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Preface

This volume contains a revised version of the proceedings of the International
Meeting on Computational Intelligence Methods for Bioinformatics and Bio-
statistics (CIBB 2014), which was in its 11th edition this year.

At a time of rapid information exchange through the Internet, conferences
represent an important opportunity of direct interactions between scientists and
fresh, informal communication (forum) of scientific findings. CIBB is a lively
conference that started 11 years ago in Italy. It maintains a large Italian partic-
ipation in terms of authors and conference venues but has progressively become
more international and more important in the current landscape of bioinformat-
ics and biostatistics conferences.

The topics of the conferences have kept pace with the appearance of new
types of challenges in biomedical computer science, particularly with respect
to a variety of molecular data and the need to integrate different sources of
information. This year the conference saw an impressive array of invited speak-
ers covering the two main sections: biostatistics and bioinformatics (Biostatis-
tics Free Topics: Monica Chiogna, University of Padova, Italy; Chris Holmes,
University of Oxford, UK; Jean Michel Marin, University of Montpellier II;
Causality in Genomics: Carlo Berzuini, University of Manchester, UK; Stephen
Burgess, University of Cambridge, UK; Vanessa Didelez, University of Bristol,
UK; Florian Markowetz, Cancer Research UK - CRI, Cambridge, UK; Lorenz
Wernisch, MRC - BSU, Cambridge, UK. Bioinformatics Free Topics: Ezio Bar-
tocci, Vienna University of Technology, Austria; Francesco Falciani, University
of Liverpool, UK; Jasmin Fisher, University of Cambridge, UK; David Gilbert,
Brunel University, Uxbridge, UK; Syed Haider, University of Oxford, UK; Jea-
nine J. Houwing-Duistermaat, Leiden University Medical Centre, The Nether-
lands; Marta Kwiatkowska, University of Oxford, UK; Pedro Mendes, Manch-
ester Institute of Biotechnology, UK; Marie-France Sagot, Université Claude
Bernard, France; Marco Viceconti, University of Sheffield, UK. Special Session:
Spatial Problems in the Nucleus: Julien Mozziconacci, Pierre and Marie Curie
University, Paris, France).

This year 42 papers were selected for presentation at the conference, and
each paper received two reviews or more. A further reviewing process took place
for the 25 papers that were selected to appear in this volume. The authors
are spread over more than 22 countries (all the continents were represented).
The editors would like to thank all the Program Committee members and the
external reviewers both of the conference and post-conference versions of the
papers for their valuable work. We are also indebted to the chairs of the very
interesting and successful special sessions (Computational Intelligence Meth-
ods for Drug Design; Spatial Problems in the Nucleus, Large-Scale; HPC Data
Analysis in Bioinformatics: Intelligent Methods for Computational, Systems and



VI Preface

Synthetic Biology; Computational Biostatistics for Data Integration in Systems
Biomedicine), which attracted even more contributions and attention.

A big thanks also to the sponsors, Bioinformatics Italian Society, Source
Code for Biology and Medicine, and in particular to the University of Salerno,
Vita-Salute San Raffaele University, and the University of Cambridge Computer
Laboratory, which made this event possible. Finally, the editors would also like
to thank all the authors for the high quality of the papers they contributed.

June 2015 Clelia di Serio
Pietro Liò

Alessandro Nonis
Roberto Tagliaferri
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GO-WAR: A Tool for Mining Weighted

Association Rules from Gene Ontology
Annotations

Giuseppe Agapito, Mario Cannataro, Pietro H. Guzzi, and Marianna Milano

Department of Medical and Surgical Sciences,
Magna Graecia University, Catanzaro, Italy

{agapito,cannataro,hguzzi,m.milano}@unicz.it

Abstract. The Gene Ontology (GO) is a controlled vocabulary of con-
cepts (called GO Terms) structured on three main ontologies. Each GO
Term contains a description of a biological concept that is associated to
one or more gene products through a process also known as annotation.
Each annotation may be derived using different methods and an Evi-
dence Code (EC) takes into account of this process. The importance and
the specificity of both GO terms and annotations are often measured
by their Information Content (IC). Mining annotations and annotated
data may extract meaningful knowledge from a biological stand point.
For instance, the analysis of these annotated data using association rules
provides evidence for the co-occurrence of annotations. Nevertheless clas-
sical association rules algorithms do not take into account the source of
annotation nor the importance yielding to the generation of candidate
rules with low IC. This paper presents a methodology for extracting
Weighted Association Rules from GO implemented in a tool named GO-
WAR (Gene Ontology-based Weighted Association Rules). It is able to
extract association rules with a high level of IC without loss of Support
and Confidence from a dataset of annotated data. A case study on us-
ing of GO WAR on publicly available GO annotation dataset is used
to demonstrate that our method outperforms current state of the art
approaches.

Keywords: Gene Ontology, Weighted Association Rules.

1 Introduction

The production of experimental data in molecular biology has been accompanied
by the accumulation of functional information about biological entities. Terms
describing such knowledge are usually structured by using formal instruments
such as controlled vocabularies and ontologies [1]. The Gene Ontology (GO)
project [2] has developed a conceptual framework based on ontologies for orga-
nizing terms (namely GO Terms) describing biological concepts. It is structured
into three ontologies: Molecular Function (MF), Biological Process (BP), and
Cellular Component (CC) describing different aspects of biological molecules.

c© Springer International Publishing Switzerland 2015
C. di Serio et al. (Eds.): CIBB 2014, LNCS 8623, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-24462-4_1
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Each GO Term may be associated to many biological concepts (e.g. proteins or
genes) by a process also known as annotation. The whole corpus of annotations
is stored in publicly available databases, such as the Gene Ontology Annotation
(GOA) database [3].

In such a way records representing the associations of biological concepts,
e.g. proteins, and GO terms may be easily represented as Pj , T1, . . . , Tn, e.g.
{P06727, GO:0002227, GO:0006810, GO:0006869} or {ApolipoproteinA-IV,
innate immune response in mucosa, transport, lipid transport}.

The whole set of annotated data represents a valuable resource for analysis.
Currently, there are different methods for the analysis of annotated data. From
those, the use of association rules (AR) [4,5,6] is less popular with respect to
other techniques, such as statistical methods or semantic similarities [7]. Existing
approaches span from the use of AR to improve the annotation consistency, as
presented in [8], to the use of AR to analyze microarray data [9,10,11,12,13,14,15]
(see [16] for a detailed review).

As we pointed out in a previous work [5], the use of AR presents two main
issues due to the Number and the Nature of Annotations [17]. Regarding the
Number of Annotations it should be noted that, due to the different methods
and the different availability of experimental data, the number of annotations
for each protein or gene is highly variable within the same GO taxonomy and
over different species as we depict in Figure 1.

Regarding the Nature of Annotations, it should be evidenced that the as-
sociation among a biological concept and its related GO Term can be performed
with 14 different methods. These methods are in general grouped onto two main
categories: experimentally verified (or manuals) and Inferred from Electronic
Annotation (IEA). IEA are usually derived using computational methods that
analyze literature. Each annotation is labeled with an evidence code (EC) to
keep track of the method used to annotate a protein with GO Terms. Manual

Fig. 1. Average Number of Annotations per Protein in Different Species. Each bar
represents a different species. The height of the bar represent the average number of
annotations.
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Fig. 2. Ratio of Electronic Inferred Annotations with respect to Manual ones. This
picture depicts the differences on the average number of annotations. For each bar,
green color represents the fraction of non-IEA annotations, while blue color represents
the fraction of IEA annotations.

annotations are in general more precise and specific than IEA ones (see [1]).
Unfortunately their number is generally lower and the ratio among IEA versus
non-IEA is variable.

A considerable number of genes and proteins is annotated with generic GO
terms (this is particularly evident when considering novel or not well studied
genes) and the problem is also referred to Shallow Annotation Problem.
The role of these general annotations is to suggest an area in which the proteins
or genes operate. This phenomenon affects particularly IEA annotations derived
by using computational methods.

Considering the problems discussed so far, the application of classical AR
methods to the analysis of annotated data may yield to the extraction of rules
with low specificity, with generic terms or with inconsistent annotations, follow-
ing the true path rule (i.e. rules in which both a term t and its ancestors are
included) [8,5]. For these reasons, Faria et al. [8] proposed the manual filtering of
ancestors and of low specific terms proposing a definition of specificity in terms
of descendant. Neverthless, the measurement of specificity of a term following
only topological information may yield to incorrect results as noted by Alterovitz
et al. [18].

Consequently, we here propose to select a more stringent definition of speci-
ficity by considering the information content (IC) of a term [19]. There are
different ways of calculating IC that are subdivided into intrinsic ones, e.g.
approaches that estimate the IC of concepts by only considering structural in-
formation extracted from the ontology, and extrinsic ones, e.g. approaches that
measure the IC starting from annotated corpora. Independently from the calcu-
lation, the main results of the use of IC is that we may associate to each GO
term a measure of IC, i.e. a weight of its specificity yielding to the IC-weighted
annotation as represented in the following: {P06727, GO:0002227 (16.77),

GO:0006810 (5.18), GO:0006869 (10.73)} where the number into brackets
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is the IC of terms. We may adapt some important results of AR extraction that
are able to deal with weighted attributes [20].

We developed GO-WAR, i.e. Gene Ontology-based Weighted Association
Rules Mining, a novel data-mining approach able to extract weighted asso-
ciation rules starting from an annotated dataset of genes or gene products.
The proposed approach is based on the following steps starting from the in-
put dataset of annotated biological terms: (i) initially we calculate the infor-
mation content for each GO term, (ii) then, we extract weighted association
rules by using a modified FP-Tree like algorithm able to deal with the dimen-
sion of classical biological datasets. We use publicly available GO annotation
data to demonstrate our method. Results confirm that our method outperforms
existing state of the art methods for AR that do not consider information con-
tent. We also provide a web site containing supplementary materials and results
https://sites.google.com/site/weightedrules/.

The rest of the paper is structured as follows: Section 2 discusses main related
work, Section 3 presents main concepts related to the Gene Ontology and its
annotations, Section 4 discusses GO-WAR methodology and implementation,
Section 5 presents results of the application of GO-WAR on a biological dataset,
finally Section 6 concludes the paper and outlines future work.

2 Related Work

Here we first compare GO-WAR with respect to three state of the art approaches
that use Association Rule Mining on GO Annotations, (Faria et al [8], Benites et
al [12], and Manda et al [13]); after we compare the GO-WAR tool with respect
to some popular off-the-shelf data mining platforms.

Table 1 summarizes the comparison of the approaches. We considered on the
comparison the following parameters: (i) aim of the approach, i.e. the application
context for which the algorithm has been designed, (ii) the ontologies on which
it has been tested, (iii) the mining strategy, i.e. which learning approach has
been used, (iv) the preprocessing strategy, i.e. the removal of annotations prior
to the learning of rules, (v) the used definition of interestingness of rules, (vi)
the kind of rules, and finally (vii) the presence of a supporting tool.

Considering the aim, we should report that other algorithms are in general
designed for a specific application (e.g. evaluation of Annotation consistency,
mining of rare association, or analysis of multi-ontology association), while the
GO-WAR approach is generalizable. Considering the ontologies, we note that
Faria et al. and Benites et al. report the analysis of only MF, while Manda
et al. focus on a multi-ontology approach. GO-WAR is more flexible since we
used MF for comparison with Faria and in general it may use all the ontologies.
Considering mining strategy, we report that GO-WAR uses FP-GROWTH tree
for building rules [21] that guarantees better results in terms of time and memory
usage with respect to Apriori algorithm [22].

First of all we should note that the GO-WAR approach is currently the only
one that has a supporting tool enabling the user to easily apply the methodology

https://sites.google.com/site/weightedrules/
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on a different case-study. The approach of Faria et al, for instance, is based on
the manual extraction of rules by using the GO database and SQL language,
while Benites et al. and Manda et al. do not provide any supporting tool.

3 Gene Ontology and Its Annotations

This section presents the main concepts related to GO and its annotations, after
which a deep discussion on the calculation of information content of annotations
is presented.

3.1 Gene Ontology and Its Annotations

Gene Ontology [2] (GO) is one of the main resources of biological information
since it provides a specific definition about protein functions. GO is a structured
and controlled vocabulary of terms, called GO terms. GO is subdivided in three
non-overlapping ontologies: Molecular Function (MF), Biological Process (BP)
and Cellular Component (CC), thus, each ontology describes a particular aspect
of a gene or protein functionality. GO has a specific structure, Directed Acyclic
Graph (DAG), where the terms are the nodes and the relations among terms
are the edges. This allows for more flexibility than a hierarchy, since each term
can have multiple relationships to broader parent terms and more specific child
terms [23]. Genes or proteins are connected with GO terms through annotations
by using a procedure also known as annotation process. Each annotation in
the GO has a source and a database entry attributed to it. The source can
be a literature reference, a database reference or computational evidence. Each
biological molecule is associated with the most specific set of terms that describe
its functionality. Then, if a biological molecule is associated with a term, it will
connect to all the parents of that term [23]. 18 different annotation processes exist
that are identified by an evidence code, the main attribute of an annotation. The
evidence codes available describe the basis for the annotation. A main distinction
among evidence codes is represented by Inferred from Electronic Annotations
(IEA) ones, i.e. annotations that are determined without user supervision, and
non-IEA ones or manual annotations, i.e. annotations that are supervised by
experts.

3.2 Measures of Specificity of GO Terms

There are two approaches for computing the IC of a given term belonging to
an ontology: extrinsic (or annotation based) and intrinsic (or topology-based)
methods.

Intrinsic approaches rely on the topology of the GO graph exploiting the
positions of terms in a taxonomy that define information content for each term.
Intrinsic IC calculus can be estimated using different topological characteristics
such as ancestors, number of children, depth (see [19] for a complete review).
For example, Sanchez et al. [24] computes the IC of terms exploiting only the
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number of leaves and the set of ancestors of a including itself, subsumers(a)
and introducing the root node as number of leaves max leaves in IC assessment.
Leaves are more informative than concepts with many leaves, roots, so the leaves
are suited to describe and to distinguish any concept.

ICSanchez et al.(a) = −log
⎛⎝ |leaves(a)|

|subsumers(a)| + 1)

max leaves+ 1

⎞⎠ (1)

We here use the formulation of Harispe et al. [19] that revises the IC assessment
suggested by Sanchez et al. considering all the leaves of a concept when a is a
root and evaluating max leaves as the number of inclusive ancestors of a node.
In this way, the specificity of leaves according to their number of ancestors is
distinguished.

ICHarispe et al.(a) = −log
⎛⎝ |leaves(a)|

|subsumers(a)| )

max leaves

⎞⎠ . (2)

As a general principle, since the structure of GO is periodically updated [23], the
IC of terms reflects this evolution, thus the calculation is subject to the variation
of GO structure.

4 The GO-WAR Framework

Here we present the GO-WAR Framework. Initially the paper discusses the
weighted association rule algorithm, then the implementing architecture and
main software modules are described.

4.1 GO-WAR Algorithm

The rationale of the GO-WAR algorithm is to take into account the relevance
of items, i.e. GO Terms, balancing, thus, relevance and frequency as explained
in [20]. Following the same approach we here formulate the problem of the ex-
traction of weighted association rules introducing main concepts.

Definition 1 (Weighted Item). A Weighted Item (wi) is a pair (x, w), where
x ∈ I,i.e. a GO Term belonging to the set of the items, and w ∈ R, i.e. the
associated real-valued item. For example, the GO term GO:00152 relatives to
the transcription corepressor activity has an IC value of 11.876, conveyed as
GO:00152, (11.876).

Definition 2 (Weighted Transaction). A weighted transaction WT is a set of
weighted items. For instance, the line

P41226, GO:0005524 (10.07), GO:0005829, (10.07)

represents the protein P41226, its annotationsGO:0005524, GO:0005829 and their
weights.A set ofWT is hereafter referred asWeightedTransactionDatabaseWTB.
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Definition 3 (Weighted Support). The Weighted Support, (WS), is the
product of the support of an item, calculated using the classical formulation, and
its weight.

Definition 4 (Weighted Minimum Support). The weighted minimum sup-
port (wminSupp) of a weighted item is defined as:

wminSupp =
∑n

i=1

(
WS(xi)

n

)
∗ p

where n is the number of transactions, and p is a user defined threshold.

The algorithm takes as input a transaction database T, after which it com-
putes the weight for each item producing a weighted transaction database. Con-
sequently, it generates candidates itemsets by applying a modified FP-GROWTH
algorithm. These frequent itemsets and the minimum confidence constraint are
used to form rules as represented in the following algorithm 1.

The generation of candidate itemsets follows a FP-Growth (Frequent Pattern)
[21] like approach employing a two step strategy. In the first pass the algorithm
counts the weighted occurrence of items (i.e. the product of the frequency of
occurrences and their weight) in the datasets. All the results are stored in a
table. Then it builds a FP-Tree structure by adding instances of items that
have a weighted support greater than wminSupp. Once that the FP-Tree has
been created, all itemsets with desired support coverage have been found, and
association rule creation may start.

GO-WAR iteratively analyzes the FP − Tree to mine significant rules [25]
using a recursive methodology. We defined an inverted DFS (inverted Depth
First Search) scan method to examine the FP-Tree. Inverted DFS starts to
explore the tree from the leave nodes (bottom) and goes up to the (root node).
The advantage to use inverted DFS respect to traditional DFS is related with the
possibility to automatically prune (remove) the postfix part of a frequent pattern.
All frequent pattern of a given item are mined following the links connecting all
occurrences of the current item in the FPTree and computing the weighted
support related with each path (frequent patterns), producing a new tree called
β-Tree, used to mine rules. Postfix part of a frequent pattern is defined respect to
a given item or itemset I. For example, taking into account the frequent pattern
FP=(a:5, b:4, x:3, t:1, z:1) the postfix part of the item x is Post(x)={t:1, z:1},
while the prefix part is Pre(x)={a:5, b:4}. All frequent patterns of a given item
are mined following the links connecting all occurrences of the current item in the
FP-Tree and computing the support related with each path (frequent patterns).
Each path is a set of ancestors of a given item called Conditional Pattern Base
(CPB), CPB = {Pre(I) ∪ I ∪ Post(I), where Pre(I)=∅ or Post(I)=∅}.

Starting from the leaf nodes, the Prefix part of a path can be used to mine
rules, in particular, each path is a new tree called β-Tree, from which it is
possible to apply the methodology explained previously to mine the meaningful
rules. In particular, from the new β-Tree we prune all nodes (items) for which
the condition wS(node) < wminSupp is verified. The process goes ahead until
all items of the current β-Tree are analyzed and/or we have reached the root
prefix set related with the current item, or it is empty.
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Algorithm 1. Gene Ontology Based Weighted Association Rules Mining (GO-
WAR)

Require: A weighted Transaction Database WTB, A weighted minimum support
wminSupp.

Ensure: A set of weighted association rules Rules.
for all wi ∈ WTB do

Calculation of weighted support
ws(wi) ← computesupport

end for
frequentItemsList ← compute(wS,wminSupp) {Creation of FP-Tree}
Rules ← FP − Tree {Creation of Rules}

4.2 GO-WAR Performance Analysis

The space cost of GO-WAR algorithm is the size of the FP-Tree. The size of the
FP-Tree is related with the dimension of the input dataset. In particular, the
FP-Tree grows less than the database because, during the pre-processing step,
all the items for which ws(x) ≤ weigthedminSupport are pruned (filtered), thus,
after it has reached a particular dimension the tree remains constant, varying
only the count of nodes. Even with huge dataset, the use of FP-Tree to represent
data allows to save considerable amount of memory for storing the transactions.

Time Complexity Analysis. The time complexity of the algorithm varies on
the scanning of the database and mining rules. Calculation of weighted support
requires a linear time proportional with the dimension of the input dataset.

Fig. 3. Architecture of GO-WAR
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Furthermore, in the same scan it is possible to locate frequent items, building,
thus, the FrequentItemsList. Although the average time complexity of this
composite step is: O(n), FP-Tree creation is done in a linear time proportional
to the number of frequent items identified. The time complexity to mine rules,
is comparable with scanning a n-ary tree. In general, for a n-ary tree with
height h, the upper bound for the maximum number of leaves is nh. In our
solution, sorting the elements in a descending order and using an inverted DFS
scan strategy that allow us to obtain a time complexity equal to O(n2). Finally,
adding all single times contribution, we can get the total complexity as: 3n+n2,
where 3n is related with the computing of weighted support, FrequentItemsList
and FP-Tree building. Complexity can be rewritten without loose generality as
n+ n2, thus for huge value of n the complexity turns out to be O(n2).

4.3 GO-WAR Architecture and Implementation

GO-WAR has a layered architecture as depicted in Figure 3, that is composed
of five main modules. The MINER-CORE receives user request and acts as a

Fig. 4. GUI of GO-WAR. Initally user has to upload datasets into GO-WAR by using
the GO-WAR GUI. Then he/she has to select the desired threshold. Go-WAR weights
automatically all the GO-Terms and runs the rules learning algorithm. At the end of
the computation GO-WAR shows the extracted rules in a simple textual interface. For
each rule user may obtain the translation of GO-Terms into the textual definition and
the visualization of the GO-graph they belong.
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controller of other modules. Each submodule is controlled by using a master-slave
approach that is internally realized through Java Threads in order to achieve ef-
ficient computation. The Rule Miner module is responsible for the calculation of
frequent itemsets and for the extraction of final rules. The IC Calculator Module
provides the calculation of IC for each GO Term. It is based on Semantic Mea-
sures Library and Toolkit libraries provided at (http://www.semantic-measures-
library.org/) and on a local copy of Gene Ontology; The GO Term Translation
module provides the complete description for each GO Term by invoking the
Gene Ontology Annotation Database through Web Services. The GUI module
based on Java Swing Technology provides to the user transparent access to all
the implemented functionalities as depicted in Figure 4.

GO-WAR has been fully implemented by using Java Programming
Language and it is available for download at https://sites.google.com/site/
weightedrules/. Users may extract rules from the input dataset in an easy way
as depicted in Figure 4.

5 Results

We tested GO-WAR on three different case studies: (i) comparison with respect
to unweighted association rule learning; (ii) comparison with respect to Faria
et al. approach, (iii) comparison with respect to Association Rule Learning in
Weka.

The aims of these case studies are respectively: (i) to show that the weighted
rule learning improves the quality of rules, (ii) to demonstrate the effectiveness of
GO-WAR in a existing practical problem, and (iii) to demonstrate the efficency
of GO-WAR.

5.1 Comparison with Respect to Pfam

In this case we compare GO-WAR with respect to a classical association rule
algorithm ARule implemented into the Arules package of Bioconductor 1 [26]
on an existing dataset of proteins in order to show as proof-of-concept that
GO-WAR is able to mine more specific rules.

We used the Pfam database (protein families database) [27], that is a struc-
tured database of protein domains and families. The current release of Pfam
(22.0) contains 9318 protein families. Each family of Pfam is, therefore, composed
by proteins that have a similar structure and then may have a close function.
Consequently, proteins in the same Pfam class should have similar annotations.
Trivially, protein in the same Pfam classes should present statistically significant
co-occurrence of annotations.

For each protein, corresponding GO annotations and the related IC have
been determined forming the input dataset. Then GO-WAR has been used to
mine weighted association rules. The software extracted 256 Rules that have a

1 www.bioconductor.org

www.bioconductor.org
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weighted support greater than 9.10. Finally, a post-processing phase filtered
rules that include possibly redundant annotations. An annotation is redun-
dant if it is implied by another more specific annotation of the same protein.
For instance, the term type I interferon signaling pathway is parent of
interferon-gamma-mediated signaling, then we filtered rules containing im-
plication of such terms. Differently from other approaches, the use of weighted
support discards a high number of rules with redundant annotations.

