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Preface

We are proud to present the proceedings of IDA 2015, the 14th International Sym-
posium on Intelligent Data Analysis, which was held from October 22 to October 24,
2015, in Saint-Etienne, France.

The series started in 1995 and was held biennially until 2009. In 2010, the sym-
posium re-focused to support papers that go beyond established technology and contain
genuinely novel and game-changing ideas, while not always being as fully realized as
papers accepted at other conferences. To further support this unique focus, IDA 2015
additionally included a so-called “Horizon Track”, which contained contributed talks
about research that may be too preliminary for archival publication, but with a
potentially very high impact. The IDA symposium is an interdisciplinary meeting that
solicits contributions on all aspects of intelligent data analysis, including papers on
intelligent support for modeling and analyzing data from complex, dynamical systems.
Intelligent support for data analysis goes beyond the usual algorithmic offerings in the
literature. Papers about established technology were only accepted if the technology
was embedded in intelligent data analysis systems, or was applied in novel ways to
analyzing and/or modeling complex systems.

The conventional reviewing process, which tends to favor incremental advances on
established work, can discourage the kinds of papers that IDA 2015 has published. The
reviewing process adopted for IDA addressed this issue explicitly: referees evaluated
papers against the stated goals of the symposium, and an informed, thoughtful, positive
review written by a Program Committee advisor could outweigh other, negative
reviews and result in acceptance of the paper. Indeed, it was noted that this had a
notable impact on the selection of papers included in the program. In addition, the new
“Horizon Track” allowed researchers to present their most ground breaking research at
the symposium without publishing it in the proceedings, stimulating discussions about
the most exciting research ideas and visions at an early stage.

We were pleased to have a very strong program. We received 65 submissions in
total. In all, 59 papers were submitted to the regular proceedings track, of which 29
were accepted for inclusion in this volume. Six papers were submitted to the Horizon
Track, of which three were accepted for presentation at the symposium. The IDA
Frontier Prize was awarded to the most visionary contribution. As in previous years, we
included a poster and video track for PhD students to promote their work. The best
2-minute video, as decided by the participants of the symposium, was awarded the
Video Prize.

We were honored to have three distinguished invited speakers at IDA 2015:

– Tony Veale from University College Dublin, Ireland, talked about “The Shape of
Tweets to Come” and how Twitter presents a generative opportunity of another kind
to the computationally-minded language researcher, to study how algorithmic
models might impose linguistic hypotheses onto large data sources to compose
novel and meaningful micro-texts of their own.



– Nick Heard from Imperial College London, UK, talked about “Combining Weak
Statistical Evidence in Cyber Security” and how statistical modelling (and the use of
p-values) of nodes and edges in a computer network can build up a picture of
normal behavior in a system.

– Pascal Van Hentenryck from National ICT (NICTA), Australia, talked about
“Evidence-Based Optimization”. He showed some case studies in disaster man-
agement, energy systems, high-performance computing, and market optimization
and presented some emerging architectures for evidence-based optimization.

The conference was held in the buildings of Telecom Saint-Etienne Engineering
School in front of the Hubert-Curien Laboratory. All those buildings were part of the
new “Manufacture d’armes de Saint-Étienne” (MAS, known for example for the
FAMAS assault rifle), built in 1864 and closed in 2001. They are now part of a new
university campus dedicated to computer science and physics (and in particular,
optics).

We wish to express our gratitude to all authors of submitted papers for their
intellectual contributions; to the Program Committee members and the additional
reviewers for their effort in reviewing and commenting on the submitted papers; to the
members of the IDA Steering Committee for their ongoing guidance and support; and
to the Program Committee advisors for their active involvement. Special thanks go to
the poster and video chair, Jesse Read; the local chair, Baptiste Jeudy; the publicity
chair, Edward Cohen; the sponsorship chair, François Jacquenet; the Frontier Prize
chairs, Michael Berthold and Elizabeth Bradley; and the webmaster, Leonor
Becerra-Bonache. We gratefully acknowledge those who were involved in the local
organization of the symposium: Romain Deville, Rémi Emonet, Damien Fourure,
Matthias Gery, Amaury Habrard, Christine Largeron, and Emilie Morvant.

Finally, we are grateful to our sponsors and supporters: KNIME, for funding the
IDA Frontier Prize for the most visionary contribution presenting a novel and sur-
prising approach to data analysis; the French Artificial Intelligence Association (AFIA),
for funding the IDA Video Prize for the best video presented in the PhD poster and
video track; the IT company Eura Nova; Jean Monnet University (UJM); the Artificial
Intelligence journal; Télécom Saint-Etienne (for sharing their building); and Springer.
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The Shape of Tweets to Come

Tony Veale

University College Dublin, Ireland
tony.veale@ucd.ie

https://www.csi.ucd.ie/users/tony-veale

Abstract. Twitter has proven itself a rich and varied source of language data for
linguistic analysis. For Twitter is more than a popular new platform for social
interaction via language; in many ways Twitter constitutes a whole new genre of
text, as users adapt to its limitations (140 character “tweets”) and its novel
conventions (e.g. re-tweeting, hashtags). Language researchers can thus harvest
Twitter data to study how users convey meaning with affect, and how they
achieve stickiness and virality with the texts they compose. But Twitter presents
an opportunity of another kind to the computationally-minded language
researcher, a generative opportunity to study how algorithmic models might
impose linguistic hypotheses onto large data sources to compose novel and
meaningful micro-texts of their own. This computational turn allows researchers
to go beyond merely descriptive models of playful uses of language such as
metaphor, sarcasm and irony. It allows researchers to test whether their models
embody a sufficiently algorithmic understanding of a phenomenon to facilitate
the construction of a fully-automated computational system, one that can gen-
erate wholly novel examples that are deemed acceptable to humans. This talk
presents and evaluates one such system, a Twitterbot named@MetaphorMagnet
that generates, expresses and shares its own playful insights on Twitter. I shall
show how @MetaphorMagnets tweets are inspired by data but shaped by
knowledge, and consider how the outputs of this hybrid data/knowledge-driven
bot may be usefully anchored in another source of data – the news stream.



Combining Weak Statistical Evidence
in Cyber Security

Nicholas A. Heard

Imperial College London, UK
n.heard@imperial.ac.uk

http://wwwf.imperial.ac.uk/~naheard/

Abstract. Cyber attacks on government and industry computer networks are
now commonplace and no system can be made invulnerable to intrusion.
Instead, much importance is placed on reducing the impact of cyber attacks
when they occur, which first means quickly detecting their presence amongst the
flow of cyber traffic. However, sophisticated hackers and cyber criminals will
act carefully to hide their presence, and so any hard detection rules (signatures)
can be circumnavigated. Nonetheless, if an intrusion has a malign purpose, then
at least some unusual behaviour will be hidden within the network traffic data.
Statistical modelling of nodes and edges in a computer network can build up a
picture of normal behaviour in the system. Typical institutional computer net-
works produce high volume data streams and so, from time to time, surprising
but benign behaviour will be observed. The task is to detect the significance of
genuine intrusion events against this background. In statistical modelling,
p-values are the fundamental quantities for measuring the significance of
observed data against a null hypothesis. This talk will review methods of
combining p-values to accumulate evidence, investigating their properties in
depth. Some new approaches will then be proposed which are better suited for
detecting subsets of significant p-values. Finally, the advantages of the proposed
approach will be illustrated on a cyber authentication problem, stemming from
collaborative work with Los Alamos National Laboratory.



Evidence-Based Optimization

Pascal Van Hentenryck

National ICT (NICTA), Australia
pascal.vanhentenryck@nicta.com.au

http://org.nicta.com.au/people/phentenryck/

Abstract. For the first time in the history of mankind, we are accumulating data
sets of unprecedented scale and accuracy about physical infrastructures, natural
phenomena, man-made processes, and human behavior. These developments,
together with progress in high-performance computing, machine learning, and
operations research, offer exciting opportunities for the evidence-based opti-
mization of global systems. This talk reviews some case-studies in disaster
management, energy systems, high-performance computing, and market opti-
mization to showcase these unique opportunities and their associated challenges,
and presents some emerging architectures for evidence-based optimization.
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Towards a Data Science Collaboratory

Joaquin Vanschoren1, Bernd Bischl2, Frank Hutter3, Michele Sebag4,
Balazs Kegl4, Matthias Schmid5, Giulio Napolitano5,

Katy Wolstencroft6, Alan R. Williams7, and Neil Lawrence8

1 Eindhoven University of Technology
j.vanschoren@tue.nl

2 Ludwig-Maximilians-University Munich
bernd.bischl@stat.uni-muenchen.de

3 Albert-Ludwigs-Universität Freiburg
fh@informatik.uni-freiburg.de

4 Université Paris Sud
michele.sebag@lri.fr, balazs.kegl@gmail.com

5 Universität Bonn
{matthias.schmid,giulio}@imbie.meb.uni-bonn.de

6 Universiteit Leiden
k.j.wolstencroft@liacs.leidenuniv.nl

7 University of Manchester
alan.r.williams@manchester.ac.uk

8 University of Sheffield
n.lawrence@dcs.shef.ac.uk

1 The Fragmented Data Science Ecosystem

Data-driven research requires an ecosystem of people fulfilling many different roles:
domain scientists collect and analyze data to study or discover phenomena; data sci-
entists design and evaluate algorithms, and computer scientists implement and maintain
these techniques to be used throughout science and industry.

However, there exist large gaps between these communities that slow down the rate
of discovery. First, because domain scientists have a more limited view on the state
of the art in data science, they are often unsure about the latest and most appropriate
techniques. There exist extensive algorithms libraries, but it is often not clear how to
optimally use them. Hence, they either spend a lot of time on research and experi-
mentation, or make suboptimal choices. Data scientists, on the other hand, often don’t
speak the language of domain scientists, hence missing opportunities to work inter-
actively with them and innovate in their respective fields. While there exist many
wonderful open data repositories, it is far from obvious how to access, understand and
use this data. Hence, much research still uses datasets that are of little scientific or
industrial interest today. Knowledge transfer through the literature is inefficient, as
findings are spread over millions of papers based on tacit domain-specific knowledge
and community-specific jargon. Moreover, while scientific papers are being produced
at a tremendous rate, reproducible and readily applicable major discoveries are far
fewer [1]. Empirical evaluations of algorithms on known datasets are typically not



organized online, but confined to papers with varying levels of detail, making them
virtually impossible to build on. In short, while it is theoretically possible for these
communities to build on each other’s work, in practice there is a lot of friction
involved, such as handling myriad data formats, studying source code, emailing
authors, and running complex experiments. As a result, many scientists spend vast
amounts of time on tasks that others could do in a fraction of that time, that could be
done much better using novel/better techniques, or that could be automated altogether.

2 An Online Collaboratory

We propose to create an online collaboratory, where data scientists, domain scientists
and computer scientists can easily interact and build directly on each other’s work,
transforming the practice of data science from small-scale local collaborations to
massive, real-time, online collaborations.

First, we can extract actionable datasets from large scientific databases, identify key
software components, and (auto-)annotate them with a practical base vocabulary to
create a ‘search engine for data science’. This helps scientists find useful tools (e.g.
scalable clustering algorithms), and test algorithms on many recent datasets. Next,
scientists can challenge the community to solve problems, yielding experiments
showing how well each particular solution works. Crucially, experiments and results
(e.g., predictive models) should be open and linked to the underlying data sets and
workflows, ensuring reproducibility and creating a single, organized body of research:
a ‘data telescope’ that can be wielded by scientists, industry and students alike. The
collaboratory should support social networking to protect preliminary research, and
track the impact of all contributions (reuse, downloads, altmetrics) to help scientist
build their reputation.

The collaboratory can be seamlessly integrated into the tools that scientists already
use, to automatically download and upload data, code and experiments [2]. Moreover,
it offers unprecedented opportunities to intelligently recommend algorithms or optimize
large parameter spaces, thus saving time.

We hope to bring together data scientists, computer scientists, and domain scientists
from many domains to see how current tools can be connected, and best practices can
be shared. We expect that this networked approach to data science will strongly

Fig. 1. Roles within the data science ecosystem and the gaps between them.
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contribute to speeding up data-driven science in the near future. Indeed, if we are all
part of the same ‘experimentation system in the sky’, we can all become more pro-
ductive and efficiently learn from each other.

References

1. Ioannidis, J.: Why most published research findings are false. PLoS Med. 2(8), e214 (2005)
2. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine

learning. SIGKDD Explor. 15(2), 49–60 (2013)
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When Learning Indeed Changes the World:
Diagnosing Prediction-Induced Drift

Georg Krempl, Dávid Bodnár, Anita Hrubos

Knowledge Management & Discovery, Otto-von-Guericke University,
Universitätsplatz 2, 39106 Magdeburg, Germany

georg.krempl@iti.cs.uni-magdeburg.de

http://kmd.ovgu.de/res/driftmining

Abstract. A fundamental assumption underlying many prediction systems is
that they act as an invisible observer without interfering with the evolution of the
population under study. More formally, their distribution is assumed to be
independent of the system’s previous predictions. Nevertheless, this is violated
when, for example, the predictor faces intelligent and malevolent adversaries
who counteract its classification rules, or when the classification as high-risk
might become a self-fulfilling prophecy. The former has received some attention
in adversarial machine learning [10, 12] in the context of hardening classifiers
against such an adversary, and indications for the latter have been reported for
recommender systems [3, 5] and financial applications [9, 13]. However, the
problems of self-defeating and self-fulfilling prophecies in prediction systems
have not been studied in an unified framework yet, leaving questions such as
how to detect them in drift open.

We address this by presenting a first approach to assess the presence of such
prediction-induced drift in datasets. Our work complements literature on change
detection [11], change and drift mining [2, 6, 7], and concept drift [4, 8], which
is based on the assumption that the observed drift is independent of the system’s
predictions. We illustrate and evaluate our approach on data generated with and
without self-defeating and self-fulfilling prophecies. While prediction-induced
drift is not limited to classification problems, but might also occur in other fields
of machine learning, we focus this initial analysis on the classification task.

Our preliminary results on synthetic datasets are promising but highlight
two major challenges: First, while the majority of prediction-induced drifts is
correctly detected, detection of self-fulfilling prophecies seems more difficult,
requiring further research. Second, this analysis requires knowing the labels that
were actually assigned by prediction systems, which are currently not published
in real-world benchmark datasets such as the ones in the UCI Machine Learning
Repository [1].

Thus, this contribution also aims to motivate the community to collect, to
share, and to analyse data with the system’s actual predictions in order to allow
an assessment of prediction-induced drift in real-world applications.

Keywords: prediction-induced drift, concept drift, dataset shift, population drift,
nonstationarity, change mining, drift mining, change detection, self-fulfilling
prophecy, self-defeating prophecy, adversarial machine learning.
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The Data Problem in Data Mining

Albrecht Zimmermann

INSA de Lyon
albrecht.zimmermann@insa-lyon.fr

Abstract. Computer science is essentially an applied or engineering science,
creating tools. In Data Mining, those tools are supposed to help humans
understand large amounts of data, and produce actionable insight. In this talk, I
argue that for all the progress that has been made in Data Mining, in particular
Pattern Mining, we are lacking understanding of key aspects of the performance
and results of pattern mining algorithms. I will focus particularly on the diffi-
culty of deriving actionable knowledge from patterns. I trace the lack of progress
regarding those questions to a lack of data with varying, controlled properties,
and argue that we will need to make a science of digital data generation, and use
it to develop guidance to data practitioners.

1 Short-Comings in Evaluation

Data Mining, and in particular Pattern Mining, have been around for about two decades
and the work in the field has led to a large number of techniques, which have been
applied to pattern domains as diverse as itemsets, attribute-value data, sequences, trees,
and graphs, and tasks ranging from finding associations to describing interesting
subpopulations, to predicting unseen class labels.

In this talk, I will focus on the unsupervised pattern mining setting, i.e. finding
unexpected, interesting and useful patterns that are not related to a variable of interest -
nominal or otherwise. As I will argue, the qualitative evaluation of proposed tech-
niques, i.e. how “good” the resulting patterns are, has been given short thrift in
comparison to quantitative evaluation, i.e. how efficiently the output is found.

But also the latter has arguably not been given the attention it deserved. This case
has been made convincingly early on by Zheng et al. [2], who showed that the eval-
uations performed in itemset mining up to that point in time had led to an over-fitting
on the artificially generated data used. The reported performance did not transfer to
real-life data, which showed different characteristics than the artificially generated data.
Remarkably enough, the situation has barely improved since then, with quantitative
evaluations focused on a small number of data sets, of which typically only few are
used in a given evaluation.

The situation is worse for qualitative evaluations, which are rarely performed in the
first place. This is understandable since the lack of a target variable corresponds to
missing ground truth in the data. But at the same time, it means that even if we knew



how to set parameters appropriately1, we would not know how found patterns relate to
the processes that generated the data. Since pattern mining is supposed to give us
insight into those processes, and allow us to act based on found patterns, this is a
serious short-coming.

2 Generating Data (and Understanding Pattern Mining)

When there is no ground truth available for real-life data (or when there is little real-life
data available in the first place), generating artificial data is a promising alternative.
This is not only the case in computer science, where, for instance, the SAT solving
community has chosen this direction, but also in “hard sciences” like physics, see for
instance [1].

Data generation allows us to both break the bottleneck of too few data sets (or data
sets with a too narrow range of characteristics), and to understand how found patterns
relate to the processes that generated the data. As Zheng et al. showed, however, and
others have demonstrated since, approaching this task without forethought and an
understanding of the data we aim to generate will lead to unrealistic data sets. Fur-
thermore, limiting ourselves to a narrow selection of generative processes, e.g. gen-
erating itemset mining data only by combining itemsets, will restrict the lessons to be
learned from matching patterns to processes, and carries the risk of biasing qualitative
evaluations.

Fortunately, we do not have to start from scratch. More-or-less successful attempts
at data generation have been made, and some infrastructure exists to support this task.
Additionally, some researchers have attempted to relate patterns to different processes
to evaluate their quality, especially in recent years. Finally, researchers and practi-
tioners in other fields have developed theories of their own that, while necessarily taken
with a grain of salt, can be built on to simulate real-life processes. By combining and
building on this existing knowledge, we can fill in the current data gaps and start to
understand those aspects of pattern mining that escape us so far.
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1 Another area in which there is too little guidance.
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Data Analytics and Optimisation for Assessing
a Ride Sharing System
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Abstract. Ride-sharing schemes attempt to reduce road traffic by
matching prospective passengers to drivers with spare seats in their cars.
To be successful, such schemes require a critical mass of drivers and
passengers. In current deployed implementations, the possible matches
are based on heuristics, rather than real route times or distances. In
some cases, the heuristics propose infeasible matches; in others, feasible
matches are omitted. Poor ride matching is likely to deter participants
from using the system. We develop a constraint-based model for accept-
able ride matches which incorporates route plans and time windows.
Through data analytics on a history of advertised schedules and agreed
shared trips, we infer parameters for this model that account for 90 % of
agreed trips. By applying the inferred model to the advertised schedules,
we demonstrate that there is an imbalance between riders and passen-
gers. We assess the potential benefits of persuading existing drivers to
switch to becoming passengers if appropriate matches can be found, by
solving the inferred model with and without switching. We demonstrate
that flexible participation has the potential to reduce the number of
unmatched participants by up to 80 %.

1 Introduction

Road traffic is one of the main generators of carbon emissions, and traffic con-
gestion is a significant contributor to pollution around major cities and urban
areas. Partly motivated by these issues, there has been recent strong growth
in ride-sharing schemes (e.g. Blabla car, Carma, BLyft, Sidecar, Uber), where
participants post details of intended trips, and the system then proposes possi-
ble matches between drivers and prospective passengers. As more matches are
agreed, the number of car journeys decreases, and the total driven distance
also decreases, helping to reduce congestion, emissions and energy consumption.
Increasing participation in such schemes is thus considered both a benefit for
society and a commercial objective for the system operators.

Deployed schemes focus on proposing a set of possible matches for each
request, leaving the participants to contact each other, negotiate ride details,
and to agree the match. In order to generate these offers quickly, the ride shar-
ing systems typically propose matches using heuristics that are fast to compute,
c© Springer International Publishing Switzerland 2015
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based on Euclidean distance between locations and on fixed time windows. This
means that the set of proposed matches may include some that are infeasible
given the road network, and may omit some that would be a user’s preferred
match. However, users who receive few offers, or who are given offers that are a
poor match for their travel plans, are unlikely to continue with the system. There
is a need to assess the performance of the current matching schemes, identify
ways in which performance could be improved, and assess the improvements that
could be gained. To do this, we employ data analytics to infer constraints on
possible matches, and to assess current performance. We then use the inferred
constraints to build optimisation models and to evaluate proposed improvements.

Specifically, (i) we use shortest path routing algorithms to determine the
impact of a driver being matched with a passenger; (ii) by mining records of
previously agreed matches, we infer constraints on the departure and arrival
time windows for drivers, and on deviations from the shortest routes, that cap-
ture 90 % of agreed matches; (iii) we compare the inferred constraint model with
the heuristic matching algorithm, and assess the discrepancies between the two
approaches; (iv) we analyse histories of proposed trip schedules and show an
imbalance between drivers and passengers that may be hampering participa-
tion in the scheme; and (v) we propose and evaluate the potential of persuad-
ing drivers to be flexible in their roles in the scheme, showing a reduction in
unmatched participants of up to 80

2 Related Work

The dial-a-ride problem has been long studied in the OR community [6]. Dial-
a-ride typically assumes a single vehicle, picking up and dropping off riders at
specified locations within time windows, although multiple vehicle problems have
also been studied [4,5]. In [10], the authors compare different scenarios of dial-a-
ride problems and show that these scenarios can be solved extending the variable
neighborhood search algorithms. The dial-a-ride drivers have no journey require-
ments of their own. For ride-sharing schemes [7], both the drivers and the riders
have their own objectives. Specific schemes vary as to whether the drivers move
to the riders locations or the riders move to and from the driver routes, and
whether or not drivers take single or multiple riders on a trip. One extension
includes participants known as shifters, who may either drive or ride as a rider
[1]. Armant et al. [3] also include shifters, but also assume that each pure rider
who is not served in the matching has a probability of driving on their own,
included as a penalty in the objective function. Computing an optimal matching
is hard [2], and the complexity increases as the number of shifters increases.
Kamar and Horvitz [8] model the problem as one of collaborative planning,
where agents must balance competing goals. Yousaf et al. [13] model the prob-
lem as multi source-destination path planning, with a wide range of competing
objectives including privacy and incentives. Schilde et al. [11] and Manna and
Prestwich [9] consider stochastic problems, in which trip requests arrive during
the execution of the solution, using scenario-based methods to minimise expected
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delays or unserved requests. Simonin and O’Sullivan [12] focus on the matching
problem, assuming an input graph of all feasible pairings, and establishes the
complexity of a number of two variations, showing that in some cases polynomial
time solutions are possible. In this study, from the analysis of agreed rideshare
trips advertised by real users, we model the users’ behaviour and infer a Con-
straint Programming problem. The last problem allows us to assess the quality
and the potential improvement of the heuristics used in deployed applications
when answering to users’ queries. A comparison of different ride-sharing problem
formulations or algorithms to improve the solving time is beyond the scope of
the study.

3 Euclidean-Distance Ride Matching

In the basic ride sharing scheme, drivers and riders post their start and end
locations, and an expected start time, and the system proposes possible matches
to the participants. The participants then select from the possible matches and
contact each other to agree the details of the trip, which involves establishing
a pick-up and drop-off location, and a time for the pick up. The agreed values
might differ from the original values posted by the participants. When the actual
ride takes place, both the driver and rider use a smartphone app to inform the
system, with the driver informing the system on first departure and final arrival,
and each rider notifying the system on pick-up and drop-off. The app reports
GPS readings and times, from which payments are computed.

When a driver or rider posts their trip request, the ride sharing system should
return in real-time a list of potential users with which the poster can share their
journey. To ensure a real-time response (< 1s), a Euclidean distance heuristic
is typically used to find the possible matches. First, for each driver, a straight
line path is drawn from the driver start location to the driver destination. Sec-
ondly, for all possible riders, the euclidean distances between the rider start
and destination and the driver line are computed. Only riders with distances to
and from the driver line below a threshold are considered as potential matches.
These are further filtered by restricting (i) rider start and destination locations
to be within a threshold angle of deviation from the driver line, and (ii) rider
start times to lie within a fixed threshold of the driver’s start time. This simple
heuristic is fast to compute, and can be more or less accurate in large cities
having a road network similar to a grid. Without this particular road network
configuration the heuristics frequently return infeasible matches, and also omit
some high quality potential matches. The main cause of inappropriate matches
is the use of straight line paths and distances, since in many circumstances the
shortest or fastest route is significantly different from the straight line path. In
the Fig. 1, we show an extreme example. T45 denotes the fixed threshold heuris-
tic that we investigate. It fits to regular grid road maps and is similar to some
heuristics used by deployed applications for fast computation of the matches.
The subfigure on the left shows the standard heuristic, with trips starting and
finishing in the grey zone being offered as potential matches. The subfigure on
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(a) matches returned by the heuristic (b) feasible matches

Fig. 1. Example of feasible and infeasible ride matches

the right shows that fastest path for the driver, and of the two passenger request,
the only feasible match is the one which was not previously offered. Secondly,
the system requires each user to post a preferred start time, and then applies a
fixed time window around start times to match participants. However, individual
users may have different flexibility over their start or arrival times, and these
are also likely to vary with the expected travel time for the journey. Repeated
offering of matches which would require significant deviation from a route, or
which are infeasible because of the length of time required for the journey, are
liable to act as a disincentive for users to continue with the system. Similarly, if
well matched participants are not offered rides, there is a reduced incentive to
continue with the system.

4 Ride Sharing Optimisation Model

To describe the trip schedules and the users’ constraints we introduce the fol-
lowing notation. D denotes the set of possible drivers, R is the set of possible
riders, and U = D ∪ R represents the set of all users. To generate the time
and geographical constraints, we use Open Street Map data to deduce mini-
mal path distances and times between two locations. L = {l1, . . . , ln} denotes
the set of road node locations identified by their GPS coordinates. A path
π = (li, . . . , lj) is an ordered list of locations, and time(π) (resp. dist(π)) returns
the driving path time (resp distance) for π. The path π∗

li,lj
(resp. π�

li,lj
) denotes

a minimal time (resp. distance) path from li to lj . A trip schedule is a tuple
tsu = (tstart

d , lstart
d , ldest

d ) describing user u’s intended start time tstart
u , start

location lstart
u , and destination ldest

u . TS = {tsu1 , . . . , tsun
} denotes the set of

user trip schedules sent to the system. To simplify the notation we consider one
trip schedule per user, but the approach remains valid for multiple schedules
per user. For a trip schedule tsu, the inferred time window twu = (etstart

u , ltdest
u )

describes an earliest start time etstart
u and a latest arrival time ltdest

u . Intuitively,
the driver trip time window twd is consistent with a rider trip time window twr

when there exists a time interval intersecting both twr and twd in which the
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rider can be picked-up and dropped-off by the driver. For a driver trip schedule
tsd, π∗

lstart
d ,ldest

d

denotes the inferred minimal time path from lstart
d to ldest

d . For

a rider trip schedule tsr, mpick
r denotes the inferred maximal path distance r is

willing to walk from his intended start lstart
r to a pick-up location lpick

r on the
driver path π∗

lstart
d ,ldest

d

. Similarly mdrop
r denotes the inferred maximal path dis-

tance the rider is willing to walk from a drop-off location ldrop
r to his destination

ldest
r .

Given the above we define the feasible matches relaying both on the users’
inferred path constraints and the users’ inferred time constraints.

Definition 1 (inferred feasible ride match). A driver trip schedule and a
rider trip schedule, tsd and tsr, represent a likely feasible ride match if:

1. their inferred time windows twd, twr are consistent with the rider pick-up and
drop-off time:
(a) ltdest

d − etstart
r > π∗

lpick,ldrop , the interval between the driver latest arrival
and the rider earliest start is greater than the fastest path from the rider’s
inferred pick-up to his inferred drop-off, or,

(b) ltdest
r −etstart

d > π∗
lpick�,ldrop� , the interval between the earliest driver start

and the latest rider arrival is greater than the fastest path from the rider
inferred pick-up to the inferred drop-off.

2. The expected driving path intersects the rider’s possible pick-up and drop-off
points.
(a) dist(π�

lstart
r ,πd

) < mpick
r , the shortest path distance between the rider

intended start and the expected driver path is lower than the maximal
distance for the rider’s pick-up.

(b) dist(π�
lstart
r ,πd

) < mdrop
r , the shortest path distance between the rider

intended destination and the expected driver path is lower than the max-
imal distance for the rider’s drop-off.

Given a set of trip schedules, by iteratively checking if each pair of trip sched-
ules are likely feasible, we incrementally discover a bipartite graph of feasible ride
matches G = (TSD, TSR,E) s.t. TSD ⊆ TS is the set of drivers’ trip sched-
ules, TSR ⊆ TS is the set of riders’ trip schedules, and every edge (tsd, tsr) ∈ E
is a feasible ride match. G is the input parameter of the constraint program-
ming model we build to assess the potential of a ride-sharing scheme. For each
feasible match between a rider trip schedule tsr and a driver trip schedule tsd

in G = (TSD, TSR,E) is associated to a ride share trip ytsd,tsr
encoded as a

collection of decision variables s.t.:

ytsd,tsr
.start represents the pick-up time of r,

ytsd,tsr
.end denotes a the drop-off time of r,

ytsd,tsr
.duration is the time duration of the rideshare trip,

ytsd,tsr
.presence denotes presence of the ride share trip in the optimal solution.

We model a served rider using x,tsr
s.t. x,tsr

equal 1 when the rider is allocated
to exactly one of feasible share ride ytsd,tsr

. To assess the potential of a ride-
sharing scheme, our objective is to maximize:
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Σ
(tsd,tsr)∈E

x,tsr
(1)

subject to:

ytsd,tsr
.start ≥ max(tearly

d , tearly
r ), ∀(tsd, tsr) ∈ E (2)

ytsd,tsr
.end ≤ min(tlatest

d , tlatest
r ), ∀(tsd, tsr) ∈ E (3)

ytsd,tsr
.duration = ytsd,tsr

.end − ytsd,tsr
.start, ∀(tsd, tsr) ∈ E (4)

ytsd,tsr
.duration ≥ π ∗lstart,ldest , ∀(tsd, tsr) ∈ E (5)

CUMULATIV E({ytsd,tsr
}, nbSeatsd,≤), ∀tsd ∈ TSD (6)

ALTERNATIV E(xtsr
, {ytsd,tsr

|(tsd, tsr) ∈ E}), ∀tsr ∈ TSR (7)

(xtsc
.presence ⇒ ytrc,tsr

.presence), ∀(tsd, tsr) ∈ E (8)

The aim is to maximize the total number of served riders (1). The constraints
(2) force each rideshare trip to start after the earliest rider start and the earliest
driver start. Similarly, the constraints (3) force each rideshare trip to end before
the latest rider arrival and the latest driver arrival. The duration of the rideshare
trip is the difference between the end and the start (4) and it is greater than
the rider shortest path (5). The cumulative constraints (6) restrict each driver
car occupancy to not exceed the number of available seats at any moment of the
trip. When a rideshare trip is chosen in a solution, i.e., ytsd,tsr

.presence = 1,
it corresponds to one occupied seat in a driver’s car, it is equal to 0 otherwise.
At any time, the driver’s car occupancy corresponds to the following definition

Σ
(tsd,tsr)∈E

ytsd,tsr
.presence ≤ nbSeatsd, ∀tsd ∈ TSD. The alternative constraints

(7) enforce that at most one ytsd,tsr
rideshare trip is chosen. In the successful case

of the rider rideshare trip xtsr
is equal to the chosen rideshare ytsd,tsr

otherwise
the rider is not chosen. The constraints (8) state that a shifter assigned to be a
rider does not drive.

5 Inferring Constraints from Users’ Behaviour

The raw data maintained in the ride-sharing scheme is not enough to establish
the parameters of the optimisation model. Participants do not post time windows
for their trips, and their advertised locations may be inaccurate (to protect
privacy). Similarly, details of actual shared rides are subject to errors and missing
data, as they are reliant on participants reporting GPS coordinates at the time
of departure and arrival; in particular, drivers have no need to start the system
until the first pickup. Finally, although we have records of advertised trips, we
only have confirmed data on positive examples of acceptable ride shares; a pair
of schedules which did not result in a trip might not have been feasible, but
equally might not have been proposed to the participants, or might have been
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rejected in preference to another trip for either distance or personal factors. To
assess the potential of the ride-sharing scheme, we need to infer the parameters
of the model from the set of positive examples.

For a trip schedule tsu, inferring the time window twu involves inferring the
earliest start time tearly

u and the latest arrival time tlatest
u in which a user expect

the journey to happen. For this purpose, we extract from the trip records three
parameters: the maximal positive start time delay, δ+, the maximal negative
start time delay, δ−, and the estimated travel time f1 and, as explained in Fig. 2,
we add them together to infer the earliest start and the latest arrival time of the
inferred time window twu.

time

tearly
u

start time
earliest

tstart
u

start time
intended

tlatest
u

arrival time
latest

δ−

negative
start delay

δ+

positive
start delay

f1(π∗)

travel time estimation

Fig. 2. Time Window Parameters

The positive and negative start time delay represents the user’s time
flexibility for advancing or delaying the intended start. In Fig. 3 we observe the
difference between the riders’ intended start time tstart

r and their reported pick-
ups time tpick

r while observing the trip duration between the riders’ pick-ups
and drop off. We observe no correlation between the ride share duration and
the user’s delayed times. Riders appear to be willing to change their start times
by an amount greater than the duration of their journey in order to find a
ride. To extract the maximal positive and negative time changes, δ+ and δ−,
we determine the minimal change which encompasses almost all (90%) accepted
ride shares. The horizontal lines show the maximal positive start time (left) and
negative start time delay (right) observed for the riders in region 4. We compute
similarly the maximal positive and negative time delay for the drivers.
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Fig. 3. Positive and negative time delay for riders in region 4
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The estimated travel time represents the approximate time a user can expect
to spend on the road. In Fig. 4 (left) we plot the duration of the riders’ travel time
from the reported pick-up tpick

r to the reported drop-off tdrop
r against the minimal

path time computed between these locations. There is a clear correlation, with
linear regression indicating a factor of approximately 1.5 for the increase in travel
time over the minimal path. This increase may be due to many factors, including
traffic congestion and the presence of multiple passengers in a single trip, and
will be the subject of further study. Moreover, one can notice few points below
the diagonal (fastest path time = recorded path time). These represent cases
where the driver was faster than the faster path time respecting to the speed
limit indicated in OSM map.
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Fig. 4. Observed trip time compared to minimal path time, for region 4 (Colour figure
online)

The Riders’ Maximal Meeting Path Distances represent the maximal
pick-up path distance, mpick, from the rider intended start to the driver path,
and the maximal drop off path distance, mdrop from the driver path to the rider
intended destination. In Fig. 4 (right) we plot the path distance between the
riders intended destination and reported drop-off against the minimal path dis-
tance between the destination and drop-off. Here there exists no clear correlation
between the observed and minimal drop off path distances. Again, our aim is
to find the minimal threshold on the meeting path distance within which 90%
of the users accepted a ride. Based on the inferred path times (which would be
used in deciding whether or not to accept a ride), a limit of 4.5km (black line)
includes 90% of all accepted rides. For comparison, we show (blue line) a similar
derived threshold of 5.8 km on the observed times.

We summarize the optimisation model parameters extracted from the trip
records in the following table. Times are described in minutes and the distances
in kilometers. We recall that given a trip scheduletsu, we infer its time-window
parameter using the following formulae: the infered earliest start time tearly

u =
tstart
u − δ− while the latest arrival time tlatest

u = tstart
u + δ− + f1(x). We notice

that in all the regions studied, riders are more flexible than drivers, but both
are willing to start early. The estimated travel time varies from 1.4 to twice the
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minimal path time computed using OSM Street Map, and varies depending on
the region.

drivers δ+ drivers δ− riders δ+ riders δ− f1(x) riders mpick riders mdrop

region 1 63 56 74 94 2x+11.2 2.2 1.7

region 2 31 60 57 46 1.15x+13.2 2.0 1.0

region 3 45 45 56 60 1.4x+9.7 11.3 14.3

region 4 45 54 70 56 1.4x+7.5 2.4 4.5

6 Assessing the Ride-Match Models

We now use the inferred model described in previous section to assess the quality
of the existing matching heuristics for the 4 regions in the study.
The basic Euclidean heuristic is augmented with a 45 degree sweep angle, and
allows up to 2 hours variation in the start times. In the following table we evalu-
ate the precision and the recall of this heuristic with respect to inferred feasible
ride match model represented as the graph G. The recall rate (the percentage
of feasible matches from G returned by the heuristic) is relatively high, ranging
between 90% and 95%, although this still indicates that between 5 and 10%
of feasible matches are not being considered. The precision rate (percentage of
matches returned by the heuristic that are feasible in G) however varies from
58% to 90%, indicating that many infeasible matches are being proposed. The
heuristic is most effective on region 3, with poor performance on region 1 and
region 2. The appears to be a consequence of the geography of the regions -
region 3 is a large urban area with a regular road network, while region 2 has a
mix of urban and rural roads, and an irregular road network around harbours
and coastal areas. Relatively low precision and recall (regions 1 and 2) indicate
many inappropriate match suggestions and missing proposal, which are believe
to act as a disincentive for potential users.

T45 nb edges # feasible # feasible # unfeas # feasible precision recall

found ible found not found

region 1 802 647 588 214 59 0.733 0.909

region 2 559 364 326 233 38 0.583 0.896

region 3 1678 1691 1616 62 75 0.963 0.956

region 4 4223 3590 3326 897 264 0.788 0.926

To assess the potential of the ride-sharing scheme, we use the inferred CP model
to compute the maximum number of assignments of riders to drivers’ cars. In
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next table, we compare the number of matched users found in G, with number of
matched users found among the feasible matches for the typical heuristic T45FM.
Note that T45FM is a filtered version of the typical heuristic, removing those
matches considered infeasible in G, since those matches would be rejected by
the optimisation model. The first thing to note is the percentage of unmatched
participants is higher in each case for the T45FM filtered heuristic compared to
the inferred model, although the losses are relatively small. However, perhaps
more importantly, the ratio column shows that there is a significant imbalance in
the participants in the scheme; a healthy scheme should have a ratio of at least
1, and ideally should be higher, allowing multiple passengers per car. A low ratio
means many drivers will be unmatched, and thus will drive with empty seats. In
addition, frequent failed attempts to find a match are likely to deter those users
from participating. The current optimisation model prioritises riders, and thus
some drivers may have multiple passengers. Changing the criterion to balance
driver utilisation may encourage drivers to continue with the system, but cannot
increase the total number of matched participants, and thus is likely to reduce the
society benefits of sharing journeys. Therefore, we consider a different approach,
and evaluate the effect of persuading all drivers to become shifters, and to accept
an offer to be a passenger rather than remain exclusively as a driver. The results
of running these flexible models are shown in the rows FMS and T45FMDS.
We note that FMDS is still providing a benefit over the (filtered) heuristic, but
more importantly, the increased flexibility allows us to match significantly more
participants. The number of unmatched participants drops by a factor of 0.33 in
the poorest case (region 2) and by a factor of 5 in the best case (region 3).
We conclude that, where there is a participant imbalance, the focus of the ride
sharing scheme operators should be to persuade drivers to be flexible in their
roles, as this appears to offer the biggest potential for continued participation in
the scheme and for removing vehicles from the road network.

region 1 users ratio matched matched % region 2 users ratio matched matched %

R/D riders drivers unmatch R/D riders drivers unmatch

FM 992 0.55 246 133 61.79 FM 658 0.7 142 79 66.41

T45FM 223 124 65.02 T45FM 132 81 67.61

FMDS 992 1.55 488 196 31.05 FMDS 658 1.7 258 99 45.74

T45FMDS 446 176 37.30 T45FMDS 248 98 47.42

region 3 region 4

FM 1871 0.67 656 328 47.41 FM 4784 0.82 1592 758 50.88

T45FM 630 332 48.58 T45FM 1521 774 52.03

FMDS 1871 1.67 1392 321 8.44 FMDS 4784 1.82 2876 864 21.82

T45FMDS 1340 316 11.49 T45FMDS 2741 880 24.31
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7 Conclusion

Ride-sharing is a rapidly growing practice for reducing the number of cars on the
road in urban regions. Successful ride sharing schemes require committed users,
and they in turn require the scheme to provide them with feasible ride matches
in real-time. In current systems, the emphasis has been on the real-time require-
ment rather than the feasibility of the matches. We have developed a model
which uses route planning and time windows to describe feasible matches as
a constraint satisfaction problem, and the ultimate goal of the ride-matching
scheme as constraint optimisation. Through analysis of data sets of advertised
schedules and agreed trips, we infer the parameters of the these constraint mod-
els, chosen to accept 90 % of all agreed matches. By applying the model to the
data sets of advertised trips, we identify the errors in the current heuristics, and
find an imbalance among participants in the ride sharing schemes. We consider
the benefits that might be obtained if drivers can be persuade to switch roles and
act as passengers, and by re-running the optimisation model we show that there
is potential to reduce the number of unmatched participants by up to 80 %. Such
flexible switching would have a societal benefit, of reducing the number of vehi-
cles on the road and reducing the total driven distance, and would also benefit
the companies concerned, by allowing more matches and encouraging sustained
user participation. Future work will focus on validating the hypothesis through
field trial with user in the scheme, and on developing real-time response to the
users which respects the constraints on feasible matches.
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Abstract. Understanding the knowledge that resides in a Bayesian net-
work can be hard, certainly when a large network is to be used for the
first time, or when the network is complex or has just been updated.
Tools to assist users in the analysis of Bayesian networks can help. In
this paper, we introduce a novel general framework and tool for answering
exploratory queries over Bayesian networks. The framework is inspired
by queries from the constraint-based mining literature designed for the
exploratory analysis of data. Adapted to Bayesian networks, these queries
specify a set of constraints on explanations of interest, where an explana-
tion is an assignment to a subset of variables in a network. Characteristic
for the methodology is that it searches over different subsets of the expla-
nations, corresponding to different marginalizations. A general purpose
framework, based on principles of constraint programming, data mining
and knowledge compilation, is used to answer all possible queries. This
CP4BN framework employs a rich set of constraints and is able to emu-
late a range of existing queries from both the Bayesian network and the
constraint-based data mining literature.

1 Introduction

Understanding a Bayesian network is not always easy. In particular users who
are faced with a large network for the first time, or with networks that are
dynamically updated when new data arrives, may not understand the knowledge
encoded in such a network. It has been argued that BN’s (especially those used
for diagnosis) should be extensively evaluated before being used in practice [15].

While the Bayesian network literature already provides a set of queries and
corresponding inference techniques that are helpful in gaining a better under-
standing of a network, most of the standard queries specify (and fix) the variables
of interest, and then either ask for a most likely assignment to the variables or
the computation of a particular probability.

This contrasts with common practice in the field of exploratory data mining,
where one aims at understanding data by discovering and analyzing patterns.
Since the seminal work on frequent itemset mining by Agrawal et al. [1], numer-
ous techniques for exploratory mining of patterns under constraints have been
developed [14]. The notions of frequency and pattern in constraint-based pattern
c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 13–24, 2015.
DOI: 10.1007/978-3-319-24465-5 2
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mining actually correspond to the notions of probability and explanation in a
Bayesian network. In pattern mining, one typically searches over a space of pos-
sible patterns. In Bayesian networks, this corresponds to searching over subsets
of variables and their values. In this paper, we exploit the similarities between
these two fields and introduce constraint-based queries for Bayesian networks.

The contribution of this paper is three-fold. First, inspired by constraint-
based mining, we introduce an expressive set of exploratory queries for Bayesian
networks. Secondly, we identify how these queries can be expressed as constraints
over the variables and joint distribution of the Bayesian network. Finally, we
show how these constraints can be expressed as a generic constraint program,
combining ideas from constraint programming, itemset mining and knowledge
compilation, in particular CP4IM [9] and arithmetic circuits (AC) [5]. Our
method operates on the arithmetic circuit directly and can hence be applied
to any graphical model that can be compiled into an AC. By doing so, we bridge
the gap between constraint-based pattern mining and graphical models and con-
tribute towards more intelligent analysis of Bayesian networks.

2 Examples of Bayesian Network Exploration

After introducing a Bayesian Network and BN pattern, we show examples of
exploratory queries over a Bayesian network in an illustrative scenario.

Bayesian Network Pattern. A Bayesian network G is a directed acyclic graph
where each node represents a random variable Xi in X = {X1, . . . , Xn}. Let PaG

Xi

denote the parents of Xi in G. A joint distribution P over the set of variables
X is said to factorize according to G if P (X1, . . . , Xn) can be expressed as the
product

∏n
i=1 P (Xi|PaG

Xi
). We denote such a distribution by PG . We denote by

D(Xi) the domain of variable Xi, that is, the possible values the variable can
take. An assignment of value xi to variable Xi is denoted by (Xi = xi).

Definition 1 (BN pattern). A pattern A over PG is a partial assignment,
that is, an assignment to a subset of the variables X in G: A = {(X1 =
x1), . . . , (Xm = xm)}, where the Xi are different variables and xi is a possi-
ble value in D(Xi).

The probability of a pattern A, denoted by PG(A), is P ((X1 = x1), . . . , (Xm =
xm)), that is, the marginal probability of the assignment. Our queries below will
enumerate all satisfying BN patterns.

Example Constraint-Based Queries. Assume the manager of a New York
car insurance company has just obtained a Bayesian network that describes the
factors influencing cost claims of customers, cf. the in Fig. 1. She wants to analyze
the network to be able to assess costs, get more insight and provide recommen-
dations to her personnel. In order to do so, she is interested in exploring patterns
of interest in the network and poses a number of queries.



Constraint-Based Querying for Bayesian Network Exploration 15

Q1. What are likely patterns given the evidence PropertyCost = Million? These
claims impose high costs on the company. Using a minimum probability of 0.015,
she obtains 12 patterns, most of which contain either SeniorTrain = False or
Theft = False. She is not interested in these and excludes them while lowering
the threshold in the next query.

Fig. 1. The car insurance network [2].

Q2. What are likely pat-
terns that do not contain
SeniorTrain=False and
Theft=False given the
evidence PropertyCost

= Million (with thresh-
old θ = 0.0105)? She
now gets 76 patterns,
among which the pattern
A = {PropertyCost =

Million, DrivingSkill =

Substandard, DrivQual-

ity = Poor, Liabili-

tyCost = Thousand},
which she finds interest-
ing as it indicates a con-
nection between high property cost, the driving capabilities of the customer, and
the liability cost incurred. However, she wonders whether the pattern cannot be
simplified.

Q3. Is there a simplification of pattern A with the same probability? She finds a
variant of pattern A in which DrivingSkill=Substandard is removed, indicating
that this assignment was implied and that there is some determinism in the
network.

Now, turning her attention to the variable “Age”, our manager wonders:

Q4. Are there any patterns that would allow to distinguish the age groups Adoles-

cent and Senior? She queries for patterns that have widely varying conditional
probabilities when conditioned on each of these. After excluding the variables
SeniorTrain and GoodStudent, which she already knows about, one of the top
patterns is {RiskAversion = Cautious, OtherCarCost = Thousand}. Indeed
the probability of having a cautious personality and incurring low third-party
costs is nearly 6 times higher in senior customers.

Finally, a machine learning expert suggests to use a network trained on the
company data instead (a simple näıve Bayes model). She wonders:

Q5. What are the patterns that have different probabilities according to the
original and learned network? It turns out that the pattern {Airbag=False,

AntiLock=False, VehicleYear=Older} has the largest difference of probabili-
ties, hence the näıve Bayes model ignores the well-known relation between these
three variables (namely older cars are rarely equipped with these safety compo-
nents).
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Table 1. The example queries expressed using constraints over pattern A.

Q1: probability(A,G, θ), superset(A, {PropertyCost=Million})
Q2: probability(A,G, θ), superset(A, {PropertyCost=Million}),

exclude(A, {SeniorTrain, Theft})
Q3: maxprobability(A,G, θ′), free(A,G), subset(A, {PropertyCost = Million,

DrivingSkill = Substandard, DrivQuality = Poor, LiabilityCost =Thousand})
Q4: exclude(A, {SeniorTrain, GoodStudent}),

ev-difference(A,G, {Age=Adolescent}, {Age=Senior}, β)

Q5: difference(A,G1,G2, β)

3 BN Query Framework

We now formalize the queries above using constraints over patterns. Many other
queries can be formulated this way, leading to a general querying framework.

Definition 2 (BN Pattern Query). Consider a joint probability distribution
PG represented by a Bayesian network G. We denote the set of all patterns of
PG by I. A BN pattern query Q is a tuple (PG , C) where C : I → {0, 1} is a
conjunction of constraints over a pattern. Pattern A is a solution for Q if C(A) =
1. The result of a query consists of all patterns that satisfy the constraints.

The queries used in the examples in Sect. 2 are given in Table 1. Most con-
straints have close counterparts in the constraint-based pattern mining litera-
ture. The main difference is that the notion of (relative) frequency of a pattern
in a database is replaced by the probability of the pattern in the BN. The con-
straints and their definitions are listed in Table 2 and explained below.

Probability constraint. Query Q1 requires that the probability of a pattern A
according to PG should be larger than a threshold θ. We call this constraint
probability(A,G, θ) and a pattern that respects it θ-probable. This definition is
similar to the definition of a frequency constraint in frequent pattern mining.

Sub/superset and exclusion constraints. Query Q1 also requires that patterns
include given assignments. We enforce this with a superset constraint. Similarly,
we can use exclude(A, V ) to exclude variables from the pattern as in query Q2.
The definition is given in Table 2, where vars(A) are the variables occurring in A.

Note that a superset constraint is conceptually similar to adding evidence in
Bayesian networks, only that in our setting the computed probabilities will need
to be normalized by the probability of the evidence to obtain the conditional
probability.

Freeness, maximality and closedness constraint. Query Q3 requires that a
pattern does not contain redundant variable assignments. This is similar to
the well-studied problem of simplifying explanations by excluding irrelevant
variables [18], e.g. because of deterministic relations between assignments [7].
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Table 2. constraints for BN pattern queries over patterns A, B, and C and network
G. Constraints are represented by three-letter codes Prb: probability(A,G, θ); Mxp:
maxprobability(A,G, θ); Sbs: subset(A, B); Sps: superset(A,B); Exc: exclude(A,B); Fre:
free(A,G); Max: maximal(A,G, θ); Cls: closed(A,G); Dif: difference(A,Ga,Gb, β);
Ddf: DB-difference(A,G,D, β); and Vdf: ev-difference(A,G, B, C, β).

code mathematical notation CP formulation

Prb PG(A) ≥ θ F1 ≥ θ

Mxp PG(A) ≤ θ F1 ≤ θ

Sbs A ⊆ B ∀i : Qi �= 0 =⇒ (Xi = Qi) ∈ B

Sps B ⊆ A ∀(Xi = xi) ∈ B : Qi = xi

Exc B ∩ vars(A) = ∅ ∀Xi ∈ vars(B) : Qi = 0

Fre ∀(X = x) ∈ A : PG(A\(X = x)) > PG(A) ∀i : Qi �= 0 →
(∑

j Di,j

)
> F1

Max
∀X /∈ vars(A), ∀x ∈ D(X) :

PG(A ∪ {(X = x)}) < θ
∀i : Qi = 0 → ∧

j(Di,j < θ)

Cls
∀X /∈ vars(A), ∀x ∈ D(X) :

PG(A ∪ {(X = x)}) < PG(A)
∀i : Qi = 0 → ∧

j(Di,j < F1)

Dif |PGa (A) − PGb (A)| ≥ β |F1
a − F1

b| ≥ β

Ddf |PG(A) − rD(A)| ≥ β |F1 − R| ≥ β

Vdf |PG(A ∪ B)/PG(B) − PG(A ∪ C)/PG(C)| ≥ β |F1
a/ca − F1

b/cb| ≥ β

For pattern A = B ∪ C (where B ∩ C = ∅), if variable assignments in B deter-
mine those in C, i.e., PG(A) = PG(B), we consider those in the set C irrelevant.
We call a pattern free if none of its assignments is irrelevant. This definition is
similar to the definition of free patterns in data mining [3]. In the presence of a
superset constraint, the free constraint should only consider variables that are
not required by the superset constraint.

Inspired by the related notions of maximality and closedness in frequent
itemset mining, we introduce these for BN patterns too. They enforce that a
pattern A does not have any superset that is θ-probable (i.e. maximal(A,G, θ))
or has the same probability as A (i.e. closed(A,G)).

Difference constraints. Queries Q4 and Q5 both ask for patterns that demon-
strate a difference between two probabilistic models. Let PG1(A) and PG2(A)
be the probability of pattern A according to networks G1 and G2. The con-
straint difference(A,G1,G2, β) requires that the difference of the probability
of a pattern in these two networks is larger than β. In Q4, the two networks
are obtained by assigning a variable in the original network to different values
(B={Age=Adolescent} and C={Age=Senior} respectively). This can be formu-
lated over network G using the constraint ev-difference(A,G, B,C, β). This con-
straints compares the conditional probability of A given evidence B or C.

Another variation can be used for testing the correlations between a Bayesian
network and an actual dataset. This constraint compares the probability of a
pattern in network G with the relative frequency of the corresponding itemset
in the database D. We call this constraint DB-difference(A,G,D, β).
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4 Formulating BN Pattern Queries as Constraint
Programming Problems

In the Bayesian network literature, typically algorithms that search in the space
of assignments are developed for specific constraints and scoring functions, which
limits their general applicability (see Sect. 6 for a discussion of related work). In
data mining, a recent trend is the use of generic solvers for handling a wide range
of constraints in a uniform way.

We observe that there is a relationship between itemsets and BN patterns,
as each variable assignment (Xi = xi) can be seen as one item, and hence a
BN pattern can be seen as an itemset. Using this insight, we adapt the con-
straint programming for itemset mining framework [9] to reason over Bayesian
networks. This framework has proven to support a wide range of constraints and
exploratory queries over itemsets. Building on this framework, and hence the use
of CP solvers, enable us to address a wide range of queries without the need to
develop multiple specialized algorithms.

We first introduce the basics of constraint programming (CP), and explain
how Bayesian networks can be encoded in CP in the form of an arithmetic circuit.
We then explain how the constraints identified in Table 2 can be expressed in
this framework.

Constraint Programming. Constraint programming is used to solve Con-
straint Satisfaction Problems (CSP) [17]. Constraint programming systems use
generic solvers that search for solutions to a given CSP specification.

A CSP specification P = (V,D, C) consists of a set V of variables; D is the
domain and maps every variable V ∈ V to a range of values D(V ); and C is a set
of constraints over subsets of V. Generic solvers can be used to find all solutions
that satisfy the constraints. These solvers use a combination of search (assigning
a variable to a value) and propagation (per constraint, removing assignments
from the domain that would violate that constraint) [17]. Many such generic yet
efficient solvers exist.

BN Pattern in Constraint Programming (CP). We can encode a BN pat-
tern A = {(X1 = x1), . . . , (Xm = xm)} in CP by introducing a CP variable Qi

for every network variable Xi. The domain of the CP variable Qi consists of
|D(Xi)|+1 values, where D(Xi) is the set of possible values the BN variable Xi

can take: value 0 to represent that Xi is not part of the pattern, e.g. it is mar-
ginalized over, and values 1 . . . |D(Xi)| that each represent a possible assignment
to the BN variable Xi.

BN Pattern Queries in CP. Each of the constraints C of a BN pattern query
(PG , C) can be formulated through CP constraints over the Qi variables. We
discuss this for each of the constraints in turn.
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Probability constraint. We will need to repeatedly compute the probability of a
pattern, hence, we want this computation to be fast and ideally incremental. For
this reason, we choose to first compile the BN into an Arithmetic Circuit (AC) [5].
Computing the probability of a partial assignment takes time polynomial to the
size of the AC, though that size is exponential to the BN size in the worst
case. Nevertheless, using ACs is generally recognized as one of the most effective
techniques for exact computation of probabilities [5], especially when doing so
repeatedly.

+ 0.5

××

++ λ2,2λ1,2λ1,1 λ2,1

×× ××

λ3,2 λ3,10.8 0.2

B1,1 B2,1 B3,1 B1,2 B2,2B3,2

×F1

Fig. 2. Arithmetic circuit for a BN with 3 vari-
ables with domain {1, 2} with X1 the parent of
X2 and X3. Square boxes represent CP variables.

Figure 2 shows an example
AC, consisting of product nodes,
sum nodes, constants and indica-
tor variables (ignore the square
boxes for now). The Boolean
indicator variables λi,j indicate
whether (Xi = j). For ease
of notation we will assume that
the domain of the Bayesian vari-
ables is represented by consecu-
tive integers starting from 1. To
compute the probability of a par-
tial assignment {(X2 = 1), (X3 =
2)} we set λ2,1 = 1, λ2,2 =
0, λ3,1 = 0, λ3,2 = 1. X1 is not in
the pattern and needs to be mar-
ginalized away, so we set ∀k ∈ D(X1) : λ1,k = 1. Then, one computes the values
of the internal AC nodes bottom-up, according to their operation (× or +). The
value of the root node is the requested probability.

This can be encoded in CP for arbitrary ACs: for each indicator variable λi,j

in the AC, we introduce a Boolean CP variable Bi,j ; the relation between the
indicator variables and the CP variables Qi is then modeled by the following
constraints (recall that Qi = 0 means variable Xi is not in the pattern):

Qi = 0 → ∧j (Bi,j = 1) ∀i

Qi = k → (Bi,k = 1) ∧ (∧j �=k(Bi,j = 0)) ∀i,∀k 	= 0

We then introduce real-valued variable P , which will represent the computed
probability. For this, we introduce an auxiliary real-valued variable Fv for each
node in the circuit (round circles in Fig. 2). Assume each node has a unique iden-
tifier v, with the root node having identifier 1. Leaf nodes are either constants
or indicator variables. The constants assign their corresponding Fv variable to a
fixed value. For the indicator variables λi,j , the corresponding Fv variables are
channeled to their Boolean counterparts Bi,j meaning they must take the same
value (either 0 or 1). The internal nodes are then simply encoded by their oper-
ation, namely constraint Fv =

∏
w∈Ch(v) Fw for product nodes and constraint
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Fv =
∑

w∈Ch(v) Fw for sum nodes, where Ch(v) are the identifiers of the children
of node v in the AC.

Because of these constraints, when all Qi (and hence Bi) variables are
assigned, each Fv represents the value of that node of the AC, and the root
node F1 is the probability of the BN pattern. F1 can then be used in a minimum
probability constraint, see Table 2, right column.

Subset, superset and exclusion constraints. Including evidence and excluding
assignments in the pattern is done by constraining the relevant Qi variables
appropriately, as indicated in Table 2.

Freeness constraint. To enforce this constraint, as explained in Sect. 3, we
need to reason over the probability of subsets of a pattern. To do so, we use
the observation that for an assignment (Xi = k) ∈ A: PG(A\{(Xi = k)} =∑

j PG(A\{(Xi = k)}) ∪ {(Xi = j)}. Fortunately, using ACs we can efficiently
compute these terms, as they correspond to derivatives of the function f encoded
by the AC [5]. The latter work shows that for partial assignment A we have
PG(A\{(Xi = k)}) ∪ {(Xi = j)} = ∂f

∂λi,j
(A). It was also shown that this can be

computed for all nodes (and hence variables X) simultaneously using the deriv-
atives of its parents in the AC, together with the values that we store in Fv

variables.
To compute these derivatives, we introduce a real-valued CP variable Dv

for every node v in the circuit. The value of Dv’s corresponding to leaves λi,j ,
denoted by Di,j for ease of notation, will represent the derivative of AC w.r.t
λi,j : ∀i, j Di,j = ∂f

∂λi,j
(A). Hence Di,j = PG((A\{(Xi = k)}) ∪ {(Xi = j)}).

Following the formulation in [5], the constraints below encode the computa-
tion of the D variables, where we denote by Pa+(v) the identifiers of summation
parents and by Pa∗(v) those of multiplication parents;

Dv =
∑

w∈Pa+(v)

Dw +
∑

w∈Pa∗(v)

(Dw

∏

v′∈Ch(w)
v′ �=v

Fv) ∀v

D1 = 1

To formulate the free constraint from Table 2 over the CP variables, we use
the fact that given (Xi = k) ∈ A: PGA\(Xi = k)) =

∑
j Di,j and that PGA = F1.

Maximality and closedness constraints can be formulated using the same
building blocks (c.f. Table 2).

Difference constraints. Comparing the probability of two networks over the same
variables can be done by encoding the two ACs and formulating a mathematical
constraint over the respective F1 root node variables (Table 2).

Using CP allows us to easily mix different problems, such as combining the
constraints of itemset mining in databases and BN’s in a single CP model.
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The variable F1 can be computed as before, while the relative frequency of a
database over the same variables can be computed using a constraint program-
ming for itemset mining formulation [9]. In Table 2 we materialize the relative
frequency through a CP variable R.

As we have shown, many constraints over the pattern and the network can
be readily formulated in CP. Furthermore, as these are standard CP constraints,
existing CP solvers can be used to enumerate the satisfying BN patterns.

5 Experiments

We used the ACE 1 compiler (version 2) for generating arithmetic circuits from
Bayesian networks. The networks were compiled with parameters “ -noTabular
-cd06 -dtBnMinfill”. We used the Gecode 2 CP solver version 4.2.1. Experi-
ments were run on Linux PCs with Intel 2.83 GHz processors and 8 GB of RAM.

Execution Times for Example Queries. To give an indication of execution
times, we report the runtimes for the example queries of Sect. 2 in Table 4a. The
value of β for queries Q4 and Q5 was 0.08 and 0.25, respectively. The compilation
time (not included in the reported runtimes) was 0.374 secs.

To investigate the influence of size of BN and AC, we ran a simple query with
only a probability(A,G, θ) constraint on three benchmark networks3. Table 3
reports BN and AC size, θ threshold and runtimes. AC compilation time is small.
Observe that in Table 3 the two larger networks have smaller AC’s, because of
their other structural properties (see [5] for more details). While bigger ACs
require more runtime, the number of solutions has a major impact on runtime
too. This can be controlled up to some extend by adding extra constraints.

Table 3. Probability queries over three benchmarks network, with #BN-n: number
of BN nodes; c.Time: compilation time; #AC-n/e: number of AC nodes/edges; θ:
probability threshold; #Sols: number of solutions, and s.Time: solving time.

Network #BN-n c.Time(s) #AC-n #AC-e θ #Sols s.Time(s)

HeparII 70 0.701 6963 13272 0.9 664 9.96

0.8 24025 341.83

Win95pts 76 0.528 2786 6184 0.99 65 0.61

0.95 214645 444.1

Insurance 27 0.374 34742 113788 0.9 12 2.76

0.4 6662 383.66

1 http://reasoning.cs.ucla.edu/ace/.
2 http://www.gecode.org.
3 available at http://www.bnlearn.com/bnrepository/.

http://reasoning.cs.ucla.edu/ace/
http://www.gecode.org
http://www.bnlearn.com/bnrepository/
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Comparison with Sampling. An obvious alternative to our proposed method
for executing itemset queries is to first sample a database from the joint distrib-
ution and then perform constraint-based itemset mining queries on the sampled
database. Using this approach, one can execute the BN pattern queries using a
constraint-based itemset mining system such as [9].

We investigate how this compares to our proposed method. We used two
BNs: the first was the insurance network, which we will call BN1. The network
BN2 is a näıve Bayes version of BN1 (With PropertyCost as root, and all non-
cost observed variables as children) which we trained on 10000 samples from
BN1. Compilation time for BN1 was 0.374 and 0.212 seconds for BN2. We then
sampled a database of size 500 from BN2, which we call DB2.

In the approximate method, we sampled databases of varying sizes from BN1.
We then searched for itemsets for which the relative frequency in the database
and DB2 had a difference larger than 0.1. Table 4b presents the precision and
recall of BN patterns found by the approximate method, compared to those found
by our exact method. The results indicate that for a decent approximation, one
needs to sample a large database which in turn leads to high computational
costs. In comparison, the runtime of the exact method was 5.63 seconds.

Table 4. (a) Execution times of example queries, and (b) Quality of results of sampling
method as compared against the solutions of exact method.

6 Related Work

Much attention in the Bayesian network literature has gone to the problem of
finding explanations given some evidence. These explanation queries typically
use a scoring function to find the best explanation. In contrast to queries like
MAP and MPE, we do not fix which variables must be in or not in the pattern,
instead we conceptually search over all possible marginalizations. There are other
explanation queries that share this feature. These typically use specific scoring
functions, such as the generalized Bayes factor of [19]. The explanation queries
are constrained optimisation problems instead of enumeration problems. Our
framework on the other hand is made for exploration queries and enumerates all
satisfying BN patterns instead of computing the ‘optimal’ one.

There is also a body of work on discarding irrelevant variables from expla-
nations [6,11,18,19], as the free constraint does in our framework. In [6] each
explanation found by a K-MPE algorithm is simplified by removing assignments
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that are considered irrelevant; [11] makes a trade-off between high probability
and specificity. [18] proposes a definition for relevance and gives an algorithm
that excludes irrelevant variables from the MAP assignments. This is a specific
optimization query which is solved by a best-first-search algorithm.

Related to discriminating a BN network from a database, in [10] the authors
search for subsets of variables rather than partial assignments. These attribute
sets are then used to modify the BN to better reflects the correlations present
in the data. In other studies, a Bayesian network is used to filter itemsets or
association rules found in a database. In [8], first an itemset mining algorithm
is applied to a database to find a number of association rules, and then these
rules are scored using the probability in the Bayesian and the concept of D-
separation. In [12] the itemsets found by the well-known apriori algorithm are
scored according to a Bayesian network, and the itemsets and attribute sets with
highest scores are obtained in a post-processing step. The main difference with
the discriminative setting considered in our work is that we compare patterns in
the database and the network during search instead of post-processing them.

Our framework combines constraints with probabilistic computations. In sim-
ilar spirit, there has been work on combining (deterministic) constraint networks
with probabilistic networks [13]. The main difference is that in the resulting net-
works, all satisfying assignments are aggregated to compute a single probability
value; on the other hand, we enumerate all possible partial assignments and
compute their (marginal) probability.

7 Conclusions

We have investigated the problem of exploring Bayesian networks by querying
for BN patterns (partial assignments) under constraints. The work is inspired by
all the work on exploring data using constraint-based pattern mining techniques.
We have shown that similar queries and constraints as used in the constraint-
based pattern mining community can be used. This results in novel querying
abilities for BNs. The proposed execution strategy is to compile the BN into
an arithmetic circuit, and formulate and reason over that in a constraint pro-
gramming framework. Such an approach supports a wide range of queries and
constraints in a flexible and declarative manner.

Our work currently focusses on enumeration queries, as is typical in pattern
mining. However, it could also be used in an optimisation setting over a scoring
function, where its generality would allow one to add arbitrary constraints on top
of the scoring function. In future work, the approach could also be adapted to
problems beyond enumerating BN pattern queries, such as verifying monotonic-
ity of Bayesian networks [16] or computing same-decision probability [4]. Our
method may also be valuable for mining patterns over data, when evaluating the
interestingness of the patterns using a BN (in our case, during search). Given
the generality of the method, efficiency can be a concern though. Efficiency
could be improved by using global constraints that can reason over the AC more
efficiently, instead of using a decomposition over auxiliary variables F.
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Abstract. Hyper-parameter tuning is a resource-intensive task when
optimizing classification models. The commonly used k-fold cross valida-
tion can become intractable in large scale settings when a classifier has to
learn billions of parameters. At the same time, in real-world, one often
encounters multi-class classification scenarios with only a few labeled
examples; model selection approaches often offer little improvement in
such cases and the default values of learners are used. We propose bounds
for classification on accuracy and macro measures (precision, recall, F1)
that motivate efficient schemes for model selection and can benefit from
the existence of unlabeled data. We demonstrate the advantages of those
schemes by comparing them with k-fold cross validation and hold-out
estimation in the setting of large scale classification.

1 Introduction

Model selection is an essential step in the pipeline of data analysis tasks. Having
decided on the algorithm to be used, one should proceed to parameter selec-
tion that is the process of selecting a value for the model’s hyper-parameter(s)
expected to obtain the optimal performance on unseen examples. For instance,
when using Support Vector Machines (SVM) or Logistic Regression (LR) in a
classification task, one has to tune the regularization parameter λ which controls
the complexity of the model.

The fundamental idea of parameter estimation methods is to validate the
model’s performance in fractions of the training data. In several learning sce-
narios however, except few labeled data, a larger set of unlabeled data may be
available (for example in text classification) as the cost of assigning labels is
high. This is the case for example of the transductive learning framework [7],
where the data to be classified are available beforehand and can be leveraged
during the training or inference procedures.

The situation we are investigating in this paper is when unlabeled data are
available during the step of parameter selection in a classification problem. The
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challenge is to come up with a method that is able to leverage the information
in the unlabeled data, instead of ignoring them as traditional model selection
strategies such as k-fold cross validation (k-CV) do. To tackle this problem, we
incorporate quantification techniques in order to infer the distribution of the
examples on unlabeled data, which in turn is used to calculate upper bounds
(Sect. 3) on the performance of a model that motivate an efficient model selection
scheme (Sect. 4).

We place ourselves in the supervised learning paradigm where the i.i.d.
assumption holds. Note that unlike semi-supervised and transductive learning
paradigms that make use of the unlabeled data in the training process to improve
the performance, we use the unlabeled data for hyper-parameter selection and,
hence, the obtained performance in the test set depends on the amount of the
available labeled data. Our method, which is an alternative to k-CV, motivates
the selection of the optimal value for the model’s hyper-parameter(s) from a
finite set that in turn results in the optimal performance (again from a finite set
of possible performances). In this work, we propose a hyper-parameter selection
method that (i) benefits from unlabeled data, (ii) performs on par with k-CV
but it is k times faster and (iii) has the same complexity as hold-out estimation
but performs better due to the use of unlabeled data. We demonstrate the effi-
ciency and the effectiveness of the proposed method in Sect. 5 where we present
multi-class text classification results on several datasets with a large number of
classes.

2 Related Work

Several approaches have been proposed for selecting the hyper-parameters of
learning algorithms. The goal is always to select the hypothesis that minimizes
the generalization error, which is approximated by the estimated error [13].
A popular method to calculate the estimated error is the hold-out procedure
that splits the data in a training and a validation set; the estimated error is
calculated on the latter.

The k-CV technique repeats k times the hold-out procedure: in each round
the available training data are partitioned into two complementary subsets, one
for training and one for validation. To reduce variability, multiple rounds of cross-
validation are performed using different partitions and the validation results are
averaged over the rounds. At the end, an hypothesis is selected e.g. by retraining
the classifier on all data using the best values found for the hyper-parameters, or
by averaging the hypotheses [5]. A variant of this method is proposed by Blum
et al. [6] with a progressive cross-validation procedure that begins by splitting
the data in training and test. At each step, it tests an example which in the next
round is used for training, resulting in as many hypotheses as the available test
examples. To label an example, a hypothesis is randomly selected. This method
has the advantage of using more examples for training than the hold-out and
was shown to select a better hypothesis. In addition, the study in [12] reviews
accuracy estimation and model selection methods based on cross-validation and



Efficient Model Selection for Regularized Classification 27

bootstrap. The former is shown to be better than the latter in different datasets,
especially in terms of accuracy estimation (for which a stratified approach may
be preferred).

The hold-out estimation and the k-CV when k is small are known to have
large variance, a problem that can be partially compensated in k-CV by select-
ing high values for k (like 5 or 10) [1,2]. However, k-CV and its variants are
computationally expensive and may be intractable in practice if one wants to
search for the appropriate values in large-scale scenarios.

We propose here a different method that can select an appropriate model on
unlabeled datasets. The advantages compared to the above-mentioned methods
concern its efficiency and its ability to be applied when few labeled examples are
available. It dispenses with the use of validation sets which can be cumbersome
to produce in unbalanced or small datasets. It is, however, intended for model
selection only, whereas cross-validation and hold-out estimation can be used for
performance evaluation as well.

3 Accuracy and Macro-F1 Quantification Bounds

In this section, we propose an upper bound on several performance measures
(accuracy and macro-F1) of a given classifier C on a dataset S which doesn’t need
to be labeled. We then use this bound, which is based on the class distribution
induced by C on S, to perform model selection.

We consider mono-label multi-class classification problems, where observa-
tions x lie in an input space X ⊆ R

d. Each observation x is associated with
a label y ∈ Y, where |Y| > 2. We suppose that examples consist of pairs of
(x, y) identically and independently distributed (i.i.d) according to a fixed, but
unknown probability distribution D over X × Y (DX will denote the marginal
probability for x in X ). In the context of text classification, x(i) ∈ X denotes
the vector representation of document i and its label y(i) ∈ Y represents the
category associated with x(i). We further assume to have access to a training set
Strain = {(x(i), y(i))}N

i=1 also generated i.i.d with respect to D.

Quantification. As explained below, our analysis makes use of M
C(S)
y , the num-

ber of documents in the unlabeled set S assigned by classifier C to class y. Many
classifiers do not directly assign a category to documents, but rather produce
scores (probabilistic or not) for each category, from which a categorization deci-
sion can be made. The task of determining the number of instances of each target
category in a set S is called quantification and was first proposed by Forman
et al. [10,11]. Contrary to classification that identifies in which target categories
an observation belongs, quantification is solely concerned with the estimation of
the number of observations belonging to a target category (the positive exam-
ples). Note that a good quantifier is not necessarily a good classifier, and vice
versa. For example, in a binary problem with 40 observations, a learner that
outputs 20 False Positives and 20 False Negatives is a perfect quantifier but a
really bad classifier.
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Given a set of instances in S, quantifiers output, for each target category y
of S, a number denoting the prediction of the relative frequency of category y
in S. Quantification methods using general purpose learners are usually split [8]
in aggregative and non aggregative methods based on whether the quantification
step requires the classification of the individual instances as a basic step or not.
Quantification has been mainly used to estimate distribution drifts. We make
a different use of it here, in the context of model selection, and rely on two
popular quantification methods, namely: (a) Classify and Count (CC) and (b)
Probabilistic Classify and Count (PCC) [8]. In CC, given a classifier C trained
on a set Strain, the relative frequency of a class y in a set S, denoted by p

C(S)
y ,

is obtained by counting the instances of S that classifier C assigns the target

category y, that is p
C(S)
y = MC(S)

y

|S| , where |S| denotes the size of S. PCC extends
CC using the posterior probabilities of an instance belonging to a category,
leading to p

C(S)
y = 1

|S|
∑

x∈S p(y|x), where p(y|x) is the posterior probability
that an instance x of S belongs to y. We do not consider the adjusted version of
those two approaches proposed in [4] because they require the expensive k-fold
cross-validation in the training set which is undesirable in large scale settings.
Lastly, having a trained classifier, the computational complexity of quantification
reduces to the prediction cost of a trained classifier.

Quantification-based Bounds. We now present our main result which con-
sists of quantification-based upper bounds on the accuracy (denoted AC(S)), the
macro-precision (denoted MaPC(S)), the macro-recall (denoted MaRC(S)) and
the macro-F1 (denoted MaFC(S)) of a classifier C on a dataset S which does
not need to be labeled.

Theorem 1. Let S = {(x(j))}M
j=1 be a set generated i.i.d. with respect to DX , py

the true prior probability for category y ∈ Y and Ny

N � p̂y its empirical estimate
obtained on Strain. We consider here a classifier C trained on Strain and we
assume that the quantification method used is accurate in the sense that:

∃ε, ε � min{py, p̂y, pC(S)
y },∀y ∈ Y : |pC(S)

y − M
C(S)
y

|S| | ≤ ε

Let B
C(S)
A , B

C(S)
MaP (ε) and B

C(S)
MaR(ε) be defined as:

∑

y∈Y
min{p̂y × |S|, pC(S)

y × |S|}

|S| � B
C(S)
A

1
|Y|

∑

y∈Y

min{p̂y × |S|, pC(S)
y × |S|} + |S|ε

p
C(S)
y × |S| + |S|ε

� B
C(S)
MaP (ε)

1
|Y|

∑

y∈Y

min{p̂y × |S|, pC(S)
y × |S|} + |S|ε

p̂
C(S)
y × |S| + |S|ε

� B
C(S)
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Then for any δ ∈]0, 1], with probability at least (1 − δ):

AC(S) ≤ B
C(S)
A + |Y|(

√

log |Y| + log 1
δ

2N
+ ε) (1)

MaP C(S) ≤ B
C(S)
MaP (ε) +

√
log |Y| + log 1

δ

2N
, MaRC(S) ≤ B

C(S)
MaR(ε) +

√
log |Y| + log 1

δ

2N
(2)

MaFC(S) ≤ 2B
C(S)
MaP (ε)BC(S)

MaR(ε)

B
C(S)
MaP (ε) + B

C(S)
MaR(ε)

+

√

log |Y| + log 1
δ

2N
(3)

Proof (sketch). We first consider the case where S �= Strain. Using Hoeffd-
ing’s inequality for random variables bounded in the interval [0, 1], we have the
standard result that, for any δ ∈]0, 1], with probability at least (1 − δ):

∀y ∈ Y, py ≤ p̂y +

√

log |Y| + log 1
δ

2N

The log |Y| factor is a result of the fact that the bound should hold simultane-
ously for all categories. This implies, using the quantification assumption, that,
for any δ ∈]0, 1], with probability at least (1 − δ), ∀y ∈ Y:

|min{py × |S|,MC(S)
y } − min{p̂y × |S|, pC(S)

y × |S|}|

< |S|(
√

log |Y| + log 1
δ

2N
+ ε) (4)

min{py × |S|,MC(S)
y } corresponds to an upper bound on the number of docu-

ments of S correctly classified by C in class y. Hence, the accuracy of C on S is
upper bounded by: ∑

y∈Y
min{py × |S|,MC(S)

y }

|S|
which leads, using Inequality 4, to Inequality 1. The other bounds can be derived
in the same way. 	

The above theorem is inspired by a previous result we have developed in the
context of multi-class classification [3]. We have generalized and extended it here
through the consideration of macro measures and quantification. Even though
this extension renders the developments more complex, it is crucial for model
selection using unlabeled datasets.

When the Classify and Count (CC) quantification method is used, then, by

definition, p
C(S)
y = MC(S)

y

|S| , and ε can be set to 0. This leads to stricter bounds
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for all the measures. Furthermore, the condition ε � min{py, p̂y, p
C(S)
y } in the

quantification assumption implies that the term |S|ε is negligible compared to
|S| × p̂y or |S| × p

C(S)
y , so that B

C(S)
MaP (ε) and B

C(S)
MaR(ε) are close to B

C(S)
MaP (0) and

B
C(S)
MaR(0). Lastly, it can be noted that the quality of the bound is better for the

macro measures than for the accuracy as the multiplying |Y| factor is dropped.
Theorem 1 states that the accuracy, macro-precision, macro-recall and macro-

F1 of a classifier can be upper-bounded by quantities that are related to the
behavior of the classifier on an unlabeled dataset, and that the quality of the
bound depends on the number of classes, the size of the training set, the quality
of the quantification method and the precision desired. These bounds repre-
sent necessary conditions for a classifier C to have high accuracy/macro-F11.
They can nevertheless be exploited, within a given family of classifiers obtained
through e.g. different regularization parameters, to select good classifiers.

Model Selection Using Quantification Bounds. We consider here a stan-
dard regularization setting in which one aims at minimizing a combination of
the empirical error and the model complexity using the following template of
the objective function:

ŵ = arg min Remp(w) + λReg(w)

where Reg(w) is the regularization term to avoid overfitting and Remp(.) repre-
sents the empirical error.

The parameter λ controls the trade-off between the empirical error and the
regularization term. As mentioned before, λ is typically estimated through hold-
out estimation or k-fold cross-validation. We propose here to estimate it on the
basis of the upper bounds presented in Theorem1, as described in Algorithm 1.
As one can note, for each value of λ, a classifier is trained and quantified on
the unlabeled set S. If the quantification assumption of Theorem1 is not valid,
then one falls back on the Classification and Count method for quantification.
The bounds, as computed by Inequalities 1 and 3 are used to select the “best”
classifier. Tuning the hyper-parameter is, therefore, reduced to the problem of
finding a classifier which yields the highest value of the bounds on a given set. In
contrast with other selection methods, the set used to select the classifier can be
an unlabeled set from the same distribution (unlabeled data is usually readily
available, contrary to labeled data) or the test set in a transductive-like scenario.

In terms of complexity, the quantification cost is reduced to the prediction
for the already trained classifier, which is linear in the cardinality of the set S
on which quantification is performed. The computational cost for Algorithm1
is thus the same as 1-fold cross-validation. Additionally, as only one hypoth-
esis is generated for each parameter value by training to the whole set of
labeled data one has just to select the hypothesis with the highest bound
without the need of retraining the model in contrast to hold-out or k-fold
1 They do not provide a sufficient condition since it is possible, in an adversarial setup,

to achieve an upper bound of 1 on the accuracy by simply assigning instances to
categories in the same proportion as in the training set.
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Algorithm 1. Model selection using the proposed bounds

Require: Training data Strain = {(x(i), y(i))}N
i=1, unlabeled data S = {(x(j))}M

j=1 and
learning algorithm (SVM, Logistic Regression, ...)

