 If f is a bounded, analytic function on C, then f is constant.

Proof Starting from (6.2.1), one sees that

πR2 f (z) = 2π

∫ R

0
r f (z) dr =

∫ R

0
r

(∫ 2π

0
f
(

z + reiϕ
)

dϕ

)

dr,

which, by Theorem 5.6.2, leads to

f (z) = 1

πR2

∫

D(z,R)

f (ζ) dξdη (6.2.2)

for any f that is continuous on D(0, R) and analytic on D(0, R). Now assume that
f is a function that is analytic on the whole of C. Then for any z1 and z2 and any
R > |z2 − z1|

f (z2) − f (z1) = 1

πR2

⎛

⎜
⎝

∫

D(z2,R)\D(z1,R)

f (ζ) dξdη −
∫

D(z1,R)\D(z2,R)

f (ζ) dξdη

⎞

⎟
⎠ .

Because

vol
(

D(z1, R)\D(z2, R)
) = vol

(

D(z2, R)\D(z1, R)
)

≤ vol
(

D(z2, R + |z2 − z1|)\D(z1, R)
) = π

(

2R|z1 − z2| + |z1 − z2|2
)

,

| f (z2) − f (z1)| ≤ ‖ f ‖C 6|z2−z1|
R . Now let R ↗ ∞, and conclude that f (z2) = f (z1)

if ‖ f ‖C < ∞. �

The fact that the only bounded, analytic functions on C are constant is known as
Liouville’s theorem.

Recall that our original examples in Sect. 2.3 of analytic functions were power
series. The following remarkable consequence of (6.1.5) shows that was inevitable.

Theorem 6.2.2 Suppose that f is analytic on a non-empty open set G ⊆ C. If
D(ζ, R) ⊆ G, then f is given on D(ζ, R) by the power series

f (z) =
∞
∑

m=0

cm(z − ζ)m for z ∈ D(ζ, R)

where cm = 1

2πRm

∫ 2π

0
f (ζ + Reiϕ)e−imϕ dϕ.

(6.2.3)

In particular, if G is connected and f as well as all its derivatives vanish at a point
ζ ∈ G, then f is identically 0 on G.

http://dx.doi.org/10.1007/978-3-319-24469-3_5
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Proof By applying (6.1.5), we know that

f (z) = R

2π

∫ 2π

0

f (ζ + Reiϕ)

Reiϕ − (z − ζ)
eiϕ dϕ for z ∈ D(ζ, R),

and, because |z − ζ| < R and therefore

Reiϕ

Reiϕ − (z − ζ)
=
(

1 − (z − ζ)e−iϕ

R

)−1

=
∞
∑

m=0

(z − ζ)me−imϕ

Rm
,

where the convergence is absolute and uniform for ϕ ∈ [0, 2π], (6.2.3) follows.
To prove the final assertion, let H = {z ∈ G : f (m)(z) = 0 for all m ≥ 0}.

Clearly, G\H is open. On the other hand, if ζ ∈ H and R > 0 is chosen so that
D(ζ, R) ⊆ G, then (6.2.3) says that f vanishes on D(ζ, R) and therefore that
D(ζ, R) ⊆ H . Hence, both H and G\H are open. Since G is connected, it follows
that either H = ∅ or H = G. �

What is startling about this result is how much it reveals about the structure of an
analytic function. Recall that f is analytic as soon as it is once continuously differ-
entiable as a function of a complex variable. As a consequence of Theorem 6.2.2,
we now know that if a function is once continuously differentiable as a function of a
complex variable, then it is not only an infinitely differentiable function of that vari-
able but is also given by a power series on any disk whose closure is contained in the
set where it is once continuously differentiable. In addition, (6.2.3) gives quantitative
information about the derivatives of f . Namely,

f (m)(ζ) = m!cm = m!
2πRm

∫ 2π

0
f (ζ + Reiϕ)e−imϕ dϕ. (6.2.4)

Notice that this gives a second proof Liouville’s theorem. Indeed, if f is bounded
and analytic on C, then (6.2.4) shows that f ′ vanishes everywhere and therefore, by
Lemma 2.3.1, f is constant.

To demonstrate one way in which these results get applied, recall the sequence
of numbers {b� : � ≥ 0} introduced in (3.3.4). As we saw there, |b�| ≤ α� where
α is the unique element of (0, 1) for which e

1
α = 1 + 2

α
, and in (3.4.8) we gave an

expression for b� from which it is easy to show that lim�→∞ |b�| 1
� = 1

2π
. We will now

show how to arrive at the second of these as a consequence of the first combined with
Theorem 6.2.2. For this purpose, consider the function f (z) =∑∞

�=0 b�+1z�, which
we know is an analytic function on D(0,α−1). Next, using the recursion relation in
(3.3.4) for the b�’s, observe that for z ∈ D(0,α−1)\{0},

f (z) ≡
∞
∑

k=0

zk

( ∞
∑

�=k

(−1)kb�−k

(k + 2)! z�−k

)

= (1 + z f (z)
)e−z − 1 + z

z2
,

http://dx.doi.org/10.1007/978-3-319-24469-3_2
http://dx.doi.org/10.1007/978-3-319-24469-3_3
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and therefore that f (z) = 1−ez+zez

z(ez−1)
. Thus, if ϕ(z) = ∑∞

m=0
m+1

(m+2)! z
m and ψ(z) =

∑∞
m=0

1
(m+1)! z

m , then f (z) = ϕ(z)
ψ(z) for z ∈ D(0,α−1). Because ϕ and ψ are both

analytic on the whole ofC, their ratio is analytic on the set where ψ �= 0. Furthermore,
since ψ(0) �= 0 and ψ(z) = ez−1

z for z �= 0, ψ(z) = 0 if and only if z = i2πn for
some n ∈ Z\{0}, which, because ϕ(i2π) �= 0, implies that D(0, 2π) is the largest
disk centered at 0 on which their ratio is analytic. But this means that the power series
defining f is absolutely convergent when |z| < 2π and divergent when |z| > 2π. In
other words, its radius of convergence must be 2π, and therefore, by Lemma 2.2.1,
lim�→∞ |b�| 1

� = (2π)−1.
Here are a few more results that show just how special analytic functions are.

Lemma 6.2.3 Suppose that f : D(a, R)\{a} −→ C is a continuous function which
is analytic on D(a, R)\{a}. Then, for each 0 < r < R and z ∈ D(a, R)\D(a, r)

f (z) = R

2π

∫ 2π

0

f
(

a + Reiϕ
)

eiϕ

a + Reiϕ − z
dϕ − r

2π

∫ 2π

0

f
(

a + reiϕ
)

eiϕ

a + reiϕ − z
dϕ.

Proof Without loss in generality, we will assume that a = 0.
Let 0 < r < R and z ∈ D(0, R)\D(0, r) be given, and choose ρ > 0 so that

D(z, ρ) ⊆ D(0, R)\D(0, r). By (6.1.4) applied to ζ � f (ζ)

ζ−z , we see that

R
∫ 2π

0

f (Reiϕ)eiϕ

Reiϕ − z
dϕ = r

∫ 2π

0

f (reiϕ)eiϕ

reiϕ − z
dϕ +

∫ 2π

0
f (z + ρeiϕ) dϕ,

and therefore, after letting ρ ↘ 0, we have that

f (z) = R

2π

∫ 2π

0

f
(

Reiϕ
)

eiϕ

Reiϕ − z
dϕ − r

2π

∫ 2π

0

f
(

reiϕ
)

eiϕ

reiϕ − z
dϕ. �

There are two interesting corollaries of Lemma 6.2.3.

Theorem 6.2.4 Referring to Lemma 6.2.3, define

cm = 1

2πRm

∫ 2π

0
f (a + Reiϕ)e−imϕ dϕ for m ∈ Z.

Then

f (z) =
∞
∑

m=−∞
cm(z − a)m for z ∈ D(a, R)\{a},

where the series converges absolutely and uniformly for z in compact subsets of
D(a, R)\{a}.

http://dx.doi.org/10.1007/978-3-319-24469-3_2
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Proof We can and will assume that a = 0.
Let z ∈ D(0, R)\{0} and r > 0 satisfying D(z, r) ⊆ D(0, R)\{0} be given. Look

at the first term on the right hand side of the equation in Lemma 6.2.3, and observe
that it can be re-written as

1

2π

∫ 2π

0

f (Reiϕ)

1 − (Reiϕ)−1z
dϕ = 1

2π

∞
∑

m=0

cm zm,

where the convergence is absolute and uniform for z in compact subsets of D(0, R).
The second term can be written as

r

2πz

∫ 2π

0

f (reiϕ)eiϕ

1 − reiϕz−1
dϕ = 1

2π

∞
∑

m=1

(
r

z

)m ∫ 2π

0
f (reiϕ)eimϕ dϕ,

where the series converges absolutely and uniformly on compact subsets of D(0, R)\
D(0, r). Finally, apply (6.1.4) to the analytic function ζ � f (ζ)ζm−1 on D(0, R)\
D(0, r) to see that

rm
∫ 2π

0
f (reiϕ)eimϕ dϕ = Rm

∫ 2π

0
f (Reiϕ)eimϕ dϕ

and therefore that the asserted expression for f holds on D(0, R)\D(0, r). In addi-

tion, since the series converges absolutely and uniformly for z in compact subsets of
D(0, R)\D(0, r) for each 0 < r < R, this completes the proof. �

Theorem 6.2.5 Let G ⊆ C be open and a ∈ G. If f is analytic on G\{a} and
limr↘0 r‖ f ‖S1(a,r) = 0, then there is a unique extension of f to G as an analytic
function.

Proof The uniqueness poses no problem. In addition, it suffices for us to show that
f admits an extension as an analytic function on some disk centered at a.

Choose R > 0 so that D(a, R) ⊆ G, and let z ∈ D(a, R)\{a} and r > 0
satisfying D(z, r) ⊆ D(a, R)\{a} be given. Applying Lemma 6.2.3 and then letting
r ↘ 0, we arrive at

f (z) = R

2π

∫ 2π

0

f
(

a + Reiϕ
)

a + Reiϕ − z
eiϕ dϕ.

Hence, the right hand side gives the analytic extension of f to D(a, R). �

Theorem 6.2.6 Suppose { fn : n ≥ 1} is a sequence of analytic functions on an
open set G and that f is a function on G to which { fn : n ≥ 1} converges uniformly
on compact subsets of G. Then f is analytic on G.

Proof Given c ∈ G, choose r > 0 so that D(c, r) ⊆ G. All that we have to show is
that f is analytic on D(c, r). But f (z) equals
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lim
n→∞ fn(z) = lim

n→∞
1

2π

∫ 2π

0

fn(c + reiϕ)eiϕ

c + r iϕ − z
dϕ = 1

2π

∫ 2π

0

f (c + reiϕ)eiϕ

c + r iϕ − z
dϕ

for all z ∈ D(c, r), and, since the final expression is an analytic function of z ∈
D(c, r), this proves that f is analytic on D(c, r). �

Related to the discussion leading to (6.1.7) and (6.1.6) is the following. As we
saw there, (6.1.3) is obvious in the case when f is the derivative of a function. Thus
the following important fact provides a way to prove more general versions of (6.1.3)
and (6.1.5).

Theorem 6.2.7 If f is analytic on the star shaped region G, then there exists an
analytic function F on G such that f = F ′. Furthermore, F is uniquely determined
up to an additive constant.

Proof To prove the uniqueness assertion, suppose that F and F̃ are analytic functions
on G such that F ′ = f = F̃ ′ there, and set g = F − F̃ . Then g is analytic and g′ = 0
on G. Since (cf. Exercise 4.5) G is connected, Lemma 2.3.1 says that g is constant.

