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Abstract. We propose a novel diagonal co-clustering algorithm built
upon the double Kmeans to address the problem of document-word co-
clustering. At each iteration, the proposed algorithm seeks for a diagonal
block structure of the data by minimizing a criterion based on the vari-
ance within and the centroid effect. In addition to be easy-to-interpret
and efficient on sparse binary and continuous data, Diagonal Double
Kmeans (DDKM) is also faster than other state-of-the art clustering
algorithms. We illustrate our contribution using real datasets commonly
used in document clustering.

1 Introduction

Co-clustering also known as biclustering or block-clustering involves simulta-
neous clustering of the set of observations and the set of features in a data
matrix. By creating permutations of rows and columns, the co-clustering algo-
rithms aim to reorganize the initial data matrix into homogeneous blocks. These
blocks also called co-clusters can therefore be defined as subsets of the data
matrix characterized by a set of observations and a set of features whose ele-
ments are similar. Other types of co-clustering approaches can be found in [11]
and [12]. Co-clustering algorithms present several advantages: they reduce the
initial matrix into a simpler form with the same basic structure and require far
less computation when compared with separate processing of the same two sets;
see for instance [8]. As a result, these methods are of interest to data mining.

In this work, we focus on co-clustering methods that seek a block diago-
nal structure, i.e. methods in which the number of clusters of rows is equal
to the number of clusters of columns. An illustration is given in Fig. 1 where
(a) represents an original binary matrix, (b) represents the same matrix after
a proper permutation of rows whilst (c) adds a permutation of columns result-
ing in a clear block diagonal structure. These methods have proven efficient in
dealing with the problem of document-word co-clustering. The objective is to
group the documents based on the words within them and to group the words
based on the documents in which they appear. The dataset is typically repre-
sented by a document × words matrix. In [10], the author proposed a block
diagonal algorithm to deal with binary data. This algorithm alternates the clus-
tering of observations and features minimizing the error between the original
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Fig. 1. Original binary data (a), (b) data reorganized according to rows, (c) reorganized
according to rows and columns.

data matrix and the reconstructed matrix based on the cluster structure. In [3],
the author proposed a spectral based solution. He built a bipartite graph from
the document × words matrix which is partitioned in a way that minimize the
cut objective function.

In this paper we propose a new diagonal co-clustering algorithm based on
the minimization of an heterogeneity measure of blocks. This measure takes into
account both the variance within blocks and a measure named the centroid effect
[5] defined as the squared deviation from the mean entry in each block and the
maximum entry in the input matrix. The proposed algorithm, in addition to be
very efficient in terms of co-clustering on sparse data, are also faster than most
of state-of-the art algorithms and therefore can deal with high dimensional data.

The remaining of this paper is organized as follows. Section 2 provides the
needed background on the Double Kmeans (DKM) algorithm and presents
the challenge of diagonal co-clustering. Section 3 presents the Diagonal Double
Kmeans (DDKM) algorithm that we propose. Section 4 is devoted to numerical
experiments on real datasets showing the appropriateness of our contribution
for binary and continuous data. The final section sums up the study and gives
recommendations for further research.

Notation. Let X := {xij ; i ∈ I; j ∈ J} be a data matrix of size n × p where
I = {1, . . . , n} and J = {1, . . . , p}. The set I corresponds to the set of n objects
and the set J to the set of p attributes. In the sequel, our aim consists in
obtaining co-clustering of X. Let Z = {z1, . . . , zn} be a label vector, where
zi ∈ {1, . . . , K}, denotes the partition of I into K clusters and W = {w1, . . . , wp}
where wj ∈ {1, . . . , H} denotes the partition of J into H clusters. The partition
of I (respectively J) can be represented by a matrix of elements in {0, 1}K

