
I-Louvain: An Attributed Graph Clustering
Method

David Combe1,2,3, Christine Largeron1,2,3(B), Mathias Géry1,2,3,
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Abstract. Modularity allows to estimate the quality of a partition into
communities of a graph composed of highly inter-connected vertices. In
this article, we introduce a complementary measure, based on inertia, and
specially conceived to evaluate the quality of a partition based on real
attributes describing the vertices. We propose also I-Louvain, a graph
nodes clustering method which uses our criterion, combined with New-
man’s modularity, in order to detect communities in attributed graph
where real attributes are associated with the vertices. Our experiments
show that combining the relational information with the attributes allows
to detect the communities more efficiently than using only one type of
information. In addition, our method is more robust to data degradation.

Keywords: Attributed graph · Graph clustering · Social network ·
Community detection · Modularity

1 Introduction

Clustering of graph vertices is a task related to community detection within
social networks. The goal is to create a partition of the vertices, taking into
account the topological structure of the graph, in such a way that the clusters
are composed of strongly connected vertices [3,13,20,23,29]. Among the core
methods proposed in the literature, we can cite those that optimize a function
(modularity, ratio cut or its variants, etc.) in order to evaluate the quality of the
partition [10,19,25,30], the hierarchical techniques like divisive algorithms based
on the minimum cut [14], the spectral methods [34] or the Markov Clustering
algorithm and its extensions [28]. We refer to the survey of Fortunato for a
thorough discussion of community detection methods [15].

Graph clustering techniques are very useful for detecting strongly connected
groups in a graph but many of them mainly focus on the topological structure,
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ignoring the vertices properties. Nowadays, various data sources can be seen as
graphs where vertices have attributes and a new challenge in graph clustering
consists in combining the relational information corresponding to the network
and attributes describing the vertices. Generally, this is not the case in clus-
tering of vertices where only the relationships between the vertices are used,
nor in unsupervised classification based only on the attributes. Recently, several
methods have been proposed to take into account the relational information as
well as the attributes in the aim to detect patterns in attributed graphs [26,31]
or to tackle this problem of hybrid clustering [6,11]. In this article, we pro-
pose a method, called I-Louvain, which allows to partition the vertices of an
attributed graph when numerical attributes are associated to the vertices. In
social networks, these attributes can correspond to features (age or weight) or
tf-idf vector representing documents associated to the nodes. This method is
based on a local optimization of a global criterion which is a function on the one
hand of the modularity [24] and on the other hand of a new measure based on
inertia.

After a presentation of related work in Sect. 2, we define this measure, called
inertia based modularity, in Sect. 3, and the method I-Louvain in Sect. 4. The
experimental study of Sect. 5 confirms that clustering, based on the relational
information and attributes provides more meaningful clusters than methods tak-
ing into account one type of data (attributes or edges) or than ToTeM which
exploits attributes and edges [6].

2 Related Work

Recently, methods exploiting both information types were introduced in order to
detect communities in social networks or graphs where vertices have attributes.

Steinhaeuser and Chawla propose to measure the similarity between vertices
according to their attributes and then to use the result as a weight of the edge
linking the two vertices. After this pre-treatment, they use a graph partitioning
method in order to cluster the new weighted graph [32]. In the hierarchical
clustering of Li et al., after a first phase consisting in detecting community seeds
with the relational information, the final communities are built under constraints
defined by the attributes [21]. This leads to merging the seeds on the base of their
attributes’ similarity. So, in these previous methods, the two types of information
are not exploited simultaneously.

Zhou et al. exploit the attributes in order to extend the original graph [36,37].
They add new vertices representing the attributes and new edges that link origi-
nal vertices having similar attributes through these new vertices. A graph parti-
tioning is then carried out on this new augmented graph. However, this approach
cannot be used when the attributes have continuous values: it works only with
categorical attributes.

Ester et al. study the “connected k-center problem” and propose a method
called NetScan, which is an extended version of the K-means algorithm with
an internal connectivity constraint [12,16]. Under this constraint, two vertices in
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a same cluster are connected by a path that is internal to the cluster. In NetScan
as in many other partitioning methods, the number of clusters has to be known
in advance. However, this condition is relaxed in the work of Moser [22].

CESNA was introduced by Yang et al. to identify Communities from Edge
Structure and Node Attributes [35]. One advantage of this method is its ability to
detect overlapping communities by modeling the interaction between the network
structure and the node attributes.

There are some other methods, focusing on dense subgraph detection, that
integrate the homogeneity of the attributes inside the subgraphs, cf. for instance
[17,18].

