
A Parallel Distributed Processing Algorithm
for Image Feature Extraction

Alexander Belousov and Joel Ratsaby(B)

Electrical and Electronics Engineering Department, Ariel University,
Ariel, Israel

ratsaby@ariel.ac.il

http://www.ariel.ac.il/sites/ratsaby/

Abstract. We present a new parallel algorithm for image feature extrac-
tion. which uses a distance function based on the LZ-complexity of the
string representation of the two images. An input image is represented
by a feature vector whose components are the distance values between
its parts (sub-images) and a set of prototypes. The algorithm is highly
scalable and computes these values in parallel. It is implemented on a
massively parallel graphics processing unit (GPU) with several thou-
sands of cores which yields a three order of magnitude reduction in time
for processing the images. Given a corpus of input images the algorithm
produces labeled cases that can be used by any supervised or unsuper-
vised learning algorithm to learn image classification or image clustering.
A main advantage is the lack of need for any image processing or image
analysis; the user only once defines image-features through a simple basic
process of choosing a few small images that serve as prototypes. Results
for several image classification problems are presented.

1 Introduction

Image classification research aims at finding representations of images that can
be automatically used to categorize images into a finite set of classes. Typically,
algorithms that classify images require some form of pre-processing of an image
prior to classification. This process may involve extracting relevant features and
segmenting images into sub-components based on some prior knowledge about
their context [1,2]. In [3] we introduced a new distance function, called Universal
Image Distance (UID), for measuring the distance between two images. The UID
first transforms each of the two images into a string of characters from a finite
alphabet and then uses the string distance of [4] to give the distance value
between the images. According to [4] the distance between two strings x and y
is a normalized difference between the complexity of the concatenation xy of the
strings and the minimal complexity of each of x and y. By complexity of a string
x we mean the Lempel-Ziv complexity [5]. In [6] we presented a serial algorithm
to convert images into feature vectors where the ith dimension is a feature that
measures the UID distance between the image and the ith feature category. One
of the advantages of the UID is that it can compare the distance between two
c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 61–71, 2015.
DOI: 10.1007/978-3-319-24465-5 6

62 A. Belousov and J. Ratsaby

images of different sizes and thus the prototypes which are representative of the
different feature categories may be relatively small. For instance, a prototype of
airplane category can be a small image of an airplane over a simple background
such as blue sky.

In this paper we introduce a parallel distributed algorithm which is based on
the serial algorithm of [6]. Compared to [6] the current version of the algorithm
offers a very large acceleration in processing speed which allows us to test the
algorithm on more challenging image classification tasks. On a standard graph-
ics processing unit (GPU) it improves the execution speeds relative to [6] by
more than three orders of magnitude. The algorithm converts an input image
into a labeled case and doing this for the corpus of images, each labeled by its
class, yields a data set that can be used to train any ‘off-the-shelf’ supervised
or unsupervised learning algorithm. After describing our method in details we
report on the speed and accuracy that are achieved by this method.

It is noteworthy that our process for converting an image into a finite dimen-
sional feature vector is very straightforward and does not involve any domain
knowledge or image analysis expertise. Compared to other image classification
algorithms that extract features based on sophisticated mathematical analysis,
for instance, analyzing the texture, or checking for special properties of an image,
our approach is very basic and universal. It is based on the complexity of the
‘raw’ string-representation of an image. Our approach is to extract features auto-
matically just by computing distances from a set of prototypes images that are
selected once at the first stage.

The algorithm that we present here is designed with the main aim of scalable
distributed computations. Building on recent ideas [7], we designed it to take
advantage of relatively cheap and massively-parallel processors that are ubiqui-
tous in today’s technology. Our method extracts image features that are unbiased
in the sense that they do not employ any heuristics in contrast to other com-
mon image-processing techniques [1,2]. The features that we extract are based
on information implicit in the image and obtained via a complexity-based UID
distance which is an information-theoretic measure.

