
Application of a New Ridge Estimator of the

Inverse Covariance Matrix to the Reconstruction
of Gene-Gene Interaction Networks

Wessel N. van Wieringen1,2,� and Carel F.W. Peeters1

1 Department of Epidemiology and Biostatistics, VU University medical center,
P.O. Box 7057, 1007 MB Amsterdam, The Netherlands

{w.vanwieringen,cf.peeters}@vumc.nl
2 Deptartment of Mathematics, VU University Amsterdam,

1081 HV Amsterdam, The Netherlands

Abstract. A proper ridge estimator of the inverse covariance matrix
is presented. We study the properties of this estimator in relation to
other ridge-type estimators. In the context of Gaussian graphical mod-
eling, we compare the proposed estimator to the graphical lasso. This
work is a brief exposé of the technical developments in [1], focussing on
applications in gene-gene interaction network reconstruction.
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1 Introduction

1.1 Scientific Background

Molecular biology aims to understand the molecular processes that occur in
the cell. That is, which molecules present in the cell interact, and how are the
interactions coordinated? For many cellular process, it is unknown which genes
play what role.

A valuable source of information to uncover gene-gene interactions are
(onco)genomics studies. Such studies comprise samples from n individuals with,
e.g., cancer of the same tissue. Each sample is interrogated molecularly and the
expression levels of many (p) genes are measured simultaneously. The resulting
p-dimensional data vector is denoted Yi,∗ for individual i = 1, . . . , n.

From these data the gene-gene interaction network may be unraveled when
the presence (absence) of a gene-gene interaction is operationalized as a con-
ditional (in)dependency between the corresponding gene pair. Then, under the
assumption of multivariate normality, Yi,∗ ∼ N (0p×1,Σ), the absence of di-
rect gene-gene interactions corresponds to zeros in the inverse covariance matrix
Ω ≡ Σ−1 (also known as the precision matrix, whose elements are propor-
tional to partial correlations). For instance, (Ω)1,2 = 0 ⇔ Y1 ⊥⊥ Y2 |Y3, . . . , Yp.
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Hence, the gene-gene interaction network is found by inversion of the covariance
matrix and (subsequent) determination of its support. When dealing with data,
Σ is estimated by its sample counterpart: S = 1

n

∑n
i=1 Yi,∗YT

i,∗.
In genomics the data are often high-dimensional, in the sense of p > n. In such

situations the sample covariance matrix S is singular and the sample precision
matrix is not defined. But even if p < n and p approaches n, the sample precision
matrix yields inflated partial correlations. Both situations require some form of
regularization to obtain a well-behaved estimate of the precision matrix, and
consequently of the gene-gene interaction network.

1.2 Ridge-Type Covariance Estimators

A penalized covariance estimator traditionally referred to as the ‘ridge estimator’
is:

Σ̂rI (λrI ) = S+ λrI Ip×p for λrI > 0.

It could be considered a ridge estimator in the sense that it is an ad-hoc fix of
the singularity of S, much like how ridge regression was originally introduced [2].

The inverse of Σ̂rI (λrI ) would then form the basis for inference on the gene-gene
interaction network.

Alternatively, a ‘ridge estimator’ popularized by [3] in the field of genomics,
is (cf. [4,5]):

Σ̂rII (λrII ) = (1− λrII )S+ λrIIΓ for λrII ∈ (0, 1].

In this latter expression Γ is a (p × p)-dimensional, symmetric positive definite
(p.d.) target matrix. The target matrix is chosen prior to estimation. Its role is
to serve as a ‘null estimate’ towards which the covariance estimate is shrunken
as λrII tends to one. In the remainder we will mainly consider the following
choice: Γ diagonal with diag(Γ) = diag(S). This represents a reasonable choice
in the absence of any prior knowledge on the Gaussian process. Again, when
determining the support of the precision matrix the inverse of this second ‘ridge
estimator’ could be used.

Neither of the two ridge estimators above is a proper ridge estimator, in the
sense that neither can be formulated as the result from the maximization of a
loss function augmented with what is commonly perceived as the ridge penalty:
the sum of the square of its elements.