1: for each value of λ (typically λ ∈ {10−4, 10−3, . . . , 102, 103} do)
2: Train a classifier Cλ using Strain

3: Perform quantification of Cλ on S using method Mq (typically CC or PCC)
4: If Mq = CC, set ε = 0

5: If Mq �= CC, set ε = maxy∈Y min{p̂y, pC(S)
y } − |pC(S)

y − M
C(S)
y

|S| |
6: If ε < 0, go back to step 4 with Mq = CC
7: Compute the accuracy bound using Inequality 1

8: Compute the macro-F1 bound (
2B

Cλ(S)
MaP

(ε)B
Cλ(S)
MaR

(ε)

B
Cλ(S)
MaP

(ε)+B
Cλ(S)
MaR

(ε)
) using Inequality 3

9: end for
10: Select Cλ with the highest accuracy/macro-F1 bound

cross-validation. More precisely, the complexity of our approach for m values
of λ is O([Tr(N) + Pr(M)]×m), which is k times lower than the complex-
ity of k-CV with re-training the learner for the selected λ value, given by
O([Tr((k−1

k )×N)+Pr( 1
k ×N)]× k×m+T(N)), where Tr(N), Pr(N) are the train-

ing and predicting costs for N examples.

4 Experimental Framework

To empirically evaluate the model selection method presented above we use
the publicly available datasets of the LSHTC 2011 (Large Scale Hierarchical
Text Classification) challenge [14]. Specifically, we make use of the Dmoz and
Wikipedia datasets containing 27,875 and 36,504 categories respectively. The
datasets are provided in a pre-processed format using stop-word removal and
stemming while we transformed the term-frequency vectors to the tf*idf rep-
resentation. For each of the datasets we randomly draw several datasets with
increasing number of classes.

Table 1 presents the important statistics of the different datasets. As one can
note, the number of categories in our datasets ranges from 250 to 2, 500, and
the number of features from 26, 000 to 212, 000. An interesting property of the
instances of those datasets is the fit to the power law distribution. As a result,
there are several under-represented classes having a few labelled examples. Thus,
model selection approaches using only a fraction of the labeled instances, such
as hold out, may lead to sub-optimal decisions.

The classification problems defined from our datasets are multi-class, and we
adopt a standard one-vs-rest approach to address them (the large datasets consid-
ered prevents one from using more complex multi-class approaches). The Dmoz
dataset is single-labeled, i.e. each training/test instance is associated to a single
target category. On the other hand, the Wikipedia dataset is multi-labeled with
the average labels per instance in the training set being 1.85. We transformed the
multi-label problem to single label, both in the training and the test phase, by
replicating the multi-labeled instances according to the number of their labels.



32 G. Balikas et al.

Table 1: The properties of the datasets we used. The dataset name denotes the
collection we sampled it from; its subscript denotes the number of categories.

Dataset #Training inst. #Quantification inst. #Test inst. #Features # Parameters

dmoz250 1,542 2,401 1,023 55,610 13,902,500

dmoz500 2,137 3,042 1,356 77,274 38,637,000

dmoz1000 6,806 10,785 4,510 138,879 138,879,000

dmoz1500 9,039 14,002 5,958 170,828 256,242,000

dmoz2500 12,832 19,188 8,342 212,073 530,182,500

wiki250 1,917 3,095 1,003 26,699 6,674,750

wiki500 4,912 8,190 2,391 46,556 23,278,000

wiki1000 7,887 12,790 4,067 60,788 60,788,000

wiki1500 12,156 19,776 6,160 79,973 110,959,500

wiki2500 22,642 37,398 11,171 109,694 274,235,000

In order to empirically measure the effectiveness of model selection, we com-
pare the following three methods: (i) k-CV, using k = 5 folds, (ii) hold-out
estimation with a split of 70% and 30% for the training and the validation sets,
and (iii) our method using as quantification set (i) an unlabeled set denoted
“quantification set” in Table 1, and (ii) the test set which may be available dur-
ing training in a transductive alike scenario. The corresponding methods are
called BoundUN and BoundTestrespectively.

Evaluation of the Quantification Methods. We first discuss the perfor-
mance of the quantification methods presented above (CC and PCC), prior to
comparing the results obtained by the different model selection methods (k-fold
cross-validation, hold-out estimation, BoundUN and BoundTest). Recall that The-
orem 1 is based on the assumption that the quantity Maxε = maxy∈Y |pC(S)

y −
MC(S)

y

|S| | is small. As mentioned above, this quantity is null for the quantification
method CC, which thus agrees with our theoretical developments. The other
quantification method considered, PCC, is based on the probabilities that an
instance belongs to a class. When using LR, those probabilities are directly pro-
duced by the model. For SVMs, however, one needs to transform the confidence
scores into probabilities, which can be done in several ways, as using a logistic
function, a multivariate logistic regression function or neural networks based on
logistic activation functions and without hidden layers (the latter two settings
can be seen as generalizations of Platt’s scaling for the multi-class problem).
We obtained the best results with a simple logistic function defined as 1

1+e−σt ,
varying σ from 1 to 10. Table 2 displays the values of Maxε obtained for PCC for
each of the dataset and for each classifier (the default hyper-parameter values of
the classifiers are used), using the value of σ leading to the lowest value of Maxε.
As one can note, although the values obtained are small in most cases (except
for Dmoz1000 and Dmoz1500), there are not negligible compared to the class prior
probabilities, which are in the range of 1 divided by the number of classes. Thus,
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Table 2: Evaluation of the assumption of Theorem1 concerning the quantification
step. For each dataset, we present Maxε for the PCC quantification method.

dmz250 dmz500 dmz1000 dmz1500 dmz2500 wiki250 wiki500 wiki1000 wiki1500 wiki2500

SVM 0.0728 0.0967 0.1067 0.1125 0.0345 0.0287 0.0754 0.0310 0.0425 0.0365

LR 0.0942 0.0674 0.0889 0.1111 0.0530 0.0219 0.0517 0.0481 0.0310 0.0294

the quantification method PCC does not fully agree with our theoretical devel-
opment. It turns out that it also performs worse than CC in practice. We thus
rely on this latter method for the rest of our experiments.

Model Selection Evaluation. We evaluate model selection methods for two
families of classifiers: (i) SVMs, and (ii) LR which are among the best performing
models in text classification. We explore for both classifiers the value for the reg-
ularization parameter λ ∈ {10−3, 10−2, . . . , 104}. We used the implementations
in Python’s scikit-learn [15] that are wrappers of the LibLinear package [9].

We report the scores obtained in Accuracy and Macro-F (MaF) measure
when a classifier is applied on the test set. In particular, for each dataset of
Table 1 the model selection methods are used only for selecting the regularization
parameter λ when optimizing for the repsective measure. After the selection of λ,
the classifier is retrained on the entire training set, and we report its performance
in the test set. This last step of retraining is not required for our method since the
classifier is trained in the overall labeled set from the beginning. Also, as hold-out
estimation may be sensitive to the initial split, we perform 10 different random
splits training/validation and report the mean and the standard deviation of the
scores obtained for both evaluation measures.

Figure 1 illustrates the model selection decisions for the different methods
using an SVM on the Wikipedia dataset with 1, 500 classes for the MaF measure.
The curve MaF corresponds to the actual MaF on the test set. Although each
parameter estimation method selects the value for λ that seems to maximize
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Fig. 1: Model selection process for SVM on the wiki1500 for MaF. The squares
denote the best performance for each method.
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Table 3: The performance of the model selection methods for SVM and Logistic
Regression on the test set. For held out, we report the mean and in parenthesis
the standard deviation of 10 rounds of the method.

BoundUn BoundTest Hold-out 5-CV

Dataset Acc MaF Acc MaF Acc MaF Acc MaF

S
V

M

wiki250 .7747 .5889 .7747 .5927 .7663 (±.0158) .5746 (±.0183) .7747 .5927
wiki500 .7445 .5257 .7449 .5254 .7440 (±.0006) .5228 (±.0031) .7445 .5254
wiki1000 .7000 .4737 .6993 .4732 .6996 (±.0009) .4584 (±.0274) .7000 .4737
wiki1500 .6360 .4278 .6354 .4283 .6343 (±.0049) .4230 (±.0126) .6360 .4278
wiki2500 .5808 .3763 .5811 .3762 .5822 (±.0023) .3759 (±.0004) .5832 .3763
dmoz250 .8260 .6242 .8270 .6243 .8260 (±.0000) .6242 (±.0000) .8260 .6242
dmoz500 .7227 .5584 .7227 .5584 .7221 (±.0005) .5558 (±.0022) .7220 .5562
dmoz1000 .7302 .4883 .7302 .4892 .7301 (±.0001) .4835 (±.0155) .7299 .4883
dmoz1500 .7132 .4715 .7132 .4715 .6958 (±.0457) .4065 (±.0998) .7132 .4715
dmoz2500 .6352 .4301 .6350 .4306 .6350 (±.0001) .3949 (±.0686) .6352 .4301

L
o
g
is

ti
c

R
eg

re
ss

io
n

wiki250 .7527 .5423 .7527 .5423 .7464 (±.0078) .5335 (±.0134) .7527 .5423
wiki500 .7302 .4709 .7302 .4709 .7266 (±.0056) .4633 (±.0116) .7302 .4709
wiki1000 .6836 .4354 .6836 .4354 .6836 (±.0000) .4354(±.0000) .6836 .4354
wiki1500 .6166 .3801 .6166 .3801 .6166 (±.0000) .3801 (±.0000) .6166 .3801
wiki2500 .5802 .3506 .5802 .3506 .5802 (±.0000) .3506 (±.0000) .5802 .3506
dmoz250 .7742 .4724 .7742 .4724 .7718 (±.0047) .4692 (±.0096) .7742 .4724
dmoz500 .6608 .4513 .6608 .4513 .6586 (±.0064) .4488 (±.0076) .6608 .4513
dmoz1000 .6845 .3681 .6845 .3681 .6845 (±.0000) .3681 (±.0000) .6845 .3681
dmoz1500 .6678 .3616 .6678 .3616 .6678 (±.0000) .3616 (±.0000) .6678 .3616
dmoz2500 .5959 .3351 .5959 .3351 .5959 (±.0000) .3351(±.0000) .5959 .3351

the performance, the goal in this example, ultimately, is to select the value that
maximizes the performance of MaF.

For instance, hold-out, by selecting λ = 10−1, fails to select the optimal λ
value, while all other the methods succeed. Here, the 5-CV approach requires
1310 sec., whereas the bound approach only requires 302 sec. (the computa-
tions are performed on a standard desktop machine, using parallelized imple-
mentations on 4-cores). The bound approach is thus 4.33 times faster, a result
consistent over all experiments and in agreement with the complexity of each
approach (Sect. 3). Lastly, we notice that the curve for BoundUN with the quan-
tification method CC follows the MaF curve more strictly than the curve with
the quantification method PCC.

Table 3 presents the evaluation of the three model selection methods using
as classifiers SVM and LR respectively. As one can note, the performance of
the method proposed here is equivalent to the one of cross-validation, for all
datasets, and for both classifiers and performance measures (accuracy and MaF).
The performance of SVM is furthermore higher than the one of LR on all
datasets, and for both evaluation measures, the difference being more impor-
tant for the MaF. The performance of cross-validation however comes with the
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cost of extra processing time, as our method achieves a k speed-up compared
to cross-validation. If both methods can easily be parallelized (at least on the
basis of the number of values of the hyper-parameter to be tested), k-fold cross
validation requires k times more computing resources than our method.

Unlike cross-validation, hold-out estimation fails to provide a good model
in many instances. This is particularly true for SVMs and the MaF measure,
for which the model provided by hold-out estimation lies way behind the ones
provided by BoundUN and BoundTest on several collections as Dmoz1500 and
Dmoz2500. The difference is less important for LR, but the final results in that
case are not as good as in the SVM case.

5 Conclusions

We have presented in this work a new method for model selection that is able
to exploit unlabeled data (this is in contrast with current model selection meth-
ods). To do so, we have introduced quantification-based bounds for accuracy and
macro performance measures. We have then shown how to apply this bound in
practice, in the case where unlabeled data is available in conjunction with labeled
data, and in a transductive-like setting where the instances to be classified are
known in advance. The experimental results, obtained on 10 datasets with differ-
ent number of classes ranging from 250 to 2,500, show that the method proposed
here is equivalent, in terms of the quality of the model selected, to k-fold cross-
validation, while being k times faster. It furthermore consistently outperforms
hold-out estimation for SVM classification, for both accuracy and macro-F1,
the difference being more important for macro-F1. Furthermore, and contrary
to hold-out estimation, our method needs neither a validation/train splitting
procedure nor a retraining procedure.

In our future work we plan to investigate the application of a generalized
versino of the proposed model selection approach in cases where more than
one hyper-parameters have to be tuned. In this framework, we also plan to
research the extension of the theoretical and experimental findings to multi-
label classification problems i.e., multi-class classification problems where each
instance can be given more than one categories at once.
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Abstract. We introduce a framework for a data-driven analysis of seg-
regation of minority groups in social networks, and challenge it on a com-
plex scenario. The framework builds on quantitative measures of segrega-
tion, called segregation indexes, proposed in the social science literature.
The segregation discovery problem consists of searching sub-graphs and
sub-groups for which a reference segregation index is above a minimum
threshold. A search algorithm is devised that solves the segregation prob-
lem. The framework is challenged on the analysis of segregation of social
groups in the boards of directors of the real and large network of Italian
companies connected through shared directors.

1 Introduction

Social networking services record our connections to friends, colleagues, collabo-
rators. The analysis of those digital traces can create new comprehensive pictures
of individual and group behaviour, through the discovery of patterns and mod-
els, with the potential to transform the understanding of our lives, organizations,
and societies. In this paper, we will consider th social problem of group segrega-
tion in social networks [8], which is an unjustified separation or distance in social
environments (physical, working, or on-line) of individuals on the basis of any
physical or cultural trait. We present theory and tools, based on data mining and
network science, for data-driven segregation discovery, with two main goals. First,
we aim at providing a deeper understanding of segregation phenomena through
the design of analytical processes that proactively support policy makers and
control authorities in discovering and in anticipating potential segregation prob-
lems. Second, we aim at studying the applicability of proposed methodology in
a complex scenario through the analysis of segregation of minority groups in the
network of Italian companies linked through shared directors in their boards.

The paper is structured as follows. Section 2 provides an overview of segrega-
tion indexes from the social science literature. Section 3 introduces the problem
of segregation discovery and provides a solution using concepts from itemset
mining. Section 4 challenges the solution on the network of Italian companies
by tackling a few issues arising from the case study. Section 5 concludes and
presents directions for future work.
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Fig. 1. Racial spatial segregation in New York City, based on Census 2000 data [7]. One
dot for each 500 residents. Red dots are Whites, blue dots are Blacks, green dots are
Asian, orange dots are Hispanic, and yellow dots are other races (Color figure online).

2 Segregation Indexes

2.1 On the Notion of Segregation

The term segregation refers to restrictions on the access of people to each other.
People are partitioned into two or more groups on the grounds of personal or cul-
tural traits that can foster discrimination, such as gender, age, ethnicity, income,
skin color, language, religion, political opinion, membership of a national minor-
ity, etc. Contact, communication, or interaction among groups are limited by
their physical, working or socio-economic distance. Members of a group tend to
cluster together when dissecting the society into organizational units (neighbor-
hoods, schools, job types).

In spatial segregation, groups are set apart in neighborhoods where they live
in, in schools they attend to, or in companies they work at. As sharply pointed
out in Fig. 1, racial segregation very often emerges in most cities characterized by
ethnic diversity. Schelling’s segregation model [19] shows that there is a natural
tendency to spatial segregation, as a collective phenomenon, even if each indi-
vidual is relatively tolerant – in his famous abstract simulation model, Schelling
assumed that a person changes residence only if less than 30 % of the neighbors
are of his/her own race.

Recently, [13] argued that segregation is shifting from ancient forms on the
grounds of racial, ethnic and gender traits to modern socio-economic and cul-
tural segregation on the basis of income, job position, and political-religious
opinions. For instance, it has been warned that the personalization of online
social networks may foster segregation and lack of consensus between different
social groups, because people are only reinforced in what they already believe
and lack exposure to alternative viewpoints and information [16] or because they
are led to self-censorship acts [6] for fear of public opinion on personal thoughts.
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2.2 Segregation Indexes

A segregation index provides a quantitative measure of the degree of segrega-
tion of social groups (e.g., Blacks and Whites) among units of social organi-
zation (e.g., schools). Many indexes have been proposed in the literature. [10]
represents the earliest attempt to categorize them. Afterward, the survey [12]
provided a shared classification with reference to five key dimensions: evenness,
exposure, concentration, centralization, and clustering. We restrict ourselves to
binary indexes, which assume a partitioning of people into two groups, say major-
ity and minority (but could be Blacks/Whites, women/men, etc.). Let T be size
of the total population, M be the size of the minority group, and P = M/T be
the overall fraction of the minority group. Assume that there are n units, and
that for i ∈ [1, n], ti is the population in unit i, mi is the minority population
in unit i, and pi = mi/ti is the fraction of the minority group in unit i.

Evenness Indexes. Evenness indexes measure the difference in the distribu-
tions of social groups among the units. They are widely adopted in the social
science literature on segregation. The mostly referenced indexes are dissimilarity
and entropy. The dissimilarity index D is the weighted mean absolute deviation
of every unit’s minority proportion from the global minority proportion:

D =
1

2 · P · (1 − P )

n∑

i=1

ti
T

· |pi − P | (1)

The normalization factor 2 · P · (1 − P ) is to obtain values in the range [0, 1].
Since D measures dispersion of minorities over the units, higher values of the
index mean higher segregation. Dissimilarity is minimum when for all i ∈ [1, n],
pi = P , namely the distribution of the minority group is uniform over units. It
is maximum when for all i ∈ [1, n], either pi = 1 or pi = 0, namely every unit
includes members of only one group (complete segregation).

A second widely adopted index is the information index, also called the Theil
index [15] in social science, and normalized mutual information in machine learn-
ing. Let the population entropy be: E = −P · log P − (1 − P ) · log (1 − P ), and
the entropy of unit i be: Ei = −pi · log pi − (1−pi) · log (1 − pi). The information
index is the weighted mean fractional deviation of every unit’s entropy from the
population entropy:

H =
n∑

i=1

ti
T

· (E − Ei)
E

(2)

Information index ranges in [0, 1]. Since it denotes a relative reduction in uncer-
tainty in the distribution of groups after considering units, higher values mean
higher segregation of groups over the units. Information index reaches the min-
imum when all the units respect the global entropy (full integration) and the
maximum when all units contain only one group (complete segregation).

Exposure Indexes. Exposure indexes measure the degree of potential contact,
or possibility of interaction, between members of different groups.
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The most used measure of exposure is the isolation index [4], defined as the
likelihood that a member of the minority group is exposed to another member
of the same group in a unit. For a unit i, this can be estimated as the product of
the likelihood that a member of the minority group is in the unit (mi/M) by the
likelihood that she is exposed to another minority member in the unit (mi/ti,
or pi) – assuming that the two events are independent. In formula:

I =
1
M

·
n∑

i=1

mi · pi (3)

The isolation index ranges over [P, 1], with higher values denoting higher seg-
regation. The minimum value is reached when for i ∈ [1, n], pi = P , namely
the distribution of the minority group is uniform over the units. The maximum
value is reached in the same conditions of the previous two indexes. The differ-
ences between indexes are the following: (a) H and I are insensitive to units i
where mi = 0, whilst D is not; (b) D and H are symmetric, i.e., by inverting the
minority and majority groups the index remains unchanged, whilst I is not.

Other Indexes. The other three classes of indexes are specifically concerned
with spatial notions of segregation. Concentration measures the relative amount
of physical space occupied by social groups in an urban area. Centralization
measures the degree to which a group is spatially located near the center of an
urban area. Finally, clustering measures the degree to which group members live
disproportionately in contiguous areas. We refer the reader to [12] for details.

3 Segregation Discovery

Traditional data analysis approaches from social science typically rely on for-
mulating an hypothesis, i.e., a possible context of segregation against a certain
social group, and then in empirically testing such an hypothesis. For instance, a
suspect case of segregation of black female students in high schools from NYC is
studied first by collecting data on race and gender of all high school students in
NYC (reference population), and then by computing and analysing segregation
indexes over black females (minority group). The formulation of the hypothesis,
however, is not straightforward, and it is potentially biased by the expectations
of the data analyst of finding segregation in a certain context. In this process,
one may overlook cases where segregation is present but undetected. We propose
a data-driven approach, which complements hypothesis testing, by driving the
search (the “discovery”) of contexts and social groups where a-priori unknown
segregation factors are quantitatively prominent. Recall the previous example.
The analyst has to collect data on gender, age, race of students (called segrega-
tion attributes), and on city location, school type, and annual fees (called context
attributes). Although no segregation may be apparent in the overall data, it may
turn out that for a specific combination of context attributes (e.g., high schools
located in NYC), a specific minority group denoted by a combination of segrega-
tion attributes (e.g., black women) is at risk of segregation. We quantify such a



Segregation Discovery in a Social Network of Companies 41

risk through a reference segregation index, and assume that a value of the index
above a given threshold denotes a situation worth for further scrutiny.

We call the problem of discovering a-priori unknown minority groups and
reference populations for which segregation indexes are above a given threshold,
the segregation discovery problem. The problem statement will be formalized
using notation and concepts from itemset mining [9]. This allows for re-using
methods and tools from this widely investigated research area. In particular,
itemsets will serve to define the search space of segregation discovery. Let R be
a relational table (or, simply, a table or a dataset). Tuples in the table denote
individuals, and attribute values denote information about individuals and units
they belong to. Attributes are partitioned into segregation attributes (SA), such
as sex, age, and race, which denote minority groups potentially exposed to
segregation; context attributes (CA) attributes, such as city and job type,
which denote contexts where segregation may appear; and an attribute unit,
which is an ID of the unit the tuple/individual belongs to. For a discrete attribute
A, an A-item is a term A = v, where v ∈ dom(A), the domain of A. We assume
that continuous attributes are discretized into bins [11]. An itemset X is a set
of items. As usual in the literature, we write X, Y for X ∪ Y. A tuple σ from R
supports X if for every A = v in X, we have σ[A] = v, where σ[A] is the value of
the attribute A in the tuple σ. The cover of X is the set of tuples that support
X: coverR(X) = {σ ∈ R | σ supports X}. We omit the subscript R if it is clear
from the context. E.g., cover(sex=female, age=[20--29]) is the set of women
in their 20 s included in the dataset. The (absolute) support of X is the size of
its cover, namely supp(X) = |cover(X)|.

We write A,B to denote an itemset where A is non-empty and it includes
only SA-items, and B includes only CA-items. We call A a non-empty SA-
itemset, and B a CA-itemset. We are now in the position to extend the notation
of the segregation indexes to a reference population, which is the cover of B,
and to a reference minority group, which is the cover of A.

Definition 1. Let s() be a segregation index. For an itemset A,B we denote by
s(A,B) the segregation index calculated for the population in cover(B) consid-
ering as minority population those in cover(A,B).

As an example, D(A,B) is the dissimilarity index, where T = supp(B),
M = supp(A,B), ti = supp(B, unit=i), and mi = supp(A,B, unit=i). Recon-
sidering the example above, we would fix A as race=black,sex=female and B
as city=NYC. D((race=black,sex=female), city=NYC) is then the dissimilarity
index of segregation of black females in the high schools of NYC.

We introduce now the problem of segregation discovery.

Definition 2. Let s() be a segregation index, and α a fixed threshold.
An itemset A,B is α-integrative w.r.t. s() if cover(B) = ∅ or s(A,B) ≤ α.

Otherwise, A,B is α-segregative. The problem of segregation discovery consists
of computing the set of α-segregative itemsets.
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Input: relational table R with context attributes (CA), segregation attributes
(SA), unit attribute unit with a total of n units.

Output: segregation index values s(A,B).
foreach B CA-itemset do1

T = 0;2

foreach i ∈ [1, n] do3

ti = supp(B, unit=i);4

T += ti5

end6

foreach A non-empty SA-itemset do7

M = 0;8

foreach i ∈ [1, n] with ti > 0 do9

mi = supp(A,B, unit=i);10

M += mi11

end12

sum = 013

foreach i ∈ [1, n] with ti > 0 do14

sum += fs(mi, ti, M, T)15

end16

s(A,B) = gs(sum, M, T)17

end18

end19

Algorithm 1: Segregation index computation.

Intuitively, we are interested in finding itemsets A,B denoting a minority
sub-group (non-empty A) and a non-trivial context (B with non-empty cover)
where the segregation index s() is above the α threshold.

Algorithm 1 is a solution to the problem of computing s(A,B) for a segrega-
tion index s() and all itemsets A,B. It can readily solve the segregation prob-
lem by filtering itemsets whose index is lower or equal than the threshold α. We
assumes that the support counting function supp() is available. We implemented
it by storing the subset of R at each unit as an array of bitmaps, one bitmap per
each CA and SA item. Position i of a bitmap is set to 1 iff the ith tuple of the
unit supports the item associated to the bitmap. Support counting consists then
of bitmap and-operations. An alternative way of implementing supp() is through
the construction of an FP-tree, a compressed representation of a dataset used for
frequent itemset mining [9]. The outer loop (lines 1–19) of the algorithm iterates
over all CA-itemsets B. For each of them, the total population size T is calculated
at lines 3–6. The inner loop (lines 7–18) iterates over all non-empty SA-itemsets
A. First, the size M of the minority is calculated at lines 9–12. We accumulate
the results of a function fs() over each unit, and then pass it to the normaliza-
tion function gs(). These two functions depend on the segregation index s(). For
the information index, we observe that H = 1 − (

∑n
i=1 ti · Ei)/(T · E). Hence,

fs(mi, ti,M, T ) = ti · Ei and gs(sum,M, T ) = 1 − sum/(T · E), where Ei and E
are clearly calculable from mi, ti and from M,T respectively.

Let δ =
∑

A |dom(A)| be the sum of the sizes of domains of context and
segregation attributes, and π =

∏
A |dom(A)| be their product. Algorithm 1 has
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worst-case time complexity of O(π|R|). Our bitmap-based implementation has
space complexity of Θ(δ|R|). We will present actual performances on a large
dataset later on. Notice that Apriori-like optimizations in the index calculations
are not possible since D and H are not anti-monotonic, and I is monotonic only
w.r.t A – i.e., I(A ∪ A′,B) ≤ I(A,B).

4 Segregation Discovery in Social Networks of Companies

We will challenge the framework for segregation discovery in a complex sce-
nario with a real and large dataset. We are interested in studying segregation
of minority groups (youngsters, seniors, females) in the boards of companies.
The social segregation question we intend to study is: which minority groups are
segregated in the boards of companies and for which type of companies? A pos-
sible answer may lead to the discovery that, e.g., for IT companies, females in a
certain age-range appear frequently together in boards and rarely with members
of the majority group (men or individuals in other age-ranges). In the following,
we first introduce the notion of social network of companies, then report some
basic facts on the running case study of the network of Italian companies, and
finally challenge the segregation discovery framework on such a case study.

4.1 Social Networks of Companies

The board of directors (BoD) is a body of elected or appointed members who
jointly oversee the activities of the company. The presence of a director is the
number of BoDs the director belongs to. If presence is two or higher, the director
is called a bridge director. As an example, the board of a controlled company
typically includes directors from the board of the controlling company. Other
reasons for multiple presence include partnership consolidation, collusion, coop-
tation, monitoring, political influence, friendship, kinship, etc. The presence of a
same director in the boards of two companies (interlocking directorate) can then
be considered a signal of business, personal, or other forms of relationship and
information exchange between the two companies [14]. Under this “social tie”
assumption, we model a social network of companies by linking those companies
that share at least one director [3].

Let N = {1, . . . , N} be a set of company IDs, and for i ∈ N , let BoD(i) ⊆
D be the board of directors of company i, where D = {1, . . . , D} is the set of
directors IDs. A social network of companies is a weighted undirected graph
G = 〈N , E〉 where a weighted edge (i, j, w) is in E ⊆ N ×N ×R iff w = |BoD(i)∩
BoD(j)| > 0, i.e., if companies i and j share at least one director. Intuitively, w
is a measure of the strength of ties between the boards of directors of i and j. We
write eij = 1 if (i, j, w) ∈ E , and ei j = 0 otherwise. We denote by L the number
of edges, i.e., L = |E|, and by ki the degree of node i, i.e., ki =

∑N
j=1 eij . A node

is called isolated if its degree is 0. A connected component (CC) is a maximally
connected subgraph of G.
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Fig. 2. Distrib.: BoD size (left), director presence (center), node degree (right).

4.2 The Social Network of Italian Companies

The Italian Business Register records information on all Italian companies and
directors. We had a unique access to a complete 2012 snapshot of the registry.
A company can be structured as a partnership, a corporation, or other national
forms. For corporations, the BoD is elected by shareholders, while for a partner-
ship the BoD includes all partners.

There is a total of N 
 2.2 · 106 registered companies, and D 
 3.7 · 106

directors. The network has L 
 5.9 × 106 edges. Around 0.7 · 106 nodes are
isolated (i.e., degree is 0). This amounts at 35.2 % of the total number of nodes,
and it is quite representative of the Italian scenario, where tiny/family businesses
are widespread. Figure 2 reports the distributions of BoD size, director presence,
and node degree. Distributions are heavily tailed (notice the log-log plot), but
only for director presence there is a good fit by a truncated powerlaw (we used
the software from [2]). A few directors appear in hundreds of boards (one of
them appears in as many as 404 boards). We investigated the reasons of such
impressively high numbers, and found two explanations. First, when a company
is winding-up because of bankruptcy, an official receiver is appointed by the
court as an interim receiver and manager of the company. Such directors are
independent experts appointed in many boards and for a possibly long period.
Second, there are groups of companies with a pyramidal structure [1] sharing the
same directors. An example is the outlier in Fig. 2 (right), representing a clique
of 250 companies having a same person as the unique director in their boards.
In order to reduce the impact of the two special cases above on the density of
the social network of companies, we removed from the set of directors the 0.01 %
with the highest presence. The age distribution of directors is shown in Fig. 3
(left). The plot sadly highlights the glass-ceiling reality for women, who suffer
from a under-proportional representativeness in top-level job positions.

4.3 Segregation Discovery

We aim at exploiting the segregation discovery framework and algorithm of
Sect. 3 to the case study of the social network of Italian companies. The dataset
under analysis will contain one tuple for each director. Available segregation
attributes include: gender, age (discretized into 5 equal-frequency bins). Context
attributes include the company sector (the top level of a hierarchical classification
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Fig. 3. Left: age distribution. Center: distribution of size of CCs before (center, without
the giant component) and after (right) splitting the giant component.

used by the Italian official statistics institute), with 21 possible values, and the
region of residence of the director (north-east, north-west, center, south, islands,
abroad). In this section, we discuss three issues that challenge the framework of
Sect. 3, and devise solutions for overcoming them.

Segregation index definitions assume a partitioning of individuals into units
of social organization (schools, neighborhoods, communities). The first challenge
in the context of social networks of companies is then to define how such units
are defined. Intuitively, a unit is a set of companies within which directors can
get in contact, either directly (because they belong to a same BoD) or indirectly
(e.g., through a bridge director connecting two BoDs).

Our approach is to consider a structural decomposition of the social network
graph into groups of companies, i.e., sub-graphs, each one representing a unit.
A natural candidate is to consider the decomposition based on connected com-
ponents (CCs). The distribution of the size of CCs, shown in Fig. 3 (center),
is fitted by a truncated powerlaw. In addition to the isolated nodes, there are
251 · 103 other CCs with size in the range [2–99], and one giant component con-
sisting of 642 · 103 nodes (not shown in the figure). The number of directors in
the giant component amounts at 20 % of the total. This means that the giant
component weights 20 % in the calculation of dissimilarity and information gain
segregation indexes (for the isolation index, the weight depends also on the size
of minority mi). This may prevent segregation from being discovered, because
the giant component may hide segregated finer-grained units within it. We claim
that the giant component need to be further split. Observe that our assumption
that bridge directors represent signals of relationships between two companies
does not account for the strength of such signals. We exploit this intuition to
split the giant component into components by removing edges in it that repre-
sent “weaker ties”. Recall that the weight of an edge between nodes i and j is
w = |BoD(i) ∩ BoD(j)|, i.e., the number of shared directors. We remove edges
from the giant component whose weight is lower or equal than a threshold. The
selected threshold (w ≤ 3) is the lowest that leads to no giant component. The
resulting distribution of CCs, shown in Fig. 3 (right), is fitted by a powerlaw
with exponent close the original distribution without the giant component. The
total number of CCs is now 
 1.6 · 106.

The second challenge in segregation discovery originates by the splitting of
the giant component. In fact, a side effect of any splitting is that in the resulting
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network a bridge director may appear in two or more units. This is not accounted
for in the framework of Sect. 3, which assumes that an individual belongs to only
one unit. We will consider multiple instances of bridge directors in different units
as distinct individuals. With reference to the notation of Sect. 2.2, we revise
the definitions of the size of population T and minority group M by setting
T =

∑n
i ti and M =

∑n
i mi, i.e., by counting every occurrence of an individual

in any unit, not every individual. Algorithm 1 remains unchanged because it
already computes T and M as above.

The third challenge is motivated by the need of including characteristics of
companies among the context attributes, so that segregation, e.g., in the subnet-
work of IT companies, can be discovered. However, bridge directors may appear
in BoDs of companies with different characteristics. How do we model this in our
framework? We use multi-valued attributes, by admitting that, for an attribute
A and a tuple σ, σ[A] ⊆ dom(A) (instead of simply, σ[A] ∈ dom(A)). As an
example, the industry sector of a director is defined as the set of industry sec-
tors of companies where the director appears, e.g., σ[sector] = {IT, Banks}. Our
framework can be extended to admit multi-valued tuples by simply extending
the notion of support as follows: a tuple σ supports X if for every A = v in X, we
have v ∈ σ[A] if A is multi-valued, and σ[A] = v otherwise. On the implementa-
tion side, this extension does not require drastic changes. The support counting
method has to be initialized with a set of transaction items A = v1, . . . , A = vk
for {v1, . . . , vk} = σ[A] instead of simply with A = v for v = σ[A]. In our bitmap
based implementation, for a multi-valued attribute A, a tuple σ will lead to set
to 1 all the bitmaps of the values in σ[A].

4.4 Segregation Discovery: Findings

The dataset processed as described in the previous section consists of 4.6 · 106

tuples, 2 context attributes (residence, sector), 2 segregation attributes (age,
sex), and the unit attribute. We have applied Algorithm 1 on the dataset to
calculate the D, H, and I segregation indexes. The total running time of the algo-
rithm was of 110 seconds, on a commodity PC with Intel Core i5-2410@2.30GHz
with 16 Gb of RAM, Windows 7 OS, and Java 8 as programming language.

The affordable running time allows for more advanced data analysis than the
one stated by the definition of segregation discovery, namely selecting/ranking
itemsets A,B whose index is above a given threshold. We are in the position
of providing the segregation analyst with a data cube of indexes for exploratory
analysis in the style of OLAP cubes. Here, indexes play the role of metrics,
and context and segregation attributes play the role of dimensions. Also, con-
straints on the sizes T (resp., M) of the population (resp., minority group) can
be provided to guide the analysis.

Let us present here three real cases. By setting a minimum M ≥ 103, the
itemset with the highest dissimilarity index:

sector=‘agriculture’, age=‘<=38’, sex=‘F’ (D = 0.916, H = 0.605, I =

0.431)



Segregation Discovery in a Social Network of Companies 47

regards the population of directors of in the agriculture sector, with women up to
38 years old as minority population. Segregation in agriculture is a well-known
phenomenon. Excluding such a sector, the highest information index is for:

residence=‘abroad’, age=‘>=53’ (D = 0.75, H = 0.675, I = 0.805)

the population of directors with residence abroad, and for the minority of direc-
tors with age of 53 years or more. Finally, excluding foreign directors, the highest
isolation index is for:

sector=‘electricity’, sex=‘M’ (D = 0.625, H = 0.411, I = 0.907)

directors of companies producing or supplying electric power or gas, with minor-
ity population the male directors. In this case, segregation of males means they
have 90.7% of likelihood of getting in contact with other males in their board
or through bridge directors.

5 Conclusions and Future Work

We have formulated the problem of segregation discovery in social networks,
devised a solution that provides the data analyst with a data cube of segrega-
tion indexes for exploratory analysis, and challenged the approach on a complex
scenario with a real and large dataset regarding segregation in boards of direc-
tors.

Several issues remain open for future investigation.
First, relations with research streams that appear closely linked must be

explored. One related field is community discovery in attributed graphs [5], where
graph clustering algorithms exploit both the structural dimension of the social
graphs as well as a compositional dimension represented by features of nodes.
Another related field is discrimination discovery [18], where the objective is to
search for contexts with a disproportionate distribution of socially sensitive deci-
sions (granting of a loan, admission to school, hiring, etc.) among social groups.

Second, the proposed framework need to be further validated, e.g., on
whether it is able to cover more complex segregation index definitions and
application scenarios, and on whether Algorithm 1 scales to a large number
of attributes. The impact of different segregation indexes on the top segregative
itemsets should also be evaluated, as done in [17] for discrimination indexes.
The final objective will be a complete framework and working system for OLAP
analysis of segregation in social networks.

Finally, we argue that segregation discovery is half way towards the more
challenging objective of segregation-aware data mining and social network analy-
sis. The objective here is the development of segregation-aware data analysis and
data mining models that, by design, can provide a guarantee about the impact
of computer-supported decisions (e.g., link predictions, group recommendation)
on individuals and social groups, about the possibilities of interaction between
them, and about the increase of social cohesion of society at large.
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Abstract. Much is still unknown about how children learn language,
but it is clear that they perform “grounded” language learning: they learn
the grammar and vocabulary not just from examples of sentences, but
from examples of sentences in a particular context. Grounded language
learning has been the subject of much research. Most of this work focuses
on particular aspects, such as constructing semantic parsers, or on par-
ticular types of applications. In this paper, we take a broader view that
includes an aspect that has received little attention until now: learning
the meaning of phrases from phrase/context pairs in which the phrase’s
meaning is not explicitly represented. We propose a simple model for this
task that uses first-order logic representations for contexts and meanings,
including a simple incremental learning algorithm. We experimentally
demonstrate that the proposed model can explain the gradual learning
of simple concepts and language structure, and that it can easily be used
for interpretation, generation, and translation of phrases.

1 Introduction

Despite the complexity of natural languages, children are able to acquire their
native language quite easily, efficiently and without any specific training. This
human ability is not yet fully understood, even though it has been studied by
researchers from many different areas: psychology, linguistics, . . .

In computer science, grammatical inference (GI) deals with the learning of
grammars and languages from data. Although historically this task has been
associated with that of children acquiring their native language, most research
in GI reduces the language learning problem to syntax learning, and does not use
semantic information in this process [6]. Children, however, do have additional
information, derived from the context in which utterances are made, and they
learn not only the syntax but also the semantics of utterances. This type of
learning is often called grounded language learning.

Grounded language learning is a broad research area. Most of this research
focuses on particular aspects of the problem, such as semantic parsing (which
c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 49–60, 2015.
DOI: 10.1007/978-3-319-24465-5 5
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maps sentences to their semantics), or on specific types of applications. In this
paper, we propose a model for grounded language learning that uses a first-order
logic representation of contexts and meanings. We present a learning algorithm
that analyzes utterances and the context in which they are produced to create
a language model that can be used to map sentences onto meanings and vice
versa. An important difference with earlier work [3,4,9,11,13] is that our learner
learns from sentence/context pairs, whereas earlier work requires the meaning,
or a set of candidate meanings, to be provided for each example sentence. That
is, earlier work used examples of the form (x, y), with y = f(x), or (x, Y ) with
f(x) ∈ Y , to learn the function f that maps sentences to their meaning; our work
uses examples of the form (x,C) with a more complex relationship between the
context description C and the meaning f(x).

2 Background and Related Work

Our work is mainly inspired by Angluin and Becerra-Bonache [1,2], who present,
for the first time in the field of GI, a computational model that takes into account
semantics for language learning. Their main goal was to investigate the effects of
semantics and meaning-preserving corrections on the language learning process.
Our work mainly differs from their work in the type of methods adopted to solve
the problem. Instead of using a variety of techniques such as transducers, co-
occurrence graphs, decision trees, etc., we use a single model represented in first
order logic. Language comprehension and generation are then achieved with a
simple query to this model. The simplicity of our approach is appealing from a
cognitive point of view.

Within computational linguistics, much research exists on grounded language
learning. Different from GI, most of this work does not aim to learn the grammar
itself or understand the learning process, but to develop systems that can deal
with natural language data in a particular application. Much of it focuses on
semantic parsing. Semantic parsers are often learned from a supervised corpus
containing sentences with their meaning representation [15,20,21], but construct-
ing such a corpus is expensive, difficult and time-consuming.

In order to avoid this limitation, researchers have investigated grounded
learning from ambiguous training data, where each sentence is associated with a
small set of candidate meanings. In seminal work on grounded language learning,
Siskind [19] focused on learning word meaning, but not grammatical structure.
In a series of work, Mooney and colleagues [3,4,9,11] learn to match phrases to
elements of a context. Their goals are similar to ours, but an essential difference
is that they only map a phrase to a single element in the context; that is, the
meaning of the phrase must be a single element of the context. Chen et al. [3]
acknowledge this limitation, and mention inductive logic programming (ILP) as
a possible approach to learning more complex meanings, to be explored in future
work. This work partially fills that gap.

Our learner is incremental, which is interesting from a cognitive point of
view; apart from Angluin and Becerra-Bonache, the only other incremental
learner we know of was proposed by Kwiatkowski et al. [13]. Our approach
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differs substantially from Kwiatkowski’s in that the latter requires a parallel
corpus: it can learn from ambiguous supervision (multiple candidate meanings
per sentence), but for each sentence the correct meaning must still be con-
structed in advance and made available to the learner, whereas our approach
construes meanings from scratch. Our context descriptions are motivated by
how the learner perceives the world, not by what meanings might look like.

3 A Logic-Based Approach

3.1 Terminology

We assume familiarity with first-order logic and Prolog. We here briefly review
the main concepts; for an extensive introduction, see [14].

First-order predicate logic allows us to make statements about objects in
some universe U . A constant always refers to one and the same object from U .
A variable may refer to any object. A term is a variable or a constant. A predicate
refers to a relation over Un for some n ≥ 0; n is the arity of the predicate.

An atom is of the form p(t1, t2, . . . , tn) where p is a predicate symbol and
the ti are terms. A literal is of the form A or ¬A, with A an atom. A clause is
a set of literals. A fact is a clause with exactly one, positive, literal. An atom,
literal or clause is ground if it does not contain variables. A variable substitution
{X1/t1,X2/t2, . . . , Xn/tn} is an operation that, applied to a structure, simulta-
neously replaces each occurrence of variable Xi in that structure by term ti. An
instantiation is a substitution that changes all variables into ground terms.

A ground atom p(t1, t2, . . . , tn) evaluates to true if the tuple denoted by its
arguments is in the relation denoted by p, and false otherwise; literal ¬A evalu-
ates to true if and only if A evaluates to false and vice versa; a clause evaluates
to true if for each of its instantiations, at least one of its elements evaluates to
true (so it represents a universally quantified disjunction).

We use Prolog syntax: predicates and constants start with a lowercase letter,
variables with an uppercase letter, and a clause of the form {H,¬B1, . . . ,¬Bm}
is written as H :- B1, ..., Bm. The meaning of such a clause is equivalent
to “if all Bi hold, then H holds” (for each instantiation of the variables). The
symbol denotes an anonymous variable occurring in only that position.

In Prolog, clauses can be added dynamically to a knowledge base using assert,
and removed using retract.

Example 1. father(joseph, hendrik) is a ground atom. When stated as a fact, it
expresses that the entities referred to by the constants joseph and hendrik are in
a relationship referred to as father; or, briefly: “Joseph is the father of Hendrik”.
The clause ancestor(adam,X) :- human(X) expresses that Adam is an ancestor of
all humans (“for all X it holds that if X is human, Adam is an ancestor of X”).

3.2 Representation

In our learning setting, an example is a pair (C,S) where C is a context and S
is a phrase (a sentence or a part of it). A phrase is represented as a sequence of
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Table 1. Constants used in context descriptions, and their interpretation.

Category Constants Interpretation

Color bl, re, gr, ye, or, pu blue, red, green, yellow, orange, purple

Shape sq, di, tr, he, st, el square, disc, triangle, hexagon, star, ellipse

Size sm, me, bg small, medium-sized, big

Position ab, be, lo, ro above, below, left of, right of

words, a context as a set of ground facts. Our model assumes that everything a
phrase refers to is in the context, but not everything in the context is necessarily
referred to in the phrase.

In our examples and experiments, we use a simplified world model with col-
orful figures, inspired by Feldman et al. [7]. In context descriptions, we use pred-
icates of which it is reasonable to assume that a child, observing the world, has
some notion. For instance, we assume that a child recognizes that being green
and being red are two properties that describe the same aspect of the visual
appearance of an object, and that being square or being round are a different
aspect of that appearance; in other words, it recognizes the concepts “color”
and “shape”, even if it has no word for these (nor for their possible values).
In line with this assumption, we use the following predicates: object(x) (x is
an object), color(x,y), shape(x,y), size(x,y) (the color/shape/size of x is y),
relpos(x,r,y) (the position of x relative to y is r). Constants used for specific
colors, shapes and sizes are shown in Table 1. Note that neither constants nor
predicates are hard-coded in our model; if a new example contains constants or
predicates not seen before, our learner can handle it without any change.

Example 2. A context in which a big red square is to the left of a small green
triangle is represented as {object(o1), shape(o1, sq), color(o1, re), size(o1, bg),
object(o2), shape(o2, tr), color(o2, gr), size(o2, sm), relpos(o1, lo, o2)}.

3.3 Learning the Meaning of Specific n-grams

The “meaning” of a sentence, phrase or word is difficult to define [5]. In this
work, we use a pragmatic definition: the meaning of an n-gram (a sequence of n
words) is “whatever is in common among all contexts where the n-gram can be
used”.1 We formalize this as follows.

A pattern is an existentially quantified set of atoms (one can think of it
as a Prolog query). Note that a context description can be seen as a variable-
free pattern. A pattern Q subsumes another pattern Q′ if there is a variable
substitution that turns it into a subset of Q′. Two patterns are equivalent if they
subsume each other. Given a set of contexts, their most specific common pattern
is a pattern Q that subsumes all of them and for which no other pattern exists
1 This is in line with the work by Mooney et al. and with Wittgenstein’s views on the

meaning of language.
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that subsumes all of them and is subsumed by Q. The meaning of an n-gram is
the most specific common pattern of all the contexts where it can be used.

The most specific common pattern can be computed using Plotkin’s lgg
(“least general generalization”) operator [17], which is intensively used in induc-
tive logic programming [16].

Example 3. The lgg of the following pair of contexts:

{ object(o1), color(o1, re), shape(o1, sq) }
{ object(o2), color(o2, gr), shape(o2, tr), object(o3), color(o3,re), shape(o3,tr) }
is {object(X), color(X, re), shape(X,Y)}. It captures everything that is in common
among these two contexts, which is: there is an object that is red and that has
some shape.

Example 4. The most specific common pattern in

{ obj(o1), clr(o1,re), shp(o1,sq), obj(o2), clr(o2,gr), shp(o2,tr), relpos(o1,lo,o2) }
{ obj(o3), clr(o3,gr), shp(o3,tr), obj(o4), clr(o4,re), shp(o4,tr), relpos(o3,lo,o4) }
is

{ obj(B), clr(B,re), shp(B,D), obj(E), clr(E,gr), shp(E,tr),
obj(A), clr(A,C), shp(A,D), relpos(A,lo,F), obj(F), clr(F,G), shp(F,tr) }.
It captures that, in both contexts, there is a red object (B), a green triangle
(E), and an object (A) to the left of a triangle (F). It may seem strange that
this clause refers to four objects, when each context had only two, but note that
different variables do not have to refer to different objects. In the first clause,
A = B and E = F , but in the second clause A = E and B = F . Identifying all
commonalities between the two contexts cannot be done with fewer than four
object references, because they unify differently in both contexts.

Our algorithm incrementally learns the meaning of specific n-grams. When-
ever it sees a new example with context C and phrase S, it iterates over all
the n-grams in S, and for each n-gram, it replaces the currently stored meaning
of the n-gram by the lgg of that meaning and the new context. Pseudocode is
shown in Algorithm 1 (main algorithm and Update procedure). For reasons
made clear below, the algorithm also remembers the category of each constant
(e.g., a constant that occurs as the second argument of color is a color), Update
also keeps track of how long ago the meaning of an n-gram was last changed
(stability counter), and Update may assert or retract mrf (“may refer to”) facts.

3.4 Generalizing n-grams

There is often a relationship between the meaning of an n-gram and that of
k-grams with k < n it is composed of. For instance, compare:

“red triangle”: there is an object that is both triangular and red
“red”: there is an object that is red
“triangle”: there is an object that is triangular
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This particular relationship is common to all bigrams of the form “color shape”.
A learner that recognizes the concepts “color” and “shape” may detect this. We
try to give our learner this capacity in the following manner.

When the meaning of a 1-gram w seems to have converged (that is, it has not
changed for the last s updates, with s a parameter called the stability threshold)
to a context that contains only one constant c, the learner assumes that the
1-gram refers to that constant. The fact mrf(w, c) is then asserted. (Should
w’s meaning change anyway later on, it is retracted again, since this implies it
was asserted prematurely.)

The learner tries to generalize n-grams for n > 1 using this mrf map-
ping by constructing a more general rule, as follows (see also Generalize in
Algorithm 1). A word w in the n-gram is turned into a variable Xw if a corre-
sponding mrf(w,c) is available; in the n-gram’s meaning, each occurrence of c is
then turned into a variable Xc, and the condition mrf(Xw, Xc) is added to the
body of the rule. The category of c is also added to the body as a condition;
this guarantees “cautious” generalization: everything we know about the word
is added so that a maximally specific rule is obtained.

For instance, after mrf(red,re) and mrf(triangle, tr) have been learned, the fact

meaning(ngram(2, [red, triangle]), [object(O), color(O, re), shape(O,tr), size(O, )])

can be generalized into the rule

meaning(ngram(2, [X,Y]) , [object(O), color(O, C), shape(O,S), size(O, )]) :-
mrf(X,C), mrf(Y,S), category(C,color,2), category(S,shape,2).

This rule essentially generalizes the meaning of the 2-gram “red triangle” into
an equivalent meaning for any 2-gram of the type “color shape”.

Any n-gram can be generalized in this manner, but the resulting rule is not
necessarily correct. To evaluate the rule, we define two criteria: evidence (how
much evidence is there that the rule is correct?) and coverage (how many separate
facts could be replaced if we introduced this rule in the knowledge base?).

Let C be the set of all previously observed n-grams for which a meaning is
predicted by rule R. Let S ⊆ C contain all n-grams whose (currently stored)
meaning is subsumed by the meaning predicted by R, and E ⊆ S ⊆ C all n-
grams whose meaning is equivalent to the one predicted by R. Every n-gram
in E is predicted correctly by R. Every n-gram in S − E is compatible with
R, in the sense that its meaning may still converge to the predicted meaning
after seeing more examples. Any n-gram in C − S contradicts the rule: further
updates cannot lead to a meaning equivalent to the prediction. We call a rule
valid if S = C, and we call |C| the coverage of the rule.

The fact that a rule is valid does not provide strong evidence for its cor-
rectness. A rule that predicts an empty pattern is automatically valid, but does
not capture any meaning. The n-grams in E, however, do provide evidence: the
larger E is, the less likely it is that the rule accidentally predicts all the meanings
of all these n-grams correctly. |E| is called the evidence for the rule.

The utility of the rule is related to |C|, but our confidence in its correctness is
related to |E|. In practice, it seems reasonable to only consider valid rules whose
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Algorithm 1. The learning algorithm
Input: stability threshold s, evidence threshold e, stream of context/phrase examples D
Output: predicate definition for meaning

whenever a new example (C, S) ∈ D is presented:
for each constant c occurring as the i’th argument of a predicate p in C:

assert category(c,p,i) (if not asserted yet)
for each n-gram G in S, with n=1, 2, . . .

update(C, G)
generalize(G)

update(context C, n-gram G):
if meaning(G, M) then

if lgg(M ,C) = M then
increase stability(G) by 1
if G is a 1-gram, stability(G)=s, and M contains one constant c
then assert mrf(G,c); cleanUp

else
retract meaning(G, M); assert meaning(G, lgg(M , C)); stability(G)=0
retract mrf(G, );

else assert meaning(G, C); stability(G)=0

generalize(n-gram G) :
call meaning(G,M)
Ref = {(w, c)|w ∈ G ∧ mrf(w, c)}
Cat = {(c, x, i)|( , c) ∈ Ref ∧ category(c, x, i)}
R = meaning(G, M) :-

∧
(w,c)∈Ref mrf(w, c),

∧
(c,x,i)∈Cat category(c, x, i)

introduce for each w and c in Ref a different variable Xw, Xc

replace in R each w and c by the corresponding Xw or Xc

if R is valid and has evidence ≥ e then assert R; cleanUp

cleanUp : retract each meaning(G,M) fact covered by a rule R

|E| is above some threshold, which is what our current algorithm does. Note that
when R gets introduced, it replaces not only the previously stored meanings of
the n-grams in E, but also those in S − E. For the latter, the currently stored
meaning gets replaced by what the rule predicts will be their converged meaning;
in other words, the rule boosts their convergence.

4 Experiments

To evaluate our model and learning algorithm, we made an example genera-
tor that generates random contexts and for each context a random phrase that
describes (part of) it in English, Dutch or Spanish. Each context consists of
one or two objects with a shape, color, size, and relative position. The phrases
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Table 2. Some examples of contexts and relevant phrases.

object(11),shape(11,tr),color(11,re),size(11,me), a red triangle to the

object(12),shape(12,he),color(12,pu),size(12,bg), left of the big hexagon

rel pos(11,lo,12)

object(52), shape(52,he), color(52,ye), size(52,sm) the hexagon

are generated using a simple probabilistic grammar and are surrounded by the
markers $start and $stop, so that n-grams can refer to the beginning and end-
ing of a phrase. For phrases referring to two objects, the format is the same as
that used by Angluin and Becerra-Bonache [2]. Table 2 shows a few represen-
tative examples. We have generated three corpora (one for each language) of
1000 examples each. The two parameters of the learner, stability threshold and
evidence threshold, were both set to 5.

4.1 Learning Meanings

Running the learning algorithm on the corpora led to the following observations
about the learning process.

It is known from ILP that the size of an lgg can grow exponentially in the
number of instances generalized (see, e.g., [10]). In our experiments, this behav-
ior was indeed observed. Eventually, meanings always converge to a relatively
simple pattern, but intermediate patterns can be very complex due to acciden-
tal similarities among contexts. As subsumption testing is exponential in the
length of clauses, this slows down the system unacceptably. We solved this prob-
lem by simply not updating the meaning of an n-gram if the new meaning is
too complex (specifically, lggs containing over 15 literals were not stored). Such
behavior is in fact cognitively plausible: children are unlikely to discover such
complex commonalities. Better ways of controlling the complexity of lggs exist,
but for our experiments, this simple method worked well.

For English, a learning curve was observed with (among other) the following
“milestones” (the number indicates the number of examples seen at this point):

79 the “color shape” generalized bigram is learned. The mrf map at this point
contains 4 colors and 5 shapes, hence the rule predicts the meaning of 20
combinations. 5 predictions are equivalent to the stored meaning, 14 gener-
alize it (boosting convergence), 1 is for a bigram not seen before.

85 mrf(to,bg) is retracted. Apparently, the system had earlier concluded that
“to” means bg (big), because that was the only constant common in all
its contexts and it remained present in the next 5 contexts. When finally
a context for “to” without a big object is seen, bg disappears from the
meaning; it is then clear that mrf(to,bg) was added prematurely, and it is
retracted.

86 mrf(disc,di) is added. The meanings of “red disc” and “blue disc” are
retracted, as they are now subsumed by the color-shape rule.
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89 the “size shape” generalized bigram is learned.
102 mrf(yellow,ye) is added. All colors and shapes have now been learned.
165 the “size color” generalized bigram is learned.
188 “$start the color shape $stop” is learned (this pattern forms a full phrase)
416 the “size color shape” generalized trigram is learned.
664 “shape to the relpos of” is learned. This is an overgeneralization: it correctly

covers the words “left” and “right”, but incorrectly also “above”, “below”
and “under”, all of which are associated with relative positions.

The learning curves for Dutch and Spanish are similar. However, due to the
inflection of adjectives in these languages (and the fact that our representation
does not express morphological structure), some forms occur less frequently and
get generalized later than in English. Further, more rules overgeneralize because
they do not impose, for instance, gender correspondence. This leads to the impor-
tant observation that our model categorizes in the physical world, but not in the
language world (it distinguishes color and shape as difference kinds of properties,
but does not categorize words for shapes into masculine and feminine because
these are syntactic, not physical, properties).

Retraction of an mrf fact happened only twice: the word “to” in English and
“van” in Dutch. There are also incorrect mrf facts that are not retracted. Most
notably, the definite article “het” in Dutch is believed to refer to a square. The
reason is that among 6 shapes, only the Dutch word for square, “vierkant”, uses
this article. Thus, “het” only occurs when a square is present, and its meaning
is indistinguishable to that of “vierkant”. This mistake has dire consequences: as
“het” is assumed to refer to a shape, “het oranje vierkant” is seen as an example
of the pattern shape color shape, and generalized. Because there are 6 examples
of such trigrams (for 6 different colors), and all have the same meaning as the
one predicted by the rule, the system finds the evidence sufficient for introducing
the generalized rule.

To some extent, this problem is an artifact of the fact that we have only one
shape that uses that article: it would disappear if we had at least two. But it still
points to at least two opportunities for improving our learning model. First, the
fact that “het” occurs in positions where other shapes do not occur should be an
indication that it is not a shape at all. Again, this would require analyzing the
sentence structure when categorizing words, which our algorithm currently does
not do. Second, our method for evaluating evidence (just counting the number
of n-grams in E) assumes that that evidence is statistically independent. This
is not the case here: all evidence for the incorrect pattern has “het” for the first
word, not just any shape. Our evidence criterion needs to be refined.

4.2 Using the Model

Until now, we have mostly focused on the learning process, but the proposed
model representation also makes a variety of inferences very easy to perform. We
illustrate a few of these. All inferences are made using a model learned from the
full corpus, and performed on the context {object(90), shape(90,tr), color(90,re),
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size(90,me), object(91), shape(91,he), color(91,pu), size(91,bg), rel pos(90,lo,91)},
which states that a medium-sized red triangle is to the left of a big purple
hexagon.

Generating Relevant n-grams and Phrases. The model can generate
n-grams that are relevant in some context, by simply checking which n-grams
have a meaning that matches part of the context. By chaining such n-grams,
we can produce complete phrases that in principle could be grammatically or
semantically incorrect, but in practice work well for the simple contexts here
provided. Chaining English 3-grams (with 2 words of overlap) gives 24 phrases
for our running context, all of which are correct; they include: “the big hexagon”;
“a big purple hexagon”; “the red triangle to the left of the big hexagon”; etc.

For the same context, generated Spanish phrases include “el hexagono pur-
pura y grande”, “un triangulo rojo”, but also the incorrect “un triangulo roja”.
Dutch phrases produced for this context are all correct; they include, e.g., “de
grote driehoek naast een grote paarse zeshoek”.2

Identifying Objects. We can easily ask which part of a given context, if any,
matches the meaning of a given n-gram. For the n-gram “purple hexagon”,
the system returns {object(91),shape(91,he),color(91,pu),size(91,bg)}, correctly
identifying the big purple hexagon as an object matching the description.

Producing Denoting Phrases. A phrase is denoting if it uniquely identifies
one object in a context. The ability to denote objects is important because it
is one of the main purposes of using language. Our system can easily produce
denoting phrases for some context by generating a phrase, finding what it iden-
tifies, and returning it if it identifies exactly one object. In the running context,
the following denoting phrases (among others) are returned: “a big hexagon”,
“the hexagon”, “a big purple hexagon”, “the red triangle”, . . .

Note that our approach could be useful in the Referring Expression Genera-
tion domain, which concerns with how to produce a description that identifies an
specific entity in a given context [12]. It could also have interesting implications
for the field of Computer Vision, for example, by providing semantic connections
between different objects detected in a concrete context.

Translating Sentences. Meaningful n-grams can be translated simply by ask-
ing for an n-gram in another language with an equivalent meaning. E.g.:

?- meaning(ngram(4, [the, big, blue, triangle]), , C1), meaning(L, spanish, C2),
equiv(C1,C2).

(where equiv tests equivalence) gives as possible answers for L the 5-gram
ngram(5, [el,triangulo,azul,y,grande]), but also versions with un, la, una instead
of el. Translations are only correct insofar the system understands the phrases
(it has not learned the meaning of articles, and therefore cannot distinguish the

2 With a model learned from 2000 examples, the incorrect phrase “driehoek rode
driehoek” was produced; this is a consequence of the belief that “het” is a shape,
and the construction of a rule for shape color shape as a consequence.
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meanings of “the red triangle” and “a red triangle”), and as said before the
system currently does not learn gender correspondence.

It is worth noting that most work in Machine Translation focuses on
syntactic-based approaches, but their limitations to preserve meaning structures
across languages have motivated research on semantic-based machine transla-
tion (e.g., [8,18]). Our approach mainly differs from these semantic approaches
in that we do not use a parallel corpus consisting of sentence/meaning pairs.
Moreover, it can be viewed as a first step towards systems that are able to use
the context to translate sentences from one language to another, while preserving
the meaning.

5 Conclusions and Future Work

We have presented a simple model for grounded language learning that uses a
first-order logic representation of contexts and meanings. Our system learns to
understand and generate simple natural language utterances, from pairs consist-
ing of utterances and the context in which these utterances are produced. In
contrast to other approaches, a context is a description of what the learner can
see in the world, and not a set of candidates meanings for that utterance; our
system constructs all candidate meanings itself. It does not require any prior
language-specific knowledge and learns incrementally. Experiments with three
different languages show that our system learns a language model that can eas-
ily be used to understand, generate and translate utterances.

This paper describes a simple proof of concept. Opportunities for further
work include: learning from more complex contexts (which may include actions),
learning more complex languages, categorizing also n-grams (as opposed to only
context elements), controlling the lgg complexity in a more principled manner,
experimenting with other inductive inference methods known from inductive
logic programming, robust learning in noisy environments (probabilistic logics
may be useful for this), and much more.

It is worth noting that the development of computational approaches such as
this one can help obtain insight into how children build a model of language and
make connections between utterances and contexts. It can also help understand
how language developed from its origins, since the observation of the world and
the intention to communicate were crucial for the development of language.
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Abstract. We present a new parallel algorithm for image feature extrac-
tion. which uses a distance function based on the LZ-complexity of the
string representation of the two images. An input image is represented
by a feature vector whose components are the distance values between
its parts (sub-images) and a set of prototypes. The algorithm is highly
scalable and computes these values in parallel. It is implemented on a
massively parallel graphics processing unit (GPU) with several thou-
sands of cores which yields a three order of magnitude reduction in time
for processing the images. Given a corpus of input images the algorithm
produces labeled cases that can be used by any supervised or unsuper-
vised learning algorithm to learn image classification or image clustering.
A main advantage is the lack of need for any image processing or image
analysis; the user only once defines image-features through a simple basic
process of choosing a few small images that serve as prototypes. Results
for several image classification problems are presented.

1 Introduction

Image classification research aims at finding representations of images that can
be automatically used to categorize images into a finite set of classes. Typically,
algorithms that classify images require some form of pre-processing of an image
prior to classification. This process may involve extracting relevant features and
segmenting images into sub-components based on some prior knowledge about
their context [1,2]. In [3] we introduced a new distance function, called Universal
Image Distance (UID), for measuring the distance between two images. The UID
first transforms each of the two images into a string of characters from a finite
alphabet and then uses the string distance of [4] to give the distance value
between the images. According to [4] the distance between two strings x and y
is a normalized difference between the complexity of the concatenation xy of the
strings and the minimal complexity of each of x and y. By complexity of a string
x we mean the Lempel-Ziv complexity [5]. In [6] we presented a serial algorithm
to convert images into feature vectors where the ith dimension is a feature that
measures the UID distance between the image and the ith feature category. One
of the advantages of the UID is that it can compare the distance between two
c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 61–71, 2015.
DOI: 10.1007/978-3-319-24465-5 6
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images of different sizes and thus the prototypes which are representative of the
different feature categories may be relatively small. For instance, a prototype of
airplane category can be a small image of an airplane over a simple background
such as blue sky.

In this paper we introduce a parallel distributed algorithm which is based on
the serial algorithm of [6]. Compared to [6] the current version of the algorithm
offers a very large acceleration in processing speed which allows us to test the
algorithm on more challenging image classification tasks. On a standard graph-
ics processing unit (GPU) it improves the execution speeds relative to [6] by
more than three orders of magnitude. The algorithm converts an input image
into a labeled case and doing this for the corpus of images, each labeled by its
class, yields a data set that can be used to train any ‘off-the-shelf’ supervised
or unsupervised learning algorithm. After describing our method in details we
report on the speed and accuracy that are achieved by this method.

It is noteworthy that our process for converting an image into a finite dimen-
sional feature vector is very straightforward and does not involve any domain
knowledge or image analysis expertise. Compared to other image classification
algorithms that extract features based on sophisticated mathematical analysis,
for instance, analyzing the texture, or checking for special properties of an image,
our approach is very basic and universal. It is based on the complexity of the
‘raw’ string-representation of an image. Our approach is to extract features auto-
matically just by computing distances from a set of prototypes images that are
selected once at the first stage.

The algorithm that we present here is designed with the main aim of scalable
distributed computations. Building on recent ideas [7], we designed it to take
advantage of relatively cheap and massively-parallel processors that are ubiqui-
tous in today’s technology. Our method extracts image features that are unbiased
in the sense that they do not employ any heuristics in contrast to other com-
mon image-processing techniques [1,2]. The features that we extract are based
on information implicit in the image and obtained via a complexity-based UID
distance which is an information-theoretic measure.

2 Distance

The UID distance function [3] is based on the LZ- complexity of a string. The
definition of this complexity follows [4,5]: let S, Q and R be strings of characters
that are defined over the alphabet A. Denote by l(S) the length of S, and S(i)
denotes the ith element of S. We denote by S(i, j) the substring of S which
consists of characters of S between position i and j (inclusive). An extension
R = SQ of S is reproducible from S (denoted as S → S) if there exists an
integer p ≤ l(S) such that Q(k) = R(p+k−1) for k = 1, . . . , l(Q). For example,
aacgt → aacgtcgtcg with p = 3 and aacgt → aacgtac with p = 2. R is obtained
from S (the seed) by first copying all of S and then copying in a sequential
manner l(Q) elements starting at the pth location of S in order to obtain the Q
part of R.
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A string S is producible from its prefix S(1, j) (denoted S(1, j) ⇒ S), if
S(1, j) → S(1, l(S) − 1). For example, aacgt ⇒ aacgtac and aacgt ⇒ aacgtacc
both with pointers p = 2. The production adds an extra ‘different’ character at
the end of the copying process which is not permitted in a reproduction.

Any string S can be built using a production process where at its ith step we
have the production S(1, hi−1) ⇒ S(1, hi) where hi is the location of a character
at the ith step. (Note that S(1, 0) ⇒ S(1, 1)). An m-step production process of S
results in parsing of S in which H(S) = S(1, h1)·S(h1+1, h2) · · ·S(hm−1+1, hm)
is called the history of S and Hi(S) = S(hi−1+1, hi) is called the ith component
of H(S). For example for S = aacgtacc we have H(S) = a · ac · g · t · acc as the
history of S. If S(1, hi) is not reproducible from S(1, hi−1) then the component
Hi(S) is called exhaustive meaning that the copying process cannot be continued
and the component should be halted with a single character innovation. A history
is called exhaustive if each of its components is exhaustive. Every string S has a
unique exhaustive history [5]. Let us denote by cH(S) the number of components
in a history of S. The LZ complexity of S is c(S) = min {cH(S)} where the
minimum is over all histories of S. It can be shown that c(S) = cE(S) where
cE(S) is the number of components in the exhaustive history of S.

A distance for strings based on the LZ-complexity was introduced in [4] and
is defined as follows: given two strings X and Y of any finite alphabet, denote
by XY their concatenation then define

d(X,Y ) := max {c(XY ) − c(X), c(Y X) − c(Y )}
(see several normalized versions of d in [4]). In [3,6] we have found that the
following normalized distance

d(X,Y ) :=
c(XY ) − min {c(X), c(Y )}

max {c(X), c(Y )} (1)

is useful for image classification.
In [7] we introduced a parallel distributed processing algorithm (LZMP) for

computing the complexity c(X) of a string X. Let us denote by dp(X,Y ) the
distance between X and Y where the complexity c is computed by the LZMP
algorithm. Thus (1) is now represented by its parallel counterpart

dp(X,Y, a, b) :=
LZMP (XY ) − min {a, b}

max {a, b} (2)

where a, b are the LZ-complexity values of the string X, Y , respectively, and for
efficiency they are pre-computed as seen for instance in Procedure DMat, step
2(IV).

3 The Algorithm

We describe the parallel algorithm for image feature extraction, starting with a
listing of several procedures followed by the main part which is split into several



64 A. Belousov and J. Ratsaby

Procedure LZMP. computes LZ complexity of a string (parallel processing
over all symbols of string)
1. Input: string S = {S[i]}ni=1

2. Initialize:
I. H history buffer

II. m := 0, length of history buffer
III. d := 0 number of components in exhaustive history
IV. SM shared memory variable common to all threads
V. Q number of computing threads

VI. {Tq}Qq=1 , Tq is a single computing thread
3. Launch threads Tq , 1 ≤ q ≤ Q, in parallel, each executes the code below

I. while(m < n)
A. SM := 0
B. for(l = 0 to �m/Q�)

i. initialize variable j(q) = q + l · Q
ii. if(j(q) < m)

a. initialize variable ij(q) := 0

b. initialize variable kj(q) := j(q)

c. initialize variable hj(q)
:= m − j(q)

d. while(H[kj(q) ] = S[m + ij(q) ])
1. ij(q) := ij(q) + 1
2. kj(q) := kj(q) + 1
3. hj(q)

:= hj(q) − 1

4. if(hj(q) = 0 or m + ij(q) = n)
I. break;

5. end if;
e. end while;
f. if(hj(q) = 0 and m + ij(q) < n)

1. initialize zj(q) := m

2. while(S[zj(q) ] = S[m + ij(q) ])
I. zj(q) := zj(q) + 1

II. ij(q) := ij(q) + 1

III. if(m + ij(q) = n)
A. break;

IV. end if;
3. end while;

g. end if;
h. if (ij(q) > SM)

1. SM := ij(q) , // winner thread overrides
i. end if;

iii. end if;
C. end for;
D. synchronize all threads Tq , 1 ≤ q ≤ Q
E. if(q = 1)

i. H := H + substring(S[m], S[m + SM + 1])
ii. d := d + 1
iii. m := m + SM + 1

F. end if;
G. synchronize all threads Tq , 1 ≤ q ≤ Q

II. end while;
4. Output: LZMP (S) = d, the LZ-complexity of string S
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sub-algorithms. Procedure LZMP computes the LZ-complexity of a given string.
It runs in parallel over the symbols that comprise the string. The procedure
appears in [7] and we enclose it here for completeness. Procedure VLZMP com-
putes the LZ-complexity of a set of input strings in parallel. Procedure DMat
computes the UID distance of every pair of strings from two given input lists, in
parallel. The variable ip,q denotes an index variable of the computing block Bp,q

(each block has its own local memory and set of variables). The main algorithm
is split into sub-algorithms (as done in [6]) which are numbered from 2 to 4 and
the letter P denotes that it is a parallel computing algorithm. Algorithm 2P
selects the prototype images (its serial version is Algorithms 1 and 2 of [6]).

Algorithm 2P. Prototypes selection
1. Input: M image feature categories, and a corpus CN of N unlabeled colored (RGB)

images {Ij}N
j=1.

2. for (i := 1 to M) do
I. Based on any of the images Ij in CN , let the user select Li prototype images{

P
(i)
k

}Li

k=1
and set them as feature category i. Each prototype is contained by

some image, P
(i)
k ⊂ Ij , and the size of P

(i)
k can vary, in particular it can be

much smaller than the size of the images Ij , 1 ≤ j ≤ N .
II. Transform each of the images of feature category i into grayscale. Each pixel

is now a single numeric value in the range of 0 to 255. We refer to this set of
values as the alphabet and denote it by A.

III. Scan each of the grayscale images from top left to bottom right and form a
string of symbols from A. Denote the string of grayscale image I as X(I).

3. end for;
4. Enumerate all the prototypes into a single unlabeled set {Pk}L

k=1, where L =∑M
i=1 Li.

5. Vector of strings that corresponds to the set of all prototypes be, v =
[
X(Pk)

]L
k=1

.

6. Calculate the distance matrix H = DMat(v, v)
7. Run hierarchical clustering on H and obtain the associated dendrogram (note: H

does not contain any ’labeled’ information about feature-categories, as it is based
on the unlabeled set).

8. If there are M clusters with the ith cluster consisting of the prototypes
{
P

(i)
k

}Li

k=1
then terminate and go to step 10.

9. Else go to step 2.

10. Output: the set of labeled prototypes PL :=

{{
P

(i)
k

}Li

k=1

}M

i=1

where L is the

number of prototypes.

Algorithm 3P computes the set of cases (feature vectors) for images in
the input corpus. The algorithm utilizes a number of computing blocks which
begin to run in parallel in step 12. Steps 6 to 11 which run in serial are responsible
for converting the input images into strings of symbols.
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Procedure VLZMP. computes a vector of LZ complexities for multiple input
strings in parallel
1. Input: vector v := {v[i]}k

i=1 = [S1, S2, S3, . . . , Sk] where Si is a string
2. Initialize:

I. u = {u[i]}k
i=1

II. n number of parallel computing blocks
III. {Bq}n

q=1 , Bq is block of multiple computing cores (threads)
3. Launch blocks Bq , 1 ≤ q ≤ n, in parallel, each executes the code below

I. for(l = 0 to �k/n�)
A. initialize index vector i = [i1, . . . , in] where iq = q + l · n
B. if (iq ≤ k)

i. u[iq] = LZMP (v[iq])
C. end if;

II. end for;
4. Output: V LZMP (v) = u

Procedure DMat. computes dp distance for all pairs of input strings in parallel
1. Input:

I. v := {v[i]}m
i=1 = [S1, S2, ..., Sm], where Si is a string

II. u := {u[j]}n
i=1 = [S′

1, S
′
2, ..., S

′
n], where S′

j is a string
2. Initialize:

I. D matrix of m×n elements, D := {D[i, j]}m,n
i=1,j=1 =

⎛
⎜⎜⎜⎜⎝

d11 d12 d13 , .., d1n
d21 d22 d23 , .., d2n
d31 d32 d33 , .., d3n
, .., , .., , .., , .., , ..,
dm1 dm2 dm3 , .., dmn

⎞
⎟⎟⎟⎟⎠

II. M · N number of parallel computing blocks
III. {Bp,q}M,N

p=1,q=1 , Bp,q is a block of multiple computing cores (threads)
IV. a := {a[i]}m

i=1 = V LZMP (v), b := {b[i]}n
i=1 = V LZMP (u), LZ-complexity

vectors
3. Launch blocks Bp,q, 1 ≤ p < M , 1 ≤ q < N , in parallel, each executes the code

below
I. for (x = 0 to �n/N�)

A. initialize index ip,q = q + x · N
B. for (y = 0 to �m/M�)

i. initialize index jp,q = p + y · M
a. if (ip,q ≤ m and jp,q ≤ n)

1. D [ip,q, jp,q] = dp (v [ip,q] , u [jp,q] , a [ip,q] , b [jp,q])
b. end if;

C. end for;
II. end for;

4. Output: DMat(v, u) = D
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Algorithm 3P. produces a set of cases from input images (in parallel)

1. Input set P :=

{{
P

(i)
k

}Li

k=1

}M

i=1

of labeled prototype images, where P
(i)
k is kth

prototype of feature category i (obtained from Algorithm 2P).
2. Let L := |P| be the total number of prototypes
3. Input the set of all images I := {Il}N

l=1 to be represented as cases of feature vectors
4. Q is number of parallel computing blocks
5. {Bq}Q

q=1 , Bq is a block of multiple computing cores (threads)
6. Let W be a rectangle of size equal to the maximum prototype size
7. for (i := 1 to N)

I. Scan a window W across Ii from top-left to bottom-right in a non-overlapping

way, and let the sequence of obtained sub-images of I be denoted by
{
I
(i)
j

}mi

j=1

(mi is the number of windows W inside Ii).
II. for (j := 1 to mi)

A. Transform I
(i)
j into grayscale. Each pixel is represented by a single numeric

value in the range of 0 to 255. Denote by A the alphabet of these values
(same as A of Algorithm 2P).

B. Scan grayscale of I
(i)
j from top left to bottom right to form a string of

symbols from A.
C. Denote the string by Xi,j

III. end for;
IV. vi = [Xi,1, . . . , Xi,mi ]

8. end for;
9. for (l := 1 to M)

I. for (k := 1 to Ll)

A. Transform P
(l)
k into grayscale. Each pixel is represented by a single numeric

value in the range of 0 to 255. Denote by A the alphabet of these values
(same as A of Algorithm 2P).

B. Scan grayscale image of P
(l)
k from top left to bottom right to form a string

of symbols from A
C. Denote the string by Yl,k

II. end for;
10. end for;
11. u := [Y1,1, Y1,2, . . . , Y1,L1 . . . , YM,1, . . . YM,LM ]

Algorithm 4 is identical to that of [6] and we present it for completeness. It
uses the training cases that are produced in Algorithm 3P and uses any off-the-
shelf supervised learning algorithm to produce a classifier.

4 Results

The following hardware was used: a 2.8 Ghz AMD Phenom c©II X6 1055T
Processor with number of cores n = 6 and a Tesla K20C board with a sin-
gle GK110 GPU from nVIDIA. This GPU is based on the Keppler architecture
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Algorithm 3P. continued...

12. Launch blocks Bq, 1 ≤ q < Q, in parallel, each executes the code below
1. for (x = 0 to �N/Q�)

I. initialize index vector i = [i1, . . . , iQ] where iq = q + x · Q
II. if (iq ≤ N)

A. Dq = DMat
(
viq , u

)
i. for (j := 1 to miq ) do

a. for (l := 1 to M) do
1. temp := 0
2. for (k := 1 to Ll) do

I. temp := temp + (Dq[j, k])2

3. end for;
b. temp = (1/Ll) · temp

c. r
(q)
l :=

√
temp

d. end for;
e. Let l∗q(j) := argmin1≤l≤Mr

(q)
l , this is the decided feature category

for sub-image I
(iq)
j

f. Increment the count, c
(q)

l∗q (j)
:= c

(q)

l∗q (j)
+ 1

ii. end for;

B. Normalize the counts, V
(q)
l :=

c
(q)
l

∑M
z=1 c

(q)
z

, 1 ≤ l ≤ M

C. V (q) =
[
V

(q)
1 , . . . V

(q)
M

]
as the feature-vector (case) representation for

image Iiq
D. W [iq] = V (q)

2. end for;
13. Output: the array W of cases corresponding to the set I of input images

(with compute capabilities of 3.5). The CUDA is release 6.0 and the operating
system is Ubuntu Linux 2.6.38-11-generic.

We tested the algorithm on several two-category image classification problem
obtained from the CALTECH-101 corpus [1]. Due to the lack of space, we present
one such problem which has as categories, airplane and ketch (yacht). We chose
10 prototypes of each category simply by collecting small images of airplanes and
boats. The prototypes of airplane are of size 150 × 70 pixels and the prototypes
of ketch are of size 150× 130. Figure 1 shows a few examples of such prototypes.

The corpus of input images consist of 74 images of airplanes of size 420×200
and 100 images of yachts of size 300 × 300. It takes 345 seconds for Algorithm
3P to produce the 174 cases starting from the image corpus. Figure 2 displays
two examples of input images, one from category airplane and one from ketch
and their corresponding divisions into sub-images of size 150 × 150 (obtained in
Algorithm 3P, step 7). Note that the algorithm permits the size of prototypes to
differ and the size (or number) of sub-images to differ from one feature category
to another. We ran four learning algorithms, multi-layer perceptrons, decision
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Algorithm 4. Image classification learning
1. Input: (1) a target class variable T taking values in a finite set T of class categories,

(2) a set DT of labeled cases which is based on the M -dimensional cases in array D
obtained from Algorithm 3P and labeled with target values in T (3) any supervised
learning algorithm L

2. Partition DT using n-fold cross validation into Training and Testing sets of cases
3. Train and test algorithm L and produce a classifier C which maps the feature space

[0, 1]M into T
4. Define Image classifier as follows: given any image I the classification is F (I) :=

C(v(I)), where v(I) is the M -dimensional feature vector of I
5. Output: classifier F

Fig. 1. Three prototypes from category airplane

Fig. 2. Input images from category airplane and ketch and their respective sub-images
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trees J48, naive-Bayes and lazy IB1, on a ten-fold cross validation using the 174
input images. Table 1 presents the accuracy results versus the baseline algorithm
(rules.ZeroR) which classifies based on the prior class probability. The configura-
tion parameter values of the learning algorithms used in WEKA [8] are displayed
under the accuracy result. As can be seen, the J48 decision tree learner achieves
the highest accuracy of 96.54% (relative to the baseline accuracy of 57.52%).

