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This book is dedicated to Elliot Gorokhovsky



Preface

This book started out as a set of notes that I wrote for a freshman high school
student named Elliot Gorokhovsky. I had volunteered to teach an informal seminar
at Fairview High School in Boulder, Colorado, but when it became known that
participation in the seminar would not be for credit and would not appear on any
transcript, the only student who turned up was Elliot.

Initially I thought that I could introduce Elliot to probability theory, but it soon
became clear that my own incompetence in combinatorics combined with his
ignorance of analysis meant that we would quickly run out of material.
Thus I proposed that I teach him some of the analysis that is required to understand
non-combinatorial probability theory. With this in mind, I got him a copy of
Courant’s venerable Differential and Integral Calculus. However, I felt that I ought
to supplement Courant’s book with some notes that presented the same material
from a more modern perspective. Rudin’s superb Principles of Mathematical
Analysis provides an excellent introduction to the material that I wanted Elliot to
learn, but it is too abstract for even a gifted high school freshman. I wanted Elliot to
see a rigorous treatment of the fundamental ideas on which analysis is built, but I
did not think that he needed to see them couched in great generality. Thus I ended
up writing a book that would be a hybrid: part Courant and part Rudin and a little of
neither. Perhaps the most closely related book is J. Marsden and M. Hoffman’s
Elements of Classical Analysis, although they cover a good deal more differential
geometry and do not discuss complex analysis.

The book starts with differential calculus, first for functions of one variable (both
real and complex). To provide the reader with interesting, concrete examples,
thorough treatments are given of the trigonometric, exponential, and logarithmic
functions. The next topic is the integral calculus for functions of a real variable, and,
because it is more intuitive than Lebesgue’s, I chose to develop Riemann’s
approach. The rest of the book is devoted to the differential and integral calculus for
functions of more than one variable. Here too I use Riemann’s integration theory,
although I spend more time than is usually allotted to questions that smack of
Lebesgue’s theory. Prominent space is given to polar coordinates and the
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divergence theorem, and these are applied in the final chapter to a derivation of
Cauchy’s integral formula. Several applications of Cauchy’s formula are given,
although in no sense is my treatment of analytic function theory comprehensive.
Instead, I have tried to whet the appetite of my readers so that they will want to find
out more. As an inducement, in the final section I present D.J. Newman’s “simple”
proof of the prime number theorem. If that fails to serve as an enticement,
nothing will.

As its title implies, the book is concise, perhaps to a degree that some may feel
makes it terse. In part my decision to make it brief was a reaction to the flaccid, 800
page calculus texts that are commonly adopted. A second motivation came from my
own teaching experience. At least in America, for many, if not most, of the students
who study mathematics, the language in which it is taught is not (to paraphrase
H. Weyl) the language that was sung to them in their cradles. Such students do not
profit from, and often do not even attempt to read, the lengthy explanations with
which those 800 pages are filled. For them a book that errs on the side of brevity is
preferable to one that errs on the side of verbosity. Be that as it may, I hope that this
book will be valuable to people who have some facility in mathematics and who
either never had a calculus course or were not satisfied by the one that they had.
It does not replace existing texts, but it may be a welcome supplement and, to some
extent, an antidote to them. If a few others approach it in the same spirit and with
the same joy as Elliot did, I will consider it a success.

Finally, I would be remiss to not thank Peter Landweber for his meticulous
reading of the multiple incarnations of my manuscript. Peter is a respected algebraic
topologist who, now that he has retired, is broadening his mathematical expertise.
Both I and my readers are the beneficiaries of his efforts.

Daniel W. Stroock
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Chapter 1
Analysis on the Real Line

1.1 Convergence of Sequences in the Real Line

Calculus has developed systematic procedures for handling problems in which rela-
tionships between objects evolve and become exact only after one passes to a limit.
As a consequence, one often ends up proving equalities between objects by what
looks at first like the absurd procedure of showing that the difference between them
is arbitrarily small. For example, consider the sequence of numbers % for integers
n > 1. Clearly, % is not O for any integer. On the other hand, the larger n gets, the
closer % is to 0. To describe this in a mathematically precise way, one says % con-
verges to 0, by which one means that for any number € > 0 there is an integer n. such
that |%| < eforalln > n.. More generally, given a sequence {x, : n > 1} C R,! one
says that {x, : n > 1} convergesinRif thereisanx € R with the property that for all
€ > 0 there exists an n, € ZT such that |x, — x| < € whenever n > n,, in which case
one says that {x, : n > 1} converges to x and writes x = lim,,_, s X, Or x,, — x. If
for all R > 0 there exists an ng such that x, > R for all n > np, then one says that
{x, : n > 1} converges to co and writes lim,,_, o X, = 00 or x,, — oo. Similarly, if
{—x, : n > 1} converges to co, then one says that {x, : n > 1} converges to —oo
and writes lim,,_, oo X, = —00 or x, — —o0. Until one gets accustomed to this sort
of thinking, it can be disturbing that the line of reasoning used to prove convergence
often leads to a conclusion like |x, — x| < 5S¢ for sufficiently large n’s. However, as
long as this conclusion holds for all € > 0, it should be clear that the presence of 5
or any other finite number makes no difference.

Given sequences {x, : n > 1} and {y, : n > 1} that converge, respectively,
tox € Rand y € R, one can easily check that lim,,_, o (ax, + By,) = ax + [y
for all o, 8 € R and that lim,_, o0 X, y» = xy. To prove the first of these, simply
observe that

IWe will use Z to denote the set of all integers, N to denote the set of non-negative integers, and
7T to denote the set of positive integers. The symbol R denotes the set of all real numbers. Also,
we will use set theoretic notation to denote sequences even though a sequence should be thought
of as a function on its index set.

© Springer International Publishing Switzerland 2015 1
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2 1 Analysis on the Real Line

|(axy + Byn) — (ax + BY)| < lallxy — x|+ 1Bllyn — y| — 0 asn — oo.

In the preceding, we used the triangle inequality, which is the easily verified statement
that |a + b| < |a| + |b| for any pair of real numbers a and b. To prove the second,
begin by noting that, because |y,| = |y + (v — Y)| < [y[ + |y — | < [y[ + 1 for
large enough n’s, there is an M < oo such that |y, | < M for all n > 1. Hence,

[Xuyn — xy| = [(xn — X)yu + x(Yn — VI =< [x0 — X|Iyul + [x[|yn — ¥l
< Ml|x, — x|+ |x|ly —y] — 0 asn — oo.

In both these we have used a frequently employed trick before applying the triangle
inequality. Namely, because we wanted to relate the size of y, to that of y and the
difference between y, and y, we added and subtracted y before applying the triangle
inequality. Similarly, because we wanted to estimate the size of x,y, — xy in terms
of sizes of x, — x and y, — y, it was convenient to add and subtract xy,,. Finally,

1
Xp —>x#0 = — — —.
X X

Indeed, choose m so that |x,, — x| < I)zc—‘ for n > m. Then

|x|
x| + 7 > |xul + [xp — x| = |x],

and so |x,| > % for n > m. Hence

1 1

Xn X

_|xn_x| 2|xp — x|

< 3 forn > m,
| [|x] x|

1 1
and so = —

. n . .
Notice that if x, — x € R and n. is chosen for € > 0 as above, then
[ — Xm| < |xp — x|+ [x — x| <2¢ form,n > ne.

That is, if {x, : n > 1} converges to some x € R, then the x,,’s must be getting
arbitrarily close to one another as n — oo. Now suppose that {x, : n > 1} is a
sequence whose members are getting arbitrarily close to one another in the preceding
sense. Then there are two possibilities. The first is that there is an empty hole in R
and the x,’s are all crowding around it, in which case there would be nothing for
them to converge to. The second possibility is that there are no holes in R and
therefore that x,,’s cannot be getting arbitrarily close to one another unless there is
an x € R to which they are converging. By giving a precise description of the real
numbers, one can show that no holes exist, but, because it would be distracting to
give such a description here, it has been deferred to the Appendix. For now we will
simply accept the consequence of there being no holes in R. That is, we will accept
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the statement, known as Cauchy’s convergence criterion, that there is an x € R to
which {x, : n > 1} converges if, for each ¢ > 0, there is an n, > 1 such that
|x,; — x4| < € whenever n, n’ > n.. A space with a notion of convergence for
which Cauchy’s criterion guarantees convergence is said to be complete. Notice that,
because |x,; — Xxu| < |xp — Xm| + |xn — xml, {xn : n > 1} satisfies Cauchy’s
criterion if and only if, for each ¢ > 0, there is an m such that |x,, — x,,| < € for
alln > m.

As a consequence of Cauchy’s criterion, it is easy to show that a non-decreasing
sequence {x, : n > l}isconvergentin Rifitis bounded above (i.e., thereisa C < 0o
such that x, < x,4+1 < C for all n > 1). Indeed, suppose that it didn’t and therefore
that there exists an € > 0 with the property that for every m there is an n > m such
that x,, — x;,; > €. Then we could choose 1 = n; <ny < --- < ng < --- so that
Xy —Xn, > €forall k, which would mean that C > x,,, > x,, + ke forall k, which
is impossible. Similarly, if {x, : n > 1} is non-increasing and bounded below (i.e.,
there isa C < oo such that —C < x,4+1 < x, for all n), then {x, : n > 1} converges
in R. In fact, this follows from the preceding by considering {—x,, : n > 1}. Finally,
if {x,, : n > 1} is non-decreasing and not bounded above, then x,, — oo, and if it is
non-increasing and not bounded below, then x,, — —oo0.

If{x, : n>1}isasequenceand 1 < n; < --- < ng < ---, then we say that
{xn, : kK > 1}is asubsequence of {x, : n > 1}.Itshould be clear thatif {x, : n > 1}
converges in R or to o0, then so does every subsequence of {x, : n > 1}. On
the other hand, even if {x, : n > 1} doesn’t converge, nonetheless it may admit
subsequences that do. For instance, if x,, = (—1)", then xp,—; — —1 and xp,, — 1.
More generally, as will be shown in Theorem 1.3.3 below, if {x,, : n > 1} is bounded
(i.e., there is a C < oo such that |x,| < C for all n), then {x, : n > 1} admits a
convergent subsequence. Finally, x is said to be a limit point of {x,, : n > 1} if there
is a subsequence that converges to x.

1.2 Convergence of Series

One often needs to sum an infinite number of real numbers. That is, given a sequence
{a;, : m = 0} C R, one would like to assign a meaning to

o
Zam:ao_i_..._l_an_i_....
m=0

To do this, one introduces the partial sum S, = Zﬁzzo am = ag—+ - - - +a, and takes
Z;’fzo apm = lim,_, « S, when the limit exists, in which case one says that the series
> o am converges. Observe that if > a,, converges in R, then, by Cauchy’s
criterion, it must be true thata, = S,, — S,,—-1 — 0 asn — oo.

The easiest series to deal with are those whose summands a,, are all non-negative.
In this case the sequence {S,, : n > 0} of partial sums is non-decreasing and therefore,
depending on whether or not it stays bounded, it converges either to a finite number or
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to 4+o00. This observation is useful even when the summands a,,’s can take both signs.
Namely, given {a,, : m > 0}, consider the series corresponding to {|a,,| : m > 0}.
Clearly,

n2 np [e’e} ni
1Si = Sl =| D am| < D laml= D laml = D lan]
m=n1+1 m=n1+1 m=0 m=0

for ny < ny. Hence, if Z;’fzo |am| < oo and therefore

00 ni
Z | — Z lam| —> 0 asny — oo,
m=0 m=0

then {S, : n > 0} satisfies Cauchy’s criterion and is therefore convergent in
RR. For this reason, one says that the series > a is absolutely convergent if

> o lam| < oo.
It is important to recognize that a series may be convergent in R even if it is not
absolutely convergent.

Lemma 1.2.1 Suppose {a, : n > 0} is a non-increasing sequence that converges
10 0. Then the series Y v_o(—1)"a,, converges in R. In fact,

o n
D =D = D (=) "aw| < ay.
m=0 m=0

Proof Set

n - .
1 ifniseven
T, = )" =
" Z( ) 0 ifn is odd.

m=0
Then (cf. Exercise 1.6 for a generalization of this argument)

n

n n n—1
Z(_l)mam =ap+ Z(Tm —Tn—1)am = ap + z Tnam — Z TinGm+1
m=0

m=0 m=1 m=1
n—1

= Tya, + Z Tn(am — amy1),

m=0
and so

ny ni ny—1

Z(_l)mam - Z(_l)mam = Tnzanz - Tnlanl + Z T (am — am+l)~

m=0 m=0 m=ni
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Note that
no—1 ny—1
0= Z Tm(am_am—i-l) = E (arn_am+l)=an1 —dap, = any,
m=n m=n

and therefore | > "2\ (—1)"ay — > 0o (=)™ an| < 2a,,, which, by Cauchy’s cri-
terion, shows that the series converges in R. In addition, one has

00 n
—ay, < —Tya, < Z(_])mam - Z(_l)mam = ay. 0
m=0

m=0

Lemma 1.2.1 provides lots of examples of series that are convergent but not
absolutely convergent in R. Indeed, although we know that lim,, . a;,, = 0 if
> oo am converges in R, >">°  a,, need not converge in R just because a,, —> 0.
For example, since

261 =1 [k
1 1 14
E—:E E — z§—>oo as £ — oo,
m m
m=1 k=0 \ m=2k

the harmonic series > o_ ,1—11 converges to oo and therefore does not converge in

R. Nonetheless, by Lemma 1.2.1, 23,1021 (%m does converge in R. In fact, see
Exercise 1.6 to find out what it converges to.

A series that converges in R but is not absolutely convergent is said to be condi-
tionally convergent. In general determining when a series is conditionally convergent
can be very tricky (cf. Exercise 1.5 below), but there are many useful criteria for
determining whether it is absolutely convergent. The basic reason is that if the series
anozo by, is absolutely convergent and if |a,,| < C|b;,| for some C < oo and all
m > 0, then > ay, is also absolutely convergent. This simple observation is
sometimes called the comparison test. One of its most frequent applications involves
comparing the series under consideration to the geometric series y - r™, where

O0<r<LIfS, =2 _or" thenrS, = 22111 " =S, +r"t — 1, and therefore
1—pnt+

Sp = Trl, which shows that >~ r" = 17— < 00. One reason why the geo-
metric series arises in applications of the comparison test is the following. Suppose
that {a,, : m > 0} € R and that |a,,+1| < r|a,| forsomer € (0, 1) and all m > my.
Then |ay,| < |am,|r™ "0 for allm > my, and so, if C = r =" max{|ao|, . .., |am,|},
then |a,,| < Cr™ for all m > 0. For obvious reasons, the resulting criterion is called
the ratio test.

Series whose summands decay at least as fast as those of the geometric series
are considered to be converging very fast and by no means include all absolutely
convergent series. For example, let a > 1, and consider the series > o, m—la To see
that this series is absolutely convergent, we use the same idea as we did when we
showed that the harmonic series diverges. That is,
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261 0—1 f[2kt1_g -1
1 ok 1
—= E E — | < E 2=k < < o0
me « — — 1 zlfa

m=1 k=0 \ m=2k k=0

00 1

Of course, if « € [0, 1], then n=® > n~!, and therefore anl sa = 00 since

1
ey = 00

1.3 Topology of and Continuous Functions on R

A subset I of R is called an interval if x € I whenever there exista, b € I for which
a < x < b. In particular, if a, b € R with a < b, then

(a,b)y={x:a<x<b}, (a,b]={x:a < x <b},

[a,b) ={x:a<x<b}, [a,b]={x:a <x <b}, (13.1)

(—oo,al=1{x:x <a}, (—o00,a)={x:x < a},

[b,00) ={x: x>b}, and (b,00) ={x: x > b}

are all intervals, as is R = (—o0, 00). Note that if @ = b, then (a, b), (a, b], and
[a, b) are all empty. Thus, the empty set @ is an interval.

A subset G C R is said to be open if either G = @ or, for each x € G, there is
ad > 0 such that (x — J,x + ) € G. Clearly, the union of any number of open
sets is again open, and the intersection of a finite number of open sets is again open.
However, the countable intersection of open sets may not be open. For example, the
interval (a, b) is open for every a < b, but

oo

0= (V1)

n=1

is not open.

A subset F' C R is said to be closed if its complement F C= R\ F is open. Thus,
the intersection of an arbitrary number of closed set is closed, as is the union of a
finite number of them. Given any set § C R, the interior int(S) of S is the largest
open subset of S. Equivalently, it is the union of all the open subsets of S. Similarly,
the closure S of S is the smallest closed set containing S, or, equivalently, it is the
intersection of all the closed sets containing S. Clearly, an open set is equal to its
own interior, and any closed set is equal to its own closure.

Lemma 1.3.1 The subset F is closed if and only if x € F whenever there exists a
sequence {x, : n > 1} C F such that x, — x. Moreover, forany S C R, x € int(S)
ifand only if (x — 6, x + 6) C S for some § > 0, and x € § if and only if there is a
sequence {x, : n > 1} C § such that x,, — x.
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Proof Suppose that F is closed, and set G = FC. Let {x, : n > 1} € F bea
sequence that converges to x. If x were not in F, it would be an element of the open
set G. Thus there would exist a § > 0 such that (x — §, x + §) C G. But, because
Xp — X, |x, — x| < § and therefore x,, € (x — §, x + ) for all sufficiently large
n’s, and this would mean that x, € F N G for all large enough n’s. Since F N G is
empty, this shows that x must have been in F'.

Now assume that x € F whenever there exists a sequence {x, : n > 1} C F
such that x, — x, and set G = FC. To see that G is open, suppose not. Then there
would be some x € G with the property that for all n > 1 there is an x,, € F such
that |[x — x,| < }l But this would mean that x, — x and therefore that x € F.

Suppose that x € int(S). Then there is an open G for which x € G C S. Hence
there is a 0 > 0 such that (x — §, x +0) € G C S. Conversely, if thereisa § > 0
for which (x — 6, x + §) C S, then, since (x — §, x + J) is an open subset of S,
x € int(S).

Finally, let x be an element of R to which no sequence {x, : n > 1} € §
converges. Then there must exist a § > 0 such that (x — §,x + ) N S = @. To see
this, suppose that no such § > 0 exists. Then, for each n > 1, there would exist
an x, € S such that |x — x,| < %, which would mean that x,, — x. Hence such a
6 > 0 exists. Butif (x —d,x + ) NS = @, then S is contained in the closed set
(x —0,x + 5)C, and therefore x ¢ S. Conversely, if x,, — x for some sequence
{xn, : n>1} C S, then x € F for every closed F 2 S, and therefore x € S. O

It should be clear that (a, b) and [a, b] are, respectively, the interior and closure of
[a, b], (a, b], [a, D), and (a, b), that (a, c0) and [a, 00) are, respectively, the interior
and closure of [a, c0) and (a, 00), and that (—oo, b) and (—o0, b] are, respectively,
the interior and closure of (—o0, b) and (—o0, b]. Finally, R = (—o0, c0) and ¢ are
both open and closed.

Lemma 1.3.2 Given a non-empty S C R, set I ={y : y > x for all x € S}. Then
I is a closed interval. Moreover, if S is bounded above (i.e., there is an M < o0
such that x < M for all x € S), then there is a unique element sup S € R with the
property thaty > sup S > x forall x € Sand y € 1. Equivalently, I = [sup S, oo)

Proof 1Tt is clear that I is a closed interval that is non-empty if S is bounded above.
In addition, if both y; and y, have the property specified for sup S, then y; < y, and
y2 < y1, and therefore y; = y».

Assuming that S is bounded above, we will now show that, for any § > 0, there
existan x € S and a y € I such that y — x < ¢. Indeed, suppose this were not true.
Then there would exist a § > O such that y > x + 24 forall x € Sand y € I. Set
S ={x+d: x eS8} Then S NI = @, and so for every x € S there would exist
an x’ € S such that x” > x + §. But this would mean that for any x € S andn > 1,
there would exist an x,, € S such that x,, > x + nd, which, because S is bounded
above, is impossible.

For each n > 1, choose x,, € S and n, € I so thatn, < x, + %, and set
Yn =N1 A -+ Any. Then {y, : n > 1} is a non-increasing sequence in /, and so it
has a limit ¢ € I. Obviously, [c¢, c0) € I, and therefore x < ¢ for all x € S. Finally,
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suppose that y € I.Theny+% zxn—i—% >y, >cforalln > 1,and so y > c.
Hence,c =supSand I = [sup, S, 00). ]

The number sup S is called the supremum of S. If # # S C R is bounded below,
then there is a unique element inf S € R, known as the infimum of S, such that
x >inf Sforallx € Sand y < inf Sif y < x forall x € S. To see this, simply
take inf § = —sup{—x : x € S}. Starting from Lemma 1.3.2, it is an easy matter
to show that any non-empty interval [ is one of the sets in (1.3.1), where a = inf 1
if I is bounded below and b = sup I if I is bounded above. Notice that, although
one or both sup S and inf S may not be elements of S, whenever one of them exists,
it must be an element of S. When sup S € S, it is often referred to as the maximum
of S and is written as max S instead of sup S. Similarly, when inf S € S, it is called
the minimum of S and is denoted by min S. Finally, we will take sup S = oo if
S is unbounded above and inf § = —oo if it is unbounded below. Notice that if
{x, : n > 1} is non-decreasing, then x, —> sup,~.; X, = sup{x, : n > 1}, and that
Xxp —> inf,>1 x, if it is non-increasing. B

Given a bounded sequence {x, : n > 1} C R, set y,, = inf{x, : n > m} and
Zm = sup{x, : n > m}. Then {y, : m > 1} is a non-decreasing sequence that
is bounded above, and {z,, : m > 1} is a non-increasing sequence that is bounded
below. Thus the limit inferior and limit superior, respectively,

lim x, = lim inf{x,: n >m} and lim x, = lim sup{x,: n > m}
— 00 m— 00 n— 00 m— 0o

exist in R. If {x,, : n > 1} is not bounded above, then lim,_, oo X, = 00, and if it is

unbounded below, then lim,,_, . ,x, = —oc.

Theorem 1.3.3 Let {x, : n > 1} be a bounded sequence. Then both lim, _, . x,
and limy,_, oo X, are limit points of {x, : n > 1}. Furthermore, every limit point lies
in between these two.

Proof Set z,,, = sup{x,, : n > m}. Then z;,, — z = lim,_, c0X;,. Take mg = 0,
and, given my, ..., my_1, take my > my_y so that |x,, — Zm_;41] < % Then,
since zp,, ,+1 — 2,

|)ka _Zl < |)ka _ka_1+1|+|zmk_|+l _Z| =< l'|'|ka_1-|—l _Z| — 0
k

as k — oo. After replacing {x, : n > 1} by {—x, : n > 1}, one gets the

same conclusion about lim, ,  x,. Finally, if {x,, : k > 1} is any subsequence
that converges to some x, then x,, < z, and so x < lim,_,sox,. Similarly,
x>1lm, xp. g

A non-empty open set is said to be connected if and only if it cannot be writ-
ten as the union of two, disjoint, non-empty open sets. See Exercise 4.5 for more
information.

Lemma 1.3.4 Let G be a non-empty open set. Then G is connected if and only it is
an open interval.
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Proof Suppose that G is connected. If G were not an interval, then there would exist
a,be Gandc ¢ G suchthata < ¢ < b. Butthena € G; = G N (—o0,c¢),
beGy=GN(c,00),G1and G, areopen, G| NG, =@, and G = G U G,. Thus
G must be an interval.

Now assume that G is a non-empty open interval, and suppose that G = G1 U G2,
where G| and G are disjoint open sets. If G| and G, were non-empty, then we could
finda € G and b € G7, and, without loss in generality, we could assume thata < b.
Set ¢ = inf{x € (a,b) : x ¢ G1}. Because [a, b] C G, ¢ € G, and because G,C
is closed, ¢ ¢ G1. Hence ¢ € G,. But G5 is open, and therefore there exists an
x € G N(a, c), which would mean that ¢ # inf{x € (a, b) : x ¢ G}. Thus, either
G or G must have been empty. (]

If9d#A#SCRand f: § — R (i.e., f is an R-valued function on S), then
f is said to be continuous at an x € S if, for each € > 0, there is a § > 0 such
that | f(x") — f(x)| < € whenever x’ € § and |x" — x| < 4. A function is said
to be continuous on S if it is continuous at each x € §. For example, the function
f : R — [0,00) given by f(x) = |x| is continuous because, by the triangle
inequality, |x| < |y —x|+|yl, y| < [y—x|+ x|, and therefore ||y| —|x|| < |y —x|.

Lemma 1.3.5 Let H be a non-empty subset of R and f : H —> R. Then f is
continuous at x € H if and only if f(x,) —> f(x) for every sequence {x, :
n > 1} € H with x,, — x. Moreover, if H is open, then f is continuous on H if
and only if

f_l(G) ={x e H: f(x) € G} isopenforevery open G C R.

Proof 1f f iscontinuousatx € H ande > 0,choosed > Osothat|f(x")— f(x)| <€
when x’ € HN (x — J,x + 0). Given {x, : n > 1} € H with x, —> x, choose
ne so that |x, — x| < 6 when n > n.. Then | f(x,) — f(x)| < e forall n > n..
Conversely, suppose that f(x,) —> f(x) whenever {x,, : n > 1} € H converges
to x. If f were not continuous at x, then there would exist an ¢ > 0 such that, for
eachn > I thereisanx, € HN (x — 1, x 4+ 1) for which | f (x,) — f(x)| > €. But,
since x;, — X, no such sequence can exist.

Suppose that H is open and that f is continuous on H, and let G be open. Given
X € f_l (G),sety = f(x). Then, because G is open, there exists an € > 0 such that
(y—¢€,y+¢€) € G, andbecause f is continuous and H is open, thereisad > 0 such
that (x — d,x +0) C H and | f(§) — y| < € whenever £ € (x — J, x + ¢). Hence
(x —0,x+06) € f~1(G). Conversely, assume that f~!(G) is open whenever G is.
To see that f must be continuous, suppose that x € H, and set y = f(x). Given
€ > 0, x is an element of the open set f~! ((y —€6y+ e)), and so there exists a
6 > O such that (x — 6, x + ) C f_l((y —6y+ e)). Hence [f(§) — f(x)] < €
whenever | — x| < 0. O

From the first part of Lemma 1.3.5 combined with the properties of convergent
sequences discussed in Sect. 1.1, it follows that linear combinations, products, and,
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as long as the denominator doesn’t vanish, quotients of continuous functions are
again continuous. In particular, it is easy to check that polynomials are continuous.

Theorem 1.3.6 (Intermediate Value Theorem) Suppose that —oco < a < b < o0
and that f : [a, b] —> R is continuous. Then for every

y e (f@n fb), fla)v fb))

there is an x € (a, b) such that y = f(x). In particular, the interior of the image of
a open interval under a continuous function is again an open interval.

Proof There is nothing to do if f(a) = f(b), and so, without loss in generality,
assume that f(a) < f(b). Given y € (f(a), f(b)), set

Gi=GnNn{xe(ab): f(x) <yland G, =GN{x € (a,b): f(x) > y}.

Then G| and G are disjoint, non-empty subsets of sets (a, ») which, by Lemma 1.3.5,
are open. Hence, by Lemma 1.3.4, there exists an x € (a, b) \ (G1UG»), and clearly

y=fx). O

Here is a second, less geometric, proof of this theorem. Assume that f(a) < f(b)
and that y € (f(a), f(b)) is not in the image of (a, b) under f. Define H =
{x € [a,b] : f(x) < y}, and let ¢ = sup H. By continuity, f(c) < y. Suppose
e=y— f(c) > 0.Choose 0 < § < l% so that | f(x) — f(c)| < e whenever
0<x—c<20.Then f(c+0) = f(c)+ (f(c+5)—f(c)) < fe)+y—f(c) =y,
and so ¢ + ¢ € H. But this leads to the contradiction ¢ 4+ ¢ < sup H = c.

A function that has the property proved for continuous functions in this theorem
is said to have the intermediate value property, and, at one time, it was used as the
defining property for continuity because it is means that the graph of the function
can be drawn without “lifting the pencil from the page”. However, although it is
implied by continuity, it does not imply continuity. For example, consider the function
f :R — Rgiven by f(x) = sin}c when x # 0 and f(0) = 0. Obviously, f
is discontinuous at 0, but it nonetheless has the intermediate value property. See
Exercise 1.15 for a more general source of discontinuous functions that have the
intermediate value property.

Here is an interesting corollary.

Corollary 1.3.7 Leta < b and ¢ < d, and suppose that f is a continuous, one-
to-one mapping that takes [a, b] onto [c, d). Then either f(a) = c and f is strictly
increasing (i.e., f(x) < f(y)ifx <y), or f(a) =d and f is strictly decreasing.

Proof We first show that f(a) must equal either ¢ or d. To this end, suppose that
¢ = f(s) for some s € (a,b), and choose 0 < § < (b —s) A (s — a). Then
both f(s —d) and f(s + §) lie in (¢, d]. Choose ¢ < t < f(s — ) A f(s + 9).
Then, by Theorem 1.3.6, there exist s; € (s — d,s) and 52 € (s, s + J), such that
f(s1) =t = f(s2). But this would mean that f is not one-to-one, and therefore
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we know that f(s) # c for any s € (a, b). Similarly, f(s) # d for any s € (a, b).
Hence, either f(a) = cand f(b) =d or f(a) =d and f(b) = c.

Now assume that f(a) = c and f(b) = d. If f were not increasing, then there
wouldbe a < s1 < sp < bsuchthatc < = f(s2) < f(s1) = 11 < d. Choose
tp < t < t1. Then, by Theorem 1.3.6, there would exist an s3 € (a, s;) and an
s4 € (s1,52) such that f(s3) = ¢t = f(s4), which would mean that f could not
be one-to-one. Hence f is non-decreasing, and because it is one-to-one, it must be
strictly increasing. Similarly, if f(a) = d and f(b) = c, then f must be strictly
decreasing. (]

1.4 More Properties of Continuous Functions

A real-valued function f onanon-empty set.S C R is said to be uniformly continuous
on S if for each € > O thereisa d > Osuch that | f (x") — f(x)| < eforallx, x' € §
with [x” — x| < ¢. In other words, the choice of § depends only on € and not on the
point under consideration.

Theorem 1.4.1 Let K be a bounded, closed, non-empty subset of R.If f : K — R
is continuous on K, then it is bounded and uniformly continuous there. Moreover,
there is at least one point in K at which f achieves its maximum value, and at least
one at which it achieves its minimum value. Hence, if K is a bounded, closed interval,
then f takes every value between its maximum and minimum values.

Proof Suppose f were not uniformly continuous. Then, for some € > 0, there would
exist sequences {x, : n > 1} € K and {x], : n > 1} € K such that |x], — x,| < %
andyet | f (x;,) — f (x,)| > €. Moreover, by Theorem 1.3.3, we could and will assume
thatx, — x € K, in which case x;, — x as well. Now, setxJ | = x, and xJ, = x;,
forn > 1. Then x;, — x and | f(x},) — f(x%,_,)| = €, which is impossible since f
1S continuous at x.

To see that f is bounded, suppose it is not. Then for each n > 1 there exists an
x, € K at which | f(x;)| > n. Choose a subsequence {x,, : k > 1} that converges

to a point x € K. Then, because (cf. Exercise 1.9) | f| is continuous,
00 > |f(x)[ = lim |f(x,)] = lim ng = oo,
k— o0 k—o00

which is impossible. Knowing that f is bounded, set M = sup{f(x) : x € K}, and
choose {x, : n > 1} C K so that f(x,) — M as n — 00. Now, just as before,
choose a subsequence that converges to a point x, and conclude that f(x) = M.
The same argument shows that f achieve its minimum value. Finally, when K is an
interval, Theorem 1.3.6 implies the concluding assertion. (]

It is often important to know when a function defined on a set admits a continuous
e_xtension to the closure. With this in mind, say a subset D of a set S is dense in § if
D>S.
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Lemma 1.4.2 Suppose that D is a dense subset of a non-empty closed set F and that
[ D — Risuniformly continuous. Then there is a unique extension f : F — R
of f as a continuous function, and the extension is uniformly continuous on F.

Proof The uniqueness is obvious. Indeed, if f; and f> were two continuous exten-
sions and x € F, choose {x, : n > 1} C D so that x, — x and therefore
fi(x) =lim, 00 f(xn) = f2(3).

For each ¢ > 0 choose d. > 0 such that | f(x") — f(x)| < eforall x, x’ € D
with |x” — x| < .. Given x € F, choose {x, : n > 1} € D so the x, — x, and, for
€ > 0, choose n, so that |x, — x| < 5% if n > n.. Then,

Lf n) = f Qo) < 1f (xn) = fOOI+[f(x) = f(xm)| < € forallm, n > ne.

Hence, by Cauchy’s criterion, { f (x,) : n > 1} is convergent in R. Furthermore, the
limit does not depend on the sequence chosen. In fact, given an x’ € F for which
X' —x| < %5 and a sequence {x;, : n > 1} C D that converges to x’, choose n’. so
that |x, — x| V |x;, — x'| < %‘ forn > n. Then

X, = xp] < |xn — x|+ |x — x| + |x" — x| < &

and therefore | f (x}) — f(xn)| < € forn > n.. Thus
lim f(x;)— lim f(x,)| <e.
n— o0 n— oo

In particular, if x" = x, then lim,_ o f(x,) = lim,—c f(x,), and so we can
unambiguously define f(x) = lim,— o f(x,) using any {x, : n > 1} € D with
X, — x. Moreover, if x’ € F and |x' — x| < %, then | f(x’) — f(x)| <€ andso f
is uniformly continuous on F. ]

The next theorem deals with the possibility of taking the inverse of functions on R.

Theorem 1.4.3 Let # # S C R, and suppose f : S —> R is strictly increasing.
Then, for each y € R, there is at most one x € S such that y = f(x). Next
assume that f : [a, b] —> R is strictly increasing and continuous. Then, there is
a unique function = : [f(a), f(b)] —> |a, b] such that f(f_l(y)) =y for
y e [f(a), f(b)]. Moreover, f~! (f(x)) = x for x € [a, b], and f~" is continuous
and strictly increasing.

Proof Since x| < x; = f(x1) < f(xp),itis clear that there is at most one x such
that y = f(x). Now assume that S = [a, b] and f is continuous. By Theorem 1.3.6
we know that foreach y € [ fa), f (b)] there is a necessarily unique x € [a, b] such
that y = f(x). Thus, we can define a function f_1 : [f(a), f(b)] —> [a, b] so that
f7'(y) is the unique x € [a, b] for which y = f(x). To see that f~!( f(x)) = x for
x €la,bl,sety = f(x)andx’ = f~(y). Then f(x’) = y = f(x),and sox’ = x.
Finally, to show that f~! is continuous, suppose that {y, : n > 1} C [f(a), f(b)]
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and that y, — y. Set x,, = f~'(y,) and x = f~!(y). If x, /4 x, then there would
exist an € > 0 and a subsequence {x,, : k > 1} such that |x,, — x| > e. Further, by
Theorem 1.3.3, we could choose this subsequence to be convergent to some point
x’. But this would mean that [x" — x| > € and yet f(x') = limg—oo f(Xp,) =
limg_s 00 yn, = f(x), which is impossible. O

We conclude this discussion about continuous functions with a result that shows
that continuity is preserved under a certain type of limit. Specifically, say that a
sequence {f, : n > 1} on S converges uniformly on S to a function f on S if

limy,— 0 SUPyes [fu(x) — f(x)] =0.
Lemma 1.4.4 Suppose that { f,, : n > 1} is a sequence of continuous functions on a
set S. If { f, : n > 1} converges uniformly on S to a function f, then f is continuous.
Furthermore, if

hm sup sup | f(x) — fin(x)| =0,

n>mxeS§

then there is an f on S to which {f,, : n > 1} converges uniformly.

Proof Given e > 0 and x € S, choose n so that | f,(y) — f(y)| < § forall y € S,
and choose 6 > 0 so that | f,,(y) — fu(x)| < 5 fory € SN (x —, x + ). Then

IfF ) = FOI= 1) = faDI+ 1 () = )+ [ fu(x) = f)] < €

fory € SN (x — §, x + §), which means that f is continuous.

To prove the second part, first note that, by Cauchy’s convergence criterion, for
each x € S there is an f(x) to which {f,(x) : n > 1} converges. Given € > O,
choose m, so that sup, ¢ | f(x) — f(x)| < €if n > m > m,. Then, for x € S and
m > m,

1) = fu @) = lm £ () = fu)] < e =

1.5 Differentiable Functions

A function f on an open set G is said to be differentiable at a point x € G if the limit

d _
@ =0fw == tim FOZID

y—>Xx y—x
exists in R. That is, for all € > 0 there exists a 6 > 0 such that

fO) = fx)
y—x

—fx)|<e ifyeGand0 < |y — x| < 6.

Clearly, what f’(x) represents is the instantaneous rate at which f is changing at x.
More geometrically, if one thinks in terms of the graph of f, then W is the
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slope of the line connecting (x, f(x)) to (y, f(»)), and so, when y — x, this ratio
should represent the slope of the tangent line to the graph at (x, f (x)). Alternatively,
thinking of x as time and f(x) as the distance traveled up to time x, f’(x) is the
instantaneous velocity at time x.

When f”(x) exists, it is called the derivative of f at x. Obviously, if f is differen-
tiable at x, then it is continuous there, and, in fact, the rate at which f (y) approaches
f(x) is commensurate with |y — x|. However, just because | f (y) — f (x)| < C|y —x]|
for some C < oo does not guaranty that f is differentiable at x. For example, if
f(x) = |x], then |f(y) — f(x)| < |y —x|forall x, y € R, but f is not differen-
tiable at 0, since L= (7;(0) is 1 when y > O and —1 when y < 0.

When f is differentiable at every x € G it is said to be differentiable on G, and
when it is differentiable on G and its derivative f” is continuous there, f is said to
be continuously differentiable.

Differentiability is preserved under the basic arithmetic operations. To be precise,
assume that f and g are differentiable at x. If a, 3 € R, then

+ - +
(@f O ﬂf(y)y)_ )Eaf(x) B90) _ (o 'y + g ()
s|a|’—f(yy):f:(x> e )‘+|ﬁ|’—g(” 99 g,

and so (a.f + Bg)'(x) exists and is equal to o f'(x) + B¢’ (x). More interesting, by
adding and subtracting f(x)g(y) in the numerator, one sees that

— (f'@)g() + f(x)g' ()

— X

‘f(y)g(y) f(x)g(x)

= ['(0g(0)| + ACOLACI]N

F)(9(») — 9(x))
— X

- (fO) = f@)g(»
< T

and therefore f g is differentiable at x and (fg)'(x) = f/(x)g(x) + f(x)g'(x). This
important fact is called the product rule or sometimes Leibniz’s formula. Finally, if
g(x) # 0, then, since g is continuous at x, g(y) # 0 for y sufficiently near x, and

T =0 fgl) — f)g ()
y—x g(x)?

—f0) @] SO0 —g9@) g )
-xg90») gx) (y —x0)gx)g(y) g(x)?
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which means that f is differentiable at x and that (5) x) = M . This

is often called the quotzent rule.

We now have enough machinery to show that lots of functions are continuously
differentiable. To begin with, consider the function f;(x) = x* for k € N. Clearly,
fo = 0 and f{ = 1. Using the product rule and induction on k > 1, one can
show that f(x) = kx*~!. Indeed, if this is true for k, then, since fiy1 = fi fi,
fk’+1(x) fe(x) + xfk’(x) = (k + 1)x*. Alternatively, one can use the identity

yk —xk —(y—x)Zm | X" yk=m=1 (o see that

Yk — xk
y—Xx

~ kbl < myk=m=1 _ ck=1y|

As a consequence, we now see that polynomials ) _ a,x™ are continuously dif-
ferentiable on R and that

n / n
E anx™ ) = E Mmayx" !
m=0 m=1

In addition, if k > 1 and x # 0, then, by the quotient rule, (x %)’ = (ﬁ)/ =
—kx Zkl = —kx %=1 Hence for any k € Z, (x*)’ = kx*~! with the understanding

that x # 0 when k < 0.

A more challenging source of examples are the trigonometric functions sine and
cosine. For our purposes, sin and cos should be thought about in terms of the unit
circle (i.e., the perimeter of the disk of radius 1 centered at the origin) S0, 1) in
R2. That is, if one starts at (1, 0) and travels counterclockwise along S'(0, 1) for
a distance 6 > 0, then (cos @, sinf) is the Cartesian representation of the point
at which one arrives. Similarly, if 6 < 0, then (cos @, sin 6) is the point at which
one arrives if one travels from (1, 0) in the clockwise direction for a distance —6.
We begin by showing the sin and cos are differentiable at 0 and that sin'0 = 1
and cos’0 = 0. Assume that 0 < 6 < 1. Then (cf. the figure below), because
the shortest path between two point is a line, the line segment L given by ¢ €
[0,1] — (1 — 1)(1,0) + t(cos#,sin ) has length less than 6, and therefore,
because t € [0,1] —> (1 — t)(cosf, 0) + t(cos b, sinf) is one side of a right
triangle in which L is the hypotenuse, sin 6 < 6. Since 0 < cos # < 1, we now see that
0<1—cosf <1—cos?f =sin?f < #2, which, because cos(—0) = cos 8, proves
that cos is differentiable at 0 and cos’ 0 = 0. Next consider the region consisting
of the right triangle whose vertices are (0, 0), (cos 8, 0), and (cos 6, sin #) and the
rectangle whose vertices are (cos 6, 0), (1, 0), (1, sin ), and (cos 8, sin 0).
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cos B, s1 (1,5in0)

A

(0,/0) (cos®,0)(1,0)

derivative of sine

This region contains the wedge cut out of the disk by the horizontal axis and the ray
from the origin to (cos 8, sin #), and therefore its area is at least as large as that of
the wedge. Because the area of the whole disk is 7 and the arc cut out by the wedge
is %th of the whole circle, the area of the wedge is g. Hence, the area of the region

sin f cos
2

is at least g. Since the area of the triangle is and that of the rectangle is

(1 — cos ) sin 0, this means that

0 in 6 cos @ in 0
Ef—sm 2cos +(1—cos€)sin9§—81; +63

and therefore that 1 — 262 < % < 1 when 0 € (0, 1), which, because sin(—0) =
— sin @, proves that 1 — 20% < % < 1when 6 € (—1, 1). Thus sin is differentiable
at 0 and sin’ 0 = 1.
To show that sin and cos are differentiable on R, we will use the trigonometric
identities
sin(#; + 07) = sin 0 cos #, + sin 6, cos Oy

. . (1.5.1)
cos(f1 + 62) = cos By cos B, — sin By sin 6.

From the first of these we have

sin(f + h) —sinf  sinh . 1 —cosh
p = cos f — sin HT,

which, by what we already know, tends to cos 6 as i — 0. Similarly, from the second,

cos(f + h) — cos cosh — 1 . sinh
= cos ) ——— —sinf
h h h

—> —sinf

as h — 0. Thus, sin and cos are differentiable on R and

si@ =cosf and cos' = —sinb. (1.5.2)
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1.6 Convex Functions

If I is an interval and f : I — R, then f is said to be convex if
f(@x + (1 - Q)y) <O0f(x)+ (1 —=0)f(y) forallx, y e I and @ € [0, 1].

That is, f is convex means that for any pair of points on its graph the line segment
joining those points lies above the portion of its graph between them as in:

graph of convex function

It is useful to observe that if N > 2 and xq,...,xy € I, then ZZ:I Opxm €1
forall 6y, ...,0y € [0, 1] with Zgzl 0,, = 1. Indeed, this is trivial when N = 2.
Now assume it is true for N, and let x{,...,xy4+1 € I and 6y, ..., 0y € [0, 1]
be given. If Oy = 1, and therefore 6,, = 0 for 1 < m < N, there is nothing
to do. If Oy4+1 < 1, setmy, = 1_%;/“ for | < m < N. Then, by assumption,
y= Zfzzl NmXm € I, and so

N+1
z Omxm = (1 = Ony1)y + Ont1xn+1 € 1.
m=1

Hence, by induction, we now know the result for all N > 2. Essentially the same
induction procedure shows that if f is convex on I, then

N N
f(Z emxm) <D O f Gom).
m=1

m=1

Lemma 1.6.1 If f is a continuous function on I, then it is convex if and only if

e x+27y) <27 ) + 27 f(y) forallx, yel.

Proof We will use induction to prove that, for any n > 1 and xq, ..., xn € I,
271 2}1
() FLDS2 | 2277 D0 Flam).
m=1 m=1

There is nothing to do when n = 1. Thus assume that (x) holds for some n > 1, and
let x1, ..., xon+1 € I be given. Note that
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on+l

Z anflxm — 271y + 271Z
m=1

2" 2"
where y = Z 27"xy, € Tand z = Z 27" xpmgon € 1.
m=1 m=1

on+l

Hence, f (Zm:l 2_”_1xm) < 27'f(y) + 27! f(z). Now apply the induction
hypothesis to y and z.

Knowing (x), we have that f(6x + (1 — 0)y) < 0f(x) + (1 — 6) f(y) for all
x, y € I and all 0 of the form k27" forn > 1 and 0 < k < 2". To see this, take
xm=xifl <m <kandx, =yifk+1 <m < 2" Then, by (x), one has that
f(k2_”x + (1 - k2_”)y) <k27T'f(x)+ (1 = k27" f ().

Finally, because both 6 ~ f(@x + (1 - 0)) and 6 ~ 0f(x) + (1 —0)f(y) are
continuous functions on [0, 1], the inequality when 6 has the form k27" implies the
inequality for all # € [0, 1]. Indeed, given 6 € (0, 1) and n > 0, set

k=max{j e N: j <2"6},
and observe that 0 < § — k27" < 27", O

Lemma 1.6.2 Assume that f is a convex function on the open interval I. If x € I,
then®
exist in R.

D ) = tim L= )
YN - X

and D™ f(x) = lim
y y/x

f0)= @)
y—x

Moreover, D™ f(x) < DT f(x), and, if equality holds, then f is differentiable at x
and f'(x) = DT f(x). Finally, ifx, y € I andx < y, then DV f(x) < D™ f(y). In
particular, f is continuous, and both D~ f and D™ f are non-decreasing functions
onl.

Proof All these assertions come from the inequality
<2 o+ 2L F@) forx, y, zelwithx<y<z. (161
z—x Z—X

To prove (1.6.1), set § = =, and observe that y = fx + (1 — f)z. Thus f(y) <
0f(x)+ (1 —0)f(z), which is equivalent to (1.6.1). By subtracting f (x) from both
sides of (1.6.1), we get

O —fx) _ @)~ fO)

y—x 7—X

2We will use y N\, x when y decreases to x. Similarly, y /' x means that y increases to x.
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which shows that the function y ~~ m)%f(x) is a non-increasing on the set {y € I :
y > x}. By subtracting f(y) from both sides of (1.6.1), we get

fOMW-f® _ &= fG)

y—x =y

forx, y, ze I withx <y < z.

Hence, ifa, y €  anda < x < y, then

f&x)— f(a) _ f) = fx)

X —a y—x

is bounded below as well as non-increasing on

i SO)=fx)
which means that y ~ Fo=e

{y € I : y > x}. Thus DT f(x) exists in R, and essentially the same argument
shows that D~ f(x) does also. Further, if y/ < x < y, then, again by (1.6.1), one
sees that f(yy),:){(x) < f(y;:){(x) and therefore that D~ f(x) < D% f(x). In the case

when D* f(x) = a, for each ¢ > 0 a § > 0 can be chosen so that

JO») - f)
y—x

—a|l<e foryelwithO < |y—x| <,

and so f is differentiable at x and f’(x) = a.
Finally, suppose that x|, y;, y2, xo € I and that x; < y; < y» < x2. Then, by
(1.6.1),
FOD = f&D) _ fO2) = fOD _ fO2) = f(2)

yi—x1 - Y2 =y T X —»
and so
SO — fx) - f(y2) — f(x2)
yi— X1 - Y2 — X2
After letting y; \, x1 and y, " x5, we see that DT f(x1) < D™ f(x2). |

Typical examples of convex functions are f(x) = x% and f(x) = x| forx € R.
(See Exercise 1.16 below for a criterion with which to test for convexity.) Since both

. . 2
of these are continuous, Lemma 1.6.1 says that it suffices to check that ()%) <

2 2 :
% + y? and @ < % + %' To see the first of these, observe that, because

(x £ y)? >0, 2|x||y| < x* + y? and therefore that

x+y 2_)62—1—2)6)/—i—y2<x2—i—y2
2 B 4 -2

As for the second, it is an immediate consequence of the triangle inequality |x 4+ y| <
|x|+|y|. When f(x) = x2, both Dt f(x) and D~ f (x) equal 2x. When f (x) = |x|,
D™ f(x) and D™ f(x) are equal to 1 or —1 depending on whether x > 0 or x < 0.
However, DT f(0) = 1 but D~ f(0) = —1.
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1.7 The Exponential and Logarithm Functions

Using Lemma 1.4.2, one can justify the extension of the familiar operations on the
set Q of rational numbers to the set R of real numbers. For example, although we
did not discuss it, we already made tacit use of such an extension in order to extend
arithmetic operations from Q to R. Namely, if x € Q and f, : Q — Q is given
by fi(y) = x + y, then it is clear that | f; (32) — fx(¥1)| = |y2 — y1| and therefore
that f, is uniformly continuous on Q. Hence, there is a unique extension f; of
fx to R as a continuous function. Furthermore, if x;, x» € Q and y € R, then
|fo y) — fxl (»)| = |x2 — x1], and so, for each y € R, there is a unique extension
x € R+ F(x,y) e Rofx € Q — f:(y) € R as acontinuous function. That is,
F(x, y) is continuous with respect to each of its variables and is equal to x + y when
x, y € Q. From these facts, it is easy to check that (x, y) € R2 —> F(x,y) € Rhas
all the properties that (x, y) € Q*> — x + y has. In particular, F(y, x) = F(x, y),
F(x,—x) =0 <= y = —x,and F(F(x,y),z) = F(x, F(y,2)). For these
reasons, one continues to use the notation F(x, y) = x 4+ y for x, y € R. A similar
extension of the multiplication and division operations can be made, and, together,
all these extensions satisfy the same conditions as their antecedents.

A more challenging problem is that of extending exponentiation. That is, given
b € (0, 00), what is the meaning of b* for x € R? When x € Z, the meaning is

clear. Moreover, if g € Zy = 7\ {0}, then we would like to take bé to be the unique
element a € (0, o0) such that a¢ = b. To see that such an element exists and is
unique, suppose that ¢ > 1 and observe that x € (0, c0) —> x9 € (0, 00) is strictly
increasing, continuous, and that x > x if x > 1 and x¢ < x if x < 1. Hence, by
Theorem 1.3.6, (0 o0) = {x? : x € (0,00)}, and so, by Theorem 1.4.3, we know

not only that bq exists and is unique, we also know that b ~~ b‘I is contmuous

Similarly, if ¢ < —1, there exists a unique, continuous choice of b ~~ bfl. Notice
that, because b™" = (b™)" form, n € Z,
(1)) = (b7 =)")" = b,
and therefore bﬁ = (b%)%. Similarly,
(b)) = Gy = (b)) = b7 = (")),
and therefore (bé)l’ = (bl’)é.Now define b" = (bql)/’ = (bf’)i whenr = £, where

p € Z and q € Zy. To see that this definition is a good one (i.e., doesn’t depend
on the choice of p and ¢ as long as r = 5), we must show that if n € Zg, then

(b7)" = (b4)P. But

(bﬁ)ﬂp = (((b%)%)”)p = (b%)ﬁ_
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Now that we know how to define b” for rational r, we need to check that it satisfies
the relations

(%) b = B1)2, (biby) = BB, and BT =B

To check the first of these, observe that

L P12

P P2 1 P2 1 1 Jav)
(bn)n = (((bl’l)ql )qz)m = (bPHae = ((bPl)P2)q1qz = (bP|P2)q1q2 —paan

11 1 11
To prove the second, first note that (blq by )q = b1 by, and therefore (b1b2)¢ = b{ bj .

Hence,
) 11

po L ;s 1 p L
(b)) (by) = (b b)? = ((b1b2)7)" = (b1b2) 7.

Finally,

P P2 (At 1 1
(babn ) pLaxtral = (pP12pP2A Y praztrar = (HP192 P24 pLaztiar = b,

P P2 P192+P2491 Pl P2
andsob1 b2 =b 92 =pa @,

We are now in a position to show that there exists a continuous extension exp,,
to Rof r € Q — b" € R. For this purpose, first note that 1” = 1 for all r € Q,
and therefore that exp; is the constant function 1. Now assume that b > 1. Then,
by the third part of (x), b* — b" = b"(b*~" — 1) for r < s. Hence, if N > 1 and
s, r € [-N,N]1NQ, then |b* — b"| < bN|b*~" — 1], and so we will know that
r ~» b" is uniformly continuous on [—N, N] N Q once we show that for each € > 0
there exists a & > 0 such that [ — 1| < € whenever r € Q N (-4, §). Furthermore,
since b > 1 and b"|b~" — 1| = |1 — b"| and therefore |b~" — 1| < |b" — 1| when
r > 0, we need only check that A, = b" — 1 < e for sufficiently small » > 0. To
this end, suppose that 0 < r < % Then b7 = bi b’ > b", and so

n

b>B)Y'=(10+4A)" = z (;)Af’ >1+na,,

m=0

which means that A, < % if0<r < % Hence, if we choose n so that }%1 < €,

then we can take § = %

We now know that, foreach N > 1,r € [-N, N]NQ — b" € R has a unique
extension as a continuous function on [—N, N]. Because on [—N, N] the extension
corresponding to N + 1 must equal the one corresponding to N, this means that there
is a unique continuous extension exp,, to the whole of R. The assumption that b > 1
causes no problem, since we can take exp,(x) = exp1(—x) if b < 1. Notice that,

by continuity, each of the relations in (x) extends. That is
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expp(x1x2) = expexph(xl)(x2)7 CXPp, b, (X) = €Xpy, (X) expy, (X),

and exp,, (x1 + x2) = exp, (x1) exp,(x2).