1.3 Overview

In Section 2 an alternative ridge estimator for the inverse covariance matrix is
presented. In Section 3 the proposed estimator is compared with the traditional
ridge-type estimators and the graphical lasso. Section 4 illustrates, using oncoge-
nomics data, practical usage of the proposed estimator in a graphical modeling
setting. Section 5 carries some concluding remarks, while Section 6 closes with
a small description of the accompanying software.
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2 Materials and Methods

2.1 An Alternative Ridge Inverse Covariance Estimator

We consider estimation of the inverse covariance matrix with conventional ridge
regularization. The alternative ridge estimator of the inverse covariance matrix
maximizes the following penalized log-likelihood:

Lpen(Ω;S,T, λa) = ln |Ω| − tr(SΩ)− f pen(Ω,T, λa), (1)

where λa is the penalty parameter, T denotes a symmetric p.d. target ma-
trix, and f pen(·, ·, ·) indicates the penalty function. The ridge penalty function
amounts to:

f pen(Ω,T, λa) =
1

2
λatr[(Ω−T)T(Ω−T)]. (2)

In caseT = 0p×p, the penalty function reduces to f pen(Ω,T, λa) = f pen(Ω, λa) =
1
2λa

∑p
j1,j2=1[(Ω)j1,j2 ]

2, which corresponds to the common perception of the
ridge penalty. The penalty function (2) is thus a generalized ridge penalty.

We show (cf. [1]) that there is an explicit solution that maximizes the penalized
log-likelihood (1) with the general ridge penalty (2):

Ω̂ridge(λa) =

{[

λaIp×p +
1

4
(S− λaT)2

]1/2
+

1

2
(S− λaT)

}−1

. (3)

This ridge precision estimator is p.d. when λa ∈ (0,∞) and can be viewed as a
penalized maximum likelihood (ML) estimator. Moreover, in the low-dimensional
case the ridge estimator (2) reduces to S−1 as λa ↓ 0. When λa tends to infinity,

Ω̂ridge(λa) shrinks toT, much like the covariance estimator of [3] shrinks to a user-
specified target. Thus, when T is diagonal and diag(T) = 1/diag(S) the inverse
of estimator (3) mimics the behaviour of the latter. Similarly, choosingT = 0p×p

yields a ridge estimator of the precision matrix that shrinks to the null matrix as
does the inverse of Σ̂rI (λrI ). The explicit form of our ridge estimator (3) allows
us to calculate the moments of the estimator and prove its consistency [1].

2.2 Extracting an Interaction Network

When turning to the application of ridge estimation in Gaussian graphical mod-
eling of gene-gene interaction networks, the proposed estimator (3) yields (after
standardization) an estimate of the partial correlation matrix. In doing so, an
informed choice of the penalty parameter needs to be made. Hereto we utilize
an approximate leave-one-out cross-validation (LOOCV) procedure [6]. Finally,
one needs to decide which elements of the partial correlation matrix are indis-
tinguishable from zero, for which we employ the local false discovery rate (FDR)
procedure of [3].
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3 Results

3.1 Comparison with the Traditional Ridge Estimators

We compare the proposed ridge estimator (3) with the two other ‘ridge esti-

mators’, Σ̂rI (λrI ) and Σ̂rII (λrII ). Analytically, we study the rate of shrinkage
of the estimators. The proposed ridge precision estimator (3) with T = 0p×p

displays slower shrinkage (with increasing penalty parameter) to the null target

than [Σ̂rI (λrI )]
−1. As the target is degenerate, this behaviour is to be preferred.

The opposite is seen when studying the shrinkage rate of estimator (3) with

diag(T) = 1/diag(S) in relation to [Σ̂rII (λrII )]
−1 with Γ = T−1. That is, the

former shrinks faster to T than the latter. Whenever T is close to Ω, faster
shrinkage is desirable. In a simulation study we turn to the comparison of the
risk of the proposed ridge estimator and its contenders. For the scenario’s stud-
ied, the former performs favourably.

3.2 Comparison with the Graphical Lasso

For the application to Gaussian graphical modelling, the inverse covariance ma-
trix is often estimated by means of the graphical lasso [7,8], as it performs au-
tomated edge selection. The lasso precision estimator maximizes (1) under the
alternative penalty f ′pen(Ω,T, λl) = λl‖Ω‖1 = λl

∑p
j1,j2=1 |(Ω)j1,j2 |. To accom-

modate the diagonal target matrix T (with diag(T) = 1/diag(S)) this penalty
function may be replaced by f ′′pen(Ω,T, λl) = ‖Λ ◦Ω‖1 in which ◦ denotes the
Hadamard product and (Λ)j1,j2 = λl when j1 �= j2 and zero otherwise (as is im-
plemented in the glasso-package [9] by the option penalize.diagonal=FALSE).