2 Distance

The UID distance function [3] is based on the LZ- complexity of a string. The
definition of this complexity follows [4,5]: let S, Q and R be strings of characters
that are defined over the alphabet A. Denote by l(S) the length of S, and S(i)
denotes the ith element of S. We denote by S(i, j) the substring of S which
consists of characters of S between position i and j (inclusive). An extension
R = SQ of S is reproducible from S (denoted as S → S) if there exists an
integer p ≤ l(S) such that Q(k) = R(p+k−1) for k = 1, . . . , l(Q). For example,
aacgt → aacgtcgtcg with p = 3 and aacgt → aacgtac with p = 2. R is obtained
from S (the seed) by first copying all of S and then copying in a sequential
manner l(Q) elements starting at the pth location of S in order to obtain the Q
part of R.

A Parallel Distributed Processing Algorithm for Image Feature Extraction 63

A string S is producible from its prefix S(1, j) (denoted S(1, j) ⇒ S), if
S(1, j) → S(1, l(S) − 1). For example, aacgt ⇒ aacgtac and aacgt ⇒ aacgtacc
both with pointers p = 2. The production adds an extra ‘different’ character at
the end of the copying process which is not permitted in a reproduction.

Any string S can be built using a production process where at its ith step we
have the production S(1, hi−1) ⇒ S(1, hi) where hi is the location of a character
at the ith step. (Note that S(1, 0) ⇒ S(1, 1)). An m-step production process of S
results in parsing of S in which H(S) = S(1, h1)·S(h1+1, h2) · · ·S(hm−1+1, hm)
is called the history of S and Hi(S) = S(hi−1+1, hi) is called the ith component
of H(S). For example for S = aacgtacc we have H(S) = a · ac · g · t · acc as the
history of S. If S(1, hi) is not reproducible from S(1, hi−1) then the component
Hi(S) is called exhaustive meaning that the copying process cannot be continued
and the component should be halted with a single character innovation. A history
is called exhaustive if each of its components is exhaustive. Every string S has a
unique exhaustive history [5]. Let us denote by cH(S) the number of components
in a history of S. The LZ complexity of S is c(S) = min {cH(S)} where the
minimum is over all histories of S. It can be shown that c(S) = cE(S) where
cE(S) is the number of components in the exhaustive history of S.

A distance for strings based on the LZ-complexity was introduced in [4] and
is defined as follows: given two strings X and Y of any finite alphabet, denote
by XY their concatenation then define

d(X,Y) := max {c(XY) − c(X), c(Y X) − c(Y)}
(see several normalized versions of d in [4]). In [3,6] we have found that the
following normalized distance

d(X,Y) :=
c(XY) − min {c(X), c(Y)}

max {c(X), c(Y)} (1)

is useful for image classification.
In [7] we introduced a parallel distributed processing algorithm (LZMP) for

computing the complexity c(X) of a string X. Let us denote by dp(X,Y) the
distance between X and Y where the complexity c is computed by the LZMP
algorithm. Thus (1) is now represented by its parallel counterpart

dp(X,Y, a, b) :=
LZMP (XY) − min {a, b}

max {a, b} (2)

where a, b are the LZ-complexity values of the string X, Y , respectively, and for
efficiency they are pre-computed as seen for instance in Procedure DMat, step
2(IV).

3 The Algorithm

We describe the parallel algorithm for image feature extraction, starting with a
listing of several procedures followed by the main part which is split into several

64 A. Belousov and J. Ratsaby

Procedure LZMP. computes LZ complexity of a string (parallel processing
over all symbols of string)
1. Input: string S = {S[i]}ni=1

2. Initialize:
I. H history buffer

II. m := 0, length of history buffer
III. d := 0 number of components in exhaustive history
IV. SM shared memory variable common to all threads
V. Q number of computing threads

VI. {Tq}Qq=1 , Tq is a single computing thread
3. Launch threads Tq , 1 ≤ q ≤ Q, in parallel, each executes the code below