Top ranked rules are:

– IF (MHC class I protein complex AND plasma membrane AND Golgi mem-
brane AND integral component of lumenal side of endoplasmic reticulum
membrane) THEN interferon-gamma-mediated signaling pathway

– IF (MHC class I protein complex AND plasma membrane AND Golgi mem-
bran) THEN interferon-gamma-mediated signaling pathway

– IF (MHC class I protein complex AND plasma membrane) THEN interferon-
gamma-mediated signaling pathway

The website of the project stores more example of rules. Results obtained by
GO-WAR were compared to existing association rules approaches implemented
in the Arules package of Bioconductor www.bioconductor.org [26]. After that
non-weighted rules have been determined with these tools, the average weighted
support for these rules was computed. The average value was 5.3. This value is
lower than the average support of rules extracted by using GO-WAR confirming
the effectiveness of the presented method.

A semantic-similarity based assessment was also performed [1,28]. A semantic
similarity in biological scenario is a function defined over two terms extracted
from an ontology (i.e. GO), which quantifies the similarity among sets of terms.
The following hypothesis H0 has been tested: given a rule extracted using GO-
WAR, the average similarity among all the pairs of terms is significantly higher
than random. For each rule, 1000 random rules were generated, all of them
with the same structure (in terms of number of items), from the GO Database.
Then the average semantic similarity has been calculated, i.e. we built all the
possible pairs of items, then we calculated the pairwise semantic similarity. Fi-
nally we averaged all the obtained values. Since proteins within the same path-
way/module/family play the same role, they are likely to have high semantic
similarity. Finally, a non-parametric test was used to confirm that the aver-
age semantic similarity within the rule is higher than the random expectation.
SimGIC [8] semantic similarity has been used because it does not use intrinsic
IC, thus avoiding a trivial data circularity problem. Results confirmed that rules
extracted by using GO-WAR have an average semantic similarity higher than
random expectation.

5.2 Comparison between State of the Art: Approaches

This section shows how GO-WAR improves the current state of the art ap-
proaches for improving annotation consistency. We compare GO-WAR to the

www.bioconductor.org
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Table 2. Comparison of Top Ranked Rules mined by Faria and extended by GO-WAR

Faria et al GO-WAR

IF THEN IF THEN INTERPRETATION

GO:0003924 GO:0005525 GO:0003924 GO:0005525 IF GTPase activity
THEN GTP binding

GO:0030272 GO:0005524 GO:0030272
GO:0042803
GO:0046982

GO:0005524 IF 5-
formyltetrahydrofolate
cyclo-ligase activity, pro-
tein homodimerization
activity, protein het-
erodimerization activity
THEN ATP binding

GO:0004814 GO:0005524 GO:0004814
GO:0000049

GO:0005524 IF arginine-tRNA ligase
activity, tRNA binding
THEN ATP binding

GO:0008060 GO:0008270 GO:0008060
GO:0017137

GO:0008270 IF GTPase activator
activity, Rab GTPase
binding THEN zinc ion
binding

paper of Faria et al. [8]. Authors analyze proteins stored in UniprotKB database
focusing only on molecular function annotations. They define the meaning of
incomplete and inconsistent annotations in a formal way and then they propose
an association rule algorithm to improve annotation consistency aiming to help
GO curators in developing the ontology. Authors do not consider weighted sup-
port but the classical support and confidence. They are aware of the specificity
problem, thus they manually filter GO Terms with low specificity and redundant
annotations before applying association rules. Conversely, GO-WAR approach is
more flexible and avoids this manual intervention. Moreover, authors are inter-
ested in capturing implicit relationships between aspects of a single function (e.g.
ATPase activity→ATP binding), while we explore the complete search space
with the goal to highlight unknown relationships among biological functions,
thus investigating a more broad perspective. Table 2 compares the top-ranked
rules mined by Faria et al to those mined by GO-WAR.

5.3 Comparison with Weka

In order to analyze the performance of DMET-Miner against Weka we used a
synthetic DMET dataset. All the experiments were performed on a MacBookPro
with a Pentium i7 2.3 Ghz CPU, 16GB RAM and a 512GB SSH disk.

We have used a synthetic dataset containing the same number of transaction
as the Pfam dataset. The dimension of the analyzed dataset is around 10 MB
approximately. The reported execution times refer to average times, each value
being computed by repeating the measure 10 times with the same settings.
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Table 3. GO-WAR execution time and number of mined rules when varying the con-
fidence (support=40%).

MinS% Conf% #Rules ΔTime(ms)

40 20 20 6140.33

40 30 20 6400.00

40 40 20 6700.22

40 50 20 6156.33

Table 4. Weka execution time and number of mined rules when varying the confidence
(support=40%).

MinS% Conf% #Rules ΔTime(ms)

40 30 40 1,6410.33

40 50 40 1,6420.00

40 70 35 1,6504.66

40 80 0 1,9408.00

40 90 0 1,9310.00

40 95 0 1,9340.50

40 97 0 1,9010.33

40 99 0 1,9450.66

Tables 3 and, respectively, 4, show the computation time and the number
of mined rules using GO-WAR and WEKA without the use of weights, when
varying minimum support and confidence.

Moreover GO-WAR produces less rules than Weka (Apriori), but in the same
time rules produced by GO-WAR are more informative than Weka rules. GO-
WAR rules are presented in an IF-THEN form, making rules more easy to under-
stand and interpret, and it is possible to directly visualize rules in the GO-graph.

6 Conclusion

Classical AR algorithms are not able to deal with different sources of production
of GO annotations. Consequently, when used on annotated data they produce
candidate rules with low IC. We here presented GO-WAR that is able to extract
association rules with a high level of IC without losing Support and Confidence
during the rule discovery phase and without the use of post-processing strategies
for pruning uninteresting rules. We used publicly available GO annotation data
to demonstrate our methods. Future works will regard testing of GO-WAR on
larger datasets for improving annotation consistency.
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Abstract. Gene annotations are a key concept in bioinformatics and
computational methods able to predict them are a fundamental contri-
bution to the field. Several machine learning algorithms are available in
this domain; they include relevant parameters that might influence the
output list of predicted gene annotations. The amount that the variation
of these key parameters affect the output gene annotation lists remains
an open aspect to be evaluated. Here, we provide support for such evalua-
tion by introducing two list correlation measures; they are based on and
extend the Spearman ρ correlation coefficient and Kendall τ distance,
respectively. The application of these measures to some gene annotation
lists, predicted from Gene Ontology annotation datasets of different or-
ganisms’ genes, showed interesting patterns between the predicted lists.
Additionally, they allowed expressing some useful considerations about
the prediction parameters and algorithms used.

Keywords: Biomolecular annotations, Spearman coefficient, Kendall
distance, top-K queries.

1 Introduction

In molecular biology and bioinformatics, a controlled biolomolecular annotation
is an association of a biomolecular entity (mainly a gene, or gene product)
with a concept, described by a term of a controlled vocabulary (in this case
part of an ontology), which represents a biomedical feature. This association
states that the biomolecular entity has such feature. For instance, the associa-
tion 〈Entrez Gene ID 1080, GO:0055085〉 is a typical annotation of the human
CFTR gene (Cystic fibrosis transmembrane conductance regulator (ATP-binding
cassette sub-family C, member 7)), which has Entrez Gene ID 1080, with the
concept represented by the transmembrane transport term of the Gene Ontol-
ogy, which has ID GO:0055085. Thus, such annotation states that the human
CFTR gene is involved in the transmembrane transport.

c© Springer International Publishing Switzerland 2015
C. di Serio et al. (Eds.): CIBB 2014, LNCS 8623, pp. 19–32, 2015.
DOI: 10.1007/978-3-319-24462-4_2
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Despite their biological significance, there are some issues concerning available
biomolecular annotations [1]. In particular, they are incomplete: only a subset of
the biomolecular entities of the sequenced organisms is known, and among those
entities only a small part has been annotated by researchers so far. In addition,
they may be erroneously annotated and not yet revisited, prior to their being
stored into online data banks. Within this context, computational methods and
software tools able to produce lists of available or new predicted annotations
ranked based on their likelihood of being correct are an excellent contribution
to the field [2].

For this reason, starting from a state-of-the-art algorithm [3] based on trun-
cated Singular Value Decomposition (SVD) [4], we developed some enhanced
variants that take advantage of available Gene Ontology (GO) [5] annotation
data to predict new gene annotations of different organisms, including Homo
sapiens. Specifically, we designed an automated algorithm that chooses the best
the truncation level [6] for the truncated SVD method and developed some al-
ternatives to the SVD, based on gene clustering [7] and Resnik’s [8] term-term
similarity metrics [9]. Similar to Khatri and colleagues papers [10] [11], we ad-
ditionally implemented another version of this method with the enhancement of
frequency and probability weights [12]. To this end, we also applied some topic
modeling algorithms, such as Probabilistic Latent Semantic Analysis (pLSA) by
Hofmann et al. [13], and Latent Dirichlet Allocation (LDA) by Blei et al. [14],
obtaining relevant results, respectively, in [15] and [16]. Additionally, one of the
authors recently took advantage of a deep learning algorithm, built on a multi-
layer autoencoder neural network, that lead to interesting prediction results in
reference [17].

All these methods involve key parameters that strongly influence their output.
To understand how the resulting annotation lists vary when these key parameters
change, a similarity measure that compares different output annotation lists
is required. Currently, several metrics are available to compare ranked lists of
elements. A good example is the Goodman-Kruskal’s γ [18], which measures
the difference between rank-concordant or rank-discordant pairs of objects in
two lists. However, Fagin and colleagues [19] state that the most useful and
consistent measures are the Spearman ρ correlation coefficient [20] and Kendall
τ distance [21]. In recent years, many variants were proposed to meet new needs
that came with some state-of-the-art applications, e.g., top-K queries [22]. For
example, the work proposed in [23] by Kumar and colleagues adapts the original
formulation to measure weighted correlations, by placing more emphasis on items
with high rankings. Applications have been shown in music signal prediction [24],
recommendation systems [25] and computer vision [26].

In this work, we depart from a recent work by Ciceri et al. [27] to develop
new weighted correlation metrics able to better compare biomolecular annota-
tion lists. We adapt the weighted Kendall τ distance (proposed in [23]) and
the Spearman ρ rank correlation coefficient (proposed in [20]) to the case in
which multiple lists (initially containing the same items in different orders) are
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truncated up to a level K, thus resulting in sub-lists whose sets of contained
items may not coincide.

The remainder of this chapter is organized as follows. Section 2 illustrates
aspects related to the prediction of gene annotations. Section 3 introduces the
Spearman ρ correlation coefficient and Kendall τ distance variants for the com-
parison of annotation lists. Section 4 describes some significant test results of
the proposed measure variants. Finally, we conclude in Section 5.

2 Prediction of Gene Ontology Annotations

Let A = [aij ] be an m × n matrix, where each row corresponds to a gene and
each column corresponds to a Gene Ontology feature term (aij = 1 if gene i
is annotated to feature term j, aij = 0 otherwise). Moreover, let θ be a fixed
threshold value. The prediction algorithm elaborates the matrix A to produce
an output matrix Ã, with the same dimensions of A, where each likelihood
value ãij is used to categorize an annotation: 〈genei, featurej , ãij〉. A high ãij
value indicates that the probability for genei to be associated with the feature
featurej is high. Each annotation 〈genei, featurej , ãij〉 can be classified in four
categories:

– Annotation Predicted (AP): aij = 0 ∧ ãij > θ (similar to False Positive);
– Annotation Confirmed (AC): aij = 1 ∧ ãij > θ (similar to True Positive);
– Non-Annotation Confirmed (NAC): aij = 0 ∧ ãij ≤ θ (similar to True Nega-

tive);
– Annotation to be Reviewed (AR): aij = 1∧ãij ≤ θ (similar to False Negative).

Since APs and ARs can be considered as presumed errors with respect to the
available annotations, we chose the value of θ as the one that minimizes their sum
(APs+ARs), as Khatri et al. did in [3]. After a ten fold cross validation phase, in
which the 10% of annotations are randomly set to zero (as explained in reference
[9]), the software compares each input annotation with its corresponding output
prediction. Based on the value of the threshold θ, a list of annotations with
ãij > θ is created; it is subdivided in two sections: an APlist, i.e., Annotation
Predicted list, and a NAClist, i.e., Non-Annotation Confirmed list, respectively
containing the annotations from the original list that were classified as belonging
to the AP or NAC category. Moreover, the defined categories are used to create
a Receiver Operating Characteristic (ROC) curve, a graphical plot depicting the
performance of a binary classifier system for different discrimination threshold
values [28]. Similar to its original definition, which uses TPrate and FPrate, our
ROC curve depicts the trade-off between the ACrate and the APrate, where:

ACrate =
AC

AC+ AR
APrate =

AP

AP+ NAC
(1)

for all possible values of θ. Notice that, in statistical terms, ACrate = Sensitivity
and APrate = 1− Specificity. The output ROC space is thus defined by ACrate

and APrate as x and y axes, respectively. In all of our test results, reported
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in Section 4, we consider only the APrate in the normalized interval [0, 1]%, in
order to evaluate the best predicted annotations (APs) having the highest likeli-
hood score. Furthermore, only if the obtained ROC Area Under the Curve (AUC)
percentage is greater than a fixed threshold θ1 = 2/3 = 66.67%, we consider to
have good reliability of reconstruction. We use the annotation category labels
we just introduced to define our measures in the following sections.

3 Annotation List Correlation Measures

Each annotation prediction algorithm has some key parameters; changing their
values usually leads to different output predicted annotation lists, i.e. APlists.
For instance, the truncated SVD (tSVD) algorithm may produce quite different
results when its truncation level k varies. In the two variants of tSVD that we
enhanced with gene clustering and term-term similarity metrics (named Seman-
tically IMproved tSVD variants, i.e., SIM1 and SIM2), different results may be
obtained when varying the number of gene clusters C [9]. In Probabilistic La-
tent Semantic Analysis [13], a topic modeling method, a key role is played by
the number of topics T selected before performing the evaluation [15]. To under-
stand the amount by which the selected parameter values are able to influence
the output results, it is important to define similarity metric that compares two
output APlists resulting from different algorithm parameterizations. To this
end, we present novel variants to two well-known similarity metrics:

– the Spearman rank correlation coefficient (ρ) [20]
– the Kendall rank distance (τ) [21]

which are respectively described in Subsection 3.1, and in Subsection 3.2.

3.1 Spearman Rank Correlation Coefficient

The Spearman rank correlation coefficient (ρ, sometimes also called foot-rule)
[20] measures the statistical dependence between two variables X and Y . The
measure expresses either positive correlation, i.e., Y increases when X increases,
or negative correlation, i.e., Y decreases when X increases. A similar defini-
tion can be applied to pair of ranked lists. Let la and lb be two ranked lists of
biomolecular annotations. A maximum positive correlation ρ = +1 is returned
when la and lb are identical (i.e. having the same elements in the same order),
while the maximum negative correlation ρ = −1 is returned when la and lb con-
tain the same elements, but in reverse order. The minimum correlation ρ = 0
(i.e., maximum diversity) is instead detected when the element order in la and lb
strongly diverges. Suppose la and lb have the same length n. Given an element
i, let xi denote its position in la, yi its position in lb and di = |xi− yi|. The final
normalized Spearman ρ value is then computed as:

ρ = 1− 6 ·∑ d2i
n(n2 − 1)

(2)



Extended Spearman and Kendall Coefficients for Gene Annotation 23

Table 1. Example of the application of the Spearman rank correlation coefficient; la
and lb are, respectively, the first and second compared lists; xi is the position of the
ith element of la in la, and yi is the position of the ith element of la in lb; di is the
difference between positions.

la xi lb yi di d2i
a 1 c 4 3 9
b 2 b 2 0 0
c 3 e 1 2 4
d 4 a 5 1 1
e 5 d 3 2 4

For example, the Spearman rank coefficient computed for the la and lb in Table 1
is: ρ = 1 − 6·18

5·24 = 1 − 18
20 = 1 − 0.9 = 0.1. The low value of ρ indicates that la

and lb have a low correlation, as shown in Table 1.

Weighted Spearman Rank Coefficient. As mentioned earlier, two lists la
and lb may contain different elements or have different length; in this case, the
lists would not be properly handled by the classical Spearman rank correlation
coefficient. In order to additionally consider this case, based on the work by Ciceri
et al. [27], we introduce a new Weighted Spearman rank coefficient featuring
penalty distance weights wi for each element i absent from one list.

Let q = |la ∪ lb|. Thus, the penalty weight wsi for an object i in the lists la
or lb is computed as follows:

wsi =

{
1− 1

|xi−yi|+1 , i ∈ la ∧ i ∈ lb
1, otherwise

(3)

The Weighted Spearman rank coefficient value is then computed as:

ρw =

∑q
i=1 wsi

q
(4)

High correlation is found when ρw � 0 (i.e., very few penalties are assigned),
while low correlation is found when ρw � 1 (i.e., many penalties are assigned).
If the two lists have no common elements, i.e., q = |la|+ |lb|, ρw = 1.

Extended Spearman Rank Coefficient. The Weighted Spearman rank co-
efficient shows a flaw in our biomolecular annotation prediction context: all ele-
ments {i : i /∈ la ∨ i /∈ lb} are weighted equally.

As an example, let la (lb) be a ranked list containing an APlist lAPa (lAPb )
and a NAClist lNACa (lNACb ), and let a′ and a′′ be two biomolecular annotations. If
an annotation is not present in lAPa (lAPb ), then it is likely present in the related
NAClist lNACa (lNACb ) (see Section 2 for details). However, the ρw coefficient would
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assign both lists the annotations {a′ : a′ /∈ lAPa , a′ ∈ lNACa } and {a′′ : a′′ /∈ lAPa , a′′ /∈
lNACa } a maximum (equal) penalty (i.e., wa′ = wa′′ = 1.0). The same holds for lb.
Thus, we designed a new coefficient more well-suited to our domain, where a′

gets a lower penalty than a′′. To do so, we first modified the position weight of
each element i in the NAClist:

ẑi = zi + 2 ·m (5)

where zi is the position of i in the NAClist lNACb , m is the length of the associated
APlist lAPb and 2 is a penalty factor for i not to be in lAPb and being in lNACb (the
value 2 keeps the penalty proportional to the position of i in the list). Then, we
expressed the new penalty weight as follows:

vsi =

⎧⎨⎩
1, i ∈ lAPa /∈ lAPb /∈ lNACb

1− 1
|xi−ẑi|+1 , i ∈ lAPa /∈ lAPb ∈ lNACb

1− 1
|xi−yi|+1 , i ∈ lAPa ∈ lAPb

(6)

where xi is the position of the i element in lAPa , yi is its position in lAPb and ẑi is
its position in lNACa (lNACb ).

We selected this function to reduce the penalties of those elements found in
both the first AP lists (lAPa ) and the second NAC lists (lNACb ), with respect to those
only found in the first AP list (lAPa ) but absent from the second one.

The Extended Spearman rank coefficient is thus computed as:

ρe =

∑q
i=1 vsi
q

(7)

As for the Weighted Spearman rank coefficient, high ρe values lead to low cor-
relation, while ρe � 0 suggests high correlation.

3.2 Kendall Rank Distance

The Kendall rank distance (τ) [21] counts the normalized number of pairwise
disagreements between two ranked lists la and lb, i.e., the number of bubble-sort
swaps needed to sort la in the same order of lb. Obviously, when the two lists are
identical, τ = 0. Conversely, if la is obtained by reversing the order of lb, then
τ = 1. Let la and lb be two lists of length n containing the same elements; given
an element i, xi is its position in la, while yi is its position in lb. Thus, the set
K of required swaps between elements in lists la and lb is computed as follows:

K(la, lb) = {(i, j) : (xi < yi ∧ xj > yj) ∨ (xi > yi ∧ xj < yj)} (8)

The normalized Kendall rank distance is given by:

τ =
|K(la, lb)|
n(n− 1)/2

(9)

Notice that the Kendall rank distance does not express negative correlation
between lists. Moreover, while the Spearman rank coefficient is focused on the
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Table 2. Example of the application of the Kendall rank correlation metrics. For each
pair of elements in the set (1st column), the ranks in la and lb are provided (2nd and
3rd columns), along with the necessity of performing a bubble-sort swap (4th column).

Pair la ranks lb ranks Bubble-sort Pair la ranks lb ranks Bubble-sort
swap swap

(a, b) 1 < 2 4 > 2 � (b, d) 2 < 4 2 < 5
(a, c) 1 < 3 4 > 1 � (b, e) 2 < 5 2 < 3
(a, d) 1 < 4 4 < 5 (c, d) 3 < 4 1 < 5
(a, e) 1 < 5 4 > 3 � (c, e) 3 < 5 1 < 3
(b, c) 2 < 3 2 > 1 � (d, e) 4 < 5 5 > 3 �

distance between the ranks of each element in the lists, the Kendall rank distance
considers only the number of swaps in the element rank.

For example, consider the lists la and lb in Table 1, whose rankings are sum-
marized in Table 2. The number of bubble-sort swaps needed to give la and lb
the same ranking is |K(la, lb)| = 5. Thus, the Kendall rank distance between la
and lb is: τ = 5

(5·4)/2 = 5
10 = 0.5, i.e., the lists have medium correlation. This

is discordant with the result obtained by applying the Spearman coefficient (see
Section 3.1), which states that the lists have low correlation. Thus, the proposed
example highlights the different nature of the two metrics.

Weighted Kendall Rank Distance. Like the Spearman rank coefficient (Sub-
section 3.1), a flaw of the classical normalized Kendall rank distance is that it
works properly only when the two lists have the same size and contain the same
elements. Analogous to what we did for the Spearman rank coefficient, we in-
troduce weights to penalize elements that are present in one list, but absent
from the other [27]. In this case, penalties are added so as to give more weight
to bubble-sort swaps concerning elements in earlier positions and less weight to
the those in later positions. Moreover, elements that appear only in one list are
penalized further .

Let xi and yi be the positions of the element i in the lists la and lb, respectively.
In case i /∈ la, xi = |la| + 1; else if i /∈ lb, then yi = |lb| + 1. Then, the penalty
for i is computed as:

wki =

{ 1
log(xi+2) − 1

log(xi+3) i ∈ la ∧ i ∈ lb
0.5 otherwise

(10)

We chose this weight function to make the weight larger if the element is in
the earliest positions of the list and lower if it is in the later ones; we consider
bubble-sort swaps in the first positions more important. The Weighted Kendall
rank distance is then computed as:

τw =

∑
(i,j)∈K(la,lb)

wkiwkj

|K(la, lb)| (11)
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Thus, low correlations correspond to high distance values. On the other hand, if
the two lists are identical, τw = 0 (since no swaps occur).

Extended Kendall Rank Distance. Similar to what we did with the Ex-
tended Spearman rank coefficient (in Subsection 3.1), we introduce the Extended
Kendall rank distance to furhter handle cases where an element i may be absent
from an APlist, but present in its NAClist. If such an element i has a likelihood
value h (that is, ãij is in the output matrix and in the APlist), we set its weight
to vki = 0.5 − h. Notice that annotations in the APlist have likelihood values
ranked from the maximum to the minimum, in the interval [1, θ), while annota-
tions in the NAClist are in the interval [θ, 0], i.e., the prediction likelihood real
value h decreases along the rank. Accordingly, it is used to define the weight for
the element i as follows:

vki =

⎧⎨⎩
0.5 i ∈ lAPa /∈ lAPb /∈ lNACb

0.5− h i ∈ lAPa /∈ lAPb ∈ lNACb
1

log(xi+2) − 1
log(xi+3) i ∈ lAPa ∈ lAPb

(12)

where xi is the position of the i element in lAPa . In particular, the penalty reduction
h can be defined as: h = 0.5 − zi/(m · 2), where zi is the position of i in lNACa

(lNACb ) and m is the length of lNACa (lNACb ).
We selected the weight function in Equation 12 such that it decreases when

the element gets a lower rank. Consequently:

τe =
∑

(i,j)∈K(la,lb)

vkivkj (13)

As for the Weighted Kendall rank coefficient (in Subsection 3.2), τe is high when
la and lb are very different and τe � 0 when the two lists are very similar.