Finally, we can mention a family of methods which propose to extend the
well-known Louvain algorithm and for this reason, they are probably the most
related works to our concerns. Dang et al. suggest to modify the modularity by
considering not only the link between two vertices but also the similarity of their
attributes. Thus, the two types of information are simultaneously considered in
the partitioning process but with this approach, the communities provided can
contain non linked vertices [9]. In [7], the optimization phase of the Louvain
algorithm is based not only on the modularity but also on the entropy of the
partition but, again, the two types of information are not exploited simultane-
ously.

Recently, some of these methods have been compared and these experiments
have confirmed that the detection of communities in an attributed graph is not
a trivial problem [6,11]. To solve it efficiently, we consider that the attributes
and the relational information must be exploited simultaneously and this is
not the case for several methods cited. Moreover, the majority of the meth-
ods quoted previously exploit categorical attributes but they are not suited for
numerical attributes. This is the reason for which, in this article, we propose
I-Louvain, a method to detect communities in a graph where numerical
attributes are associated to the vertices. These attributes can correspond to
features (age or weight) or to a tf-idf vector representing documents associated
to the vertex. I-Louvain consists in optimizing on the one hand the modularity
introduced by Newman [24] and on the other hand a new measure that is defined
in the next section.

3 Inertia Based Modularity

Let V be a set of N elements represented in a real vector space such that each
element v ∈ V is described by a vector of attributes v = (v1, . . . , v|T |) ∈ R

|T |.
The inertia I(V ) of V through its center of gravity g, also called second central
moment, is an homogeneity measure defined by I(V ) =

∑
v∈V ‖v − g‖2, where

‖v′ − v‖ denotes the euclidean distance between v and v′, g = (g1, . . . , g|T |), the
center of gravity of V is such that gj = 1

N

∑
v∈V vj .

The inertia I(V, v) of V through v is equal to the sum of the square euclidean
distances between v and the other elements of V : I(V, v) =

∑
v′∈V ‖v′ − v‖2.

Given a partition P = {C1, . . . , Cr} of V in r disjoint clusters, we introduce
a quality measure Qinertia(P) of P defined by:
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Qinertia(P) =
∑

(v,v′)∈V ·V

[(
I(V, v) · I(V, v′)

(2N · I(V ))2
− ‖v − v′‖2

2N · I(V )

)

· δ (cv, cv′)

]

(1)

where cv denotes the cluster of v ∈ V and δ is the Kronecker function equal to
1 if cv and cv′ are equal and 0 otherwise.

Thus, while the modularity, introduced by Newman, considers the strength
of the link between vertices in order to cluster strongly connected vertices, our
measure attempts to cluster elements which are the most similar. This appears
in the second term of the Eq. 1, which is a function of the square of the distance
between v and v′, corresponding to an observed distance between v and v′.
This observed distance between v and v′ is compared with an expected distance
deducted from their respective inertia. This expected distance, which appears in
the second term of the Eq. 1, is a function of the square distance of each of these
elements v and v′ to the other elements of V .

Therefore, Qinertia allows to compare, for each pair of elements (v, v′) from
the same community, the expected distance with the observed distance. If the
former is greater than the latter, then v and v′ are good candidates to be affected
in a same cluster.

Given the normalization factors in the denominators of the expected and
observed distances, the criterion Qinertia ranges between -1 and 1. Indeed, the
maximum value of the left term in the subtraction (Eq. 1), containing the product
of the inertia for all pairs of elements is 1. Similarly, the right term of the criterion
Qinertia (Eq. 1) can not exceed 1. Both terms are strictly positive. Consequently
the measure, constrained by the Kronecker function, varies between -1 and 1.

This criterion has several interesting properties. Firstly, it has the same value
irrespective of the affine transformation applied to the attribute vectors, in other
words the addition of a constant and / or the multiplication by a scalar of the
vectors associated to the elements do not affect the value Qinertia. Secondly, the
order of attributes has no effect on the result.

However, this criterion has also limitations. It is undefined if the vectors are
identical, since the total inertia is then zero. This is not really a problem, because
in this case, the detection of the communities will be based only on the relational
data. Moreover, as the modularity introduced by Newman, this criterion could
present a resolution limit. If it is the case, the solution proposed by Arenas et al.
or Reichardt and et al. could be adapted for our criterion [1,27].

