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Abstract. Ride-sharing schemes attempt to reduce road traffic by
matching prospective passengers to drivers with spare seats in their cars.
To be successful, such schemes require a critical mass of drivers and
passengers. In current deployed implementations, the possible matches
are based on heuristics, rather than real route times or distances. In
some cases, the heuristics propose infeasible matches; in others, feasible
matches are omitted. Poor ride matching is likely to deter participants
from using the system. We develop a constraint-based model for accept-
able ride matches which incorporates route plans and time windows.
Through data analytics on a history of advertised schedules and agreed
shared trips, we infer parameters for this model that account for 90 % of
agreed trips. By applying the inferred model to the advertised schedules,
we demonstrate that there is an imbalance between riders and passen-
gers. We assess the potential benefits of persuading existing drivers to
switch to becoming passengers if appropriate matches can be found, by
solving the inferred model with and without switching. We demonstrate
that flexible participation has the potential to reduce the number of
unmatched participants by up to 80 %.

1 Introduction

Road traffic is one of the main generators of carbon emissions, and traffic con-
gestion is a significant contributor to pollution around major cities and urban
areas. Partly motivated by these issues, there has been recent strong growth
in ride-sharing schemes (e.g. Blabla car, Carma, BLyft, Sidecar, Uber), where
participants post details of intended trips, and the system then proposes possi-
ble matches between drivers and prospective passengers. As more matches are
agreed, the number of car journeys decreases, and the total driven distance
also decreases, helping to reduce congestion, emissions and energy consumption.
Increasing participation in such schemes is thus considered both a benefit for
society and a commercial objective for the system operators.

Deployed schemes focus on proposing a set of possible matches for each
request, leaving the participants to contact each other, negotiate ride details,
and to agree the match. In order to generate these offers quickly, the ride shar-
ing systems typically propose matches using heuristics that are fast to compute,
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based on Euclidean distance between locations and on fixed time windows. This
means that the set of proposed matches may include some that are infeasible
given the road network, and may omit some that would be a user’s preferred
match. However, users who receive few offers, or who are given offers that are a
poor match for their travel plans, are unlikely to continue with the system. There
is a need to assess the performance of the current matching schemes, identify
ways in which performance could be improved, and assess the improvements that
could be gained. To do this, we employ data analytics to infer constraints on
possible matches, and to assess current performance. We then use the inferred
constraints to build optimisation models and to evaluate proposed improvements.

Specifically, (i) we use shortest path routing algorithms to determine the
impact of a driver being matched with a passenger; (ii) by mining records of
previously agreed matches, we infer constraints on the departure and arrival
time windows for drivers, and on deviations from the shortest routes, that cap-
ture 90 % of agreed matches; (iii) we compare the inferred constraint model with
the heuristic matching algorithm, and assess the discrepancies between the two
approaches; (iv) we analyse histories of proposed trip schedules and show an
imbalance between drivers and passengers that may be hampering participa-
tion in the scheme; and (v) we propose and evaluate the potential of persuad-
ing drivers to be flexible in their roles in the scheme, showing a reduction in
unmatched participants of up to 80

2 Related Work

The dial-a-ride problem has been long studied in the OR community [6]. Dial-
a-ride typically assumes a single vehicle, picking up and dropping off riders at
specified locations within time windows, although multiple vehicle problems have
also been studied [4,5]. In [10], the authors compare different scenarios of dial-a-
ride problems and show that these scenarios can be solved extending the variable
neighborhood search algorithms. The dial-a-ride drivers have no journey require-
ments of their own. For ride-sharing schemes [7], both the drivers and the riders
have their own objectives. Specific schemes vary as to whether the drivers move
to the riders locations or the riders move to and from the driver routes, and
whether or not drivers take single or multiple riders on a trip. One extension
includes participants known as shifters, who may either drive or ride as a rider
[1]. Armant et al. [3] also include shifters, but also assume that each pure rider
who is not served in the matching has a probability of driving on their own,
included as a penalty in the objective function. Computing an optimal matching
is hard [2], and the complexity increases as the number of shifters increases.
Kamar and Horvitz [8] model the problem as one of collaborative planning,
where agents must balance competing goals. Yousaf et al. [13] model the prob-
lem as multi source-destination path planning, with a wide range of competing
objectives including privacy and incentives. Schilde et al. [11] and Manna and
Prestwich [9] consider stochastic problems, in which trip requests arrive during
the execution of the solution, using scenario-based methods to minimise expected
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delays or unserved requests. Simonin and O’Sullivan [12] focus on the matching
problem, assuming an input graph of all feasible pairings, and establishes the
complexity of a number of two variations, showing that in some cases polynomial
time solutions are possible. In this study, from the analysis of agreed rideshare
trips advertised by real users, we model the users’ behaviour and infer a Con-
straint Programming problem. The last problem allows us to assess the quality
and the potential improvement of the heuristics used in deployed applications
when answering to users’ queries. A comparison of different ride-sharing problem
formulations or algorithms to improve the solving time is beyond the scope of
the study.