The exponential functions exp, are among the most interesting and useful ones in
mathematics, and, because they are extensions of and share all the algebraic properties
of b”, one often uses the notation b* instead of exp,, (x). We will now examine a few
of their analytic properties. The first observation is trivial, namely: depending on
whetherif b > 1 orb < 1, x ~ exp,(x) is strictly increasing or decreasing and
tends to infinity or 0 as x — oo and tends to O or infinity as x — —oo. We next note
that exp,, is convex. Indeed,

expy, (x) + expy, (y) — Zepr(%) = (epr(2_1x) — epr(2_1y))2 >0,

Lemma 1.6.1. By Lemma 1.6.2, we now know that D exp,, (x) and D~ exp,, (x) exist
forall x € R. Atthe same time, since exp;, (y) —expy, (x) = exp, (x) (exp, (y —x)—1),
D* expp(x) = (DjE epr(O)) expy, (x). Finally,

and so exp,, (* ﬂ) < w. Hence convexity follows immediately from

expy(y) —

exp,(—y) — 1 1
Sppimy) — 1 = epr(—y)f — DV exp,(0) asy \ O,

-y

and therefore D exp;, (x) = (DT exp,(0)) exp, (x) for all x € R, which means that
exp,, is differentiable at all x € R and that

de Xpb

exp’bx = (logb) expy(x) where logh = 0). (1.7.1)

The choice of the notation log b is justified by the fact that, like any logarithm
function, log(b1by) = log by + log by. Indeed,

d expy,p, d(expy, expy,) d expy, d expy,
dx 0) = I 0) = T 0) + P 0).

Of course, as yet we do not know whether it is the trivial logarithm function, the one
that is identically 0. To see that it is non-trivial, suppose that log2 = 0. Then, for

any € > 0, 2 — 1 < + for sufficiently large n. But this would mean that

n o

€ 1
2<(1+¢ _1+Z()n—m§1+ %51“2% for0 <e<1,

m=1"" m=1

and, since, by the ratio test, > o, m, < 00, this would lead to the contradiction that
2 < 1. Hence, we now know that log2 > 0. Next note that because expeyp, () (x) =
exp,(Ax),

log(exp,(N)) = Alogb. (1.7.2)



1.7 The Exponential and Logarithm Functions 23

In particular, log(exp,(\)) = Alog 2, and so if

1
€ = €Xpy (@) s

then loge = 1. If we now define exp = exp,, then we see from (1.7.2) and (1.7.1)
that
exp’(x) = exp(x) forall x € R. (1.7.3)

In addition, log (exp(x)) = xloge = x. That is, log is the inverse of exp and, by
Theorem 1.4.3, this means that log is continuous. Notice that, because expy,, , (x) =
exp(xy) and b = exp(logb),

b* = expy(x) = exp(xlogh) forallb € (0,00) and x € R. (1.7.4)

Euler made systematic use of the number e, and that accounts for the choice of
the letter “e” to denote it. It should be observed that even though we represented e
as exp, @, (1.7.4) shows that

1
e = exp, (1—) forany b € (0, 00) \ {1}.
ogb

Before giving another representation, we need to know that

. log(l 4+ x)
lim ———— =

x—0 X

1. (1.7.5)

To prove this, note that since log is continuous and vanishes only at 1, and because
the derivative of exp is 1 at 0,

x _exp(log(1 +x)) — 1
log(1 +x) log(1 + x)

—> lasx — 0.

As an application, it follows that

log(1+ %
nlog(l+ %) =xM

o —> xasn — 0o,

=

and therefore

X

(14 5)" = exp(nlog(1 + 5)) — exptx)asn — oo,
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Hence we have shown that

lim (1+%)" =exp(x) =¢* forallx € R. (1.7.6)

n—oo

In particular, e = lim,,_, (1 + %)”. Although we now have two very different look-
ing representations of e, neither of them is very helpful when it comes to estimating
e. We will get an estimate based on (1.8.4) in the following section.

The preceding computation also allows us to show that log is differentiable and that

1
log'x = — forx € (0, 00). (1.7.7)
X

To see this, note that logy — logx = log;—cV = log(l + (% - 1)), and therefore, by
(1.7.5), that

logy —logx  1log(l1+(X—1) 1
= — 3 —> — asy — Xx.
y—Xx b -1 X

See Exercise 3.8 for another approach, based on (1.7.7), to the logarithm function.

1.8 Some Properties of Differentiable Functions

Suppose that f is a differentiable function on an open set G. If f achieves its
maximum value at the point x € G, then f’(x) = 0. Indeed,

f(xih)—f(x)_l. fxxh) — fx)
= lim <0,
+h AN h

+f(x) = £ i
S x) Jim,

and therefore f/(x) = 0. Obviously, if f achieves its minimum value at x € G, then
the preceding applied to — f shows that again f/(x) = 0. This simple observation
has many practical consequences. For example, it shows that in order to find the
points at which f is at its maximum or minimum, one can restrict one’s attention to
points at which f” vanishes, a fact that is often called the first derivative test.

A more theoretical application is the following theorem.

Theorem 1.8.1 (Mean Value Theorem) Let f and g be continuous functions on
[a, b], and assume that g(b) # g(a) and that both functions are differentiable on
(a, b). Then there is a 0 € (a, b) such that

f(b) = f(a)

/02/0 ,
1) g()g(b)_g(a)

and so, if g'(0) # 0, then
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1.8 Some Properties of Differentiable Functions 25

fh) = f@ _ f'©)
9b) —g@ ~ g

In particular,
fb) — f(a) = f'(O)(b—a) forsomed < (a,b). (1.8.1)
Proof Set
g(b) — g(x) g(x) — g(a)
Fx) = o — =" f(b).
=10 =g’ s 9@’

Then F is differentiable and vanishes at both a and b. Either F is identically 0, in
which case F” is also identically 0 and therefore vanishes at every 6 € (a, b), or there
is a point 6 € (a, b) at which F achieves either its maximum or minimum value, in
which case F’(0) = 0. Hence, there always exists some 0 € (a, b) at which

/ / g/(a)f(a) g/(e)f(b) , ’
0=F(@®) =f@® - =70 — 4@
O=rO+ o —g@ 9o —ga@ L PIO®

f(b) - fla)
9(b) — gla)’

from which the first, and therefore the second, assertion follows. Finally, (1.8.1)
follows from the preceding when one takes g(x) = x. (]

The last part of Theorem 1.8.1 has a nice geometric interpretation in terms of the
graph of f. Namely, it says that there is a f € (a, b) at which the slope of the tangent
line to the graph at 6 is the same as that of the line segment connecting the points
(a, f(a)) and (b, f(b)).

There are many applications of Theorem 1.8.1. For one thing it says thatif f(b) #
f(a) then there must be a § € (0, 1) at which f'(f) # 0. Thus, if ' = 0 on (a, b),
then f is constant on [a, b]. Similarly, f* > 0 on (a, b) if and only if f is non-
decreasing, and f must be strictly increasing if f* > 0 on (a, b). As the function
fx) = x3 shows, the converse of the second of these is not true, since this fis
strictly increasing, but its derivative vanishes at 0.

Another application is to a result, known as L’Hépital’s rule, which says that if
f and g are continuously differentiable, R-valued functions on (a, b) which vanish
at some point ¢ € (a, b) and satisfy g(x)g'(x) # 0 at x # c, then
fO o f0 @)

im if lim

lim ) exists in R. (1.8.2)

x—c g(x) = g/(x) xX—c g’(x

To prove this, apply Theorem 1.8.1 to see that, if x € (a, b) \ {c}, then

f) _ f) = fle) MC)
gx)  glx)—gl)  g'(0y)

for some 6, in the open interval between x and c.
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Given a function f on an open set G and n > 0, we use induction to define what
it means for f to be n-times differentiable on G. Namely, say that any function f on
G is 0 times differentiable there, and use f©)(x) = f(x) to denote its Oth derivative.
Next, for n > 1, say that f is n-times differentiable if it is (n — 1) differentiable and
£@=1 is differentiable on G, in which case £ (x) = 0" f(x) = 0 f " D(x) is its
nth derivative. Using induction, it is easy to check the higher order analogs of (1.8.2).
Thatis, if m > 2 and f and g are m-times continuously differentiable functions that
satisfy f©(c) = ¢®(c) = 0for 0 < £ < m and g (x) # 0 for 0 < £ < m and
X # c, then repeated applications of (1.8.2) lead to

) B €3 RSP i C)
im = lim if lim
x—c g(x) x—c g(m)(x) x—c g(m)(x)

exists in R. (1.8.3)

For example, consider the functions 1 — cosx and x2 on (%, g) Then, by (1.5.2)
and (1.8.3) with m = 2, one has that

. 1l —cosx . Ccosx 1
lim —— — = lim = —.
x—0 X x—0 2 2

The following is a very important extension of (1.8.1). Assuming that f is n-times
differentiable in an open set containing c, define

n (m)
T (x:c) = ZO f m!(c) (x—o)™,

Notice that if n > 0, then
(%) aT! (x;o) =T (x;0).

Theorem 1.8.2 (Taylor’s Theorem) If n > 0 and f is (n + 1) times differentiable
on(c—9,c+90) forsomec € Rand § > 0, then for each x € (c — 6, ¢+ 6) different
from c there exists a 0, in the open interval between ¢ and x such that

o~ ™) m o SOV il
f(x)_n;) GO+ T —0)
FO ;)

(n - 1)' (.X _ C)}’H*l.

=T, ,f ' x)+
Proof When n = 0 this is covered by (1.8.1). Now assume that it is true for some
n > 0,andset F(x) = f(x)— TJH (x; ¢). By the first part of Theorem 1.8.1 (applied

with f = Fand g(x) = (x —¢)"*2) and (%), there is a 1) in the open interval between
¢ and x such that

O =Tl 00 oo -1 (o)
(x—o"t2  (n+2)(ne — ot




1.8 Some Properties of Differentiable Functions 27

By the assumed result for n applied to f, the numerator on the right hand side equals

fU26,)
W (ne — )"t for some 6, in the open interval between ¢ and 7y.
n !
(n+2)
Hence, f(x) — T/, (x; ¢) = Lo (x — o2, 0

The polynomial x ~~ T,,f (x; c) is called the nth order Taylor polynomial for f at

¢, and the difference f — T,,f (-3 ¢) is called the nth order remainder. Obviously, if
f is infinitely differentiable and the remainder term tends to 0 as n — oo, then

m! m!

n (m) et (m)
f(x)znli)ﬂoloz ! (C)(X—c)mz Z f (C)(x—c)m.
m=0

m=0

To see how powerful a result Taylor’s theorem is, first note that the binomial
formula is a very special case. Namely, take f(x) = (1 + x)", note that f M) (x) =
nn—1..n—m+ DA +x)"" = 2L _(1+x)""for0 <m < n and

(n—m)!
£+ = 0 everywhere, and conclude from Taylor’s theorem that

n
(@a+b)"=d"(1+52)" = Z (”)ambnm ifa #0.
m
m=0

Next observe that the formula > " (x™ = ﬁ for the sum the geometric series

with x € (—1, 1) comes from Taylor’s theorem applied to f(x) = ﬁ on (—1,1).
Indeed, for this f, f (m) (0) = m!, and therefore Taylor’s theorem says that, for each
n>0

1 n
1 = Z x™ 4+ 0" for somef, with [6,] < |x].
— X

m=0

Hence, since |x| < 1, we get the geometric formula by letting n — oo.

A more interesting example is the one when f = exp. As we saw in (1.7.3),
exp’ = exp, and from this it follows that exp is infinitely differentiable and that
exp"™ = exp for all m > 0. Hence, for each n > 0,

n xm xn+le9x
exzz_+ for some |0, | < |x|.
— m!  (n+1)!
Since ¢’ < el and
xn+l I | 1
D! X

(URSDIN < — whenn > 2|x|,

x" n+17~2

n!
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the last term on the right tends to 0 as n — o0, and therefore we have now proved that

00 m
= % forall x € R. (1.8.4)

m=0

The formula in (1.8.4) can also be derived from (1.7.6) and the binomial formula.
To see this, apply the binomial formula to see that

-1 n m—1

x™ [Ty (n — €) x™
(1"'2)”_2,”, eonm _Z |H(1_§)’

m=1 m=0 =0
and so |
n o n |x|m m—

R N ED - Ty (T

m=0 m=0 =0

o |x|™
< E _
- m!

m=N+1

|x|"

m=0 m!

Hence, since, by the ratio test, > o
letting N — oo.

However one arrives at it, (1.8.4) can be used to estimate e. Indeed, observe that for
anym >k > 2,m! > (k—1)"k"+1~* Hence, since >k fk—m—=1 — S kT =
we see that

< 00, we arrive again at (1.8.4) after

L
=1

kzi S
“om! (k= Dlk—1)

| /\

Gl
sz

Taking k = 6, this yields - @ <e< % Since % > 2.71 and 160301 < 2.72,
2.71 < e < 2.72. Taking larger k’s, one finds that e is slightly larger than 2.718.
Nonetheless, e is very far from being a rational number. In fact, it was the first
number that was shown to be transcendental (i.e., no non-zero polynomial with
integer coefficients vanishes at it).

We next apply the same sort of analysis to the functions sin and cos. Recall
(cf. (1.5.2)) that sin”’ = cos and cos’ = —sin. Hence, sin®” = (—1)"sin,
sin@*th = (=1)"cos, cos™ = (—1)"cos, and cos®"tD = (—1)"tlgin.
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Since sin0 = 0 and cos0 = 1, we see that sin®" 0 = 0, sin®@+tD 0 = (=1)™,
cos®™ 0 = (—1)", and cos®"*+D 0 = 0. Thus, just as in the preceding,

2m+1 St 2m
sinx = Z( )! and cosx = Z;)(_ ) o (1.8.5)

Finally, we turn to log. Remember (cf. (1.7.7)) that log’ x = }C, and therefore
that log’(1 — x) = —ﬁ for |x| < 1. Using our computation when we derived
the geometric formula, we now see that the mth derivative —‘gC—':'n log(l — x) of
—log(l —x)atx =0is (m — 1)! whenm > 1. Since log 1 = 0, Taylor’s theorem
says that, for each n > 0 there exists a |6, | < |x| such that

xm 9n+1
—log(1 —x) = Z —
Hence, we have that
o0 xm
log(1—x)=— > =— forx e (-1, 1). (1.8.6)
m
m=1

It should be pointed out that there are infinitely differentiable functions for which
Taylor’s theorem gives essentially no useful information. To produce such an exam-
ple, we will use the following corollary of Theorem 1.8.1.

Lemma 1.8.3 Assume that a < ¢ < b and that f : (a,b) —> R is a continuous
function that is differentiable on (a, c) U (c, b). If a = lim,_. f'(x) exists in R,
then f is differentiable at c and f'(c) = .

Proof For x € (c, b), Theorem 1.8.1 says that f(x)ff(c) = f/(0;) for some 60, €

w — . Slmllarly, M — aasx ¢,

f@-f@ _ O

(c, x). Hence, as x \( ¢,

and therefore lim, _, .

Now consider the function f givenby f(x) = e_\71\ for x # 0 and O whenx = 0.
Obviously, f is continuous on R and infinitely differentiable on (—oo, 0) U (0, 00).
Furthermore, by induction one sees that there are 2mth order polynomials P, 4 and
P,,.— such that

(m) _ Pm,+(x_l)f()€) ifx >0
S = [Pm,—(x_l)f(x) if x < 0.

Since, by (1.8.4), e* > g for x > 0, it follows that
. Prn,+(x)
1 M (x) = lim =22 _ .
W0 = I
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Similarly, lim, o f (x) = 0. Hence, by Lemma 1.8.3, f has continuous deriva-
tives of all orders and all of them vanish at 0. As a result, when we apply Taylor’s
theorem to f at 0, all the Taylor polynomials vanish and therefore the remainder term
isequal to f. Since the whole point of Taylor’s theorem is that the Taylor polynomial
should be the dominant term nearby the place where the expansion is made, we see
that it gives no useful information at O when applied to this function.

A slightly different sort of application of Theorem 1.8.2 is the following. Suppose
that f is a continuously differentiable function and that its derivative is tending
rapidly to a finite constant as x — oo. Then f(n + 1) — f(n) will be approximately
equal to f’(n) for large n’s, and so f(n + 1) — f(0) will be approximately equal
to > _o f'(m). Applying this idea to the function f(x) = log(l + x), we are
guessing that log(n + 1) is approximately equal to > _; % To check this, note that,
by Taylor’s theorem, forn > 1,

1 1 1
for some 0 < 6,, < —.

10g(l’l+1)—10gn=10g(1+%)=;—m n
n

Therefore, if Ag =0 and A, = Z” L_ log(n 4+ 1) for n > 1, then

m=1 m

1
0<A,—A,1 < o) forn > 1.
Hence {A,, : n > 1} is a strictly increasing sequence of positive numbers that are
bounded above by C = % > mlz, and as such they converge to some v € (0, C].
In other words

n
1
O<Z——log(n+l)/"y asn — 0o.
m:lm

This result was discovered by Euler, and the constant ~ is sometimes called Euler’s
constant. What it shows is that the partial sums of the harmonic series grow loga-
rithmically.

A more delicate example of the same sort is the one discovered by DeMoivre.
What he wanted to know is how fast n! grows. For this purpose, he looked at
log(n!) = > _; logm. Since logx = f’(x) when f(x) = xlogx — x, the pre-
ceding reasoning suggests that log(n!) should grow approximately like n logn — n.
However, because the first derivative of this f is not approaching a finite constant at
00, one has to look more closely. By Theorem 1.8.1, f(n + 1) — f(n) = log6,, for
somef, € [n,n+1].Thus, f(n+1)— f(n) > lognand f(n)— f(n—1) < logn,and
so, with luck, the average w should be a better approximation of log(n!)
than f(n) itself. Note that

fo+D+F0) _

5 (n+Hlogn —n+ 3 ((n+ Dlog(l + 1) —1)
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and (cf. (1.7.5)) that the last expression tends to 0 as n — oo. Hence, we are now
led to look at
A, = log(n!) — (n + %) logn +n.

Clearly, A,4+1 — A, equals
log(n +1) — (n+ 3)log(n + 1) + (n + 3)logn + 1 =1 — (n + 1) log(1 + 1).

By Taylor’s theorem, log(1 + %) = % -4

5 for some 0,, € (0, %), and

1
3(1+6,)3n3
therefore

1 2n +1

1 ooy
(n+3)log(1+ 1) =1 w2 s o

Hence, we now know that

1 _ 2n + 1 - A A < 1
22 = 6(1+ 0,303 =~ T = g

and therefore that

ny—1 1 no—1 1

——Zmzf Apy, — Ay, < sz— forall 1 <n; < no.
m=nj m=nj
. 1 2 1 -1 1 1 1

Since ~3 < oo = 2( m_+1)’ Zﬁfznl —3 < Z(n—l — E) < E which means

that 1
|Ap, — Ap| < — forl <nj < na.
ni

By Cauchy’s criterion, it follows that {A n>1} converges tosome A € Rand that
|A — Ay =1limy_ o |Ap — Ayl < +. Because A,, = log 224+, this is equivalent to
2

n

A=

S|—

] n
< 8 <A foralln > 1. (1.8.7)
n+2

. S _2 2 . .
In other words, in that their ratio is caught between e” » and e, n! is growing
very much like e? \/n (%)" In particular,

n!
Iim —— =1,

e @)

Such a limit result is called an asymptotic limit and is often abbreviated by n! ~
e?/n (2). This was the result proved by DeMoivre. Shortly thereafter, Stirling

showed that e2 = /27 (cf. (3.2.4) and (5.2.5) below), and ever since the result has
(somewhat unfairly) been known as Stirling’s formula.


http://dx.doi.org/10.1007/978-3-319-24469-3_3
http://dx.doi.org/10.1007/978-3-319-24469-3_5
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It is worth thinking about the difference between this example and the preceding
one. In both examples we needed A, 1| — A, to be of order n~2. In the first example
we did this by looking at the first order Taylor polynomial for log(1 + x) and showing
that it gets canceled, leaving us with terms of order n 2. In the second example, we
needed to cancel the first two terms before being left with terms of order n=2, and it
was in the cancellation of the second term that the use of (n + %) log(1 + %) instead
of nlog(1l + %) played a critical role.

One often wants to look at functions that are obtained by composing one func-
tion with another. That is, if a function f takes values where the function g is
defined, then the composite function g o f is the one for which g o f(x) = g( f (x))
(cf. Exercise 1.9). Thinking of ¢ as a machine that produces an output from its input
and of f(x) as measuring the quantity of input at time x, it is reasonable to think
that the derivative of g o f should be the product of the rate at which the machine
produces its output times the rate at which input is being fed into the machine, and
the first part of the following theorem shows that this expectation is correct.

Theorem 1.8.4 Suppose that f : (a,b) —> (c,d) and g : (c,d) —> R are
continuously differentiable functions. Then g o f is continuously differentiable and

(go ) x) =(g" 0o HX)f'(x) forx € (a,b).

Next, assume that f : [a, b] —> R is continuous and continuously differentiable on
(a,b). If f' > 0, then f has an inverse =, f~1is continuously differentiable on

(f(@), f(b)), and

df—l( - 1
dy T (e fhy)

Proof Given unequal x1, xo € (a, b), the last part of Theorem 1.8.1 implies that
there exists a 6y, x, in the open interval between f(x1) and f (x2) such that

forall y € (f(a), f(b)).

go f(x2) —go f(x1) =g (0x,.x,)(f(x2) — f(x1)).
Hence, as x» — x1,

go f(x2) —go flx1) J(x2) — fx1)
=g (O ) ———————

X2 — X1 X2 — X1

—> (¢ o fHx) f/(x1).

To prove the second assertion, first note that, by (1.8.1), f is strictly increasing
and therefore has a continuous inverse. Now let y;, y» € (f(a), f (b)) be unequal
points, and apply (1.8.1) to see that

va=yi=fof )= fof o= Oy (00— o)

for some 6, ,, between F~Y(y1) and £~ 1(y2). Hence
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fflog—ftoy_ v 1
Y2 =i 1 Oy,,y,) f(F~1om)

as y2 — yi. |

The first result in Theorem 1.8.4 is called the chain rule. Notice that we could have

used the second part to prove that log is differentiable and that log’ x = )lc Indeed,

because exp’ = exp and log = exp™!, log' x = m = % An application of

the chain rule is provided by the functions x € (0, c0) —> x® € (0, co) for any
a € R. Because x® = exp(a log x), % = aexp(a logx)% =ax* L

1.9 Infinite Products

Closely related to questions about the convergence of series are the analogous ques-
tions about the convergence of products, and, because the exponential and logarithmic
functions play a useful role in their answers, it seemed appropriate to postpone this
topic until we had those functions at our disposal.

Given asequence {a,, : m > 1} C R, consider the problem of giving a meaning to
their product. The procedure is very much like that for sums. One starts by looking
at the partial product an:l a, = aj; X --- X a, of the first n factors, and then
asks whether the sequence {H2=1 am: n> 1} of partial products converges in R
as n — o00. Obviously, one should suspect that the convergence of these partial
products should be intimately related to the rate at which the a,,’s are tending to 1.
For example, suppose thata,, = 1 + # forsome o > 0, andset P, () = []),_; am.
Clearly 0 < P, (o) < Py41(«), and so {P,(c) : n > 1} converges in R if and only
if sup,,~ Py(c) < oo. Furthermore, o ~» P,(«) is non-increasing for each n, and
o)

sup P,(a) =00 = sup P,(f) = o0 if0 < < a.

n>1 n>1

Observe that log P, (1) = n + 1 —> 00, and so sup,,> Py(a) = o0 if a € (0, 1].
On the other hand, if o > 1, then

n

n n n
log(H am) = > log(l+:5)=> L+ Z(log(l +-5) - ,,%)
m=1 m=1

m=1 m=1
Since, by (1.8.6),

o]

(—x)
>

k=2

)C2
< <x* for|x| < 3.
2(1 = |xD)

|log(1 +x) — x| =

it follows that that sup,..; Py(a) < occoifa > 1.
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There is an annoying feature here that didn’t arise earlier. Namely, if any one of the
ap’s1s 0, then regardless of what the other factors are, the limit will exist and be equal
to 0. Because we want convergence to reflect properties that do not depend on any
finite number of factors, we adopt the following, somewhat convoluted, definition.
Given {a,, : m > 1} C R, we will now say that the infinite product [],~_ an
converges if there exists an mg such that a,, # 0 for m > mg( and the sequence
{H”m:m 0am i n= mo} converges to a real number other than 0, in which case we
take the smallest such m( and define

ﬁ { ifmg > 1

limy, oo [[hey am  ifmo = 1.

It will be made clear in Lemma 1.9.1, which is the analog of Cauchy’s criterion for
series, below why we insist that the limit of non-zero factors not be 0 and say that
the product of non-zero factors diverges to 0 if the limit of its partial products is 0.

Lemma 1.9.1 Given {a, : m > 1} C R, [[_; am converges if and only if a, = 0
for at most finitely many m > 1 and

no

tim sup | [] aw—1/=0. (1.9.1)

MO ny>ny m=n+1

Proof First suppose that [],_; a,, converges. Then, without loss in generality, we
will assume the a,, # O for any m > 1 and that there exists an o > 0 such that
‘H;:l am‘ > o forall n > 1. Hence, for no, > njy,

ny
H a, — 1/,

m=ni1+1

ny n
[Ten=T]Ta
m=1

m=1

and therefore, by Cauchy’s criterion for the sequence {Hﬁlzl am ' n> 1}, (1.9.1)
holds.
In proving the converse, we may and will again assume that a,, # 0 for any
m >1.Set P, = HZ,:I ap- By (1.9.1), we know that there exists an n; such that
5 < Hm —n,+1 4m =< 2 and therefore

n e
)
IPn2|:|Pn|| H am <P fOI'l’l2>n],
m=n1+1 =2| ”1|

from which it follows that there exists an o € (0, 1) such that o < | P,| < é for all
n > 1. Hence, since
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1 ny
"2 = o Hm:nl—H am — 1)

|P712_Pn||=|Pn|| H am — 1 n
m=ni+1 >« ‘Hmz:m—i-l am — 1|,

{P, : n > 1} satisfies Cauchy’s convergence criterion and its limit cannot be 0. [

By taking no = n1 + 1 in (1.9.1), we see that a necessary condition for the
convergence of [ [, a is thata,, —> 1asm — co. On the other hand, thisis nota
sufficient condition. For example, we already showed that [ ])),_; am = n+1 — o0
When'am =.1'~|—%,andifam =1- #,then ]_[:,'1:1 ay = n+-1 —> 0.The situaFio'n
here is reminiscent of the one for series, and, as the following lemma shows, it is

closely related to the one for series.

Lemma 1.9.2 Suppose that a,, = 1 + b,,, where by, € R for all m > 1. Then
[15- am converges if > o |bw| < oco. Moreover, if by, > 0 for all m > 1,
>y bm < 00 if [15_1 am converges.

Proof Begin by observing that

(%) 1_2[ A+by)—1= Z br where b = Hbm.

m=n|+1 P#£FCZTN[n+1,n;3] meF

If by, > 0 for all m > 1, this shows that [}, _(1 + b,) — 1 > X" _, by, for all
n > 1 and therefore that > o by, < oo if [[,_; (1 + by) converges. Conversely,
still assuming that b,, > 0 forallm > 1,

ny na
0= H (I+bm)—1=<exp Z bu | —1
m=n1+1 m=n1+1

since 1 + b, < ePn | and therefore

e’} n2
me<oo=> lim sup H (1+by)—1| =0,

n1—=>0 py>ny me=n+1

m=1

which, by Lemma 1.9.1 with a,, = 1 + by, proves that []~_, (1 + b,,) converges.

Finally, suppose that >, |b,| < co. To show that [, (1 + by,) converges,

first note that, since b,, —> 0, 1 + b,,, = 0 for at most a finite number of m’s. Next,
use (x) to see that

[T a+bm—1|< > bel=| T a+1bwh—1|.

m=nj+l1 W#FCZTN[ny+1,n2] m=n1+1
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Hence, since Hle (1 4 |bp|) converges, (1.9.1) holds with a,, = 1 + b, and so,
by Lemma 1.9.1, [1>"_, (1 + b,) converges. ]

When >0, |bu| < oo, the product [0~ (1 + by,) is said to be absolutely
Convergent .

1.10 Exercises

Exercise 1.1 Show that

. 1 1 1
lim (n2(1 +n)2 —n) = —.

n—0oo 2
Exercise 1.2 Show that for any & > 0 and a € (—1, 1), lim,,_, ,c n%a" = 0.

Exercise 1.3 Given {x, : n > 1} € R, consider the averages A, = @ for

n > 1. Show that if x, —> x in R, then A,, — x. On the other hand, construct an

example for which {A, : n > 1} converges in R but {x, : n > 1} does not.

Exercise 1.4 Although we know that > >, # converges, itis not so easy to find out
. . 2 . . .

whatit converges to. It turns out that it converges to %-, but showing this requires work

(cf. (3.4.6) below). On the other hand, show that > 1 — 1.

noo 1 _qp__L
m=1 m(m+1) — n+l
Exercise 1.5 There is a profound distinction between absolutely convergent series
and those that are conditionally but not absolutely convergent. The distinction is that
the sum of an absolutely convergent series is, like that of a finite sum, the same for
all orderings of the summands. More precisely, show that if >, a;, is absolutely
convergent and its sum is s, then for each ¢ > O there is a finite set F, € N such
that |[s — >, cgam| < e forall S € N containing F.. As a consequence, show that
§ = 2n=0%m — 2m=0%m-

On the other hand, if anozo ay, 1s conditionally but not absolutely convergent,
show that, for any s € R, there is an increasing sequence {Fy : £ > 1} of finite
subsets of N such that N = [ J;2, F; and Zmng am —> s as £ — oo. To prove
this second assertion, begin by showing that a,, —> 0 and that both >~ a} and
anozo a,, are infinite. Next, given s € [0, 00), take

n ny n

ny =minyn>0: Ea,’n">s ,n_=minqn>0: Ea,}t—zgnj<s ,
m=0 m=0 m=0

and define

Fi={0<m<ny:a,>0land , = FU{0<m <n_: a, <0}.
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Proceeding by induction, given Fi, ..., Fy for some £ > 2, take

n4 = min n¢Fg:Zam+ZaZ>s
mekFy 1<m<n
me¢F,

and Fyp1 = FpU{mé¢ Fo: 1 <m <ny &ay, > 0}

if £ is even, and

n_=minyn ¢ Fy: Zam— Z a, <s

mekF, 1<m<n
m¢Fy

and Fppr 1 = FpU{mé¢ Fp: 1 <m<n_ &a, <0}

if ¢is odd. Show that N = (J72 | Fy and that, foreach ¢ > 1, (s — 3, am| < |ay,|

where ny = max{n : n € Fy}.If s < 0, the same argument works, only then one has
to get below s on odd steps and above s on even ones. Finally, notice that this line
of reasoning shows that if {a,, : m > 0} C R is any sequence having the properties
that a,, —> Oand X" qa = > a, = oo, then for each s € R there is a
permutation 7 of N such that >"° ) dr(m) converges to s.

Exercise 1.6 Let {a,, : m > 0} and {b,, : m > 0} be a pair of sequences in R, and
set S, = > _ dm. Show that

n n—1
Z ambm = Spby + z Sm(bm — bn1),
m=0 m=0

a formula that is known as the summation by parts formula. Next, assume that
> oo am converges to S € R, and show that

o0 o0
DlanA" =S =(1=X) D (Su—HA" if [N < L.
m=0 m=0

Given € > 0, choose n, > 1 so that |S,, — S| < € for n > n, and conclude first that

ne—1
SA=N D IS —SIN"+e if0< A<

m=0

00
Z ap\" — S
m=0

and then that

0]

o0
lim Z am\" = Z . (1.10.1)
A1 m=0 m=0
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This observation, which is usually attributed to Abel, requires that one know ahead
of time that >__ a,, converges. Indeed, give an example of a sequence for which
the limit on the left exists in R but the series on the right diverges. To see how (1.10.1)
can be useful, use it to show that >, # = log % A generalization of this idea
is given in part (v) of Exercise 3.16 below.

Exercise 1.7 Whatever procedure one uses to construct the real numbers starting
from the rational numbers, one can represent positive real numbers in terms of D-
bit expansions. That is, let D > 2 be an integer, define §2 be the set of all maps
w:N—{0,1,..., D —1},and let £2 denote the set of w € 2 such that w(0) # 0
and w(k) < D — 1 for infinitely many &’s.

(i) Show for any n € Z and w € 2, Z/?io w(k)D"k converges to an element
of [D", D"*1). In addition, show that for each x € [D", D"*1) there is a unique
w € £2 such that x = z,fozo w(k)D"~*. Conclude that R has the same cardinality as
Q.

(ii) Show that £2 \ £2 is countable and therefore that 2 is uncountable if and only
if £2 is. Next show that £2 is uncountable by the following famous anti-diagonal
argument devised by Cantor. Suppose that 2 were countable, and let {w, : n > 0}
be an enumeration of its elements. Define w € 2 so that w(k) = w(k) + 1 if
wi (k) # D—1and w(k) = wi (k) —1ifwg(k) = D—1.Show thatw ¢ {w, : n > 1}
and therefore that there is no enumeration of £2. In conjunction with (i), this proves
that R is uncountable.

(ili) Let n € Z and w € £2 be given, and set x = Z/fio w(k)D"*. Show that
x € Z*T ifand only if n > 0 and w(k) = O for all kK > n. Next, say the w is eventually
periodic if there exists a kg > O and an ¢ € 7% such that

(wko +me+1), ..., wko +ml+ ) = (wko+ 1), ..., wlko +£))

for all m > 1. Show that x > 0 is rational if and only if w is eventually periodic.
The way to do the “only if” part is to write x = 7, wherea € Nand b Z*, and
observe that is suffices to handle the case when a < b. Now think hard about how
long division works. Specifically, at each stage either there is nothing to do or one
of at most b possible numbers is be divided by b. Thus, either the process terminates
after finitely many steps or, by at most the bth step, the number that is being divided
by b is the same as one of the numbers that was divided by b at an earlier step.

Exercise 1.8 Here is a example, introduced by Cantor, of a set C C [0, 1] that is
uncountable but has an empty interior. Let Cy = [0, 1],

Cr=10.11\(3.3) = [0. 5]V [3. 1]

and, more generally, C,, is the union of the 2" closed intervals that are obtained by
removing the open middle third from each of the 2"~! of which C,,_; consists. The
set C = ﬂ;o:o C,, is called the Cantor set. Show that C is closed and int(C) = #.
Further, take £2 to be the set of maps w : N — {0, 2}, and £2; equal to the set
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of w € £2 such that w(m) = 0 for infinitely many m € N. Show there the map
w0 w(m)3~"~1 is one-to-one from £2; onto [0, 1) N Moo int(Cy), and use
this to conclude that C is uncountable.

Exercise 1.9 Given R-valued continuous functions f and g on a non-empty set
S C R, show that fg and, for all o, § € R, af + fg are continuous. In addition,
assuming that g never vanishes, show that (—f is continuous. Finally, if f is a continuous
function on ¥ # §1 € R with values in 2 € Rand if g : S —> R is continuous,
show that their composition g o f is again continuous.

Exercise 1.10 Suppose that a function f : R — R satisfies

fx+y) = fx) + f(y) forallx, yeR. (1.10.2)

Obviously, this equation will hold if f(x) = f(1)x forallx € R. Cauchy asked under
what conditions the converse is true, and for this reason (1.10.2) is sometimes called
Cauchy’s equation. Although the converse is known to hold in greater generality, the
goal of this exercise is to show that the converse holds if f is continuous.

(i) Show that f(mx) = mf(x) for any m € Z and x € R, and use this to show
that f(£) = 1 f(x) foranyn € Z \ {0} and x € R.

n

(ii) From (i) conclude that f(%) =" f()forallm € Zand n € Z \ {0}, and
then use continuity to show that f(x) = f(1)x forall x € R.

Exercise 1.11 Let f be a function on one non-empty set S; with values in another
non-empty set S>. Show thatif {A,, : o € Z} is any collection of subsets of >, then

f (U Aa) =J s An) and s (ﬂ Aa) =) /' (Aw.

ael ael ael ael

In addition, show that f~'(B\ A) = f~'(B) \ f~(A) for A € B C S. Finally,
give an example that shows that the second and last of these properties will not hold
in general if £~ is replaced by f.

Exercise 1.12 Show that tan = % is differentiable on (—%, 5) and that tan’ =

1 + tan? = CO% there. Use this to show that tan is strictly increasing on (—%, %),

and let arctan denote the inverse of tan there. Finally, show that arctan’ x = for

x eR.

_1_
14+x2

Exercise 1.13 Show that

wl—

. sin x \ T—cosx B
lim e 3.
x—0 X
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In doing this computation, you might begin by observing that it suffices to show that

. 1 sin x 1
lim log =—-.
x—01 —cosx X 3

At this point one can apply L’Hopital’s rule, although it is probably easier to use
Taylor’s Theorem.

Exercise 1.14 Let f : (a, b)) —> R be a twice differentiable function. If f” = f®
is continuous at the point ¢ € (a, b), use Taylor’s theorem to show that

Fe) = (0 = lim fle+h)+ f(c—h)— 2f(c).

h—o00 h?
Use this to show that if, in addition, f achieves its maximum value at ¢, then f”(c) <
0. Similarly, show that f”(c) > 0 if f achieves its minimum value at c. Hence, if
f is twice continuously differentiable and one wants to locate the points at which
f achieves its maximum (minimum) value, one need only look at points at which
f'=0and f” <0 (f” > 0). This conclusion is called the second derivative test.

Exercise 1.15 Suppose that f : (a,b) —> R is differentiable at every x €
(a, b). Darboux showed that f’ has the intermediate value property. That is, for
a < c¢ <d < band y between f'(c) and f'(d), there is an x € [c, d] such that
f'(x) = y. Darboux’s idea is the following. Without loss in generality, assume that
f'(¢c) <y < f’(d), and consider the function x ~ ©(x) = f(x) — yx. The func-
tion ¢ is continuous on [c, d] and therefore achieves its minimum value at some
x € [c,d]. Show that x € (c,d) and therefore, by the first derivative test, that
0 = ¢/(x) = f'(x) — y. Finally, consider the function given by f(x) = x°sin % on
(—1,1) \ {0} and O at O, and show that f is differentiable at each x € (—1, 1) but
that its derivative is discontinuous at 0.

Exercise 1.16 Let f : (a, b)) —> Rbeadifferentiable function. Using (1.8.1), show
thatif f’is non-decreasing, then f is convex. In particular, if f is twice differentiable
and f” > 0, conclude that f is convex.

Exercise 1.17 Show that —log is convex on (0, c0), and use this to show that if
{ai,...,ay} € (0,00) and {0, ..., 6,} € [0, 1] with > _, 6,, = 1, then

n
4
a' ...az" < Z Omam.
m=1

When 6,, = % for all m, this is the classical arithmetic-geometric mean inequality.

Exercise 1.18 Show that exp grows faster than any power of x in the sense that
limy_, o0 ’L‘—(: = 0 for all @ > 0. Use this to show that log x tends to infinity more
slowly than any power of x in the sense that lim,_, k;% = 0 forall o > 0. Finally,

show that lim,\ o x* logx = 0 for all o > 0.
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Exercise 1.19 Show that [, (1 — (j,i) converges but is not absolutely conver-
gent.

Exercise 1.20 Just as is the case for absolutely convergent series (cf. Exercise 1.5),
absolutely convergent products have the property that their products do not depend
on the order in which their factors of multiplied. To see this, for a given ¢ > 0, choose
me € Z so that

o
[T a+bah-1]<e

m=mc+1
and conclude that if F is a finite subset of ZT that contains {1, ..., m.}, then
[o/e]
[Ta+ow—J]a+bw)|=[]TA+bw)| |1 =[] +bw)
meF m=1 meF m¢F

<[Ja+mwab 1= J] a+1bub| <e ][]+ 1buD.
m=1

m=m¢+1 m=1

Use this to show that if {S; : £ > 1} is an increasing sequence of subsets of Z* and
T = U Se, then limy— o0 [1,,c5, (1 + b)) = [Ty (1 + bi).

Exercise 1.21 Show that every open subset G of R is the union of an at most
countable number of mutually disjoint open intervals. To do this, for each rational
numbersr € G,let I, bethesetofx € G suchthat[r,x] C Gifx > ror[x,r] C Gif
x < r.Show that I, is an open interval and that either I/, = I,» or I, N 1,» = (. Finally,
let{r, : n > 1} be an enumeration of the rational numbers in G, choose {n; : k > 1}
sothatn; = 1and, fork > 2, ny =inf{n > ny_y : I, # I, for1 <m < ny_1}.
Show that G = |J&_, I, if ng < 00 = ngy1 and G = U2, Iy, if np < o0
forall k > 1.



Chapter 2
Elements of Complex Analysis

It is frustrating that there is no x € R for which x> = —1. In this chapter we will
introduce a structure that provides an extension of the real numbers in which this
equation has solutions.

2.1 The Complex Plane

To construct an extension of the real numbers in which solutions to x2 = —1 exist,
one has to go to the plane R? and introduce a notion of addition and multiplication
there. Namely, given (x1, x3) and (x2, y2), define their sum (x, y1) + (x2, y2) and
product (x1, y1)(x2, y2) to be

(x1 +x2,y1+y2) and (x1x2 — y1y2, X1y2 + x2y1).

Using the corresponding algebraic properties of the real numbers, one can easily
check that

(x1, y1) + (x2, y2) = (x2, y2) + (x1, y1), (x1, y1)(x2, ¥2) = (x2, y2)(x1, ¥1),
((x1, y1) (2, y2)) (x3, y3) = (x1, y1) ((x2, y2)(x3, ¥3)),
and ((x1, y1) 4+ (x2, y2)) (x3, y3) = (x1, y1)(x3, ¥3) + (x2, y2) (x3, ¥3).

Furthermore, (0, 0)(x, y) = (0, 0) and (1, 0)(x, y) = (x, y), and

(x1,x2) + (1, 32) = (0,0) <= x1=—x2 & y1 = —y»,
(r1.x2) £ (0,0) = [(x1.3)(01.32) = (0.0) = (1.32) = 0.0)].

© Springer International Publishing Switzerland 2015 43
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Thus, these operations on R? satisfy all the basic properties of addition and multipli-
cation on R. In addition, when restricted to points of the form (x, 0), they are given
by addition and multiplication on R:

(x1,0) 4+ (x2,0) = (x; +x2,0) and (x1,0)(x2,0) = (x1x2, 0).

Hence, we canthink of R with its additive and multiplicative structure as embedded
by the map x € R — (x,0) € R? in R? with its additive and multiplicative
structure. The huge advantage of the structure on R? is that the equation (x, y)? =
(—1, 0) has solutions, namely, (0, 1) and (0, —1) both solve it. In fact, they are the
only solutions, since

)P =(=1,00 = x2—)?=-1&2xy =0
=>x2=—1&y=00rx:0&y2=1 = x=0&y==+l.

The geometric interpretation of addition in the plane is that of vector addition:
one thinks of (x1, y1) and (x2, y2) as vectors (i.e., arrows) pointing from the origin
(0, 0) to the points in R? that they represent, and one obtains (x| + x2, y; + y2) by
translating, without rotation, the vector for (x7, y2) to the vector that begins at the
point of the vector for (x1, y1).

(9617y1)
(x1 + 22,51 + ¥2)

(0,0)
vector addition

To develop a feeling for multiplication, first observe that (r, 0)(x, y) = (rx, ry), and
so multiplication of (x, y) by (r, 0) when r > 0 simply rescales the length of the
vector for (x, y) by a factor of r. To understand what happens in general, remember
that any point (x, y) in the plane has a polar representation (r cos 6, r sin §), where
r is the length v/x2 + y2 of the vector for (x, y) and 6 is the angle that vector makes
with the positive horizontal axis. If (x1, y;) = (r; cosfq, r1 sinfy) and (x3, y2) =
(rp cos B, rp sin 6), then, by (1.5.1),

(x1, y1)(x2, y2) = (r1 cos 0y, ry sin 01)(r2 cos 02, r2 sin 0)
= (rirpcos @ cos 0y — rirp sin 01 sin 0, rirp cos 01 sin 6 + rirp sin 01 cos ;)
= (rlrz cos(0 + 62), riry sin(fy + 92))
= (r1, 0)(r2 cos(0) + 62), rasin(0; + 62)).
Hence, multiplying (x7, y2) by (x1, y1) rotates the vector for (x2, y2) through the

angle 6 and rescales the length of the rotated vector by the factor r;. Using this
representation, it is evident that if (x, y) = (r cos 8, r sin#) # (0, 0) and
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&',y = (r~' cos(=0), r ' sin(—6)) = (r ' cos 6, —r ' sin0),

then (x', y")(x, y) = (1, 0). Equivalently, if (x, y) # (0, 0) the multiplicative inverse

Since R along with its arithmetic structure can be identified with {(x, 0) : xeR}
and its arithmetic structure, it is conventional to use the notation x instead of
(x,0) = x(1,0). Hence, if we set i = (0, 1), then, with this convention, (x, y) =
x + iy. When we use this notation, it is natural to think of (x, y) = x + iy as some
sort of number z. Of course z is not a “real” number, since it is an element of RZ,
not R, and for that reason it is called a complex number and the set C of all complex
numbers with the additive and multiplicative structure that we have been discussing
is called the complex plane. For obvious reasons, the x in z = x + iy is called the
real part of z, and, because i is not a real number and for a long time people did not
know how to rationalize its existence, the y is called the imaginary part of z.

Given z = x + iy, we will use fR(z) = x and J(z) = y to denote its real and
imaginary parts, and |z| will denote its length v/x2 + y2 (i.e., the distance between
(x,y) and the origin). Either directly or using the polar representation of z, one
can check that |z1z2| = |z1||z2]. In addition, because the sum of the lengths of two
sides of a triangle is at least the length of the third, one has the triangle inequality
|z1 4+ 22| < |z1| + |z2|. Finally, in many computatlons involving complex numbers
it is useful to consider the complex conjugate z = x — iy of a complex number
z = x + iy. For instance, R(z) = Z+Z ,I() = 5° ,and 1z|> = |z|> = zZ. In terms

of the polar representation z = r(cos 0 + i sin 9) z= r(cos 0 — isin 9) and from

of (x, y)is (

this it is easy to check that z{ = z(. Using these considerations, one can give another
proof of the triangle inequality. Namely,

lz+CP =G+ 0GC+O=lz* + 280 + ICP < 1z1* + 21z8] + €17 = (2l + KD

Since |z — z1| measures the distance between z; and z, it is only reasonable that
we say that the sequence {z, : n > 1} converges to z € C if, for each € > 0, there
exists an n such that |z — z;,| < € whenever n > n.. Again, just as was the case for
R, there is a z to which {z, : n > 1} converges if and only if {z, : n > 1} satisfies
Cauchy’s criterion: for all € > 0 there is an n, such that |z, — z,,] < € whenever
n, m > n. That is, C is complete. Indeed, the “only if”” statement follows from the
triangle inequality, since |z, — z;u| < |zn — z|+|z2 — z2m| < €ifn, m > ng.Togothe
other direction, write z,, = x,, + iy, and note that |x,, — x| V |yn — Y| < |20 — Zm|.
Thus if {z, : n > 1} satisfies Cauchy’s criterion, so do both {x,, : n > 1} and
{yn : n > 1}. Hence, there exist x, y € R such that x, — x and y, — y. Now let
€ > 0 be given and choose n. so that |x, — x| V |y, — y| < \/ij for n > n.. Then

2 2
lzn — z)? < 5+5 = €2 and therefore |z, — z| < € for n > n.. The same sort
of reduction allows one to use Theorem 1.3.3 to show that every bounded sequence
{zn : n > 1} in C has a convergent subsequence.
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All the results in Sect. 1.2 about series and Sect. 1.9 about products extend more
or less immediately to the complex numbers. In particular, if {a,, : m > 1} € C,
then >0, a, converges if > | |am| < oo, in which case > > a, is said to
be absolutely convergent, and (cf. Exercise 1.5) the sum does not depend on the
order in which the summands are added. Similarly, if {b,, : m > 1} € C, then
[To_; (1 + by,) converges if > |by| < oo, in which case [[_ (1 + by,) is said
to be absolutely convergent and (cf. Exercise 1.20) the product does not depend on
the order in which the factors are multiplied.

Just as in the case of R, this notion of convergence has associated notions of open
and closed sets. Namely, let D(z,r) = {¢ : |( — z| < r} be the open disk! of radius
r centered at z, say that G C C is open if either G = @ or for each z € G there is an
r > 0 such that D(z,r) € G, and say that F C C is closed if FCis open. Further,
given S C C, the interior int(S) of S is its largest open subset, and the closure S is its
smallest closed superset. The connections between convergence and these concepts
are examined in Exercises 2.1 and 2.4.

2.2 Functions of a Complex Variable

We next think about functions of a complex variable. In view of the preceding, we
say thatif # 2 S C Cand f : § — C, then f is continuous at a point z € § if
for all € > O there exists a § > 0 such that | f(w) — f(z)| < e whenever w € § and
lw—z| < 4.

Using the triangle inequality, one sees that ||Zz| — |z1] | < |z2 — z1], and therefore
z € C + |z] € [0, o0) is continuous. In addition, by exactly the same argument
as we used to prove Lemma 1.3.5, one can show that f is continuous at z € S if
and only if f(z,) — f(z2) whenever {z,, : n > 1} C § tends to z. Thus, it is easy
to check that linear combinations, products, and, if the denominator doesn’t vanish,
quotients of continuous functions are again continuous. In particular, polynomials
of z with complex coefficients are continuous. Also, by the same arguments with
which we proved Lemma 1.4.4 and Theorem 1.4.1, one can show that the uniform
limit of continuous functions is again a continuous function and (cf. Exercise 2.4)
that a continuous function on a bounded, closed set must be bounded and uniformly
continuous.

We can now vastly increase the number of continuous functions of z that we know
how to define by taking limits of polynomials. For this purpose, we introduce power
series. That is, given {a,, : m > 0} C C, consider the series Z,?f:o a,,z" on the set
of z € C for which it converges. Notice thatif z € C\ {0} and ano:o amz™ converges,
thenlim,;, _, 50 @, 2™ = 0, and so thereisa C < oo such that |a,,| < C|z|~" for all m.

Therefore, if r = %, then |a,,("| < Cr™ for all m > 0. Hence, by the comparison

10f course, thinking of C in terms of R2,ifz = x + iy, then D(z, r) is the ball of radius r centered
at (x, y). However, to emphasize that we are thinking of C as the complex numbers, we will reserve
the name disk and the notation D(z, r) for balls in C.
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test, we see that if > a,,2"" converges for some z, then >~ a,, ("™ is absolutely
convergent for all ¢ with || < |z|. As a consequence, we know that the interior of
the set of z for which >, a,z™ converges is an open disk centered at 0, and the
radius of that disk is called the radius of convergence of > " amz™ . Equivalently,
the radius of convergence is the supremum of the set of |z| for which > anz™
converges.

Lemma 2.2.1 Given a sequence {a,, : m > 0} C C, the radius of convergence of
_— 1 .

> oo am2™ is equal to the reciprocal of limy, o0 |am|m, when the reciprocal of 0

is interpreted as oo and that of 0o is interpreted as 0. Furthermore, if R € (0, 00)

is strictly smaller than the radius of convergence, then there exists a Cg < 0o and
Or € (0, 1) such that

o0
Z lam ||z < Crby foralln > 0and |z| <R,
m=n

and so anozo a;, 7™ converges absolutely and uniformly on D(0, R) to a continuous
function.

. — 1 P
Proof First suppose that% < limy,— o0 |@y |7 . Then |a,, |R™ > 1 for infinitely many
m’s, and so a, R™ does not tend to 0 and therefore anozo ay, R™ cannot converge.
Hence R is greater than or equal to the radius of convergence. Next suppose that

— 1 .
% > lim,,_, o |a;; | . Then there is an mq such that |a,,|R™ < 1 for all m > my.

Hence, if |z] < Rand § = ‘iRl, then |a,,z™| < 0™ for m > my, and so zlfonO:O a2

converges. Thus, in this case, R is less than or equal to the radius of convergence.
Together these two imply the first assertion.

Finally, assume that R > 0 is strictly smaller that the radius of convergence. Then
there exists an r > R and mq € Z™" such that |a,,| < r~™ for all m > m, which
means that there exists an A < oo such that |a,,| < Ar~" for all m > 1. Thus, if
0= g, then

o0 [o,0] A
7| <R = "< AQ" 0" = ——0".
2l < D lan"| < A0" Y — O
m=n m=0
We will now apply these considerations to extend to C some of the functions that
we dealt with earlier, and we will begin with the function exp. Because % > (0 and

we already know that Z,‘f:o ’% converges of all x € R, anozo %m, has an infinite
radius of convergence. We can therefore define

o0 Zm
exp(z) = e* = Z — forall z € C,

m=0
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in which case we know that exp is a continuous function on C. Because we obtained
exp on C as a natural extension of exp on R, it is reasonable to hope that some of

the basic properties will extend as well. In particular, we would like to know that
et — pll 22,

Lemma 2.2.2 Given sequences {a, : n > 0} and {b, : n > 0} in C, define
en = Dm0 dmbn—m. Then the radii of convergence for > o _(am + by)z™ and
Yoo Cmz™ are at least as large as the smaller of the radii of convergence for
> oo amz™ and chno:o bnz™. Moreoooven if |z| is strictly smaller than the radii of
convergence for > o auz™ and D "o byz™, then

00 00 00
Z amZm + Z mem = Z(am + bm)zm
m=0 m=0 m=0

and

(Eo)g) £

m=0

Proof Because verification of the assertions involving {a, + b, : n > 0} is very
easy, we will deal only with the assertions involving {c, : n > 0}.