(respectively {0, 1}H) satisfying
∑K

k=1 zik = 1 (respectively
∑H

h=1 wjh = 1).
Finally, to simplify the notation, the sums relating to rows, columns, row and
column clusters will be subscripted respectively by the letters (i = 1, . . . , n, j =
1, . . . , p and, k = 1, . . . ,K, without indicating the implicit limits of variation.
For example, the sum

∑
i,k stands for

∑n
i=1

∑K
k=1.
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2 Co-clustering and Diagonal Block Structure

The co-clustering can be formulated as the search for a good matrix approxima-
tion of the original data matrix X. The quality is determined by the approxi-
mation error which can be measured by a large class of loss functions like the
square Euclidean distances. This approximation is generally achieved through an
alternate least square minimization process (see for instance [1,7]). The Double
Kmeans algorithm [16] is based on this principle.

2.1 Double Kmeans Algorithm

Formally, the aim is to minimize an objective function J(Z,W,G) where Z and
W are the partitions and G := {gkh; k ∈ {1, . . . , K}, h ∈ {1, . . . , H} is a K × H
matrix which can be viewed as a summary of the data matrix X (see Fig. 2).

Fig. 2. Original data matrix X and its summary after co-clustering into 6 co-clusters.

Each element gkh of G is called a prototype of co-cluster Xkh :=
{xij ; zikwjh = 1}. Double Kmeans (DK) adopts the squared Euclidean distance
to measure the dissimilarity between the matrix X and the structure described
in Z,W and G. Therefore, J(Z,W,G) is given by

J (Z,W,G) =
∑

i,k,j,h

zik × wjh(xij − gkh)2 = ||X − ZGWT ||2, (1)

where ||.|| denotes the Frobenius norm. It is easy to see that for a fixed (Z;W)
the optimal values of G are the means of Xkh’s. The optimal partitions Z and W
are found using an iterative algorithm. A version of double Kmeans is presented
in Algorithm 1 where z.k (resp. w.h) represents the cardinality of the kth cluster
(resp. hth cluster).

2.2 Block Diagonal Structure

The DKM algorithm appears to be not efficient when looking for a one-to-one
correspondence between two partitions Z and W. In order to deal with this
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Algorithm 1. Double Kmeans (DKM)
input: X, K, H
initialization: Z and W
repeat

(1) Compute gkh =
∑

i,j

zikwjhxij

z.kw.h
, ∀k, h

(2) Update zi = arg mink

∑
j,h wjh(xij − gkh)2, ∀i

(3) Update wj = arg minh

∑
i,k zik(xij − gkh)2, ∀j

until the J value change is small or there is no change.
output: G, Z and W

specific case, we have to consider wjk instead of a wjh; in other words, we
assume that H = K. Secondly, the diagonal structure involve to impose some
constraints on G; for instance by taking gkk = δ ∀k. This leads us to consider
the following criterion:

J(X,Z,W) =
∑

i,j,k

zikwjk(xij − δ)2, (2)

where δ is assumed to be known. The choice of this parameter will be discussed
in the next section. The couple of partitions (Z,W) optimizing the criterion
given in Eq. 2 are found using the following iterative algorithm

1. Update Z the partition of objects, with W fixed. This leads to the following
formula

zi = arg min
k

∑

j

wjk(xij − δ)2,

2. Update W, the partition of features, with Z fixed. This leads to the following
formula

wj = arg min
k

∑

i

zik(xij − δ)2.

From these formulae, one observes that seeking the diagonal structure of blocks
indirectly introduces a strong dependency between object assignments (respec-
tively features assignments) to a block and the number of features that belong
to this block (respectively the number of objects). If we consider object assign-
ments, we have (xij − δ)2 ≥ 0,∀i, j; therefore a higher number of features in a
block will decrease the chance that an object will be assigned to this particular
block. The same phenomenon occurs in the feature assignments. This leads to
take into account the size of each co-cluster in order to avoid empty blocks.