3 Euclidean-Distance Ride Matching

In the basic ride sharing scheme, drivers and riders post their start and end
locations, and an expected start time, and the system proposes possible matches
to the participants. The participants then select from the possible matches and
contact each other to agree the details of the trip, which involves establishing
a pick-up and drop-off location, and a time for the pick up. The agreed values
might differ from the original values posted by the participants. When the actual
ride takes place, both the driver and rider use a smartphone app to inform the
system, with the driver informing the system on first departure and final arrival,
and each rider notifying the system on pick-up and drop-off. The app reports
GPS readings and times, from which payments are computed.

When a driver or rider posts their trip request, the ride sharing system should
return in real-time a list of potential users with which the poster can share their
journey. To ensure a real-time response (< 1s), a Euclidean distance heuristic
is typically used to find the possible matches. First, for each driver, a straight
line path is drawn from the driver start location to the driver destination. Sec-
ondly, for all possible riders, the euclidean distances between the rider start
and destination and the driver line are computed. Only riders with distances to
and from the driver line below a threshold are considered as potential matches.
These are further filtered by restricting (i) rider start and destination locations
to be within a threshold angle of deviation from the driver line, and (ii) rider
start times to lie within a fixed threshold of the driver’s start time. This simple
heuristic is fast to compute, and can be more or less accurate in large cities
having a road network similar to a grid. Without this particular road network
configuration the heuristics frequently return infeasible matches, and also omit
some high quality potential matches. The main cause of inappropriate matches
is the use of straight line paths and distances, since in many circumstances the
shortest or fastest route is significantly different from the straight line path. In
the Fig. 1, we show an extreme example. T45 denotes the fixed threshold heuris-
tic that we investigate. It fits to regular grid road maps and is similar to some
heuristics used by deployed applications for fast computation of the matches.
The subfigure on the left shows the standard heuristic, with trips starting and
finishing in the grey zone being offered as potential matches. The subfigure on
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(a) matches returned by the heuristic (b) feasible matches

Fig. 1. Example of feasible and infeasible ride matches

the right shows that fastest path for the driver, and of the two passenger request,
the only feasible match is the one which was not previously offered. Secondly,
the system requires each user to post a preferred start time, and then applies a
fixed time window around start times to match participants. However, individual
users may have different flexibility over their start or arrival times, and these
are also likely to vary with the expected travel time for the journey. Repeated
offering of matches which would require significant deviation from a route, or
which are infeasible because of the length of time required for the journey, are
liable to act as a disincentive for users to continue with the system. Similarly, if
well matched participants are not offered rides, there is a reduced incentive to
continue with the system.

4 Ride Sharing Optimisation Model

To describe the trip schedules and the users’ constraints we introduce the fol-
lowing notation. D denotes the set of possible drivers, R is the set of possible
riders, and U = D ∪ R represents the set of all users. To generate the time
and geographical constraints, we use Open Street Map data to deduce mini-
mal path distances and times between two locations. L = {l1, . . . , ln} denotes
the set of road node locations identified by their GPS coordinates. A path
π = (li, . . . , lj) is an ordered list of locations, and time(π) (resp. dist(π)) returns
the driving path time (resp distance) for π. The path π∗

li,lj
(resp. π�

li,lj
) denotes

a minimal time (resp. distance) path from li to lj . A trip schedule is a tuple
tsu = (tstart

