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Abstract. In the identification of living species through the analysis of
their DNA sequences, the mitochondrial “cytochrome c oxidase subunit
17 (COI) gene has proved to be a good DNA barcode. Nevertheless, the
quality of the full length barcode sequences often can not be guaranteed
because of the DNA degradation in biological samples, so that only short
sequences (mini-barcode) are available. In this paper, a prototype-based
classification approach for the analysis of DNA barcode, exploiting a spec-
tral representation of DN A sequences and a memory-based neural network,
is proposed. The neural network is a modified version of General Regres-
sion Neural Network (GRNN) used as a classification tool. Furthermore,
the relationship between the characteristics of different species and their
spectral distribution is investigated. Namely, a subset of the whole spec-
trum of a DNA sequence, composed by very high frequency DNA k-mers,
is considered providing a robust system for the classification of barcode se-
quences. The proposed approach is compared with standard classification
algorithms, like Support Vector Machine (SVM), obtaining better results
specially when applied to mini-barcode sequences.

Keywords: DNA barcode, Memory-based Neural Networks, GRNN,
Classification.

1 Scientific Background

The identification of living species through the analysis of their DNA sequences
is an open challenge. Because a massive comparison of a large collection of full
genome sequences is not feasible, a bioinformatics approach to this problem is
the analysis of some standard gene regions, containing enough information for
the assignment to the proper taxa. The mitochondrial “cytochrome c oxidase
subunit 1”7 (COI) gene is a comprehensive species-specific sequence library for
all eukaryotes and it has proved to be a good marker for DNA sequences [8,13];
for this reason, it is considered as a DNA barcode for metazoan genomic.
Anyway, even though DNA barcode approach has proven to be useful for the
identification and taxonomic rank assignment of very different species [6,12,11],
its use can still be difficult if the biological samples are degraded. This is the case
of archival specimen where biological samples can not guarantee the quality of
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the full length barcode sequence (650 bp) recovery. In fact, in many cases, only
short sequences, also known as mini-barcode, are available (about 200 bp) [14].

In this paper, we propose a novel prototype-based classification approach
based on the analysis of DNA barcode. Our method exploits a spectral rep-
resentation of DNA sequences and a memory-based neural network for taxa
estimation: spectral representation uses fixed-length DNA k-mers, whereas the
neural network can store a set of prototypes (groups of k-mers) representing all
the elements of the learning dataset.

In order to perform the barcode sequences classification, we introduce a mod-
ified version of General Regression Neural Network (GRNN) [19] that use, al-
ternatively, a function derived from Jaccard distance and fractional distance
(instead of the euclidean one) to compare learned prototypes against test se-
quences. The proposed approach implements these two kinds of distances and it
is able to perform the classification task, even using only short fragments (200
bp) of the complete barcode sequence.

Finally, we compared our approach with the Support Vector Machine (SVM)
[17] classification algorithm. Results show our method, implementing both Jac-
card and fractional distances, is directly comparable with SVM in terms of clas-
sification metrics (accuracy, precision and recall) when considering full length
sequences, whereas it overcomes SVM classifier when applied to short fragments
of DNA barcode sequences.

2 Materials and Methods

The proposed method is based on two modified versions of the General Regres-
sion Neural Network. In the first subsection the basic principles of the GRNN
are explained; the following two subsections present the proposed modifications,
based on the Jaccard distance and the fractional distance; the last subsection
describes the data sets used.

2.1 The General Regression Neural Network

The General Regression Neural Network [19] is a neural network created for
regression i.e. the approximation of a dependent variable y given a set of sample
(x,y), where x is the independent variable. In the following we will discuss the
single output case, the extension to an output vector y is straightforward and
can be found in [19]. In order to implement our classification tool for DNA
sequences, we obtained the vector representation of the DNA sequences using a
k-mer decomposition [10]. In this representation, sequences are coded by using
fixed size vectors whose components are the number of occurrences of DNA
snippets of k fixed-length, called k-mers. Considering k = 5, as proposed in [10],
we have representing vectors x € R1024,

The GRNN network has a one—pass training phase, it is just the memorization
of all the training couples (xj, y;) each one in a neural unit ¢ of the hidden layer.
Fig. 1 shows a representation of the network: input layer has one neuron for each
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Fig. 1. The representation of the GRNN neural network.

component x; in the input vector x; and the hidden layer has one unit for each
training sample.