Not surprisingly, the existence assertion is closely related to Corollary 5.7.3.
Indeed, write f = u + iv, and take F = (u,−v) and F̃ = (v, u) as we did in
the derivation of (6.1.1). Observe that, by (6.0.1), both F and F̃ are exact. Thus, by
Corollary 5.7.3, there exist continuously differentiable functions U and V on G such
that u = ∂xU , v = −∂yU , v = ∂x V , and u = ∂y V . In particular, ∂xU = u = ∂y V
and ∂yU = −v = −∂x V , and so U and V satisfy the Cauchy–Riemann equations in
(6.0.1), which means that F ≡ U + iV is analytic. Furthermore, ∂x F = u + iv = f ,
and therefore F ′ = f . �

We will say that a path z : [a, b] −→ C is closed if z(b) = z(a) and that
it is piecewise smooth if it is continuous and there exists a bounded function z′ :
[a, b] −→ C that has at most a finite number of discontinuities and for which z′(t)
is the derivative of t � z(t) at all its points of continuity.

Corollary 6.2.8 Suppose that f is an analytic function on a star shaped region G,
and let z : [a, b] −→ G be a closed, piecewise smooth path. Then (6.1.3) holds with
t � zG(t) replaced by t � z(t). Furthermore, if z ∈ G\{z(t) : t ∈ [a, b]}, then

∫ b

a

f
(

z(t)
)

z(t) − z
z′(t) dt =

(∫ b

a

z′(t)
z(t) − z

dt

)

f (z). (6.2.5)

Proof By Theorem 6.2.7, there exists an analytic function F on G for which f = F ′.
Thus d

dt F
(

z(t)
) = f

(

z(t)
)

z′(t) for all but a finite number of t ∈ (a, b), and therefore,
by the Fundamental Theorem of Calculus,

∫ b

a
f
(

z(t)
)

z′(t) dt = F
(

z(b)
)− F

(

z(a)
) = 0.

http://dx.doi.org/10.1007/978-3-319-24469-3_4
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Next, given z ∈ G\{z(t) : t ∈ [a, b]}, define

ζ ∈ G\{z} −→ g(ζ) = f (ζ) − f (z)

ζ − z
∈ C.

Then g is analytic and limζ→z g(ζ) = f ′(z). Hence, by Theorem 6.2.5, g can be
extended to G as an analytic function, and therefore, by the preceding,

∫ b

a

f
(

z(t)
)

z(t) − z
z′(t) dt − f (z)

∫ b

a

z′(t)
z(t) − z

dt =
∫ b

a

f
(

z(t)
)− f (z)

z(t) − z
z′(t) dt = 0.

�

The equation in (6.2.5) represents a significant extension of Cauchy’s formula,
although, as stated, it does not quite cover (6.1.5). However, it is easy to recover
(6.1.5) from (6.2.5) by applying the same approximation procedure as we used to
complete the proof of Theorem 6.1.1.

Referring to Corollary 6.2.8, the quantity
∫ b

a
z′(t)

z(t)−z dt has an important geometric
interpretation. When t � z(t) parameterizes the boundary of a piecewise smooth
star shaped region, (6.1.6) says that it is equal to i2π, and, as the discussion preceding
(6.1.6) indicates, that is because t � z(t) circles z exactly one time. In order to deal
with more general paths, we will need the following lemma.

Lemma 6.2.9 If z ∈ C and t ∈ [a, b] −→ z(t) ∈ C\{z} is continuous, then there
exists a unique continuous map θ : [a, b] −→ R such that θ(a) = 0 and

z(t) − z

z(a) − z
= |z(t) − z|

|z(a) − z|eiθ(t) for t ∈ [a, b].

Furthermore, if t � z(t) is piecewise smooth, then

θ(t) = −i
∫ t

a

z′(s)
z(s) − z

ds for t ∈ [a, b].

In particular, if, in addition, z(b) = z(a), then

1

i2π

∫ b

a

z′(s)
z(s) − z

ds ∈ Z.

(See Exercise 6.9 for another derivation of this last fact.)

Proof Without loss in generality, we will assume that z = 0 and z(a) = 1.
Because t � z(t) is continuous and never vanishes, there exist n ≥ 1 and a =

t0 < · · · < tn = b such that
∣
∣ z(t)

z(tm−1)
− 1
∣
∣ < 1 for 1 ≤ m ≤ n and t ∈ [tm−1, tm]. Now

set �(a) = 0 and �(t)−�(tm−1) = log z(t)
z(tm−1)

for 1 ≤ m ≤ n and t ∈ [tm−1, tm]. Then

� is continuous and, for each 1 ≤ m ≤ n, z(t) = z(tm−1)e�(t)−�(tm−1) for t ∈ [tm−1, tm].
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Hence, by induction on m, z(t) = e�(t) for all t ∈ [a, b]. Furthermore, if t � z(t) is
piecewise smooth, then �′(t) = z′(t)

z(t) at all but at most a finite number of t ∈ (a, b),

and therefore �(t) = ∫ t
a

z′(s)
z(s) ds. Thus, if we take θ(t) = −i�(t), then t � θ(t) will

have all the required properties.
Finally, to prove the uniqueness assertion, suppose that t � θ1(t) and t � θ2(t)

were two such functions. Then ei(θ2(t)−θ1(t)) = 1 for all t ∈ [a, b], and so t �
θ2(t)−θ1(t) would be a continuous function with values in {2πn : n ∈ Z

+}, which is
possible (cf. the proof of (2.3.2)) only if it is constant. Thus, since θ1(a) = 0 = θ2(a),
θ1(t) = θ2(t) for all t ∈ [a, b]. �

The function t ∈ [a, b] −→ θ(t) ∈ R gives the one and only continuous choice
of the angle in the polar representation of z(t)−z

z(a)−z under the condition that θ(a) = 0.
Given a ≤ s1 < s2 ≤ b, we say that the path circles z once during the time interval
[s1, s2] if |θ(s2) − θ(s1)| = 2π and |θ(t) − θ(s1)| < 2π for t ∈ [s1, s2). Further, we
say it circled counterclockwise or clockwise depending on whether θ(s2) − θ(s1) is
2π or −2π. Thus, if t � z(t) is closed and one were to put a rod perpendicular to
the plane at z and run a string along the path, then θ(b)−θ(a)

2π
would the number of

times that the string winds around the rod after one pulls out all the slack, and for
this reason it is called the winding number of the path t � z(t) around z. Hence,
when t � z(t) is piecewise smooth, (6.2.5) is saying that

∫ b

a

f
(

z(t)
)

z(t) − z
z′(t) dt = i2π f (z)(the winding number of t � z(t) around z).

In the case when t � z(t) is the parameterization of the boundary of a piecewise
smooth star shaped region, (6.1.6) says that its winding number around every point
in the region is 1.

6.3 Computational Applications of Cauchy’s Formula

The proof of Corollary 6.2.8 can be viewed as an example of a ubiquitous and
powerful technique, known as the residue calculus, for computing integrals.

Suppose that f : D(a, R)\{a} −→ C is a continuous function that is analytic on
D(a, R)\{a}. Then

Resa( f ) ≡ R

2π

∫ 2π

0
f (a + Reiϕ)eiϕ dϕ

is called the residue of f at a. Notice that, because, by (6.1.4),

R1

∫ 2π

0
f (a + R1eiϕ)eiϕ dϕ = R2

∫ 2π

0
f (a + R2eiϕ)eiϕ dϕ

http://dx.doi.org/10.1007/978-3-319-24469-3_2
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if 0 < R1 < R2 and f : D(a, R2)\{a} −→ C is a continuous function that is
analytic on D(a, R2)\{a}, Resa( f ) really depends only on f and a, and not on R.

The computation of residues is difficult in general. However there is a situation
in which it is relatively easy. Namely, if n ≥ 1 and (z − a)n f (z) is bounded on
D(a, R)\{a}, then, by Theorem 6.2.5, there is an analytic function g on D(a, R)

such that g(z) = (z − a)n f (z) for z �= a. Hence

f (z) =
∞
∑

m=0

g(m+n)(a)

(m + n)! (z − a)m +
n
∑

m=1

g(n−m)(a)

(n − m)! (z − a)−m,

and so, since
∫ 2π

0
ei(m+1)ϕ dϕ = 0 unless m = −1,

we have that

R
∫ 2π

0
f (a + Reiϕ)eiϕ dϕ = 2πg(n−1)(a)

(n − 1)! .

Equivalently,

Resa( f ) = g(n−1)(a)

(n−1)! if g(z) = (z − a)n f (z)

is bounded on D(a, R)\{a} for some R > 0.
(6.3.1)

The following theorem gives the essential facts on which the residue calculus is
based.

Theorem 6.3.1 Let G be a star shaped region and z1, . . . , z� distinct points in G. If
f : G\{z1, . . . , z�} −→ C is an analytic function and z : [a, b] −→ G\{z1, . . . , z�}
is a closed piecewise smooth path, then

∫ b

a
f
(

z(t)
)

z′(t) dt = i2π

�
∑

k=1

N (zk)Reszk ( f ),

where

N (zk) = 1

i2π

∫ b

a

z′(t)
z(t) − zk

dt

is the winding number of t � z(t) around zk.

Proof Choose R1, . . . , R� > 0 so that D(zk, Rk) ⊆ G\{z j : j �= k} for 1 ≤ k ≤ �,
and set

ck,m = 1

2πRm
k

∫ 2π

0
f (zk + Rkeiϕ)e−imϕ dϕ.



188 6 A Little Bit of Analytic Function Theory

By Theorem 6.2.4, we know that the series
∑∞

m=−∞ ck,m(z − zk)
m converges

absolutely and uniformly for z in compact subsets of D(zk, Rk)\{zk}, and there-
fore that Hk(z) ≡ ∑∞

m=1 ck,−m(z − zk)
−m converges absolutely and uniformly

for z in compact subsets of C\{zk}. Furthermore, by that same theorem, g(z) ≡
f (z) −∑�

k=1 Hk(z) on G\{z1, . . . , z�} admits an extension as an analytic function
on G. Hence, by the first part of Corollary 6.2.8,

∫ b

a
f
(

z(t)
)

z′(t) dt =
�
∑

k=1

∫ b

a
Hk
(

z(t)
)

z′(t) dt.

Finally, for each 1 ≤ k ≤ �,

∫ b

a
Hk
(

z(t)
)

z′(t) dt =
∞
∑

m=1

ck,−m

∫ b

a

z′(t)
(

z(t) − zk
)m dt

= ck,−1

∫ b

a

z′(t)
z(t) − zk

dt = i2πN (zk)Reszk ( f ),

since ck,−1 = Reszk ( f ) and

∫ b

a

z′(t)
(

z(t) − zk
)m dt = 1

(1 − m)

(

z(t) − zk
)1−m

∣
∣
∣

b

t=a
= 0

if m ≥ 2. �

In order to present our initial application of Theorem 6.3.1, we need to make
some preparations. When confronted by an integral like

∫ 1
0

1
x2+5x+6 dx , one factors

x2 + 5x + 6 into the product (x + 2)(x + 3) and uses this to write

∫ 1

0

1

x2 + 5x + 6
dx =

∫ 1

0

1

x + 2
dx −

∫ 1

0

1

x + 3
dx = log 3

2 − log 4
3 = log 9

8 .

The crucial step here, which is known as the method of partial fractions, is the
decomposition of 1

x2+5x+6 into the difference between 1
x+2 and 1

x+3 . The following
theorem shows that such a decomposition exists in great generality.

Theorem 6.3.2 Suppose that q is a polynomial of order n ≥ 1 and that b1, . . . , b�

are its distinct roots, and let p be a polynomial of order m ≥ 0 satisfying p(bk) �= 0
for 1 ≤ k ≤ �. Then there exist unique polynomials P0, . . . , P� such that P0 is of
order (n − m)+, Pk vanishes at 0 and has order equal to the multiplicity of bk for
each 1 ≤ k ≤ �, and

p(z)

q(z)
= P0(z) +

�
∑

k=1

Pk

(
1

z − bk

)

for z ∈ C\{b1, . . . , b�}.
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Proof By long division for polynomials, p(z)
q(z) = P0(z) + R0(z), where P0 is a poly-

nomial of the specified sort and R0 is the ratio of two polynomials for which the
polynomial in the denominator has order larger than that in the numerator. Next,
given 1 ≤ k ≤ �, consider the function

z �
p
(

bk + 1
z

)

q
(

bk + 1
z

) .