Suppose that R > 0 is strictly smaller than the radii of convergence of both
Yoo am2™ and > 07 by z™. Then |a,| V |b,| < CR™" for some 0 < C < oo,

and so
n

leal < D laml|ba-m| < C*(n + HR™™.

m=0

Hence |cn|% < C%(n + 1)%R’1, and so, since (cf. Exercise 1.18) %logn — 0,
we know that the radius of convergence of Zf,f’:() cmz™ is at least R and that the first
assertion is proved. To prove the second assertion, let z # O of the specified sort be
given. Then there exists an R > |z| such that |a,| V |b,| < CR™" for some C < oo.
Observe that, for each n,

n n 2n
(Z amZm)(Z bmz’") = " Z aiby
m=0 m=0 m=0 0<k,l<n

k+l=m
n 2n n
=D "+ D, D akbw.
m=0 m=n+1 k=m—n

The product on the left tends to (3o amz™) (X o bmz™) as n — oo, and the

first sum in the second line tends to ij;o cmz™. Finally, if 0 = |;—5‘, then the second
term in the second line is dominated by
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2n 2, gn+1
> e <2

- 1-0
m=n+1
Since 0 € (0,1), « = —logf > 0, and so nontl < e%, < w%# — 0 as
n— oo. O
Seta, = , andb Bythe same reasoning as we used to show that >~ r:,

has an infinite radius of convergence one sees that > a,,z" and > by, 2™ do
also. Next observe that

n n n
A" 1 L
E Ambp_m = E —_— = — Wz, =,
m!(n —m)! n! m n!
m=0 m=0 m=0

and therefore, by Lemma 2.2.2 with z = 1,

0 n
o4t = Z (z1 +‘Zz) — pfit
n=0 -
Our next goal is to understand what e really is, and, since e* = e*¢'”, the problem

comes down to understanding e* for purely imaginary z. For this purpose, note that
if § € R, then

" gm S 2m 92m+1
i0 __ e m m
¢ _Z _Z( D (2m )|+IZ( D 1)!
m=0 m=0
which, by (1.8.5), means that
¢! = cosf+isinf forf e R, 2.2.1)

a remarkable equation known as Euler’s formula in recognition of its discoverer. As
a consequence, we know that when z = x + iy, then e® corresponds to the point in
R? where the circle of radius e* centered at the origin intersects the ray from the
origin that passes through the point (cos y, sin y).

With this information, we can now show that the equation z” = w has a solution
foralln > 1 and w € C.Indeed, if w = 0 then z = 0 is the one and only solution. On
the other hand, if w # 0, and we write w = r(cos# + i sin ) where 6 € (—m, 7],
then w = €°27+0 andsoz = ¢ (ogr+if) — rie satisfies 7" = w. However, this
isn’t the only solution. Namely, we could have written w as exp (log r+i(0+ 2m7r))
for any m € Z, in which case we would have concluded that

Im = r% exp(in_l(ﬂ + 2m7r))
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is also a solution. Of course, z,,, = zm, <= (m2 — my) is divisible by n, and so
we really have only 7 distinct solutions, zg, ..., Z,—1. That this list contains all the
solutions follows from a simple algebraic lemma.

f() =0, then f(z) = (z — ()g(z), where g(z) = Z;’;]O b 7™ for some choice of
bo, ..., by—1 € C. In particular, there can be no more than n distinct solutions to
f(2) = 0. (See the fundamental theorem of algebra in Sect. 6.2 for more information).

Lemma 2.2.3 Suppose that n > 1 and f(z) = > _oamz™ where a, # 0. If

Proof 1f f(0) =0, thenag = 0,andso f(z) =z Zf;_:lo am+12™. Next suppose that
f(¢) = Oforsome ¢ # 0, and consider f:(z) = f(z+¢). By the binomial theorem,
f¢ is again an nth order polynomial, and clearly f:(0) = 0. Hence f(z + ¢) =
z9¢(z), where g¢ is a polynomial of order (n — 1), which means that we can take
9(z) = g¢(z = Q).

Given the first part, the second part follows easily. Indeed, if f((;,) = 0 for distinct
Ciy - -+, Cug1, then, by repeated application of the first part, f(z) = a, [[);,—; (2—Cn)-
However, because a,, # 0and (41 # (, forany 1 < m < n,thismeans that f((,1)
could not have been 0. O

‘We have now found all the solutions to z" = w. When w = 1, the solutions are

e' = for 0 < m < n, and these are called the n roots of unity. Obviously, for any
w # 0, all solutions can be generated from any particular solution by multiplying it
by the roots of unity.

Another application of (2.2.1) is the extension of log to C \ {0}. For this purpose,
think of log on (0, 00) as the inverse of exp on R. Then, (2.2.1) tells us how to extend
log to C \ {0} as the inverse of exp on C. Indeed, given z # 0, set r = |z| and
take 6 to be the unique element of (—m, 7] for which z = ret?. Then, if we take
logz = logr + i6, it is obvious that €!°2? = z. To get a more analytic description,
note that cos is a strictly decreasing function from (0, ) onto (—1, 1), define arccos
on (—1, 1) to be its inverse, and extend arccos as a continuous function on [—1, 1]
by taking arccos(—1) = 7 and arccos 1 = 0. Then

arccos ——= ify>0
logz = 1 log(x® + y?) +1i Vet (2.2.2)
—arccos ify <0

for z = x + iy # 0. Observe that, although log is defined on the whole of C \ {0},
it is continuous only on C \ (—o0, 0], where (—oo, 0] here denotes the subset of C
corresponding to the subset {(x, 0) : x < 0} of R2.

2.3 Analytic Functions

Given a non-empty, open set G € C and a function f : G —> C, say that f is
differentiable in the direction § at z € G if the limit
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fz+1te?y — £(2)
t

exists.

fg(Z) = }2‘%

If f is differentiable at z € G in every direction, it is said to be differentiable at z,
and if f is differentiable at every z € G it is said to the differentiable on G. Further,
if f,is continuous at z for every 6, then we say that f is continuously differentiable
at z, and when f is continuously differentiable at every z € G, we say that it is
continuously differentiable on G.

Say that an open set G C C is connected if it cannot be written as the union of
two non-empty, disjoint open sets. (See Exercise 4.5 for more information.)

Lemma 2.3.1 Letz € C, R > 0, and f : D(z, R) —> C be given, and assume
that f is differentiable in the directions 0 and 7 at every point in D(z, R). If both 1
and fy are continuous at z, then f is continuously differentiable at 7 and

2

fo(@) = fo(z)cosO + f% (z)sin@ foreach € (—m, 7).

Furthermore, if fo’ and fi are continuous on D(z, R), then f is continuously differ-
2
entiable on D(z, R) and

0y _
lim sup fle+ee®) - f@ — fp@| =0.

120 ge(—7,m t

Finally, if G € C is a connected open set and f is differentiable on G with fy = 0
on G forall 0 € (—m, ), then f is constant on G.

Proof First observe that f determines functions # : D(z, R) —> R and
v : D(z, R) —> Rsuch that f = u + iv and that, for any 6 € (—=, 7], f;(¢)
exists at a point ( € D(z, R) if and only if both u;(C) and vé (¢) do, in which case
f(Q) = uy(C) + ivy(C). Furthermore, if € D(z, R) and f, exists on D((, r) for
some 0 < r < R — |¢ — z|, then fy is continuous at ¢ if and only if both u; and v,
are. Thus, without loss in generality, from now on we may and will assume that f is
R-valued.

First assume that f;j and f% are continuous at z. Then, by Theorem 1.8.1, for

0 < |t] <R,

fz+1e? — f(z)
= f(z+tcosO+itsinf) — f(z+itsinf) + f(z+itsind) — f(z)
= tf§(z + 71 cos  + it sin ) cos@—l—tf%(z—i—irz sin @) sin 6

for some choice of 7 and 7 with || Vv |72| < |f]. Hence, after dividing through
by ¢ and then letting t — 0, we see that fé (z) exists and is equal to f;j(z) cos 6 +
fi(z)sind.

2
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Next assume that fj and f7 are continuous on D(z, R). Then, by Theorem 1.8.1
2
and the preceding,

fa+te”) = ) —1fy2)
= 1(f§(z + 1¢'%) — f§(2)) cos O + t(fé (z+ 7y — fé (z)) sinf

for some 0 < |7| < t. Hence, if for a given ¢ > 0 we choose § > 0 so that
|folz+ QO = fo@Iv If% (z+ 0 — f% ()| < 5 when [(| < §, then

i0y _
wp |TEXIEIZIE | < e foralin € (5,91 10)

fe(—m,m] t

Finally, assume that, for each 6, fé exists and is equal to O on a connected open set
G,let( € G,and setc = f(({). Obviously, G| = {z € G : f(z) # c} is open. Next
suppose f(z) = ¢, and choose R > Osothat D(z, R) C G.Givenz' € D(z, R)\{z},
express 7 — z as re'?, apply (1.8.1) to see that f(z') — f(z) = foz + pe'®)r for
some 0 < |p| < r, and conclude that f(z') = ¢. Hence, Go ={z € G : f(z) =}
is also open, and therefore, since G = G1 U G, and ¢ € G, G| = 0. ([l

We now turn our attention to a very special class of differentiable functions f
on C, those that depend on z thought of as a number rather than as a vector in R2.
To be more precise, we will be looking at f’s with the property that the amount
f(z 4+ {) — f(z) by which f changes when z is displaced by a sufficiently small {
is, to first order, given by a number f’(z) € C times (. That is, if f is a C-valued
function on an open set G € C and z € G, then

f+Q - /@)
¢

f'(z) = lim exists.
¢—0
Further we will assume that f’ is continuous on G. Such functions are said to be
analytic on G. It is important to recognize that most differentiable functions are not
analytic. Indeed, a continuously differentiable function on G is analytic there if and
only if
fi@) =€l fi(z) forallz e Gandf e (—m, ).

To see this, first suppose that f is continuously differentiable on G and that the
preceding holds. Then, by Lemma 2.3.1, for any z € G

: f+re’) = f2)
lim sup -

& fi| =0,
™0 ge(—7 7] r
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and so, after dividing through by e’?, one sees that f is analytic and that f'(z) =
f(z). Conversely, suppose that f is analytic on G. Then

. f+re? — f(z2)
1m

0 ret?

e fje) =1 = 1@,
andso f5(z) = €' f'(z) = ¢!’ £} (z). Writing f = u+iv, where u and v are R-valued,
and taking § = 7, one sees that, for analytic f’s, u’% + iv’% = e’%(ué + ivy) =
iug — v and therefore

uy = v’% and u’y = —v. (2.3.1)

SE

Conversely, if f = u + iv is continuously differentiable on G and (2.3.1) holds,
then, by Lemma 2.3.1

fy = focosb+ frsinf = uycos +ivjcosd + u's sinf + v sin 6
2 2 2

= (cos 0 + i sin O)ufy + i (cos 0 + i sin O)v, = €'’ f;,

and so f is analytic. The equations in (2.3.1) are called the Cauchy—Riemann equa-
tions, and using them one sees why so few functions are analytic. For instance, (2.3.1)
together with the last part of Lemma 2.3.1 show that the only R-valued analytic func-
tions on a connected open set are constant.

The obvious challenge now is that of producing interesting examples of analytic
functions. Without any change in the argument used in the real-valued case, it is
easy to see that if f(z) = > _,anz™, then f is analytic on C and f'(z) =
Z,’,’;lo (m+ Dapy+12™. As the next theorem shows, the same is true for power series.

Theorem 2.3.2 Given {a,, : m > 0} C C and a function v : N — C satisfying
1 < [(m)| < Cm* for some C < oo and k € N, > nlo(n)anz" has the same
radius of convergence as Z;OZO amz™. Moreover, if R > 0 is strictly less than the
radius of convergence of > o-_oamz™ and f(z) = >.o_yamz™ for z € D(0, R),
then f is analytic on D(0, R) and f'(z) = > o_o(m + Dam412™.

Proof Set by = 1(m)ay. Obviously T co [bp|7 > Mmoo [am|7. At the
1 1 k 1
same time, |b,,|m < Cmmm |a,|m and, by Exercise 1.18,

1
log(C%mi) = —(logC + klogm) — 0 asm — oc.
m

— 1 1 -
Hence, limy,— oo |by|m < limy, o |am|m. By Lemma 2.2.1, this completes the
proof of the first assertion.
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Turning to the second assertion, let z, ( € D(0, r) for some 0 < r < R. Then

fQO-r@= Zam@'"—zm)—(c—z)Zachk tmt
m=1

m
(C_Z)Zmamzm1+(C_Z)Zamzcklmk mel).
m=1
Hence, what remains is to show that > o @ > py (¢F71z" 7% — zm=1) — 0 as
¢ — z. But there exists a C < oo such that, for any M,
Zamz Ck 1_m—k mel)
m=1
k=1 m—k _ _m—1 « rym-l
< ZlamIZIC A DY m(E)
m=0 k=1 m=M+1

Since, for each M, the first term on the right tends to 0 as { — z, it suffices to show
that the second term tends to 0 as M — oo. But this follows immediately from the
first part of this lemma and the observation that % is strictly smaller than the radius
of convergence of the geometric series. (]

As a consequence of Theorem 2.3.2, we know that

0 P 2m+1 Zm
: m m
exp(z) = —, sinz = — — and cosz = —
P =2 > G T > o
m=0 m=0 m=0
are all analytic functions on the whole of C. In addition, it remains true that ¢/* =
cos z +isinzforall z € C. Therefore, since sin(—z) = — sin zand cos(—z) = cos z,
cosz = e’% and sinz = & _25 ~ The functions sinh x = —i sin(ix) = £

and cosh x = cos(ix) = & +e .

functions.

Notice that when f(z) = >y amz™ as in Theorem 2.3.2, not only f but also
all its derivatives are analytic in D (0, R). Indeed, for k > 1, the kth derivative f ®)
will be given by

for x € R are called the hyperbolic sine and cosine

o]

Z mm —1)---(m —k + Dayz" %,

m=k

(m) . . .
and so a,, = % Hence, the series representation of this f can be thought of
as a Taylor series. It turns out that this is no accident. As we will show in Sect.6.2
(cf. Theorem 6.2.2), every analytic function f in a disk D((, R) has derivatives of
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all orders, the radius of convergence of Zoo Al (O Z" is at least R, and f(z) =
> L0 ( — ¢y forall z € D(C, R).

m=0
The functlon logon G = C\ (—o0, 0] provides a revealing example of what is
going on here. By (2.2.2), logz = u(z) + iv(z), where u(z) = 1 log(x2 + y2) and

v(z) = Farccos \/ij)z the sign being the same as that of y. By a straightforward

application of the chain rule, one can show that u{)(z) = xszyz and u’; (7) =

-y

X2y
Before computing the derivatives of v, we have to know how to differentiate arccos.
Since — arccos is strictly increasing on (0, ), Theorem 1.8.4 applies and says that

—arccos’ £ = for ¢ € (=1, 1). Next observe that sin = #+/1 — cos?

s1n(arccos 3)

and therefore, because sin > 0 on (0, 7), arccos’ £ = —m for & € (—1,1).
Applying the chain rule again, one sees that vy(z) = ——— i 7 and v’ (z) = m’
2

first for y # 0 and then, by Lemma 1.8.3, for all y € R. Hence, u and v satisfy the
Cauchy—Riemann equations and so log is analytic on G. In fact,

x —1iy z
10g = M()(Z) +lU0(Z) 212 2 = W,

and so .
log'z =~ forzeC\ (—o0,0].
z

With this information, we can now show that

log¢=—>" % for ¢ € D(1, 1). (2.3.2)

m=1

To check this, note that the derivative of the right hand side is equal to

Dy =Y a-0" = é
m=1 m=0

Hence, the difference g between the two sides of (2.3.2) is an analytic function on
D(1, 1) whose derivative vanishes. Since 9/9 = 6’9 " and (cf. Exercise 4.5) G is
connected, the last part of Lemma 2.3.1 implies that g is constant, and so, since
g(1) = 0, (2.3.2) follows. Given (2.3.2), one can now say that if z € G and R =
inf{|¢ — z| : £ <0}, then

log¢ =logz — Z % for ( € D(z, R).

m=1

Indeed,

< <
¢ = ZQ — elogzelog : elogz—HOg :,

N
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. log (—log z—log & .
from which we conclude that p(() = % must be an integer for each

¢ € D(z, R). But ¢ is a continuous function on D(z, R) and ¢(z) = 0. Thus if
p() # 0 for some ( € D(z,R) and if u(t) = <p((1 -1z + tC), then u would
be a continuous, integer-valued function on [0, 1] with #(0) = 0 and |u(1)| > 1,
which, by Theorem 1.3.6, would lead to the contradiction that |u(¢)| = % for some
:
and therefore |§ — 1| < 1, we can apply (2.3.2) to complete the calculation.

t € (0, 1). Therefore, we know that log ( = logz + log > and, since |( — z| < |z]

2.4 Exercises

Exercise 2.1 Many of the results about open sets, convergence, and continuity for
R have easily proved analogs for C, and these are the topic of this and Exercise 2.4.
Show that F is closed if and only if z € F whenever there is a sequence in F that
converges to z. Next, given § C C, show that z € int(S) if and only if D(z,r) € S
for some r > 0, and show that z € § if and only if there is a sequence in S that
converges to z. Finally, define the notion of subsequence in the same way as we did
for R, and show that if K is a bounded (i.e., there is an M such that |z| < M for all
z € K), closed set, then every sequence in K admits a subsequence that converges
to some point in K.

Exercise 2.2 Let R > 0 be given, and consider the circles S!(0, R) and S' (2R, R).
These two circles touch at the point ((0) = (R, 0). Now imagine rolling S'!2R, R)
counter clockwise along S!(0, R) for a distance # so that it becomes the circle
S'(2Re'?, R), and let ¢ (A) denote the point to which ¢(0) is moved. Show that {(¢) =
R(2¢!% — €'?%). Because it is somewhat heart shaped, the path {C(0) : 6 € [0, 27)}
is called a cardiod. Next set z(0) = ((6) — R, and show that z(0) = 2R(1 —cos 0)e'".

Exercise 2.3 Given sequences {a, : n > 1} and {b, : n > 1} of complex numbers,
prove Schwarz’s inequality

o0 o0 o
D lamllbwl = | D laml® | D 1wl
m=0 m=0 m=0

Clearly, it suffices to treat the case when all the a,,’s and b,,’s are non-negative and
there is an N such thata, = b, = 0 forn > N and zg’:] a? > 0. In that case
consider the function

N N N N
Q) =D (ant +by)* =17 an+2t D ayby + Y by fort eR.
n=1 n=1 n=1

n=1

Observe that ¢(¢) is non-negative for all ¢ and that
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nvr b
gp(m):_@# sz if tg = — 2o Zn=1n7n

Zn 1 n n=1 Zn 1[12

Exercise 2.4 If H # #isopen and f : H — C, show that f is continuous
if and only if f~'(G) is open whenever G is. If K is closed and bounded and if
f : K — Cis continuous, show that f is bounded (i.e., sup,c g | f(z)| < 00) and
is uniformly continuous in the sense that for each € > 0 there exists a § > 0 such
that | f({) — f(2)| < € whenever z, ¢ € K with |( — z| < 0.

Exercise 2.5 Here is an interesting, totally non-geometric characterization of the
trigonometric functions. Thus, in doing this exercise, forget about the geometric
description of the sine and cosine functions.

(i) Using Taylor’s theorem, show that for each a, b € R the one and only twice
differentiable f : R —> R that satisfies f” = — f, f(0) = a, and f'(0) = b is the
function f(x) = ac(x) + bs(x), where

o 2m o x2m+1
c(x) = —-H™ and s(x) = "
(x) Z<>(2), (x) %()QmH)!
(ii) Show that ¢/ = —s and s’ = ¢, and conclude that ¢ + s = 1.

(iii) Using (i) and (ii), show that

c(x +y) =cx)e(y) —s@)s(y) and s(x +y) =s@)c(y) +s(y)cx).

(iv) Show that ¢(x) > 1 and therefore that s(x) > % for x € [0, 1]. Thus, if
L > % and ¢ > Oon [0, L], then s(x) > % on [%, L], and so

0<e(l) se(y) —3(L—3) =1L

Therefore L < 5, which means that there is an « € (% %] such that ¢(«r) = 0 and

c(x) > O forx € [0, ). Show that s(ax) = 1.
(v) By combining (ii) and (iv), show that c(a+x) = —s(x) and s(a+x) = c(x),
and conclude that

cRa+x) = —s(x) sQRa+x) = —c(x) cBa+x) =s(x)
sBa+x) = —c(x) cla+x) =c(x) s(@a+x) =s(x).

In particular, this shows that ¢ and s are periodic with period 4.

Clearly, by uniqueness, c(x) = cosx and s(x) = sinx, where cos and sin are
defined geometrically in terms of the unit circle. Thus, o = % one fourth the
circumference of the unit disk. See the discussion preceding Corollary 3.2.4 for a
more satisfying treatment of this point.
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Exercise 2.6 Given w € C\ {0}, define

gwx _ e—wx ewx + e—wx

sin,x = ———  and cos,x =
2w 2

for x € R. Obviously, sin and cos are sin; and cos;, and sinh and cosh are sin; and

cosy. Show that sin,, and cos,, satisfy the equation u/, = w?u on R and that if u is
any solution to this equation then u(x) = u(0) cos,, x + u’(0) sin,, x.

Exercise 2.7 Show that if f and g are analytic functions on an open set G, then
af + (g is analytic for all o, 3 € C asis fg. In fact, show that (af + [Bg) =
af’ + B¢ and (fg) = f'g + f¢'. In addition, if g never vanishes, show that %

is analytic and (%)/ =1 /g;zf g Finally, show that if f is an analytic function on an
open set G| with values in an open set G, and if g is an analytic function on G,
then their composition g o f is analytic on G| and (go f)" = (¢’ o f) f’. Hence, for
differentiation of analytic functions, linearity as well as the product, quotient, and

chain rules hold.

Exercise 2.8 Given w € [0, 27), set 2, = C\ {rei‘*’ : r > 0} and show that there
is a way to define log , on 2, so that expolog (z) = z for all z € Q,, and log,
is analytic on €2,,. What we denoted by log in (2.2.2) is one version of log,, and
any other version differs from that one by i27n for some n € Z. The functions log,,
are called branches of the logarithm function, and the one in (2.2.2) is sometimes
called the principal branch. For each w, the function log , would have an irremovable
discontinuity if one attempted to continue it across the ray {re’* : r > 0}, and so one
tries to choose the branch so that this discontinuity does the least harm. In an attempt
to remove this inconvenience, Riemann introduced a beautiful geometric structure,
known as a Riemann surface, that enabled him to fit all the branches together into
one structure.



Chapter 3
Integration

Calculus has two components, and, thus far, we have been dealing with only one of
them, namely differentiation. Differentiation is a systematic procedure for disassem-
bling quantities at an infinitesimal level. Integration, which is the second component
and is the topic here, is a systematic procedure for assembling the same sort of quan-
tities. One of Newton’s great discoveries is that these two components complement
one another in a way that makes each of them more powerful.

3.1 Elements of Riemann Integration

Suppose that f : [a, b)] —> [0, 00) is a bounded function, and consider the region
£2 in the plane bounded below by the portion of the horizontal axis between (a, 0)
and (b, 0), the line segment between (a, 0) and (a, f (a)) on the left, the graph of
f above, and the line segment between (b, f (b)) and (b, 0) on the right. In order to
compute the area of this region, one might chop the interval [a, b] into n > 1 equal
parts and argue that, if f is sufficiently continuous and therefore does not vary much
over small intervals, then, when 7 is large, the area of each slice

{(x,y)esz:xe[a+"’T*I(b—a),a+%(b—a)]&05ygf(x)},

where 1 < m < n, should be well approximated by ’% f (a + m,—l_l(b — a)), the
area of the rectangle [a + “=1(b — a),a + 2(b — a)| x [0, f(a + =L (b — a))].
Continuing this line of reasoning, one would then say that the area of §2 is obtained
by adding the areas of these slices and taking the limit

Jim 274 > fla+ o - a).
m=1

n—»oo n
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Of course, there are two important questions that should be asked about this
procedure. In the first place, does the limit exist and, secondly, if it does, is there a
compelling reason for thinking that it represents the area of £2? Before addressing
these questions, we will reformulate the preceding in a more flexible form. Say that
two closed intervals are non-overlapping if their interiors are disjoint. Next, given a
finite collection C of non-overlapping closed intervals I # ¢ whose union is [a, b], a
choice functionisamap = : C — [a, b]suchthat &(I) € I foreach I € C. Finally
given C and =, define the corresponding Riemann sum of a function f : [a, b)] — R
to be

R(f:C.8) =D f(EWD)|. where|I|is the length of I.
IeC

What we want to show is that, as the mesh size ||C|| = max{|I| : I € C} tends to O,
for a large class of functions f these Riemann sums converge in the sense that there
is a number fa b f(x)dx € R, which we will call the Riemann integral, or simply the
integral, of f on [a, b], such that for every ¢ > 0 one can find a § > 0 for which

<e€

b
'%(f; .5 - / £ dx

for all C with ||C|| < ¢ and all associated choice functions Z. When such a limit
exists, we will say that f is Riemann integrable on [a, D].

In order to carry out this program, it is helpful to introduce the upper Riemann
sum

Uf;C0) = Z(supf) |I|, where sup f =sup{f(x): x € I},
I I

1eC
and the lower Riemann sum
L(f;C) = Z (irIlf f) |11, where inf f = inf{f(x) : x € I}.
IeC

Lemma 3.1.1 Assume that f : [a,b] —> R is bounded. For every C and choice

Sunction B, L(f;C) < R(f;C, &) <U(f; C). In addition, for any pair C and C',

L(f;C) <U(S;C). Finally, for any C and € > 0, there exists a § > 0 such that
IC <6 = L(f:C) < L(f;C)+eandU(f;C) <US;C) +e,

and therefore

”C” E(f C)_supﬁ(f C) <1nfL{(f C)_ hm Z/l(f 0).



3.1 Elements of Riemann Integration 61

Proof The first assertion is obvious. To prove the second, begin by observing that
there is nothing to do if C" = C. Next, suppose that every I € C is contained in some
I’ € C’, in which case sup; f < sup, f. Therefore (cf. Lemma 5.1.1 for a detailed
proof), since each I” € C’ is the union of the I’s in C which it contains,

uich=3 Z(supf)m
reC’ lIeC r
cr
22 Z(Supf)lll =Z(supf)|1|=u(f;0),
rec \ Is¢ ! rec N1

and, similarly, £(f; C") < L(f; C). Now suppose that C and C’ are given, and set
C"={INnIl:1eC I'eC &INI #0).

Then for each I” there exist I € C and I’ € C' such that [” € [ and I” C I, and
therefore

L(f;C) < L(f3C") U C) <UL CH.

Finally, let C and € > 0 be given, and choosea = ¢y < ¢| < --- < cx = bsothat
C ={lck—1,ck]: 1 <k < K}.Given (', let D be the set of I’ € C’ with the property
that ¢, € int(/”) for at least one 1 < k < K, and observe that, since the intervals are
non-overlapping, D can contain at most K — 1 elements. Then each I’ € C' \ D is
contained in some / € C and therefore sup;, f < sup, f. Hence

THAEDY (sgp f) HEDIDS (sg,p f) 1l

I'eD IeC I'eC'\D
I'ci
< (sup Ifl)(K —DIC+ D supf | D11
la.0] IeC I I'eC’

r'ci

=< (Sup Ifl)(K = DICI+U(f30).

[a,b]

Therefore, if § > 0 is chosen so that (sup[u'b] |f|) (K —1)§ < e thenU(f;C) <
U(f; C) + e whenever ||C'|| < J. Applying this to — f and noting that L(f;C") =
—U(—f; C") for any C”, one also has that L(f;C) < L(f;C) +eif |C']| <4§. O
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Theorem 3.1.2 If f : [a,b] —> R is a bounded function, then it is Riemann
integrable if and only if for each € > 0 there is a C such that

> ll<e

IeC
sup; f—inf; f>e

In particular, a bounded f will be Riemann integrable if it is continuous at all but
a finite number of points. In addition, if f : [a, b] —> [c, d] is Riemann integrable
and ¢ : [c, d] —> R is continuous, then ¢ o f is Riemann integrable on [a, b].

Proof First assume that f is Riemann integrable. Given € > 0, choose C so that
2

€
< —

6

b
‘R(f; C.8) - / F)dx

for all choice functions & . Next choose choice functions &% so that

2 2

FETWD) + 55— Z 5w f and F(3(D) = 35—

€ .
30—a) < inf f

for each I € C. Then

2 2 2
UF:C) < R(f:C. 8N + % <R(f;C.E)+ % < L(f:0)+ €,

and so

2 N Lo _
& = U0 = L(f:0) —Z(supf n;ff) Hze >
1= s, 158, 72

Next assume that for each € > 0 there is a C such that
> ll<e
IeC
sup; f—inf; f>e

Givene > 0,sete = ¢ (4 sup, p 1 f1+2(b — a))_l, and choose C. so that

> <d

1eC,
sup,; f—inf; f>¢
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and therefore

€
U(f;C)— L(f;C) < 2sup|f] | +€b—a)= .
sup; f—inf; f>¢

Now, using Lemma 3.1.1, choose d. > 0 so that U(f;C) < U(f;C) + 5 and
L(f;C) = L(f;C) — 5 when [IC|| < . Then

ICl <de = U(f;C) < L(f;C) + ¢,
and so, in conjunction with Lemma 3.1.1, we know that

Iim U(f;C) =M= lim L(f:;C here M = L(f:;0).
am (f56) am (f;C) where Sgp (f:0)

Since, for any C and associated &, L(f;C) < R(f;C, E) < U(S; C), it follows
that f is Riemann integral and that M is its integral.

Turning to the next assertion, first suppose that f is continuous on [a, b]. Then,
because it is uniformly continuous there, for each € > 0 there exists a 6. > 0 such
that | f(y) — f(x)| < e wheneverx, y € [a, b] and |y — x| < .. Hence, if ||C]| < I,
then sup, f —inf; f < eforall I € C, and so

Z 1| = 0.

IeC
sup; f—inf; f>e

Now suppose that f is continuous except at the points a < ¢y < --- < cx < b. For
eachr > 0, f is uniformly continuous on F, = [a, b] \ U,fzo(ck —r, c; +r).Given
€ > 0,choose 0 < r <min{cy —cr—1 : 1 <k < K}sothat2r(K +1) < ¢, and
then choose § > 0 so that | f(y) — f(x)] < eforx, y € F, with |y — x| < J. Then
one can easily construct a C such that [ = [cy — 1, ¢, + r] N [a, b] € C for each
0 < k < K and all the other I’s in C have length less than ¢, and for such a C

K

Z 1] 52|Ik| <2r(K+1) <e.

IeC k=0
sup; f—inf; f>e

Finally, to prove the last assertion, let € > 0 be given and choose 0 < ¢’ < € so
that |p(n) — @(&)| < €if &, n € [c, d] with | — £| < €. Next choose C so that

Z 1] <€,

IeC
sup; f—inf; f>¢
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and conclude that

> n o< > =€ <e

IeC IeC
sup; o f—inf; po f>e¢ sup; f—inf; f>¢ 0

The fact that a bounded function is Riemann integrable if it is continuous at all
but a finite number of points is important. For example, if f is a bounded, continu-
ous function on (a, b), then its integral on [a, b] can be unambiguously defined by
extending f to [a, b] in any convenient manner (e.g. taking f(a) = f(b) = 0), and
then taking its integral to be the integral of the extension. The result will be the same
no matter how the extension is made.

When applied to a non-negative, Riemann integrable function f on [a, b], Theo-
rem 3.1.2 should be convincing evidence that the procedure we suggested for com-
puting the area of the region §2 gives the correct result. Indeed, given any C, U (f; C)
dominates the area of £2 and L(f; C) is dominated by the area of £2. Hence, since
by taking ||C|| small we can close the gap between U(f; C) and L(f; C), there can
be little doubt that fab f(x)dx is the area of §2. More generally, when f takes both

signs, one can interpret fab f(x)dx as the difference between the area above the
horizontal axis and the area below.

The following corollary deals with several important properties of Riemann inte-
grals. In its statement and elsewhere, if f : S — C,

Iflls = sup{|f ()] : x € §}

is the uniform norm of f on S. Observe that

I£glls = I flIsllglls and lleef + Bglls < lalll flls + [Blllglls

for all C-valued functions f and g on S and «, 3 € C.

Corollary 3.1.3 If f : [a, b] —> R is a bounded, Riemann integrable function and
a < c¢ < b, then f is Riemann integrable on both [a, c] and [c, b], and

b c b
/ f(x)dx:/ f(x)dx+/ g(x)dx forallc € (a,b). 3.1.1)

c

Further, if A\ > 0 and f is a bounded, Riemann integrable function on [Aa, Ab], then
x € [a, b] —> f(A\x) € R is Riemann integrable and

Ab

b
fydy = /\/ FOwx)dx. (3.1.2)

Aa
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Next suppose that f and g are bounded, Riemann integrable functions on [a, b].
Then,

b b
f<9g = / f(x)dxf/ g(x)dx, (3.1.3)
and so, if f is a bounded, Riemann integrable function on [a, b], then

b b
/ f(x)dx / |f(o)ldx

In addition, f g is Riemann integrable on [a, b, and, for all o, § € R, aof + (g is
also Riemann integrable and

=

< flslb—al. (3.1.4)

b b b
/ (af (x) + Bg(x)) dx = a/ f(x)dx +ﬁ/ g(x)dx. (3.1.5)

Proof To prove the first assertion, for a given € > 0 choose a non-overlapping cover
C of [a, b] so that
> i<«

IeC
sup; f—inf; f>¢

andsetC’ = {I N[a,c]: I € C}. Then, since

sup{f(y) — f(x) s x, y e INa,cl} <sup{f(y) — f(x): x, y € [}

and [I N[a,c]| < 1],

> s > ll<e

rec IeC

sup, f—inf; f>e sup; f—inf; f>e
Thus, f is Riemann integrable on [a, c]. The proof that f is also Riemann integrable
on [c, b] is the same. As for (3.1.1), choose {C, : n > 1} and {C, : n > 1} and
associated choice functions {&, : n > 1} and {&] : n > 1} for [a, ] and [c, b] so
that |C,|| V IIC, || < 1 and set Cl=C,UC,and E)(I) = E,(I)if I € C, and

E/(I) = &/(1)if I €C.\Cy.Then

b
/ fx)dx = lim R(f;C), &) = lim R(f;Cy, Ey) + lim R(f;C,, &)
‘ c b
=/ f(x)dx+/ f(x)dx.

Turning to the second assertion, set f\(x) = f(\x) for x € [a, b] and, given
a cover C and a choice function &, take Iy, = {Ax : x € I}, and define
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Cn={I\: 1 eC}and &\(I)) = A&(I) for I € C. Then C) is a non-overlapping

cover for [Aa, A\b], Z) is an associated choice function, ||Cy|| = A||C]|, and
Ab
R(f:C E) =D FAEM) =A"R(f:Cr, 8 — A" [ f)dy
IeC Aa
as ||IC|| — O.

Next suppose that f and g are bounded, Riemann integrable functions on [a, b].
Obviously, for all C and &, R(f;C, E) < R(g; C, &) if f < g and

Riaf +Bg;C, 5) =aR(f:C, &)+ fR(g;: C, &)

for all o, B € R. Starting from these and passing to the limit as ||C|| — 0, one
arrives at the conclusions in (3.1.3) and (3.1.5). Furthermore, (3.1.4) follows from
(3.1.3), since, by the last part of Theorem 3.1.2, | f| is Riemann integrable and
£ < Ifl < | fll{a.p)- Finally, to see that fg is Riemann integrable, note that, by
the preceding combined with the last part of Theorem 3.1.2, (f + ¢)* and (f — g)>
are both Riemann integrable and therefore so is fg = }t(( f4+9>—(f - g)z). (I

There is a useful notation convention connected to (3.1.1). Namely, if a < b, then

one defines . ,
/ f(x)dx:—/ f(x)dx.
b a

With this convention, if {a; : 0 < k < £} € R and f is function that is Riemann
integrable on [ag, a;] and [ay, ag4+1] for each 0 < k < £, one can use (3.1.1) to

check that ,

ag 1 A+
/ fdx = Z/ f(x)dx. (3.1.6)

o k=0

Sometimes one wants to integrate functions that are complex-valued. Just as in
the real-valued case, one says that a bounded function f : [a, b] —> C is Riemann
integrable and has integral j; b f(x)dx on [a, b] if the Riemann sums

R(f:C,8) =D f(EW)I]

IeC

converge to fab f(x)dx as ||C|| = 0. Writing f = u + iv, where u and v are real-
valued, one can easily check that f is Riemann integrable if and only if both u and
v are, in which case

b b b
/f(x)dx:/ u(x)dx+i/ v(x) dx.
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From this one sees that, except for (3.1.3), the obvious analogs of the assertions in
Corollary 3.1.3 continue to hold for complex-valued functions. Of course, one can
no longer use (3.1.3) to prove the first inequality in (3.1.4). Instead, one can use the
triangle inequality to show that |2R(f; C, &)| < R(| f|; C, E) and then take the limit
as ||C]| — O.

There are two closely related extensions of the Riemann integral. In the first place,
one often has to deal with an interval (a, b] on which there is a function f that is
unbounded but is bounded and Riemann integrable on [«, b] for each a € (a, b).
Even though f is unbounded, it may be that the limit lim,~ 4 fab f(x)dx existsin C,
in which case one uses f(a! bl f(x) dx to denote the limit. Similarly, if f is bounded

and Riemann integrable on [a, 3] for each 3 € (a, b) and limg » faﬂ f(x)dx exists

or if f is bounded and Riemann integrable on [, 5] foralla < a < < b and

lima~ 4 ff f(x) dx exists in C, then one takes f[a p [ (¥)dx or f(a p f(x) dx to be
B,b ’ ’

the corresponding limit. The other extension is to situations when one or both of
the endpoints are infinite. In this case one is dealing with a function f which is
bounded and Riemann integrable on bounded, closed intervals of (—oo, b], [a, 00),
or (—o0, 00), and one takes

/ fx)dx, fx)dx, or / fx)dx
(—00,b] [a,00) (—00,00)

to be
b

b b
aglpoo ’ f(x)dx, bh/rgo/a f(x)dx, or blggo/a f(x)dx
a\(—oQo

if the corresponding limit exists. Notice that in any of these situations, if f is non-
negative then the corresponding limits exist in [0, co) if and only if the quantities
of which one is taking the limit stay bounded. More generally, if f is a C-valued
function on an interval J and if f is Riemann integrable on each bounded, closed
interval / C J, then [, f(x)dx will exist if sup; [, | f(x)|dx < oo, in which is
case f is said to be absolutely Riemann integrable on J. To check this, suppose that
J = (a, b]. Then, fora < a1 < an < b,
a
/ f(x)dx
(&3]

b b
/f(x)dx—/ f(x)dx

and so the existence of the limit lim 4 j; f f(x)dx € C follows from the existence
of lim,~ 4 f(f |f(x)|dx € [0,00). When J is [a,b), (a,b), [a, 00), (—00, b], or
(—o00, 00), the argument is essentially the same.

The following theorem shows that integrals are continuous with respect to uniform
convergence of their integrands.

5/ 1 )ldx,

1
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Theorem 3.1.4 If {f, : n > 1} is a sequence of bounded, Riemann integrable C-
valued functions on [a, b] that converge uniformly to the function f : [a, b] — C,
then f is Riemann integrable and

n—o00

lim fn(x)dx—/ f(x)dx.
Proof Observe that
IR(fu: C. E) = R(f:C. )N < R(Ifu — f1: C. E) < (b — ) fu = flars

and conclude from this first that { fa b fa(x)dx : n > 1} satisfies Cauchy’s conver-
gence criterion and second that, for each n,

lim
ICll—0

b
R(f:C, E)—/ Fo)dx| < B =D fy = s

Hence, [* f(x)dx = lim, o [ f,(x) dx exists,and R(f; C, E) —> [ f(x)dx
as ||C|| — 0. O

3.2 The Fundamental Theorem of Calculus

In the preceding section we developed a lot of theory for integrals but did not address
the problem of actually evaluating them. To see that the theory we have developed
thus far does little to make computations easy, consider the problem of computing
fah xkdx for k € N. When k = 0, it is obvious that every Riemann sum will be
equal to (b — a), and therefore fa > ¥0dx = b — a. To handle k > 1, first note that

fahx"dx = fobxkdx — Jo x¥dx and, for any ¢ € R

/ xkdx=(—1)’<+1/ xFdx.
0 0

Hence, it suffices to compute [ x* dx for ¢ > 0. Further, by the scaling property in

(3.1.2),
c 1
/x]‘dxzck+l/ x*dx.
0 0

Thus, everything comes down to computing fol x¥dx. To this end, we look at Rie-
mann sums of the form
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k)

—Z( ) _W WhereS(k)—Zn:mk.
m=1

When n is even, one can see that SV = w by adding the 1ton, 2 ton — 1, etc.
When 7 is odd, one gets the same conclusion by adding n to Sﬁ?l. Hence, we have

shown that
! o onn+1) 1
xdx = lim ——— = —,
0 n—oo  2n? 2

which is what one would hope is the area of the right triangle with vertices (0, 0),
(0, 1), and (1, 1). When k > 2 one can proceed as follows. Write the difference
(n 4+ DT — 1 as the telescoping sum > ((m + D*! — m 1), Next, expand
(m 4+ 1)**! using the binomial formula, and, after changing the order of summation,

arrive at
k

k41
(n+1)’<“—1=2( * )s,gﬂ.
J

Jj=0

. . .. . . )
Starting from this and using 1nduct10n on k, one sees that lim,,_, nSL, o +1 Hence,

we now know that fol xKdx = Combining this with our earlier comments, we

k+1
have
b PR+l _ gkt
/ x¥dx = ———— forallk e Nanda < b. (3.2.1)
. k+1

There is something that should be noticed about the result (3.2.1). Namely, if one
looks at fa b x¥ dx as a function of the upper limit b, then b¥ is its derivative. That is,
as a function of its upper limit, the derivative of this integral is the integrand. That
this is true in general is one of Newton’s great discoveries.!

Theorem 3.2.1 (Fundamental Theorem of Calculus) Let f : [a,b] — C be a
continuous function, and set F (x) = fax f(@®)dt forx € [a, b]. Then F is continuous
on [a, b], continuously differentiable on (a, b), and F' = f there. Conversely, if
F : [a,b] —> C is a continuous function that is continuously differentiable on
(a, b), then

b
F'=fon(ab) = F(b)—F(a):/ f(x)dx.

! Although it was Newton who made this result famous, it had antecedents in the work of James
Gregory and Newton’s teacher Isaac Barrow. Mathematicians are not always reliable historians,
and their attributions should be taken with a grain of salt.
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Proof Without loss in generality, we will assume that f is R-valued.
Let F be as in the first assertion. Then, by (3.1.1), for x, y € [a, b],

y y
F(y)—F(X)=/ f(t)dt=f(X)(y—X)+/ (f() = fo)dr.

Given € > 0, choose § > Oso that | f () — f(x)| < efort € [a, b] with |t — x| < 0.
Then, by (3.1.4),

<e€ly—x| ifly—x| <,

/ (f@) - f(x)dr

and so

‘F(y)—F(X)
y—x

— f(x)| <€ forx, y€la,b]with0 < |y — x| <.

This proves that F is continuous on [a, b], differentiable on (a, b), and F' = f there.

If f and F are as in the second assertion, set A(x) = F(x) — fax f(t)dt. Then,
by the preceding, A is continuous of [a, b], differentiable on (a, b), and A" = 0 on
(a, b). Hence, by (1.8.1), A(b) = A(a), and so, since A(a) = F(a), the asserted
result follows. O

It is hard to overstate the importance of Theorem 3.2.1. The hands-on method
we used to integrate x* is unable to handle more complicated functions. Instead,
given a function f, one looks for a function F such that F/ = f and then applies
Theorem 3.2.1 to do the calculation. Such a function F is called an indefinite integral
of f. By Theorem 1.8.1, since the derivative of the difference between any two of its
indefinite integrals is 0, two indefinite integrals of a function can differ by at most
an additive constant. Once one has F, it is customary to write

b
/ fx)dx = F)|'_ = Fb) - F(a).

Here are a couple of corollaries of Theorem 3.2.1.

Corollary 3.2.2 Suppose that f and g are continuous, C-valued functions on [a, b]
which are continuously differentiable on (a, b), and assume that their derivatives
are bounded. Then

b b b
[ regear=rg|_ - [ rwgeods

b
where f(X)g(x)‘xzu = f(b)g() — f(a)g(a).
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Proof By the productrule, (fg) = f'g+gf’', and so, by Theorem 3.2.1 and (3.1.5),

15 b
FB9B) — f@gla) = / Fig00 dx + / FGOg () dx

foralla <a < <b.Nowleta \yaand 3 7 b. O

The equation in Corollary 3.2.2 is known as the integration by parts formula, and
itis among the most useful tools available for computing integrals. For instance, it can
be used to give another derivation of Taylor’s theorem, this time with the remainder
term expressed as an integral. To be precise, let f : (a, b)) —> Cbe an (n+ 1) times
continuously differentiable function. Then, for x, y € (a, b),

f) = Z(y ey
m=0 (3.2.2)

_ n+1 1
+ %/ (1 =) f(A = Hx +ty) dt.
. 0
To check this, set u(t) = f((l —x + ty). Then
u™ @) = (y — )" f"((1 = D)x +1y),

and, by Theorem 3.2.1, u(1) — u(0) = fol u'(t) dt, which is (3.2.2) for n = 1. Next,
assume that

n—l (m) 1
_ u (0) 1 _ y\n—1_(n)
u(l) = .y + o 1)!/0 (I —=0)""u"()dt

for some n > 1, and use integration by parts to see that

()

m=0

— 1y

1
/ - t)n—lu(n)(t) dt = ( / 1—0"u ("+1)(l‘) dt.
0

Hence, by induction, (3.2.2) holds for all n > 1.
A second application of integration by parts is to the derivation of Wallis’s formula:

n 4" (n! 2
= lim H = lim (n}) .
1 2m = 12m 1 g ) ([, 2 — D)’

(3.2.3)
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To prove his formula, we begin by using integration by parts to see that

H K
/ cos" tdr = / sin’7cos" 't dt = (m — 1)/ sin’ 7 cos” 2t dt
0

=(m — 1)/ cos"2rdt — (m — l)/ cos™ t dt,
0

and therefore that

T

2 m % 2
/ cos" tdt = —/ cos"“tdt form > 2.
0 m 0

Since [} cost dr = 1, this proves that

s n

Z o ontl 2m
cos tdt = | I forn > 1.
/O i 2m +1 "=

At the same time, it shows that [’ cos® 7 dt = % and therefore that

z L 2m—1
/ cosz"tdtzzl_[ n forn > 1.
0 2 2m

m=1

Thus .
Jo} cos* ¢ dt 2 4" (n1)?

fo% cosrdt T @n+1) ([T @m—1)*

Finally, since

f7 cos?tl tdt  2n f cos~! tdt 2n

1> ,
f cos? ¢ dt T+l f cos?" 1 dt Ry

(3.2.3) follows.

Aside from being a curiosity, as Stirling showed, Wallis’s formula allows one
to compute the constant ¢? in (1.8.7). To understand what he did, observe that
[1:_,2m — 1) = 2% and therefore, by (1.8.7), that

2"n!

4"(n!)? 1 (4'1(;1!)2)2
2n +1) (Hn-H m ))2 2n+ 1\ (2n)!

1 4nelp (%)Zn g . e?An
2n + 1 (2n) T 4n 42
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Hence, after letting n — oo and applying (3.2.3), one sees that >4 =27 and therefore
that (1.8.7) can be replaced by

!
Vamer < 28 < famer, (3.2.4)

or, more imprecisely, n! ~ v/2mn (2)".
Here is another powerful tool for computing integrals.

Corollary 3.2.3 Let ¢ : [a,b] —> [c,d] be a continuous function, and assume
that ¢ is continuously differentiable on (a, b) and that its derivative is bounded. If
f i lc,d] — Cis a continuous function, then

b @(b)
/ (f o) (1) dt =/ f(x)dx.
a ®

(a)

In particular, if ¢ > 0on (a, b) and p(a) < ¢ < d < p(b), then for any continuous
file,d] — C,

d )
/ f(x)dx = / (fop®)¢ (1) dt.

1)

Proof Set F(t) = ;g; f(x)dx. Then, F(a) = 0 and, by the chain rule and Theo-

rem 3.2.1, F' = (f o ¢)¢'. Hence, again by Theorem 3.2.1,

b
F(b) =/ (fop®)¢ @) dt. O

The equation in Corollary 3.2.3 is called the change of variables formula. In appli-
cations one often uses the mnemonic device of writing x = ¢(¢) and dx = ¢'(t) dt.
For example, consider the integral fol +/1 — x2dx, and make the change of vari-
ables x = sint. Then dx = costdt, 0 = arcsinO, and % = arcsin 1. Hence

fol V1 —x2dx = fog cos? ¢ dt, which, as we saw in connection with Wallis’s for-
mula, equals %. In that {(x, V1 —=x2%): x €0, 1]} is the portion of the unit circle
in the first quadrant, this is the answer that one should have expected.

Here is a slightly more theoretical application of Theorem 3.2.1.

Corollary 3.2.4 Suppose that {p, : n > 1} is a sequence of C-valued continuous
functions on [a, b] that are continuously differentiable on (a, b). Further, assume
that {p, : n > 1} converges uniformly on [a, b] to a function p and that there is
a function 1 on (a, b) such that @, —> 1 uniformly on [a + 6, b — ] for each

0<d< }% Then o is continuously differentiable on (a, b) and ¢’ = 1.


http://dx.doi.org/10.1007/978-3-319-24469-3_1

74 3 Integration

Proof Given x € (a, b), choose 0 < § < 5% sothatx € (a + d, b — §). Then

ox) —pla+9) = lim/ w;(y)dy=/ V(y)dy,
=00 Ja+s a+o

and so ¢ is differentiable at x and ¢’ (x) = 1 (x). O

3.3 Rate of Convergence of Riemann Sums

In applications it is often very important to have an estimate on the rate at which
Riemann sums are converging to the integral of a function. There are many results that
deal with this question, and in this section we will show that there are circumstances
in which the convergence is faster than one might have expected.

Given a continuous function f : [0, 1] —> C, it is obvious that

1
‘R(f;C, =) —/O f@ydx| <sup{|f(y) = f()]: x, y € [0, ] with |y — x| < [IC]l}

for any finite collection C of non-overlapping closed intervals whose union is [0, 1]
and any choice function Z. Hence, if f is continuously differentiable on (0, 1), then

1
‘R(f;C, 5)—/0 fdx| =1 f lonlCl.

Moreover, even if f has more derivatives, this is the best that one can say in general.
On the other hand, as we will now show, one can sometimes do far better.

Forn > 1, take Cy = (I, : 1 <m < n}, where I,,,, = [2=1, 2], &, (Ln.n) =
%, and, for continuous f : [0, 1] — C, set

Ru(f) =R(f;Cp, Ey) = = Zf (m).

Next, assume that f has a bounded, continuous derivative on (0, 1), and apply inte-
gration by parts to each term, to see that

/ £ dx — Ru(f) = Z / (-
—Z/ -1y (- £(2)) Z/ n=1) f1(x) dx.

m=1

:|§

(5)) dx
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Now add the assumption that f (1) = f(0). Then fol f'x)dx = f(1) — f(0) =0,
and so

m—
n

n

Z/f (x — 2=y f'(x)dx = Z/f (x — 2= —¢) f'(x) dx
m=1 m=1

for any constant c. In particular, by taking ¢ = Zl to make each of the integrals
n

m

S (x - % — c) dx = 0, we can write
-

m

[ Drwan= [ (-t - f(re - @) i

m—1

n

and thereby conclude that

m

1 n n
/0 fydx =Ry (f) =~ Z/ (x =22 = 5) (f0) = /) dx.

m=1

1
4n?

m—1
n

m
n

This already represents progress. Indeed, because f o |x — for

~tfdr =

n

each 1 < m < n, we have shown that

sup{[f'(») = f'®)| = |y —x| < 1}
4n

1
‘/0 fx)dx _Rn(f)' <

if f is continuously differentiable and f(1) = f(0). Hence, if in addition, f is twice
differentiable, then | f'(y) — f'(x)| < I f”ll©0.1)ly — x| and the preceding leads to

"o

<
4n?

1
) /0 £ dx = Ra(f)

Before proceeding, it is important to realize how crucial a role the choice of both

C, and &, play. The role that C, plays is reasonably clear, since it is what allowed us to

choose the constant ¢ independent of the intervals. The role of &), is more subtle. To

see that it is essential, consider the function f(x) = ¢'2™ which is both smooth and

sat{sﬁes f (1) = £(0). Furthermore, || f'|l{0.1) = 27 and fol f(x)dx = 0. However,
if £,(Ly) = "2, then

n—1

n i2mist

- 1 o min=D) e 2 1
R ;Cna En = - e =
f )=-> 1

n

; n=1
_ elZﬂT

i2rist
m=1 —e n2
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Since n(l — eiZWHn;l) = n(l — e‘ih%) —> 27 and n(l — eizw"n;zl) — —i2m, it
follows that
lim n =1.

n—oo

1
R(f; Cny By) — / f(x)dx
0

Thus, the analog of (x) does not hold if one replaces &, by &,,.
To go further, we introduce the notation

A(k)(f) k‘ Z/ Y —

m=1

“(f) = f(2)dx fork = 0.

Obviously, A,(lo)( f) = fol f(x)dx — R, (f). Furthermore, what we showed when
f is continuously differentiable and f(1) = f(0) is that AV (f) = 5- AL (f) —
AV (f7). By essentially the same argument, what we will now show is that, under
the same assumptions on f,

AR(f) = Ay = AXD (Y fork > 0. (3.3.1)

(k 4 2)Ink+1

The first step is to integrate each term by parts and thereby get

AP =~ (k+1)' Z/ 1) (1) dix. (33.2)

Because fol f/(x)dx = 0, the right hand side does not change if one subtracts

NS . .. .
W from each (x — m—l) , and, once this subtraction is made, one can, with

impunity, subtract f'(%) from f’(x) in each term. In this way one arrives at

AP =5 +1),Z / (v = 20— ) (0 — () d

which, after rearrangement, is (3.3.1).