4 Results and Discussion

In this Section we evaluate our proposed Extended Spearman rank coefficient
and Extended Kendall rank distance measures on lists of annotations produced
via the common truncated SVD method, explained in Figure 1. Specifically,
we measure the ir prediction performance, while varying the SVD truncation
level k. The measures are tested on a small dataset of GO Cellular Component
(CC) and Molecular Function (MF) annotations of Homo sapiens, Gallus gallus
(red junglefowl) and Bos taurus (cattle) genes, which were obtained from the
Genomic and Proteomic Data Warehouse (GPDW) [29] (H. sapiens CC: number
of genes: 7,868; number of CC feature terms: 684; number of annotations: 14,381.
G. gallus MF: number of genes: 309; number of MF feature terms: 225; number
of annotations: 509. B. taurus MF: number of genes: 543; number of MF feature
terms: 422; number of annotations: 934).

Table 3a shows the quantitative amounts of AP and NAC annotations for dif-
ferent truncation levels k, provided by our best truncation level algorithm (de-
scribed in [6]). In the case of Homo sapiens CC, the best chosen value is k = 378;



Extended Spearman and Kendall Coefficients for Gene Annotation 27

Fig. 1. An illustration of the Singular Value Decomposition (upper white image) and
the Truncated SVD reconstruction (lower gray image) of the A matrix. In the clas-
sical SVD decomposition, A ∈ {0, 1}m×n, U∈ R

m×m, Σ ∈ R
m×n V T∈ R

n×n. In the
Truncated decomposition, where k ∈ N is the truncation level, Uk∈ R

m×k, Σk∈ R
k×k,

V T
k ∈ R

k×n, and the output matrix ˜A∈ R
m×n. The choice of k strongly influences the

content of the output ˜A matrix, during reconstruction, even if it does not change the
matrix dimensions

the application of the tSVD algorithm with this truncation level produces the
List0. The values in Table 3a show that a fairly small change in the truncation
level k may lead to different numbers of APs and NACs.

Table 4 shows the values of the Extended Kendall rank distances and the
Extended Spearman rank coefficients between the nine lists in Table 3a. By an-
alyzing the Extended Spearman rank coefficients (gray cells), we do not notice
any interesting trends or patterns, since the values seem to vary stochastically.
Conversely, the Extended Kendall rank distance values increase as the list dif-
ference increases monotonically, getting high values for almost all the list pairs,
except for the pairs: 〈List0,List1〉, 〈List0,List2〉 and 〈List1,List2〉.

The analysis of the Spearman ρ metrics, whose computation is based on the
difference between list element ranks, suggests that the ROC AUC size does not
directly influence the rank dissimilarity in the list. On the contrary, the Kendall
τ values, whose computation is based on the number of bubble-sort swaps needed
to make two lists identical, increase as the AUC difference increases; their analysis
suggests the existence of a relationship between the ROC AUC values and the
rankings of the APs in the lists from the tSVD generating high AUC percentages
and very low AP numbers.

4.1 SVD Truncation Patterns

Another interesting result is revealed by sorting the lists on the basis of the
truncation level k, as done in Table 5. While the Extended Spearman rank
coefficients give no additional clues on specific trends, the Extended Kendall
rank distances show that the higher the SVD truncation level difference between
two lists is, and the less similar the lists are. Apart from the comparison between
〈List0,List1〉, all other lists show value trends that increase when the distance
between truncation levels increase. List8, for example, shows near maximum
dissimilarity with all the other lists.
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Table 3. Table 3a shows the number of AP and NAC annotations for H. sapiens CC when
varying the SVD truncation level k, and their corresponding ROC AUC percentage.The
likelihood threshold is fixed at θ = 0.49. Table 3b Numbers of AP and NAC annotations
for G. gallus MF and B. taurus MF when varying the SVD truncation level k, and
their corresponding ROC AUC percentage. The likelihood threshold is fixed at θ = 0.50

(a)

SVD when varying truncation k
k AP NAC ROC AUC

Homo sapiens CC
List0 378 8 4,458,751 83.49%
List1 402 2 4,458,757 53.64%
List2 390 7 4,458,752 53.58%
List3 291 19 4,458,740 53.14%
List4 349 8 4,458,751 52.97%
List5 233 48 4,458,711 51.82%
List6 175 78 4,458,681 48.80%
List7 117 86 4,458,673 45.11%
List8 59 95 4,458,664 38.82%

(b)

SVD when varying truncation k
k AP NAC ROC AUC

Gallus gallus MF
List0 40 9 39,340 75.38%
List1 53 5 39,344 74.33%
List2 27 10 39,339 73.69%
List3 14 11 39,338 67.25%
List4 1 164 39,185 35.98%

Bos taurus MF
List0 70 11 120,318 74.74%
List1 93 8 120,321 74.59%
List2 47 11 120,318 73.57%
List3 24 32 120,297 68.59%
List4 1 369 119,960 35.21%

Table 4. Extended Spearman rank coefficient values (gray cells) and Extended Kendall
rank distance values (white cells) from the comparison of the nine annotation lists
in Table 3a, generated by the truncated SVD method applied to the Homo sapi-
ens CC dataset with varying truncation level k. Intervals: MaxCorrelation = 0;
MinCorrelation = 1. All lists are ordered from the one corresponding to the max-
imum ROC AUC percentage (List0, AUC = 83.49%) to the one corresponding to the
minimum AUC (List8, AUC = 38.82%).

Extended Spearman values

List0 List1 List2 List3 List4 List5 List6 List7 List8

E. List0 0.129 0.07 0.301 0.224 0.593 0.841 0.443 0.501
List1 0.621 0.01 0.535 0.512 0.708 0.838 0.585 0.539

K List2 0.491 0.558 0.324 0.245 0.656 0.872 0.499 0.509
e List3 0.984 0.962 0.978 0.57 0.158 0.362 0.249 0.772
n List4 0.868 0.894 0.913 0.935 0.416 0.302 0.306 0.885
d List5 0.995 0.995 0.995 0.952 0.984 0.283 0.069 0.805
a List6 0.999 0.999 0.999 0.988 0.998 0.936 0.427 0.628
l List7 0.996 0.998 0.997 0.997 0.998 0.990 0.946 0.522
l List8 0.998 0.998 0.999 0.999 0.999 0.996 0.984 0.982
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Table 5. Extended Spearman rank coefficient values (gray cells) and Extended Kendall
rank distance values (white cells) from the comparison of the nine annotation lists
in Table 3a, generated by the truncated SVD method applied to the Homo sapi-
ens CC dataset with varying truncation level k. Intervals: MaxCorrelation = 0;
MinCorrelation = 1. All lists are ordered from the one generated with the great-
est SVD truncation level (List1, k = 402) to the one generated with the lowest level
(List8, k = 59).

Extended Spearman values

List1 List0 List2 List4 List3 List5 List6 List7 List8

E. List1 0.129 0.01 0.512 0.535 0.708 0.838 0.585 0.539
List0 0.621 0.07 0.224 0.301 0.593 0.841 0.443 0.501

K List2 0.558 0.491 0.245 0.324 0.656 0.872 0.499 0.509
e List4 0.894 0.868 0.913 0.935 0.416 0.302 0.306 0.885
n List3 0.962 0.984 0.978 0.57 0.158 0.362 0.249 0.772
d List5 0.995 0.995 0.995 0.984 0.952 0.283 0.069 0.805
a List6 0.999 0.999 0.999 0.998 0.988 0.936 0.427 0.628
l List7 0.998 0.996 0.997 0.998 0.997 0.99 0.946 0.522
l List8 0.998 0.998 0.999 0.999 0.999 0.996 0.984 0.982

4.2 ROC AUC Patterns

Beyond its importance in providing new knowledge about the variation of the
annotation lists, varying the SVD truncation level k has no utility for our valida-
tion process. Conversely, interesting trends can be found by comparing the ROC

AUC percentages, the Extended Kendall rank distance and the Extended Spear-
man rank coefficient. As general examples, we show the cases of the Bos taurus
MF and G. gallus MF datasets, in Table 3b and Table 6. As one may notice,
these lists corresponding to similarly AUCs (List0, List1, List2 ), have similar low
Extended Spearman rank coefficients. This means that the elements present in
these lists have similar rankings.

Since there is a correlation between ROC AUC and list similarity, this may be
helpful in finding the best predicted annotations. In fact, our prediction methods
are able to produce ROC with maximum AUC, and the AUCs have an oscillatory
trend. Since these oscillations produce low changes to the ROC AUC percentages,
these will slightly influence the final prediction results. Thus, our methods, based
on the optimization of the ROC AUCs, are quite robust. There is no need to find
the overall best SVD truncation since it is sufficient to find truncation values
that are close to the best ones; the algorithm can then select the best predicted
annotations accordingly.
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Table 6. Extended Spearman rank coefficient values (gray cells) and Extended Kendall
rank distance values (white cells) from the comparison of the annotation lists in Table
3b, generated by the truncated SVD method applied to the G. gallus MF dataset with
varying truncation level k. Intervals: MaxCorrelation = 0; MinCorrelation = 1. All
lists are ordered from the one generated with the greatest SVD truncation level k to
the one generated with the lowest level. We report in bold the cases showing low
Spearman or Kendall values for lists with similar AUCs.

Extended Spearman values Extended Spearman values
List0 List1 List2 List3 List4 List0 List1 List2 List3 List4

Gallus gallus MF Bos taurus MF
E List0 0.370 0.200 0.620 0.85 0.192 0.166 0.364 0.794
x List1 0.790 0.330 0.780 0.94 0.687 0.279 0.425 0.888
t. List2 0.640 0.790 0.180 0.74 0.812 0.822 0.128 0.772

List3 0.980 0.960 0.950 0.78 0.980 0.980 0.950 0.773
K. List4 1.000 1.000 1.000 1.000 0.999 0.999 0.999 1.000

5 Conclusions

Both our Extended Spearman rank coefficient and Extended Kendall rank dis-
tance measures resulted effective and useful to compute the level of “similarity”
between two gene annotation lists, by focusing on either the list element position
difference (Spearman) or on the number of list elements having different rank-
ings (Kendall). Using them, we discovered a negative correlation between two
generated annotation lists: the more the truncation level difference increases, the
more dissimilar (in terms of bubble-sort swaps needed to make them identical)
the annotation lists are. We also observed a positive correlation between the ROC
AUCs and the similarity between two lists: the closer two AUC percentages are, the
more similar the related predicted annotation lists are. In this case the similarity
is expressed through the Extended Kendall rank distance, which measures the
difference between ranked position of an element present in both analyzed lists.

In general, we can state that the Spearman coefficient is the most useful one
when the user wants to take advantage of the global order of the items in the
two compared lists; on the contrary, the Kendall distance is the best choice when
the user wants to highlight the relative raking among items in the lists.

In the future, we plan to apply our metrics to annotation lists produced
through different algorithms and study their variation when changing algorithm’s
key parameter values. For example, we will explore the similarity between anno-
tation lists from the topic modeling algorithms (pLSA [15] and LDA [16]) when
the number of topics changes.
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Abstract. Subtle structural differences among homologous proteins may be re-
sponsible of the modulation of their functional properties. Therefore, we are ex-
ploring novel and strengthened methods to investigate in deep protein structure, 
and to analyze conformational features, in order to highlight relationships to func-
tional properties. We selected some protein families based on their different struc-
tural class from CATH database, and studied in detail many structural parameters 
for these proteins. Some valuable results from Pearson’s correlation matrix have 
been validated with a Student’s t‐distribution test at a significance level of 5% 
(p‐value). We investigated in detail the best relationships among parameters, by 
using partial correlation. Moreover, PCA technique has been used for both single 
family and all families, in order to demonstrate how to find outliers for a family 
and extract new combined features. The correctness of this approach was borne 
out by the agreement of our results with geometric and structural properties, 
known or expected. In addition, we found unknown relationships, which will be 
object of further studies, in order to consider them as putative markers related to 
the peculiar structure‐function relationships for each family.  

Keywords: protein structure, global features, correlation, PCA.  

1 Background 

Proteins are biological macromolecules characterized by complex structural organiza-
tions, determined by subtle balance of energetic factors and able to confer different 
functionalities. Within different organisms, there are proteins with similar function 
and structure, so that these proteins are considered to descend from a common ances-
tor, and therefore belonging to the same family. These homologous proteins are simi-
lar at level of global organization, although differences exist and modulate functional 
properties such as activity and thermostability.  

We are interested in exploring novel methods to investigate protein structure and to 
analyze conformational features and their differences within protein families, or 
among them, in order to find relationships that could be related to functional proper-
ties. In this study, we decided to investigate ten protein families, chosen to represent 
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different CATH database classes [1] and having a suitable number of PDB structures 
from different organisms: beta-lactamase (BLA), cathepsin B (CTS), ferritin (FTL), 
glycosyltransferase (GTF), hemoglobin (HGB), lipocalin 2 (LCN), lysozyme (LYS), 
proliferating cell nuclear antigen (PCNA), purine nucleoside phosphorylase (PNP), 
superoxide dismutase (SOD). 

2 Materials and Methods 

2.1 Analysis Workflow 

We retrieved 153 crystallographic structures (Table 1) from PDBe database [2]. In 
order to analyze similar structures within each family, we used only one chain (A, 
where available), length difference of 50 residues at most; in addition, to have similar 
contributions from each family in the global analysis, we selected no more than 19 
proteins for family. 

Table 1. Protein families and PDB structures used in this study 

Protein family (with CATH code) PDB files 

Beta-Lactamase 
(3.30.450) 

1D1J, 1EW0, 1F2K, 1N9L, 1P0Z, 2V9A, 
2VK3, 2VV6, 2ZOH, 3BW6, 3BY8, 3CI6, 
3CWF, 3EEH 

Cathepsin B 
(3.90.70) 

1AEC, 1B5F, 1S4V, 2B1M, 2BDZ, 2DC6, 
2P7U, 2WBF, 3AI8, 2BCN, 3CH2, 3LXS, 
3P5U 

Ferritin 
(1.20.1260) 

1JI4, 1QGH, 1R03, 1S2Z, 1TJO, 2FKZ, 
2XJM, 2YW6, 3AK8, 3E1J, 3KA3, 3MPS, 
3R2H, 3RAV 

Glycosyltransferase 
(1.50.10) 

1GAH, 1HVX, 1KRF, 1KS8, 1NXC, 1R76, 
1X9D, 2NVP, 2P0V, 2XFG, 2ZZR, 3P2C, 
3QRY 

Hemoglobin 
(1.10.490) 

1CG5, 1FLP, 1GCW, 1HLM, 1RQA, 
1UVX, 2C0K, 2QSP, 2VYW, 3BJ1, 3NG6, 
3QQR, 3WCT, 4IRO, 4NK1 

Lipocalin 2 
(2.40.128) 

1AQB, 1BEB, 1CBI, 1CBS, 1GGL, 1GM6, 
1IIU, 1JYD, 1KQW, 1KT6, 1LPJ, 1OPB, 
1QWD, 2CBR, 2NND, 2RCQ, 2XST, 3S26, 
4TLJ 

Lysozyme 
(1.10.530) 

1BB6, 1FKV, 1GD6, 1GHL, 1HHL, 1IIZ, 
1JUG, 1QQY, 1REX, 1TEW, 2EQL, 2GV0, 
2IHL, 2Z2F, 3QY4 

Proliferating Cell Nuclear Antigen 
(3.70.10) 

1AXC, 1B77, 1CZD, 1DML, 1T6L, 1UD9, 
1UL1, 1HII, 1IJX, 2OD8, 3HI8, 3LX1, 
3P83, 3P91, 4CS5 

Purine Nucleoside Phosphorylase 
(3.40.50) 

1A9O, 1JP7, 1M73, 1ODK, 1PK9, 1QE5, 
1TCU, 1V4N, 1VMK, 1XE3, 1Z33, 2P4S, 
3KHS, 3OZE, 3SCZ, 3TL6, 3UAV, 4D98 

Superoxide Dismutase 
(1.10.287 – 2.60.40) 

1BSM, 1IDS, 1JCV, 1MA1, 1MMM, 
1MY6, 1Q0E, 1WB8, 2ADP, 2JLP, 2W7W, 
3BFR, 3ECU, 3EVK, 3LIO, 3QVN, 3SDP 
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─ hmisc: calculate correlation matrix with p-value [12]; 
─ ppcor: calculate partial and semi-partial correlations with p-value [13]; 
─ ggplot2: plot PCA clustering [14]; 
─ GeneNet: plot features network [15]. 

2.2 Statistical Methods 

Starting from Ding and coworker analysis [16], two robust statistical procedures have 
been chosen for our work: correlation and principal component analysis (PCA).  

Simple correlation is in a matrix form, where every element is a Pearson’s correla-
tion coefficient between pairwise variables. The application of this matrix is supposed 
to be well-placed, because we have chosen structural features bound each other, in 
order to prevent possible spurious correlations: the interest is focused on a quantita-
tive measure among them. 

In addition, a check on the features can be performed with partial correlations help. 
Partial correlation is a method used to describe the relationship between two variables 
while taking away the effects of another variable, or several other variables, on this 
relationship. In this work, it has been used to detected possible redundant features. 

PCA is a statistical method, used to reduce the number of variables or, better, to 
summarize them in new variables, to be labelled on the basis of the kind of data. 
Moreover, given the orthogonality of these new variables, PCA can be applied to 
obtain a kind of clustering (as clarified in [17]) depending on inner information de-
rived from explained variance. This grouping helps in seeking possible outliers when 
executed on a protein family: it is a good habit searching for outliers, because they 
could polarize PCA results. 

2.3 Mathematical Overview 

2.3.1 Partial Correlation 
Given two protein variables with discrete values = ( , … , )  and =( , … , ) , where  is rows-observations number, the density ( , )  is 
represented by a single element in the normalized data table. A measure of strength 
and direction of association between the variables is provided by the covariance: 

 = ( − ) − = −  

with 

= ,  

where ,  are the expected values for a single variable. An index of covariation 
between  and  is provided by the correlation coefficient = / ,  
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where ,  are the standard deviations for a single variable. Given a third protein 
variable Z, the partial correlation coefficient between  and  after removing the 
effect of Z is: 

· = −1 −  1 −  

and it is possible to extend the formula in case of removing the effect of all the  
variables but one, as shown in [18]. 

2.3.2 Principal Component Analysis 
Given a data table in matrix form, with  observations and  variables , it is possi-
ble to determine new  variables composed by a linear combination of the old 
ones: = + + += + + +…= + + +  

where . Loading vectors with = 1,2, … , , are determined by: 
 ( −  ) = 0 
 
where  is the covariance matrix of the original data,  are eigenvalues in des-
cending order associated with  eigenvectors and  is the identity matrix. This is 
an eigenvalues-eigenvectors problem, computationally resolvable with Singular Value 
Decomposition factorization. After calculating the contribution of every eigenvalue / ∑ , it is possible to choose the first several  that cover a preset quantity 
of explained variability. In other words, new data table composed by , always in 
matrix form, represent the old one with a reduced dimensionality [18] [19]. 

The challenge with this method is the  interpretation in the reality: that is, new 
variables are not so intuitive and their interpretation is delegated to investigators’ 
experience. 

3 Results 

Lower triangular correlation matrix can be used as a basic analysis for a protein fami-
ly; acronyms are explained in Fig. 2. Some correlations are family-specific and their 
pattern may be considered as a signature, as shown in Fig. 3. The numbers in the ma-
trices are the correlation kicked off because of their low statistical significance: in 
particular, a Student’s t distribution test has been used to validate them, considering as 
good the correlations with a p-value ≤ 0.05 and as strong those with a threshold  
≥ 0.65, value deducted from data. For example, in Fig. 4, there is a “four-
relationship” between percentage of secondary structure (%A, %B), percentage of 
buried charged residues (%BC) and free energy of folding (FEF).  
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Fig. 2. Circular Triangular Correlation Matrix for the whole protein dataset. Features legend is 
reported in the inset.  

 

Fig. 3. Circular Triangular Correlation Matrix for Superoxide Dismutase. Features legend is the 
same for Fig. 2. 
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Fig. 4. Family-specific “Four-Relationship” for Superoxide Dismutase. Features legend is the 
same for Fig. 2. 

Some common patterns in torsion angles (%RPx, %ROx with x = C, A, G) be-
tween overall and SODs graphical correlation matrices suggest to investigate in 
details a possible presence of redundant features. Indeed, other correlations are 
obviously family-independent, because they depend on intrinsic physical-
conformational relationships present in every protein. Trying to link them each 
other could lead to ignore multicollinearity problem. Therefore, it is possible to 
simplify the work using partial correlations, in order to create with them a fea-
tures network and to obtain two hints: seeking for spurious correlations and prun-
ing the excessive ones.  

Features network in Fig. 5, plotted by means of partial correlation and graphi-
cal Gaussian model [20], shows in the squares how torsion angles information 
results peripheral in the network and, at the same time, unnecessary for our pur-
poses. 

PCA has been performed for a double purpose. At first, for a single family it 
could be useful in underlining possible outliers: the lowest point with code 
3SDPA (Pseudomonas putida SOD A chain) in Fig. 6 is an evident example.  
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Fig. 5. Features Network 

 
Fig. 6. Superoxide Dismutase Principal Component Analysis. The legend of the right refers to 
PDB codes (see Table 1) with the addition of the chain identifier. 
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Fig. 7. Overall Principal Component Analysis. The legend of the right indicates the protein 
family, accordingly with acronyms shown in Background section. 

An overall PCA on the whole dataset is more informative, it allows to extract the 
real important features for every protein family with a sort of clustering and to avoid 
well-known mathematical-statistical issues, such as overfitting or singular matrix 
inversion, usually coming from datasets with a small number of observations. A quan-
titative analysis has shown a cumulative proportion of explained variance of around 
40%, 23.6% for the first component and 16.7% for the second one. This not so high 
value depends most likely on three main factors: 

• many features distributions have an high skewness; 
• many features distributions are strongly multimodal; 
• many pairwise correlations are weak. 

With reference to the scree plot (not shown), the first elbow is subsequent to the 
second component, so that the biplot in Fig.7 can be used in order to extract informa-
tion. In our example, with a loadings threshold of 0.4 in absolute value, first principal 
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component is composed by structural features (%A, %RHB) and second principal 
component by energy-geometrical ones (VOL, FEF, %RB95). It is relevant to touch 
on omega torsion angle (%ROx) in the third principal component (despite of previous 
result in features network). Moreover, FTL family is placed near positive PC1, GTF 
family is placed near positive PC2 and SOD family is wide-open, expected result 
because of its multi-structural choice. 

4 Conclusions 

Best interactions among parameters have been investigated in detail. The correctness 
of this analysis is borne out by the agreement of our results with geometric and struc-
tural properties, known or expected. In addition, we found novel features connections, 
which will be object of further studies to validate their consistence. In order to con-
sider some structural features as putative markers of the peculiar structure-function 
properties of each family, we are investigating more protein families, with the aim of 
verifying the existence of peculiarities and compare them within super-families, in the 
view of a more deep interpretation of results. 