Table 1. Classification result for airplane v.s. ketch problem

Next, we considered a more challenging problem of recognizing different
image textures. We obtained the 1000 images of the Texture Database [2] which
has 25 categories of various types of real textures, for instance, glass, water,
wood, with 40 images each of size 640 × 480 per category. We chose as fea-
ture categories the categories themselves and selected five small prototypes of
size 150 × 150 from each one without using Algorithm 2P (just picking parts of
images in a random way to be prototypes). It takes about 25 h for Algorithm 3P
to produce the 1000 cases starting from the image corpus. We ran the following
classification learning algorithms: lazy IB1, decision trees J48, multi-layer per-
ceptrons, naive Bayes, random forest. Ten fold cross validation accuracy results
are displayed in Table 2 (parameter settings are displayed under the accuracy
results). As shown, the best obtained accuracy result is 70.73% which is achieved
by the random forest algorithm; this is 17.6 times better than the baseline ZeroR
classification rule.

Table 2. Classification result for the texture problem

Considering how little effort and no-expertise is needed in our approach to
image feature extraction, we believe that the results are impressive and can serve
well in settings where very little domain knowledge is available, or as a starting
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point from which additional analysis and specialized feature extraction can be
made.

5 Conclusions

In this paper we introduce a new parallel processing algorithm for image feature
extraction. Given an input corpus of raw RGB images the algorithm computes
feature vectors (cases) that represent the images with their associated classifi-
cation target labels. Using these cases, any standard supervised or unsupervised
learning algorithm can learn to classify or cluster the images in the database. A
main advantage in our approach is the lack of need for any kind of image or data
analysis. Aside of picking once at the start a few small image prototypes, the
procedure is automatic and applies to any set of images. It can therefore be very
useful in settings with little domain knowledge or as a starting point for a more
specialized image data analysis. Our experiments indicate that the algorithm
yields relatively high accuracies on image texture classification problems.

Acknowledgement. We acknowledge the support of the nVIDIA corporation for
their donation of GPU hardware.
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Abstract. An often used approach for detecting and adapting to con-
cept drift when doing classification is to treat the data as i.i.d. and use
changes in classification accuracy as an indication of concept drift. In this
paper, we take a different perspective and propose a framework, based
on probabilistic graphical models, that explicitly represents concept drift
using latent variables. To ensure efficient inference and learning, we resort
to a variational Bayes inference scheme. As a proof of concept, we demon-
strate and analyze the proposed framework using synthetic data sets as
well as a real financial data set from a Spanish bank.

1 Introduction

Classification, which is the task of predicting the class, Y , of an object based on
a set of attributes, X, describing that object, has been studied extensively in the
machine learning community (see, e.g., [1]). A special instance of this general
task is the classification of objects in a streaming context, which amounts to
observing objects at different points in time t = t1, t2, . . ., and at each time-point
t classifying the object based on the information collected up to and including
time t,

⋃
j:tj≤t xtj .

As pointed out in, e.g., [2], doing classification in the context of data streams
raises several issues. Among the challenges is that data in a streaming context
should not be assumed to be i.i.d. First of all, the objects in the stream may
not be independent, and, secondly, concept drift [3–5], where the underlying
distribution generating the data changes over time, should be anticipated. The
main contribution of this paper is a principled approach based on probabilistic
graphical models [6] for modeling concept drift using latent (i.e., unobserved)

H. Borchani, A.M. Mart́ınez, and A.R. Masegosa—These authors are considered as
first authors and contributed equally to this work.

c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 72–83, 2015.
DOI: 10.1007/978-3-319-24465-5 7



Modeling Concept Drift Using Probabilistic Graphical Models 73

variables. This should be contrasted to what is currently the most commonly
used technique to accommodate concept drift, namely to learn a classifier as if
the data was i.i.d., monitor classification accuracy, and then restart the learning
process as soon as accuracy drops significantly (see, e.g., [4]).

We will exemplify the use of our modeling framework by analyzing the eco-
nomic status of the customers of a Spanish bank over the period from 2007 to
2014. To keep the analysis as simple as possible, we use the Näıve Bayes classi-
fier [7] as our base model, even if other classifiers with better dynamic properties
(e.g., [8]) could also have been employed. The analysis is thus a proof of concept
for the proposed modelling strategy, where we focus on the model’s ability to
detect and represent concept drift instead of its predictive performance. A related
Bayesian approach to concept drift is studied in [9], where focus is on abrupt
concept drift with independent drift regimes. This type of concept drift does,
however, not fit with the financial domain considered in this paper, where we
have a fixed customer base that exhibits a more gradual drift.

Classification in data streams also raises some computational problems [2], as
data may arrive with high velocity and is unbounded in size (therefore requiring
that old observations are “forgotten” to avoid running out of computer mem-
ory). To deal with this issue, our model analysis builds on the AMIDST toolbox1.
This toolbox provides an efficient implementation of approximate inference and
learning methods for streaming data by utilizing the Bayesian network modelling
framework [6] complemented with variational Bayes inference and learning pro-
cedures [10]. Furthermore, the toolbox interfaces to MOA [11], thereby enabling
us to directly draw on existing preprocessing and visualization functionality.

The remainder of this paper is organized as follows: In Sect. 2 we describe the
real-life data set from the Spanish bank in detail, and discuss its most impor-
tant dynamic features. Section 3 introduces our approach for explicitly modeling
concept drift using latent variables, and in Sect. 4 we briefly sketch the inference
machinery employed. In Sect. 5 we discuss the results obtained from synthetic
data as well as the financial data set, and we conclude in Sect. 6.

2 The Financial Data Set

2.1 Description of the Data Set

The data set, which was provided by Banco de Crédito Cooperativo (BCC), con-
tains monthly aggregated information for a set of clients of BCC for the period
from April 2007 to March 2014. Only “active” clients are considered, meaning
that we restrict our attention to individuals between 18 and 65 years of age,
who have at least one automatic bill payment or direct debit in the bank. To
make the data set as homogeneous as possible, we only retained clients residing
in the Almeŕıa region (a largely agricultural area in the south-east of Spain),
and excluded BCC employees, since they have special conditions. The resulting
1 AMIDST is an open source toolbox available at http://amidst.github.io/toolbox/

under the Apache Software License.

http://amidst.github.io/toolbox/
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number of clients is close to 50 000. We note that the number of clients who
are active varies from month to month: clients with missing values for any of
the variables for a given month are removed from the data set for that partic-
ular month (this amounts to roughly 25% of the clients). These missing values
mainly occur in relation to the income and expense variables, and represent an
absence of movements for the account in that period. Consequently, the cus-
tomer population may vary across months. These clients are removed to support
the subsequent analysis, and not because of limitations of the inference/learning
engine.

We extracted 11 quantitative attributes, each of which encodes monthly
aggregated information for each of the clients. These attributes include, among
others, the income, expenses and account balance, the client’s total credit
amount in all Spanish financial institutions, outstanding payments in mort-
gages, credit cards, and other personal loans. Each client has an associated
class variable, which indicates if that particular client will default during the
following 12 months. Figure 1(a) shows how the fraction of clients who default
increases at the beginning of the period, then decreases for a period of almost
two years. Next, the fraction increases again, before it eventually stabilizes; the
semester/trimester fluctuations are (partly) a consequence of the changes in the
customer base over the period, and will be further discussed in Sect. 5. We note
here that the values in this and in the following figures have been linearly scaled
(e.g., we do not report zt for a particular variable z but rather αz + βzzt where
αz and βz are not disclosed in the paper). The transformation is performed to
withhold business-critical information, while at the same time convey meaningful
information about the data.

2.2 Financial Pre-analysis/context

Figure 1(b–f) shows the evolution of 5 of the 11 variables in the domain, namely
the total credit amount, income, expenses, account balance, and credit cards. As
mentioned above, the values on the y-axis have also been linearly transformed
here. The plots reveal that both seasonal and global trends appear to be present
in the data set.

The seasonal trend is particularly prominent for the credit reports (Fig. 1(b)),
where the values systematically drop after a period, then go up again. The period
between drops is six months for the first half of the data set and three months in
the second half. Experts at BCC identified this as the effect of fees being charged
to accounts of clients that are normally inactive.

It is also possible to observe a global ascending or descending trend, which
for this set of variables seems to be on-going until the third or fourth trimester
of 2012. Other variables, like defaulted payments on credit cards (Fig. 1(f)), also
display a global trend, but do not follow the same pattern. This variable seems
to drop around the third semester of 2013, something experts at BCC attribute
to a sale of debt portfolios.
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(a) Evolution of defaulting clients (b) Total credit amount
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Fig. 1. Evolution of (a) defaulting clients and (b–f) 5 of the 11 variables in the financial
data set.

2.3 Main Challenges

There are two main factors that should be highlighted and which make concept
drift detection in the financial data set more challenging than usual. Firstly,
the class variable is highly imbalanced and, as shown in Fig. 1(a), the number of
defaulting clients varies across time. Hence, monitoring classification accuracy as
a way of detecting concept drift can be misleading. Secondly, the data samples
arrive in batches of different sizes, i.e., aggregated information for the active
customers in a given month. Monitoring concept drift within the samples of one
of these batches will not be meaningful as concept drift can only happen from
one month to another.

In order to successfully monitor concept drift in the financial data, both of
these factors should be addressed.
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3 Modeling Concept Drift Using Latent Variables

In non-stationary domains, the distribution governing the data may change over
time. This effect is known as concept drift [3–5]. In a classification model, where
one wants to classify an instance described by its features x = (x1, . . . , xn)
wrt. a class variable y, Gama et al. [5, Eq.(2)] formally define concept drift as
the existence of an instance x s.t. Pt0(x, y) �= Pt1(x, y), where Pt(x, y) denotes
the joint distribution over x and y at time t. Concept drift situations can be
further classified as either real concept drift, when Pt(y|x) changes with time,
or virtual concept drift, when Pt(x) drifts while Pt(y|x) is constant in t. In this
paper the discussions relate to the general notion of concept drift as captured
in the expression above, and we do therefore not distinguish between real and
virtual concept drift. Concept drift may also appear in many forms, with changes
happening abruptly, gradually, incrementally, or with reoccurring behaviour [5].

In what follows we shall consider a new modeling technique for capturing
concept drift. The modeling technique will address the general situation, where
we, at each time point t, have a collection (xt

i, y
t
i), for i = 1 : Nt, of instances

(a.k.a. a window)2. We shall assume that concept drift only happens across time
steps and not within a collection of instances captured at the same time-point,
i.e., the model can only drift every Nt samples.

In a Bayesian paradigm, where the probability distributions are parameter-
ized using latent variables, a simple Bayesian network-based generative model
for classification is shown in Fig. 2(a) using plate notation. In this model the
parameters are shared for all points in time t and across all instances, and the
model does therefore not provide an explicit representation of concept drift. In
Fig. 2(b) the model is extended to support a simple form of concept drift by
duplicating the parameters over time, and thereby allowing them to change.
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(a) No concept drift (b) Concept drift (c) Modeling concept drift with a latent variable

Fig. 2. Modeling concept drift through parameter duplication. In all figures, α(·) and
β(·) are hyper-parameters for the distributions over the parameters θx and θy.

Alternatively, concept drift can be modeled explicitly using latent variables.
For simplicity, assume that only the probability distribution P (x|y) drifts. We
2 For now, we shall assume that the total number of instances Nt does not vary with

time t; this assumption is lifted in Sect. 5 when we consider the financial data set.
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can model this using a latent variable Ht, which contributes to the conditional
distribution for Xi as illustrated in Fig. 2(c). The semantics of the Ht-variable
is that it determines the “situation” at time t. For example, if the j’th feature
Xt

i,j follows a conditional normal distribution, we may use Ht to define a time-
dependent component of the mean vector:

Xt
i,j |{Ht = ht, Y t

i = y} ∼ N (δj,y + γj,yh
t, σ2

j,y),

where δj,y, γj,y, and σ2
j,y are elements of θx.

The a priori expected level of concept drift can be expressed through the prior
distribution for Ht, i.e., using the hyper-parameters αh and βh. All observations
inside one point in time share the same instance of the Ht-variable, thus concept
drift is modelled as a population-wide effect, as desired. Note also that depending
on the nature of the variable Ht, this model allows us to represent both gradual
(Ht continuous) and abrupt (Ht discrete) concept drift [5]. Furthermore, the
model can easily be extended to model multiple concepts drifts by introducing
multiple latent variables, each representing a different drift regime.

Conditioning on the model parameters the concept drift variables are
assumed independent across time with no ‘memory effect’. If we, on the other
hand, expect a gradual form of concept drift, we may wish to capture the drift
across time. The model in Fig. 3 reflects this scenario through the dependence
relations among the latent Ht variables.

The latent variable models considered so far provide seamless representations
of both gradual and abrupt concept drift relating to continuous features. Similar
model types are also applicable when modeling abrupt concept drift for discrete
features, but when dealing with gradual concept drift we need to move outside
the standard class of conjugate Conditional Linear Gaussian (CLG) models.
We shall not consider these types of models further in this paper, however,
will instead focus on the case where both the feature variables and the latent
variable Ht are continuous, using CLG distributions, and where Y t

i is discrete
with a Dirichlet distribution over its parameters.

We would like to reemphasize that the main element of the proposed frame-
work is the use of latent variables for modeling concept drift. In the models
presented in this section, these concept drift variables are used to account for
concept drift relative to a simple Näıve Bayes classifier. These types of classifiers
could in principle be replaced by other types of more expressive probabilistic
classifiers, such as dynamic Näıve Bayes models [12] or general Bayesian net-
works. However, since the main goal of the present paper is to provide a proof of
concept for the proposed modeling framework, we will in the remainder of the
paper rely on these simpler models.

4 Bayesian Inference with Streaming Data

In the Bayesian paradigm, model learning can be considered an inference process.
Given the data seen so far, denoted by Dt, the learning task reduces to comput-
ing the posterior distribution over the quantities of interest, i.e., P (θx, θy,Ht|Dt)
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Fig. 3. Concept drift is preserved over time.

for the models described in Sect. 3. This approach can also naturally be applied
when dealing with streaming data. A new data sample (xt+1, yt+1) in the
stream is included by simply updating the above posterior using Bayes’ rule,
P (θx, θy,H

t+1|Dt+1).
Inference in Bayesian networks is, however, NP-hard in general [13], and

given the size of the data sets we are currently considering, exact inference in
the underlying models is not feasible. For the models considered in this paper, we
will therefore rely on the variational Bayes [14] framework for doing approximate
inference and learning; a general introduction to the variational Bayes procedure
can be found in [10].

In its general form, one considers the random variables (X,Z), where X = x
is observed and we want to approximate f(z|x). We call the approximation
q (z), where we for simplicity of notation suppress that q (z) depends on the
observation x. We measure the quality of the approximation by the KL distance
from q to f . One popular strategy for minimizing this distance is to assume that
q (z) factorizes into smaller factors, like for instance its separate variables, q (z) =∏

i qi (zi). This approach is commonly known as the mean-field approximation.
The calculations can be structured efficiently in conjugate exponential mod-

els using a message passing scheme [15]. In this scheme, messages are sent along
the edges in the graph based on the (expected) natural parameters of the dis-
tributions in the model. The message passing scheme outlined above has been
implemented for the model classes presented in Sect. 3, and forms the basis for
the experimental results presented in the following section.

5 Results

The experimental study is divided into two parts. First, we analyse two syn-
thetic data sets, widely employed as benchmarks in the concept drift literature.
Next, we present the results from analysing the financial data set. All the exper-
iments have been performed using MOA [11], where the developed AMIDST
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model (in Fig. 3) has been integrated as a new Bayesian streaming classifier,
named bayes.amidstModels. The Java code to reproduce the experiments can be
downloaded from http://amidst.github.io/toolbox/.

5.1 Synthetic Data Sets

We first analyse the SEA data set [16] containing 60 000 samples, with 3 attributes
(x1, x2, x3) and 2 classes (y = 0 and y = 1). The attributes are numerical and
uniformly distributed between 0 and 10. Only two of the attributes are relevant
for the class label, y, which is defined as yt = 1 if xt

1 + xt
2 ≤ εt and yt = 0

otherwise. Concept drift has been created by changing the threshold εt as a
function of t. The data set covers four “phases”, each with a duration of 15 000
samples, and with different εt (9, 8, 7, and 9.5 for the four phases, respectively).
Figure 4 (left) shows the results of this analysis for batches of size Nt equal to
1000. The plot illustrates the progress of the expected value of the latent variable
(denoted Ht) as well as the prequential accuracies computed using a sliding
windows of size 1000 for a simple Näıve Bayes model (NB) and the adaptive
Hoeffding tree model (AHT). As can be observed, the output of our model
(i.e., the expected value of Ht) detects the drift points and clearly identifies the
occurrences of the four different phases in the data, whereas those phases are
less easily detected based on the accuracy results.
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Fig. 4. Left: Results for the SEA data set. Right: Results for the hyperplane data sets

The second data set considered is the rotating hyperplane [17]. This bench-
mark data set is widely used to simulate “gradual” concept drift problems. We
considered three versions of this data set, denoted Hyp1, Hyp2, and Hyp3, each
including 10 000 instances. For each data set, 8 out of 9 attributes are drifting
but with different magnitudes of change (i.e., 0.1, 0.5, and 1 for the three data
sets, respectively), see [17] for details. Figure 4 (right) shows the evolution of the
latent variable Ht for each considered data set using a sliding window of size
1000. Here we see that the different drift magnitudes of the three data sets are
directly reflected in the development trends of the latent variables. For instance,
for the Hyp1 data, the curve of the Ht variable presents a stable behavior which
correctly illustrates the very low change magnitude for this data set, i.e., 0.1.

http://amidst.github.io/toolbox/
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5.2 Financial Data Set

In this section we analyze the financial data described in Sect. 2. Notice that for
this data set the batch sizes, Nt, refer to the number of active customer in a
given month and can vary from one month to another.

Figure 5(left) shows the evolution of the classification accuracy for the NB
model using a latent variable. At first sight, the evolution of the accuracy may
reflect some inherent trend in the data; however, a more careful analysis reveals
that it simply reflects the evolution of defaulters as shown in Fig. 1(a). This is
basically due to the data being imbalanced as pointed out in Sect. 2, and in
such settings the use of classification accuracy for detecting concept drift can be
misleading. As an alternative performance measure, we may consider the area
under the ROC curve as shown in Fig. 5(right). The plot provides a more smooth
behaviour with gradual performance improvements over time.
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Fig. 5. Evolution of the accuracy (left) and the area under the ROC (right) for the
financial data set. For confidentiality reason, the y-axis values have been linearly scaled.

In contrast, in Fig. 6 we plot the evolution of the latent variable Ht over time.
Before discussing how this plot may provide insight into the financial data, recall
first that in this model (cf. Fig. 3) a single scalar value tries to capture the global
trend of 11 variables conditioned on a binary class variable. Moreover, as the vast
majority of the clients in the data set are non-defaulters, the latent variable will
mostly be influenced by this group of customers. With this basis, at least two
observations can now be made about the evolution of the latent variable:

Observation 1: There are regular peaks in the time series. Before 2011, these
peaks occur every June and December (6 months period); after 2011 the peaks
appear every March, June, September, and December (3 months period). Figure 6
thus seems to represent two time series, one containing the values at the peaks
and one containing the remaining observations. The two underlying series evolve
in parallel.

Observation 2: Both underlying series increase rapidly until the second or third
trimester of 2012 (the highest points in the two series are reached in June/July
2012). Afterwards, the series seem to gradually decrease, and this is particularly
evident from the third trimester of 2013.

Our interpretation of these observations relies on the figures presented in
Sect. 2, where the temporal evolution of the monthly average of each variable
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is depicted. To gain some insight into the first observation, we may recall that
clients with missing values for Expenses or Income are discarded when analysing
a particular month. We also previously commented that these clients are assumed
to be less active than the remainder of the population, and they are consequently
not present in the data in the majority of the months; they only appear when
fees are deducted from their accounts every semester/trimester (this amounts to
approximately 20% of the customers). From the variables in Fig. 1 we can see
that these customers have a quite particular profile, which introduces a seasonal
effect in the data set. We believe that this is what the latent variable is also
capturing. Furthermore, we attribute the fact that the two underlying series are
approximately equidistant over time to indicate that they probably represent
groups of clients that are similarly affected by the national economical climate.
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Fig. 6. Evolution of the Ht variable for the financial data set.

Regarding the interpretation of Observation 2, it appears evident that the
expected value of the latent variable moves from the very beginning of the period
until the second/third trimester of 2012 (the peak is in July 2012), before it
remains stable until the second trimester of 2013. Thereafter it moves slightly in
the reverse direction. The movements in the latent variable are used to facilitate
the evolution of the attributes’ distributions, but looking at each variable in
Fig. 1 separately, we cannot pinpoint a direct and simple explanation of the
above behaviour. For example, both Expenses and Income continuously move
until the first/second trimester of 2012, after which they become more stable. On
the other hand, the Account balance has a different trend. Thus, when looking
at each variable in isolation, it is hard to find a common evolution pattern.

Motivated by the fact that the provided data is expected to reflect the socio-
economical status of a significant part of the population in the province of
Almeŕıa, we now relate the global trend of the latent variable to the history of
the financial crisis in Spain during the studied period. In that light, the evolution
of the latent variable in Fig. 6 should tell us that the economic climate gets worse
from the beginning of the period until the second/third trimester of 2012, then
stabilizes until the second trimester of 2013, before it starts recovering slightly.
If this interpretation is correct, we should see a correlation between our latent
variable and relevant economic factors influencing the socio-economical status
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of the population during this period of time. Figure 7(left) shows the unemploy-
ment rate in the province of Almeŕıa, which increases from the beginning of the
period. We notice some peaks associated with the seasonality of the tourism
and agriculture professions, which are two of the main economic drivers of this
region. Taking this seasonality into account, the unemployment rate reaches its
maximum value around the turn of year 2012/2013 before it slowly improves.
Figure 7(right) shows the relationship between the unemployment rate and the
expected value of the latent variable. From the figure we see a close correlation
between these two entities.
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Fig. 7. Economic indicators. Left: Unemployment rate in Almeŕıa. Right: Scatter plot
of the unemployment rate and the expected value of the latent variable (Spearman’s
rank correlation coefficient is 0.85).

6 Conclusions

In this paper we have developed a classification model for data streams that is
compatible with concept drift scenarios. Our approach distinguishes itself from
traditional alternatives by explicitly including the effect of the concept drift
in the model using latent variables. We have shown through analysis of both
synthetic and real-life data that the model is able to capture and handle both
abrupt and gradual concept drift scenarios.

The analysis is a proof of concept for the proposed model class, and the
opportunities for future research are manifold: Firstly, we will consider more
sophisticated base-classifiers that are better suited for dynamic domains (e.g.,
the dynamic Näıve Bayes model), which we expect will improve the classification
accuracy of the model. Next, we will look at extensions of the concept drift
modelling itself, e.g., by using more than one latent variable and thereby being
able to represent concept drift that behave differently for different subsets of the
variables. Finally, as our development is motivated by the financial dataset, we
will look deeper into socio-economical indicators from Spain to understand even
better the mechanisms driving the concept drift in this domain.
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Abstract. In this paper we show that diversity-driven widening, the
parallel exploration of the model space with focus on developing diverse
models, can improve hierarchical agglomerative clustering. Depending on
the selected linkage method, the model that is found through the widened
search achieves a better silhouette coefficient than its sequentially built
counterpart.

1 Introduction

With the rise of multi-processor computer systems and multi-machine clusters,
great efforts have been made to adapt machine learning to the changing par-
adigm of scaling hardware horizontally instead of vertically. Many traditional
learning algorithms have been revised to run in a parallelized environment (eg.
decision trees [18], neural networks [19] and SVMs [5]). These algorithms mostly
focus on making the model building faster, but produce the same models as the
non-parallel algorithms. Another approach that focuses on leveraging parallel
computing resources to improve models generated by a data mining algorithm,
rather than speeding up the computation, has been proposed in [1]. The tech-
nique has already been shown to work well for the set covering problem and
KRIMP [17].

In this paper we describe a widened algorithm for hierarchical agglomerative
clustering [6]. Parallel versions of this algorithm have been described in [14],
however the focus there is again on acceleration rather than improving the model.
Our preliminary results indicate that building multiple, diverse clustering models
in parallel can improve the quality of the clustering for different quality metrics.

2 Widening

The widening technique for algorithms has first been described in [1]. It dis-
cusses an approach that focuses on leveraging parallel computing resources to
improve models generated by a data mining algorithm, rather than speeding up
the computation. Instead of greedily traversing the model space in search of a

c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 84–94, 2015.
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model that is just good enough, widening seeks to explore the space of all pos-
sible models in parallel, focusing on a certain number of best models at a time,
iteratively refining them and selecting the best models again. Formalized, the
standard way of searching the model space can be written as:

m′ = s(r(m)) (1)

where m is the current model and m′ is the next model in the greedy search
step. The function r(·) is the refinement of a model and s(·) the selection of the
best model. The greedy search of the model space is therefore only a sequence of
refinement and selection steps which terminates when a good enough model has
been found. Widening, on the other hand, can be described using the following
formula:

{m′
1, . . . , m

′
k′} = s({r(m1), . . . , r(mk)}). (2)

In a widened algorithm we do not deal with a single model, but with sets of
models. The refinement operation produces multiple refinements from a single
model and the selection filters them in order to return a set of best k′ models. It
can therefore be seen as a beam search through the model space. To avoid the
selection operation choosing very similar models and not converging to a single
solution or multiple very similar solutions, it is beneficial to enforce diversity
within the selected models. Techniques for diversity-driven widening are dis-
cussed in [7]. One of the proposed methods is Diverse Top-k Widening, which
makes use of a fixed diversity threshold θ that governs how similar the selected
models are allowed to be, given a distance function δ.

3 Related Work

Since this paper focuses on widening a clustering algorithm, we focus here on
work related to diversity-focused clustering and refer the reader to [1,7] for
research into the general notion of enforcing diversity in model learning.

An approach that concentrates on diversity in clustering models is described
in [2]. Here multiple diverse k-means clusterings are created in order to let the
user choose the most applicable. Instead of selecting diverse clusterings after
overproduction, the paper proposes a method whereby diversity is generated by
running the k-means algorithm multiple times with different random initializa-
tions and random feature weighting. The large number of clusterings is then
clustered at a meta level to present the user with a reasonable number of diverse
models. The rationale here is that there are different clusterings for different pur-
poses and the user ultimately knows best which one to choose. This, of course,
is only useful for data sets with a low dimensionality.

Another paper that deals with finding better clustering results is [11]. Here
the hierarchical clustering problem is solved using a genetic algorithm that tries
to optimize the L2 norm between an ultrametric distance matrix associated with
the hierarchical classification and the proximity matrix of the dataset.
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4 Widened Hierachical Agglomerative Clustering

In this paper we describe the widening of hierarchical agglomerative clustering.
This bottom-up algorithm starts with every data point being a single cluster
and subsequently merges the two clusters that are closest to each other. Apart
from the distance function used to build the initial distance matrix, there are
several possible linkage criteria for calculating the distance between newly formed
clusters. Commonly used ones are:

UPGMA. The Unweighted Pair Group Method with Arithmetic Mean calculates
the distance between two merged clusters A and B and another cluster C as
the mean of the distance between A and C and between B and C.

Complete linkage. This method defines the distance of two clusters as the
distance between those two data points (one from each cluster) that are
farthest away from one another.

Single linkage. Contrary to complete linkage, here the distance of two clusters
is the distance between those two data points that are closest to each other.

Centroid linkage. In this linkage method the distance between two clusters is
the distance of their respective centroids.

Median linkage. Here the distance between two clusters is the Euclidean dis-
tance between their weighted centroids.

Centroid and median linkage are notable because they do not lead to a
monotone distance measure. The resulting clustering dendrograms can have
inversions because the similarity between two clusters increases through a merge
of one of them with another cluster. Even though this makes the dendrogram
harder to interpret, the linkage criterion is often used because the similarity of
two centroids is easy to understand.

The distances calculated with the above linkage methods are used to deter-
mine the two clusters to be merged in the next step. The algorithm continues
to merge clusters until a predefined number of clusters is reached or until only
one cluster is left. Because choosing the closest clusters to be merged is a local
decision, what can occur is that the algorithm makes a merge that has a nega-
tive influence on future merges, where it may be forced to combine two clusters
that do not fit together very well. Due to the greedy nature of the algorithm,
widening can help to find better solutions by exploring a larger portion of the
model space. While [7] also describes the notion of communication-free widening,
we concentrate on the effect diversity has on the model building and allow the
direct comparison of models in the selection step. Even though finding better
models in the same amount of time is the eventual goal of widening, this paper
does not take speed into account and focuses on creating better models than the
sequential algorithm.

An efficient implementation of the hierarchical agglomerative clustering algo-
rithm with a time complexity of Θ(N2 log N) can be found in [12]. It is based
on priority queues that are used to quickly determine the closest neighbor of
a given cluster. To achieve widening, we can make use of these queues by not
only merging the closest pair, but also the second, third or hundredth closest
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and therefore generating many refinements from a single model. The number of
refined models kr in iteration i can be calculated as follows:

kr,i = k ∗ (N − i). (3)

Here N is the total number of data points to be clustered. In each iteration two
clusters are merged into one, (N − i) therefore denotes the number of clusters
present in iteration i.

5 Achieving Diversity

The diversity of the models is enforced in the selection step, where we select k
models from kr refinements. Our goal is to select the most diverse and at the
same time also best models to achieve both exploration and exploitation. This
multi-objective problem is known as Maximum-Score Diversity Selection [13].

In the following chapters we introduce a distance metric for our models,
which is based on the Robinson Foulds metric. Furthermore we describe how the
quality of our models can be compared with a small extension of the standard
heuristic of hierarchical agglomerative clustering.

5.1 Distance Metric for Hierarchical Clustering Models

To have a notion of (dis-)similarity for our models, we first need to define a
distance metric. Since the clustering process merges clusters in a bottom-up
fashion, the intermediate models are forests, where each tree is either a single
data point or a cluster tree on a subset of all data points. Because the leaves of the
trees in the forests are the original data points, all models have the same leafset.
To calculate a distance between our models, we need a metric that can be applied
to the forests. One such metric, even though originally used for calculating the
distance between phylogenetic trees, is the Robinson Foulds metric [15]. This
metric is based on the number of bipartitions shared by two trees. A bipartition
is a split of the tree at an edge, so that the leaves are divided into two disjoint
sets. Splits at edges that connect a leaf with the rest of the tree are called trivial
bipartitions and are ignored for the calculation of the metric since they are
present in every tree.

When B(T ) denotes the set of nontrivial bipartitions of a tree, the number
of bipartitions found in a tree T1 but not in another tree T2 can be calculated as

|B(T1) − B(T2)|. (4)

Using this the Robinson Foulds distance is defined as:

dRF(T1, T2) =
1
2
(|B(T1) − B(T2)| + |B(T2) − B(T1)|). (5)

In order to apply the distance metric to our forests, we define the set of bipar-
titions for a forest F to be the union of bipartitions of its trees:
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B(F ) =
|F |⋂

l=1

B(Tl). (6)

While the Robinson Foulds metric is originally devised for unrooted trees, these
sets of bipartitions for forests allow us to calculate the distance between our
models as well.

An efficient algorithm for computing the metric on trees has been given in
[4]. As the first step of the algorithm for unrooted trees is to select one of the
leaves as the root node, the fact that the Robinson Foulds distance was meant
for unrooted trees is of no regard for our problem. Day’s algorithm identifies
nontrivial bipartitions by assigning intervals to each inner node of a tree. To
obtain the set of intervals for a number of trees T1, . . . , Tn, we take T1 and
traverse it in a depth first fashion, labeling the leaves according to the order in
which they are visited. This will be our reference labeling for the leaf nodes of all
trees, which means that if leaf node A has label 1 in the reference labeling, it will
have the same label in all of the trees under comparison. The labels are then used
to calculate unique intervals for each inner node. An inner node’s interval is the
tupel of the largest and smallest label of all its descendant leaf nodes. A tree’s
interval set Si is the set of tupels from all its inner nodes. Figure 1 shows two
trees, where the left has been used to create the reference labeling of the leaves.
The Robinson Foulds distance between those trees is 2, since their interval sets
differ in two tupels.

In order to use Day’s algorithm for our models, the leaf labels have to be
assigned across multiple trees in a forest. For one model, its trees are ordered
arbitrarily, then iterated and traversed depth first, labeling all the leaf nodes
according to the order in which they are visited. Since all models have the
same leaf nodes, the labels can be mapped to the nodes of the other forests as
well. After obtaining a labeling for the leaves, the interval set for each tree is
calculated as described above. To compare two forests F1 and F2, we compare
the corresponding interval sets B(F1) and B(F2) by counting the intervals that
occur in one set but not the other. Using this count we can create a kr × kr
distance matrix D for all refined models.

5.2 Selecting Diverse Models

In the next step we need to select k models from the kr refinements, choosing
both good and diverse ones to find an even balance between global exploration
and local exploitation of the model space. In the original algorithm for hierar-
chical agglomerative clustering the next model is the one where the two clusters
that are closest to each other are merged. In the case of multiple models devel-
oped in parallel, we can improve this heuristic by using the aggregated merge
distance as criterion. For each refined model m, the score φm,i in the current
iteration i can be calculated as follows:

φm,i =
i∑

j=1

dm,j (7)
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Fig. 1. Example of two trees and the corresponding intervals used by Day’s algorithm
to compute the Robinson Foulds distance.

where dm,j denotes the distances of the merged clusters in iteration j. The value
dm,j depends on the distance metric used to build the initial distance matrix
and the linkage criterion that is used to calculate the distance between a merged
cluster and all other clusters.

After each model has been assigned an associated score, we need to select
models that are not only good according to our scoring function but also diverse
according to our distance metric. While in [7] a Diverse Top-k approach is
described, we propose another way of selecting diverse trees that does not rely
on a diversity threshold θ. Because the trees get larger with each iteration, the
distance between them also increases. A fixed threshold is therefore not suitable
for this problem. Instead, diversity can be achieved by clustering the models
into k clusters and picking the best model of each cluster for the output of
the selection step (see Fig. 2). Given the distance matrix D, we use k-medoid
clustering [8] to split the set of models into groups and use φm,i to select the best
model in each. The effect the model selection method has on diversity is demon-
strated in Fig. 3. Here 20 models were built in parallel on the seeds dataset from
the UCI repository [10], using k-medoid clustering to enforce diversity. After
200 steps, when 10 clusters were left to be merged, the refinements of the cur-
rent intermediate models were projected into 2D space using multidimensional
scaling [9]. In Fig. 3a the models that are chosen by the k-medoid selector for
the next step are marked in red. Figure 3b shows which models would have been
selected by a top-k selector. It can be seen that top-k focuses on a small area of
the model space while models selected using k-medoid clustering are scattered
across the whole space. The top-k approach also selects duplicates that occur in
our models. The diversity enforcing clustering approach avoids this naturally as
all equal models fall into the same cluster, but only one model is selected from
each cluster.
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Fig. 2. The first step of widened model building using k-medoid with k = 3. Refined
models are created from the initial model, then they are clustered into 3 groups and
from each group the best model is used for creating the next generation of models.

(a) (b)

Fig. 3. Models projected with multidimensional scaling. In (a) the red squares mark
the models selected using the k-medoid approach and in (b) the top-k models (Color
figure online).

6 Evaluating Clustering Results

A commonly used quality measure for clustering results is the silhouette coef-
ficient [16]. It is a number between -1 and 1, where values close to the lower
bound are a sign of very bad clustering and numbers close to 1 mean that the
found clusters are good. For an individual data point o belonging to cluster A
the silhouette is defined as

s(o) =
dist(B, o) − dist(A, o)

max {dist(A, o),dist(B, o)} (8)

where dist(A, o) is the average distance between o and all data points in A, and
dist(B, o) is the distance between o and all data points in the next closest cluster
B. The silhouette coefficient of a clustering result is the average s(o) over all data
points.

The Davies-Bouldin Index (DBI) [3] is another cluster evaluation measure
that can be used to compare the quality of multiple clustering results. Like the
silhouette coefficient it is an internal evaluation scheme, where only features of
the dataset itself are taken into account. The index can be determined with the
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following formula:

DB =
1
N

N∑

i=1

Di (9)

where Di is defined as:

Di = max
j �=i

Si + Sj

dist(Ai, Aj)
, (10)

with Ai being the centroid and Si the scatter within cluster i:

Si =
1
Ti

Ti∑

d=1

||Xd − Ai||p . (11)

Here Ti is the size of the cluster and Xd is a data point in the cluster. The Davies-
Boulding-Index compares the within-cluster scatter to the between-cluster sepa-
ration, represented by the distance between the corresponding centroids. A ratio
close to zero means that the clusters are dense and well separated.

7 Preliminary Results

As our preliminary tests show, the best of multiple, built-in-parallel, diverse
models can have both a better silhouette coefficient and Davies-Bouldin Index
in comparison to the model found by the greedy, sequential algorithm. The
effectiveness depends on the linkage method and the data set used. Tests have
been carried out with the user knowledge modeling data set and the seeds data
set from the UCI Machine Learning Repository. The data sets were chosen due
to their suitability for clustering and their size. The desired number of clusters
to be generated by the algorithms was set to 3 for the seeds data set and to 4
for the user knowledge modeling data set. We used the Euclidean distance as
the distance measure for building the initial distance matrix for the data points
and to calculate the between-cluster separation for the Davies-Bouldin Index.

In our tests clustering the seeds data set with median linkage shows promising
results for the widened version of the algorithm. Figure 4a shows the silhouette
coefficient of the best and worst of 10 widened models and the sequential algo-
rithm’s silhouette coefficient over the iterations of the algorithm. Here we can see
that the widened algorithm generally produces a model with a better silhouette
coefficient than the sequential algorithm.

Notable is the steep drop of the traditional algorithm’s silhouette coefficient
at 5 clusters (iteration 205), clearly visible in Fig. 5a. Here it is forced to make
a bad merge due to preceding greedy behavior. The best widened model also
had a declining silhouette coefficient in previous iterations but has at that point
already recovered with a silhouette coefficient of 0.389. If the data is clustered
into 3 groups, the best widened model has a silhouette coefficient of 0.425. The
sequential algorithm produces a model that has a silhouette coefficient of 0.264.
Similar results can be achieved with centroid clustering. For average, complete
and single linkage the silhouette coefficient could not be improved by widening.
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(a) Seeds data set (b) User Knowledge Modeling data set

Fig. 4. The silhouette coefficient for intermediate models of the sequential algorithm
(black) and the best (green) and worst (red) of the widened models for each iteration
(Color figure online).

(a) Seeds data set (b) User Knowledge Modeling data set

Fig. 5. The silhouette coefficients in the last steps of the sequential algorithm (black)
and widened algorithm (best model: green, worst model: red) (Color figure online).

The Davies-Bouldin Index, however, can be improved from 0.76 to 0.74 when
the UPGMA linkage method is used. The best model obtained through widening
the median linkage algorithm also achieves a lower DBI for 3 clusters. The best
of the 10 widened models has a score of 0.65, the sequential algorithm achieves
a DBI of 1.84.

Similar results can be achieved when clustering the user knowledge modeling
data set with complete linkage hierarchical clustering. Figure 4b depicts the sil-
houette coefficient for the best and worst of 10 widened models and the model
generated by the sequential algorithm for each iteration of the algorithm. For
4 clusters the best widened model has a silhouette coefficient of 0.169, for the
model generated by the sequential algorithm this value is 0.124. An interesting
observation can be made in Fig. 5b, where we see that the greedy algorithm’s
silhouette coefficient increases in iteration 384 but drops very low subsequently.
The best widened model does not exhibit such extreme behavior. There the sil-
houette coefficient changes only slightly before dropping down to around 0.155.
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The Davies-Bouldin Index also shows the improvement that is possible
through widening. Clustering the user knowledge modeling data set with 4
desired clusters the widened algorithm produces a result with a DBI of 1.622
while the sequential algorithm achieves an index of 1.699. It is notable that the
model with the lowest DBI does not also have the highest silhouette coefficient.

Note that the afore-mentioned widened algorithm’s runtime is worse than
the sequential algorithm’s runtime, despite the possible parallelization of the
refinement and selection processes. The reason for this increase in runtime is
that calculating the pair-wise distance of many refined models for the matrix D
is very time consuming, resulting in overhead for the selection step. This paper
focuses on the role diversity plays in the intelligent search of the model space
and performance improvements may be achieved by making the widened algo-
rithm communication-less, avoiding the model-by-model comparisons altogether.
This, however, is a topic of future research and not in the scope of this work.
For an introduction to diverse communication-free widening we refer the reader
to [7], where ideas for avoiding communication between parallel workers are
described.

8 Conclusions and Future Work

In this paper we have shown the application of widening to the hierarchical
agglomerative clustering algorithm. The two main parts of widening are refine-
ment and selection, for both of which we described implementations for hier-
archical clustering. Creating refinements of a model utilizes information that is
already present in the sequential algorithm, namely the priority queues that are
maintained to keep track of the nearest neighbor of each cluster. For the selec-
tion of diverse and good models we described a method that groups models using
k-medoid clustering and subsequently picks the best model from each group. We
visualized how this approach covers the model space better than top-k, which
focuses on a small area only. Our results on two public datasets indicate that
the models obtained through widening can be better than the results of the
sequential algorithm. This is the case for both the Davies-Bouldin Index and the
silhouette coefficient, two widely used clustering evaluation metrics.

Future work includes the evaluation of other diversity facilitating methods
such as p-dispersion-min-sum as well as making the algorithm communication-
free. Removing communication between different branches of refined models
would also increase the runtime performance of the algorithm, as less models
would have to be compared to each other. This paper shows that spending
parallel computing resources on exploring the model space can result in bet-
ter models and widening the hierarchical agglomerative clustering algorithm is
feasible when faster ways of enforcing diversity can be applied.
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Abstract. The maximum margin clustering principle extends support
vector machines to unsupervised scenarios. We present a variant of this
clustering scheme that can be used in the context of interactive cluster-
ing scenarios. In particular, our approach permits the class ratios to be
manually defined by the user during the fitting process. Our framework
can be used at early stages of the data mining process when no or very
little information is given about the true clusters and class ratios. One of
the key contributions is an adapted steepest-descent-mildest-ascent opti-
mization scheme that can be used to fine-tune maximum margin cluster-
ing solutions in an interactive manner. We demonstrate the applicability
of our approach in the context of remote sensing and astronomy with
training sets consisting of hundreds of thousands of patterns.

1 Introduction

The classification of objects is one of the key tasks in data mining and machine
learning. At early stages of the data mining process, no or very few labeled
patterns are given. Often, even the goal of the learning process is not clear from
the beginning, i.e., the user does not know which clusters might be present in
the data. This usually necessitates the use of fully unsupervised techniques. Over
the past decades, a large amount of clustering techniques have been proposed.
In general, the outcome of such schemes can heavily depend on the specific
clustering criterion that is addressed or on the involved model parameters. Since
the “true” cluster structure is not known beforehand (and might depend on
the user’s preferences and goals), one is generally faced with the problem of
recurrently applying and fine-tuning the different techniques at hand. Thus, a
desirable goal is to “interactively” adapt a given clustering solution by slightly
modifying the associated model parameters on the fly.

A recent clustering technique is the so-called maximum margin clustering
problem [1–7], which extends the concept of support vector machines [8–10] to
unsupervised learning settings. In a nutshell, this concept aims at detecting
two classes in the data such that a subsequent application of a support vector
c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 95–107, 2015.
DOI: 10.1007/978-3-319-24465-5 9
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(a) bc = 0.01 (b) bc = 0.3 (c) bc = 0.5

Fig. 1. Influence of the balancing constraint on a two-dimensional artificial data set:
Certain clustering outcomes can be “enforced” using corresponding parameter assign-
ment for the balancing constraint bc (here, bc = 0 corresponds to all points being
assigned to the negative class whereas bc = 1 corresponds to positive patterns only).

machine yields the best overall result. The potential of this clustering framework
has been evaluated by many authors on various artificial and real-world data
sets [1–7]. However, both its combinatorial nature as well its dependency on
certain model parameters can render its application difficult in practice. One
crucial model parameter is the balancing constraint that determines the amount
of patterns being assigned to each of the classes (and which is needed to avoid
trivial solutions). In case of no prior knowledge about the class ratios, one usually
aims at balanced class assignments with roughly equally-sized clusters. However,
this might yield undesired clustering outcomes, especially in case one of the two
clusters is considerably smaller. In Fig. 1, the influence of this parameter on a
two-dimensional toy example is shown. It can be clearly seen that a “wrong”
balancing constraint can lead to (most likely) undesired clustering outcomes.

We propose an optimization framework that is devoted to an interactive
version of the maximum margin clustering principle. In particular, the user can
adapt the balancing constraint in the course of the overall process to enforce
certain new class ratios in case a current clustering partition is inappropriate. As
shown in our experimental evaluation, the resulting framework can effectively
deal with data sets consisting of hundreds of thousands of training patterns,
which renders it a suitable tool for discovering “desired” clustering solutions
on the fly. We demonstrate the applicability of our approach in the context of
remote sensing and astronomy and consider variants that address constrained
clustering tasks with certain patterns being manually fixed to one of the classes.

2 Interactive Maximum Margin Clustering

We start by describing the maximum margin clustering problem including its
interactive variant that is addressed in the remainder of this work.

2.1 Maximum Margin Clustering

The original maximum margin clustering problem (MMC) [1] addresses unsuper-
vised learning scenarios with training patterns of the form T = {x1, . . . ,xn} ⊂
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X, where X is an arbitrary input space. From a mathematical point of view,
the search for the optimal partition of the unlabeled patterns w.r.t. the general
support vector machine objective yields the following optimization task:

minimize
y∈{−1,+1}n, f∈Hk

n∑

i=1

L
(
yi, f(xi)

)
+ λ‖f‖2Hk

(1)

Here, f : X → R is a model function, ‖ · ‖Hk
a norm in a reproducing kernel

Hilbert space Hk induced by a kernel k : X ×X → R, L : {−1,+1}×R → [0,∞)
a loss function, and λ ∈ R+ a regularization parameter [9,10]. Thus, in contrast
to standard support vector machines, the labels yi of the training patterns are
part of the optimization task, which renders the problem difficult to solve. To
avoid unbalanced solutions (e.g., all patterns being assigned to one class only),
some kind of balancing constraint has to be added. A typical candidate is

1
n

n∑

i=1

max(0, yi) ≈ bc (2)

with user-defined parameter bc ∈ (0, 1). As motivated above, this constraint can
have a significant influence on the clustering outcome.

The combinatorial nature of this problem renders the task difficult to solve.
For this reason, several variants have been proposed in the literature (see below)
that are based on other loss function than the standard hinge loss L

(
y, f(x)

)
=

max(0, 1 − yf(x)). As pointed out by Zhang et al. [6], both the square loss
L

(
y, f(x)

)
=

(
y − f(x)

)2 and the ε-insensitive loss L(y, f(x) = max(0, |y −
f(x)| − ε) depict suitable candidates, which often yield practical optimization
frameworks that are less susceptible to bad local optima.

2.2 Interactive Clustering

The clustering solutions induced by the maximum margin clustering principle
can heavily depend on the particular parameter assignment for the balancing
constraint (2). In general, an “optimal” assignment depends on the particular
data set at hand as well as on the current application and user preferences. In
the remainder of this work, we consider the following “interactive” version of the
maximum margin clustering problem: Starting with an user-defined balancing
constraint (i.e., a particular assignment for bc), an initial clustering solution is
computed based on the objective (1). This induces a partition of the points into
two clusters along with a certain class ratio. Afterwards, the user can manually
tune the class ratio by increasing or decreasing the amount of patterns being
assigned to one of the classes (i.e., a new balancing constraint is enforced).

The overall workflow is illustrated in Fig. 2 in the context of a remote sens-
ing application: Starting with an initial (inappropriate) clustering solution, the
user can interactively fine-tune the outcome via a simple slider operation that
determines the class ratio until a satisfying result is achieved. Hence, in each
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(a) (b) (c) (d) (e) (f)

Fig. 2. Interactive exploration of possible clustering outcomes on hyperspectral image
data: Eleven grayscale images are composed to a single RGB image, see Figure (a). The
clustering takes place in an underlying eleven-dimensional feature space. Starting with
an initial clustering solution (Figure (b)), the amount of positive patterns is increased
incrementally by the user (Figures (c)–(e)). In the last step, the amount is decreased
slightly to achieve a satisfying clustering outcome (‘land and cloud’ vs. ‘water’ pixels)
insert color figure online.

of the intermediate phases, the algorithm has to decide which patterns should
be exchanged between the two current clusters such that the objective is mini-
mized. Further, in case some of the patterns are not automatically moved to one
of the “desired” clusters, the user can provide additional input by “fixing” some
patterns to one of the clusters (which is related to constrained clustering [11]).1

2.3 Related Work

Several approaches have been proposed to address the standard maximum mar-
gin clustering problem. Among the first approaches is the scheme proposed by
Xu et al. [1], who reformulate the original task to obtain a semidefinite program-
ming problem. A similar approach with better asymptotical runtimes is given
by Valizadegan and Jin [2]. Other techniques are based on, e.g., cutting plane
techniques or so-called “label generation” strategies [4,12]. The use of the square
loss in the context of maximum margin clustering stems from Zhang et al. [6],
who pointed out that local search strategies “can more easily get out of a poor
solution” in case the ε-insensitive or the square loss are used instead of the origi-
nal hinge loss. This idea is extended by Gieseke et al. [3] and Pahikkala et al. [5],
who make use of matrix-based shortcuts to speed up the involved computations.

While general interactive clustering variants have been addressed in the lit-
erature (see, e.g., [13,14]), the process of manually fine-tuning the balancing
constraint in the context of the maximum margin clustering problem has not
been considered so far. As mentioned above, each phase involves the identifi-
cation of patterns whose change of clusters yield a valid partition according to
1 Naturally, such schemes are particularly useful if the outcome can be visualized; if

this is not possible, one has to resort to other criteria to assess partitions.
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Algorithm 1. Interactive Maximum Margin Clustering

Require: Unlabeled patterns T = {x1, . . . ,xn} and initial balancing constraint bc
0.

Ensure: Partition y ∈ {−1, +1}n of unlabeled patterns.
1: Compute initial clustering partition y0 according to bc

0

2: τ = 1
3: while new user input bc

τ do
4: Let K = |n · (bc

τ − bc
τ−1)| and c = sign(bc

τ − bc
τ−1) ∈ {−1, +1}

5: Compute steepest-descent-mildest-ascent values S(y, 1, c), . . . , S(y, n, c)
6: Rank coordinates j according to S(y, j, c) (ascending order)
7: yτ ← yτ−1 by flipping the K top-ranked coordinates
8: τ ← τ + 1
9: end while

10: return yτ−1

the new balancing constraint and which are, at the same time, good candidates
w.r.t. the objective (1). Thus, in case no additional constraints are enforced by
the user, the resulting framework has to compute these partitions in a fully unsu-
pervised manner. Otherwise, in case of additional constraints, the intermediate
tasks are related to constrained clustering [11] or semi-supervised learning [15].

3 Algorithmic Framework

3.1 General Workflow

Different ways exist to address the induced intermediate optimization tasks. A
direct one is to retrain an appropriate model from scratch for each new balancing
constraint provided by the user. While the current cluster assignments could be
used as starting point, one still has to decide which of the patterns have to switch
classes such that the new constraint is fulfilled. Further, given large-scale learn-
ing problems such as the one shown in Fig. 2 with thousands of patterns, such
an approach is, in general, computationally very challenging. Another principled
way of addressing the interactive settings is to directly change the cluster assign-
ments of those patterns that would contribute most (or least) to an improvement
(or worsening) of the current objective value (1). As we will show in our experi-
mental evaluation, this greedy approach cannot only be implemented much more
efficiently but also yields stable and intuitive clustering outcomes.

The general workflow of this approach is shown in Algorithm 1: Starting with
an initial clustering solution y0 (e.g., all patterns being assigned to one class or
initialized via a maximum margin clustering solver), one iteratively modifies the
partition until no user input is provided anymore. Each user input yields a new
assignment bc

τ for the balancing constraint and for each such input, the algorithm
has to select K = |n · (bc

τ − bc
τ−1)| appropriate patterns such that their change

of classes leads to a valid partition w.r.t. bc
τ . These patterns are selected and

flipped according to steepest-descent-mildest-ascent directions S(y, j, c), where
c = sign(bc

τ − bc
τ−1) ∈ {−1,+1} is the flipping direction (Steps 4–7). As soon as

no user input is provided anymore, the final partition is returned.
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It remains to define the criterion S(y, j, c) used in Step 5: Similarly to a
standard steepest descent step, we consider those coordinates j ∈ {1, . . . , n}
that yield the best steepest descent or mildest ascent2 of the objective. More
precisely, we suggest the following definition for these coordinate steps:

Definition 1. Given an objective function F : {−1,+1}n → R and a binary
class label c ∈ {−1,+1}, we define the steepness for the index j ∈ {1, . . . , n} as

S(y, j, c) =
{

F (y + 2cej) if yj �= c
∞ otherwise (3)

where ej is the j-th standard basis vector of Rn.

Note that the second case of the above definition simply assigns ∞ to a coor-
dinate that cannot be flipped since it already belongs to the “correct” class.
Thus, given a partition vector y and a flipping direction c ∈ {−1,+1}, the
above definition yields n steepness values S(y, 1, c), . . . , S(y, n, c). These values
are ranked and the associated K top-ranked coordinates are selected. In gen-
eral, computing the steepness directions S(y, 1, c), . . . , S(y, n, c) in Step 5 can
be computationally very expensive. Below, we describe an efficient implementa-
tion for these subtasks that renders the overall approach capable of dealing with
large-scale scenarios consisting of hundreds of thousands of training patterns.

3.2 Fast Computation of Ranking Criterion

The above definition is based on an objective function F : {−1,+1}n → R, which
we define next. For a fixed partition vector y, it follows from the representer
theorem [16] that any optimal solution f∗ ∈ Hk for the task (1) is of the form

f∗(·) =
n∑

i=1

aik(xi, ·) (4)

with coefficients a = (a1, . . . , an)T ∈ R
n. We follow the related literature [3,5,6]

and consider the square loss L
(
y, f(x)

)
=

(
y − f(x)

)2. In this case, these coeffi-
cients can be determined analytically via a = (K + λI)−1y =: Gy, where K ∈
R

n×n is the kernel matrix consisting of entries Ki,j = k(xi,xj) and I the identity
matrix. Thus, using ‖f∗‖2Hk

= aTKa [10], one obtains [3,5]

minimize
y∈{−1,+1}n

F (y) = (y − KGy)T(y − KGy) + λyTGKGy

= yT (I − KG − GK + GKKG + λGKG)y, (5)

2 Note that enforcing the new balancing constraint bc
τ might induce a partition vector

whose objective is worse than the one for the current partition vector.
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Algorithm 2. Batch Steepest-Descent-Mildest-Ascent Operation

Require: A partition y ∈ {−1, +1}n, the set S = {1, . . . , n} of possible coordinates, a
number K < |S| of coordinates to be flipped, c ∈ {−1, +1}, p ∈ R

r, and Q ∈ R
r×n.

1: Initialize d ∈ R
|S| with dj = ∞

2: for j ∈ S do
3: if yj �= c then
4: p̂ ← p − 2yjQ:,j

5: dj ← n − p̂Tp̂
6: end if
7: end for
8: Sort coordinates S according to d (ascending order)
9: for i = 1, . . . , K do

10: j ← Si

11: yj ← −yj

12: p ← p − 2yjQ:,j

13: end for

As shown by Pahikkala et al. [5], one can further simplify this objective:

Fact 1. ([5]) Let K = VΛVT ∈ R
n×n be the eigen decomposition of the kernel

matrix K and let the diagonal matrix Λ̃ be defined as Λ̃ = (Λ + λI)−1. Then,

F (y) = n − yTVΛΛ̃VTy (6)

holds for the objective function F (y) defined in (5).

Computing the full kernel matrix is often computationally infeasible. For
this reason, approximation schemes such as the Nyström method [17] are usually
employed. In particular, assuming one has access to a feature representation
Φ ∈ R

n×r for some r 	 n such that K = ΦΦT, the eigenvectors and eigenvalues
can be obtained by computing the economy-sized singular value decomposition
of Φ. That is, one only has to compute the non-zero singular values

√
Λ ∈ R

r×r

of Φ and their corresponding left singular vectors V ∈ R
n×r. This permits the

computation of Q ∈ R
r×n with QTQ = VΛΛ̃VT in O(r2n) time [18], where

1 ≤ r ≤ n determines the degree of approximation.
In Step 3 of Algorithm 1, the values S(y, j, c) have to be computed. The

procedure for computing and ranking these values as well as for updating the
partition vector yτ (Steps 5–7) is shown in Algorithm 2: Let p := Qy. Then,
one can rewrite the objective (6) as F (y) = n − pTp. This closed-form solution
of the intermediate objective values is used for computing the steepest-descent-
mildest-ascent values (Steps 1–7). Afterwards, the coordinates in S are sorted
according to these values (Step 8) and the K patterns with the lowest values are
assigned to class c. Finally, the auxiliary vector p is updated (Steps 9–13).
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Theorem 1. For each interaction phase, O(|S|r + |S| log |S|) time is spent in
Algorithm 2. The initialization of Q ∈ R

r×n and p ∈ R
r takes O(nr2) time and

a total amount of O(nr) additional space is needed.

Proof. Each steepest-descent-mildest-ascent value (Steps 3–6) can be obtained
in O(r) time due to Q:,j ∈ R

r and at most |S| values have to be computed.
Similarly, the update of each auxiliary vector p in Step 12 takes at most O(r)
time, i.e., O(Kr) ∈ O(|S|r) time in total. Sorting all values takes |S| log |S| time.

Note that a “focus set” S ⊂ {1, . . . , n} can be defined by the user to restrict the
coordinates that can be flipped. This can be handy in case clustering steps shall
only be performed in a certain region of the feature space.

4 Experiments

We demonstrate the applicability of our approach in the context of remote sens-
ing and astronomy. For all use cases, a large amount of patterns can efficiently be
processed, which underlines the framework’s potential for large-scale scenarios.
In principle, other clustering techniques could be adapted in a similar fashion.
Due to lack of space, we focus on the interactive maximum margin clustering
variant and defer a more extensive experimental comparison to future work.

4.1 Experimental Setup

For all experiments, a standard desktop computer with an Intel(R) Core(TM)
i7-4790K CPU running at 4.00 GHz (4 cores; 8 hardware threads) 32 GB RAM
is used. The operation system was Ubuntu 14.04 (64 Bit) with kernel version
3.13.0-45. The overall approach is implemented in Python (2.7.6) using the
Cython package for Algorithm 2. Further, the NumPy package is used to effi-
ciently compute all matrix decompositions as well as all involved matrix-vector
products.3 For all experiments, we have X = R

d and make use of an RBF ker-
nel [9,10] with kernel width γ = s−1, where s =

∑d
j=0

(
max{Xj} − min{Xj})2

is an estimate of the average squared distances in the training data (here, {Xj}
denotes the set of all j attribute values). The regularization parameter λ is fixed
to 1.0 and r = 100 is the rank of the approximated kernel matrix (see above).

We consider two application domains that involve multi-dimensional image
data: The first one is remote sensing, see again Fig. 2. In particular, we make use
of satellite data that is obtained from the Hyperion instrument of the EO-1 Earth
orbiter [19].4 While the instrument gathers data at 242 wavelengths via different
bands, machine learning models are often applied on a subset of the features
only (e.g., due to restricted computational resources onboard of the spacecraft).
We follow Castano et al. [21] and consider a subset of eleven bands that are
used for the onboard SWIL (snow, water, ice, land) classifier resulting to R

11 as

3 The code is publicly available under https://github.com/aatapa/RLScore.
4 Some parts of the data were kindly provided by Wagstaff and Bornstein [20].

https://github.com/aatapa/RLScore
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feature space. For the interactive clustering process, RGB images that stem from
combining different bands are shown to the user. As second application domain,
we consider photometric data from the Sloan Digital Sky Survey (SDSS) [22].
Here, the raw data stems from five different filters that give rise to five grayscale
images for each observed region.

4.2 Applications

The data sets mentioned above give rise to feature spaces with an associated
image representation. To facilitate the user input, an appropriate interface was
developed that can be used to enforce a new balancing constraint (“slider oper-
ation”) or to select certain regions of interest (“lasso select”).

Fore-/Background Separation in Astronomy. The separation of fore- and
background is a common problem in many domains. For instance, one of the
initial steps given image data in astronomy is to detect objects that are given in
a large image or to separate a particular object from the background noise.

Fig. 3. Interactive fore-/background separation for a five-dimensional feature space
and n = 300, 000 pixels: The amount of positive patterns (red) is increased iteratively
by the user until a desired separation is achieved. The feature space consists of the
RGB pixel values along with x/y coordinates, see, e.g., Lund et al. [23] (Color figure
online).

In Fig. 3, the application of the interactive maximum margin clustering prin-
ciple is shown for an RGB image of the SDSS database5: Starting with no pixels
being assigned to the positive class, the user can incrementally increase the bal-
ancing constraint parameter bc until a desired separation is obtained. Note that
for each interaction phase, our framework needs significantly less than a second
for this data set instance (n = 300, 000) to compute and update a new partition
vector y and, thus, can yield immediate feedback to the user.
5 http://dr12.sdss3.org/.

http://dr12.sdss3.org/
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Fig. 4. Comparison

Clustering Hyperspectral Data. Figure 2
sketches the iterative process of separating ‘land’
from ‘water and cloud’ pixels given hyperspectral
image data (n = 179, 200). Again, the approach
can handle such data set instances efficiently with
intermediate steps taking significantly less than a
second. In Fig. 4, the final outcomes of the inter-
active process (left) and a standard k-means [24]
application with k = 2 (right) are compared.
While both clustering outcomes depict reasonable
solutions, the interactive variant permits to fine-
tune a certain clustering outcome (e.g., to enforce
a smooth transition between ‘water’ and ‘land’
pixels).

Interactively Adding More Constraints. The above scenarios are purely
unsupervised (except for the balancing constraint inputs). However, if desired,
additional constraints can be incorporated into the process. For instance, the user
can manually specify some “regions of interest” for the initial clustering partition.
Depending on the task at hand, this can give rise to a different clustering process.
In Fig. 5, another hyperspectral data set instance is addressed (n = 228, 448).
In case all patterns are initially assigned to the negative class (Figure (a)), the
overall process yields ‘clouds’ vs. ‘land and water’ as final clustering partition.
In Figure (b), some patterns are initially assigned to the ‘land’ class, which leads
to a slightly different partition (‘land’ vs. ‘clouds and water’).

(a) (b)

Fig. 5. Additional constraints can be incorporated by manually assigning some patterns
to one of the clusters. Such an input can be provided as initial partition at the beginning
of the interactive process or in each of the following intermediate phases. Further, these
patterns can also be “ockedto” one of the clusters (interactive constrained clustering).
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5 Conclusion

We addressed the task of “interactively” discovering clustering solutions that are
induced by the maximum margin principle. The main contribution of our work
is an interactive framework, which can be used to fine-tune clustering solutions
by enforcing new class ratios in each interaction phase. The computational effi-
ciency is ensured via a fast implementation of a steepest-descent-mildest-ascent
optimization scheme. Our experimental evaluation shows that the framework
can successfully be applied on real-world data with hundreds of thousands of
patterns. Future work could encompass multi-class extensions of our approach
as well as fast implementations for adapting other model parameters on the fly.
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Instituto de Ciências Matemáticas e de Computação, São Carlos, Brazil
{rgiusti,diegofsilva,gbatista}@icmc.usp.br

Abstract. Time series has attracted much attention in recent years,
with thousands of methods for diverse tasks such as classification, clus-
tering, prediction, and anomaly detection. Among all these tasks, clas-
sification is likely the most prominent task, accounting for most of the
applications and attention from the research community. However, in
spite of the huge number of methods available, there is a significant
body of empirical evidence indicating that the 1-nearest neighbor algo-
rithm (1-NN) in the time domain is “extremely difficult to beat”. In
this paper, we evaluate the use of different data representations in time
series classification. Our work is motivated by methods used in related
areas such as signal processing and music retrieval. In these areas, a
change of representation frequently reveals features that are not appar-
ent in the original data representation. Our approach consists of using
different representations such as frequency, wavelets, and autocorrelation
to transform the time series into alternative decision spaces. A classifier
is then used to provide a classification for each test time series in the
alternative domain. We investigate how features provided in different
domains can help in time series classification. We also experiment with
different ensembles to investigate if the data representations are a good
source of diversity for time series classification. Our extensive experimen-
tal evaluation approaches the issue of combining sets of representations
and ensemble strategies, resulting in over 300 ensemble configurations.

1 Introduction

Undoubtedly, analysis of time series data has attracted an enormous amount of
attention in recent years. Time-oriented data are present in several application
domains including medicine (e.g., electrocardiography and electroencephalogra-
phy), engineering (sensor data), entertainment (motion capture data in video
games), meteorology (climate data), etc. The research community has answered
to such demand with literally thousands of data analysis methods for diverse
tasks such as classification, clustering, prediction, and anomaly detection.
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Classification is likely the most prominent task in time series mining, account-
ing for most of the applications and attention from the research community. But
in spite of the huge number of methods available, there is a significant body of
empirical evidence indicating that the 1-nearest neighbor algorithm (1-NN) in
the time domain is “extremely difficult to beat” for classification tasks [8,18].

In this paper, we evaluate the use of different data representations in time
series classification. Our work is motivated by methods used in related areas such
as signal processing and music retrieval. In these areas, a change of representa-
tion, for instance, from time to frequency or cepstrum, often reveals features that
are not apparent in the original data representation. This approach consists of
using different representations to transform the time series into alternative deci-
sion spaces. A classifier is then used to provide a classification for each test time
series in the alternative domain.

Our goal is to investigate how features provided in different domains can
help in time series classification. We perform our experiments using the 1-nearest
neighbor classifier (1-NN), due to its simplicity and effectiveness in time series
classification. The use of a single classification model helps us to rule out the dif-
ferences in performance due to different classification algorithms. This way, any
difference of performance can be attributed on the change of data representation.
We also evaluate different ensembles of 1-NN classifiers to investigate if the data
representations are good sources of diversity for time series classification.

Although some recent research has addressed the classification of time series
using different representations [4,16], our paper is unique in the sense that
we evaluate representations irrespectively of classification models. Moreover, we
employ a more diverse set of representations and ensemble strategies. Our exten-
sive experimental evaluation approaches the issue of combining sets of represen-
tations and ensemble strategies, resulting in over 300 ensemble configurations.

The paper is organized as follows. In Sect. 2 we present an overview of time
series classification, time series (dis)similarity and transformation of time series.
In Sect. 3 we present notions of ensembles of classifiers and the ensemble con-
figurations used in this work. In Sect. 4 we present our experimental evaluation
and discuss our results. Finally, in Sect. 5 we present our conclusions and future
work.

2 Time Series Classification and Transformation

Let a time series of length m be an ordered set of values S = (s1, s2, . . . , sm),
st ∈ R for all t ∈ [1,m]. Each value st of S is an observation of the time series
at instant t and every pair of consecutive observations (st, st+1) is considered
equally spaced in time – i.e., the series is uniformly sampled or the sampling
rate can be otherwise disregarded.

Time series classification is an important problem that arises in many prac-
tical applications. It consists in assigning a class label Cx to a previously unseen
example x that is somehow related to the process that produced the time series
x. The problem of time series classification has attracted great interest from
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the scientific community. Several approaches are readily available to tackle this
problem. One may extract features from the temporal data and use these fea-
tures to train a classification model, such as the support vector machine [5].
In a different approach, representative segments – shapelets – of temporal data
may be extracted from a training data to construct a similarity-based decision
tree [19]. However, one of the most popular approaches consists of using the
original temporal data as attributes for the k-nearest neighbors classification
model.

The k-nearest neighbors classifier – k-NN – is an instance-based classifica-
tion model. It is built on the nearest-neighbors rule, which roughly translates to
the notion that similar instances belong to the same class with high probabil-
ity. Although simple, the 1-NN classifier with DTW (1-NN-DTW) is repeatedly
reported as the best classification model in the average case for time series clas-
sification, being considered to be “exceptionally difficult to beat” [8,18].

The concept of (dis)similarity between time series is often estimated with a
distance function. The Euclidean distance is a widely used function to estimate
the dissimilarity between two time series. A relevant issue of the Euclidean dis-
tance is the fact that it is very sensitive to non-linear variations in the time
axis known as warping [12]. The Dynamic Time Warping (DTW) is a local-
warping invariant of the Euclidean distance which minimizes the estimated dis-
tance between two time series by finding an optimal alignment between their
observations. This alignment promotes the matching of values observed at dif-
ferent relative times under the following constraints: (i) the observations must
be monotonically ordered with respect to time; (ii) the alignment should begin
in the first and end in the last observations of both time series; and (iii) each
value must belong to the optimal alignment – i.e., no value is skipped in any of
the time series.

The sampled observations of a time series are a description of how a measur-
able phenomenon changes with time. Such series is said to be represented in the
time domain. “Traditional” classification of time series with the 1-NN classifier
is performed in the time domain. However, it is possible to transform a time
series to an alternate domain of representation. We define a transformation of
time series as a mapping from the time domain to an alternate space of decision.
To classify instances with the 1-NN classifier in the transformed space, it suffices
to wrap the distance function so that each instance is transformed before being
compared. In this work, we transform the time series from the time domain to a
different decision space and perform the classification on this new decision space
using the 1-NN classifier normally. For certain domains of application, this allows
for great classification accuracy. We construct ensembles of the 1-NN classifier
for even better results.

There is a huge diversity of time series transformations in the scientific liter-
ature [18]. In this work, we attempted to choose transformations that actually
provide a distinct decision space that is not a summarization of the original tem-
poral data. Therefore, we have excluded some classical dimensionality reduction
techniques, such as Principal Component Analysis [10], SAX [13] and SAX-based
transforms [14].
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Power Spectrum: The Discrete Fourier Transform – DFT – decomposes a
time series as an ordered set of sinusoids of decreasing frequency. Each value
of the transformed series is a complex number that encodes both amplitude
and phase of a periodic component.
The DFT has been used for a long time as a strategy of dimensionality
reduction that allows for efficient indexing of time series [1].
We define the power spectrum representation of a time series as the plot of
the complex modulus of its Fourier components. The power spectrum gives
the “energy” of the time series in the frequency bands associated with the
Fourier components. Periodical trends in the time series may be exposed by
the power spectrum, even if the original time series contains noise.
For a detailed and the formal definition of Fourier transform, we refer the
reader to [2].

Discrete Wavelet Transform: The DFT concerns only about frequency, not
adding any information about when each frequency component is present in
a time series. In order to mitigate this problem, wavelet transform creates
a time-frequency representation with different resolutions. This is done by
calculating the spectrum with sliding windows of different sizes. Discrete
wavelet transform (DWT) is a discrete version of the wavelet transform for
numerical signals.
Another relevant difference between DWT and DFT is that the latter repre-
sents a composition of sinusoidal waves. In the other hand, DWT may work
with an infinite number of functions, called mother wavelets.
There is a plethora of works that use DWT in time series classification. A
particularly interesting application of this approach was made for matching
stock time series [7], in which the authors used the Haar’s mother wavelet [6].

Autocorrelation Function: The autocorrelation of a time series measures its
predictability at a specific instant from its previous observations. A highly
autocorrelated time series is indicative of a very deterministic process while
true white noise shows no autocorrelation for pairs of distinct observations.
The sample autocorrelation is typically used as an estimate of the auto-
correlation of the whole population. In this work, however, we employ the
autocorrelation function as a means to transform the time series into a dif-
ferent decision space [4].

3 Representation Ensembles

An ensemble of classifiers is a set of base classifiers whose individual decisions
are combined to classify new examples [15]. Each classifier is allowed to indepen-
dently observe the example and provide a tentative classification output, i.e., a
vote. The ensemble then combines the individual votes into a single class label.

The simplest sensible ensemble of classifiers is the majority ensemble. In a
majority ensemble, each of the base classifiers votes on a class label. The most
voted class label is the ensemble’s output.
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Well-crafted ensembles tend to be more precise than their base classifiers.
When designing ensembles, it is important that component classifiers be individ-
ually accurate and collectively diverse. Otherwise, if the classifiers are inaccurate,
then the composition of incorrect decisions will lead to incorrect decisions, while
base classifiers too similar one to another cause the ensemble to make decisions
similar to those of the base classifiers, thus failing to improve on them.

In time series classification, variations of the k-NN have been used to build
ensembles of classifiers. Lines and Bagnall [15] employed different distance mea-
sures combined into an ensemble of 1-NN classifiers. Previous work by Oates et
al. [16] used the SAX representation of time series to compose ensembles where
each base classifier was constructed with different parameters. More recently,
Lines et al. [4] proposed a “collective of ensembles” that is essentially an “ensem-
ble of ensembles”. The base classifiers include complex classification models such
as SVM, Rotation Forests, and variations of the k-NN classifier. These include
using different distance measures and representation ensembles using the auto-
correlation function, the power spectrum, and the shapelet representation.

In this work, we explore how different time series representation may be
composed into ensembles of classifiers. Additionally, we are also interested in
exploring different strategies of combining base ensembles. We start with the
majority ensemble. Then, we explore alternative strategies for weighing base
classifiers and composing votes. For clarity sake, we group these strategies into
weighted and ranking-based ensembles.

3.1 Weighted-Based Ensemble

One straightforward extension to the simple majority ensemble consists of assign-
ing weights to each base classifier. When deciding on a new example, the weighted
sum of the votes for each class Ci is considered, and the class label which receives
the highest sum of votes is the ensemble output.

This strategy will be referred to as weighted ensemble. In actuality, the
weighted ensemble is a family of ensembles that differ on the strategy adopted
to assign weights to base classifiers. The majority ensemble is itself a weighted
ensemble that uses equal weight to all base classifiers.

In this work, we have considered the following weighing strategies.

– Accuracy as weights: the weight of each base classifier is its estimated accu-
racy. In our experiments, the accuracy is estimated by means of 10-fold cross-
validation on the training data. This is the only ensemble strategy that uses
the same set of weights for every new example it is presented. Variations of
this ensemble may be easily achieved by imposing a “cut-point” on the weights
of the base classifiers. A “hard cut-point” of k implies assigning a weight of
0 (zero) to all but the k most accurate base classifiers. A “soft cut-point”
of δ implies assigning a weight of 0 (zero) to all base classifiers that are less
accurate than the most accurate base classifier by a value of δ;

– Distance as weights: the weight of each base classifier is the normalized dis-
tance from the new example x to its nearest neighbor znn. Formally, if the
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distance function used by the base classifier is f , then the normalized distance
is f ′(x, znn) = f(x,znn)

f(zα,zβ)
, where zα and zβ are instances from the training set

such that no other pair of training instances are further apart;
– Posterior probability as weight : the weight of each base classifier is the pos-

terior probability of the class given the example. Let Cj be the decision of
the j-th classifier. The posterior probability P (Cj |x) is the probability that
the true class of the new example x is, in fact, Cj . The most straightforward
approach to estimate the posterior probability is to count the frequency of Cj

in the neighborhood of x. This neighborhood is a parameter of the ensemble,
and it is usually larger than the neighborhood of the base classifier.

3.2 Ranking-Based Ensembles

While the 1-NN produces a single class label for each new instance x, it may be
easily extended to rank classes according to the likelihood that a class Ci is the
true class of x. This “extended 1-NN” may be used as the base classifier of an
ensemble, provided all other base classifiers also produce rankings as outputs.
In this work, this approach is referred to as “ranking ensemble”. When a new
example is presented to a ranking ensemble, each base classifier is used to produce
their own ranking. The ensemble then merges these rankings, much like a single
vote is produced from a set of votes in the weighted ensemble. The best-ranked
class is chosen as the ensemble decision.

Ranking ensembles differ by the strategy used to construct the rankings. In
this work, the merge procedure is the same for all ranking ensembles; namely,
it is the mean of ranks. If the classification space has m classes and the ensem-
ble is composed of n base classifiers, then each j-th base classifier votes on
a ranking Rj = {rj1, rj2, . . . , rjm}, where rji is the rank assigned to the i-th
class label. The final, merged ranking, is given by the partial order of the set
Rf = {r1, r2, . . . , rm}, where ri =

∑
j rji

n is the mean of the ranks assigned to
the i-th by the base classifiers.

Two different label ranking models were used in this work.

– Posterior probability : the posterior class probability of an example x, P (Cj |x),
is the probability that the example x in fact belongs to class Cj . It may be
considered a decent estimate of the classifier’s “confidence” that its decision
is correct. It may also be used in label ranking to score class labels.
One method to estimate the posterior class probability of x, proposed by
Atiya [3], associates a set of weights, {v1, v2, . . . , vk} such that vi ∈ [0, 1] and∑

vi = 1, to the nearest neighbors of x. Each weight vi reflects how important
is the i-th neighbor in estimating the posterior class probability. If v1 = 1 and
all other vi = 0, i �= 1, then only the class of the immediately nearest neighbor
should be considered in the estimate. If vi = 1

k for all k-nearest neighbors, then
every neighbor is equally important. A linear optimization model is used to to
find weights that are optimal according to a training data set. The probability
that an example x belongs to the class Ci is the sum of the weights associated
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to the neighbors of x that belong to this class. This is better explained with
an example. Assume that, for k = 5 and a given example x, the classes of its
nearest neighbors are C1, C2, C1, C3, and C2. The first and the third-nearest
neighbors are of class C1. Therefore, the probability that x belongs to C1 is
given by P (C1|x) = v1 + v3. The values of P (Cj |x) are subjected to a partial
order, where higher values are better, and a ranking is constructed. The ranks
associated with each class label are the base classifier’s vote.

– Simple-ranking based : the simple-ranking is an instance-ranking strategy
used in the anytime classification with the k-nearest neighbors classification
model [17]. Basically, the idea of the simple-ranking is to rank the training
instances according to their relevance to the classification of a new example.
The simple-ranking approach to calculating the importance of each train-
ing instance is similar to the leave-one-out validation procedure. Initially, it
assigns a score of zero to all training instances. Then, at every round, it
removes one training instance from the original data set and use the rest of
the training data to predict its class. In the original simple-ranking algorithm,
the classification model is the 1-nearest neighbor classifier. The nearest neigh-
bor is then deemed “friendly” or “enemy”, depending on whether its classes
matches or not the class of the held out instance. If the neighbor is “friendly”,
then its score is increased by 1. If the neighbor is “enemy”, then its score is
decreased by 2

m−1 , where m is the number of classes of the decision space.
The held out instance is put back into the training data set and the algorithm
proceeds to the next round. Finally, a ranking is produced from the scores
and the ranks are assigned to the training instances.
Once the training instances have been ranked, the label ranking of a new exam-
ple x is similar to the procedure of the posterior probability-based method.
Each nearest neighbor was previously assigned a simple-rank s1, s2, . . ., sk.
For each class Cj , a score is computed from the mean of the ranks of neigh-
bors that belong to class Cj . For instance, assume that k = 5 and the classes
of the nearest neighbors of x are C1, C2, C1, C3, and C2. The first and the
third-nearest neighbors belong to class C1. Therefore, the score assigned to
this class is S1 = s1+s3

2 . Similarly, the score assigned to C2 is S2 = s2+s5
2 and

the score assigned to C3 is S3 = s4. The scores S1, S2, and S3 are subjected
to a partial order, where lower values are better, and a ranking is constructed.
The ranks associated with each class label are the base classifier’s vote.

4 Experimental Evaluation

The main goal of this work is to explore different forms of ensemble composi-
tion with representation diversity. To achieve that goal, we designed a set of
experiments to evaluate all ensemble strategies presented in Sect. 3 using dif-
ferent subsets of base classifiers. Because some ensemble strategies and some
transformations have parameters, we also cross-validated the training data.

The base classifiers employed in our experiments were the 1-NN, the 1-NN-
DTW, the 1-NN-DTW with Sakoe-Chiba window, and the 1-NN transformed to
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the representations discussed in Sect. 2. The width of the Sakoe-Chiba window
was individually assigned to each data set. Additionally, one base classifier using
only the first iteration of the Haar transform was used, alongside with another
base classifier using only the approximation coefficients of the first iteration of
the Haar transform. This configuration of base classifiers will be referred to as
“full set”.

For some configurations, we also experimented with limited sets of base clas-
sifiers. That is, instead of using the “full set” as base classifiers, we experimented
different combinations. These combinations and the difference of accuracy pro-
vided by them will be presented and discussed in the next subsection.