4 I-Louvain

As stated above, a direct application of our measure Qinertia is the community
detection in social networks represented by an attributed graph G = (V,E)
where V is a set of vertices, E is a set of edges and where each vertex v ∈ V is
described by a real attribute vector v = (v1, . . . , vj , . . . , vT ) ∈ R

|T | [36]. In this
section, we propose a community detection method for real attributed graphs
which exploits the inertia-based modularity Qinertia jointly with the Newman
modularity QNG(P). Our method, called I-Louvain, is based on the exploration
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principle of the Louvain method. It consists in the optimization of the global
criterion QQ+(P) defined by:

QQ+(P) = QNG(P) + Qinertia(P) (2)

with:

QNG(P) =
1

2m
Σvv′

[

(Avv′ − kv · kv′

2m
)δ(cv, cv′)

]

(3)

where kv is the degree of vertex v ∈ V , A is the adjacency matrix associated to
G, m is the number of edges and δ the Kronecker function.

It may be noted that another combination of these criteria can be used, for
instance to give more importance to one kind of data. However, in the general
case where attributes and relational information have the same weight, it is not
useful to normalize the criteria QNG(P) and Qinertia(P) because they have
been normalized to take values between -1 and 1, as mentioned in the previous
section.

The I-Louvain method is presented in Algorithm1. The process begins with
the discrete partition in which each vertex is in its own cluster (line 1). The
algorithm is divided in two phases that are repeated.

The first one is an iterative phase which consists in considering each vertex
v and its neighbors in the graph and to evaluate the modularity gain induced by
a move of v from its community to that of its neighbors. The vertex v is affected
to the community for which the gain of the global criterion QQ+(P), defined
in Eq. (2), is maximum. This process is applied repeatedly and sequentially for
all vertices until no further improvement can be obtained.

If there is an increase of the modularity during the first phase, the
second phase consists in building a new graph G′ from the partition P ′

obtained at the end of the previous phase. This second phase involves two
procedures: Fusion Matrix Adjacency and Fusion Matrix Inertia. The procedure
Fusion Matrix Adjacency is identical to the one used in the Louvain method [4]
and it exploits only the relational information. It consists in building a new
graph. The vertices of this new graph G′ correspond to the communities obtained
at the end of the previous phase. The weights of the edges between these new
vertices are given by the sum of the weights of the edges between vertices in
the corresponding two communities. The edges between vertices of the same
community lead to a self-loop for this community in the new network.

The procedure Fusion Matrice Inertia exploits the attributes and allows to
compute the distances between the vertices of G′ from the distances between the
vertices of G. If the graph G considered at the beginning of the iterative phase
includes |V | vertices then the matrix D is a symmetric square matrix of size
|V | × |V | in which each term D [a, b] is the square of the distance between the
vertices va and vb of V . At the end of the iterative phase, a partition P ′ of V in
k communities is obtained, in which each community will correspond to a vertex
of V ′ in the new graph G′ built by the procedure Fusion Matrix Adjacency. The
matrix D′ associated to this new graph G′ is defined by:
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ALGORITHM 1 . I-Louvain
Input : An attributed graph G
Output : A partition Pres

1 P ← discrete partition of vertices of V ;
2 A ← adjacency matrix of G;
3 D ← matrix of the squares of the euclidean distances between the vertices of V

calculated on their attributes;
4 repeat
5 end ← false;

6 QQ+
anterior ← QQ+(P);

7 repeat
8 foreach vertex u of V do
9 B ← neighbor community maximizing the gain of QQ+;

10 if move of u in B induces a strictly positive gain then
11 Affect u to the community B;
12 Update the partition P after the transfer of u into B;

13 end

14 end

15 until no vertex can be moved anymore;

16 if QQ+(P) > QQ+
anterior then

17 G,A ← Fusion Matrix Adjacency(A,P);
18 D ← Fusion Matrix Inertia(D,P);

19 else
20 end ← true;
21 end

22 until end ;
23 Pres ← P;

D′ [x, y] =
∑

(va,vb)∈V ×V

D [va, vb] · δ(τ(va), x) · δ(τ(vb), y) (4)

where the function τ gives for each vertex v ∈ V the vertex v′ ∈ V ′ corresponding
to its cluster in P ′.