During the test phase, when an unknown pattern x’ is presented to the net-
work, each hidden unit is excited according to the similarity of the pattern to
the memorized input sample x;. The excitation level of the neural unit ¢ is given

by:
d(x',x;)
202

w; = exp {— (1)
where d(x’,x;) is the distance between x’ and x;, usually euclidean distance,
and o is the spread factor, representing the only parameter of the GRNN net-
work. The hidden units have two outputs, w; * y; and w;, that are collected
by the summation units. All the contributions of the hidden units are summed
and normalized by the unit in the output layer, in order to obtain the network
output ¥
y =y 2
Ywi
If we want to use this network as a classification tool we have to change our
point of view: first of all the training couples are of the kind (x;, ¢5) where ¢, € C
is the class that is associated to x; and C' is the set of h classes. This means that
all the classes must be coded in a real value vector yp were each component y;
is given by:

. fO0ifi#h
yh{lifz’:h 3)
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and requires a multiple output network. The ¢ value is the only parameter of the
GRNN network. There are some studies on the optimal value of o that can be a
single value for the whole network or a specific value for each hidden unit. In [7]
it is suggested a formula that depends on the maximum distance and number of
patterns in the training set.

2.2 Jaccard Function

During experiments (see Section 3) we found that the euclidean distance used
in the GRNN calculations was not enough “strong” for our purposes: in these
kind of problems we have found that the presence or absence of a k-mer mean a
lot and the euclidean distance does not emphasize this aspect [3].

Jaccard distance is defined among two sets A and B as

_ llAu B[ —[lAn B

J
AU B

(4)
where || A|| represents the number of elements of the set A; J € [0,1] and if J =1
the two sets have not elements in common.

In this work, we redefine the Jaccard distance as a new function between two
vectors that considers we will define between two vectors is computed consider-
ing the number of components in common between them, so that A and B in
Eq. 4 are the set of the indexes of non-zero components in the vectors. This dis-
tance, however, has still a low contrast for our purposes because the information
related to the magnitude of each component in the vectors is discarded. The
component magnitude can be taken into account again if we do not consider all
the components but only the m biggest components in the vectors.

More formally the sets A and B are defined as the sets of indexes:

s ={50,81,y Sm } (5)

where s; is the index of the z components that satisfies the ordering Ty >
x5, > x4, , where 2o = mari—o,1,. . N{21}

These sets can be compared using the Jaccard distance in Eq. 4.

Since Jaccard distance ranges from 0 to 1, it is necessary to map it in the in-
terval [0, 00), using, for example, the following definition that we call J-function:

0 if J=0
JF(x x3) = |l g |l i T €(0,1) (6)
00 ifJ=1

This is necessary because w; in eq. 1 should tend to zero if the distance is
large. Moreover changing the distance method from euclidean to this normalised
J-function distance stretches the original theory of the GRNN network; we leave
a formal study of this problem to a future work.



146 R. Rizzo et al.

2.3 Fractional Distances

High-dimensional spaces, such as the one defined by the sized vectors repre-
senting DNA sequences, are affected by the so called curse of dimensionality.
In those spaces, in fact, the euclidean norm used to define the distance tend
to concentrate [4]. That means all pairwise distances between high-dimensional
objects appear to be very similar. In order to overcome this phenomenon, frac-
tional norms can be used in place of euclidean norm [9,1]. Fractional norms are
obtained from the Minkowski family norms defined as:

I, = (Z |Xﬂ> . ™)

With p = 2, the euclidean norm is obtained; whereas with 0 < p < 1 Minkowski
norms are called fractional norms, which induce fractional distances. In this
work we adopted fractional norms, considering different values of p, in order to
compute Eq. 1 and to limit the effects of the curse of dimensionality.

2.4 Barcode Dataset

We downloaded barcode sequences from the Barcode of Life Database (BOLD)
[15]. In our study, we considered 10 barcode datasets belonging to different
BOLD projects and living organisms. These datasets have been selected ac-
cording to some criteria: we chose only barcode compliant dataset, i.e certified
by BOLD as true barcode sequences, with sequence length not shorter than
500 bp and not longer than 800 bp. Following these criteria, we collected 2212
sequences. A full description of our barcode dataset can be retrieved in [3].

As discussed earlier, it is important to find a subset of the barcode gene
in order to provide an effective identification mechanism for various animal or
bacterial groups [6]. In fact, the recovery of full-length barcode sequence can be a
problem in many cases: for example considering archival specimen, due to DNA
degradation [5], or environmental samples [14]. There are studies, however, that
tries to identify a specific location in the barcode gene, location that are called
mini-barcode [14]. Our work is focused on the same idea but, instead of trying to
identify a specific location in the gene, we explore the possibility of identifying
species using small gene chunks. So that we fixed an amount of genetic material
(200 bp) that could be enough to identify 95% of the species [14] and tried to
understand what happens if this material comes not from a specific location of
the gene, but it is scattered in two chunks of 100 bp (100x2), or in four sub-
sequences of 50 bp (50x4). In both cases we do not check if these subsequences
are overlapping or not, trying to reproduce laboratory conditions.