We will say that a function ¢ : R — C is periodic® if o(x + 1) = (x) for all
x € R. Notice that if ¢ : R — C is a bounded periodic function that is Riemann
integrable on bounded intervals, then, by (3.1.6),

a+1 1
/ P& dE = / (&) d¢ foralla € R. (3.3.3)
a 0

%In general, a function f : R —> C is said to be periodic if there is some @ > 0 such that
f(x+a) = f(x)forall x € R, in which case « is said to be a period of f. Here, without further
comment, we will always be dealing with the case when av = 1 unless some other period is specified.
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To check this, suppose thatn < a < n + 1. Then, by (3.1.6),

/ " e©de = / " @ de + / " o de

n+1

- / " e + / "6 = / " e©de = /O o) de.

Now assume that f : R — C is periodic and has £ > 1 continuous derivatives.
Starting from (3.3.1) and working by induction on ¢, we see that

12

1
AV == > an ALY,

k=0

where

Qg ¢
apo =1, aper1 = E v adagep = —aqforl <k <€
=+ 2)!

The preceding can be simplified by observing that a; , = (—1)ag ¢4 for0 < k < ¢,
which means that

4
1
0) _ k k+1 A (k) «)
AV = =7 2D b AP ()

k=0 (3.3.4)

S (=D
where by = 1 and by4| = Z be_i

= (k+2)!

If we now assume that f is (£ + 1) times continuously differentiable, then, by (3.3.2),

40 =

(t+1)
k+l o1 I/ Mo,
2 / D) dx < L on

(k+ 1)! 4 (k + 2)lnk+1’

and so (3.3.4) leads to the estimate (see Exercise 3.13 for a related estimate)

Kol £V o1y C |be]
‘/ fx)dx — R, (f)‘ —— g Wwhere K, = ; TR (3.3.5)

for periodic functions f having (£ + 1) continuous derivatives. In other words, if
f is periodic and has (£ + 1) continuous derivatives, then the Riemann sum R, (f)
differs from fol f(x) dx by at most the constant K, times || f“*V||j0.qn ¢,

To get a feeling for how K, grows with £, begin by taking f(x) = ¢/>™. Then
AV(f) = =1, | £y = @), and so (3.3.5) says that K, > (2m) !, To
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get a crude upper bound, let a be the unique element of (0, 1) for which e =1+ %,
and use induction on £ to see that |b;| < . Hence, we now know that

1
Qn) < Ky <enatt?

Below we will get a much more precise result (cf. (3.4.9)), but in the meantime it
should be clear that (3.3.5) is saying that the convergence of R, (f) to fol f(x)dxis
very fast when f is periodic, smooth, and the successive derivatives of f are growing
at a moderate rate.

3.4 Fourier Series

Taylor’s Theorem provides a systematic method for finding polynomial approxima-
tions to a function by scrutinizing in great detail the behavior of the function at a
point. Although the method has many applications, it also has flaws. In fact, as we
saw in the discussion following Lemma 1.8.3, there are circumstances in which it
yields no useful information. As that example shows, the problem is that the beha-
vior of a function away from a point cannot always be predicted from the behavior
of it and its derivatives at the point. Speaking metaphorically, Taylor’s method is
analogous to attempting to lift an entire plank from one end.

Fourier introduced a very different approximation procedure, one in which the
approximation is in terms of waves rather than polynomials. He took the trigonomet-
ric functions {cos(2wmx) : m > 0} and {sin(2wmx) : m > 1} as the model waves
into which he wanted to resolve other functions. That is, he wanted to write a general
continuous function f : [0, 1] — C as a usually infinite linear combination of the
form

f) =D aycos@mmx) + D by sinQrmyx),

m=0 m=1

where the coefficients a,, and b,, are complex numbers. Using (2.2.1), one sees that
1 7 F m—ibm 7 —mtib_p

by t.akmg fo =ag, fn = % for m = .1, and f,, = =257 form < —1, an

equivalent and more convenient expression is

F@) = D fuenx) where e, (x) = ™. (3.4.1)

m=—0Q

One of Fourier’s key observations is that if one assumes that f can be represented
in this way and that the series converges well enough, then the coefficients f,, are
given by

1
fn = / F@)e_p(x)dx. (3.4.2)
0
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To see this, observe that (cf. Exercise 3.7 for an alternative method)

1
/ en(x)e_,(x)dx
0
1
= / (cos(27rmx) cos(2mnx) + sin(2wmx) sin(27rnx)) dx
0

1
+ i / (— cos(2mmx) sin(2wnx) + sin(2wmx) cos(27rnx)) dx
0

1
:/ cos(2m(m — n)x) dx +i/
0 0

! 1 ifm=n

sm(27r(m n)x) dx = ‘O ifm £ n,
where, in the passage to the last line, we used (1.5.1). Hence, if the exchange in the
order of summation and integration is justified, (3.4.2) follows from (3.4.1).

We now turn to the problem of justifying Fourier’s idea. That is, if fm is given
by (3.4.2), we want to examine to what extent it is true that f is represented by
(3.4.1). Thus let a continuous f : [0, 1] —> C be given, determine fm accordingly
by (3.4.2), and define

[e¢]

fr(x) = Z rm fen(x) forr €0, 1) and x € R. (3.4.3)

m=—00

Because | fm| < || f lj0.17, the series defining f, is absolutely convergent. In order to
understand what happens when » 7 1, observe that

n

1 n
D fen (x) =/0 (Z(rel(x —y))m)f(y)dy

m=—n m=0
1 n
+/) (Z(ral(y - x))m)f(y)dy
( m=1
=l (x — y) rel(y—x)—r"+len+1(y—x))
_ d
/o ( L —rej(x —y) I=—re(y—x) o

= fy)dy.

/1 1—r* —r"eos(2m(n + 1)(x — y)) + "2 cos2mn(x — y))
0 [T —rei(x —y)I?

Hence, by Theorem 3.1.4,

o]

1
0= 3 e = [ pie=nfordy

m=—00
2

—r

where p,(§) =
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Obviously the function p, is positive, periodic, and even: p,(—&) = p,(§). Further-
more, by taking f = 1 and noting that then ﬁ, =1and fm = 0 form # 0, we see
from (3.4.4) and evenness that fol pr(x — y)dy = 1. Finally, note that if 6 € (0, 1)
and & ¢ |Jo—_ . [n—6&,n+ 8], then

(%) 11— re (6 > 2(1 — cos(27r§)) > w(d) = 2(1 - cos(27r5)) >0

2
and therefore p, (&) < L(_(IS)

Given a function f : [0, 1] —> C, its periodic extension to R is the function f
given by f (x) = f(x —n) forn <x <n+ 1. Clearly, f will be continuous if and
only if f is continuous and f(0) = f(1). In addition, if £ > 1, then f will be £ times
continuously differentiable if and only if f is ¢ times continuously differentiable on
(0, 1) and the limits lim,~ o f® (x) and lim, - f® (x) exist and are equal for each
0<k=<t

Theorem 3.4.1 Let f : [0,1] —> C be a continuous function, and define f,
for r € [0,1) as in (3.4.3). Then, for each r € [0,1), f. is a periodic func-
tion with continuous derivatives of all orders. In fact, for each k > 0, the series
Zfzfoo(i27r|m|)kr|’"|fmem (x) is absolutely and uniformly convergent to f,(k) (x).

Furthermore, for each § € (0, %) fr — fasr /' 1 uniformly on [§,1 — §].
Finally, if f(0) = f(1), then f, —> f uniformly on [0, 1].

Proof Since each term in the sum defining f; is periodic, it is obvious that f, is also.
In addition, since the sum converges uniformly on [0, 1], f, is continuous. To prove
that f, has continuous derivatives of all orders, we begin by applying Theorem 2.3.2
tosee that > v mlfriml <23 mkrm < oo.

In view of the preceding, we know that > oo (i2m|m|)r!™! fmem(x) con-
verges uniformly for x € [0, 1] to a function 1. At the same time, if p,(x) =
S r" fe,(x), then o, converges uniformly to f, and o, =3"" _ (i2wm)r!"!
fm e (x) converges uniformly to ). Hence, by Corollary 3.2.4, f, is differentiable and
f! = 1. More generally, assume that £, has k continuous derivatives and that f*) =

> rm@2mm))* fm en. Then a repetition of the preceding argument shows that

f® is differentiable and that its derivative is 300 _ Il i27|m|)**! f,,e,.

Now take f to be the periodic extension of f to R. Since f is bounded and
Riemann integrable on bounded intervals, (3.3.3) together with fol prx—y)dy =1
show that

1
Jr(x) = f(x) =/0 pr(x = () = f(x)) dy

1—x % - ~
- / PO (F(E+x) — f0))dE = / PO (F(E +x) — F0)) de

x -
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—5 0
- / PO (F(E +x) — F)) de + / PO (F (€ +x) — F)) de
_% —0

4 / O (€ +3) — Fo) de
)

forx € [0,1]and 0 < § < % Using (), one sees that the first and third terms in the
final expression are dominated by 2| f ||[0,1]% and therefore tend to O as r ' 1.

As for the second term, it is dominated by sup{|f(y) — f(x)| . |y —x| < 6}. Hence,
if f is continuous at x, as it will be if x € (0, 1), then

1
lim|f,(x) — f(x)| = lim '/ prx = () = f(x)dy| =0.
r/'1 r/1|Jo

Moreover, the convergence ~is uniform on the interval [6,1 — §], and if
f(0) = f(1) and therefore f is continuous everywhere, then the convergence is
uniform on [0, 1]. U

Even though the preceding result is a weakened version of it, we now know that
Fourier’s idea is basically sound. One important fact to which this weak version leads
is the identity

1 0 o
/0 g dx = D" fulm: (34.5)

m=—0oQ
To prove this, first observe that, because fol e, (X)e_m, (x)dx is 0if m; # my and 1
if m; = my, one can use Theorem 3.1.4 to justify

[ee]

1 1 1
[ rwaa= > e [ e w0 ds
0 0 0

mp,my=—00

g —
= Z rz‘m‘fm.ém-

m=—0oQ

At the same time, for each 6 € (0, %),

1
lim / | /() (x) — f(x)g(x)|dx
r/'1 Jo

) 1
<Tm / /05 — £)g@)]| dx +Tm / |05 @ — £()g(0)] dx
r/1 Jo r/1 J1_5

<4 fllo.llglo.nd,
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and so lim, - fol f(X)g (x)dx = fol f(x)g(x)dx. Taking ¢ = f, we conclude
that

1 o0
2 g 2mly 7 2
x)|”dx = lim r P
/0 FeFdr=tim 37 "

and therefore that > > _ | fAm|2 < o00. Hence, by Schwarz’s inequality (cf. Exer-
cise 2.3),

o]

R o0 . o0
Do nllgml < | D0 1l | D] 1l < o0,

m=—0Q m=—00 m=—00

and so the series > . fma is absolutely convergent. Thus, when we apply

(1.10.1), we find that

m=—0oQ

) o ) L 1 _
Z fmgmzll/rvn Z rz‘mlfmgm:[) f(x)g(x)dx.

m=—00 m=—00

The identity in (3.4.5) is known as Parseval’s equality, and it has many interesting
apphcatlons of which the following is an example. Take f (x) = x. Obviously,

fo 5» and, using integration by parts, one sees that fm = i— for m # 0. Hence,
by (3. 4 5)

1 : 5 11 1

_= d = — _— _—= - _— —,

37 ), T 4+47r2m# 2 4+2772mZ::lm2

from which we see that
2

oo
Zizﬂ— (3.4.6)
mz]m2 6

The function (z) given by >~ _, ml when the real part of z is greater than 1 is
the famous Riemann zeta function which plays an important role in number theory
(cf. Sect.6.3). We now know the value of ¢ at z = 2, and, as we will show below,
we can also find its value at all positive, even integers. However, in order to do
that computation, we will need to discuss when the Fourier series fo:_ o fm e (x)
converges to f. This turns out to be a very delicate question, and we will not attempt
to describe any of the refined answers that have been found. Instead, we will deal
only with the most elementary case.

Theorem 3.4.2 Let f : [0,1] —> C be a continuous function. If > " | fm|
< 09, then f(0) = f(1) and >, fmem converges uniformly to f. In partic-
ulan, if [ (1) = f(0) and f has a bounded continuous derivative on (0, 1), then
> ] fm| < 0o and therefore > fm e, converges uniformly to f.
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Proof We already know that f.(x) — f(x) for all x € (0, 1), and therefore, by
(1.10.1), if x € (0, 1) and Zm_foo fmem(x) converges, it must converge to f(x).
Thus, since |fmem(x)| < |fm| if > |fm| <00, > fmem(x) converges
absolutely and uniformly on [0, 1] to a continuous, periodic function, and, because
that function coincides with f on (0, 1), it must be equal to f on [0, 1].

Now assume that (1) = f(0) is and that f has a bounded, continuous derivative
f"on (0, 1). Using integration by parts and Exercise 3.7, we see that, for m # 0,

1-d
Jo=lim | fG)en () dx

1-6
= lim -
N0 i27Tm
zr
m

i2rm’

(f(5)em(5) — [ =0de_pn(1—0)+ i f/(x)em(x)dx)

Hence, by Schwarz’s inequality, Parseval’s equality, and (3.4.6),

1

~ 1 1 : P . 1 1 ) 3
2lil= (2] (2P S\/;(/o If(x)lzdx). -

m#1 m=0 m#0

Notice that the integration by parts step in the preceding has the following easy
extension. Namely, suppose that f : [0, 1] —> C is continuous and that f has
£ > 1 bounded, continuous derivatives on (0, 1). Further, assume that f®(0) =
lim,~o f®(x) and f® (1) = lim, » f(x) exist and are equal for 0 < k < ¢. Then,
by iterating the argument given above, one sees that

Fo = (20m) "4 (F D), form € Z\ {0).

Returning to the computation of ((2¢), recall the numbers by introduced in (3.3.4),

and set
¢

)/
Py(x) =Z ) ’“‘xk for £ > 0 and x € R.
Then Py = 1 and P, = —P;_,. In addition, if £ > 2, then

lk
Pl = by — by 1+ZM


http://dx.doi.org/10.1007/978-3-319-24469-3_1

84 3 Integration

and, by (3.3.4),

= k! = (k +2)!

Hence P;(1) = by = P¢(0) for all £ > 2. In particular, these lead to

1
(Pe)o = —/ P (x)dx = Pri1(0) — Py (1) =0 for £> 1
0

and
(P = (=D i27mm) "4 (Py),, for £>2 and m # 0.

Since Pi(x) = b; — bpx = % — X, we can use integration by parts to see that

1
(P, = —/ xe 7 gy = (i2rm)~' for m # 0,
0
and therefore

. l
Pi(x) = — (;—F) > e’;’ﬂ# for £>2 and x € [0, 1]. (3.4.7)
m#0

Taking x = 0 in (3.4.7), we have that

(=D"™12¢20)

oy (3.4.8)

bzg.;,.] =0 and bz@ =

for £ > 1. Knowing that by = 0 for odd £ > 3, the recursion relation in (3.3.4) for
b, simplifies to

2t it 0 e0,1)
-2
be= 13 — 2ilo gy if ¢ > 2iseven (3.4.9)
0 if £ > 2 is odd.

Now we can go the other direction and use (3.4.8) and (3.4.9) to compute ( at even
integers:
) = (=) 122 72%py, for e > 1. (3.4.10)

Finally, starting from (3.4.10), one sees that the K,’s in (3.3.5) satisfy
limoo(Ke) 7 = (2m) 7"
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In the literature, the numbers £!b, are called the Bernoulli numbers, and they have
an interesting history. Using (3.4.9) together with (3.4.10), one recovers (3.4.6) and
sees that ((4) = % and ((6) = %. Using these relations to compute ( at larger even
integers is elementary but tedious. Perhaps more interesting than such computations
is the observation that, when ¢ > 2, Py(x) is an £th order polynomial whose periodic
extension from [0, 1] is (¢ — 2) times differentiable. That such polynomials exist is

not obvious.

3.5 Riemann-Stieltjes Integration

The topic of this concluding section is an easy but important generalization, due to
Stieltjes, of Riemann integration. Namely, given bounded, R-valued functions ¢ and
¥ on [a, b], a finite cover C of [a, b] by non-overlapping closed intervals /, and an
associated choice function =, set

R(pl; C, 8) = D () A,

IeC

where A;1) denotes the difference between the value of 1) at the right hand end point
of I and its value at the left hand end point. We will say that ¢ is Riemann—Stieltjes
integrable on [a, b] with respect to v if there exists a number j; :’ p(x) d(x), known
as the Riemann—Stieltjes of ¢ with respect to 1), such that for each € > 0 there is a
0 > 0 for which

<€

b
R(oli: C, ) — / () dib(x)

whenever ||C|| < § and & is any associated choice function for C. Obviously, when
1 (x) = x, this is just Riemann integration. In addition, it is clear that if ; and
, are Riemann-Stieltjes integrable with respect to v, then, for all o, ap € R,
Q11 + apps is also and

b

b
o1(0) d(x) + s / o) i ().

a

b
/ (a101(x) + a2pa(x)) dw(X)=a1/

Also, if 1Z(x) = 1(a + b — x) and ¢ is Riemann—Stieltjes integrable with respect to

1, then x ~» p(a + b — x) is Riemann-Stieltjes integrable with respect to ¢ and

b b
/ pla+b—x)dyx) = —/ px) du(x). (3.5.1)

a
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In general it is hard to determine which functions ¢ are Riemann—Stieltjes inte-
grable with respect to a given function 1. Nonetheless, the following simple lemma
shows that there is an inherent symmetry between the roles of ( and .

Lemma 3.5.1 If ¢ is Riemann—Stieltjes integrable with respect to 1), then 1 is
Riemann—Stieltjes integrable with respect to ¢ and

b b
/ e(x) d(x) = pb)ih(b) — p(a)y(b) —/ Y(x) dp(x). (3.5.2)

Proof Let C = {[am_l,am] 1l <m < n} wherea = ayp < -+ < o, = b,
and let £ be an associated choice function. Set 8y = a, 6, = & ([n_1, ,,]) for
1 <m < n,and 8,41 = b, and define C' = {[B_1, Bn] : 1 <m < n+ 1} and
E/([ﬁmfl» Bn]) = g for1 <m <n+ 1. Then

R@Wle; C, &) = D~ (Bu) (#(am) — o(am-1))

m=1
n—1

=D 0B e(an) = D W BusD)p(am)

m=1 m=0

n—1
=Y (B)elan) — z @) (Y Bns1) = V(Bn)) — (B p(ao)

m=1

=1 D)p(b) — Y(a)pla) — Z @) (Y Bns1) = V(B))
m=0
= P(B)pb) — P(a)p(a) — R(ply; C', &),

Noting that ||C’|| < 2||C||, one now sees that if ¢ is Riemann-Stieltjes integrable with
respect to ¢, then v is Riemann-Stieltjes integrable with respect to ¢ and (3.5.2)
holds. -

As we will see, Lemma 3.5.1 is an interesting generalization of the integration by
parts, but it does little to advance us toward an understanding of the basic problem.
In addressing that problem, the following analog of Theorem 3.1.2 will play a central
role.

Lemma 3.5.2 If ¢ is non-decreasing on [a, b], then @ is Riemann—Stieltjes inte-
grable with respect to 1 if and only if for each ¢ > 0 there exists a 6 > 0 such
that

ICl| <6 = > Ap<e

IeC
sup; p—inf; p>e
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In particular, every continuous function ¢ is Riemann—Stieltjes integrable with
respect to 1. In addition, if p is Riemann—Stieltjes integrable with respect to 1
and ¢ € (a, b), then it is Riemann—Stieltjes integrable with respect of 1 on both
[a, c] and [c, b] and

b c b
/ () dib(x) = / o) dib(x) + / () dib(x).

c

Finally, if ¢ : [a, b] —> [c, d] is Riemann—Stieltjes integrable with respect to 1) and
f i lc,d] — R is continuous, then f o p is again Riemann—Stieltjes integrable
with respect to ).

Proof Once the first part is proved, the other assertions follow in exactly the same
way as the analogous assertions followed from Theorem 3.1.2.

In proving the first part, we will assume, without loss in generality, that A =
Apa.p1¥ > 0. Now suppose that ¢ is Riemann—Stieltjes integrable with respect to 1.
Given € > 0, choose § > 0 so that

&2
S_
4

b
Il <6 = ‘W@Ilﬁ; C.8) - / () dib(x)

for all associated choice functions Z. Next, given C, choose, for each I € C,

2 . 62
E1(I), E>(I) € I so that <p(51(1)) > sup; p — ;5 and go(Ez(I)) <inf; o + 3.
Then ||C|| < ¢ implies that

2
€
>N C, 5 — R ) 32 —info ) App — —,
> R(ply 1) (ply 2) (Stllpw in w) 1 >

IeC

€2

2
and so

e >¢ Z A,

IeC
sup; p—inf; p>e

To prove the converse, we introduce the upper and lower Riemann-Stieltjes sums

Ulpl:C) =D suppAry and L(plys C) = D inf pAr.

leC ! leC

Just as in the Riemann case, one sees that

L(pl; C) < R(ply:; C, E) <U(pl; C)

for all C and associated rate functions &, and L(p|v; C) < U(pl|yp; C') for all C and
C’. Further,



88 3 Integration

UGl ©) — Liglp; ) =S (Slllpga ~inf Sp) A

IeC

<eA+2gllun D, A

IeC
sup; p—inf; p>e

and so, under the stated condition, for each € > 0 there exists a 6 > 0 such that
ICIl <0 = Ulply; C) — L(p|Y; C) < e
As a consequence, we know that if ||C|| < 0 then, for any C’
Upl; €) < L(plY; ©) + € Ul C) + e,

and similarly, L(p|;C) > L(plp;C") — €. From these it follows that M =
infe U(p|y; C) = supe L(pl; C) and

lim U ;CO)=M= lim L ;0),
dm (el C) dm (pl; C)

and at this point the rest of the argument is the same as the one in the proof of
Theorem 3.1.2. O

The reader should take note of the distinction between the first assertion here and
the analogous one in Theorem 3.1.2. Namely, in Theorem 3.1.2, the condition for
Riemann integrability was that there exist some C for which

> i<e

IeC
sup; f—inf; f>e
whereas here we insist that

Ich<s = > aAv<e

IeC
sup; ¢—inf; p>e

The reason for this is that the analog of the final assertion in Lemma 3.1.1 is true for
1 only if v is continuous. When ) is continuous, then the condition that ||C|| < ¢
can be removed from the first assertion in Lemma 3.5.2.

In order to deal with ¢/’s that are not monotone, we introduce the quantity

varj, p (1) = sup D |A;)] < oo,

leC

where C denotes a generic finite cover of [a, b] by non-overlapping closed intervals,
and say that ¢ has finite variation on [a, b] if var, 5;(¢)) < oo. It is easy to check
that
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varpg (Y1 +12) < varp (Y1) + var 51 (1)2) and that vary, 3 (1) = [1(b) — 9 (a)|
if 7 is monotone (i.e., it is either non-decreasing or non-increasing). Thus, if ¢/ can
be written as the difference between two non-increasing functions 1) and 1), then
it has bounded variation and

varie,p (1) < (V7 (0) =¥ (@) + (™ () =¥ (@)).

We will now show that every function of bounded variation admits such a represen-
tation. To this end, define

varjs, , (1) = sup > (Arh)*.

IeC

Lemma 3.5.3 v has bounded variation on [a, b], then

Aapp = VaI[Tl,b](dJ) - Varl_a,b](d}) and varq p) (1) = Var?;,b](¢) + Var[;bl(d)).

Proof Obviously,

DA =D (AT + D (Ar)”

IeC IeC IeC

and

Aty = D (Arp)™ =D (A

IeC IeC

From the first of these, it is clear that var, »(¢)) < VaI'E;Y »(¥) + varp, ;,(¢). From
the second we see that Var[i[l,b](w) < Var?;b](w) £ A%, and therefore that
A = Vara'l‘b] (1) —vary, (). Hence, if lim, oo D"/ (Arh)™ = Var?;,b] (W),
then lim,, 00 D/ (A19))™ = var, ;1 (1), and so

vargs () = lim [ (A9 + D (A~ | = varf, (1) + vary, , (1),

IeC, 1eC,
O

Given a function 1) of bounded variation on [a, b], define V,,(x) = var, ,(¢)) and
Vlf(x) = Va.r[ia!x](w) for x € [a, b]. Then V,, Vj , and V; are all non-decreasing
functions that vanish at a, and, by Lemma 3.5.3, ¥(x) = ¢(a) + VJ (x) =V, (x)
and Vy(x) = V.7 (x) + V,; (x) for x € [a, b].

Theorem 3.5.4 Let 1) be a function of bounded variation on [a, b], and refer to the
preceding. If ¢ : [a, b] —> R is a bounded function, then ¢ is Riemann—Stieltjes
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integrable with respect to V. if and only if it is Riemann—Stieltjes integrable with
respect to both VJ and V., in which case

b b b
/ @(X)qu/;(x)=/ SO(X)dVJ(X)+/ p(x)dV, (x).

a

Moreover, if ¢ is Riemann—Stieltjes integrable with respect to V., then it is Riemann—
Stieltjes integrable with respect to 1,

b b b
[ emave = [Cewavico - [ emav; o,

and

b b
/ @(x) dy(x) S/ lp() | dVyp(x) < llellia.brvVarap ().

Proof Since V,, = VJ -+ V. itis clear that

Z AVy < e &

IeC
sup; p—inf; p>e

>Avi+ D AV, <e

IeC IeC
sup; p—inf; p>e sup; p—inf; p>e

and therefore, by Lemma 3.5.2,  is Riemann—Stieltjes integrable with respect to V,,
if and only if it is with respect to V" and V,, . Furthermore, because

R(p|Vy; C, B) = R(plV,[: C, B) +R(plV, 5 C, E)

and
R(pl; C, B) = RV, i C, &) — R(plV, : C, B),

the other assertions follow easily. (I

Finally, there is an important case in which Riemann—Stieltjes integrals reduce to
Riemann integrals. Namely, if ¢ is continuous on [a, ] and continuously differen-
tiable on (a, b), then, by (1.8.1),

DAY < 1 iy (b — a),

IeC

and so v will have bounded variation if ¢’ is bounded. Furthermore, if ¢/’ is bounded
and ¢ : [a, b] — R is a bounded function which is Riemann integrable on [a, b],
then ¢ is Riemann—Stieltjes integrable with respect to 1 and
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b b
/ () dib(x) = / P (x) dx. (353)

To prove this, note that if / € C, then one can apply (1.8.1) to find an n(/) € I such
that Ay = ¢/ (n(I))|1|. Thus

R(pl: €, &) = > e (nD)w (D)1 + > (#(21) = (D) )’ (D)1 |
IeC IeC
and

> (w(2) =) ()i

IeC

< 1% @y (U5 C) — L5 ©)),

which, since ¢ is Riemann integrable, tends to 0 as ||C|| — 0. Hence, since v)’, as
the product of two Riemann integrable functions, is Riemann integrable, we see that
R(ply; C, E) — fab ()Y (x)dx as ||C|| — 0. The content of (3.5.3) is often
abbreviated by the equation d)(x) = 1)'(x) dx. Notice that when ¢ and 1) are both
continuously differentiable on (a, b), then (3.5.2) is the integration by parts formula.

3.6 Exercises

Exercise 3.1 Most integrals defy computation. Here are a few that don’t. In each
case, compute the following integrals.

D) fi1.00) L dx (i) S0 € " dx
(iii) fb sin x dx (iv) fab cosx dx

™ o —3115 dx (VD) [ e 1oz 4%

IR P ol
(vii) [y x*sinxdx (viii) [ =55 dx

Exercise 3.2 Here are some integrals that play a role in Fourier analysis. In evalu-
ating them, it may be helpful to make use of (1.5.1). Compute

(i) fOz’r sin(mx) cos(nx) dx (ii) fOZW sin?(mx) dx
(iii) foh cos®(mx) dx,

form, n € N.

Exercise 3.3 Fort > 0, define Euler’s Gamma function I"(t) for t > 0 by

() =/ x'le™ dx.
(0,00)
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Show that I"'(t +1) = ¢I"(¢), and conclude that I"'(n+1) = n!forn > 1. See (5.4.4)
for the evaluation of I” (%)

Exercise 3.4 Find indefinite integrals for the following functions:

1) x*forae R & x € (0,00) (ii) logx
(iii) ;7az7 forx € (0,00) \ {1} (iv) Qe forn € Z* & x € (0, 00).

Exercise 3.5 Let o, 3 € R, and assume that (aa) V (ab) Vv (Ba) Vv (Bb) < 1.

Compute fuh m dx. When a = 8 = 0, there is nothing to do, and when

o= 3 #0, itis obvious that (a(1 — ax))_l is an indefinite integral. When o # (3,
one can use the method of partial fractions and write

1 1 «@ 1)
(lI—ax)(1=px) a—-p\l—ax 1-px)°
See Theorem 6.3.2 for a general formulation of this procedure.

Exercise 3.6 Suppose that f : (a,b) —> [0, 0co) has continuous derivatives of
all orders. Then f is said to be absolutely monotone if it and all its derivatives are
non-negative. If f is absolutely monotone, show that for each ¢ € (a, b)

° (m)
fo=> f m'(c) (x —c)" forx € [c. b),
m=0 '

an observation due to S. Bernstein. In doing this problem, reduce to the case when
¢ =0 € (a, b), and, using (3.2.2), observe that f(y) dominates

n 1 n 1
Y AR B Yyt X =1 2
1! /0 (1—1) [ (ty)dt > (x) A (1—-1 F™(tx)dt

(n (n—1!

forn>1and0 <x <y <b.

Exercise 3.7 For a € R\ {0}, show that

b iab iaa
. e —e
/ dorgr ="
a [Xe%

Next, write cost = e[u’;f“ , and apply the preceding and the binomial formula to
show that
/2” ", g 0 if n € Nis odd
tdt =
0 cos 277 (l) ifn € Nis even.
2

By combining this with (3.2.4), show that lim, o 22 [;" cos” t dt = 27>,
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Exercise 3.8 A more conventional way to introduce the logarithm function is to
define it by

71
(%) logy :/ ;dt for y € (0, 00).
1

The purpose of this exercise is to show, without knowing our earlier definition, that
this definition works.

(i) Suppose that £ : (0, 00) —> R is a continuous function with the properties
that £(xy) = £(x) + £(y) for all x, y € (0, 00) and £(a) > O for some a > 1. By
applying Exercise 1.10 to the function f(x) = £(a*), show that £(a*) = x£(a).

(ii) Referring to (i), show that ¢ is strictly increasing, tends to co as y — oo and
to —oo as y N\ 0. Conclude that there is a unique b € (1, co) such that £(b) = 1.

(iii) Continuing (i) and (ii), and again using Exercise 1.10, conclude that £(b*) = x
for x € R and b*™) = y for y € (0, 00). That is, £ is the logarithm function with
base b

(iv) Show that the function log given by (x) satisfies the conditions in (i) and
therefore that there exists a unique e € (1, oo) for which it is the logarithm function
with base e.

Exercise 3.9 Show that

1 1
-l —dt = 1.
. logt

lim
X—>o0 X

Exercise 3.10 Let f : [0, 1] —> C be a continuous function whose periodic exten-
sion is continuously differentiable. Show that

[

2

=D Il

m70

2 1 1
dx=/0 If(x)lzdx—‘/o FO)dy

1
£ - /0 FO) dy

1
< e S e ifl = en [ 1fwh .
0

m#0

As a consequence, one has the Poincaré inequality

[

for any function whose periodic extension is continuously differentiable.

2 1
dx < (27r)*2/ |f/(x) > dx
0

1
£ — /0 FO)dy

Exercise 3.11 Let f : [a, b)] —> C be a continuous function, and set L = b — a.
If § € (0, %), show that, as r /1,
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- ’
Ly ( / f(y)e_m(z—’)dy) en(f)

m=—0oQ

converges to f(x) uniformly for x € [a +6,b — 5] and that the convergence is
uniform for x € [a, b] if f(b) = f(a). Perhaps the easiest way to do this is to
consider the function g(x) = f(a + Lx) and apply Theorem 3.4.1 to it. Next,
assume that f(a) = f(b) and that f has a bounded, continuous derivative on (a, b).

Show that ,
1 oo
fo =7 > (/ f(y)e_m(%)dy) e (%)

m=—00
where the convergence is absolute and uniform on [a, b].

Exercise 3.12 Let f : [0,1] —> C be a continuous function, and show that, as

r /1,

[e.¢]

1
fix)y=2 Zrm (/ f(y)sin(mmy) dy) sin 7Tx
m=1 0

converges uniformly to f on [d, 1 — J] for each § € (0, %) One way to do this is

to define g : [—1,1] — Csothat g = f on [0, 1] and g(x) = — f(—x) when
x € [—1, 0), and observe that

1 1
/lg(y)e_m(%)dy = —21'/0 f(y)sin(mmy)dy.

If £(0) = 0 and therefore g is continuous, one need only apply Exercise 3.11 to g

to see that f, —> f uniformly on [0, 1 — §] for each ¢ € (O, %) When f(0) # and

therefore g is discontinuous at 0, after examining the proof of Theorem 3.4.1, one

can show that f, —> f on [J, 1 — §] because g is uniformly continuous there.
Next show that if f : [0, 1] — C is continuous, then

1 00
| irwrar=2%
m=1

Finally, assuming that f(0) = 0 = f(1) and that f has a bounded, continuous
derivative on (0, 1), show that

o0 1
fx) = 22 (/0 f() sinwydy) sin 7rx,

m=1

2

1
/ f(x)sin(mmx) dx
0

where the convergence of the series is absolute and uniform on [0, 1].
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Exercise 3.13 Fourier series provide an alternative and more elegant approach to
proving estimates like the one in (3.3.5). To see this, suppose that f : [0, 1] — C
is a function whose periodic extension is £ > 1 times continuously differentiable.
Then, as we have shown,

5)
fo) = / f(y)dy+Z Y ),

where the series converges uniformly and absolutely. After showing that

z . if m is divisible by n
m 0 otherwise,

conclude that

1 FON
Roh) = [ fordy =3 e

= (i2wmn)t

and from this show that

201 £ Ol0,11€ (0)

1
‘Rn(f)— /O roay| < 2

Finally, use Schwarz’s inequality and (3.4.5) to derive the estimate

/f( )d vzc(zz ,/ R,

Exercise 3.14 Think of the unit circle S'(0, 1) as a subset of C, and let p
S'(0,1) — R be a continuous function. The goal of this exercise is to show that
there exists an analytic function f on D(0, 1) such that lim,_.¢ R(f(z)) = ¢(() for
all ¢ € S'(0, 1).

(i) Set

1
m =/ @(e*™)e_,(0)dO form € Z,
0

and show that a,,, = a_,,. Next define the function # on D(0, 1) by
u(re™) = Z r"™a,,e,,(0) forr €[0,1)and 6 € [0, 1).

Show that u is a continuous, R-valued function and, using Theorem 3.4.1, that
lim,.¢ u(z) = p(¢) for ¢ € S'(0, 1).



96 3 Integration

(ii) Define v on D(0, 1) by

o0

v(reiZW‘g) =—i Zrm (am en(0) —a_p,e_p, (0)).

m=1

and show that v is a continuous, R-valued function. Next, set f = u + iv, and show
that

o0
f@)=ao+ ZZamzm forz € D(0, 1).

m=1

In particular, conclude that f is analytic and that lim__, ER( f (z)) = ¢(() for ¢ €
S'o, 1).

(iii) Assume that Z |a,n] < oo, and define Hp on S'(0, 1) by

Hp(e*™) Z (@nem(0) — a_pe_n(0)).

If f is the function in (ii), show that lim._,. J(f(z)) = He(() for ¢ € S'(0, 1). The
function H ¢ is called the Hilbert transform of , and it plays an important role in
harmonic analysis.

Exercise 3.15 Let {x, : n > 1} be a sequence of distinct elements of (a, b], and set
Sx) ={n>1:x, <x}forx € [a,b]. Given a sequence {c, : n > 1} C R for
which >, |¢,| < oo, define ¢ : [a, b] —> R so that ¢(x) = 2 nes() Cn- Show
that v has bounded variation and that ||t ||ya = z;’f:] |c,,|. In addition, show that if
@ : [a, b] — R is continuous, then

b 0
/ P() dip(x) = D p(x)Cy.
n=1

a

Exercise 3.16 Suppose that F : [a, b] —> R is a function of bounded variation.
(i) Show that, for each € > 0,

im|F(x +h) = F)| Vv [F(x —h) = F(x)| = ¢
AN

for at most a finite number of x € (a, b), and use this to show that F is Riemann
integrable on [a, b].

(ii) Assume that ¢ : [a, b] —> R is a continuous function that has a bounded,
continuous derivative on (a, b). Prove the integration by parts formula

b b
/ (1) dF (@) = p(b)F(b) — ¢(a)F(a) —/ YO F(1)dt.
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(iii) Let ¢ : [0,00) —> [0, 00) be a function whose restriction to [0, T'] has
bounded variation foreach 7 > 0. Assuming that ¢)(0) = 0 and thatsup,.; ¢ =% (?)]
< oo for some o > 0, use (ii) to show that

T
L\ = / e Mdip(t) = lim / e Mdip(t) =\ / e M(r) dt
[0,00) T'—o0 /o [0,00)

for all A > 0. The function A ~» L(}) is called the Laplace transform of 1.
(iv) Refer to (iii), and assume that a = lim,_, o, t~*?(¢) € R exists. Show that,
foreach T > 0, A“L(\) equals

T o)
A“”/ e MY(r)dt + /\‘+"'/ t%e M (17 Y(1) — a)dt + a/ e dt,
0 [T,00) [AT,00)

and use this to conclude that (cf. Exercise 3.3)

AYL(N)

(%) a=Ilm-——.
N0 (1 + )

This equation is an example of the general principle that the behavior of ¢ near
infinity reflects the behavior of its Laplace transform at 0.

(v) The equation in (x) is an integral version of the Abel limit procedure in 1.10.1,
and it generalizes 1.10.1. To see this, let {c, : n > 1} € R be given, and define

o(t) = Z ¢, fort € [0, 00).

I<n<t

Assuming that sup,.; n”|¢(n)| < 00, use Exercise 3.15 to show that

/ e dy(t) =D e M, for X > 0.
[0.00) s

Next, assume that a = lim,_.,o n7 "% (n) € R exists, and use () to conclude that

: A” —A\n
=l e 2

n=1

When o = 0, this is equivalent to 1.10.1.
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Chapter 4
Higher Dimensions

Many of the ideas that we developed for R and C apply equally well to RY when
N > 3. However, when N > 3, there is no multiplicative structure that has the
properties that ordinary multiplication has in R or that the multiplication that we
introduced in R? has there. Nonetheless, there is a natural linear structure. That is, if
X=(x1,...,xy)andy = (y1, ..., YN) areelementsofRN,thenforanyoz, B eR,
the operation ax + Ay = (ax; + By1, ..., ayy + Syy) turns RY into a linear
space. Further, the geometric interpretation of this operation is the same as it was
for R?. To be precise, think of x as a vector based at the origin and pointing toward
(x1,...,xy) € RN, Then, —x is the vector obtained by reversing the direction of
X, and, when o > 0, ax is obtained from x by rescaling its length by the factor a.
When o < 0, ax = |a|(—X) is the vector obtained by first reversing the direction of
x and then rescaling its length by the factor of |«/|. Finally, if the end of the vector
corresponding to y is moved to the point of the vector corresponding to X, then the
point of the y-vector will be at x +y.

4.1 Topology in R

In addition to its linear structure, R" has a natural notion of length. Namely, given

X = (x1,...,xnN), define its Euclidean length |X| = ,/xlz + -+ + x2. The analysis
of this quantity is simplified by the introduction of what is called the inner product
X, Y)py = Zﬁ-v:l x;jy;.Obviously, |x|2 = (X, X)g~ . Further, by Schwarz’s inequal-
ity (cf. Exercise 2.3), it is clear that

N

[ Vv | < D Ixjllyil < Ixllyl.
j=1
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which means that |(X, y)gv| < |X||y|, an inequality that is also called Schwarz’s
inequality or sometimes the Cauchy—Schwarz inequality. Further, equality holds in
Schwarz’s inequality if and only if there is a¢ € R such that eithery = rx or x = ty.
If x = 0, this is completely trivial. Thus, assume that x # 0, and notice that, for any
t € R,y = rx if and only if

0=y —rx|* = 2|x[* = 2¢(x, Y)pn + Iy

By the quadratic formula, such a t must equal

% Yy £ /% DZy — KPP

x|2

’

which, since r € R, is possible if and only if (x, y)ﬂzw — x|*|y|*> = 0. Since
(x, y)%RN < |x|%y|?, if follows that ¢ exists if and only if (x, y)%RN = |x*ly|%.
Knowing Schwarz’s inequality, we see that

X +y12 = xI2 4+ 2(x, Y)py + 1y1* < X124+ 2[x1lyl + y1* = (x| + [yD?,

and therefore |x + y| < |x| + |y|, which is known as the friangle inequality since,
when thought about in terms of vectors, it says that the length of the third side of a
triangle is less than or equal to the sum of the lengths of the other two sides.

Just as we did for R and R?, we will say the sequence {x, : n > 1} € RV
converges to x € R¥ if for each ¢ > 0 there exists an n, such that [x, — x| < €
for all n > n., in which case we write X, —> X or X = lim,_, 5 X,,. Writing x, =
(X125 ---»XN ) and X = (xq, ..., xy), it is easy to check that x, —> x if and only
if [xj,—xj| —> Oforeach 1 < j < N.Thus, since lim,_ o Sup,,>, X —X;u| =0
if and only if lim,;,— o SUP,,,, |Xj.n — Xj.m| = O foreach I < j < N, it follows that
Cauchy’s criterion holds in this context. That is, R" is complete.

Given x and r > 0, the open ball B(x, r) of radius r is the set of y € R such
that [y — x| < r. Aset G C RY is said to be open if, for each x € G there is an
r > O such that B(x, r) € G, and a subset F is said to be closed if its complement is
open. In particular, RV and @ are both open and closed. Further, the interior int(S)
and closure S of an S C RV are, respectively, the largest open set contained in S
and the smallest closed set containing it. By the same reasoning as was used to prove
Lemma 1.3.1, x € int(S) if and only if B(x, r) C S for some r > 0 and x € § if and
only if there is a {x, : n > 1} C § such that x,, — Xx.

A set K C RV is said to be bounded if supy g [x| < 0o, and it is said to be
compact if every sequence {x, : n > 1} € K admits a subsequence {x,, : k > 1}
that converges to some pointx € K.

The following lemma is sometimes called the Heine—Borel theorem.
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Lemma4.1.1 If {x, : n > 1} is a bounded sequence in RN, then it admits a
convergent subsequence {X,, : k > 1}. In particular, K C RN is compact if and
only if K is closed and bounded. (See Exercise 4.9 for more information.)

Proof Suppose X, = (X1, ...,xn,) foreach n > 1. Then, foreach 1 < j < N,
{xjn : n>1}is abounded sequence in R, and so, by Theorem 1.3.3, there exists a
subsequence {xl’n]((l) 1 k> 1} of {x1, : n > 1} that converges to an x; € R. Next,
again by Theorem 1.3.3, there is a subsequence {x2.,n,(€2) : k > 1} of the sequence
{xl’nil) : k > 1} that converges to an x; € R. Proceeding in this way, we can produce
subsequences {xn@ k> 1}forl < j < N such that, foreach1 < j < N,
{Xn](cj+l) : k > 1} is a subsequence of {xnm : k> 1} and xj’nl((,-) — x; € R for
each 1 < j < N. Hence, {an((N) : k > 1} converges to X = (xq, ..., xXN).

Now suppose that K C RY, and let {x, : n > 1} € K. If K is closed and
bounded, then {x,, : n > 1} is bounded and therefore, by the preceding, admits
a convergent subsequence whose limit is necessarily is in K since K is closed.
Conversely, if K is compact and X, —> X, then x must be in K since there is a
subsequence of {x, : n > 1} that converges to a point in K. In addition, if K were
unbounded, then there would be a sequence {x, : n > 1} C K such that |x,| > n
for all n > 1. Further, because K is compact, {x,, : n > 1} could be chosen so that it
converges to a point X € K. But then |x| = oo, and so no such sequence can exist. [J

If) #5 C RV and f : § — C, then f is said to be continuous at a point
x € § if for each € > 0 there is a § > 0 with the property that | f(y) — f(X)| < €
whenever y € S N B(x, 9). Just as in Lemma 1.3.5, f is continuous at x € § if and
only if f(x,) — f(x) whenever {x, : n > 1} C § converges to x, and, when S
is open, f is continuous on S if and only if f~!(G) is open for all open G C C.
Also, using Lemma 4.1.1 and arguing in the same way as we did in Theorem 1.4.1,
one can show that if f is a continuous function on a compact subset K, then it is
bounded (i.e., supyg | f(X)| < o0) and uniformly continuous in the sense that, for
each ¢ > 0, there is a 6 > 0 such that | f(y) — f(X)| < € whenever x € K and
y € K N B(x, ). Further, if f is R-valued, it achieves both its maximum and a
minimum values, and the reasoning in Lemma 1.4.4 applies equally well here and
shows that if {f, : n > 1} is a sequence of continuous functions on § € R and if
{fa : n > 1} converges uniformly on S to a function f, then f is also continuous.
Finally, it F = (Fy, ..., Fy) : S — RM | then we say that F is continuous at x if
for each € > 0 there is a § > 0 such that |[F(y) — F(x)| < e wheny € § N B(x, 9).
It is easy to check that F is continuous at x if and only if F; is foreach 1 < j < M.

Say that § € R is path connected (cf. Exercise 4.5) if for all X and x; in S there
is a continuous path v : [0, 1] —> § such that xo = v(0) and x; = y(1).

Lemma 4.1.2 Assume that S is path connected and that f : S —> R is continuous.
Forallxg, x| € Sand y € [ f(Xo) A f(X1), f(X0) V f(X1)], there exists anx € S
such that f(x) = y. In particular, if K is a path connected, compact subset of RN
and f : K —> Ris continuous, then for all y € [m, M] there is an x € K such that
f(xX) =y wherem =min{f(x): x€ K} and M = max{f(x) : x € K}.
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Proof To prove the first assertion, assume, without loss in generality, that f(xp) <
f(x1), choose ~ for xg and xi, and set u(t) = f(’y(t)). Then u is continuous on
[0, 1], u(0) = f(x0), and u(1) = f(x1). Hence, by Theorem 1.3.6, for each y €
[ f(x0), f(x1)] there exists a € [0, 1] such that u(r) = y, and so we can take
X = y().

Given the first part, the second part follows immediately from the fact that f
achieves both its minimum and maximum values on K. O

4.2 Differentiable Functions in Higher Dimensions

In view of the discussion of differentiable functions on C, it should come as no
surprise that we say that a C-valued function f onanopenset G inRY is differentiable
atx € G in the direction & € RY if the limit

JE+18) — f(%)

t

8§f(x) = tlg%

exists in C, in which case O¢ f(x) is called the directional derivative of f in
the direction £&. When f is differentiable at x in all directions, we say that it is
differentiable there. Now let (e, ..., ey) be the standard basis in RY. That is,
e; = (01,j,...,0n,;), where the Kronecker delta d; j equals 1ifi = jand0ifi # j.
Clearly, & = 27:1(5, e;)rn € and 1€)? = Zyzl(ﬁ, ej)%RN for every £ € RV, Next
suppose f is an R-valued function that is differentiable at every point in G in each
direction e;. If 0. ; f is continuous at x for each 1 < j < N, then, for any & € RN,

’

fx+16) — fx) ﬁ F(xj@) + (& ejpnej) — f(x;(1)
t - - t

where

X+IZ{;11(£»ei)RN e if2<j<N
xj(1) = ir2

By Theorem 1.8.1, for each 1 < j < N there exists a 7; ; between 0 and ¢ such that

F(x@) + 1€ e)pne;) — f(xj(1)
t

= (&, ej)pn e, [ (X (1) + 7)1 (€, €))Rn €;).
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Hence, by Schwarz’s inequality,

N

® D (& e))pde; f(X)

Jj=1

f(x+1&) — f

t

(Sl

N
< L& D70, £(x; (1) + 74 €. )pn €5) — Be, f )|

J=1

and so, for each R € (0, 00),

X+t
lim sup f( 5)
=01g1<R !

) <
— D (€. ej)pne; f(X)| = 0. @2.1)

j=1

In particular, f is differentiable at x and

N
O f(x) = D (€. €))pn e, f(X). 4.2.2)

j=1

which, as (4.2.1) makes clear, means that f is continuous at x. (See Exercise 4.13
for an example that shows that (4.2.2) will not hold in general unless the O, f’s
are continuous at X.) When f is C-valued, one can reach the same conclusions by
applying the preceding to its real and imaginary parts.

When f is differentiable at each point in an open set G, we say that it is dif-
ferentiable on G, and when it is differentiable on G and 5‘5 f is continuous for all
e RY | then we say that it is continuously differentiable on G. In view of (4.2.2), it
is obvious that f is continuously differentiable on G if J; f is continuous for each
1 < j < N.When f : G — R is differentiable at x, it is often convenient to
introduce its gradient

V) = (Oey f(X), .., Oey f (X)) € RY

there. For example, if f is continuously differentiable, then (4.2.2) can be written as
de f(x) = (Vf(x), )y Finally, given f : G —> Cand n > 2, we say that f is
n-times differentiable on G if, forall £, ..., §,_; € RN, f is differentiable on G
and (’)gm e 651f is differentiable on G foreach 1 <m <n — 1.

Just as in one dimension, derivatives simplify the search for places where an R-
valued function achieves its extreme values (i.e., either a maximum or minimum
value). Namely, suppose that an R-valued function f on a non-empty open set G
achieves its maximum value at a point x € G. If f is differentiable at x, then
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+0cf(x) =1 <0 forall £ € RV,
t

. fxEf) - fX)
im

N t

and so J¢ f (x) = 0. The same reasoning applies to minima and shows that J¢ f (x) =
0 at an x where f achieves its minimum value. Hence, when looking for points at
which f achieves extreme values, one need only look at points where its derivatives
vanishes in all directions. In particular, when f is continuously differentiable, this
means that, when searching for the places at which f achieves its extreme values,
one can restrict one’s attention to those x at which V f(x) = 0. This is the form
that the first derivative test takes in higher dimensions. Next suppose that f is twice
continuously differentiable on G and that it achieves its maximum value at a point
x € G. Then (cf. Exercise 1.14)

Og (0 = lim f(x+t€)+f(;_t€)_2f(x) <0 forall¢ e RV,

Similarly, 8% f(x) > 0if f achieves its minimum value at X, which is the second
derivative test in higher dimensions.

Higher derivatives of functions on R¥ bring up an interesting question. Namely,
given € and 7 and a function f thatis twice differentiable at x, what is the relationship
between 0,0¢ f (x) and O¢ 0y, f (x)?

Theorem 4.2.1 Let f : G —> C be a twice differentiable function on an open
G # 0.If¢&, n € RY and both O0¢On f and OnO¢ [ are continuous at the point
X € G, then O0¢gOy f (X) = 0y0¢ f (X).

Proof First observe that it suffices to treat the case when f is R-valued. Second, by
replacing f with

N
Y FXFY) = (0 = D (v, €))e; f(X),

j=1

we can reduce to the case when x = 0 and f(0) = J¢ f(0) = 0y, f(0) = 0. Thus,
we will proceed under these assumptions.
Using Taylor’s theorem, we know that, for small enough ¢ # 0,

2
FUE+ 1) = [GE) + 10, £ 0€) + SO%F (16 +0,m)
2 2
= SORO,) + P00, £ 6©) + SO F € + by

for some choice of 6;, 67, 6 lying between 0 and ¢. Similarly,

2 2
FE+ 1) = Z02F i) + P Op0e f m) + S0} f G + 1)
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for some choice of w;, wj, w;’ lying between 0 and . Hence,

308 £(O]€) + 0¢0n f(07€) + 505 f (1€ + O,m)
= 300 F @im) + 0y 0% f @/'m) + 30 f (wi& + 1m),

and, after letting t — 0, we arrive at 9¢0y f (0) = 0y 0¢ f (0). O

The result in Theorem 4.2.1 means that if f is n times continuously differentiable
and &;,....,§, € RY then aﬁm) . 8&(”)]‘ is the same for all permutations 7 of
{1, ..., n}. This fact can be useful in many calculations, since a judicious choice of the
order in which one performs the derivatives can greatly simplify the task. Another
important application of this observation combined with (4.2.2) is the following.
Given m = (m;.....my) € NV, define [m|| = >N m;. m! = [T, (m,!),
M = H;V:l(i, ej)ﬁj;, for ¢ € RN, and 0™f = 0¢,' - 0o f for |m|| times
differentiable f’s, where 62 f = f forany &. Then, forany m > 0, £ € RY and m
times continuously differentiable f,

|
ar=73 %gma‘“ f. (4.2.3)

[m|=m

To check (4.2.3), use (4.2.2) to see that

O f = Z | (H({ eji)RN)ae/l w Oy, 1
Ny

Gtseer m)E{l,. i=1

Next, given m with ||m|| = m, let S(m) be the set of (ji,..., jm) € {1,..., N}"
such that, for each 1 < j < N, exactly m; of the j;’s are equal to j, and observe
that, for all (ji, ..., jm) € S(m), []iL, (&, ej)ry = &€™ and Be;, -+ Be;,, = O™ .
Thus

P f = Z card(S(m))&mo™ 1.

[m||=m

Finally, to compute the number of elements in S(m), let ( j?, R j,(,),) be the element
of S(m) in which the first m entries are 1, the next m, are 2, etc. Then all the other
elements of S(m) can be obtained by at least one of the m! permutations of the indices
of ( j?, A j,(,)l). However, m! of these permutations will result in the same element,
and so S(m) has I’fl—', elements.