d , lstart
d , ldest

d ) describing user u’s intended start time tstart
u , start

location lstart
u , and destination ldest

u . TS = {tsu1 , . . . , tsun
} denotes the set of

user trip schedules sent to the system. To simplify the notation we consider one
trip schedule per user, but the approach remains valid for multiple schedules
per user. For a trip schedule tsu, the inferred time window twu = (etstart

u , ltdest
u )

describes an earliest start time etstart
u and a latest arrival time ltdest

u . Intuitively,
the driver trip time window twd is consistent with a rider trip time window twr

when there exists a time interval intersecting both twr and twd in which the



Data Analytics and Optimisation for Assessing a Ride Sharing System 5

rider can be picked-up and dropped-off by the driver. For a driver trip schedule
tsd, π∗

lstart
d ,ldest

d

denotes the inferred minimal time path from lstart
d to ldest

d . For

a rider trip schedule tsr, mpick
r denotes the inferred maximal path distance r is

willing to walk from his intended start lstart
r to a pick-up location lpick

r on the
driver path π∗

lstart
d ,ldest

d

. Similarly mdrop
r denotes the inferred maximal path dis-

tance the rider is willing to walk from a drop-off location ldrop
r to his destination

ldest
r .

Given the above we define the feasible matches relaying both on the users’
inferred path constraints and the users’ inferred time constraints.

Definition 1 (inferred feasible ride match). A driver trip schedule and a
rider trip schedule, tsd and tsr, represent a likely feasible ride match if:

1. their inferred time windows twd, twr are consistent with the rider pick-up and
drop-off time:
(a) ltdest

d − etstart
r > π∗

lpick,ldrop , the interval between the driver latest arrival
and the rider earliest start is greater than the fastest path from the rider’s
inferred pick-up to his inferred drop-off, or,

(b) ltdest
r −etstart

d > π∗
lpick�,ldrop� , the interval between the earliest driver start

and the latest rider arrival is greater than the fastest path from the rider
inferred pick-up to the inferred drop-off.

2. The expected driving path intersects the rider’s possible pick-up and drop-off
points.
(a) dist(π�

lstart
r ,πd

) < mpick
r , the shortest path distance between the rider

intended start and the expected driver path is lower than the maximal
distance for the rider’s pick-up.

(b) dist(π�
lstart
r ,πd

) < mdrop
r , the shortest path distance between the rider

intended destination and the expected driver path is lower than the max-
imal distance for the rider’s drop-off.

Given a set of trip schedules, by iteratively checking if each pair of trip sched-
ules are likely feasible, we incrementally discover a bipartite graph of feasible ride
matches G = (TSD, TSR,E) s.t. TSD ⊆ TS is the set of drivers’ trip sched-
ules, TSR ⊆ TS is the set of riders’ trip schedules, and every edge (tsd, tsr) ∈ E
is a feasible ride match. G is the input parameter of the constraint program-
ming model we build to assess the potential of a ride-sharing scheme. For each
feasible match between a rider trip schedule tsr and a driver trip schedule tsd

in G = (TSD, TSR,E) is associated to a ride share trip ytsd,tsr
encoded as a

collection of decision variables s.t.:

ytsd,tsr
.start represents the pick-up time of r,

ytsd,tsr
.end denotes a the drop-off time of r,

ytsd,tsr
.duration is the time duration of the rideshare trip,

ytsd,tsr
.presence denotes presence of the ride share trip in the optimal solution.

We model a served rider using x,tsr
s.t. x,tsr

equal 1 when the rider is allocated
to exactly one of feasible share ride ytsd,tsr

. To assess the potential of a ride-
sharing scheme, our objective is to maximize:
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Σ
(tsd,tsr)∈E

x,tsr
(1)

subject to:

ytsd,tsr
.start ≥ max(tearly

d , tearly
r ), ∀(tsd, tsr) ∈ E (2)

ytsd,tsr
.end ≤ min(tlatest

d , tlatest
r ), ∀(tsd, tsr) ∈ E (3)

ytsd,tsr
.duration = ytsd,tsr

.end − ytsd,tsr
.start, ∀(tsd, tsr) ∈ E (4)

ytsd,tsr
.duration ≥ π ∗lstart,ldest , ∀(tsd, tsr) ∈ E (5)