The results from these experiments shed light on how the choice of an ensem-
ble configuration and how adding or removing base classifiers affect the classifi-
cation accuracy. Based on these results, we then devised a set of 6 base classifiers
using 4 time series representations, namely 1-NN, 1-NN-DTW, 1-NN-DTW with
Sakoe-Chiba window, and 1-NN transformed to Power Spectrum, Haar coeffi-
cients, and autocorrelation coefficients. The same ensemble configurations were
used. We refer to this set of base classifiers as the “reduced set”.

All experiments were conducted in 45 data sets from the UCR time series
repository [11]. The UCR repository is arguably the largest source of time series
data for classification and clustering, spanning diverse domains of applications
such as agronomy, human movements, medicine, and astronomy. One charac-
teristic of the UCR repository is that data sets are shipped with a predefined
partitioning of training and test data. As it is commonplace in the scientific
community, we keep that partitioning to promote reproducibility.

4.1 Discussion of Results

We evaluated hundreds of ensemble configurations on 45 labeled data sets. This
yielded over 17 thousand data points, the totality of which may be found in the
accompanying website of this paper [9].

Comparing ensembles with different sets of base classifiers, our results showed
that fewer base classifiers tend to provide better results than the “full set”. In
Table 1, four sets of base classifiers are compared against the “full set”. Each
column stands for a subset of base classifiers: Time domain, DTW (with Sakoe-
Chiba window), Power spectrum, Autocorrelation, and Haar. The values are
the frequency of victories and ties assigned to the column ensemble against the
respective “full set”.

Most configurations produced better results with fewer base classifiers. This
led us to repeat the experiments for all configurations with the six base classifiers
presented in Sect. 4. In Table 2 we present a summary of ensemble configurations
that we deemed representative. The totality of our results may be found in [9].

From Table 2, it is possible to notice that no configuration is better than all
other configurations. For instance, though the strategy of weighing base classi-
fiers by their cross-validation accuracy is at least as good as the majority ensem-
ble 86.67% of the time, it is worse than the strategy of weighing by distance
44.44% of the time.



116 R. Giusti et al.

Table 1. Comparison of ensembles with reduced sets of base classifiers against the
“full set”. Letters denote base classifiers: (T)ime-domain with Euclidean distance and
(D)TW, (A)utocorrelation domain, (P)ower spectrum domain, and (H)AAR wavelets

TDPA TDPH TDAH TDPAH

Majority 73.68 % 34.21 % 47.37 % 76.32 %

Posterior (NN) 63.16 % 31.58 % 26.32 % 60.53 %

Accuracy 81.58 % 76.32 % 78.95 % 89.47 %

Distance 94.74 % 94.74 % 97.37 % 97.37 %

Table 2. Comparison of ensemble configurations. Each value is the frequency of vic-
tories and ties obtained by the column ensemble against the row ensemble. In the
columns, P.P. stands for “posterior probability”.

Against Reference ensemble

Majority Accuracy Distance P.P. (rank) P.P. (weight) SimpleRank

Majority — 86.67% 71.11% 55.56% 77.78% 37.78%

Accuracy 20.00% — 53.33% 26.67% 48.89% 17.78%

Distance 35.56% 55.56% — 35.56% 53.33% 35.56%

Posterior (rank) 48.89% 77.78% 68.89% — 75.56% 37.78%

Posterior (weight) 28.89% 60.00% 51.11% 28.89% — 26.67%

SimpleRank 62.22% 82.22% 64.44% 64.44% 75.56% —

Surprisingly, more complex strategies based on ranking ensembles, such as
the simple-ranking and the posterior probability method, did not yield good
results. At first, we suspected this might be caused by overfitting on the training
data. However, what we actually observed was an overall superior accuracy of
those methods on the test data set, suggesting that these ensembles generalize
relatively well from the training data. As an example, Fig. 1 (left) compares the
accuracy on the test data against the accuracy on the training set for the pos-
terior ranking ensemble – with neighborhood of size 5. Figure 1 (right) presents
a similar analysis for the simple rank ensemble – with neighborhood of size 3.

These results seem to make a good case for composing ensembles of 1-NN
on different domains of representation. However, the natural question is: how do
these ensembles compare with the state-of-the-art? Considering the overwhelm-
ing adoption of the 1-NN-DTW, we did compare our ensemble configurations
against it. In Fig. 2 we graphically present two such comparisons. In Fig. 2 (left),
the accuracy-weighted ensemble – with “soft cut-point” of 0.1 – is compared
against 1-NN-DTW. In Fig. 2 (right), the simple rank ensemble – with neigh-
borhood size 3 – is compared against 1-NN-DTW.

There is a sensible reason for choosing these particular ensembles for compar-
ison against 1-NN-DTW. That particular configuration of the accuracy ensem-
ble was able to beat or tie with 1-NN-DTW in more data sets than most other
ensembles. Conversely, that particular configuration of the simple rank ensemble
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Fig. 1. Comparison of ranking ensembles on the test data against training data, sug-
gesting generalization of the classification models.
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Fig. 2. Comparison of two different ensemble strategies against the 1-NN-DTW.

was defeated by the 1-NN-DTW in more data sets than most other ensembles.
Figure 2 therefore gives a glimpse of the range of accuracies of our results when
compared with the 1-NN-DTW. The accuracy ensemble won against 1-NN-DTW
in 28 data sets, tied in 12, and lost in 5.

Finally, we address the issue of reproducibility. Along this section, we pre-
sented several results that we considered representative or interesting. The total-
ity of this analysis is based on evaluations performed with the test data, which
is usually not available in “real” situations.

We address this question by performing a data-driven selection of ensem-
bles. Every ensemble configuration was evaluated both on the test data and,
with cross-validation, on the training data sets. For each data set, the “dynamic
ensemble” chooses the ensemble with the highest accuracy on the training data
and evaluates it on the test data. When more than one ensemble configuration
yields the highest training accuracy, we apply them all on the test data and
give as its accuracy the mean of their test accuracies. This equates to finding
the expected value of the “dynamic ensemble” accuracy when equally efficient
ensemble configurations are randomly selected with uniform distribution.
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Fig. 3. (left) The best ensemble using the “full set” of base classifiers against 1-NN-
DTW; (right) accuracy a data-driven selection of ensemble for each data set comparaed
with 1-NN-DTW

In Fig. 3 we present the “dynamic ensemble” against the 1-NN (left) and the
1-NN-DTW (right). This particular “dynamic ensemble” was produced using the
six base classifiers presented in Sect. 4. This result shows that it is possible to
construct ensembles of classifiers that are competitive against the 1-NN-DTW
from a purely data-drive approach.

5 Conclusion and Future Work

In this paper, we have evaluated the use of different data representations in time
series classification and ensemble composition. We employed 5 different time
series transformations and 6 ensemble strategies. We performed experiments
with over 300 ensemble configurations on 45 data sets. Our extensive experi-
mental analysis makes a strong case for the use of representation diversity in
ensemble composition. Some ensemble configurations displayed excellent accu-
racy performance, being competitive with the 1-NN-DTW. Moreover, because
we conducted several experiments with cross-validation on the training data,
we have strong evidence that data-driven selection of ensemble configuration is
possible, and as shown in Sect. 4.1, capable of yielding good results.

As future work, we intend to analyze more time series representations and
ensemble strategies. We suspect that some meta-learning techniques would allow
for better selection of base classifiers and ensemble configurations.
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Abstract. In this paper, we study different discrete data clustering
methods, which use the Model-Based Clustering (MBC) framework with
the Multinomial distribution. Our study comprises several relevant issues,
such as initialization, model estimation and model selection. Addition-
ally, we propose a novel MBC method by efficiently combining the parti-
tional and hierarchical clustering techniques. We conduct experiments on
both synthetic and real data and evaluate the methods using accuracy,
stability and computation time. Our study identifies appropriate strate-
gies to be used for discrete data analysis with the MBC methods. More-
over, our proposed method is very competitive w.r.t. clustering accuracy
and better w.r.t. stability and computation time.

Keywords: Multinomial distribution · Model-Based Clustering

1 Introduction

Model-Based Clustering (MBC) estimates the parameters of a statistical model
for the data and produces probabilistic clustering [6,7,15,19]. To use the MBC
method for clustering data as well as automatically selecting K (number of
clusters), it is necessary to generate a set of candidate models. A simple approach
to generate these models is to separately estimate them using an Expectation-
Maximization (EM) method [13] with K = 1, . . . , Kmax. However, it can be
computationally inefficient for higher dimensional data and higher Kmax value.

Figueiredo and Jain [5] proposed a MBC method that integrates both model
estimation and selection task within a single EM algorithm. A different strategy,
called hybrid MBC [19], generates a hierarchy of models from Kmax clusters by
merging the parameters. Indeed, such an approach naturally saves computation
time as it does not explicitly learn K = Kmax −1, . . . 1 components models from
the data. In this paper, we propose a hybrid MBC method with the Multinomial
Mixture (MM) model and then empirically compare it with other MBC methods.
Moreover, we explicitly addresses two related issues: (1) initialization [3]: how to
set the initial parameters for the EM method and (2) model selection [2]: which
criterion to use for selecting the best model. Therefore, based on an empirical
c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 120–131, 2015.
DOI: 10.1007/978-3-319-24465-5 11
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study, we aim to answer the following questions: (a) which method should be
used for initialization? (b) how to efficiently generate a set of models? (c) what
is the difference among “learning from data” and “estimating from Kmax model
parameters”? and (d) what is the best model selection method?

Our overall contribution is to perform a comparative study among different
MBC methods with the MM. Individually, we: (1) propose (Sect. 3.6) a novel
MBC method and compare it with the state-of-the-art methods; (2) perform
empirical study on different initialization methods (Sect. 3.3) and (3) compare
different model selection methods (Sect. 3.5). We conduct experiments with syn-
thetic and real text data (for document clustering [19]) and identify particular
methods that should be used for initialization, candidate models estimation and
model selection. Therefore, the above contributions and experiments will natu-
rally answer the questions raised at the end of the previous paragraph.

In the remaining part of this paper, we study the background and related
work in Sect. 2, discuss different methods in Sect. 3, present the experimental
results with discussion in Sect. 4 and finally draw conclusions in Sect. 5.

2 Background and Related Work

Model-Based Clustering (MBC) [6,15] is a well-established method for cluster
analysis and unsupervised learning. MBC assumes a probabilistic model (e.g.,
mixture model) for the data and then estimates the model parameters by opti-
mizing an objective function (e.g., model likelihood). The Expectation Maxi-
mization (EM) [13] is mostly used in MBC to estimate the model parameters.
EM consists of an Expectation step (E-step) and a Maximization step (M-step)
which are iteratively employed to maximize the log likelihood of the data.

MBC methods have been exploited with the Gaussian distribution to analyze
continuous data [2,5–7,15]. Besides, they have been proposed to analyze discrete
data using the Multinomial distribution [14,17] and directional data using the
directional distributions [1,9,10]. In this paper, we only study and compare the
MBC methods with the Multinomial distribution.

The Multinomial Mixture (MM) is a statistical model which has been used
for cluster analysis with discrete data [14,17,20]. Meilă and Heckerman [14] stud-
ied the MBC methods with MM and compared them w.r.t. accuracy, time and
number of clusters. They found that the EM method significantly outperforms
others, which motivates us to solely focus on the EM related approaches.

Initialization of the EM method has significant impact on the clustering
results [3,12,13], because with different initializations it may converge to differ-
ent values of the likelihood function, some of which can be local maxima, i.e.,
sub-optimal results. To overcome this, several initialization strategies have been
proposed, see [3] for details. Meilă and Heckerman [14] investigated three ini-
tialization strategies for the EM with MM. In this paper, we consider their [14]
observations as well as empirically evaluate additional initialization methods for
the EM method which were discussed by Biernacki et al. [3].

In order to automatically select K (number of components), MBC method can
be used by first generating a set of candidate models with different values of K



122 M.A. Hasnat et al.

and then selecting the optimal model using a model selection criterion [6,15].
This strategy needs to address two issues: (a) how to generate the models? and
(b) how to select the best model? This paper considers both of these issues.
Particularly, we focus on the candidate models generation task and propose a
novel solution based on the Hybrid MBC (HMBC) [19] method.

HMBC method is a two-staged model that exploits both partitional and
hierarchical clustering. It begins with a partitional clustering with Kmax clus-
ters and then use the Hierarchical Agglomerative Clustering (HAC) on those
cluster parameters to generate a hierarchy of mixture models. It has differ-
ences with the Model-Based Hierarchical Clustering (MBHC) which employs
the HAC on each data point [6]. In practice, for a large number of samples, such
MBHC method is inefficient w.r.t. the required time and memory [19]. Several
HMBC methods have been proposed with different probability distributions, see
[8,10,18,19]. Among these, [18] proposed a method in the context of Bayesian
analysis. However, it requires an explicit analysis of the features, which can
be computationally inefficient for higher dimensional data. An efficient mixture
model simplification/fusion method is recently proposed in [8] for the Gaussian
distribution and in [9,10] for the directional distributions. They use informa-
tion divergences among the mixture models. In this paper, we follow a similar
approach and propose a novel HMBC method with the MM.

Model selection is one of the most prominent issues in cluster analysis [2,5,
7,15]. In general, a statistical model selection criterion is often used with the
MBC method, which is also called the parsimony-based approach [15]. See [5]
for a list of different criteria. A different approach performs model selection by
analyzing an evaluation graph, see [16] for such a method called the L-method.
To select model with MM, [14] uses the likelihood value. Recently, [17] proposed
the Minimum Message Length (MML) criterion for the MM. In this paper, we
aim to present a comparative study among these methods.

This paper has similarity with two previous work [14,17]. However, the key
differences are: (1) it proposes a novel method to efficiently generate candidate
models; (2) investigate additional initialization methods proposed in [3] and (3)
explore a wide range of model selection methods.

3 Methodologies

In the following sub-sections, first we present the model for the data, then discuss
the relevant algorithms and finally propose a complete clustering method.

3.1 Multinomial Mixture Model

Let xi = xi,1, xi,2, . . . , xi,D is a D dimensional discrete count vector of order V ,
i.e.

∑D
d=1 xi,d = V . Moreover, xi is assumed to be an independent realization of

the random variable X, which follows a V -order Multinomial distribution [4]:

M(xi|V,µ) =
(

V
xi,1, xi,2, . . . , xi,D

) D∏

d=1

μ
xi,d

d (1)
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here, µ is the D dimensional parameter with 0 ≤ μd ≤ 1 and
∑D

d=1 μd = 1. The
set of samples can be modeled with a Multinomial Mixture (MM) model of K
components:

f (xi|ΘK) =
K∑

k=1

πk M(xi|V,µk) (2)

In Eq. (2), ΘK = {(π1,µ1), . . . , (πK ,µK)} is the set of model parameters,
πk is the mixing proportion with

∑K
k=1 πk = 1 and M(xi|V,µk) is the density

function (Eq. (1)) associated with the kth cluster.

3.2 Expectation Maximization Method

To cluster data with the model (Eq. (2)), we estimate its parameters using an
Expectation Maximization (EM) [13] method that maximizes the log-likelihood:

L (Θ) =
N∑

i=1

log

K∑

k=1

πkM (xi|µk) (3)

where N is the number of samples. In the Expectation step (E-step), we compute
posterior probability as:

ρi,k = p (zi = k|xi) =
πk

∏D
d=1 μ

xi,d

k,d
∑K

l=1 πl

∏D
d=1 μ

xi,d

l,d

(4)

where zi ∈ {0, 1}K denotes the cluster label of the ith sample. In the Maximiza-
tion step (M-step), we update πk and μk,d as:

πk =
1
N

N∑

i=1

ρi,k and μk,d =
∑N

i=1 ρi,k xi,d
∑N

i=1

∑D
r=1 ρi,k xi,r

(5)

The E and M steps run iteratively until certain convergence criterion (e.g., dif-
ference of log-likelihood) is met or until a maximum number of iterations.

3.3 Initialization for the EM Method

The EM method requires the initial values of the parameters as an input. We
examine the following five methods to initialize the EM:

– Random: set the initial values randomly with 0 ≤ μd ≤ 1 and
∑D

d=1 μd = 1.
– rndEM [12]: run a large number of random start and select the one which

provides maximum likelihood value (Eq. (3)).
– Small EM (smEM) [3]: run multiple short runs of randomly initialized EM

and choose the one with the maximum likelihood value. Here, short run means
we do not wait until convergence and stop the algorithm when limited number
of EM iterations is completed.
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– Classification EM (CEM) [3]: it is similar to the smEM, except a classi-
fication stage is inserted between the E and M steps. The classification step
involves assigning each point to one of the K components using the conditional
probabilities (Eq. (4)) computed in the E step.

– Stochastic EM (SEM) [3]: it is similar to the smEM, except a stochastic
step is inserted between the E and M steps. The stochastic step assigns xi at
random to one of the mixture components K according to the Multinomial
distribution with the conditional probabilities (Eq. (4)).

3.4 Candidate Models Generation

Multiple EM (Mul-EM): This is the simplest way to generate the candidate
models. In this approach, the EM method is run Kmax times to generate the
candidate models with K = 1, . . . , Kmax clusters.

Integrated-EM (Int-EM): This approach [5,17] do not explicitly generates
the candidate models. Instead, it employs a single EM method that estimates the
MM with K clusters and evaluate it at the same time. It begins with K = Kmax

clusters and estimate its parameter. Then it annihilates a cluster with minimum
πk and estimate parameters with K −1 clusters. This process continues within a
single EM method until K = 1. See the EM-MML algorithm of [17] for details.

EM Followed by Hierarchical Agglomerative Clustering (EM-HAC):
This is our proposed model generation method, which aim is to generate a hierar-
chy of Multinomial Mixture (MM) models. Therefore, we exploit the Hierarchical
Agglomerative Clustering (HAC) on the mixture model parameters Θ̂K . In gen-
eral, the HAC permits a variety of choices based on three principal issues: (a)
the dissimilarity measure between clusters; (b) the criterion to select the clusters
to be merged and (c) the representation of the merged cluster.

We use the symmetric Kullback–Leibler Divergence [4] (sKLD) as a measure
of the dissimilarity between two Multinomial distributions as:

sKLD =
DKL (µa,µb) + DKL (µb,µa)

2
,where,DKL (µa,µb) =

D∑
d=1

µa,d ln

(
µa,d

µb,d

)
(6)

We choose “minimum sKLD” as the merging criterion (issue (b)). Besides we
use the “complete linkage” criteria which is determined empirically.

In this clustering strategy, the set of models is represented by their parame-
ters. After determining the clusters to be merged, similar to [8,10], we compute
the merged cluster parameters (issue (c)) as:

πmerged =
∑

l∈Θ̂sub

πl,k and µmerged =

∑
l∈Θ̂sub

πlµl

πmerged
(7)

where Θ̂sub ⊆ Θ̂Kmax
. As an outcome, we obtain a set of MMs with different K,

which will be explored further for model selection.
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3.5 Model Selection

Consider that, after HAC we have a set of MMs with Kmax, . . . , 1 components.
The task of model selection can be defined as selecting the mixture model
with Ko components such that Θ̂Ko

= {(π̂1, μ̂1), . . . , (π̂Ko
, μ̂Ko

)}. We consider
parsimony-based [15] and evaluation graph based [16] methods in this work.

In the parsimony-based method [15], an objective function is employed, which
minimizes certain model selection criteria. Such criteria involve the negative log
likelihood augmented by a penalizing function in order to take into account
the complexity of the model. One of the most widely used criteria is called the
Bayesian Information Criterion (BIC) [6]:

BIC(K) = −2L(Θ̂) + νlog (N) (8)

where ν = KD − 1 is the number of free parameters of the MM. The Integrated
Completed Likelihood (ICL) criterion adds BIC with the mean entropy [2]:

ICL(K) = BIC(K) − 2
N∑

i=1

log (p(zi|xi)) (9)

where p(zi|xi) is the conditional probability of the classified class label zi ∈
{1, . . . , K} for the sample xi. The Minimum Message Length (MML) criterion,
which has been recently proposed for MM, has the following form [17]:

MML(K) =
D

2

∑

k:π̂k>0

log
(

N π̂k

12

)

+
Knz

2
log

N

12
+

Knz (D + 1)
2

− L(Θ̂) (10)

where Knz is the number of clusters with non-zero probabilities. After computing
the values of the model selection criteria for different K ∈ {1, ...,Kmax}, we select
Ko as the one that provides the minimum value of certain criterion.

For the evaluation graph based method, we consider the L-method (see [16]
for details), where the knee point is detected in the plot constructed from the
BIC values. The idea is to fit two lines at the left and right side of each point
within the range 2,...,Kmax − 1. Finally, select the point as Ko that minimizes
the total weighted root mean squared error.

3.6 Complete Clustering Method with MM

We propose a complele clustering method with the MM which clusters data and
selects the number of clusters automatically. It consists of the following steps:

– Step 1: Apply the EM algorithm (Sect. 3.2) to estimate MM parameters with
Kmax clusters, i.e., Θ̂kmax

.
– Step 2: Apply the HAC method (EM-HAC in Sect. 3.4) on Θ̂kmax

to generate
a set of models {Θ̂k}k=kmax−1,...,2.

– Step 3: Apply a model selection method (Sect. 3.5) to select Θ̂Ko
, i.e., the

mixture model with the optimal number of components Ko.
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4 Experimental Results and Discussion

We conduct experiments using both simulated and real data. For the evaluation,
we compute the Adjusted Rand Index (ARI) [11], which is a pair counting based
similarity measure among two clustering. Therefore, high value of ARI indicates
highly similar clustering and hence high accuracy. For a dataset, we compute
the ARI among the clustering result of a particular method and the true labels.

We evaluate the methods using the clustering accuracy, stability and com-
putation time. We run each experiment 10 times and record the average value
of the ARI as the accuracy, standard deviation of the ARI as the stability1 and
the average computation time.

4.1 Experimental Datasets

Simulated Datasets: We draw a finite set of discrete count vectors χ =
{xi}i,...,N from MMs with different numbers (3, 5 and 10) and types: well-
separated (ws) and not well-separated (nws) of clusters. Similar to [17], the
types are verified using the sKLD2 values. We consider samples of different
dimensions: 3, 5, 10, 20 and 40. For each MM, we generate 100 sets of data
each having 1000 i.i.d. samples. In the synthetic data generation process, first
we contruct a MM model with K clusters. The model parameters (µk) for each
cluster is sampled from a Dirichlet distribution. The order (Vk) of each cluster is
sampled randomly from a certain range between 0.5D to 1.5D. After determining
the cluster parameters (µk) and orders (Vk) we draw the data samples.

Real Datasets: We consider 8 text datasets used in [20]. They consist of dis-
crete count vectors, extracted from different documents collections. The choice
was due to its good representation of different characteristics, such as the num-
ber of observations (documents), number of features (terms) and the number of
clusters. The chosen datasets are listed in Table 1. We refer the readers to the
Sect. 4.2 of [20] for additional details about the construction of these datasets.

4.2 Comparisons

First we compare the initialization strategies listed in Sect. 3.3 and consistently
use the best one for the rest of the experiments. Afterward, we evaluate the
model generation methods discussed in Sect. 3.4. Finally, we evaluate the model
selection strategies discussed in Sect. 3.4.
1 Stability provides a measure of robustness w.r.t. different initializations. A stable

method should provide similar results for different runs, irrespective of its initializa-
tion. Therefore, a smaller value of the standard deviation indicates similar results
for different runs and hence higher stability of the clustering method.

2 A lower sKLD value among the cluster parameters indicates well-separated clusters,
whereas higher value indicates less separation or a certain amount of overlap. Besides
computing the sKLD value, we also verified the separation by observing the Bayes
error rate among the clusters.
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Table 1. Document text datasets for real data experiments. N denotes num-
ber of samples, D denotes number of features and K denotes the number
of clusters. The source of the datasets are - NG20: 20 Newsgroups, Classic:
ACM/CISI/CRANFIELD/MEDLINE, Ohscal: OHSUMED, K1b: WebACE, Hitech:
SJM-TREC, Reviews: SJM-TREC, Sports: SJM-TREC and La12: LAT-TREC.

NG20 Classic Ohscal K1b Hitech Reviews Sports La12

N 19949 7094 11162 2340 2310 4069 8580 6279

D 43586 41681 11465 21839 10080 18483 14870 31472

K 20 4 10 6 6 5 7 6

Initialization Methods: The experimental settings for the initialization meth-
ods (see Sect. 3.3) consist of: 1 trial for Random, 100 trials for rndEM, 5 trials
with 50 maximum EM iterations for smEM and CEM and 1 trial with 500
maximum EM iterations for SEM. The initial parameters obtained from these
methods are experimented with the EM method discussed in Sect. 3.2. Figure 1
illustrates the results w.r.t. the clustering accuracy for both simulated3 and real
datasets. From all experimental results we have the following observations:

– For the simulated data, the smEM is the best method while the CEM is very
competitive. However, for the real data smEM provides the best accuracy
(except the sport dataset). The second choice is the CEM method.

– In terms of stability, smEM is the best for simulated data and CEM is best
for the real data.

– In terms of computation time, these methods can be ordered as follows:
Random < rndEM < CEM < smEM < SEM.

Similar to [14], we emphasize on the clustering accuracy as the main criteria to
evaluate the initialization methods. Therefore, we choose the SEM method for
further experiments.

Model Generation Methods: In this experiment, we aim to generate a set
of candidate models with the methods discusses in Sect. 3.4. Among them, the
Mul-EM and EM-HAC explicitly generate the models and the Int-EM generates
them implicitly. All methods are initialized with the smEM method. Moreover,
same initializations are used in Int-EM and EM-HAC. Settings of these methods
consist of: 100 maximum number of EM iterations, 10−5 as the convergence
threshold for the log-likelihood difference, Kmin = 2 and Kmax = 15, execept for
NG20 Kmax = 30. Figure 2 illustrates a comparison of these methods w.r.t. the
accuracy4 and stability. Table 2 provides a comparison5 of the computation time
for real data. From all experimental results we have the following observations:
3 Due to limited space, we show results only for nws simulated samples with D = 40.
4 This computation considers that the true numbers of clusters are known.
5 Time comparison for the synthetic data provides similar observation as real data.

Therefore, to save space we do not present those results.
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Fig. 1. Illustration of the accuracy of the initialization methods, computed from: (a)
simulated nws samples with K = 3 and (b) real text datasets.

Fig. 2. Illustration of the clustering accuracy in (a) and (b), and stability in (c) and
(d) for the model generation methods. (a) and (c) are computed from the simulated
nws samples; (b) and (d) are computed from real text datasets.
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– For the simulated data: EM-HAC and Int-EM are very competitive w.r.t.
accuracy and time (results not shown). EM-HAC is the best on stability.
Mul-EM was always performing worse except in a very few experiments.

– For the real6 data, no single method outperforms others w.r.t. the accuracy.
EM-HAC performs best in 3 datasets, Int-EM is best in 4 datasets and
Mul-EM is best in 1 dataset. EM-HAC is best w.r.t. the stability (7 out
of 8 datasets). Most interestingly, EM-HAC shows significantly better perfor-
mance in terms of computation time as it is ∼ 2.5 times faster than Int-EM
and ∼ 9 times faster than Mul-EM.

Based on the above experiments and observations, we can suggest that Int-EM
is preferred when only accuracy is concerned. However, EM-HAC is preferred
when stability and time has importantce besides accuracy.

Table 2. Comparison of the computation time (in seconds) among the model genera-
tion methods.

NG20 Classic ohscal k1b hightech reviews sports la12

EM-HAC 108.5 6.9 19.2 3.8 3.6 9.9 17.7 19.9

Int-EM 353.2 10.8 42.2 9.6 8.2 21.7 46.3 44.2

Mult-EM 2844.0 54.4 95.6 29.1 20.7 59.1 104.1 134.6

Model Selection Methods: We evaluate different model selection criteria (see
Sect. 3.5) with the EM-HAC. Moreover, we consider the MML with Int-EM, also
called EM-MML, as proposed in [17]. Figure 3 illustrates a comparison with both
simulated and real data w.r.t. the rate of correct number of components selection.
Our observations from these results are as follows:

– For the simulated data: BIC provides the best rate (except K = 3). ICL is
equivalent to the BIC for higher K. Rate of MML decreases with the increase
of K. Moreover, MML performs better with EM-HAC rather than with Int-
EM. The LM provides mediocre accuracy for all clusters. The LLH criterion
fails significantly.

– For the real data: LM provides very good (∼ 90%) rate for 4 (classic, high-
tech, review and la12 ) datasets. Among the other methods, MML shows suc-
cess in the review dataset, LLH is successful for the classic dataset.

From the above observations we realize that, the L-method (LM ) is the best
choice with the proposed clustering method. However, we want to emphasize
that it is yet necessary to conduct further research on the model selection issue
as there is no single method which uniquely provides reasonable rate for all data.
6 In this paper we are interested only to compare different MM based MBC methods.

We refer readers to [20] for a comparison among different other methods. From [20]
we observed that, the mixmns (Mul-EM in this paper) performs better than the
non-MBC methods, such as the kmns (k-means) and the skmns (spherical k-means).
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Fig. 3. Illustration of the rate of correct model selection, results in (a) are computed
from the simulated samples and results in (b) are computed from real text datasets.

5 Conclusions

In this paper, we present a comparative study among different clustering methods
with the Multinomial Mixture models. We experimentally evaluate the related
issues, such as initialization, model estimation and generation and model selec-
tion. Besides, we propose a novel method for efficiently estimating the candidate
models. Experimental results on both simulated and real data show that: (a)
small run of EM (smEM) is the best choice for initialization (b) proposed hybrid
model-based clustering, called EM-HAC is the best choice for candidate models
estimation and (c) L-method is the best choice for model selection. As future
work, we foresee the necessity to conduct further research on the model selection
issue. Moreover, it is also necessary to evaluate these methods on more real-world
discrete datasets obtained from a variety of different contexts.

Acknowledgments. This work is funded by the project ImagiWeb ANR-2012-
CORD-002-01.
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9. Hasnat, M.A., Alata, O., Trémeau, A.: Unsupervised clustering of depth images
using watson mixture model. In: 22nd International Conference on Pattern Recog-
nition (ICPR), pp. 214–219. IEEE (2014)
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Abstract. In the context of large-scale problems, traditional multiclass
classification approaches have to deal with class imbalancement and com-
plexity issues which make them inoperative in some extreme cases. In
this paper we study a transformation that reduces the initial multiclass
classification of examples into a binary classification of pairs of exam-
ples and classes. We present generalization error bounds that exhibit the
interdependency between the pairs of examples and which recover known
results on binary classification with i.i.d. data. We show the efficiency of
the deduced algorithm compared to state-of-the-art multiclass classifica-
tion strategies on two large-scale document collections especially in the
interesting case where the number of classes becomes very large.

1 Introduction

The overwhelming growth of textual and visual data contents on the Web raises
the issue of automatically structuring these collections into large, open-domain
taxonomies. These taxonomies contain categories organized in a hierarchical
structure such as a tree or a directed acyclic graph. The open directory project,
maintained by roughly 90, 000 human editors, is an example of such taxonomies:
it lists about 4 million websites distributed among more than 1 million classes. In
that context, large-scale multiclass classification consists in assigning one class
label to each document from the set of leaf nodes of the hierarchy.

In these Web-scale datasets, the classes exhibit a long-tailed distribution [1] in
the sense that most of them contain very few examples. As most state-of-the-art
multiclass classification approaches learn one scoring function for each class, they
do not scale well to large number of classes in terms of training time, and, more
importantly, they struggle with under-represented classes that tend to be never
predicted. Ultimately, the predictions would be unchanged if most of the least
represented classes are ignored.
c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 132–144, 2015.
DOI: 10.1007/978-3-319-24465-5 12
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In this paper, we present a new approach for multiclass classification that can
deal with large number of classes with very few representative examples. The
approach hinges on a theoretical analysis of algorithms that optimize ranking
criteria for multiclass classification, such as those proposed in [17,22]. We provide
a generalization error bound based on the Rademacher complexity for interde-
pendent data that provides guarantees for the multiclass classification strategy
based on a reduction to binary classification of pairs of couples (instance, class).
The analysis suggests that the guarantees in terms of generalization performance
degrades linearly with the number of classes for previous approaches that learn
one parameter vector per class. To avoid this undesirable scaling of the sample
complexity with respect to the number of classes, we present a new approach
based on learning a combination of similarity features between instances and
classes, where the similarities are computed by identifying a class with the set of
its representative examples. Further, the reduction framework described above
allows us to learn a single parameter vector with a dimension that does not
depend on the number of classes. We empirically demonstrate that our app-
roach is competitive with state-of-the-art multiclass classification approaches, in
particular in terms of the macro F-measure, which gives higher emphasis to the
correct prediction of rare classes than the classification accuracy. In addition, the
number of parameters we learn is of order 107 times less than conventional mul-
ticlass classification models, which makes the approach appealing for large-scale
classification.

In Sect. 2, we position our work with respect to the literature. Section 3
presents our theoretical analysis and our proposed classification strategy. The
design of the features and the experimental results are in Sect. 4.

2 Related Work

Several techniques exist to reduce multiclass problems with K classes into binary
classification problems. The most popular approaches include the well-known
one-versus-one (OVO), one-versus-all (OVA) [10], and Error Correcting Output
Codes (ECOC) approaches. In OVO, a binary problem is created for each pair
of classes of the initial problem, leading to K(K − 1)/2 binary problems and,
therefore, to as many binary classifiers. The prediction for a new instance is
the class which receives the majority of the votes. In OVA, K binary problems
are created, each one being associated to a specific class seen as the positive
class and the other as forming the negative class. Given real-valued predictors
g1, . . . , gK , the predicted class for an instance x is given by arg maxy gy(x).

In the ECOC-based approach, a binary code ck of length L is assigned to each
class k, giving rise to L binary classification problems. One binary predictor is
learned for each of the L induced binary problems and, at prediction time, infer-
ence is performed by selecting the class that minimizes the Hamming distance
between its code and the predicted code. Methods to speed up prediction or
training with ECOC have recently been proposed: for example, only a subset of
the classifiers may be used at inference time without loss of accuracy [13]; in
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another direction, a Naive Bayes approach that only requires a single pass over
the data for training has proved effective [14].

Methods that achieve logarithmic-time prediction or training have been pro-
posed in [2,3]: they rest on binary tree structures where each leaf corresponds to
a class and inference is performed by traversing the tree from top to bottom, a
binary classifier being used at each node to determine the child node to develop.

Ranking approaches to multiclass classification [17,22], or the constraint clas-
sification framework of [6] can be seen as a reduction using binary classifications
of pairs of classes (given an example), similar to ours. The proposed reduction
strategy allows to obtain new generalization error bounds, and lead to a differ-
ent algorithm. While state-of-the-art approaches learn one scoring function per
class, and thus have similar computational and sample complexities similar to
the OVA approach, we design similarity features between classes and examples
allowing to learn a single parameter vector for the whole problem.

A similar approach for learning representations of classes was also proposed
in [21]. The latter learns a projection of examples and classes into a low dimen-
sional space, which reduces both training and inference time. In contrast to our
approach, the aforementioned learns one parameter vector per class, while we use
joint features of classes and examples allowing to reduce the number of vector
parameters to one.

3 Multiclass to Binary Reduction

3.1 Framework

We consider monolabel multiclass classification problems defined on a joint space
X × Y where X ⊆ R

d is the input space and Y = {1, . . . , K} the output space,
made of K class labels. Elements of X × Y are denoted as xy = (x, y). Further-
more, we assume the training set S = (xyi

i )m
i=1 is made of i.i.d pairs distributed

according to a fixed but unknown probability distribution D, and we consider
a class of functions G = {g : X × Y → R} as our predictors. We define the
instantaneous loss of g ∈ G on an example xy as:

e(g,xy) =
1

K − 1

∑

y′∈Y\{y}
1g(xy)≤g(xy′ ), (1)

where 1π is the indicator function that is equal to 1 if the predicate π is true
and 0 otherwise. Compared to the classical multiclass error:

e′(g,xy) = 1y �=argmaxy′∈Y g(xy′
),

the loss of (1) estimates the average number of classes, given any input data, that
get a greater scoring by g than the correct class. The loss (1) is hence a ranking
criterion, and the multiclass SVM of [22] and AdaBoost.MR [17] optimize convex
surrogate functions of this loss. This is also used in label ranking [7], where the
task is to predict a ranking of all labels instead of predicting a single label y
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given an instance x. The multiclass classification problem we are going to study
is that of finding a function g ∈ G using the labeled training set S with small
generalization error L(g):

L(g) = Exy∼D [e(g,xy)] . (2)

Accordingly, the empirical error of g ∈ G over S is

L̂m(g,S) =
1
m

m∑

i=1

(
1

K − 1

∑

y′∈Y\{y}
1

g(xy
i )≤g(xy′

i )

︸ ︷︷ ︸
e(g,x

yi
i )

) (3)

3.2 Reduction Strategy

We further work out the empirical loss of Eq. (3) in order to (i) have it resemble a
more usual binary classification loss with, in particular, a single sum running over
only one index, (ii) make apparent the need of dealing with non-i.i.d. random
variables and (iii) after a theoretical introduction, set the stage for our practical
binary reduction approach.

A first step to reshape the empirical loss is to see that the instantaneous
loss (1) can be rewritten as

e(g,xy) =
1

K − 1

∑

y′∈Y\{y}
1ỹh(xy,xy′ )≤0,

where h is defined as h(xy,xy′
) = g(xy)− g(xy′

). This bears strong resemblance
with a binary-classification-loss-based risk, a resemblance that can be strength-
ened by introducing the transformed set T (S) of size n = m(K − 1) defined as

T (S) = {(Zj , ỹj) : j = 1, . . . , n} , (4)

where each Zj is one of the pairs (xy
i ,xy′

i ), and ỹj = 1 if the first observation
in Zj is constituted by an example xi and its true class in S (i.e. y = yi) and
the second observation is constituted by the same example and any other of the
K − 1 classes; and ỹj = −1 otherwise (i.e. if the order is reverse). This allows us
to rewrite the empirical loss of (3) as

LT
n (h, T (S)) =

1
n

n∑

j=1

1ỹjh(Zj)≤0. (5)

With these definitions at hand, it is clear that the selection of a hypothesis
in G minimizing the empirical risk of (3) over the training set S, is equivalent
to the search of a hypothesis in H = {h : h(xy,xy′

) = g(xy) − g(xy′
), g ∈ G}

minimizing the empirical risk of (5) over T (S). However, even if the examples
in S are i.i.d., the examples in T (S) are no longer independent since the same
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observations xy ∈ S are involved in different pairs of T (S). Thus, in order to
obtain generalization error bounds LT

n (h, T (S)) we need to address the issue of
learning with interdependent data.

There exist several ways to tackle this problem among which two settings
received particular attention in the literature. The first one deals with learn-
ing from mixing processes, where the dependency between random variables
decreases over time [12,18]. The second direction, on which the present work is
based on, is developed around the idea of graph coloring that divides a graph,
representing the relations between random variables, into sets of independent
random variables called proper cover of the graph [8].

A proper cover of T (S) is constituted of K − 1 disjoint sets (Ck)K−1
k=1 each

containing m independent examples. For all k ∈ {1, . . . , K − 1} it is defined as

Ck = {(Zk+j(K−1), ỹk+j(K−1)); j ∈ {0, . . . , m − 1}}

Moreover, (Ck, αk)K−1
k=1 is said to be a proper exact fractional cover of T (S),

if (Ck)K−1
k=1 is a proper cover of T (S) and if ∀k, αk > 0 and

∀i ∈ {1, . . . , n},
∑

k=1

αk1(Zi,ỹi)∈Ck
= 1.

The fractional chromatic number of T , denoted as χ∗
T is then the minimum

sum of weights, or the minimum number of sets containing each independent
random variables, which for the proposed transformation is equal to K − 1.
Figure 1 depicts the transformation and its associated proper exact fractional on
a toy problem.

S

T (S)
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Fig. 1. The proper exact fractional cover of the set T (S) obtained after transformation
of the training set S = {x1

1,x
2
2,x

3
3}. For the sake of clarity, the class labels of pairs of

examples are omitted. The fractional chromatic number of T is in this case χ∗
T = 2.
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Using graph coloring arguments, [8] extended Hoeffding’s inequality to sums
of interdependent random variables and based on that result, different studies
proposed new generalization error bounds for learning with interdependent data,
thus proving the consistency of the ERM principle for this case [16,20]. Here we
build on [20] who proposed a generalization of [11] concentration inequality to
the case of interdependent random variables.

Our theoretical result is the following theorem which provides data-dependent
bound on the generalization error of the multiclass classifier (Eq. 2). This result
is at the basis of the algorithm for the binary classification of pairs of examples
that we expose in the next section. We consider here kernel-based hypotheses
with κ : Z → R a positive semidefinite (PSD) kernel and Φ : X × Y → H its
associated feature mapping function, defined as:

GB = {xy ∈ X × Y �→ 〈w, Φ(xy)〉 | ||w|| ≤ B} (6)

where w is the weight vector defining the kernel-based hypotheses and 〈·, ·〉
denotes the dot product. We further define the following associated function
class:

HB = {(xy,x′y′
) ∈ Z �→ gw(xy) − gw(x′y′

) | gw ∈ GB}.

Theorem 1. Let S = (xyi

i )m
i=1 ∈ (X×Y)m be a dataset ofm examples drawn i.i.d.

according to a probability distribution D over X × Y and T (S) = ((Zi, ỹi))n
i=1 ∈

(Z × {−1, 1})n the transformed set obtained with the transformation function T
defined above. Further let κ : Z → R be a PDS kernel, and let Φ : X × Y → H

be the associated feature mapping function. Then for all 1 > δ > 0 with proba-
bility at least (1 − δ) over T (S) the following generalization bound holds for all
hw ∈ HB:

LT (hw) ≤ εT
n (hw, T (S)) +

2BG(T (S))
m

√
K − 1

+ 3

√

ln(2δ )
2m

(7)

where εT
n (h, T (S)) = 1

n

n∑

i=1

L(ỹihw(Zi)) with the surrogate Hinge loss L :

t �→ min(1,max(1 − t, 0)), LT (hw) = ET (S)[LT
n (hw, T (S))] and G(T (S)) =

√∑n
i=1 dκ(Zi) with

dκ(xy,xy′
) = κ(xy,xy) + κ(xy′

,xy′
) − 2κ(xy,xy′

)

Proof. Exploiting the fact that L dominates the 0/1 loss and using the fractional
Rademacher data-dependent generalization bound proposed for interdependent
data in Theorem 4 of [20] one has

LT(hw)≤εT (hw) ≤ ε̂T
n (hw, T (S))+R̂T

n(L◦HB ,S)+3

√

χ∗
T ln(2δ )
2n

Where εT (hw) = ET (S)[ε̂T
n (hw, T (S))] and R̂T

n (L ◦ HB ,S) is the empirical frac-
tional Rademacher complexity of L◦HB on T (S). Further, as L is 1-Lipschitz, so

R̂T
n (L ◦ HB ,S) ≤ R̂T

n (HB ,S)
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where

R̂T
n (HB ,S)=

K−1∑

k=1

2αk

M
Eσ sup

h∈HB

m−1∑

j=0

σjhw(Zk+j(K−1))

Now, for all k∈{1, ..,K−1} and j ∈{0, ..,m−1}, let zkj and z′
kj be the first and

the second pair of Zk+j(K−1), then from the bilinearity of dot product and the
Cauchy-Schwartz inequality, R̂T

n (HB ,S) is upper-bounded by

K−1∑

k=1

2αk

n
Eσ sup

hw∈HB

〈

w,

m−1∑

j=0

σj(Φ(zkj) − Φ(z′
kj))

〉

≤
K−1∑

k=1

2Bαk

n
Eσ

∥
∥
∥
∥
∥
∥

m−1∑

j=0

σj(Φ(zkj) − Φ(z′
kj))

∥
∥
∥
∥
∥
∥

Further, for all i, j ∈ {0, . . . , m − 1}2, i �= j, we have Eσ[σiσj ] = 0 so

R̂T
n (HB ,S) ≤

K−1∑

k=1

2Bαk

n

√
√
√
√

m−1∑

j=0

dκ(zkj , z′
kj)

=
2Bχ∗

T

n

K−1∑

k=1

αk

χ∗
T

√
√
√
√

m−1∑

j=0

dκ(zkj , z′
kj)

Now as
∑K−1

k=1
αk

χ∗
T

= 1 and that t �→ √
t is concave, from Jensen inequality we

have

R̂T
m(HB ,S) ≤ 2Bχ∗

T

n

√
√
√
√

K−1∑

k=1

αk

χ∗
T

m−1∑

j=0

dκ(zkj , z′
kj)

The result follows from rearranging the examples and the equalities χ∗
T = K −1,

and n = (K − 1)m.

3.3 Favoring Low-Dimensional Feature Maps

Our reduction relies on the joint representation Φ(xy) of features and classes.
Such feature maps are at the basis of algorithms such as structured SVM (see e.g.
[19]), to account for features encoding properties of structures such as sequences
or trees. However, in multiclass classification, the output space is unstructured
and these algorithms are then applied by taking a “trivial” feature map such
that even if a single parameter vector is used, it is in fact the concatenation
of one parameter vector per class. In that case, Φ(xk) ∈ R

dK (with x ∈ R
d)

is a vector where all entries are zero except those with indices in the range
[1+(k −1)d; kd], which are equal to x. The reduction of multiclass classification
to constraint classification of [6] follows the same idea. With this kind of joint
(instance, class) representation, the natural regularization is to constrain each
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Algorithm 1: Multiclass reduced to binary classification (mRb)
Input: Labeled training set S = (xyi

i )mi=1 ;
A binary classifier A ;
Initialize
T (S) ← ∅ ;
for i = 1..m do

for k = 1..K do
if yi > k then

T (S) ← {(Φ(xyi
i ) − Φ(xk

i ), +1)};
end
if yi < k then

T (S) ← {(Φ(xk
i ) − Φ(xyi

i ), −1)};
end

end
end
Learn A on T (S);

parameter vector to have a norm smaller than some B. The whole vector w would
then have a norm about KB, leading the capacity term of Theorem 1, G(T (S)),
to grow linearly with K. To avoid this linear deterioration of the generaliza-
tion performance guarantees, we might choose to put a stronger regularization
on some classes, e.g. the rare classes. But then these heavily regularized classes
would be penalized because the magnitude of their predicted scores would be
smaller: they would rarely or never be predicted. We propose to give an alter-
native answer to avoid the dependence of the penalty term on K. We advocate
the design of a non-trivial joint feature representation Φ(xy) by using a small
number of adequately chosen similarity features between examples and classes,
so that this joint feature space is the same for any number of classes. The goal of
learning is then to combine these features, using the same parameter vector for
all classes. Then, the natural scaling of the penalty term of Theorem1 should
remain constant, and the detrimental effect of having stronger regularization on
certain classes disappears. The proposed approach denoted by mRb, for multiclass
reduced to binary classification, is hence depicted in Algorithm1. As the learned
classifier from the function class GB is linear in the feature space, the output
of a function h ∈ HB over an example (xy,xy′

) can be computed as the dot
product between the learned weight vector, w, and the difference between the
vector representations Φ(xy)−Φ(xy′

). For testing a new example x′, we estimate
Φ(x′y) for all x′y pairs. Given the learned weight vector w, the predicted class
is the one which maximizes the dot product

〈
w, Φ(x′y)

〉
.

4 Experiments

We use non-trivial joint feature representation, which is popularly used in text
classification domain. So, we evaluate the proposed method for multi-class clas-
sification in a large-scale scenario using DMOZ and Wikipedia datasets of the
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Large Scale Hierarchical Text Classification challenge (LSHTC 2011) [15]. These
datasets contain 27875 and 36504 categories respectively for DMOZ and Wikipedia
and they are provided in a pre-processed format using stop-word removal and
stemming. The dimension of the vectorial space (d), the size of the training set
(m) and the test set are respectively 594158, 394756 and 104263 for DMOZ and
346299, 456886 and 81262 for Wikipedia. For each of these datasets we randomly
draw several samples with increasing number of classes: 100, 500, 1000, 3000,
5000 and 7500 and by keeping the same proportion of examples in the training
and the test sets than in the initial collections. For the feature mapping, we
used the following features in the vector representation of Φ(xy) (Table 1) by
considering a class y as a mega-document, constituted by the concatenation of
all of the documents in the training set belonging to it. Almost all the features,
except 9 and 10, are classical features employed in learning to rank by assimilat-
ing a class and a document to respectively a document and a query. The former
two are the distance of the example x to its two nearest neighbours in class y.
Since the absolute values of each feature for the documents are different and not
comparable, we normalize them such that the feature values are confined within
the range of 0 to 1. Following our theoretical result, we used SVM with linear
kernel as our binary classification algorithm. The value of the hyperparameter
C is chosen from a range of values from 10−3 to 103 by cross-validation. We
compared the proposed approach, mRb (Fig. 1), with the hierarchical reduction
approach (LogT) proposed by [3] and the following multiclass classification tech-
niques using the LibLinear package [5] that implements them all: One Vs. All
(OVA), One Vs. One (OVO) and Multiclass SVM (M-SVM) proposed by [4]. For all of
these methods we adopted the tfidf encoding of features as it provided the best
performance. Results are evaluated over the test set using the accuracy and the
macro F1 measure (MaF1), which is the harmonic average of macro precision and
macro recall. The reported performance is averaged over 50 random (train/test)
sets of the initial collection for every fixed number of classes we considered. In
all of our experiments, we used a server with an intel Xenon 1.8 HGz processor
and 16 GB of RAM.

Table 1. Let xt represent the term frequency of term t in document x, and V the
set of distinct terms within S, then yt =

∑
x∈y xt, |y| =

∑
t∈V yt, St =

∑
x∈S xt,

lS =
∑

t∈V St. It is the inverse document frequency of term t, and d1(x
y) and d2(x

y)
are the distances of x to its two nearest neighbours in class y.
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Table 2. Accuracy, MaF1 of methods that could be trained with 7500 classes of DMOZ

and Wikipedia collections. Nc is the proportion of classes that are covered. Statistics
are given over 50 random samples of training/test sets.

We start our evaluation by analyzing the performance measures of different
approaches on the setting with the largest number of classes we considered in
our experiments (K = 7500). Table 2 summarizes results obtained by mRb, OVA
and LogT, as the corresponding training processes of M-SVM and OVO were killed
by the system and did not pass the scale. Results are averaged over 50 random
splits of tests sets. We use bold face to indicate the highest performance rates,
and the symbol ↓ indicates that performance is significantly worse than the
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Fig. 2. MaF1 of all methods with respect to the number of classes for DMOZ (top left)
and Wikipedia (top right). Training time in seconds of all methods with respect to the
number of classes for Wikipedia (bottom).
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Fig. 3. Distribution of classes with respect to the number of documents they contain
for DMOZ-7500.

best result, according to a Wilcoxon rank sum test used at a p-value threshold
of 0.01 [9]. The competitive methods are OVA and mRb with a discrepancy over
their accuracy and MaF1 measures on both collections. To analyze this divergence
we estimated the proportion of classes that have been covered, or for which at
least one true positive document was found. It comes out that mRb covers 6% to
12% more classes than OVA (that is 465 to 900 more classes on both datasets).
The reason here is that OVA is affected by the class imbalance problem especially
in the extreme case where classes contain very few documents. For the large
scale scenario this problem is accentuated as the class distribution is long-tailed,
as for example in DMOZ-7500, more than half of the classes contain less than
5 documents (Fig. 3). We also analyze the behavior of the various algorithms
for increasing number of classes. Figure 2 (top) illustrates this by showing the
MaF1 measures on DMOZ and Wikipedia with respect to the number of classes.
As expected all performance curves decrease monotonically with respect to an
increasing number of classes. The breaking points beyond which OVO and M-SVM
cannot be trained, happen at the same time on both collections for respectively
K = 500 and K = 3000 classes. The performance of mRb are in between of those
of OVA and M-SVM before the breaking point, with a slight advantage for M-SVM,
while mRb uniformly outperforms OVA with a larger gap on Wikipedia. We notice
that on this collection, mRb achieves for 7500 classes MaF1 score comparable to
the OVA’s one for 5000 classes. Comparatively, for K = 3000, the numbers of
parameters of these two models are roughly 5.4×108 to 6.5×108 on respectively
Wikipedia and DMOZ collections which are O(107) with respect to the fixed
number of parameters of mRb we have. Figure 2 (bottom) summarizes the training
time of all methods for an increasing number of classes on Wikipedia. mRb has
the second fastest running time after LogT which together with its small number
of parameters and its performance makes it appealing for classification in large-
scale taxonomies.
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5 Conclusion

We presented a new method for large-scale multiclass classification based on
a reduction of multiclass classification to binary classification. The theoretical
analysis based on the fractional Rademacher complexity shows that learning a
single scoring function for all classes, instead of one scoring function per class,
avoids the capacity term to grow linearly with the number of classes, contrarily
to existing methods. In addition, to have better scalability than existing meth-
ods, the features that we designed to jointly represent classes and documents
improved the covering of rare classes compared to its counterparts, which is also
depicted on MaF1 score.
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Abstract. In recent years, stream-based active learning has become
an intensively investigated research topic. In this work, we propose a
new algorithm for stream-based active learning that decides immedi-
ately whether to acquire a label (selective sampling). To this purpose,
we extend our pool-based Probabilistic Active Learning framework into
a framework for streams. In particular, we complement the notion of
usefulness within a topological space (“spatial usefulness”) with the con-
cept of “temporal usefulness”. To actively select the instances, for which
labels must be acquired, we introduce the Balanced Incremental Quantile
Filter (BIQF), an algorithm that assesses the usefulness of instances in a
sliding window, ensuring that the predefined budget restrictions will be
met within a given tolerance window. We compare our approach to other
active learning approaches for streams and show the competitiveness of
our method.

1 Introduction

Facing continuously raising amounts of data but limited human supervision
capacities, active learning approaches that help in the efficient allocation of
these capacities gain in relevance. The task in active learning is to decide for
which instances to acquire labels from an oracle. An important active learning
scenario is stream-based active learning (also called selective sampling), where
data arrives one-by-one on a stream and the algorithm has to decide immedi-
ately if the label is acquired [21]. Hence, there is no pool where instances are
compared against each other by estimating their usefulness by their position in
feature space (spatial usefulness). Instead, the question becomes not only where
but also when to query, i.e. the spatial aspect is complemented by a temporal
one [14]. Except for [26], the role of the temporal component was just fairly con-
sidered in the algorithms as just simple thresholds have been tuned and applied.
As it is not possible to tune a parameter without labeled data, we propose a
method that ensures that a predefined budget will be definitely met within a
desired tolerance window. This also means that labeling resources like experts
or money remain constant (within the tolerance window) over time. Application
scenarios for those methods can be found in opinion mining of social comment
streams or annotation of sensor data like weather data or camera surveillance.

c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 145–157, 2015.
DOI: 10.1007/978-3-319-24465-5 13
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Here, very fast classification systems are required because models might shift
very fast (e.g. in twitter or stock exchange data). On the one hand, human
experts only have limited (and constant) resources, and on the other hand, col-
lecting a batch means to postpone the model updates.

We propose an active learning framework that explicitly distinguishes
between the spatial and temporal component. This allows to study different
combinations, and to separate their effects on the classification performance.
Furthermore, we contribute an algorithm that chooses the most useful instances
over time: the Balanced Incremental Quantile Filter (BIQF). BIQF uses a slid-
ing window over the stream of spatial usefulness values as a representative of
the most recent values to estimate an acquisition threshold. An adjustment of
this threshold ensures that the aberration of the number of label acquisitions
stays within a given tolerance window. We evaluate the performance of our new
selective sampling algorithm that combines probabilistic active learning as the
spatial and BIQF as the temporal component on multiple datastreams.

We start with a summary of the related work in Sect. 2. We propose our new
stream active learning algorithm in Sect. 3 and present our new temporal active
learning component BIQF in Sect. 3.2. After a detailed evaluation on several
data sets in Sect. 4, we conclude this paper in Sect. 5.

2 Related Work

An active learning system aims to select the most promising instances for label-
ing, in order to build the best training basis for a given classifier [15]. Thus, in
the beginning, no labeled information is available, but the target value (label)
can be actively acquired from an oracle. This dynamic learning process develops
the performance of the classifier directly over time [20].

In the pool-based setting, active learning has been researched for a long
time. One of the simplest and most commonly used approaches, called uncer-
tainty sampling [15], aims to request those instances that the classifier is most
uncertain about, e.g. by measuring the confidence based on posterior estimates
[20]. However, it is fairly easy to construct examples, where uncertainty sampling
is not working [21, p.20], due to not doing any exploration [26]. This could also
lead to even worse performance than a randomly sampling strategy [22]. Another
approach is Expected Error Reduction (EER) [18], which aims to directly opti-
mize a performance measure. It simulates each realization of a label for each
unlabeled instance and trains a new classifier. On this classifier, it estimates the
expected error on a validation set. In [3] it is observed that inaccuracies of the
posterior estimates (esp. at the beginning) lead to problems for this algorithm,
and the addition of a beta-prior is proposed. Other approaches, like Query by
Committee (QbC) [7] minimize the variance between multiple classifiers. More
recently, we proposed Probabilistic Active Learning (PAL) in [13] which includes
the expectation value over the true posterior for a given instance to approximate
the influence of an acquired label by the expected effect in its neighborhood. It
measures the amount of already acquired labels in a neighborhood and balances



Probabilistic Active Learning in Datastreams 147

exploration and exploitation while directly optimizing a performance measure.
Summarizing, EER and PAL optimize a performance measure, which ensures a
good trade-off in exploration and exploitation [13,21]. While EER has high com-
plexity, PAL and uncertainty sampling require only constant time per instance
[13] which enables their applicability in streams.

For active learning in datastreams, we have to separate those methods that
instantly decide whether to acquire a label or not, from those, that collect chunks
or batches and apply pool-based methods. Chunk-based approaches use classifier
ensembles [24,25] to determine the usefulness of instances or uncertainty-based
measures [10,16,24]. A batch incremental stream active learning algorithm that
first clusters the chunk and ranks the instances based on an homogeneity and
certainty criterion was proposed in [11]. Most recently, we proposed a clustering-
based approach in [12] using the probabilistic description to select the cluster to
choose instances from. The instantly deciding methods mostly are uncertainty-
based: the entropy uncertainty sampling with beta prior is used in [5], an ensem-
ble of radial clusters that evolve over time is proposed in [19], adaptively weighted
uncertainty and density scores are suggested in [4]. Zliobaite et al. [26] observes
that uncertainty sampling is not sufficient to react to drift and combined it with
random sampling. Except for [26], the latter group does not directly consider
budget restrictions as they use arbitrary tunable parameters or other implicit
descriptions. In [26], an adaptive threshold method is proposed that ensures that
the budget is not exceeded. However, this threshold has issues as it is often dom-
inated by the flag that ensures that the budget is not exceeded. This leads to
not finding the very best instances but to excluding only the very worse.

In Sect. 3.2, we propose an algorithm based on an incremental quantile fil-
ter that handles the budget issue. In literature, quantile filters are primarily
researched to address space limitations. A good review of existing methods and
their complexity is given in [23]. Quantiles have also been researched under
the condition of sliding windows [1], but with estimations for different types
of windows and optimizations for approximations to save time and space. Such
approximations are not necessary in our setting with relatively short sliding
windows.

3 Probabilistic Active Learning in Streams

We propose a probabilistic active learning framework for streams, building upon
our original static framework PAL [13]. A core idea of the original, static PAL is
to select instances for labeling by its probabilistic gain. Therefore, it considers
the observed posterior probabilities p̂ (as determined by a classifier) but rather
model and exploit the true posterior probability p, which we express as a Beta-
distributed random variable, as we explain later on. The new stream algorithm
uses this probabilistic gain as a measure for the instance’s “spatial usefulness”.
To identify what the spatial usefulness is currently worth in a temporal manner
(“temporal usefulness”), we propose the Balanced Incremental Quantile Filter
(BIQF). In the last subsection, we summarize all components and show the
pseudocode.
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3.1 Summary of the Probabilistic Gain Calculation

The probabilistic gain is a measure to determine the spatial usefulness of a
labeling candidate xi for active learning proposed in [13]. We use the term spa-
tial usefulness to describe the usefulness for the instance’s location in the fea-
ture space (characterized by its feature vector). Using the probabilistic gain, we
extend the stream of instances (multi-dimensional feature vectors) by a stream
of spatial usefulness values (single values). The core idea is to model the true
posterior probability p as a Beta-distributed random variable, instead of using
the observed posterior (determined by the classifier) as an estimate for the true
posterior. This probability distribution uses the observed posterior probability
(p̂) and the among of neighbored labeled data (n) as parameters. For n = 0, the
true posterior distribution is similar to an uniform distribution. The higher the
n value, the higher the peak at the observed posterior p̂. The final probabilis-
tic gain calculates the expectation value over this true posterior probability p
(assumed to be Beta-distributed) and each possible label realization y (assumed
to be Bernoulli-distributed) [13].

pgain((n, p̂)) = Ep

[

Ey
[
gainp((n, p̂), y)

]
]

(1)

=
∫ 1

0

Betanp̂+1,n(1−p̂)+1(p) ·
∑

y∈{0,1}
Berp(y) · gainp((n, p̂), y) dp (2)

The values for n and p̂ can be determined by any generative classifier [17].
The gain in accuracy is directly derived from the true posterior (p), given the
classification decision made from the observed posterior [13].

gainp((n, p̂), y) = accp(p̂new) − accp(p̂) = accp

(
np̂ + y

n + 1

)

−accp(p̂) (3)

accp(p̂) =
{

1 − p p̂ < 0.5
p otherwise

(4)

In the static, pool-based setting, this probabilistic gain is weighted with the
candidate’s density to incorporate the information about the influence of the
accuracy gain for the whole dataset. In a stream environment, any generative
classifier gives us information about the label statistics of an incoming instance.
As these label statistics are the only input parameters to calculate the proba-
bilistic gain, it is easily applied. In a datastream and especially at the beginning,
it is difficult to estimate the influence of a label for the whole dataset reliably.
Hence, we here set the density weight to one.

3.2 Balanced Incremental Quantile Filter

Using the probabilistic gain, we extend the stream of feature vectors (from the
instances) by a stream of scalars (spatial usefulness values). As higher values
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mean higher benefit for the classification task, the next step is to select the
highest values over time. There exist two related problem formulations in liter-
ature: Either to collect a batch and to choose the best within, or to determine
immediately which instances are the best. The first strategy is easier but needs
additional resources to store the data and delays learning to the end of each
batch, thus we decided for the second one. The challenges for this stream of
scalars are: (C1) to decide immediately whether to acquire the label or not, (C2)
the values are distributed arbitrarily, (C3) acquiring a label changes the classi-
fication model, hence the distribution of spatial usefulness values might change
(as classification performance should improve over time, the spatial usefulness
should decrease), and (C4) the classification model changes due to evolution in
the data.

In this section, we propose a new algorithm to determine the most useful
instances respecting a predefined budget (b) over time (temporal usefulness),
called Balanced Incremental Quantile Filter (BIQF). It is based on an incre-
mental quantile filter to determine a threshold for the spatial usefulness value
and a threshold-adjustment-component that ensures that the predefined budget
is met. In streams, the relative budget b ∈ [0, 1] is usually defined as the share of
labels that are acquired over time. Additionally, we try to distribute the budget
constantly over time such that this enables to detect drift as we always explore
the data, and we have constant and predictable annotation cost.

Incremental Quantile Filter. Given a budget b ∈ [0, 1] and a stream of spatial
usefulness values (u1, u2, . . . ), the incremental quantile filter aims to determine
the best values such that a share of b labels is acquired. Thus, it stores the last
w (w denotes the window size) values of this input stream in a queue Q as a
representation of the most current value distribution. The decision to acquire
the label of an instance xi with its spatial usefulness value ui is based on its
rank (rankui

) in Q. If Eq. 5 is true, the label is acquired [1]:

rankui
≤ �len(Q) · b� (5)

The rankui
describes the position of the new value ui in the list Q, e.g. the

highest value has a rank of 1, the second highest one has a rank of 2, and so on.
Figure 1 visualizes this process for a window size w = 6 and a budget b = 0.5.

Additionally to the chronologically sorted queue Q (not shown in the figure),
the method stores a value-sorted duplicate Qs. In the first step, the algorithm
gets the first usefulness value u1 = 1 from the stream. As Eq. 5 returns true
(ranku1 = 1 ≤ 1 = �1 · 0.5�), the label y1 of the instance x1 is acquired. Next,
u2 = 6 is added with ranku2 = 1 and Eq. 5 is again true. Hence, the label y2 is
acquired, too. The same happens with value u3 = 8. As value u4 = 5 is added,
Eq. 5 results in ranku4 = 3 �≤ 2 = �4 · 0.5�, which means that the corresponding
label is not acquired. Value u5 = 3 and u6 = 4 are not added, too. Adding value
9 would result in a list length of 7, which is higher than the window size w = 6.
Thus, the oldest value, determined from the original queue Q, is removed, and
the formula is applied again.
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Fig. 1. Scheme of the Incremental Quantile Filter (IQF) for window size w = 6 and
budget b = 0.5. Each usefulness value ui (left stream) is inserted into the sorted list
Qs. If the incoming value is in the green area, the corresponding label is acquired.

Instead of calculating the rank, it is also possible to determine the usefulness
threshold (θ) and check if the current value is higher or equal (Eq. 7). Referring
to Fig. 1, the threshold is the most left green value. Depending on the queue’s
length (|Q|) and the predefined budget (b), it is calculated by Eq. 6 (using Eq. 5).

thresIdx = �|Q| · (1 − b)�; θ = Qs[thresIdx] (6)

ui ≥ θ (7)

The implementation of this algorithm was optimized using a B-tree [6] data
structure to store and update the sorted list of usefulness values (Qs). This reduced
the computational complexity of sorting a whole list (O(w log(w))) into insert-
ing (resp. deleting) an element (O(log(w))). This optimization needs the thresh-
old index description. A complete pseudocode, a Python implementation and a
detailed description of this optimization is given at our companion website1.

Summarizing, this method decides immediately about a label acquisition
(C1), works with arbitrary distributions (C2) but is only applicable when the
distribution of the incoming usefulness values does not change over time (neither
C3, nor C4). The simplest counterexample is a stream of monotonously decreas-
ing values. In this case, no labels will be acquired because the rank is always at
the very last position. With no new labels, we are not able to detect changes
and the constant budget constraint is violated. This requires a solution which is
described in the next subsection.

Balancing. We solve challenges C3 and C4 by a balancing approach that
ensures that the predefined budget will be met within a given tolerance window.
The tolerance window (wtol) defines the maximal absolute difference between
the number of actually acquired labels and the number of labels that should
have been acquired so far. This target number of label acquisitions is the result
of multiplying the predefined relative budget (b) and the number of processed
stream instances. Counting the number of already acquired labels, we determine
1 Companion website: http://kmd.cs.ovgu.de/res/pals.

http://kmd.cs.ovgu.de/res/pals
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the number of label acquisitions that should be spent to reach the predefined
budget by Eq. 8.

acqleft = #{processed instances} · b − #{acquired labels} (8)

Using this equation, the number of left labels for acquisition is real-valued
and possibly negative (in case that the number of labels is higher than desired).
If this value is positive, the acquisition threshold (θ) should be decreased to make
the threshold less restrictive and vice versa. The amount of adaptation depends
on the predefined tolerance window (wtol) and the range of the most recent
usefulness values (denoted as Δ). We use the difference between the first and
last element of the sorted queue to calculate the range (Δ = Qs[|Qs|−1]−Qs[0]).
Hence, the new threshold is determined by Eq. 9.

θbal = θ − Δ · acqleft
wtol

(9)

Next, we show that the next label will be acquired if the tolerance window
is reached (wtol = acqleft). To calculate the range, we determine the maximal
and minimal usefulness values stored in Qs (Δ = umax − umin). Therefore, the
threshold is between these values (θ ∈ [umin, umax]).

θbal = θ − Δ · acqleft
wtol

= θ − (umax − umin) · wtol

wtol
≤ umin (10)

Hence, the new threshold θbal is below or equal all currently observed useful-
ness values. As the current usefulness value is already added to Q, we ensured
that the corresponding label will be acquired because for all u ∈ Q : u ≥ umin.
Analogously, one can show that the next label will not be acquired for the oppo-
site case wtol = −acqleft.

3.3 Pseudocode

Algorithm 1 shows the complete stream active learning procedure using Prob-
abilistic Active Learning (PAL) and the Balanced Incremental Quantile Filter
(BIQF). The user defined parameters are the budget (b), the IQF window size
(w), and the tolerance window size (wtol). From lines 5–19, the instances are
processed one by one. The probabilistic gain is calculated in lines 6–8, followed
by the processing of the Incremental Quantile Filter (IQF) (lines 9–12). In line
13, the threshold is adapted by the proposed balancing approach. If the useful-
ness value (ui) is greater or equal this balanced threshold (θbal) in line 14, the
label is acquired and this labeled instance is forwarded to the classifier (line 15)
and the label acquisition counter (cacq) is increased (line 16).

4 Experiments

The experimental evaluation section consists of two components. First, we show
that the BIQF algorithm is able to select the best instances over time and second,
we evaluate our algorithm that combines Probabilistic Active Learning (PAL)
with BIQF against current baselines on seven datasets.
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Algorithm 1. Probabilistic Active Learning in Streams
1: b ∈ [0, 1]; w, wtol ∈ N {Predefined budget, IQF window size, balancing window size}
2: C ← {} {Generative Classifier}
3: Q ← {} {Queue for IQF algorithm}
4: i ← 1, cacq ← 0 {Instance counter, counter of acquired labels}
5: while Stream delivers new instance xi do
6: {determine spatial usefulness value}
7: p̂ ← PC(+|xi); n ← KFEC(xi)
8: ui ← pgain(p̂, n)

9: {determine BIQF threshold}
10: Q.push(ui); if |Q| > w: Q.pop()
11: Qs ← sort(Q)
12: θ ← Qs[�|Q| · (1 − b)�]
13: θbal ← θ − Qs[|Qs|−1]−Qs[0]

wtol
· (b · (i − cacq))

14: if ui ≥ θbal then
15: C.retrain(xi, getLabel(xi))
16: cacq ← cacq + 1
17: end if
18: i ← i + 1
19: end while

4.1 Performance of BIQF

To evaluate the Balanced Incremental Quantile Filter (BIQF), we test BIQF on
static, synthetic usefulness streams. Therefore, we generate single-valued streams
of different distributions (uniform, normal, gamma and a mixture of two normal
distributions). The task of BIQF is to select the highest values as they appear
without knowing the future values of that stream. As the distributions of these
synthetic streams do not change over time, the optimal solution for a predefined
budget b is determined by sorting the values of the whole stream and selecting
the highest instances until the budget b is reached. To quantify the performance
of BIQF, we calculated the mean of all selected values (resp. to b) and determined
the reached percentage compared to the optimal solution. The window size is
set to w = 100 and the tolerance window to wtol = 50.

Fig. 2. Comparison of BIQF and the variable threshold method for different distribu-
tions.
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Fig. 3. Performances (left, middle) and visualization of really used budget (right) of the
BIQF algorithm for different parameters on a static Gamma-distributed value stream.

In Fig. 2, we show the results in terms of the reached percentage of the
optimum as the mean and standard deviation for five streams underlying the
same distribution. Additionally, we executed the budget control mechanism from
the Variable Uncertainty method (VarUncer), proposed in [26]. The results show
that VarUncer does not reach a competing performance as its results mostly are
below 95% compared to the optimal solution. In contrast, the BIQF is always
better than 95% for every budget b which is completely enough for the demands
of stream active learning.

For static data, increasing the window size w improves the results especially
for low budgets (see Fig. 3 left) but also increases the execution time slightly
(O(log(w))). Even more relevant, the average age of the queue rises because
more old values are considered. Hence, setting the window size to higher values
reduces the currency of the model, which impairs the performance in non-static
data. Hence, the window size should be set to the highest acceptable delay of
recognizing a possibly appearing drift. In our case, the window size w = 100 was
a good trade-off.

Additionally, Fig. 3 shows the performance of our algorithm for different tol-
erance window sizes (wtol) on the same value streams. Again, the performance
increases for higher tolerance windows as the data is static. Nevertheless, a high
variable budget distribution possibly does not recognize drift early enough and
does not use the resources of an oracle efficiently as its workload should be con-
stant. The right plot shows the distribution of the really used budget over time.
As expected, the variance of wtol = 5 is the smallest. Hence, it met the budget
restrictions the best in average. We suggest to set the tolerance window to the
half of the window size. If the resulting variance is too high for the oracle to
process the incoming data, one should reduce it to an acceptable level.

4.2 Stream Active Learning Performance

In this section, we compare our proposed algorithm that combines Probabilis-
tic Active Learning (PAL) with the new Balanced Incremental Quantile Filter
(BIQF) against other algorithms in stream active learning: a randomly sam-
pling method (Random), Split and Variable Uncertainty (VarUncer), proposed
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in [26]. As we noticed some problems with the temporal selection strategy of [26],
we further combined their ideas with our method: uncertainty sampling + BIQF
(Uncer + BIQF) and Split + BIQF that selects one half of the instances randomly
for exploration and the other half by uncertainty sampling for exploitation. The
window sizes are the same as above. The generative classifier is a Parzen win-
dow classifier with pre-tuned bandwidths. To be able to react to drift, we add a
sliding window with a size of 300 instances. All experiments run on a compute
cluster running the (Neuro)Debian operating system [8].

The electricity dataset (27 k instances) [9] and the abalone dataset (4 k
instances) [2] come from a real-world application. The checker dataset (moti-
vated in [3]) consists of a 4 × 4 checkerboard (10 k instances) that switches all
labels gradually after 50 % of the instances have been processed. The farcluster
and movplane (10 k instances) are motivated in [26]. In farcluster an additional
cluster appears far the decision boundary. In movplane, the decision boundary
rotates slowly after 50 % of the instances have been processed. For the latter
three datasets, 10 % of the labels are flipped to add noise. Bars and wave (10 k
instances) are synthetic datasets without noise and a well-formed decision bound-
ary. For each datastream, we created 100 random train/test-stream partitions.
The results are averaged with respect to the actually used budget. To evaluate
the algorithms, we provide learning curves in Fig. 4 for three datasets and an
overview of mean accuracies for all datasets in Table 1.2

Fig. 4. Accuracy learning curves for datastreams elec, farcluster and bars.

For small budgets, PAL + BIQF is clearly dominating the other algorithms.
Except for abalone, this approach always receives higher accuracy values given
a budget of b = 0.1. For a budget of b = 0.2, PAL + BIQF is solely defeated
on the wave dataset. This is expected because wave has a very simple and well
defined decision boundary with small Bayesian error. Here, it is not necessary
to explore the dataset (as PAL does), but to exploit the decision boundary (as
uncertainty sampling methods do). Setting the budget to b = 0.5, the dominance
of PAL + BIQF diminishes. On the one hand, this effect is not surprising in active
learning because all sampling techniques should converge to the same level in the
end. On the other hand, this might be caused by a problem of PAL with many
labels: Especially for high n values, the probabilistic gain can get zero if one single
2 More learning curves are available on http://kmd.cs.ovgu.de/res/pals.

http://kmd.cs.ovgu.de/res/pals
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Table 1. Mean accuracy for each algorithm on each dataset for the used budgets
0.1, 0.2, 0.5 including standard deviation. Higher values are better and the best algo-
rithm is printed in bold.

additional label would not change the classifier’s decision. Nevertheless, results
with small budgets are more important as we aim to save label acquisitions.

Very interesting is the fact that Uncer + BIQF could not improve the uncer-
tainty sampling method with the adaptive threshold (VarUncer) of [26]. Hence,
we also could confirm that excluding exploration (the adaptive threshold method
solely excludes very certain samples and therefore does exploration) for uncer-
tainty sampling is malicious. Using BIQF for the idea of combining uncer-
tainty and random sampling shows a slight advantage of Split + BIQF against
Split. Hence, the idea of random samples for uncertainty sampling is beneficial,
although its performance is below the one from PAL. We assume that the supe-
riority of PAL is caused by its direct integration of exploration and exploitation.

5 Conclusion

In this paper, we proposed a new active learning algorithm for datastreams
that combines Probabilistic Active Learning to measure the spatial usefulness
of each instance, and the new Balanced Incremental Quantile Filter (BIQF)
that selects the best over time. Through threshold adaptation, BIQF is able
to ensure that the predefined budget is met within a tolerance window. Our
experimental evaluation on seven datasets and five competing algorithms showed
the superiority of PAL + BIQF, especially for small budgets. We suggest that
the reasons are the implicit consideration of exploration and exploitation of the
spatial usefulness measure using the probabilistic gain and the selection of the
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highest spatial values in its temporal context by BIQF. For future work, we will
investigate if these effects are also true for the application scenarios mentioned in
the introduction, and we will apply our framework in combination with different
generative classifiers.
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Abstract. We introduce a novel semi-supervised version of the least
squares classifier. This implicitly constrained least squares (ICLS) clas-
sifier minimizes the squared loss on the labeled data among the set of
parameters implied by all possible labelings of the unlabeled data. Unlike
other discriminative semi-supervised methods, our approach does not
introduce explicit additional assumptions into the objective function, but
leverages implicit assumptions already present in the choice of the super-
vised least squares classifier. We show this approach can be formulated
as a quadratic programming problem and its solution can be found using
a simple gradient descent procedure. We prove that, in a certain way, our
method never leads to performance worse than the supervised classifier.
Experimental results corroborate this theoretical result in the multidi-
mensional case on benchmark datasets, also in terms of the error rate.

1 Introduction

Semi-supervised classification concerns the problem of using additional unla-
beled data, aside from only labeled objects considered in supervised learning,
to learn a classification function. The challenge of semi-supervised learning is
to incorporate this additional information to improve the classification function
over the supervised function.

The goal of this work is to build a semi-supervised version of the least squares
classifier that has the property that, at least in expectation, its performance is
not worse than supervised least squares classification. While it may seem like
an obvious requirement for any semi-supervised method, current approaches to
semi-supervised learning do not have this property. In fact, performance can
significantly degrade as more unlabeled data is added, as has been shown in
[6,7], among others. This makes it difficult to apply these methods in practice,
especially when there is a small amount of labeled data to identify possible
reduction in performance. A useful property of any semi-supervised learning
procedure would therefore be that its performance does not degrade as we add
more unlabeled data.
c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 158–169, 2015.
DOI: 10.1007/978-3-319-24465-5 14
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We present a novel approach to semi-supervised learning for the least squares
classifier that we will refer to as implicitly constrained least squares classifica-
tion (ICLS). ICLS leverages implicit assumptions present in the supervised least
squares classifier to construct a semi-supervised version. This is done by mini-
mizing the supervised loss function subject to the constraint that the solution
has to correspond to the solution of the least squares classifier for some label-
ing of the unlabeled objects. Through this formulation, we exploit constraints
inherent in the choice of the supervised classifier whereas current state-of-the-art
semi-supervised learning approaches typically rely on imposing additional extra-
neous, and possibly incorrect, assumptions [19,20].

This work considers a semi-supervised version of the supervised least squares
classifier, in which classes are encoded as numerical outputs after which a linear
regression model is applied (see Sect. 3.1). By placing a threshold on the output
of this model, one can use it to predict class labels. In a different neural network
formulation, this classifier is also known as Adaline [22]. There are several reasons
why the least squares classifier is a particularly interesting classifier to study:
First of all, the least squares classifier is a discriminative classifier. Some have
claimed semi-supervised learning without additional assumptions is impossible
for discriminative classifiers [19,20]. Our results show this may not strictly hold.
Secondly, as we will show in Sect. 3.2, the closed-form solution for the supervised
least squares classifier allows us to study its theoretical properties. Moreover,
using the closed-form solution we can rewrite our semi-supervised approach as a
quadratic programming problem, which can be solved through a simple gradient
descent with boundary constraints. Lastly, least squares classification is a useful
and adaptable classification technique allowing for straightforward use of, for
instance, regularization, sparsity penalties or kernelization [8,16,18,21]. Using
these formulations, it has been shown to be competitive with state-of-the-art
methods based on loss functions other than the squared loss [18] as well as
computationally efficient on large datasets [3].

The main contributions of this paper are

– A novel convex formulation for robust semi-supervised learning using squared
loss (Eq. (5))

– A proof that this procedure never reduces performance in terms of the squared
loss for the 1-dimensional case (Theorem 1)

– An empirical evaluation of the properties of this classifier (Sect. 5)

We start with a discussion of related work after which we introduce our semi-
supervised version of the least squares classifier. In Sects. 4 and 5, we study the
non-degradation property of this method both theoretically and by considering
the method’s behaviour on benchmark datasets. In the final sections we discuss
the results and conclude.

2 Related Work

Many diverse semi-supervised learning techniques have been proposed [5,23].
Most of these techniques rely on introducing useful assumptions that link infor-
mation about the distribution of the features PX to the posterior of the classes
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PY |X . Some have argued unlabeled data can only help if PX and PY |X are
somehow linked through one of these assumptions [20]. While these methods
have proven successful in particular applications, such as document classifica-
tion [14], it has also been observed that these techniques may give performance
worse than their supervised counterparts, see [6,7], among others. In these cases,
disregarding the unlabeled data would lead to better performance.