We compare the proposed ridge and lasso estimators of the standardized preci-
sion matrix, as this forms the basis for inference on the conditional independence
graph (the standardized precision matrix equals the partial correlation matrix
up to the sign of off-diagonal elements). This is done in a data-driven manner,
to avoid bias towards any of the estimators. Five curated breast cancer studies
with gene expression data generated by the same (or comparable) Affymetrix
platform [10] are used for this purpose. The full data set is limited to sets of
genes that map to a pathway (as defined by the KEGG repository [11]). High-
dimensionality is then realized by drawing subsets of the pathway data at sample
sizes n = 5, 10, 25. For each draw the covariance matrix is estimated by means of
lasso and ridge procedures. For both the LOOCV is used to choose their penalty
parameters. The ridge estimate is then subjected to the local FDR procedure to
decide on the presence/absence of gene-gene interactions.

The sensitivity and specificity of the resulting ridge and lasso inferred condi-
tional independencies are compared. Hereto we define a ‘consensus truth’ based
on overlapping edges. The resulting sensitivity and specificity of edge retrieval is
comparable between the proposed ridge and the lasso estimators. An alternative
comparison focusses on the loss of the estimates of the standardized precision
matrix. Then, the proposed ridge estimator clearly yields a lower loss. These
observations are consistent over the sample sizes, pathways, and data sets con-
sidered. Figure 1 visualizes these observations for a particular pathway.
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Fig. 1. The upper panels depict a loss comparison between the alternative ridge and the
corresponding graphical lasso estimators for the mTOR-pathway on the UPP breast
cancer data [10]. The loss is determined with a proxy of the standardized population
precision matrix for the mTOR-pathway. The upper left-hand panel depicts Frobenius
loss while the upper right-hand panel depicts quadratic loss. The lower panels depict
a sensitivity and specificity comparison between the alternative ridge and graphical
lasso estimators, again on the mTOR-pathway data. The evaluation of edge retrieval
sensitivity and specificity requires knowledge of the true conditional dependencies. As
such knowledge is absent we resort to defining a ‘consensus truth’, comprised of those
conditional dependencies that appear in the top 100α% of at least 4 out of the 5 breast
cancer data sets by both methods (graphical lasso and alternative ridge paired with
local FDR edge selection). The parameter α ranges from .005 to .20, corresponding to
what is believed to be biologically plausible (in terms of network density). Sensitivity
(specificity) for a particular combination of n and α is then estimated as the median
sensitivity (specificity) over the generated subsamples over all data sets. The lower left-
hand panel gives sensitivity results while the lower right-hand panel gives specificity
results.
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4 Illustration

In this section we illustrate the reconstruction of a gene-gene interaction network
from gene expression data using our R-implementation (see Section 6 below) of
the proposed ML ridge estimator of the precision matrix. We employ breast
cancer gene expression data by The Cancer Genome Atlas (TCGA) [12] of the
mitogen-activated protein kinases (MAPK) pathway (as defined by KEGG).

For purposes of reproducibility we first provide the R-code that loads and
‘processes’ the data. It starts by activation of the necessary R-packages:

> library(biomaRt)

> library(cgdsr)

> library(KEGG.db)

> library(rags2ridges)

To get a list of all human genes and additional relevant information:

> ensembl = useMart("ensembl", dataset="hsapiens_gene_ensembl")

> geneList <- getBM(attributes=c("external_gene_name",

+ "entrezgene"), mart = ensembl)

> geneList <- geneList[!is.na(geneList[,2]),]

Obtain the entrez IDs [13] of the genes that map to the MAPK pathway:

> kegg2entrez <- as.list(KEGGPATHID2EXTID)

> entrezIDs <- as.numeric(kegg2entrez[which(names(kegg2entrez)

+ %in% "hsa04010")][[1]])

> entrez2name <- match(entrezIDs, geneList[,2])

> geneList <- geneList[entrez2name[!is.na(entrez2name)],]

Specify data set details (repository, TCGA study, samples, and profile):

> tcgaDB <- CGDS("http://www.cbioportal.org/public-portal/")

> cancerStudy <- "brca_tcga"

> caseList <- getCaseLists(tcgaDB, cancerStudy)[1,1]

> mrnaProf <- "brca_tcga_pub_mrna"

Extract the pathway expression data:

> Y <- getProfileData(tcgaDB, geneList[,1], mrnaProf, caseList)

> for (j in 1:ncol(Y)){

+ Y[,j] <- as.numeric(levels(Y[,j])[Y[,j]]) }

> Y <- data.matrix(Y)

Filter no-data samples and genes:

> sRemove <- which(rowSums(is.na(Y)) > ncol(Y)/10)

> Y <- Y[-sRemove,]

> gRemove <- which(colSums(is.na(Y)) > 0)

> Y <- Y[,-gRemove]

> Y <- sweep(Y, 2, colMeans(Y))
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Fig. 2. Upper-panel: cross-validated log-likelihood. Bottom-panel: the inferred con-
ditional independence graph of the MAPK pathway. Dashed lines indicate negative
precision elements while solid lines indicate positive precision elements.
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This concludes the executions in R required to obtain TCGA breast cancer data
of the MAPK pathway as defined by KEGG. The gene expression data comprises
n = 496 samples and p = 259 genes.