About used methods, graphical correlation may be a good tool to make exploratory 
analysis and taken as a fingerprint for a protein family. Partial correlation helps in 
features selection, thus the dataset becomes easier to manage and the results more 
robust and explanatory. Finally, PCA could be used in outliers identification and in 
family-specific connection to features. 
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Abstract. A key activity for life scientists is the exploration of the relatedness of a 
set of genes in order to differentiate genes performing coherently related functions 
from random grouped genes. This paper considers exploring the relatedness 
within two popular bio-organizations, namely gene families and pathways. This 
exploration is carried out by integrating different resources (ontologies, texts, 
expert classifications) and aims to suggest patterns that facilitate the biologists in 
obtaining a more comprehensive vision of differences in gene behaviour. Our 
approach is based on the annotation of a specialized corpus of texts (the gene 
summaries) that condense the description of functions/processes in which genes 
are involved. By annotating these summaries with different ontologies a set of 
descriptor terms is derived and compared in order to obtain a measure of 
relatedness within the bio-organizations we considered. Finally, the most 
important annotations within each family are extracted using a text categorization 
method.  

Keywords: Gene relatedness, Semantic similarity, Ontology annotation, Text 
mining. 

1 Introduction 

Recognizing putative interactions and detecting common functions in a set of genes is 
a key activity for life scientists in order to assess the significance of experimentally 
derived gene sets and prioritizing those sets that deserve follow-up. This interest is 
shifting the focus on data analysis from individual genes to families of genes that are 
supposed to interact each other in determining a pathological state or influencing the 
outcome of a single trait (i.e. a phenotype). Because of the large number of genes and 
their multiple functions, discovering computational methods to detect a set of 
functionally coherent genes is still a critical issue in bioinformatics [1]. Biologists 
have dealt with these challenges in part by leveraging the biological principle 
commonly referred to as “guilt by association” (GBA) [2]. GBA states that genes with 
related functions tend to share properties such as genetic or physical interactions. For 
example, if two genes interact, they can be inferred to play roles in a common process 
leading to the phenotype. 

The relatedness of a set of genes is a measure which differentiates a set of genes 
performing coherently related functions from ones consisting of random grouped 
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genes [1]. Specifically, the relatedness considers two aspects. First, whether genes 
share similar functions or whether they participate in the same biological process. 
Second, whether the distinct functions are related.  

The semantic similarity is a popular approach to evaluate the relatedness of two 
genes. Basically, the semantic similarity is a numerical representation of how close 
two concepts are from each other in some ontology. In discovering gene interactions, 
different works [3] have focused on the definition of semantic similarity measures 
tailored to the characteristics of GO [4] which is the “de facto” standard for 
knowledge representation about gene products. Within GO, the level of interaction of 
two genes is measured by the distance between the terms that describe their semantic 
content. For example, if a gene is annotated with the term “protein phosphatase 
activity” and another one is labeled with the term “phosphatase”, they are considered 
as sharing the same functions because both are annotated by terms which are 
semantically alike.  

It should be noted that GO covers three aspects (cellular component (CC), 
molecular function (MF), biological process (BP)) which are entirely orthogonal, 
being they represented by disconnected sub-graphs (i.e. three sub-ontologies). This 
reflects the notion that these aspects are independent, when, in reality, they are 
strongly correlated in all biological processes. Being “is-a” and “part-of” relationships 
extensively used in GO to express that two concepts are alike, the semantic similarity 
does not account for the existence of other relationships such as “has-part” and “is-a-
way-of-doing”, which typically are present in a group of genes belonging to the same 
pathway. As stressed in [5] the concept of relatedness is more specific than that of 
similarity. As well, the relatedness within two concepts is estimated by counting the 
overlapping words in their definitions [5, 6].  

In this paper we describe an approach to explore the relatedness within a set of 
genes belonging to popular bio-organizations, namely gene families and gene 
pathways. The relatedness exploration is carried out using three modules. 

The first module identifies entities of interest by annotating a corpus of gene 
summaries. Compiled by expert curators and freely available on the Internet [7], a 
gene summary is a short text about a single gene which describes functions and 
processes related to that gene. Given these annotations, the second module, namely 
the exploration module, evaluates and compares the relatedness within each single 
bio-organization and suggests patterns that facilitate a more comprehensive vision of  
differences in gene behavior. Finally, the third module uses a data mining method to 
extract the most important annotations within a family.  

Our proposal is based on the integration of different resources (i.e. ontologies, 
texts, expert classifications) and aims to capture and present additional information 
about how genes work together in manner that biologists of all levels can rapidly 
understand. 

The paper is organized as follows. Section 2 details the composition of the corpus 
of summaries. Section 3 presents the annotation module. The exploration module and 
experimental results are presented in section 4. Section 5 illustrates the third module 
i.e. the categorization process for extracting the most significant concepts which 
characterize each family. Related work is exposed in the section 6. Section 7 gives 
concluding remarks and presents future work. 
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2 The Corpus of Summaries 

The published literature contains virtually every important biological development 
(including the necessary information for assessing whether a group of genes 
represents a common biological function) and a number of approaches have been 
proposed which exploit article abstracts about genes in order to automatically extract 
biomedical event from text. The above extraction typically takes place in two phases: 
first, entities of interest are recognized, next relations between recognized entities are 
determined using a number of approaches of which we mention simple co-occurrence 
of entities [8], rule-based [9], and machine learning based techniques [10].  

The extraction of useful information from biomedical texts is an essential process, 
useful in itself, and necessary to help scientist research activity, both to understand 
experimental results and to design new ones. Only when biomedical named entities 
are correctly identified could other more complex tasks, such as discovering inherent 
interrelation between bio-entities, be performed effectively. Recognizing coherent 
gene groups from the literature is a difficult problem because some genes have been 
extensively studied, whereas others have only been recently discovered. In addition, a 
given gene may have many relevant documents or none, and the documents about it 
may cover a wide spectrum of functions. Consequently, the available text can skew 
performance of text analysis algorithms.  

In order to deal with this complexity of analyzing biomedical literature, we 
conduct experiments on the corpus of gene summaries from [7]. As previously 
mentioned, we were interested in exploring the relatedness between genes belonging 
to two bio-organizations: families and pathways. 

In more detail, a family of genes defines structural domains where genes carry-on 
similar functions. A family consists in a list of unique gene symbols but sometimes 
not enough is known about a gene to assign it to an established family. In other cases, 
genes may fit into more than one family. No formal guidelines define the criteria for 
grouping genes together. 

HUGO Gene Nomenclature Committee [11] (a worldwide consortium that is 
responsible for approving unique symbols and names for human loci, including 
protein coding genes, RNA genes and pseudo-genes) makes available an online 
repository of gene families.  

Represented by a semantic network, a pathway exhibits a large-scale structure 
where genes perform a variety of functions and have complex interactions with other 
genes. Information about pathways is limited as it strongly depends on the advances 
in current knowledge of molecular and cellular biology. 

Our study considers 5 families and 2 pathways. In particular, to compose our 
corpus, we have chosen 10 summaries of genes within each of these bio-organizations 
and 10 summaries of genes randomly selected in manner that they do not belong to 
these bio-organizations.  



 Exploring the Relatedness of Gene Sets 47 

3 The Annotation Module 

Within this module, the corpus of summaries is annotated using existing knowledge 
resources i.e. domain ontologies which centralize and organize valuable knowledge in a 
structured form ready to be exploited. We used NCBO annotator [12] as the basis of our 
annotation module. The NCBO Annotator (formerly referred to as the Open Biomedical 
Annotator (OBA)) is an ontology-based Web service that annotates public datasets with 
biomedical ontology concepts based on their textual metadata. The biomedical 
community can use the annotator service to tag their data automatically with ontology 
concepts. These concepts come from the Unified Medical Language System (UMLS) 
Meta-thesaurus [13] and the National Center for Biomedical Ontology (NCBO) 
BioPortal ontologies [14]. Currently, annotation is based on a highly efficient syntactic 
concept recognition (using concept names and synonyms) engine developed in 
collaboration with National Center for Integrative Biomedical Informatics [15] and on a 
set of semantic expansion algorithms that leverage the semantics in ontologies (e.g., is_a 
relations and mappings). First, direct annotations are created from raw text according to a 
dictionary that uses terms from a set of ontologies. Second, different components expand 
the first set of annotations using ontology semantics. 

Table 1. Example of gene summary and its annotations. 

GENE HOXA5 SUMMARY 
In vertebrates, the genes encoding the class of transcription factors called homeobox genes are found in 
clusters named A, B, C, and D on four separate chromosomes. Expression of these proteins is spatially 
and temporally regulated during embryonic development. This gene is part of the A cluster on 
chromosome 7 and encodes a DNA-binding transcription factor which may regulate gene expression, 
morphogenesis, and differentiation. Methylation of this gene may result in the loss of its expression and, 
since the encoded protein upregulates the tumor suppressor p53, this protein may play an important role 
in tumorigenesis. 

Annotations Ontology 

transcription Gene Regulation Ontology 

LBX1 Regulation of Transcription Ontology 

cluster Regulation of Transcription Ontology 

binding Gene Ontology Extension 

transcription factor Gene Regulation Ontology 

gene expression 
Computer Retrieval of Information on Scientific Projects 
Thesaurus 

anatomical structure morphogenesis Gene Ontology Extension 

histogenesis 
Computer Retrieval of Information on Scientific Projects 
Thesaurus 

methylation Gene Regulation Ontology 

methylation reaction Regulation of Transcription Ontology 

cellular tumor antigen p53 Protein Ontology 

neoplasm/cancer 
Computer Retrieval of Information on Scientific Projects 
Thesaurus 

TP53 Regulation of Transcription Ontology 

neoplastic growth 
Computer Retrieval of Information on Scientific Projects 
Thesaurus 

carcinogenesis 
Computer Retrieval of Information on Scientific Projects 
Thesaurus 
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Within NCBO, we rely on 20 different ontologies because a single ontology may 
be incomplete and is not expected to contain all the domain-specific instances. 

For each summary, the annotation module outputs a set of terms, namely the 
summary Bag Of Words (BOW). Table 1 shows an example of gene summary and its 
annotations from NCBO. Note that annotations differ from the terms of summary and 
concentrate the most important biological concepts within the summary in order to 
reflect the semantic content of the text and constrain the potential interpretation of 
terms. 

4 The Exploration Module 

Starting from BOWs of summaries, the exploration module evaluates and compares 
the relatedness within each single bio-organization we considered (i.e. the 5 families 
and the 2 pathways). Broadly, the interaction between the genes can be classified 
according to the following basic types of behavior: 

• Complementary. Genes cooperate to make a product. Both need to be present for 
either to work. 

• Supplementary (Epistasis). One gene alters the outcome of another gene or the 
second gene adds more to the first.  

• Collaborative. Two genes interact to make a product different to that which either 
could make independently. 

• Polygenetics. Many genes control a single phenotype. 

Here we are interested in evaluating the relatedness of genes belonging to each 
single family and each single pathway and highlighting the differences in the behavior 
between genes belonging to different organizations. Toward this end, for each group 
of genes belonging to the same bio-organization, we considered all the possible pair-
wise combinations of their BOWs. In practice, the BOW of each gene is compared 
with the BOW of all other genes belonging to the same organization. 

For comparing two BOWs, we adopt the Dice Coefficient [16], a popular measure 
used in information retrieval for comparing the semantic similarity of two sets of 
terms. Based on the co-occurrence of terms of interest, this measure assumes that if 
two terms are mentioned together in two different texts, these texts are probably 
related.  

Like the Jaccard similarity index [17], the Dice coefficient also measures set 
agreement using the following metric:  
 
                                          D(S,T) = 2 |S and T | / (|S|+|T|) 
 
where S and T are the two sets of annotated terms. More simply, this formula 
represents the size of the overlapping terms in the two sets divided by the sum of their 
size. A value of 0 indicates no overlap; a value of 1 indicates perfect agreement.  

Accordingly, given two BOWs, namely B1 and B2, their similarity Sim (B1, B2) is 
defined as follows: 
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                              Sim (B1, B2) = 2*Cterms / (N1+N2) 
 
where Cterms is the number of terms that B1 and B2 have in common, N1 is the 
number of terms in B1 and N2 is the number of terms in B2. 

For each bio-organization, the exploration module outputs a sequence of similarity 
values i.e. a discrete variable which features the relatedness of genes belonging to that 
organization.  

Fig.1 and Fig. 2 show the frequency distribution of values that score the 
relatedness for the family MAPK and for the Pi3AKT pathway, respectively. 

 

Fig. 1. Frequency distribution of relatedness scores for the MAPK family. 

 

Fig. 2.   Frequency distribution of relatedness scores for the Pi3AKT pathway. 

We observe that these distributions are not informative about the diversity between 
families and pathways as we cannot derive from them a representative interaction 
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profile which takes account for the type of behavior in gene interactions. Following a 
popular approach in biostatistics, we highlighted this behavior using the scatter plot of 
the statistical parameters that score the relatedness (i.e. mean, range, standard 
deviation etc). 

 

Fig. 3. Distribution of the relatedness within organizations: mean vs range. 

Fig. 3 shows the scatter plot of the mean vs the range for the relatedness 
distribution within the organizations. Here, families are clustered on the right corner 
of the scatter plot. The mean of the relatedness within families is greater than the 
corresponding parameter in pathways. The relatedness of the randomly selected genes 
is negligible. 

According to what asserted by biomedical domain experts, results seem to confirm 
that the couple of parameters (mean, range) is an indicator which discriminates the 
organizations we consider. Indeed, a complementary type of interaction happens 
within genes belonging to the families in the right corner of the scatter plot.  

The branched family “Class_B_GPRs” is a notable exception that validates what is 
asserted by biomedical domain experts: genes belonging to this family participate in 
the same process that is hierarchically structured i.e. their interactions are of 
supplementary and collaborative type. Finally, in pathways clustered on the left 
corner, gene interaction is polygenetic. 

More interesting, the scatter plot in Fig. 4 shows the coefficient of variation vs the 
range. Expressed by the ratio of standard deviation to the mean, the coefficient of 
variation compares the degree of variation from one data series to another, even if the 
means are drastically different from each other. Here, the coefficient of variation 
measures the inverse of the relatedness because the higher the dispersion the lower is 
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the functional coherence of the genes. Indeed, due to the similarity of processes that 
the genes perform, the dispersion in families is very low. Note that even the branched 
family “Class_B_GPRs” exhibits a low level of dispersion. In pathways, the 
functional coherence is lower than that of families. Finally, random selected genes are 
very dispersed as they don’t interact. 

 

Fig. 4. Semantic similarity distribution within organizations: coefficient of variation vs range. 

The above scatter plots enable the researcher to obtain a visual comparison of the 
coherent organizations that we considered, and help him to automatically discover 
what kind of differences there might be between families and pathways.  

5 Extracting the Most Relevant Annotations within a Family  

A gene family is an efficient and useful way for grouping a large number of related 
genes, and already works well for a number of established gene groupings. Genes are 
grouped into families when they perform similar functions and share often also a 
significant degree of resemblance in the sequences of the DNA-Building blocks 
encoding for proteins that derive from these genes. As such, biologists are interested 
in discovering which are the essential processes, namely concepts from now on, that 
characterize the gene interactions within a family. This is the purpose of our third 
module which explores the BOWs resulting from the first module in order to extract 
the above concepts.  
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Table 2. Number of concepts extracted for each family. 

FAMILIES 

Total 
Concepts 

 Refined 
Concepts 

Percentage 
Reduction (%) 

A Kinase 250 113 54,80 

Class BGPCR 247 153 38,06 

Homeobox 183 56 69,40 

Mapk 307 117 61,89 

MHC 215 58 73,02 

 
As Table 2 (first column) shows, the number of concepts extracted from Annotator 

is very high as it contains duplicated and auto-generated text. To reduce this number, 
we refined the BOW’s content using a list of stop-words which contains not 
specialized terms (i.e. gene, gene name, family etc). Table 2 (second column) shows 
the effect of this reduction process. However, our approach was guided by the 
motivation of discovering a potentially low number of concepts within each family in 
order to guide the biologist in choosing the most important ones. In spite of this, the 
number of concepts within each family continued to be very high. 

To further reduce this number we adopted the approach best known as the 
categorization process [18]. In few words, the categorization process assigns natural 
language documents to one or more predefined category labels.  

Here, our corpus is the collection of documents and their BOWs contain the 
corresponding concepts or features. The dominant approach to categorization process 
considers the employment of a general inductive process that automatically builds a 
classifier by learning, from a set of pre-classified documents, the characteristics of the 
categories [18].  

However, these algorithms may be not completely suitable to our case, as our text 
collection (i.e. the corpus of 50 summaries) has a moderate size and hundreds of 
terms (i.e. the refined concepts) most of which are irrelevant for the classification task 
and some of them even introduce noise that may decrease the overall performance. 

Leveraging on our previous work [19], we considered a single list which contains 
all the refined concepts (see Table 2, second column). After the elimination of 
duplicate concepts, the list resulted in 346 terms which were assumed to be the 
features of our categorization process. 

First, we constructed a reference matrix M(50x346) where rows represent 
summaries, columns are the features. A generic term M(i,j) is equal to 1 if the term in 
the j-column belongs to the BOW of the summary at the i-row or to 0 otherwise. 

 Then we applied the Information Gain to score features according to their 
discriminative power, i.e. their capacity of separating the five families. It resulted in 
an ordered list where features appear in descending order of relevance.  

Because we were interested in obtaining an average number of 8 features per 
family, we considered only the first 40 elements of the scoring list and we reduced the 
size of the matrix M by considering only the columns which represent these elements.  
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As previously mentioned, a classical approach to categorization considers to build 
a classifier on M and finds the best and unique classifier (i.e. the group of features 
which categorize each family with the maximum accuracy). 

As a family can be categorized by different groups of features, we considered the 
use of a Genetic Algorithm (GA) [20] whose characteristic is to find optimal 
predictors i.e. the GA explores every possible solution and provides different best 
solutions. Additionally, it removes redundant terms and originates more accurate and 
small-sized subsets of terms for categorization. 

Starting from the scoring list we constructed nested subsets of features where the 
first set contained the first 3 top-ranked features and the remaining sets were built by 
progressively adding to the previous set the next feature in the list until obtaining a set 
which contained all the 40 features.  

Then we applied the Genetic Algorithm (GA) for exploring and discovering 
optimal predictors within each subset. Specifically, for each subset, the GA initializes 
a population of individuals randomly, each individual being codified by a binary 
vector whose dimension equals the size of the subset. In the binary vector, the value 1 
means the selection of the respective term, otherwise the value is 0. A fitness function 
evaluates the individuals by means of a classifier and selects the individuals that 
maximize the classification accuracy. Then, the current population undergoes genetic 
operations (i.e. selection, mutation, and crossover) and a new population is generated 
and evaluated. This evolution process is repeated within a pre-defined number of 
generations and it outputs the best individual, i.e. the subset of terms that best 
categorizes the subset.  

Leveraging on our previous studies about tuning GA parameters [21, 22], we set 
the following values: population size = 30, crossover probability = 1, mutation 
probability = 0.02, number of generations = 50. Since the GA performs a stochastic 
search, we considered the results over different trials. We used a Naïve Bayes 
classifier [23] for evaluating the fitness. Using a 10-fold cross validation, we evaluate 
and compare solutions from each subset using the F-measure, a popular metric which 
rates the harmonic mean between precision and recall. The overall analysis was 
implemented using the Weka data mining environment [24]. 

Table 3. Number of predictors and annotations selected for each family. 

FAMILIES 

Perfect 
Predictors 

Total 
Annotations 

Distinct 
Annotations 

Expert 
Selections 

A Kinase family 13 56 19 9 

Class BGPCR 10 55 20 11 

Homeobox 18 76 26 8 

MapK 3 11 7 1 

MHC 2 6 6 3 
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Table 3 resumes our results. Specifically, the first column shows the number of 
perfect predictors within each family. A perfect predictor is a set of features (i.e. 
concepts) whereby the classifier reaches an F-measure equal to 1. The second column 
shows the total number of concepts belonging to these perfect predictors. As a single 
concept can belong to different predictors, we eliminate duplicates. The third column 
depicts the number of distinct concepts within the perfect predictors. 

A comparison of Table 2 with Table 3 shows a drastic reduction in the number of 
concepts that best represent a specific family. In particular, in MapK and MHC 
families only few concepts are enough to characterize the family. As well the number 
of concepts increases when the collaboration is more articulate, as it happens in the 
branched family Class_B_GPCR.   

According to a common practice in bioinformatics, concepts were further 
examined and refined by a domain expert. The last column in Table 3 shows the result 
of this refinement and Table 4 details the concepts within each family. 

Table 4. Final list of annotations for each family. 

Family List of Annotations 

A Kinase family 
akap1, camp, extracellular adherence protein, flagellum, 
mitochondrion, protein kinase, protein kinase a, receptor, sperm 

Class BGPCR 

adenylate cyclase, adrenocorticotropic hormone, corticotropin 
releasing factor, cyclase, glucagon, homeostasis, hormone,  
microtubule associated protein, receptor,  secretion, vasoactive 
intestinal peptide 

Homeobox 
anatomical structure morphogenesis, dwarfism, hindbrain, 
histogenesis, homeobox gene, lbx1, rhombencephalon, 
transcription factor 

MapK mitogen-activated protein kinase 

MHC peptide binding, receptor, tnfsf14 

6 Related Work 

Related to our approach, [25] conducts a detailed study of gene functional similarity 
on randomly selected gene pairs from the mouse genome and their annotations with 
GO. The paper compares several measures of similarity with term overlap methods, 
including Dice measure. Experiments suggest that term overlap can serve as a simple 
and fast alternative to other approaches which use other measures or require complex 
pre-calculations. The paper recommends Dice measure as an alternative to other more 
complex semantic similarity measures. 

[26] evaluates the similarity of two genes from the same family and from different 
families using different similarity measures on GO annotations. Results compare well 
with our experiments as they confirm that overlap methods perform well and Dice 
score is significantly stronger for genes belonging to the same family. However, 
experiments consider only the similarity between two genes. 
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Towards evaluating the functional coherence of a gene set, [1] presents complex 
metrics that are based on the topological properties of graphs comprised of genes and 
their annotations. Using a real world microarray dataset, the paper demonstrates that, 
according to the expert assessment, the proposed metric correctly classifies 
biologically coherent clusters. 

7 Conclusions 

The work presented in this paper is a preliminary approach towards exploring the 
functional relatedness of a gene list in order to improve the selection of functional 
related genes from an experimental list of genes. We have investigated the annotation 
of gene summaries to extract gene events and the use of Dice measure to evaluate the 
relatedness within gene organizations. According to a common practice in 
bioinformatics, our results were further examined and refined by a domain expert. 

Being preliminary, our approach has several limitations. It currently does not try to 
distinguish between different types of interactions. However, it has been observed [1] 
that it remains to be developed a method for unifying all the aspects of the 
relatedness. A second limitation is that the source of gene summaries and the UMLS 
Meta-thesaurus do not provide extensive coverage of genes. The incorporation of 
relations from other sources of knowledge may remedy this drawback. Another 
related limitation is the use of a few number of summaries. 

As future research we plan to scale up our experiments to much large gene 
organizations. As well we will investigate about highly discriminative measures of the 
relatedness that make possible differentiating coherent gene sets from random ones. 
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Abstract. In data analysis, clustering is the process of finding groups in
unlabelled data according to similarities among them in such a way that
data items belonging to the same group are more similar between each
other than items in different groups. Consensus clustering is a methodol-
ogy for combining different clustering solutions from the same data set in
a new clustering, in order to obtain a more accurate and stable solution.
In this work we compared different consensus approaches in combina-
tion with different clustering algorithms and ran several experiments on
gene expression data sets. We show that consensus techniques lead to an
improvement in clustering accuracy and give evidence of the stability of
the solutions obtained with these methods.

Keywords: clustering, consensus clustering, cluster ensembles, affinity
propagation, k-means, dynamic tree cut, random projections.

1 Background

Clustering is an unsupervised learning technique used in exploratory data anal-
ysis to study the underlying natural structure of data, in order to uncover latent
relationships between the objects of interest. The clustering process involves
grouping unlabelled data according to similarities among them in such a way
that data items belonging to the same group (or cluster) are more similar be-
tween each other than items in different clusters.