The method considered in our work is different from most previous work in
semi-supervised learning in that it is inherently robust against this decrease in
performance. We show that one does not need extrinsic assumptions for semi-
supervised learning to work. In fact, such assumptions may actually be at the
root of the problem: clearly if such an additional assumption is correct, the
semi-supervised classifier can gain from it, but if the assumption is incorrect,
degraded performance may ensue. What we will leverage in our approach are
the implicit assumptions that are, in a sense, intrinsic to the supervised least
squares classifier. This work is in line with the proposal of [11,12] which set out
to improve likelihood based classifiers in a similar way. Our approach, however,
does not rely on explicitly formulating the intrinsic constraints on the estimated
parameters. Moreover, our approach allows for theoretical analysis of the non-
deterioration of the performance of the procedure.

Another attempt to construct a robust semi-supervised version of a super-
vised classifier has been made in [10], which introduces the safe semi-supervised
support vector machine (S4VM). This method is an extension of semi-supervised
SVM [2] which constructs a set of low-density decision boundaries with the help
of the additional unlabeled data, and chooses the decision boundary, which,
even in the worst-case, gives the highest gain in performance over the supervised
solution. If the low-density assumption holds, it can be proven this procedure
increases classification accuracy over the supervised solution. The main differ-
ence with the method considered in this paper, however, is that we make no such
additional assumptions. We show that even without such assumptions, robust
improvements are possible for the least squares classifier.

3 Method

3.1 Supervised Multivariate Least Squares Classification

Least squares classification [8,18] is the direct application of well-known ordinary
least squares regression to a classification problem. A linear model is assumed
and the parameters are minimized under squared loss. Let X be an L × (d + 1)
design matrix with L rows containing vectors of length equal to the number of
features d plus a constant feature to encode the intercept. Vector y denotes an
L × 1 vector of class labels. We encode one class as 0 and the other as 1. The
multivariate version of the empirical risk function for least squares regression is
given by

R̂(β) =
1
n

‖Xβ − y‖22 (1)
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The well known closed-form solution for this problem is found by setting the
derivative with respect to β equal to 0 and solving for β, giving:

β̂ =
(
XTX

)−1
XTy (2)

In case XTX is not invertible (for instance when n < (d + 1)), a pseudo-inverse
is applied. As we will see, the closed form solution to this problem will enable
us to formulate our semi-supervised learning approach in terms of a standard
quadratic programming problem, which is easy to optimize.

3.2 Implicitly Constrained Least Squares Classification

In the semi-supervised setting, apart from a design matrix X and target vector y,
an additional set of measurements Xu of size U ×(d+1) without a corresponding
target vector yu is given. In what follows, Xe =

[
XT XT

u

]T denotes the extended
design matrix which is simply the concatenation of the design matrices of the
labeled and unlabeled objects.

In the implicitly constrained approach, we propose that a sensible solution
to incorporate the additional information from the unlabeled objects is to search
within the set of classifiers that can be obtained by all possible labelings yu, for
the one classifier that minimizes the supervised empirical risk function (1). This
set, Cβ, is formed by the β’s that would follow from training supervised classifiers
on all (labeled and unlabeled) objects going through all possible soft labelings
for the unlabeled samples, i.e., using all yu ∈ [0, 1]U . Since these supervised
solutions have a closed form, this can be written as:

Cβ :=
{

β =
(
X�

e Xe

)−1
X�

e

[
y
yu

]

: yu ∈ [0, 1]U
}

(3)

This constrained region Cβ, combined with the supervised loss that we want
to optimize in Eq. (1), gives the following definition for implicitly constrained
semi-supervised least squares classification:

argmin
β∈Rd+1

1
n

||Xβ − y||2

subject to β ∈ Cβ

(4)

Since β is fixed for a particular choice of yu and has a closed form solution, we
can rewrite the minimization problem in terms of yu instead of β:

argmin
yu

1
n

∥
∥
∥
∥X

(
X�

e Xe

)−1
X�

e

[
y
yu

]

− y
∥
∥
∥
∥

2

2

subject to yu ∈ [0, 1]U
(5)

Solving for yu gives a labeling that we can use to construct the semi-supervised
classifier using Eq. (2) by considering the imputed labels as the labels for the
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unlabeled data. The problem defined in Eq. (5), is a standard quadratic pro-
gramming problem. Due to the simple box constraints on the unknown labels
this can be solved efficiently using a quasi-Newton approach that takes into
account the simple [0,1] bounds, such as L-BFGS-B [4].

4 Theoretical Results

We will examine this procedure by considering it in a simple, yet illustrative
setting. In this case we will, in fact, prove this procedure will never give worse
performance than the supervised solution. Consider the case where we have
just one feature x, a limited set of labeled instances and assume we know the
probability density function of this feature fX(x) exactly. This last assumption
is similar to having unlimited unlabeled data. We consider a linear model with
no intercept: y = xβ where y is set as 0 for one class and 1 for the other. For
new data points, estimates ŷ can be used to determine the predicted label of an
object by using a threshold set at, for instance, 0.5.

The expected squared loss, or risk, for this model is given by:

R∗(β) =
∑

y∈{0,1}

∫ ∞

−∞
(xβ − y)2fX,Y (x, y)dx (6)

where fX,Y = P (y|x)fX(x). We will refer to this as the joint density of X and
Y. Note, however, that this is not strictly a density, since it deals with the joint
distribution over a continuous X and a discrete Y . The optimal solution β∗ is
given by the β that minimizes this risk:

β∗ = argmin
β∈R

R∗(β) (7)

We will show the following result:

Theorem 1. Given a linear model without intercept, y = xβ, and fX(x) known,
the estimate obtained through implicitly constrained least squares always has an
equal or lower risk than the supervised solution:

R∗(β̂semi) ≤ R∗(β̂sup)

Proof. Setting the derivative of (6) with respect to β to 0 and rearranging we
get:

β =
(∫ ∞

−∞
x2fX(x)dx

)−1 ∑

y∈{0,1}

∫ ∞

−∞
xyfX,Y (x, y)dx (8)

=
(∫ ∞

−∞
x2fX(x)dx

)−1 ∫ ∞

−∞
xfX(x)

∑

y∈{0,1}
yP (y|x)dx (9)

=
(∫ ∞

−∞
x2fX(x)dx

)−1 ∫ ∞

−∞
xfX(x)E[y|x]dx (10)
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Fig. 1. An example where implicitly constrained optimization improves performance.
The supervised solution β̂sup which minimizes the supervised loss (the solid curve), is
not part of the interval of allowed solutions. The solution that minimizes this supervised
loss within the allowed interval is β̂semi. This solution is closer to the optimal solution
β∗ than the supervised solution β̂sup.

In this last equation, since we assume fX(x) as given, the only unknown is the
function E[y|x], the expectation of the label y, given x. Now suppose we consider
every possible labeling of the unlimited number of unlabeled objects including
fractional labels, that is, every possible function where E[y|x] ∈ [0, 1]. Given this
restriction on E[y|x], the second integral in (10) becomes a re-weighted version
of the expectation operation E[x]. By changing the choice of E[y|x] one can vary
the value of this integral, but it will always be bounded on an interval on R. It
follows that all possible βs also form an interval on R, which we will refer to as
the constrained set Cβ. The optimal solution has to be in this interval, since it
corresponds to a particular but unknown labeling E[y|x]. Note from (10) that
the boundaries of this interval are typically finite, unless the second moment of
X is equal to 0.

Using the set of labeled data, we can construct a supervised solution β̂sup

that minimizes the loss on the training set of L labeled objects, see Fig. 1:

β̂sup = argmin
β∈R

L∑

i=1

(xiβ − yi)2 (11)

Now, either this solution falls within the constrained region, β̂sup ∈ Cβ or
not, β̂sup /∈ Cβ, with different consequences:

1. If β̂sup ∈ Cβ there is a labeling of the unlabeled points that gives us the same
value for β. Therefore, the solution falls within the allowed region and there
is no reason to update our estimate. Therefore β̂semi = β̂sup.

2. Alternatively, if β̂sup /∈ Cβ, the solution is outside of the constrained region
(as shown in Fig. 1): there is no possible labeling of the unlabeled data that
will give the same solution as β̂sup. We then update the β to be the β within
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the constrained region that minimizes the loss on the supervised training
set. As can be seen from Fig. 1, this will be a point on the boundary of the
interval. Note that β̂semi is now closer to β∗ than β̂sup. Since the true loss
function R∗(β) is convex and achieves its minimum in the optimal solution,
corresponding to the true labeling, the risk of our semi-supervised solution
will always be equal to or lower than the loss of the supervised solution.

Thus, the proposed update either improves the estimate of the parameter β
or it does not change the supervised estimate. In no case will the semi-supervised
solution be worse than the supervised solution, in terms of the expected squared
loss.

5 Empirical Results

Since we extended the least squares classifier to the semi-supervised setting, we
compare how, for different sizes of the unlabeled sample, our semi-supervised
least squares approach fares against supervised least squares classification with-
out the constraints. For comparison we included an alternative semi-supervised
approach by applying self-learning to the least squares classifier. In self-learning
[13], the supervised classifier is updated iteratively by using its class predictions
on the unlabeled objects as the labels for the unlabeled objects in the next
iteration. This is done until convergence.

A description of the datasets used for our experiments is given in Table 1. We
use datasets from both the UCI repository [1] and from the benchmark datasets
proposed by [5]. While the benchmark datasets proposed in [5] are useful, in our
experience, the results on these datasets are very homogeneous because of the
similarity in the dimensionality and their low Bayes errors. The UCI datasets
are more diverse both in terms of the number of objects and features as well as
the nature of the underlying problems. Taken together, this collection allows us
to investigate the properties of our approach for a wide range of problems.

5.1 Comparison of Learning Curves

We study the behavior of the expected classification error of the ICLS procedure
for different sizes for the unlabeled set. This statistic has two desired properties.
First of all it should never be higher than the expected classification error of
the supervised solution, which is based on only the labeled data. Secondly, the
expected classification error should not increase as we add more unlabeled data.

Experiments were conducted as follows. For each dataset, L labeled points
were randomly chosen, where we make sure it contains at least 1 object from
each of the two classes. With fewer than d samples, the supervised least squares
classifier is known to deteriorate in performance as more data is added, a behav-
ior known as peaking [15,17]. Since this is not the topic of this work, we will
only consider the situation in which the labeled design matrix is of full rank,
which we ensure by setting L = d + 5, the dimensionality and intercept of the
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Table 1. Description of the datasets used in the experiments. Features indicates the
dimensionality of the design matrix after categorical features are expanded into dummy
variables.

Name # Objects # Features Source

Ionosphere 351 33 [1]

Parkinsons 195 22 [1]

Diabetes 768 8 [1]

Sonar 208 60 [1]

SPECT 267 22 [1]

SPECTF 267 44 [1]

WDBC 569 30 [1]

Digit1 1500 241 [5]

USPS 1500 241 [5]

COIL2 1500 241 [5]

BCI 400 118 [5]

g241d 1500 241 [5]

dataset plus five observations. For all datasets we ensure a minimum of L = 20
labeled objects.

Next, we create unlabeled subsets of increasing size U = [2, 4, 8, ..., 1024] by
randomly selecting points from the original dataset without replacement. The
classifiers are trained using these subsets and the classification performance is
evaluated on the remaining objects. Since the test set decreases in size as the
number of unlabeled objects increases, the standard error slightly increases with
the number of unlabeled objects.

This procedure of sampling labeled and unlabeled points is repeated 100
times. The results of these experiments are shown in Fig. 2. We report the mean
classification error as well as the standard error of this mean. As can be seen
from the tight confidence bands, this offers an accurate estimate of the expected
classification error.

We find that, generally, the ICLS procedure has monotonically decreasing
error curves as the number of unlabeled samples increases, unlike self-learning.
On the Diabetes dataset, the performance of self-learning becomes worse than
the supervised solution when more unlabeled data is added, while the ICLS
classifier again exhibits a monotonic decrease of the average error rate.

5.2 Benchmark Performance

We now consider the performance of these classifiers in a cross-validation setting.
This experiment is set up as follows. For each dataset, the objects are randomly
divided into 10 folds. We iteratively go through the folds using 1 fold as validation
set, and the other 9 as the training set. From this training set, we then randomly
select L = d + 5 labeled objects, as in the previous experiment, and use the rest
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Fig. 2. Mean classification error for L = max(d + 5, 20) and 100 repeats. The shaded
areas indicate +/− the standard error of the mean.

Table 2. Average 10-fold cross-validation error and number of times the error of the
semi-supervised classifier is higher than the supervised error for 20 repeats. Oracle
refers to the performance of the least squares classifier trained when all labels are
known. Indicated in bold is when a semi-supervised classifier has significantly lower
error than the other, using a Wilcoxon signed rank test at 0.01 significance level. A
similar test is done to determine whether a semi-supervised classifier is significantly
worse than the supervised classifier, indicated by underlined values.

Dataset Supervised Self-Learning ICLS Oracle

Ionosphere 0.29 0.24 (1) 0.19 (0) 0.13

Parkinsons 0.33 0.29 (3) 0.27 (0) 0.11

Diabetes 0.32 0.33 (16) 0.31 (2) 0.23

Sonar 0.42 0.37 (1) 0.32 (1) 0.25

SPECT 0.42 0.40 (7) 0.33 (0) 0.17

SPECTF 0.44 0.41 (3) 0.36 (0) 0.22

WDBC 0.27 0.17 (0) 0.12 (0) 0.04

Digit1 0.41 0.34 (0) 0.20 (0) 0.06

USPS 0.42 0.35 (0) 0.20 (0) 0.09

COIL2 0.40 0.27 (0) 0.19 (0) 0.10

BCI 0.40 0.35 (0) 0.28 (0) 0.16

g241d 0.45 0.39 (0) 0.29 (0) 0.13
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as unlabeled data. After predicting labels for the validation set for each fold, the
classification error is then determined by comparing the predicted labels to the
real labels. This is repeated 20 times, while randomly assigning objects to folds
in each iteration.

The results shown in Table 2 tell a similar story to those in the previous
experiment. Most importantly for the purposes of this paper, ICLS, in general,
offers solutions that give at least no higher expected classification error than
the supervised procedure. Moreover, in most of the cross-validation repeats, the
error is not higher than the supervised error, although it does occur in some
instances.

6 Discussion

The results presented in this paper are encouraging in the light of negative
theoretical performance results in the semi-supervised literature [6]. The result
in Theorem 1 indicates the proposed procedure is in some way robust against
reduction in performance. The empirical results in the previous section indicate
a similar result in terms of the expected classification error, at least on this
collection of datasets. These empirical observations are interesting because the
loss that was evaluated in these experiments is misclassification error and not
the squared loss that was considered in Theorem 1. Furthermore the experiments
were carried in the multivariate setting with an intercept term using limited
unlabeled data, rather than the unlimited unlabeled data setting considered in
the theorem. This indicates that minimizing the supervised loss over the subset
Cβ , leads to a semi-supervised learner with desirable behavior, both theoretically
in terms of risk and empirically in terms of classification error.

It has been argued that, for discriminative classifiers, semi-supervised learn-
ing is impossible without additional assumptions about the link between labeled
and unlabeled objects [19,20]. ICLS, however, is both a discriminative classifier
and no explicit additional assumptions about this link are made. Any assump-
tions that are present follow, implicitly, from the choice of squared loss as the loss
function and from the chosen hypothesis space. One could argue that constrain-
ing the solutions to Cβ is an assumption as well. While this is true, it corresponds
to a very weak assumption about the supervised classifier: that it will improve
when we add additional labeled data. The lack of additional assumptions has
another advantage: no additional parameters need to be correctly set for the
results in Sects. 4 and 5 to hold. There is, for instance, no parameter to be cho-
sen for the importance of the unlabeled data. Therefore, implicitly constrained
semi-supervised learning is a very different approach to semi-supervised learning
than current alternatives.

An open question is what other classifiers could benefit from the implicitly
constrained approach considered here. Using negative log likelihood as a loss
function, for instance, also leads to interesting semi-supervised classifiers, for
instance in linear discriminant analysis [9]. For other classifiers, the definition of
the constraints used in this work might not lead to any useful constraints at all
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such that the supervised solution is always recovered. One would have to define
additional constraints on the solutions in Cβ . The minimization of the supervised
loss, considered in this paper, could still be relevant in these cases to construct
a semi-supervised classifier that has similar robustness against deterioration in
performance as ICLS.

7 Conclusion

This contribution introduced a new semi-supervised approach to least squares
classification. By implicitly considering all possible labelings of the unlabeled
objects and choosing the one that minimizes the loss on the labeled observa-
tions, we derived a robust classifier with a simple quadratic programming formu-
lation. For this procedure, in the univariate setting with a linear model without
intercept, we can prove it never degrades performance in terms of squared loss
(Theorem 1). Experimental results indicate that in expectation this robustness
also holds in terms of classification error on real datasets. Hence, semi-supervised
learning for least squares classification without additional assumptions can lead
to improvements over supervised least squares classification both in theory and
in practice.

Acknowledgments. Part of this work was funded by project P23 of the Dutch public-
private research community COMMIT.
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Abstract. We propose a novel diagonal co-clustering algorithm built
upon the double Kmeans to address the problem of document-word co-
clustering. At each iteration, the proposed algorithm seeks for a diagonal
block structure of the data by minimizing a criterion based on the vari-
ance within and the centroid effect. In addition to be easy-to-interpret
and efficient on sparse binary and continuous data, Diagonal Double
Kmeans (DDKM) is also faster than other state-of-the art clustering
algorithms. We illustrate our contribution using real datasets commonly
used in document clustering.

1 Introduction

Co-clustering also known as biclustering or block-clustering involves simulta-
neous clustering of the set of observations and the set of features in a data
matrix. By creating permutations of rows and columns, the co-clustering algo-
rithms aim to reorganize the initial data matrix into homogeneous blocks. These
blocks also called co-clusters can therefore be defined as subsets of the data
matrix characterized by a set of observations and a set of features whose ele-
ments are similar. Other types of co-clustering approaches can be found in [11]
and [12]. Co-clustering algorithms present several advantages: they reduce the
initial matrix into a simpler form with the same basic structure and require far
less computation when compared with separate processing of the same two sets;
see for instance [8]. As a result, these methods are of interest to data mining.

In this work, we focus on co-clustering methods that seek a block diago-
nal structure, i.e. methods in which the number of clusters of rows is equal
to the number of clusters of columns. An illustration is given in Fig. 1 where
(a) represents an original binary matrix, (b) represents the same matrix after
a proper permutation of rows whilst (c) adds a permutation of columns result-
ing in a clear block diagonal structure. These methods have proven efficient in
dealing with the problem of document-word co-clustering. The objective is to
group the documents based on the words within them and to group the words
based on the documents in which they appear. The dataset is typically repre-
sented by a document × words matrix. In [10], the author proposed a block
diagonal algorithm to deal with binary data. This algorithm alternates the clus-
tering of observations and features minimizing the error between the original

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-24465-5 15
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Fig. 1. Original binary data (a), (b) data reorganized according to rows, (c) reorganized
according to rows and columns.

data matrix and the reconstructed matrix based on the cluster structure. In [3],
the author proposed a spectral based solution. He built a bipartite graph from
the document × words matrix which is partitioned in a way that minimize the
cut objective function.

In this paper we propose a new diagonal co-clustering algorithm based on
the minimization of an heterogeneity measure of blocks. This measure takes into
account both the variance within blocks and a measure named the centroid effect
[5] defined as the squared deviation from the mean entry in each block and the
maximum entry in the input matrix. The proposed algorithm, in addition to be
very efficient in terms of co-clustering on sparse data, are also faster than most
of state-of-the art algorithms and therefore can deal with high dimensional data.

The remaining of this paper is organized as follows. Section 2 provides the
needed background on the Double Kmeans (DKM) algorithm and presents
the challenge of diagonal co-clustering. Section 3 presents the Diagonal Double
Kmeans (DDKM) algorithm that we propose. Section 4 is devoted to numerical
experiments on real datasets showing the appropriateness of our contribution
for binary and continuous data. The final section sums up the study and gives
recommendations for further research.

Notation. Let X := {xij ; i ∈ I; j ∈ J} be a data matrix of size n × p where
I = {1, . . . , n} and J = {1, . . . , p}. The set I corresponds to the set of n objects
and the set J to the set of p attributes. In the sequel, our aim consists in
obtaining co-clustering of X. Let Z = {z1, . . . , zn} be a label vector, where
zi ∈ {1, . . . , K}, denotes the partition of I into K clusters and W = {w1, . . . , wp}
where wj ∈ {1, . . . , H} denotes the partition of J into H clusters. The partition
of I (respectively J) can be represented by a matrix of elements in {0, 1}K

(respectively {0, 1}H) satisfying
∑K

k=1 zik = 1 (respectively
∑H

h=1 wjh = 1).
Finally, to simplify the notation, the sums relating to rows, columns, row and
column clusters will be subscripted respectively by the letters (i = 1, . . . , n, j =
1, . . . , p and, k = 1, . . . , K, without indicating the implicit limits of variation.
For example, the sum

∑
i,k stands for

∑n
i=1

∑K
k=1.
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2 Co-clustering and Diagonal Block Structure

The co-clustering can be formulated as the search for a good matrix approxima-
tion of the original data matrix X. The quality is determined by the approxi-
mation error which can be measured by a large class of loss functions like the
square Euclidean distances. This approximation is generally achieved through an
alternate least square minimization process (see for instance [1,7]). The Double
Kmeans algorithm [16] is based on this principle.

2.1 Double Kmeans Algorithm

Formally, the aim is to minimize an objective function J(Z,W,G) where Z and
W are the partitions and G := {gkh; k ∈ {1, . . . , K}, h ∈ {1, . . . , H} is a K × H
matrix which can be viewed as a summary of the data matrix X (see Fig. 2).

Fig. 2. Original data matrix X and its summary after co-clustering into 6 co-clusters.

Each element gkh of G is called a prototype of co-cluster Xkh :=
{xij ; zikwjh = 1}. Double Kmeans (DK) adopts the squared Euclidean distance
to measure the dissimilarity between the matrix X and the structure described
in Z,W and G. Therefore, J(Z,W,G) is given by

J (Z,W,G) =
∑

i,k,j,h

zik × wjh(xij − gkh)2 = ||X − ZGWT ||2, (1)

where ||.|| denotes the Frobenius norm. It is easy to see that for a fixed (Z;W)
the optimal values of G are the means of Xkh’s. The optimal partitions Z and W
are found using an iterative algorithm. A version of double Kmeans is presented
in Algorithm 1 where z.k (resp. w.h) represents the cardinality of the kth cluster
(resp. hth cluster).

2.2 Block Diagonal Structure

The DKM algorithm appears to be not efficient when looking for a one-to-one
correspondence between two partitions Z and W. In order to deal with this
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Algorithm 1. Double Kmeans (DKM)
input: X, K, H
initialization: Z and W
repeat

(1) Compute gkh =
∑

i,j

zikwjhxij

z.kw.h
, ∀k, h

(2) Update zi = arg mink

∑
j,h wjh(xij − gkh)2, ∀i

(3) Update wj = arg minh

∑
i,k zik(xij − gkh)2, ∀j

until the J value change is small or there is no change.
output: G, Z and W

specific case, we have to consider wjk instead of a wjh; in other words, we
assume that H = K. Secondly, the diagonal structure involve to impose some
constraints on G; for instance by taking gkk = δ ∀k. This leads us to consider
the following criterion:

J(X,Z,W) =
∑

i,j,k

zikwjk(xij − δ)2, (2)

where δ is assumed to be known. The choice of this parameter will be discussed
in the next section. The couple of partitions (Z,W) optimizing the criterion
given in Eq. 2 are found using the following iterative algorithm

1. Update Z the partition of objects, with W fixed. This leads to the following
formula

zi = arg min
k

∑

j

wjk(xij − δ)2,

2. Update W, the partition of features, with Z fixed. This leads to the following
formula

wj = arg min
k

∑

i

zik(xij − δ)2.

From these formulae, one observes that seeking the diagonal structure of blocks
indirectly introduces a strong dependency between object assignments (respec-
tively features assignments) to a block and the number of features that belong
to this block (respectively the number of objects). If we consider object assign-
ments, we have (xij − δ)2 ≥ 0,∀i, j; therefore a higher number of features in a
block will decrease the chance that an object will be assigned to this particular
block. The same phenomenon occurs in the feature assignments. This leads to
take into account the size of each co-cluster in order to avoid empty blocks.

3 Diagonal Double Kmeans

3.1 Criterion and Proposed Algorithm

In order to correct the bias introduced by the diagonal structure and to avoid
certain blocks from vanishing, we propose a modified criterion that takes into
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account the number of elements in a block. This criterion takes the following
form:

J(X,Z,W) =
∑

k

1
z.kw.k

∑

i,j

zikwjk(xij − δ)2. (3)

where z.k and w.k denote respectively the number of objects and the number
of features in the k-th block. Furthermore, it is interesting to note that the
criterion given in Eq. 3 may be expressed depending on the variance of a given
block (Zk,Wk) and the squared deviation of its mean from the maximum input
of the data:

J(X,Z,W) =
∑

i,j,k

zikwjk

z.kw.k
(xij − xk)2 +

∑

i,j,k

zikwjk

z.kw.k
(xk − δ)2

=
∑

k

s2k +
∑

k

(xk − δ)2. (4)

where

xk =
1

z.kw.k

∑

i,j

zikwjkxij and s2k =
1

z.kw.k

∑

i,j

zikwjk(xij − xk)2

denote the mean and the variance within the k-th block respectively. The first
term of Eq. 4 ensures the homogeneity of each block while the second one provides
the homogeneity between centers of the blocks and δ. This objective function
(Eq. 3) is optimized by an alternating optimization of two conditional criteria
given W and Z respectively.

J̃1(X,Z|W) =
∑

k

1
z.k

∑

i

zik
1

w.k

∑

j

wjk(xij − δ)2

and

J̃2(X,W|Z) =
∑

k

1
w.k

∑

j

wjk
1

z.k

∑

i

zik(xij − δ)2.

The optimization of J̃1 and J̃2 lead to the following update rules:

zi = arg min
k

1
w.k

∑

j

wjk(xij − δ)2, (5)

wj = arg min
k

1
z.k

∑

i

zik(xij − δ)2. (6)

The proposed algorithm Diagonal Double Kmeans (DDKM) (Algorithm2) is
computationally efficient and its complexity can be shown to be O(τ × npK)
where τ denotes the number of iterations required to obtain the convergence,
n, p and K are the number of objects (i.e. rows), features (i.e. columns) and
clusters respectively.
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Algorithm 2. Diagonal Double Kmeans (DDKM)
input: X and K
initialization: Z, W and δ
repeat

(2) Update Z according to Eq. 5
(3) Update W according to Eq. 6

until the J value change is small or there is no change.
output: Z and W

3.2 Choice of δ

Herein, we discuss the choice of δ. Specifically, we compare between the optimal
value of δ and the maximum entry of the matrix.

1. If we consider δ as an unknown parameter, its optimal value for the criterion
minimized is equal to the average of blocks means. Indeed, with Z and W
fixed and by setting the derivative of J (Eq. 3) to zero we obtain δ = 1

K

∑
k xk

where xk denotes the mean of the k-th block. Although this value of δ is the
optimal, we can observe that in the context of sparse data i.e. when the data
matrix contains a high percentage of 0, its value will tend to 0 leading to a
diagonal structure of blocks of 0. An illustration of the resulting co-clustering
obtained with this value on the CSTR dataset (described in the numerical
experiments section) is given in Fig. 3(c).

2. Another way to proceed is to set the value of δ at the initialisation step.
DDKM aims at grouping objects and features with the strongest association
possible. For instance, in the case of a binary data matrix X, the strongest
association between an object i and a feature j is expressed in xij = 1 which is
the maximum value of the entry of X. As a matter of fact, choosing the max-
imum allows to guarantee the homogeneity of diagonal blocks while ensuring
blocks of 0 outside. In [5,13], the authors proposed hierarchical algorithms
based on this idea. We use the same example as for the optimal value to show
the result on Fig. 3(b). It is important to stress that this approach requires
for values of a data matrix to be comparable. This is the case for binary
data or normalized data as we will see in the next section devoted to the
document-word partitioning.

4 Numerical Experiments

4.1 Performance Evaluation

In order to assess and to compare the performance of the proposed algorithm,
we use commonly adopted metrics: the Accuracy, the Normalized Mutual Infor-
mation [15] and the Adjusted Rand Index [9]. We focus only on the quality of
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Fig. 3. (a) CSTR the original dataset, (b) CSTR reorganised according to the parti-
tions when δ = maxi,j xij , (c) CSTR reorganised according to the partitions when δ
estimated by 1

K

∑
k xk.

row clustering. Clustering accuracy noted Acc is one of the most widely used
evaluation criterion and is defined as:

Acc =
1
n

max

⎡

⎣
∑

Ck,L�

T (Ck,L�)

⎤

⎦

where Ck is the kth cluster in the final results, and L� is the true �th class.
T (Ck,L�) is the proportion of objects that were correctly recovered by the clus-
tering algorithm i.e. T (Ck,L�) = Ck ∩L�. Accuracy computes the maximum sum
of T (Ck,L�) for all pairs of clusters and classes, and these pairs have no overlaps.
The second measure employed is the Normalized Mutual Information (NMI) and
is calculated as follows:

NMI =

∑
k,�

nk�

n log nk�

nkn̂�√
(
∑

k
nk

n log nk

n )(
∑

�
n̂k

n log n̂�

n )

where nk denotes the number of data contained in the cluster Ck(1 ≤ k ≤ K),
n̂�, the number of data belonging to the class C′

k(1 ≤ � ≤ K), and nk�, the
number of data that are in the intersection between the cluster Ck and the class
C′

k. The last measure Adjusted Rand noted ARI measures the similarity between
two clustering partitions. From a mathematical standpoint, the Rand index is
related to the accuracy. The adjusted form of the Rand Index is defined as:

ARI =

∑
k,�

(
nk�

2

) −
[∑

k

(
nk

2

) ∑
�

(
n̂�

2

)]
/
(
n
2

)

1
2

[∑
k

(
nk

2

)
+

∑
�

(
n̂�

2

)] −
[∑

k

(
nk

2

) ∑
�

(
n̂�

2

)]
/
(
n
2

) .

The value for these three metrics are between 0 and 1, a value close to 1
means a good result in terms of clustering.
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4.2 Compared Algorithms

We compare against state-of-the-art (co)-clustering methods including Spherical
Kmeans (SpKM)[4], Double Kmeans (DKM) and Spectral Co-Clustering (SpCo)
[3]. We also report the clustering results by Kmeans and the Nonnegative Matrix
Factorization (NMF) [2] as baseline. The Spherical Kmeans algorithm is basically
a Kmeans algorithm that use the cosine dissimilarity instead of the Euclidean
distance. It is known to be very efficient on sparse dataset and to converge
quickly. We use the matlab implementation for kmeans and NMF. For SpCo
algorithm we use the implementation proposed by Assaf Gottlieb1. We use the
SpKM implementation given in [14]. Finally, we implement CROEUC [6], a fast
version of Double Kmeans (DKM); its advantage is due to the use of intermediate
matrices of reduced sizes rather than the original data.

4.3 Datasets and Results

We study the effectiveness of our algorithm for some well-known text datasets
with different sizes and balances2: CSTR, Classic3, WebKB4 and 2 subsets of
the 20 Newsgroups dataset. The 20 Newsgroups dataset is organized into 20
topics. Some of the topics are closely related while other are highly unrelated.
We describe the topics included in the two subsets in Table 1. The NG2 dataset
includes two topics not related (rec.motorcycles and sci.crypt,sci.space) while
NG5 includes topics closely related involving a situation with overlapping clus-
ters (rec.sport.baseball, sci.crypt, sci.med, talk.religion.misc, comp.windows.x,
soc.religion.christian, talk.politics.mideast). A detailed description of all datasets
can be found in Table 1.

Table 1. Description of the datasets in terms of size (n × p), number of clusters (K),
sparsity (%0) and size of the cluster. A partition is assumed balanced if the balance
coefficient is close to 1 and unbalanced otherwise.

Dataset n × p K %0 Balance

CSTR 475 × 1000 4 96.60 0.399

Classic3 3891 × 4303 3 98.95 0.71

WebKB4 4199 × 1000 4 91.83 0.307

NG2 500 × 2000 2 96.90 1

NG5 500 × 2000 5 97.19 1

Originally each cell of these datasets denotes the number of occurrences of
a word in a document. As we are interested in evaluating our algorithm on
both binary and continuous data, we use one version of the datasets on which
1 http://adios.tau.ac.il/.
2 The balance coefficient is defined as the ratio of the number of documents in the

smallest class to the number of documents in the largest class.

http://adios.tau.ac.il/
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Table 2. Accuracy, Normalized Mutual Information and Adjusted Rand Index
obtained on tf-idf datasets.

Dataset Metric Algorithms

NMF Kmeans SpKM DKM SpCo DDKM

CSTR Acc 81.47 85.05 88.63 62.95 79.79 90.95

NMI 69.91 64.74 74.07 27.93 66.67 76.39

ARI 70.26 68.14 76.57 46.72 70.20 82.99

Classic3 Acc 96.32 90.47 97.33 94.17 70.60 98.69

NMI 84.53 73.81 91.41 80.90 59.64 96.10

ARI 89.04 75.34 94.38 82.82 40.20 93.32

WebKB4 Acc 80.38 49.46 62.85 38.75 64.32 78.90

NMI 52.08 25.15 37.00 04.65 41.04 51.15

ARI 56.48 18.03 31.55 04.54 38.09 54.93

NG2 Acc 62.60 - 60.92 50.70 88.98 94.40

NMI 4.85 - 11.92 0.15 53.16 68.88

ARI 6.17 - 4.68 0.00 60.69 78.81

NG5 Acc 41.48 23.25 56.31 31.06 53.91 70.54

NMI 27.42 6.21 30.69 9.47 45.59 41.53

ARI 13.66 0.34 19.85 4.45 30.03 41.40

the data were converted into binary i.e. each cell having a value higher to 0 is
considered equal to 1 and 0 otherwise, and a second version where a TF-IDF
(Term Frequency - Inverse Document Frequency) transformation is applied. The
TF-IDF normalization is one of the most used in text mining, and is defined as
x′

ij = tfij × log n
dfj

where tfij denotes the number of occurrence of the j-th word
in the i-th document and dfj denotes the number of documents containing the
j-th word.

We set the number of clusters as the true number of classes on all datasets. For
each method, given the number of clusters, no parameter selection is needed. We
run the algorithms 100 times and report the best result (in percentage), i.e. the
one that corresponds to a local minimum of the criterion of all trials in Tables 2
and 3. Several observations can be made based on these results: the proposed
algorithm outperforms the other method on each dataset whether it is the TF-
IDF version or the binary one, except on the TF-IDF version of WebKB4. On
NG2 and NG5 whose classes are not well separated, the performance difference
is all the more important. We can also note that on the TF-IDF version of NG2,
Kmeans is unable to find a partition into two clusters as required.

4.4 Computational Complexity

We study the computational complexity of the compared clustering and co-
clustering algorithms. We repeat clustering 100 times for each algorithm on
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Table 3. Accuracy, Normalized Mutual Information and Adjusted Rand Index
obtained on binary datasets.

Dataset Metric Algorithms

NMF Kmeans SpKM DKM SpCo DDKM

CSTR Acc 85.68 85.05 88.63 62.95 79.79 91.37

NMI 67.08 64.74 74.07 27.93 66.67 79.06

ARI 70.65 68.14 76.57 46.72 70.20 83.00

Classic3 Acc 97.66 90.47 97.33 94.17 70.60 98.20

NMI 88.78 73.81 91.41 80.90 59.64 91.31

ARI 93.06 75.34 94.38 82.82 40.20 94.61

WebKB4 Acc 73.26 49.46 62.85 38.75 64.32 72.80

NMI 41.05 25.15 37.00 04.65 41.04 44.14

ARI 43.60 18.03 31.55 04.54 38.09 44.29

NG2 Acc 60.60 57.60 60.80 54.60 90.20 94.60

NMI 12.85 12.93 13.09 2.38 55.35 70.55

ARI 4.41 2.26 4.58 0.77 64.57 79.53

NG5 Acc 50.10 33.07 52.10 29.66 60.32 76.75

NMI 32.25 16.61 28.31 8.15 50.75 51.49

ARI 20.68 4.08 24.84 2.82 37.31 51.37

Fig. 4. Running time in seconds of the compared algorithms on the binary and the
tf-idf versions of CSTR (a) and classic3 (b) datasets.

each dataset. We report the average convergence time in Fig. 4 for the CSTR
(a) and Classic 3 (b) datasets. The obtained results show that the proposed
algorithm DDKM is only very slightly slower than NMF method while it requires
far less time to converge than all other state-of-the-art algorithms. The same
observations were made on the other datasets presented in this article.
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5 Conclusion

In this paper we presented DDKM, a fast co-clustering algorithm that looks for
homogeneous diagonal blocks. Compared with other methods, we demonstrate
that our proposed algorithm is more effective for document-word partitioning
datasets and especially in presence of classes having a high degree of overlap.
In addition, DDKM requires less time to converge; up to 20 times less time
than DKM and 40 times less time than SpCo commonly used in the domain
of document clustering. In real world application, the knowledge of the number
of co-clusters is mostly required. For further research, it will be worthwhile to
investigate an efficient way to assess this parameter.
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Abstract. Modularity allows to estimate the quality of a partition into
communities of a graph composed of highly inter-connected vertices. In
this article, we introduce a complementary measure, based on inertia, and
specially conceived to evaluate the quality of a partition based on real
attributes describing the vertices. We propose also I-Louvain, a graph
nodes clustering method which uses our criterion, combined with New-
man’s modularity, in order to detect communities in attributed graph
where real attributes are associated with the vertices. Our experiments
show that combining the relational information with the attributes allows
to detect the communities more efficiently than using only one type of
information. In addition, our method is more robust to data degradation.

Keywords: Attributed graph · Graph clustering · Social network ·
Community detection · Modularity

1 Introduction

Clustering of graph vertices is a task related to community detection within
social networks. The goal is to create a partition of the vertices, taking into
account the topological structure of the graph, in such a way that the clusters
are composed of strongly connected vertices [3,13,20,23,29]. Among the core
methods proposed in the literature, we can cite those that optimize a function
(modularity, ratio cut or its variants, etc.) in order to evaluate the quality of the
partition [10,19,25,30], the hierarchical techniques like divisive algorithms based
on the minimum cut [14], the spectral methods [34] or the Markov Clustering
algorithm and its extensions [28]. We refer to the survey of Fortunato for a
thorough discussion of community detection methods [15].

Graph clustering techniques are very useful for detecting strongly connected
groups in a graph but many of them mainly focus on the topological structure,

c© Springer International Publishing Switzerland 2015
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ignoring the vertices properties. Nowadays, various data sources can be seen as
graphs where vertices have attributes and a new challenge in graph clustering
consists in combining the relational information corresponding to the network
and attributes describing the vertices. Generally, this is not the case in clus-
tering of vertices where only the relationships between the vertices are used,
nor in unsupervised classification based only on the attributes. Recently, several
methods have been proposed to take into account the relational information as
well as the attributes in the aim to detect patterns in attributed graphs [26,31]
or to tackle this problem of hybrid clustering [6,11]. In this article, we pro-
pose a method, called I-Louvain, which allows to partition the vertices of an
attributed graph when numerical attributes are associated to the vertices. In
social networks, these attributes can correspond to features (age or weight) or
tf-idf vector representing documents associated to the nodes. This method is
based on a local optimization of a global criterion which is a function on the one
hand of the modularity [24] and on the other hand of a new measure based on
inertia.

After a presentation of related work in Sect. 2, we define this measure, called
inertia based modularity, in Sect. 3, and the method I-Louvain in Sect. 4. The
experimental study of Sect. 5 confirms that clustering, based on the relational
information and attributes provides more meaningful clusters than methods tak-
ing into account one type of data (attributes or edges) or than ToTeM which
exploits attributes and edges [6].

2 Related Work

Recently, methods exploiting both information types were introduced in order to
detect communities in social networks or graphs where vertices have attributes.

Steinhaeuser and Chawla propose to measure the similarity between vertices
according to their attributes and then to use the result as a weight of the edge
linking the two vertices. After this pre-treatment, they use a graph partitioning
method in order to cluster the new weighted graph [32]. In the hierarchical
clustering of Li et al., after a first phase consisting in detecting community seeds
with the relational information, the final communities are built under constraints
defined by the attributes [21]. This leads to merging the seeds on the base of their
attributes’ similarity. So, in these previous methods, the two types of information
are not exploited simultaneously.

Zhou et al. exploit the attributes in order to extend the original graph [36,37].
They add new vertices representing the attributes and new edges that link origi-
nal vertices having similar attributes through these new vertices. A graph parti-
tioning is then carried out on this new augmented graph. However, this approach
cannot be used when the attributes have continuous values: it works only with
categorical attributes.

Ester et al. study the “connected k-center problem” and propose a method
called NetScan, which is an extended version of the K-means algorithm with
an internal connectivity constraint [12,16]. Under this constraint, two vertices in
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a same cluster are connected by a path that is internal to the cluster. In NetScan
as in many other partitioning methods, the number of clusters has to be known
in advance. However, this condition is relaxed in the work of Moser [22].

CESNA was introduced by Yang et al. to identify Communities from Edge
Structure and Node Attributes [35]. One advantage of this method is its ability to
detect overlapping communities by modeling the interaction between the network
structure and the node attributes.

There are some other methods, focusing on dense subgraph detection, that
integrate the homogeneity of the attributes inside the subgraphs, cf. for instance
[17,18].

Finally, we can mention a family of methods which propose to extend the
well-known Louvain algorithm and for this reason, they are probably the most
related works to our concerns. Dang et al. suggest to modify the modularity by
considering not only the link between two vertices but also the similarity of their
attributes. Thus, the two types of information are simultaneously considered in
the partitioning process but with this approach, the communities provided can
contain non linked vertices [9]. In [7], the optimization phase of the Louvain
algorithm is based not only on the modularity but also on the entropy of the
partition but, again, the two types of information are not exploited simultane-
ously.

Recently, some of these methods have been compared and these experiments
have confirmed that the detection of communities in an attributed graph is not
a trivial problem [6,11]. To solve it efficiently, we consider that the attributes
and the relational information must be exploited simultaneously and this is
not the case for several methods cited. Moreover, the majority of the meth-
ods quoted previously exploit categorical attributes but they are not suited for
numerical attributes. This is the reason for which, in this article, we propose
I-Louvain, a method to detect communities in a graph where numerical
attributes are associated to the vertices. These attributes can correspond to
features (age or weight) or to a tf-idf vector representing documents associated
to the vertex. I-Louvain consists in optimizing on the one hand the modularity
introduced by Newman [24] and on the other hand a new measure that is defined
in the next section.

3 Inertia Based Modularity

Let V be a set of N elements represented in a real vector space such that each
element v ∈ V is described by a vector of attributes v = (v1, . . . , v|T |) ∈ R

|T |.
The inertia I(V ) of V through its center of gravity g, also called second central
moment, is an homogeneity measure defined by I(V ) =

∑
v∈V ‖v − g‖2, where

‖v′ − v‖ denotes the euclidean distance between v and v′, g = (g1, . . . , g|T |), the
center of gravity of V is such that gj = 1

N

∑
v∈V vj .

The inertia I(V, v) of V through v is equal to the sum of the square euclidean
distances between v and the other elements of V : I(V, v) =

∑
v′∈V ‖v′ − v‖2.

Given a partition P = {C1, . . . , Cr} of V in r disjoint clusters, we introduce
a quality measure Qinertia(P) of P defined by:
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Qinertia(P) =
∑

(v,v′)∈V ·V

[(
I(V, v) · I(V, v′)

(2N · I(V ))2
− ‖v − v′‖2

2N · I(V )

)

· δ (cv, cv′)

]

(1)

where cv denotes the cluster of v ∈ V and δ is the Kronecker function equal to
1 if cv and cv′ are equal and 0 otherwise.

Thus, while the modularity, introduced by Newman, considers the strength
of the link between vertices in order to cluster strongly connected vertices, our
measure attempts to cluster elements which are the most similar. This appears
in the second term of the Eq. 1, which is a function of the square of the distance
between v and v′, corresponding to an observed distance between v and v′.
This observed distance between v and v′ is compared with an expected distance
deducted from their respective inertia. This expected distance, which appears in
the second term of the Eq. 1, is a function of the square distance of each of these
elements v and v′ to the other elements of V .

Therefore, Qinertia allows to compare, for each pair of elements (v, v′) from
the same community, the expected distance with the observed distance. If the
former is greater than the latter, then v and v′ are good candidates to be affected
in a same cluster.

Given the normalization factors in the denominators of the expected and
observed distances, the criterion Qinertia ranges between -1 and 1. Indeed, the
maximum value of the left term in the subtraction (Eq. 1), containing the product
of the inertia for all pairs of elements is 1. Similarly, the right term of the criterion
Qinertia (Eq. 1) can not exceed 1. Both terms are strictly positive. Consequently
the measure, constrained by the Kronecker function, varies between -1 and 1.

This criterion has several interesting properties. Firstly, it has the same value
irrespective of the affine transformation applied to the attribute vectors, in other
words the addition of a constant and / or the multiplication by a scalar of the
vectors associated to the elements do not affect the value Qinertia. Secondly, the
order of attributes has no effect on the result.

However, this criterion has also limitations. It is undefined if the vectors are
identical, since the total inertia is then zero. This is not really a problem, because
in this case, the detection of the communities will be based only on the relational
data. Moreover, as the modularity introduced by Newman, this criterion could
present a resolution limit. If it is the case, the solution proposed by Arenas et al.
or Reichardt and et al. could be adapted for our criterion [1,27].

4 I-Louvain

As stated above, a direct application of our measure Qinertia is the community
detection in social networks represented by an attributed graph G = (V,E)
where V is a set of vertices, E is a set of edges and where each vertex v ∈ V is
described by a real attribute vector v = (v1, . . . , vj , . . . , vT ) ∈ R

|T | [36]. In this
section, we propose a community detection method for real attributed graphs
which exploits the inertia-based modularity Qinertia jointly with the Newman
modularity QNG(P). Our method, called I-Louvain, is based on the exploration
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principle of the Louvain method. It consists in the optimization of the global
criterion QQ+(P) defined by:

QQ+(P) = QNG(P) + Qinertia(P) (2)

with:

QNG(P) =
1

2m
Σvv′

[

(Avv′ − kv · kv′

2m
)δ(cv, cv′)

]

(3)

where kv is the degree of vertex v ∈ V , A is the adjacency matrix associated to
G, m is the number of edges and δ the Kronecker function.

It may be noted that another combination of these criteria can be used, for
instance to give more importance to one kind of data. However, in the general
case where attributes and relational information have the same weight, it is not
useful to normalize the criteria QNG(P) and Qinertia(P) because they have
been normalized to take values between -1 and 1, as mentioned in the previous
section.

The I-Louvain method is presented in Algorithm1. The process begins with
the discrete partition in which each vertex is in its own cluster (line 1). The
algorithm is divided in two phases that are repeated.

The first one is an iterative phase which consists in considering each vertex
v and its neighbors in the graph and to evaluate the modularity gain induced by
a move of v from its community to that of its neighbors. The vertex v is affected
to the community for which the gain of the global criterion QQ+(P), defined
in Eq. (2), is maximum. This process is applied repeatedly and sequentially for
all vertices until no further improvement can be obtained.

If there is an increase of the modularity during the first phase, the
second phase consists in building a new graph G′ from the partition P ′

obtained at the end of the previous phase. This second phase involves two
procedures: Fusion Matrix Adjacency and Fusion Matrix Inertia. The procedure
Fusion Matrix Adjacency is identical to the one used in the Louvain method [4]
and it exploits only the relational information. It consists in building a new
graph. The vertices of this new graph G′ correspond to the communities obtained
at the end of the previous phase. The weights of the edges between these new
vertices are given by the sum of the weights of the edges between vertices in
the corresponding two communities. The edges between vertices of the same
community lead to a self-loop for this community in the new network.

The procedure Fusion Matrice Inertia exploits the attributes and allows to
compute the distances between the vertices of G′ from the distances between the
vertices of G. If the graph G considered at the beginning of the iterative phase
includes |V | vertices then the matrix D is a symmetric square matrix of size
|V | × |V | in which each term D [a, b] is the square of the distance between the
vertices va and vb of V . At the end of the iterative phase, a partition P ′ of V in
k communities is obtained, in which each community will correspond to a vertex
of V ′ in the new graph G′ built by the procedure Fusion Matrix Adjacency. The
matrix D′ associated to this new graph G′ is defined by:
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ALGORITHM 1 . I-Louvain
Input : An attributed graph G
Output : A partition Pres

1 P ← discrete partition of vertices of V ;
2 A ← adjacency matrix of G;
3 D ← matrix of the squares of the euclidean distances between the vertices of V

calculated on their attributes;
4 repeat
5 end ← false;

6 QQ+
anterior ← QQ+(P);

7 repeat
8 foreach vertex u of V do
9 B ← neighbor community maximizing the gain of QQ+;

10 if move of u in B induces a strictly positive gain then
11 Affect u to the community B;
12 Update the partition P after the transfer of u into B;

13 end

14 end

15 until no vertex can be moved anymore;

16 if QQ+(P) > QQ+
anterior then

17 G,A ← Fusion Matrix Adjacency(A,P);
18 D ← Fusion Matrix Inertia(D,P);

19 else
20 end ← true;
21 end

22 until end ;
23 Pres ← P;

D′ [x, y] =
∑

(va,vb)∈V ×V

D [va, vb] · δ(τ(va), x) · δ(τ(vb), y) (4)

where the function τ gives for each vertex v ∈ V the vertex v′ ∈ V ′ corresponding
to its cluster in P ′.

One advantage of the Louvain method is the local optimization of the mod-
ularity done during the first phase [2]. In the same way, in I-Louvain, the global
modularity of a new partition can be quickly updated. There is no need to com-
pute it again from scratch after each move of a vertex. Indeed, the modularity
gain can be computed using only local information concerning the move of the
vertex from its community to that of its neighbor. Given P = (A,B,C1, .., Cr)
the original partition and P ′ = (A\{u} , B∪{u} , C1, .., Cr) the partition induced
by the move of a vertex u from its community A to the community B where
A \ {u} denotes the community A deprived of the vertex u, the modularity gain
induced by the transformation of P in P ′ is equal to:

ΔQinertia =Qinertia(P ′) − Qinertia(P) (5)

=
1

N · I(V )

∑

v∈B

[
I(V, u) · I(V, v)

2N · I(V )
− D [u, v]

]
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− 1
N · I(V )

∑

v∈A\{u}

[
I(V, u) · I(V, v)

2N · I(V )
− D [v, v′]

]

(6)

The proof of this proposition is not given due to the limited size of the
article but it is detailed in [5]. One can notice that the variation of modularity
resulting from the move of the vertex u from its community to an other one is the
same whatever its new community. It follows that the modularity gain can be
computed in taking only into account the increase (or decrease) induced by its
affectation in its new community corresponding to the first term in Eq. 6. This
confirms that the optimization of Qinertia can be done using a local computation
based on the information related to the affectation of the vertex u in its new
community.

5 Evaluation of I-Louvain method

Our first experiments aim at evaluating on a real dataset the performances of
I-Louvain, which exploits attributes and relational data, compared with meth-
ods based only on one type of data, K-means for the attributes and Louvain for
the relations and with ToTeM, an other community detection method designed
for attributed graphs which exploits the two types of information, notably numer-
ical attributes [6]. In the following experiments, we study the robustness of our
method to various degradations of an artificial network and we compare its
performances, according to the accuracy as well as the normalized mutual infor-
mation, with K-means, Louvain and ToTeM. Among the methods exploiting
the both kinds of data (relationships and attributes), Totem has been retained
because it has been showned experimentally that it provides better results than
simpler methods [5,6] Finally, the last experiments aim at studying the impact
of increasing the number of vertices and edges on the run-time evolution.

The I-Louvain source code and the dataset used for the experiments in the
paper are available for download1. The Louvain source code is one proposed by
Thomas Aynaud in 20092.

5.1 Evaluation of I-Louvain method on a real network

Firstly, we present results obtained on a real dataset built using the databases
DBLP (06/18/2014) and Microsoft Academic Search (02/03/2014). DBLP allows
to generate a graph G = (V,E) with |V | = 2515 and |E| = 5313 that reflects the
coauthor relationship: a vertex represents an author and two authors are linked
if they have copublished at least one article in a conference in computer science
also refereed in Microsoft Academic Search. The 23 keywords (data mining,
Computer vision, etc.) associated to the conferences in the Microsoft Academic
Search database are used to define 23 attributes on the vertices: the number
1 I-Louvain source code and dataset: http://bit.ly/ILouvain.
2 http://perso.crans.org/aynaud/communities/.

http://bit.ly/ILouvain
http://perso.crans.org/aynaud/communities/
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of publications of an author in conferences associated to a given keyword cor-
responds to a component of his attribute vector. These keywords allow also to
define a partition corresponding to the ground truth for this dataset: the true
community of an author corresponds to the research field, identified by the cor-
responding key word, in which he has mainly published.

The results are evaluated using the Normalized Mutual Information (NMI)
derived from the mutual information (MI) and entropy (H), and defined by: [33]

NMI(P1,P2) =
MI(P1,P2)√
H(P1)H(P2)

(7)

Table 1 presents the results provided by I-Louvain and those obtained by
Louvain, K-means with K = 22 and ToTem. In this experiment, where we have
a ground truth, the results confirm the interest of using the two kinds of infor-
mation. Indeed the NMI of K-means is equal to 0.58 whereas the number of
clusters that must be identified is given as parameter for this algorithm, when it
is equal to 0.69 for Louvain. Moreover, with a NMI equals to 0.72, the proposed
method outperforms ToTeM which obtains only 0.69. These results confirm the
interest of I-Louvain to improve the detection of the communities.

Table 1. Evaluation according to the normalized mutual information (NMI)

Louvain K-means ToTeM I-Louvain

NMI 0.69 0.58 0.69 0.72

5.2 Evaluation of I-Louvain method on artificial data

In this second set of experiments, we evaluate the robustness of our method
on artificial networks after different transformations of a reference network R,
composed of 168 edges and 99 vertices uniformly distributed into 3 classes. This
reference network has also been generated with the model proposed by Dang [8].
Moreover, each vertex is described by an attribute following a normal distribu-
tion with a standard deviation σ equal to 7 and a mean equal to m1 = 10 for
the first class, m2 = 40 for the second class and m3 = 70 for the third class. The
class of the vertex in R is used as a ground truth for the evaluation. From this
reference network R we built four families of networks:

– R.1.x in which the relational information is weakened in R, by the substitution
of a percentage p of edges within class by edges between classes with p = 0.25
for R.1.1 and p = 0.5 for R.1.2;

– R.2.x in which the values of the attributes are less representative of each class,
with a standard deviation σ = 10 for R.2.1 and σ = 12 for R.2.2;

– R.3.x which contain more vertices than R, 999 vertices for R.3.1 and 5,001 for
R.3.2;

– R.4.x which contain more edges than R by introducing respectively 5 edges
per new vertex in R.4.1 and 10 in R.4.2.



I-Louvain: An Attributed Graph Clustering Method 189

Table 2. Evaluation according to the accuracy (AC) and the number of clusters (#cl)
(* means that the transformation has no influence on the results for this method)

Louvain K-means ToTeM I-Louvain

AC #cl AC AC #cl AC #cl

Reference network

R 84 % 4 96 % 97 % 3 98% 3

Degradation of the relational information

R.1.1 33 % 8 96 %* 18 % 30 78% 5

R.1.2 23 % 9 96 %* 14 % 36 63% 6

Degradation of the attributes

R.2.1 84 %* 90 % 95 % 3 96% 3

R.2.2 84 %* 87 % 20 % 26 98% 3

Number of vertices

R.3.1 50 % 11 97% 97% 3 84 % 4

R.3.2 40 % 12 98% 0,5 % 1,518 85 % 4

Number of edges

R.4.1 96% 3 96 %* 95 % 3 94 % 3

R.4.2 97 % 3 96 %* 98% 3 98% 3

Table 3. Evaluation according to the NMI (* means that the transformation has no
influence on the results for this method)

NMI Louvain K-means ToTeM I-Louvain

Reference network

R 0.78 0.88 0.86 0.93

Degradation of the relational information

R.1.1 0.22 0.88* 0.48 0.60

R.1.2 0.11 0.88* 0.37 0.35

Degradation of the attributes

R.2.1 0.78* 0.72 0.81 0.88

R.2.2 0.78* 0.63 0.56 0.93

Number of vertices

R.3.1 0.59 0.88 0.85 0.80

R.3.2 0.58 0.89 0.37 0.77

Number of edges

R.4.1 0.84 0.88* 0.80 0.81

R.4.2 0.87 0.88* 0.91 0.91
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The results of I-Louvain are compared to those of the Louvain method,
K-means with k = 3 and ToTeM. Tables 2 and 3 present respectively the
accuracy (AC) and normalized mutual information (NMI). In exploiting the
attributes and the relational information, the I-Louvain method is more robust
than the Louvain method in the case of a degradation of the relational informa-
tion. The K-means gives good results when the size of the network increases,
but it requires the number of clusters as parameter. Despite this advantage,
it obtains less good results than I-Louvain in front of a degradation of the
attributes, notably for the NMI. Finally, compared to ToTeM, I-Louvain pro-
duces better or similar results. It is notably better for a larger number of vertices.

5.3 Run-Time of I-Louvain

In the last set of experiments, we evaluate the run-time of I-Louvain on different
networks. Figure 1 presents the run-time evolution against the number of vertices
|V |. In our experiments, we consider attributed networks with two attributes and
where the number of edges |E| = 3×|V |. These results indicate that I-Louvain
is able to handle large graphs.

Fig. 1. Run-time of I-Louvain on different networks G = (V,E) with |E| = 3 × |V |

6 Conclusion

In this article, we studied the problem of attributed graph clustering when the
vertices are described by real attributes. Inspired by the Newman modularity,
we introduce a modularity measure, based on inertia. This measure is suited for
assessing the quality of a partition of elements represented in a real vector space.
We also introduced I-Louvain, an algorithm which combines our criterion with
Newman’s modularity in order to detect communities in attributed graphs. We
demonstrated formally that this new algorithm can be optimized in its iterative
phase. As we show in the experiments, using jointly the relational information
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and the attributes, I-Louvain detects more efficiently the communities than
ToTeM or methods using only one type of data. Moreover, the method is resistant
toward a degradation of the relations or the attributes, an increase in the density
of the relations or the size of the network. Finally, the experiments confirm the
scalability of the method.

Acknowledgments. The authors would like to thank P.N. Mougel for his help in
building the bibliographic dataset.
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Abstract. This paper addresses the task of finding outliers within each
class in the context of supervised classification problems. Class-based
outliers are cases that deviate too much with respect to the cases of the
same class. We introduce a novel method for outlier detection in labelled
data based on Random Forests and compare it with existing methods
both on artificial and real-world data. We show that it is competitive
with the existing methods and sometimes gives more intuitive results.
We also provide an overview for outlier detection in labelled data. The
main contribution are two methods for class-based outlier description
and interpretation.

1 Introduction

Outlier detection [2] is an area of data analysis that aims at finding anomalies in
data. Data cleansing to improve statistical model fraud detection or computer
network intrusion detection are examples of some successful application areas of
outlier analysis. Main stream of outlier detection defines, for a given statistical
distribution, an outlier (or a series of outliers in the case of contextual outliers) as
a case that differs from normal cases. This is typically taken as an unsupervised
task in the sense that there are no labels indicating to the models which are
the normal and the outlier cases. Nevertheless, there are also approaches that
assume the existence of a supervised training set with examples of outlier cases
and normal cases where the goal is to obtain a model that is able to accurately
discriminate these two situations. Moreover, semi-supervised approaches have
also been used in these application areas, where only a part of the available data
is labelled.

In this paper we address another type of use of the concept of outliers. The
context of the problem we are tackling is that of standard supervised classifica-
tion tasks. Cases are labelled into a set of pre-defined classes in these problems
and the goal is to learn a classification model from a provided training set.
Outlier detection in labelled data, as a specific task, was initiated in [9,16] and
further elaborated in [8]. Class-based outliers are those cases that look anom-
alous when the class labels are taken into account, but they do not have to be
c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 193–204, 2015.
DOI: 10.1007/978-3-319-24465-5 17
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anomalous when the class labels are ignored. In [8] two class outlier detection
methods have been introduced as adaptations of methods for classical outlier
detection setting, one based on frequent pattern mining, the other on clustering,
and their use for Custom Relation Management was demonstrated. A distance
and density-based approach has been published in [10] and its slightly improved
version is now available in RapidMiner. Usability of these methods in Custom
Relation Management and also in educational data was demonstrated [8,18].

In [3] a novel unsupervised way of detecting outliers for two-class problems
by Inductive Logic Programming is presented. In the following text we will call
it CB-ILP. The essential idea is that the outliers somehow disrupt the model
of the data. The detection is done by creating a model, then for each possible
outlier (or a set of outliers) excluding this outlier(s), learning a new model and
comparing it with the original model. The same is done for a dual problem
where positive and negative examples have been swapped. If coverages of two
learned rule sets (with and without an example) differ more than a threshold,
the example is an outlier. This approach then allows, by comparison of coverages
of those four learned models, us to characterize the anomalies more finely, and
to divide outliers into three groups according to the way they disrupt models
learned with the whole data set - Irregularities, Anomalies and Outliers. The
main drawback is its computational complexity.

Class-based outlier detection can be seen similar to label noise detection in
classification tasks [7], more precisely to its sub-part of noise elimination. The
first work that exploited class-based outliers, although not explicitly named,
was C45Robust [11], where detected misclassified cases were removed before
learning a new model. A similar idea has been recently elaborated for SVM [17].
The most important difference from our approach lies in a different measure of
interestingness (rank). For noise elimination it seems to correspond only to the
influence of a potential outlier to learning the correct hypothesis. In class-based
outlier detection, the detection of an outlier is the goal and its interestingness
may not depend only on classification accuracy but also on its novelty. Class-
based outlier detection is also close to works on Exceptional model mining [13].

In this paper, we present RF–OEX, a new approach to class-based outlier
detection based on Random Forests (RF) implemented in Weka [6]. It consists
of two parts, an outlier detection module and an outlier interpretation module.
We compare outliers obtained with RF–OEX with results of eCODB [10] and
CB–LOF, an adaptation of LOF to labelled data. We show that RF–OEX is
comparable with them, both on artificial data and real-world data, or gives even
more intuitive results. Two new methods for class-based outlier interpretation,
one based on tree reduction, the other on finding frequent branches in those
trees, have been implemented. We describe these methods and compare the
results with CB-ILP, an ILP approach to outlier detection [3].

In the following section we give an overview of the class-based outlier detec-
tion problem. In Sect. 3 we describe class outlier detection with RF–OEX, exper-
imental evaluation of RF–OEX and comparison with the other methods. Two
novel methods for outlier interpretation are described in Sect. 4. There we also
bring a review of existing methods for class-based outlier interpretation and
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compare the results of RF–OEX with their interpretation. We conclude with
discussion of results and directions for future work. Supplementary information
can be found at http://www.fi.muni.cz/∼popel/685269.

2 Class-Based Outlier Detection

Class-based outliers are cases that are different from the rest of the members of
their own class. There are two main types of ways of being different from the
members of the same class:

1. Cases that are too far (in terms of distance) from the bulk of cases of the
same class.

2. Cases that, although not too far from the same class, are nearer to cases of
another class.

Figure 1 illustrates both situations. (a) shows the first situation, where the
case in red is too far from the members of the same class (x), while (b) illustrates
the second situation, where the red case is nearer to members of the other class
(y), even though it is not too far from the members of the same class (x), and
thus regarded by us as a class-based outlier.

Fig. 1. The first (a) and the second (b) type of class-based outliers.

While the case (a) could be easily detected by standard distance-based outlier
detection algorithms, the case (b) would not be captured by these methods as
they are class-agnostic. This means that detecting this second type of class-based
outliers is the key issue / innovation on this research line.

The concept of class outliers – outliers in labelled data – was introduced
in [8] as a generalisation of two concepts: semantic outliers, i.e. data points that
differ from other members of the same class while looking normal (similar) to
data points in another class [8], and cross-outliers that deviate from data points
in another class [16]. In [8] the authors define the problem of Class Outlier
Detection as finding observations (data points) with class labels that arouse
suspicions when those class labels are taken into account. Let

– Ci be a set of observations with the same class label cli,
– DB = {C1, C2, ..., Cm}, Ci ∩ Cj = ∅ for i �= j, be a data set,
– Sp(DB) be the set of all unions of subsets of DB,
– T be an element of DB (i.e. T = Cj for j ∈ {1, 2, ...,m}),
– p ∈ T where p is an observation and T a target set.

http://www.fi.muni.cz/~popel/685269


196 L. Nezvalová et al.

The Class Outlier Detection problem is to find for two classes Ci, Cj , i �= j,
those observations p ∈ Ci that differ from members of Ci and Cj . Let COF (p,Ci)
be the class outlier factor for p ∈ T . If Ci = T , i.e. the problem is to find those
observations p ∈ T that differ from other members of the same class T , then we
call it Local Class Outlier Detection and use LCOF (p) as the local class
outlier factor. If Ci �= T , i.e. the problem is to find those observations p ∈ T
that differ from members of the other class Ci, then we call it Reference Class
Outlier Detection and use RCOF (p,Ci) as the reference class outlier factor.
If DB = T then the class outlier detection problem is reduced to the common
outlier detection problem.

For example, assume a two-class problem, where C1 are positive and C2

negative examples, p ∈ C1, then p may be a local outlier, i.e. a reference class
outlier w.r.t class C1 with class outlier factor LCOF (p) = RCOF (p,C1) (or a
semantic outlier in terms of [9]). It may be a reference class outlier w.r.t class
C2 with class outlier factor RCOF (p,C2) (or a cross-outlier by [16]).

The main idea presented in [8] lies in the computation of class-based outlier
factor as an aggregation of the local factor and reference factors.

3 RF–OEX: Outlier Detection

3.1 Method

Random Forests [4] is an ensemble method that combines bagging (each tree is
constructed by a different bootstrap sample from the original data) with the idea
of random selection of features. More specifically, each split of a tree is chosen
from a random subset of the data set features. Only these features are then used
for selecting the best split at each node and this random process is repeated for
all splits and all trees.

Random Forests can be used as an outlier detection method1 in the following
way. After each tree is built, all of the data are run down the tree, and proximity
values are computed for each pair of cases. If two cases occupy the same terminal
node, their proximity is increased by one. At the end of the run, the proxim-
ity values are normalized by dividing by the number of trees and the average
proximity is computed for each instance.

The main idea of RF–OEX lies in a different way of exploitation of the prox-
imity matrix. The main difference then lies in the fact how RF–OEX exploits
the information about the class label. The outlier factor for an instance p is com-
puted as a sum of three different measures of proximity or outlierness – proximity
to the members of the same class OF1, misclassification measure (proximity to
the members of other classes) OF2 and ambiguity measure OF3. A similar idea,
but only for the first two addends, has been elaborated in [8]. In the following,
p stands for an element for which we compute the outlier factor. The value of
the outlier factor is given by:

OF (p) = OF1(p)same−class + OF2(p)misclassification + OF3(p)ambiguity

1 https://www.stat.berkeley.edu/∼breiman/RandomForests/cc home.htm#outliers.

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#outliers
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OF1(p)same-class. In this case, only proximities to points from the same class are
taken into account. Proximity of point p from class Cp is computed as an aggrega-
tion of proximities to all points from the same class. Four aggregation functions
have been implemented: sum, sum of squared proximity values, product, and cube
root of sum of cubic values. For simplicity, we will use sum function in the result-
ing formula. In principle, the higher the proximity is, the lower its outlierness is,
so we use the inverse value of the proximity: OF1(p) = 1∑

cl(p)=cl(q) Prox(p,q) . where

cl(p) is the class label of element p. Finally, we normalize the result because of
different sizes of different classes.

OF2(p)misclassification. We already stated that the similarity with members of a
different class should increase the class outlier factor of p. We define Top|Cp|(p)
as |Cp| poins that are closest to point p. Then we compute how many of those
points are labelled by different class than point p belongs to. To be comparable
with OF1 and OF3, the value is multiplied by constant c, which is computed
as the maximum from all values OF1 divided by 4: c = maxq∈DBOF1(q)

4 . The

resulting formula is then defined as OF2(p) = c · |{q | cl(q) �=cl(p) & q∈Top|Cp|(p)}|
|Cp| .

OF3(p)ambiguity . To increase the importance of outliers that are far from all
points, we add the third addend OF3. We compare the sum of proximites of
points Top|Cp|(p) to point p with the ideal situation when proximity to all exam-
ples is 1 and the sum is equal to |Cp|. At the end, we multiply it with the same

constant as in the case of OF2: OF3(p) = c ·
|Cp|−∑q∈Top|Cp|(p) Prox(p,q)

|Cp| .

3.2 Parameter Settings

The RF–OEX method has a few parameters but in most cases the user does not
need to change the default values of these parameters. At most the user may
need to try a few alternatives for the parameter that controls how many random
features are used for split selection at each tree node. Below we describe the
values used for the parameters of our method. More information on parameter
settings and work with RF–OEX can be found on the supplementary web page.

Number of Trees was set to 1000. We also checked smaller values, between
100 and 1000, and for a lot of situations 100 was sufficient. Number of Ran-
dom Features for each split selection step was set to half of the number of input
attributes. Minimum cases per node is equivalent to -m parameter of C45. It
does not allow to grow the tree when few examples reached the node. We set
this parameter to 10 for real-world data sets and 0 for artificial data because they
contained very few instances. Maximum depth of Trees was set to 0, i.e. depth
of trees was not limited. Attribute distribution of multiset for Random tree was
set to Normal, so each tree starts with the same original set of attributes. The
information gain of attributes is then taken into account before building each
node of tree. Variant of summing point’s proximities denotes the method of
summing sample proximities and was set to Addition squared values. Normal-
ize according to affects the normalization of outlier factor within the bounds
of experiment. The Average option was chosen for this parameter. We checked



198 L. Nezvalová et al.

both Count with mistaken class penalty and Count with ambiguous classification
penalty parameters to consider similarity of given instance with the rest of sam-
ples (OF2(p)misclassification and OF3(p)ambiguity) when calculating the outlier
factor. The Use data bootstrapping parameter was checked to generate trees of
different quality.

3.3 Data Sets Used for Experiments

For experiments we used the following data sets.

Artificial Data. We created several artificial data sets – two-class problems,
with two numeric attributes – to check the behaviour of the systems on con-
trolled situations. An example of such a dataset with two classes is in Fig. 2, all
the data sets can be found at http://www.fi.muni.cz/∼popel/685269/Results/
OutlierDetection/top 5 artificial.pdf.

Votes. The Votes (or House Votes 84 – Republicans vs. Democrats) data set
contains 16 key congress votes for each U.S. House of Representatives Congress-
man, 267 democrats and 168 republicans and was also used in [8,10]. It has
been observed that several congressmen have opinions almost exactly opposite
to what is common in their political party (meaning they vote similarly to their
political opponents).

Student Solutions Data. The data [18] (a total of 873 student solutions) was
obtained in a bachelor course on Introduction to Logic at FI MU. It contains
the resolution tree together with dynamics of the solutions, i.e. all the actions
performed together with temporal information. Here we use only the resolution
trees. First all subgraphs that correspond to an application of the resolution rule
were found and generalized. Then each resolution tree has been transformed to
0/1 matrix where those graphs served as boolean attributes (1=the subgraph
appeared in the tree, 0=otherwise). Among these 873 different students’ solutions
of resolution proofs in propositional calculus, 101 of them were classified as
incorrect and 772 as correct [18].

As calculation of proximity matrix is quadratic to the number of instances, the
method becomes time-consuming for big data sets. Therefore, we have restricted
our selection of data sets to those having less than 1000 instances. For example,
runtime of Votes data set, which has 423 instances, is less than one minute.
Running the student solutions data set, which has 873 instances, takes 10 min.
Optimization of our method to be applicable to bigger data sets is part of future
extensions.

3.4 Experiments and Results

We compared results of RF–OEX with eCODB [10] and a variant of LOF that
follows the model described in Sect. 2. eCODB [10] combines distance-based and

http://www.fi.muni.cz/~popel/685269/Results/OutlierDetection/top_5_artificial.pdf
http://www.fi.muni.cz/~popel/685269/Results/OutlierDetection/top_5_artificial.pdf
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Fig. 2. Results of RF–OEX on an artificial data set; outlier factors are above the
datapoints and they are normalized to [0,1] interval, where 1 means the most outlying.

density-based approach w.r.t class attribute. The Class Outlier Factor COF (T )
for an instance T and parameter K (K nearest neighbors of the instance T ) is
computed as

COF (T,K) = PCL(T,K) − norm(Deviation(T )) + norm(Kdist(T,K))

where PCL(T,K) is the probability of the class label of T w.r.t. the K near-
est neighbors (i.e. the frequency of the class label among those K neighbors),
Deviation(T ) is the sum of distances from all elements from the same class,
and Kdist(T,K) is the distance between T and its K nearest neighbors. norm()
means normalization. eCODB is now a part of RapidMiner2. Following the model
from [8], we implemented CB–LOF, a variant of LOF that is capable to man-
age class labels. We compute CB–LOF (class-based local outlier factor) as an
aggregation of two factors, dissimilarity of the case to members of the same class
and similarity to members of other classes. As aggregation functions we tested
maximum and average. For comparison we use the latter, which performs better
in general than maximum.

When compared with RF–OEX, eCODB returned much worse results on the
Student solution data. The reason is mainly because of the use of too rough
metrics – density and distances – to nearest neighbours and to all members of
the class, which does not work well for this 0/1 multidimensional data (number
of attributes = 20). Moreover, it is much more difficult to obtain a comprehensive
explanation why a particular instance is an outlier. The situation was similar
for CB–LOF, although the results were slightly better than with eCODB. For
one of the artificial data sets, results of RF–OEX and eCODB can be found in
Figs. 2 and 3. More results can be found on www.fi.muni.cz/∼popel/685269.

2 http://docs.rapidminer.com/studio/operators/data transformation/data
cleansing/outlier detection/detect outlier cof.html.

www.fi.muni.cz/~popel/685269
http://docs.rapidminer.com/studio/operators/data_transformation/data_cleansing/outlier_detection/detect_outlier_cof.html
http://docs.rapidminer.com/studio/operators/data_transformation/data_cleansing/outlier_detection/detect_outlier_cof.html
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Fig. 3. Results of eCODB (k=5) on an artificial data set; outlier factors are above the
datapoints and they are normalized to [0, 1] interval, where 1 means the most outlying.

4 Outlier Interpretation

As argued elsewhere [1], the outlier factor alone, i.e. the rank of an example, is
insufficient for adequate outlier interpretation and explanation. Thus, finding the
reason, or reasons, for being an outlier is highly relevant on several application
domains. Several methods for constructing an interpretation of outliers have
been recently published [1,5,14,15] but only two for class-based outliers.

The first one is CB-ILP [3] briefly described in Sect. 1. The explanation that
CB-ILP offers actually consists of two rule sets - the starting theory (i.e. the
rules that have been learned from the full data set) and the ending theory (rules
learned after removing an outlier(s)).

The method in [8] analyses frequent patterns that cover an instance/example
and takes supports of those patterns for finding the most significant attribute-
value couples as an explanation. They define the contradict-ness of an itemset
X with respect to a transaction t (in terms of association rule mining) in the
following way:

Contradict − ness(X, t) = (card(X) − card(t ∩ X)) ∗ support(X)

The motivation is as follows. The more the itemset X deviates from t, the more
contradictory it is. Moreover, the greater the support of X is, the more t deviates
from other instances.

We observed that this method gives counter-intuitive results even in very sim-
ple situations. The problem is that itemsets containing more items from t can
have the same contradict-ness score as itemsets which do not have these items.
It is enough if these items occur at least in those transactions in which the other
items occur. For example, assume a transaction t = {A1, A2, ..., An}, itemsets
X0 = {B},X1 = {B,A1},X2 = {B,A1, A2}, ...,Xn = {B,A1, A2, ..., An}, and
support{A1, A2, ..., An} = 1. It is clear that support of all these itemsets is the
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same, i.e. it is equal to support(X0). Furthermore, it holds for all these itemsets
that card(X) - card(t ∩ X) = 1. Thus, the contradict-ness of all these itemsets
is equal to support(X0). In such a case the contradict-ness score is not appro-
priate for outlier explanation because items A1, A2, ..., An do not distinguish t
from other instances at all and therefore they are superfluous. Another example,
for the ZOO data set, can be found on the supplementary web page. For that
drawback we did not use this method.

For class outlier explanation we developed two new methods. Both use
already learned random trees and return interpretation of outliers as a set of con-
junctions of attributes or attribute-value couples with weights, where a weight
is proportional to the expressive power of the conjunction.

4.1 Reduction of Random Trees

For an outlier, we take all trees that classified this instance into an incorrect
class. Actually, we now work with two classes – O as outlier and N as normal –
like in the classical outlier detection settings, which allows us to prune the trees,
see Fig. 4. Specifically, all subbranches that classify into N can be removed. In
the next step, we remove internal nodes in the branch that do not influence
classification by checking all values the nodes can have. After this pruning is
done, sets of attributes are collected by running outlying instance down each
tree. Each of those attribute sets interprets outlierness of the examined point
with a weight that is given by the occurrence frequency in the pruned trees. Let
us inspect the interpretation of three instances belonging to the most outlying
instances in the iris data set. The full list of interpretations can be found on the
web page.

Instance number: 71, Class: Iris-versicolor petalwidth>=1.6, 0.6

Instance number: 84, Class: Iris-versicolor petallength>=4.9, 0.63

Instance number: 37, Class: Iris-setosa sepallength>=5.4 &&

sepalwidth<3.7, 1

This method is much more efficient when compared with the ILP approach.
However, it prefers short interpretations and sometimes oversees more complex
interpretations. The following method is able to find also longer conjunctions.

4.2 Analysis of Frequent Branches

The second method looks for a frequent combination of attributes, i.e. a combi-
nation with support higher than min supp, again on the trees that classify the
instance incorrectly. For each frequent combination we express the whole data
set only by attributes that appeared in that frequent combination and observe
how much the outlier factor changed. To compare these two values of the outlier
factor, we first have to normalize each one of them. The results are as follows.

Instance number: 71, Class: Iris-versicolor petalwidth=1.8, 0.88
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Fig. 4. Tree pruning.

It means that the outlierness of instance no. 71 is caused from 88 % by value
1.8 of attribute petalwidth. Now let us have a look at the third most outlying
instance number 84:

Instance number: 84, Class: Iris-versicolor
petallength=5.1, 0.74
sepallength=6 && petallength=5.1, 0.26

Instance outlierness is caused from 74 % by the value of petallength. There
is also a significant increase in outlierness if we combine attribute petallength
with attribute sepallength. This combination participates in outlierness with
26 %. Thus, frequent attribute set allows to find more complex interpretation
more frequently than the first method. As previously mentioned, supplementary
material and results for other data sets can be found on www.fi.muni.cz/∼popel/
685269.

4.3 Comparison with CB-ILP

For comparison we used Votes data set. The runtime of CB-ILP was 30 min,
compare to less than a minute of RF–OEX, and it detected 3 negative (republi-
can) and 2 positive (democrat) outliers with gains varying from 0.15 to 0.67. 16
negative examples were labelled as irregularity for being a fact in direct theory
as well as 3 positive. There were 7 other positive irregularities, with gain just
a little over 0.05. We also detected 6 negative anomalies with gain up to 0.53
and 6 positive anomalies with gain up to 0.68. Detected cases with the high-
est gain are in Fig. 5 together with results of RF–OEX and eCODB. CB-ILP
detected Example 389 (democrat) as anomaly with gain 0.68, because he voted
for freezing physician fee, against Synfuels corporation cutback and against duty
free exports. Negative example 268 (republican) was identified as outlier with
positive gain 1.00

www.fi.muni.cz/~popel/685269
www.fi.muni.cz/~popel/685269
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Fig. 5. Comparison-Votes-RF-CODB-ILP.

5 Conclusion

In this contribution we argue that outlier detection in labelled data is challenging
area both for research and for applications. We brought a review of existing
approaches to that problem and introduced a novel method based on Random
Forests that is competitive or overcome existing method. Two new methods
for class-based outlier description and interpretation were presented and their
results were compared with the ILP-based approach.

The open question is evaluation of class-based outlier detection. We per-
formed only a small step in this direction and built several artificial data sets.
Building benchmark data for this task more systematically will be the next step.
To improve efficiency of RF–OEX, especially its interpretation part, ensemble-
based noise elimination and also local models [7] look as good starting points.

Besides the applications mentioned earlier, there are many others that can
exploit information about class-based outliers or employ similar techniques, e.g.
in the field of subgroup discover [12]. A challenging one is fake text recognition,
e.g. an email that pretends to be written by a woman (or a member of a particular
group in general), or a similar kind of fake chat contribution.

Now it is up to the reader to answer the question that is in the title of this
contribution.
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Abstract. Trip duration is an important metric for the management
of taxi companies, as it affects operational efficiency, driver satisfaction
and, above all, customer satisfaction. In particular, the ability to predict
trip duration in advance can be very useful for allocating taxis to stands
and finding the best route for trips. A data mining approach can be used
to generate models for trip time prediction. In fact, given the amount
of data available, different models can be generated for different taxis.
Given the difference between the data collected by different taxis, the
best model for each one can be obtained with different algorithms and/or
parameter settings. However, finding the configuration that generates
the best model for each taxi is computationally very expensive. In this
paper, we propose the use of metalearning to address the problem of
selecting the algorithm that generates the model with the most accurate
predictions for each taxi. The approach is tested on data collected in the
Drive-In project. Our results show that metalearning can help to select
the algorithm with the best accuracy.