I. while(m < n)
A. SM := 0
B. for(l = 0 to �m/Q�)

i. initialize variable j(q) = q + l · Q
ii. if(j(q) < m)

a. initialize variable ij(q) := 0

b. initialize variable kj(q) := j(q)

c. initialize variable hj(q)
:= m − j(q)

d. while(H[kj(q)] = S[m + ij(q)])
1. ij(q) := ij(q) + 1
2. kj(q) := kj(q) + 1
3. hj(q)

:= hj(q) − 1

4. if(hj(q) = 0 or m + ij(q) = n)
I. break;

5. end if;
e. end while;
f. if(hj(q) = 0 and m + ij(q) < n)

1. initialize zj(q) := m

2. while(S[zj(q)] = S[m + ij(q)])
I. zj(q) := zj(q) + 1

II. ij(q) := ij(q) + 1

III. if(m + ij(q) = n)
A. break;

IV. end if;
3. end while;

g. end if;
h. if (ij(q) > SM)

1. SM := ij(q) , // winner thread overrides
i. end if;

iii. end if;
C. end for;
D. synchronize all threads Tq , 1 ≤ q ≤ Q
E. if(q = 1)

i. H := H + substring(S[m], S[m + SM + 1])
ii. d := d + 1
iii. m := m + SM + 1

F. end if;
G. synchronize all threads Tq , 1 ≤ q ≤ Q

II. end while;
4. Output: LZMP (S) = d, the LZ-complexity of string S

A Parallel Distributed Processing Algorithm for Image Feature Extraction 65

sub-algorithms. Procedure LZMP computes the LZ-complexity of a given string.
It runs in parallel over the symbols that comprise the string. The procedure
appears in [7] and we enclose it here for completeness. Procedure VLZMP com-
putes the LZ-complexity of a set of input strings in parallel. Procedure DMat
computes the UID distance of every pair of strings from two given input lists, in
parallel. The variable ip,q denotes an index variable of the computing block Bp,q

(each block has its own local memory and set of variables). The main algorithm
is split into sub-algorithms (as done in [6]) which are numbered from 2 to 4 and
the letter P denotes that it is a parallel computing algorithm. Algorithm 2P
selects the prototype images (its serial version is Algorithms 1 and 2 of [6]).

Algorithm 2P. Prototypes selection
1. Input: M image feature categories, and a corpus CN of N unlabeled colored (RGB)

images {Ij}N
j=1.

2. for (i := 1 to M) do
I. Based on any of the images Ij in CN , let the user select Li prototype images{

P
(i)
k

}Li

k=1
and set them as feature category i. Each prototype is contained by

some image, P
(i)
k ⊂ Ij , and the size of P

(i)
k can vary, in particular it can be

much smaller than the size of the images Ij , 1 ≤ j ≤ N .
II. Transform each of the images of feature category i into grayscale. Each pixel

is now a single numeric value in the range of 0 to 255. We refer to this set of
values as the alphabet and denote it by A.

III. Scan each of the grayscale images from top left to bottom right and form a
string of symbols from A. Denote the string of grayscale image I as X(I).

3. end for;
4. Enumerate all the prototypes into a single unlabeled set {Pk}L

k=1, where L =∑M
i=1 Li.

5. Vector of strings that corresponds to the set of all prototypes be, v =
[
X(Pk)

]L
k=1

.

6. Calculate the distance matrix H = DMat(v, v)
7. Run hierarchical clustering on H and obtain the associated dendrogram (note: H

does not contain any ’labeled’ information about feature-categories, as it is based
on the unlabeled set).

8. If there are M clusters with the ith cluster consisting of the prototypes
{
P

(i)
k

}Li

k=1
then terminate and go to step 10.

9. Else go to step 2.

10. Output: the set of labeled prototypes PL :=

{{
P

(i)
k

}Li

k=1

}M

i=1

where L is the

number of prototypes.

Algorithm 3P computes the set of cases (feature vectors) for images in
the input corpus. The algorithm utilizes a number of computing blocks which
begin to run in parallel in step 12. Steps 6 to 11 which run in serial are responsible
for converting the input images into strings of symbols.