It has been applied in various field, ranging from image segmentation to text
mining, and has also been applied in bioinformatics, for example in gene ex-
pression data analysis to identify functional gene modules and in proteomics to
identify protein subfamilies. Another usual application in biomedical studies is
that of identifying patient subclasses or cancer subtypes that were not known a
priori.

Choosing the best algorithm to analyse a specific data set is a difficult task.
Probably no algorithm can obtain the optimal result on all data sets, as in
the case of supervised learning, where this result is proved by the No-Free-
Lunch Theorem [1]. Data analysts need also to face the problem of properly
selecting model parameters (e.g. the number of groupings to be searched for),
since assumptions made on data might not be reflected in their natural structure.

c© Springer International Publishing Switzerland 2015
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In order to compensate for the lack of prior knowledge, some clustering al-
gorithms have been developed to automatically detect the number of clusters.
Alternatively, assessment techniques can be used in combination with algorithms
that require to specify the number of clusters beforehand in order to choose the
best clustering with respect to a given quality criterion [2].

Once the number of clusters has been selected, a desirable characteristic of the
final solution is that of being stable with respect to data set perturbations. In
this context, consensus clustering is a methodology that allows to quantify the
consensus between different clustering solutions in order to evaluate the stability
of the detected clusters.

In this work we compare four consensus techniques combined with five dif-
ferent clustering algorithms to show that consensus clustering can improve the
clustering accuracy and provide more reliable results identifying more robust
solutions.

2 Materials and Methods

Consensus clustering consists in combining different clusterings from the same
data set into a final one in order to improve the quality of individual data group-
ings [3]. Consensus methodologies differ in two main aspects, that are how base
clusterings are combined and how the concordance between different solutions
is quantified. For instance, multiple clustering solutions may be obtained by
subsampling a proportion of patterns and features (rows and columns) from a
data matrix and clustering each subsample with a chosen algorithm, or, where
appropriate, by randomly initializing the model parameters [4]. Once the set
of base clusterings (also known as cluster ensemble) has been generated, many
algorithms proceed with computing pairwise similarities between data points
based on the consensus between the base clusterings. In the following we briefly
describe the clustering algorithms and the different approaches to consensus
clustering that we compare in this study and present the data sets used in our
experiments.

2.1 Clustering Algorithms

We used five different algorithms to obtain the base clustering solutions to be
combined by a consensus method. Affinity Propagation (AP) is a clustering al-
gorithm based on message passing proposed in [5]. It takes as input pairwise
similarities between data points and finds out the most representative items of
the data set (the so called exemplars) to build clusters around them. It oper-
ates by simultaneously considering all data points as candidate exemplars and
exchanging real-valued messages between data points until a good set of exem-
plars and clusters emerges. The algorithm also requires in input a vector of real
values called preferences which, according to the authors, can be used to indicate
a set of potential exemplars, but should be set to a common value (the preference
value) when no prior knowledge is available.
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It is not required to specify in advance the number of clusters to find, neverthe-
less the number of clusters found by the algorithm is close to being monotonically
related to the preference value [5].

We also used two modifications of AP that take as input the number of clusters
to find: APclusterK (APK) [6], a bisection method that runs AP several times
with different preference values searching for exactly K clusters; K-AP [7], which
introduces a constraint to limit the number of clusters to be K in the message
passing process.

Dynamic Tree Cut (DTC), described in [8], is a hierarchical clustering based
algorithm which implements a dynamic branch cutting method in order to detect
the proper number of clusters in a dendrogram depending on the clusters shape.

Finally, we used the classical k-means algorithm (KM), which tries to find a
partition of the data set that minimizes the distance between cluster points and
centroids (distortion error). Since this algorithm is conditioned by local minima,
it is executed 1000 times in order to select the run that achieves the minimum
distortion error.

2.2 Subsampling and Consensus Matrix

In the approach described in [4,9], different solutions are obtained by clustering
randomly generated subsamples of the data set. Then a Consensus matrixM is
built that stores, for each pair of data points, the proportion of clustering runs
in which the two items are grouped together.

Formally, let D(1), D(2), . . . , D(H) be the H subsamples of the original data set
of N data points and let M (h) be the N ×N connectivity matrix corresponding
to subsample D(h), for h = 1, . . . , H , defined as follows:

M (h)(i, j) =

{
1 if items i and j belong to the same cluster
0 otherwise.

(1)

Furthermore, let I(h) be a N ×N indicator matrix such that the (i, j)-th entry
is equal to 1 if both items i and j are present in the subsample D(h), and 0
otherwise. Then, the Consensus matrix M can be defined as:

M(i, j) =

∑
h M

(h)(i, j)∑
h I

(h)(i, j)
. (2)

Finally, a consensus clustering is computed applying an agglomerative hierarchi-
cal clustering algorithm to the dissimilarity matrix 1−M.

2.3 Random Projections

In [10] a method is proposed for generating multiple clustering solutions using
random projections.

The rationale behind random projections is justified by the Johnson-Linden-
strauss lemma [11], that states that a set of n points in high-dimensional space
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can be mapped down onto an O(log n/ε2) dimensional subspace such that the
distances between the points are not distorted more than a factor of 1 ± ε (see
[12,13] for further details).

The main idea in [10] is to project the original d−dimensional data set to
different k−dimensional (k << d) subspaces using random matrices whose ele-
ments are Gaussian distributed; a clustering is then executed on each subspace
and a Consensus matrix is built in the same way as described above.

2.4 Link-Based Cluster Ensemble

In [14] two methods are proposed that try to refine the approach based on the
Consensus matrix. The main idea is that of taking into account the similarity
between the clusters to which a pair of objects is assigned, instead of just count-
ing for co-occurrences: two objects of the data set are similar if they belong to
similar clusters of the cluster ensemble. Two different similarity matrices are
presented.

The Connected-Triple Similarity (CTS) matrix assesses the similarity between
two clusters of the ensemble computing the proportion of items that they share,
that is:

wij =

∣∣XCi ∩XCj

∣∣∣∣XCi ∪XCj

∣∣ (3)

where XCi denotes the set of data points belonging to cluster Ci.
The Approximated Sim-Rank Similarity (ASRS) matrix is based on a bipartite

graph representation of the cluster ensemble in which vertices represent both
clusters and data points and edges connect data points to the clusters to which
they belong. The idea is that two data objects are similar if their neighbourhoods
(the set of clusters to which they are assigned in the cluster ensemble) are similar.

Formally, the similarity between two data points i and j, is defined as:

ASRS(i, j) =
1

|Ni| |Nj |
∑
i′∈Ni

∑
j′∈Nj

SimClus(i′, j′) (4)

where Nx denotes the set of clusters to which x belongs and SimClus(y, z) is the
similarity value between clusters y and z, once again quantified by the proportion
of items that they share.

As for the previous approach, the base clusterings are generated by random
projections of the feature space, while the final consensus clustering is computed
by a hierarchical clustering algorithm.

2.5 Data Sets

We ran our experiments on three data sets of global mRNA expression profiling:

– the Oxford Breast Cancer data set (ID: oxf ), presented in [15], available at
Gene Expression Omnibus (GEO) [16], superSeries GSE22219, consisting of
201 cases of early-invasive breast cancers divided into four subtypes (luminal
A, luminal B, HER-2 Overexpression and basal);
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– the TCGA Breast Cancer data set (ID: tcga), publicly available from the
Tcga Genome Atlas [17], consisting of 151 cases of invasive breast cancers
divided into four subtypes (luminal A, luminal B, HER-2 Overexpression
and basal);

– the TCGA Glioblastoma data set (ID: glio), publicly available from the Tcga
Genome Atlas, consisting of 167 cases of glioblastoma cancer divided into
four classes (classical, mesechymal, neural and proneural).

To run multiple experiments in a reasonable time, data were preprocessed in
order to reduce data dimensionality following the feature selection methodology
proposed in [18]. Both Pearson correlation coefficient and negative Euclidean
distance were used as similarity measures between data items.

In the following every experiment is identified by a code, composed by: the
data set ID (oxf, tcga or glio); a letter indicating the similarity measure employed
(E for Euclidean distance and P for Pearson correlation coefficient); a number
indicating the number of clusters sought1. For instance, the experiment glioE7
ran on the TCGA Glioblastoma data set, using the negative Euclidean distance
and searching for 7 clusters.

3 Results and Discussion

In a previous work [19] we adopted internal validation criteria to select the
best clustering using information intrinsic to data alone, with no use of prior
knowledge. In this work, since we are interested in finding new data subclasses,
we adopted the Adjusted Rand Index (ARI) [20] as a criterion to evaluate the
results comparing against the known classes of data points. More specifically,
ARI compares the clustering outcome with class labels counting the number of
pair-wise co-assignments of data items; if two partitions are independent then
the index assumes values close to 0, while the maximum value 1 is achieved in
case of perfect agreement.

As we mentioned above, clustering can be a difficult task when a priori as-
sumptions on data are not reflected in their natural structure. In our experiments
ARI values tend indeed to be small, but our purpose is to observe if the appli-
cation of consensus techniques can lead to an improvement in the results.

Table 1 shows for each clustering algorithm and for each experiment which
consensus method obtained the best result with respect to ARI (while the corre-
sponding ARI scores are shown in Table 2). In addition, using the Borda count
as an election method, we show which consensus method obtains the best per-
formance for each experiment, i.e. the winner is selected combining the rankings
expressed by each clustering algorithm. In most cases the best solution is iden-
tified by a consensus method; in particular the most frequent winners are the
methods based on subsampling and the Consensus matrix and on random pro-
jections and the Consensus matrix, which also ranks first in five experiments out

1 Note that in a simple execution of AP and DTC the number of clusters is detected
automatically.
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Table 1. Best methods w.r.t. Adjusted Rand Index (where simple refers to a simple
execution of the clustering algorithm without a consensus technique; consensus refers
to the method based on subsampling and Consensus matrix; randproj refers to the
method based on random projections and Consensus matrix and CTS and ASRS refer
to the methods based on CTS and ASRS matrices respectively). In bold the method
that obtained the best score for each experiment.

AP DTC APK KAP KM BORDA
glioE6 ASRS consensus randproj ASRS consensus consensus
glioE7 ASRS consensus ASRS ASRS consensus ASRS
glioP6 randproj simple randproj consensus consensus randproj
glioP7 randproj simple CTS ASRS randproj randproj
oxfE6 CTS CTS CTS CTS simple CTS RP
oxfP6 randproj consensus CTS randproj simple randproj

tgcaE6 randproj randproj CTS CTS consensus randproj
tgcaP6 consensus consensus randproj randproj consensus randproj

Table 2. Best ARI scores obtained by each clustering algorithm (in combination with
the consensus method indicated in Table 1). In bold the best score for each experiment.

AP DTC APK KAP KM
glioE6 0,5451 0,4390 0,5475 0,5354 0,5912
glioE7 0,5379 0,4315 0,5379 0,5379 0,4906
glioP6 0,5464 0,4640 0,4778 0,4791 0,5400
glioP7 0,5504 0,4640 0,5245 0,5129 0,5202
oxfE6 0,4688 0,4299 0,4644 0,4675 0,3513
oxfP6 0,4808 0,4489 0,4170 0,4491 0,3513

tgcaE6 0,4009 0,3613 0,3581 0,3628 0,4185
tgcaP6 0,4348 0,3599 0,3827 0,3918 0,3465

of eight in the Borda ranking. When looking at the best overall score for each
experiment (in bold in Table 2), we can observe that every time the simple ex-
ecution of the clustering algorithm performs better than consensus methods, it
also achieves the best overall score for that experiment. We can hence conclude
that in general consensus clustering can improve the accuracy of the results, ex-
cept when the simple execution of a clustering algorithm obtains a good solution
that is not further improved by consensus techniques.

To assess the stability of the solutions and extending the method described
in [21], a technique that produces a non-partitive clustering solution calculating
the intersection between different clusterings, we developed a method based on
a majority voting scheme that, starting from n clustering solutions, assigns two
objects to the same clusters if they were assigned to the same cluster in at
least �n2 � + 1 clustering solutions.2 In particular, we selected, for each of the
five clustering algorithms, the solution produced by the method that performed
better with respect to ARI, therefore in the final solution a cluster is formed if at

2 In the following we will refer to this method as intersection method for brevity.
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least three clusterings out of five agree. We thought of this method as a simple
yet effective way to quickly verify the clustering stability, following the idea that
different solutions are more likely to agree on stable clusters (i.e. groups that
reflect the natural structure of data), but we did not intend it to be an alternative
consensus technique.

Figure 1 shows the best ARI scores obtained by each clustering algorithm (in
combination with the consensus method indicated in Table 1) and the ARI score
obtained by the intersection method, while Fig. 2 compares the mean ARI scores
obtained for each experiment with the ARI score obtained by the intersection
method. In all but one experiment the clustering obtained by the intersection
method has a better ARI score, indicating that the clusters that proved to be
stable with respect to the change of the clustering algorithm are consistent with
the known classes.

Note that since the intersection method produces a non partitive clustering,
several data points may be excluded and hence we need to consider how many
points are preserved. Therefore, in order to have an insight of the stability of the
original clusterings we also observed the percentage of data points selected by the
intersection method. Figure 3 compares the percentage of data points preserved
when we consider the agreement between at least 3, 4 and 5 (all) clusterings,
respectively. As we can observe only in two cases out of eight the percentage
of points selected by the intersection method (black bar) is below 60% and in
half of the cases the percentage is above 80%, hence we can conclude that the
original clusters detected by consensus methods are rather stable. Nevertheless,
when considering the percentage of points on which 4 algorithms agree (grey
bar) in three cases the percentage stays above 60%, while in the other cases, as
well as when considering the agreement on all algorithms (white bar), the values
lower drastically.
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Fig. 1. Best ARI score for each algorithm vs. ARI score obtained by intersection
method (the lower the better).
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Fig. 2. Mean ARI score obtained for each experiment vs. ARI score obtained by inter-
section method (the lower the better).
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Fig. 3. Percentage of data points clustered accordingly by at least 3, 4, or 5 methods
out of 5.

When clusterings are very dissimilar, combining them by an intersection
method causes a great loss of information. More generally, a consensus method
is likely to produce a poor solution when the base clusterings are unmergeable.
A possible solution is then that of combining only solutions that are sufficiently
similar, as proposed in [21], where base clustering solutions are grouped together
forming “meta-clusters” and then a consensus solution is built starting from each
meta-cluster. Alternatively one may consider all the different ways of grouping
the data simultaneously through membership functions and fuzzy sets, allowing
each data point to belong to more than one group.
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Plots in figure 4 represent the clusterings obtained by the intersection method
for each experiment through multidimensional scaling (MDS). Shapes represent
the known classes of data points, while colours indicate clusters; points coloured
in white are excluded from the intersection. When the intersection preserves
most of the data points, points in white lie in border regions of classes or where
two classes mix together, suggesting that the identified clusters can be regarded
as core regions of the original clusters.

4 Conclusion

In this work we studied different approaches to consensus clustering and analysed
the advantages of such techniques in finding stable and more accurate solutions.

Our results show that the application of a consensus method can lead to an
improvement in the accuracy of the solution produced by a clustering algorithm
and that clusters identified by consensus are stable. In particular, the approaches
that performed better across the experiments are the ones based on random
projections.

The drawback of consensus methods is their computational cost, since they
require the generation of multiple clustering solutions, but it is a reasonable
trade-off when aiming for robustness and reliability of the results.

In this study we focused our analysis on the clusters derived from the in-
tersection of various clusterings and we observed a certain level of consistency
across different solutions (figure 3). Conversely, our future work will focus on
the cases of substantial clustering disagreement, where different solutions could
convey different meaning and dedicated techniques are needed in order to detect
and deal with such situations.
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Abstract. Complex biological features at the molecular, organelle and
cellular levels, which were traditionally evaluated and quantified visually
by a trained expert, are now subjected to computational analytics. The
use of machine learning techniques allows one to extend the computa-
tional imaging approach by considering various markers based on DNA,
mRNA, microRNA (miRNA) and proteins that could be used for classi-
fication of disease taxonomy, response to therapy and patient outcome.
One method employed to investigate these markers is Fluorescent In
Situ Hybridization (FISH). FISH employs probes designed to hybridise
to specific sequences of DNA in order to display the locations of regions
of interest. We have developed a method to identify individual interphase
nuclei and record the positions of different coloured probes attached to
chromatin regions within these nuclei. Our method could be used for
obtaining information such as pairwise distances between probes and
inferring properties of chromatin structure.

Keywords: FISH, Nuclear Architecture, Image Analysis.

1 Introduction

Chromatin positioning plays an important role in biological processes such as
gene-gene interactions and gene regulation. One way of investigating chromatin
locations is by using the method of Fluorescent In Situ Hybridization (FISH).
This method is described in [1–3]. Fluorescent probes are designed to hybridize
to specific genomic regions thus allowing us to view the positions of these regions
in images. Different coloured probes can be used together and the separate flu-
orescent images superimposed in order to compare positions of several regions.
From such images it is possible to obtain information on the relative positions
of homologous chromosomes and the distances between specific genomic regions
in order to study features such as gene-gene interactions.

c© Springer International Publishing Switzerland 2015
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Although FISH images can provide important information simply from ob-
servation (for example providing evidence for rearrangement of genetic material
in diseases including leukaemia) knowing the exact positions of probes can be
useful for extracting information such as distance measurements from images.
The quantitative analysis of distances and positions is a key step in validation
studies and in supporting the translational process of taking innovation into the
clinical environment.

We have developed a method for automatic detection of cell nuclei and the
position of probes in FISH images. We implemented our algorithm in the Math-
Works MATLAB programming environment to first segment the image into sep-
arate nuclei and to then detect probes of different colour in each nucleus. Probe
positions are recorded for each nucleus allowing for distances between probes to
be calculated as well as information to be obtained about positioning of homol-
ogous chromosomes. We provide results of applying our algorithm to a set of
FISH images of lymphoblastoid cell lines with 3 different coloured probes, show-
ing that our method is useful for detecting probes and nuclei. Existing methods
for analysis of FISH images are limited and so our algorithm provides a valuable
contribution to this field. Further advantages of our method are discussed in the
Results and Discussion section.

2 Algorithm and Data Analysis

Images for FISH studies are formed from several multicolour images superim-
posed to create a false colour image that shows the positions of different coloured
probes. Based on this our method of detecting probe positions was designed to
analyse a set of n+ 1 images (such as those shown in figures 1a-1d). These im-
ages are stored in p × q matrices P1, . . . , Pn (showing the probe locations) and
B (showing background chromatin staining). Each element of a matrix repre-
sents a pixel and can take values in a set range, which in our data was [0, 255].
In order to develop our method we considered multicoloured FISH images from
lymphoblastoid cell lines GM12878, GM17208 and CRL-2630 with background
chromatin staining and three different probes coloured red, green and purple.
Each image was provided in a set of 5 consisting of 4 greyscale images (taken
under different fluorescent lights to show the background chromatin staining and
the positions of the different probes) along with a false colour image which was
a superposition of the other 4.

Algorithm 1 explains our method of obtaining probe positions in each nucleus.
The purpose of lines 1-29 is to segment the image to identify all of the interphase
nuclei. Iterative thresholding in line 1 was implemented using a previously de-
scribed method [2] to detect regions corresponding to either background or cell
nucleus. We then performed a dilation of this image in order to smooth the edges
of the detected regions. The aim of lines 3-7 is to remove components with an
area less than Ak from the image as these correspond to either noise or mitotic
chromosomes. The set Ĉ corresponds to the set of components detected in the
image. If this set is empty then we have detected no nuclei and so no probes
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(a)

(b)

(c)

(d)

(e)

Fig. 1. (a)-(d) are the images corresponding to matrices B,P1, P2, P3. (a) shows the
background chromatin staining and (b), (c), (d) show the location of the green, red and
purple probes respectively. (e) is a flowchart explaining the image processing procedure.
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input : Set of p× q matrices {B, P1, . . . , Pn}
output: Positions of probes in each nucleus

1 Perform iterative thresholding to set elements of B to 0 or 1;
2 Let C be the set of connected components in B;
3 for c in C do
4 if size of c < Ak then
5 Set bij = 0 ∀bij ∈ c
6 end

7 end

8 Let Ĉ be the set of connected components in B;

9 if |Ĉ| = 0 then
10 Terminate algorithm
11 end

12 if |Ĉ| > 1 or eccentricity(ĉi) > 0.5 for some ĉi ∈ Ĉ then

13 Calculate B† = Euclidean distance transform of B;

14 Set B̂ = −B† with b̂ij = − inf for bij = 0 ;

15 Calculate B∗ = watershed transform of B̂;
16 Let C∗ be the set s.t. for c∗k ∈ C, c∗k is the set of all bij = ak for some

constant ak ;
17 for c∗k in C∗ do
18 if Min bounding box(c∗k) ≤ 5 and

Max bounding box(c∗k) ≥ min(p, q)− 5 then
19 set b∗ij = 0 ∀b∗ij ∈ c∗k;
20 end
21 else
22 for l > k, l ≤ |C∗| do
23 if |centroid(c∗k)− centroid(c∗l )| < R then
24 Set bij = ak ∀bij ∈ c∗l ;
25 end

26 end

27 end

28 end

29 end
30 Let S be the set s.t. for sk ∈ S, sk is the set of all bij = ak for some constant a ;
31 for sk in S do
32 for m in 1 : n do
33 Let T = (tij) s.t. tij = (Pm)ij if bij ∈ sk else tij = 0 ;
34 Compute extended maxima transform of Tij to find set of connected

components ;
35 Record position of centroid of connected components with size < D

alongside k and m ;

36 end

37 end

Algorithm 1. Probe detection
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(a) (b) (c)

Fig. 2. The top panel shows the 3 false colour FISH images. The bottom panel displays
the results of applying our algorithm to these images. Separate nuclei identified in the
segmentation process are shown in different shades of grey and the detected positions
of the red, green and purple probes are indicated in red, green and blue respectively.
(a) shows an example of successful segmentation and probe detection by the algorithm.
(b) shows a successful segmentation but not all probes are detected. (c) has all probes
detected in the nuclei which were successfully segmented but only 3 out of 5 nuclei
were segmented.

can be found (lines 9-11). If we have detected more than one nucleus (line 12)
then it is necessary to segment the thresholded image in order to identify indi-
vidual nuclei. This is done by computing the watershed transform (lines 14-15)
and merging components with centres of gravity less than R apart (lines 17-28).
Then, for each nucleus we have identified (line 31), the images for each different
probe (line 32) are masked so that only the area corresponding to the chosen
nucleus is considered (line 33).

We determined appropriate levels for probe detection from experimentation.
We recommend using a sample of images in order to optimise this for a set of
images. Using these levels, the extended maxima transform for each image was
calculated in order to identify bright regions which correspond to probes (lines
34-35). Regions of area greater than a constant D were excluded as these were
too unreliable to measure positions or occurred due to having no probes of the
relevant colour in the nucleus. The centre of mass of each detected probe was
recorded alongside the colour of the probe and the nucleus that it came from. We
implemented our algorithm in MATLAB version R2013b with the aid of some
functions from the Image Processing Toolbox. This implementation is available
upon request from the authors.
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Table 1. Results of visual verification

Nuclei Green probes Red probes Purple probes

Percentage detected overall 88.3 87.9 93.2 64.0

Percentage of images with > 0.8
success rate

81.3 81.3 87.5 42.6

Percentage of images with > 0.5
success rate

97.9 100.0 97.9 63.8

3 Results and Discussion

We used our algorithm to find probe positions in FISH images of lymphoblastoid
cell lines with 3 different coloured probes. In the majority of cases we were
able to successfully identify a high proportion of the interphase nuclei and the
probes within them. Figure 2 displays the segmentation of nuclei and detected
positions of probes in 3 cases showing different levels of success. The positions of
probes obtained can then easily be used to calculate properties such as pairwise
distances in each nucleus.