One advantage of the Louvain method is the local optimization of the mod-
ularity done during the first phase [2]. In the same way, in I-Louvain, the global
modularity of a new partition can be quickly updated. There is no need to com-
pute it again from scratch after each move of a vertex. Indeed, the modularity
gain can be computed using only local information concerning the move of the
vertex from its community to that of its neighbor. Given P = (A,B,C1, .., Cr)
the original partition and P ′ = (A\{u} , B∪{u} , C1, .., Cr) the partition induced
by the move of a vertex u from its community A to the community B where
A \ {u} denotes the community A deprived of the vertex u, the modularity gain
induced by the transformation of P in P ′ is equal to:

ΔQinertia =Qinertia(P ′) − Qinertia(P) (5)

=
1

N · I(V )

∑

v∈B

[
I(V, u) · I(V, v)

2N · I(V )
− D [u, v]

]
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− 1
N · I(V )

∑

v∈A\{u}

[
I(V, u) · I(V, v)

2N · I(V )
− D [v, v′]

]

(6)

The proof of this proposition is not given due to the limited size of the
article but it is detailed in [5]. One can notice that the variation of modularity
resulting from the move of the vertex u from its community to an other one is the
same whatever its new community. It follows that the modularity gain can be
computed in taking only into account the increase (or decrease) induced by its
affectation in its new community corresponding to the first term in Eq. 6. This
confirms that the optimization of Qinertia can be done using a local computation
based on the information related to the affectation of the vertex u in its new
community.

5 Evaluation of I-Louvain method

Our first experiments aim at evaluating on a real dataset the performances of
I-Louvain, which exploits attributes and relational data, compared with meth-
ods based only on one type of data, K-means for the attributes and Louvain for
the relations and with ToTeM, an other community detection method designed
for attributed graphs which exploits the two types of information, notably numer-
ical attributes [6]. In the following experiments, we study the robustness of our
method to various degradations of an artificial network and we compare its
performances, according to the accuracy as well as the normalized mutual infor-
mation, with K-means, Louvain and ToTeM. Among the methods exploiting
the both kinds of data (relationships and attributes), Totem has been retained
because it has been showned experimentally that it provides better results than
simpler methods [5,6] Finally, the last experiments aim at studying the impact
of increasing the number of vertices and edges on the run-time evolution.

The I-Louvain source code and the dataset used for the experiments in the
paper are available for download1. The Louvain source code is one proposed by
Thomas Aynaud in 20092.

5.1 Evaluation of I-Louvain method on a real network

Firstly, we present results obtained on a real dataset built using the databases
DBLP (06/18/2014) and Microsoft Academic Search (02/03/2014). DBLP allows
to generate a graph G = (V,E) with |V | = 2515 and |E| = 5313 that reflects the
coauthor relationship: a vertex represents an author and two authors are linked
if they have copublished at least one article in a conference in computer science
also refereed in Microsoft Academic Search. The 23 keywords (data mining,
Computer vision, etc.) associated to the conferences in the Microsoft Academic
Search database are used to define 23 attributes on the vertices: the number
1 I-Louvain source code and dataset: http://bit.ly/ILouvain.
2 http://perso.crans.org/aynaud/communities/.

http://bit.ly/ILouvain
http://perso.crans.org/aynaud/communities/


188 D. Combe et al.

of publications of an author in conferences associated to a given keyword cor-
responds to a component of his attribute vector. These keywords allow also to
define a partition corresponding to the ground truth for this dataset: the true
community of an author corresponds to the research field, identified by the cor-
responding key word, in which he has mainly published.

The results are evaluated using the Normalized Mutual Information (NMI)
derived from the mutual information (MI) and entropy (H), and defined by: [33]

NMI(P1,P2) =
MI(P1,P2)√
H(P1)H(P2)

(7)

Table 1 presents the results provided by I-Louvain and those obtained by
Louvain, K-means with K = 22 and ToTem. In this experiment, where we have
a ground truth, the results confirm the interest of using the two kinds of infor-
mation. Indeed the NMI of K-means is equal to 0.58 whereas the number of
clusters that must be identified is given as parameter for this algorithm, when it
is equal to 0.69 for Louvain. Moreover, with a NMI equals to 0.72, the proposed
method outperforms ToTeM which obtains only 0.69. These results confirm the
interest of I-Louvain to improve the detection of the communities.