Keywords: Metalearning · Data mining · Machine learning · Trip
duration prediction

1 Introduction

With fast-growing of Intelligent Transportation Systems (ITS) and Advanced
Travelers Information Systems (ATIS), data collected by those systems can be
useful to understand and improve processes in taxi companies and other organi-
zations dealing with transportation, i.e. public transportation companies, logis-
tics companies, and local government.

An example of a problem that can benefit from the analysis of data is trip
duration in taxi companies; Especially knowing the estimated trip time duration
beforehand can be very informative for taxi companies, drivers, and passengers to
make the right decision for the scheduling and route planning. Data concerning
the taxi trips (essentially GPS data) collected by taxis can be used for that
purpose.
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Data mining approaches can be used for the prediction of the trip duration.
Using the data collected by taxis, these approaches relate trip duration with
several variables describing the trip like origin, destination, time of day, day of
week, and the weather.

Several algorithms have been introduced and can be used for the predic-
tion of trip duration. But their predictive performance varies and causes several
challenges. An important challenge for using data mining is to find out which
algorithm has the best performance for a specific problem. But it has already
been shown that there is no commonly best algorithm for a broad problem
domain [1]. Algorithm selection for a specific problem is either based on a trial-
and-error approach or expert advice. Neither way is thoroughly acceptable for
the end user who wishes to access the technology cost-effectively [2]. An app-
roach to deal with this problem is metalearning [3]. Metalearning uses a machine
learning approach to relate the performance of machine learning algorithms with
the characteristics of the data.

The problem of algorithm selection is more complex in applications with mul-
tiple sources of data (e.g., multiple taxis). In this case, it may be expected that
the best algorithm varies for different sources. For instance, the best algorithm
to predict trip duration may vary for different taxis, due to differences in the
brand of the vehicle, its usage, and driving habits. Therefore, algorithm selection
should be made not at the global level but at a lower one, such as taxi itself.

On the other hand, in applications with multiple sources of data in which the
data schema is the same, it is possible that the quality of the model for a given
source can be improved by training it with data from other sources. Therefore,
the problem of algorithm selection is also extended to the dataset granularity
selection. For the purpose of trip duration prediction, each taxi can use its data,
data from its neighbors, data collected at the nearest road-side unit, or whole
dataset which is collected centrally throughout the city.

In this paper, we investigate the use of a metalearning approach to the
problem of algorithm selection in a case study of predicting trip duration for
a taxi company. The taxi dataset is obtained from the Carnegie Mellon Portugal
project, DRIVE-IN (Distributed Routing and Infotainment through Vehicular
Inter-Networking) [4]. Selection is made between four different machine learn-
ing algorithms and two levels of granularity; Two levels of granularity are taxi
itself and the collected data in whole month. Four machine learning algorithms
used at the base-level are: random forest, support vector machines (SVMs), lin-
ear regression and decision tree. The experiment is done on the data from five
months in 2013, from February to June. In each month, the data is collected by
440 taxis.

The approach is evaluated at the meta-level (i.e. the ability of choosing the
most accurate base-level algorithm) and at the base-level (i.e. the base-level per-
formance of the algorithm selected by the metalearning approach). The results
obtained are positive at both levels.
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2 Background

We start by discussing approaches to predict trip duration (Sect. 2.1) and then
metalearning (Sect. 2.2).

2.1 Trip Duration

There has been a significant amount of research on trip duration prediction.
Kwon et al. [5] use the flow and occupancy data from single loop detectors and
historical trip duration information to forecast trip duration on a freeway. Using
real traffic data, they found out that simple prediction methods can provide
a good estimation of trip duration for trips starting in the near future (up to
20 min). On the other hand, for the trips starting more than 20 min away, better
predictions can be obtained with historical data. The same approach is used by
Chien et al. [6]. Zhang et al. [7] propose using a linear model to predict the
short-term freeway trip duration. Trip duration is a function of departure time.
Their results show that for a small dataset, the error varies from 5 % to 10 %
while for a bigger dataset, the variation is between 8 % and 13 %.

Support Vector Regression (SVR) is used for prediction of trip duration by
Wu et al. [8]. They utilize real highway traffic data for their experiments. They
suggest a set of SVR parameter values by trial-and-error which lead to a model
that is able to outperform a baseline model. Balan et al. [9] propose a real-
time information system that provides the expected fare and trip duration for
passengers. They use historical data consisting of approximately 250 million paid
taxi trips for the experiment.

Considering the rapid change of behavior of vehicular networks, using the
same algorithm for forecasting the travel time over a long period and for different
vehicles, will eventually end in unreliable predictions. Therefore, it is important
to find the best algorithm for each context. One possibility is to use a trial and
error approach. This means finding out the algorithm that fits best to the specific
dataset (i.e. for a specific vehicle and for a specific period) by evaluating multiple
algorithms and choosing the best one [10]. This approach would be very time
consuming, given the amount of alternatives available. One alternative approach
is metalearning which is still missing.

2.2 Metalearning

The algorithm selection problem was formally defined by Rice in 1976 [11]. The
main question was to predict which algorithm has the best performance for a
specific problem.

The first formal project in this area was MLT project [12]. The MLT project
creates a system called Consultant-2 which can help to select the best algorithm
for a specific problem.

Over the years, metalearning research has addressed several issues [13]. It may
be important to select the best base-level algorithm not for the whole dataset,
but rather for a subset of the examples [14] or even for individual examples [15].
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Tuning the parameters of base-level algorithms is another task that metalearning
can be helpful to (e.g. the kernel width of SVM with Gaussian kernel [13,16]).
Rijn et al. [17] have investigated the use of metalearning for algorithm selection
on data streams. The metafeatures are calculated on a small data window at the
start of the data stream. Metalearning uses this metafeatures to predict which
algorithm is the best in the next data windows.

3 Methodology

In this section, the data used in this work (Sect. 3.1), the metalearning approach
(Sect. 3.3) and the evaluation methodology (Sect. 3.4) are presented.

3.1 Taxi Dataset

The dataset is obtained from a large-scale scenario [4], one of the taxi companies
in the city of Porto. Porto is the second largest city in Portugal, with an area of
41.3 km2, and comprises 965 km of roads. It is the central city in a metropolitan
area with more than one million inhabitants. There are 63 taxi stands in the city
and the main taxi union has 441 vehicles. Each taxi has an on-board unit with a
GPS receiver and collects the travel log. The provided dataset by the project [4]
consists of five months in 2013 for all the vehicles. The dataset contains 13
variables characterizing events in the data:

id (ID): Event identifier.
driver (D): Taxi driver identifier.
ts (T): Timestamp of the event. It is a UNIX timestamp, in seconds.
st (ST): Taxi state (Offline = 0, Pause = 1, InStand = 2, Free = 3,
OnPickup = 4, OnPickupAfterACall = 5, Busy = 6, Login = 7).
Taxi ID (TID): Taxi identifier.
pst (PST): Previous state identifier. This is the same as ‘st’, but it refers
to the state of the previous event.
track (TR): GPS track, encoded with polyline algorithm.
src (S): GPS coordinates of the source position.
dst (DST): GPS coordinates of the destination position.
dd (DD): Distance between src and dst (meters).
n (N): Name of the taxi stand, only if the state is 2 (i.e. if it is stopped in
a stand).
pos (P): Location of the taxi stand, only if the state is 2 (i.e. if it is stopped
in a stand).
dt (DT): Duration of the trip (seconds).

3.2 Base-level Approach

In this section the methodology which is used at the base-level is presented. In
the traditional data mining, each entity Ei is described by a set of features,
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Xi, and there is a target variable, Yi. So the dataset used for the traditional
data mining is like DB = {Ei,Xi, Yi},∀i ∈ {1, ..., n}, while n is the number of
entities.

At the base-level, the same scheme is used. The features used at the base-level
are described in Sect. 3.1. Each taxi is represented by an entity in the scheme,
Ei = Ti. The target variable is the trip duration (Yi = DT ). So the base-level
scheme is like DB = {Ti,Xi,DTi},∀i ∈ {1, ..., n}. Four algorithms are applied
on the dataset (DB) at the base-level to predict the target variable: Decision
Tree (DT), Random Forest (RF), Support Vector Machine (SVM), and Linear
Regression (LM).

3.3 Metalearning at Different Granularity Levels

In this section the metalearning methodology is presented. The taxi application
introduces an interesting challenge for metalearning. Each taxi generates enough
data to learn its own model. However, it can be expected that, in some cases, the
quality of the model generated from the full set of data, i.e. concerning all taxis,
can be better than the model generated solely with “local” data. Therefore,
besides selecting an algorithm to learn the best model for a taxi, a decision can
be made also concerning whether only data from the taxi or global data.

In terms of the metalearning approach, the possibility of generating meta-
examples at different levels of granularity of the data, adds another dimension
to the meta-dataset. So for each entity, instead of having just one set of Xi,
other feature sets can be generated for different levels or categories of the data,
C1

i , C2
i , C3

i , ..., Ck
i , where k is the number of levels or categories. Therefore the

meta-dataset for using in the metalearning process is DB = {Ti, C
j
i , Yi},∀i ∈

{1, ..., n},∀j ∈ {1, ..., k}.
The proposed model used in this article is shown in Fig. 1.
In the proposed model, there are two different levels: taxi itself and the data

for whole month. At the level one, each taxi (Ti) creates a unique category,
C1

i ,∀i ∈ {1, ..., n1} where n1 is the number of taxis. The level two has only one
category joining all the data from 440 taxis.

So after organizing the dataset in customized format, DB = {Ti, C
j
i , Yi},∀i ∈

{1, ..., 440},∀j ∈ {1, 2}, it is delivered to the performance evaluation process. In
this stage, each taxi is evaluated by different algorithms, applying in different
levels. As result, for each taxi, there are different performance indicators: P k

ig

which means the performance of the algorithm g at level k for taxi i.

P j
iw : ∀w ∈ {1, . . . , 4}, ∀j ∈ {1, 2}, ∀i ∈ {1, . . . , 440} (1)

Where w stands for the algorithms, i indicates taxis, and j shows levels.
On the other hand, the metafeatures are calculated for each taxi and at

different levels. In general mf j
i is the calculated metafeatures for taxi i at the

level j. For each taxi, the best performance obtained from the performance
evaluation part is selected according to the Eq. 2:

Pbesti = max
w,j

(P j
iw) , ∀w ∈ {1, . . . , 4}, ∀j ∈ {1, 2} (2)
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Fig. 1. Proposed methodology used for metalearning

Finally the metadata structure for each taxi consists of the taxi identification,
metafeatures for the first and the second level and the best performance obtained
from Eq. 2.

Ti, mf1
i , mf2

i , Pbesti (3)

The main idea in metalearning is to find out the best algorithm and the best
level to apply the algorithm depending on the metafeatures obtained at different
levels. Consequently, the metalearning maps the extracted features from the
original datasets to the best performance obtained at different levels by applying
different algorithms on the original dataset.

Our model recommends a level and an algorithms for each taxi in which,
applying the recommended algorithm on the recommended level produces the
best performance with high probability (see Eq. 4).

Model Output : { Ti︸︷︷︸
taxi

, j
︸︷︷︸

recommended level

, g
︸︷︷︸

recommended algorithm

} (4)

3.4 Evaluation

Base-level Evaluation. At the base-level, the problem of prediction of the trip
duration is a regression problem. Each algorithm is applied on the dataset and
tried to predict the trip duration. This prediction is evaluated by the Normalized
Root-Mean-Square Error (NRMSE). RMSE is a frequently used measure which
shows the differences between the predicted value by a model and the actual
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observed value. In results, the NRMSE is the RMSE divided by the standard
deviation of the variable being predicted (See Formulas 5 and 6). Using R [18],
the package hydroGOF [19] is used for calculation of NRMSE. The standard
deviation is used for the normalizing the RMSE.

RMSE =

√
∑

(D̂ti − Dti)2

n1
(5)

NRMSE = 100 ∗ RMSE

σ
(6)

Where n1 is the length of the predicted values, σ is the standard deviation of
the predicted variable, Dti is the actual trip duration, and D̂ti is the predicted
trip duration. Having the NRMSE for all the possible runs, the algorithm with
the best NRMSE (the lowest one) is selected as the best algorithm for each taxi
to be used at the meta-level.

Meta-level Evaluation. At the meta-level, the proposed model predicts a
base-level algorithms along the level of granularity which will have the best per-
formance (lowest NRMSE) for a given taxi and month. Therefore, the problem in
this level is a classification problem. This decision is taken based on metafeatures
describing the dataset characteristics.

The performance of the proposed model is evaluated by the accuracy of the
prediction. In addition, we also evaluate the performance of the proposed model
relative to the possible range of base-level performance. Scalederror shows the
relative NRMSE of the metalearning model with respect to the best and the
worst NRMSE of the base-level. It is shown in the following equation:

Scalederror =
NRMSEML − NRMSEB

NRMSEW − NRMSEB
(7)

Where NRMSEML is the NRMSE of the proposed metalearning model,
NRMSEB is the best NRMSE obtained by the base-level algorithms, and
NRMSEW is the worst NRMSE obtained by the base-level algorithms. The
range of Scalederror is between 0 and 1. In addition, the lower the Scalederror
the better performance is expected for the meta-level experiment.

Metafeatures. The extracted metafeatures noted above, are described briefly
in this section. A comprehensive study was done by Peng et al. [20] for feature
selection. Totally 31 metafeatures were proposed to describe the structure of
the dataset. These metafeatures are selected based on the regression problem.
Their effectiveness through extensive experiments were evaluated. A list of all
metafeatures that we used for this study with a brief description is provided in
Table 1. The detail description of each metafeature is explained in [20].
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Table 1. Extracted metafeatures used in metalearning

No. Feature description

1 Number of examples

2 log(10) of the number of examples

3 Number of attributes

4 Ratio of number of examples by number of attributes

5 log(10) of the ratio of number of examples by number of attributes

6 Number of continuous attributes

7 Number of symbolic attributes

8 Number of binary attributes

9 Proportion of continuous attributes

10 Proportion of symbolic attributes

11 Proportion of binary attributes

12 Correlation between continuous attributes

13 Average absolute correlation between continuous attributes

14 Minimum absolute correlation between continuous attributes

15 Maximum absolute correlation between continuous attributes

16 The ratio between the standard deviation and the standard deviation
of alpha trimmed mean

17 Number of continuous attributes with outliers

18 Proportion of continuous attributes with outliers

19 Correlation matrix between attributes and target

20 Average correlation continuous attribute/target

21 Minimum correlation continuous attribute/target

22 Maximum correlation continuous attribute/target

23 Check if standard deviation is larger than mean

24 Ratio of the standard deviation and the mean of the target attribute

25 Sparsity based on the coefficient of variation

26 Sparsity based on the absolute coefficient of variation

27 Standard deviation of the proportions of a histogram with 100 bins of
target values

28 textith.outlier value, as calculated for the continuous attributes

29 Outlier detection based on the notion of outliers used for continuous
attributes

30 Mean distance between each target value and its two neighbors (sorted
by value)

31 Average mean distance between each target value and its two
neighbors (sorted by value)
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4 Results

4.1 Meta-level Results

The overall results of the calculated Scalederror for each month are shown in
Fig. 2. The results seem interesting while the Scalederror is very low and near
zero. It shows that the performance of the meta-level is close to the best perfor-
mance obtained by the base-level.

Fig. 2. The average Scalederror[%] over all taxis for each month

This result also illustrates the usefulness of using metalearning. By using
the dataset characteristics, the metalearning can guess the algorithm with the
best performance at the base-level that should be used. It reduces the cost of
running several algorithms on probably large datasets to find the one with the
best performance at the base-level.

The distribution of calculated Scalederror for each taxi is shown in Fig. 3. As
we expected, the density concentrated around zero. This results show that the
metalearning is useful because the results of metalearning are almost near the
best performance obtained at the base-level. The normal distribution for RF and
DT algorithms (black lines) show that on average the Scalederror is less than
0.2 in both cases. Although the density of Scalederror for RF algorithm has high
concentration near the origin.

4.2 Base-level Results

To know the performance of the base-level, Fig. 4 shows the box-plot of calculated
NRMSE for different taxis and in the different levels of granularity in each month.
It can be seen that the NRMSE for all months is less than 5 %. The average
NRMSE for each month is around 1 %. So the base-level error on average is 1 %
which sounds considerably good. This means that the base-level algorithms can
predict the trip duration very precisely.
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Fig. 3. Distribution of Scalederror over each taxi

Fig. 4. NRMSE[%] for different months

4.3 Base-level vs. Meta-level Results

In metalearning one of the most important metric for evaluation is the accu-
racy. The comparison of accuracy between the base-level and the meta-level is
presented in Fig. 5a. According to this result, the performance of the meta-level
outperforms the base-level for most of the months. In April 2013, due to the
lack of enough observations for calculating the metafeatures, the performance of
metalearning is dropped.

The accuracy of the base-level is calculated based on the majority algorithm
with the best performance at the base-level. Although, the accuracy of the met-
alearning is calculated by considering the algorithm with the best performance
at the base-level. On average, the meta-level accuracy is 17 % higher than the
base-level accuracy that can be converted to 39 % improvement on the base-level.

To obtain the algorithm with the best performance at the base-level, per-
forming a lots of algorithms is required. Therefore, the computational cost is
considerably high. But by using metalearning, the algorithm with the best per-
formance is found by high probability and lower computational cost.

In addition, the prediction of the best algorithm by metalearning is almost
followed the best algorithm obtained by the base-level (Fig. 5b).
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Fig. 5. Base-level (BL) vs. meta-level (ML)

5 Conclusion

We proposed the use of metalearning for prediction of trip duration. The exper-
iments are performed on the taxi dataset from Drive-In project. The machine
learning and data mining algorithms are performed at two different levels of
granularity: taxi and month levels. The results show that the metalearning can
help predicting the algorithm with the best performance at the base-level with
high accuracy. Furthermore the performance of the base-level itself is also con-
siderably applicable. Therefore, the overall results show that the metalearning
predicts the trip duration with the error rate less than 5 %.
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15. Todorovski, L., Džeroski, S.: Combining classifiers with meta decision trees. Mach.
Learn. 50(3), 223–249 (2003)

16. Soares, C., Brazdil, P.B., Kuba, P.: A meta-learning method to select the kernel
width in support vector regression. Mach. Learn. 54(3), 195–209 (2004)

17. van Rijn, J.N., Holmes, G., Pfahringer, B., Vanschoren, J.: Algorithm selection
on data streams. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS
2014. LNCS, vol. 8777, pp. 325–336. Springer, Heidelberg (2014)

18. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2014)

19. Zambrano-Bigiarini, M.: hydroGOF: Goodness-of-fit functions for comparison of
simulated and observed hydrological time series (2014) R package version 0.3-8

20. Peng, Y.H., Flach, P.A., Soares, C., Brazdil, P.B.: Improved dataset characteri-
sation for meta-learning. In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS 2002.
LNCS, vol. 2534, pp. 141–152. Springer, Heidelberg (2002)



Using Entropy as a Measure of Acceptance
for Multi-label Classification

Laurence A.F. Park(B) and Simeon Simoff

School of Computing, Engineering and Mathematics,
University of Western Sydney, New South Wales, Australia

{lapark,s.simoff}@uws.edu.au
http://www.scem.uws.edu.au/∼lapark

Abstract. Multi-label classifiers allow us to predict the state of a set of
responses using a single model. A multi-label model is able to make use
of the correlation between the labels to potentially increase the accuracy
of its prediction. Critical applications of multi-label classifiers (such as
medical diagnoses) require that the system’s confidence in prediction also
be provided with the multi-label prediction. The specialist then uses the
measure of confidence to assess whether to accept the system’s predic-
tion. Probabilistic multi-label classification provides a categorical distri-
bution over the set of responses, allowing us to observe the distribution,
select the most probable response, and obtain an indication of confidence
by the shape of the distribution. In this article, we examine if normalised
entropy, a parameter of the probabilistic multi-label response distribu-
tion, correlates with the accuracy of the prediction and therefore can be
used to gauge confidence in the system’s prediction. We found that for
all three methods examined on each data set, the accuracy increases for
the majority of the observations where the normalised entropy thresh-
old decreases, showing that we can use normalised entropy to gauge a
systems confidence, and hence use it as a measure of acceptance.

1 Introduction

Multi-label learning is the process of learning the association of L binary labels y
of the response space, to a given point in a explanatory space x . A multi-label clas-
sifier may have a high dimensional explanatory space RM , and a high dimensional
response space BL (where B is {0, 1}), depending on the data. Therefore there may
be many suitable responses for a given x , but only the most likely is provided as
the predicted response. A review of multi-label learning is found in [5].

Critical applications of multi-label learning, such as medical diagnoses, mili-
tary support or political decisions, require that multi-label predictions are accu-
rate. Therefore it is essential that all predictions are paired with a measure of
the multi-label system’s confidence in its prediction. If the confidence is high,
the specialist can accept the systems prediction. If the confidence is low, the
specialist will not accept the prediction, but may also examine the cause of the
low confidence.
c© Springer International Publishing Switzerland 2015
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Probabilistic multi-label learning is the process of assigning a categorical
distribution over the B

L space for a given x . Each of the 2L elements y in
the space B

L are assigned a probability. By examining the distribution, we can
determine the most likely response to the input x , and also examine if other
response label sets have high probability, giving us confidence in the response
and an indication of the relationship between the labels.

When many labels exist, it is difficult to examine and compare the distribu-
tion over the 2L label combinations. It is also not always simple to determine a
system’s confidence by observing the response distribution. Therefore it would
be useful to summarise the distribution with a parameter that can be used to
measure a system’s confidence of its prediction.

In this article, we examine if the accuracy of a probabilistic multi-label sys-
tem’s response is correlated to a parameter of the response distribution. We
hypothesise that the normalised entropy of the response distribution will pro-
vide us with a measure of confidence. The contributions of this article are:

– a discussion on the use of normalised entropy of the response distribution to
assess prediction accuracy (Sect. 3),

– an analysis of the relationship between accuracy and normalised entropy for
probabilistic multi-label classification (Sect. 4), and

– a probabilistic version of the label powerset multi-label classifier (Sect. 2.3)

The article will proceed as follows: In Sect. 2 we examine the concept of prob-
abilistic multi-label learning and examine three models for computing the joint
distribution over the powerset of labels. Section 3 discusses the use of the
response distribution to assess the accuracy of the predicted response label set.
Finally, Sect. 4 empirically examines the relationship between normalised entropy
and accuracy of a response.

2 Probabilistic Multi-label Learning

For a given input space R
M and a set of L labels li, a probabilistic multi-label

classifier learns the probability distribution over the powerset of labels B
L. A

probabilistic multi-label classifier maps an input vector x ∈ R
M to a categorical

probability distribution θ ∈ S
2L , where S

2L is the 2L dimensional simplex. Using
the categorical distribution, we can identify the probability of each label set
being the correct response to x

θi = P (y i|x ) (1)

where x is the input vector to be classified, y i is the ith element in the powerset
of labels B

L, and θi is the probability that y i is the correct label set of x . For
example, given the three labels, l1, l2 and l3 and an input vector x , a probabilistic
multi-label classifier will provide a distribution over the eight elements of the
powerset shown in Table 1, where

∑2L

i=1 θi = 1.
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Table 1. The powerset elements yi of the labels l1, l2 and l3, and the associated
probability θi of each label set computed by the probabilistic multi-label learner.

yi {} {l1} {l2} {l3} {l1, l2} {l1, l3} {l2, l3} {l1, l2, l3}
P (yi|xj) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

Constructing a probabilistic multi-label classifier is equivalent to modelling
the joint distribution of labels, conditioned on the input x :

P (l1, l2, . . . , lL|x ) = P (y i|x ) (2)

We will now examine probabilistic forms of three common multi-label classifiers.

2.1 Probabilistic Binary Relevance

The simplest form of probabilistic multi-label classifier, called Probabilistic
Binary Relevance (PBR), treats each of the labels as independent of each other,
giving us:

P (l1, l2, . . . , lL|x ) =
L∏

i=1

P (li|x ) (3)

The task is then simplified to learning the probabilities P (li|x ) for each label i.
This independence assumption ignores any correlation between labels and so is
equivalent to constructing L independent probabilistic binary classifiers.

2.2 Ensemble of Probabilistic Classifier Chains

Rather than assuming independence, the joint probability can be expressed in
terms of a product of conditional probabilities:

P (l1, l2, . . . , lL|x ) = P (l1|x )
L∏

i=2

P (li|li−1, . . . , l1x ) (4)

This form of joint probability decomposition is known as a probabilistic classifier
chain [2]. When learning the conditional probabilities from data, the joint proba-
bility becomes dependent on the label order. To remove this dependence, it was
suggested that an ensemble of probabilistic classifier chains (EPCC) be used,
where each of the classifier chains is constructed using a randomised ordering of
labels.

2.3 Probabilistic Label Powerset Using Pairwise Coupling

The Label Powerset multi-label classifier has one binary classifier for each label
combination, meaning if there are L labels, then at most 2L binary classifiers
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Fig. 1. A Label Powerset multi-label classifier using a set of probabilistic binary clas-
sifiers computes the Bernoulli distribution for each label. Pairwise coupling must be
used to obtain the categorical distribution over the label set.

are required. If we replace the binary classifiers with probabilistic binary clas-
sifiers (as done with the previous two methods), we would compute the prob-
ability of the given response, independent of all other responses. This means
that Label Powerset using probabilistic binary classifiers will provide us with a
set of Bernoulli responses rather than a categorical distribution, and hence not
provide us with the joint probability. The Bernoulli responses show the prob-
ability that the given label set is true and the probability that the given label
set false, meaning that the probability of the other label sets are not taken into
account. To obtain the joint probability over all label sets, we must compute
the probability of a given response, with respect to the probability of all other
responses.

To compute the categorical distribution over the powerset of labels, we use
multi-class Pairwise Coupling [3] of the powerset of labels. Note that, we can
compute the multi-label joint distribution using any probabilistic multi-class
method over the 2L label combinations; we chose Pairwise Coupling because it
allows us to construct the probabilistic multi-label classifier using a collection of
probabilistic binary classifiers.

The Pairwise Coupling model (Fig. 1) requires that we train a binary clas-
sifier for all pairs of label combinations. Each binary classifier allows us to fit
a Bernoulli random variable, therefore, for each probabilistic binary classifier,
we obtain pi,j , the probability of state i being correct and p̄i,j = 1 − pi,j , the
probability of state j being correct. The set of all pairwise probabilities are then
coupled to obtain the complete joint distribution using the following method.
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Given each element of a categorical distribution θk with k ∈ {1, 2, . . . , 2L}
states, the probability of being in one state, relative to another is given by:

pi,j =
θi

θi + θj
(5)

This gives us at most
∑2L−1

i=1 i = 2L−1(2L −1) pairwise probabilities to compute
the 2L probabilities of the categorical distribution θ. We find the set of 2L

categorical probabilities θk as the categorical distribution that provides the best
fit of Eq. 5 for all k and j using the algorithm from [3]. If the training data
contains u unique label combinations, then the joint model will compute only
u(u − 1)/2 pairwise probabilities. Therefore the computation required for the
joint model is dependent on the number of unique label combinations available
at training time.

Note that each pairwise binary classifier is trained at training time, but the
categorical distribution is dependent on the given observations x , therefore the
coupling is performed during the prediction stage. The pairwise coupling method
requires a large number of binary classifiers to perform prediction, but we must
remember that each classifier is trained using a subset of the data (only those
objects that are associated to the selected pair of label sets for each pairwise
classifier), speeding up the training process.

3 Examining the Label Set Distribution

When performing binary classification, it is enough to present the results of the
classification as the probability of the class with greatest probability. Once this
probability is known, we are able to deduce the probability of the other class. If
the probability is close to 0.5, then the classification system has low confidence
in its decision. If the probability is close to 1.0, then the classification system
has high confidence in its decision.

Multi-label classification consists of many combinations of labels which are
all assigned a probability. By reporting only the probability of the label set of
greatest probability, we are providing little information to the user. A label set
with probability close to 1.0 implies that the system is confident in its prediction,
but unlike binary classification, a lower probability has little meaning unless we
have the rest of the distribution to compare it to.

The shape of the class distribution gives us a measure of confidence in the pre-
dicted results, which is very useful information to any practitioner. For example,
let’s consider a multi-label problem with only two labels, where the distribution
over the four combinations of labels is {0.31, 0.3, 0.29, 0.1} for a given value of x .
If our system predicted the most likely label combination, without providing us
with the class distribution, we would accept the result without second thought,
which is likely to lead to incorrect predictions. We can see from the distribution
that the second and third most probable label sets have similar probability to the
label set with the largest probability. This means that there is high uncertainty
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in the class of x . The label set distribution provided by our system for each sam-
ple, allows us to compare the probability of each possible response. This in turn
allows us to make a judgement on whether we accept the most likely response
as the prediction.

We would expect that a system, very confident in its decision, would provide a
label set distribution containing one label set with probability 1 and the remain-
ing label sets with probability 0. A system with no confidence would provide
equal probability for all label sets. All other probability combinations would
provide varying levels of confidence between these two bounds. If we need to
quantitatively measure the confidence level provided by a label set distribution,
we can measure the entropy of the distribution:

H = −
∑

yi∈BL

P (y i) log (P (y i)) (6)

which measures the uncertainty provided by the label set distribution [4] (H = 0
means no uncertainty), where 0 × log (0) = 0. The range of H depends on the
number of label sets in our multi-label problem. To adjust the range to [0, 1], we
can use normalised entropy:

H� = −
∑

yi∈BL

P (y i)
log (P (y i))

log (2L)
(7)

where H� = 1 is provided when the probability of all class combinations are
equal.

Fig. 2. Multi-label distributions with normalised entropy (H�) of 1 (left), 0.5 (centre)
and 0 (right). In this case there are three labels and hence eight label combinations.

Figure 2 shows us examples of distributions and their entropy (using base e).
Note that the only distribution to provide a normalised entropy of 1 assigns all
elements with equal probability (as shown in the left plot of Fig. 2). A normalised
entropy of 0.5 implies that one item has a much greater probability than the
others (as in the centre plot of Fig. 2). Also, an entropy of 0 implies that one
element has probability 1, with the remaining elements having probability 0
(shown in the right plot of Fig. 2).
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Note that the measure of entropy is used to identify a systems confidence in
its response, but it should not be used to measure the quality of a set of systems
without regard to the systems’ accuracy. For example a system that provides
high levels of entropy for all responses is not worse than a system that provides
low levels of entropy. If both systems happen to have a low accuracy, then the
former may be preferred over the latter.

4 Using Entropy as a Measure of Acceptance

We introduced the topic of measuring uncertainty using the normalised entropy
of the multi-label distribution in Sect. 3. In this section, we will examine if
entropy is correlated to accuracy. Our reasoning is:

– If a portion of the sample space can easily be classified, there is little uncer-
tainty in the results and hence the entropy of the multi-label distribution will
be low. Low uncertainty also implies that any future predictions should be
accurate, meaning that low entropy corresponds to high accuracy.

– If a portion of the sample space is difficult to classify, there will be high
uncertainty in the results and hence the entropy of the multi-label distribution
will be high. This high uncertainty implies that future predictions are not
likely to be correct, meaning that high entropy corresponds to low accuracy.

In this section, we will first describe the data and multi-label models used.
We will then examine the relationship of probabilistic multi-label entropy to
accuracy.

4.1 Experimental Environment

To perform our investigation, we will use the set of probabilistic multi-label
classifiers presented in Sect. 2: Probabilistic Label Powerset (PLP), Probabilis-
tic Binary Relevance (PBR), and Ensemble of Probabilistic Classifier Chains
(EPCC). Each of the methods require the use of a set of binary classifiers that
provide a probability measure of its associated label set prediction. In each of our
experiments, we use Support Vector Machines with a Radial Basis kernel, where
the probabilities were estimated using a Laplace prior [1]. The kernel parameter
was kept at the default value of 1/m, where m is the number of explanatory vari-
ables for each observation. The SVM cost parameter for each binary classifier
was tuned using 2 shuffle, 5 fold cross-validation on the training data.

The number of probabilistic binary classifiers required for each method is
shown in Table 2. We find that the Probabilistic Binary Relevance classifier
uses the least number of binary classifiers, while Probabilistic Label Powerset is
expected to use the most.

We chose the three data sets shown in Table 3 to perform our analysis; two
that are commonly used in multi-label research (Emotions and Scene) and the
third from the STARE project1 (the set of diagnoses from a set of retinal images).
1 http://www.ces.clemson.edu/∼ahoover/stare/.

http://www.ces.clemson.edu/~ahoover/stare/
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Table 2. The number of binary classifiers used by each probabilistic multi-label clas-
sifier, where n is the number of binary response variables, u is the number of unique
label combinations of response variables within the training data, and e is ensemble
size.

Method Binary classifiers

PBR n

PLP u(u − 1)/2

EPCC en

Table 3. The data sets used to examine the probabilistic multi-label methods in this
article.

Name Items Train Test Features Labels Avg label card Uniq label comb

Emotions 593 250 343 72 6 1.8685 27

Scene 2407 1211 1196 294 6 1.0740 15

Stare 373 200 173 44 15 1.3217 42

The Stare data contains medical diagnoses, where the confidence of prediction
is essential and so is a perfect candidate for this research. Note that these data
sets are relatively small, but to perform our analysis, we require results for each
of the three probabilistic multi-label methods. The Probabilistic Label Powerset
method requires 42 × 41/2 = 861 binary classifiers for the Stare data set, which
consumes most of the CPU time and memory on a modern computer. Therefore
it would be difficult to obtain results for larger data sets.

To give perspective on each method, we have presented the training and
testing times for each on each data set in Table 4.

Table 4. The time taken in seconds, for training the model and predicting the state
of one object for each method on the Emotions, Stare and Scene data sets.

Methods Emotions Stare Scene

Train Test Train Test Train Test

PBR 25.51 0.01 21.85 0.96 1147.03 0.02

PLP 101.06 0.66 275.38 3.01 724.75 2.24

EPCC 76.96 0.30 198.38 19.68 3443.75 1.61

To evaluate the classification accuracy of the models, we report results using
the 0/1 loss function (if the system returns the correct label set as the most
likely label set, it is correct, otherwise it is incorrect). We also examined the use
of Hamming and Jaccard similarity for partial matching of labels and found the
results to be similar to those reported using the 0/1 loss function.
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4.2 Experiment

We computed the normalised entropy for each test sample in each of our three
data sets for all three methods. We then examined the accuracy when only con-
sidering the k observations from the test set with the lowest response distribution
entropy. We expected that when considering the mean accuracy of the chosen k
observations, the score should decrease as k increases (since increasing k intro-
duces observations with greater response entropy into the mean calculation).
The results of this experiment are shown in Figs. 3, 4 and 5 for data sets Emo-
tion, Scene and Stare respectively. Note that k is labelled “Decisions made” in
the set of plots, since k can be likened to an entropy threshold in which a practi-
tioner accepts the prediction of the system (makes a decision) when the response
distribution is lower than the threshold, while the remainder are discarded as
untrustworthy.

Fig. 3. Using normalised entropy as a measure of prediction acceptance for the Emotion
data.

The lines in these plots were computed by ordering all of the test observations
in order of their normalised entropy. The Accuracy is then computed as the mean
of the accuracies of the observation with lowest entropy, the lowest and second
lowest, the lowest to third lowest, and so on, until the final value is the mean of all
accuracies. Computing the mean in this way causes the first portion of the plot
to be jittery since the mean is computed using a small number of samples. As
the sample size increases the plot smooths out. The varying number of decisions
made in each of the plots is due to the number of observations available in the
associated data test sets.
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Fig. 4. Using normalised entropy as a measure of prediction acceptance for the Scene
data.

4.3 Analysis of Results

The plots show the accuracy, ordered by normalised entropy of the response
distribution. An increase in the plot line towards an accuracy of 1 means that
an accurate prediction was made, a decrease in the line towards an accuracy
of 0 means an inaccurate prediction was made. An optimal measure of system
confidence would have a plot where the line stays at 1 (placing all of the accurate
predictions first), followed by a decrease (placing all of the inaccurate predictions
last).

We find that PLP and EPCC have some inaccurate predictions with low nor-
malised entropy (shown by the initial zig-zagging), but then smoothly decrease
just after the 50 mark. PBR has the initial zig-zagging but then dips at about the
170 mark, showing a poor ordering of accuracy. The Scene data shows a desired
curve from PLP (flat then decreasing), where EPCC and PBR have some initial
zig-zagging, but then a decreasing slope. We also find that each of the three
methods begin with an initial zig-zag and then gradually decrease for the Stare
data.

The general shape of the curves for each plot (flat and then decreasing)
show that normalised entropy is a good candidate for measuring confidence of
a systems prediction. The variance between methods and plots is due to the
different methods used to compute the joint distribution and their behaviour on
each data set. We also see from the plots that by accepting only those predictions
that had low normalised entropy, the mean accuracy of accepted predictions is
increased by a significant margin for all methods on all data sets. Therefore
normalised entropy can be used as a measure of acceptance for probabilistic
multi-label classification.
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Fig. 5. Using normalised entropy as a measure of prediction acceptance for the Stare
data.

Note that the usefulness of normalised entropy as a measure of acceptance
is dependent on the accuracy of the system. If we generated random response
distributions, some may have low normalised entropy, but also be inaccurate.
Therefore a specialist needs to first choose an appropriate probabilistic multi-
label classifier for their data before normalised entropy can be used.

For most of the data sets, there is little difference in accuracy between meth-
ods at the low “Decisions made” end of the plots. This is likely to be due to
a small sample of points that are simple to classify and hence an independent
multi-label classifier is good enough to accurately classify these. The simplicity
of their classification would also imply that their multi-label distributions would
have low entropy.

5 Conclusion

Multi-label classification allows us to predict the response of many labels at
once, using the correlation between the labels to hopefully improve the predic-
tion accuracy. Critical applications of multi-label learning (such as those used
in health, military and government) require that predictions are paired with
a measure of confidence in the prediction. Probabilistic multi-label classifica-
tion provides us with a conditional categorical distribution over the powerset
of labels, providing us with an indication of confidence. Unfortunately, it is not
always obvious what confidence the system has by observing this distribution.
Therefore a single measure of confidence would be useful for specialists using
this system.
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In this article, we presented a method of determining a probabilistic multi-
label system’s confidence in its prediction using normalised entropy. We exam-
ined correlation of three popular probabilistic multi-label classification method’s
accuracy with normalised entropy, and found that all three provided a general
increase accuracy as the normalised entropy decision threshold reduced. This
result shows that we can gauge a systems confidence in its prediction by exam-
ining the normalised entropy of the predicted label set distribution.
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Abstract. Self Organizing Maps (SOM) are widely used in data mining
and high-dimensional data visualization due to its unsupervised nature
and robustness. Growing Self Organizing Maps (GSOM) is a variant of
SOM algorithm which allows nodes to be grown so that it can repre-
sent the input space better. Without using a fixed 2D grid like SOM,
GSOM starts with four nodes and keeps track of the quantization error
in each node. New nodes are grown from an existing node if its error value
exceeds a pre-defined threshold. Ability of the GSOM algorithm to repre-
sent input space accurately is vital to extend its applicability to a wider
spectrum of problems. This ability can be improved by identifying nodes
that represent low probability regions in the input space and removing
them periodically from the map. This will improve the homogeneity and
completeness of the final clustering result. A new extension to GSOM
algorithm based on node deletion is proposed in this paper as a solu-
tion to this problem. Furthermore, two new algorithms inspired by cache
replacement policies are presented. First algorithm is based on Adaptive
Replacement Cache (ARC) and maintains two separate Least Recently
Used (LRU) lists of the nodes. Second algorithm is built on Frequency
Based Replacement policy (FBR) and maintains a single LRU list. These
algorithms consider both recent and frequent trends in the GSOM grid
before deciding on the nodes to be deleted. The experiments conducted
suggest that the FBR based method for node deletion outperforms the
standard algorithm and other existing node deletion methods.

1 Introduction

SOM algorithm invented by Kohonen [7] is a popular technique in unsupervised
learning due to its wide applicability. SOM is a dimensionality reduction tech-
nique that maps high dimensional data into a 2D grid of nodes. Each node i in
the 2D grid has an associated weight vector Wi (with the same dimension as the
c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 229–240, 2015.
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input data) and represents a region Vi in the input space where all the points
in Vi are closer to Wi than any other weight vector in the 2D grid [7]. Before
training the SOM algorithm, size of the 2D neuron grid has to be specified.
User needs to have knowledge of the structure of the training data in advance
to make a reasonable estimate of the size of the grid to be used. Several tests
might be required to identify a suitable grid size that best represents the given
input data. Main drawback handled by GSOM algorithm is overcoming such
constrained learning requirements found in SOM algorithm.

Growing Self Organizing Map (GSOM) introduced by Alahakoon et al. [1]
is an unsupervised learning algorithm which has been successfully employed in
knowledge discovery problems and can be considered as one of the successful
structure adapting models based on SOM. GSOM is a dynamic variant of SOM
that has the ability to adapt to the distribution and structure of training data
and provides a set of parameters to control the granularity of the clusters to be
formed. GSOM can be successfully used for hierarchical clustering by starting
with coarse grain clusters and generating fine grain clusters out of them. Apart
from extending SOM algorithm to eliminate time-consuming testing required for
parameter estimation, GSOM has a number of advantages compared to other
dynamic SOMs [1].

GSOM starts with a grid of four initial nodes and grows additional nodes
to adjust the grid according to the input data distribution. This is done by
keeping track of quantization error for each node and then growing new nodes
from existing nodes that accumulate a high quantization error (See Fig. 1). High
quantization error in a node i is an indicator that the associated region Vi in
input space is underrepresented by that node. So the new nodes are grown from
node i to produce a more detailed representation of the region Vi. This approach
avoids the necessity to specify the grid size in advance and also removes the
restriction for the final arrangement of nodes to be rectangular, thus allowing
the nodes to adapt to a shape that best reflects the input data space. Normally,
during the node growth, maximum possible number of new nodes are grown
from a node depending on the degree of freedom of the node (degree of freedom
of a node can be any value between 0 and 3 inclusive) as it is computationally
expensive to identify the best new node to be grown out of a given node [1].

Fig. 1. Node growth in GSOM
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Applicability of GSOM for a particular task depends on how accurately it
maps the input space into the output space (2D grid of nodes). In general,
input space can be non-convex, discontinuous and can contain high dimensional
clusters [3]. However, the final outcome of GSOM algorithm is a fully connected
structure and thus it is incapable of identifying discontinuities in the input space.
Also, some of the newly created nodes that represent low probability regions in
the input space can affect homogeneity in the final clustering outcome of GSOM.
Hence, deleting these poorly-formed nodes is essential for attaining more accurate
clustering of input data with GSOM.

The graph in Fig. 2 was obtained by running GSOM algorithm on iris dataset
from UCI machine learning library [2]. The graph shows the number of nodes
having a particular hit count (hit count is the number of times a node in the 2D
grid becoming the closest node to an input vector while training. Training pro-
cedure of the GSOM algorithm is described in detail under the section GSOM ).
It can be seen that most of the nodes have never become a winner.

Fig. 2. Hit count frequency

An appropriate technique should be introduced to identify the poorly-formed
nodes. Fritzke [4] has invented a method for deleting nodes by estimating the
probability of the input space represented by a node. Nodes representing an
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input space with estimated probability approximately equal to zero are deleted.
Also Blackmore and Miikkulainen [3] have come up with a deletion mechanism
for the connections between nodes based on a threshold value. In this paper, two
variations of node deletion mechanisms inspired by cache replacement algorithms
are presented.

The rest of the paper is organized as follows. First, the related work is dis-
cussed and then the new methodologies for node deletion are explained. Next,
experimental results are presented and finally the paper concludes with the con-
clusion.

2 Related Work

2.1 GSOM

GSOM algorithm mainly operates in three phases, namely initialization phase,
growing phase and smoothing phase. These phases are run sequentially. The
parameters of the GSOM algorithm are discussed below. These parameters are
used in the growing phase and smoothing phase of the algorithm and can be
adjusted separately for each of the two phases.

– N ITER: Number of iterations the algorithm make through the input data
set. During each iteration, complete input data set is fed to the algorithm.
Ordering of the input presentation is irrelevant.

– SF: The spread factor. This parameter controls the growth of nodes in the
2D map. Thus, this can be used to control the spread of the 2D grid of nodes.
A high spread factor creates a large number of nodes where as a low spread
factor creates a small number of nodes. Value of spread factor should be a
non zero number between 0 and 1.

– NS: Initial neighbourhood size or neighbourhood radius. For each input vec-
tor, weight values of some of the vectors in 2D map will be adjusted and this
parameter controls the number of nodes to be included in weight adjustment.

– LR: Initial learning rate. This controls the amount of weight value adaptation
of the vectors in a neighbourhood for a particular input vector.

1. Initialization phase
(a) Initialize the 2D map with a set of nodes (usually 4) with their weights

set to random numbers (See Fig. 1) (Other methods instead of random
initialization exist as well. e.g. PCA).

(b) Calculate the Growth threshold (GT) for the given data set depending
on user requirements. Growth threshold (GT) = −D × lnSF . Here the
value of spread factor is set by the user.

2. Growing phase
(a) Feed an input vector to the grid.
(b) Determine the weight vector that is closest to the current input. That

is, find the closest quantized vector in the current grid to the presented
input vector. Any distance metric defined on both the input space and
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mapped space (grid) can be used to find the distance between the input
and quantized vectors. Most commonly used metric is the Euclidean dis-
tance. The quantized vector which minimizes the metric is selected as the
winner for that particular input vector.

(c) Increase the error value of the winner by the difference between input
vector and winner. Difference (distance) is calculated by a distance metric
like Euclidean distance.

(d) Then the weight vector adaptation takes place in the winner and neigh-
bourhood of the winner determined by neighbourhood size, NS. Neigh-
bourhood size is reduced exponentially (or linearly) during the process of
presenting input to the grid. Even within a neighbourhood, vectors that
are closer to winner are affected more by weight adjustment than those
at further.

(e) If TEi ≥ GT , then grow nodes if i is a boundary node, else distribute
error to neighbours of i. Here TEi is the total accumulated error of the
current winner node i (See Fig. 1).

(f) New node weights are initialized based on the topology of the map, i.e.,
based on the number of immediate neighbours of the new node and their
position.

(g) Repeat steps a–f for all input vectors.
(h) Repeat steps a–g N ITER times.

3. Smoothing phase
(a) Reduce learning rate and fix a small starting neighbourhood size.
(b) Find winner and adapt the weights of the winner and neighbours in the

same way as in growing phase.

2.2 Fritzke’s Method

A probabilistic method for node deletion has been invented by Bernd Fritzke
based on the probability estimation P (Vi) of the input space Vi represented by a
node i [4]. If the probability P (Vi) is approximately zero, the associated node i
can be deleted since it does not hold adequate information about the input space
and does not contribute to the quality of the output of the algorithm. If node i
represents such a zero probability region, then chances of node i becoming the
winner will be very low. Hence it can be concluded that the longer a node i was
not a winner, it is more likely to represent a zero probability region in the input
space. A single metric derived from this observation has been used by Fritzke to
decide on the nodes that should be deleted.

In Fritzke’s method, number of input vectors presented to the SOM grid is
counted and in each node in the grid, the number of the last input for which
the node became the winner is stored. Then a metric called kremove is calcu-
lated periodically and used to decide which nodes to be deleted. If the difference
between the current input vector count and the number stored in a node exceeds
kremove, the node is deleted. The value of kremove is calculated using a proba-
bilistic approach depending on the number of nodes in the SOM grid, average
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number of input vectors need to be presented to trigger the generation of one
new node and a user specified confidence (probability) value (psure).

Frequency of a node becoming a winner is not considered in this approach
and can be considered as a drawback of the method. A particular node in the
grid can become a winner frequently at the early stages of training and not
so often in the latter stages due to the order of input data presented to the
algorithm. Although this node may be a candidate for deletion under Fritzkes
algorithm, it is not a good idea to delete a node which had a relatively high
frequency of becoming a winner as it may represent a region in the input space
which was encountered in an earlier period during the presentation of the input
dataset. It is not uncommon for similar data items to appear together in real
world datasets.

2.3 Blackmore and Miikkulainen’s Method

Blackmore and Miikkulainen [3] have proposed an incremental algorithm based
on feature maps for unsupervised learning. A method based on a threshold value
to delete connections between the nodes has also been suggested to enhance the
capability of feature maps to represent more diverse and complex input spaces.
Algorithm starts with four initial nodes as in GSOM and adds nodes in the
perimeter area of the grid where the corresponding input area is not adequately
represented. Connection between a pair of nodes is deleted when the Euclidean
distance between the two nodes grow beyond a predetermined threshold.

It is important to notice that in this method, nodes themselves are not deleted
but only the connection between the nodes are deleted. But in GSOM, the notion
of connection is bound to the position of a node in the 2D grid and there are no
separate connections between the nodes. Two nodes are automatically connected
if they are an unit distance apart from each another i.e., if they are horizontally
or vertically adjacent. So a method based on deleting connections rather than
the nodes themselves cannot be used in GSOM.

3 Methodology

Two node deletion algorithms based on cache algorithms which take both the fre-
quency and recency of a node becoming a winner into consideration are proposed
to overcome the drawbacks of Fritzke’s method. This is the main improvement
introduced in this paper. By considering both frequency and recency, the new
algorithms are capable of identifying both the frequent and recent changes in
the 2D grid of nodes and delete poorly-formed nodes considering this new infor-
mation. The proposed algorithms are based on two different caching algorithms.

Caching is used in computing for speeding up the response time for informa-
tion (or data) requests. Normally, results from previous calculations that may
be used in future or duplicate copies of data are stored in a cache. If a requested
item is found in cache (i.e., a cache hit), it can be served quickly. If the requested
item is not found (i.e., a cache miss), data needs to be brought in from their
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original location or certain calculations will have to be carried out before the
request is served. In case of a cache miss, it will be more efficient to store these
new (calculated or brought) items in the cache due to locality of reference.

Since caches have limited capacity, it is not possible to store items related
to all the past requests. A suitable cache item replacing policy should be imple-
mented to decide which items in the cache should be replaced in order to find
space for the new items. These policies are known as cache algorithms (cache
replacing policies) and there are a considerable number of algorithms developed
for different types of applications [6,8,10]. These algorithms use certain metrics
(reference counts, last access time, etc.) to find the most suitable item currently
residing in the cache for replacement.

Although there is no restriction in GSOM for the number of nodes in the
grid, identifying the poorly-formed nodes is essential for node deletion. If these
poorly-formed nodes can be identified, they can be removed periodically during
the training period of the algorithm. So the same policies used by the cache
algorithms to identify least important items can be used in GSOM to identify
the poorly-formed nodes.

As mentioned above, removal of an item in the cache is triggered when the
cache size is too small to accommodate the new items brought into the cache
during the cache misses. One of the basic ideas behind GSOM is to automatically
find a suitable grid size for input data distribution rather than user having to
specify it manually. So in the case of GSOM, the decision of when the poorly-
formed nodes should be removed must be taken without adding restrictions on
the size of the nodes in the grid. Hence the algorithms presented in this paper
periodically checks for the nodes which rank poorly according to the used cache
policy and remove them from the grid. This removal is not triggered by a size
limit but done periodically (for example, after completing one training epoch).
Cache policy is used to decide which nodes to be deleted. Two algorithms were
implemented based on the cache policies used by Adaptive Replacement Cache
(ARC) [8] and Frequency Based Replacement (FBR) [10] cache.

3.1 Node Deletion Based on ARC

The ARC is a self-tuning, low-overhead algorithm that responds on-line to chang-
ing access patterns [8]. ARC adapts itself between frequency and recency of an
element becoming a cache hit. ARC detects the most important access pattern
out of frequency and recency and remove elements to support current access
pattern. ARC can be implemented using two lists.

Two Least Recently Used (LRU) lists, L1 and L2 are used by ARC [8]. Items
that have been seen only once (recent items) are held in L1 and items that have
been seen at least twice (frequent items) are held in L2. These lists do not have
fixed capacities (number of items that can be kept in the list) and are adaptive
subject to two conditions, |L1| < c and |L1|+ |L2| < 2c where c is the maximum
capacity of L1.

A very simplified version of the algorithm used in ARC can be stated as
follows. In case of a cache miss, brought in (or calculated) new items are inserted
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at the start of L1 and then gradually pushed to the back of L1 when more and
more new items enter L1. In case of a cache hit, any item in L1 or L2 that is
referenced once again is moved to the front of L2 and gradually pushed back in
when more and more re-referenced items enter L2. Cache replacement policy of
ARC is based on the total capacity of the cache (combined capacity of L1 and
L2) and the capacity of L1. If L1 is at its maximum capacity, LRU element in
L1 is replaced, otherwise if the total capacity of the cache is at its maximum,
LRU element of L2 is replaced.

During the experiments, two LRU lists were maintained with references (posi-
tion of the node in the 2D grid) for nodes in the current GSOM grid. A node
was inserted to L1 when it became the winner for the first time. Cache hits and
misses were handled similar to the above technique. No size restrictions were
imposed on the two lists L1 and L2 to ensure that the natural growth of the grid
was not hindered; instead the poorly-formed nodes identified based on the cache
policy were removed periodically (after each full training iteration).

3.2 Node Deletion Based on FBR

Another approach for node deletion using a cache based on FBR was experi-
mented. Unlike ARC, there is only one list. Information about frequency of a
node becoming a winner is maintained using a counter called reference counter.
Recency of an item becoming a cache hit is maintained by partitioning cache
list into three separate sections called new, middle and old (See Fig. 3). These
sections are maintained by using references for new boundary and old boundary.
Reference count and the section of an item in the cache can be used to decide
which item should be replaced when the cache is full.

Length of each section is a parameter of the algorithm and it is up to the
user to decide the length of each section. In our adaptation, the lengths were
stated as fractions of the total length, thus avoiding the need to specify a cache
size. One obvious selection for the lengths is to use equal sizes for the three lists
i.e., first 1/3 of the cache is allocated for the new section, second 1/3 for the
middle section and the rest for the old section.

FBR algorithm works as follows. In case of a cache miss, the missing item
is brought into the cache and placed in the beginning of the new section with
the reference count initialized to one. FBR uses a concept called “factoring out
locality” for reference counts [10]. Unlike most of the cache algorithms which
use a reference count, in FBR count is not incremented when an item in the

Fig. 3. FBR cache
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new section becomes a hit. Reference count is incremented only if the referenced
item is in middle or old section. This is done to detect the items that are only
referenced frequently during a very short period of time and never referenced
again. So, in case of a cache hit, the re-referenced item is brought to the beginning
of the new section and the reference count is incremented only if the re-referenced
node was in either middle section or old section. In FBR, cache replacement
choices are confined to the old section of the cache. A Typical method is to
remove the element with least reference count in the old section.

In the implementation of FBR based node deletion for GSOM, a node was
inserted into the cache whenever it was created and the cache was updated each
time the node became a winner (This is different from ARC based method. In
ARC a node was inserted into the cache only when it became a winner). After
each main input iteration of the GSOM algorithm, a node was removed based on
the above-mentioned replacement policy. After the first few iterations (approx.
after 20–30 input iterations, this number depends on several things), the new
node generation in the GSOM grid becomes almost zero. Node deletion is not
performed after the algorithm reaches this saturation stage.

4 Experimental Results

Experiments were conducted to compare the two new algorithms with Fritzke’s
algorithm and the standard GSOM algorithm. They were conducted using the
datasets from UCI [2] machine learning repository. Three datasets were used (zoo,
ecoli, wine) and 80 % of each dataset was used for training and the rest was used for
evaluation. In all the test runs, GSOM was trained using 150 input iterations using
a learning rate of 0.3 and a neighbourhood size of 4. Spread factor was increased
from 0.2 to 0.7 with a step size of 0.05. After training GSOM at each spread factor
value, generated nodes in the 2D grid were clustered using the K-means clustering
algorithm [5]. Clusters to which the data points in test data sets belong were iden-
tified by feeding them into trained GSOMs and the corresponding clusters were
assigned to them. These assignments of clusters were evaluated using five metrics.
This process was repeated 50 times for a single spread factor value and average of
each metric (average of its 50 values) was then calculated and used as the value
of the metric for that particular spread factor value. Also, when evaluating the
Fritzke’s algorithm, psure parameter was set to 0.98.

Since algorithms were tested on clustering data in the experiments, evalua-
tions of the results were done using cluster quality metrics. Evaluating goodness
of a clustering often lacks rigour and has been identified as a critical and diffi-
cult empirical problem. However, some measurements are there which perform
a passable evaluation of cluster quality [11]:

– Homogeneity Score (HS): Each cluster needs to contain only data points that
are members of a single class.

– Completeness Score (CS): All of the data points that are members of a given
class should be elements of the same cluster.
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As the measurement of these two criteria are roughly the opposite of each
other [11], V-measure was also used. V-measure is an entropy-based measure
that explicitly evaluates how successfully the criteria of homogeneity and com-
pleteness have been sufficed. V-measure is computed as the harmonic mean of
distinct homogeneity and completeness scores [11]. Apart from these empirical
measurements, two metrics based on information theory have been used to evalu-
ate the cluster quality: Adjusted Mutual Index (AMI) and Adjusted Rand Score
(ARS) [9]. All of these metrics have a value between 0 and 1 and a higher value
indicates a better clustering.

Table 1. Experimental Results using zoo dataset

ARS AMI HS CS V-measure

GSOM 0.72 0.68 0.94 0.81 0.84

FBR 0.74 0.70 0.95 0.82 0.84

ARC 0.70 0.67 0.94 0.81 0.83

Fritzke 0.69 0.66 0.94 0.81 0.83

Table 1 summarizes the best results for zoo dataset (rounded to two decimal
places) across all the spread factor values of each algorithm.

In all the metrics, FBR based method was able to score the best values. All
the algorithms achieved their best results when the spread factor is around 0.3–
0.4. Results drops drastically when the spread factor exceeds this range. When
the spread factor increases, the rate of the new node generation increases (the
GSOM grid spreads wide) and this has a degrading affect on the final results
due to the generation of poorly-formed nodes. Two algorithms proposed in the
paper are not designed to work under such a large generation of new nodes as
these methods only remove a single node after each input iteration.

A separate experiment was carried out using the ecoli dataset. Following
table summarizes the best results of each algorithm (rounded to two decimal
places) (Table 2).

Table 2. Experimental Results using ecoli dataset

ARS AMI HS CS V-measure

GSOM 0.72 0.68 0.94 0.81 0.84

FBR 0.74 0.70 0.95 0.82 0.85

ARC 0.70 0.67 0.94 0.81 0.83

Fritzke 0.69 0.67 0.94 0.81 0.83

The graph below (Fig. 4) represents the maximum value of ARS (for ecoli
dataset) for each spread factor value and algorithm which produced it.
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Fig. 4. Variation of adjusted rand score with spread factor - ecoli

Another experiment was carried out using the wine dataset. Following table
summarizes the best results of each algorithm (rounded to two decimal places)
(Table 3).

Table 3. Experimental Results using wine dataset

ARS AMI HS CS V-measure

GSOM 0.61 0.58 0.93 0.65 0.70

FBR 0.64 0.59 0.93 0.66 0.71

ARC 0.60 0.57 0.93 0.64 0.69

Fritzke 0.58 0.55 0.92 0.64 0.68

Although FBR based method performs better, ARC based method does not
show any significant improvement. This is due to the fact that ARC based
method is not good at responding to the effects of the frequency as the FBR
based method. According to the implementation of ARC, it can only distinguish
between the nodes which were accessed once and the nodes which were accessed
more than once. But FBR based method keeps track of the number of times
each node accessed.



240 T. Rathnayake et al.

5 Conclusion

Some of the new nodes created by GSOM accumulate only a very small number
of hits (number of times the node became the winner) and effect the quality
of the final result. For example, identifying these nodes and removing them
from the GSOM grid can increase the homogeneity and completeness of clusters
generated by an algorithm like K-means which can be run using the nodes of
the generated grid as input.

Existing approaches for node deletion in dynamic SOMs were investigated
and the possibility of their adaptation to GSOM was examined. In addition,
two novel approaches for node deletion based on two cache replacement policies
were presented. The experiments conducted suggests that the algorithm based
on FBR produces the best results in all the five metrics used.
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Abstract. As we continue to collect and store textual data in a multi-
tude of domains, we are regularly confronted with material whose largely
unknown thematic structure we want to uncover. With unsupervised,
exploratory analysis, no prior knowledge about the content is required
and highly open-ended tasks can be supported. In the past few years,
probabilistic topic modeling has emerged as a popular approach to this
problem. Nevertheless, the representation of the latent topics as aggre-
gations of semi-coherent terms limits their interpretability and level of
detail.

This paper presents an alternative approach to topic modeling that
maps topics as a network for exploration, based on distributional seman-
tics using learned word vectors. From the granular level of terms and
their semantic similarity relations global topic structures emerge as clus-
tered regions and gradients of concepts. Moreover, the paper discusses
the visual interactive representation of the topic map, which plays an
important role in supporting its exploration.

(Topic mapping code and demo available at http://samuel.ronnqvist.
fi/topicMap/)

Keywords: Topic modeling · Distributional semantics · Visual analytics

1 Introduction

Following the increase in digitally stored and streamed text, the interest for com-
putational tools that aid in organizing and understanding written content at a
large scale has soared. Natural language processing and machine learning tech-
niques demonstrate strength in their feats of handling the challenging intricacies
of human language to extract information and in their aptitude for scanning
big data sets. However, while we can model what information is likely to be
interesting, humans alone are capable of a deeper understanding that involves
evaluating information against a wide and diverse body of knowledge in nuanced
ways, which motivates a focus on human-computer interaction and visual ana-
lytics in text mining [17].

This paper concerns analysis of text by means of exploratory topic modeling,
by which I emphasize the exploratory use of models that convey topic structure.
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To this end, I put forward a new method for topic modeling based on distribu-
tional semantics using continuous word vector representations, for the construc-
tion of models called topic maps. On the one hand, the focus is set explicitly
on unsupervised learning to allow maximum coverage in terms of domain and
language without need for adaption, while taking advantage of recent advances
in word vector training by neural networks. On the other hand, the role of the
human user is acknowledged as an important part of the analysis process as
the one who understands and explores the modeling results; therefore, visual
interactive presentation is discussed as part of the contribution alongside map
construction and perceived as equally important to exploratory topic modeling.

Probabilistic topic modeling [4] is a family of machine learning algorithms
for uncovering thematic structure in text documents that are widely used, and
applicable both for exploratory analysis of topics and as a discrete dimensional-
ity reduction method in support of other learning tasks. Based on co-occurrence
of terms in documents, probabilistic topic modeling extracts a number of latent
topics. In the seminal algorithm, Latent Dirichlet Allocation (LDA), the number
of topics to infer is given as a parameter. Assuming that each document may
discuss a mixture of topics, it attempts to isolate coherent topics. Each topic
is defined as a probability distribution over terms, where the terms collectively
carry the meaning of the latent topic. While LDA and many of its variations
are theoretically solid and rest on an interpretation-friendly probabilistic basis,
issues of interpretability are nevertheless commonplace and well recognized [6].
First, the unsupervised modeling offers no guarantees that the topic division is
semantically meaningful; some topics may seem similar and hard to distinguish,
whereas others turn out very specific. These issues may be mitigated by selecting
appropriate parameters, including the number of topics in the case of LDA. Sec-
ond, the terms within topics may appear semantically incoherent and confusing
to a human. Various efforts have been made to improve coherence (e.g., [14,15]),
yet for humans to form an understanding of what a topic signifies based on a
set of weighted terms, interpretation inevitably involves a certain cognitive load,
only increased by the iterative task of contrasting topics against each other to
grasp the broader picture.

Thoughtful visual representation of the topic structure and terms can ease
the task (see, e.g., [7,18]), but I argue that in many cases it is more mean-
ingful to choose to operate from the level of individual terms that represent
concrete concepts and their bilateral semantic similarity relations. A discrete
division of topics is practical in many use cases, but is somewhat unnatural for
exploratory purposes, and mere aggregation of terms inevitably leads toward less
interpretable abstractions. Instead, it is more fitting to allow for a topic struc-
ture to emerge as a global property from the local semantic similarity relations
among terms. Such a semantic network allows the human user to flexibly identify
topics as regions through proper visualization, while the network also supports
quantitative analysis such as community detection [9] (overlapping clustering,
which handles ambiguous terms) to identify discrete topics.
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The following section introduces the method for building the semantic net-
work model, the topic map, whereas Sect. 3 discusses its visualization, and Sect. 4
reports on experiments conducted to demonstrate the mapping method, followed
by some concluding remarks.

2 Building the Topic Map

Distributional semantics models the meanings of words based on their contexts,
namely the surrounding words in a sentence, according to the aphorism “you
shall know a word by the company it keeps” [8]. While modeling has tradition-
ally been based on counting of context words, recent approaches that work by
learning to predict words instead have been highly successful [1]. A popular
way of representing the semantics is by vectors, e.g., through projection [19] or
later through neural network training [3]. Lately, Mikolov et al. [13] have shown
how neural networks can be efficiently used to train semantic models based on
corpora at the scale of billions of words, in order to achieve very high seman-
tic accuracy. Their continuous skip-gram model is a neural network trained to
predict context words based on the center word, using a single hidden layer.
Through supervised training, the network optimizes its hidden layer weights,
which results in the learned array of hidden nodes providing fixed-length vector
representations of word semantics, i.e., word vectors. The word vectors embed
words into a semantic space that supports measuring similarities among words
by their vectors (e.g., by cosine similarity), as well as other vector arithmetic
operations (e.g., addition and subtraction for regularities prediction).

For the purpose of modeling the general topic composition of corpora, I use
the neural network skip-gram method to model word-level semantic similarity,
and from pairwise relations let the broader topic structure emerge. Whereas
the focus in word vector training generally is to approximate the semantics of
language in general, which can be achieved by training on large and diverse
enough text, the idea is here to explicitly model the semantics of the language in
one’s corpus alone. The model then reflects how words relate in the discourse of
the corpus rather than elsewhere. Thereby, the discrepancies between the word
similarities presented by the model and the observers own, more general under-
standing and less data-informed expectation of how the words relate, constitute
telltales of the thematic nature of the underlying text. (Kulkarni et al. use word
vectors accordingly to study linguistic change in English over time [11].) For topic
modeling to be meaningful, it naturally needs to work for corpora far smaller
than billions of words. As will be demonstrated in Sect. 4, skip-gram models can
learn usefully accurate word vectors on much smaller data sets, too.

Apart from semantic similarity, the topic map incorporates term frequencies,
used to represent the prevalence of terms in the corpus, and in combination with
their semantic neighborhood provide a sense of the overall importance of sections
of the map, reflecting the prevalence of specific concepts or topics. Probabilistic
topic modeling similarly uses topic-wise probability distributions over terms to
represent their degree of importance within the topic.
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Algorithm 1. Topic map construction (in: tokens, V, C, E, N, P, L; out: net)
# Word vector training
model = Word2Vec(tokens, vector_size=V, context_size=C, epochs=E)
# Network construction
for i1 in range(0, N-1 ):

for i2 in range(i1+1, N ):
t1, t2 = top_N_terms[i1], top_N_terms[i2]
net.add_link(t1, t2, weight=model.similarity(t1, t2))

# Network pruning
threshold = percentile([link.weight for link in net.links], P)
for node in net.nodes:

cap = sorted(net.links[node], key=lambda link: link.weight)[-1*L].weight
for link in net.links[node]:

if link.weight < max(cap, threshold):
net.remove_link(link)

ws = [link.weight for link in net.links]
for link in net.links:

net.links[link].weight = (link.weight-min(ws)) / (max(ws)-min(ws))

Using the word vector model and term counts, a semantic network that con-
stitutes the topic map can be constructed according to Algorithm 1 as described
in the following. First, the text of a corpus is processed and tokenized into
meaningful and well normalized terms. Then, the map is constructed through
the following two main steps.

Word Vector Training. Given the main parameters, vector size (V ) and con-
text size (C ), word vectors are trained on term sequences by the method of
Mikolov et al. (word2vec). Vector size determines the dimensionality of the
semantic space and is customarily in the range of 50 to 1000, where higher
dimensionality allows for a finer model given enough data. The size of the word
context to consider is typically about 5–10 words, but for the current task even
contexts up to 25 words have proved satisfactory. Training in multiple epochs
(E ) (e.g., 3–10) tends to improve the quality of the model noticeably, especially
with little data available.

Network Construction. Once the vectors have been trained, we can use the
model to measure similarity of pairs of terms. The most frequent terms in the
corpus are picked for comparison, preferably excluding stopwords. Typically in
the range 100–1000, the number of unique terms to include (N ) defines the
maximum level of detail in the topic map and limits the computational com-
plexity of building it. For each pair, the cosine similarity between their vectors
(sim(t1, t2) = v(t1) · v(t2), with unit vectors) is computed and stored.

Network Pruning. As only similar terms are meaningful to relate and as we
seek to build a network that is neither too dense and cluttered nor too sparse
and disconnected, the pairs with highest similarity scores are retained as links
between the term nodes. With varying sizes of the vector and corpora, the sim-
ilarity scores vary considerably as well. Thus, filtering of pairs is performed by



Exploratory Topic Modeling with Distributional Semantics 245

a threshold defined as a percentile of all scores stored (P), typically at the 97–
99th percentile, which makes the parameter’s effect more stable. Moreover, an
upper bound on number of links per term (L) helps reduce cluttering density
due to general terms that may measure as very similar to many terms. Typical
cap values are 8–15 links per term. All links are finally weighted according to its
normalized similarity score, as a standard measure of link strength (w′ ∈ [0, 1]).

In order to optimize parameter selection the quality of the topic maps must be
evaluated. While the exploratory task ultimately calls for qualitative evaluation,
semantic prediction accuracy will be used for initial guidance in word vector
training, which is the more computationally demanding step. The evaluation
method and data, borrowed from Mikolov et al., measures syntactic and semantic
regularities such as “man is to woman as king is to queen”, “Athens is to Greece
as Baghdad is to Iraq” and “code is to coding as dance is to dancing”, where
accuracy in predicting the last word is evaluated. Measuring how well the model
approximates general English, the relative performance on this task can help
to rule out models that are too simple and produce suboptimal maps because
they lack ability to appropriately model the semantics. The highest accuracy,
however, does not necessarily provide the best topic map, as its quality relies on
a balance between specificity and generality of its relations. The experiments in
Sect. 4 illustrate this further.

Apart from local link accuracy, the network should ideally show good struc-
ture in terms of how broader clusters emerge, too. This is highly dependent on
both calibration of the network parameters and how the network is analyzed. The
experiments in this paper focus on visual analysis based on force-directed layout-
ing, in which case desirable network structures contain some degree of clustering
into coherent and meaningful regions, without excessive cross-linking between
terms in different clusters to avoid overlaps. The network construction parame-
ters (P, L, N ) may be adjusted to optimize the readability of the map, which
in practice can be done instantaneously while visualizing the network. Hence,
optimization of the word vector parameters is the more cumbersome groundwork
that begets good maps, and evaluation of accuracy helps by reducing the search
space.

3 Visualizing the Topic Map

Exploration of complex models such as topic models calls for presentations that
provide as much detail as meaningfully possible. The most information-dense
mode of communication is visualization, whereas interactivity helps expand the
space of information that can be presented intelligibly on a finite screen. The
visual analytics paradigm [10] embraces visual interactive interfaces as they offer
a means of communication that is both rich and reactive, thus, helping users in
making sense of models and data. Visualization of the topic map incorporates
Shneiderman’s visual information-seeking mantra, “overview first, zoom and fil-
ter, then details-on-demand” [20], by providing both overview of a corpus and
a scaffold for exploration of its details. Visualization of the two main aspects of
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the map, term frequencies and word vectors, is discussed in the following, as well
as their combination into a visual topic map.

Among the most popular forms of text visualization are word clouds, which
are simple yet useful. Their main property, representing word importance by
size, is powerful because it utilizes a preattentively recognized visual variable,
i.e., relative word importance is recognized effortlessly and without requiring
focused attention, in parallel across the field of vision at the early stage of the
human visual system [21]. While word clouds have received some criticism relat-
ing to other properties such as the (dis)organization of words, studies have sought
improvement and in terms of readability evaluated various approaches such as
clustered [12] and semantic word clouds [2] that impose some semantically mean-
ingful organization of words. However, so far none of the approaches have used
distributional semantics, which offers advantages by being arguably more spe-
cific than tried clustering approaches, and unsupervised as opposed to database
approaches.

By contrast, a common approach to visualizing word vectors is to plot words
according to their two-dimensional projections by PCA (or other multidimen-
sional scaling methods), which achieves a basic form of semantic organization,
albeit easily cluttered at the center. While word clouds commonly place words
as closely as possible, regarding order or not, projection uses planar distance
to communicate the degree of semantic similarity (a spatial visual metaphor)
as well as ordering. Nevertheless, projection into two dimensions is bound to
produce overlap between semantically unrelated sets of words, which motivates
the visualization of semantic relations by drawn line connections that is more
explicit [16]. For visualization of the topic map network, I propose to use a force-
directed layout (a projection method) that optimizes word positions explicitly
based on semantic relations present in the network model, rather than the whole
word vector model. In particular, the D3 force algorithm [5] is suitable as it can
counter overlap of terms (by node charge) to preserve readability, even when
they are densely connected. It can also run in real time to allow for interac-
tive adjustment of positions which lets the user explore multiple local optima of
positioning.

The visual topic map lends from word clouds the word sizing relative to their
corpus frequency, and uses force-directed layouting to organize the map seman-
tically. Drawing the network of words, the strength of each link is encoded by
opacity, which makes more explicit the relative importance of individual links,
and together with the emergent density of links it provides an aggregate impres-
sion of the varying density of the map.

Interactive exploration of the map is enabled foremost by zoom/pan capa-
bilities, which in a very direct way allows more terms to be displayed, and high-
lighting of links of specific terms. The filtering of terms by frequency can be
responsive to the level of zoom to seamlessly provide more detail on demand. The
percentile filter used to construct the network can be relaxed if the visual inter-
face can counter the added complexity, and the number of terms can be increased
accordingly. Hence, the scalability of the topic map visualization depends largely
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on interaction design. The semantic network of frequent terms also functions as
a canvas for other types of information, such as mapping of local term neighbor-
hoods and relational information, touched upon in Sect. 5.

4 Experiments

The topic map will be demonstrated and tested using two different corpora. The
first corpus is a sample of news articles from Reuters (U.S. online edition) con-
taining 23 k articles and 9.2M words (167 k unique) and the other is a collection
of financial patent application abstracts from the U.S. Patent and Trademark
Office comprising 14 k abstracts and 1.7M words (20 k unique). In accordance
with the exploratory aim of this article, a topic map is trained and visualized
for each corpus as discussed above, in hope of gaining insight into the thematic
composition of each (see Figs. 1 and 2). The most prevalent terms representing
concrete concepts are displayed and their semantic similarity relations provide
organization that portray topics implicitly as regions and gradients between
them.

The experiment starts by selecting the parameters for word vector training,
guided by quantitative accuracy and qualitative assessment of the map (as dis-
cussed in Sect. 2). Having exhaustively tested various settings, their relationship
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Fig. 2. Topic map of financial patent abstracts

can be described as follows. With a fixed context size of 15 for the Reuters cor-
pus, accuracy reaches a plateau from vector sizes 200 to 500 (on average at 17%,
with E = 3), decreasing afterwards. Meanwhile, at a given vector size, accuracy
tends to asymptotically approach a limit with increased context size. Qualita-
tively, the best network structure appears to result from settings where accuracy
is close to the limit but context size is kept moderate.

The experiments show that the map is surprisingly robust with respect to
the training parameters, producing largely comprehensible results even at vector
sizes of 25 or 600 and context sizes of 5 and 50 respectively. Nevertheless, the
quality of the Reuters map is noticeably best at vector sizes 200–400 and context
sizes 10–20, where larger contexts benefit from larger vectors. Simpler models
produce networks with smaller regions that are tightly clustered, but result in
either few or arbitrary connections between regions, depending on the threshold
(P). Networks from complex models have similar problems, although the strong
connections tend to be very specific and semantically accurate, which explains
their good testing performance.

The qualitatively optimal models in between strike a balance between, on
the one hand, semantic accuracy that provides a map of meaningful connections
and, on the other hand, generality by connecting parts of the map through more
abstract but still helpfull term relations. Hence, measured accuracy provides
fundamental guidance in learning a model that handles the language well, but
the map then benefits from a slight regularizing or smoothing effect achieved by
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using a simpler model than the quantitatively optimal. While large vectors and
contexts combined can achieve maximum accuracy (about 22% for the Reuters
corpus), it does not seem productive to surpass contexts of about 25 words, and
given a limited context size, it is motivated to choose a vector size towards the
beginning of the accuracy plateau. The number of training epochs has a strong
effect on accuracy, e.g., the settings V = 400, C = 15 and E = {1, 3, 5} give
accuracies 7.3, 16.7 and 19.1, but the two latter cases do not show any notable
qualitative difference for the Reuters data.

The topic map in Fig. 1 was produced with the settings V = 250, C = 12,
E= 5, N= 500, P = .985 and L= 12 (accuracy 17.6%, training time 14.5min on
4 cores). It depicts the topic landscape of the Reuters financial news corpus by
its most frequent terms excluding stop words (including automatically detected
bi-gram phrases). The similarity threshold set at the 98.5th percentile provides
an appropriate degree of connectivity. The cap on links per term helps improve
readability especially in the dense region surrounding the terms business and
technology. The map uncovers an uneven distribution of terms, where smaller
concentrations highlight cliques of terms (e.g., president, ceo, etc. down left)
that represent a rather distinct general concept. Larger concentrated regions
form to highlight a broader topic division of the corpus, the three main regions
broadly reflecting discourse on business-related activities, realized performance
and expected performance.

The map in Fig. 2 similarly illustrates the lay of specific concepts and more
general topics as they occur in the set of patent abstracts. A few themes can
be identified, such as payment systems, telecommunications, trading, portfolio
management and patent-specific language. The map includes 350 terms and links
for the top 2% most similar pairs. As the patent corpus is much smaller the vector
size was reduced according to vocabulary size heuristically by V 2

1
|vocab1| ≈ V 2

2
|vocab2|

to V = 85, context size was kept at 12 not to reduce the already scarce data and
training was run in 10 epochs (training time 3.2min on 4 cores).

To conclude the evaluation of the generated topic maps, I compare the news
corpus against a benchmark obtained by LDA (results for the patent corpus are
similar but omitted due to space constraints). The same preprocessing of the text
is used as above, and the topics are modeled with standard parameter settings
into 8 topics. Each topic is presented by their top-10 terms according to the topic-
term probability distributions, as the most direct way of presenting the model.
Stop words are excluded to make the results more informative. While several
methods have been proposed that rerank terms to better support interpretation
of the topics (cf. [7,18,22]), no such method seems to have been unanimously or
widely adopted. The obtained topics are:

Topic 0: million, net, quarter, year, financial, income, company, share, operating, total
Topic 1: securities, class, relevant, number, options, option, price, form, code, relevant security
Topic 2: company, shares, fitch, fund, rating, share, ratings, information, financial, available
Topic 3: u.s, bank, new, company, financial, government, state, group, year, years
Topic 4: first, people, world, new, patients, home, years, health, year, games
Topic 5: company, information, new, services, business, market, products, forward-looking

statements, technology, solutions
Topic 6: q2 2014, jul amc, call, company, 29 jul, corp, earnings conf, jul bmo, trust, share
Topic 7: percent, year, million, billion, market, u.s, sales, shares, growth, down
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For some topics it is possible to discern a latent meaning, while others prove
hard to interpret. For instance, Topics 0 and 7 appear to relate to realized finan-
cial performance, but it is difficult both to form a more detailed explanation of
them and to distinguish logically between them. As mentioned in Sect. 1, recog-
nizing a distinct topic from an aggregate of terms is challenging, as is the task
of understanding how multiple topics relate. While the topic map includes many
of the same frequent terms, its natural, semantic organization makes it easier to
view and grasp the overall topic composition and scope. Local neighborhoods of
the map tend to be more coherent than LDA topics, and the relation between
different sections of the map is made more explicit. While exploration of LDA
topic models can be supported by meaningful presentation (e.g., [7,18]), the topic
map’s alternative way of approaching topic modeling remains well motivated for
exploration.

5 Discussion

My aim has been to introduce a new approach of using distributional seman-
tics, specifically word vectors trained by neural networks, to explore topics in
bodies of text. A problem commonly addressed by probabilistic topic modeling,
this approach sets out to tackle it with finer granularity, by building a topic
map bottom-up from concrete terms towards general topics, rather than forcing
interpretation of implicit meaning among an explicit, but not necessarily coher-
ent, set of topic terms. Distributional-semantic modeling provides meaningful
word-to-word similarity relations and organization that is easy to navigate. In
addition, I put forward a visualization design for the map that provides overview
and means for linking to further details, thus supporting interactive exploration.
As a network model, the map also supports quantitative network analysis, in
particular community detection as a form of second-level clustering to provide
explicit topics, which are useful in some cases. The topic map opens up to a
range of possible extensions to be explored.