This function is again the ratio of two polynomials, and as such can be written as
Pk(z) + Rk(z), where Pk is a polynomial and Rk is the ratio of two polynomials for
which the order of the one in the denominator is greater than that of the order of the
one in the numerator. Moreover, if dk is the multiplicity of bk and c is the coefficient
of zn in q, then

Pk(z)

zdk
= p

(

bk + 1
z

)

zdk q
(

bk + 1
z

) − Rk(z)

zdk
−→ p(bk)

c
∏

j �=k(bk − b j )
d j

∈ C\{0}

as |z| → ∞, and therefore Pk has order dk . Now consider the function

f (z) = R0(z) −
�
∑

j=1

Pj

(
1

z − b j

)

for z ∈ C\{b1, . . . , b�}.

Obviously f is analytic. In addition, as |z| → ∞, f (z) tends to

−
�
∑

j=1

Pj (0) ∈ C.

For 1 ≤ k ≤ �,

f
(

bk + 1
z

) = Rk(z) − P0
(

bk + 1
z

)−
∑

j �=k

Pj

(

1
1
z + bk − b j

)

−→ −P0(bk) −
∑

j �=k

Pj

(
1

bk − b j

)

∈ C

as |z| → ∞. Hence f is bounded, and therefore, by Theorems 6.2.5 and 6.2.1, f
must be identically equal to some constant b0. Finally, for each 1 ≤ k ≤ �, replace
Pk by Pk − Pk(0), and then replace P0 by P0 + b0 +∑�

k=1 Pk(0).
Turning to the question of uniqueness, write Pk(z) =∑dk

j=1 ak, j z j for 1 ≤ k ≤ �.
Then

ak,dk = lim
z→bk

(z − bk)
dk

p(z)

q(z)
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and, for 1 ≤ j < dk ,

ak, j = lim
z→bk

(z − bk)
j

⎛

⎝
p(z)

q(z)
−
∑

j< j ′≤dk

ak, j ′

(z − bk) j ′

⎞

⎠ .

Hence P1, . . . , Pk are uniquely determined, and therefore so is P0. �

In general the computation of the Pk’s in Theorem 6.3.2 is quite onerous. However,
there is an important case in which it is easy. Namely, suppose that q is a polynomial
of order n ≥ 1 all of whose roots are simple in the sense that they are of multiplicity
1. Then (cf. Exercise 6.4 below for an elementary algebraic proof)

1

q(z)
=

n
∑

k=1

1

q ′(bk)(z − bk)
, (6.3.2)

where b1, . . . , bn are the roots of q. Indeed, here P0 = 0, q ′(bk) equals the coefficient
of zn times

∏

j �=k(bk − b j ) and is therefore not 0, and Pk(z) = ak z where ak =
limz→bk

z−bk
q(z) = 1

q ′(bk )
for 1 ≤ k ≤ �.

Corollary 6.3.3 Let q be a polynomial of order n ≥ 2 with simple roots b1, . . . , bn.
Then for any polynomial p of order less than or equal to n − 2,

n
∑

k=1

p(bk)

q ′(bk)
= 0.

Moreover, if none of the bk’s is real and K± is the set of 1 ≤ k ≤ n for which the
imaginary part of ±bk is positive, then

∫

R

p(x)

q(x)
dx = i2π

∑

k∈K+

p(bk)

q ′(bk)
= −i2π

∑

k∈K−

p(bk)

q ′(bk)
.

In particular, if either K+ or K− is empty, then
∫

R

p(x)

q(x)
dx = 0.

Proof Let R > max{|b j | : 1 ≤ j ≤ n}. Then, by (6.3.2), (6.3.1), and Theorem 6.3.1,

R
∫ 2π

0

p
(

Reiϕ
)

q
(

Reiϕ
) eiϕ dϕ = 2π

n
∑

j=1

p(b j )

q ′(b j )
.

Since

lim
R→∞ R sup

ϕ∈[0,2π]

∣
∣
∣
∣
∣

p
(

Reiϕ
)

q
(

Reiϕ
)

∣
∣
∣
∣
∣
= 0,

the first assertion follows.
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Next assume that none of the bk’s is real. For R > max{|bk | : 1 ≤ k ≤ n}, set
G R = {z = x + iy ∈ D(0, R) : y > 0}. Obviously G R is a piecewise smooth star
shaped region and

zR(t) =
{

−R + 4Rt for 0 ≤ t ≤ 1
2

Rei2π(t− 1
2 ) for 1

2 ≤ t ≤ 1

is a piecewise smooth parameterization of its boundary for which every point in G R

has winding number 1. Furthermore, just as above, by Theorem 6.3.1,

∫ 1

0

p
(

zR(t)
)

q
(

zR(t)
) dt = i2π

∑

k∈K+

p(bk)

q ′(bk)
.

Hence, since

∫ 1
2

0

p
(

zR(t)
)

q
(

zR(t)
) z′

R(t) dt =
∫ R

−R

p(x)

q(x)
dx −→

∫

R

p(x)

q(x)
dx as R → ∞

and

∫ 1

1
2

p
(

zR(t)
)

q
(

zR(t)
) z′

R(t) dt = i R
∫ π

0

p
(

Reiϕ
)

q
(

Reiϕ
) eiϕ dϕ −→ 0 as R → ∞,

∫

R

p(x)

q(x)
dx = lim

R→∞

∫ 1

0

p
(

zR(t)
)

q
(

zR(t)
) z′

R(t) dt = 2π
∑

k∈K+

p(bk)

q ′(bk)
,

which is the first equality in the second assertion. Finally, the second equality follows
from this and the first assertion. �

To give another example that shows how useful Theorem 6.3.1 is, consider the
problem of computing

lim
R→∞

∫ R

0

sin x

x
dx,

where sin x
x ≡ 1 when x = 0. To see that this limit exists, it suffices to show that

limn→∞
∫ nπ

0
sin x

x dx exists. But if am = (−1)m+1
∫ mπ

(m−1)π
sin x

x dx , then am ↘ 0 and
∫ nπ

0
sin x

x dx =∑n
m=1(−1)m+1am . Thus Lemma 1.2.1 implies that the limit exists.

We turn now to the problem of evaluation. The first step is to observe that, since
sin(−x)

−x = sin x
x and cos(−x)

−x = − cos x
x ,

2i
∫ R

0

sin x

x
dx = lim

r↘0

(∫ R

r

eix

x
dx +

∫ −r

−R

eix

x
dx

)

.

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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Second, for 0 < r < R, let Gr,R be the open set

{z = x + iy ∈ D(0, R) : y > 0} ∪ {z = x + iy ∈ D(0, r) : y ≤ 0} :

•(0, 0)

R

r

contour for sin x
x

It should be obvious that Gr,R is a piecewise smooth star shaped region. Further-
more, by (6.3.1), 1 is the residue of eiz

z at 0. Now define

zr,R(t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

t for − R ≤ t < −r

rei(t+r+π) for − r ≤ t < −r + π

t + 2r − π for − r + π ≤ t < R − 2r + π

Rei(t−R+2r−π) for R − 2r + π ≤ t ≤ R − 2r + 2π.

Then the winding number of t � zr,R(t) around each z ∈ Gr,R is 1, and so

i2π =
∫ R−2r+2π

−R

eizr,R(t)

zr,R(t)
z′

r,R(t) dt

=
∫ −r

−R

eit

t
dt + i

∫ 2π

π

eireit
dt +

∫ R

r

eit

t
dt + i

∫ π

0
ei Reit

dt

= i2
∫ R

r

sin t

t
dt + i

∫ 2π

π

eireit
dt + i

∫ π

0
ei Reit

dt.

After letting r ↘ 0, we get

2
∫ R

0

sin t

t
dt = π −

∫ π

0
ei Reit

dt.

Finally, note that
∣
∣ei Reit ∣

∣ = e−R sin t , and therefore, for any 0 < δ < π
2 ,
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∣
∣
∣
∣

∫ π

0
ei Reit

dt

∣
∣
∣
∣
≤
∫ π

0
e−R sin t dt = 2

∫ π
2

0
e−R sin t dt

≤ 2δ + 2
∫ π

2

δ

e−R sin t dt ≤ 2δ + πe−R sin δ.

Hence, by first letting R → ∞ and then δ ↘ 0, we arrive at

lim
R→∞

∫ R

0

sin x

x
dx = π

2
.

6.4 The Prime Number Theorem

If p is a prime number (in this discussion, a prime number is an integer greater than
or equal to 2 that has no divisors other than itself and 1), then no prime smaller than
or equal to p can divide 1+ p!, and therefore there must exist a prime number that is
larger than p. This simple argument, usually credited to Euclid, shows that there are
infinitely many prime numbers, but it gives essentially no quantitative information.
That is, if π(n) is the number of prime numbers p ≤ n, Euclid’s argument tells one
nothing about how π(n) grows as n → ∞. One of the triumphs of late nineteenth
century mathematics was the more or less simultaneous proof1 by Hadamard and de
la Vallée Poussin that π(n) ∼ n

log n in the sense that

lim
n→∞

π(n) log n

n
= 1, (6.4.1)

a result that is known as The Prime Number Theorem. Hadamard and de Vallée
Poussin’s proofs were quite involved, and although their proofs were subsequently
simplified and other proofs were found, it was not until D.J. Newman came up
with the argument given here that a proof of The Prime Number Theorem became
accessible to a wide audience. Newman’s proof was further simplified by D. Zagier,2

and it is his version that is presented here.
The strategy of the proof is to show that if θ(x) = ∑p≤x log p, where the sum-

mation is over prime numbers p ≤ x , then

lim
n→∞

θ(n)

n
= 1. (6.4.2)

Once (6.4.2) is proved, (6.4.1) is easy. Indeed,

1Using empirical evidence, this result had been conjectured by Gauss.
2Newman’s proof appeared in “Simple Analytic Proof of the Prime Number Theorem”, Amer. Math.
Monthly, 87 in 1980, and Zagier’s paper “Newman’s Short Proof of the Prime Number Theorem”
appeared in volume 104 of the same journal in 1997, the centennial year of the original proof.
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θ(n) =
∑

p≤n

log p ≤ π(n) log n,

and so π(n) log n
n ≥ θ(n)

n , which, by (6.4.2), means that

lim
n→∞

π(n) log n

n
≥ 1.

At the same time, for each α ∈ (0, 1),

θ(n) ≥
∑

nα<p≤n

log p ≥ (π(n) − π(nα)
)

α log n ≥ α
(

π(n) − nα
)

log n,

and so, again by (6.4.2),

1 = lim
n→∞

θ(n)

n
≥ α lim

n→∞
π(n) log n

n
.

Since this is true for any α ∈ (0, 1), (6.4.1) follows.
The first step in proving (6.4.2) is to show that θ(x) ≤ Cx for some C < ∞ and

all x ≥ 0.

Lemma 6.4.1 For each K > log 2 there exists an xK ∈ [1,∞) such that θ(x) ≤
2K x+θ(xK ) for all x ≥ xK . In particular, there exists a C < ∞ such that θ(x) ≤ Cx
for all x ≥ 0.

Proof For any n ∈ N,

22n = (1 + 1)2n =
2n
∑

m=0

(
2n

m

)

≥
(

2n

n

)

= 2n
∏n

k=1(2k − 1)

n! .

Now set

Q =
∏

n<p≤2n

p and D = 2n
∏n

k=1(2k − 1)

Q
.