66 A. Belousov and J. Ratsaby

Procedure VLZMP. computes a vector of LZ complexities for multiple input
strings in parallel
1. Input: vector v := {v[i]}k

i=1 = [S1, S2, S3, . . . , Sk] where Si is a string
2. Initialize:

I. u = {u[i]}k
i=1

II. n number of parallel computing blocks
III. {Bq}n

q=1 , Bq is block of multiple computing cores (threads)
3. Launch blocks Bq , 1 ≤ q ≤ n, in parallel, each executes the code below

I. for(l = 0 to �k/n�)
A. initialize index vector i = [i1, . . . , in] where iq = q + l · n
B. if (iq ≤ k)

i. u[iq] = LZMP (v[iq])
C. end if;

II. end for;
4. Output: V LZMP (v) = u

Procedure DMat. computes dp distance for all pairs of input strings in parallel
1. Input:

I. v := {v[i]}m
i=1 = [S1, S2, ..., Sm], where Si is a string

II. u := {u[j]}n
i=1 = [S′

1, S
′
2, ..., S

′
n], where S′

j is a string
2. Initialize:

I. D matrix of m×n elements, D := {D[i, j]}m,n
i=1,j=1 =

⎛
⎜⎜⎜⎜⎝

d11 d12 d13 , .., d1n
d21 d22 d23 , .., d2n
d31 d32 d33 , .., d3n
, .., , .., , .., , .., , ..,
dm1 dm2 dm3 , .., dmn

⎞
⎟⎟⎟⎟⎠

II. M · N number of parallel computing blocks
III. {Bp,q}M,N

p=1,q=1 , Bp,q is a block of multiple computing cores (threads)
IV. a := {a[i]}m

i=1 = V LZMP (v), b := {b[i]}n
i=1 = V LZMP (u), LZ-complexity

vectors
3. Launch blocks Bp,q, 1 ≤ p < M , 1 ≤ q < N , in parallel, each executes the code

below
I. for (x = 0 to �n/N�)

A. initialize index ip,q = q + x · N
B. for (y = 0 to �m/M�)

i. initialize index jp,q = p + y · M
a. if (ip,q ≤ m and jp,q ≤ n)

1. D [ip,q, jp,q] = dp (v [ip,q] , u [jp,q] , a [ip,q] , b [jp,q])
b. end if;

C. end for;
II. end for;

4. Output: DMat(v, u) = D

A Parallel Distributed Processing Algorithm for Image Feature Extraction 67

Algorithm 3P. produces a set of cases from input images (in parallel)

1. Input set P :=

{{
P

(i)
k

}Li

k=1

}M

i=1

of labeled prototype images, where P
(i)
k is kth

prototype of feature category i (obtained from Algorithm 2P).
2. Let L := |P| be the total number of prototypes
3. Input the set of all images I := {Il}N

l=1 to be represented as cases of feature vectors
4. Q is number of parallel computing blocks
5. {Bq}Q

q=1 , Bq is a block of multiple computing cores (threads)
6. Let W be a rectangle of size equal to the maximum prototype size
7. for (i := 1 to N)

I. Scan a window W across Ii from top-left to bottom-right in a non-overlapping

way, and let the sequence of obtained sub-images of I be denoted by
{
I
(i)
j

}mi

j=1

(mi is the number of windows W inside Ii).
II. for (j := 1 to mi)

A. Transform I
(i)
j into grayscale. Each pixel is represented by a single numeric

value in the range of 0 to 255. Denote by A the alphabet of these values
(same as A of Algorithm 2P).

B. Scan grayscale of I
(i)
j from top left to bottom right to form a string of

symbols from A.
C. Denote the string by Xi,j

III. end for;
IV. vi = [Xi,1, . . . , Xi,mi]

8. end for;
9. for (l := 1 to M)

I. for (k := 1 to Ll)

A. Transform P
(l)
k into grayscale. Each pixel is represented by a single numeric

value in the range of 0 to 255. Denote by A the alphabet of these values
(same as A of Algorithm 2P).