3 Results

Classification results obtained through our GRNN approach have been evalu-
ated in terms of accuracy, precision and recall scores. We implemented both
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Fig. 2. Classification scores, in terms of accuracy, precision and recall, for the proposed
approach based on the GRNN algorithm. The scores are arranged with regards to the
taxonomic ranks and sequence sizes.

modified versions of GRNN algorithm using J-function and fractional distances,
as explained in Sections 2.2 and 2.3, respectively. We performed two types of
training/testing procedures. In the first scenario, we trained our classifiers with
the whole full length dataset and then we tested it with all the sequence frag-
ments. Our aim was in fact to assess if the GRNN classifier, trained with the
full length sequences, is able to correctly classify the sequence fragments. It is
important to underline that although in the training set (full length) and in the
test set (fragments) there are the same number of sequences, their vector rep-
resentations are completely different. In the second scenario, we adopted a ten
fold cross validation scheme, considering as training set the full length sequences
and as test set corresponding sequence fragments that did not belong to the
training set. In this situation we wanted to assess if the GRNN classifier is able
to classify sequence fragments even if it did not learned the corresponding full
length patterns. Moreover we compared our method with another classifier used
for nucleotide sequences classification [18]: the Support Vector Machine (SVM).
We adopted the SVM implementation provided by the R package e1071, which
is an interface to the libsum library [2]. We used a Gaussian Radial Basis kernel,
k(x,x') = exp(—y||x — x'||*). The parameter C' and v of the Gaussian kernel
has been tuned through a grid search over a set of parameters values: v ranging
from 10~ to 10%; C ranging from 1 to 103, as suggested by the authors of libsvm.
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Fig. 3. Classification scores, in terms of accuracy, precision and recall, for the SVM
classifier. The scores are arranged with regards to the taxonomic ranks and sequence
sizes.

The best parameter values have been computed minimising the error measure
using a 10-fold cross validation on the training set. The results obtained with
the SVM classifiers have been carried out by means of the same two way train-
ing/testing procedure. In other experiments, not shown here, we also adopted
Classification Tree, from the R package rpart, algorithm and we obtained very
similar results to the ones obtained through SVM. For this reason, we do not
present those results in this paper.

The GRNN outputs obtained using J-function have been obtained comparing
the m = 30 biggest components between the vector prototypes and the test
vectors. This value has been selected after a series of experiments, not presented
here for lack of available space, using for comparison a number of components
ranging from 20 to 50 and a ¢ value during the training phase ranging from 0.5
to 0.8. We reached a trade off between the best results and the smallest number
of elements by using 30 components and ¢ = 0.7. A number of components
m > 30 does not give a meaningful improvement in the results.

In the previous version of our work [16], we focused our attention on the
comparison of classification results between the GRNN algorithm with J-function
and the SVM classifier. Those results, arranged according to the test sequence
sizes (full, 200 bp, 50x4 bp, 100x2 bp) and taxonomic ranks (from phylum down
to species), are summarized in the charts shown in Fig. 2 and 3. We demonstrated
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Fig. 4. Classification scores, in terms of accuracy, for the proposed approach based
on the GRNN algorithm implementing fractional distances with different values of
parameter p. The scores are arranged with regards to the taxonomic ranks and sequence
sizes.

that our approach clearly outperforms SVM for the classification of sequence
fragments; considering full length sequences, on the other hand, both GRNN
and SVM classifiers reached very similar high scores, ranging between 100% and
95% of accuracy score.

In this work we analysed the performances of the GRNN algorithm imple-
menting fractional distances in order to classify short barcode sequences of size
200 bp, 100x2 bp and 50x4 bp. Classification results, in terms of accuracy, pre-
cision and recall scores, have been compared with both the GRNN algorithm
using J-function and the SVM classifier.

First of all, considering the first training/testing scenario, we studied how
classification results change with regard to the parameter p of fractional dis-
tances (see Eq. 7). We carried out experiments with p = 0.3, p = 0.5 and p = 0.7
and the classification results, in terms of accuracy score are shown in Fig. 4.
The most interesting result is that the best scores, ranging from 100% at phy-
lum level to about 82% at species level, were obtained with p = 0.7 considering
short fragments of 200 consecutive base pairs. With 50x4 bp and 100x2 bp se-
quence lengths, we obtained slightly lower scores. The analysis of precision and
recall showed very similar scores to the accuracy one, not providing any further
meaningful information: for this reason we did not report those results.
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Table 1. Classification scores, in terms of accuracy, precision and recall, for the pro-
posed approach based on the GRNN algorithm against the SVM classifier. The train-
ing/testing procedure refers to the second scenario, i.e. ten fold cross validation with
full-length sequences as training set and test set composed of the sequence fragments
whose corresponding complete sequences do not belong to the training set.