Because every prime less than or equal to 2n divides 2n
∏n

k=1(2k − 1), D ∈ Z
+.

Furthermore, because Q×D
n! = (2n

n

) ∈ Z
+ and n! is relatively prime to Q, n! must

divide D. Hence

22n ≥ Q × D

n! ≥
∏

n<p≤2n

p = eθ(2n)−θ(n),

and so θ(2n) − θ(n) ≤ 2n log 2. Now let x ≥ 2, and choose n ∈ Z
+ so that

n − 1 ≤ x
2 ≤ n. Then

θ(x) − θ
(

x
2

) ≤ θ(2n) − θ(n) + log n ≤ 2n log 2 + log n ≤ x log 2 + log(2x + 4).
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Therefore, for any K > log 2, there exists an xK ≥ 1 such that

θ(x) − θ
( x

2

)

≤ K x for x ≥ xK .

Now, for a given x ≥ xK , choose M ∈ N so that 2−M x ≥ xK > 2−M−1x . Then

θ(x) − θ(xK ) ≤ θ(x) − θ(2−M−1x)

=
M
∑

m=0

(

θ(2−m x) − θ(2−m−1x)
) ≤ K x

M
∑

m=0

2−m ≤ 2K x .

Finally, since θ(x) = 0 for 0 ≤ x < 2, it is clear from this that there exists a C < ∞
such that θ(x) ≤ Cx for all x ≥ 0. �

Lemma 6.4.1 already shows that limn→∞ θ(n)

n ≤ 2 log 2, and therefore, by the

argument we gave to prove the upper bound in (6.4.1) from (6.4.2), limn→∞ π(n) log n
n

≤ 2 log 2. More important, it shows that θ(x)

x is bounded, and therefore there is a
chance that

∫

[1,∞)

θ(x) − x

x2
dx = lim

X→∞

∫ X

1

θ(x) − x

x2
dx exists in R. (6.4.3)

Lemma 6.4.2 If (6.4.3) holds, then (6.4.2) holds.

Proof Suppose that limx→∞ θ(x)

x > λ for some λ > 1. Then there would exist
{xk : k ≥ 1} ⊆ [1,∞) such that xk ↗ ∞ and θ(xk) > λxk . Because θ is non-
decreasing, this would mean that

∫ λxk

xk

θ(t) − t

t2
dt ≥

∫ λxk

xk

λxk − t

t2
dt =

∫ λ

1

λ − t

t2
dt > 0,

and, since

∫ λxk

xk

θ(t) − t

t2
dt =

∫ λxk

1

θ(t) − t

t2
dt −

∫ xk

1

θ(t) − t

t2
dt,

this would contradict the existence of the limit in (6.4.3). Similarly, if limx→∞
θ(x)

x <

λ for some λ < 1, there would exist {xk : k ≥ 1} ⊆ [1,∞) such that xk ↗ ∞ and
θ(xk) < λxk , which would lead to the contradiction that

∫ xk

1

θ(t) − t

t2
dt −

∫ λxk

1

θ(t) − t

t2
dt ≤

∫ 1

λ

λ − t

t2
dt < 0. �

In view of Lemma 6.4.2, everything comes down to verifying (6.4.3). For this
purpose, use the change of variables x = et to see that
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∫ X

1

θ(x) − x

x2
dx =

∫ log X

0

(

e−tθ(et ) − 1
)

dt.

Thus, what we have to show is that

∫

[0,∞)

(

e−tθ(et ) − 1
)

dt = lim
T →∞

∫ T

0

(

e−tθ(et ) − 1
)

dt exists in R. (6.4.4)

Our proof of (6.4.4) relies on a result that allows us to draw conclusions about the
behavior of integrals like

∫ T
0 ψ(t) dt as T → ∞ from the behavior of

∫∞
0 e−ztψ(t) dt

as z → 0. As distinguished from results that go in the opposite direction, of which
(1.10.1) and part (iv) of Exercise 3.16 are examples, such results are hard, and,
because A. Tauber proved one of the earliest of them, they are known as Tauberian
theorems. The Tauberian theorem that we will use is the following.

Theorem 6.4.3 Suppose that ψ : [0,∞) −→ C is a bounded function that is
Riemann integrable on [0, T ] for each T > 0, and set

g(z) =
∫

[0,∞)

e−ztψ(t) dt for z ∈ C with R(z) > 0.

Then g(z) is analytic on {z ∈ C : R(z) > 0}. Moreover, if g has an extension as an
analytic function on an open set containing {z ∈ C : R(z) ≥ 0}, then

∫

[0,∞)

ψ(t) dt = lim
T →∞

∫ T

0
ψ(t) dt

exists and is equal to g(0).

Proof For T > 0, set gT (z) = ∫ T
0 e−ztψ(t) dt . Using Theorems 3.1.4 and 6.2.6, it

is easy to check first that gT is analytic on C and then that g is analytic on {z ∈ C :
R(z) > 0}. Thus, what we have to show is that limT →∞ gT (0) = g(0) if g extends
as an analytic function to an open set containing {z ∈ C : R(z) ≥ 0}. To this end,
for R > 0, choose βR ∈ (0, π

2

)

so that g is analytic on an open set containing Ḡ,
where

G = {z ∈ C : |z| < R & R(z) > −R sin βR}.

Clearly (cf. fig 1 below) G is a piecewise smooth star shaped region, and so we can
apply (6.2.5) to the function

f (z) ≡ eT z

(

1 + z2

R2

)
(

g(z) − gT (z)
)

to see that

g(0) − gT (0) = f (0) = 1

i2π

∫ b

a

f
(

z(t)
)

z(t)
z′(t) dt,

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_3
http://dx.doi.org/10.1007/978-3-319-24469-3_3
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where t ∈ [a, b] −→ z(t) ∈ ∂G is a piecewise smooth parameterization of ∂G.
Furthermore, the parameterization can be chosen so that

∫ b

a

f
(

z(t)
)

z(t)
z′(t) dt = i(J+ + J−)

where

J+ =
∫ π

2

− π
2

f
(

Reiϕ
)

dϕ

and

J− =
∫ π

2 +βR

π
2

f
(

Reiϕ) dϕ −
∫ R cos βR

−R cos βR

f
(−R sin βR + iy

)

−R sin βR + iy
dy +

∫ 3π
2

3π
2 −βR

f
(

Reiϕ) dϕ.

• (0, 0)

βR

fig 1

• (0, 0)

βR

fig 2
To estimate the size of J+ and J−, begin by observing that

(∗) |z| = R =⇒
∣
∣
∣
∣
1 + z2

R2

∣
∣
∣
∣
= 2|R(z)|

R
.

To check this, write z = x + iy and conclude that

∣
∣
∣
∣
1 + z2

R2

∣
∣
∣
∣
=
∣
∣
∣
∣

x2 + y2 + x2 − y2 + i2xy

R2

∣
∣
∣
∣
=
∣
∣
∣
∣

2xz

R2

∣
∣
∣
∣
= 2|x |

R
.

Now suppose that |z| = R and R(z) > 0. Then

|g(z) − gT (z)| =
∣
∣
∣
∣

∫

[T,∞)

e−ztψ(t) dt

∣
∣
∣
∣
≤ M

∫

[T,∞)

e−R(z)t dt ≤ Me−R(z)T

R(z)
,



198 6 A Little Bit of Analytic Function Theory

where M = ‖ψ‖[0,∞). Hence, since

| f (z)| = eR(z)T

∣
∣
∣
∣

(

1 + z2

R2

)∣
∣
∣
∣
|g(z) − gT (z)|,

| f (Reiϕ)| ≤ 2M
R for ϕ ∈ [− π

2 , π
2

]

and therefore |J+| ≤ 2πM
R . To estimate J−, we

write f (z) = f1(z) − f2(z), where

f1(z) = eT z

(

1 + z2

R2

)

g(z) and f2(z) = eT z

(

1 + z2

R2

)

gT (z),

and will estimate the contributions J−,1 and J−,2 of f1 and f2 to J− separately. First
consider the term corresponding to f2, and remember that gT is analytic on the whole
of C. Thus, by (6.1.3) applied to f2 on the region (cf. fig 2 above)

{z ∈ C : |z| < R & R(z) < −R sin βR},

we know that

∫ R cos βR

−R cos βR

f2
(−R sin βR + iy

)

−R sin βR + iy
dy +

∫ 3π
2 −βR

π
2 +βR

f2
(

Reiϕ
)

dϕ = 0,

and therefore that

J−,2 =
∫ 3π

2

π
2

f2
(

Reiϕ
)

dϕ.

Now notice that

|gT (z)| ≤ M
∫ T

0
e−R(z)t dt = M

e−R(z)T − 1

|R(z)| ≤ Me−R(z)T

|R(z)| if R(z) < 0,

and so, by again using (∗), we see that | f2(Reiϕ)| ≤ 2M
R for ϕ ∈ [ π

2 , 3π
2 ] and therefore

that |J−,2| ≤ 2πM
R . Combining this with the estimate for J+, we now know that

|g(0) − gT (0)| ≤ 2M

R
+ |J−,1|

2π
.

Finally, if B = ‖g‖Ḡ , then, for ϕ ∈ [ π
2 , π

2 + βR
]∪[ 3π

2 − βR, 3π
2

]

and |y| ≤ R cos βR ,

| f1(Reiϕ)| ≤ 4Be(cos ϕ)T and

∣
∣
∣
∣

f1(−R sin βR + iy)

−R sin βR + iy

∣
∣
∣
∣
≤ 4Be(− sin βR)RT

R sin βR
,

from which it is easy to see that there is a CR < ∞ such that |J−,1| ≤ CR
T . Hence,

we now have that |g(0) − gT (0)| ≤ 2M
R + CR

2πT , which means that
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lim
T →∞ |g(0) − gT (0)| ≤ 2M

R
for all R > 0. �

As the preceding proof demonstrates, not only the choice of contour over which
the integral is taken but also the choice of the function f being integrated are crucial
for successful applications of Cauchy’s integral formula. Indeed, one can replace the
f on the right hand side by any analytic function that equals f at the point where
one wants to evaluate it. Without such a replacement, the preceding argument would
not have worked.

What remains is to show that Theorem 6.4.3 applies when ψ(t) = e−tθ(et ) − 1.
That is, we must show that the function

z �
∫

[0,∞)

e−zt
(

e−tθ(et ) − 1
)

dt

on {z ∈ C : R(z) > 0} admits an analytic extension to an open set containing
{z ∈ C : R(z) ≥ 0}. To this end, let 2 = p1 < · · · < pk < · · · be an increasing
enumeration of the prime numbers and set p0 = 1. Using summation by parts and
taking into account that θ(p0) = 0 and that θ(t) = θ(pk) for t ∈ [pk, pk+1), one
sees that

∑

p

log p

pz
=

∞
∑

k=1

θ(pk) − θ(pk−1)

pz
k

=
∞
∑

k=1

θ(pk)

(
1

pz
k

− 1

pz
k+1

)

= z
∞
∑

k=1

θ(pk)

∫ pk+1

pk

x−z−1 dx = z
∫

[2,∞)

θ(x)

xz+1
dx = z

∫

[1,∞)

θ(x)

xz+1
dx

if R(z) > 0. Hence, after making the change of variables x = et , we have first that

∑

p

log p

pz
= z

∫

[0,∞)

e−ztθ(et ) dt

and then that

∑

p

log p

pz+1
− z + 1

z
= (z + 1)

∫

[0,∞)

e−zt
(

e−tθ(t) − 1
)

dt

when R(z) > 0. Now define3

�(s) =
∑

p

log p

ps
if R(s) > 1,

3In number theory it is traditional to denote complex numbers by s instead of z, and so we will also.
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which, because the series is uniformly convergent on every compact subset of the
region {s ∈ C : R(s) > 1}, is, by Theorem 6.2.6, analytic. Then the preceding says
that

(s + 1)−1
(

�(s + 1) − 1
s − 1

) =
∫

[0,∞)

e−st
(

θ(t) − 1
)

dt,

and so checking that Theorem 6.4.3 applies comes down to showing that the function
s � �(s) − 1

s−1 , which so far is defined only when R(s) > 1, admits an extension
as an analytic function on an open set containing {s ∈ C : R(s) ≥ 1}.