If f is a twice continuously differentiable function, define the Hessian H f (x) of
f at x to be the mapping of RY into R" given by

N N
H®E =23 | D 0,0 f 0 €z | €.

i=1 \j=1
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Then 0¢dy f (x) = (€, Hf (X)n) . and, from Theorem 4.2.1, we see that H f (x) is
symmetric in the sense that (é L Hf (x)n)RN = (n, Hf (x)£)RN. In this notation, the
second derivative test becomes the statement that f achieves a maximum at x only
if (€, Hf (x)€)py < 0 forall £ € RY. There are many results (cf. Exercise 4.14)

in linear algebra that provide criteria with which to determine when this kind of
inequality holds.

Theorem 4.2.2 (Taylor’s Theorem for RN Let f be an (n + 1) times differentiable
R-valued function on the open ball B(x, r) in RN. Then for each'y € B(x, r) there
exists a 0 € (0, 1) such that

Ny M m . RS (A—0)x+6y)
f(y)—”n;n =0T T D! :

Moreover, if f is (n + 1) times continuously differentiable, then the last term can be
replaced by

O™ f((1—60)x + by)
>

, (y —x)™
m!

[m|j=n+1

Proof Set £ =y — x. Then, by Theorem 1.8.2 applied to r ~> f(x + t£),

"R Fx) O f(x+08)
f(y)=f(X+€)=Z gm; + (n+ 1!

m=0

for some 0 € (0, 1). Since f being (n + 1) times differentiable on B(x, r) implies
that it is n times continuously differentiable there, (4.2.3) implies the first assertion.
As for the second assertion, when f is (n + 1) times continuously differentiable,
another application of (4.2.3) yields the desired result. (]

4.3 Arclength of and Integration Along Paths

One of the many applications of integration is to the computation of lengths of
paths in RV, That is, given a continuous path p : [a, b] —> R, we want a way to
compute its length. If p is linear, in the sense that p(¢) —p(a) = tv for some v € RN,
then it is the trajectory of a particle that is moving in a straight line with constant
velocity v. Hence its length should be the distance that the particle traveled, namely,
(b — a)|v|. Further, when p is piecewise linear, in the sense that it can be obtained
by concatenating a finite number of linear paths, then its length should be the sum of
the lengths of the linear paths out of which it is made. With this in mind, we adopt
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the following procedure for computing the length of a general path. Given a finite
cover C of [a, b] by non-overlapping closed intervals, define p¢ to be the piecewise
linear path which, for each I € C, is linear on / and agrees with p at the endpoints.
That is, if I = [ay, by] where a; < by, then

P( 1)+ P(bI) fort € 1.

by
pc(t) =
Clearly p¢ tends uniformly fast to p as ||C]| — 0, and its length is

> |Ap| where A;p = p(b) — par).
1eC

Thus a good definition of the length of p would be

@meZwm (43.1)

However, we first have to check that this limit exists.

Lemma 4.3.1 Referring to the preceding, the limit in (4.3.1) exists and is equal to

mem

IeC

Proof To prove this result, what we have to show is that for each C and € > 0 there
isad > 0 such that

() > 1Al < D |Appl +€ iflIC|| <.

I1eC reC’

Without loss in generality, we will assume that r = min{|/| : I € C} > 0. Take

0<d<rsothat|t —s| < = [p(t) —p(s)| < 5,, where n is the number of

elements in C. If C’ with ||C’|| < § is given, then, by the triangle inequality,
Dlaml =D > 1Al
IeC IeC I'eC’

Clearly,

D D 1Awepl =D D 1Airpl < D 1Al

IeC1'eC’ I'eC’ 1eC reC’
I'cl oI
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At the same time, since, for any I € C, there are most two I’ € C’ for which
Apnrp # 0 but I’ g 1,

> D 1Anrpl < 2nmax{p@) — p(s)| : |t —s| <8} <,

IeC 1'eC’
I'nl#%

¢
and so () holds. [l

Now that we know that the limit on the right hand side of (4.3.1) exists, we will
say that the arclength of p is the number Ly, ([a, b]). Notice that Ly, ([a, b]) need not
be finite. For example, consider the function f : [0, 1] — [—1, 1] defined by

Fy = [(n + D7 lsin@tar) if1—-27"<t<1-2""forn>0
0 ifr=1,
and set p(¢) = (t, f (t)). Then p is a continuous path in R2. However, because, for
eachn > 0, f takes the values —(n + 1)~! and (n 4+ 1)~! 2" times in the interval
[1—27"1—27""1],itis easy to check that Lp ([0, 1]) = coc.
We show next that length is additive in the sense that

Lp(la, b]) = Ly (I, c1) + Lp(lc, b]) forc € (a,b). (4.3.2)

To this end, first observe that if C; is a cover for [a, ¢] and C; is a cover for [c, b],
then C = C; U C; is a cover for [a, b] and therefore

Lp(la,b]) = D" |Ampl+ D 14;pl.

1eCy 1€eCy

Hence, the left hand side of (4.3.2) dominates the right hand side. To prove the
opposite inequality, suppose that C is a cover for [a, b]. If ¢ ¢ int() forany I € C,
thenC =CiUCy,whereCy ={I €C: I Cla,cl}andCr={I €C: I C|c,bl}.
In addition, C; is a cover for [a, ¢] and C» is a cover for [c, b]. Hence

> 1Al =D 1Al + D 1Al < Ly(la. cl) + Ly([c, b))

1eC 1€Cy 1€Cy

in this case. Next assume that ¢ € int(/) for some I € C. Because the elements of C
are non-overlapping, there is precisely one such I, and we will use J to denote it. If
J_=JNJa,cland J;+ = J N[c, b], then

Ci={leC:1C[a,cl}U{J_}andCr={I €C: I C[c,b]}U{Js}
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are non-overlapping covers of [a, c] and [c, b]. Since |[Ayp| < |A;_p| + |Ay, pl, it
follows that

Ly(la, cl) + Lp(lc, b]) = D |Arpl+ D Al = > |Aspl,

1eCy 1eCy 1eC

and this completes the proof of (4.3.2).

‘We now have enough information to describe what we will mean by integration of
functions along a path of finite length. Suppose that p : [a, b] — RY isa continuous
path for which L ([a, b]) < 0o, and let f : p([a, b]) —> C be a bounded function.
Given a finite cover C of [a, b] by non-overlapping, closed intervals and an associated
choice function =, consider the quantity

D (fop)(ED)Lp),

IeC

If,as ||C|| — O, these quantities converge in R to a limit, then that limit is what we will
call the integral of f along p. Because of (4.3.2), the problem of determining when
such a limit exists and of understanding its properties when it does can be solved
using Riemann—Stieltjes integration. Indeed, define Fy, : [a, b] —> [0, 00) by

Fyp(t) = Ly(la, 1) fort € [a, b], (4.3.3)

Clearly Fy is a non-decreasing function,! and, by (4.3.2), Lp(I) = AjFp. Thus a
limit will exist precisely when f o p is Riemann—Stieltjes integrable with respect to
Fyp on [a, b], in which case

b
lim S om(EM)LD = [ (f om@ a0,

Cll—0
IcI—~05=5

The following lemma provides an important computational tool.

Lemma4.3.2 Ifp : [a,b] — R is continuous path of finite length which is
continuously differentiable on (a, b) and*

p(@) = (pi@),.... py@®) fort € (a,b),

IAlthough we will not prove it, F, is also continuous. For those who know about such things,
one way to prove this is to observe that, because p has finite length, each coordinate p; is a
continuous function of bounded variation. Hence the variation of p; over an interval is a continuous
function of the endpoints of the interval, and from this it is easy to check the continuity of F},. See
Exercise 1.2.22in my book Essentials of Integration Theory of Analysts, Springer-Verlag GTM 262,
for more details.

2The use of a “dot” to denote the time derivative of a vector valued function goes back to Newton.
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then

b
/ (f op)()dFp(1) =/( b)(fOP)(f)II')(t)Idt

for continuous functions f : [a, b] — R.

Proof By (3.5.3), all that we have to show is that F}, is differentiable on (a, b) and
that |p| is its derivative there. Hence, by the Fundamental of Calculus, it suffices to
show that

'
(%) Fp(t) — Fy(s) =/ Ip(m)|dr fora <s <t <b.

Givena < s < t < b, let C be a non-overlapping cover for [s, 7]. Then, by
Theorem 1.8.1, for each I = [ay, by] € C there exist&; 7, ..., En. 1 € I such that

Ap = (PiELD. - Py En D)
= (pitan), ..., py@)I1 + (p1&.0) — Piar), ..., pyEn.1) — py@n)Ill.

Hence, if

w(d) = 1m_astup{|p’j(7') —pi@):is<o<T<t&T—0< §},
<js :
then, by the triangle and Schwarz’s inequalities,

. . 1
1471 = Ib@nlI1| < [Arp = l1Ban]| = Nw(IChII],

and so

Pt = Fys) = Jim, S0l = i 3 b)) = /W)W

4.4 Integration on Curves

The reader might well be wondering why we defined integrals along paths the way
that we did instead of simply as fab( f o p)(¢)dt, but the explanation will become
clear in this section (cf. Lemma 4.4.1).

We will say that a compact subset C of RY is a continuously parameterized curve
if C = p([a, b]) for some one-to-one, continuous map p : [a, b] — RV, called a


http://dx.doi.org/10.1007/978-3-319-24469-3_3
http://dx.doi.org/10.1007/978-3-319-24469-3_1

4.4 Integration on Curves 111

parameterization of C. Given a continuous function f : C — C, we want to know
what meaning to give the integral |, c f(y)doy of f over C. Here the notation doy is
used to emphasize that the integral is being taken over C and is not a usual integral
in Euclidean space, but one that is intrinsically defined on C.

One possibility that suggests itself is to take (cf. (4.3.3))

b
/Cf(Y)d0y=/ f(p®) dFy(0) (4.4.1)

at least when L, ([a, b]) < oo. However, to justify defining integrals over C by
(4.4.1), we have to make sure that the right hand side depends only on C in the sense
that it is the same for all parameterizations of C.

Lemma 4.4.1 Suppose thatp : [a,b] — C and q : [c¢,d] —> C are two para-
meterizations of C. Then Lp([a, b]) = Lq([c, d]), and, if Lp ([a, b]) < 00, then

b d
/ f(p() dFy(t) = / f(a@®)) dFq()

for all continuous functions f : C — C.

Proof First observe that, because q is one-to-one onto C, it admits an inverse q '

taking C onto [c, d]. Furthermore, q’1 is continuous, since if X, —> x in C and
t, = q~'(x,), then every limit point of the sequence {t, : n > 1} is mapped by q to
x and therefore (cf. Exercise 4.2) t,, —> q_1 (x). Now define a(s) = q_1 o p(s) for
s € [a,b].

P —1
fab] — ¢ s [ed]
commutative diagram

Then, since q_l and p are continuous, one-to-one, and onto, « is a continuous, one-

to-one map of [a, b] onto [c, d]. Thus, by Corollary 1.3.7, either ae(a) = ¢ and « is
strictly increasing, or a(a) = d and « is strictly decreasing.
Assuming that a(a) = ¢, we now show that

(%) Ly(J) =Lg (a(J)) for each closed interval J C [a, b].

To this end, let C be a cover of J by non-overlapping closed intervals /. Then
¢ = {a(I) : I € C} is a non-overlapping cover of a(J) (cf. Theorem 1.3.6 and
Exercise 4.6) by non-overlapping closed intervals, and ||C'|| — 0 as ||C|| — 0.
Hence, since Ay()q = A/p,

Ly(a()) = lim Z| amdl = lim Zmzm—Lp(J)
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Obviously, the first assertion follows immediately by taking J = [a, b]in (). Further,
if Lp([a, b]) < 00, (x) implies that Fp(s) = Fy (a(s)). Now suppose that f is a
continuous function on C. Given a cover C of [a, b] and an associated choice function
E,setC' ={a(l): I € C}and E’(a(])) = EZ(I) for I € C. Then

R(fIF:CLE) = Zf o q(&" (D) Ay Fq = R(f1Fp; C, &),
1eC

and so the Riemann-Stieltjes integrals of f with respect to Fp, and Fg are equal.

When a(a) = d, set q(t) = q(c +d —t). Since §~' o p = &(s), where
a(s) = ala + b —s), the preceding says that Ly([a, b]) = Lg([c, d]) and, when
Lp([a, b]) < 00,

b d
/ F(p(s)) dFp(s) = / (@) drg@).

Clearly Lq([c, d]) = Lq([c, d]). Moreover, if Lp([a,b]) < 00, then F§(t) =
Fq(b) — Fyq(a + b —t), and so, by (3.5.1),

d d
/ fa®) dFy(t) = / f(@m) dFg (o). 0

In view of the preceding, it makes sense to say that the length of C is the length
of a, and therefore any, parameterization of C. In addition, if C has finite length and
p is a parameterization, then we can use (4.4.1) to define f ¢ f(y) doy, and it makes
no difference which parameterization we use. In many applications, the freedom to
choose the parameterization when performing integrals along parameterized curves
of finite length can greatly simplify computations. In particular, if C has finite length
and admits a parameterization p : [a, b)] —> C that is continuously differentiable
on (a, b), then, by Lemma 4.3.2,

b
/C Fy)doy = / £ (p() 1)) dt. 44.2)

Here is an example that illustrates the point being made. Let C be the semi-circle
{x e R?: |x| = | & x» > 0}. Then there are two parameterizations that suggest
themselves. The firstis 7 € [—1, 1] —> p(1) = (¢, v/1 — 1) € C, and the second
ist € [0, 7] —> q(t) = (cost, sint). Note that

2 1
F(t):/ 1/1-|-T—dq-=/ ———d7 = 7 — arccost,
’ (~1.1] 1= —11 V1 =72
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where arccos is the 6 € [0, 7] for which cos§ = ¢, and Fy(t) =t fort € [0, 7].
Hence, in this case, the equality between integrals along p and integrals along q
comes from the change of variables = cos s in the integral along p.

Before closing this section, we need to discuss an important extension of these
ideas. Namely, one often wants to deal with curves C that are best presented as the
union of parameterized curves that are non-overlapping in the sense that if p on
[a, b] is a parameterization of one and q on [c, d] is a parameterization of another,
then p(s) # q(¢) for any s € (a,b) and ¢ € (c,d). For example, the unit circle
S0, 1) = {x € R? : |x| = 1} cannot be parameterized because no continuous path
p from a closed interval onto S' (0, 1) could be one-to-one. On the other hand, S' (0, 1)
is the union of two non-overlapping parameterized curves: {x € S'(0, 1) : x» > 0}
and {x € S'(0, 1) : xo < 0}. The obvious way to integrate over such a curve is to
sum the integrals over its parameterized parts. That is, if C = C; U --- U Cyy, the
C,,’s being non-overlapping, parameterized curves, then one says that C is piecewise
parameterized, takes its length to be the sum of the lengths of its parameterized
components, and, when its length is finite, the integral of a continuous function f
over C to be

M
doy = doy,
/Cf(y) oy n;/c £(y) doy

the sum of the integrals of f over its components. Of course, one has to make
sure that these definitions lead to the same answer for all decompositions of C into
non-overlapping parameterized components. However, if C7, ..., C ;VI’ is a second
decomposition, then one can consider the decomposition whose components are of
the form C,, N C/ , for m and m’ corresponding to overlapping components. Using
Lemma4.4.1, one sees that both of the original decompositions give the same answers
on the components of this third one, and from this it is an easy step to show that our
definitions of length and integrals on C do not depend on the way in which C is
decomposed into non-overlapping, parameterized curves.

4.5 Ordinary Differential Equations’

One way to think about a function F : RN — RN is as a vector field. That is, to
each x € RV, F assigns the vector F(x) at x:

3The adjective “ordinary” is used to distinguish differential equations in which, as opposed to
“partial” differential equations, the derivatives are all taken with respect to one variable.
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Y
N

A o /’ /7 /; /; 4
Ly > 77 / //4 4 /4 //4 //ﬂ /‘
L
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Sy . /’ // / / /

vector field

and one can ask whether there exists a path X : R —> R for which F(X(t)) is
the velocity of X(#) at each time ¢ € R. That is, X(t) = d—th(t) = F(X(t)). In fact,
it is reasonable to hope that, under appropriate conditions on F, for each x € RY
there will be precisely one path r ~» X(z, x) that passes through x at time r = 0
and has velocity F(X(z, x)) at all times 7 € R. The most intuitive way to go about
constructing such a path is to pretend that F(X(t, X)) is constant during time intervals
of length % In other words, consider the path  ~» X, (¢, x) such that X,,(0, x) = x
and

k
Xn(t, X) =F(Xn(%,x)) for {; € [;{1: n
(S

Equivalently, if
Lk .k
], = max {k ef. <<t} and 1], = min{k ef. <> t},
then
X (L]0, X) + F(Xu (L]0 x) (¢ = 12]4) ift >0
Xn(tsx) = .
X (110, X) + F(Xu ([110.X) (¢ — [t1,) ift <O,

which can be also written as

Xn(t’x)zx_l_[fOtF_(tXn(LTJn,X))dT ifr>0

— Jo "F(Xu(=L=7Jn.x)d7 ifr <O. @31

The hope is that, as n — oo, the paths  ~» X,, (¢, x) will converge to a solution to
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t

X(t,x) = x+/ F(X(r, x)) dr, (4.5.2)
0

which, by the Fundamental Theorem of Calculus, is that same as saying it is a
solution to

X(t,x) = F(X(1,%)) with X(0,%) = x. (4.5.3)

Notice that ¢t ~» X(—t,x) and, for eachn > 1, t ~» X, (—t, X) are given by the
same prescription as ¢ ~» X(t, X) and ¢ ~~ X, (¢, x) with F replaced by —F. Hence,
it suffices to handle r > 0.

To carry out this program, we will make frequent use of the following lemma,
known as Gromwall’s inequality.

Lemma 4.5.1 Suppose that « : [0, 00) —> R and § : [0, 00) —> R are contin-
uous functions and that o is non-decreasing. If T > 0 and u : [0,T] — Risa
continuous function that satisfies

t
u(t) < al(r) +/ B(Mu(r)dr fort €[0,T],
0
then

T t
u(T) < a(0)e?) + / eBI=BD do(r) where B(t) = / B(r)dr.
0 0

Proof SetU(1) = [1 B(r)u(r)dr. Then U (1) < a(1)3(1) + B(1)U (1), and so

d—dt(e_B(’)U(t)) < a®)B(t)e B,

Integrating both sides over [0, T'] and applying part (ii) of Exercise 3.16, we obtain
T T
e BDy ) 5/ a(mpme B0 ar = —a()e 8D 1 a(0) +/ e BD ga(n).
0 0

Hence the required result follows from u(7T) < o(T) + U(T). ([l
Our first application of Lemma 4.5.1 provides an estimate on the size of X,,.

Lemma 4.5.2 Assume that there exist a > 0 and b > 0 such that |F(x)| < a + b|x|
forallx € RN, If X, (t, X) is given by (4.5.1), then

(e — 1

a
sup X, (£, )| < |x|e?!! + forallt € R.
n>1
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Proof By our observation about t ~» X, (—1, X), it suffices to handle ¢ > 0.
Set u, (t) = max{|X,(7,x)| : t € [0, t]}. Then

t t
X, (¢, x)| < |x|+/ [F(X,(L71n, X)) |dT < |x|+at+b/ un (1) dt
0 0
and therefore
t
u, (1) < |x| +at+b/ u,(r)ydr forr > 0.
0

Thus the desired estimate follows by Gromwall’s inequality. (]

From now on we will be assuming that F is globally Lipschitz continuous. That
is, there exists an L € [0, 00), called the Lipschitz constant, such that

|F(y) — F(x)| < L|ly — x| forallx, ye R". (4.5.4)

By Schwarz’s inequality, (4.5.4) will hold if F is continuously differentiable and

N

L= | sup Z|VFj(x)|2<oo.
xeRN j=1

We will now show that (4.5.2) has at most one solution when (4.5.4) holds. To
this end, suppose Ehat t ~ X(t,x) and t ~» X(¢,x) are two solutions, and set
u(t) = |X(t, x) — X(¢, x)|. Then

1 13
u(t)f/ yF(X(T,x))—F(X(T,x))|dr§L/ u(rydr fort >0,
0 0

and therefore by Gromwall’s inequality with « = 0 and 8 = L, we know that
u(t) = 0 for all + > 0. To handle t < 0, use the observation about ¢ ~~ X(—t, X).

Theorem 4.5.3 Assume that F satisfies (4.5.4). Then for each x € RN there is a
unique solution t ~ X(t, X) to (4.5.2). Furthermore, for each R > 0 there exists a
CRr < 09, depending only on the Lipschitz constant L in (4.5.4), such that

C
sup{|X(1, %) — X,,(,%) : |1] v x| < R} < —%. (4.5.5)
n

Finally,

IX(t,y) — X(t,x)| < e iy —x| forallt € Randx, y € RV.
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Proof The uniqueness assertion was proved above. To prove the existence of

t ~ X(t,Xx), set uy, ,(t,x) = |X,(t,x) — X, (¢, x)fort > 0and 1 < m < n.
Then

t
um,n(t,X) §~/0 |F(X”(|-7—Jnvx)) _F(Xm(l_TJm, X))|d7’
t
= L/O (|Xn(|_7’Jn, X) — X, (7, x)| + |Xm(|_7'Jm,X) —X,, (1, X)|) dr
t
+L/ um,n(T,X)dT.
0

Next observe that |F(x)| < |F(0)| 4+ L|x|, and therefore, by Lemma 4.5.2,

. IF(0)](¢“R — 1)

7 for k > 1 and (¢, x) € [0, R] x B(0, R).

IXi (1, %)| < Re" "

Thus, if Ag = [F(0)| 4+ (LR + [F(0)|(1 — e~ %))k, then

' A
X; (L7 1k, X) — Xi (7, %) 5/ |F(Xk(a,x))|da§7’e

L7k

for k > 1and (7,x) € [0, R] x B(0, R). Hence, we now know that, if (¢,Xx) €
[0, T] x B(0, R), then

2AR t
Um,n (t,x) < +L ”m,n(Ta X)dT,
m 0

and therefore, by Gromwall’s inequality,

Cr
(%) sup 1Xn (#, %) — Xin (2, X)| < ot

(t,x)€[0,R]xB(0,R)

where Cg = 2AgelR.

From (x) it is clear that, for each t > 0, {X,,(¢,x) : n > 1} satisfies Cauchy’s
convergence criterion and therefore converges to some X(z, x). Further, because,
again from (%),

Cr
sup X, x) — X (£, X)| < —,
m

(t,x)€[0,R]xB(0,R)

(4.5.5) holds with this Cg. Hence, by Lemma 1.4.4, t ~~ X(¢, x) is continuous, and
by Theorem 3.1.4, (4.5.2) follows from (4.5.1) for > 0. To prove the same result
for ¢ < 0, one again uses the observation made earlier.
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Finally, observe that

I
X, y) =X, x)| < |y —x| + L/ IX(r,y) = X(7,x)|dT fort € R,
0

and now proceed as before, via Gromwall’s inequality, to get the estimate in the
concluding assertion. (I

Theorem 4.5.3 is a basic result that guarantees the existence and uniqueness of
solutions to the ordinary differential equation (4.5.3). It should be pointed out that
the existence result holds under much weaker assumptions (cf. Exercise 4.19). For
example, solutions will exist if F is continuous and |F(x)| < a + b|x| for some non-
negatives constants a and b. On the other hand, uniqueness can fail when F is not
Lipschitz continuous. To wit, consider the equation X (1) = 1X@)] > with X (0) = 0.
Obviously, one solution is X (f) = 0 for all + € R. On the other hand, a second

solution is s
o iftr>0
X0 { o ifr >

2.
-5 ifr <o.

For many purposes, the uniqueness is just as important as existence. In particular,
it allows one to prove that

X(s +1,x) = X(t, X(s, x)) foralls, t e Rand x € RV, 4.5.6)

Indeed, observe that t ~ Y (t) = X(s + ¢, x) satisfies Y(t) = F(Y(t)) with Y(0) =
X(s, x), and therefore Y(¢) = X(t, X(s, x)). The equality in (4.5.6) is called the
flow property and reflects the fact that once one knows where a solution to (4.5.3)
is at a time s its position at any other time is completely determined. An important
consequence of (4.5.6) is that, for any ¢+ € R,y ~» X(—t,y) is the inverse of
x ~» X(t, x) and therefore, when F satisfies (4.5.4), that x ~» X(¢, X) and its inverse
are continuous, one-to-one maps of RY onto itself.

Corollary 4.5.4 Assume that F : RN — RY is continuously differentiable and
that O F is bounded for each 1 < j < N. Then, for eacht € R, x ~ X(t,X) is
continuously differentiable and

t
8er(t, X); = 51‘,]' —|—/0 (VF,' (X(T, X)), 8er(T, X))RN dr. “4.5.7)

Proof Since, as we have seen, results for # < 0 can be obtained from the ones for
t > 0, we will restrict our attention to ¢ > 0

First observe that, for each n > 1 and r > 0, x ~» X, (¢, X) is continuously
differentiable and satisfies (cf. Exercise 4.7)

t
0%, (1,00 =81+ [ (VX (171a 0.0 X, (1710 X)), d
J 0 J RN



4.5 Ordinary Differential Equations 119

Thus
t
106, X1, %] < 1 +A/0 10, X (17 I, %)| dm

forn > 1and (¢, x) € [0, 00) x RN, where A = || [V F;| lgv < oo. Hence, arguing
as we did in the proof of Lemma 4.5.2, we see that |8ej X, (t,x)]| < ¢! and therefore
that there exists a B < oo such that

|0, X (t, %) — Oe; Xn(s,%)| < BeM|t — 5]

forn >1and0 <s <tandx € RV. Combining this with (4.5.5) and the fact the
first derivatives of F are continuous, we conclude that

sup Sup ~max |VF1' (Xn(l_tJnv X)) — VF; (Xm(l_tjmv X))i

n>m tv|x|<R 1Si=N

tends to 0 as m — oo. Hence there exist {¢,(R) : m > 1} C (0, co) such that
em(R) \( 0as m — oo and

t
|0e; X (2, X) — De; X (1, %) | gem(R)+AN%/O |0e; X (7. X) — O, X (7, X)| dT

for1 <m < mnandtV |x| < R. Therefore, by Gromwall’s inequality, we now know
that
sup|8e].Xn(t, X) — Oe; X (2, x)| — 0

n>m

uniformly for 7 Vv |x| < R.

From here, the rest of the argument is easy. By Cauchy’s criterion and Lemma 1.4.4,
there exists a continuous Y; : [0, 00) x RY — R¥ to which 9, : X, (¢, x) con-
verges uniformly on bounded subsets of [0, co) X RY, and so, by Corollary 3.2.4,
x ~» X(z, x) is continuously differentiable and O, jX(t, x) = Y, (z, x). Furthermore,
by Theorem 3.1.4, t ~~ 8er(t, x) satisfies (4.5.7). U

The following corollary gives one of the reasons why it is important to have these
results for vector fields on RY instead of just functions.

Corollary 4.5.5 Suppose that F : RN — R satisfies (4.5.4) for some L < oo.
Then for each x € R there is precisely one functiont € R — X (t,x) € R such
that

OMNX(t,x)=F(X(t,%),0/ X(t,%), ..., 0N ' X(t,x))

' (4.5.8)
with 9y X (0, X) = xg41 for0 <k < N,

where af‘ X (t, X) denotes the kth derivative of X (-, X) with respect to t.
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Proof Define F(x) = (xz, ..., XN, F(x)) for x € RY. Then F satisfies (4.5.4), and
therefore there is precisely one solution to

(%) X(t,x) = F(X(t,x)) with X(0,x) = x.

Furthermore, 1o~ X(t, x) satisfies (x) if and only if Xk(t, X) = Xy4+1(t,x) for
0<k<N,Xy(,x) = F(X(,x)), and X;(0,X) = x4 for I <k < N. Hence,
if X (¢, %) = X (t, x), then 0¥ X (t,x) = Xy41(t,x) for 0 < k < N and

OMNX(t,x) = F(X(t,%),0/ X(t,%),...,0"N X (t,x),

which means that r ~» X (¢, X) is a solution to (4.5.8). Conversely, if r ~» X (¢, X) is
a solution to (4.5.8) and

X(t,%) = (X(1,%), 0} X(t,%), ..., 0N "X (1, %),

then r ~~ X(¢,X) is a solution to (), and so t ~» X(t, x) is the only solution to
(4.5.8). O

The idea on which the preceding proof is based was introduced by physicists to
study Newton’s equation of motion, which is a second order equation. What they
realized is that the analysis of his equation is simplified if one moves to what they
called phase space, in which points represent the position and velocity of a particle
and Newton’s equation becomes a first order equation.

4.6 Exercises

Exercise 4.1 Givenaset S C RV, thesetdS = S\ int(S) is called the boundary of
S. Show that x € S if and only if B(x, ) NS # ¢ and B(x, r) N SC # @ for every
r > 0. Use this characterization to show that 9§ = 9(SC), 9(S; U S2) € 951 UIS,,
A(S1 N S) COS1UISy, and 9(S> \ S1) € 981 UDS,.

Exercise 4.2 Suppose that {x, : n > 1} is a bounded sequence in RY. Show that
{x, : n > 1} converges if and only if it has only one limit point. That is, x,, — X
if and only if every convergent subsequence {x,, : k > 1} converges to x.

Exercise 4.3 Let F| and F> be a pair of disjoint, closed subsets of R". Assuming
that at least one of them is bounded, show that there exist x; € F; and X, € F5 such
that

X2 —x1| = |F2 — Fi| = inf{ly2 —y1l : y1 € F1 & y2 € F2},

and conclude that |F, — Fy| > 0. On the other hand, give an example of disjoint,
closed subsets Fj and F; of R such that |F; — F{| = 0.



4.6 Exercises 121
Exercise 4.4 Given a pair of closed sets Fj and F3, set
Fil+Fh={x1+Xx: X1 € F] &xp € F»}.

Show that F| + F; is closed if at least one of the sets F| and F» is bounded but that
it need not be closed if neither is bounded.

Exercise 4.5 Given a non-empty open subset G of R and a point x € G, let G be
the set of y € G to which x is connected in the sense that there exists a continuous
path v : [a, b] —> G such that x = y(a) and y = (b). Show that both Gy and
G \ Gy are open. Next, say that G is connected if it cannot be written as the union of
two non-empty open sets, and show that G is connected if and only if Gx = G for
every X € G. Thus G is connected if and only if it path connected.

Exercise 4.6 Suppose that K is a compact subset of RY and that F is an R -valued
continuous function on K. Show that F(K) is a compact subset of RM  The fact that
F(K) is bounded is obvious, what is interesting is that it is closed. Indeed, give an
example of a continuous function f : R — R for which f(R) is not closed.

Exercise 4.7 Suppose that G| and G, are non-empty, open subsets of RV and
RN respectively. Further, assume that Fi, ..., Fy, are continuously differentiable
functions on G and that F(x) = (F1 x),..., FNz(X)) € G forall x € G. Finally,
let g : Go —> C be continuously differentiable, and define g o F(x) = g(F(x)) for
x € G1. Show that

Ny
0g(g o F)(X) = > (De;9) 0 F(x) D Fj(x)
j=1

forx € Gy and € € RV, This is the form that the chain rule takes for functions of
several variables.

Exercise 4.8 Let G be a collection of open subsets of RV . The goal of this exercise
is to show that there exists a sequence {Gy : k > 1} € G such that U,fil Gr =
Us <g G- This is sometimes called the Lindeldf property of RN . Here are some steps
that you might take.

(i) Let A be the set of pairs (q, £) where q is an element of RY with rational
coordinates and £ € Z*. Show that 4 is countable.

(ii) Given an open set G, let B¢ be the set of balls B(q, %) such that (q, £) € A
and B(q. ;) € G. Show that G = |J .5, B-

(iii) Given a collection G of open sets, let Bg = (Jgcg Bg- Show that Bg is
countable and that {Jgcp, B = Ugeg G- Finally, for each B € Bg, choose a
Gp € Gsothat B C G, and observe that {Jgc5, G = Ugeg G-

Exercise 4.9 According to Lemma 4.1.1, a set K € R¥ is compact if and only if
it is closed and bounded. In this exercise you are to show that K is compact if and
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only if for each collection of open sets G that covers K (i.e., K C (J;cg G) there is
a finite sub-cover {G1, ..., G,} € G which covers K (i.e., K C U:ln:l G,,). Here
is one way that you might proceed.

(i) Assume that every cover G of K by open sets admits a finite sub-cover. To show
that K is bounded, take G = {B(x, 1) : x € K} and pass to a finite sub-cover. To
see that K is closed, suppose thaty ¢ K, and, for m > 1, define G, to be the set of
x € R" such that ly — x| > % Show that each G, is open and that K € U;’le G,
and choose n > 1sothat K € |J),_; G . Show that B(y, %) N K = ¢ and therefore
thaty ¢ K. Hence K = K.

(i1) Assume that K is compact, and let G be a cover of K by open sets. Using
Exercise 4.8, choose {G,, : m > 1} € G sothat K C |J;_, G,. Suppose that
K ¢ Uj—; Gn for any n > 1, and, for each n > 1, choose x, € K so that
x, ¢ Up—; Gm. Now let {xn; : j = 1} be a subsequence that converges to a point
x € K, and choose m > 1 such that x € G,,. Then there would exist a j > 1 such

thatn; > m and x, ;€ G, which is impossible.

Exercise 4.10 Here is a typical example that shows how the result in Exercise 4.9
gets applied. Given a set S € R" and a family F of functions f : § — C, one
says that F is equicontinuous at x € S if, for each € > 0, there is a § > 0 such
that | f(y) — f(x)| < eforally € SN B(x, ) and all f € F. Show that if F is
equicontinuous at each x in a compact set K, then it is uniformly equicontinuous in
the sense that for each € > 0 there is a § > 0 such that | f(y) — f(x)| < € for all
X, y € K with |y — x| < d and all f € F. The idea is to begin by choosing for each
X € K a ¢ > 0 such that suprer [ f(y) — fF(X)] < 5 forally € K N B(x, 20y).
Next, choose x1,...,X,; € K so that K C U”m:1 B(Xp,, 0x,,). Finally, check that
0 = min{dy, : 1 < m < n} has the required property.

Exercise 4.11 Another application of Exercise 4.9 is provided by Dini’s lemma.
Suppose that {f, : n > 1} is a non-increasing sequence of R-valued, continuous
functions on a compact set K, and assume that f is a continuous function of K
to which they converge pointwise. Show that f;, — f uniformly on K. In doing
this problem, first reduce to the case when f = 0. Then, given ¢ > 0, for each
x € K choose ny € Z" and rx > 0 so that f, (y) < € fory € B(x, rx). Now apply
Exercise 4.9 to the cover {B(X,rx) : X € K}.

Exercise 4.12 In this exercise you are to construct a space-filling curve. That is, for
each N > 2, a continuous map X that takes the interval [0, 1] onto the square [0, V.
Such a curve was constructed originally in the 19th Century by G. Peano, but the one
suggested here is much simpler than Peano’s and was introduced by I. Scheonberg.
Let f : R — [0, 1] be any continuous function with the properties that f(#) = 0
if [O, %] f@®) =1ifr e [% 1], f(2)=0,and f(t +2) = f(¢) forall r € R. For
example, one can take f(t) = 0 for ¢ € [0, %], fo) =3( - %) fort e [%, % ,
f@)=1fort € [3,1], f(t) = 2—tfort € [1,2],and then define f(t) = f(t—2n)
forn € Zand 2n <t < 2(n + 1). Next, define X(t) = (X1 (1), ..., Xn(1)) where
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o0
Xj(t)y =Y 27" f(3"N*T7) for1<j<N.
n=0

Given X = (x1,...,xy) € [0, 11V, choose w : N —> {0, 1} so that

o0
xXj = 22_”_1w(nN+j —1) forl <j <N,
n=0

sets =2 z,fozo 3’"’1w(n), and show that X(s) = x. To this end, observe that, for
each m € N, there is a b, € N such that

2w(m) 2wim) 1

<3™s <2b, + 3 3

2by, +

and therefore that f(3™s) = w(m).

Obviously, X is very far from being one-to-one, and there are good topological
reasons why it cannot be. Finally, recall the Cantor set C in Exercise 1.8, and show
that the restriction of X to C is a one-to-one map onto [0, 11V, This, of course, gives
another proof that C is uncountable.

2.2
Exercise 4.13 Define f : R> — R so that, for x = (x,x2), f(X) = ;ft'jiz‘
1 2

if x # 0 and f(x) = 0 if x = 0. Show that f is differentiable at 0 and that
O¢ f(0) = f(&). Conclude in particular that for this f it is not true that 0¢ f(0) =
(&, e1)p20e, f(0) + (£, €2)p20e, f(0) for all &.

Exercise 4.14 Leta, b, ¢ € R, and show that

al? +2bén+cen* = 0forall§, n e R < a+c > 0andac > b>.

Now let f : G —> R be a twice continuously differentiable function on a non-empty
open set G C R2, and, given X € G, show that Ggf(x) = (& Hf x)&)Rr2 > 0 for

all ¢ € R? if and only if
Og, f(X) + 0g, f(x) = 0 and 05, f (X)Tg, f(X) = (De; e, f(x))z.

Exercise 4.15 A set C € R is said to be convex if (1 — #)x + 0y € C whenever
X,y € C and 0 € [0, 1]. In other words, C contains the line segment connecting
any pair of points in C. Show that C is convex if C is. Next, if f is an R-valued
function on a convex set C, f is called a convex function if f (( 1—-0)x + 9y) <
1—-0)fx) + 0f(y) forallx, y € C and 0 € [0, 1]. Now let G be a non-empty
open, convex set, set C = G, and assume that f : C —> Ris continuous. If f is
differentiable on G, show that f is convex on C if and only if for each x € G and
r > O such that B(x,7) € G,t € [0,r) —> O f(x + te) € R is non-decreasing
for all e € RN with |e| = 1. In particular, conclude that if f is twice continuously
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differentiable on G, then f is convex on C if and only if (£, Hf (x)§)py > 0 for all
x e Gand £ e RV,

Exercise 4.16 Prove the RY -version of (3.2.2). Thatis, if f is a C-valued function on
anopenset G € R is (n+ 1)-times continuously differentiable and (1 — )x + ty €
G fort € [0, 1], show that

am
fn= > nJ;(X)(y—X)“1

!

[Im|<n
1 1
+ ;/ (1 =" (A = O)x +ty) dt.
''Jo

Exercise 4.17 Consider equations of the sort in Corollary 4.5.5. Even though one
is looking for R-valued solutions, it is sometimes useful to begin by looking for
C-valued ones. For example, consider the equation

N-1

(%) NzZwt) =D ad'Z(t),

n=0

where ag, ...,any_1 € R.

(i) Show that if Z is a C-valued solution to (x), then so is Z. In addition, show
that if Z; and Z, are two C-valued solutions, then, for all c{, ¢y € C, c1Z; + 22>
is again a C-valued solution. Conclude that if Z is a C-valued solution, then both the
real and the imaginary parts of Z are R-valued solutions.

(ii) Set P(z) = zV — >V a,2" for z € C. Show that

N—1
(k) (@N - z 6}”)%’ = P(7)e”.
n=0

Next, assume that A € C is an £th order root of P (i.e., P(z) = (z — )¢ 0(2) for
some polynomial Q) for some 1 < £ < N, and use (xx) to show that e and X e
are solutions for each 0 < k < ¢. In particular, if \ = o 4+ i3 where «, § € R, then
both r¥e® cos Bt and t*e sin Bt are R-valued solutions for each 0 < k < £.

(iii) Consider the equation

X(@t)=aX(t) +bX(t) wherea, b R,
and set D = a? + 4b. Define

cosh( %t)—a %sinh( %t) if D>0

Xo)=e? x {14 it D=0

cos( %t)—a‘/%msin( %t) ifD <0
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and

\/%sinh( gt) itD >0

Xi(1)=e¥ x {t if D=0
%Dlsin( %t) if D <0,
and show that X : R — R is a solution if and only if
X (1) = X(0)Xo(1) + X ()X (1).

Exercise 4.18 When the condition in Lemma 4.5.2 fails to hold, solutions to (4.5.2)
may “explode”. For example, suppose that X (t) = X (¢)| X (¢)|* for some o > 0. If
X(0) = x > 0, show that X(r) = (x — ar)~a fort € (=00, £) and therefore that
X(t)tendstoooast /1 =

Exercise 4.19 As was already mentioned, solutions to (4.5.3) exist under a much
weaker condition than that in (4.5.4), although uniqueness may not hold. Here we
will examine a case in which both existence and uniqueness hold in the absence of
(4.5.4). Namely, let F : R — (0, co) be a continuous function with the property
that

1 1
/ ds =/ ds = 00,
(—00,01 F(5) [0,00) F(s)

and set

$ 1
Tx(s)z/ ———do fors, x e R.
0o Flx+o)

Show that, for each x € R, T is a strictly increasing map of R onto itself, and define
X(t,x) = x + T\ (t). Also, show that X (r) = F(X (¢)) with X (0) = x if and only
if X(t) = X (¢, x) forall # € R. In other words, solutions to this equations are simply
the path ¢ ~» x 4+ ¢ run with the “clock” t ~~ Tx_1 (t). The reason why things are
so simple here is that, aside from the rate at which it is traveled, there is only one
increasing, continuous path in R.

Exercise 4.20 What motivated Fourier to introduce his representation of functions
was that he wanted to use it to find solutions to partial differential equations. To see
what he had in mind, suppose that f : [0, 1] —> C is a continuous function, and
show that the function u : [0, 1] x (0, c0) —> C given by

00 1
ulx,t) =2 Z e—(mm?t (/ f(y)sin(mmy) dy) sin(mmx)
0

m=1
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solves the heat equation O,u(x,t) = 8§u(x, t) in (0, 1) x (0, co) with boundary
conditions u(0,7) = 0 = u(l, t) and initial condition lim,\ o u(x,?) = f(x) for

x e (0,1).



Chapter 5
Integration in Higher Dimensions

Integration of functions in higher dimensions is much more difficult than it is in one
dimension. The basic reason is that in order to integrate a function, one has to know
how to measure the volume of sets. In one dimension, most sets can be decomposed
into intervals (cf. Exercise 1.21), and we took the length of an interval to be its
volume. However, already in R? there is a vastly more diverse menagerie of shapes.
Thus knowing how to integrate over one shape does not immediately tell you how
to integrate over others. A second reason is that, even if one knows how to define
the integral of functions in R", in higher dimensions there is no comparable deus ex
machina to replace The Fundamental Theorem of Calculus.

A thoroughly satisfactory theory that addresses the first issue was developed
by Lebesgue, but, because it takes too much time to explain, his is not the theory
presented here. Instead, we will stay with Riemann’s approach.

5.1 Integration Over Rectangles

The simplest analog in RY of a closed interval is a closed rectangle R,' a set of the
form

N
H[aj,bj]:[al,bl] X -0 X [aN,bN]:{XERNZ ajngfbjforlijN},
j=1

where a; < b; for each j. Such rectangles have three great virtues. First, if one
includes the empty set ) as a rectangle, then the intersection of any two rectangles is
again a rectangle. Secondly, there is no question how to assign the volume |R| of a
rectangle, it’s got to be H;y:l (bj —aj), the product of the lengths of its sides. Finally,
rectangles are easily subdivided into other rectangles. Indeed, every subdivision of

'From now on, every rectangle will be assumed to be closed unless it is explicitly stated that it is
not.
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the intervals making up its sides leads to a subdivision of the rectangle into sub-
rectangles. With this in mind, we will now mimic the procedure that we carried out
in Sect.3.1.

Much of what follows relies on the following, at first sight obvious, lemma. In its
statement, and elsewhere, two sets are said to be non-overlapping if their interiors
are disjoint.

Lemma 5.1.1 If C is afinite collection of non-overlapping rectangles each of which
is contained in the rectangle R, then |R| > > ¢ c |S|. On the other hand, if C is
any finite collection of rectangles whose union contains a rectangle R, then |R| <

2sec ISI-

Proof Since |S N R| < |S], we may and will assume throughout that R 2 | Jg. S.
Also, without loss in generality, we will assume that int(R) # ¢.

The proof is by induction on N. Thus, suppose that N = 1. Given a closed
interval I, use ay and b; to denote its left and right endpoints. Determine the points
ar <cop < --- < cy < bg sothat

fck: 0<k<t}={a;: 1 €CU{b;: I e}

andsetCy = {I € C: [ck—1,cx] C I}. Clearly |I]| = Z{k:leck}(ck — cy_1) for each
IeC?

When the intervals in C are non-overlapping, no Ci contains more thanone I € C,
and so

Dl=> > (ex—cr- n—anrd(ck)(ck—ck D

I1eC 1eC {k:1e€Ct}
< Z(Ck —¢k—1) < (bg —agr) = |R|.
k=1

IfR = U,EC I,then co = ag, ¢y = bg, and, foreach0 < k < £, thereisan I € C
for which I € C. To prove this last assertion, simply note that if x € (cx—1, cx) and
C > I > x, then [ck—1, cx] € I and therefore I € Cx. Knowing this, we have

D=2 > (x—cr 1)—anrd(ck)(ck—ck 1)

1eC 1eC {k:1€Cy}

> Z(ck —cx-1) = (bg —ag) = |R|.

k=1

Here, and elsewhere, the sum over the empty set is taken to be 0.
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Now assume the result for N. Given a rectangle S in RV*+! | determine ag, bs € R
and the rectangle Qg in RV so that § = Os X lag, bs]. As before, choose points
ar <co < --- <cy < bg for{las, bs] : S € C}, and define

Ck =1{S eC: [ck—1, ck] € las, bs]}.

Then, for each S € C,

S| = 1Qsl(bs —as) = 1Qs] D> (cx — cx—1).

{k:SeCr}

If the rectangles in C are non-overlapping, then, for each k, the rectangles in
{Qs : S € Ci} are non-overlapping. Hence, since | J sec; €5 S Qr, the induction
hypothesis implies sec, |Qsl = |Qr| foreach 1 < k < ¢, and therefore

DUSI=D"10s1 D (c—e)

SeC SeC {k: SeCy}

4
=D (ck—a-1) Y |0s| < (br —ar)|Qrl = IRI.

k=1 SeCy

Finally, assume that R = | J sec S-Inthis case, co = ag and ¢¢ = bg. In addition,
foreachl <k <¢,Qpr = USeck Q5. To see this, note thatif x = (x1,...,xny41) €
R and xy4+1 € (ck—1,¢k), then S 5 X = [ck—1,ck] € [as, bs] and therefore
that § € Cx. Hence, by the induction hypothesis, |Qg| < > sec, Vol(Qs) for each
1 <k < ¢, and therefore

DUSI=D"10s1 D (a—e1)

SeC SeC {k:SeCx}

)4
=D (k=) Y |0sl = (br —ar)|Qrl = |RI.

k=1 SeCy

O

Given a rectangle H?]:l laj, b;], throughout this section C will be a finite col-
lection of non-overlapping, closed rectangles R whose union is H;-Vzl [aj,bj], and
the mesh size ||C|| will be max{diam(R) : R € C}, where the diameter diam(R) of
R = H?]:l[rj, s;j] equals ,/ Z?’Zl(sj — rj)?. For instance, C might be obtained by

subdividing each of the sides [a, b;] into n equal parts and taking C to be the set of
n" rectangles
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N
H[aj m’ (b —aj),a; + 0 (b —a,)] forl <my,...,my <n.
j=1

Next, say that & : C — RY isa choice function if E(R) € R for each R € C, and
define the Riemann sum

R(f:C.E)=>_ f(E(R)IR]

ReC

for bounded functions f : Hj-vzl[a j»bj] — R. Again, we say that f is Rie-
mann integrable if there exists a fl_l{v[a' bl f(xX)dx € R to which the Riemann
727

sums R(f; C, Z) converge, in the same sense as before, as ||C|| — 0, in which
case f]‘[f’[a« bil f(x)dx is called the Riemann integral or just the integral of f on
1°7]

N
[1i=ilaj, bjl.

There are no essentially new ideas needed to analyze when a function is Riemann
integrable. As we did in Sect. 3.1, one introduces the upper and lower Riemann sums

U0 =7, (slép f) IRl and L(f;C)= > (igf f) IRI,

ReC ReC

and, using the same reasoning as we did in the proof of Lemma 3.1.1, checks that
L(f;C) <R(f;C,E) <U(f;C) forany E and L(f;C) < U(f; ) for any C'.
Further, one can show that for each C and ¢ > 0, there exists a § > 0 such that

I <& = Uf;C) =Uf;C) +eand L(f;C) = L(f;C) — e

The proof that such a § exists is basically the same as, but somewhat more involved
than, the corresponding one in Lemma 3.1.1. Namely, given § > 0 and a rectangle
R = Hzly:l [cj,d;] € C, define R, (9) and R,j (9) to be the rectangles

[T taj.bj1) x [a v (i = 0. b A (cx + )] x | ] la). b1

1<j<k k<j<N

and
I taj.b1) x [a v (i = 6).be A di+ )] x [ ] laj. b5
1<j<k k<j<N

for 1 <k < N, with the understanding that the first factor is absent if k = 1 and the
last factor is absent if k = N. Now suppose that ||C’|| < § and R’ € C'. Then either
R’ C Rforsome R € Corthereisan1 < k < N and an R € C such that the interior
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of the kth side of R’ contains one of the end points of kth side of R, in which case
R'C R, (6)U R,j'(c?). Thus, if D is the set of R’ € C’ that are not contained in any
R € C, then, because supg f < supg f if R" C R, one can use Lemma 5.1.1 to see
that

UFCH=USO =D D (S}l;pf — sup f) [R'NR|

R'eC’ ReC

<> > (szpf — sup f) IR0 RN <20 f e, 2 IR
R eD

R'e€D ReC

N
< 20 ;.01 2 D (IR @1+ IRE @)

k=1 ReC

Since |R,f(5)| < 6]_[#,( (bj — aj), it follows that there exists a constant A < 00
such that U(f; C") <U(f;C) + Adif [|IC']| < 6.

With these preparations, we now have the following analog of Theorem 3.1.2.
However, before stating the result, we need to make another definition. Namely, we
will say that a subset I" of the rectangle H]/.V:l [aj, bj] is Riemann negligible if, for
each e > 0 there is a C such that

> IR <e

ReC
FARAY

Riemann negligible sets will play an important role in our considerations.

Theorem 5.1.2 Ler f : H]/V: laj,bj] — C be a bounded function. Then f is
Riemann integrable if and only if for each € > 0 there is a C such that

> IR| < e.

ReC
supp f—infp f>e€

In particular, f is Riemann integrable if it is continuous off of a Riemann negligible
set. Finally if f is Riemann integrable and takes all its values in a compact set K C C
and ¢ : K —> C is continuous, then @ o f is Riemann integrable.

Proof Except for the one that says f is Riemann integrable if it is continuous off of
a Riemann negligible set, all these assertions are proved in exactly the same way as
the analogous statements in Theorem 3.1.2.

Now suppose that f is continuous off of the Riemann negligible set I". Given
€ > 0, choose C so that 3 p.p |R| < ¢, where D = {R € C: RN I # (J}. Then
K= ReC\D R is a compact set on which f is continuous. Hence, we can find a
0 > 0 such that | f(y) — f(x)] < eforall x, y € K with |y — x| < J. Finally,
subdivide each R € C\D into rectangles of diameter less than §, and take C’ to be the
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cover consisting of the elements of D and the sub-rectangles into which the elements
of C\D were subdivided. Then

/
> IRl D IR <e -
R'eC’ ReD
supps f—infp f>e
We now have the basic facts about Riemann integration in RY, and from them
follow the Riemann integrability of linear combinations and products of bounded
Riemann integrable functions as well as the obvious analogs of (3.1.1), (3.1.5),
(3.1.4), and Theorem 3.14. The replacement for (3.1.2) is

/ N F(x)dx = )\N/ , F(Ox) dx (5.1.1)
17" [Aaj Abj] [1i'[aj.b;]

for bounded, Riemann integrable functions on H;V:l[/\a j» Abj]. It is also useful to
note that Riemann integration is translation invariant in the sense that if f is a
bounded, Riemann integrable function on Hj-v:l [c; +aj,cj+ bj] for some ¢ =

(c1,...,cn) € RN thenx ~ f(c+x) is Riemann integrable on H;-Vzl[aj, bj]and

/ f(x)dx =/ f(e+x)dx, (5.1.2)
niv[c‘j+ak,c‘j+bj] l_[{v[aj,b']

J

a property that follows immediately from the corresponding fact for Riemann sums.
In addition, by the same procedure as we used in Sect. 3.1, we can extend the definition
of the Riemann integral to cover situations in which either the integrand f or the
region over which the integration is performed is unbounded. Thus, for example, if
f is a function that is bounded and Riemann integrable on bounded rectangles, then
one defines

/ fX)dx = lim / f(x)dx
RN ¥1aj.b

ayVv--vay—>—0oo
biN--AbNy—00

il

if the limit exists.

5.2 Iterated Integrals and Fubini’s Theorem

Evaluating integrals in N variables is hard and usually possible only if one can reduce

the computation to integrals in one variable. One way to make such a reduction is

to write an integral in N variables as N iterated integrals in one variable, one for

each dimension, and the following theorem, known as Fubini’s Theorem, shows this

can be done. In its statement, if Xx = (x1,...,xy) € RV and 1 < M < N, then
(M) _ dxM) —

X; =01, ..., xy)and Xy = (X1, ..., XN).
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Theorem 5.2.1 Suppose that f : H;V:l[a j»bjl —> Cis a bounded, Riemann inte-
grable function. Further, for some 1 < M < N and each X(M) € Hy mailaj, bjl,

assume that X(M) € va:l[aj’ bj] —> f(X(M) )) € C is Riemann integrable.
Then
M (M M M M M
XM ¢ H[“J’ T £ (xS >)_/M FEM, £y gy M)
j=M+1 [17" laj,b;]

is Riemann integrable and

M M M
/N f(x)dx:/N M Sy axs.
[1i[aj.b;] [Thr41laj.b;]

In particular, this result applies if f is a bounded, Riemann integrable function with
the property that, for each sz € H —mr1laj, bjl, X(M) € H?’I:][aj,bj] —>

f (X(M) )) € C is continuous at all but a Riemann negligible set of points.