10-fold - 200 bp
Distance | Phylum Class Order Family Genus Species
ACCURACY
J-function 8% M 856% M 785% M 918% N 66.7/% I 562%
SVM 59% W69.1% W368% K 236% [ 11.3% F 18.1%
p=0.3 4% [84.0% WN76.8% WN89.7% W63.3% [57.1%
p=0.5 1% [83.8% [W79.9% [g9.8% WN67.4% [57.2%
p=0.7 8% [86.7% WN785% WH913% [64.4% [57.6%
PRECISION
J-function 4% I80.1% M781% MN80.6% M 584% & 46.8%
SVM 455% W523% W48.7% K 191% [ 44% F 141%
p=0.3 8% [W80.2% WN76.6% WN87.0% W55.2% W46.7%
p=0.5 2% [76.6% WN77.8% [WN83.9% WN60.6% W46.1%
p=0.7 3% [772% [76.4% [N80.8% [58.6% [49.9%
RECALL

J-function 7% WN752% W70.4% WN75.0% M541% N 450% |
SVM 58% W53.7% W369% K 146% [ 58% [ 14.5%
p=0.3 7.8% WN67.1% [W65.3% WN778% W48.4% W44.7%
p=0.5 7% W72.1% 698 WN783% WN56.7% WN45.1%
p=0.7 6% [80.9% [W72.6% [N785% [56.1% [B50.3%

Experiment trials with fractional distance with p = 0.7, therefore, is able to
overcome the distance concentration phenomenon, as described in Section 2.3.
In order to validate that thesis, we compared classification results obtained with
GRNN using fractional distance (p = 0.7) and euclidean distance (p = 2). This
comparison is presented by means of radar charts in Fig. 5. There it is clear how,
at all taxonomic level and for each sequence length, euclidean distance is unable
to provide acceptable results (accuracy score about 50%).

The comparison between classification results obtained using GRNN with
fractional distance (p = 0.7) and Jaccard distance is summarized in the radar
charts of Fig. 6. Once again the best results, at each taxonomic rank and for all
sequence sizes, were reached by means of fractional distance. The most evident
difference of the performances between those two approaches is at Species level,
where with fractional distance we reached an accuracy score of about 80% against
60% with Jaccard distance.

The last comparison, showed in Fig. 7, was done considering GRNN with
fractional distance (p = 0.7) and Jaccard distance against SVM. As discussed
earlier in this Section, Fig. 3, both approaches implementing GRNN clearly
outperforms the SVM classifier.
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From these results it is evident that SVM is not able to deal with sequence
fragments. In fact, the sequence fragments (mini-barcode) have a vector represen-
tation that is very different from the one computed for the original sequences,
therefore SVM, from this point of view, can not correctly classify those frag-
ments. Otherwise, our approach, considering both the Jaccard distance and the
fractional distance, demonstrate the ability to to provide very reliable classifica-
tion results when dealing with sequence fragments.

Finally, with regards to the second training/testing scenario, we obtained the
classification results summarized in Table 1. We reported only the scores related
to the 200 bp fragments because they are very similar to the ones obtained
with 100x2 and 50x4 bp fragments. In this situation, although with lower scores,
the GRNN algorithm, especially in the case of fractional distances, provides
consistent classification performances and it outperforms the SVM classifier.
Classification scores are lower with respect to the first scenario because the
GRNN has never learned the full length sequences corresponding to the test
fragments. In spite of that, our GRNN approach turned out to be robust enough
to keep on providing acceptable classification scores.

4 Conclusion

In this work we presented a classification methodology for barcode DNA se-
quences based on the General Regression Neural Network algorithm. We intro-
duced two modified versions of GRNN in order to overcome limitations of the
standard euclidean approach: the first one implements the J-function derived
from the Jaccard distance, the second one adopts fractional distances. We ob-
tained very accurate and very robust classifiers with respect to sequence sizes.
We tested our approaches, in fact, considering the so-called mini-barcode, that
is a sequence fragment 200 bp long extracted from the original sequences. Clas-
sification results demonstrate that using fractional distances (with parameter
p = 0.7) allows to reach the best scores in terms of accuracy, precision and re-
call. We compared also our methods with SVM classifier. Classification results at
all taxonomic levels and for each sequence sizes clearly state that our classifiers
outperforms SVM when applied to sequence fragments.
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