Validation of the algorithm was carried out by comparing the false colour im-
age (see top panel of figure 2) to an image visualising the output of the algorithm
(bottom panel of figure 2). This image was generated by taking the greyscale
matrix showing nuclei segmentation (the result of lines 1-29 in algorithm 1) and
converting it to a p× q × 3 matrix before setting the elements corresponding to
each detected probe to be red, green or blue for the red, green and purple probes
respectively.

Figure 2 shows 3 examples of nuclear segmentation and probe detection by
the algorithm. By comparing the top and bottom images we are able to see how
well the segmentation worked. In figure 2a the algorithm was able to segment
all of the nuclei (including ones positioned close together, which present more
of a challenge) as well as detecting the probe positions in these nuclei. Figure
2b displays an image with successful segmentation of nuclei but where not all
of the probes were detected. We can see that probes in the top right of the
central nucleus were not detected. This is most likely related to the quality of
the greyscale images displaying probe locations. From studying these images
(data not shown) we were able to observe that the regions corresponding to the
top right probes were of a lower intensity than for the central probes. In images
such as this the method struggles to simultaneously detect all of the probes,
which is a limitation. However, depending on the aim of the experiment, having
partial probe detection in some nuclei can still provide valuable information, e.g.
when calculating pairwise distances between probes. In other cases the method
was not able to detect all interphase nuclei. This usually occurred in cases such
as shown in figure 2c where nuclei were positioned too close together and were
therefore difficult to segment using the watershed transform.
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In order to provide some quantitative measure of the success of our algorithm,
we considered a test set of 49 images. Our complete data set consisted of 7 subsets
of images (each with a different combination of probes types and cell line) and
so 7 images were randomly chosen from each set. The number of nuclei and
each type of probe were established visually and recorded from the false colour
images, as were the number of detected nuclei and probes from the algorithm.
Probes in the false colour image were only counted in nuclear regions which had
been successfully detected. The results are shown in table 1 which displays the
overall percentages of nuclei and probes detected across all images. Some success
rates in individual images are also included in the table.

The overall success rates are high for the detection of nuclei and green/red
probes. The majority of purple probes were detected but not as successfully.
This was most likely due to the quality of the images for the purple probes that,
for some of the subsets in particular, had a poor distinction between probe and
background. It can be seen that over half of purple probes were detected in 60%
of the images, with the majority detected in almost all of the images for nuclei
and red/green probes. It is possible that a different level for the probe detection
would have produced a higher detection rate of purple probes in the images.

As noted previously, there are not many existing methods for analysis of FISH
images. The automated iterative thresholding we employ provides an advantage
over methods where only thresholding at a single user-specified level is used [4]
by allowing identification of a greater proportion of nuclei. The light intensity
of background chromatin staining can vary widely between images and so an
automated thresholding approach is required to avoid losing information. Our
approach also provides advantages over methods such as FISH finder [5] since
we describe our algorithm in detail, thus enabling others to re-implement our
methods using open source software image analysis tools such as R or OpenCV,
whereas FISH finder requires purchase of the commercial MATLAB software.

A further benefit of our method is that the probe positions are returned
for each nucleus, thereby allowing a range of nuclear properties to be calcu-
lated. These properties could include measurements between homologous chro-
mosomes, or provide evidence of translocations or inversions in chromosomes.
Complementary methods, such as Chromosome Conformation Capture, could
also benefit from the statistics of the probe distances and positions, for example
for calibration [6] and validation of predicted models.

However, our approach does have some limitations. The levels chosen for the
probe detection were experimentally determined from a sample of images. It is
possible that the choice of levels could be improved to obtain a higher probe
detection rate by optimising for a larger sample of images. From the visual
validation, we saw that two distinct cases were responsible for the majority
of probe detection failures: either there were two probes very close together
(caused by the replication of chromatin), in which case only one probe was
detected, or probes from the same nucleus had different intensities, in which case
only the brightest probe was detected. Failure to segment nuclei was most often
caused by nuclei being too close together for the algorithm to separate them.
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Other failure cases were caused by having some nuclei in an image much brighter
than others, in which case the darker nuclei were not detected. Thus, possible
extensions to our method could include supervised training with sample data
sets for estimating parameters and noise, and incorporation of signal processing
methods to improve the robustness of the thresholds used (specifically addressing
issues of poor intensity and low signal-to-noise ratio) and the estimation of shape
regularity.

4 Conclusion

We have developed a new algorithm for obtaining probe positions in individ-
ual nuclei from FISH images. These positions can be used to compute probe
distances and the positioning of homologous chromosomes. Our algorithm suc-
cessfully separates nuclei and detects multi-coloured probes, and is readily ac-
cessible through its MATLAB implementation and detailed description. While
there are other programs available for FISH image analysis, we have addressed
the automatic detection of specific probes for quantitative spatial analysis in
translational medicine tasks.
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Abstract. Gene expression data from high-throughput assays, such as
microarray, are often used to predict cancer survival. Available datasets
consist of a small number of samples (n patients) and a large number of
genes (p predictors). Therefore, the main challenge is to cope with the
high-dimensionality. Moreover, genes are co-regulated and their expres-
sion levels are expected to be highly correlated. In order to face these
two issues, network based approaches can be applied. In our analysis,
we compared the most recent network penalized Cox models for high-
dimensional survival data aimed to determine pathway structures and
biomarkers involved into cancer progression.

Using these network-based models, we show how to obtain a deeper
understanding of the gene-regulatory networks and investigate the gene
signatures related to prognosis and survival in different types of tumors.
Comparisons are carried out on three real different cancer datasets.

Keywords: Cancer, comorbidity, Cox model, high-dimensional data,
gene expression data, network analysis, regularization, survival data.

1 Introduction

Cancer is a multi-factorial disease since it is caused by a combination of genetic
and environmental factors working together in a still unknown way. Genetic
screening for mutations associated with multi-factorial diseases cannot predict
exactly whether a patient is going to develop a disease, but only the risk to
have the disease. Hence, a woman inheriting an alteration in the BRCA2 gene
can develop breast cancer more likely than other women, although she may
also remain disease-free. Genetic mutation is only one risk factor among many.
Lifestyle, environment and other biological factors are also involved in the study
of the disease development. The integration of all this supplementary information
is the key point to stress the mechanism of disease progression and identify
reliable biomarkers.
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The advancement of recent biotechnology has increased our knowledge about
the molecular mechanism involved into cancer progression. However, this bio-
logical knowledge is still not fully exploited since the integration of all those
different types of data leads to the curse of dimensionality. Indeed, the number
of covariates (molecular and clinical information) exceed the number of observa-
tions (patients). As a result, many classical statistical methods cannot be applied
to analyse this kind of data and new techniques need to be proposed to cope
with the high-dimensionality.

In cancer research is also important to study survival analysis, that can be
used to investigate microarray gene expression data and evaluate cancer out-
comes depending on time intervals. Those intervals start at a survival time and
end when an event of interest occurs (a death or a relapse). The exploitation
of the relationship between event distributions and gene expression profiles per-
mits to achieve more accurate prognoses or diagnoses. The Cox regression [2]
is the most popular method to analyse censored survival data. However, due to
high-dimensionality, it cannot be directly applied to obtain the estimated pa-
rameters. Therefore, penalized techniques based on lasso type penalties [5,17,18]
have been taken into account. Moreover, those methods perform estimation and
variable selection by shrinking some parameters to zero. These methods solve
the “p� n” issue but ignore the strong-correlation among variables (i.e. genes).
For this reason, the elastic net method (an improved variant of the lasso for
high-dimensional data, [13,21]) can be applied to achieve some grouping effects
([3,23]) and to incorporate pathway information of genes. A pathway is given by
a group of genes that are involved in the same biological process and have simi-
lar biological functions. Those genes are co-regulated and their expression levels
are expected to be highly correlated. The pathway structures play a biologically
important role to understand the complex process of cancer progression.

The purpose of this paper is (i) to describe a systematic approach to com-
pare the most recent methods based on the integration of pathway information
into penalized-based Cox methods and (ii) to evaluate their performance. We
considered three methods. Net-Cox [20] explores the co-expression and func-
tional relation among gene expression features using an L2-norm constrain plus
a Laplacian penalty. The L2-norm smooths the regression coefficients reducing
their variability in the network; the Laplacian take into account the grouping
effects. Adaptive Laplacian net [16] uses an L1-penalty to enforce sparsity of the
regression coefficients and a quadratic Laplacian penalty to encorage smooth-
ness between the coefficients of neighboring variables on network. Finally, Fastcox
method [7] is a new fast algorithm for computing the elastic net penalized Cox
model. We compare three different types of cancer by using the penalized regres-
sion methods presented before in order to provide an interesting investigation
from a biological, medical and computational point of view.

The paper is organized as follows. In Section 2, we introduce the network-
based regularized methods for high-dimensional Cox regression analysed in our
comparisons. Cross-validation and parameter tuning are discussed in Section 3.
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Real data analysis is presented in Section 4, with the main results obtained in
the analysis. We conclude with a brief discussion about future works in Section 5.

2 Methodology

In this section, we describe the three methods for Cox’s proportional hazard
model that we used for our analysis. We first review the Cox model and then,
we introduce the three regularization methods.

2.1 The Cox Model

Prediction of cancer patients survival based on gene expression profiles is an
important application of gene expression data analysis. Usually it is difficult to
select the most significant genes (i.e. covariates) for prediction, as these may
depend on each other in a still unknown way. Because of the large number of
expression values, it is easy to find predictors that perform well on the fitted
data, but fail in external validation, leading to poor prediction rules.

The problem can be formulated as a prediction problem where the response
of interest is a possibly censored survival time and the predictor variables are
the gene expression values. The Cox Proportional hazards model [2] is used to
describe the relationship between survival times and predictor covariates.

Given a sample of n subjects, let Ti and Ci be the survival time and the
censoring time respectively for subject i = 1, . . . , n. Let ti = min {Ti, Ci} be the
observed survival time and δi = I(Ti ≤ Ci) the censoring indicator, where I(·)
is the indicator function (i.e δi = 1 if the survival time is observed and δi = 0
if the survival time is censored) and Xi = (Xi1, . . . , Xip)

′ be the p-variable
vector for the ith subject (i.e. the gene expression profile of the ith patient over
p genes). The survival time Ti and the censoring time Ci are assumed to be
conditionally independent given Xi. Furthermore, the censoring mechanism is
assumed to be non-informative. The observed data can be represented by the
triplets {(ti, δi,Xi) , i = 1, ..., n}. The Cox regression model assumes that the
hazard function h(t|Xi), which means the risk of death at time t for the ith
patient with gene expression profile Xi , can be written as

h(t|Xi) = h0(t)exp

(
p∑

i=1

X ′
iβ

)
= h0(t)exp(X

′β)

where h0(t) is the baseline hazard and β = (β1, . . . , βp)
′ is the column vector of

the regression parameters.
Since the number of predictors p (genes) is much greater than the number

of observations n (patients), the Cox model cannot be applied directly and a
regularization approach needs to be used to select important variables from a
large pool of candidates. For instance, a Lasso penalty ([17,18]), can be used
to remove the not significant predictors by shrinking their regression coefficients
exactly to zero. The lasso type approach solves the high dimensionality issue but
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don’t take into account the functional relationships among genes. For this reason,
in the last years, network-based regularization methods have been introduced
in order to identify the functional relationships between genes and overcome
the gap between genomic data analysis and biological mechanisms. By using
these network-based models, it is possible to obtain a deeper understanding of
the gene-regulatory networks and investigate the gene signatures related to the
cancer survival time. In this context, the regression coefficients are estimated by
maximizing the penalized Cox’s log-partial likelihood function

lpen(β) =
n∑

i=1

δi

⎧⎨⎩X ′
iβ − log

⎡⎣ ∑
j∈R(ti)

exp(X ′
jβ)

⎤⎦
⎫⎬⎭− Pλ(β), (1)

where ti is the survival time (observed or censored) for the ith patient, R(ti) is
the risk set at time ti (i.e., the set of all patients who still survived prior to time
ti) and Pλ(β) is a network-constrained penalty function on the coefficients β.

2.2 Network-regularized Cox Regression Models

We assume that the relationships among the covariates (genes) are specified by a
network G = (V,E,W ) (weighted and undirected graph). Here V = {1, . . . , p} is
the set of vertices (genes/covariates); an element (i, j) in the edge set E ⊂ V ×V
indicates a link between vertices i and j; W = (wij), (i, j) ∈ E is the set
of weights associated with the edges. Each edge in the network is weighted
between [0,1] and indicates the functional relation between two genes [6]. For
instance, in a gene regulatory network built from data, the weight may indicate
the probability that two genes are functionally connected.

Net-Cox [20] integrates gene network information into the Cox’s proportional
hazard model by the following

Pλ,α(β) = λ
[
α ‖β‖22 + (1− α)Φ(β)

]
, (2)

where λ > 0 and α ∈ (0, 1] are two regularization parameters in the network
constraint and

Φ(β) =
∑

(i,j)∈E

wi,j(βi − βj)
2. (3)

The penalty (2) consists of two terms: the first one is an L2-norm of β that regu-
larizes the uncertainty in the network constraint; the second term is a network
Laplacian penalty Φ(β) = β′[(1−α)L+αI]β that encourages smoothness among
correlated gene in the network and encode prior knowledge from a network. In
the penalty, L is a positive semi-definite matrix derived from network informa-
tion and I is an identity matrix. Given a normalized graph weight matrix W , by
using Eq.(3), Net-Cox assumes that co-expressed (related) genes should be as-
signed similar coefficients by defining the following cost term over the coefficients
Φ(β) = β′(I−W )β = β′Lβ. More precisely, for any pair of genes connected by
an high weight edge and with a large difference between their coefficients, the
objective function will result in a significant cost in the network.
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AdaLnet [16] (Adaptive Laplacian net) is a modified version of a network-
constrained regularization procedure for fitting linear-regression models and for
variable selction [10,11] where the predictors are genomic data with graphi-
cal structures. AdaLnet is based on prior gene regulatory network information,
represented by an undirected graph for the analysis of gene expression data and
survival outcomes. Denoting with di =

∑
i:(i,j)∈E wij the degree of vertex i,

AdaLnet defines the normalized Laplacian matrix L = (lij) of the graph G by

li,j =

{ 1, if i = j anddi �= 0,

−wij/
√
didj , if(i, j) ∈ E,

0, otherwise.
(4)

Note that L is positive semi definite. The network-constrained penalty in Eq.
(1) is given by

Pλ,α(β) = λ [α ‖β‖1 + (1 − α)Ψ(β)] , (5)

with

Ψ(β) =
∑

(i,j)∈E

wi,j

(
sgn(β̃i)βi/

√
di − sgn(β̃j)βj/

√
dj

)2
. (6)

Equation (5) is composed by two penalties. The first one is an L1-penalty that
induces a sparse solution, the second one is a quadratic Laplacian penalty Ψ(β) =
β′L̃β that imposes smoothness of the parameters β between neighboring vertices
in the network. Note that L̃ = S′LS with S = diag(sgn(β̃1), . . . , sgn(β̃p)) and

β̃ = (β̃1, . . . , β̃p) is obtained from a preliminary regression analysis. The scaling
of the coefficients β respect to the degree allows the genes with more connections
(i.e., the hub genes) to have larger coefficients. Hence, small changes of expression
levels of these genes can lead to large changes in the response.

An advantage of using penalty (5) consists in representing the case when
two neighboring variables have opposite regression coefficient signs, which is
reasonable in network-based analysis of gene expression data. Indeed, when a
transcription factor (TF) positively regulate gene i and negatively regulate gene
j in a certain pathway, the corresponding coefficients will result with opposite
sign.

Finally, Fastcox [7] computes the solution paths of the elastic net penalized
Cox’s proportional hazards model. In this method the penalty function in Eq. (1)
is given by

Pλ,α(β) = λ

[
αw‖β‖1 + 1

2
(1− α)‖β‖22

]
,

where the non-negative weights w allows more flexible estimation.

3 Tuning Parameters by Cross-validation

All above described methods require to set two hyper-parameters: λ and α con-
trolling the sparsity and the network influence, respectively. To determine the
optimal tuning parameters λ and α to use in our study, we performed five-fold
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cross-validation following the procedure proposed by [22]. In the cross-validation,
four folds of data are used to build a model for validation on the fifth fold, cy-
cling through each of the five folds in turn. Then, the (λ,α) pair that minimizes
the cross-validation log-partial likelihood (CVPL) are chosen as the optimal pa-
rameters. CVPL is defined as

CV PL(λ, α) = − 1

n

K∑
k=1

{(β̂(−k)(λ, α)) − (−k)(β̂(−k)(λ, α))}, (7)

where β̂(−k)(·) is the estimate obtained from excluding the kth part of the data
with a given pair of (λ, α), (·) is the Cox log-partial likelihood on all the sample
and (−k)(·) is the log-partial likelihood when the kth fold is left out.

4 Real Case Studies

In this section we describe the performances of the methods presented in Section
2 on three different types of cancer. In the following we first describe the datasets,
then the results.

4.1 Datasets

We applied the three methods on three datasets containing large-scale microarray
gene expression measurements from different type of cancer together with their
(possible censored) survival informations (times and status). In particular, we
used gene expression datasets downloaded from Gene Expression Omnibus as
raw .CEL files. All the three datasets were generated by Affymetrix U133A. The
raw files were processed and normalized individually by RMA package available
in Bioconductor [4].

We consider the human gene functional linkage network [6] constructed by
a regularized Bayesian integration system [6]. Such network contains maps of
functional activity and interaction networks in over 200 areas of human cellular
biology with information from 30.000 genome-scale experiments. The functional
linkage network summarizes information from a variety of biologically informa-
tive perspectives: prediction of protein function and functional modules, cross-
talk among biological processes, and association of novel genes and pathways
with known genetic disorders [6]. The edges of the network are weighted be-
tween [0, 1] and express the functional relation between two genes. Thus, the
functional linkage network plays an important role in our tests since it includes
more information than Human protein-protein interaction, frequently used as
the network prior knowledge. It is clear that taking into account such biological
knowledge helps in identifying significant genes that are functionally related in
order to obtain important results biologically interpretable.

We use HEFaIMp [6] tool to identify the edge’s weight of between two genes
on the network. After merging probes by gene symbols and removing probes
with no gene symbol, we use KEGG pathways [8,9] in order to obtain a network
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consisting of a fixed number of unique genes derived from a large pool of probes
and overlapped with the functional linkage network. The three datasets analysed
are the following:

1. Breast Cancer Microarray Data. The first dataset is from Nagalla et al.
[12] (accession number: GSE45255) and consist of p = 2431 gene expression
measurements from n = 93 patients with breast cancer.

2. Lung Cancer Microarray Data. The second dataset is from Chen et al.
[1] (accession number: GSE37745) and contains p = 2259 gene expression
measurements from n = 100 patients with lung cancer.

3. Ovarian Cancer Microarray Data. The third dataset is from Zhang et
al.[20] (accession number: GSE26712) and contains gene expression measure-
ments from N = 153 patients with ovarian cancer. We use a list of p = 2372
genes.

4.2 Model Evaluation Criteria

In order to evaluate the three methods we first divided each dataset randomly
into two parts: (i) training set consisting of about 2/3 of the patients used for
estimation; (ii) testing set consisting of about 1/3 of the patients used for evalu-
ate and test the prediction capability of the models. We denoted the parameter
estimate from the training data for a given method by β̂train. This estimate
is computed as described in Section 3 by using five-fold cross-validation to se-
lect the optimal tuning parameter values (λ̂train, α̂train), and then by fitting

the corresponding penalized function Pλ̂train ,α̂train
(β̂train) on the training set.

In particular, we first set α to a sufficiently fine grid of values on [0, 1]. For each
fixed α, λ was chosen from {1e−5, 1e−4, 1e−3, 1e−2, 1e−1, 1} for Net-Cox, while
we set λ to a decreasing sequence of values λmax to λmin automatically choosen
by AdaLnet and Fastcox. Note that, when α = 1 all the three methods listed
in Section 2.2 ignore the network information. The results are given in Table 1.
Interestingly, the optimal α is often 0.1 and 0.5, indicating the optimal CVPL
is a balance of the information from gene expressions and the network. These
results highlight that the network information is useful for improving survival
analysis.

The estimated β̂train is used to calculate the prognostic index (PI) for each
patient i in the training set, given by

PItraini = x
′
iβ̂train, (8)

Table 1. Cross-validation parameters

Net-Cox AdaLnet Fastcox

Datasets λ α λ α λ α

Breast 0.001 0.5 0.16 0.5 0.22 0.5
Lung 0.0001 0.1 1.90 0.1 0.60 0.5

Ovarian 0.001 0.5 11.94 0.01 0.25 0.95
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where xi is the vector of gene expression value associated to the ith patient.
By using the PItraini , it is possible to divide the patients in two subgroups, i.e.,
high-risk and low-risk prognosis groups. Thus, the patient i in the training set
is assigned to the high-risk (or low-risk) group if its prognostic index PItraini ,
Eq. (8), is above (or below) the quantile selected on a grid of given values that
spans from 30% to 70%. We select as PI∗ the optimal cutoff in terms of PItest

corresponding to the lowest p-value in a log rank test. Then, we calculate the
prognostic index PItesti by using β̂train. Each patient i in the testing set is
assigned into the high-and-low-risk groups if its prognostic index PItesti is above
(or below) threshold PI∗ chosen as stated before. To evaluate the performance
of rule, we applied a log rank test and used the p-value as an evaluation criterion
(the significance level was set at 5%, i.e., p < 0.05). For each datasets, Kaplan-
Meier survival curves are drawn and the log-rank test is performed to assess
differences between groups. For instance, Fig.1 shows the survival probabilities
for these two groups obtained for cancer ovarian patients selected in the testing
set by using AdaLnet and Net-Cox, respectively. More precisely, first we look at
survival time in the training set for patients in the top 45% (40%) compared
to the lower 55% (60%) testing Net-Cox (AdaLnet), as described before. We
determine the cutoff in terms of PI∗. Then, the prognostic PItesti is calculated
and patients are assigned into the high-and-low-risk groups by comparing with
the cutoff obtained from the training set.The log-rank test on the test-set gives
a p-value of 0.0103 for AdaLnet (Fig.1(a)), which means the two groups can
be separeted and the selected pathways and genes are significant. In Fig.1(b),
even if the log-rank test gives a p-value of 0.0189 for Net-Cox, we observe that
a patient (bottom-right) of the high-risk group falls in the low-risk group. In
particular, we observed that in predicting the survival probabilities, AdaLnet
and Net-Cox discriminate the risk groups better than Fastcox.

We performed the same analysis for high-and-low risk patients in the other two
datasets. In the lung cancer dataset, we noticed that even though the Kaplan-
Meier survival curves generated by the three methods are well separated, the
p-value is not significant. On the other hand, in the breast cancer dataset, the
survival probabilities for high-and-low risk patients result not separated.

To further understand the role of the network information in cross-validation
and to overcome the drawbacks of investigating only one split, in future studies
we will split the dataset using a cross-validation based method for estimating the
survival distribution of two or more survival risk groups. All the patients classi-
fied as low-risk and high-risk in every loop of the cross-validation are grouped
together and a single Kaplan-Meier curve is computed for each group [14].

4.3 Genes and Subnetworks Selected

As mentioned in the beginning, one of the aim of this paper is to find the
pathways and the genes selected by the analyzed methods in different types of
cancer (breast, ovarian and lung cancer). This study is expected to produce high-
quality and well-curated data because of the structure of the different methods.
We applied each penalized Cox regression method to the datasets described in
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Fig. 1. Cross-ovarian dataset survival prediction. The patients are divided in
high-risk and low-risk groups based on the selected pathways and genes. The survival
probabilities of these two groups are compared using the log-rank test. a) By using
AdaLnet the p-value means the two groups are well separated and the pathways and
genes are significant; b) by using Net-Cox (functional linkage network) we note that
even if the p-value is significant, one patient of the high-risk group falls in the low-risk
group.