Proof Given € > 0, choose § > 0 so that
ICl <6 = / fX)dx —R(f; C,E)| <e
1laj.bjl

for every choice function =. Next, let CéM) be a cover of Hj\’: M _H[a j»bj] with
||C£M)|| < g, and let & "'(M) be an associated choice function. Finally, because

ng) ~ f(x (M), :;M)(Rz)) is Riemann integrable for each Ry € C(M> we can
choose a cover CfM) of szl [aj, b;] with ||CEM) I < 5 and an associated choice

—-(M)

function = such that

Z Z f "'(M)(R ). ,..(ZM)(RZ)))lRll _ fl(M)(E;M)(RZ)) |Ry| < €.

RocC™ | Ry

If
C={RI X Ry: Ry €C§M) & Ry € CéM)}

and Z(Ri x Ry) = (E{™ (Ry), 8™ (Ry)), then |IC|| < & and

R(f:CE) = > > f(EMR), SV (R)IRIIR,,

R EC%M) Ry EC;M)
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and so

/ Fxydx — R, M, =250)
Vlaj.bjl

<

<[, JWd-RGCE)

+ > 1 > AEM®RD. EMR) IR - M (ES (R)| IR

RocC™ | Ry

. (M), A(M) =(M)
is less than 2¢. Hence, R(f,;";Cy" ', E, ) converges to fl_[f[[aj»bj] f(x)dx as
1e$ ) - o. O
It should be clear that the preceding result holds equally well when the roles of
X(M) and X(M) are reversed. Thus, if f : HN 1laj, b;j] — Cisabounded, Riemann
integrable function such that X(M) € H —ilaj,bjl— f (x(M) (M)) € Cis Rie-
mannmtegrableforeachx ) ¢ H] vi1laj. b; ]andx(M) € Hj:M+1[aj’ bjl—
f (X(M) ;M)) is Riemann integrable for each xl ) e I j=1laj. bj], then

(M) (M) (M)
/ f(X) dx = fHM+l[aj bj ]{;;) ((i(l/[) )d(j;z) (521)
[V la;,b;1 le [a;. b]fz (x5 dxy7,
where
A ) = /r[M[ ,,fo )
1 14j,0;j
and

M M M M M
fz( )(xg ))=/N f(x( ) ; ))dxé ).
[Tar41laj.bj]

Corollary 5.2.2 Let f be a continuous function on H;V:l[a i, bjl. Then for each
1<M <N,

M M)y, (M M) (M M
( ) ¢ H laj, bj] —> fl( )(x( ))E/M f(X( ) ; ))dxi JeC
j=M+1 [1i"ta; b)1

is continuous. Furthermore,

FOHD (4D =/ F g XM Y dxy for1 <M <N — 1

lam,bm]
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and

/ L fmadx= / AT n) dxy.
[ [a;.b;] lan,bN]

Proof Once the first assertion is proved, the others follow immediately from
Theorem 5.2.1. But, because f is uniformly continuous, the first assertion follows
from the obvious higher dimensional analog of Theorem 3.1.4. (]

By repeated applications of Corollary 5.2.2, one sees that

/ N f(x)dx
[15=1la;.b;]

by by
=/ (( f(xl,..-,xN—l,xN)dxl)-")de-
an aj

The expression on the right is called an iterated integral. Of course, there is nothing
sacrosanct about the order in which one does the integrals. Thus

/ f(x)dx
[T 1aj.b5]

br(n) br(1 5.2.2)
= / / fOx, o xv— xn) dxgy | o0 | dxr)
an(N) dr (1)
for any permutation 7 of {1, ..., N}. In that it shows integrals in N variables can

be evaluated by doing N integrals in one variable, (5.2.2) makes it possible to bring
Theorem 3.2.1 to bear on the problem. However, it is hard enough to find one indef-
inite integral on R, much less a succession of N of them. Nonetheless, there is an
important consequence of (5.2.2). Namely, if f(x) = H;V:l fj(x;), where, for each
1 < j <N, fjis acontinuous function on [a;, b;], then

N
X)dx = i(xj)dx;. 523
/rhN[a,-,b_,]f() E/[a,.,b,] fi(xj)dx; (5.2.3)
In fact, starting from Theorem 5.2.1, it is easy to check that (5.2.3) holds when each
fj is bounded and Riemann integrable.

Looking at (5.2.2), one might be tempted to think that there is an analog of the
Fundamental Theorem of Calculus for integrals in several variables. Namely, taking
7 to be the identity permutation that leaves the order unchanged and thinking of
the expression on the right as a function F of (b1, ..., by), it becomes clear that
Oe, - .. Oey F = f. However, what made this information valuable when N = 1 is
the fact that a function on R can be recovered, up to an additive constant, from its

derivative, and that is why we could say that F'(b) — F(a) = fab f(x)dx for any
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F satisfying F' = f. When N > 2, the equality O, ... 0y F = f provides much
less information. Indeed, even when N = 2, if F satisfies Op,0e, F = f, then so
does F(x1, x3) + F1(x1) + F>(x>) for any choice of differentiable functions Fj and
F>, and the ambiguity gets worse as N increases. Thus finding an F that satisfies
Oe, - ..0ey F = f does little to advance one toward finding the integral of f.

To provide an interesting example of the way in which Fubini’s Theorem plays
an important role, define Euler’s Beta function B : (0, 00)> —> (0, 00) by

B(a, B) = / N1 = x)P T dx.
©.1)

It turns out that his Beta function is intimately related to his (cf. Exercise 3.3) Gamma
function. In fact,
I'(a)I(B)

B(a, B) = F(oz——l—ﬂ)’

(5.2.4)

which means that m is closely related to the binomial coefficients in the same
sense that I'(¢) is related to factorials. Although (5.2.4) holds for all (a, 3) €
(0, 00)?, in order to avoid distracting technicalities, we will prove it only for
(a, ) € [1,00)%. Thus let a, 3 > 1 be given. Then, by (5.2.3) and (5.2.1),
I'(a)I" () equals

. —1 /=1 —x—
lim x) l)c‘2 e T2 dx
r—00 [0,}"]2

r r
= lim X1 (/ x?‘le*(’”ﬂz) dx1) dx;.
r—00 0 0

By (5.1.2),
r r+xp
/ A lem ) gy = / (y1 —x2)* e dyy,
0 X2

and so

r r
/ x§71 (/ xf‘_lef(x‘“z) dxl) dx;
0 0
r 1 r—+x2
=/ X (/ (1 —x)* e dyl) dx;.
0 X2

Now consider the function

63! —xz)”‘lxﬁ‘le‘>’1 ifxoe[0,r]&x2 <y1 <=r+x

0 otherwise

f(yly)cz):[
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on [0, 27] x [0, r]. Because the only discontinuities of f lie in the Riemann negligible
set{(r+x>, x2) : xa € [0, r]},itis Riemann integrable on [0, 2r] X [0, r]. In addition,
for each y; € [0, 2r], xo ~ f(y1,x2) and, for each x € [0, 7], y1 ~ f(y1, Xx2)
have at most two discontinuities. We can therefore apply (5.2.1) to justify

r 51 r4xa ! ! r 2r
/ x ( / (31 — 39 e dyl)dxz= / £ x2)dyr )dxa
0 P o \Jo

rAY1

2r r 2r | p—1
=/0 (/0 f(}’l»XZ)d)Q)dYI:/O eV / (1 =x2)* xy dxa | dyr.

(y1—r)*

Further, by (3.1.2)

T | =1 ath—1 IAOT'n) | =1
/ 1 —x)% 'xy dxa =y / (I =y yy  dys.
( (

y=r* L=yt

Collecting these together, we have

2r B VNI e
F')re = lingo/o yy e / (1 =y)" "y, dyz )dy.
r— (

1=y, ')yt

Finally,

2r a1 VN | dt
/ yo e / L (=) yy dyr Jdn
0 (I=y; 't

.
= / Y e 4y Ba, B)

0
2r yflr
-1 - — -1
+/ W e (/ L=y dyz)dyl,
r A=y ')

and, as r — 00, the first term on the right tends to I" (o + ) whereas the second
term is dominated by froo y]a+ﬁ “lerid y1 and therefore tends to 0.

The preceding computation illustrates one of the trickier aspects of proper appli-
cations of Fubini’s Theorem. When one reverses the order of integration, it is very
important to figure out what are the resulting correct limits of integration. As in
the application above, the correct limits can look very different after the order of
integration is changed.

The Eq. (5.2.4) provides a proof of Stirling’s formula for the Gamma function as
a consequence of (1.8.7). Indeed, by (5.2.4), '(n + 1+ 0) = B’('%(l%) forn € ZT
and 0 € [1,2), and, by (3.1.2),
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n
B(n+1,0) = n_e/ yi=1 (1—2)"dy.
0
Further, because 1 — x < e ¥ forall x € R,
" 0—1 n oo 0—1
/ Y1 -2) dyS/ Y le™dy =T(0),
0

0

and, forall r > O,

n r

r
tim [Ny = im0 =y = [t ay,

n—o00J0 n—o00J0 0

Since the final expression tends to 1"(0) as r — oo uniformly fast for 6 € [1, 2], we

now know that
r@)

n'Bn+1,6)
uniformly fast for § € [1, 2]. Combining this with (1.8.7) we see that

. I'n+0+1)
Iim —— — 1

n—>00 \/2mn (%)n nt

uniformly fast for § € [1, 2]. Givent > 3, determine n, € Z™ and 6, € [1, 2) so that
t = n; + ;. Then the preceding says that

re+1 f t [6_0’—1
1—00 27rt(£)l t—0; \t—0 -

Finally, it is obvious that, as t — o0, # tends to 1 and, because, by (1.7.5),

Y —0, 9,
log((t—et)e ):_tl"g(l_T)“’f—’o’

t
so does (z—%@,) e~ Y. Hence we have shown that

t
I(t+ 1)~ 2nt (5) ast — 00 (5.2.5)
e

in the sense that lim;_, o Lo g

0]
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5.3 Volume of and Integration Over Sets

‘We motivated our initial discussion of integration by computing the area under the
graph of a non-negative function, and as we will see in this section, integration
provides a method for computing the volume of more general regions. However,
before we begin, we must first be more precise about what we will mean by the
volume of a region.

Although we do not know yet what the volume of a general set I” is, we know a
few properties that volume should possess. In particular, we know that the volume
of a subset should be no larger than that of the set containing it. In addition, volume
should be additive in the sense that the volume of the union of disjoint sets should be
the sum of their volumes. Taking these comments into account, for a given bounded
set I' € RN, we define the exterior volume |I"|e of I" to be the infimum of the sums
> rec |R| as C runs over all finite collections of non-overlapping rectangles whose
union contains I".3 Similarly, define the interior volume |I'|; to be the supremum of
the sums >_ . |R| as C runs over finite collections of non-overlapping rectangles
each of which is contained in I". Clearly the notion of exterior volume is consistent
with the properties that we want volume to have. To see that the same is true of
interior volume, note that an equivalent description would have been that |I"|; is
the supremum of > - |R| as C runs over finite collections of rectangles that are
mutually disjoint and each of which is contained in I”. Indeed, given a C of the sort
in the definition of interior volume, shrink the sides of each R € C with [R| > 0
by a factor € € (0, 1) and eliminate the ones with |R| = 0. The resulting rectangles
will be mutually disjoint and the sum of their volumes will be @V times that of the
original ones. Hence, by taking 6 close enough to 1, we can get arbitrarily close to
the original sum.

Obviously I' is Riemann negligible if and only if |I'|c = 0. Next notice that
|I"|; < |I'|e for all bounded I"’s. Indeed, suppose that C; is a finite collection of non-
overlapping rectangles contained in I” and that C; is a finite collection of rectangles
whose union contains I". Then, by Lemma 5.1.1,

DRz D D IRINRI= D D IRINRI= D IR
RyeCr RyeCh R1eCy R1€Cy RreCy R1eCy
In addition, it is easy to check that
[Iile < [13le and [Ii]; < [I3]; if [1 € I3
[17 U I3|e < [Iile + |13]e forall I] & I3,
and [T U 3| > [+ [ i TN = 0.

31t is reasonable easy to show that |I"|¢ would be the same if the infimum were taken over covers
by rectangles that are not necessarily non-overlapping.



140 5 Integration in Higher Dimensions

We will say that I" is Riemann measurable if |I'|; = |I"|¢, in which case we will
call vol(I") = |I'|e the volume of I'. Clearly |I'|c = 0 implies that I" is Riemann
measurable and vol(I") = 0. In particular, if I" is Riemann negligible and therefore
[I"'le = 0, then I' is Riemann measurable and has volume 0. In addition, if R
is a rectangle, |R|c < |R| < |R];, and therefore R is Riemann measurable and
vol(R) = |R|.

One suspects that these considerations are intimately related to Riemann integra-
tion, and the following theorem justifies that suspicion. In its statement and elsewhere,
1 denotes the indicator function of a set I'. Thatis, 1(x) is 1 if x € I" and is O if
x¢ .

Theorem 5.3.1 Let I" be a subset of H;V:l laj, bj]. Then I' is Riemann measurable

if and only if 11 is Riemann integrable on H]/V:l laj, b;], in which case

vol(I™) :/ 1,(x)dx.
[1)_1la;.b)]

Proof First observe that, without loss in generality, we may assume that all the
collections C entering the definitions of outer and inner volume can be taken to be
subsets of non-overlapping covers of H;V:l laj, b;].

Now suppose that I" is Riemann measurable. Given € > 0, choose a non-
overlapping cover C; of H;V: 1la;, bj] such that

> IRl < vol(IM) + 5.

ReCy
RN #Y
Then
UAr:C) = . Rl <vol(I) +5.
ReCy
RN+

Next, choose C; so that
> IR = vol(I') — 4,

ReCy
RCI

and observe that then L(1; C2) > vol(I") — 5. Hence if
C={RiINRy: R €C; & Ry € Cy},
then
UAr;C) =UAr;C) = vol(IM) + 5 < LAp;C) +e < LA C) + e,

and so not only is 1 Riemann integrable but also its integral is equal to vol(I").
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Conversely, if 1 is Riemann integrable and ¢ > 0, choose C so that U (1; C) <
L(1; C) + e. Define associated choice functions = and &, so that Z{(R) € I' if
RNTI #@and E2(R) ¢ I' unless R € I'. Then

IFle< > IRI=RAp;C 2 <RAp;C Ep) +e= D IRl +e<ITli +¢

ReC ReC
RN+ RSl
and so I" is Riemann measurable. O

Corollary 5.3.2 If I7 and I are bounded, Riemann measurable sets, then so are
LU I, 1T N I3, and I3\ 1. In addition,

vol(I7 U I3) = vol(I}) + vol(I3) — vol(Ii N I3)

and
vol(I3\I7) = vol(I3) — vol(I7 N I3).

In particular, if vol(I7 N I3) = 0, then vol(I] U I3) = vol(I7) + vol(13). Finally,
I C H]/V:l laj, b;] is Riemann measurable if and only if for each € > 0 there exist

Riemann measurable subsets A and B of H;y=1 laj,bj] such that A C I' € B and
vol(B\A) < e

Proof By Theorem 5.3.1, 15 and 15 are Riemann integrable. Thus, since
lﬁﬂfz = 11"111"2 and IHUFZ = 11"1 + 11“2 — 11*101*2,

that same theorem implies that /7 U I3 and I N I3 are Riemann measurable. At the
same time,

Ip\n =15 — 1nnp,

and so I3\I] is also Riemann measurable. Also, by Theorem 5.3.1, the equations
relating their volumes follow immediately for the equations relating their indicator
functions.

Turning to the final assertion, there is nothing to do if I" is Riemann measurable
since we can then take A = I’ = B for all ¢ > 0. Now suppose that for each
€ > 0 there exist Riemann measurable sets A, and B¢ such that A. € I' € B, C
[15-la;. b;] and vol(B\A,) < e. Then

II"li = vol(Ae) = vol(Be) — € = [I'|e — ¢,

and so I" is Riemann measurable. |

It is reassuring that the preceding result is consistent with our earlier computation
of the area under a graph. In fact, we now have the following more general result.
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Theorem 5.3.3 Assumethat f : H;V:l[a j» bj] — Riscontinuous. Then the graph

N
G(f)=1{(x. fx®): xe[]la;.b;]
j=1

is a Riemann negligible subset of RNTL. Moreover, if. in addition, f is non-
negative and I' = {(X, y) € RNFL . 0 < y < f(x)}, then I' is Riemann
measurable and

vol(I™) =/ f(x)dx.
[17[a;.b)]

Proof Setr = ||f||H]N[a and for each ¢ > 0 choose J. > 0 so that

j-bil’
If(y) — f®| <e ifly —x| <.

Next let C with ||C]| < d, be a cover of H{V [a;, b;] by non-overlapping rectangles,
and choose K € Z7 so that %7 < € =< %. Then for each R € C there is a

+1
1 <kr <2(K — 1) such that
{(x, f(x)) iX € R} C R x [—r+ @,—r+ W]

and therefore
N

3
G(Nle =2 D IRI=6([Te;—ap e

ReC j=1

which proves that G(f) is Riemann negligible.

Turning to the second assertion, note that all the discontinuities of 1, on
H;VZ laj, bl x [0, r] are contained in G(f), and therefore 1, is Riemann mea-
surable. In addition, for each x € H?’:l[a./, bjl,y € [0,r] = 1r(x,y) € {0, 1}
has at most one discontinuity. Hence, by Theorem 5.3.1 and (5.2.1),

vol(I') :/ (/ 1r(x,y) dy) dx :/ f(x)dx. O
[1Y1aj.b;1 \Jo [1Y1a;.bj1

Theorem 5.3.3 allows us to confirm that the volume (i.e., the area) of the closed
unit ball B(0, 1) in R? is 7, the half period of the trigonometric sine function. Indeed,
B(0,1) = Hy U H_, where

Hy = {(xl,x2) 10 <£x <,/1 —xz}.
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By Theorem 5.3.3 both H and H_ are Riemann measurable, and each has area

1 T, b T
/ V(1 —x2)dx =2/ cos 0d9=/ (1 —cos26)df = —.
-1 0 0 2

Finally, Hy N H_ = [—1, 1] x {0} is a rectangle with area 0. Hence, by Corollary
5.3.2, the desired conclusion follows. Moreover, because 15 (X3) x)=1 BO.D) (r~'x),
we can use (5.1.1) and (5.1.2) to see that

vol(B(e, r)) = mr? (5.3.1)

for balls in R2.

Having defined what we mean by the volume of a set, we now define what we will
mean by the integral of a function on a set. Given a bounded, Riemann measurable
set I", we say that a bounded function f : I' —> C is Riemann integrable on I if

the function
f onrl’
1 =
rf [o off I

is Riemann integrable on some rectangle H?I:l
Riemann integral of f on I is

/f(x)dxz/N 17 (x) £ (x) dx.
r 1|

1 laj.bj]

laj,b;] 2 I', in which case the

In particular, if I" is a bounded, Riemann measurable set, then every bounded, Rie-
mann integrable function on va: 1la;j, b;] will be is Riemann integrable on I". In
particular, notice that if 9I" is Riemann negligible and f is a bounded function of
I" that is continuous off of a Riemann negligible set, then f is Riemann integrable
on I". Obviously, the choice of the rectangle H?l=1 [a;, bj] is irrelevant as long as it
contains /.

The following simple result gives an integral version of the intermediate value
theorem, Theorem 1.3.6.

Theorem 5.3.4 Suppose that K C H?’Il laj, b;] is a compact, connected, Riemann
measurable set. If f : K —> R is continuous, then there exists a & € K such that

/K J(X)dx = f(&)vol(K).

Proof If vol(K) = 0 there is nothing to do. Now assume that vol(K) > 0. Then
#(K) /, x J (%) dx lies between the minimum and maximum values that f takes on
K, and therefore, by Exercise 4.5 and Lemma 4.1.2, there exists a £ € K such that

F© = s Jx Fdx. O
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5.4 Integration of Rotationally Invariant Functions

One of the reasons for our introducing the concepts in the preceding section is that
they encourage us to get away from rectangles when computing integrals. Indeed, if
I = UZ:O I;,, where the I,,’s are bounded Riemann measurable sets, then, for any
bounded, Riemann integrable function f,

/f(x)dx: Z/ f(x)dx ifvol(]"mﬂl','n/) =0form’ #m, 541
r m=0"Tm

since

n
0> 15 f—1rf=21flu D, lpnn,.

m=0 0<m<m’<n

The advantage afforded by (5.4.1) is that a judicious choice of the I};,’s can simplify
computations. For example, suppose that f is a function on the closed ball B(0, r) in
R, and assume that f(x) = f (|x|) for some continuous function f :[0,r] — C.
Foreachn > 1, set Iy, = {0} and I3, , = B(0, “£)\B(0, @) ifl <m <n.
By Corollary 5.3.2 and the considerations leading up to (5.3.1), we know that the
I}y »’s are Riemann measurable, and, obviously, for each n > 1 they are a cover of
B(0, r) by mutually disjoint sets. If we define

2
fu) = Zf((’"n ))1r,n,

then f,, is Riemann measurable, f,, —> f uniformly, and therefore

/ f(x)dx = lim fux)dx = lim Zf (B0 ol (I,0).

B(0,r) =00 JB(0,r)

. _ Cm—=Dmr?
Finally, by Corollary 5.3.2 and (5.3.1), vol({}, ) = _—a and so

/F fr(x)dx = — Z F( @y @nolr — 97 R (g5 Coy En),

m=1

where ¢(p) = pf(p), Cp = {[ U522, 2] 1 < m < n} and &, ([L52, 20]) =

n >’ n n > n
@. Hence, we have now proved that

| swax=2n [ fowdp itr0=Fox) G542
B(0,r) 0
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when £ : [0, ] —> C is continuous. The preceding is an example of how, by taking
advantage of symmetry properties, one can sometimes reduce the computation of
an integral in higher dimensions to one in lower dimensions. In this example the
symmetry was the rotational invariance of both the region of integration and the
integrand.

Here is a beautiful applzication of (5.4.2) to a famous calculation. It is known

that the function x ~ e~ > does not admit an indefinite integral that can be writ-
ten as a concatenation of polynomials, trigonometric functions, and exponentials.
Nonetheless, by combining (5.2.1) with (5.4.2), we will now show that

x2
/ e T dx = 27, (5.4.3)
R

Given r > 0, use (5.2.3) to write

g2 2 g ro_ad Ix%
(/ ez dx) = / (/ e 2 dxl) dxy = / e 2 dx.
—r —r —r [—r,r]?

Next observe that

_x? _Ix? _Ix?
e 2 dx > e 2 dx > e 72 dx,
B(0,+/2r) [—r,r]? B(0,r)

and that, by (5.4.2),

2

_x? R _2 _R
/ e 2 dx:27r/ e 2pdp=27r(1—e 2).
0

B(0,R)
Thus, after letting r — oo, we arrive at (5.4.3). Once one has (5.4.3), there are lots of
other computations which follow. For example, one can compute (cf. Exercise 3.3)
r3) =7 x~2e™* dx. To this end, make the change of variables y = (2x)% to
see that

r (2r)% 2
r¢)=1lim [ x2e*dx= lim 2%/ T d
) = = ( y

r—0o0

r1 2r) 2
1 v2 1 2
=2?/ e_Tdy=2_7/e z dy,
[0,00) R
and conclude that
r() =+r. (5.4.4)

We will now develop the N-dimensional analog of (5.4.2) for other N > 1.
Obviously, the 1-dimensional analog is simply the statement that
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Fydr =2 /O Floydp

for even functions f on [—r, r]. Thus, assume that N > 3, and begin by noting that
the closed ball B(0, r) of radius > 0 centered at the origin is Riemann measurable.
Indeed, B(0, r) is the union of the hemispheres

and so, by Theorem 5.3.3 and Corollary 5.3.2, B(0, r) is Riemann measurable. Fur-
ther, by (5.1.2) and (5.1.1), for any ¢ € RV, B(c, r) is Riemann measurable and
vol(B(c, r)) = vol(B(0, r))2yr"N, where 2y is the volume of the closed unit ball
B(0, 1) in RV,

Proceeding in precisely the same way as we did in the derivation of (5.4.2) and
using the identity b — aV = (b — a) SN F akbN 17, we see that, for any con-
tinuous f :[0,r] — C,

N2y
/B(or>f("")d"_hm . ngrgOngmn>,,,,,,

where 1

r 1 N-1 N-T
fm,n — :l (ﬁ mk(m o 1)N—1—k) c [(m;l)ry %]’

=0

>~

and conclude from this that
/ F(xl) dx = N2y / Fdp. (5.45)
B(0,r)

Combining (5.4.5) with (5.4.3), we get an expression for 2. By the same rea-
soning as we used to derive (5.4.3), one finds that

5 e N Ix2 00 2
2m2 = (/ e_de) = lim - dx—N.QN/ pN_le_T dp.
R r—00 B(O,r) o

Next make the change of variables p = (Zt)% to see that

2 o0
/ ,()N_le_ﬂ7 dp:Z%_l/ 17l dt:Z%_IF(%).
[0,00) 0
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Thus, we now know that

By (5.4.4) and induction on N,

N
IN+1 1N 1 (2N)!
() = 732 kH](zk — 1) =2 T
and therefore
7TN 4N7TN_1N!
QZN = W and QZN—l = W for N > 1.

Applying (3.2.4), we find that
N N
2y ~ (27N)"1 (%) and 2oy ~ (v2m)"! (%) .

Thus, as N gets large, §2y, the volume of the unit ball in RV is tending to 0 at a very
fast rate. Seeing as the volume of the cube [—1, 11V that circumscribes B(0, 1) has
volume 2%, this means that the 2V corners of [—1, 1]V that are not in B(0, 1) take
up the lion’s share of the available space. Hence, if we lived in a large dimensional
universe, the biblical tradition that a farmer leave the corners of his field to be
harvested by the poor would be very generous.

5.5 Rotation Invariance of Integrals

Because they fit together so nicely, thus far we have been dealing exclusively with
rectangles whose sides are parallel to the standard coordinate axes. However, this
restriction obscures a basic property of integrals, the property of rotation invariance.
To formulate this property, recall that (e1, . . . , ey) € (RV)" iscalled an orthonormal
basis in RV if (e;, e )Ry = 0; ;. The standard orthonormal basis (e(l), e e?v) is the
one for which (e?)./ = 0;, j» but there are many others. For example, in R2, for each
6 € [0,2m), ((cosb,sind), (Fsinf, +cos)) is an orthonormal basis, and every
orthonormal basis in R? is one of these.

A rotation* in RY is a map R : RY — R¥ of the form R(x) = Z?’:l xje;j
where (e, ..., ey) is an orthonormal basis. Obviously R is linear in the sense that

“4The terminology that I am using here is slightly inaccurate. The term rotation should be reserved
for 9R’s for which the determinant of the matrix (((e,- , e?)RN)) is 1, and I have not made a distinction
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R(ax + fy) = aR(EX) + SR(Y).

In addition, $R preserves inner products: (%(X), iR(y))RN = (X, y)r~. To check this,
simply note that

N N
(RX). RW))gy = D xiyj(ei. gy = D xiyi = (X, Y)gy-
ij=1 i=1

In particular, |PR(y) — R(x)| = |y — x|, and so it is clear that R is one-to-one
and continuous. Further, if 2R and 2R’ are rotations, then so is R’ o fR. Indeed, if
(eq, ..., ey) is the orthonormal basis for (R, then

N
R oR(x) = D xR (e)).
j=1

and, since

(R'(ei), R (e)))gn = (€i, e))pn = 07,
(ER/ (e1),..., R (e N)) is an orthonormal basis. Finally, if R is a rotation, then there
is a unique rotation R~ such that Ro R~ =1 =R"! o %R, where L is the identity
map: I(x) = x. To see this, let (e, ..., ey) be the orthonormal bases for R, and set
€ = ((el)i, R (eN)i) for 1 <i < N. Using (e(l), e, eR,) to denote the standard

orthonormal basis, we have that (€;, €;)g~ equals
N N
D e0iler); =D (e €)pn (er. €Ny = (R(e)), R(€) gy = di.;.
k=1 k=1

and so (€, ..., €y) is an orthonormal basis. Moreover, if R is the corresponding
rotation, then

N N
RoR(x) = D xiR(e) = D xilei, e)pné;
i=1 i,j=I

N N
0 0 0 0
= Z xi(e;, €;)Rrn (e, €;)pne; = Z xi(€;, e )pNe; = X.
i,jk=1 ik=1

A similar computation shows that R o R = I, and so we can take R~ = R.

(Footnote 4 continued)
between them and those for which it is —1. That is, I am calling all orthogonal transformations
rotations.
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Because R preserves lengths, it is clear that R(B(e, 7)) = B(R(c), r). R also
takes a rectangle into a rectangle, but unfortunately the image rectangle may no
longer have sides parallel to the standard coordinate axes. Instead, they are parallel
to the axes for the corresponding orthonormal basis. That is,

N N N
(%) R [laj. 61| = 1D xje;: x e []laj. )]
j=1 j=1 j=1

Of course, we should expect that vol (ER (H;V:l[aj, bj])) = H?]:l (bj —aj), but
this has to be checked, and for that purpose we will need the following lemma.

Lemma 5.5.1 Let G be a non-empty, bounded, open subset of R, and assume that

; )| —
}1\1‘%|(8G) |i_0

where _(8G)(r) is the set of y for which there exists an x € G such that |y — x| < r.
Then G is Riemann measurab{e and, for each € > 9, there exists a f_inite set B of
mutually disjoint closed balls B € G such that vol(G) < ZBEB vol(B) + e.

Proof First note that G is Riemann negligible and therefore that G is Riemann
measurable. Next, given a closed cube Q = Hyzl[cj —r,cj+r], let By be the

closed ball B(c, §).
For each n > 1, let K, be the collection of closed cubes Q of the form 27"k +
[0,27"1V, wherek € ZV. Obviously, for each n, the cubes in /C;, are non-overlapping

and RN = Upex, O

N -
Now choose n; so that [(9G)2? —"D|; < %VOI(G), and set

Ci={Q€ek, : 0CGlandCi ={Q €Ky, : ONG # ¥}

— N_,
Then G C UQeC; 0, UQeC/l\Cl 0 C (8G)?? " and therefore

>el=> 10— > 101> vol(G) - vol;G) _ voléc;)_
0eCy QeC; 0eC|\Ci

Clearly the EQ’S for 0 € C; are mutually disjoint, closed balls contained in G.
Furthermore, vol(Bp) = «o|Q|, where o = 4-N 2y, and therefore

vol { G\ | J Bg | =vol(G) = D vol(Bg) = vol(G) —a D Q] < Bvol(G).
QeCy 0eCy QeCy
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where 3 =1 — 5. Finally, set B] = {BQ 1 QeCy).

Set G; = G\|J gep, B- Then G is again a non-empty, bounded, open set.
Furthermore, since (cf. Exercise 4.1) 0G| € 0G U UéeBl 0B, it is easy to see that
limr\g}(aGl)(’) |i = 0. Hence we can apply the same argument to G| and thereby

p_roduce a set By 2 B of mutually disjoint, closed balls B such that B € G for
B € B\B; and

vol {G\ | J B =vol[GI\ |J Bi| <Bvol(G)) < Fvol(G).
BeB, BeB\Bi

After m iterations, we produce a collection 3, of mutually disjoint closed balls
B C G such that vol (G\ UEeBm I:_?) < (B™vol(G). Thus, all that remains is to
choose m so that 3™vol(G) < € and then do m iterations. [l

Lemma 5.5.2 If R is a rectangle and *R is a rotation, then SR(R) is Riemann mea-
surable and has the same volume as R.

Proof 1Itis obvious that int(R) satisfies the hypotheses of Lemma 5.5.1, and, by using
(%), it is easy to check that int(9R(R)) does also.

Next assume that G = int(R) # {. Clearly G satisfies the hypotheses of
Lemma 5.5.1, and therefore for each ¢ > 0 we can find a collection B of mutu-
ally disjoint closed balls _B C G such that 3"z vol(B) + ¢ > vol(G) = vol(R).
Thus, if B = {{R(B) : B € B}, then B’ is a collection of mutually disjoint closed
balls B’ € PM(R) such that

vol(R) < Z vol(B) + € = Z vol(B') + ¢ < vol(R(R)) + ¢,
BeB B'eB

and so vol (i)‘i(R)) > |R|. To prove that this inequality is an equality, apply the same
line of reasoning to G’ = int (iﬁ(R)) and SR~! acting on JR(R), and thereby obtain

vol(R) = vol (R~ 0 R(R)) > vol (R(R)).

Finally,if R = @ there is nothing to do. On the other hand, if R # @butint(R) = ¢,
foreach e > 0let R(¢) be the set of points y € R such that maxi<j<y |yj—xj| <€
for some x € R. Then R(e) is a closed rectangle with non-empty interior containing
R,andso vol (R(R)) < vol(R(R(¢))) = |R(e)|.Since vol(R) = 0 = lime o | R(e)],
it follows that vol(R) = vol(R(R)) in this case also. O

Theorem 5.5.3 If I is a bounded, Riemann measurable subset and R is a rotation,
then R(I") is Riemann measurable and vol (ER(I")) = vol(I).
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Proof Given ¢ > 0, choose C; to be a collection of non-overlapping rectangles

contained in I” such that vol(I") < ZReCI |R| + ¢, and choose C, to be a cover of
I" by non-overlapping rectangles such that vol(I") > > rec, IRl — €. Then

IR = D vol(R(R) = D[R = vol(IM) —e= > |R| —2e

ReCy ReCy ReCy
= D Vol (R(R)) = 2¢ = |R()]e — 2e.
ReCy
Hence, [R(I")]|e < vol(I") 4+ 2¢e and |SR(I)|; = vol(I") — 2¢ for all € > 0. O

Corollary 5.5.4 Let f : B(0,r) —> C be a bounded function that is continuous
off of a Riemann negligible set. Then, for each rotation SR, f o R is continuous off
of a Riemann negligible set and

/ f oR(Xx)dx :/ f(x)dx.
B(0,r) B(O,r)

Proof Without loss in generality, we will assume throughout that f is real-valued.
If D is a Riemann negligible set off of which f is continuous, then %8~ ! (D) con-
tains the set where fo R is discontinuous. Hence, since vol (9‘{’] (D)) =vol(D) =0,
f o R is continuous off of a Riemann negligible set.
Set g = lm f. Then, by the preceding, both g and g o R are Riemann inte-

grable. By (5.4.1), for any cover C of [, r]V by non-overlapping rectangles and
any associated choice function =,

/ foi)‘i(x)dx:Z/ g o R(x) dx
B(0.r) rec/RI®

=R(g;C, E) + Z/ AR(x) dx,

ReC LR

where Ag(x) = g(x) — g(Z(R)). Since R(g;C, &) tends to fmf(x) dx as
ICII — 0, what remains to be shown is that the final term tends to 0 as ||C|| — O.
But |[Ar(x)| < supg g — infg g and therefore

Z / Ar(X) dx
ReC AR

which tends to 0 as ||C|| — O. O

—infg)|R| =U(g; C) — L(g;
sgc(s;pg in g)|| U(g; C) — L(g; 0),

Here is an example of the way in which one can use rotation invariance to make
computations.
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Lemma 5.5.5 Let0 <r| <rpand0 < 0) < 0 < 2m be given. Then the region
{(r cosé,rsind) : (r,0) €[ry, r2] x [61, 92]}

2
ry—=

}"2
5 (02 — 01).

has a Riemann negligible boundary and volume

Proof Because this region can be constructed by taking the intersection of differ-
ences of balls with half spaces, its boundary is Riemann negligible. Furthermore, to
compute its volume, it suffices to treat the case when r; = 0 and r, = 1, since the
general case can be reduced to this one by taking differences and scaling.

Now define u(0) = Vol(W(G)) where

W) = {(rcosw, rsinw) : (r,w) € [0, 1] x [0, A]}.

Obviously, u is a non-decreasing function of 6 € [0, 27] that is equal to O when
# = 0 and w when # = 2. In addition, u(6y + 62) = u(fy) + u(6,) if 6; +
6, < 2. To see this, let PRy, be the rotation corresponding to the orthonormal basis
((cos 6y, sin6y), (—sin 6y, cos6})), and observe that

W (01 + 62) = W(61) U Ry, (W(6))

and that int(W(Gl)) N int(iﬁg, (W(Gz))) = (). Hence, the equality follows from the
facts that the boundaries of W (6;) and %(W(Qz)) are Riemann negligible and that
R, (W(92)) has the same volume as W (6,). After applying this repeatedly, we get

nu(zf) = 7 and then that u(ZWTm) = mu(zf) forn > 1 and 0 < m < n. Hence,
u(hTm) = % foralln > 1 and 0 < m < n. Now, given any 6 € (0, 27), choose

{m, eN:n> 1}sothat0§9—2”% < zn—’T.Then,forallnz 1,

2w
ne

=<

u®) — §| < |u®) — u(>)

] < u(®) +

n n

SN

and so u(0) = %.

Finally, given any 0 < 6; < 6, < 27, set 8 = 6, — 0, and observe that
W (02)\int(W (61) = Ry, (W (0)) and therefore that W (62)\int(W (6;) has the same
volume as W (#). O

5.6 Polar and Cylindrical Coordinates

Changing variables in multi-dimensional integrals is more complicated than in one
dimension. From the standpoint of the theory that we have developed, the primary
reason is that, in general, even linear changes of coordinates take rectangles into par-
allelograms that are not in general rectangles with respect to any orthonormal basis.
Starting from the formula in terms of determinants for the volume of parallelograms,
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Jacobi worked out a general formula that says how integrals transform under contin-
uously differentiable changes that satisfy a suitable non-degeneracy condition, but
his theory relies on a familiarity with quite a lot of linear algebra and matrix theory.
Thus, we will restrict our attention to changes of variables for which his general
theory is not required.

We will begin with polar coordinates for R?. To every point x € R>\{0} there
exists a unique point (p, ¢) € (0, 00) x [0, 27) such that x; = pcosy and xp =
psin . Indeed, if p = [x]|, then % € S'(0, 1), and so ¢ is the distance, measured
counterclockwise, one travels along St(, 1) to get from (1, 0) to % Thus we can use

the variables (p, @) € (0, 00) x [0, 27) to parameterize R%\{0}. We have restricted
our attention to R?\{0} because this parameterization breaks down at 0. Namely,
0 = (Ocosp, Osiny) for every ¢ € [0, 27). However, this flaw will not cause us
problems here.

Given a continuous function f : B(0,r) —> C, it is reasonable to ask whether
the integral of f over B(0, r) can be written as an integral with respect to the variables
(p, ). In fact, we have already seen in (5.4.2) that this is possible when f depends
only on |x|, and we will now show that it is always possible. To this end, for § € R, let
MRy be the rotation in R? corresponding to the basis ((cos 0, sin0), (—sin 6, cos 6)).
That is,

Rpx = (x1 cos B — xp sin @, x1 sin 6 + x, cos 9).

Using (1.5.1), it is easy to check that Ry o R, = Ry . In particular, Ror 1, =
R

Lemma 5.6.1 Let f : B(0,r) —> C be a continuous function, and define

~ 1

2T
f(p)=2_/ f(pcosgo,psincp)dgo forpe[0,r].
7 Jo

Then, for all x € B(0,r),

~ 1 2m
fox =5 [ ror e

Proof Set p = [x| and choose 6 € [0, 1) so that x = (pcos(2wf), psin(270)).
Equivalently, X = 92,4 (p, 0). Then by the preceding remarks about rotations in R?
and (3.3.3) applied to the periodic function £ ~ f (%zﬂg (p, O)),

1 27

1 2w
- ) f(%¢x) dp = ﬁ/o f(m2776+<,c(,0’ 0))

1

1 ~
=/0 f(Poro10) (0, 0) dp = /0 f(Parp(p, 0) dp = f(p). O
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Theorem 5.6.2 If f is a continuous function on the ball B(0, r) in R?, then

r 2m
[ rim [ o[ riesipiniyac)as
B0, 0 0
2 r
=/0 (/0 f(pcosgp,psinap)pdp) deg.

f(i)‘iwx) dx

Proof By (5.4.2),

/ fx)dx = /
B(0,r) B(0,r)

for all . Hence, by (5.2.1), Lemma 5.6.1, and (5.4.2),

27
/ f(x)dx = L/ (/ f(Ryx) dx) dyo
BO,1) 27 Jo B0,

_ / Fax) dx = / Fopdp,
BO.F) 0

which is the first equality. The second equality follows from the first by another
application of (5.2.1). (I

As a preliminary application of this theorem, we will use it to compute integrals
over a star shaped region, a region G for which there exists a ¢ € R?, known as
the center, and a continuous function, known as the radial function, r : [0, 271] —>
(0, 00) such that r(0) = r(2m) and

G={c+relp): pel0,2m) &r €[0,r(p)}, (5.6.1)

where e(yp) = (cos ¢, sin ). For instance, if G is a non-empty, bounded, convex
open set, then for any ¢ € G, G is star shaped with center at ¢ and

r(p) =max{r >0: c+re(p) € G).

Observe that
0G = {c +r(p)e(p) : ¢ €0, 27?)}.

and, as a consequence, we can show that JG is Riemann negligible. Indeed, for a
given € € (0, 1] choose n > 1 so that |r(p2) — r(¢1)| < €if |2 — 1| < 27” and,
forl <m <n, set

Ay ={c+pe(p) s ZU=D < < T g |5 p (M) < €},
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Then G < |J!_ Am.» and, by Lemma 5.5.5,

2 2
vol(Ap,) = 2%((r(%rm) +6)2 — (r(2mm) - E)2) _ 87 ||r||[0,27r]€7

n n - n

and therefore there is a constant K < oo such that |0G|. < Ke for all € € (0, 1].

Finally, notice that G is path connected and therefore, by Exercise 4.5 is connected.
The following is a significant extension of Theorem 5.6.2.

Corollary 5.6.3 If G is the region in (5.6.1) and f : G —> C is continuous, then

2 f pr(®)
/_f(X) dx =/ fe+ pe(p)) pdp |de.
G 0 0

Proof Without loss in generality, we will assume that ¢ = 0. Set r— = min{r(p) :
p € [0,27]} and r4 = max{r(y) : ¢ € [0, 2n]}. Givenn > 1, definen, : R —
[0, 1] by

0 ifr<o0
() =12 if0<t <=
1 ift>r7‘,

and define o, and 3, on R? by

an(pe()) = 1 (r(p) — p) and B, (pe(p)) = na(r(p) + = — p)

Then I_:)oth oy, and 3, are continuous functions, «;, vanishes off of G and 3, equals
1 on G. Finally define

a,X)f(x) ifxeG

f”(x)z[o ifx ¢ G.

Then f, is continuous and therefore, by Theorem 5.6.2,

2 r
/_ ful®) dx = / Fux) dx = / ( / +fn<pe=(so>)palp) dy
G B0.ry) 0 0
27 r(p)
=/0 /0 In(pe(@)pdp Jde.

Clearly, again by Theorem 5.6.2,


http://dx.doi.org/10.1007/978-3-319-24469-3_4

156 5 Integration in Higher Dimensions

‘/ f(X)dX—/ fn(x)dx| = ||f||c[(1 — au(x)) dx
G G G

= ”f”G/B(02 )ﬁn(x)(] - an(x)) dx
27r’ : 2ry
= ||f||c‘;/0 (/0 nn(r(¢)+r,—;—p)(l —nn(r(so)—p))pdp) dy
27 rp)+=
- ||f||(;/0 / . nn(r(w)-l-%‘—p)(l—nn(r(w)—p))pdp do

@) -7
8 Arar_
< ol fllgrer .
n

At the same time,

2n f rre) 2n ()
/ / f(pe()pdp d<p—/ / Jn(pe(p))pdp )dy
0 0 0 )
2 () )
= ”f”(;/ (/ ’ . Pdp)dcp < M
0 re) =4 n

Thus, the asserted equality follows after one lets n — oco. ]

We turn next to cylindrical coordinates in R3. That is, we represent points in R?
as (pe(p), &), where p > 0, p € [0, 27), and £ € R. Again the correspondence fails
to be one-to-one everywhere. Namely, ¢ is not uniquely determined for x € R? with
x1 = x2 = 0, but, as before, this will not prevent us from representing integrals in
terms of the variables (p, ¢, £).

Theorem 5.6.4 Let ) : [a, b] —> [0, 00) be a continuous function, and set
F={xecR®: x3€la bl &x}+x3 <1h(x3)°}.

Then I' is Riemann measurable and

/Ff(x)dx - /ab(/ov(f)p(/ohf(pe«o),g) dga) dp)df

for any continuous function f : I’ —> C.

Proof Given n > 1, define ¢, = (1 — %)a + %b for 0 < m < n, and set
Lnn = cm=tn,Cmnland I}y, = {x € I' : x3 € Iy} for 1 < m < n. Next, for
each 1 <m <n, set fy , = miny, , ¥, Ky , = maxy, , ¥, and

Dyn={x: Hﬁl’n <x}4x?< K,i’n & x3 € Iy}
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To see that I is Riemann measurable, we will show that its boundary is Rie-
mann negligible. Indeed, 0I;,, € Dy, n, and therefore, by Theorem 5.2.1 and

K2 —K2, ) (b— .
Lemma 5.5.5, |0} nle < M Since

n

n—>o0 1<m<n

n
lim  max (K — fma) =0and [0 |e < D |06nle.
m=1

it follows that |01" | = 0. Of course, since each I}, , is a set of the same form as I,
each of them is also Riemann measurable.
Now let f be given. Then

[rwax=3 [ fwax=3 [ rwax-3 [ joex
r m=1 Dnn m=1 Cin,n m=1

Fm.n\cm,n

where Cp, , = {X : x12 +x§ < Kman & x3 € Ly u}. Since I )\Cm.n S D p, the
computation in the preceding paragraph shows that

> / f(x)dx
m=1 Fm.n \Cm,n

as n — o0o. Next choose &, € I, s0 that Y(&,.n) = Km.n, and set

n

I fllrm(b—a) 2 2
= 2 (Knu = #na) — 0

m,n

m=1

€ = max sup |f(X) — f(xr,x2, &mn)l
l=m=n X€Cpm n

Then

< euvol(I') — 0.

n
m=1

0 dx - Z/C F 1, 6 ) dx
m=1 m.n

Cm‘n

Finally, observe that me . S, x2, &m0 dx = l%g(gm,”) where g is the contin-
uous function on [a, b] given by

P(&) 2m
g E/o P (/0 f(pe(p), €) d<p) dp.

Hence, > _, men fx)dx =R(g; Cn, En) where Cy = {Iipn : 1 <m < n}and
En(Im.n) = En.n. Now let n — oo to get the desired conclusion. ([l

Integration over balls in R is a particularly important example to which
Theorem 5.6.4 applies. Namely, take @ = —r, b = r, and ¥(§) = /12 — &2 for
& € [—r, r]. Then Theorem 5.6.4 says that
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/ f(x)dx
B(0,r)

=/ (/Omp(/ohf(pcow,psin@, ¢) d(p) dp)dg.

There is a beautiful application of (5.6.2) to afamous observation made by Newton
about his law of gravitation. According to his law, the force exerted by a particle of
mass mp aty € R on a particle of mass m at b € R3\{x} is equal to

(5.6.2)

Gmima
ly —bJ?

(y = b),

where G is the gravitational constant. Next, suppose that £2 is a bounded, closed,
Riemann measurable region on which mass is continuously distributed with density
. Then the force that the mass in §2 exerts on a particle of mass m atb ¢ 2 is given
by

Gmp(y)

o |y——b|3(y —b)dy.

Newton’s observation was that if £2 is a ball and the mass density depends only on the
distance from the center of the ball, then the force felt by a particle outside the ball
is the same as the force exerted on it by a particle at the center of the ball with mass
equal to the total mass of the ball. That is, if £2 = B(e, r) and i : [0, r] —> [0, 00)
is continuous, then for b ¢ B(c, r),

Gmu(ly — ¢|) GMm
/ Y (y—b)dy = ———~(c—b)
Ber) |y—Dbl |e — b| (5.63)
where M = w(ly — cl) dy.
Ble.r)

(See Exercise 5.8 for the case when b lies inside the ball).

Using translation and rotations, one can reduce the proof of (5.6.3) to the case
whenc =0andb = (0, 0, —D) for some D > r. Further, without loss in generality,
we will assume that Gm = 1. Next observe that, by rotation invariance applied to
the rotations that take (y1, y2, ¥3) to (Fy1, £y2, ¥3),

w(lyl / u(lyl
yidy = — yi dy
/B(o,r) ly —b]?"" o Iy —b]3"

/ “(|Y|)3y,~ dy =0 forie{l,2).
B©.H ly — bl

and therefore
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Thus, it remains to show that

() /ﬁ Jﬁﬁ@—mdy==D*f/ p(lyD) dy.

BO.n |y —b? BO.N
To prove (), we apply (5.6.2) to the function

p(x)(x3 + D)
(x} +x3 + (x3+ D)?)

fx) =

3
2

to write the left hand side as 27wJ where

J_f‘/WLFWWM+8m+Du J
= ; p|d¢€.

(0 + €+ D)2)’?

—r

Now make the change of variables o = /p? + £2 in the inner integral to see that

J= r@+m(/r o) 3w)&,
—r i€l (62 4+ 26D + D?)2

and then apply (5.2.1) to obtain

J=/rau(0)(/g b+¢ 3df)da.
0 —0 (02 4+ 26D + D?)2

Use the change of variables ) = o> + 26D + D? in the inner integral to write it as

1 (D+o)* | s a3 20
4p? (D—0)2 (77 P+ (D7 =00 2)d77=ﬁ,

Hence,
2 4ﬂ/r ()02 d
T = —= )0 ag.
D2 J,

Finally, note that 3§23 = 4, and apply (5.4.5) with N = 3 to see that

47r/r wo)o? do =/ w(|x)) dx.
0

B(0,r)
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We conclude this section by using (5.6.2) to derive the analog of Theorem 5.6.2
for integrals over balls in R®. One way to introduce polar coordinates for R is to
think about the use of latitude and longitude to locate points on a globe. To begin
with, one has to choose a reference axis, which in the case of a globe is chosen to
be the one passing through the north and south poles. Given a point q on the globe,
consider a plane Py containing the reference axis that passes through q. (There will
be only one unless q is a pole.) Thinking of points on the globe as vectors with base
at the center of the earth, the latitude of a point is the angle that q makes in Pq with
the north pole N. Before describing the longitude of q, one has to choose a reference
point qo that is not on the reference axis. In the case of a globe, the standard choice
is Greenwich, England. Then the longitude of q is the angle between the projections
of q and qq in the equatorial plane, the plane that passes through the center of the
earth and is perpendicular to the reference axis.

Now let x € R3\{0}. With the preceding in mind, we say that the polar angle of
X = (x1,x2,x3) is the ¢ € [0, 7] such that cos§ = V% where N = (0,0, 1).
Assuming that 0 = /xl2 + x% > 0, the azimuthal angle of X is the ¢ € [0, 27) such
that (x1, x2) = (o cosp, osin ). In other words, in terms of the globe model, we
have taken the center of the earth to lie at the origin, the north pole and south poles
to be (0,0, 1) and (0, 0, —1), and “Greenwich” to be located at (1, 0, 0). Thus the
polar angle gives the latitude and the azimuthal angle gives the longitude.

The preceding considerations lead to the parameterization

(p, 0, p) €10,00) x [0, 7] x [0, 27)

> X(p,0,p) = (p sin # cos ¢, psin @ sin @, p cos 0) eR?

of points in R?. Assuming that p > 0, 6 is the polar angle of X(p,,0)» and, assuming
that p > 0 and 0 ¢ {0, 7w}, ¢ is its azimuthal angle. On the other hand, when p = 0,
then x(, 9,,) = 0 for all (0, ¢) € [0, 7] x [0, 27), and when p > O but 0 € {0, 7},
6 is uniquely determined but ¢ is not. In spite of these ambiguities, if X = X(,,9,),
then (p, 6, @) are called the polar coordinates of x, and as we are about to show,
integrals of functions over balls in R3 can be written as integrals with respect to the
variables (p, 8, ©).

Let f : B(0,r) —> C be a continuous function. Then, by (5.6.2) and (5.2.2), the
integral of f over B(0, r) equals

L™ )i
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where f,(0, &) = f(a COS , 0 sin , f). Observe that

/_rr(/omaf¢(ov§)da)d§
) | mafw(d,f)do e+ 0 mgfw(d,f)da dé
AV I

2 2 2 2

T s o[

and make the change of variables £ = /p? — 02 to write

fo (0, —f) df) do,

p
J A B e T

0

Hence, we now know that

/_rr (/Omgfv(ﬂ»ﬁ) do)dg

=/or”(/<a,] (ol Vo2 =) + folo =7 —02>>ﬁd’))d”

= /Orp(/lo’p)(ﬂp(o',\/pz _0'2) +fg0(0-7 —Vp*— g@)ﬁda)d,&

where we have made use of the obvious extension of Fubini’s Theorem to integrals
that are limits of Riemann integrals. Finally, use the change of variables o = psin 6
in the inner integral to conclude that

r /e T[T '
/ / Jfgg(a,f)da d{:/ p (/ fw(psmﬁ,pcosﬂ)dﬁ)dp
—r 0 0 0

and therefore, after an application of (5.2.2), that

/ F00 dx
B9

r m 2
:/ pZ(/ (/ f(psinfcos ¢, psinfsin ¢, pcosb) dgp)d@)dp.
0 0 0

(5.6.4)
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5.7 The Divergence Theorem in R?

Integration by parts in more than one dimension takes many forms, and in order
to even state these results in generality one needs more machinery than we have
developed. Thus, we will deal with only a couple of examples and not attempt to
derive a general statement.