3 Diagonal Double Kmeans

3.1 Criterion and Proposed Algorithm

In order to correct the bias introduced by the diagonal structure and to avoid
certain blocks from vanishing, we propose a modified criterion that takes into
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account the number of elements in a block. This criterion takes the following
form:

J(X,Z,W) =
∑

k

1
z.kw.k

∑

i,j

zikwjk(xij − δ)2. (3)

where z.k and w.k denote respectively the number of objects and the number
of features in the k-th block. Furthermore, it is interesting to note that the
criterion given in Eq. 3 may be expressed depending on the variance of a given
block (Zk,Wk) and the squared deviation of its mean from the maximum input
of the data:

J(X,Z,W) =
∑

i,j,k

zikwjk

z.kw.k
(xij − xk)2 +

∑

i,j,k

zikwjk

z.kw.k
(xk − δ)2

=
∑

k

s2k +
∑

k

(xk − δ)2. (4)

where

xk =
1

z.kw.k

∑

i,j

zikwjkxij and s2k =
1

z.kw.k

∑

i,j

zikwjk(xij − xk)2

denote the mean and the variance within the k-th block respectively. The first
term of Eq. 4 ensures the homogeneity of each block while the second one provides
the homogeneity between centers of the blocks and δ. This objective function
(Eq. 3) is optimized by an alternating optimization of two conditional criteria
given W and Z respectively.

J̃1(X,Z|W) =
∑

k

1
z.k

∑

i

zik
1

w.k

∑

j

wjk(xij − δ)2

and

J̃2(X,W|Z) =
∑

k

1
w.k

∑

j

wjk
1

z.k

∑

i

zik(xij − δ)2.

The optimization of J̃1 and J̃2 lead to the following update rules:

zi = arg min
k

1
w.k

∑

j

wjk(xij − δ)2, (5)

wj = arg min
k

1
z.k

∑

i

zik(xij − δ)2. (6)

The proposed algorithm Diagonal Double Kmeans (DDKM) (Algorithm2) is
computationally efficient and its complexity can be shown to be O(τ × npK)
where τ denotes the number of iterations required to obtain the convergence,
n, p and K are the number of objects (i.e. rows), features (i.e. columns) and
clusters respectively.
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Algorithm 2. Diagonal Double Kmeans (DDKM)
input: X and K
initialization: Z, W and δ
repeat

(2) Update Z according to Eq. 5
(3) Update W according to Eq. 6

until the J value change is small or there is no change.
output: Z and W

3.2 Choice of δ

Herein, we discuss the choice of δ. Specifically, we compare between the optimal
value of δ and the maximum entry of the matrix.

1. If we consider δ as an unknown parameter, its optimal value for the criterion
minimized is equal to the average of blocks means. Indeed, with Z and W
fixed and by setting the derivative of J (Eq. 3) to zero we obtain δ = 1

K

∑
k xk

where xk denotes the mean of the k-th block. Although this value of δ is the
optimal, we can observe that in the context of sparse data i.e. when the data
matrix contains a high percentage of 0, its value will tend to 0 leading to a
diagonal structure of blocks of 0. An illustration of the resulting co-clustering
obtained with this value on the CSTR dataset (described in the numerical
experiments section) is given in Fig. 3(c).

2. Another way to proceed is to set the value of δ at the initialisation step.
DDKM aims at grouping objects and features with the strongest association
possible. For instance, in the case of a binary data matrix X, the strongest
association between an object i and a feature j is expressed in xij = 1 which is
the maximum value of the entry of X. As a matter of fact, choosing the max-
imum allows to guarantee the homogeneity of diagonal blocks while ensuring
blocks of 0 outside. In [5,13], the authors proposed hierarchical algorithms
based on this idea. We use the same example as for the optimal value to show
the result on Fig. 3(b). It is important to stress that this approach requires
for values of a data matrix to be comparable. This is the case for binary
data or normalized data as we will see in the next section devoted to the
document-word partitioning.