Finally, we turn to the reconstruction of the gene-gene interaction network
of the MAPK pathway by means of the proposed ML ridge estimator of the
precision matrix.1 The target we use is T = ϕIp×p, where ϕ denotes the average
of the inverse (nonzero) eigenvalues of S. Under this choice (3) is rotation equiv-
ariant, which is computationally advantageous (see Section 6). First, one needs
to make an informed choice on the penalty parameter λa. This is done via the
approximate LOOCV procedure (in which ϕIp×p is the default target option):

> CVres <- optPenalty.aLOOCV(Y, 0.0001, 0.01, step=100)

The thus obtained cross-validated log-likelihood profile is plotted against the
(logarithm of the) penalty parameter (see the upper-panel of Figure 2). The
cross-validated log-likelihood achieves an optimum close to ln(λa) = −8.112.
This rather small value (little regularization) is due to the relative ‘low-
dimensionality’ of the data.

With the optimal penalty parameter at hand the penalized ML ridge estimate
of the precision matrix is obtained through:

> penPrec <- ridgeS(covML(Y), CVres$optLambda)

The object penPrec contains the desired estimate of the precision matrix that
forms the basis for inferring the conditional independencies in the MAPK path-
way data. Hereto the ML ridge estimate of the precision matrix is standardized
to have a unit diagonal. The local FDR procedure of [3] is then applied to the
off-diagonal elements of this standardized precision matrix. Edges corresponding
to such elements with a posterior probability exceeding 0.95 are considered to
be present in the gene-gene interaction network.

> P0 <- sparsify(penPrec, threshold="localFDR",

+ FDRcut=0.95)$sparsePrecision

The resulting sparsified precision matrix is visualized by its implied conditional
independence graph:

> Ugraph(P0, type="fancy", prune=TRUE)

This gives an impression of the gene-gene interaction network underlying the
MAPK pathway (see the bottom-panel of Figure 2).

5 Conclusion

We have presented a proper ML ridge estimator of the precision matrix, for
which analytical properties can be proven. In a vis-á-vis comparison with other

1 In the remainder of the illustration we use calls related to version 1.3 of our own
R-package [15]. Please note that this package is in continual development so that
certain calls may be depreciated or enhanced in future versions.
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penalized inverse covariance estimators it was shown to yield a lower risk. More-
over, its performance is on a par with the graphical lasso with respect to the
sensitivity and specificity of selected conditional independencies. Hence, the pre-
sented ridge estimator is a strong contender for inverse covariance estimation
from high-dimensional data.

Currently, we are exploring the use of the target matrix T. In this exposé
we have limited ourselves to obvious choices. More sophisticated choices may be
conceived. For instance, it may incorporate prior knowledge on the gene-gene
interaction network as obtained from a pilot experiment or from repositories
such as KEGG.

6 Software

The R [14] package rags2ridges [15] implements the proposed ridge precision
estimator along with functions supporting subsequent graphical modeling. These
additional functions enable, among others, (automated) penalty parameter se-
lection, the evaluation of entropy and fit, support determination, (network) visu-
alization, and network topology evaluation. The proposed estimator is analytic,
making its computation friendly for a given penalty. When the chosen target
implies rotation equivariance (i.e., the estimator leaves the eigenvectors of S
unchanged), the search for an optimal penalty value and subsequent network
extraction also become computationally efficient as the (relatively) expensive
matrix square root can then be circumvented. In this situation only a single
spectral decomposition and a single matrix inversion are required to obtain the
complete solution path over any λa in the feasible domain. See the package doc-
umentation [15] for more information. The package is freely available from the
Comprehensive R Archive Network [16].
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6. Vujačić, I., Abbruzzo, A., Wit, E.C.: A Computationally Fast Alternative to Cross-
Validation in Penalized Gaussian Graphical Models. arXiv: 1309.621v2 [stat.ME]
(2014)

7. Banerjee, O., El Ghaoui, L., d’Aspremont, A.: Model Selection Through Sparse
Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data. J.
Mach. Learn. Res. 9, 485–516 (2008)

8. Friedman, J., Hastie, T., Tibshirani, R.: Sparse Inverse Covariance Estimation with
the Graphical Lasso. Biostatistics 9, 432–441 (2008)

9. Friedman, J., Hastie, T., Tibshirani, R.: glasso: Graphical Lasso-
Estimation of Gaussian Graphical Models. R package, version 1.8 (2014),
http://cran.r-project.org/web/packages/glasso/index.html
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