In order to carry out this program, we will relate the function � to the famous
function

ζ(s) =
∑

p

1

ns
,

which, like �, is defined initially only on {s ∈ C : R(s) > 1} and, for the same
reason as � is, is analytic there. Although this function is usually called the Riemann
zeta function, it was actually introduced by Euler, who showed that

ζ(s) =
∏

p

1

1 − p−s
if R(s) > 1, (6.4.5)

where the product is over all prime numbers. To check (6.4.5), first observe that,
when R(s) > 1, not only the series defining ζ but also the product in (6.4.5) are
absolutely convergent. Indeed,

∣
∣
∣
∣

1

1 − p−s
− 1

∣
∣
∣
∣
= p−R(s)

|1 − p−s | ≤ p−R(s)

1 − 2−R(s)
,

and therefore

∑

p

∣
∣
∣
∣

1

1 − p−s
− 1

∣
∣
∣
∣
≤ 2R(s)

2R(s) − 1

∞
∑

n=2

n−R(s) < ∞.

By Exercises 1.5 and 1.20, this means that both the series and the product are inde-
pendent of the order in which they are taken. Thus, if we again enumerate the prime
numbers in increasing order, 2 = p1 < · · · < p� < · · · , and take D(�) to be the set
of n ∈ Z

+ that are not divisible by any pk with k > �, then

ζ(s) = lim
�→∞

∑

n∈D�

1

ns
and

∏

p

1

1 − p−s
= lim

�→∞

�
∏

k=1

1

1 − p−s
k

.

The elements n of D(�) are in a one-to-one correspondence with (m1, . . . , m�) ∈ N
�

determined by n =∏�
k=1 pmk

k . Hence

http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_1
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∑

n∈D�

1

ns
=

∞
∑

m1,...,m�=0

�
∏

k=1

p−smk
k =

�
∏

k=1

∞
∑

mk=0

(p−s
k )mk =

�
∏

k=1

1

1 − p−s
k

.

Clearly (6.4.5) follows after one lets � → ∞.
Besides establishing a connection between the zeta function and the prime num-

bers, (6.4.5) shows that, because the product on the right hand side is absolutely
convergent and contains no factors that are 0, ζ(s) �= 0 when R(s) > 1. Both of
these properties are important because they allow us to relate ζ to � via the equation

− ζ ′(s)
ζ(s)

=
∑

p

log p

ps − 1
= �(s) +

∑

p

log p

ps(ps − 1)
if R(s) > 1. (6.4.6)

Since the series
∑

p
log p

ps (ps−1)
converges uniformly on compact subsets of the region

{s ∈ C : R(s) > 1
2 }, it determines an analytic function there. Thus, the extension

of �(s) − 1
s−1 that we are looking for is equivalent to the same sort of extension of

ζ ′(s)
ζ(s) + 1

s−1 , and so an understanding of the zeroes of ζ will obviously play a crucial
role.

Lemma 6.4.4 Set f (s) = ζ(s) − 1
s−1 when R(s) > 1. Then f admits an analytic

extension to {s ∈ C : R(s) > 0}, and so ζ admits an analytic extension to the region
{s ∈ C\{1} : R(s) > 0}. Furthermore, if s �= 1 and R(s) ≥ 1, then ζ(s) �= 0.
Finally, �(s) − 1

s−1 extends as an analytic function on an open set containing {s ∈
C : R(s) ≥ 1}.
Proof We begin by showing that f admits an analytic extension to {s ∈ C :
R(s) > 0}. To see how this is done, make the change of variables y = log x to
show that if R(s) > 1, then

∫

[1,∞)

1

xs
dx =

∫

[1,∞)

e(1−s) log x x−1 dx =
∫

[0,∞)

e(1−s)y dy = 1

1 − s
.

Thus

ζ(s) − 1

1 − s
=

∞
∑

n=1

∫ n+1

n

(
1

ns
− 1

xs

)

dx

when R(s) > 1. Since

∣
∣
∣
∣

1

ns
− 1

xs

∣
∣
∣
∣
= |s|

∣
∣
∣
∣

∫ x

n
y−1−s dy

∣
∣
∣
∣
≤ |s|

n1+R(s)
for n ≤ x ≤ n + 1,

the preceding series converges uniformly on compact subsets of {s ∈ C : R(s) > 0}
and therefore determines an analytic function there. Thus f admits an analytic exten-
sion to {s ∈ C : R(s) > 0}, and so s � ζ(s) = f (s) + 1

s−1 admits an analytic
extension to {s ∈ C\{1} : R(s) > 0}.
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We already know from (6.4.5) that ζ(s) �= 0 ifR(s) > 1. Now set zα = 1+ iα for
α ∈ R\{0}. Because ζ is analytic in an open disk centered at zα and is not identically
0 on that disk, (6.2.3) implies that there exists an m1 which is the smallest m ∈ N

such that ζ(m)(zα) �= 0. Further, using (6.2.3), one sees that

m1 = lim
ε↘0

ε
ζ ′(zα + ε)

ζ(zα + ε)
= − lim

ε↘0
ε�(zα + ε).

Because ζ(s̄) = ζ(s) when R(s) > 1, m1 = − limε↘0 ε�(z−α + ε). Applying the
same argument to z2α and letting m2 be the smallest m ∈ N for which ζ(m)(z2α) �= 0,
we also have that m2 = − limε↘0 �(z±2α + ε). Now remember that the function
f (s) = ζ(s) − 1

s−1 is analytic on {s ∈ C : R(s) > 0}, and therefore

lim
ε↘0

ε
ζ ′(1 + ε)

ζ(ε)
= − lim

ε↘0

1 − ε2 f ′(1 + ε)

1 + ε f (1 + ε)
= −1,

which, by (6.4.6), means that limε↘0 ε�(1 + ε) = 1. Combining these, we have

−2m2 − 8m1 + 6 = lim
ε↘0

ε

2
∑

r=−2

(
4

2 + r

)

�(1 + ε + irα)

= lim
ε↘0

ε
∑

p

(piα + p−iα)4 log p

p1+ε
= 16 lim

ε↘0

∑

p

(

cos(α log p)
)4

log p

p1+ε
≥ 0,

and this is possible only if m1 = 0. Therefore ζ(1 + iα) �= 0 for any real α �= 0.
In view of the preceding, we know that, for each r ∈ (0, 1), ζ ′(s)

ζ(s) is analytic in an
open set containing {s ∈ C\D(1, r) : R(s) ≥ 1}, and therefore, by (6.4.6), the same
is true of �(s). Thus, to show that �(s) − 1

s−1 extends as an analytic function on an
open set containing {s ∈ C : R(s) ≥ 1}, it suffices for us to show that there is an
r ∈ (0, 1) such that it extends as an analytic function on D(1, r), and this comes down
to showing that ζ ′(s)

ζ(s) + 1
s−1 admits such an extension. But ζ ′(s) = f ′(s)− (s −1)−2,

and so
ζ ′(s)
ζ(s)

+ 1

s − 1
= f (s) + (s − 1) f ′(s)

1 + (s − 1) f (s)

for s close to 1. Since this means that ζ ′(s)
ζ(s) + 1

s−1 stays bounded as s → 1,
Theorem 6.2.5 implies that it has an analytic extension to D(1, r) for some
r ∈ (0, 1). �

Lemma 6.4.4 provides the information that was needed in order to apply Theo-
rem 6.4.3, and we have therefore completed the proof of (6.4.1).

There are a couple of comments that should be made about the preceding. The first
is the essential role that analytic function theory played. Besides the use of Cauchy’s
formula in the proof of Theorem 6.4.3, the extension of ζ to {s ∈ C\{1} : R(s) > 0}
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would not have possible if we had restricted our attention to R. Indeed, just staring at
the expression ζ(s) =∑∞

n=1
1
ns for s ∈ (1,∞), one would never guess that, as it was

in Lemma 6.4.4, sense can be made out of ζ
(

1
2

)

. In the theory of analytic functions,
such an extension is called a meromorphic extension, and the ability to make them is
one of the great benefits of complex analysis. A second comment is about possible
refinements of (6.4.1). As our derivation shows, the key to unlocking information
about the behavior of π(n) for large n is control over the zeroes of the zeta function.
Newman’s argument allowed us to get (6.4.1) from the fact that ζ(s) �= 0 if s �= 1
and R(s) ≥ 1. However, in order to get a more refined result, it is necessary to know
more about the zeroes of ζ. In this direction, the holy grail is the Riemann hypothesis,
which is the conjecture that, apart from harmless zeroes, all the zeroes of ζ lie on the
vertical line {s ∈ C : R(s) = 1

2 }, but, like any holy grail worthy of that designation,
this one remains elusive.

6.5 Exercises

Exercise 6.1 Let G be a connected, open subset of C that contains a line segment
L = {α + teiβ : t ∈ [−1, 1]} for some α ∈ C and β ∈ R. If f and g are analytic
functions on G that are equal on L , show that f = g on G.

Exercise 6.2 According to Exercise 5.2,

∫

R

ezx e− x2

2 dx = √
2πe

z2

2

for z ∈ R. Using Exercise 6.1, show that this equation continues to hold for all z ∈ C.

Exercise 6.3 Let f : R −→ C be a function that is Riemann integrable on compact
intervals and for which

∫

(−∞,∞)

f (t) dt = lim
r→∞

∫ r

−r
f (t) dt

exists in C. Then, by 5.1.2, we know that

∫

R

f (t + ξ) dt = lim
r→∞

∫ r

−r
f (t + ξ) dt =

∫

R

f (t) dt

for ξ ∈ R. The purpose of this exercise is to show that, under suitable conditions,
the same equation holds when ξ is replaced by a complex number.

Suppose that f is a continuous function on {z ∈ C : 0 ≤ I(z) ≤ η} that is analytic
on {z ∈ C : 0 < I(z) < η} for some η > 0. Further, assume that

∫

R
f (t) dt ∈ C

exists and that

http://dx.doi.org/10.1007/978-3-319-24469-3_5
http://dx.doi.org/10.1007/978-3-319-24469-3_5
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lim
r→∞

∫ η

0
f (±r + iy) dy = 0.

Using (6.1.3) for the region {z = x + iy ∈ C : |x | < r & y ∈ (0, η)}, show that

∫

R

f (t + ξ + iη) dt = lim
r→∞

∫ r

−r
f (t + ξ + iη) dt =

∫

R

f (t) dt

for all ξ ∈ R. Finally, use this to give another derivation of the result in Exercise 6.2.

Exercise 6.4 Here is an elementary algebraic proof of (6.3.2). Let q and b1, . . . , bn

be as they are there, and use the product representation of q to see that

n
∑

k=1

q(z)

q ′(bk)(z − bk)
− 1 for z ∈ C\{b1, . . . , bn}

has a unique extension as an at most (n − 1)st order polynomial P on C. Further,
show that P(bk) = 0 for 1 ≤ k ≤ n, and conclude that P must be 0 everywhere.

Exercise 6.5 Show that
∫ π

0

1

a + cos ϕ
dϕ = π√

a2 − 1
if a > 1.

To do this, first note that the integral is half the one when the upper limit is 2π instead
of π. Next write the integrand as 2eiϕ

2aeiϕ+ei2ϕ+1 , and conclude that

∫ π

0

1

a + cos ϕ
dϕ =

∫ 2π

0

eiϕ

ei2ϕ + 2aeiϕ + 1
dϕ.

Now apply (6.3.2) and (6.2.5) to complete the calculation.