Table 2. Number of genes selected by the three methods.

Datasets Net-Cox AdaLnet Fastcox

Breast 122 38 26

Lung 111 61 4

Ovarian 119 308 12

Section 4.1. Here, we present the KEGG networks associated to the non-isolated
genes (subnetworks) simultaneously selected by the three methods (Fig.2). The
number of genes selected by each method is shown in Table 2. In particular, since
Net-Cox is a method based on ridge regression, the genes are only shrinkaged
and it is necessary to fix a threshold to select the most relevant ones. We fixed
the threshold at the 95th percentile of the regression coefficients to determine
the number of genes showed in Table 2 for Net-Cox. We observed that AdaLnet
identified many more genes and edges on the KEGG network than Net-Cox and
Fastcox for the ovarian cancer dataset, while Net-Cox selected many more genes
and edges than AdaLnet and Fastcox for the breast and lung cancer dataset.

In the breast cancer dataset, a subnetwork of the cancer pathway M12868
was selected, including the DAPK1 and RALA genes strictly involved in cell
apoptosis and differentiation (Fig.2(a)). The other two subnetworks are part of
the extracellular matrix (ECM) receptor interaction (M7098) and focal adhesion
(M7253) pathways. Both of them are related to important biological processes
including cell motility, cell proliferation, cell differentiation, regulation of gene
expression and cell survival.

In the lung cancer dataset, Fastcox selected only four isolated genes (CCL22,
CSNK1D, HUWE1 and SLC1A2). Hence, Fig. 2(b), which reports the not iso-
lated genes, represents the subnetworks selected only by Net-Cox and AdaLnet
in the lung cancer dataset. The gene IGF1R appeared in M12868 which is a
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(a) Breast Cancer (b) Lung Cancer (c) Ovarian Cancer

Fig. 2. KEGG Subnetworks. The figure shows the subnetworks of the KEGG path-
ways simultaneously identified by the three algorithms. Only not isolated genes are
shown. Figures (a) and (c) represent the subnetworks selected by all the three methods
in the breast and ovarian cancer datasets respectively. Since Fastcox selected just 4
isolated genes in the lung cancer dataset, (b) shows the subnetworks simultaneously
identified only by Net-Cox and AdaLnet.

well known pathway in cancer. Indeed, IGF1R plays an important role in cancer
since it is highly overexpressed in most malignant tissues where it functions as an
anti-apoptotic agent by enhancing cell survival. Gene WNT7A, encodes proteins
that are implicated in oncogenesis [28]. The three-node subnetwork WNT7A–
MMP7–DKK2 is part of the WNT signaling pathway (M19428) and it is strictly
related to the WNT proteins involved in cancer. Finally, the subnetwork IL1B–
CXCL6 is part of the cytokine-cytokine receptor interaction pathway (M9809)
which is crucial for intercellular regulators and mobilizers of cells engaged in
adaptive inflammatory host defenses, cell growth, differentiation, cell death and
angiogenesis.

Applying the methods to the ovarian cancer dataset, 5 KEGG subnetworks
were selected (Fig.2(c)). The largest connected component is part of the basal
cell carcinoma pathway (M17807) which includes the WNT4 gene. This gene
is structurally related to genes encoding secreted signaling proteins and it has
been implicated in oncogenesis and in several developmental processes, including
regulation of cell fate and patterning during embryogenesis. GLI1 is a gene that
encodes a transcription activator involved in oncogene development [26]. The
other two genes involved in this subpathway, FZD1 and FZD7, are receptors
for WNT signaling proteins. The most relevant subnetwork is the one including
AKT3, TYK2 and PTPN6 genes and it is part of the Jak-STAT signaling path-
way (M17411). This pathway is one of the core ones suggested by [27] and it
is the principal signaling mechanism for a wide array of cytokines and growth
factors. The subnetwork AKT3–FZD8 is part of the cancer pathwayM12868 and
both the genes are known to be regulators of cell signaling in response to growth
factors. They are involved in a wide variety of biological processes including
cell proliferation, differentiation, apoptosis, tumorigenesis. The other two sub-
networks are related to the T and B cell receptors signaling pathway which are
important components of adaptive immunity.
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4.4 Implementation and Tools

All comparisons were performed using R and Matlab. Net-Cox is a Matlab packa-
ge available at [24]; Fastcox is a R package [25]; AdaLnet is a R code and it
was sent us upon request. We implemented the cross-validation approach pre-
sented in Section 3 for Net-Cox and AdaLnet. For Fastcox we used the function
cv.cocktail() implemented in the R package [25]. For real data analysis the
microarray data were preprocessed using R packages, as described in Section 4.1.

5 Discussion and Conclusions

A central problem in genomic research is to identify genes and pathways in-
volved in cancer in order to create a prediction model linking high-dimensional
genomic data and clinical outcomes. In cancer genomic, gene expression levels
provide important molecular signatures which can be useful to predict the sur-
vival of cancer patients. Since gene expression data are characterized by a small
set of samples and a large number of variables, the main challenge is to cope
with the high-dimensionality and the high-correlation among genes (genes are
not independent). To tackle this problem, various network penalized Cox pro-
portional hazards models have been proposed. In this paper, we have compared
three methods for the analysis of microarray gene expression data in order to bet-
ter understand the disease’s mechanism. Moreover a grouped/network approach
[19] can help us to: (i) identify core pathways and significant genes within those
pathways related to cancer survival; (ii) build a predictive model for survival
of future patients based on the identification genetic signatures. Furthermore,
this kind of analysis is important to understand how patients’ features (i.e., age,
gender and coexisting diseases-comorbidity [15]) can influence cancer treatment,
detection and outcome.

The Cox model has achieved widespread use in the analysis of time-to-event
data with censoring and covariates. The covariates, for example a treatment or
other exposure, may change their values over time. It seems natural and appro-
priate to use the covariate information that varies over time in an appropriate
statistical model. One method of doing this is the time-dependent Cox model.
The form of a time-dependent covariate is much more complex than in Cox
models with fixed (time-independent) covariates. It involves the use of a time
dependent function. However, the use of time-dependent covariates offers sev-
eral opportunities for exploring associations and potentially causal cancer mech-
anisms. The evolutionary patterns of cancer disease trajectories across different
stages and cell heterogeneities provide an effective explanation of the remodula-
tion of disease markers, i.e., the emergence of new disease markers or the change
of weight of existing one inside a group of markers induced by changes in phase
of the disease or the presence of comorbidity states induced by drugs/therapies
or other diseases. We will investigate such problems in future studies.
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Abstract. Automated Literature Based Discovery (LBD) generates new
knowledge by combining what is already known in literature. Facilitat-
ing large-scale hypothesis testing and generation from huge collections
of literature, LBD could significantly support research in biomedical sci-
ences. However, the uptake of LBD by the scientific community has been
limited. One of the key reasons for this is the limited nature of existing
LBD methodology. Based on fairly shallow methods, current LBD cap-
tures only some of the information available in literature. We discuss how
advanced Text Mining based on Information retrieval, Natural Language
Processing and data mining could open the doors to much deeper, wider
coverage and dynamic LBD better capable of evolving with science, in
particular when combined with sophisticated, state-of-the-art knowledge
discovery techniques.

1 Scientific Background

The volume of scientific literature has grown dramatically over the past decades,
particularly in rapidly developing areas such as biomedicine. PubMed (the US
National Library of Medicine’s literature service) provides now access to more
than 24M citations, adding thousands of records daily1. It is now impossible for
scientists working in biomedical fields to read all the literature relevant to their
field, let alone relevant adjacent fields. Critical hypothesis generating evidence is
often discovered long after it was first published, leading to wasted research time
and resources [20]. This hinders the progress on solving fundamental problems

1 PubMed: http://www.ncbi.nlm.nih.gov/pubmed
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such as understanding the mechanisms underlying diseases and developing the
means for their effective treatment and prevention.

Automated Literature Based Discovery (LBD) aims to address this problem.
It generates new knowledge by combining what is already known in literature. It
has been used to identify new connections between e.g. genes, drugs and diseases
and it has resulted in new scientific discoveries, e.g. identification of candidate
genes and treatments for illnesses [6,21].

Facilitating large-scale hypothesis testing and generation from huge collections
of literature, LBD could significantly support scientific research [15]. However,
based on fairly shallow techniques (e.g. dictionary matching) current LBD cap-
tures only some of the information available in literature. Enabling automatic
analysis and understanding of biomedical texts via techniques such as Natural
Language Processing (NLP), advanced Text Mining (TM) could open the doors
to much deeper, wider coverage and dynamic LBD better capable of evolving
with science. The last decade has seen massive application of such methodol-
ogy to biomedicine and has produced tools for supporting important tasks such
as literature curation and the development of semantic data-bases [20,19]. Al-
though advanced TM could similarly support LBD, little work exists in this area,
e.g. [25].

In this paper we discuss the state of the art of LBD and the benefits of an ap-
proach based on advanced TM. We describe how such an approach could greatly
improve the capacity of LBD, in particular when combined with sophisticated
knowledge discovery techniques. We illustrate our discussion by highlighting the
potential benefit in the literature-intensive area of cancer biology. Since LBD
is of wide interest and its potential applications are numerous, improved LBD
could, in the future, support scientific discovery in a manner similar to widely
employed retrieval and sequencing tools.

2 Materials and Methods

2.1 Literature-Based Discovery: The State of the Art

Literature-based discovery was pioneered by Swanson [22] who hypothesised that
the combination of two separately published premises “A causes B” and “B
causes C” indicates a relationship between A and C. He discovered fish oil as
treatment for Raynaud’s syndrome based on their shared connections to blood
viscosity in literature. Since then, considerable follow-up research has been con-
ducted on LBD (see [6] for a recent review).

LBD has been used for both closed and open discovery. Closed discovery (i.e.
hypothesis testing) assumes a potential relationship between concepts A and C
and searches for intermediate concepts B that can bridge the gap between A
and C and support the hypothesis. It can help and find an explanation for a
relationship between two concepts. Open discovery (i.e. hypothesis generation),
in contrast, takes as input concept A and aims to identify a set of concepts
C that are likely to be linked to A via an intermediate concept B. It can, for
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example, be used to find new treatments for a given disease or new applications
for an existing drug.

The first step of LBD is to identify the concepts of interest (e.g. genes, dis-
eases, drugs) in literature. Most current systems use dictionary-based match-
ing for this. The MetaMap tool (http://metamap.nlm.nih.gov/) which identifies
biomedical concepts by mapping text to the Unified Medical Language System
(UMLS) Metathesaurus [7] is a popular choice. Unfortunately, the dictionary-
based method suffers from poor coverage because it cannot find linguistically
complex concepts (e.g. event-like concepts describing biomedical processes), con-
cepts indicated by anaphoric expressions (e.g. pronouns or anaphoric expressions
spanning sentences) or newly introduced concepts still missing in dictionaries.

The second step of LBD is to discover relations between concepts. This is
typically done using co-occurrence statistics. However, since most co-occurring
concepts are unrelated, this simple approach is error-prone and also fails to
explain how two concepts might be related (e.g. that there is an interaction
or activation relationship between them, or possibly a negative association).
Semantic filtering based on relations in a thesaurus such as UMLS can help [6]
but suffers from the limitations of dictionary-based approaches. While use of
advanced text mining could enable the discovery of novel concepts and relations
in context, it remains relatively unexplored in LBD [25].

For knowledge discovery, most systems use Swanson’s ABC model or its ex-
tensions, e.g. concept chains [8], network analysis [16], and logical reasoning [24]
(see [21] for a survey of such extensions). For a concept pair A and C, these
models identify the most obvious B and return a ranking of pairs using mea-
sures such as average minimum weight, linking term count and and literature
cohesiveness [26]. Based on partial B evidence only, these models are not opti-
mally accurate and also do not produce data suitable for statistical hypothesis
testing. The latter would be valuable for users of LBD as it could guide them
towards highly confident hypotheses.

Evaluation of LBD is challenging as successful techniques discover knowledge
that is not proven valuable at the time of discovery. Metrics for direct sys-
tem comparisons are now available [26] and some existing techniques have been
integrated in practical LBD tools which have been made freely available to sci-
entists. Examples of such tools include Arrowsmith [23], BITOLA [5], Semantic
MEDLINE [1], and FACTA+ [25], among others. These tools have been used to
generate new scientific discoveries (e.g. candidate genes for Parkinson’s disease,
a link between hypogonadism and diminished sleep quality); see [6] and [21] for
recent reviews. However, confirmation of such discoveries via actual laboratory
experiments remains rare.

Due to combination of these factors, LBD is not in wide use yet, despite
its recognised potential for scientific research [15]. Although closer engagement
with end-users, better consideration of end-users needs, and increased validation
of findings in the context of laboratory experiments is needed, the fundamental
bottleneck lies in the current LBD methodology which suffers from poor coverage
as it is capable of identifying only some of the relevant information in literature.
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2.2 Advanced Text Mining

LBD could be greatly improved via use of advanced TM. Combining methodol-
ogy from Information Retrieval (IR), NLP and data mining, TM aims to auto-
matically identify, extract and discover new information in written texts [20,19].
It can be used to organise vast amounts of unstructured textual data now gen-
erated through economic, academic and social activities into structured forms
that are easily accessible and intuitive for users [15].

Given the rapid growth of scientific literature in biomedicine, biomedical TM
has become increasingly popular over the past decade. Basic resources (e.g. lexi-
cons, databases, annotated corpora, datasets) and NLP techniques such as part-
of-speech (POS) tagging (i.e. classifying words) and parsing (i.e. analysing the
syntactic structure of sentences) have been developed for biomedicine. IR (i.e.
identification of relevant documents) and Information Extraction (IE) (i.e. iden-
tification of specific information in documents) is now developed, and relatively
accurate techniques are now available for identification of named entities (e.g.
concept name such as protein names, e.g. AntP), relations (e.g. specific interac-
tions between AntP and BicD), and events (i.e. identifying facts about named
entities, e.g. that the AntP protein represses BicD, repress(AntP,BicD)) in texts.
Progress has also been made on increasingly complex tasks such as biological
pathway or network extraction [10]. Not only direct evaluations against gold
standard datasets but also evaluations in the context of practical tasks such
as literature curation, literature review and semantic enrichment of networks
have produced promising results, highlighting the great potential of deep TM in
supporting biomedicine [20,19,9].

Much of recent TM research has focussed on enhancing TM further for de-
manding real-life tasks. In terms of accuracy, TM is challenged by the linguis-
tic nature of biomedical texts. The biomedical language is characterized by
heavy use of terminology and long sentences that have high informational and
structural complexity (e.g. complex co-referential links and nested and/or inter-
related relations). In addition, the mapping from the surface syntactic forms to
basic semantic distinctions is not straightforward. For example, the same relation
of interest may be expressed by nominalizations (e.g. phosphorylation of GAP
by the PDGF receptor) and verbal predications (e.g. X inhibits/phosphorylates
Y) which may not be easy to recognize and relate together.

NLP techniques such as statistical parsing and anaphora resolutionwhich yields
richer representations (e.g. internal structure of nominalisations, co-referential
links in texts such as it, the protein, the AntP protein) are not challenged to the
same extent as shallow techniques are [20,19]. Integration of lexical, semantic, and
discourse analysis could help and improve accuracy further [4,12].

In terms of portability, TM has traditionally relied on expensive, manually
developed resources (e.g. corpora consisting of thousands of sentences annotated
for events by linguists) which are expensive to develop and therefore available for
a handful of areas only (e.g. molecular biology, chemistry). Due to strong sub-
domain variation resources developed for one area are not directly applicable to
others [13]. Researchers are now improving the adaptability of TM by reducing
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the need for manual annotations via minimally supervised machine learning [3]
and use of declarative expert (e.g. task, domain) knowledge in guiding learn-
ing [4]. Because text mining components typically build on each other, tradi-
tional systems have a pipeline architecture where errors tend to propagate from
one level to another. Leveraging mutual disambiguation among related tasks and
avoiding error propagation, joint learning and inference of various TM tasks is
also gaining popularity and has been shown to further improve accuracy [17].

2.3 Towards LBD Based on Advanced Text Mining

Based on much deeper analysis and understanding of texts, advanced TM could
enable considerably more accurate, broader and dynamic LBD than current,
largely dictionary-based methods. While this potential has been recognized,
e.g. [15,6], very little work has been done on TM-based LBD, e.g. [25]. For long,
application of TM to LBD has been challenged by the interdisciplinary nature
of biomedical research - the fact that research in one area draws increasingly on
that in many others, while TM has been typically optimised to perform well in
a clearly defined area. However, given recent developments in the field aimed at
optimising both accuracy and portability of TM (see the developments discussed
in the section above), the approach is now ripe for application in real-life LBD.
Whilst TM is challenging by nature and will not produce fully accurate output,
errors can be reduced e.g. via statistical filtering to produce maximally accu-
rate input to LBD. Filtering has proved effective in previous works which have
demonstrated the usefulness of adaptive TM for practical tasks in biomedicine,
e.g. [19,3]

The use of such enhanced, adaptive TM will enable targeting not only basic
concepts (i.e. terms or named entities) like most previous LBD, but also complex
concepts describing biomedical processes (i.e. events), and relations between con-
cepts in diverse biomedical literature. The latter can be used to restrict search
space by permitting direct connections only between concepts which are involved
in specific relations [6]. All this information can be learned dynamically from rel-
evant biomedical literature as science evolves, and LBD can be performed on the
resulting complex network of concepts.

Open and closed LBD from such rich, TM-based data could also benefit
from improved methodology for knowledge discovery. This methodology could
be based on recent data mining techiques which enable considering all the in-
termediate concepts between target concepts. Just one example method is link
prediction in complex networks [14] which has been applied successfully to to
related problems in social network analysis [11] and web mining [2]. In compar-
ison with most current LBD which is based on extensions of Swanson’s ABC
model [21] and considers only the most obvious intermediate concepts, such en-
hanced techniques could provide improved estimate of links between concepts.
They could also generate data needed for calculating the likelihood of different
concept pairs using statistical tests. This can be highly useful for scientists as it
enables them to focus on highly confident hypotheses.
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3 A Case Study in Cancer Biology

To illustrate the benefit of TM-based LBD we will describe how such an approach
could be used to support the rapidly growing, literature-intensive area of cancer
biology. Cancer biology is one of the “interdisciplinary“ areas of biomedicine
where knowledge discovery draws from advances made in a variety of sub-
domains (rather than one well-defined sub-domain) of the field. This makes it
particularly difficult for scientists to keep on top of all the relevant literature
and highlights the need for automated LBD. From the perspective of TM-based
LBD, an area such as cancer biology offers the research challenges needed for
the development of adaptive TM technology as many sub-domains involved do
not have annotated datasets that could be used for full supervision of systems.

The starting point is to gather relevant literature via PubMed – for example,
all the MEDLINE abstracts and freely available full text articles from journals in
relevant sub-areas of biomedicine (e.g. cell biology, toxicology, pharmacology, and
medicine, among others). The resulting texts will be cleaned and processed using
sophisticated NLP techniques such as part-of-speech tagging, parsing, semantic
and discourse processing. Concepts of relevance to cancer research (e.g. can-
cer types, genes, proteins, drugs, physiological entities, symptoms, hallmarks of
cancer) will then be extracted from NLP-processed texts, along with relations
of interest (e.g. physical, spatial, functional, temporal) between the concepts.

While LBD that uses dictionary-based techniques can find mentions of simple
concepts (e.g. gene names) and their known synonyms, TM can also find men-
tions of concepts “hidden“ in anaphoric expressions, those appearing in complex
linguistic constructions and those missing in resources such as UMLS, yield-
ing more complete information for LBD. The concepts and relations would be
extracted from rich NLP-annotated data using minimally supervised, adaptive
TM-techniques. In the absence of relevant in-domain training data, TM can be
guided by use of expert knowledge (e.g. constraints that capture task knowl-
edge [4]) and joint inference of related tasks [17].

The network of concepts emerging from TM will be richer than that created
by traditional methods. While it will also be noisier due to the challenging nature
of advanced NLP and TM, previous work has demonstrated that the impact of
noise on practical tasks, in particular after applying statistical noise filtering, will
be minimal and unlikely to affect the usefulness of TM. Finally, sophisticated
knowledge discovery techniques, e.g. [14], will be applied to the resulting complex
network of concepts to conduct maximally accurate closed and/or open discovery.

Figure 1 illustrates how such a TM-based LBD tool could be used to support
cancer biology. It shows an example that focuses on anti-carcinogenic effects of
statins. Statins are known to have anti-carcinogenic properties but the underly-
ing mechanism by which these drugs prevent cancer is not fully understood [18].
This problem can be studied by investigating whether specific proteins and hall-
marks of cancer act as intermediate concepts between statins and different cancer
cell types and if yes, whether such concepts could help to explain the mecha-
nism. In the case study illustrated in Figure 1, cancer biologists use a TM-based
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LBD tool for closed discovery to investigate the question In which way do statins
prevent prostate cancer? The given concepts are

Concept A: Drug: Statin

Concept C: Cancer type: Prostate cancer

The tool will

1. gather literature: PubMed articles on “statin“ and “prostate cancer“,

2. identify Concepts B (Hallmarks, Proteins) in the resulting literature using
TM,

3. build a concept map for Concepts A, B and C,

4. return B that link to both A and C.

The tool will also identify relevant relations between concepts:

Interacts with (Statin, Akt kinase)

Causes (Akt kinase, Prostate cancer)

Prevents (Statin, Sustaining proliferative signaling)

Causes (Sustaining proliferative signaling, Prostate cancer)

Exhibits (Akt kinase, Sustaining proliferative signaling)

The answer emerging from the tool is that statins prevent prostate cancer by
inhibiting cell proliferation via Akt kinase.

To be useful, such TM-based technology should be integrated in a practical
tool aimed at supporting cancer researchers in LBD. The tool should allow up-
loading articles of interest e.g. via PubMed, performing open and close discovery
using a set of queries to define the scope of interest in terms of concepts and rela-
tions, visualising the results and the statistical trends in the data, and navigating

Fig. 1. TM-based LBD for cancer biology. The figure illustrates how LBD can discover
the mechanism by which statins prevent prostate cancer.
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through individual articles, highlighting the scientific evidence in its actual con-
text. Such a tool should be developed in close collaboration with scientists to
ensure optimal integration with existing research practices.

Finally, any new hypotheses or discoveries resulting from LBD should ide-
ally be confirmed experimentally by scientists. In the case of cancer biology, one
might validate the promising findings from LBD experimentally in vitro accord-
ing to their nature. Such experimentation and subsequent publication in relevant
journals can encourage the uptake of LBD by the research community, leading
to further benefits.

4 Conclusion

In biomedicine a number of LBD tools have been developed to support the testing
and discovery of research hypotheses in scientific literature. Although such tools
could, in principle, greatly support scientists in their work, their uptake has
remained limited. We have highlighted a number of issues that act as barriers to
wider exploitation of LBD in scientific research, and have focused, in particular,
on limitations related to the current LBD methodology. We have explained how
use of advanced TM could enable the discovery of much richer information in
scientific texts than is possible using current largely dictionary-based methods.
This potential has been previously recognised, but TM has only recently reached
the point where it can be realistically applied to diverse literature without costly
creation of manually annotated in-domain training data. While the development
of a fully optimal LBD approach based on TM will require considerable research
effort, it is now realistic – and looking into the future, the approach could open
the doors to much wider coverage LBD capable of better evolving with the
development of biomedical science.
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Abstract. DNA sequence decomposition into k-mers and their frequency
counting, defines a mapping of a sequence into a numerical space by a nu-
merical feature vector of fixed length. This simple process allows to com-
pare sequences in an alignment free way, using common similarities and
distance functions on the numerical codomain of the mapping. The most
common used decomposition uses all the substrings of a fixed length k
making the codomain of exponential dimension. This obviously can af-
fect the time complexity of the similarity computation, and in general of
the machine learning algorithm used for the purpose of sequence analysis.
Moreover, the presence of possible noisy features can also affect the clas-
sification accuracy. In this paper we propose a feature selection method
able to select the most informative k-mers associated to a set of DNA se-
quences. Such selection is based on theMotif Independent Measure (MIM),
an unbiased quantitative measure for DNA sequence specificity that we
have recently introduced in the literature. Results computed on public
datasets show the effectiveness of the proposed feature selection method.