Table 1. Evaluation according to the normalized mutual information (NMI)

Louvain K-means ToTeM I-Louvain

NMI 0.69 0.58 0.69 0.72

5.2 Evaluation of I-Louvain method on artificial data

In this second set of experiments, we evaluate the robustness of our method
on artificial networks after different transformations of a reference network R,
composed of 168 edges and 99 vertices uniformly distributed into 3 classes. This
reference network has also been generated with the model proposed by Dang [8].
Moreover, each vertex is described by an attribute following a normal distribu-
tion with a standard deviation σ equal to 7 and a mean equal to m1 = 10 for
the first class, m2 = 40 for the second class and m3 = 70 for the third class. The
class of the vertex in R is used as a ground truth for the evaluation. From this
reference network R we built four families of networks:

– R.1.x in which the relational information is weakened in R, by the substitution
of a percentage p of edges within class by edges between classes with p = 0.25
for R.1.1 and p = 0.5 for R.1.2;

– R.2.x in which the values of the attributes are less representative of each class,
with a standard deviation σ = 10 for R.2.1 and σ = 12 for R.2.2;

– R.3.x which contain more vertices than R, 999 vertices for R.3.1 and 5,001 for
R.3.2;

– R.4.x which contain more edges than R by introducing respectively 5 edges
per new vertex in R.4.1 and 10 in R.4.2.
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Table 2. Evaluation according to the accuracy (AC) and the number of clusters (#cl)
(* means that the transformation has no influence on the results for this method)

Louvain K-means ToTeM I-Louvain

AC #cl AC AC #cl AC #cl

Reference network

R 84 % 4 96 % 97 % 3 98% 3

Degradation of the relational information

R.1.1 33 % 8 96 %* 18 % 30 78% 5

R.1.2 23 % 9 96 %* 14 % 36 63% 6

Degradation of the attributes

R.2.1 84 %* 90 % 95 % 3 96% 3

R.2.2 84 %* 87 % 20 % 26 98% 3

Number of vertices

R.3.1 50 % 11 97% 97% 3 84 % 4

R.3.2 40 % 12 98% 0,5 % 1,518 85 % 4

Number of edges

R.4.1 96% 3 96 %* 95 % 3 94 % 3

R.4.2 97 % 3 96 %* 98% 3 98% 3

Table 3. Evaluation according to the NMI (* means that the transformation has no
influence on the results for this method)

NMI Louvain K-means ToTeM I-Louvain

Reference network

R 0.78 0.88 0.86 0.93

Degradation of the relational information

R.1.1 0.22 0.88* 0.48 0.60

R.1.2 0.11 0.88* 0.37 0.35

Degradation of the attributes

R.2.1 0.78* 0.72 0.81 0.88

R.2.2 0.78* 0.63 0.56 0.93

Number of vertices

R.3.1 0.59 0.88 0.85 0.80

R.3.2 0.58 0.89 0.37 0.77

Number of edges

R.4.1 0.84 0.88* 0.80 0.81

R.4.2 0.87 0.88* 0.91 0.91
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The results of I-Louvain are compared to those of the Louvain method,
K-means with k = 3 and ToTeM. Tables 2 and 3 present respectively the
accuracy (AC) and normalized mutual information (NMI). In exploiting the
attributes and the relational information, the I-Louvain method is more robust
than the Louvain method in the case of a degradation of the relational informa-
tion. The K-means gives good results when the size of the network increases,
but it requires the number of clusters as parameter. Despite this advantage,
it obtains less good results than I-Louvain in front of a degradation of the
attributes, notably for the NMI. Finally, compared to ToTeM, I-Louvain pro-
duces better or similar results. It is notably better for a larger number of vertices.

5.3 Run-Time of I-Louvain

In the last set of experiments, we evaluate the run-time of I-Louvain on different
networks. Figure 1 presents the run-time evolution against the number of vertices
|V |. In our experiments, we consider attributed networks with two attributes and
where the number of edges |E| = 3×|V |. These results indicate that I-Louvain
is able to handle large graphs.

Fig. 1. Run-time of I-Louvain on different networks G = (V,E) with |E| = 3 × |V |

6 Conclusion

In this article, we studied the problem of attributed graph clustering when the
vertices are described by real attributes. Inspired by the Newman modularity,
we introduce a modularity measure, based on inertia. This measure is suited for
assessing the quality of a partition of elements represented in a real vector space.
We also introduced I-Louvain, an algorithm which combines our criterion with
Newman’s modularity in order to detect communities in attributed graphs. We
demonstrated formally that this new algorithm can be optimized in its iterative
phase. As we show in the experiments, using jointly the relational information
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and the attributes, I-Louvain detects more efficiently the communities than
ToTeM or methods using only one type of data. Moreover, the method is resistant
toward a degradation of the relations or the attributes, an increase in the density
of the relations or the size of the network. Finally, the experiments confirm the
scalability of the method.

Acknowledgments. The authors would like to thank P.N. Mougel for his help in
building the bibliographic dataset.
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