B. Scan grayscale image of P
(l)
k from top left to bottom right to form a string

of symbols from A
C. Denote the string by Yl,k

II. end for;
10. end for;
11. u := [Y1,1, Y1,2, . . . , Y1,L1 . . . , YM,1, . . . YM,LM]

Algorithm 4 is identical to that of [6] and we present it for completeness. It
uses the training cases that are produced in Algorithm 3P and uses any off-the-
shelf supervised learning algorithm to produce a classifier.

4 Results

The following hardware was used: a 2.8 Ghz AMD Phenom c©II X6 1055T
Processor with number of cores n = 6 and a Tesla K20C board with a sin-
gle GK110 GPU from nVIDIA. This GPU is based on the Keppler architecture

68 A. Belousov and J. Ratsaby

Algorithm 3P. continued...

12. Launch blocks Bq, 1 ≤ q < Q, in parallel, each executes the code below
1. for (x = 0 to �N/Q�)

I. initialize index vector i = [i1, . . . , iQ] where iq = q + x · Q
II. if (iq ≤ N)

A. Dq = DMat
(
viq , u

)
i. for (j := 1 to miq) do

a. for (l := 1 to M) do
1. temp := 0
2. for (k := 1 to Ll) do

I. temp := temp + (Dq[j, k])2

3. end for;
b. temp = (1/Ll) · temp

c. r
(q)
l :=

√
temp

d. end for;
e. Let l∗q(j) := argmin1≤l≤Mr

(q)
l , this is the decided feature category

for sub-image I
(iq)
j

f. Increment the count, c
(q)

l∗q (j)
:= c

(q)

l∗q (j)
+ 1

ii. end for;

B. Normalize the counts, V
(q)
l :=

c
(q)
l

∑M
z=1 c

(q)
z

, 1 ≤ l ≤ M

C. V (q) =
[
V

(q)
1 , . . . V

(q)
M

]
as the feature-vector (case) representation for

image Iiq
D. W [iq] = V (q)

2. end for;
13. Output: the array W of cases corresponding to the set I of input images

(with compute capabilities of 3.5). The CUDA is release 6.0 and the operating
system is Ubuntu Linux 2.6.38-11-generic.

We tested the algorithm on several two-category image classification problem
obtained from the CALTECH-101 corpus [1]. Due to the lack of space, we present
one such problem which has as categories, airplane and ketch (yacht). We chose
10 prototypes of each category simply by collecting small images of airplanes and
boats. The prototypes of airplane are of size 150 × 70 pixels and the prototypes
of ketch are of size 150× 130. Figure 1 shows a few examples of such prototypes.

The corpus of input images consist of 74 images of airplanes of size 420×200
and 100 images of yachts of size 300 × 300. It takes 345 seconds for Algorithm
3P to produce the 174 cases starting from the image corpus. Figure 2 displays
two examples of input images, one from category airplane and one from ketch
and their corresponding divisions into sub-images of size 150 × 150 (obtained in
Algorithm 3P, step 7). Note that the algorithm permits the size of prototypes to
differ and the size (or number) of sub-images to differ from one feature category
to another. We ran four learning algorithms, multi-layer perceptrons, decision

A Parallel Distributed Processing Algorithm for Image Feature Extraction 69

Algorithm 4. Image classification learning
1. Input: (1) a target class variable T taking values in a finite set T of class categories,

(2) a set DT of labeled cases which is based on the M -dimensional cases in array D
obtained from Algorithm 3P and labeled with target values in T (3) any supervised
learning algorithm L

2. Partition DT using n-fold cross validation into Training and Testing sets of cases
3. Train and test algorithm L and produce a classifier C which maps the feature space

[0, 1]M into T
4. Define Image classifier as follows: given any image I the classification is F (I) :=

C(v(I)), where v(I) is the M -dimensional feature vector of I
5. Output: classifier F

Fig. 1. Three prototypes from category airplane

Fig. 2. Input images from category airplane and ketch and their respective sub-images

70 A. Belousov and J. Ratsaby

trees J48, naive-Bayes and lazy IB1, on a ten-fold cross validation using the 174
input images. Table 1 presents the accuracy results versus the baseline algorithm
(rules.ZeroR) which classifies based on the prior class probability. The configura-
tion parameter values of the learning algorithms used in WEKA [8] are displayed
under the accuracy result. As can be seen, the J48 decision tree learner achieves
the highest accuracy of 96.54% (relative to the baseline accuracy of 57.52%).