CUMULATIV E({ytsd,tsr
}, nbSeatsd,≤), ∀tsd ∈ TSD (6)

ALTERNATIV E(xtsr
, {ytsd,tsr

|(tsd, tsr) ∈ E}), ∀tsr ∈ TSR (7)

(xtsc
.presence ⇒ ytrc,tsr

.presence), ∀(tsd, tsr) ∈ E (8)

The aim is to maximize the total number of served riders (1). The constraints
(2) force each rideshare trip to start after the earliest rider start and the earliest
driver start. Similarly, the constraints (3) force each rideshare trip to end before
the latest rider arrival and the latest driver arrival. The duration of the rideshare
trip is the difference between the end and the start (4) and it is greater than
the rider shortest path (5). The cumulative constraints (6) restrict each driver
car occupancy to not exceed the number of available seats at any moment of the
trip. When a rideshare trip is chosen in a solution, i.e., ytsd,tsr

.presence = 1,
it corresponds to one occupied seat in a driver’s car, it is equal to 0 otherwise.
At any time, the driver’s car occupancy corresponds to the following definition

Σ
(tsd,tsr)∈E

ytsd,tsr
.presence ≤ nbSeatsd, ∀tsd ∈ TSD. The alternative constraints

(7) enforce that at most one ytsd,tsr
rideshare trip is chosen. In the successful case

of the rider rideshare trip xtsr
is equal to the chosen rideshare ytsd,tsr

otherwise
the rider is not chosen. The constraints (8) state that a shifter assigned to be a
rider does not drive.

5 Inferring Constraints from Users’ Behaviour

The raw data maintained in the ride-sharing scheme is not enough to establish
the parameters of the optimisation model. Participants do not post time windows
for their trips, and their advertised locations may be inaccurate (to protect
privacy). Similarly, details of actual shared rides are subject to errors and missing
data, as they are reliant on participants reporting GPS coordinates at the time
of departure and arrival; in particular, drivers have no need to start the system
until the first pickup. Finally, although we have records of advertised trips, we
only have confirmed data on positive examples of acceptable ride shares; a pair
of schedules which did not result in a trip might not have been feasible, but
equally might not have been proposed to the participants, or might have been
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rejected in preference to another trip for either distance or personal factors. To
assess the potential of the ride-sharing scheme, we need to infer the parameters
of the model from the set of positive examples.

For a trip schedule tsu, inferring the time window twu involves inferring the
earliest start time tearly

u and the latest arrival time tlatest
u in which a user expect

the journey to happen. For this purpose, we extract from the trip records three
parameters: the maximal positive start time delay, δ+, the maximal negative
start time delay, δ−, and the estimated travel time f1 and, as explained in Fig. 2,
we add them together to infer the earliest start and the latest arrival time of the
inferred time window twu.

time

tearly
u

start time
earliest

tstart
u

start time
intended

tlatest
u

arrival time
latest

δ−

negative
start delay

δ+

positive
start delay

f1(π∗)

travel time estimation

Fig. 2. Time Window Parameters

The positive and negative start time delay represents the user’s time
flexibility for advancing or delaying the intended start. In Fig. 3 we observe the
difference between the riders’ intended start time tstart

r and their reported pick-
ups time tpick

r while observing the trip duration between the riders’ pick-ups
and drop off. We observe no correlation between the ride share duration and
the user’s delayed times. Riders appear to be willing to change their start times
by an amount greater than the duration of their journey in order to find a
ride. To extract the maximal positive and negative time changes, δ+ and δ−,
we determine the minimal change which encompasses almost all (90%) accepted
ride shares. The horizontal lines show the maximal positive start time (left) and
negative start time delay (right) observed for the riders in region 4. We compute
similarly the maximal positive and negative time delay for the drivers.
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Fig. 3. Positive and negative time delay for riders in region 4
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The estimated travel time represents the approximate time a user can expect
to spend on the road. In Fig. 4 (left) we plot the duration of the riders’ travel time
from the reported pick-up tpick

r to the reported drop-off tdrop
r against the minimal

path time computed between these locations. There is a clear correlation, with
linear regression indicating a factor of approximately 1.5 for the increase in travel
time over the minimal path. This increase may be due to many factors, including
traffic congestion and the presence of multiple passengers in a single trip, and
will be the subject of further study. Moreover, one can notice few points below
the diagonal (fastest path time = recorded path time). These represent cases
where the driver was faster than the faster path time respecting to the speed
limit indicated in OSM map.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