4 Numerical Experiments

4.1 Performance Evaluation

In order to assess and to compare the performance of the proposed algorithm,
we use commonly adopted metrics: the Accuracy, the Normalized Mutual Infor-
mation [15] and the Adjusted Rand Index [9]. We focus only on the quality of
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Fig. 3. (a) CSTR the original dataset, (b) CSTR reorganised according to the parti-
tions when δ = maxi,j xij , (c) CSTR reorganised according to the partitions when δ
estimated by 1

K

∑
k xk.

row clustering. Clustering accuracy noted Acc is one of the most widely used
evaluation criterion and is defined as:

Acc =
1
n

max

⎡

⎣
∑

Ck,L�

T (Ck,L�)

⎤

⎦

where Ck is the kth cluster in the final results, and L� is the true �th class.
T (Ck,L�) is the proportion of objects that were correctly recovered by the clus-
tering algorithm i.e. T (Ck,L�) = Ck ∩L�. Accuracy computes the maximum sum
of T (Ck,L�) for all pairs of clusters and classes, and these pairs have no overlaps.
The second measure employed is the Normalized Mutual Information (NMI) and
is calculated as follows:

NMI =

∑
k,�

nk�

n log nk�

nkn̂�√
(
∑

k
nk

n log nk

n )(
∑

�
n̂k

n log n̂�

n )

where nk denotes the number of data contained in the cluster Ck(1 ≤ k ≤ K),
n̂�, the number of data belonging to the class C′

k(1 ≤ � ≤ K), and nk�, the
number of data that are in the intersection between the cluster Ck and the class
C′

k. The last measure Adjusted Rand noted ARI measures the similarity between
two clustering partitions. From a mathematical standpoint, the Rand index is
related to the accuracy. The adjusted form of the Rand Index is defined as:

ARI =

∑
k,�

(
nk�

2

) −
[∑

k

(
nk

2

) ∑
�

(
n̂�

2

)]
/
(
n
2

)

1
2

[∑
k

(
nk

2

)
+

∑
�

(
n̂�

2

)] −
[∑

k

(
nk

2

) ∑
�

(
n̂�

2

)]
/
(
n
2

) .

The value for these three metrics are between 0 and 1, a value close to 1
means a good result in terms of clustering.
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4.2 Compared Algorithms

We compare against state-of-the-art (co)-clustering methods including Spherical
Kmeans (SpKM)[4], Double Kmeans (DKM) and Spectral Co-Clustering (SpCo)
[3]. We also report the clustering results by Kmeans and the Nonnegative Matrix
Factorization (NMF) [2] as baseline. The Spherical Kmeans algorithm is basically
a Kmeans algorithm that use the cosine dissimilarity instead of the Euclidean
distance. It is known to be very efficient on sparse dataset and to converge
quickly. We use the matlab implementation for kmeans and NMF. For SpCo
algorithm we use the implementation proposed by Assaf Gottlieb1. We use the
SpKM implementation given in [14]. Finally, we implement CROEUC [6], a fast
version of Double Kmeans (DKM); its advantage is due to the use of intermediate
matrices of reduced sizes rather than the original data.

4.3 Datasets and Results

We study the effectiveness of our algorithm for some well-known text datasets
with different sizes and balances2: CSTR, Classic3, WebKB4 and 2 subsets of
the 20 Newsgroups dataset. The 20 Newsgroups dataset is organized into 20
topics. Some of the topics are closely related while other are highly unrelated.
We describe the topics included in the two subsets in Table 1. The NG2 dataset
includes two topics not related (rec.motorcycles and sci.crypt,sci.space) while
NG5 includes topics closely related involving a situation with overlapping clus-
ters (rec.sport.baseball, sci.crypt, sci.med, talk.religion.misc, comp.windows.x,
soc.religion.christian, talk.politics.mideast). A detailed description of all datasets
can be found in Table 1.