The most basic result is a simple application of The Fundamental Theorem of
Calculus, Theorem 3.2.1. Namely, consider a rectangle R = H;V:[a j»bjl, where
N > 2, and let ¢ be a C-valued function which is continuously differentiable on
int(R) and has bounded derivatives there. Given & € RM, one has

N
/ Dep(x)dx = D" &; ( / p(y)doy — / o (y) day)
R j=1 Rj(bj) a

j Rj(a))

- N (5.7.1)
where R;(c) = H[aivbi] x {c} x H laj, bj]] .
i=1 i=j+1

where the integral f R (©) ¥ (y) doy of a function v over R;(c) is interpreted as the
(N — 1)-dimensi0nal'integral

/ YOy Vo1, € Yjads -y YN)AYL - dyj1dyjqr - -dyn.
H[#_,‘[ai»hi]

Verification of (5.7.1) is easy. First write O as Zyzl §;0e; - Second, use (5.2.2)
with the permutation that exchanges j and 1 but leaves the ordering of the other
indices unchanged, and apply Theorem 3.2.1.

In many applications one is dealing with an R"-valued function F and is inte-
grating its divergence

N
divF = )" e, F
j=1

over R. By applying (5.7.1) to each coordinate, one arrives at

N N
divF(x) dx = / Fi(y)doy — / Fi(y)doy, (5.7.2)
/1; ; Rj(bj) ! Y ; R ! Y

j(aj)

but there is a more revealing way to write (5.7.2). To explain this alternative version,
let G be the boundary of a bounded open subset G in RY. Given a point x € 9G,
say that & € RY is a tangent vector to G at x if there is a continuously differentiable
path v : (—1,1) — OG such that x = v(0) and & = (0) = %(O). That is, &
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is the velocity at the time when a path on OG passes through x. For instance, when
G =int(R) andx € R;(a;) U R;(b;) is not on one of the edges, then it is obvious
that £ is tangent to x if and only if (&, €;)gy = 0. If X is at an edge, (&, e;)gy Will
be 0 for every tangent vector &, but there will be £’s for which (£, e;)gv = 0 and yet
there is no continuously differentiable path that stays on 0G, passes through x, and
has derivative £ when it does. When G = B(0, r) and x € SN ~1(0, ) = 0B(0, r),
then £ is tangent to OG if and only if (£, X)py = 0.% To see this, first suppose that &
is tangent to JG at x, and let y be an associated path. Then

0= 07N> =2(v(®), (1)) gw = 2(x, E)pv att =0.

Conversely, suppose that (x, {)gry = 0. If £ = 0, then we can take v(7) = x for

all 1. If € # 0, define v(1) = (cos(r~'[&]1))x + ‘g—l(sin(r_l|§'|t))£, and check that

(1) € SN0, r) for all £, v(0) = x, and 7(0) = &.

Having defined what it means for a vector to be tangent to G at x, we now say that
a vector m is a normal vector to G atx if (n, §)py = 0 for every tangent vector £ at
x. For nice regions like balls, there is essentially only one normal vector at a point.
Indeed, as we saw, £ is tangent to x € 9B(0, r) if and only if (§, X)gy = 0, and so
every normal vector there will have the form ax for some a € R. In particular, there
is aunique unit vector, known as the outward pointing unit normal vector n(x), that is
normal to 0 B(0, r) at x and is pointing outward in the sense that x + tn(x) ¢ B(0, r)
for t > 0. In fact, n(x) = % Similarly, when x € Rj(a;) U R;(b;) is not on an
edge, every normal vector will be of the form «e;, and the outward pointing normal
unit normal at x will be —e; or e; depending on whether x € R;(a;) orx € R;(b;).
However, when x is at an edge, there are too few tangent vectors to uniquely determine

an outward pointing unit normal vector at X.

T

i

normal to rectangle and circle

Fortunately, because this flaw is present only on a Riemann negligible set, it is not
fatal for the application that we will make of these concepts to (5.7.2). To be precise,
define n(x) = 0 for x € JR that are on an edge, note that n is continuous off of a
Riemann negligible subset of RV, and observe that (5.7.2) can be rewritten as

SThis fact accounts for the notation S¥~! when referring to spheres in RY . Such surfaces are said
to be (N — 1)-dimensional because there are only N — 1 linearly independent directions in which
one can move without leaving them.
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/ divF(x) dx = / (F(y). n(y))gn doy, (5.7.3)
R IR
where
N
/ w<y>doysz( | wwday+ | w<y>day).
OR =1 Rj(aj) Rj(bj)

Besides being more aesthetically pleasing than (5.7.2), (5.7.3) has the advantage
that it is in a form that generalizes and has a nice physical interpretation. In fact, once
one knows how to interpret integrals over the boundary of more general regions, one
can show that

/ div(F(x)) dx = / (F(y), n)) gy doy (5.7.4)
G oG

holds for quite general regions, and this generalization is known as the divergence
theorem. Unfortunately, understanding of the physical interpretation requires one to
know the relationship between divF and the flow that F determines, and, although
a rigorous explanation of this connection is beyond the scope of this book, here is
the idea. In Sect.4.5 we showed that if F satisfies (4.5.4), then it determines a map
X : R x RY — R by the equation

X(t,x) = F(X(t,x)) with X(0,x) = x.

In other words, for each x, r ~» X(t, x) is the path that passes through x at time t = 0
and has velocity F(X(z, x)) for all . Now think about mass that is initially uniformly
distributed in a bounded region G and that is flowing along these paths. If one
monitors the region to determine how much mass is lost or gained as a consequence
of the flow, one can show that the rate at which change is taking place is given by
the integral of divF over G. If instead of monitoring the region, one monitors the
boundary and measures how much mass is passing through it in each direction, then
one finds that the rate of change is given by the integral of (F(x), n(x))RN over the
boundary. Thus, (5.7.4) is simply stating that these two methods of measurement
give the same answer.

We will now verify (5.7.4) for a special class of regions in R?. The main reason for
working in R? is that regions there are likely to have boundaries that are piecewise
parameterized curves, which, by the results in Sect. 4.4, means that we know how to
integrate over them. The regions G with which we will deal are piecewise smooth star
shaped regions in R? given by (5.6.1) with a continuous function ¢ € [0, 27] —>
r(¢) € (0, 00) that satisfies r(0) = r(27) and is piecewise smooth. Clearly the
boundary of such a region is a piecewise parameterized curve. Indeed, consider
the path p(¢) = ¢ + r(p)e(yp) where, as before, e(p) = (cos ¢, sin ). Then the
restriction p; of p to [0, 7] and the restriction p; of p to [, 27] parameterize non-
overlapping parameterized curves whose union is 9G. Moreover, by (4.4.2), since
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P(p) = r'(pe(p) + r(p)e(p), (e(p), é(9))p. =0, and |e(p)| = |é(p)| = 1,

we have that

2T
/8G f(y)doy = /0 fe+re@)Vr(@?+r' ()2 de.

Next observe that,

t(p) = (r'(p) cosp — r(p) sing, r'(p) sing + r(p) cos @)

is tangent to G at p((), and therefore that the outward pointing unit normal to 0G
at p(p) is

r () cos o + r'(p) sin p, r(p) sin p — r’(p) cos <p)

r(@)? +1'(p)?

for ¢ € [0, 27] in intervals where r is continuously differentiable. Further, since

n(p(p)) = i( (5.7.5)

r(p)?

(©), P(®) = €) g2 = ————= >0
n(®@). P~ = o

and therefore
Ip(©) + m(p) —¢> > r(p)? fort >0,

we know that the plus sign is the correct one. Taking all these into account, we see
that (5.7.4) for G is equivalent to

27
/ divF(x) dx =/ (r(p) cos o +r'(p)sin o) Fi (¢ + r(p)e(p)) dp
G 0 (5.7.6)

27
+ /0 (r(p)sinp —r'(p) cos ) Fa (¢ + r(p)e(p)) de.

In proving (5.7.6), we will assume, without loss in generality, that ¢ = 0. Hence,
what we have to show is that

27
/G Doy f (%) dx = /O (r() cos p + /() sin ) £ (r(D)e()) dig
(*) 2T
/G Des () dx = /0 (' (@) sin g — () £ (r(9)e(e) dp

To perform the required computation, it is important to write derivatives in terms of
the variables p and ¢. For this purpose, suppose that f is a continuously differentiable
function on an open subset of R?, and set g(p, ©) = f(pcos @, psin ¢). Then
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0p8(p, p) = cos p e, f(pcos g, psin) + sin p de, f(pcos @, psin )
and
0p8(p, p) = —psin@ Oe, f(pcos @, psinp) + pcos p de, f (pcos @, psinp),
and therefore

PO, [ (pe(p)) = pcos Dpg(p, p) — sinpdyg(p, ¢)

and
POe, f (pe(p)) = psinp d,g(p, @) + cos Y D8 (p, ©).

Thus, if f is a continuous function on G that has bounded, continuous first order
derivatives on G, then

/ Oe, f(X)dx =1 — J,
G

27 r(p)

I=/O cos /o p0,8(p, O)dp )dy
27 r(p)

J=/ sin / 0,8(p, ) dp )de.
0 0

Applying integration by parts to the inner integral in 7, we see that

27 27 r(p)
1=/0 coswg(r(w),so)r(w)dso—/o COS@(/O g(p,w)dp)dw-

Dealing with J is more challenging. The first step is to write it as J; + J», where J;
and J, are, respectively,

2 r_ 2 ()
/ Sinso( / &;g(p,ap)dp)dgpand | sinel [ et 0rdn ) g
r—

and r— = min{r(p) : ¢ € [0, 27}. By (5.2.1) and integration by parts,

r_ 27 r— 27
Ji =/0 (/0 sin ¢ Jpg(p, @)dw) dp = —/0 (/0 cos p g(p, w)dw) dp.

where

and
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To handle J,, choose 6y € [0, 27] so that r(6g) = r_, and choose 0y, ...,0; €
[0, 27] so that r’ is continuous on each of the open intervals with end points 6 and
Ox+1, where 811 = 6y. Now use (3.1.6) to write J, as Zizo J> i, where

27 ' 7(oAOk+1)
Dok = / sin ¢ / 0,8(p, p)dp Jdep,
0 r(pnb)

and then make the change of variables p = r(#) and apply (5.2.1) to obtain

2w PAO 11
Dk = / sin / D,8(r(0), o)r'(©)db Jdy
0 LpAek
Or+1 27
:/ ' () (/ sin 9,8 (r(9), ) dcp) do.
0, 0

k

Hence,

27 27
Jr = / r'(0) (/ sin 9,8 (r (6). ¢) dw) a9,
0 0

which, after integration by parts is applied to the inner integral, leads to

27 27 2w
J = —/ sin 6 g(r(0), O)r'(6) db —/ ¥ (0) (/ cos o g(r(6), ¢) d(p) do.
0 0 0

After applying (5.2.1) and undoing the change of variables in the second integral on
the right, we get

o 2 r(p)
J = —/ sin@g(r(@), 0’ (0) db —/ COSQD(/ g(p, p) dp) dy
0 0 r—

and therefore

. 2 r(p)
, _/O sin@g(r(@)v¢)r/(w)d@_/o cosw(/o g(p, Sﬂ)dp)dw.

Finally, when we subtract J from 7, we arrive at

2T
/G D, f () dx = /0 (r(@) cos o+ r'() sin @) (r(9). ) dp.

Proceeding in exactly the same way, one can derive the second equation in (%),
and so we have proved the following theorem.
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Theorem 5.7.1 If G C R? is a piecewise smooth star shaped region and if
F : G — R? is continuous on G and has bounded, continuous first order deriv-
atives on G, then (5.7.5), and therefore (5.7.4) withn : 0G —> S'(0, 1) given by
(5.7.5), hold.

Corollary 5.7.2 Let G be as in Theorem 5.7.1, and suppose thatay, ..., a; € G and
r1,...,re € (0, 00) have the properties that B(ag, ry) € G foreach 1 < k < £ and
that B(ak, re) N B(ak/ re) =0forl <k <k < Set H= G\ Uk | Blag, ri).
If F: H — R? is a continuous function that has bounded, continuous first order
derivatives on H, then f y divF (%) dx equals

/ (F(y). n(y)) 2 doy
9G

2r
_ Z i /0 (F1 (ax + ree(p)) cos @ + Fa(ag + ree(p)) sin (,0) de.
k=1

Proof First assume that F has bounded, continuous derivatives on the whole of G.
Then Theorem 5.7.1 applies to F on G and its restriction to each ball B(ay, ry), and
so the result follows from Theorem 5.7.1 when one writes the integral of divF over
H as ,

/_ divF(x) dx — Z / divF(x) dx.
G

k=1 Bl(ag,r)

To handle the general case, define 7 : R — [0, 1] by

0 ifr <0
i 1
() = —”S‘“(’;" D) ifo<r<i
1 ifr > 1.

Then 7 is continuously differentiable. For each 1 < k < ¢, choose Ry > r¢ so that
B(ag, R;) € G and B(ag, Ry) N B(ay, Ry) =Wfor1 <k <k’ < £. Define

2_ 2

X—ag|°—r

V(X)) =1 % forx € R?
Ry —ri

and

4
Fx) =D hh(0FX)

k=1
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ifx € Hand Fx) = 0if x € Ui:l B(ag, r). Then F is continuous on G
and has bounded, continuous first order derivatives on G. In addition, F = Fon
G\ U1€<=1 B(ag, Ry). Hence, if H = G\ U1€<=1 B(ay, Ry), then, by the preceding,
J3 divF(x) dx equals

| F® ),
aG
¢ 27
_ z Rk/o (F1 (ax + Rke(y)) cos ¢ + Fa(a + Rre(y)) sin go) do,
k=1

and so the asserted result follows after one lets each Rj decrease to ry. O

We conclude this section with an application of Theorem 5.7.1 that plays a role
in many places. One of the consequence of the Fundamental Theorem of Calculus
is that every continuous function f on an interval (a, b) is the derivative of a con-
tinuously differentiable function F on (a, b). Indeed, simply set ¢ = “;b and take
F(x) = fc * f(t) dt. With this in mind, one should ask whether an analogous state-
ment holds in R?. In particular, given a connected open set G C R? and a continuous
function F : G — RR2, is it true that there is a continuously differentiable function
f : G —> R such that F is the gradient of f? That the answer is no in general
can be seen by assuming that F is continuously differentiable and noticing that if f
exists then

8ezFl = 8e28e1f = aelaezf = a91F2'

Hence, a necessary condition for the existence of f is that O, F1 = O, F2, and when
this condition holds F is said to be exact. It is known that exactness is sufficient as
well as necessary for a continuously differentiable F on G to be the gradient of a
function when G is what is called a simply connected region, but to avoid technical
difficulties, we will restrict ourselves to star shaped regions.

Corollary 5.7.3 Assume that G is a star shaped region in R*> and thatF : G —> R>
is a continuously differentiable function. Then there exists a continuously differen-
tiable function f : G —> R such that ¥ = V f if and only if F is exact.

Proof Without loss in generality, we will assume that 0 is the center of G. Further,
since the necessity has already been shown, we will assume that F is exact.
Define f : G — R by f(0) = 0 and

f(re(p) =/0 (Fi(pe(p)) cos @ + Fa(pe(p)) sinp) dp

for p € [0,27) and 0 < r < r(ip). Clearly F1(0) = Je, f(0) and F2(0) = Oe, f(0).
We will now show that F| = O, f atany point ({p, 170) € G\{0}. Thisis easy when
no = 0,since f(&,0) = f(f F1(t, 0) dt. Thus assume that g # 0, and consider points
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(&, mo) notequal to (&, 1) but sufficiently close that (¢, 19) € GifEAEy <t < EVEp.
What we need to show is that

3
) FEm) = f&m) = [ Fie.mdr,

o

To this end, define F = (F,, —F1). Then, because F is exact, divF = 0 on G.
Next consider the region H that is the interior of the triangle whose vertices are 0,
(&0, n0), and (&, 10). Then H is a piecewise smooth star shaped region and so, by
Theorem 5.7.1, the integral of (F, n)p2 over OH is 0. Thus, if we write (o, 19) and

(&, mo) as roe(pp) and re(y), then
- o,
0= /0H (F(y). n(y)) g dy = /0 (F(pe(apo)), n(,oe(cpo)))]Rz dp
+/0 (F(pe(w)), n(pe(so)))Rz dp

Evéo
+/€ (F(t’ 770)7 n(ts WO))Rz dt

Ao
If np > 0 and & > &, then
n(pe(cp)) = (sin ¢, — cos ), n(pe(gpo)) = (—sin g, cos ¢p),

and n(z, o) = (0, 1), and therefore

f(&mo) = /Or(ﬁ(pe(w)), n(pe(<p)))RZ dp,

o,
f (&0 m0) = —/0 (F(Pe(sﬁo))’ n(pe(cpo)))Rz dp,

¢ £veo
/ Fi(t,m0) dt = —/ (F(, m0). n(z, o)) e dt,
o Eno

and so (x) holds. If 7o > 0 and £ < &p, then the sign of n changes in each term, and
therefore we again get (), and the cases when 779 < 0 are handled similarly.

The proof that F> = O, f follows the same line of reasoning and is left as an
exercise. (]

5.8 Exercises

Exercise 5.1 Let x, y € R?\{0}. Then Schwarz’s inequality says that the ratio

_ (X’ Y)R2
]yl
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is in the open interval (—1, 1) unless x and y lie on the same line, in which case p €
{—1, 1}. Euclidean geometry provides a good explanation for this. Indeed, consider
the triangle whose vertices are 0, x, and y. The sides of this triangle have lengths x|,
ly|, and |y — x|. Thus, by the law of the cosine, |y —x|> = [x|? + |y|? — 2|x||y| cos 6,
where 6 is the angle in the triangle between x and y. Use this to show that p = cos 6.
The same explanation applies in higher dimensions since there is a plane in which x
and y lie and the analysis can be carried out in that plane.

Exercise 5.2 Show that

2 2
/ eMe™ T dx = \/27reAT forall A € R.
R

One way to do this is to make the change of variables y = x — A to see that

a2 A2 _o=n?
/e)‘xe 2dx=e2/e 2 dy,
R R

and then use (5.1.2) and (5.4.3).

Exercise 5.3 Show that |I'|e = |R(I")|e and |I"|; = |SR(1")|; for all bounded sets
I' € RY and all rotations 9, and conclude that SR(I") is Riemann measurable if and
only if I" is. Use this to show that if I" is a bounded subset of R for which there
exists axg € RV and an e € SV=1(0, 1) such that (x — xo, e)py =0forallx e I',
then I" is Riemann negligible.

Exercise 5.4 An integral that arises quite often is one of the form

1
I(a,b) = / 17274
(0,00)

where a, b € (0, 00). To evaluate this integral, make the change of variables £ =

/2
ar> — bt~2. Then € = at —2ab + t~! and 17 = w, the plus being
dictated by the requirement that r > 0. After making this substitution, arrive at

2
2tb

“7dt,

e—2ab

_52 ) 1 e—2ab o
I(a,b) = /e (14 (& +4ab)™2¢) d¢ = /e &g,
R R

a a

1 _ a.
from which it follows that I (a, b) = U ea 20 . Finally, use this to show that

1

5 ,—2ab
3 b2 T2e

/ Tre g =
(0,00) b
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Exercise 5.5 Recall the cardiod described in Exercise 2.2, and consider the region
that it encloses. Using the expression z(6) = 2R (1 — cos H)em for the boundary of
this region after translating by —R, show that the area enclosed by the cardiod is
67 R?. Finally, show that the arc length of the cardiod is 16R, a computation in which
you may want to use (1.5.1) to write 1 — cos 6 as a square.

Exercise 5.6 Given ay, a», az € (0, 00), consider the region 2 in R3 enclosed by

2
the ellipsoid Zﬁ:l % = 1. Show that the boundary of £2 is Riemann negligible and

that the volume of £2 is %. When computing the volume V, first show that

2 2 - 2 2
V=2a3/ 1—x—'—x—§dx1dx2 whereQ:{xeRZ:x—‘—i-x—%Sl}.
I?) a a

2 2
a a

Next, use Fubini’s Theorem and a change of variables in each of the coordinates to
write the integral as aja; fm V1 — |x|? dx, where B(0, 1) is the unit ball in R2.
Finally, use (5.6.2) to complete the computation.

Exercise 5.7 Let £2 be a bounded, closed region in R* with Riemann negligible
boundary, and let i : £2 — [0, 00) be a continuous function. Thinking of y as a
mass density, one says that the center of gravity of £2 with mass distribution y is the
point ¢ € R3 such that f o (Y)Y — ¢)dy = 0. The reason for the name is that if §2
is supported at this point ¢, then the net effect of gravity will be 0 and so the region
will be balanced there. Of course, ¢ need not lie in 2, in which case one should think
of £2 being attached to ¢ by weightless wires.

Obviously, ¢ = W+)ydy, where M = f o #(y) dy is the total mass. Now suppose

that 2 = {y € R3: xlz + x% < x3 < h}, where h > 0, has a constant mass density.
Show that ¢ = (0, 0, 3).

Exercise 5.8 We showed that for a ball B(c, r) in R with a continuous mass dis-
tribution that depends only of the distance to ¢, the gravitational force it exerts on
a particle of mass m at a point b ¢ B(c, r) is given by (5.6.3). Now suppose that
b € B(c,r), and set D = |b — ¢|. Show that

——————dy=—=—(—Db)
B ly—bl D?

where Mp =/ p(ly —cpdy.

B(c,D)

/ Gmu(ly — ¢|) dv — GmMp

In other words, the forces produced by the mass that lies further than b from ¢ cancel
out, and so the particle feels only the force coming from the mass between it and the
center of the ball.
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Exercise 5.9 Let B(0, r) be the ball of radius » in R" centered at the origin. Using
rotation invariance, show that

QNI‘N+2
/ xidx=0 and / xixjdx = ————6; jforl <i, j <N.
B(0,r) B(0,r) N+2

Next, suppose that f : RN — R is twice continuously differentiable, and let
A(f,r) = (2yrM)~! fm f(x) dx be the average value of f on B(0,r). As an

application of the preceding, show that M — m ZZN: 1 631, f(0) as
r N\ 0.

Exercise 5.10 Suppose that G is an open subset of R? and that F : G — R? is
continuous. If F = V f for some continuously differentiable f : G — R and
p: [a, b] — G is a piecewise smooth path, show that

b
1) - f@= [ (Flpm). b)), dr

and therefore that fab (F(p(t)), p(t))RN dt = Oifpisclosed (i.e.,p(b) = p(a)). Now

assume that G is connected and that | ab (F(p(t)), p(r))RN dt = 0 for all piecewise

smooth, closed paths p : [a,b] — G. Using Exercise 4.5, show that for each
X, y € G there is a piecewise smooth path in G that starts at x and ends at y. Given
a reference point Xg € G and an x € G, show that

b
0= [ (Fpo). b)), dr

is the same for all piecewise smooth paths p : [a, b)] — G such that p(a) = x¢ and
p(b) = x. Finally, show that f is continuously differentiable and that F = V f.


http://dx.doi.org/10.1007/978-3-319-24469-3_4

Chapter 6
A Little Bit of Analytic Function Theory

In this concluding chapter we will return to the topic introduced in Chap. 2, and, as
we will see, the divergence theorem will allow us to prove results here that were out
of reach earlier.

Before getting started, now that we have introduced directional derivatives, it will
be useful to update the notation used in Chap. 2. In particular, what we denoted by f;
and f é there are the directional derivatives of f in the directions e; and e,. However,
because we will be identifying R? with C and will be writing z € C as z = x +iy, in
the following we will use O, f and 0, f to denote f; = Oe, f and fé = O, f. Thus,
for example, in this notation, the Cauchy—Riemann equations in (2.3.1) become

Oiu = 0yv and Orv = —0,u. (6.0.1)

In this connection, it will be convenient to introduce the operator given by 0 =
%(_3;: +i0,) (e, 20f = O, f + i0yf) and to notice that if f = u + iv then
20f = (Ocu — Oyv) + i(axv + Oyu). Hence u and v satisfy (6.0.1) if and only if
0f = 0. Equivalently, f is analytic if and only if 0 f = 0. As a consequence, it is
easy to check the properties of analytic functions discussed in Exercise 2.7.

6.1 The Cauchy Integral Formula

This section is devoted to the derivation of a formula, discovered by Cauchy, which is
the key to everything that follows. There are several direct proofs of his formula, but
we will give one that is based on (5.7.4). For this purpose, suppose that f = u +iv,
and observe that 20 f = divF + i divF, where F = (u, —v) and F = (v, u). Hence,
if G is the piecewise smooth star shaped region in (5.6.1),and f : G — Cisa
continuous function that has a bounded, continuous first order derivatives on G, then,
by Theorem 5.7.1,
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2/_8_f(x)dx=/ (F(y)—i-if?(y),n(y)) ,doy.
G 9G R

Now let ¢ be the center of G and r : [0, 2] —> (0, 00) the associated radial function
(cf. (5.6.1)). Then, by using (5.7.5), we can write the integral on the right hand side
of the preceding as

2
/0 ((u (c+r(pre(p) +iv(e+ r(w)e(w))) (r(p) cos o + r'(ip) sin )
+ (—v(c +r(p)e(@)) + iu(e + r(w)e(w))) (r(¢) sinp — r'(¢) cos w))dso,

where e(p) = (cos ¢, sin ¢). Thinking of R? as C and taking ¢ = ¢; + ic,, the
preceding becomes

27
/0 fle+r(pe?) ((r(go) cos o+ r' () sin @) +i(r(p) sinp — r'(¢) cos @))dgp.

Finally, observing that

d .
dprPe = i((rp)cos g +r'(@)sing) +i(r () sinio = r'(p) cos 9)).

we arrive at

_ 27
Zi/Gé)f(z)dxdy:/o f(za(@)zg(p) de, 6.1.1)

where 76 (p) = ¢ +r(p)e’¥ and, as we will throughout, we have used dx dy instead
of dx = dx,dx, to indicate Riemann integration on R? when we are thinking of R?
as C.

Suppose that G and {D(ay, ) : 1 < k < £} (we are thinking of R? as C,
and so the ball B(ayg, r;) in R? is replaced by the disk D(ag, ry) in C where ay is
the complex number determined by a;) are as in Corollary 5.7.2. The same line of
reasoning that led to (6.1.1) shows that if H = G\ Ui:l D(ag, ry) then, again with
z6(p) = c+r(p)e'?,

_ 27
21'/ Of(z)dxdy = / f(z6()zg(p) dyp
H 0
4 2w
—ink/ f(ak —i—rke’“g)ew do
k=1 70

6.1.2)

for continuous functions f : H —> C that have bounded, continuous first order
derivatives on H.
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Theorem 6.1.1 Let G be the piecewise smooth star shaped region given by (5.6.1)
with center ¢ and radial function r : [0,27] —> (0, 00), and define zg(p) =
¢+ r(p)e¥asin(6.1.1).If f G —> C is a continuous function which is analytic
on G, then

2w
/0 f(z6(9))zG(p)dp = 0. (6.1.3)

Furthermore, if zy,...,2¢ € G and ry,...,ry > 0 satisfy D(zx, ) € G and
D(zk_, re) N D(zpr ) = @ foralll < k < k' < £, then for any continuous
f:G\ Uf:] D(zi, ri) —> C which is analytic on G\ Ui:l D(zx, re),

b ¢ 2w
/ f(ZG(SO))Z/G(QO) dp=1i Zrk/o f(zk + rkew)ei'*’ de. (6.1.4)
¢ k=1

Proof Clearly (6.1.3) and (6.1.4) follow from (6.1.1) and (6.1.2), respectively,
when the first derivatives of f have continuous extensions to G\ U w1 D2k, ).
More generally, choose 0 < ¢ < min{r(p) : ¢ € [0,27]} so that
D(zi,re +0) N D(zpr,rw +6) =P forl <k <k’ <fand

¢
UD(zk,rk+6)§GlgE{c+rew: pel0,2r]&0<r <r(p)—d}.
k=1

Then (6.1.3) and (6.1.4) hold with G replaced by G and each D(zy, 1) replaced by
D(zk, ri + 6). Finally, let § \ 0. U

The equality in (6.1.3) is a special case of what is called Cauchy’s equation,
although, as we saw in Exercise 1.10, there is another equation, namely (1.10.2),that
bears his name. However, the one here is much more significant.

Even more famous than the preceding is the following application of (6.1.4).

Theorem 6.1.2 Continue in the setting of Theorem 6.1.1. Then for any continuous
f G —> Cthat is analytic on G and any z € G

™ flza(9)

f@)=— Zz&(cp) deo. (6.1.5)

2w Jo  zg(p) —

Proof Apply (6.1.4) to the function ¢ ~~ % to see that for small » > 0

o)
| ng(w)dﬁp—l/o flz+re?)de,

and therefore, after letting N\ 0, that (6.1.5) holds. U
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The equality in (6.1.5) is special case of the renowned Cauchy integral formula, a
formula that is arguably the most profound expression of the remarkable properties
of analytic functions.

Before moving to applications of these results, there is an important comment that
should be made about the preceding. Namely, one should realize that (6.1.3) need
not hold in general unless the function is analytic on the entire region. For example,
if z € G, then the function ¢ ~ C—L is analytic on G\{z} and yet (6.1.5) with f =1
shows that

27 1
———7:(p)dp = i2T. (6.1.6)
/0 a(p) — 2 G

One might think that the failure of (6.1.3) for this function is due to its having a
singularity at z. However, the reason is more subtle. To wit,

2w 1
o) — oy o de =01 2 6.1.7
A o) — 2 ¢ (prde orn > 6.1.7)

even though ¢ ~ (C+2) is more singular than  ~~ csz To prove (6.1.7), note that

(¢ —2)™ = (1 —n)(¢ — 2)™", and therefore

_ d —n+1 —n_y
(1—n) ‘@(ZG«@)—Z) = (26(p) —2) "2 ().
Hence, by the Fundamental Theorem of Calculus,

o 1 / d ((Zc(b) . Z)frH»l _ (ZG(a) . Z)7H+1) 0
/0 o) — e de= 1—n =

since zg (a) = zg (b). Of course, one might say that the same reasoning should work
for ¢ ~ (¢ —2)7! since 9 log(¢ — z) = (¢ — z)~'. But unlike ¢ ~ (¢ —z)™"*!,
log is not well defined on the whole of C\{z} and must be restricted to a set like
C\(—o00, 0] before it can be given an unambiguous definition. In particular, if one
evaluates log along a path like z that has circled counterclockwise once around a
point when it returns to its starting point, then the value of log when the path returns
to its starting point will differ from its initial value by i27, and this is the i27 in
(6.1.6). To see this, consider the path ¢ € [0, 27] —> z(p) = z6(¢) — ¢ € C\{0}.
This path is closed and circles the origin once counterclockwise. Using the definition
of log in (2.2.2), one sees that

%) if p € [0, 7]

ogz(p) =logr(yp) ’L,_zw if p € (7, 27].
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Thus, since r(27) = r(0),

2T 1 bis Z,((P) ) /27r5 Z/(QO)
_ 7 dp = dp +1 d
/0 zG(@)—cZG(¢) v /0 2 TR 2

e " i (1 r(27 — 6)
= log —— milog ————
& r(0) ' SN0 £ r(m+9)

+ iﬂ') =i2m.

Another way to prove (6.1.6) is to use (6.1.7) to see that

2 1 2w 1
0. —  Z(de= | — Z(p)dp=0.
/0 ZG(@—ZZG(@ 4 /o (ZG(W)_Z)ZZ(@) 4

Thus if (6.1.6) holds for one z € G, then it holds for all z € G, and, because it is
obvious when z = c, this completes the proof.

6.2 A Few Theoretical Applications and an Extension

There are so many applications of (6.1.3) and (6.1.5) that one is at a loss when
trying to choose among them. One of the most famous is the fundamental theorem of
algebra which says that if p is a polynomial of degree n > 1 then it has aroot (i.e., a
z € C such that p(z) = 0). To prove this, first observe that, by applying (6.1.5) with
G = D(z, R) and z5(¢) = z + Re'?, one has the mean value theorem

1 [ ‘
f@)= —/ f(z+ Re¥)dyp 6.2.1)
2’/T 0

for any f that is continuous on D(z, R) and analytic on D(z, R). Now suppose that
p is an nth order polynomial for some n > 1. Then |p(z)| — oo as |z] — oo.
Thus, if p never vanished, f = 1 would be an analytic function on C that tends to
0 as |z] — oo. But then, because (6.2.1) holds for all R > 0, after letting R — oo
one would get the contradiction that f(z) = 0 for all z € C, and so there must be a
z € C for which p(z) = 0. In conjunction with Lemma 2.2.3, this means that every
nth order polynomial p is equal to b Hf-:, (z — a;)%, where b is the coefficient of
7", ay, ..., a, are the distinct roots of p; and d; is the multiplicity of a;. That is, d;
is the order to which p vanishes at a; in the sense that lim,_,,, - £ ZZ,))df € C\{0}.

As a by-product of the preceding argument, we know that if f is analytic on C and
tends to O at infinity, then f is identically 0. A more refined version of this property
is the following.
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Theorem 6.2.1 If f is a bounded, analytic function on C, then f is constant.

Proof Starting from (6.2.1), one sees that

R R 27
szf(z)=27r/ rf(z)dr:/ r(/ f(z+re"¢’)d¢)dr,
0 0 0

which, by Theorem 5.6.2, leads to

f@) = f(©)d&dn (6.2.2)

TR? Joew

for any f that is continuous on D (0, R) and analytic on D(0, R). Now assume that
f is a function that is analytic on the whole of C. Then for any z; and z, and any
R > |z2 — z1]

1
)~ fe = / (O dédn - / F(O) dédn

(22, R)\D(z1,R) D(z1.R)\D(z22,R)

Because

vol(D(z1, R)\D(z2, R)) = vol(D(z2, R)\D(z1, R))

<vol(D(z2, R + |22 — 21D\ D(z1, R)) = m(2R|z1 — 22| + |21 — 22/%),

1f(z2) — f(zD)] < I flc 222 Nowlet R 7 oo, and conclude that f(z2) = f(z1)
if || fllc < oo. O

The fact that the only bounded, analytic functions on C are constant is known as
Liouville’s theorem.

Recall that our original examples in Sect.2.3 of analytic functions were power
series. The following remarkable consequence of (6.1.5) shows that was inevitable.

Theorem 6.2.2 Suppose that f is analytic on a non-empty open set G < C. If
D(C, R) C G, then f is given on D(C, R) by the power series

f@ = enz=Q" forze D R)

m=0 6.2.3)
2

1 . .
where ¢, = —— f(C+ Re'®)e " dep.
2w R™ 0

In particular, if G is connected and f as well as all its derivatives vanish at a point
C € G, then f is identically 0 on G.
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Proof By applying (6.1.5), we know that

R [ f((+Re¥)
105 ], 7 gge de e PER

and, because |z — (| < R and therefore

Rt (1 - oe-'”@)‘l _ i (= Qe
Re'v — (z — () R = R™
where the convergence is absolute and uniform for ¢ € [0, 27], (6.2.3) follows.

To prove the final assertion, let H = {z € G : f™(z) = Oforallm > 0}.
Clearly, G\ H is open. On the other hand, if ( € H and R > 0 is chosen so that
D((, R) C G, then (6.2.3) says that f vanishes on D((, R) and therefore that
D((, R) € H. Hence, both H and G\ H are open. Since G is connected, it follows
that either H = Y or H = G. Il

What is startling about this result is how much it reveals about the structure of an
analytic function. Recall that f is analytic as soon as it is once continuously differ-
entiable as a function of a complex variable. As a consequence of Theorem 6.2.2,
we now know that if a function is once continuously differentiable as a function of a
complex variable, then it is not only an infinitely differentiable function of that vari-
able but is also given by a power series on any disk whose closure is contained in the
set where it is once continuously differentiable. In addition, (6.2.3) gives quantitative
information about the derivatives of f. Namely,

| 27

f(m)(C) =mlc, = f(C + Reip)e—im/,a dtp (6.2.4)

2w R™ 0

Notice that this gives a second proof Liouville’s theorem. Indeed, if f is bounded
and analytic on C, then (6.2.4) shows that f’ vanishes everywhere and therefore, by
Lemma 2.3.1, f is constant.

To demonstrate one way in which these results get applied, recall the sequence
of numbers {b, : £ > 0} introduced in (3.3.4). As we saw there, |b;| < o' where
« is the unique element of (0, 1) for which ev =1 + %, and in (3.4.8) we gave an

expression for b, from which it is easy to show that limy_ o0 |by| i = % We will now
show how to arrive at the second of these as a consequence of the first combined with
Theorem 6.2.2. For this purpose, consider the function f(z) = Z?O:O bgﬂz[, which
we know is an analytic function on D (0, a~1). Next, using the recursion relation in
(3.3.4) for the b,’s, observe that for z € D(0, a~")\{0},

[ee]

o~ (=D*be 44 B et =147z
f(z)=l§;z (Z—(k+2)! z )—(lJrzf(z))—Z2 :

=k
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and therefore that f(z) = 'Z_(i—f;j Thus, if ¢(z) = > o, (,',:‘:21)!1’" and ¥ (z) =
Z:’nozo mz’", then f(z) = % for z € D(0,a™"). Because ¢ and 1) are both

analytic on the whole of C, their ratio is analytic on the set where ¢ # 0. Furthermore,
since ¢(0) # 0 and ¥(z) = <=L for z # 0, ¢(z) = 0 if and only if z = i27n for
some n € Z\{0}, which, because p(2m) # 0, implies that D (0, 27) is the largest
disk centered at 0 on which their ratio is analytic. But this means that the power series
defining f is absolutely convergent when |z| < 27 and divergent when |z| > 27. In
other words, its radius of convergence must be 27, and therefore, by Lemma 2.2.1,
fimy oo |bel7 = 2m)7".
Here are a few more results that show just how special analytic functions are.

Lemma 6.2.3 Suppose that f : D(a, R)\{a} —> C is a continuous function which
is analytic on D(a, R)\{a}. Then, for eachO <r < R and z € D(a, R)\D(a, r)

R [*™ f(a+ Re'¥)e'? ro (7 fla+re?)e?
@) = — u do— u d
27 Jo a+ Re'¥v —z 27 Jo a+rev —z

Proof Without loss in generality, we will assume that a = 0.
Let0 <7 < Rand z € D(0, R)\D(0, r) be given, and choose p > 0 so that

D(z,p) € D(0, R)\D(0, r). By (6.1.4) applied to ¢ ~~ Jg(fj, we see that
27 [ O\ it 27 i i 27
Re'¥)e'? re'¥)e'% .
R Md%?:r ud@_,_/ f(z+ pe'?)de,
0 Re'? — z 0 ret¥ —z 0

and therefore, after letting p N\ 0, we have that
R [*" f(ReW)eW J r 2 f(rei‘”)ei*” 4

f(Z):ﬂ ; Rgiﬁp_z % A rei'#;—z . 0

There are two interesting corollaries of Lemma 6.2.3.

Theorem 6.2.4 Referring to Lemma 6.2.3, define

27
Cm = fla+ Re¥)e ™ dy form e 7.
2T R™ 0
Then
o0
f@= D eulz—a)" forze D, R)\{a},
m=—00

where the series converges absolutely and uniformly for z in compact subsets of
D(a, R)\{a}.
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Proof We can and will assume that a = 0.

Letz € D(0, R)\{O} and r > O satisfying D(z,r) € D(0, R)\{0} be given. Look
at the first term on the right hand side of the equation in Lemma 6.2.3, and observe
that it can be re-written as

1 [ Re'? l —
_ ﬂ—Ld@:—Zcmz"’,
2w Jo 1 —(Re?)7Iz 2w —=

where the convergence is absolute and uniform for z in compact subsets of D(0, R).
The second term can be written as

roo(7 f(re'®)ev 4 1 & (r

m. el ) )
— . = — - (re'®)e'¥ do,
2wz Jo 1 —reivz™! 2m A=~ z) 0 ! 4

where the series converges absolutely and uniformly on compact subsets of D(0, R)\
D(0, r). Finally, apply (6.1.4) to the analytic function ¢ ~ f(¢)¢"~" on D(0, R)\
D(0, r) to see that

27 ) ) 27 ) )
r'" f@re¥)e?dp =R" f(Re')e™? dy
0 0

and therefore that the asserted expression for f holds on D(0, R)\D(0, r). In addi-

tion, since the series converges absolutely and uniformly for z in compact subsets of
D0, R)\D(0, r) for each 0 < r < R, this completes the proof. O

Theorem 6.2.5 Let G C C be open and a € G. If f is analytic on G\{a} and
limo 7|l fllst@,r = 0, then there is a unique extension of f to G as an analytic
function.

Proof The uniqueness poses no problem. In addition, it suffices for us to show that
f admits an extension as an analytic function on some disk centered at a.

Choose R > 0 so that D(a, R) € G, and let z € D(a, R)\{a} and r > 0
satisfying D(z,r) € D(a, R)\{a} be given. Applying Lemma 6.2.3 and then letting
r \¢ 0, we arrive at

R 2 f(a_i_Rei(p)

= — . Ydep.
1@ 2 Jo a+Re"¢—ze 7

Hence, the right hand side gives the analytic extension of f to D(a, R). [

Theorem 6.2.6 Suppose {f, : n > 1} is a sequence of analytic functions on an
open set G and that f is a function on G to which { f, : n > 1} converges uniformly
on compact subsets of G. Then f is analytic on G.

Proof Given ¢ € G, choose r > 0 so that D(c,r) € G. All that we have to show is
that f is analytic on D(c, r). But f(z) equals
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2m ip\,ip 1 2m oy, ip
lim f,(z) = lim o~ ud _ L [T fetrener
n—00 21 c+rv—z 27 Jo c+riv—z

for all z € D(c,r), and, since the final expression is an analytic function of z €
D(c, r), this proves that f is analytic on D(c, r). ([l

Related to the discussion leading to (6.1.7) and (6.1.6) is the following. As we
saw there, (6.1.3) is obvious in the case when f is the derivative of a function. Thus
the following important fact provides a way to prove more general versions of (6.1.3)
and (6.1.5).

Theorem 6.2.7 If f is analytic on the star shaped region G, then there exists an
analytic function F on G such that f = F'. Furthermore, F is uniquely determined
up to an additive constant.

Proof To prove the uniqueness assertion, suppose that /" and F are analytic functions
on G such that F/ = f = F’ there, and set g = F — F. Then g is analytic and ¢’ = 0
on G. Since (cf. Exercise 4.5) G is connected, Lemma 2.3.1 says that g is constant.

Not surprisingly, the existence assertion is closely related to Corollary 5.7.3.
Indeed, write f = u + iv, and take F = (4, —v) and F = (v, u) as we did in
the derivation of (6.1.1). Observe that, by (6.0.1), both F and F are exact. Thus, by
Corollary 5.7.3, there exist continuously differentiable functions U and V on G such
thaty = 0,U,v = —-0,U,v=0,V,andu = 0, V. In particular, 0,U = u = 0,V
and 0,U = —v = —0,V, and so U and V satisfy the Cauchy—Riemann equations in
(6.0.1), which means that F = U +iV is analytic. Furthermore, O, F = u+iv = f,
and therefore F' = f. a

We will say that a path z : [a,b] —> C is closed if z(b) = z(a) and that
it is piecewise smooth if it is continuous and there exists a bounded function 7’ :
[a, b] — C that has at most a finite number of discontinuities and for which z'(z)
is the derivative of r ~~ z(¢) at all its points of continuity.

Corollary 6.2.8 Suppose that f is an analytic function on a star shaped region G,
andlet 7 : [a, b] —> G be a closed, piecewise smooth path. Then (6.1.3) holds with
t ~ 76(t) replaced by t ~~ z(t). Furthermore, if z € G\{z(t) : t € |a, b}, then

b by
FEO) iy ar = ( / 20 Z dt) (2. (6.2.5)

. 2()—z z(1)

Proof By Theorem 6.2.7, there exists an analytic function F on G for which f = F’.
Thus d—dt F (z (t)) =f (z (t)) 7/ (¢) for all but a finite number of t € (a, b), and therefore,
by the Fundamental Theorem of Calculus,

b
/ f(z®)2 (1) dt = F(z(b)) — F(z(a)) =
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Next, given z € G\{z(¢) : t € [a, b]}, define

e C.

Ce e g0 = LB

C_

Then g is analytic and lim.,; g({) = f'(z). Hence, by Theorem 6.2.5, g can be
extended to G as an analytic function, and therefore, by the preceding,

') z(t) fe0) =@,
i f()/ / LI v =0

O

The equation in (6.2.5) represents a significant extension of Cauchy’s formula,
although, as stated, it does not quite cover (6.1.5). However, it is easy to recover
(6.1.5) from (6.2.5) by applying the same approximation procedure as we used to
complete the proof of Theorem 6.1.1.

Referring to Corollary 6.2.8, the quantity f Z (’ ) - dt has an important geometric
interpretation. When ¢ ~» z(¢) parameterizes the boundary of a piecewise smooth
star shaped region, (6.1.6) says thatitis equal to 27, and, as the discussion preceding
(6.1.6) indicates, that is because ¢ ~» z(¢) circles z exactly one time. In order to deal
with more general paths, we will need the following lemma.

Lemma 6.2.9 Ifz € Candt € [a,b] —> z(t) € C\{z} is continuous, then there
exists a unique continuous map 6 : [a, b] — R such that 8(a) = 0 and

20—z  z@) —z

2a) —z  |z(a) —z]

D fort € [a, bl.

Furthermore, ift ~ z(t) is piecewise smooth, then

0(r) = —i/ Z6) ds fort € |a, b].
a 2(s) —z

In particular, if, in addition, z(b) = z(a), then

1 b Z/(S)

i2m J, z(s) —z

ds € 7.

(See Exercise 6.9 for another derivation of this last fact.)

Proof Without loss in generality, we will assume that z = 0 and z(a) = 1.
Because ¢ ~~ z(t) is continuous and never vanishes, there exist n > 1 and a =

t0<--~<tn:bsuchthat|% 1|<lf0rl<m<nandte[tm 1, tm]. Now

set £(a) = 0and £(t) — £(t,_1) = log Z(§<’> forl <m <nandt € [t,,_1, t,,]. Then

£iscontinuous and, foreach 1 < m < n,z(t) = z(t,_1)et @t fort € [t,y_1, tm].
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Hence, by induction on m, z(t) = e*® for all ¢ € [a, b]. Furthermore, if t ~» z(¢) is

piecewise smooth, then £'(r) = £ ((’)) at all but at most a finite number of ¢t € (a, b),

and therefore £(t) = fat % ds. Thus, if we take 0(t) = —if(t), then t ~~ 0(¢) will
have all the required properties.

Finally, to prove the uniqueness assertion, suppose that t ~» 0;(¢) and ¢ ~> 6,(t)
were two such functions. Then ¢/ @W=-0®) = 1 for all t € [a,b], and sO ¢ ~
0,(t) — 0, (¢) would be a continuous function with values in {27n : n € Z*}, whichis
possible (cf. the proof of (2.3.2)) only if it is constant. Thus, since 8, (@) = 0 = 6,(a),

01(t) = 0,(¢t) for all ¢ € [a, b]. (I

The function ¢ € [a, b] —> 6(¢) € R gives the one and only continuous choice
of the angle in the polar representation of Z((t) % under the condition that #(a) = 0.
Given a < s; < s, < b, we say that the path 01rcles z once during the time interval
[s1, s2]if |0(s2) — O(sy)| = 2w and |0(z) — O(s1)| < 2w for t € [sy, s2). Further, we
say it circled counterclockwise or clockwise depending on whether 6(s;) — 6(sy) is
21 or —2m. Thus, if t ~» z(¢) is closed and one were to put a rod perpendicular to
the plane at z and run a string along the path, then w would the number of
times that the string winds around the rod after one pulls out all the slack, and for
this reason it is called the winding number of the path ¢ ~» z(¢) around z. Hence,
when ¢ ~~ z(t) is piecewise smooth, (6.2.5) is saying that

P fw)
() —zZ (t)dt

= 27 f (z) (the winding number of ¢ ~> z(¢) around z).

In the case when ¢ ~~ z(t) is the parameterization of the boundary of a piecewise
smooth star shaped region, (6.1.6) says that its winding number around every point
in the region is 1.

6.3 Computational Applications of Cauchy’s Formula

The proof of Corollary 6.2.8 can be viewed as an example of a ubiquitous and
powerful technique, known as the residue calculus, for computing integrals.

Suppose that f : D(a, R)\{a} — C is a continuous function that is analytic on
D(a, R)\{a}. Then

27

Res,(f) = R fla+ Re'¥)e'¥d
a(f o ¥
0

is called the residue of f at a. Notice that, because, by (6.1.4),
2w 2

R, fla+Rie¥)e'?dp =R, fla+ Rye'?)e'? dyp
0 0
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if 0 < Ry < Ryand f : D(a, R;)\{a} —> C is a continuous function that is
analytic on D(a, R»)\{a}, Res,(f) really depends only on f and a, and not on R.

The computation of residues is difficult in general. However there is a situation
in which it is relatively easy. Namely, if n > 1 and (z — @)" f(z) is bounded on
D(a, R)\{a}, then, by Theorem 6.2.5, there is an analytic function g on D(a, R)
such that g(z) = (z — a)" f () for z # a. Hence

(m+n) n (n—m)
f(z)— @ )'"+Zg (“) ™",

(+)'

and so, since

2w
/ MY dp =0 unlessm = —1,
0

we have that 5 )
i o 2mg
R fa+RePerdp =TI @
0o (n—1)!

Equivalently,

Res,(f) = L= if 9(2) = (2 — @)" £ (2)
is bounded on D(a, R)\{a} for some R > 0.

(6.3.1)

The following theorem gives the essential facts on which the residue calculus is
based.

Theorem 6.3.1 Let G be a star shaped region and 71, . . . , z¢ distinct points in G. If
f:G\{z1,...,z¢} — Cisananalytic functionand z : [a, b] — G\{z1, ..., z¢}
is a closed piecewise smooth path, then

b 14
/ F0) 0 dr =27 > N(zoRes., (),
a k=1

where

1 b ’
Nz = E/ 0,

z(t) — zx

is the winding number of t ~ z(t) around zy.

Proof Choose Ry, ..., Ry > Osothat D(zx, Ry) € G\{z;: j #k}forl <k < ¢,
and set
1 27 ) )
mw=-— Rie')e ™" dop.
Cr, 2R o S (zk + Ree')e @
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By Theorem 6.2.4, we know that the series > - ckm(z — zx)™ converges
absolutely and uniformly for z in compact subsets of D(zx, Ri)\{zx}, and there-

fore that Hy(z) = > .o ck—m(z — zx)™™ converges absolutely and uniformly
for z in compact subsets of C\{z;}. Furthermore, by that same theorem, g(z) =
f@) — Zizl H;(z) on G\{z, ..., z¢} admits an extension as an analytic function

on G. Hence, by the first part of Corollary 6.2.8,

b 4 b
/ fle@®)@de = / H(2(0))2' (1) dr.
a k=174

Finally, foreach 1 <k < ¢,

b /
/Hk(z(t)z(t)dt ZCk m/ Z—(t)mdt

m=1 Z(t) _Zk)

b
= coms / 2O gy~ i2rNEResy ().

(1) — zx

since cx,—1 = Res,, (f) and

EA0) R om b
/a (z(0) — z)" = (I—m) (2 ~2) ‘z=a =0

ifm > 2. (]

In order to present our initial application of Theorem 6.3. 1 we need to make
some preparations. When confronted by an integral like fo m dx, one factors
x% + 5x + 6 into the product (x 4+ 2)(x + 3) and uses this to write

/] ] d /l 5 /1 Lodx = log? —log = log
X = X — X =102 5 — 102 5 = 10¢g 5.
0o x2+5x+6 0 X+2 0o x+3 g3 g3 g3

The crucial step here which is known as the method of partial fractions, is the

decomposition of m into the difference between ? and —~. The following

theorem shows that such a decomposition exists in great generahty

Theorem 6.3.2 Suppose that q is a polynomial of order n > 1 and that by, . . ., by
are its distinct roots, and let p be a polynomial of order m > 0 satisfying p(by) # 0
for 1 < k < L. Then there exist unique polynomials Py, ..., Py, such that Py is of
order (n — m)*, Py vanishes at 0 and has order equal to the multiplicity of by for
each1 <k < ¥, and

p(2) . (
22 p P
7 0(2) + ; e\ 2

! ) forz € C\{by, ..., b}.
— b
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Proof By long division for polynomials, ’q’f—g = Py(2) + Ry(z), where P, is a poly-
nomial of the specified sort and Ry is the ratio of two polynomials for which the
polynomial in the denominator has order larger than that in the numerator. Next,

given 1 < k < ¢, consider the function

This function is again the ratio of two polynomials, and as such can be written as
Pr(2) + Ri(z), where Py is a polynomial and Ry is the ratio of two polynomials for
which the order of the one in the denominator is greater than that of the order of the
one in the numerator. Moreover, if dy is the multiplicity of by and c is the coefficient
of z" in ¢, then

Pi(z) pbx+ 1) Ri(2) p(by)
= o C\{0
7% 2deq (by + l) 7 7 [Tl — bj)d € C\{0)

as |z|] — oo, and therefore Pj has order d;. Now consider the function
’ 1
f(Z)ZR()(Z)—ZPj (Z——b) fOI'ZG(C\{b],...,be}.
j=1 !
Obviously f is analytic. In addition, as |z| — oo, f(z) tends to

¢
—-> Pj(0)eC.

j=1
Forl <k <,

f(bk + %) = Ri(2) — Po(bk + %) — Z P; (;)

1
J#k :Th—b;

1
— —PO(bk)_ZPj (bk—b~) eC
J

J#k

as |z] — oo. Hence f is bounded, and therefore, by Theorems 6.2.5 and 6.2.1, f
must be identically equal to some constant by. Finally, for each 1 < k < ¢, replace
P by P, — P(0), and then replace Py by Py + by + Zi:l P (0).
Turning to the question of uniqueness, write Py (z) = Z‘;kzl ak,jzj forl <k <.
Then
bk)dk &
q(z)

Ak,d, = }LI?]((Z -
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and, for 1 < j < d,

—tim by [ PR .
ak,j_zli)nblk(z by)’ ) Z = o)

J<J'=Zdx

Hence Py, ..., Py are uniquely determined, and therefore so is Py. O

In general the computation of the P;’s in Theorem 6.3.2 is quite onerous. However,
there is an important case in which it is easy. Namely, suppose that ¢ is a polynomial
of order n > 1 all of whose roots are simple in the sense that they are of multiplicity
1. Then (cf. Exercise 6.4 below for an elementary algebraic proof)

1 - 1
= , (6.3.2)
q(2) ; q'(b)(z — by)
where by, .. ., b, are the roots of g. Indeed, here Py = 0, ¢’ (b;) equals the coefficient

of 7" times H k(bk b;) and is therefore not 0, and Pi(z) = arz where a; =

1imﬁ,,k§1;—f;= i for1 <k <.