As the map provides a projection of the semantic space of a corpus, another
interesting type of information is the relational, i.e., how different concepts are
referenced together in text. Mapping such relations onto the topic map may lead
to still more informative ways of summarizing the contents of texts. Document-
level co-occurrence of terms used in probabilistic topic modeling represents a
crude way of harnessing relational information to extract topic information, but
it is likely beneficial to treat distributional word context similarity and word-
to-word co-occurrence as separate aspects that both contribute toward sum-
marizing the discourse of a corpus. Thus, the approach of constructing a topic
map outlined in this paper should be seen as elementary to future extensions
that among other things include sophisticated analysis of relations in text and
powerful visual interactive interfaces to make the semantic space and its linked
information readily browsable. The semantic network is the basic data struc-
ture, which can be meaningfully presented in many other ways as well, e.g.,
using more structured network layouts or non-graphical representation, possibly
emphasizing search with a completely local focus rather than overview.
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Studying immediate neighborhoods of specific terms may in fact be a desir-
able mode of exploration, which can be supported in other ways than described
above. Rather than starting from the frequent term set, terms with the closest
vectors can be searched. By recursively traversing the nearest neighbors of a
term, a close-up view of its semantic context in the corpus is obtainable.

Vector similarity comparisons can also be performed with compound vec-
tors that average two or a few word vectors, for instance, as a way to disam-
biguate a term (e.g.: financial by financial+group, financial+results) or merge
closely related terms (e.g., customer+customers). The latter could be applied to
enhance the map by reducing term redundancy and thereby visual clutter, while
joining their term counts. Another way to generalize across terms would be to
smooth term counts to some extent among direct neighbors, in order to make
the representation of prevalence of regions more congruent.

In this paper, word vectors and term frequencies were obtained from the same
set of text, which may lead to problems of accuracy for the study of smaller sets
of text (e.g., in the order of 10–100 k rather than 1M words). It is possible to
separate these, letting the word vectors be trained on a larger background corpus
while counting terms on a smaller foreground set, as long as they are related in
nature. For instance, the background corpus may consist of text from a single
source over a certain period of time, while texts from smaller intervals during
that period would be used as foreground corpora to allow for more specific study
of varying term prevalence over time, still benefiting from a more robust semantic
model.

As efficient word vector training with neural networks has opened up many
new possibilities in natural language processing, I hope to introduce it for the
purpose of exploring topics in masses of text by proposing a methodology for
building and visualizing topic maps. Unsupervised word-level modeling of seman-
tics offers very flexible and detailed means for analysis that deserve further study.
The concluding discussion has outlined a few interesting future directions, and
ultimately the utility of topic maps and their visual representations should be
tested by how they support users’ understanding in a variety of real-world set-
tings.
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Abstract. Broad adoption of smartphones has increased the number of posts
generated while people are going about their daily lives. Many of these posts are
related to the location where that post is generated. Being able to infer a person’s
sentiment toward a given location would be a boon to market researchers. The
large percentage of system-generated content in these posts posed difficulties for
calculating sentiment and assigning that sentiment to the location associated
with the post. Consequently our proposed system implements a sequence of text
cleaning functions which was completed with a naive Bayes classifier to
determine if a post was more or less likely to be associated with an individual’s
present location. The system was tested on set of nearly 30,000 posts from
Foursquare that had been cross-posted to Twitter which resulted in reasonable
precision but with a large number of posts discarded.

1 Introduction

The short text format exemplified by Twitter and extended by Foursquare (microblogs)
presents a unique data processing problem. This short format has forced researchers to
adjust methods previously used for natural language processing on long-form text. The
posts are valuable as they contain opinions of individuals at specific times and specific
locations, which can shed light on more general sentiment relating to these locations.
Sentiments expressed on such social media platforms are known to correlate with
customer satisfaction indices like the American Consumer Satisfaction Index (ASCI)
developed at University of Michigan - which gives businesses reasons to mine senti-
ments [1]. This sentiment could be leveraged to increase service at a business, open
new business opportunities where consumers are unhappy, or encourage governments
to improve services and facilities.

Taking advantage of these features of social media entries, Banerjee et al. explored
the volume of check-ins according to business type, user gender, and check-in time to
infer food and entertainment preferences by gender and time of users in New York
City. This gave insights into meal rush times, and both day of the week and time
preferences based on business type [2]. This did not, however, explore the content of
those posts to infer additional information about the sentiment of the user posting the
content, but simply counted every user who made a comment. Other studies have
extracted social media data by searching for words, phrases, and metadata that directly
links the social media post with the location. e.g. Diakopoulos and Shamma search for
hashtags that directly reference the elections and the debates to find tweets relating to
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the 2008 presidential elections, which they then processed to find time and sentiment of
the tweet [3].

The dataset we have extracted is based purely on location of the user when the post
was made. Unfortunately, this does not necessarily mean the content is directly related
to the location. For example a student may be in a coffee shop complaining about the
research paper she is writing. The content of that post doesn’t directly correspond to the
coffee shop. As an additional complication, many services have default check-in text if
the user chooses not the enter anything. Other times the post simply may not be related
to the location [4].

This research will explore we will explore the unique issues posed by data mining
content posted on location-based social media services. Specifically we will explore the
association between entries made at a location and implied sentiment about that
location. Further, if not all sentiment is related to the location or positive about the
location, then we will seek to differentiate those entries and assign them to appropriate
categories.

2 Background in Social Media Content Analysis
and Related Work

Social media is a subject of active research, finding new ways to extract meaningful
information about the state of the world from unstructured data. Sentiment analysis in
particular has enjoyed a surge of interest since 2001 primarily with the rise of the
Internet and subsequent increases in user generated content, with 73 % of Internet-using
adults using some social networking site [5, 6]. For general-purpose sentiment analysis,
content is generally queried using keywords and topic indicators like hashtags. Items are
grouped by topic and then sentiment is analyzed and compared. This method has been
used to evaluate brand sentiment [7], and movie preferences [8]. It has also been
expanded to determine user television viewing profiles and then make recommendations
based on other people with similar profiles [9]. Bhayani, et al. developed a system for
Twitter sentiment analysis which yielded an accuracy ranging from 78.8–83.0 % [10].

Searching social media based on keyword searches yields data sets that are very
likely to be related to the keyword of a brand, for instance. Searching based on
location, however, implies only that the user was at a location when they created a
particular post. This requires a necessary caution in arbitrary application of traditional
sentiment analysis methods to data acquired using location criteria.

Users were found to share their location for three primary reasons: (1) To coor-
dinate and connect with friends during social events, (2) to “project an interesting
image of oneself” [11] or, in other words, to associate the location with themselves for
others to see, and (3) to participate in gamification elements in services like badges, or
to receive incentives, coupons, and rewards [11, 12].

In this research we will attempt to determine location and post content association.
We have found no instances where other researchers have attempted this. This is a
subtly difficult problem because entries may not all be directly related to the location
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from which they were made. For example, in a set of posts related to travel locations
(hotels, airports, subway stations), all of the following posts were present:

“Missed my train because my professor went over time. I hate Mondays (@ MBTA North
Station w/3 others) http://t.co/lWSdnkys”

“I’m at Raped by the MBTA Fare Hikes (Boston, MA) http://t.co/Zvv0ffOs”

“I’m at Onyx Hotel (Boston, MA) w/2 others http://t.co/262TuS7v”

The first post has a distinctly negative sentiment, but the sentiment is not related to
the Massachusetts Bay Transportation Authority, it’s related to the user’s general
feelings about the day. The second post is specifically targeted at the MBTA and
sentiment contained within that post is related to the MBTA. The third post is the
default text created by Foursquare in the instances when a user chooses to simply
check-in and not enter any user generated content.

A somewhat related problem to sentiment analysis is subjectivity analysis where a
message is analyzed to determine if it is an objective, or a subjective statement.
A sentence such as, “I’m out star gazing.” is an objective statement and contains little
or no sentiment but does contain information on my current activities whereas a similar
sentence like, “I met Tom Cruise and I’m star struck.” is more subjective and contains
an element that may indicate sentiment (star). The words in both sentences are similar
and information extraction and sentiment analysis system could be easily fooled if
evaluated by a simple lexicon based analysis.

A high precision, low-supervision subjectivity analysis algorithm was described by
Wiebe and Riloff called HP-Obj and HP-Subj, respectively. The algorithm takes a
pre-defined list of words associated with subjectivity to classify sentences. These
sentences are parsed for “syntactic patterns” that are likely to correspond to subjective
sentences. These classifiers are high precision but low recall. The HP-Subj classifier
has just over 90 % precision, but only 40 % recall [13].

Many researchers use features representing the presence of a specific word
(gram/unigram) or group of words (grams/bigrams/trigrams/etc.). Pang et al. found
simple unigrams to be very effective in classifying movie reviews, and noted that
selecting the top 2633 unigrams was nearly as effective as selecting all available
unigrams (16165) [14]. This is relevant in resource-constrained applications. Agarwal
et al. was able to get a 4 % gain in accuracy by adding 100 “Senti-features” which
contain items like percentage of capitalized text, number of URLs, number of negation
words, and number of positive adverbs [15]. This combines elements of lexicon based
sentiment analysis, machine learning, and language parsing to improve accuracy.

3 Proposed Approach

The overall approach of the proposed system is to import the data to be processed,
perform any preprocessing steps, tokenize the text into the constituent words, use the
optional naive Bayes classifier, and then assign sentiment for evaluation as shown in
Fig. 1. In Sect. 4 we will define a collection of processing scenarios that employ
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increasing collections of processing scenarios based on the processing steps defined in
the following subsections. We will run a series of experiments to determine which set
of these methods are most effective for location-based sentiment analysis.

3.1 Tokenization

In order to find words on sentiment lists, calculate sentiment, or do naive Bayes
analysis, we need a unit of text smaller than the entire post. Breaking up the post into
these smaller units is called tokenization. Tokens were selected to be the size of one
word, also known as a unigram. A simple regular expression was used to break the
larger posts into unigrams. For example, “Here! It’s a sample message.” would turn
into the following array: [“Here”, “it”, “s”, “a”, “sample”, “message”]. Spaces and
non-alphanumeric characters are removed, and the array can be iterated through to
evaluate each token. The sample post points out two concerns with using this method to
tokenize the string. First, it removes potentially interesting characters like exclamation
points that may give insight into sentiment. Second, it splits words with apostrophes
into two distinct tokens. To overcome this, apostrophes were removed from sentiment
and slang databases, and apostrophes are removed from posts before being tokenized.

3.2 Preprocessing

Social media entries in general, and Twitter entries in particular contain elements which
contain no explicit sentiment information. URLs and mentions of other Twitter user-
names don’t increase knowledge about the sentiment. Similarly, special characters used
for Twitter specific purposes like the hash symbol (#) also do not contribute additional
information themselves. Preprocessing cleans the text by removing ostensibly super-
fluous punctuation and extra whitespace, and generally make the posts easier to
evaluate. We applied three optional data scrubbing steps to clean the data prior to
evaluating sentiment: (i) Default Foursquare text removal, (ii) slang translation, and
(iii) stop word removal.

Additionally, apostrophes were removed from all posts, and from all lookup lists, to
accommodate poor punctuation in messages. Words like “won’t” and “wont” would be
treated the same. This has potential advantages and drawbacks that aren’t explored
in-depth here, namely it increases the hit rate of stop-word removal, but it can also
cause some confusion between words like “I’ll” and “ill”.

Foursquare check-in text contains text not explicitly entered by the user like the
location they’re posting from and the URL appended to the post. These can uninten-
tionally trigger other sentiment analysis rules. The colon and forward slash characters

Fig. 1. Overview of processing flow
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in a URL can be confused for an emoticon representing confusion or annoyance.
Words like “street”, “palace”, and “union” can all trip sentiment rules on the ANEW
database. Locations like “Union Station” or “The Palace” would receive artificially
inflated sentiment scores. Regular expressions are a well-established method for finding
patterns in text. Five regular expressions are used to find and eliminate default text
(Table 1).

Many posts in the data set contain acronyms and slang, which often contain or refer
to words that have an associated sentiment. Rather than attempt to modify the ANEW
database with slang manually, we found a slang translation database which would
translate the words for sentiment analysis. Slang words and acronyms are translated in
the remaining text using the NoSlang.com slang translation database, which contains
5261 slang word/phrase entries. Each word is compared to the slang database and
replaced with its corrected or expanded form if found. Translation only happens with
exact matches. Slang translation allows common acronyms (‘lol’ becomes laughing out
loud) and intentional misspellings (‘h8’ becomes hate) to be considered in both the
naive Bayes classifier and sentiment analysis.

Finally, stop words are removed using the stop word list provided with MySQL.
Stop word removal has been used in other text analyses and was included in here
simply to see if it had an effect. Stop word removal was implemented similarly to slang

Table 1. Regular expressions used to remove default text

Table 2. Data scrubbing examples
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translation and was a simple, exact string compare. If the word was found in the
database, it was removed. This removes words contained on a 571-item list of common
words. Examples of each data-scrubbing step are shown in Table 2.

3.3 Naive Bayes Classifier

The naive Bayes classifier was created to identify which posts were related to the location
at which the post was created. A phrase like, “The pizza is great here. (@ Famous Pizza)”
is likely related to the location. A post such as, “I had the worst day at work ever! (@ The
Bus Stop)” probably isn’t related to the location. Naive Bayes was selected, as its
accuracy in text sentiment classification was extremely similar to other machine learning
methods, including support vector machines and maximum entropy [10]. Meanwhile,
naive Bayes is much easier to implement to quickly test the proposed approach.

Feature selection was inspired by sentiment analysis classifiers. It includes uni-
grams, emoticon presence, and exclamation point presence. The classifier used here is a
Boolean naive Bayes classifier and tests simply for the a presence of a feature, and not
it’s relative frequency.

3.4 Sentiment Assignment

Sentiment is assigned using the Affective Norms for English Words (ANEW) database.
This database contains words and three values: valence, arousal, and dominance that
correspond to the particular sentiment of a given word. Valence is the pleasantness of a
word, arousal is how exciting a word is, and less strongly related is dominance, which
relates to control [16]. The total sentiment of a post is computed as the sum of the
sentiment of all the words in the post divided by the total number of words. This
accounts for the relative sentiment of an entry as a function of the number of words.
A short post with many sentiment-containing words would be rated with a higher
overall sentiment than a long post with relatively few sentiment-containing entries. In
this implementation, removing words skews the computed valence. The post, “I hate
this place” has one sentiment containing word - hate - and four words total so the
sentiment included in hate would be divided by four words. If we apply stop word
removal the post might become “hate place” and the sentiment included in hate would
only be divided by two words.

4 Experimental Evaluation

4.1 Methodology

The data set used was a collection of 28,344 Foursquare check-ins that were cross posted
to Twitter originating in 6 major cities: New York, Boston, Chicago, Washington D.C.,
Seattle, and San Francisco. Both the sentiment analysis method and the naive Bayes
classifier are deterministic and yield the same results every time, so only one run of each
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method was required. The goal is to determine the effectiveness of the naïve Bayes
geo-relevance classifier while also evaluating the effects of the required cleaning
functions on the data set to be processed by the classifier.

The data set was run through each of the following processing scenarios:

• Baseline - No Data Scrubbing (Base)
• Removing Default Foursquare Text (4S)
• Translating Slang (ST)
• Removing Default Foursquare Text, and Translating Slang (4S, and ST)
• Removing Default Foursquare Text, Translating Slang, and Removing Stop Words

(4S, ST, and SW)
• Removing Default Foursquare Text, Translating Slang, and using a naive Bayes

Classifier (4S, ST, and NB)
• Removing Default Foursquare Text, Translating Slang, Removing Stop Words, and

using a naive Bayes Classifier (4S, ST, SW, and NB).

A post was only included in the result if it contained a valence greater than zero.
This eliminated any posts with no associated sentiment. Likewise, an individual
location was only included if it contained a minimum number of posts that had a
non-zero sentiment. Each model was run ten times with the minimum required posts
from 1 to 10. This was to determine the minimum number of required posts at which
the sentiment variations of a single-post would no longer cause fluctuations in overall
mean sentiment. The goal was to determine the floor at which locations with low post
count are no longer misrepresented by outliers.

In the models using the naive Bayes classifier, the classifier was trained on a data
set of 3,000 Foursquare posts which were cross posted to Twitter. The training set was
hand-coded by the author as either “related” or “unrelated” where the post appeared to
be related to the location at which the post was generated, or unrelated. The classifier
was then used to determine which posts in the larger data set were related. Any
unrelated sentiments were ignored.

4.2 Results

The original data set had a total of 2967 unique locations. As seen in Table 3, adding
the constraint that a location has at least one post that contains a sentiment reduced the
number of represented locations to 2083. As the number of sentiment posts per location
is increased Table 3 shows the resultant reduction in locations that can be processed.
Likewise, the number of posts in the dataset also is reduced as the number of required
valid sentiment posts per location is increased as also seen in Table 3 where the original
set of 28,344 posts is reduced to just 15,063 with one post required, and reduces down
to roughly 11,000 available posts to process when ten sentiment posts are required.

With the exception of the model containing the naive Bayes classifier, as the
minimum number of sentiment containing posts increases, the number of total posts
represented generally decreases by between 3 % and 8 %, while the number of rep-
resented locations generally decreases between 10 % and 20 %. Without this step, more
than half the data would be inappropriately used.
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One issue with location-based sentiment analysis is that there may be only a few
posts with exceptionally high or low sentiment which can skew the sentiment calcu-
lation. As more posts are required, any given sentiment containing post is less likely to
strongly skew the sentiment. Thus we expect the standard deviation of the mean
sentiment scores for all locations in a given run to approach a stable value once a
sufficient number of posts are required to infer a mean sentiment of a location. We infer
that when the standard deviation stops changing significantly, the models are stable,
and inferences can be made about the general minimum required post count at a
location.

Sentiment itself isn’t used to compare one processing scenario to another scenario
and total computed valence may appear higher or lower in a given scenario. For
example, a scenario that includes stop word removal will have a higher average valence
as the same number of sentiment containing words will generally be divided by fewer
words. This is acceptable as the sentiment is plotted to determine when the standard
deviation approaches an asymptote, at which point it stops changing significantly.

The two other processing scenarios, slang translation, and stop word removal
impact the overall data set less, and are supplementary. Stop word removal does very
little except in the case of the naive Bayes classifier. This is expected, as these words
are so common that they carry little interesting information, including sentiment. Slang
translation does increase the number of represented locations and posts, and also
increases the mean sentiment. This, too, is intuitive. Slang translation expands acro-
nyms and short-hand allowing words contained within to be counted in sentiment
analysis where they wouldn’t have been previously. Shorthand like “h8” (hate) or “lol”
(laughing out loud) aren’t included in the ANEW database, but have strong sentiment
values.

Shown in Table 4, the naive Bayes classifier had relatively high precision but the
lower recall eliminated a large number of posts. As a result, so many posts are removed
that a similarly high number of locations are eliminated and aren’t considered for
sentiment analysis. The small size of our data set was sensitive to the removal of posts

Table 3. Number of unique posts and locations remaining in dataset versus increasing number
of valid sentiment posts per location after each processing stage.
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and left too few locations for evaluation. However, the classifier does show promise.
For a first effort, our recall (29–38 %) compares favorably to HP-Subj with Patterns
(40 %), and our precision was acceptable (68–72 %) compared to HP-Subj with Pat-
terns (90 %) [15]. interestingly, stop word removal did increase the recall of the naive
Bayes classifier while not drastically reducing precision. This resulted in an increase in
number of locations represented in the final data as shown in the final column of
Table 3.

Reviewing individual naive Bayes results revealed some interesting trends. With
short posts, individual features can have a very strong influence. Several short posts
(“Yaaaay!”, “Waiting :/”) were strongly influenced by a small number of features like
exclamation point presence or emoticon presence. One-word posts in particular will be
judged by a single feature in this model, the relative frequency of that word in one class
or another. Other posts were long and clear and still misclassified (“Settling into my
home for the week. How I love #jetsetting!”, “Riding a trolley to work lol how fun”).
These may present opportunities for improvements with larger training sets.

Table 4. F1 score for naive Bayes classifier

Fig. 2. Standard deviation of computed valence after each scrubbing step is applied and as
minimum post count is incremented.
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5 Conclusions and Future Work

The results indicate that simple application of off-the-shelf sentiment tools and methods
to Foursquare data can lead to inaccurate results. The Foursquare data had significant
amounts of additional data that confused traditional sentiment analysis methods.
Inferring sentiment about a given location without at least a minimum number posts to
represent said location leads to a large standard deviation of mean sentiments which
means that a location’s sentiment fluctuates significantly with the change of a single
post. Additionally, a simple review of the data itself shows that many posts are
system-generated text. Simply removing the text automatically added by the Four-
square service removed over 60 % of the posts even with a one post minimum per
location (Table 3). These posts contained no user-generated content, but would con-
tribute to a location’s sentiment, if not accounted for. Accurate results rely on a deep
understanding of the data, and require preprocessing prior to applying tools like
ANEW. Our results indicate a minimum of seven representative posts before aggre-
gating sentiment to make assumptions about a location (Fig. 2). After removing default
data, and observing this floor, the number of represented locations is less than 10 % of
those in the original data (Table 3). Application of up-front data review and scrubbing
yields results more strongly related to the true aggregate sentiment of a location, instead
of a skewed sentiment based on few comments. It also ensures that posts that are
completely unrelated to a given establishment are appropriately removed prior to
analysis.

The high precision found in this case is compelling (Table 4), and the recall is high
enough to warrant attempts to improve the classifier.

In all cases, we demonstrated that a deeper understanding of the structure and
content of the data is necessary to extract accurate information and draw correct
conclusions. The preprocessing steps outlined here significantly increase the correct-
ness and applicability of the results, even if they reduce the number of entries from the
original data set. Those entries were red herrings anyway.
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Abstract. Data representation in a lower dimension is needed in
applications, where information comes from multiple high dimensional
sources. A final compact model has to be interpreted by human experts,
and interpretation of a classifier whose weights are discrete is much more
straightforward. In this contribution, we propose a novel approach, called
Deep Kernel Dimensionality Reduction which is designed for learning
layers of new compact data representations simultaneously. We show by
experiments on standard and on real large-scale biomedical data sets
that the proposed method embeds data in a new compact meaningful
representation, and leads to a lower classification error compared to the
state-of-the-art methods. We also consider some state-of-the art deep
learners and their corresponding discrete classifiers. We illustrate by our
experiments that although purely discrete models do not always per-
form better than real-valued classifiers, the trade-off between the model
accuracy and the interpretability is quite reasonable.

Keywords: Dimensionality reduction · Heterogeneous data integra-
tion · Bioinformatics

1 Introduction

Data integration is a challenging task with an ambitious goal to increase per-
formance of supervised learning by introducing into a model data residing in
different sources, since data of different nature tend to contain different parts of
information about a problem. Multi-modal learning, heterogeneous data fusion,
or data integration, involves relating information of different nature. In biolog-
ical and medical applications, data coming from one source are already high-
dimensional. Hence, data integration increases the dimensionality of a problem
even more, and some feature selection or dimensionality reduction procedure
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is absolutely needed both to make the computations tractable and to obtain a
model which is compact.

Medical and biological knowledge can be naturally organised into hierarchies
or deep structures: symptoms of diseases are observed and pathological states on
all levels of “omics” (e.g., lipidomics, metagemomics) data are hidden. Therefore,
there is a hope that hierarchical structures, which also involve data integration,
reveal dependencies in data, including dependencies between data of different
nature.

A hierarchical model that combines pieces of data issued from various sources,
has to be interpreted by experts, e.g., by clinicians or biologists. It is not always
obvious how to interpret a model whose parameters are continuous. However, it
is much easier to interpret a classifier whose weights are discrete {−1, 0, 1} [2].
It is, e.g., a situation where biologists would like to estimate gene richness (gene
abundance), and stratify patients according to the number of genes in two –
ill or healthy – groups. Another example would be the case of data integra-
tion in a classification task where we would like to measure the impact of each
heterogeneous data source.

Our contribution is multi-fold:

– We introduce a novel kernel-based deep dimensionality reduction method
which constructs layers of a deep structure simultaneously.

– We illustrate that the proposed framework is efficient on standard data sets
and on a real original rich heterogeneous MicrObese data set [3].

– We consider corresponding discrete deep learners. Since the problem of dis-
crete classification is NP-hard, we apply a simple randomised rounding to
discretize the fractional solution.

The paper is organized as follows. We introduce our approach in Sect. 2. We
show the results of our experiments in Sects. 3 and 4. Concluding remarks and
perspectives close the paper.

2 Deep Continuous and Discrete Dimensionality
Reduction

In this section, we consider a state-of-the-art deep learner, the deep restricted
Boltzmann machines (stacked RBM) [7,9] and its discrete version. We also intro-
duce a deep data integration framework which performs dimensionality reduction
by constructing a multi-level hierarchy of new, more compact, data representa-
tions. We discuss a corresponding discrete classifier, i.e. classifier whose parame-
ters are discrete {−1, 0, 1}.

To learn a hierarchical model, a training algorithm has access to n i.i.d.
labeled pairs (Xi, Yi)1≤i≤n. The input variable or covariate is X ∈ X , and the
class variable is Y ∈ Y. The covariate variables are high-dimensional, and Xi =
(Xi,1, . . . , Xi,d), where d is the dimensionality of the problem. We are interested,
in particular, to perform a dimensionality reduction so that the dimensionality
of our problem becomes r � d, and so that we can carry out a classification task
on a much more compact, and probably less noisy, feature space.
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2.1 Randomized Rounding

To get discrete classifiers, we use randomized rounding in our experiments. Ran-
domized rounding is a natural idea for rounding fractional solutions [11]. The
algorithm starts from a real-valued solution, and for each parameter j of a model
it draws a discrete solution from {−1, 0, 1} according to p(θj), where θj is a value
of parameter j after some bound constrained optimization.

2.2 Deep Restricted Boltzmann Machines

The restricted Boltzmann machines (RBM) [7,9] is undirected graphical model
with observed (v) and hidden (h) variables, and it defines a probability distrib-
ution over v and h:

log P (v,h) ∝ −E(v,h) =

− 1
2σ2

vTv +
1
σ2

(cTv + bTh + hTWv), (1)

and the conditional probability of hidden layers is given by

p(hj |v) = sigmoid
( 1

σ2
(bj + wT

j v)
)
. (2)

The graph has connections between v and h but no edges within hidden variables
or within observed variables.

We use greedy layer-wise training followed by fine-tuning. In our experiments,
we train a multimodal model, i.e., we train a deep RBM over concatenated het-
erogeneous data. To perform the fine-tuning, we use a standard resilient back-
propagation (rprop).

2.3 Supervised Deep Kernel Dimensionality Reduction

Here we introduce our approach which is based on a kernel dimensionality reduc-
tion technique, and which constructs the layers of the deep framework simulta-
neously.

The semiparametric method known as Kernel Dimensionality Reduction
(KDR) [4,5], is based on the estimation and optimization of a particular class
of operators on reproducing kernel Hilbert spaces (RKHS). The idea is to relate
dimensionality reduction to the problem of conditional independence, and to
construct an objective function for optimization.

The KDR method assumes that it is possible to find a projection of initial
covariate variables into a lower dimension space. The approach is based on an
assumption that there is a r-dimensional subspace (r � d) which is referred
to as the effective subspace. The dimensionality reduction can be viewed as a
procedure testing conditional independence of variables such that

p(y|x) = p̂(y|θTx). (3)



Continuous and Discrete Deep Classifiers for Data Integration 267

The covariance operator on RKHS is responsible for capturing conditional inde-
pendence between variables. The new representation in a more compact feature
space is a linear combination of observations.

The KDR method aims to minimize the following objective function

det Σ̂Y Y |U =
det Σ̂[Y U ][Y U ]

det Σ̂Y Y det Σ̂UU

, (4)

where

U = θTX, (5)

and

Σ̂[Y U ][Y U ] =
(

Σ̂Y Y Σ̂Y U

Σ̂UY Σ̂UU

)

= (6)

(
(K̂Y + εIn)2 K̂Y K̂U

K̂UK̂Y (K̂U + εIn)2

)

. (7)

K̂Y and K̂U are the centralized Gram matrices defined as follows:
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(
In − 1

n
1n1Tn

)
GY

(
In − 1
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)
, (8)

(GY )ij = k(Yi, Yj), (9)

K̂U =
(
In − 1

n
1n1Tn

)
GU

(
In − 1

n
1n1Tn

)
, (10)

(GU )ij = k(Ui, Uj). (11)

The Gaussian kernel

k(a, b) = exp
(−‖a − b‖2

σ2

)
(12)

is used throughout the paper and in our experiments.
To optimize the criterion, a gradient descent with line search can be used.

The matrix of parameters is updated on iteration t according to

θt+1 = θt − γ
∂ log det Σ̂Y Y |U

∂θ
= (13)

θt − γ2εTr[Σ̂−1
Y Y |UK̂Y (K̂U + εIn)−1 ∂K̂U

∂θ
(K̂U + εIn)−2K̂UK̂Y ], (14)

where

Σ̂Y Y |U = (K̂Y + εIn)2 − K̂Y K̂U (K̂U + εIn)−2K̂UK̂Y . (15)

Therefore, the KDR approach produces a new reduced representation of the data
X which is θTX.



268 N. Sokolovska et al.

It was reported that the KDR is an efficient state-of-the art method of dimen-
sionality reduction on real data [4,5]. In general, if we want to combine the
advantages of the KDR with a hierarchical “smoothing” structure, we could
construct a cascade of KDRs, where an output of one run of the KDR would be
an input for another run. However, in this situation we would obtain a solution
which is approximated, and not exact.

The proposed deep dimensionality reduction technique is as follows. Each
layer of the hierarchical structure is a new data representation X

′′
= θTi X ′ of

the layer underneath X ′, and where X ′, in its turn, is a reduced representation of
some lower layer. An iterative process such as a convex optimization algorithm
which updates parameters of a model, makes an update for parameters of all
levels of the hierarchy on each iteration, i.e. simultaneously.

We introduce a deep semiparametric model with D layers

p(y|x) = p̂
(
y|θTD(θTD−1 . . . (θT1 (θT0 x

︸︷︷︸
x′

)

︸ ︷︷ ︸
x′′

︸ ︷︷ ︸
...

))
)
, (16)

where x′, x
′′
, . . . , are new representations in the deep structure that are learned

simultaneously in one optimization procedure.
We clearly see that θj+1 depends on θj for all j ∈ {1, . . . D}, and optimization

can not be done separately for each layer. By the implicit function theorem,
applying the chain rule, for each θj , except for θ0, we have

∂�(θ)
∂θj

=
∂�(θ)
∂θj′

(∂�2(θ)
∂θ2j′

)−1 ∂�2(θ)
∂θj∂θj′

, (17)

where � = det Σ̂Y Y |U .
To optimize parameters associated with a layer, and to compute the first

derivative with respect to parameters of this layer, we also need the second
derivative of the layer underneath. Using Eq. (17) we update simultaneously
all θ in one iteration of a gradient descent, and new compact representations
associated with different levels of generalization are estimated simultaneously
according to

θt+1
j = θtj − γ

∂�(θ)
∂θj

. (18)

2.4 KDR Versus DKDR: Discussion

A natural question which arises is why the deep KDR is better than the KDR.
Although it is currently impossible to provide a theoretical foundation for it,
there is an intuition why the deep method is expected to perform and performs
better in practice. Note that real data are always noisy, and a “good” clustering
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or dimensionality reduction can significantly reduce the noise. The principal
idea is that if features are tied into clusters of “high quality”, then it is easier to
detect a signal from data, and therefore the generalizing classification accuracy
is higher. The hierarchical dimensionality reduction plays here a role of a filter,
and a filter with multiple layers seems to perform better than a one-layer filter.

Also note that the DKDR criterion is convex, and we can apply any gradient-
based method to optimize the model parameters.
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Fig. 1. Experiments on Golub Data Set (on the left) and Alon Data (on the right).
Error rate as a function of dimensionality reduction method and dimension in reduced
models.

3 Experiments on Standard Data Sets

In this section we show our results on two standard biological data sets, the
Golub et al. (1999) data and Alon et al. (1999) set.

We compare the performance of the Deep Kernel Dimensionality Reduc-
tion method to some standard unsupervised dimensionality reduction approaches
such as: (1) Principal Component Analysis (PCA), (2) Kernel Principal Com-
ponent Analysis (KPCA), (3) Isomap (ISO), (4) Laplacian Eigenmaps (LAPL),
(5) robust clustering methods, such as the Partitioning Around Medoids (PAM)
which is a robust version of the k-means, where medoids are representatives of
clusters, (6) PAM clustering, where the representatives of clusters are median
values of instances in clusters (M.PAM). We also compare our results to the
following supervised approaches: (1) the full model, i.e. the model with the orig-
inal high-dimensional feature space, (2) the supervised dimensionality reduction
learning procedure KDR. We apply an SVM with an RBF kernel to learn reduced
models. The cross validation method (5-folds cross validation) is used to adjust
hyper-parameters of all approaches being tested.

In Golub [6] data we dispose of 72 patients and about 7000 gene expressions
(Affymetrix probes). Among these patients, 47 subjects have acute lymphoblastic
leukemia, and 25 are diagnosed with acute myeloid leukemia, therefore, we have
a classification problem with 2 classes. Figure 1 on the left illustrates the results
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in terms of 5-folds cross validation error rate. We consider reduced models with
70, 50, 35, and 15 parameters. The choice of the reduced dimensions is due to
the number of observations: for several dimensionality reduction methods (PCA,
KPCA, Isomap) the reduced dimension of parameters has not to be bigger than
one of observations. So, in the DKDR case this leads to a hierarchy with 4 layers
(with the numbers of features equal to 70, 50, 35, 15). We see quite clearly
that the proposed DKDR approach outperforms all other methods, and the best
accuracy is reached by models with the least number of parameters, i.e., 15 and
35 features.

The Alon data set [1] contains 62 patients and 2000 gene expressions
(Affymerix origonucleaotide array) of colon tissues. The patients are coming
from two classes: 40 patients are diagnosed with a tumor, and 22 patients have
normal colon tissues. The results on the dimensionality reduction experiments
are shown on Fig. 1 on the right (5-folds cross validation). Taking into consider-
ation that the number of patients is 62, we reduce the dimensionality to 60, 40,
and 20 parameters. The results are similar to ones we obtained on the Golub
data. Here, however, the KDR slightly outperforms the DKDR. As in the Golub
data, the most efficient models are the most compact ones among tested models.
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Fig. 2. Accuracy on Golub and Alon data sets: experiments with continuous (standard)
deep restricted Boltzmann machines and discrete deep restricted Boltzmann machines.

Figure 2 provides some insights into performance of discrete classifiers. We
show accuracy on training and test sets for Golub and Alon data as a function
of learning method with the deep restricted Boltzmann machines. “TrainO” and
“TestO” stand for performance with the original method; “B” stands for the
optimisation with bound constraints as described in Sect. 2.2, and “D” is the
performance of the discrete classifier (obtained with the randomized rounding).
In these experiments we used a deep RBM with three hidden layers (100, 10, and
1 hidden variables respectively). We observe that the resilient backpropagation
with bound constraints achieves a very reasonable performance. Note, however,
that the deep RBM has a strong tendency to overfit [10], and the gap between
accuracy on training and testing data is quite significant.



Continuous and Discrete Deep Classifiers for Data Integration 271

4 Experiments on Real Biomedical MicrObese Data

In this section, we show that the framework introduced above in Sect. 2, can
be efficiently applied to a real high-dimensional heterogeneous data integration
problem.

We describe our results on the MicrObese data [3], and we compare the
performance of the deep kernel dimensionality reduction to some state-of-the-
art dimensionality reduction methods.

The MicroObese cohort [3] combines heterogeneous data, including clinical
data of patients, abundance of gut flora genes, and gene expressions of adipose
tissue. In our experiments, we consider models which integrate these heteroge-
neous sources pairwise and altogether. Our primary goal is to illustrate that
the DKDR is an efficient dimensionality reduction method. Another question is
what data source or a combination of data sources is more informative for the
patients classification.

The problem is a perfect illustration of n << p problem, i.e., where the
number of observations is much smaller than the number of parameters. The
number of patients in the cohort is 35. We dispose of 20 clinical and alimentary
parameters, 24,000 genes of gut flora, and 350 genes of adipose tissue.

4.1 Deep Dimensionality Reduction on MicrObese Data

We compare the results of the DKDR on the MicrObese data set to the state-
of-the-art dimensionality reduction methods mentioned above, in Sect. 3. Note
that “ALL” method stands for the result with all original features. To train
models with and without reduced dimensionality, we use an SVM with an RBF
kernel [8], since a non-linear separator reaches a higher accuracy on our data than
a linear classifier. We show the results in terms of the 5-folds cross validation
error rate. As mentioned before, we have three types of data, and we test various
combinations of them to find the best one. We run our experiments on the
following combinations:

– Gut Flora metagenomics (GF abbreviation on Fig. 3)
– gene expressions of Adipose Tissue (AT)
– Clinical parameters, Gut Flora abundance, and gene expressions of Adipose

Tissue (C/GF/AT)
– Clinical parameters and Gut Flora metagenomics (C/GF)
– Clinical parameters and gene expressions of Adipose Tissue (C/AT)
– Gut Flora metagenomics and gene expressions of Adipose Tissue (GF/AT)

We construct the deep framework DKDR as follows. Although the choice of
the number of layers in the hierarchy is a delicate matter, here, without loss
of generality, we fix dimensionality of each level to be 2 times smaller than the
dimensionality of its lower level. The number of genes of gut flora is about 24,000,
and all models including this data source contain more than 24,000 parameters.
So, for all models with gut flora, we construct a hierarchy with 6 levels. The
models without the gut flora have 3 levels only.
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Fig. 3. MicrObese Cohort. On the left: error rate as a function of dimensionality reduc-
tion method and data integrated into the model. On the right: error rate as a function
of data integrated and level in the hierarchy.

Fig. 4. A hierarchy of clinical parameters of MicrObese data constructed by a discrete
approach.

Figure 3 on the left shows the error rate as a function of a dimensionality
reduction method for data involved into the classification task. We have observed
that data integration has a positive effect: integrating all data sources leads to
a lower error on a testing set (5-folds cross validation error rate). It is also easy
to see that the proposed DKDR approach reaches a higher accuracy than other
methods.

We notice that the most compact models achieve quite a high accuracy. It also
happens for some data sources that performance of several levels is similar, and
that further dimensionality reduction does not ameliorate the accuracy anymore.

Figure 4 illustrates a hierarchy of clinical parameters and alimentary patterns
of MicrObese data set, and Table 1 provides a brief description of the parameters.
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Table 1. Description of clinical parameters of MicrObese data.

WI ap Walking index based on physical activity
ecoli log (norm) bact Escherichia coli in log scale and normalized

Chol loretselohclatoTatem
TC HDL, NHDL Ratio of cholesterol, non-HDL cholesterol

TG sedirecylgirTatem
Tartes salees Pizzas Savory pies and pizza

Disse meta, Mccauley meta Insuline sensitivity
Sugar ekatniraguSmila

produits aquatiques poissons Fish and fish products
dietary pattern, Fiber alim Diatary quality clusters

fruits et legumes, fruits, fruits crus Fruit and vegetables intake

In the deep structure on Fig. 4, each level is a generalization of its lower level.
E.g., if we look at the leftmost branch of the tree, we will see that for a reason-
able patients classification it is sufficient to measure walking index and particular
bacteria (the yellow node), and spending efforts on measuring total cholesterol,
ratio of total cholesterol to HDL cholesterol, non-HDL cholesterol, and triglyc-
erides does not bring any additional information. Note that the predictive power
of the upper level (the yellow one, with a quite small number of parameters) is
not worse than of the lowest level of the tree.

5 Conclusion

Data integration is a delicate problem, especially in applications where data are
high-dimensional and the number of observations is small. We have proposed to
reduce dimensionality by a deep kernel-based approach which learns new repre-
sentations of data simultaneously in a hierarchical way, and which do not waste
any effort on modeling data distributions, as most state-of-the-art methods do.
We have considered continuous and discrete deep classifiers, and although the
discrete classifiers do not always reach the best performance, the corresponding
models are easily interpretable. We show that the novel deep kernel dimension-
ality reduction is efficient on standard data sets and on a real medical complex
cohort. The proposed deep SVM-based classifier significantly outperforms mod-
ern state-of-the-art approaches. Moreover, the multi-level hierarchy, especially
one based on a discrete classifier, can provide new scientific hypotheses for biol-
ogists doing pre-clinical research, and help to develop methods of personalized
medicine.
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Abstract. We present a novel approach to the problem of detecting
multivariate statistical differences across groups of data. The need to
compare data in a multivariate manner arises naturally in observational
studies, randomized trials, comparative effectiveness research, abnormal-
ity and anomaly detection scenarios, and other application areas. In such
comparisons, it is of interest to identify statistical differences across the
groups being compared. The approach we present in this paper addresses
this issue by constructing statistical models that describe the groups
being compared and using a decomposable Bayesian Dirichlet score of the
models to identify variables that behave statistically differently between
the groups. In our evaluation, the new method performed significantly
better than logistic lasso regression in indentifying differences in a variety
of datasets under a variety of conditions.

1 Introduction

There are many circumstances in which data collected from different sources are
similar in some respects, but nonetheless differ in ways that are interesting to
report. Such circumstances arise naturally in observational studies, where, for
example, a clinical researcher may observe a difference in the prevalence of a
condition between two groups of patients and would like to explore the reasons
behind the difference; in randomized trials, where we might be interested not
only in the effectiveness of a treatment but also whether its effects are particular
to subgroups of the subjects and if so, what the relevant contextual relationships
are; in comparative effectiveness research, where an observed difference between
two clinical treatment approaches is to be explained; and other application areas.
Identifying patterns of differences is also useful in abnormality and anomaly
detection scenarios, where data on a potentially anomalous population of samples
are compared to a “normal” baseline population.

We approach the problem of identifying interesting patterns of differences
from a statistical standpoint, where given a pair of data groups over a vector
of discrete random variables we would like to identify variables that exhibit
statistical differences. A variable might have a different marginal distribution in
the two groups and/or a different conditional distribution when conditioning on
c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 275–285, 2015.
DOI: 10.1007/978-3-319-24465-5 24
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the values of some of the other variables. We present and evaluate a method for
identifying differences in both of those categories.

The method accomplishes this task by building models for each of the groups
and for both groups, scoring local differences in distribution by comparing how
well these alternative parameterizations fit the data locally, and using these local
scores to obtain a score of how different the two groups are as a whole. In this
paper, the performance of our method for identifying differences between groups
at the variable-level is evaluated using data based on four UCI Machine Learning
Repository data sets [1].

2 Background

We review some general background literature about distribution comparison
followed by background relevant to Bayesian networks, which is the model that
our method uses, with a particular focus on learning models from data and the
Bayesian Dirichlet score which we use.

2.1 Comparing Distributions

There are various statistical methods that are applicable to the problem of
identifying differences across a pair of groups. The statistical approach that
most closely relates is that of contrast set mining. Bay and Pazzani [2] present
contrast-set mining as the discovery of joint variable-value assignments that
have different levels of support in different groups. The approach taken parallels
association-rule mining in that the space of possible joint variable-value assign-
ments is searched to maximize a score (in association-rule mining, this score is
the lift of a rule, while in contrast-set mining a chi-square test is used). The main
challenge in contrast-set mining is the search of the exponentially large space of
possible sets (joint variable-value assignments), and much of the literature is ded-
icated to discussing heuristics and pruning rules to make the search feasible. The
output of contrast-set mining is the list of joint variable-value assignments (the
sets) which have differing support across groups, ranked by the extent of that
difference and tested for significance. Novak et al. [11] summarize further litera-
ture on contrast-set mining and its relation to association-rule mining, emerging
pattern mining, and subgroup mining. While these approaches address a similar
task to that of our method, these are all value-based approaches. Their task is
to identify specific value ranges in which the differences between the groups are
most pronounced. In contrast, our approach is variable-based, meaning that we
identify variables the distributions of which are different across the groups.

The variable-based nature of our approach bears some similarity to tradi-
tional statistical methods. There are multiple traditional statistical tests that
are designed to compare distributions. For categorical variables, the Chi-Square
test is applicable, it tests whether two groups are independent. This can be used
to determine if a variable has different distributions across two groups by test-
ing whether it is dependent on the group variable. For continuous variables, the
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Kolmogorov-Smirnov test is often used to determine equality of distributions.
Note that these tests are univariate, and cannot therefore be used to compare
two multivariate groups of data directly. There are other measures of distribution
differences that are multivariate in nature, such as Hotelling’s T-squared test,
mutual information, or Kullback-Leibler divergence. These measures are mul-
tivariate, but they do not allow for examining the contributions of differences
in individual variables to the overall measure of difference across the groups.
The approach we present bridges this gap by providing both a measure of over-
all difference, as well as a breakdown into contributions in the differences of
distributions of individual variables.

2.2 Bayesian Networks

As mentioned above, the approach we present relies on building statistical models
for the data groups to be compared. In particular, the model we construct is a
Bayesian Network (BN). A BN over the variables X = (X1, . . . , Xn), where each
variable Xi is discrete and takes Ki values, consists of a directed acyclic graph
(DAG) where each node represents a variable Xi and each node is associated
with a conditional probability table (CPT) defined by a set of parameters

θijk = P (Xi = xik|Πi = πij) (1)

where xik represents the k-th value Xi takes and πij represents the j-th config-
uration of Xi’s set of parents Πi [8].

In order to obtain a BN from data, the DAG structure is needed. In some
cases the structure or elements of the structure for a given domain may be
known, but often the structure must be learned from data. Daly et al. [5] pro-
vide an extensive review of BN structure learning and divide existing methods
into constraint-based methods, where conditional independencies (CI) in the
data are used to constrain the structure; and score search, where the space of
BN structures is searched for a structure that has the best score according to
some scoring criterion. Constraint-based methods use CIs obtained from statis-
tical tests on the data to eliminate possible arcs in the network structure, such
as the the PC algorithm by Spirtes and Glymour [13], for example. Score-based
techniques seek to optimize some score function of the graph based on the data.
The space over which many methods in this category search is that of possi-
ble DAGs, which is combinatorial in the number of variables, and the task of
optimizing the score is NP-hard in general [3]. Algorithms that feasibly search
the entire space of DAGs in the case of up to approximately 30 variables include
dynamic programming approaches [10,12] and an application of A∗ search to the
space of DAGs [14]. For data with more variables, many search methods apply
various heuristics and do not perform an exhaustive search of the space; most
commonly these methods employ some sort of greedy search strategy [5].

In our implementation we used greedy-thick-thinning, an algorithm described
but not named in [8], which maximizes the K2 score [4] in a greedy fashion by
starting with an empty graph, adding arcs that most increase the score until no
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more arc additions can increase the score, and then performs arc removals that
increase the score most until no more removals increase the score. Any score
search strategy can be used with our method.

2.3 Bayesian Dirichlet Scores for Bayesian Networks

In this work we use Bayesian Dirichlet (BD) scoring in order to leverage both
the mathematical properties of the score and its statistical interpretation. The
BD score is motivated by the search for a maximum a posteriori (MAP) model,
a graph structure M that is most probable given the data D and prior belief.
Directly computing a posterior P (M|D) for the structure is an intractable task;
however, we can show that it is proportional to an easily computable quantity.
From Bayes’ rule we have that P (M|D) ∝ P (M)P (D|M), where P (M) is a
prior for the graph structure. Often the graph structure prior is assumed to
be uniform, an assumption that we make in this paper, but one that can be
easily relaxed, and the goal becomes to maximize P (D|M), which is a marginal
likelihood. Under the assumptions of global and local parameter independence,
and parameter modularity [9], the marginal likelihood for the full model P (D|M)
is the product of local marginal likelihoods:

P (D|M) = EΘ|M
n∏

i=1

Ji∏

j=1

P (D|Θij ,M) =
n∏

i=1

Ji∏

j=1

EΘij |MP (D|Θij ,M). (2)

Here we treat BN parameters as random variables with a prior distribution
rather than as point values; that is, the particular value for a network parameter
θijk is just a point in the continuum of possible values that a random variable
Θijk takes. In the context of a BD score such as K2 [4] or the BDeu score [9],
the prior distribution of Θij = (Θij1, . . . , ΘijKi

) is Dirichlet with parameters
αij = (αij1, . . . , αijKi

). For a given structure, the distribution of a variable
Xi given a parent configuration πij is Dirichlet-multinomial, with a closed-form
marginal likelihood

EΘij |MP (D|Θij ,M) =
Γ (αij·)

Γ (αij· + Nij·)

Ki∏

k=1

Γ (αijk + Nijk)
Γ (αijk)

(3)

where Ji is the number of configurations of the parent set Πi, αij· :=
∑Ki

k=1 αijk,
Nijk is the number of samples in the data for which Xi = xik and Πi = πij ,
and Nij· :=

∑Ki

k=1 Nijk. Different choices of the Dirichlet parameter priors lead
to different BD scores: for example, the K2 score is obtained from using uniform
priors (all αijk = 1), and the BDeu score is obtained from using priors with
αijk = α∗

JiKi
where α∗ is the Equivalent Sample Size (ESS) hyperparameter.

Having outlined the differences of the proposed method with common
approaches to the statistical comparison of data and reviewed the relevant back-
ground regarding about BNs and the BD score, we next describe our method.
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3 Method

Consider two groups of data D1 and D2 over the same set of variables X =
(X1, . . . , Xn), and denote the concatenation of D1 and D2 by D∪. If D1 and
D2 are not different in a statistical sense, they follow the same distribution,
which is therefore the distribution of D∪. Let M1, M2, M∪ denote maximum
a posteriori (MAP) models within some space of models for the data in D1,
D2, and D∪ respectively. In the case where D1 and D2 are the same, we expect
that P (D1|M1) × P (D2|M2) ≤ P (D∪|M∪) in the large sample limit, since
modeling the two groups as governed by independent distributions does not
yield a better fitting model than when the groups are modeled as coming from
the same distribution. In the case where D1 and D2 are statistically different,
we expect P (D1|M1) × P (D2|M2) > P (D∪|M∪) in the large sample limit.

Let us extend this idea from the model level to the parameters of the models,
an extension that can be applied when the models have the following properties:
the distribution of a variable Xi is defined by a vector of parameters θi, para-
meters θi are drawn from a distribution Θi, and parameter independence holds,
such that, Θi ⊥ Θi′ for i �= i′. BNs with Dirichlet parameter priors have these
two properties. In order to compare parameters across models, the parameters
compared must match in meaning. First we will consider the case where M1,
M2, and M∪ have the same structure, and therefore, have parameters that can
be perfectly matched across models; next we will extend the approach to the
more general case of structures that have consistent ordering, where matching
happens between sets of parameters.

In the case where M1, M2, and M∪ have the same structure, we can consider
each Dirichlet-multinomial component of the full model in isolation. Consider
comparing the marginal likelihood of modeling θij = P (Xi|πij) independently
across the two groups of data

Tij = P (D1,D2|Θ(1)
ij ⊥ Θ

(2)
ij ) =

(
EΘij |M1P (D1|Θij ,M1)

) (
EΘij |M2P (D2|Θij ,M2)

)
(4)

to the marginal likelihood of modeling θij as being the same for both groups

Sij = P (D1,D2|Θ(1)
ij = Θ

(2)
ij ) = EΘij |M∪P (D∪|Θij ,M∪). (5)

The ratio Tij/Sij of these quantities is a Bayes factor that we can use to quantify
the difference in the distribution Xi|πij across the two groups of data.

Next, let us consider the more general case where the structures of M1, M2,
and M∪ differ, but have consistent ordering, meaning that if Xi is an ancestor
of Xj in any one of the networks, Xj cannot be an ancestor of Xi in any other
network. Note that constraining the ordering of the variables in a BN does not
constrain the space of joint probability distributions that can be represented. In
our evaluation we enforce that constraint by learning M∪ without order con-
straints and use the topological order of the learned network to constrain M1 and
M2. There are many other possible approaches to enforcing these constraints,
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ranging from obtaining an order a priori to minimizing the number of explicit
constraints using an iterative process. Exploring these alternative approaches is
outside of the scope of this paper.

In this more general setting, the parent sets of a variable Xi can turn out to
be different in the three models, and may have some partial overlap. To handle
such overlap, we introduce a new index η as follows: Denote the parent sets of Xi

in M1, M2, and M∪ by Π
(1)
i , Π

(2)
i , Π

(∪)
i respectively. Let J

(·)
i be the number

of possible configurations of Π
(·)
i , and enumerate those configurations by j =

1, . . . , J
(·)
i . Let Π∩

i denote Π
(1)
i ∩Π

(2)
i ∩Π

(∪)
i . Let Hi be the number of possible

configurations of Π∩
i and enumerate those configurations by η = 1, . . . , Hi. For

example, suppose that in data where all variables are binary, for a variable X1

we have Π
(∪)
1 = {X2,X3,X4}, Π

(1)
1 = {X2,X3,X5}, and Π

(2)
1 = {X2,X4,X5}.

Then we have that Π∩
1 = {X2}, and there are two possible configurations η = 1

and η = 2 for this set, corresponding to x21 and x22. Let J ·
i(η) indicate the subset

of parent configurations j ∈ {1, . . . , J ·
i} that are consistent with configuration η.

That is, for example, if η = 1 represents x21 in our example, then J∪
1 (1) is the

set of j-values that correspond to the set of parent assignments {(x21, x31, x41),
(x21, x31, x42), (x21, x32, x41), (x21, x32, x42)}.

We can then then compare the marginal likelihood of modeling the entire
parameter set indexed by η as independent

Siη = P (D1,D2|Θ(1)
iη ⊥ Θ

(2)
iη ) =

=

⎛

⎝
∏

j∈J1
i (η)

EΘij |M1P (D1|Θij ,M1)

⎞

⎠

⎛

⎝
∏

j∈J2
i (η)

EΘij |M2P (D2|Θij ,M2)

⎞

⎠(6)

to the marginal likelihood of modeling the parameter set indexed by η as identical

Tiη = P (D1,D2|Θ(1)
iη = Θ

(2)
iη ) =

∏

j∈J∪
i (η)

EΘij |M∪P (D∪|Θij ,M∪). (7)

In the case of identical structures, Siη and Tiη are equivalent to Sij and Tij .
One interesting and useful task is the detection of differences in the distribu-

tions when only a few parameters (out of many) differ between the two groups.
We can use the marginal likelihoods derived above to obtain a measure that is
sensitive to the presence of changes in only some conditional distributions of a
variable Xi, while other conditional distributions may indeed be identical across
groups. Particularly, we can compute the posterior odds of seeing a difference in
Xi as follows:

Oi =
1 − P (Θ(1)

i = Θ
(2)
i |D1,D2)

P (Θ(1)
i = Θ

(2)
i |D1,D2)

=

(
Hi∏

η=1

1

P (Θ(1)
iη = Θ

(2)
iη |D1,D2)

)

− 1. (8)

Since the η-level is defined to be the finest level at which parameters can be
compared across the two groups, we consider only the two cases of Θij either
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being independent for the two groups or being identical for the two groups.
By introducing priors for these two cases we are able to compute Eq. (8). Let
piη = P (Θ(1)

iη = Θ
(2)
iη ) denote the prior probability that the distribution of Xi|πiη

is the same across the two groups. Then we have that

1

P (Θ(1)
iη = Θ

(2)
iη |D1,D2)

=
Siη(1 − piη) + Tiηpiη

Tiηpiη
. (9)

Plugging Eq. (9) into Eq. (8) gives

Oi =

(
Hi∏

η=1

(
Siη(1 − piη)

Tiηpiη
+ 1

))

− 1. (10)

In the absence of information that would lead one to expect differences in
some parameters more than in others, the priors piη can be related to the prior
probability pi of seeing no difference in the conditional distribution of variable
Xi by the relation piη = p

1/Hi

i .
The same approach can be extended to obtain posterior odds of observing a

difference in any parameter of the model, expressed as

O =
1 − P (Θ(1) = Θ(2)|D1,D2)

P (Θ(1) = Θ(2)|D1,D2)
=

(
n∏

i=1

Hi∏

η=1

(
Siη(1 − piη)

Tiηpiη
+ 1

))

− 1. (11)

Using (11) entails that the prior for seeing no difference between the two groups
is p =

∏n
i=1

∏Hi

η=1 piη. Given such an overall prior p, a natural choice for non-
informative priors is piη = p1/(nHi): this choice of priors assumes that we are
equally and independently likely to see a difference in each variable, and equally
and independently likely to see a difference in each conditional probability dis-
tribution of each variable.

4 Evaluation

We evaluated the performance of the odds ratio Oi in Eq. 10 as a score for
detecting variable-level differences. Next we describe the baseline method against
which we compared our method and the experimental setup, followed by the
experimental results.

4.1 Baseline Method

As mentioned in the introduction, to our knowledge there is no prior work that
addresses the difference detection problem in the same manner as our approach:
a variable-based analysis, accounting for multivariate relationships, identifying
variable-level differences, and requiring no informative prior knowledge. As a
result, we chose to simulate a process often followed by analysts and researchers,
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where logistic regression models with interactions are constructed to predict a
variable Xi using candidate predictors, and the researcher would judge a predic-
tor’s relevance based on the strength of its corresponding weight.

For this purpose, we use lasso-regularized logistic regression [7], which maxi-
mizes an L1-regularized log-likelihood of a logistic model, where the strength of
the regularization is modulated by a parameter λ. The effect of regularization
is that as λ decreases from +∞, predictors enter the model (their coefficients
in the logistic model become nonzero). To detect variable-wise differences across
two pre-defined groups using lasso-regularized logistic regression, we take the
data from the two groups and add a group-indicator variable Z to the data. The
group indicator Z is a binary variable that takes the value 1 for cases coming
from one of the groups, and the value 0 for cases coming from the other group.
A regression model is built for predicting each variable Xi given all the other
data variables Xj : 1 ≤ j < i that precede it in the variable ordering (we provide
an ordering from a true generating model for the purposes of this evaluation),
the group indicator Z, and interactions of Z with each of the data variables Xj .
Non-binary variables were handled by using multinomial logistic regression for
the target and binary coding for input variables. The largest value of λ at which
a given predictor becomes nonzero can then be used as a score of how useful that
predictor is for predicting Xi. Hence, for each Xi we can use the largest λ that
corresponds to a nonzero coefficient in the logistic model for Z or an interaction
with Z as the score for seeing a difference in the distribution of Xi across groups.

4.2 Data and Experimental Setup

Since in real-world data the differences between groups of data are not known in
advance, for the evaluation we generated pairs of data groups from known dis-
tributions that are based on real-world data. We chose to learn networks from
which to generate data because publicly available BN models are overwhelmingly
diagnostic, meaning that they often contain many hidden variables, whereas we
would like to have a ground-truth model that directly relates observed variables
to each other. We picked data where all variables are categorical, since the BD
score is designed for BNs that represent multinomial distributions. In this eval-
uation we used the balance-scale, car, hayes-roth, and nursery datasets available
from the UCI Machine Learning Repository [1]. We learned a BN from the data
for each of these sets, which is referred to as the “original BN” in the following
description of the data-generation process.

We ran 72 blocks of tests, where each block is characterized by a data source
(one of the UCI Datasets), a type of perturbation, the number of perturbations,
and the number of samples per group. Each block consists of 20 group pairs,
where each pair consists of a group of samples generated from the original BN
of the data source and a group of samples generated from a perturbed BN of a
data source (a different perturbed BN is obtained for each group pair). The per-
turbed BN was obtained by performing perturbations to the original BN. There
were two categories of perturbations: parametric perturbations and structural
perturbations. A parametric perturbation was performed by uniformly randomly
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Table 1. Table of AUCs obtained from 72 blocks of tests. The first column indicates
the data source for each block, the second column indicates whether the perturbation
introduced was structural (Struct.) or parametric (Param.), and the third column indi-
cates the number of perturbations. AUCs that were statistically significantly higher at
the α = 0.05 level are shown in bold.

selecting a variable Xi to perturb, selecting for it a conditional distribution Xi|πij

to perturb, and then replacing its probability mass vector with a permutation of
itself. A structural perturbation was performed by randomly (with probability
1/2) deciding whether to remove or add an arc, and then selecting a random arc
to add (or remove) from the existing (or absent) arcs in the network. A node
(variable) is considered perturbed by a structural perturbation only if an arc
into the node is added or removed.

We provide the ordering of the variables in the generating model to the
logistic regression method so that it may take advantage of that information. We
do not provide this information to our method in the tests reported in Table 1.

4.3 Results

Table 1 shows areas under receiver operating characteristic curves (AUC) of per-
turbation detection obtained using the posterior odds Oi as compared to AUC’s



284 Y. Sverchkov and G.F. Cooper

obtained using the λ-based score from lasso-regularized logistic regression for
data group pairs generated from the respective data sources. The table also
shows the p-value for a two-tailed test of the difference between the AUCs of the
two methods, based on [6]. Of a total of 72 blocks of tests, in 53 the Oi AUC
is higher than the λ AUC. At the α = 0.05 significance level, the Oi AUC’s
are statistically significantly better than the λ AUC’s in 21 test blocks, whereas
the Oi AUC is statistically significantly worse than the λ AUC in only eight
test blocks. The p-value of a two-sided paired Wilcoxon signed rank test on the
AUCs is less than 10−4, supporting that the overall better performance of Oi is
not due to chance.

Every case where the the posterior odds performs statistically significantly
worse than the regression-based method is a case of a structural perturbation,
and we suspect that this is because perturbed structure is more difficult to
recover with no order information. In a different series of tests where we provided
order information to the posterior odds based method, of a total of 72 blocks of
tests, in 62 the Oi AUC was higher than the λ AUC. At the α = 0.05 significance
level, the Oi AUC was statistically significantly better than the λ AUC in 43
test blocks, and worse in only one block.

As is typical for statistical methods, we see better performance for data with
more samples as well as for lower-dimensional data. The results also suggest that
structural differences are easier to detect than parametric ones. We believe that
this is because a structural difference reflects a more substantial distributional
difference than a simple parametric one, since it can be expressed as a collection
of parametric differences in a network containing the removed or added arcs.
Overall, our experiments show consistently good AUC for the Oi score over the
various generated group pairs.

5 Discussion

We introduced a novel variable-based approach for identifying statistical dif-
ferences across a pair of groups. Evaluation of the approach on simulated data
showed good performance compared to a logistic lasso baseline. The data used in
the evaluation is low-dimensional because the logistic lasso baseline scales poorly
to many dimensions. The most computationally demanding step in our approach
is learning the three network structures. Consequently, our method scales to more
dimensions to the extent that the BN structure learning algorithm used with it
does. Any structure search strategy that maximizes a Bayesian Dirichlet score
is a good fit for our method.

For Bayesian networks with Bayesian Dirichlet priors, we showed how to com-
pute the posterior odds that a given variable has different distribution across the
two groups, as well as the posterior odds that the two groups are different overall.
The property that enables this is parameter independence in the BD framework.
This approach can be applied to other models as well. The distribution of a
variable in the BN formulation is simply a grouping of finer-level model parame-
ters. Hence, any model that has similar groupings of parameters in a framework
where parameter independence holds can be used with this approach.
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Identification of variable-level differences across groups of multivariate data
is useful in many application areas. The method presented here considers dif-
ferences over the sets of relationships that are present in the MAP models con-
structed for modeling the groups as independent vs. identical. Particularly, for
settings in which the typical approaches in practice tend to be univariate analy-
ses and ad-hoc exploration of relationships that are suspected to be important
a priori, we present a more systematic approach.
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Abstract. In recent years, many professional sports clubs have adopted
camera-based tracking technology that captures the location of both the
players and the ball at a high frequency. Nevertheless, the valuable infor-
mation that is hidden in these performance data is rarely used in their
decision-making process. What is missing are the computational meth-
ods to analyze these data in great depth. This paper addresses the task of
automatically discovering patterns in offensive strategies in professional
soccer matches. To address this task, we propose an inductive logic pro-
gramming approach that can easily deal with the relational structure of
the data. An experimental study shows the utility of our approach.

Keywords: Sports analytics · Spatial data · Strategy detection

1 Introduction

Michael Lewis’ book Moneyball [11] tells the story of Oakland A’s General Man-
ager Billy Beane who relies on statistics to build a competitive baseball team
despite a tight budget. In recent years, his work has been an example for many
other ball sports like basketball, football, and soccer. While several aspects of
baseball games can be analyzed in a rather straightforward way, this is much
harder for more continuous sports where players can freely move around the
pitch. As a result, it can be challenging to quantify the performances of individ-
ual players and teams as a whole.

Since simple statistics (e.g., the number of shots on target in soccer) fail to
capture the complex interactions among players, companies have started devel-
oping tracking technology that captures the location of both the players and the
ball at a high frequency (e.g., [16–18,20]). These positional data do not only
tell how often a particular event happened in a match but also when, where,
and how. While many professional sports clubs have access to large volumes of
performance data, the valuable information that is hidden in these data is only
used to a limited extent in their decision-making process. What is missing are
the computational methods to analyze these data in greater depth.

In this paper, we propose the task of automatically discovering patterns in
offensive strategies in professional soccer matches. More specifically, we are inter-
ested in revealing which interactions among players (e.g., a pass from one zone
c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 286–297, 2015.
DOI: 10.1007/978-3-319-24465-5 25
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of the pitch to another zone) are most likely to lead to goal attempts. The low-
scoring and continuous nature of soccer matches makes this a challenging task.
To address this task, we propose an inductive logic programming approach that
can easily deal with the relational structure of the data.

The contributions of this paper are as follows:

– We propose using advanced data mining algorithms to analyze positional
sports data. Most of the techniques that have been proposed to date are
statistical and cannot easily deal with the relational nature of these data.

– We present an inductive logic programming approach to automatically
discover patterns that frequently appear in successful offensive strategies.

– We perform an empirical study on a large volume of soccer matches.

2 Related Work

This section provides an overview of the related work on supervised knowledge
discovery and sports analytics. The relevant background on inductive logic pro-
gramming, which is the core of our approach, is provided in Sect. 4.

Knowledge Discovery. The problem addressed in this paper is an instance
of supervised descriptive rule discovery [8]. A common variant of this prob-
lem is subgroup discovery [5]. Although early variants already supported multi-
relational data [22], the data are typically merged into a single table before
applying subgroup discovery algorithms [10]. By contrast, inductive logic pro-
gramming techniques allow us to work directly with the relational (logical) repre-
sentation of data. This is important for our task, where we want to capture both
spatial and temporal patterns as well as interactions among groups of players. An
alternative perspective on relational data mining relies on database theory [7].

Sports Data Analysis. The amount of available data about various sports
is constantly increasing, most importantly tracking data and event data [14].
Within soccer, the analysis of tracking data focuses on discovering individual or
collective movement patterns, e.g., spectral clustering of trajectories [6], strategy
analysis with occupancy maps [12], or formation analysis via minimum entropy
partitioning [1]. Gyarmati et al. use event data to discover motif patterns in pass
sequences [4]. Most of the research studies large datasets encompassing multiple
teams or even leagues, whereas we focus on a single team, with the ultimate goal
to improve its performance.

3 Dataset

Through our collaboration with a Belgian soccer club, we obtained play-by-
play data for 70 soccer matches in the 2013/2014 and 2014/2015 seasons. The
dataset consists of 59 matches in the Belgian Pro League, nine matches in the
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UEFA Europa League and two matches in the Belgian Cofidis Cup. The data
were collected by data provider Prozone [18]. We first discuss the structure of
the data and then introduce additional hierarchical information to enrich the
dataset.

3.1 Structure of the Data

The data for each match is provided as an XML file which consists of three
parts: a match sheet with information on the players and managers, a sequence
of events, and tracking data for all players as well as the ball. While the first two
parts are available for all matches, the third part is only available for 10 Jupiler
Pro League and 4 UEFA Europa League matches.

The match sheet contains each player’s name, position on the pitch, jersey
number, and team. In addition, it also specifies which players were starters and
which players were substitutes.

The sequence of events contains roughly 2,600 events per match. Over 40
different types of events are recorded. The most frequent events include passes
between players, players running with the ball, players receiving a ball, players
shooting towards goal, players fouling another player, players crossing the ball,
and players clearing the ball. Furthermore, events exist to mark the start and
end of each half as well as yellow cards, red cards, and substitutions.

The following information is available for each event: the type of the event,
the players that are involved, a timestamp, the start location of the event, and
the end location of the event if applicable. Depending on the type of event,
additional information is available such as the body part involved (e.g., foot or
head), type of play (i.e., open or set play), or whether or not a shot was blocked.

3.2 Hierarchical Information

Since we prefer more general patterns to very specific patterns, we enrich the
dataset with hierarchical information about both the pitch and the players. This
information groups together parts of the pitch and players that fulfill a similar
role and hence can be treated in a similar way. As a result, this information
facilitates generalizing from very specific to more general knowledge.

We divide each half of the pitch into ten zones resulting into twenty different
zones as is shown on the right side of Fig. 1. Assuming the team of interest always
plays from left to right, we define a hierarchy as follows. We group together zones
1 to 4 as the penalty area, zones 5 to 7 as the area around the penalty area, and
zones 8 to 10 as the midfield. The division is identical for the defensive and
offensive half of the pitch.

Similarly, we group together players that play in a similar position. We define
four groups of players for the team of interest: goalkeepers, defenders (i.e., center
backs, full backs, wing backs, and sweepers), midfielders (i.e., defensive mid-
fielders, central midfielders, attacking midfielders, and wing midfielders), and
attackers (i.e., wingers, supporting strikers, and strikers).
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Half of the pitch

Penalty Area (PA)

1 4

Around PA

5 7

Midfield

8 10to to to

Fig. 1. Each half of the pitch is divided into ten zones, which we group together into
three bigger areas. Zones 1 to 4 are the penalty area, zones 5 to 7 the area around the
penalty area, and zones 8 to 10 the midfield. The division is identical for the defensive
and offensive half of the pitch.

4 Background

This section provides the relevant background on first-order logic, inductive logic
programming [13], and the inductive logic programming system Aleph [19].

4.1 First-Order Logic

First-order logic (FOL) is commonly used as representation language for rela-
tional data. In this paper, we consider a subset of FOL, where the alphabet
consists of only three symbols. Constants start with a lower-case letter and refer
to specific objects (e.g., a player pi). Variables start with an upper-case letter
and range over multiple objects (e.g., Players). Predicates represent relations
between objects (e.g., a pass Pass(pi, pj)).

Using these three symbols, we can define the following four constructs: atoms
p(t1, ..., tn), where the ti are constants or variables; literals, which are atoms
or their negations; clauses, which are disjunctions over finite sets of literals;
and definite clauses, which are clauses containing precisely one positive literal.
Definite clauses are often written in implication form B =⇒ H, where B is a
conjunction of literals and H is a single literal. A definite program is a finite set
of definite clauses. Definite programs form the basis of logic programming. We
assume all variables to be universally quantified.

4.2 Inductive Logic Programming and Aleph

Inductive logic programming (ILP) [3] is a well-known framework for learn-
ing models, in the form of definite programs, from relational data. ILP offers
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the benefits of being able to directly model important relationships and it also
facilitates incorporating domain knowledge into the learning process. Informally,
ILP attempts to learn a definite program that, in combination with background
knowledge, can be used to distinguish positive and negative examples. The ILP
learning task can be defined as follows:

Given: A target predicate T, background knowledge BK, a non-empty set of
positive examples E+ of T, and a set of negative examples E− of T.

Learn: A set of definite clauses S such that BK∧S |= E+ and BK∧S �|= E−.

It is often not possible to ensure BK∧S �|= E− in practice. Hence, this condi-
tion is relaxed and clauses in S are permitted to cover some negative examples.1

The goal in the relaxed setting is to achieve a balance between the number of
positive and negative examples that each clause covers.

In this paper, we employ the widely-used Aleph ILP system [15,19,21]. Aleph
applies a two-step approach to learn a clause. In the saturation step, the system
first selects a random positive example, called the seed example, and finds all
facts in the background knowledge that are true for this example. It forms a
clause where the body is the conjunction of all these facts and the head is the
target predicate. This is the most-specific clause (i.e., the bottom clause) that
covers the seed example. In the search step, the system performs a top-down
search over clause bodies that generalize the bottom clause. The key idea is that
a subset of the facts can be used to explain the seed example’s label and that
this explanation is likely to apply to other examples as well.

5 Approach

This section introduces our ILP approach to automatically discover patterns
that frequently appear in successful offensive strategies. We explain how we pre-
process the data and learn the clauses.

5.1 Pre-processing the Data

As explained in Sect. 3, the dataset consists of one long sequence of events for
each match. We split each sequence into a number of phases, each of which is
a subsequence of related events. A phase typically starts with a goal kick or a
throw-in and ends when the ball goes out of play or a foul is made. We only
consider passes, crosses, set pieces and shots, and discard all other events. We
also only consider phases in which the team of interest is dominant, which is
when its players are involved in at least half of the events. Although this rarely
happens, both teams can be seen as the dominant team in the same phase.
However, this is not a problem since we are only looking at the team of interest.

1 By cover, we mean that a clause, in combination with BK, can be used to derive
that the target predicate T is true for a given example.
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Building Examples. In our setting, we define positive examples as phases
during which the team of interest attempts a shot, and we label all other
phases as negative examples. Thus, the target predicate is shot(Phase), which
denotes whether the team attempted a shot in a phase Phase. In the background
knowledge, we represent each phase as a set of ground facts using four predi-
cates. The pass(Phase, Player1, Player2, Zone1, Zone2) predicate denotes that
in a phase Phase a player Player1 in zone Zone1 passed the ball to Player2
in zone Zone2. Similarly, the cross(Phase, Player1, Player2, Zone1, Zone2) and
set piece(Phase, Player1, Player2, Zone1, Zone2) predicates denote crosses and
set pieces. For positive examples, we discard all events following a shot.

Adding Background Knowledge. We add the hierarchical information about
both the pitch and the players as background knowledge (see Sect. 3.2). What
follows are two examples of such clauses for the pass predicate.

pass(Ph, pl1, pl2, Z1, Z2) =⇒ pass(Ph, pMidfielder, pAttacker, Z1, Z2) (1)

pass(Ph, P1, P2, z2, z7) =⇒ pass(Ph, P1, P2, zPenaltyArea, zMidfield) (2)

Assuming player pl1 is a midfielder and player pl2 is an attacker, Eq. 1
denotes that if pl1 passes the ball to pl2, then also a midfielder passes the ball
to an attacker. Assuming zone z2 belongs to the penalty area and zone z7 belongs
to the midfield (see Fig. 1), Eq. 2 denotes that a player who passes the ball from
z2 to z7 also passes the ball from the penalty area to midfield.

As a practical optimization akin to view materialization in databases, we
specify the background knowledge in this way rather than by introducing addi-
tional predicates.

5.2 Learning the Clauses

The Aleph system supports many different learning modes and search strate-
gies [19]. We apply the induce max search strategy. In contrast to the default
search strategy, this strategy uses each positive example as a seed example. While
slower, it produces a larger set of clauses that are potentially of interest to the
user. However, this is a natural choice when doing exploratory data mining as
our goal is to generate interesting clauses as opposed to learning a very compact
predictive model, which is the traditional goal of ILP.

Since we are interested in as many potentially interesting clauses as possi-
ble, we run Aleph with as few restrictions as reasonably possible. We set the
maximum number of literals per clause (i.e., clauselength) to 5, the minimum
number of positive examples covered (i.e., minpos) to 5, the maximum number
of negative examples covered (i.e., noise) to 25, and the minimum precision
of acceptable clauses (i.e., minacc), which is the ratio between the number of
positive examples covered and the total number of examples covered, to 5 %.

We sort the learned clauses in descending order according to their
m-estimates [2,9], which are smoothed versions of their precisions.



292 J. Van Haaren et al.

6 Experimental Study

In this section, we present the dataset as well as the different experimental
setups, define the research questions, and discuss the experimental results.

6.1 Dataset and Experimental Setups

After pre-processing the raw data as described in Sect. 5, the dataset contains
3, 803 examples (phases), including 526 (13.8%) positive examples (shots), and
26, 338 ground facts in total, including 24, 786 passes (94.1%), 1, 063 crosses
(4.0%), and 489 set pieces (1.9%). An average example consists of 6.93 ground
facts, including 6.52 passes, 0.28 crosses, and 0.13 set pieces. Furthermore, there
are 34 constants corresponding to the players of the team of interest.

We investigate the performance of the proposed approach in five setups:
discovering spatial patterns with and without hierarchical information, player
interaction patterns with and without hierarchical information, and the com-
bined setup with the hierarchical information, in order to evaluate the utility of
each type of background knowledge.

6.2 Research Questions

In this experimental study, we address the following three research questions:

– Q1: Do the learned clauses capture the relevant regularities? The
ultimate goal of the analysis is to describe succesful offensive actions of the
team. We quantify the capacity of the proposed approach to accomplish this
by computing the average m-estimate of the top-ten clauses.

– Q2: Does the hierarchical knowledge improve the quality of the
learned clauses? One motivation for using ILP is its ability to represent
relational data such as the player and zone hierarchies in a natural way. We
investigate whether the addition of the hierarchies improves the quality of the
learned clauses.

– Q3: Do the learned clauses describe meaningful patterns? The pur-
pose of this work is to discover patterns that help the team understand what
works well and what does not work well in terms of creating goal-scoring
opportunities. Therefore, we qualitatively analyze the discovered patterns.

The proposed approach is meant to facilitate offline performance analysis,
e.g., between matches or even seasons. Therefore, it is not necessary to produce
instant results. Nevertheless, for the sake of completeness, we report running
times for each setup. All experiments are run on a single core of a Linux machine
with an Intel Xeon E5645 CPU running at 2.40 GHz and 128 Gb of RAM. We
allow Aleph to run for 48 h in each setup.

6.3 Results and Discussion

We first address Q1 and Q2 by comparing the five setups using statistics on the
sets of discovered clauses. We then address Q3 by evaluating the utility of the
clauses for the first four setups from a performance analysis point of view.
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Table 1. For each setup, we report the number of clauses returned by Aleph, the
maximum and average m-estimate of the precision [9] for the top-ten clauses, and the
runtime. Adding hierarchical information barely improves the quality of the clauses
in the spatial setup, whereas it considerably improves the quality of the clauses in
the player interaction setup. In the setup marked by (�), Aleph exceeds the runtime
threshold of 48 h. Hence, we compute the m-estimate on the intermediate output.

m-est. of prec. (top 10)

Setup Hierarchy Rules Maximum Average Time (min.)

Spatial 276 0.7396 0.6638 1.15

� 323 0.7396 0.7065 441.76

Player interactions 91 0.7396 0.4855 2.95

� 257 0.7396 0.6606 2,761.64

Combined 426 (�) 0.6374 0.6138 2,880.00

Quantitative Analysis (Q1 and Q2). Table 1 contains an overview of the
experimental results. We expect that adding hierarchical information allows
Aleph to find clauses of higher quality. We observe a considerable improvement
in terms of average m-estimate in the player interaction setup, while this increase
is rather modest in the spatial setup. However, the runtime cost of adding hier-
archical information is substantial since the search space becomes much larger.
In the player interaction setup, Aleph still manages to explore the whole search
space and to generate high-quality candidate clauses in terms of m-estimate,
which it fails to accomplish in the combined setup.

Qualitative Analysis (Q3). Table 2 presents the top-three clauses in terms of
their m-estimates for discovering spatial patterns both with and without hierar-
chical information. These settings have two of their three top-ranked clauses in
common (i.e., clauses A and B). Clause A describes a situation where the ball
is passed between two players in the left defensive zone (d5), from the defensive
midfield (d10) to the right offensive wing (o9), and between two players in the
offensive midfield (o10). Clause B describes a situation where the ball is passed
between two players in the right defensive zone (d6) and from the defensive mid-
field (d10) to both the left defensive wing (d8) and the left offensive wing (o8).
Both clauses suggest that the team is particularly successful at creating goal
attempts when moving the ball from one flank of the pitch to the other.

Clause D, which leverages the hierarchical information, describes a situation
where the ball is passed from the area around the defensive penalty area (dAPA)
into the defensive penalty area (dPA), from the right defensive zone (d6) to the
right defensive wing (d9), and from the offensive midfield (o10) to the central
offensive area around the penalty area (o7). This pattern most probably depicts
a counter-attack following a set piece from the opponent.

Table 3 presents the top-three clauses in terms of their m-estimates for dis-
covering player interaction patterns both with and without hierarchical informa-
tion. These settings have only one of their three top-ranked clauses in common
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Table 2. Top-three clauses in terms of their m-estimates for discovering spatial patterns
with and without hierarchical information. For each clause, we report the total number
of examples covered and the number of positive examples covered.

Clause (C) |C| |C+|
Without hierarchy

A pass(d10, o9) ∧ pass(d5, d5) ∧ pass(o10, o10) 5 5

B pass(d10, d8) ∧ pass(d10, o8) ∧ pass(d6, d6) 5 5

C pass(d10, o9) ∧ pass(d5, d8) ∧ pass(o10, o7) ∧ pass(o9, o10) 5 5

With hierarchy

D pass(d6, d9) ∧ pass(dAPA, dPA) ∧ pass(o10, o7) 5 5

A pass(d10, o9) ∧ pass(d5, d5) ∧ pass(o10, o10) 5 5

B pass(d10, d8) ∧ pass(d10, o8) ∧ pass(d6, d6) 5 5

Table 3. Top-three clauses in terms of their m-estimates for discovering player inter-
action patterns with and without hierarchical information. For each clause, we report
the total number of examples covered and the number of positive examples covered.