Table 1. Description of the datasets in terms of size (n × p), number of clusters (K),
sparsity (%0) and size of the cluster. A partition is assumed balanced if the balance
coefficient is close to 1 and unbalanced otherwise.

Dataset n × p K %0 Balance

CSTR 475 × 1000 4 96.60 0.399

Classic3 3891 × 4303 3 98.95 0.71

WebKB4 4199 × 1000 4 91.83 0.307

NG2 500 × 2000 2 96.90 1

NG5 500 × 2000 5 97.19 1

Originally each cell of these datasets denotes the number of occurrences of
a word in a document. As we are interested in evaluating our algorithm on
both binary and continuous data, we use one version of the datasets on which
1 http://adios.tau.ac.il/.
2 The balance coefficient is defined as the ratio of the number of documents in the

smallest class to the number of documents in the largest class.

http://adios.tau.ac.il/


178 C. Laclau and M. Nadif

Table 2. Accuracy, Normalized Mutual Information and Adjusted Rand Index
obtained on tf-idf datasets.

Dataset Metric Algorithms

NMF Kmeans SpKM DKM SpCo DDKM

CSTR Acc 81.47 85.05 88.63 62.95 79.79 90.95

NMI 69.91 64.74 74.07 27.93 66.67 76.39

ARI 70.26 68.14 76.57 46.72 70.20 82.99

Classic3 Acc 96.32 90.47 97.33 94.17 70.60 98.69

NMI 84.53 73.81 91.41 80.90 59.64 96.10

ARI 89.04 75.34 94.38 82.82 40.20 93.32

WebKB4 Acc 80.38 49.46 62.85 38.75 64.32 78.90

NMI 52.08 25.15 37.00 04.65 41.04 51.15

ARI 56.48 18.03 31.55 04.54 38.09 54.93

NG2 Acc 62.60 - 60.92 50.70 88.98 94.40

NMI 4.85 - 11.92 0.15 53.16 68.88

ARI 6.17 - 4.68 0.00 60.69 78.81

NG5 Acc 41.48 23.25 56.31 31.06 53.91 70.54

NMI 27.42 6.21 30.69 9.47 45.59 41.53

ARI 13.66 0.34 19.85 4.45 30.03 41.40

the data were converted into binary i.e. each cell having a value higher to 0 is
considered equal to 1 and 0 otherwise, and a second version where a TF-IDF
(Term Frequency - Inverse Document Frequency) transformation is applied. The
TF-IDF normalization is one of the most used in text mining, and is defined as
x′

ij = tfij × log n
dfj

where tfij denotes the number of occurrence of the j-th word
in the i-th document and dfj denotes the number of documents containing the
j-th word.

We set the number of clusters as the true number of classes on all datasets. For
each method, given the number of clusters, no parameter selection is needed. We
run the algorithms 100 times and report the best result (in percentage), i.e. the
one that corresponds to a local minimum of the criterion of all trials in Tables 2
and 3. Several observations can be made based on these results: the proposed
algorithm outperforms the other method on each dataset whether it is the TF-
IDF version or the binary one, except on the TF-IDF version of WebKB4. On
NG2 and NG5 whose classes are not well separated, the performance difference
is all the more important. We can also note that on the TF-IDF version of NG2,
Kmeans is unable to find a partition into two clusters as required.

4.4 Computational Complexity

We study the computational complexity of the compared clustering and co-
clustering algorithms. We repeat clustering 100 times for each algorithm on
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Table 3. Accuracy, Normalized Mutual Information and Adjusted Rand Index
obtained on binary datasets.