Exercise 6.6 Show that

∫ 2π

0

1

a2 + sin2 ϕ
dϕ = π

(
1√

a2 + 1
+ 1√

a2 − 1

)

if |a| > 1.

This calculation can be reduced to one like that in Exercise 6.5 by first noting that
a2 + sin2 ϕ = (a + i sin ϕ)(a − i sin ϕ).

Exercise 6.7 Show that ∫

R

1

1 + x4
dx = π√

2
,

that ∫

R

cos(αx)

(1 + x2)2
dx = π(1 + α)

2eα
for α ≥ 0
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and that ∫

R

sin2 x

(1 + x2)2
dx = π(e2 − 3)

4e2
.

Exercise 6.8 Let μ ∈ (0, 1) and a ∈ C\Z, and define

f (z) = eiπ(2μ−1)z

(z − a) sin(πz)
for z ∈ C\(Z ∪ {a}).

By applying Theorem 6.3.1 to the integral of f around the circle S
1
(

0, n + 1
2

)

for
n > a and then letting n → ∞, show that

1

π

∞
∑

k=−∞

ei2πμk

a − k
= eiπ(2μ−1)a

sin(πa)
.

Exercise 6.9 Let z : [a, b] −→ C be a closed, piecewise smooth path, and set

N (z) = 1

i2π

∫ b

a

z′(t)
z(t) − z

dt

for z /∈ {z(t) : t ∈ [a, b]}. As we saw in the discussion following Lemma 6.2.9,
N (z) is the number of times that the path winds around z, but there is another way
of seeing that N (z) must be an integer. Namely, set

α(t) =
∫ t

a

z′(τ )

z(τ ) − z
dτ ,

and consider the function u(t) = e−α(t)
(

z(t) − z
)

. Show that u′(t) = 0 for all but a
finite number of t ∈ [a, b], and conclude that eα(t) = z(t)−z

z(a)−z . In particular, eα(b) = 1,
and so α(b) must be an integer multiple of i2π. Next show that if G is a connected
open subset of C\{z(t) : t ∈ [a, b]}, then z � N (z) is constant on G.

Exercise 6.10 Let H be the space of analytic functions f on C for which

‖ f ‖H ≡
√

1

π

∫

C

| f (z)|2e−|z|2 dx dy < ∞.

It should be clear that H is a vector space over C (i.e., linear combinations of its
elements are again elements). In addition, it has an inner product given by

( f, g)H ≡ 1

π

∫

C

f (z)g(z)e−|z|2 dx dy.
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(i) For r > 0 and ζ ∈ C, set

Mr (ζ) = 1

πr2

∫

D(ζ,r)

f (z) dx dy,

show that

0 ≤ 1

πr2

∫

D(ζ,r)

| f (z) − Mr (ζ)|2 dx dy = 1

πr2

∫

D(ζ,r)

| f (z)|2 dx dy − |Mr (ζ)|2,

and, using (6.2.2), conclude that

sup
ζ∈D(0,r)

| f (ζ)| ≤ 1

4πr2

∫

D(0,2r)

| f (z)| dx dy ≤ e4r2‖ f ‖H
4πr2

. (6.5.1)

(ii) From (6.5.1) we know that ‖ f ‖H = 0 if and only if f = 0. Further, using
the same reasoning as was used in Sect. 4.1 in connection with Schwarz’s inequality
and the triangle inequality, show that

|( f, g)H| ≤ ‖ f ‖H‖g‖H and ‖α f + βg‖H ≤ |α|‖ f ‖H + |β|‖g‖H.

(iii) Let { fn : n ≥ 1} be sequence in H, and say that { fn : n ≥ 1} converges in H
to f ∈ H if limn→∞ ‖ fn − f ‖H = 0. Show that H with this notion of convergence
is complete. That is, show that if

lim
m→∞ sup

n>m
‖ fn − fm‖H = 0,

then there exists an f ∈ H to which { fn : n ≥ 1} converges in H. Here are some
steps that you might want to take. First, using (6.5.1) applied to fn − fm , the obvious
analog of Lemma 1.4.4 for functions on C combined with Theorem 6.2.6 show that
there is an analytic function f on C to which { fn : n ≥ 1} converges uniformly
on compact subsets. Next, given ε > 0, choose mε so that ‖ fn − fm‖H < ε for
n > m ≥ mε, and then show that

(∫

D(0,r)

| f (z) − fm(z)|2e−|z|2 dx dy

) 1
2

= lim
n→∞

(∫

D(0,r)

| fn(z) − fm(z)|2e−|z|2 dxdy

) 1
2

≤ ε

for all m ≥ mε and r > 0. Finally, conclude that f ∈ H and ‖ f − fm‖H ≤ ε for all
m ≥ mε.

http://dx.doi.org/10.1007/978-3-319-24469-3_4
http://dx.doi.org/10.1007/978-3-319-24469-3_1
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A vector space that has an inner product for which the associated notion of con-
vergence makes it complete is called a Hilbert space, and the Hilbert space H is
known as the Fock space.

Exercise 6.11 This exercise is a continuation of Exercise 6.10. We already know
that H is a Hilbert space, and the goal here is to produce an orthonormal basis for H.

(i) Set ∂ = 1
2 (∂x − i∂y), note that ∂me−|z|2 = zme−|z|2 , and use integration by

parts to show that

(∗)

∫

C

f (z)zme−|z|2 dx dy =
∫

C

f (m)(z)e−|z|2 dx dy for m ≥ 0 and f ∈ H.

(ii) Use (∗) and 5.4.3 to show that

∫

C

zm zne−|z|2 dx dy = δm,nπ m! for m, n ∈ N.

Next, set em(z) = (m!)− 1
2 zm , and, using the fact that (em, en)H = δm,n , show that the

em’s are linearly independent in the sense that for any n ≥ 1 and α0, . . . ,αn ∈ C,

n
∑

m=0

αmem = 0 =⇒ α0 = · · · = αn = 0.

Use this to prove that {en : n ≥ 0} is a bounded sequence in H that admits no
convergent subsequence.

(iii) The preceding proves that H is not finite dimensional, and the concluding
remark there highlights one of the important ways in which infinite dimensional
vector spaces are distinguished from finite dimensional ones. At the same time, it
opens the possibility that (e0, . . . , em, . . . ) is an orthonormal basis. That is, we are
asking whether, in an appropriate sense,

(∗∗) f =
∞
∑

m=0

( f, em)Hem for all f ∈ H.

To answer this question, use (∗), polar coordinates, and (6.2.1) to see that

∫

C

f (z)zme−|z|2 dx dy = π f (m)(0)

and therefore that

∞
∑

m=0

( f, em)Hem(z) =
∞
∑

m=0

f (m)(0)

m! zm = f (z).

http://dx.doi.org/10.1007/978-3-319-24469-3_5
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Hence, (∗∗) holds in the sense that the series on the right hand side converges uni-
formly on compact subsets to the function on the left hand side.

(iv) Given f ∈ H, set fn =∑n
m=0( f, em)Hem . In (iii) we showed that fn −→ f

uniformly on compact subsets, and the goal here is to show that ‖ fn − f ‖H −→ 0.
The strategy is to show that there is a g ∈ H such that ‖ fn − g‖H −→ 0. Once
one knows that such a g exists, it essentially trivial to show that g = f . Indeed, by
applying (6.5.1) to g − fn , one knows that fn −→ g uniformly on compact subsets
and therefore, since fn −→ f uniformly on compact subsets, it follows that f = g.
One way to prove that { fn : n ≥ 0} converges in H is to use Cauchy’s criterion (cf.
(iii) in Exercise 6.10). To this end, show that ( fn, f − fn)H = 0 for all n ≥ 0, and
use this to show that

‖ f ‖2
H = ‖ fn‖2

H + ‖ f − fn‖2
H ≥ ‖ fn‖2

H =
n
∑

m=0

|( f, em)H|2.

From this conclude that
∑∞

m=0 |( f, em)H|2 < ∞ and therefore

sup
n>m

‖ fn − fm‖2
H = sup

n>m

n
∑

k=m+1

|( f, ek)H|2 −→ 0 as m → ∞.
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The goal here is to construct, starting from the set Q of rational numbers, a model
for the real line. That is, we want to construct a set R that comes equipped with the
following properties.

(1) There is a one-to-one embedding Φ taking Q into R.
(2) There is an order relation “<” on R such that, for all s, t ∈ Q, Φ(r) < Φ(s) if

and only if s < r and, for all x, y ∈ R, x < y or x = y or y < x (i.e., x > y).
(3) There are arithmetic operations (x, y) ∈ R

2 �−→ (x + y) ∈ R and (x, y) ∈
R
2 �−→ xy ∈ R such that Φ(r + s) = Φ(r) + Φ(s) and Φ(rs) = Φ(r)Φ(s)

for all r, s ∈ Q. Furthermore, these operations have the same properties as the
corresponding operations on Q.

(4) Define |x | ≡ ±x depending on whether x ≥ Φ(0) (i.e., x = Φ(0) or x > Φ(0))
or x < Φ(0), and say that a sequence {xn : n ≥ 1} ⊆ R converges to x ∈ R

and write xn −→ x if for each r ∈ Q
+ ≡ {r ∈ Q : r > 0} there is an m such

that |x − xn| < r when n ≥ m. Then for every x ∈ R there exists a sequence
{rn : n ≥ 1} ⊆ Q such that Φ(rn) −→ x .

(5) The space R endowed with the preceding notion of convergence is complete.
That is, if {xn : n ≥ 1} ⊆ R and, for each r ∈ Q

+ there exists an m such that
|xn − xm | < r when n ≥ m, then there exists an x ∈ R to which {xn : n ≥ 1}
converges.

Obviously, if it were not for property (5), there would be no reason not to take
R = Q. Thus, the challenge is to embedQ in a structure for which Cauchy’s criterion
guarantees convergence. There are several ways to build such a structure, the most
popular being by a method known as “Dedekind cuts”. However, we will use a
method that is based on ideas of Hausdorff.

Use R̃ to denote the set of all maps, which should be thought of sequences,
S : Z+ −→ Q with the property that for all r ∈ Q

+ there exists an i ∈ Z
+ such that

|S( j) − S(i)| ≤ r if j > i . Given S, S′ ∈ R̃, say that S′ is equivalent to S and write
S′ ∼ S if for each r ∈ Q

+ there exists an i ∈ Z
+ such that |S′( j) − S( j)| ≤ r for

j ≥ i . Then ∼ is an equivalence relation on R̃ in the sense that, for all S, S′ ∈ R̃,

© Springer International Publishing Switzerland 2015
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S ∼ S, S′ ∼ S ⇐⇒ S ∼ S′, and S′ ∼ S if there exists an S′′ ∈ R̃ such that
S ∼ S′′ and S′ ∼ S′′. The first two of these are obvious. To check the third, for a
given r ∈ Q

+ choose i so that |S( j)− S′′( j)|∨ |S′( j)− S′′( j)| ≤ r
2 for j ≥ i . Then

|S′( j) − S( j)| ≤ |S′( j) − S′′( j)| + |S′′( j) − S( j)| ≤ r for j ≥ i.

Lemma A.1 If S ∈ R̃, { jk : k ≥ 1} ⊆ Z
+ is a strictly increasing sequence, and

S′(k) = S( jk) for k ≥ 1, then S′ ∈ R̃ and S′ ∼ S.