Corollary 6.3.3 Let g be a polynomial of order n > 2 with simple roots by, . . ., by,.
Then for any polynomial p of order less than or equal ton — 2,
z p)
q'(b)

Moreover, if none of the by’s is real and K is the set of 1 < k < n for which the
imaginary part of by, is positive, then

/P(X) i Z p(by) — o P(bk).
R q(x) ‘4 "(br) S a' (D)

In particular, if either K| or K_ is empty, then fR ”(X) dx = 0.

Proof Let R > max{|b;| : 1 < j < n}.Then, by (6.3.2), (6.3.1),and Theorem 6.3.1,

p(Re'?) p®))
R ¢ dp =27 L2
[ e ae=2

q(Re’\") q'(bj)
Since .
Re'?
lim R sup p(—e,) =0,
R— o0 WE[O 271'] q (Re“ro)

the first assertion follows.
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Next assume that none of the b;’s is real. For R > max{|b| : 1 < k < n}, set
Gr={z=x+1iy € DO, R) : y > 0}. Obviously Gy is a piecewise smooth star
shaped region and

—R + 4Rt for0 <t
Zr(t) = {Reizw—;) for% <1

is a piecewise smooth parameterization of its boundary for which every point in G
has winding number 1. Furthermore, just as above, by Theorem 6.3.1,

! P(ZR(I) p(br)
/0 q(ZR(t) > q' (b))

keK

Hence, since

> p R
/ (ZR())ZR() / &dxﬁ/p()dx as R — oo
o q(zr()) -r 4(x) R q(x)

and

1 ™ i99
/—p(ZR(t))z}e(t)dt:iR/ PR o0 as R o,
1 q(zr() o q(Re'?)

p(x) . /‘ p(zr(®) p(by)
——dx =1 _ dt =2 ,
/m(x) =Ry qea) KO "2

keK

which is the first equality in the second assertion. Finally, the second equality follows
from this and the first assertion. (]

To give another example that shows how useful Theorem 6.3.1 is, consider the
problem of computing
sin
lim / 2,

R—o00

where 2% = | when x = 0. To see that this limit exists, it suffices to show that

lim,_ oo foﬂ sinx 7y exists. But if a,, = (—1)"+! f(m . $inx gy, then a,, \, 0 and

JoTmE gy = Zm:l( 1)"*q,,. Thus Lemma 1.2.1 1mp11es that the limit exists.

We turn now to the problem of evaluation. The first step is to observe that, since
sin(—x) __ sinx and cos(=x) _ _ cosx
—X x —X x

) R sin x ) R eix —r eix
2i dx = lim —dx + —dx ).
0 X ™NO\J, X _R X
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Second, for 0 < r < R, let G, g be the open set

{z=x+iyeDO,R): y>0lU{z=x+iye D@O,r): y <0}:

sinx

contour for
x

It should be obvious that G, g is a piecewise smooth star shaped region. Further-
more, by (6.3.1), 1 is the residue of 67 at 0. Now define

t for —R<t < —r

i(t+r+m)

re for —r<t<-r+mw

zZrr() =
& () t+2r—m for—r4+n7<t<R-2r+mnw

Re!—R+2r=m) for R —2r+ 1<t <R —2r +2n.

Then the winding number of ¢ ~» z, g(¢) around each z € G, is 1, and so

R—-2r+2m eiz,_R(t)
i2r = / ———z, p(0)dt
—R Zr,r(1) "

—r eit 27 o R eit T
:/ —dt—l—i/ e're dt+/ —dt+i/ e R dy
-rR I T r 4 0
R 2w ™
:iz/ ydt+i/ e”"”dt+i/ R ar.
r 1 T 0

After letting r N\ 0, we get

R _; T
sint .y
2/ —dt=71'—/ 'R dr.
o I 0

Finally, note that |ei Re'" | = ¢~ Rsin? and therefore, for any 0 < § < 7
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LA u . 3 .
/ ezRe dt < / e—R sint dt = 2/ e—R sin ¢ dt
0 0 0

< 25+2/2 e Rt gy < 2§ + e RoIn0,
)

Hence, by first letting R — oo and then § N\ 0, we arrive at

. R ginx ™
lim dx = —.
R—o0 0 X 2

6.4 The Prime Number Theorem

If p is a prime number (in this discussion, a prime number is an integer greater than
or equal to 2 that has no divisors other than itself and 1), then no prime smaller than
or equal to p can divide 1 + p!, and therefore there must exist a prime number that is
larger than p. This simple argument, usually credited to Euclid, shows that there are
infinitely many prime numbers, but it gives essentially no quantitative information.
That is, if w(n) is the number of prime numbers p < n, Euclid’s argument tells one
nothing about how 7(n) grows as n — 00. One of the triumphs of late nineteenth
century mathematics was the more or less simultaneous proof' by Hadamard and de

la Vallée Poussin that 7 (n) ~ 10’; — in the sense that

. m(n)logn
lim —————

n—00 n

—1, (6.4.1)

a result that is known as The Prime Number Theorem. Hadamard and de Vallée
Poussin’s proofs were quite involved, and although their proofs were subsequently
simplified and other proofs were found, it was not until D.J. Newman came up
with the argument given here that a proof of The Prime Number Theorem became
accessible to a wide audience. Newman’s proof was further simplified by D. Zagier,’
and it is his version that is presented here.

The strategy of the proof is to show that if f(x) = >
mation is over prime numbers p < x, then

psx log p, where the sum-

lim @=

n—oo n

1. (6.4.2)

Once (6.4.2) is proved, (6.4.1) is easy. Indeed,

1Using empirical evidence, this result had been conjectured by Gauss.

2Newman’s proof appeared in “Simple Analytic Proof of the Prime Number Theorem”, Amer. Math.
Monthly, 87 in 1980, and Zagier’s paper “Newman’s Short Proof of the Prime Number Theorem”
appeared in volume 104 of the same journal in 1997, the centennial year of the original proof.
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0(n) = > log p < m(n)logn,

p=n
and so ”(”)nﬂ > @, which, by (6.4.2), means that

1
m m(n)logn -1

n—00 n

At the same time, for each a € (0, 1),

0(n) > Z logp > (n(n) — m(n*))alogn > a(m(n) —n®)logn,

n*<p<n
and so, again by (6.4.2),

0 — 1
1= tim 2% 5 i T Iogn
n—o0o n n—o0 n
Since this is true for any a € (0, 1), (6.4.1) follows.
The first step in proving (6.4.2) is to show that #(x) < Cx for some C < oo and
all x > 0.

Lemma 6.4.1 For each K > log?2 there exists an xg € [1, 00) such that 0(x) <
2Kx+0(xg) forallx > xg. Inparticular, there exists a C < oo suchthat9(x) < Cx
forall x > 0.

Proof Foranyn € N,

2n

- - 2n 2\ 2 [T, 2k~ 1)
22 = (14 1) —Z(m)z(n)——m .

m=0

Now set ;
2" Hk:1 2k —1)

Q:HpandD: 0

n<p<2n

Because every prime less than or equal to 2n divides 2" [];_,(2k — 1), D € Z*.

Furthermore, because 252 = (*') € Z* and n! is relatively prime to Q, n! must

!
divide D. Hence

w . @xD 0 —0m)
Mz ——z [T p=e ;
n<p<2n

and so 6(2n) — O(n) < 2nlog2. Now let x > 2, and choose n € Z™' so that

n—1<3 <n. Then

O(x)—0 (’5‘) <60(2n) —0(n) +logn <2nlog2+logn < xlog2 + log(2x + 4).
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Therefore, for any K > log 2, there exists an xx > 1 such that
X
0(x)—0 (5) < Kx forx > xg.

Now, for a given x > xg, choose M € N so that 27Mx > xx > 2M~!x Then

0(x) — O(xg) < 0(x) — 02 M 'x)
M M
= > (0Q™"x) — 02" 'x)) < Kx D> 27" < 2Kx.

m=0 m=0

Finally, since (x) = 0 for 0 < x < 2, itis clear from this that there exists a C < 0o
such that 6(x) < Cx for all x > 0. O

Lemma 6.4.1 already shows that lim,,_, o @ < 2log2, and therefore, by the

argument we gave to prove the upper bound in (6.4.1) from (6.4.2), lim,_, » ’T(")nﬂ

6(x)

< 2log2. More important, it shows that == is bounded, and therefore there is a

chance that

0(x) — X 0(x) —
/ (X)z Y dx = lim / sz dx existsin R. (6.4.3)
[1,00) X X—o0 Jy X

Lemma 6.4.2 [f (6.4.3) holds, then (6.4.2) holds.

Proof Suppose that lim,_, o, ‘gg(—x) > A for some A > 1. Then there would exist

{x¢ : k> 1} C [1,00) such that x; " oo and 6(x;) > Ax;. Because 6 is non-
decreasing, this would mean that

M g() — ¢ M Axyp — ¢ A=t
3 dt > 5 dt = 3 dt > 0,
Xk t Xk t 1 t

M () — ¢t Me Q) — ¢t % 0(t) —t
dt = dt — dt,
e e A

this would contradict the existence of the limitin (6.4.3). Similarly, if lim _ @ <
A for some A < 1, there would exist {x; : £k > 1} C [1, co) such that x; ' oo and

0(xx) < Axx, which would lead to the contradiction that

% 0(t) —t M O(r) —t "X—1¢
dt — dt < dt < 0.
/1 ,z t/l ) _/A i < .

In view of Lemma 6.4.2, everything comes down to verifying (6.4.3). For this
purpose, use the change of variables x = ¢’ to see that

and, since
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X _ log X
/ 9()c)—zxdx=/ : (e7'0(e") — 1) dt.
1 0

X

Thus, what we have to show is that

T
/ (e7'0(e") — 1) dr = Tlim / (e7'6(e") — 1) dr existsinR.  (6.4.4)
[0,00) —~o0 Jo

Our proof of (6.4.4) relies on a result that allows us to draw conclusions about the
behavior of integrals like fOT (t) dt as T — oo from the behavior of fooo e (1) dt
as z — 0. As distinguished from results that go in the opposite direction, of which
(1.10.1) and part (iv) of Exercise 3.16 are examples, such results are hard, and,
because A. Tauber proved one of the earliest of them, they are known as Tauberian
theorems. The Tauberian theorem that we will use is the following.

Theorem 6.4.3 Suppose that ¢ : [0,00) —> C is a bounded function that is
Riemann integrable on [0, T] for each T > 0, and set

9(z) = / e @) dr forz € CwithR(z) > 0.
[0,00)

Then g(z) is analytic on {z € C : R(z) > 0}. Moreover, if g has an extension as an
analytic function on an open set containing {z € C : R(z) > 0}, then

T
Y(t)dt = lim/ W(t) dt
T—00 0

[0,00)
exists and is equal to g(0).

Proof For T > 0, set g7(z) = fOT e *4)(t) dt. Using Theorems 3.1.4 and 6.2.6, it
is easy to check first that g7 is analytic on C and then that g is analytic on {z € C :
R(z) > 0}. Thus, what we have to show is that limz_. o, g7 (0) = g(0) if g extends
as an analytic function to an open set containing {z € C : R(z) > 0}. To this end,
for R > 0, choose By € (0, %) so that g is analytic on an open set containing G,
where

G={ze€C: |z] < R & R(z) > —Rsin Bg}.

Clearly (cf. fig 1 below) G is a piecewise smooth star shaped region, and so we can
apply (6.2.5) to the function

2
f@)=e’ (1 + %) (9(2) — gr(2))
to see that ,
g(0) — gr(0) = f(0) = L/ f(z(t))Z’(t) dt,
i2r J,  z(t)


http://dx.doi.org/10.1007/978-3-319-24469-3_1
http://dx.doi.org/10.1007/978-3-319-24469-3_3
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where ¢ € [a, b] —> z(t) € OG is a piecewise smooth parameterization of JG.
Furthermore, the parameterization can be chosen so that

b
/ mz’(t) dt =i(Jy + J.)
o z(0)

where

s

Jy =/_2 f(Re'?)dy

s
2

and

5+0r . R cos B _Rsi . 3 )
J_ = /2 f(Relw) d(p _/ wd +/ 2 f(Reng) d(p
3 —Rcos g —Rsin B +iy %—ﬂk
i
+(0,0)
fig 1 fig 2
To estimate the size of J; and J_, begin by observing that
2
Z 2|R(2)]
(*) Izl = ‘ + R

To check this, write z = x + iy and conclude that

2

L B Rt iz (2xe) 2
R?| R? T |R2|T R
Now suppose that |z] = R and PR(z) > 0. Then
Me=R@T
9) — 9r()| = / epydt| <M [ e MOdr < 2
[T,00) [7,00) R(2)
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where M = ||7]|j0.0). Hence, since

|f(2)] = e

(1 + —)‘ 19(2) — gr (21,

|f(Re¥)| < 2 for ¢ € [—Z, 2] and therefore |J,| < 22 To estimate J_, we

write f(z) = fi1(z) — f2(z), where

2 2
fi) =e'* (1+ 72 )g(z) and fo(z) = e'* (1+ Rz)gr(z),

and will estimate the contributions J_ | and J_, of f; and f, to J_ separately. First
consider the term corresponding to f>, and remember that g7 is analytic on the whole
of C. Thus, by (6.1.3) applied to f, on the region (cf. fig 2 above)

{zeC: |z] < R & R(z) < —Rsin Gg},

we know that

/Rcos/sR f2(=Rsin g + iy) dy+/3§3k H(Re®)dp =0

_Rcospy —Rsinfr +iy LN

and therefore that \

./,’2 :/2 fz(Rei“’) ng

s
2

Now notice that

T o e ROT _ | Me—REQT
gr@l =M [ e ar = < ifR() <0,
0 IR (2)] IR (2)]
and so, by again using (x), we see that | f>(Re'¥)| < 24 forp € [g, 32"] and therefore

that |J_ 5| < 2“ . Combining this with the estimate for J, we now know that

2M ||

9 = gr O] = —= + ——

Finally,if B = ||gllg. then, forp € [3, 5 4+ Br|U[3F — Bk, 2] and |y| < R cos (g,

fi(=Rsin Bg +iy) - 4Be(—sinBR)RT

Re'?)| < 4Be©*9T  and
[fi(Re™)| = 4Be —RsinGg + iy - R sin Og

from which it is easy to see that there is a C r < oo such that |J_ | < % Hence,
we now have that |g(0) — g7 (0)] < 2—M + L& 2777’ which means that
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_— 2M
lim |g(0) — gr(0)] < — forall R > 0. 0
T—o0 R

As the preceding proof demonstrates, not only the choice of contour over which
the integral is taken but also the choice of the function f being integrated are crucial
for successful applications of Cauchy’s integral formula. Indeed, one can replace the
f on the right hand side by any analytic function that equals f at the point where
one wants to evaluate it. Without such a replacement, the preceding argument would
not have worked.

What remains is to show that Theorem 6.4.3 applies when () = e~ '0(e') — 1.
That is, we must show that the function

z~ e (e70(e") — 1) dr

[0,00)
on {z € C : R(z) > 0} admits an analytic extension to an open set containing
{z e C: R(z) =0} Tothisend, let2 = p; < --- < py < --- be an increasing
enumeration of the prime numbers and set pp = 1. Using summation by parts and

taking into account that 8(py) = 0 and that 6(¢) = 0(py) for t € [pk, Pr+1), one
sees that

Zbﬂ ZH(IJk)—H(pk D i ( B 1)

~ 5 Pk — Pk Pisi

Pk+1 o H(x) e(x)
—129(1%)/ Tldx =z /[ Wde:z/[loo)Fdx

2,00) X°

if R(z) > 0. Hence, after making the change of variables x = ¢’, we have first that

Z 1
ng ZZ/ efzto(el)dt
[0,00)

z
s P

and then that

SR G [ e - )ar

P [0.00)

when PR(z) > 0. Now define?

I
o) = Ojsp ifR(s) > 1,
P

3In number theory it is traditional to denote complex numbers by s instead of z, and so we will also.
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which, because the series is uniformly convergent on every compact subset of the
region {s € C: R(s) > 1}, is, by Theorem 6.2.6, analytic. Then the preceding says
that

G+ D7 (@ +1)—L-1) =/ e (6() — 1) di

[0,00)

and so checking that Theorem 6.4.3 applies comes down to showing that the function
s~ P(s) — ﬁ, which so far is defined only when 2R(s) > 1, admits an extension
as an analytic function on an open set containing {s € C : fR(s) > 1}.

In order to carry out this program, we will relate the function ® to the famous

function .
C(s) = ; n_s9

which, like @, is defined initially only on {s € C : 9R(s) > 1} and, for the same
reason as ® is, is analytic there. Although this function is usually called the Riemann
zeta function, it was actually introduced by Euler, who showed that

o=[11=

p

if R(s) > 1, (6.4.5)

where the product is over all prime numbers. To check (6.4.5), first observe that,
when PR(s) > 1, not only the series defining ¢ but also the product in (6.4.5) are
absolutely convergent. Indeed,

—R(s) —NR(s)
1 — — p < p s
1 — p—s |1 _ p—s| - 1= Z—W(X)
and therefore
1 270 S
_ (s)
Sl s <o

By Exercises 1.5 and 1.20, this means that both the series and the product are inde-
pendent of the order in which they are taken. Thus, if we again enumerate the prime
numbers in increasing order, 2 = p; < --- < pg < ---, and take D(¥) to be the set
of n € Z* that are not divisible by any p; with k > ¢, then

l

C(s) = Jim Z ‘“""H 1

nE[

_pk*S'

The elements n of D(€) are in a one-to-one correspondence with (my, ..., my) € N¢
determined by n = Hi:l pi*. Hence


http://dx.doi.org/10.1007/978-3-319-24469-3_1
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1 - - —Ymk —8§\mg 1
R I 0 | Dol |

neDy my,....mp=0 k=1 k=1 m;=0 k=1 - Pk

Clearly (6.4.5) follows after one lets £ — oo.

Besides establishing a connection between the zeta function and the prime num-
bers, (6.4.5) shows that, because the product on the right hand side is absolutely
convergent and contains no factors that are 0, ((s) # 0 when R(s) > 1. Both of
these properties are important because they allow us to relate ¢ to ® via the equation

¢'(s) log p log p .
_ - = R 1. 6.4.6
) =X =0 D R =1 (640

Since the series converges uniformly on compact subsets of the region

17 P (pA D
{s € C: R() > }, it determines an analytic function there. Thus, the extension
of ®(s) — Ll that we are looking for is equivalent to the same sort of extension of

6]
C(s)
role.

+ ﬁ, and so an understanding of the zeroes of ¢ will obviously play a crucial

Lemma 6.4.4 Ser f(s) = ((s) — ;=7 when R(s) > 1. Then f admits an analytic
extension to {s € C : R(s) > 0}, and so ¢ admits an analytic extension to the region
{s € C\{1} : R(s) > 0}. Furthermore, if s # 1 and R(s) > 1, then ((s) # 0.
Finally, ®(s) — ﬁ extends as an analytic function on an open set containing {s €

C: R(s) > 1}

Proof We begin by showing that f admits an analytic extension to {s € C :
R(s) > 0}. To see how this is done, make the change of variables y = logx to
show that if $R(s) > 1, then

1 ! ' 1
/ —dx = / el loex =1 gy =/ e gy = .
[1,00) X* [1,00) [0.00) 1—s

1 o n+1 1 1
w-1—==> (;—;)dx

when fR(s) > 1. Since

Thus

1 1

s~ | =18l
n’ X

X
s |
/ny dy’fm forn <x<n-+1,

the preceding series converges uniformly on compact subsets of {s € C : R(s) > 0}
and therefore determines an analytic function there. Thus f admits an analytic exten-
sionto {s € C: R(s) > 0}, and so s ~~ ((s) = f(s) + ﬁ admits an analytic
extension to {s € C\{1} : R(s) > 0}.
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We already know from (6.4.5) that {(s) # 0ifR(s) > 1.Nowsetz, = 1+ i« for
a € R\{0}. Because ( is analytic in an open disk centered at z,, and is not identically
0 on that disk, (6.2.3) implies that there exists an m; which is the smallest m € N
such that (" (z,,) # 0. Further, using (6.2.3), one sees that

my; = lime M —lime®(z, + ¢€).
e\O C(Za —+ 6) e\

Because ((s5) = m when R(s) > 1, m; = —lima €P(z_, + €). Applying the
same argument to z,, and letting 7, be the smallest m € N for which (" (z,,) # 0,
we also have that my, = —limga o @ (z+24 + €). Now remember that the function
f(s)=C{(s) — A%] is analytic on {s € C : Pi(s) > 0}, and therefore

. (49 . 1=Ef(1+¢
lime—— = —lim——— = —1,
0 ((e) O 14+ef(1+e)

which, by (6.4.6), means that lim. o e® (1 4 ¢) = 1. Combining these, we have

2my — 8my + 6 = lim 22: Y Vo +etira
—zmy — om = € € lro
2 ! e\0 —_ 2+r

=lime

ia —iayd cos(alo 1o
(P + p~ie) ogp:16limz( (alog p)) 82
N0 - plte N0 >

p1+e

and this is possible only if m; = 0. Therefore ((1 4 i) #~ 0 for any real . # O.

In view of the preceding, we know that, for each r € (0, 1), CC ((Y) is analytic in an
open set containing {s € C\D(1, r) : PR(s) > 1}, and therefore, by (6.4.6), the same
is true of ®(s). Thus, to show that ®(s) — ﬁ extends as an analytic function on an
open set containing {s € C : PR(s) > 1}, it suffices for us to show that there is an
r € (0, 1) such that it extends as an analytic function on D(1, r), and this comes down

to showing that NO] + — admits such an extension. But ()= fl(s)—(s—1)72,

and so ¢
¢'(s) + L f)+—Df'(s)
C(s) s—1 " 14+ —1Df(s)

for s close to 1. Since this means that & ((f)) + = 1 stays bounded as s — 1,
Theorem 6.2.5 implies that it has an analytlc extension to D(1,r) for some

r e (0,1). ]

Lemma 6.4.4 provides the information that was needed in order to apply Theo-
rem 6.4.3, and we have therefore completed the proof of (6.4.1).

There are a couple of comments that should be made about the preceding. The first
is the essential role that analytic function theory played. Besides the use of Cauchy’s
formula in the proof of Theorem 6.4.3, the extension of { to {s € C\{1} : R(s) > 0}
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would not have possible if we had restricted our attention to R. Indeed, just staring at
the expression ((s) = Z:o:1 nls fors € (1, 00), one would never guess that, as it was
in Lemma 6.4.4, sense can be made out of (%) In the theory of analytic functions,
such an extension is called a meromorphic extension, and the ability to make them is
one of the great benefits of complex analysis. A second comment is about possible
refinements of (6.4.1). As our derivation shows, the key to unlocking information
about the behavior of 7 (n) for large n is control over the zeroes of the zeta function.
Newman’s argument allowed us to get (6.4.1) from the fact that ((s) # 0if s # 1
and PR(s) > 1. However, in order to get a more refined result, it is necessary to know
more about the zeroes of (. In this direction, the holy grail is the Riemann hypothesis,
which is the conjecture that, apart from harmless zeroes, all the zeroes of ( lie on the
vertical line {s € C: R(s) = %}, but, like any holy grail worthy of that designation,
this one remains elusive.

6.5 Exercises

Exercise 6.1 Let G be a connected, open subset of C that contains a line segment
L={a+te?:te[—1,1]} forsome o € Cand 3 € R.If f and g are analytic
functions on G that are equal on L, show that f = g on G.

Exercise 6.2 According to Exercise 5.2,
'(2 1’2
/ e T dx = 2mwe?
R

for z € R. Using Exercise 6.1, show that this equation continues to hold forall z € C.

Exercise 6.3 Let f : R — C be a function that is Riemann integrable on compact
intervals and for which

/ f(t)dt = lim /r f(@®)dt
(_Oo’oo) r—>00 —r

exists in C. Then, by 5.1.2, we know that

/f(t+£)dt= lim/ f(t+§)dt=/f(t)dt
R r=oo ) R

for £ € R. The purpose of this exercise is to show that, under suitable conditions,
the same equation holds when £ is replaced by a complex number.

Suppose that f is a continuous functionon {z € C : 0 < J(z) < n}thatis analytic
on{z € C: 0 < J(z) < n} for some n > 0. Further, assume that fR f(@®)dt € C
exists and that


http://dx.doi.org/10.1007/978-3-319-24469-3_5
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204 6 A Little Bit of Analytic Function Theory

U

]
lim f(&Er+iy)dy =0.

r—00 0

Using (6.1.3) for the region {z = x +iy € C: |x| <r & y € (0, n)}, show that

/f(t+£+in)dt: lim /r f(t+£+i7])dt:/f(t)dt
- r—oo [_, R

for all £ € R. Finally, use this to give another derivation of the result in Exercise 6.2.

Exercise 6.4 Here is an elementary algebraic proof of (6.3.2). Letg and by, ..., b,
be as they are there, and use the product representation of g to see that

n

Z%—l forz € C\{b1, ..., b,}
k=1

has a unique extension as an at most (n — 1)st order polynomial P on C. Further,
show that P(b;) = 0 for 1 < k < n, and conclude that P must be 0 everywhere.

Exercise 6.5 Show that

g 1 o .
—dp=—=— ifa > 1.
0 a-+cosp a2 —1

To do this, first note that the integral is half the one when the upper limit is 27 instead

of 7. Next write the integrand as and conclude that

e'v
Qae'?+ei2P+1°

m 1 2m eigp
0 a-+cosyp o €% +2ae? +1

Now apply (6.3.2) and (6.2.5) to complete the calculation.

Exercise 6.6 Show that

/27r Ly ( L, ) if a| > 1
—dp=n7 if la| > 1.
o a’+sin’e 7 Jai+1 a2 -1

This calculation can be reduced to one like that in Exercise 6.5 by first noting that
a® +sin® p = (a + i sin @) (a — i sin ).

Exercise 6.7 Show that 1
s

—dx = —,
r 1 +x V2

that
cos(ax) _m(l+a)

7 dx = foraa >0
r (14 x2)2 2e
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/ sin” x _ 7r(e2 —-3)
¢! +x2)2 4e?

Exercise 6.8 Let 11 € (0, 1) and a € C\Z, and define

and that

eifr(2p,—l)z

f)= m for z € C\(Z U {a}).

By applying Theorem 6.3.1 to the integral of f around the circle S! (O, n+ %) for
n > a and then letting n — o0, show that

1 oo ei27r/1,k eiﬂ'(Z/L—l)a

™ = a— k sin(ma)

Exercise 6.9 Let z : [a, b)] —> C be a closed, piecewise smooth path, and set

1 bz (@)
N(z) = / 20 —2 dt

for z ¢ {z(¢) : t € [a, b]}. As we saw in the discussion following Lemma 6.2.9,
N (z) is the number of times that the path winds around z, but there is another way
of seeing that N (z) must be an integer. Namely, set

a(t):/ ﬂdT,

(1) — 2

and consider the function u(r) = e~ (z(t) — z). Show that u’(r) = 0 for all but a
finite number of ¢ € [a, b], and conclude that e = % In particular, e*® = 1,
and so o(b) must be an integer multiple of i27. Next show that if G is a connected

open subset of C\{z(¢) : t € [a, b]}, then z ~» N(z) is constant on G.

Exercise 6.10 Let H be the space of analytic functions f on C for which

1 2
£l = \/—/ |f(@)IPe7 1 dx dy < oco.
T Jc

It should be clear that H is a vector space over C (i.e., linear combinations of its
elements are again elements). In addition, it has an inner product given by

1 N 2
rghn =~ / F@a@e < dx dy.
™ Jc
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(i) Forr > 0 and ¢ € C, set

1
M, (Q) = m/ f(z)dxdy,

D(C,r)
show that
1 1
0<— If (@) = M (O dxdy = — \f@Fdxdy — M. (O,
= JDE.r) T JDCr)

and, using (6.2.2), conclude that

1 eI £l
sup [f(Q] =< pp— lf@)ldxdy < ————. (6.5.1)
¢eD(,r) T JD(0,2r) Ay

(ii) From (6.5.1) we know that || /|| = O if and only if f = 0. Further, using
the same reasoning as was used in Sect.4.1 in connection with Schwarz’s inequality
and the triangle inequality, show that

I(fs Drl = 1 fllrllgliz and floof + Bgllre < |l f 7 + 18119l %

(iii) Let { f, : n > 1} be sequence in H, and say that { f, : n > 1} converges in H
to f € Hiflim, . || fu — fll2x = 0. Show that H with this notion of convergence
is complete. That is, show that if

Tim_sup | f = fullze =0,
then there exists an f € H to which {f, : n > 1} converges in H. Here are some
steps that you might want to take. First, using (6.5.1) applied to f,, — f,, the obvious
analog of Lemma 1.4.4 for functions on C combined with Theorem 6.2.6 show that
there is an analytic function f on C to which {f, : n > 1} converges uniformly
on compact subsets. Next, given € > 0, choose m, so that || f, — fillx < € for
n > m > m,, and then show that

( /7 1£(2) = fu@ e dx dy)z

D(0,r)

D(0,r)

= (/ | fu(@) = fu(@)Pe dxdy)z <e

n—00

for allm > m, and r > 0. Finally, conclude that f € H and || f — f.|lnx < e for all
m > me.
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A vector space that has an inner product for which the associated notion of con-
vergence makes it complete is called a Hilbert space, and the Hilbert space H is
known as the Fock space.

Exercise 6.11 This exercise is a continuation of Exercise 6.10. We already know
that 7 is a Hilbert space, and the goal here is to produce an orthonormal basis for 7.

(i) Set & = 5(8; — idy), note that Ome=l" = 7=l and use integration by
parts to show that
() / F()77e 1 dx dy =/ F™ (e dxdy form > 0and f € H.
c C
(ii) Use (%) and 5.4.3 to show that

— 2
/z’"z”e"“‘ dxdy = 6y mm! form, n e N.
C

Next, sete,,(z) = (m!)~ 2 7™, and, using the fact that (e,,, ;)7 = J,,.,, show that the

e,,’s are linearly independent in the sense that for any n > 1 and «, ..., o, € C,
n
ZQmem =0 = apy=---=q, =0.
m=0

Use this to prove that {e, : n > 0} is a bounded sequence in H that admits no
convergent subsequence.

(iii) The preceding proves that H is not finite dimensional, and the concluding
remark there highlights one of the important ways in which infinite dimensional
vector spaces are distinguished from finite dimensional ones. At the same time, it
opens the possibility that (e, ..., e,, ...) is an orthonormal basis. That is, we are
asking whether, in an appropriate sense,

o0
(%) f =D (f en)re, forall feH.
m=0
To answer this question, use (), polar coordinates, and (6.2.1) to see that

/ f@77e F dx dy = 7 £™(0)
C

and therefore that

o0 o0 (m) 0
D (fremmen@) = ! m,( Lon = f@.
m=0 m=0 !
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Hence, () holds in the sense that the series on the right hand side converges uni-
formly on compact subsets to the function on the left hand side.

(iv) Given f € H, set f, = Z;:O( f, eu) ey In (iii) we showed that f, — f
uniformly on compact subsets, and the goal here is to show that || f, — f|l —> O.
The strategy is to show that there is a ¢ € ‘H such that || f,, — gll%x —> 0. Once
one knows that such a g exists, it essentially trivial to show that g = f. Indeed, by
applying (6.5.1) to g — f,, one knows that f,, —> ¢ uniformly on compact subsets
and therefore, since f,, —> f uniformly on compact subsets, it follows that f = g.
One way to prove that { f,, : n > 0} converges in H is to use Cauchy’s criterion (cf.
(iii) in Exercise 6.10). To this end, show that (f,,, f — f,)» = 0 for all n > 0, and
use this to show that

1F 15 = 1Al + 1 = fullz = W fallze = D2 1Cf endael.

m=0

From this conclude that anozo [(f, en)r|* < 0o and therefore

sup [ fu = full3, =sup D [(f.e)nl* — 0 asm — oo.

n>m n>m k:erl



Appendix

The goal here is to construct, starting from the set Q of rational numbers, a model
for the real line. That is, we want to construct a set R that comes equipped with the
following properties.

(1) There is a one-to-one embedding @ taking Q into R.

(2) There is an order relation “<” on R such that, for all s, € Q, @(r) < D (s) if
andonly if s < r and, forallx, ye R,x <yorx =yory < x (i.e.,x > y).

(3) There are arithmetic operations (x, y) € R? — (x + y) € Rand (x,y) €
R? —> xy € Rsuchthat @(r +5) = @(r) + @(s) and @(rs) = @(r)PD(s)
for all r, s € Q. Furthermore, these operations have the same properties as the
corresponding operations on Q.

(4) Define |x| = £x depending on whether x > @(0) (i.e., x = @(0) orx > ®(0))
or x < @(0), and say that a sequence {x, : n > 1} C R converges tox € R
and write x,, —> x if foreachr € Q* = {r € Q : r > 0} there is an m such
that |x — x,| < r when n > m. Then for every x € R there exists a sequence
{rn : n>1} C Q such that @ (r,) —> x.

(5) The space R endowed with the preceding notion of convergence is complete.
That is, if {x, : n > 1} C R and, for each r € Q™ there exists an m such that
|X;, — x| < r when n > m, then there exists an x € R to which {x, : n > 1}
converges.

Obviously, if it were not for property (5), there would be no reason not to take
R = Q. Thus, the challenge is to embed Q in a structure for which Cauchy’s criterion
guarantees convergence. There are several ways to build such a structure, the most
popular being by a method known as “Dedekind cuts”. However, we will use a
method that is based on ideas of Hausdorff.

Use R to denote the set of all maps, which should be thought of sequences,
S : Zt — Q with the property that for all » € Q™ there exists ani € Z™ such that
IS(j) — S@)| < rif j >i.Given S, S’ € R, say that §’ is equivalent to S and write
S’ ~ S if for each r € Q7 there exists an i € Z* such that [S'(j) — S(j)| < r for
Jj > i. Then ~ is an equivalence relation on R in the sense that, for all S, S’ € R,
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S~8, 8 ~8 &> S~ 8. and S ~ S if there exists an S” € R such that
S ~ 8" and §' ~ S”. The first two of these are obvious. To check the third, for a
givenr € QF choose i so that |S(j) —S”(j)| VIS (j) = S"(j)| < 5 for j > i. Then

IS'G) = SO =18 () = S" DI+ 1S"() = SN <7 for j =i

Lemma A.1 IfS € R, { Jet k=11 € 77 is a strictly increasing sequence, and
S'(k) = S(jx) fork > 1, then S’ € Rand S' ~ S.

Proof It is obvious that S’ € R. To see that §' ~ S, given r € Q, choose i so that
IS(j) — 8@@)| < 5 for j > i. Then

1SGi) = S = [S0K) = SO+ 1Sk) = SO =r fork =1 u

Given a sequence {S, : n > 1} C R, we will say that {S,, : n > 1} converges to
S € R and will write S, —> S if, for each r € Q, there exists an (m, i) € (Z1)?
such that |S,(j) — S(j)| < r forn > m and j > i. Notice that {S,, : n > 1} can
converge to more than one element of R. However, if it converges to both S and §’,
then S ~ S. Next, say that {S, : n > 1} is Cauchy convergent if for all r € Q*
there exists an (m, i) € (Z1)? such that |S,(j) — S, (j)| < r for all n > m and
J > 1i.Itis easy to check that if {S, : n > 1} converges to some S, then it is Cauchy
convergent.

Lemma A.2 Assume that {S, : n > 1} C R is Cauchy convergent. Then for each
r € QF there exists an i such that |S,(j) — Sy())] < r foralln > 1 and j > i.
Furthermore, if S, ~ S, for eachn € Z* and (S, : n > 1} is Cauchy convergent,
then for each r € Q% there exists an (m, i) € (Z7)? such that |S,(j) — Sy ()| < r
foralln > mand j > i. In particular, if S, —> S and S;, —> S, then S’ ~ S.

Proof Given r € Q%, choose (m,i’) € (Z)? so that |S,(j) — Sn(j)| < 5 for
n > mand j > i’. Next choose i > i’ so that [S¢(j) — Se(i)| < 5forl <€ <m
and j > i. Then, forn > mand j > i,

1$0(J) = Sn D] = 152 () = S (DI + [Sm () = S (D] + 1S (0) = Su (D] < 1.

Hence |S,(j) — S,(i)| <rforalln > 1and j > i.
Now assume that S;, ~ S, for all n and that {S) : n > 1} is Cauchy convergent.
Given r € Q, use the preceding to choose i so that

15,(72) = Sy GOV 1Su(j2) = Sp(j)| < ¢ foralln > land ji, jo > i,

,
5
and then choose m and i > i’ so that |S,, (i) — S, (i)| < 5 and

1S, (1) = S, DIV 1S0(j) = Sw(D] < ¢ forn > mand j > i.

|
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Then, forn > m and j > i,

1S, (1) = Su(DI = 18,() = S (D + 185, () = Sy (D] 418, (0) = S ()]
+ 1S (@) = S (DI + 1S () = Su(DI =7

Finally, if S, — S and S, — S, then forany n > m and j > i

1S'(7) = SDI = 1S () = SN+ 18, () = Sa (D] + 182 () = S
<71 +18'G) = S, DI+ 1SG) = Sa (I

and so, by taking n sufficiently large, we conclude that |S'(j) — S(j)| < 2r for all
sufficiently large ;. ]

Lemma A3 If{S,: n> 1} C R is Cauchy convergent, then there exists an S € R
to which it converges.

Proof By Lemma A.2, there exists a sequence {i,’c : k > 1} € Z* which is strictly
increasing for which [, (j) — S,(i;)| < % foralln > 1and j > i;. Next, because
{S, : n > 1} is Cauchy convergent, we can choose strictly increasing sequences
{my : k> 1} € Z' and {iy : k > 1} such that, for each k > 1, i, > i,’( and
[Sp(J) — S (DI < %for all n > my and j > ir. Define S(j) = Sp;(j) for
j € Z*. Itis obvious that S € R.In addition, for n > my and j > i,

1S0(j) = SDI = 180 (J) = Sa (G| + [Sn (i) — Sy ()|

+ 1Smi () = S G+ 1Smy (1) — S () < 7. D

s

We are now ready to describe our model for R. Namely, for each S € f& let
[S]1 = {5 € R: S ~ S} be the equivalence class of S, and take R to be the set
{[S]: S € R} of equivalences classes. Because ~ is an equivalence relation, it is
easy to check that § € [S] and that either [S] = [S"] or [S'] N [S] = @. Thus R is a
partition of R into mutually disjoint, non-empty subsets. We next embed Q into R
by identifying r € Q with [R], where R is the element of IR such that R( j) =r for
all j € Z*. That is, the map @ in (1) is given by @ (r) = [R]. Although it entails an
abuse of notation, we will often use r to play a dual role: it will denote an element
of Q as well as the associated element @ (r) = [R] of R.

The next step is to introduce an arithmetic structure on R. To this end, given
S, T € R define S 4+ T and ST to be the elements of R such that S+7)(y) =
S()+T(j)and (ST)(j) = S(j)T(j) for j € Z*. Itis easy to check that if ' ~ S
and T/ ~ T,then S’ +T' ~ S+ T and S'T" ~ ST. Thus, given x, y € R, where
x = [S]and y = [T], we can define x + y and xy unambiguously by x +y = [S+T]
and xy = [ST], in which case it is easy to check that x +y = y + x, xy = yx,
x+y)+z=x+((+2),and (x + y)z = xz + yz. Similarly, if x = [S], then
we can define —x = [—S], in which case x + y = 0 if and only if y = —x. Indeed,
it is obvious that y = —x == x + y = 0. Conversely, if x = [S], y = [T], and



212 Appendix

x+y = 0,thenforall € Q" there exists an i such that |S(j)+T (j)| < rforj > i.
Since this means that |T(j) — (—S(j))| <r for j > i, it follows that T ~ —S§ and
therefore that y = [—x]. Finally, it is easy to check that @ (r + s) = @ (r) + D(s)
and @ (rs) = & (r)@(s) forr, s € Q and that @ (—r) = —D(r) forr € Q.

Lemma A4 Forany S € R, [S] # 0 if and only if there exists anr € QT and an
i such that either S(j) < —r forall j > i or S(j) > r for all j > i. Moreover, if
x, ¥y € R, then xy = 0 if and only if either x = 0 or y = 0. Finally, if x # 0, then
there exists a unique % € R such thatx% =1, and q)(%) = %forr e Q\ {0}

Proof Because [S] # 0, there exists an » € Q% and arbitrarily large j € Z* for
which [S(j)| > r. Now choose i so that |S(j) — S(i)| < 7 for j > i.If S(j) > r for
some j > i, then S(j) > %for all j > i. Similarly, if S(j) < —r for some j > i,
then S(j) < —5 forall j > i.

It is obvious that xO = 0 for any x € R. Now suppose that xy = 0, where
x =[S]and y = [T].If x # 0, use the preceding to choose rg € Q* and i such that
IS()I = ro for j = ig. Then [S()HT (j)| = rolT(j)| for all j > ip. Since xy = 0,
for any r € Q7 there exists an i > ig such that |S(j)T(j)| < ror and therefore
|T(j)| <rforj>i.HenceT ~0andsoy =0.

Finally, assume that x # 0. To see that there is at most one y for which xy = 1,
suppose that xy; = 1 = xy,. Then x(y; —y2) = 0, and so, since x # 0, y; —y» = 0.
But this means that —y, = —y; and therefore that y; = y,. To construct a y for
which xy = 1, suppose that x = [S] and choose » € QT and i so that [S(j)| > r
for j > i. Next, define S’ so that S'(j) = r for 1 < j < i and S'(j) = S(j) for

Jj > i.Then S8’ ~ S, and so x = [S']. Finally, define T (j) = ﬁ” forall j € ZT,
and observe that 7 € Rand S'T = 1. Hence x[T] = 1, and so we can take )l—c =[T].
Obviously, & (1) = % forr € Q \ {0}. O

We now introduce an order relation on R. Given S, T € R, write § < T if there
existsanr € Q1 andani suchthat S(j) +r < T(j)forj > i.IfS' ~ Sand T’ ~ T,
then S < T = §’ < T’.Indeed, choose r € QT and i so that S(j) +r < T(j)
for all j > ig, and then choose i > ig so that |S'(j) — S())| vV IT'(j) = T()| <
for j > i.Then §'(j) + 5 < T'(j) for j > i. Thus, we can write x < y if x = [S]
and y = [T] with S < T. Further, if we write x > y when y < x, then we can say
that, forany x, y € R, x < y,x > y, or x = y. To see this, assume that x # y. If
x = [S]and y = [T], then, by Lemma A.4, there exists an r € Q" and i such that
S(j)—T(j) < —rforall j >iorS(j)—T(j) >rforall j > i.In the first case
x < y and in the second x > y. Itis easy tocheckthatx <y <— —x > —y, and
clearly, foranyr, s € Q,r <s <= @(r) < @(s). Finally, we will write x < y if
x <yorx=yandx > yify < x.

Define |x| as in (4). Using Lemma A.4, one sees that if x = [S] then |x| = [|S]].
Clearly x = 0 <= |x| = 0. In fact, x = 0 if and only if [x| < r for all
r € Q. In addition, |xy| = |x||y| and the triangle inequality |x + y| < |x| + |y]
holds for all x, y € R. The first of these is trivial. To see the second, assume that
x + y| # |x| + |yl. Then either [x + y| < |x| + [yl or [x + y| > [x] +|yl.
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But if [x + y| > |x] + |y|, x = [S], and y = [T], then we would have the
contradiction that [S(j)+T7 (j)| > |S(j)|+|T (j)| for large enough j. Now introduce
the notion of convergence described in (4). To see that {x,, : n > 1} can converge to
at most one x, suppose that it converges to x and x’. Then, by the triangle inequality,
|x" — x| < |x" — xu| + |x;, — x| for all n, and so |x’ — x| < r forall r € Q™.
Finally, notice that |(x" + y) — (x + y)| = |’ — x|, |x'y — xy| = |x’ — x||y|, and,
if xx” # 0, % %, which means that the addition and multiplication
operations on R as well as division on R \ {0} are continuous with respect to this
notion of convergence.

Iy —
_;7'_

Lemma A.5 For every x € R there exists a sequence {r,, : n > 1} C Q such that
rn —> x, and so @ (Q) is dense in R.

Proof Suppose that x = [S], and set 7, = [R,,] where R,,(j) = S(n) forall j € Z*.
Given r € QT, choose m so that |[S(n) — S(m)| < % for n > m. Then

IR.(j) = S(DI=18(n) = S(NI = IS(n) — Sm)| +[S(m) = S(HI < r

forn A j > m,and so |r, — x| =[|R, — S|] <r forn > m.Thusr, — x. O

As a consequence of the preceding density result, we know that if x < y then
there is an » € Q such that x < r < y. Therefore, if x, —> x then for all
€ € (0,00) ={x € R: x > 0} there is an m such that |x, — x| < € forall n > m.

The final step is to show that R is complete with respect to this notion of conver-
gence, and the following lemma will allow us to do that.

Lemma A.6 Suppose that {x, : n > 1} C R and that for each r € Q7 there is
an m such that |x, — xp| < r for n = m. Then there exists a Cauchy convergent
sequence {S, : n > 1} C R such that S,, € x, for each n.

Proof Choose S, € x, foreachn. Then foreach (k, n) € (Z1)? thereexists my € Z7
with the property that for any n > my there is a jx., € Z" such that

1$0(J) = S (DI = i j = jin.

| =

In addition, for each (k, n) € (Z)? there exists an ik.n = Jk.n such that

|Sn(]) - Sn(ik,n)| =< for all ] > ik,na

Eal B

and, without loss in generality, we will assume that my, < my, if k; < kp and
ity < ikony if ki < kpandny < nyp.

Now define S, € IR so that S/ (k) = Sy(ix.n) fork € Z*.ByLemmaA.1, S, € x,.
Furthermore, if n > my and £ > k, then

17,(€) = 83, (O] < [Sulie.n) = Sy Gen)| + [Smi o) = Sy iem)| < 7.

Thus {S), : n > 1} is Cauchy convergent. (]
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Given Lemmas A.6 and A.3, it is easy to see that if {x, : n > 1} C R is Cauchy
convergent in R, then there is an x € R to which it converges. Indeed, by Lemma A.6,
there exist S, € x, such that {S,, : n > 1} is Cauchy convergent in I@ and therefore,
by Lemma A.3, there is an S to which it converges. Since this means that for each
r € QF there exists a (m, i) € (Z*)? such that |S,(j) — S(j)| < § forn > m and
Jj = 1,|x,—[S]] <rforn > m.With this result, we have completed the construction
of a model for the real numbers.

To relate our model to more familiar ways of thinking about the real numbers,
recall Exercise 1.7. It was shown there that if D > 2 is an integer and 2 is the
set of maps w : N — {0, ..., D — 1} for which w(0) # 0 and w(k) # D — 1
for infinitely many k’s, then for every x € (0, co) there is a unique n, € Z and
a unique w, € 2 such that x = z,fio wy (k) D™~k _Of course, if x < 0 and we
define wy : N — {0, =1, ..., —=(D — 1)} by wx(k) = —w)x|(k), then the same
equation holds. Therefore, if we define —w : N — {0, —1,...,—(D — 1)} by
(—w)(k) = —w(k) for all k € N, then we can identify R with

{0, &)} U {(n, o) : (n,0) € Z x 2},

where 0 : N — Z is given by (k) = 0 for all k € N. In terms of Hausdorff’s
construction, this would correspond to choosing the partial sums Zi:o w, (k) D"k
as the canonical representative from the equivalence class of x. The reason for work-
ing with equivalence classes rather than such a canonical choice of representatives is
that they afford us the freedom that we needed in the proof of Lemma A.6. Namely,
it is not true that for every choice of S, € x,, the sequence {S, : n > 1} is Cauchy
convergent in R just because {x, : n > 1} is Cauchy convergent in R. For example,
consider {S, : n > 1} where S,(j) =0forl < j <nand S,(j) = 1 for j > n.
Then [S,] = 1 for every n > 1, and yet {S,, : n > 1} is not Cauchy convergent.
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Chain rule, 33, 121 infinite product, 34
for analytic functions, 58 series, 3
Change of variables formula, 73 Convex
Choice function, 60, 130 function, 17, 123
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set, 123
Cylindrical coordinates, 156

D
Dense set, 11
Derivative, 14
Differentiable function
atx in R, 13
atzin C, 50
atx in RY, 102
continuously, 14
n-times, 26, 103
on a set, 14
Differentiation
chain rule, 33, 121
product rule, 14
quotient rule, 15
Dini’s lemma, 122
Directional derivative, 102
Disk in C, 46
Divergence
of vector field, 162
theorem, 164

E

Equicontinuous family, 122
uniformly, 122

Euclidean length, 99

Euler’s constant, 30

Euler’s formula, 49

Exact vector field in RZ, 169

Exponential function, 22, 47

Exterior volume, 139

F

Finite variation, 88

First derivative test, 24, 104
Flow property, 118

Fock space, 207

Fourier series, 82

Fubini’s Theorem, 132

Fundamental theorem of algebra, 179
Fundamental Theorem of Calculus, 69

G

Gamma function, 91
Geometric series, 5
Gradient, 103

Gromwall’s inequality, 115

H
Harmonic series, 5

growth of, 30
Heat equation, 126
Heine—Borel theorem, 100
Hessian, 105
Hilbert space, 207
Hilbert transform, 96
Hyperbolic sine and cosine, 54

|
Indefinite integral, 70
Indicator function, 140
Infimum, 8
Inner product, 99
Integral

along a path, 109

complex-valued on [a, b], 66

on a rectangle in RN, 130
over acurve, 111

Index

over piecewise parameterized curve, 113

real-valued on [a, b], 60
Integration by parts, 96
formula, 71
Interior of set
inR, 6
in C, 46
inRY, 100
Interior volume, 139
Intermediate value
property, 10
theorem, 10
Intermediate value property
for derivatives, 40
for integrals, 143
Interval, 6
Inverse function, 12
Iterated integral, 135

K
Kronecker delta, 102

L

L’Hopital’s rule, 25
Laplace transform, 97
Leibniz’s formula, 14
Length

of a parameterized curve, 112

of piecewise parameterized curve, 113

Limit inferior, 8
Limit point, 3
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Limit superior, 8

Lindelof property, 121

Liouville’s theorem, 180

Lipschitz continuous, 116
Lipschitz constant, 116

Logarithm function, 22, 50
integral definition, 93
principal branch, 58

M
Maximum, 8
Mean value theorem

for analytic functions, 179

for differentiable functions, 24
Meromorphic extension, 203
Minimum, 8
Multiplicity of a root, 179

N

Newton’s law of gravitation, 158, 172

Non-overlapping, 60, 128
parameterized curves, 113

Normal vector, 163

(o)
Open
ball, 100
in C, 46
set, 6, 100
Orthonormal basis, 147
for Fock space, 207
Outward pointing unit normal vector, 163

P
Parameterized curve, 110
parameterization of, 111
piecewise, 113
Parseval’s equality, 82
Partial fractions, 92, 188
Partial sum, 3
Path connected, 101, 121
Periodic
extension, 80
function, 76
Piecewise smooth path, 184
Poincaré inequality, 93
Polar angle, 160
Polar coordinates
inR?, 153
in R3, 160
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Polar representation in complex plane, 44
Power series, 46
Prime number theorem, 193
Product
converges, 34
diverges to 0, 34
Product rule, 14

Q

Quotient rule, 15

R
Radius of convergence, 47
Ratio test, 5
Real numbers
construction, 209
uncountable, 38
Residue calculus, 186
Residue of a function, 186
Riemann hypothesis, 203
Riemann integrable, 60
absolutely, 67
onI” C RN, 143
on a rectangle in RM, 130
Riemann integral
real-valued on [a, b], 60
complex-valued on [a, b], 66
on a rectangle in RN, 130
over I' C RV, 143
rotation invariance of, 150
translation invariance of, 132
Riemann measurable, 140
Riemann negligible, 131
Riemann sum, 60, 130
lower, 60
upper, 60
Riemann zeta function, 82, 200
at even integers, 84
Riemann-Stieltjes
integrable, 85
integral, 85
Roots of unity, 50
Rotation invariance, 147

S
Schwarz’s inequality, 56
for RV, 100
for Fock space, 206
Second derivative test, 40, 104
Series, 3
absolute vs. conditional convergence, 36
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absolutely convergent, 4
comparison test, 5
conditionally convergent, 5
converges, 3
radius of convergence, 47
ratio test, 5
Simple roots, 190
Slope, 14
Space-filling curve, 122
Standard basis, 102
Star shaped region in R?, 154
center, 154
piecewise smooth, 164
radial function, 154
Stirling’s formula, 31, 73
for Gamma function, 137
Subsequence, 3
Summation by parts, 37
Supremum, 8

T
Tangent vector, 162
Tauberian theorems, 196
Taylor

polynomial, 27

Index

remainder, 27

theorem for functions on R, 26, 71

theorem for functions on RV, 106, 124
Translation invariance of integrals, 132
Triangle inequality

for C, 45

for R, 2

for RY, 100

for Fock space, 206

U
Uniform convergence, 13
Uniform norm, 64

A\

Vector field, 113

Volume, 140
exterior, 139
interior, 139

W
Wallis’s formula, 71
Winding number of a path, 186, 205
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