Table 1. Classification result for airplane v.s. ketch problem

Next, we considered a more challenging problem of recognizing different
image textures. We obtained the 1000 images of the Texture Database [2] which
has 25 categories of various types of real textures, for instance, glass, water,
wood, with 40 images each of size 640 × 480 per category. We chose as fea-
ture categories the categories themselves and selected five small prototypes of
size 150 × 150 from each one without using Algorithm 2P (just picking parts of
images in a random way to be prototypes). It takes about 25 h for Algorithm 3P
to produce the 1000 cases starting from the image corpus. We ran the following
classification learning algorithms: lazy IB1, decision trees J48, multi-layer per-
ceptrons, naive Bayes, random forest. Ten fold cross validation accuracy results
are displayed in Table 2 (parameter settings are displayed under the accuracy
results). As shown, the best obtained accuracy result is 70.73% which is achieved
by the random forest algorithm; this is 17.6 times better than the baseline ZeroR
classification rule.

Table 2. Classification result for the texture problem

Considering how little effort and no-expertise is needed in our approach to
image feature extraction, we believe that the results are impressive and can serve
well in settings where very little domain knowledge is available, or as a starting

A Parallel Distributed Processing Algorithm for Image Feature Extraction 71

point from which additional analysis and specialized feature extraction can be
made.

5 Conclusions

In this paper we introduce a new parallel processing algorithm for image feature
extraction. Given an input corpus of raw RGB images the algorithm computes
feature vectors (cases) that represent the images with their associated classifi-
cation target labels. Using these cases, any standard supervised or unsupervised
learning algorithm can learn to classify or cluster the images in the database. A
main advantage in our approach is the lack of need for any kind of image or data
analysis. Aside of picking once at the start a few small image prototypes, the
procedure is automatic and applies to any set of images. It can therefore be very
useful in settings with little domain knowledge or as a starting point for a more
specialized image data analysis. Our experiments indicate that the algorithm
yields relatively high accuracies on image texture classification problems.

Acknowledgement. We acknowledge the support of the nVIDIA corporation for
their donation of GPU hardware.

References

1. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few train-
ing examples: an incremental bayesian approach tested on 101 object categories
(2004)

2. Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local
affine regions. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1265–1278 (2005)

3. Chester, U., Ratsaby, J.: Universal distance measure for images. In: Proceedings
of the 27th IEEE Convention of Electrical Electronics Engineers in Israel (IEEEI
2012), pp. 1–4. Eilat, Israel, 14–17 November 2012

4. Sayood, K., Otu, H.H.: A new sequence distance measure for phylogenetic tree
construction. Bioinformatics 19(16), 2122–2130 (2003)

5. Ziv, J., Lempel, A.: On the complexity of finite sequences. IEEE Trans. Inf. Theory
22(3), 75–81 (1976)

6. Chester, U., Ratsaby, J.: Machine learning for image classification and clustering
using a universal distance measure. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.)
SISAP 2013. LNCS, vol. 8199, pp. 59–72. Springer, Heidelberg (2013)

7. Belousov, A., Ratsaby, J.: Massively parallel computations of the LZ-complexity of
strings. In: Proceedings of the 28th IEEE Convention of Electrical and Electronics
Engineers in Israel (IEEEI 2014), pp. 1–5. Eilat, 3–5 December 2014

8. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

	A Parallel Distributed Processing Algorithm for Image Feature Extraction
	1 Introduction
	2 Distance
	3 The Algorithm
	4 Results
	5 Conclusions
	References