Proof It is obvious that S′ ∈ R̃. To see that S′ ∼ S, given r ∈ Q
+, choose i so that

|S( j) − S(i)| ≤ r
2 for j ≥ i . Then

|S( jk) − S(k)| ≤ |S( jk) − S(i)| + |S(k) − S(i)| ≤ r for k ≥ i. �

Given a sequence {Sn : n ≥ 1} ⊆ R̃, we will say that {Sn : n ≥ 1} converges to
S ∈ R̃ and will write Sn −→ S if, for each r ∈ Q

+, there exists an (m, i) ∈ (Z+)2

such that |Sn( j) − S( j)| ≤ r for n ≥ m and j ≥ i . Notice that {Sn : n ≥ 1} can
converge to more than one element of R̃. However, if it converges to both S and S′,
then S′ ∼ S. Next, say that {Sn : n ≥ 1} is Cauchy convergent if for all r ∈ Q

+
there exists an (m, i) ∈ (Z+)2 such that |Sn( j) − Sm( j)| ≤ r for all n ≥ m and
j ≥ i . It is easy to check that if {Sn : n ≥ 1} converges to some S, then it is Cauchy
convergent.

Lemma A.2 Assume that {Sn : n ≥ 1} ⊆ R̃ is Cauchy convergent. Then for each
r ∈ Q

+ there exists an i such that |Sn( j) − Sn(i)| ≤ r for all n ≥ 1 and j ≥ i .
Furthermore, if S′

n ∼ Sn for each n ∈ Z
+ and {S′

n : n ≥ 1} is Cauchy convergent,
then for each r ∈ Q

+ there exists an (m, i) ∈ (Z+)2 such that |S′
n( j) − Sn( j)| ≤ r

for all n ≥ m and j ≥ i . In particular, if Sn −→ S and S′
n −→ S′, then S′ ∼ S.

Proof Given r ∈ Q
+, choose (m, i ′) ∈ (Z+)2 so that |Sn( j) − Sm( j)| ≤ r

3 for
n ≥ m and j ≥ i ′. Next choose i ≥ i ′ so that |S�( j) − S�(i)| ≤ r

3 for 1 ≤ � ≤ m
and j ≥ i . Then, for n ≥ m and j ≥ i ,

|Sn( j) − Sn(i)| ≤ |Sn( j) − Sm( j)| + |Sm( j) − Sm(i)| + |Sm(i) − Sn(i)| ≤ r.

Hence |Sn( j) − Sn(i)| ≤ r for all n ≥ 1 and j ≥ i .
Now assume that S′

n ∼ Sn for all n and that {S′
n : n ≥ 1} is Cauchy convergent.

Given r ∈ Q
+, use the preceding to choose i ′ so that

|S′
n( j2) − S′

n( j1)| ∨ |Sn( j2) − Sn( j1)| ≤ r

5
for all n ≥ 1 and j1, j2 ≥ i ′,

and then choose m and i ≥ i ′ so that |S′
m(i) − Sm(i)| ≤ r

5 and

|S′
n( j) − S′

m( j)| ∨ |Sn( j) − Sm( j)| ≤ r

5
for n ≥ m and j ≥ i.
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Then, for n ≥ m and j ≥ i ,

|S′
n( j) − Sn( j)| ≤ |S′

n( j) − S′
m( j)| + |S′

m( j) − S′
m(i)| + |S′

m(i) − Sm(i)|
+ |Sm(i) − Sm( j)| + |Sm( j) − Sn( j)| ≤ r.

Finally, if Sn −→ S and S′
n −→ S′, then for any n ≥ m and j ≥ i

|S′( j) − S( j)| ≤ |S′( j) − S′
n( j)| + |S′

n( j) − Sn( j)| + |Sn( j) − S( j)|
≤ r + |S′( j) − S′

n( j)| + |S( j) − Sn( j)|,

and so, by taking n sufficiently large, we conclude that |S′( j) − S( j)| ≤ 2r for all
sufficiently large j . �

Lemma A.3 If {Sn : n ≥ 1} ⊆ R̃ is Cauchy convergent, then there exists an S ∈ R̃

to which it converges.

Proof By Lemma A.2, there exists a sequence {i ′k : k ≥ 1} ⊆ Z
+ which is strictly

increasing for which |Sn( j) − Sn(i ′k)| ≤ 1
k for all n ≥ 1 and j ≥ i ′k . Next, because{Sn : n ≥ 1} is Cauchy convergent, we can choose strictly increasing sequences

{mk : k ≥ 1} ⊆ Z
+ and {ik : k ≥ 1} such that, for each k ≥ 1, ik ≥ i ′k and

|Sn( j) − Smk ( j)| ≤ 1
k for all n ≥ mk and j ≥ ik . Define S( j) = Sm j ( j) for

j ∈ Z
+. It is obvious that S ∈ R̃. In addition, for n ≥ mk and j ≥ ik ,

|Sn( j) − S( j)| ≤ |Sn( j) − Sn(ik)| + |Sn(ik) − Smk (ik)|
+ |Smk (ik) − Smk (i j )| + |Smk (i j ) − Sm j (i j )| ≤ 4

k . �

We are now ready to describe our model for R. Namely, for each S ∈ R̃, let
[S] ≡ {S′ ∈ R̃ : S′ ∼ S} be the equivalence class of S, and take R to be the set
{[S] : S ∈ R̃} of equivalences classes. Because ∼ is an equivalence relation, it is
easy to check that S ∈ [S] and that either [S] = [S′] or [S′] ∩ [S] = ∅. Thus R is a
partition of R̃ into mutually disjoint, non-empty subsets. We next embed Q into R

by identifying r ∈ Q with [R], where R is the element of R̃ such that R( j) = r for
all j ∈ Z

+. That is, the map Φ in (1) is given by Φ(r) = [R]. Although it entails an
abuse of notation, we will often use r to play a dual role: it will denote an element
of Q as well as the associated element Φ(r) = [R] of R.

The next step is to introduce an arithmetic structure on R. To this end, given
S, T ∈ R̃ define S + T and ST to be the elements of R̃ such that (S + T )( j) =
S( j) + T ( j) and (ST )( j) = S( j)T ( j) for j ∈ Z

+. It is easy to check that if S′ ∼ S
and T ′ ∼ T , then S′ + T ′ ∼ S + T and S′T ′ ∼ ST . Thus, given x, y ∈ R, where
x = [S] and y = [T ], we can define x + y and xy unambiguously by x + y = [S+T ]
and xy = [ST ], in which case it is easy to check that x + y = y + x , xy = yx ,
(x + y) + z = x + (y + z), and (x + y)z = xz + yz. Similarly, if x = [S], then
we can define −x = [−S], in which case x + y = 0 if and only if y = −x . Indeed,
it is obvious that y = −x =⇒ x + y = 0. Conversely, if x = [S], y = [T ], and
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x + y = 0, then for all r ∈ Q
+ there exists an i such that |S( j)+T ( j)| ≤ r for j ≥ i .

Since this means that
∣
∣T ( j) − (−S( j)

)∣
∣ ≤ r for j ≥ i , it follows that T ∼ −S and

therefore that y = [−x]. Finally, it is easy to check that Φ(r + s) = Φ(r) + Φ(s)
and Φ(rs) = Φ(r)Φ(s) for r, s ∈ Q and that Φ(−r) = −Φ(r) for r ∈ Q.

Lemma A.4 For any S ∈ R̃, [S] �= 0 if and only if there exists an r ∈ Q
+ and an

i such that either S( j) ≤ −r for all j ≥ i or S( j) ≥ r for all j ≥ i . Moreover, if
x, y ∈ R, then xy = 0 if and only if either x = 0 or y = 0. Finally, if x �= 0, then
there exists a unique 1

x ∈ R such that x 1
x = 1, and Φ

( 1
r

) = 1
Φ(r)

for r ∈ Q \ {0}.
Proof Because [S] �= 0, there exists an r ∈ Q

+ and arbitrarily large j ∈ Z
+ for

which |S( j)| ≥ r . Now choose i so that |S( j)− S(i)| ≤ r
4 for j ≥ i . If S( j) ≥ r for

some j ≥ i , then S( j) ≥ r
2 for all j ≥ i . Similarly, if S( j) ≤ −r for some j ≥ i ,

then S( j) ≤ − r
2 for all j ≥ i .

It is obvious that x0 = 0 for any x ∈ R. Now suppose that xy = 0, where
x = [S] and y = [T ]. If x �= 0, use the preceding to choose r0 ∈ Q

+ and i0 such that
|S( j)| ≥ r0 for j ≥ i0. Then |S( j)T ( j)| ≥ r0|T ( j)| for all j ≥ i0. Since xy = 0,
for any r ∈ Q

+ there exists an i ≥ i0 such that |S( j)T ( j)| ≤ r0r and therefore
|T ( j)| ≤ r for j ≥ i . Hence T ∼ 0 and so y = 0.

Finally, assume that x �= 0. To see that there is at most one y for which xy = 1,
suppose that xy1 = 1 = xy2. Then x(y1− y2) = 0, and so, since x �= 0, y1− y2 = 0.
But this means that −y2 = −y1 and therefore that y1 = y2. To construct a y for
which xy = 1, suppose that x = [S] and choose r ∈ Q

+ and i so that |S( j)| ≥ r
for j ≥ i . Next, define S′ so that S′( j) = r for 1 ≤ j ≤ i and S′( j) = S( j) for
j > i . Then S′ ∼ S, and so x = [S′]. Finally, define T ( j) = 1

S′( j) for all j ∈ Z
+,

and observe that T ∈ R̃ and S′T = 1. Hence x[T ] = 1, and so we can take 1
x = [T ].

Obviously, Φ
( 1

r ) = 1
Φ(r)

for r ∈ Q \ {0}. �

We now introduce an order relation on R. Given S, T ∈ R̃, write S < T if there
exists an r ∈ Q

+ and an i such that S( j) + r ≤ T ( j) for j ≥ i . If S′ ∼ S and T ′ ∼ T ,
then S < T =⇒ S′ < T ′. Indeed, choose r ∈ Q

+ and i0 so that S( j) + r ≤ T ( j)
for all j ≥ i0, and then choose i ≥ i0 so that |S′( j) − S( j)| ∨ |T ′( j) − T ( j)| ≤ r

4
for j ≥ i . Then S′( j) + r

2 ≤ T ′( j) for j ≥ i . Thus, we can write x < y if x = [S]
and y = [T ] with S < T . Further, if we write x > y when y < x , then we can say
that, for any x, y ∈ R, x < y, x > y, or x = y. To see this, assume that x �= y. If
x = [S] and y = [T ], then, by Lemma A.4, there exists an r ∈ Q

+ and i such that
S( j) − T ( j) ≤ −r for all j ≥ i or S( j) − T ( j) ≥ r for all j ≥ i . In the first case
x < y and in the second x > y. It is easy to check that x < y ⇐⇒ −x > −y, and
clearly, for any r, s ∈ Q, r < s ⇐⇒ Φ(r) < Φ(s). Finally, we will write x ≤ y if
x < y or x = y and x ≥ y if y ≤ x .

Define |x | as in (4). Using Lemma A.4, one sees that if x = [S] then |x | = [|S|].
Clearly x = 0 ⇐⇒ |x | = 0. In fact, x = 0 if and only if |x | ≤ r for all
r ∈ Q

+. In addition, |xy| = |x ||y| and the triangle inequality |x + y| ≤ |x | + |y|
holds for all x, y ∈ R. The first of these is trivial. To see the second, assume that
|x + y| �= |x | + |y|. Then either |x + y| < |x | + |y| or |x + y| > |x | + |y|.
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But if |x + y| > |x | + |y|, x = [S], and y = [T ], then we would have the
contradiction that |S( j)+T ( j)| > |S( j)|+|T ( j)| for large enough j . Now introduce
the notion of convergence described in (4). To see that {xn : n ≥ 1} can converge to
at most one x , suppose that it converges to x and x ′. Then, by the triangle inequality,
|x ′ − x | ≤ |x ′ − xn| + |xn − x | for all n, and so |x ′ − x | ≤ r for all r ∈ Q

+.
Finally, notice that |(x ′ + y) − (x + y)| = |x ′ − x |, |x ′y − xy| = |x ′ − x ||y|, and,
if xx ′ �= 0,

∣
∣ 1

x ′ − 1
x | = |x ′−x |

|x ′||x | , which means that the addition and multiplication
operations on R as well as division on R \ {0} are continuous with respect to this
notion of convergence.