-20  0  20  40  60  80  100  120  140

 r
ec

or
de

d 
rid

e 
tim

e 
in

 m
in

ut
es

 fastest ride path time from pick-up to drop-off in minutes 

riderMinPathTime2RiderActualPath

RiderActualPathTime
f1(x)

 0

 5

 10

 15

 20

 25

 30

 35

 0  5  10  15  20  25  30

 r
id

er
s 

ac
tu

al
 d

ro
p 

pa
th

 in
 k

m

riders infered drop path in km 

distRiderInferedDropPath2ActualDropPath

ActualDropPath
5.85216

Fig. 4. Observed trip time compared to minimal path time, for region 4 (Colour figure
online)

The Riders’ Maximal Meeting Path Distances represent the maximal
pick-up path distance, mpick, from the rider intended start to the driver path,
and the maximal drop off path distance, mdrop from the driver path to the rider
intended destination. In Fig. 4 (right) we plot the path distance between the
riders intended destination and reported drop-off against the minimal path dis-
tance between the destination and drop-off. Here there exists no clear correlation
between the observed and minimal drop off path distances. Again, our aim is
to find the minimal threshold on the meeting path distance within which 90%
of the users accepted a ride. Based on the inferred path times (which would be
used in deciding whether or not to accept a ride), a limit of 4.5km (black line)
includes 90% of all accepted rides. For comparison, we show (blue line) a similar
derived threshold of 5.8 km on the observed times.

We summarize the optimisation model parameters extracted from the trip
records in the following table. Times are described in minutes and the distances
in kilometers. We recall that given a trip scheduletsu, we infer its time-window
parameter using the following formulae: the infered earliest start time tearly

u =
tstart
u − δ− while the latest arrival time tlatest

u = tstart
u + δ− + f1(x). We notice

that in all the regions studied, riders are more flexible than drivers, but both
are willing to start early. The estimated travel time varies from 1.4 to twice the



Data Analytics and Optimisation for Assessing a Ride Sharing System 9

minimal path time computed using OSM Street Map, and varies depending on
the region.

drivers δ+ drivers δ− riders δ+ riders δ− f1(x) riders mpick riders mdrop

region 1 63 56 74 94 2x+11.2 2.2 1.7

region 2 31 60 57 46 1.15x+13.2 2.0 1.0

region 3 45 45 56 60 1.4x+9.7 11.3 14.3

region 4 45 54 70 56 1.4x+7.5 2.4 4.5

6 Assessing the Ride-Match Models

We now use the inferred model described in previous section to assess the quality
of the existing matching heuristics for the 4 regions in the study.
The basic Euclidean heuristic is augmented with a 45 degree sweep angle, and
allows up to 2 hours variation in the start times. In the following table we evalu-
ate the precision and the recall of this heuristic with respect to inferred feasible
ride match model represented as the graph G. The recall rate (the percentage
of feasible matches from G returned by the heuristic) is relatively high, ranging
between 90% and 95%, although this still indicates that between 5 and 10%
of feasible matches are not being considered. The precision rate (percentage of
matches returned by the heuristic that are feasible in G) however varies from
58% to 90%, indicating that many infeasible matches are being proposed. The
heuristic is most effective on region 3, with poor performance on region 1 and
region 2. The appears to be a consequence of the geography of the regions -
region 3 is a large urban area with a regular road network, while region 2 has a
mix of urban and rural roads, and an irregular road network around harbours
and coastal areas. Relatively low precision and recall (regions 1 and 2) indicate
many inappropriate match suggestions and missing proposal, which are believe
to act as a disincentive for potential users.