Clause (C) |C| |C+|
Without hierarchy

A pass(p1, p21) ∧ pass(p8, p18) 5 5

B pass(p18, p9) ∧ pass(p2, p18) 6 5

C pass(p2, p26) ∧ pass(p3, p1) 8 5

With hierarchy

A pass(p1, p21) ∧ pass(p8, p18) 5 5

D pass(att, att) ∧ pass(mid, att) ∧ pass(mid, def) ∧ pass(p4, p16) 5 5

E pass(def, att) ∧ pass(def, mid) ∧ pass(opp, p2) ∧ pass(p8, opp) 7 6

(i.e., clause A). Clause A describes a situation where the goalkeeper (p1) passes
the ball to a central defender (p21) and an attacking midfielder (p8) passes the
ball to an offensive wing midfielder (p18). This pattern makes sense from a per-
formance point of view as both p8 and p18 are generally considered key players
and responsible for creating a large number of goal-scoring opportunities.

Clause B describes a situation where an offensive full back (p2) passes the
ball to an offensive wing midfielder (p18) and the latter player passes the ball to
another wing midfielder (p9). This pattern makes sense as well as p2 has had a
foot in many goals scored by the team of interest. Clause C describes a similar
pattern involving a goalkeeper (p1), a central defender (p3), an offensive full
back (p2), and a central midfielder (p26).

Clauses D and E leverage the hierarchical information about player roles as
they include both specific players (e.g., p4 and p16) and positions (e.g., mid
and att). Clause D describes an attack over the left wing involving both an
offensive full back (p4) and an offensive wing midfielder (p16), while clause E
describes a situation where an offensive full back (p2) intercepts a pass from an
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Table 4. Top-three clauses in terms of their weighted relative accuracies for discovering
spatial patterns with hierarchical knowledge. For each clause, we report the weighted
relative accuracy and m-estimate. These clauses are more general and less pure than
the top-ranked clauses according to m-estimate for the same setup.

Clause (C) |C| |C+| WRAcc m-est.

A pass(oMF, oMF) ∧ pass(oMF, oPA) ∧ pass(oPA, oAPA) 62 18 0.025 0.275

B pass(o4, o7) 43 15 0.024 0.324

C set piece(dAPA, dPA) 51 16 0.024 0.295

opponent (opp) and an attacking midfielder (p8) attempts a possibly risky pass
that is briefly intercepted or touched by an opponent.

Alternative Qualitative Analysis (Q3). We observed that the top-ranked
clauses according to m-estimate are markedly specific. Therefore, we compare
these clauses with the top-ranked clauses in the same set of clauses according
to weighted relative accuracy, which is a common quality measure that aims to
balance rule coverage and specificity:

WRAcc (C) =
|C|
|E| ·

( |C+|
|C| − |E+|

|E|
)

Table 4 presents the top-three clauses in terms of WRAcc for discovering
spatial patterns with hierarchical knowledge. These patterns have a substantially
higher coverage, while their m-estimates are much lower. In the same setup, the
average m-estimate for the top-ten clauses was 0.707. This contrasts with Op De
Beéck et al. [15], where in a similar setting, the coverage of the top-ranked clauses
according to m-estimate ranges from 30 to 90 examples. This suggests that
different quality measures could reveal different patterns in a dataset. Therefore,
if the initial results are unsatisfactory from the domain perspective, ranking the
clauses with another quality measure is a reasonable next step.

Clause A describes an attack through the middle, where the ball is passed
between two players in the offensive midfield (oMF), from the offensive midfield
to the offensive penalty area (oPA), and from the offensive penalty area to the
area around the offensive penalty area (oAPA). Clause B describes a pass from
the right side of the offensive penalty area (o4) to the area in front of the
offensive penalty area (o7). Clause C describes a set piece from the area around
the defensive penalty area (dAPA) into the defensive penalty area (dPA). Hence,
this clause describes a situation where a counter-attack results in a goal-scoring
opportunity. These tactical patterns are different from the patterns in Table 2.

7 Lessons Learned

This paper investigated the task of automatically discovering recurring patterns
in successful offensive strategies in soccer matches. More specifically, we aimed to
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reveal both spatial (e.g., a pass from one zone to another) and player interaction
(e.g., a pass from one player to another) patterns that are likely to lead to goal
attempts. We presented an inductive logic programming approach for this task
and demonstrated it is suitable on data from professional soccer matches.

While undertaking this study, we learned the following lessons. First, it is
possible to apply inductive logic programming to the task of revealing recurring
patterns in soccer match data. It provides the advantages of coping with the
relational nature of the data in a straightforward way. Furthermore, it produces
interpretable results, which facilitates debugging the data as well as analyzing
the results. Second, the discovered patterns make sense from a soccer perspective
and are interesting to a domain expert. However, taking the next step forward
would require the full tracking data (i.e., the positions of the players and the ball
at regular intervals) as this will allow for more fine-grained analysis. Fortunately,
this type of data is becoming commonplace. Third, selecting the most interesting
clauses is difficult as there is no natural metric or heuristic for this task and a
human domain expert is still needed to assist in the interpretation.

In the future, we wish to further expand our current approach. We want to
take the order of the events as well as the positions of the players and the ball
into account. We also want to account for the differences in playing style of the
opponents. Furthermore, we wish to develop a tool that visualizes the discovered
patterns (e.g., on a soccer pitch as partially shown in Fig. 1). This would help
to communicate the patterns in a more intuitive way to a domain expert.
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Abstract. One of the challenges in Machine Learning to find a classifier
and parameter settings that work well on a given dataset. Evaluating
all possible combinations typically takes too much time, hence many
solutions have been proposed that attempt to predict which classifiers
are most promising to try. As the first recommended classifier is not
always the correct choice, multiple recommendations should be made,
making this a ranking problem rather than a classification problem. Even
though this is a well studied problem, there is currently no good way of
evaluating such rankings. We advocate the use of Loss Time Curves, as
used in the optimization literature. These visualize the amount of budget
(time) needed to converge to a acceptable solution. We also investigate
a method that utilizes the measured performances of classifiers on small
samples of data to make such recommendation, and adapt it so that
it works well in Loss Time space. Experimental results show that this
method converges extremely fast to an acceptable solution.

Keywords: Algorithm selection · Meta-learning · Subsampling

1 Introduction

When presented with a new classification problem, a key challenge is to identify
a classifier and parameter settings that obtain good predictive performance. This
problem is known as the Algorithm Selection Problem [13]. Since many classifiers
exist, all containing a number of parameters that potentially influence predictive
performance, this is a challenging problem. Performing a cross-validation evalu-
ation procedure on all possible combinations of classifiers and parameters (e.g.,
using a grid search) is typically infeasible, as this would take too much time.
The field of meta-learning attempts to solve this by learning from prior exam-
ples. Typically, a set of classifiers is recommended based on the performance on
similar datasets.

The meta-learning method SAM [8] identifies similar datasets based on the
learning curves of classifiers trained on them, and recommends the classifier that
c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 298–309, 2015.
DOI: 10.1007/978-3-319-24465-5 26
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performs best on these similar datasets. Although the results are convincing,
it does not take into account some important aspects of algorithm selection.
First, it only recommends the single best classifier, rather than a ranking of
candidates. Second, it does not take the training time of the models into account.
Indeed, in practical applications there is typically a budget (e.g., limited time or
a maximum number of cross-validation runs) within which a number of classifiers
can be evaluated. As such, the meta-learning method should be evaluated on how
well it performs within a given budget.

Our contributions are the following. We extend the aforementioned technique
so that it produces a ranking of classifiers and takes into account the run times
of classifiers. Furthermore, we study the performance of this method in Loss
space [9], taking into account both predictive accuracy and spent time. We will
argue that Loss Curves as presented in [9] are biased, and propose the use of Loss
Time Curves, as presented in [6]. Finally, we compare the method against a range
of alternative methods, including a rather strong baseline that recommends the
classifier that performed best on a small sample of the data [4]. Although our
proposed technique dominates the baseline methods, the results suggest that
this ‘Best on Sample’ approach has been mistakenly neglected in the literature.

2 Related Work

Meta-learning aims to learn which learning techniques work well on what
data [16]. A common task, known as the Algorithm Selection Problem [13],
is to determine which classifier performs best on a given dataset. We can predict
this by training a meta-model on meta-data comprised of dataset characteriza-
tions, i.e., meta-features [2], and the performances of different classifiers on these
datasets. The same meta-features can be computed on each new dataset and fed
to the meta-model to predict which classifiers will perform well.

Hence, the Algorithm Selection Problem is reduced to a Machine Learning
problem. Meta-features are often categorized as either simple (number of exam-
ples, number of attributes), statistical (mean standard deviation of attributes,
mean skewness of attributes), information theoretic (class entropy, mean mutual
information) or landmarkers [11] (performance evaluations of simple classifiers).
Many meta-learning studies follow this approach [14,15,17,20,21].

However, meta-feature based approaches have some intrinsic limitations.
First, it is hard to construct a meta-feature set that adequately characterizes the
problem space [7]. Second, the most successful meta-features, landmarkers, can
be computationally expensive, limiting the options [11]. Finally, because not all
classifiers run on all datasets, or take prohibitively long to do so, the meta-dataset
usually contains many missing values, complicating the classification task.

In order to overcome these problems, Leite and Brazdil [7,8] identify similar
data sets based on partial learning curves. A learning curve is an ordered set of
performance scores of a classifier on data samples of increasing size [12]. In this
particular method, a partial learning curve is computed, using small samples,
to measure how similarly algorithms behave on two data sets. As such, running
classifiers on these samples is rather cheap.
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Alternatively, the Best on Sample method uses the performance estimates
of classifiers on a small sample and recommends the classifiers which perform
best on this sample, in descending order [10]. Prior work is inconclusive about
its performance. The authors of [10] suggest that this technique should be used
as a baseline method in meta-learning research. The authors of [4] show that
this information is not useful as a landmarker. Indeed, it has been correctly
observed that learning curves sometimes cross, i.e., one classifier can outperform
another on a small data sample, but can be surpassed when trained on the whole
dataset [7]. However, this happens less often as the sample size increases, making
this method quite reliable when using the right sample size, as we will show in
Sect. 4.

The datasets, learning curves and all results of our experiments are made pub-
licly available on OpenML [19], for the purposes of verifiability, reproducibility
and generalizability. OpenML is an experiment database [18] that enables the
reproduction of earlier results for verification and reuse, and makes much larger
studies (covering more classifiers and parameter settings) feasible. Moreover,
experiment databases allow a variety of studies to be executed by a database
look-up, rather than setting up new experiments.

3 Methods

The method we propose extends the method as defined by [8] in two ways. First,
it recommends a ranking of classifiers, rather than just a single best classifier.
Second, it can take arbitrary evaluation measures into account, such as run time.
It attempts to rank classifiers in order of performance on a given dataset dnew .

We consider a set A of classifiers, am (m = 1, 2, 3, . . . ,M). We also consider
a set D of datasets, dn (n = 1, 2, 3, . . . , N), on which we have information on the
performance of the classifiers in A (dnew is not in D). The size of dataset dn is
denoted as |dn|. Let Pm,n,s and P ′

m,n,s denote the performance of classifier am

on dataset dn, for a given evaluation measure (e.g., predictive accuracy), using
a sample size of s; Pm,n,Ω denotes the performance of classifier am on the full
dataset dn.

Let S be the set of data samples, of increasing size st = 25.5+0.5×t with
t = (1, 2, 3, . . . , T ), and T being a parameter set by the user such that 1 ≤ T ≤
�log2 |dn|�. The samples follow a geometric increase, as suggested in [12]. When
using a higher value for T , larger samples are calculated, presumably yielding
more accurate estimates at the expense of higher run times.

The distance between two datasets di and dj can be determined using the
following function [7]:

dist(di, dj , ap, aq, T ) =
T∑

t=1

(Pp,i,st
− Pp,j,st

)2 +
T∑

t=1

(Pq,i,st
− Pq,j,st

)2 (1)

This distance function is related to the Euclidean distance. It gives a measure
of how similar two datasets are, based on the learning curves of the two clas-
sifiers. Other work suggests a distance function that measures the Manhattan
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distance between learning curves, but experiments show that the difference in
performance between these variants is minuscule [8].

Using either of these distance functions, k nearest datasets can be identified,
and from the performance of both classifiers on these datasets we can predict
which of the two will perform better on the new dataset. Controversially, it has
been remarked that as the number of used samples increases, the performance
of this technique decreases [7]. The authors of [7] speculate that the learning
curves on the nearest datasets are still not similar enough, and propose Curve
Adaptation, a technique that can adapt retrieved curves to the learning curves on
the new dataset. In order to adapt a learning curve of classifier ap on dataset dr

to dataset di, all points of the prior learning curve are multiplied by a coefficient:

f(di, dr, ap, T ) =
∑T

t=1(Pp,i,st
× Pp,r,st

× s2t )
∑T

t=1((Pp,r,st
)2 × s2t )

(2)

Another optimization that could potentially improve performance is the
Smaller Sample technique. As not all datasets are of the same size, it is possible
that a retrieved dataset has a bigger size than the new dataset, which might
give an unfair advantage for slow learners. In that case it might be beneficial to
use the performance of the classifier at a sample size close to the full size of the
new dataset.

Algorithm 1 shows the method in detail. It requires the new dataset as input,
and values for parameters k (number of similar datasets to retrieve) and T (num-
ber of samples to use to build the partial learning curve), and boolean parameters
indicating whether to use the Curve Adaptation and Smaller Sample technique.
The while-loop starting on line 3 identifies the most promising classifier left in
A (lines 4–29), appends this classifier to the final ranking R (line 30) and removes
it from the pool of remaining classifiers to rank.

To find the most promising classifier, we set abest first to a random classifier
left in A. We will compare it against all acomp (competing) classifiers left in
A (for-loop on line 5). On line 6 we retrieve a set D of datasets on which we
have recorded performance results for both classifiers (recall that dnew is not
amongst those). Line 9 uses Eq. 1 to retrieve the nearest dataset. Lines 12–15
show how Curve Adaptation shifts the retrieved learning curve to the partial
learning curve, using Eq. 2. Lines 16–18 show how the Smaller Sample option
utilizes learning curves of a size close to the size of the new dataset. The classifier
that performed best on the retrieved dataset (line 19) gets a vote, and the dataset
is removed from the pool of available datasets. This is repeated k times, for the k
nearest datasets. The classifier that has most votes is marked as abest, and will be
compared against the next competitor acomp in the following loop iteration. Note
that the algorithm potentially utilizes two different evaluation scores, denoted by
P and P ′, but these can also be the same. The scores of one evaluation measure
are used for identifying similar datasets and Curve Adaptation (i.e., the one
denoted by P ); the scores of the other evaluation measure are used for selecting
an appropriate classifier (i.e., the one denoted by P ′). This is useful because not
all evaluation measures are suitable for both tasks.
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Algorithm 1. Pairwise Curve Comparison (PCC)
Require: dnew , k ∈ N

+, T ∈ N
+, CurveAdaptation ∈ {0, 1}, SmallerSample ∈ {0, 1}

1: Initialize A as a set of all classifiers
2: Initialize R as empty list
3: while |A| > 0 do
4: abest ← Arbitrary element from A
5: for all acomp ∈ A : acomp �= abest do
6: Initialize D as the set of all datasets on which abest and acomp were ran
7: votesBest = votesComp = 0
8: while votesBest + votesComp < k do
9: dsim ← arg min

di∈D
dist(dnew , di, abest, acomp, T )

10: coeff best = coeff comp = 1
11: samp ← Ω
12: if CurveAdaptation = 1 then
13: coeff best ← f(dnew , dsim , abest, T )
14: coeff comp ← f(dnew , dsim , acomp, T )
15: end if
16: if SmallerSample = 1 and �log2 |dnew |� < �log2 |dsim |� then
17: samp = �log2 |dnew |�
18: end if
19: if coeff best × P ′

best,dsim ,samp > coeff comp × P ′
comp,dsim ,samp then

20: votesBest ← votesBest + 1
21: else
22: votesComp ← votesComp + 1
23: end if
24: D ← D −−− dsim

25: end while
26: if votesBest < votesComp then
27: abest ← acomp

28: end if
29: end for
30: R ← R +++ abest

31: A ← A −−− abest

32: end while
33: return R {Ranking of classifiers in decreasing order}

Because we arbitrarily select the order in which classifiers are considered, the
ranking will not always be the same (the meta-algorithm is unstable). However,
classifiers that perform consistently better on similar datasets will always be
ranked above their inferior competitors. Furthermore, the meta-algorithm has a
start up time, as it needs to build the partial learning curves. In Sect. 4 we will
see that this is only a fraction of the run time of large datasets.

The original method as proposed in [8] selects classifiers based on their pre-
dictive accuracy on similar datasets, but instead of predictive accuracy any mea-
sure can be used for this selection. Because we want to include run times in our
experiments, we propose to use A3R, which combines predictive accuracy and
run time [1]. A3R compares the run times and accuracy of two classifiers on
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a dataset, so it could be used directly into methods that work based on pair-
wise comparisons. However, in order to make it useful for methods that do not
compare classifiers pairwise, and allow a fair comparison in our experiments, we
define a slightly adapted version of the measure:

A3R′di

ap
=

SRdi
ap

r

√
T di

ap

(3)

where SRdi
ap

is the predictive accuracy (success rate) of classifier ap on dataset di,
T di

ap
is the run time of classifier ap on dataset di and r is a parameter controlled

by the user, influencing the importance of time. Indeed, a lower value results in
a higher emphasize on time. The higher the A3R′ score, the more suitable the
classifier is on the combination of accuracy and run time.

4 Experiments

To evaluate the meta-algorithm, we selected 53 classifiers and 39 data sets from
OpenML [19]. The classifiers come from Weka 3.7.12 [5], and include (but are
not limited to) Decision Trees, Bayesian Networks, Support Vector Machines,
Bagging, and Boosting. The data sets have between 540 and 48,842 observations,
and between 5 and 241 attributes. All classifiers are run on all data sets.
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Fig. 1. Average training time of all classi-
fiers per task per sample

Figure 1 shows how the average
training time of all classifiers increases
as the sample size increases. There
seems to be a linear relation between
the run time and sample size. The
drop can be explained by a subset
of high-dimensional data sets, which
take longer to train but contain only
2,000 observations.

We will use two strong baseline
methods to compare our method to.
Best on Sample runs all classifiers
using a given sample size, and ranks
the classifiers in the order of perfor-
mance on that sample [10]. The Average Rank ranks the classifiers in the order
of their average rank on previously seen datasets, and has proven to be quite
accurate [3,9]. Although comparing the methods also against a meta-feature
based approach seems interesting, configuring the latter takes much time, giving
an unfair advantage to the sample based approaches.

Section 4.1 describes an experiment that focuses solely on predicting the
best classifier; here we attempt to reproduce the results obtained by [8] using
a larger meta-dataset. In Sect. 4.2 we show how the meta-algorithm performs
when predicting a ranking of classifiers. Section 4.3 describes our main contri-
bution, novel experiments incorporating both accuracy and run times, yielding
significant improvements over the baseline methods.
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4.1 Predicting the Best Classifier

In the first experiment we aim to establish how well the meta-algorithm performs
when the task is to recommend the best available classifier. A recommendation
is considered correct if there was no statistically significant difference between
the absolute best classifier and the recommended classifier, as is done in, e.g., [8].
It uses predictive accuracy as the evaluation measure to identify similar datasets
and select the best classifier. Our proposed method has several parameters. Most
importantly, T (number of samples used) and k (number of nearest data sets to
be identified). Furthermore, we seek to explore the effect of Curve Adaptation
(CA) and the newly proposed Smaller Sample technique (SS) by comparing
instances having this option enabled against instances without.
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Fig. 2. Performance on predicting the best classifier.

Figure 2(a) shows the effect of varying the number of (increasingly large)
samples when computing the partial learning curve. It can be seen that using
more samples results almost consistently in better performance, as was expected.
There are some drops in performance, which can probably be attributed to
characteristics of the specific data sets used (e.g., dimensionality). Figure 2(b)
shows the effect of varying the number of nearest neighbours, using odd numbers.
Average Rank remains constant, as it does not use samples nor identify nearest
datasets. Setting k around 9 seem very suitable in this case, but presumably this
depends on the size of the meta-dataset. Setting this value too low might lead to
instable behaviour, whereas setting it too high might result in including many
data sets which are not similar enough.

Both figures show similar trends. Best on Sample dominates the other
techniques in most of the cases, even though this method is rather simple.
Furthermore, both Pairwise Curve Comparison instances using Curve Adap-
tation (CA) outperform the instances without Curve Adaptation. Smaller Sam-
ple (SS) also seems to improve the prediction quality, although the difference is
less prominent. In all, both Best on Sample and Pairwise Curve Comparison
obtain very reasonable performance, advising a (statistically) best or equally
good classifier in more than 85% of the cases.
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4.2 Ranking of Classifiers

In many meta-learning applications it is not enough to simply predict the single
best classifier. When the recommended classifier does not perform well enough,
an alternative should be at hand. Rather than recommending a single classi-
fier, a ranking should be created, ordering the classifiers on their likelihood of
performing well on the dataset. This way, the user can make an informed deci-
sion about which models to try based on the available time and resources. The
standard approach to evaluate such a ranking is to compute the Spearman Cor-
relation Coefficient [17]. However, it has a drawback: it penalizes every wrongly
ranked classifier equally, whereas we typically do not care about incorrect ranked
classifiers after the best one has been identified.

An alternative approach is to use Loss Curves as done in, e.g., [9]. The authors
define loss as the difference in accuracy between the current best classifier and
the global best classifier. In order to find the global best classifier on a dataset,
we evaluate all classifiers on this dataset in a certain order, for example by going
down a ranking. A Loss Curve plots the obtained loss against the number of
classifiers that have been tested. The goal is to find a classifier that has a low
loss in relatively few tests. Usually, this is repeated over many data sets and the
average Loss Curve is reported. Similarly to ROC Curves for which commonly an
Area Under the ROC Curve is calculated, we also can calculate the Area Under
the Loss Curve, in which low values are preferred over high values. Although this
measure is less informative than the Loss Curve itself, it can be used to show
certain trends, e.g. the effect of an algorithm parameter.

Figure 3(a) plots the Area Under the Loss Curve against the number of sam-
ples. Using more (larger) samples typically results in an improved Area Under
the Loss Curve score for Best on Sample and Pairwise Curve Comparison
instances using Curve Adaptation. Again, Average Rank remains constant, and
there seems to be no improvement for Pairwise Curve Comparison instances
without Curve Adaptation. Figure 3(b) shows the Loss Curves. In order not
to overload the figure, we only include the baselines and the Pairwise Curve
Comparison instance using both Curve Adaptation and the Smaller Sample
option. The Best on Sample technique again dominates the other techniques.

Loss Curves assume that every test will take the same amount of time, which
is not realistic. For example, Multilayer Perceptrons take longer to train than
Naive Bayes classifiers. Therefore, it is better to use Loss Time Curves, which
plot the average loss against the time needed to obtain this loss. It describes how
much time is needed on average to converge to a certain loss (lower is better).
The faster such curve goes to a loss of zero, the better the technique is. They
have been used before in the Optimization literature [6].

Figure 4 shows the results of the same experiment in Loss Time space.
Figure 4(b) shows the Loss Time Curve, scaled to the part where the average
loss is lower than 10%. Compared to Fig. 3(b), it shows that while Pairwise
Curve Comparison needs more tests to converge to an acceptable loss, it does
so in less time. However, the results for other values of T (number of tests),
shown in Fig. 4(a), are less conclusive. Controversially, adding samples does not
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Fig. 3. Performance of ranking of classifiers in Loss space.
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Fig. 4. Performance of ranking of classifiers in Loss Time space.

lead to better results in Loss Time space. The reason for this is that none of
the involved methods are taking training times into account when building a
ranking.

4.3 Incorporating Run Times

Next, our aim is to involve run times in the classifier selection process and
establish that this improves the performance of the meta-algorithm in Loss Time
space. One way of doing so can be trading off accuracy and speed. Naively
ranking the classifiers in the order of run times yields bad results. Therefore, we
adjust Pairwise Curve Comparison to compare and select classifiers based on
their A3R′ scores, as introduced in Sect. 3. Both baseline methods are adjusted
in a similar way. Similar datasets are still identified using learning curves based
on predictive accuracy scores (recall that the meta-algorithm potentially uses
different evaluation measures to identify similar datasets and select classifiers).

Figure 5(a) compares the ranking obtained by Pairwise Curve Comparison
using A3R′ against all methods building the ranking based solely on accuracy.
As expected, the gain in performance is eminent. Pairwise Curve Comparison
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using A3R′ converges to an acceptable loss level orders of magnitude faster than
the baselines, because it is the only technique that takes run times into account.

In order to make a more fair comparison, we also adjust the baseline tech-
niques in a straightforward way, such that these also rank the classifiers based on
A3R′ rather than accuracy. Figure 5(b) shows the results of the same experiment
run with the baselines incorporating A3R′. Indeed, the A3R′ criterion is useful
in these methods as well, all reducing the accuracy loss drastically faster than
before. However, the Pairwise Curve Comparison method still dominates the
other techniques, though the differences are smaller.

Finally, A3R′ has a parameter r that allows users to control the importance
of accuracy and run times. Increasing the value of r decreases the importance
of run times when selecting classifiers. We track the effect of this parameter in
Loss space and Loss Time space. Figure 6(a) shows that the methods emphasizing
accuracy converge to a low loss in few tests, since they focus on classifiers that
are probably good, but potentially slow. However, Fig. 6(b) shows that they do
not converge faster in Loss Time space. Evaluating faster methods earlier clearly
pays of, especially if there is limited time to select a classifier.
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5 Conclusion

This paper addresses the problem of algorithm selection under a budget, where
multiple algorithms can be run on the full data set until the budget expires.

We have extended the method presented in [8] such that it generates a ranking
of classifiers, rather than just predicting the single best classifier, and evaluated
it using a much larger amount of classifiers. Interestingly, a simple and elegant
baseline method called Best on Sample outperformed this method in our exper-
iments, selecting good classifiers in fewer tests. However, when tested in a more
realistic setting where the budget is time, rather than a number of tests, and
using a novel selection criterion, A3R′ (which trades off accuracy and run time),
the newly proposed method outperformed all baselines. This suggests that it is
very suitable for algorithm selection applications with a limited time budget.

Another contribution of this work is the use of Loss Time Curves to study
meta-learning algorithms which, to the best of our knowledge, have not been
previously used in the meta-learning literature. Future work will focus on adapt-
ing other meta-learning techniques with the A3R′ criterion and/or evaluating
them in Loss Time space, as this might lead to even more valuable insight.
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Abstract. In business and academia we are continuously trying to
model and analyze complex processes in order to gain insight and
optimize. One of the most popular modeling algorithms is Kriging, or
Gaussian Processes. A major bottleneck with Kriging is the amount of
processing time of at least O(n3) and memory required O(n2) when
applying this algorithm on medium to big data sets. With big data sets,
that are more and more available these days, Kriging is not computa-
tionally feasible. As a solution to this problem we introduce a hybrid
approach in which a number of Kriging models built on disjoint subsets
of the data are properly weighted for the predictions. The proposed model
is both in processing time and memory much more efficient than stan-
dard Global Kriging and performs equally well in terms of accuracy. The
proposed algorithm is better scalable, and well suited for parallelization.

Keywords: Kriging · Gaussian Processes · K-means · Clustering ·
Big-data · Regression

1 Introduction

Regression as supervised learning is an important tool for analysis of data sets
and as sub goal for further optimization or gaining knowledge about the data
sets and their underlying processes. There are many kinds of regression algo-
rithms: parametric models, which are easy to interpret but may lack expressive
power to model complex functions, Regression Tree based methods like Ran-
dom Forests [3] or Gradient Boosted Decision Trees, which lack the advantage of
interpretation [7] but have more expressive power. There are also more complex
algorithms like Neural Networks, or Extreme Learning Machines [15], that are
able to model very complex functions but are usually not easy to work with in
practice. And last but not least there are kernel-based methods such as Sup-
port Vector Machines, Radial Basis Functions and Kriging [16]. These kernel
based algorithms are flexible and easy to work with, but are computationally
expensive.

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-24465-5 27
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Kriging is a stochastic interpolation/regression approach, which originates
from geostatistics [16] and originally targets exploration problems in mining. It
has been widely used in spatial interpolation and regression tasks. Note that the
Kriging method is also called Gaussian Process Regression [21] in the machine
learning literature. In addition to generating predictions, Kriging also provides
the expected mean squared error of point estimates, so-called Kriging variance.
The Kriging variance is of significant importance because it is typically used
to measure the uncertainty of the predictions, but in this paper, it also serves
to find an optimal weighting scheme to combine multiple independent Kriging
models.

Notation. Through this paper, we shall use n, k, d to denote the size of the data
points, the number of clusters and dimensionality, respectively.

A major problem with Kriging, is the complexity of training the model, which
requires solving a dense linear system of size n × n, which takes O(n3)1. Even
more time is required when estimating the hyper-parameters. The algorithm
also takes O(n2) memory, which might be a bottleneck in big data sets as well.
In this paper a new algorithm is proposed, Optimally Weighted Cluster Kriging
(OWCK), as an answer to this complexity problem. Using a clustering method
we divide the possible big data set into k much smaller data sets, on each data set
a Kriging model is being trained and the results from each model are combined
to create a predictor in an optimal way. Using this method we can achieve a
theoretical speedup of k2 (k is the number of clusters), and when executing on
a parallel system with k CPU’s, we can improve that further to almost k3. The
memory required by the algorithm is reduced by factor k2.

In Sect. 2 a brief introduction to Kriging is given. Then, in Sect. 3 relevant
research is reviewed and in Sects. 4 and 5, our method and the results from
our experiments are presented and discussed. Finally, a conclusion is drawn and
suggestions for further research are made.

2 Kriging

Kriging is based on the assumption that the function to be approximated is the
realization of a Gaussian Random Field with known (or estimated) covariance
structure [22]. Based on the this assumption, Kriging interpolates function values
at unknown points from observed function values. Normally, the Kriging model
is trained on some input vector X = {x1, . . . ,xn} and the corresponding target
values y = {y(x1), . . . , y(xn)}. Kriging estimates the output at unknown data
samples by modeling the response values as a realization of a random process y,
which is a sum of a mean function μ(·) and a centered Gaussian process ε,

y(x) = μ(x) + ε(x)

The centered Gaussian process ε is a stochastic process, which is completely
defined by providing a prescribed covariance function k(·, ·) [21]:
1 There are asymptotically faster algorithms for inverting a matrix. e.g. Strassen’s
O(n2.807) and Stothers O(n2.373).
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k(x,x′) = Cov[ε(x), ε(x′)] = E[ε(x)ε(x′)].

A common choice of k(·, ·) is the Gaussian covariance (also known as squared
exponential):

k(x,x′) =
d∏

i=1

exp
(−θi(xi − x′

i)
2
)
, (1)

where θi’s are called hyper parameters, which are either predetermined or esti-
mated through model fitting. When the mean values μ(·) are assumed to be
constant but need to be estimated, the method is called Ordinary Kriging (OK).
In OK, the joint distribution of the (uncertain) outcome yt(xt) at a target point
xt and the observations y is Gaussian. In addition, for given X and μ it holds:

[
yt

y

] ∣
∣
∣μ,X,xt ∼ N

(

μ1n+1,

[
c cT

c Σ

])

, (2)

where
c = k(xt,xt), ci = k(xt,xi), Σij = k(xi,xj),

and 1n+1 represents a column vector of length n + 1 that contains only 1’s.
By introducing a non-informative uniform prior distribution on μ, the pos-

terior conditional distribution of yt can be calculated by marginalizing μ out.
Without any derivations, the posterior distribution for OK is again Gaussian [11]:

yt|y,X,xt ∼ N (
m(xt), s2(xt)

)
(3)

m(xt) =
[

c +
(

1 − cTΣ−11n

1T
nΣ−11n

)

1n

]T

Σ−1y (4)

s2(xt) = c2 − cTΣ−1c +
(1 − cTΣ−11n)2

1T
nΣ−11n

(5)

The posterior mean function is used as the predictor while the posterior variance
is the so-called Kriging variance.

3 Relevant Research

The high computational complexity of Kriging is not an unnoticed problem in the
world of data analysis and modeling. Several modifications and algorithms are
already proposed. One of the most intuitive and “simple” algorithms is Nearest
Neighbour Kriging [8], where we train a Kriging model using only k neighbours
of the point we want to predict. The disadvantage of such an algorithm is that we
need to train a model for each record we want to predict. Another disadvantage
is that the accuracy suffers greatly when not enough neighbours are being used.

Another modification to Kriging is the approximation of the covariance
matrix with a sparse precision matrix by Hartman, L. and Hössjer, O. [12].
In this paper they use Gaussian Markov Random Fields (GMRF) on a reason-
able dense grid to exploit the computational benefits of a Markov field while
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keeping the formula of Kriging weights. This method reduces the complexity for
simple and ordinary Kriging, but might not always be efficient with universal
Kriging. Another algorithm, focused especially on data sets with scattered data
points uses fast matrix-vector products to reduce the training complexity [18].

Several other attempts have been made to divide the Kriging model in sub-
models [6,19], each solution for different domains. In [6], a Bagging [2] method is
proposed to increase the robustness of the Kriging algorithm, rather than speed-
ing up the algorithms training time. In [19], a partitioning method is introduced
to separate the data points into local Kriging models and combine the different
models using a distance metric.

While previously mentioned work has some similarities to what is proposed
in this paper, the weighting and clustering methods being used in previous men-
tioned work seems to be far from optimal.

4 Optimally Weighted Cluster Kriging

As mentioned before, Kriging suffers from high computation time as the number
of sampling points gets high. In this section, we will propose an algorithm that
is suitable for efficiently processing big data sets while maintaining much of the
ideas of Kriging. The basic idea of the new algorithm is to cluster the data
set and build independent Kriging models for each part of the data. The value
of an unknown point is predicted as a linear combination of the predictions
from all the Kriging models. In addition, an optimal weights setting for the
linear combination exists and is calculated. We therefore call the newly proposed
algorithm Optimally Weighted Cluster Kriging.

4.1 Clustering the Data Set

In the first step, the input data samples X should be separated into several
clusters (k clusters here), which can be represented by a set of tuples:

{(Xl,yl)}kl=1, [XT
1 ,XT

2 , . . . ,XT
k ]T = X, [yT

1 ,yT
2 , . . . ,yT

k ]T = y

where y is again the vector containing all of the observed response values. Note
that l is the label identifying the clusters. We also use {nl}kl=1 to denote the size
of each cluster. Within cluster l, all the input data samples can be represented as:

Xl = [xli ]
nl
i=1, and yl = [yli ]

nl
i=1.

In order to cluster the training data for our local models, a clustering algo-
rithm that gives roughly equal sized parts is preferred. This lead us to choosing
two algorithms: K-means clustering, and Random clustering. In Random cluster-
ing we divide the data points at random in k groups by assigning each data point
to an alternating label, with K-means we use the K-means clustering algorithm
to divide the training data into k (< n) clusters using the Forgy [9] method. k
random data points are picked as the initial centroids of the clusters. Next, each
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data point is assigned to the cluster with the least Euclidean distance, after
assigning a data point to a cluster, the cluster’s centroid is updated and the
process is repeated several times. The algorithm minimizes the within-cluster
sum of squares (Eq. 6):

arg min
S

k∑

i=1

∑

x∈Si

||x − μi||2, (6)

where S is the set of clusters, n is the number of data points and μi is the mean
of the points in Si. Note that the within-cluster sum of squares takes only O(nk)
execution time.

Our hypothesis is that using K-means clustering, the Kriging models trained
on each cluster have a high accuracy due to the assumed “local” neighbourhood
of the training data. With Random clustering, we hypothesize that each model is
equally fitted, since each data set has roughly the same structure. Using random
clustering we assume that the weighted combination will be more robust than
normal Global Kriging.

4.2 Kriging Model on Clusters

The next step is to fit a Kriging model for each of the clusters. The procedure
is the same as described in Sect. 3 except that each Kriging model has its own
distinct data set. The Kriging formula for each cluster can simply be obtained
by adding the cluster label l to the data set and all the parameters (e.g. μ) in
Eq. 2. On cluster l, the joint distribution of the response-values to predict the
observed data is:

[
yt

yl

] ∣
∣
∣μl,Xl,xt ∼ N

(

μl1nl+1,

[
cl cTl
cl Σl

])

(7)

cl = kl(xt,xt), cli = kl(xt,xli), Σlij = kl(xli ,xlj ).

Note that the covariance function is also indexed by l due to the fact that we
might choose a different covariance function for each cluster. The predictive
conditional distribution can be expressed as:

yt|yl,Xl,xt ∼ N (
ml(xt), s2l (x

t)
)

(8)

The formula above is exactly the same as Eq. 3 except that the posterior mean
and variance are labeled by l. We choose the Gaussian covariance function (Eq. 1)
for all the Kriging models on the clusters. The hyper-parameters in the covari-
ance function are fitted by Maximum Likelihood Estimation (MLE) [21]. In
our algorithm, the Cobyla [20] algorithm is used to solve the maximum likeli-
hood estimation task. The nugget parameter that specifies the amount of noise
expected, is set to 0.01 in our experiments but can be set differently depending
on the data.
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4.3 Weighting Distribution

In order to combine multiple Kriging models, trained on different clusters of
data, a straightforward method is to use a weighting distribution to model how
much “trust” should be put on the prediction from each cluster. By using cluster
indicator variable C, the weighting vector w can be written as:

w = {p(C = l) = wl}kl=1,
k∑

l=1

wl = 1, wl ≥ 0,

which is non-negative and satisfies the normalization property. Unlike the weights
in the Gaussian mixture model [13], the weighting distribution w depends on
the target data sample xt. The optimal setting of w is discussed in the following
sections.

4.4 Prediction Using All the Kriging Models

We will show how to make the overall prediction using all the Kriging models
by combining the predictions from each of them. The background assumption
is that the Gaussian Processes (behind the Kriging models) on the clusters are
mutually independent from each other, which is reasonable due to our clustering
procedure. Our approach is to first obtain the joint distribution of yt(xt) and
y. Actually, it is the joint distribution conditioning on X,xt and y. We omit
the conditional symbols in the following for simplicity. By applying the total
probability with respect to the cluster indicator variable C, we have:

p(yt,y) =
k∑

l=1

p(yt,y|C = l)p(C = l)

=
k∑

l=1

p(yt, {yi}ki=1|C = l)p(C = l)

=
k∑

l=1

p(yt,yl|{yi}i�=1, C = l)p({yi}i�=l|C = l)p(C = l)

Due to the fact that yt,yl are conditionally independent of {yi}i�=l given C = l,
the equations above can be further simplified to:

p(yt,y) =
k∑

l=1

p(yt,yl|C = l)p({yi}i�=l|C = l)wl

=
k∑

l=1

p(yt,yl)

⎛

⎝
∏

i�=l

p(yi)

⎞

⎠ wl

The product inside of the sum is again due to the independence. Now we perform
the conditioning on y and omit the cluster indicator variable C:
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p(yt|y) =
p(yt,y)
p(y)

=
k∑

l=1

p(yt,yl)

∏
i�=l p(yi)

∏k
i=l p(yi)

wl

=
k∑

l=1

p(yt|yl)wl (9)

Note that each of the conditional distributions inside of the summation is exactly
the same as the Gaussian conditional distribution obtained from the correspond-
ing cluster. Finally the distribution of yt conditioning on y can be obtained by
combining Eqs. 8 and 9:

yt|y ∼ N
(

k∑

l=1

wlml(xt),
k∑

l=1

w2
l σ

2
l (x

t)

)

(10)

Equation 10 suggests that the overall prediction is simply the weighted aver-
age of the prediction from each cluster while the prediction mean square error
(variance) is also the weighted average of variance from each cluster, where the
weight is squared.

4.5 Optimal Weighting

Equation 10 also suggests that an optimal weighting distribution exists and can
be obtained by minimizing the variance of the weighted average. Thus, by putting
all the variances into the diagonal of a matrix Q = diag(σ2

1 , . . . , σ
2
k), the optimal

weighting w∗ is the solution to the following optimization problem:

minimize: wTQw subject to:
k∑

l=1

wl = 1, wl ≥ 0, l = 1, . . . , k.

This quadratic programming problem can be immediately solved by the method
of Lagrangian multipliers [1]. The optimal weights setting is:

w∗ =
Q−11k

1T
kQ−11k

, (11)

Equation 11 gives the optimal setting of the weighting distribution for our
approach. Note that matrix Q is invertible if and only if the conditional variances
of the prediction (diagonal elements) are not zero, which is guaranteed because
the prediction is not performed on any of the data samples.

4.6 Pseudo Code

In Algorithm 1 an outline of the algorithm is presented. Any algorithm can be
used to create the clusters for training the models, though to gain maximal
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speedup the clusters should be of the same size. In the prediction phase a method
OptimiseWeights is used. This method uses the predicted mean squared errors
from the Kriging models in order to find an optimal weighting distribution per
prediction.

Algorithm 1. Optimally Weighted Cluster Kriging
Given: A data set Xtrain and Xtest with records x1, . . . , xn, a target attribute y and

the number of clusters k
Initialization:
Clusters = k − MEANS(Xtrain, k)

for all Cli ∈ Clusters do
Models[i] = Kriging .train(Cli)

end for
Predictionsfinal = []
for all xi ∈ Xtest do

Predictions = []
MSE = []
for all modeli ∈ Models do

Predictions[i],MSE[i] = modeli .predict(xi)
end for
Weights = OptimiseWeights(MSE)
Predictionsfinal[i] = WeightedSum(Predictions,Weights)

end for
return Predictionsfinal

5 Experimental Setup and Results

We assessed the performance of Optimally Weighted Cluster Kriging (OWCK)
on several known benchmark functions from the DEAP [10] Python package:
Rastrigin, Rosenbrock, Ackley, Himmelblau, H1, Schwefel, Schaffer, and Diffpow.
On these functions, Ordinary Kriging and OWCK were tested. The reason to
use Ordinary Kriging is due to its applicability and simplicity. Both k-means
and Random partitioning are used in the experiments. For each experiment the
number of data samples ranges from 1000 to 10.000 records, in two and five
dimensions. Five-fold cross validation is used on each of these runs, effectively
using 4/5 of the data samples as training set and 1/5 as test set. The results
shown are the averaged results from the five folds.

In the Tables 1 and 2 the R2 scores of the functions in 2 dimensions are
presented. The number of the clusters tested here are 4, 8, 16, 32, 64. For each
column, the entries are shaded in different levels of gray depending on their
value. The best scores in each column are the most dark, the lower scores are
more light.

In Tables 3 and 4 the results from the same algorithms on 5 dimensional
functions are shown.

In Fig. 1 the execution time per algorithm is shown for the Rastrigin function.
Note that 4/5 of the data was used for training and 1/5 for predicting in the
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Table 1. Accuracy score of each algorithm (R2) on the benchmark functions in 2
dimensions with a dataset of size 1.000.

Table 2. Accuracy score of each algorithm (R2) on the benchmark functions in 2
dimensions with a dataset of size 5.000.

Table 3. Accuracy score of each algorithm (R2) on the benchmark functions in 5
dimensions with a dataset of size 5.000.
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Table 4. Accuracy score of each algorithm (R2) on the benchmark functions in 5
dimensions with a dataset of size 10.000.

Fig. 1. Execution time per cluster size for the Rastrigin function in 5 dimensions. Using
an Intel Core i7-4910MQ CPU 2.90 GHz, 8 cores and 32 GB of main memory. Running
on one core.

Figure. To gain maximum benefit from the OWCK algorithm, we can process
each cluster on a different thread (on a different CPU core), speeding up the
algorithm linearly in the amount of cores.

6 Conclusions and Further Research

In this paper a novel algorithm which creates multiple small Kriging models
and combines these models using an optimally weighting method is presented.
It is shown that the Optimally Weighted Cluster Kriging model outperforms
Ordinary Kriging in both execution time and accuracy. The number of clusters
that should be used depends a lot on the size of the dataset and partly on the
nature of the dataset as well. When a dataset with n points is split into k clusters
of roughly equal size, our method reduces both the required execution time and



320 B. van Stein et al.

memory by factor k2. Moreover, the algorithm can be parallelized, providing yet
another speedup factor that is linear in the number of workers. In practice, it
pushes the limits of applicability of Kriging from thousands to millions of data
points.

For further research several extensions and generalizations can be made to
improve the algorithms accuracy. One could look for example for different clus-
tering methods. An interesting candidate is Mixture of Gaussians [17], where
each point has a probability to belong to a certain cluster. Using these proba-
bilities we may derive new weighting schemes that might perform better. The
method used for comparing the different Kriging algorithms can be expanded by
using a comparison framework as proposed in [5], as well as comparison with a
few other recent Kriging variations [4,14]. Moreover, the nugget of the Kriging
model plays an important role in training the model and has a big effect on the
accuracy of the models, in further research we should exploit a way to optimize
the nugget parameter for both the Ordinary Kriging model as well as for the
cluster models.
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Abstract. Incremental learning is useful for processing streaming data,
where data elements are produced at a high rate and cannot be stored. An
incremental learner typically updates its model with each new instance
that arrives. To avoid skipped instances, the model update must finish
before the next element arrives, so it should be fast. However, there can
be a trade-off between the efficiency of the update and how many updates
are needed to get a good model. We investigate this trade-off in the
context of model trees. We compare FIMT, a state-of-the-art incremental
model tree learner developed for streaming data, with two alternative
methods that use a more expensive update method. We find that for data
with relatively low (but still realistic) dimensionality, the most expensive
method often yields the best learning curve: the system converges faster
to a smaller and more accurate model tree.

1 Introduction

Data stream mining is a subfield of data mining that is concerned with analyzing
streaming data. There are multiple types of learning tasks in this setting. We
here focus on the task of learning a predictive model for the data elements in the
stream; that is, given a stream of elements of the form (xi, yi) ∈ X × Y, learn
a model M : X → Y that predicts y from x. This task is identical to standard
predictive learning, except for one additional constraint: each data element can
be looked at only once (and briefly). This setting is ubiquitous in the context of
“big data”; for instance, sensors produce large amounts of data at a high pace,
and often these data must be analyzed online.

There has been a significant amount of work on adapting several types of
data mining methods to the stream context. Commonly, methods that construct
predictive models are adapted such that they become incremental: that is, they
start with an initial model and update their model each time a new data element
is observed. Ideally, the model learned in this way converges to the model that
would be learned if all data were stored in a database and, next, a regular
learner were used. The incremental learner has the advantage that some model
is available at any point in time, well before all data have arrived.

c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 322–333, 2015.
DOI: 10.1007/978-3-319-24465-5 28
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Ideally, the update step is computationally light enough that it can be per-
formed in the time interval between the arrival of two data elements. If this
is not the case, then the learner has to skip elements that arrive before it is
ready to handle another input, which may slow down learning. However, more
efficient update methods may result in lower-quality updates, which may lead
to more updates being needed to achieve the same model quality. Moreover, a
more expensive update does not necessarily result in skipped instances: as long
as it finishes before the next example arrives, the overall learning time is not
affected, only the idle time between instances is reduced.

Based on these considerations, we investigate incremental model tree learn-
ers. Ikonomovska et al. [5] have proposed an incremental model tree learner,
FIMT, that can be considered the state of the art in model tree learning from
streaming data. In this paper, we propose two alternative model tree learners
for streaming data, iRetis and iMauve. Both methods use the same approach for
keeping statistics and deciding the best time to split the tree compared to FIMT.
However they employ a more complicated split heuristic and model update mech-
anism, which should enable these methods to choose splits more intelligently. We
experimentally evaluate how they compare to FIMT. We find that, for relatively
low-dimensional data, the most complicated update method often gives the best
learning curve: it converges faster to simpler and more accurate model trees.

Section 2 discusses related work and describes FIMT in detail. Section 3
describes the modifications that yield iRetis and iMauve. Section 4 reports on
experiments, and Sect. 5 concludes.

2 Background and Related Work

A decision tree is a rooted tree where each internal node contains a test and
has one child for each outcome of the test. In the machine learning context,
such a tree can be used as a predictive function: instances are sorted down the
tree based on their test outcomes, and the leaf they end up in contains the
prediction. Trees that make numerical predictions are called regression trees.
While regression trees often contain a constant prediction in each leaf, variants
exist that have a linear model in the leaf; these are called model trees [7]. A model
tree defines a piecewise linear function.

Most decision trees learners learn the tree top-down [2,8]. They determine
which test should be at the root of the tree by evaluating all possible tests on the
whole dataset, choosing the best one (according to some heuristic), and splitting
the data according to this test. They then repeat the procedure for the child
nodes, and so on until leaves are obtained.

The above assumes access to the whole data set at any time. Incremental
learners do not require this: they start with an empty model, and update this
model each time they see a new example. By definition, they need to decide on
which test to put in a node before seeing the whole dataset. But a test that
seems optimal at this time may later turn out not to be. There are three ways of
dealing with this: (1) choose a test that may yet turn out to be non-optimal, and
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repair the tree afterwards if necessary (by restructuring it or simply discarding
part of the tree and learning it anew); (2) wait until there is enough statistical
evidence to make it highly unlikely that the chosen test will turn out non-optimal
later on; or (3) simply accept that a non-optimal tree is learned.

In their seminal work on VFDT (“very fast decision tree learner”), Domingos
and Hulten [3] advocate the second approach. Using so-called Hoeffding bounds,
they characterize under which conditions there is sufficient statistical evidence
that the test that seems optimal at this point is equal to the one that would
seem optimal when looking at the whole dataset. Since VFDT, multiple tree
learners have adopted the use of Hoeffding bounds; these are called Hoeffding
tree learners. It is in this seam of work that Ikonomovska et al. [5] have introduced
Fast Incremental Model Trees (FIMT), an algorithm that incrementally learns
model trees from streams, using Hoeffding bounds. As our work builds on it, we
describe FIMT in detail in the following section.

2.1 FIMT

Like VFDT, FIMT starts off with an empty leaf, reads the examples from the
stream as they arrive, and gradually splits leaves (turning them into an internal
node) when there is sufficient evidence that the proposed split is optimal. To
this aim, it keeps some statistics in each leaf, and for each incoming example the
corresponding leaf is determined and its statistics updated. Sufficient statistics
must be kept, taking into account that not only the tree structure, but also the
linear model in the leaves must be learned incrementally. As the statistics are not
expected to differ significantly between consecutive examples, FIMT considers a
new split only once every Nmin examples.

Splitting. FIMT assumes numerical input attributes and uses tests of the form
Xi < c with Xi an input attribute and c a threshold; c is also called a “split
point”. FIMT first finds the best split point for each attribute, and then ranks
these attributes according to the Standard Deviation Reduction (SDR) measure,
which for a split of S into SL and SR is defined as:

SDR(S, SL, SR) = sd(S) − NL

N
sd(SL) − NR

N
sd(SR), (1)

sd(S) =

√
√
√
√ 1

N

(
N∑

i=1

(yi − y)2
)

=

√
√
√
√
√

1
N

⎛

⎝
N∑

i=1

y2
i − 1

N

(
N∑

i=1

yi

)2
⎞

⎠ (2)

Equation (2) shows the SDR can be computed efficiently and incrementally, by
maintaining the sum of (squared) y values and the number of data points.

FIMT considers the ratio of the SDR values for the two best candidate splits,
r = SDR1/SDR2, with SDR1 the best and SDR2 the second best SDR value.
FIMT uses the Hoeffding probability bound [4] to state with confidence 1 − δ
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that the sample average r over the N values for r, which have range R, is within
distance ε of the true average:

ε =

√
R2 ln(1/δ)

2N
. (3)

With confidence 1 − δ, the upper bound of the true average of r is r + ε. If this
upper bound is below 1, the true average of r is below 1 (and ca is the best split)
with confidence 1 − δ, and the split is applied.

FIMT builds an Extended Binary Search Tree (E-BST) for the values of
each attribute to efficiently maintain the necessary statistics for split quality
calculations. The tree structure of an E-BST is like a regular BST, but each
node maintains two arrays of statistics; one for attribute values less than or
equal to the node value, and one for attribute values greater than the node
value. A BST structure allows for O(log(n)) average insertion time, and O(n)
worst case insertion time. When a leaf node of the regression tree is split, its
E-BST structure is discarded, and two new structures are instantiated for the
children of that node.

Leaf Models. FIMT maintains a linear perceptron without activation function
in each leaf of the model tree. If each data point has m attributes, the linear
model will hold a weight vector w of length m + 1, and the prediction ŷ for a
data point x is calculated as follows:

ŷ = w0 +
m∑

i=1

xiwi (4)

The weights are updated with each arriving example using the Delta (a.k.a.
Widrow-Hoff) rule:

wi ← wi + η (ŷ − y)x′
i, i = 1, . . . , m (5)

with x′
i = (xi −xi)/(3σi) a normalized version of xi; xi and σi are the mean and

standard deviation of attribute i. This update procedure has time complexity
O(m), which makes it very suitable for dealing with high-speed data streams;
furthermore, the Delta rule is known to converge even if the data points do not
represent a straight line.

3 The iRetis Algorithm

The learning algorithm we propose is similar to FIMT, except for two impor-
tant points. First, while FIMT finds the split that maximally reduces standard
deviation, like M5 [7], our method tries to minimize the residual variance after
learning a linear model in both subtrees, which makes more sense into model
tree learning setting (but is also computationally more complex). Second, while
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FIMT gradually approaches the optimal regression line using perception learn-
ing, our approach at each point in time computes the least-squares regression
function for the data seen until then. Again, this is computationally more com-
plex, but may enable the learner to reach comparable levels of accuracy with
fewer required observations. We next discuss these differences in more detail.

3.1 The Mauve and Retis Heuristics

The quality measure of FIMT’s splitting criterion is based on standard deviation
reduction. Even if the observed data points are perfectly linear, the SDR will
be non-zero, which indicates that splitting a leaf node can improve the overall
model. Vens et al proposed a splitting criterion based on regression called Mauve
[10]. The Mauve heuristic inspects the standard deviation of the residuals after
performing linear regression, rather than the attribute values. A simple linear
regression (i.e., using one predictor variable) is performed, using as predictor the
attribute for which a split is being considered. A model is built for the leaf node
as well as the two hypothetical children that arise from the split. As a result,
the splits chosen by Mauve are better adapted to the fact that the leaves will
contain linear models, not constants.

By expanding the statistics that are kept in the E-BST structure with the
sum of attribute values xj , the sum of squared attribute values x2

j and the sum
of the product of attribute and target values xjy, it is possible to calculate the
residual standard deviation for simple regression on attribute j at any time.
Let ei be the residual for example i and e be the residual mean. The residual
standard deviation in a leaf model l is:

RSD(l) =

√
√
√
√ 1

N

N∑

i=1

(ei − e)2. (6)

Since Mauve considers simple regression, the model expression for an attribute
xj will be of the form ŷ = a + bx. Using the substitution ei = ŷi − yi in Eq. (6),
the residual standard deviation becomes:

RSD(l) =
∑

i

y2
i − 1

N

(
∑

i

yi

)2

−
(∑

i xiyi − 1
N

∑
i xi

∑
i yi

)2

∑
i x

2
i − 1

N (
∑

i xi)
2 (7)

Since this method considers only the split attribute in its regression, it is
possible that some components of the target function will not be modeled. We
can extend the Mauve heuristic to multiple linear regression. In that case we are
effectively using the Retis heuristic [6]. We will refer to this algorithm as iRetis.
In this case, the residual for an example i can be written as:

ei = β0 + βxi − yi. (8)

Substituting the new definition of the residual in Eq. (6), we get the following
expression for the residual standard deviation RSD and residual variance RV ar,
using complete linear regression in m attributes:
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RV ar(l) =
1
N

(
∑

i

(βxi)2 +
∑

i

y2
i − 2

∑

i

(βxiyi)

)

− 1
N2

⎛

⎝

(
∑

i

βxi

)2

+

(
∑

i

yi

)2

− 2
∑

i

yi
∑

i

βxi

⎞

⎠

RSD(l) =
√

RV ar(l) (9)

From this equation we can deduce the statistics we need to keep in order
to calculate the residual standard deviation incrementally. The most obvious
statistics are the number of observed data points N , the sum of y values and
the sum of squared y values. The term βxi can be expanded to

∑m
j=1 βjxi,j . By

re-arranging the sums we observe
∑

i

βxi =
∑

j

βj

∑

i

xi,j ,

revealing the need to keep track of the sums of attribute values. Finally we
observe the term

∑
i(βxi)2. By expanding the term βxi as above we get:

∑

i

(βxi)2 =
∑

i

⎛

⎝
∑

j

(βjxi,j)2 + 2
∑

j<k

βjxi,jβkxi,k

⎞

⎠.

This last equation shows the need to keep track of the sum of squares of attribute
values, and the sums of the products of all combinations of attribute values.

The amount of statistics kept for each split is m2

2 +3m+3. Like FIMT, these
statistics are kept in an E-BST structure. There is one such structure for each
attribute. Every E-BST grows by one node with each data point. This brings the
total amount of statistics kept during algorithm execution to mn(m

2

2 + 3m + 3).
This is a higher count than just storing each data point, however this structure
allows us to immediately calculate the residual standard deviation reduction
for every split, for a complete linear regression. Additionally it allows us to
instantiate the weights of the linear models in the child nodes of a split to
the least squares estimate immediately. This contrasts with FIMT, where the
weights of child nodes are set equal to the weights of the parent node after a
split, thus needing additional data points to converge to their new values. After
a split is made, the E-BST structure for that attribute is discarded, freeing up
the memory it occupied.

3.2 Incremental Linear Regression

While FIMT’s perceptron update rule has a low time complexity for a single
update, a large number of updates is required for the perceptron to converge.
After each split, the amount of data points arriving in the children of that split
is halved on average. As the tree grows larger, the individual perceptrons in the
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leaves observe ever fewer data points, causing them to converge very slowly in
later stages of learning. Therefore we propose a method based on linear least
squares regression to estimate the weights of the linear models in the leaves.
The least squares estimation of the weights is β̂ =

(
xTx

)−1
xT y.

The elements of xTx and xT y can be updated incrementally, as each data
point is observed. Therefore it is possible to have a least squares estimate of
the weight vector at any time during learning. It is important to note that the
elements of both matrices all appear in the necessary statistics for calculating
the residual standard deviation described in the previous section. As a result,
there is no need to explicitly keep these matrices in memory.

To acquire this estimate, it is necessary to invert the matrix xTx and multiply
it with xT y. The time complexity of the matrix inversion and matrix multiplica-
tion steps is O(m3). Slightly faster multiplication and inversion algorithms exist,
however they are not used here since they only provide an advantage on very
large matrices. This time complexity is significantly slower than FIMT’s O(m)
perceptron update rule. However, for relatively small values of m, this difference
might not be troublesome.

4 Experiments

We experimentally compare iRetis, iMauve and FIMT in terms of the size of
the induced model tree, the execution speed and accuracy. We investigate the
following hypotheses:

i iRetis and iMauve learn smaller trees compared to FIMT,
ii learning smaller trees will not result in loss of accuracy, thanks to the

improved splitting heuristic,
iii iRetis and iMauve require fewer data points to reach the same level of accu-

racy as FIMT, because they choose splits more intelligently and immediately
instatiate linear models in the child nodes of a split with the proper least
squares estimate.

4.1 Setup

We took eleven datasets from Lúıs Torgo’s collection of datasets [9] and the UCI
machine learning repository [1]. Data for the CART dataset is drawn from two
distinct hyperplanes, with noise added. We also added a noiseless version of this
dataset; iRetis should build a model with zero error on such a dataset.

On each dataset a 10-fold cross-validation was performed. The same folds
were used for each algorithm. During training, each algorithm received data
samples from the training set in the same order. The results listed in Tables 1
and 2 are the average values over the 10 folds. The metrics listed are relative to
FIMT’s performance (i.e. FIMT’s score is 1 for all metrics for all datasets). The
plots shown in Figs. 1, 2, 3, and 4 were generated by taking the average RRSE
at each evaluation point over the 10 folds.
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Table 1. Results for RRSE, Tree Size and runtime. Additionally the number of
attributes d and the number of samples N is shown for each dataset.

d N iRetis iMauve

RRSE Size Time RRSE Size Time

Friedmann 10 40768 0.566 0.716 7.619 0.735 0.862 1.198

Lexp 5 4000 0.471 0.688 8.012 0.875 0.907 1.251

Cal housing 8 20640 1.100 0.765 4.508 1.144 1.084 1.106

CART 10 40768 1.033 0.794 1.707 2.401 0.146 1.622

Losc 5 4000 0.637 0.847 4.824 0.697 0.904 1.239

Paraboloid 12 4000 0.168 0.907 2.166 0.215 1.035 1.269

CARTNoiseless 10 4000 0.000 0.365 1.939 11.883 0.232 1.565

Ailerons 40 13750 0.183 0.727 5.087 0.197 1.580 1.032

PoleTelecom 26 15000 0.279 0.586 4.811 0.501 1.036 1.200

CPU 21 8192 0.642 0.864 15.173 2.317 1.515 1.115

Physicochemical 9 45730 1.094 0.734 5.105 1.052 1.009 1.107

Abalone 8 4177 0.928 1.059 4.662 1.094 1.507 1.144

Avg Rank 1.33 1.25 3 2.42 2.42 2

Avg Rank FIMT (2.25) (2.33) (1) (2.25) (2.33) (1)

4.2 Results

Table 1 shows the end results for all datasets, as well as the number of attributes
and examples in those datasets. The average rank for each algorithm over the
datasets is shown at the bottom of the tables. To test the performance of iRetis,
we use the Friedman test followed by the Bonferroni-Dunn post-hoc analysis.
The null hypotheses in the Friedman test is that all algorithms have equal per-
formance. If the Friedman test statistic is larger than a critical value, determined
by the amount of algorithms and the amount of datasets, the null hypotheses
can be rejected and we can follow up with the post-hoc analysis. The Bonferroni-
Dunn post-hoc analysis defines a critical distance for the average ranks of two
algorithms. If the difference in average ranks is more than this critical distance,
the difference can be regarded as significant.

The critical value for the Friedman test with 3 treatments (the algorithms)
on 12 blocks (the datasets) is Q∗

0.05 = 6.500 for a confidence level α = 5%. The
critical distance at this confidence level is CD = 0.879.

For the tree size metric, we calculate Q = 10.17 > Q∗
0.05, therefore we reject

the null hypothesis. Since the differences in average rank of iRetis compared to
the other algorithms is greater than CD, we can conclude that iRetis tends to
find smaller trees than the others. The difference between iMauve and FIMT is
not significant.

In terms of runtime, we observe no differences in rank between the datasets:
FIMT is always the fastest, and iRetis is always the slowest. This result is sig-
nificant at α = 0.05.
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Table 2. Results for the data stream simulation experiment.

iRetis iMauve

RRSE Size Time DSR RRSE Size Time DSR

Friedmann 0.567 0.599 8.379 0.177 0.734 0.860 1.204 0.000

Lexp 0.543 0.553 13.857 0.091 0.875 0.907 1.249 0.000

Cal housing 1.072 0.719 6.337 0.064 1.143 1.083 1.073 0.000

CART 1.033 0.794 2.826 0.000 2.401 0.146 2.582 0.000

Losc 0.637 0.786 7.516 0.043 0.697 0.904 1.279 0.000

Paraboloid 0.171 0.907 3.296 0.002 0.215 1.035 1.132 0.000

CARTNoiseless 0.000 0.365 4.155 0.000 11.883 0.232 2.709 0.000

Ailerons 0.179 0.356 3.662 0.501 0.198 1.586 1.208 0.000

PoleTelecom 0.740 0.508 6.833 0.190 0.715 1.047 1.725 0.000

CPU 0.749 0.456 7.906 0.491 2.074 1.444 1.137 0.001

Physicochemical 1.158 0.651 6.135 0.112 1.053 1.006 1.095 0.000

Abalone 0.946 1.029 6.587 0.056 1.094 1.507 1.104 0.000

Avg Rank 1.417 1.25 3 2.33 2.42 2

Avg Rank FIMT (2.25) (2.33) (1) (2.25) (2.33) (1)

Fig. 1. Results for Paraboloid

We measured accuracy by means of RRSE. The Q-statistic for the RRSE
results is Q = 8.17 > Q∗

0.05. We can reject the null hypothesis. The differences
in average rank of iRetis compared to the other algorithms is greater than CD,
therefore we can conclude that iRetis converges on more accurate trees than the
other systems. The difference between iMauve and FIMT is again not significant.

These results confirm hypotheses i and ii. Figures 1,2,3, and 4 show how test
set accuracy (measured by RRSE) evolves with the number of training samples
seen by the algorithms. Each point on this plot is the average RRSE over the 10
runs of the algorithm, measured after the corresponding amount of data points
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Fig. 2. Results for Friedmann

Fig. 3. Results for Cal housing

Fig. 4. Results for Physicochemical
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observed. Due to space constraints, we cannot show the plots for all datasets
tested, but on most datasets, iRetis clearly learns more accurate models from
fewer datapoints, as in Figs. 1 and 2. There are some datasets however, where
all methods seem to struggle (shown in Figs. 3 and 4), and the difference is less
clear.

To further investigate the impact of the longer computation time of iRetis,
we have simulated a data stream providing 200 samples per second. This sam-
pling rate was determined by investigating the rate at which iRetis processes
samples, and choosing a rate high enough to cause iRetis to drop samples. Here,
arriving examples are discarded if the previous example has not yet been fully
processed. Table 2 shows the results for this experimental setup. As with the
previous experiment, the values for RRSE, tree size an runtime are metrics rel-
ative to FIMT. Additionally we included the dropped sample rate (DSR), this
is the proportion of samples that was dropped relative to the total amount of
samples in the dataset. The Q-values are still larger than Q∗

0.05 for RRSE, tree
size and runtime. Additionally, we observe that the difference in ranks between
iRetis and the other approaches is still larger than the critical distance. Keep
in mind that the results in Tables 1 and 2 can not be compared directly. The
performance of FIMT will be different, and hence the normalization factor is
different as well. We conclude that even if samples are dropped during learning,
iRetis still finds more accurate trees.

5 Conclusions

We have investigated to what extent incremental model tree learners may benefit
from more complex update procedures. To this aim we implemented two variants
of the current state-of-the-art system FIMT, called iRetis and iMauve. These
use the same EBST structure to manage statistics about the data, and the
same Hoeffding bound to decide the best split points, as FIMT, but they use a
heuristic based on linear regression (simple for iMauve, multiple for iRetis), and
use closed formulas for least-squares regression instead of a perceptron.

Given the more complex splitting heuristic, we expected iMauve to perform
better than FIMT. Surprisingly, the average rank for iMauve was slightly worse
than FIMT’s. However this difference was too small to be of statistical signifi-
cance, and we can not draw any conclusions.

We found that on datasets with a relatively small number of attributes iRetis
builds more compact trees, with comparable or even superior accuracy, compared
to iMauve and FIMT. In terms of the number of examples seen, these models are
also obtained sooner, even when some examples have to be skipped because they
arrive too fast. In other words, slower in terms of computation can still be faster
in terms of actual time, under certain realistic conditions such as relatively low
dimensionality and allowed computation time between examples in the order of
milliseconds or higher.

These results show that updating the model more carefully can pay off, even
if it comes at the expense of number of data points that can be observed. More
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detailed research is needed to identify the conditions under which a more complex
update procedure is warranted.
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Abstract. This paper is motivated by analyzing questionnaire data that
collected from patients who suffer from an orphan disease. In order to
decrease misdiagnoses and shorten the diagnosis time for people who
have not been diagnosed yet but already have a long history of health
problems, a research project about using questionnaire mode and data
analysis methods to predetermine orphan disease has been set up and
questionnaires were designed based on experiences from patients who
already have a diagnosis.

The main focus of this work is to visualize answering patterns that
characterize patients with a specific orphan disease, which questions are
most useful to distinguish between certain orphan diseases and how well
an answering pattern of a specific patient fits to the general pattern of
those patients who share the same disease.

We borrow from the concept of sequence logos, commonly used in genet-
ics to visualize the conservation of nucleotides in a strand of DNA or RNA.
Instead of nucleotides, we have possible answers from a question.

Our proposed visualization techniques are not limited to question-
naires on orphan diseases but also can be applied to any questionnaire
survey with closed-ended questions for which we are interested in answer-
ing characteristics of different groups.

1 Introduction

Questionnaire surveys, which enable researchers to obtain and gather informa-
tion directly from participants, can be used for measuring participants’ knowl-
edge, preferences, attitudes or personal beliefs, also for exploring facts, expe-
riences and present situations [7]. Many questionnaires are using “close-ended
c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 334–343, 2015.
DOI: 10.1007/978-3-319-24465-5 29
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questions”. Possible answers of such questions are limited to a categorical or
ordinal scale, e.g. the Likert scale (yes/no; satisfied/unsatisfied). Instead, “open-
ended questions” offer respondents to express opinions, feelings or suggestions
without being influenced by the researcher, which can help to obtain responses
that individuals give spontaneously. “Close-ended questions” are often
researchers’ first choice because they limit the respondent choices to a fixed
set of finite alternatives that are offered. The ordered options can not only let
respondents easily choose one appropriate position in a series of approval degrees
for a questions but also make the statistical analysis of such questionnaires much
easier [3,9].

Although a sophisticated statistical analysis of such questionnaires can pro-
vide a deeper insight, the domain expert for the questionnaires might not be
familiar with the statistical methods and may have difficulties to interpret the
results correctly. Therefore, we have developed visualization techniques, called
VoQs, which helps domain experts to identify interesting, characteristic and also
deviating answering patterns as well as questions of high interest.

Before we describe VoQs in more detail, Sect. 2 reviews the original motivation
and background to develop this application. Section 3 introduces the core technol-
ogy of VoQs followed by preliminary results, including the principal statistics and
computational methods used in VoQs. Section 4 presents all functionalities and
important characteristics of this application and the visualization aspects with
graphical results. Finally, we briefly outline further extensions of VoQs.

2 The Origin of VoQs

The motivation of developing VoQs application originated from questionnaires
we had developed for patients who might suffer from an orphan disease. Because
rare diseases are often overlooked or misdiagnosed, a clear statement of a final
diagnosis and medical treatment is often linked to reviewing the patient’s history
and the trend of the patient’s constitution [6]. For our questionnaires it was of
interest to visualize how patients with different orphan diseases differ in their
answer patterns, which questions are most useful to distinguish between certain
orphan diseases and how well an answering pattern of a specific patient fits to the
general pattern of those patients who share the same disease. Although we had
already introduced visualization techniques based on multidimensional scaling
that helps to discover outliers and could explain how well different diseases could
be distinguished [2], these visualizations were still too abstract and provided only
an overall view on the data without focus on specific questions.

Individual questionnaires were set up for different groups of orphan diseases,
such as bleeding disorders, pulmonological and neuromuscular diseases. Patients
data were collected through these anonymous questionnaires, which contain, for
instance, information about noticed symptoms, physical constitution in general
and specific sports activities. All questions are close-ended with four ordered
options from “No” to “Absolutely”.
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Fig. 1. Data summary of diagnosis 2: Morbus Pompe

As an example, we focus on the questionnaire for neuromuscular diseases.
So far, it contains data from 366 persons with 13 different diagnoses (e.g. amy-
otrophic lateral sclerosis (ALS), Morbus Pompe). To see how much variation the
answering pattern of a person from a specific diagnosis shows, one could simply
use a bar chart for each question to visualize the absolute or relative frequen-
cies for each possible answer. Figure 1 shows the result for diagnosis 2 (Morbus
Pompe). Questions showing a very uniform answer pattern cannot be consid-
ered to be characteristic for the corresponding disease, whereas questions for
which (almost) all patients choose the same answer might be of more interest –
unless people from all other diagnoses also choose the same answer. Such more
interesting questions for Morbus Pompe are questions Q3 and Q4 where patients
tend to choose option 4 (Absolutely) or questions Q29 and Q33 where option 1
(No) is favored.

However, it is quite tedious, to identify these more interesting questions in
this simple visualization because one can only see the distribution of answers for
each question without emphasizing those that might be of more interest. In order
to highlight those questions with a stronger agreement among the patients under
the considered group, we borrow ideas from sequence logo and other statistical
tests.

3 Involved Statistical Methods

The improved visualization compared to Fig. 1 is shown in Fig. 2. The length of
the bars is no longer equal to the number of participants who answered questions.
Higher bars indicate a stronger consensus among the answers to the specific
question, and colored points at the bottom indicate a significant deviation from
a uniform distribution for the corresponding question in the diagnosis. In order
to explain how the height of the bar is calculated, and the settings for calculating
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Fig. 2. Diagnosis 2 – Morbus Pompe disease

p-values, we briefly review the concepts of entropy, sequence logos, Chi-square
test and Fisher’s exact test.

3.1 Entropy

For each question j, we have i possible answers – in our case i = 4.

Qj = {Option1,j , . . . , Optioni,j}.
The relative frequency of option i in question j is denoted pi,j . The entropy (see
for instance [5]) for the answers to question Qj is then

H(Qj) = −
∑

i

pi,j · log2 pi,j .

Entropy is a measure of unpredictability of an outcome. The greater the
entropy value, the higher the uncertainty of the outcome. If a question has an
entropy of zero, this would mean that all patients of the corresponding disease
group have chosen the same answer to this question.

3.2 Sequence Logos

Sequence logos, invented by Tom D. Schneider and R. Michael Stephens [8], are
usually applied in genetics or proteomics to represent aligned sets of DNA, RNA
or protein sequences. It is used to discover conserved patterns in such sequences.
In case of DNA sequences, every position would have one of the four nucleotides:
A,C,T,G. At each position of a sequence, from which one has multiple samples, it
is of interest whether always the same nucleotide occurs – indicating conservation
– or whether there is a high variance of nucleotides at this position. Sequence
logos display the distribution of the nucleotides by using the letters A,C,T,G



338 X. Zhang et al.

as stacks in a bar. The height of the bar chart depends on the entropy w.r.t.
A,C,T,G. The lower the entropy, the higher the bar.

In our case, we do not deal with nucleotides but with i possible answers ques-
tion to instead. We use colored stacked bar charts where each color represents
one possible answer to a question. Combined with the case used in this paper,
a derivative work of sequence logo consists of stacks of colors. The questions
correspond to the sequence. The overall height of each stack in a sequence logo
depicts the information content or conservation of the sequence at that posi-
tion [1], whereas in our case the relative height of each color within the stack
reflects the frequency of the corresponding option in the sequence of questions.
Rsequence(Qj) defines the height of the bar for question Qj . We introduce a
small correction factor en (like a Laplace correction) for the case when no one
has chosen an answer.

Rsequence(Qj) = log2 N − (H(Qj) + en)

= log2 N −
(

∑

i

pi,j · log2 pi,j + en

)

The height (denoted by hi,j) of the color stack of each option at the correspond-
ing position (bar) is determined by multiplying the frequency pi,j by the total
information at that question.

hi,j = pi,j · Rsequence(Qj)
= pi,j · [log2 N − (H(Qi) + en)]

= pi,j ·
[

log2 N −
(

∑

i

pi,j · log2 pi,j + en

)]

3.3 Chi-Square Test and Fisher’s Exact Test

Before more rigorous and deeper statistical analysis starts, it is helpful to per-
form some basic inferential statistical tests like chi-square test and Fisher’s exact
test to determine whether the answering pattern of one question in one diagnosis
deviates significantly from a uniform distribution or the answering patterns of
two diagnoses for a specific question differ significantly. Since we are consider-
ing frequencies of possible answers of each question with usually more than two
options, the chi-square test is an obvious choice to check whether the answering
patterns deviate from the uniform distribution or whether two answering pat-
terns differ from each other. However, the chi-square test is an asymptotic test
and should only be used for sufficiently large sample sizes. Therefore, we only
apply the chi-square test when the sample size – total number of answers to a
question – exceeds 40 and when the theoretical absolute frequencies exceed 5 in
each considered category. Otherwise, we apply Fisher’s exact test by reducing
the contingency table to 2 × 2-table.

We indicate low p-values by colors. Red stands for p-values lower than 0.001,
yellow for p-values between 0.001 and 0.01 and green for p-values between 0.01
and 0.05.
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For observed data that meet the conditions that mentioned above, the chi-
square test is perfect for ascertaining the association between categorical vari-
ables [4]. In our case, participants’ answer patterns for a specific question in two
different diagnoses (x and y) generate a new matrix:

mat =

∣
∣
∣
∣
∣
∣
∣
∣

ax ay
bx by
cx cy
dx dy

∣
∣
∣
∣
∣
∣
∣
∣

where entries correspond to frequencies of answers. Then the p-value can be
directly calculated by applying the chi-square test.

When the sample size is less than 40 or the expected number of answer in a
category is less than 5, Fisher’s exact test is used instead. Since Fisher’s exact
test is designed for 2 × 2 contingency tables, the participants’ answer summary
for a specific question needs some further processing before applying Fisher’s
exact test.

In our case, we have four possible answers in each question. The matrix mat
can be organized into four 2 × 2 contingency tables: mat1, mat2, mat3, and
mat4, each one corresponding to one possible answer against all other possible
answers.

mat1 =
∣
∣
∣
∣

ax ay
bx + cx + dx by + cy + dy

∣
∣
∣
∣ ,mat2 =

∣
∣
∣
∣

bx by
ax + cx + dx ay + cy + dy

∣
∣
∣
∣

mat3 =
∣
∣
∣
∣

cx cy
ax + bx + dx ay + by + dy

∣
∣
∣
∣ ,mat4 =

∣
∣
∣
∣

dx dy
ax + bx + cx ay + by + cy

∣
∣
∣
∣

In this way, we obtain four p-values and we finally carry out a correction
for multiple testing, i.e. we multiply each p-value with the number of tests –
corresponding to the number of possible answers to the considered question.

Different test methods are represented by different shapes of dots. In the bar
plot, we use “�” to mark the chi-square test and “©” to mark Fisher’s exact test.

4 VoQs - A Functional Data Visualization Application

With the above mentioned visualization principle, various views can be offered
to analysis questionnaire data.

By analysis the data set transmitted by users, VoQs supports users check
out options probability distribution of each question, observe salient features of
identified respondent groups, meanwhile figure out possible internal relationships
and differences among data.

In addition to the graphic of summarizing participates number of each diag-
nosis (Fig. 1), VoQs mainly provides four functions. The main function is to
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Fig. 3. Compare different diagnoses answer patterns for question 28

display bar charts of different grouping elements based on statistical calculation
results. Using the neuromuscular disease questionnaire as an example, one can
display the answering pattern for a specific disease as already shown in Fig. 2.

The second function that VoQs provides is to compare all diagnoses answer
patterns for any designated question. Figure 3 shows the answer pattern of
patients from different diagnoses on question 28. It can be seen that most patients
in diagnosis 8 (Morbus McArdle) tend to choose option 4 (Absolutely) while in
most other groups option 1 (No) is favored. This means that this question is one
relevant indicator to distinguish diagnosis 8 from others.

The third function of VoQs is mapping a particular patient’s questionnaire
data to any diagnosis in order to check whether the answers of the patient fit
to the answer pattern of a specific diagnosis. 46 points on the graph represent
the answers the patient selected for each question. Points are positioned in the
middle of the color corresponding to the selected answer. Figures 4 and 5 show
the answer pattern of patient with diagnosis 2 to the correct diagnosis (Fig. 4)
and to another diagnoses (Fig. 5). It is obvious that the patient’s answer are
more in line with diagnosis 2 than diagnosis 8.

Another function is the comparison of answering patterns for two different
diagnoses. Figure 6 shows a comparison between diagnosis 1 (muscular dystro-
phies, myotonies) and diagnosis 11 (multiple sclerosis). The focus of comparison
two different groups will fall on the high peaks of the bar chart. Most interesting
are two high peaks for one question with different main colors.

In this case, the answers to the corresponding question are homogeneous
within each diagnosis but heterogeneous between two diagnoses. It is also
interesting if there is one tall and one short bar in some specific question, which
means for one diagnosis patients tend to choose the same answer whereas for the
other diagnosis patients show a very heterogeneous answering scheme. In order
to obtain a more focused visualization, one can select specific questions restrict
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Fig. 4. Patient data mapped to diagnosis 2: Morbus Pompe

Fig. 5. Patient data mapped to diagnosis 8: Morbus McArdle

to those questions with significant differences as shown in Fig. 7. This web based
application is already published in (shiny.improvedmedicaldiagnostics.com).

5 Conclusions and Future Work

VoQs is not limited to this particular area, it can be generally used for every kind
of questionnaire with close-ended questions to better understand the answering
patterns of certain groups, to identify questions where people from different

http://shiny.improvedmedicaldiagnostics.com
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Fig. 6. Compare two diagnoses: Diagnosis 1 vs. Diagnosis 11

Fig. 7. Set the intervals of the graphic

groups typically choose different answers and to discover unusual cases that
deviate strongly from usual answering patterns. With the help of VoQs appli-
cation, researchers can collect important attributes and grouping questions in a
more effective way.
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In the future, this application will be enhanced with additional features that
focus on further complex statistical testing for significant differences and the
relevance of combinations of questions.
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