Dataset Metric Algorithms

NMF Kmeans SpKM DKM SpCo DDKM

CSTR Acc 85.68 85.05 88.63 62.95 79.79 91.37

NMI 67.08 64.74 74.07 27.93 66.67 79.06

ARI 70.65 68.14 76.57 46.72 70.20 83.00

Classic3 Acc 97.66 90.47 97.33 94.17 70.60 98.20

NMI 88.78 73.81 91.41 80.90 59.64 91.31

ARI 93.06 75.34 94.38 82.82 40.20 94.61

WebKB4 Acc 73.26 49.46 62.85 38.75 64.32 72.80

NMI 41.05 25.15 37.00 04.65 41.04 44.14

ARI 43.60 18.03 31.55 04.54 38.09 44.29

NG2 Acc 60.60 57.60 60.80 54.60 90.20 94.60

NMI 12.85 12.93 13.09 2.38 55.35 70.55

ARI 4.41 2.26 4.58 0.77 64.57 79.53

NG5 Acc 50.10 33.07 52.10 29.66 60.32 76.75

NMI 32.25 16.61 28.31 8.15 50.75 51.49

ARI 20.68 4.08 24.84 2.82 37.31 51.37

Fig. 4. Running time in seconds of the compared algorithms on the binary and the
tf-idf versions of CSTR (a) and classic3 (b) datasets.

each dataset. We report the average convergence time in Fig. 4 for the CSTR
(a) and Classic 3 (b) datasets. The obtained results show that the proposed
algorithm DDKM is only very slightly slower than NMF method while it requires
far less time to converge than all other state-of-the-art algorithms. The same
observations were made on the other datasets presented in this article.
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5 Conclusion

In this paper we presented DDKM, a fast co-clustering algorithm that looks for
homogeneous diagonal blocks. Compared with other methods, we demonstrate
that our proposed algorithm is more effective for document-word partitioning
datasets and especially in presence of classes having a high degree of overlap.
In addition, DDKM requires less time to converge; up to 20 times less time
than DKM and 40 times less time than SpCo commonly used in the domain
of document clustering. In real world application, the knowledge of the number
of co-clusters is mostly required. For further research, it will be worthwhile to
investigate an efficient way to assess this parameter.
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7. Govaert, G., Nadif, M.: Co-Clustering: Models, Algorithms and Applications.

Wiley, New York (2013)
8. Govaert, G., Nadif, M.: Block clustering with bernoulli mixture models: comparison

of different approaches. Comput. Stat. Data Anal. 52(6), 3233–3245 (2008)
9. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)

10. Li, T.: A general model for clustering binary data. In: Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining,
KDD 2005, pp. 188–197 (2005)

11. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis:
a survey. IEEE/ACM Trans. Comput. Biol. Bioinf. 1, 24–45 (2004)

12. Mechelen, I.V., Bock, H.H., Boeck, P.D.: Two-mode clustering methods: a struc-
tured overview. Stat. Methods Med. Res. 13(5), 363–394 (2004)

13. Mirkin, B., Arabie, P., Hubert, L.: Additive two-mode clustering: the error-variance
approach revisited. J. Classif. 12(2), 243–263 (1995)

14. Nguyen, X.V.: Gene clustering on the unit hypersphere with the spherical k-means
algorithm: coping with extremely large number of local optima. In: International
Conference on Bioinformatics & Computational Biology, BIOCOMP 2008, pp. 226–
233 (2008)

15. Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for com-
bining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003)

16. Vichi, M.: Double k-means clustering for simultaneous classification of objects and
variables. In: Borra, S., Rocci, R., Vichi, M., Schader, M. (eds.) Advances in clas-
sification and data analysis, pp. 43–52. Springer, Heidelberg (2001)


	Diagonal Co-clustering Algorithm for Document-Word Partitioning
	1 Introduction
	2 Co-clustering and Diagonal Block Structure
	2.1 Double Kmeans Algorithm
	2.2 Block Diagonal Structure

	3 Diagonal Double Kmeans
	3.1 Criterion and Proposed Algorithm
	3.2 Choice of 

	4 Numerical Experiments
	4.1 Performance Evaluation
	4.2 Compared Algorithms
	4.3 Datasets and Results
	4.4 Computational Complexity

	5 Conclusion
	References