T45 nb edges # feasible # feasible # unfeas # feasible precision recall

found ible found not found

region 1 802 647 588 214 59 0.733 0.909

region 2 559 364 326 233 38 0.583 0.896

region 3 1678 1691 1616 62 75 0.963 0.956

region 4 4223 3590 3326 897 264 0.788 0.926

To assess the potential of the ride-sharing scheme, we use the inferred CP model
to compute the maximum number of assignments of riders to drivers’ cars. In
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next table, we compare the number of matched users found in G, with number of
matched users found among the feasible matches for the typical heuristic T45FM.
Note that T45FM is a filtered version of the typical heuristic, removing those
matches considered infeasible in G, since those matches would be rejected by
the optimisation model. The first thing to note is the percentage of unmatched
participants is higher in each case for the T45FM filtered heuristic compared to
the inferred model, although the losses are relatively small. However, perhaps
more importantly, the ratio column shows that there is a significant imbalance in
the participants in the scheme; a healthy scheme should have a ratio of at least
1, and ideally should be higher, allowing multiple passengers per car. A low ratio
means many drivers will be unmatched, and thus will drive with empty seats. In
addition, frequent failed attempts to find a match are likely to deter those users
from participating. The current optimisation model prioritises riders, and thus
some drivers may have multiple passengers. Changing the criterion to balance
driver utilisation may encourage drivers to continue with the system, but cannot
increase the total number of matched participants, and thus is likely to reduce the
society benefits of sharing journeys. Therefore, we consider a different approach,
and evaluate the effect of persuading all drivers to become shifters, and to accept
an offer to be a passenger rather than remain exclusively as a driver. The results
of running these flexible models are shown in the rows FMS and T45FMDS.
We note that FMDS is still providing a benefit over the (filtered) heuristic, but
more importantly, the increased flexibility allows us to match significantly more
participants. The number of unmatched participants drops by a factor of 0.33 in
the poorest case (region 2) and by a factor of 5 in the best case (region 3).
We conclude that, where there is a participant imbalance, the focus of the ride
sharing scheme operators should be to persuade drivers to be flexible in their
roles, as this appears to offer the biggest potential for continued participation in
the scheme and for removing vehicles from the road network.

region 1 users ratio matched matched % region 2 users ratio matched matched %

R/D riders drivers unmatch R/D riders drivers unmatch

FM 992 0.55 246 133 61.79 FM 658 0.7 142 79 66.41

T45FM 223 124 65.02 T45FM 132 81 67.61

FMDS 992 1.55 488 196 31.05 FMDS 658 1.7 258 99 45.74

T45FMDS 446 176 37.30 T45FMDS 248 98 47.42

region 3 region 4

FM 1871 0.67 656 328 47.41 FM 4784 0.82 1592 758 50.88

T45FM 630 332 48.58 T45FM 1521 774 52.03

FMDS 1871 1.67 1392 321 8.44 FMDS 4784 1.82 2876 864 21.82

T45FMDS 1340 316 11.49 T45FMDS 2741 880 24.31
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7 Conclusion

Ride-sharing is a rapidly growing practice for reducing the number of cars on the
road in urban regions. Successful ride sharing schemes require committed users,
and they in turn require the scheme to provide them with feasible ride matches
in real-time. In current systems, the emphasis has been on the real-time require-
ment rather than the feasibility of the matches. We have developed a model
which uses route planning and time windows to describe feasible matches as
a constraint satisfaction problem, and the ultimate goal of the ride-matching
scheme as constraint optimisation. Through analysis of data sets of advertised
schedules and agreed trips, we infer the parameters of the these constraint mod-
els, chosen to accept 90 % of all agreed matches. By applying the model to the
data sets of advertised trips, we identify the errors in the current heuristics, and
find an imbalance among participants in the ride sharing schemes. We consider
the benefits that might be obtained if drivers can be persuade to switch roles and
act as passengers, and by re-running the optimisation model we show that there
is potential to reduce the number of unmatched participants by up to 80 %. Such
flexible switching would have a societal benefit, of reducing the number of vehi-
cles on the road and reducing the total driven distance, and would also benefit
the companies concerned, by allowing more matches and encouraging sustained
user participation. Future work will focus on validating the hypothesis through
field trial with user in the scheme, and on developing real-time response to the
users which respects the constraints on feasible matches.
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