Lemma A.5 For every x ∈ R there exists a sequence {rn : n ≥ 1} ⊆ Q such that
rn −→ x, and so Φ(Q) is dense in R.

Proof Suppose that x = [S], and set rn = [Rn]where Rn( j) = S(n) for all j ∈ Z
+.

Given r ∈ Q
+, choose m so that |S(n) − S(m)| ≤ r

2 for n ≥ m. Then

|Rn( j) − S( j)| = |S(n) − S( j)| ≤ |S(n) − S(m)| + |S(m) − S( j)| ≤ r

for n ∧ j ≥ m, and so |rn − x | = [|Rn − S|] ≤ r for n ≥ m. Thus rn −→ x . �
As a consequence of the preceding density result, we know that if x < y then

there is an r ∈ Q such that x < r < y. Therefore, if xn −→ x then for all
ε ∈ (0,∞) ≡ {x ∈ R : x > 0} there is an m such that |xn − x | < ε for all n ≥ m.

The final step is to show that R is complete with respect to this notion of conver-
gence, and the following lemma will allow us to do that.

Lemma A.6 Suppose that {xn : n ≥ 1} ⊆ R and that for each r ∈ Q
+ there is

an m such that |xn − xm | ≤ r for n ≥ m. Then there exists a Cauchy convergent
sequence {Sn : n ≥ 1} ⊆ R̃ such that Sn ∈ xn for each n.

Proof Choose Sn ∈ xn for eachn. Then for each (k, n) ∈ (Z+)2 there existsmk ∈ Z
+

with the property that for any n ≥ mk there is a jk,n ∈ Z
+ such that

|Sn( j) − Smk ( j)| ≤ 1

k
if j ≥ jk,n .

In addition, for each (k, n) ∈ (Z+)2 there exists an ik,n ≥ jk,n such that

|Sn( j) − Sn(ik,n)| ≤ 1

k
for all j ≥ ik,n,

and, without loss in generality, we will assume that mk1 < mk2 if k1 < k2 and
ik1,n1 ≤ ik2,n2 if k1 ≤ k2 and n1 ≤ n2.

Now define S′
n ∈ R̃ so that S′

n(k) = Sn(ik,n) for k ∈ Z
+. By LemmaA.1, S′

n ∈ xn .
Furthermore, if n ≥ mk and � ≥ k, then

|S′
n(�) − S′

mk
(�)| ≤ |Sn(i�,n) − Smk (i�,n)| + |Smk (i�,n) − Smk (ik,mk )| ≤ 2

k .

Thus {S′
n : n ≥ 1} is Cauchy convergent. �
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Given Lemmas A.6 and A.3, it is easy to see that if {xn : n ≥ 1} ⊆ R is Cauchy
convergent inR, then there is an x ∈ R to which it converges. Indeed, by LemmaA.6,
there exist Sn ∈ xn such that {Sn : n ≥ 1} is Cauchy convergent in R̃, and therefore,
by Lemma A.3, there is an S to which it converges. Since this means that for each
r ∈ Q

+ there exists a (m, i) ∈ (Z+)2 such that |Sn( j) − S( j)| < r
2 for n ≥ m and

j ≥ i , |xn −[S]| < r for n ≥ m. With this result, we have completed the construction
of a model for the real numbers.

To relate our model to more familiar ways of thinking about the real numbers,
recall Exercise 1.7. It was shown there that if D ≥ 2 is an integer and Ω̃ is the
set of maps ω : N −→ {0, . . . , D − 1} for which ω(0) �= 0 and ω(k) �= D − 1
for infinitely many k’s, then for every x ∈ (0,∞) there is a unique nx ∈ Z and
a unique ωx ∈ Ω̃ such that x = ∑∞

k=0 ωx (k)Dnx −k . Of course, if x < 0 and we
define ωx : N −→ {0,−1, . . . ,−(D − 1)} by ωx (k) = −ω|x |(k), then the same
equation holds. Therefore, if we define −ω : N −→ {0,−1, . . . ,−(D − 1)} by
(−ω)(k) = −ω(k) for all k ∈ N, then we can identify R with

{(0, ω0)} ∪ {(n,±ω) : (n, ω) ∈ Z × Ω̃},

where ω0 : N −→ Z is given by ω0(k) = 0 for all k ∈ N. In terms of Hausdorff’s
construction, this would correspond to choosing the partial sums

∑ j
k=0 ωx (k)Dnx −k

as the canonical representative from the equivalence class of x . The reason for work-
ing with equivalence classes rather than such a canonical choice of representatives is
that they afford us the freedom that we needed in the proof of Lemma A.6. Namely,
it is not true that for every choice of Sn ∈ xn the sequence {Sn : n ≥ 1} is Cauchy
convergent in R̃ just because {xn : n ≥ 1} is Cauchy convergent in R. For example,
consider {Sn : n ≥ 1} where Sn( j) = 0 for 1 ≤ j < n and Sn( j) = 1 for j ≥ n.
Then [Sn] = 1 for every n ≥ 1, and yet {Sn : n ≥ 1} is not Cauchy convergent.

http://dx.doi.org/10.1007/978-3-319-24469-3_1
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A
Abel limit, 38

integral version, 97
Absolutely convergent

product, 36, 46
series, 4, 46

Absolutely monotone function, 92
Analytic function, 52
Arclength, 108
Arithmetic-geometric mean inequality, 40
Asymptotic limit, 31
Azimuthal angle, 160

B
Bernoulli numbers, 85
Beta function, 136
Boundary of set, 120
Bounded set, 100
Branches of the logarithm function, 58

C
Cantor set, 38
Cardiod

area and length of, 172
description of, 56

Cauchy’s convergence criterion, 3
Cauchy’s equation, 177

for functions on R, 39
Cauchy’s integral formula, 178, 185
Cauchy–Riemann equations, 53, 175
Center of gravity, 172
Chain rule, 33, 121

for analytic functions, 58
Change of variables formula, 73
Choice function, 60, 130

Closed path, 184
Closed set

in C, 46
in R, 6
in R

N , 100
Closure of set

in R, 6
in C, 46
in R

N , 100
Compact set, 100

finite open cover property, 121
Comparison test, 5
Complement of set, 6
Complete, 3
Complex

conjugate, 45
number, 45

imaginary part, 45
real part, 45

plane, 45
Composite function, 32
Conditionally convergent series, 5
Connected set, 8, 51, 121

path connected, 101
Continuous function

at x , 9
on C, 46
on R, 9
on R

N , 101
uniformly, 11

Converges, 1
absolutely for series, 4
for sequences, 1
infinite product, 34
series, 3

Convex
function, 17, 123
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set, 123
Cylindrical coordinates, 156

D
Dense set, 11
Derivative, 14
Differentiable function

at x in R, 13
at z in C, 50
at x in R

N , 102
continuously, 14
n-times, 26, 103
on a set, 14

Differentiation
chain rule, 33, 121
product rule, 14
quotient rule, 15

Dini’s lemma, 122
Directional derivative, 102
Disk in C, 46
Divergence

of vector field, 162
theorem, 164

E
Equicontinuous family, 122

uniformly, 122
Euclidean length, 99
Euler’s constant, 30
Euler’s formula, 49
Exact vector field in R

2, 169
Exponential function, 22, 47
Exterior volume, 139

F
Finite variation, 88
First derivative test, 24, 104
Flow property, 118
Fock space, 207
Fourier series, 82
Fubini’s Theorem, 132
Fundamental theorem of algebra, 179
Fundamental Theorem of Calculus, 69

G
Gamma function, 91
Geometric series, 5
Gradient, 103
Gromwall’s inequality, 115

H
Harmonic series, 5

growth of, 30
Heat equation, 126
Heine–Borel theorem, 100
Hessian, 105
Hilbert space, 207
Hilbert transform, 96
Hyperbolic sine and cosine, 54

I
Indefinite integral, 70
Indicator function, 140
Infimum, 8
Inner product, 99
Integral

along a path, 109
complex-valued on [a, b], 66
on a rectangle in R

N , 130
over a curve, 111
over piecewise parameterized curve, 113
real-valued on [a, b], 60

Integration by parts, 96
formula, 71

Interior of set
in R, 6
in C, 46
in R

N , 100
Interior volume, 139
Intermediate value

property, 10
theorem, 10

Intermediate value property
for derivatives, 40
for integrals, 143

Interval, 6
Inverse function, 12
Iterated integral, 135

K
Kronecker delta, 102

L
L’Hôpital’s rule, 25
Laplace transform, 97
Leibniz’s formula, 14
Length

of a parameterized curve, 112
of piecewise parameterized curve, 113

Limit inferior, 8
Limit point, 3
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Limit superior, 8
Lindelöf property, 121
Liouville’s theorem, 180
Lipschitz continuous, 116

Lipschitz constant, 116
Logarithm function, 22, 50

integral definition, 93
principal branch, 58

M
Maximum, 8
Mean value theorem

for analytic functions, 179
for differentiable functions, 24

Meromorphic extension, 203
Minimum, 8
Multiplicity of a root, 179

N
Newton’s law of gravitation, 158, 172
Non-overlapping, 60, 128

parameterized curves, 113
Normal vector, 163

O
Open

ball, 100
in C, 46
set, 6, 100

Orthonormal basis, 147
for Fock space, 207

Outward pointing unit normal vector, 163

P
Parameterized curve, 110

parameterization of, 111
piecewise, 113

Parseval’s equality, 82
Partial fractions, 92, 188
Partial sum, 3
Path connected, 101, 121
Periodic

extension, 80
function, 76

Piecewise smooth path, 184
Poincaré inequality, 93
Polar angle, 160
Polar coordinates

in R
2, 153

in R
3, 160

Polar representation in complex plane, 44
Power series, 46
Prime number theorem, 193
Product

converges, 34
diverges to 0, 34

Product rule, 14

Q
Quotient rule, 15

R
Radius of convergence, 47
Ratio test, 5
Real numbers

construction, 209
uncountable, 38

Residue calculus, 186
Residue of a function, 186
Riemann hypothesis, 203
Riemann integrable, 60

absolutely, 67
on Γ ⊆ R

N , 143
on a rectangle in R

N , 130
Riemann integral

real-valued on [a, b], 60
complex-valued on [a, b], 66
on a rectangle in R

N , 130
over Γ ⊆ R

N , 143
rotation invariance of, 150
translation invariance of, 132

Riemann measurable, 140
Riemann negligible, 131
Riemann sum, 60, 130

lower, 60
upper, 60

Riemann zeta function, 82, 200
at even integers, 84

Riemann–Stieltjes
integrable, 85
integral, 85

Roots of unity, 50
Rotation invariance, 147

S
Schwarz’s inequality, 56

for RN , 100
for Fock space, 206

Second derivative test, 40, 104
Series, 3

absolute vs. conditional convergence, 36
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absolutely convergent, 4
comparison test, 5
conditionally convergent, 5
converges, 3
radius of convergence, 47
ratio test, 5

Simple roots, 190
Slope, 14
Space-filling curve, 122
Standard basis, 102
Star shaped region in R

2, 154
center, 154
piecewise smooth, 164
radial function, 154

Stirling’s formula, 31, 73
for Gamma function, 137

Subsequence, 3
Summation by parts, 37
Supremum, 8

T
Tangent vector, 162
Tauberian theorems, 196
Taylor

polynomial, 27

remainder, 27
theorem for functions on R, 26, 71
theorem for functions on R

N , 106, 124
Translation invariance of integrals, 132
Triangle inequality

for C, 45
for R, 2
for RN , 100
for Fock space, 206

U
Uniform convergence, 13
Uniform norm, 64

V
Vector field, 113
Volume, 140

exterior, 139
interior, 139

W
Wallis’s formula, 71
Winding number of a path, 186, 205
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