Keywords: k-mers, DNA sequence similarity, feature selection, DNA
sequence classification.

1 Introduction

In biology, sequence similarity is traditionally established by using sequence
alignment methods, such as BLAST [1] and FASTA [2]. This choice is motivated
by two main assumptions: (1) the functional elements share common sequence
features and (2) the relative order of the functional elements is conserved be-
tween different sequences. Although these assumptions are valid in a broad range
of cases, they are not general. For example, in the case of cis-regulatory elements
related sequences, there is little evidence suggesting that the order between dif-
ferent elements would have any significant effect in regulating gene expression.
Anyway, despite recent efforts, the key issue that seriously limits the application
of the alignment methods still remains their computational complexity. As such,
the recently developed alignment-free methods [3] have emerged as a promising
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approach to investigate the regulatory genome. One of the methods belonging
to this latter class is based on substring counting of a sequence, and is generally
named as k-mers or L-tuple representation. Informally, k-mers representation
associates a sequence with a feature vector of fixed length, whose components
count the frequency of each substrings belonging to a finite set of words. The
main advantage is that the sequence can be represented into a numerical space
where a particular distance function between the vectors can be adopted to
reflect the observed similarities between corresponding sequences. K-mer rep-
resentation have shown its effectiveness in several in-silico analysis applied to
different genomics and epigenomics studies. In particular they have been used
to characterize nucleosome positioning [4], to find enhancer functional regions
[5], to characterize epigenetic variability [6], in sequence alignment and tran-
scriptome assembly [7] and in gene prediction [8]. The interested reader can find
the basic ideas of k-mer based methods to different biological problems in the
following review [17]. Anyway, their use involve practical computational issues:
they uses all the substrings of length k making the numerical biological data
of exponential dimension [18]. Note that this represents a key problem, bioin-
formaticians frequently face the challenge of reducing the number of features of
high dimensional biological data for improving the models involved in sequence
analysis. To this purpose, feature selection algorithms can be successfully ap-
plied. The main goals of such algorithms are (1) speeding up the response of
the model used for the analysis and (2) eliminate the presence of possible noisy
features that could affect seriously the accuracy of the model. Commonly, fea-
ture selection methods belongs to the class of heuristics since they are based on
the generation of a proper subset of features, and this latter problem has been
shown to be computationally intractable [19]. There are mainly two classes of
feature selection methods, i.e. the so called wrapper approaches which uses a pre-
dictive model to evaluate the feature subset, and filter approaches which score
the subset just by looking at the intrinsic properties of data [20]. In this paper
we propose a filter feature selection method able to select the most informative
k-mers associated to a set of DNA sequences. Such selection is based on the
weight assigned to each feature by a measure called Motif Independent Measure
(MIM). The effectiveness of the method has been tested on four public datasets
with the purpose of sequence classification. In the next Section the methodology
is formally described, recalling the definition of MIM and the idea of how using
this in order to weight each feature. Finally, in Section 3 datasets, experiments
and results are reported.

2 The Proposed Feature Selection Methodology

A generic DNA sequence s of length L can be represented as a string of symbols
taken from a finite alphabet. We can think to a particular mapping function
that project s into a vector xs (the feature vector), allowing to represent s into a
multi-dimensional space (the feature space) where a particular distance function
between the vectors can be adopted to reflect the observed similarities between
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sequences. One of the most common ways of defining such mapping, is to consider
a feature vector xs that enumerates the frequency of occurrence of a finite set
of pre-selected words W = {wi, .., wm} in the string s. The simplest and most
common definition of W is by using k-mers, i.e. a set containing any string of
length k whose symbols are taken in the nucleotide alphabet Σ = {A, T,C,G}.
In this case, each sequence s is mapped to a vector xs ∈ Z

m with m = 4k. The
idea behind the proposed feature selection method is to assign a weight to each
k-mer, and use this weights for their selection.

2.1 K-mers Weighting

In general, each numerical component xj
s of the feature vector is set to the value

f j
s that represents the frequency of the j − th k-mer wj

k in s counted by a
sliding window of length k that is run through the sequence s, from position 1
to L − k + 1. Another possible choice is to set xj

s to the empirical probability
pjs = f j

s/(L− k + 1) .
Specifically, let PS = (pjsi) be the k-mer probability distributions correspond-

ing to a set of n target sequences S = {si} for a fixed length k, where i = 1, .., n,
j = 1, ..,m. Let us assume to have a process to generate a set of n background
sequences B = {bi} (analogously bi represents a sequence in the set B). In the
most simple case, the background set of sequences corresponds to random se-
quences that can be generated for example by randomly shuffling each one of
the sequences belonging to the target set S.

Let QB = (qjbi) be the k-mer probability distributions corresponding to B for
a fixed length k. For each j, one can calculate the symmetrical Kullback-Leibler
divergence between the empirical probabilities Pj and Qj:

dkl(Pj , Qj) =

∑
i p

j
si log2

pj
si

qjbi

+
∑

i q
j
bi
log2

qjbi
pj
si

2
(1)

We recall that this divergence is able to measure the difference between two
probability distributions. The Motif Independent Measure (MIM) value corre-
sponding to a k-mer wj is defined as the expected value dkl(Pj , Qj), which is
estimated by averaging over a finite set N > n of background sequences, and is
indicated as MIM(wj).

2.2 K-mers Selection

We can compute the MIM values for each k-mer wj , obtaining a list L of
m = 4k numerical values. Here we use their ranking as a guide to identify the
most informative k-mers, in particular we sort L in ascending order, resulting in a
ordered list of k-mers wj1 ,..,wjm . The criteria used to select the most informative
k-mers among the possible 4k is based on Z-scores of the computed MIM values.
Finally, let Aα = {wji |abs(Z(MIM(wji))) > α} where Z indicate Z-score, the
adopted selection criteria consists in selecting a number of k-mers equal to

r = max(|Aα|, β ∗m) (2)



with α, β < 1. In particular, the α parameter represents the Z-score percentage,
while β the percentage of number of features to select.

3 Experimental Results

To test the effectiveness of the proposed methods, we have considered two differ-
ent domains of application: nucleosome identification and classification of bac-
teria. Let S = {s1, .., sn} be the set of sequences and T = {t1, .., tn} the corre-
sponding preassigned classes, the numerical dataset is always indicated by the
matrix Dk

S of size n× 4k whose generic element Dk
S(i, j) contains the empirical

probabilities pjsi of the sequence si for a fixed k-mer length k. In all the ex-
periments, we have used a Support Vecotr Machine (SVM) [11] with quadratic
kernel in order to classify the data. The adopted kernel allows to project the
data by a nonlinear function, and differently from other kernels, does not re-
quire to estimate any additional parameter. Finally, the classification results
have been computed considering as input Dk

S , named the FULL dataset, and on
three of its reductions acted by three different feature selection schema, named
random background selection (RB), negative background selection (NB) and ran-
dom feature selection (WR). The RB selects the features by using the proposed
methodology, assuming a k-mers background distribution obtained by first es-
timating the probability of each single nucleotide in the training set, and then
calculating the probability of the j-th k-mer wj as the product of the probability
of its nucleotides. The NB uses the proposed methodology assuming as instead
as background the set of negative sequences B = {s ∈ S | s is negative}. Finally,
the (WR) schema simply reduce the dataset by considering a random permuta-
tion of features. In the following, details about data-sets and related experiments
will be given.

3.1 Nucleosome Identification

In this study we have considered three datasets of DNA sequences underly-
ing nucleosomes from the following three species: (i) Homo sapiens (HM); (ii)
Caenorhabditis elegans (CE) and (iii) Drosophila melanogaster (DM). The nu-
cleosome is the primary repeating unit of chromatin, which consists of 147 bp
of DNA wrapped 1.67 times around an octamer of core histone proteins [12].
Several studies have shown that nucleosome positioning plays an important role
in gene regulation and that distinct DNA sequence features have been identi-
fied to be associated with nucleosome positioning [13]. Several specialized com-
putational approach for the identification of nucleosome positioning have been
recently proposed, thanks also to the development of genome-wide profiling tech-
nologies [14,15]. Details about all the step of data extraction and filtering of the
three datasets can be found in the work by Guo et al [16] and in the refer-
ences therein. Each of the three datasets is composed by two classes of sam-
ples: the nucleosome-forming sequence samples (positive data) and the linkers
or nucleosome-inhibiting sequence samples (negative data). The HM dataset

102 G. Lo Bosco and L. Pinello



A New Feature Selection Methodology 103

contains 2, 273 positives and 2, 300 negatives, the CE 2, 567 positives and 2, 608
negatives and the DM 2, 900 positives and 2, 850 negatives. The length of a
generic sequence is 147 bp. We have computed the experiments for different k
ranging from 5 to 7. Such range has been chosen due to the used classifier, since
it has been noted that the SVM with the quadratic kernel does not lead the
optimization to converge for k < 5. It is important to point out that the litera-
ture motivate the use of a k-mer length equal to 6 as a good choice to capture
dependencies between adjacent nucleotides.

We have computed a total of 3 metrics to measure the performance of the
classifier: Sensitivity (Se), Specificity (Sp) and Accuracy (A). In the following,
we recall their definitions:

Se =
TP

TP + FN
, Sp =

TN

FP + TN
, A =

TP + TN

TP + FN + FP + TN
(3)

where the prefix T (true) indicates the number of correctly classified sequences,
F (false) the uncorrect ones, P the positives class and N the negatives class.

In Table 1 we report the results of mean (μ) and standard deviation (σ) of
the three metrics for all the three datasets, computed on 10 folds, following a 10
fold cross validation schema.

Results shows that for k = 5, in the case of CE andDM datasets the accuracy
obtained by the RB andNB feature selection methods is comparable or superior
to the FULL and WR cases. Moreover, their sensitivity with respect to the
FULL case is improved (at least 4% for CE and at least 2% for DM). In the
case of k = 6 it is observable a significant increase in sensitivity (at most 40%)
and accuracy (at most 18%). Such improvements are not observable for the HM
dataset, but both sensitivity and accuracy are comparable to the FULL case.
Finally, the use of k = 7 seems not the right choice for every considered dataset,
but this is more visible for CE and DM . Finally we observed that the proposed
feature selection method can decrease slightly the specificity.

3.2 Classification of Bacteria

Studies about bacteria species are based on the analysis of their 16S rRNA
housekeeping gene [9], and the analysis of the related sequences has been car-
ried out mainly by using alignment algorithms. In this experiment, the three
most populous phyla belonging to the Bacteria domain have been considered:
Actinobacteria, Firmicutes and Proteobacteria. The 16S rRNA sequences were
downloaded from the RDP Ribosomal Database Project II (RDP-II) [10] and
selected according to the type strain, uncultured and isolates source, average
length of about 1200 − 1400 bps, good RDP system quality and class taxon-
omy by NCBI. Finally, from the resulting sequences, 1000 sequences per phylum
have been selected, so that we obtained a 16S sequences bacteria dataset of 3000
elements. The resulting number of classes is 3 and is established by the NCBI
phylum taxonomy. The length of a generic sequence is around 1400 bp. We have
computed the experiments for several k-mer lenghts k ranging from 3 to 7. Note
that for this dataset, since the number of classes is 3 it is mandatory to use a



Table 1. In column, for each k in the range 5,..,7 the mean and standard deviation
values of Specificity (Sp), Sensitivity (Se) and Accuracy (A) values computed on 10
folds in the cases of the Caenorhabditis elegans (CE), Drosophila melanogaster (DM)
and Homo sapiens (HM) full (Full) and reduced (WR,RB,NB) datasets. The best values
are in bold.

A Se Sp

K=5 μ σ μ σ μ σ

CE-FULL 79,36 0,02 75,89 0,03 82,78 0,02
CE-WR 76,37 0,02 73,86 0,04 78,84 0,02
CE-RB 78,17 0,01 79,90 0,02 76,46 0,02
CE-NB 80,08 0,02 80,76 0,02 79,41 0,03

DM-FULL 76,73 0,01 70,59 0,03 82,98 0,02
DM-WR 73,72 0,01 69,24 0,02 78,28 0,02
DM-RB 75,51 0,02 73,03 0,03 78,04 0,03
DM-NB 76,09 0,01 72,55 0,03 79,68 0,02

HM-FULL 84,38 0,02 91,72 0,02 77,13 0,04
HM-WR 82,36 0,02 87,67 0,02 77,13 0,03
HM-RB 83,00 0,02 89,25 0,04 76,83 0,02
HM-NB 84,38 0,02 90,70 0,02 78,13 0,03

K=6 μ σ μ σ μ σ

CE-FULL 62,94 0,02 31,01 0,03 94,36 0,02
CE-WR 69,97 0,02 49,04 0,03 90,57 0,01
CE-RB 74,82 0,02 63,14 0,04 86,31 0,02
CE-NB 80,49 0,02 73,94 0,02 86,93 0,02

DM-FULL 74,52 0,02 62,21 0,03 87,05 0,02
DM-WR 73,08 0,02 66,28 0,02 80,00 0,02
DM-RB 75,93 0,02 66,17 0,04 85,86 0,02
DM-NB 78,16 0,02 72,86 0,03 83,54 0,03

HM-FULL 84,81 0,02 91,63 0,02 78,09 0,03
HM-WR 83,61 0,01 88,55 0,01 78,74 0,03
HM-RB 84,11 0,01 92,60 0,01 75,74 0,03
HM-NB 85,03 0,01 93,17 0,01 77,00 0,03

K=7 μ σ μ σ μ σ

CE-FULL 50,51 0 0,31 0 99,92 0
CE-WR 50,51 0 1,36 0,01 98,89 0,01
CE-RB 51,98 0,01 5,10 0,01 98,12 0,01
CE-NB 50,67 0,01 2,07 0,01 98,50 0,01

DM-FULL 52,30 0,01 14,31 0,02 90,95 0,01
DM-WR 53,53 0,01 14,41 0,02 93,33 0,03
DM-RB 52,96 0,01 9,41 0,02 97,26 0,01
DM-NB 54,26 0,02 18,31 0,03 90,84 0,02

HM-FULL 48,6 0 0,09 0 96,48 0,01
HM-WR 63,28 0,03 32,42 0,07 93,74 0,02
HM-RB 73,68 0,03 73,79 0,10 73,57 0,12
HM-NB 73,98 0,02 93,96 0,02 54,26 0,03
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Table 2. In column, for each k in the range 3,..,7 the mean and standard deviation
values of the Accuracy computed on 10 folds in the cases of the full (FULL) and reduced
(WR,RB,NB) Bacteria dataset. The best values are in bold.

K=3 K=4 K=5 K=6 K=7

μ σ μ σ μ σ μ σ μ σ

BA-FULL 99,86 0,17 99,96 0,10 99,96 0,10 87,37 2,25 33,33 0
BA-WR 99.69 0,29 99,96 0,10 78,84 0,10 99,96 0,10 50.33 1,95
BA-RB 99.73 0,26 99,96 0,10 99,96 0,10 99,96 0,10 33,33 0
BA-NB 99.86 0,17 99,96 0,10 100 0 100 0 33,33 0

multi-class SVM paradigm. We have decided to use the so called One versus all
paradigm, i.e. we have considered 3 binary SVM classifier each one trained on
elements of class i as positives and elements of class not− i as negatives. Finally,
the test element is assigned to the class which has the maximum distance from
the separation hyperplane.

In Table 2 we report the results of mean (μ) and standard deviation (σ) of
the accuracy of the multiclass SVM classifier computed on 10 folds, following a
10 fold cross validation schema. Note that in the multiclass case, the accuracy
is defined as the percentage of correct classified elements over the total number
of elements.

Results shows that for k = 3, 4, 5, 6, the accuracy obtained by the NB is com-
parable or superior to the FULL, WR and RB paradigms. This improvement
is not observable for k = 7, so that we conclude also for this dataset that this is
not the right kmer length to choose. You can observe in this latter case that the
WR paradigm has reached the best performance. In particular, we note that in
this case the classifier process the dataset reduced by WR assigning correctly
50% of elements to Actinobacteria class and assigning all the rest to Firmicutes
class, while RB and NB assign each element to Firmicutes class. This can be
explained by the consideration that a big number of kmers m, cause their scores
to assume similar values making the selection ineffective.

3.3 Empirical Complexity and Computation Time

In order to show the computational complexity advantage introduced by the
proposed method, we have also computed the empirical computation time of
the classifier for the test sequences in the case of FULL, RB, and NB for all
the considered dataset. This is shown on Figure 1a,b,c,d. In the same figure,
the number of features r used by the classifier for the three cases is also shown
on top of each bar. Note that the used values of α = 0.7 and β = 0.5 always
reduce the number of features of RB and NB by a factor of 0.5, resulting in
a significant reduction of computation time. Note that this experiment regard
only the test phase, and we have not taken into account the computation time
of the k-mer selection. Anyway, it is straightforward to note (see subsection 2.2)
that the theoretical complexity of the selection in the case of RB and NB is
linear on n ∗ 4k where n represents the number of sequences in the set S.
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Fig. 1. The empirical computation times in seconds for the C.Elegans (a), D.
Melanogaster (b), H. Sapiens (c) and bacteria (d) datasets. On top of each bar the
number of features used by the SVM classifier.
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4 Conclusion

In this paper we have presented a feature selection method for DNA sequences
based on an unbiased quantitative measure for DNA sequence specificity called
Motif Independent Measure (MIM). It uses the k-mers counting representation,
and selects the most informative k-mers associated to a target set of DNA se-
quences by computing the Kullback-Leibler divergence between the k-mers distri-
butions computed in the target set and in an opportunely generated background
set. Results carried out on four datasets, have shown the advantage of the pro-
posed feature selection method in terms of Sensitivity, Accuracy and computa-
tion time. In the future we plan to extend the experimental part on other dataset
of sequences, also adopting other classification paradigms e.g. using other SVM
kernels.
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Abstract. In this work we propose a novel hybrid technique for overlap-
ping community detection in biological networks able to exploit both the
available quantitative and the semantic information, that we call Seman-
tically Enriched Fuzzy C-Means Spectral Modularity (SE-FSM) commu-
nity detection method. We applied SE-FSM in analyzing Protein-protein
interactions (PPIs) networks of HIV-1 infection and Leukemia in Homo
sapiens. SE-FSM found significant overlapping biological communities. In
particular, it found a strong relationship between HIV-1 and Leukemia
as their communities share several significant pathways, and biological
functions.

Keywords: Community detection, clustering ensemble, semantic en-
richment, fuzzy clustering, spectral clustering, modularity.

1 Introduction

Protein-protein interactions (PPIs) refer to physical contacts with molecular
docking between proteins that occur in a cell or in a living organism. The in-
teraction interface is intentional and evolved for a specific purpose distinct from
totally generic functions such as protein production, and degradation [3].

In [11] we proposed the Fuzzy c-means Spectral Modularity (FSM) community
detection method for network analysis. The FSM estimates the number of com-
munities k∗ using the maximization of modularity procedure depicted by New-
man and Girvan in [14] and then performs data clustering in a subspace spanned
by the first k eigenvectors of the graph Laplacian matrix [22]. The method is
based on the spectral clustering approach described in [15], with the main dif-
ference consisting in using as a technique of clustering the Fuzzy C-Means [2]
that makes it possible to identify significant overlapping protein communities.
Moreover, in [21] we showed that using clustering ensemble boosts the quality
of communities obtained.

This paper is organized as follows: A novel overlapping centrality measure
termed spreadability is introduced in Sect. 2; The proposed Semantically Enriched

c© Springer International Publishing Switzerland 2015
C. di Serio et al. (Eds.): CIBB 2014, LNCS 8623, pp. 109–120, 2015.
DOI: 10.1007/978-3-319-24462-4_10
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Fuzzy c-means Spectral Modularity (SE-FSM ) community detectionmethod is il-
lustrated in Sect. 3, while its application to the discovery of communities in the
HIV-1 and Leumekia PPIs networks of Homo sapiens is shown in Sect. 4; Sect. 5
contains the conclusions.

2 The Spreadability Measure

Spreadability ξ is a novel measure we propose here for estimating the node ca-
pability of spreading information among the different communities belonging to
a network. A node s has a high ξ if it belongs to more than one community. Such
nodes affect the network flow and information broadcasting in different communi-
ties. The spreadability measure depends on the dispersion in node memberships.

It is calculated using the following steps:

1. For each node s, having membership U1..k(s) in k communities and standard
deviation σ, we measure the spreadability cut given by:

� = σ(U1..k(s))− σ2(U1..k(s)). (1)

2. Assign s to each community ci having membership > �, then estimate the
number of belonging communities given by:

λs =
∣∣I/s∣∣ , I/s = |{ci|Uci (s) > �}| (2)

.

3. Nodes having λ > 1 are identified as fuzzy, and the more the λ > 1 the more
the node is spreadable (a.k.a, has significant influence across the network
communities), while nodes having λ = 1 are referred as crisp (a.k.a, located
locally in their communities).

4. Spreadability for a fuzzy node s belongs to λ overlapping communities is
given by:

ξ =

λ∑
i=1

Ui(s), (3)

s.t, s is member in ci, while for crisp node is given by:

ξ = 1−max(U1..k(s)). (4)

It is worth noting that identifying fuzzy communities based � is a robust
and global measure and unlike other such as mean μ =

∑
U1..k(s), which is

sensitive to noise and membership variation. Moreover, it does not have the
limitation of other measures, e.g, method in [25], exponential entropy given
by χ(s) = Πk

i=1ui(s)
−ui(s) and bridgeness score in [13] given by b(s) = 1 −√

kσ2(U1..k(s)), that requires an external parameter choice for tuning signifi-
cant memberships [20].
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3 The Semantically Enriched Fuzzy c-means Spectral
Modularity (SE-FSM) Community Detection Method

The SE-FSM community detection method [10] infers the overlapping commu-
nities using the following steps:

1. The Protein quantitative similarity estimation. Given a set of l pro-
teins, we can obtain their quantitative similarity using an ensemble of quan-
titative information on their interactions from STRING1 [23] that is a
public on-line repository incorporating different evidence sources for both
physical and functional PPIs. STRING stores interaction evaluations for
each pair of proteins m,n in different spaces (or features), including homol-
ogy, co-expression, experimental results, knowledge bases, and text mining. In
addition, STRING contains a combined interaction score between any pair
of proteins calculated as:

imn = 1−
h∏

f=1

(1− af,mn). (5)

This score is computed under the assumption of independence for the various
sources, in a naive Bayesian fashion, and often has higher confidence than
the individual sub-scores af,mn [23].
For each feature f we build a connectivity matrix (or similarity matrix)
Af = [af,mn] [8,18,12]. Then we combine the connectivity matrices obtaining
a consensus matrix A with elements:

amn =

√√√√ h∑
f=1

(af,mn)
2 f ∈ {1, . . . , h}, m, n ∈ {0, . . . , l}, (6)

where h is the number of features. Finally from A we obtain the quantitative
ensemble similarity matrix Q making use of a Gaussian kernel:

qmn = 1− e−amn m,n ∈ {0, . . . , l}. (7)

2. Protein semantic similarity estimation. We gather the semantic in-
formation from many web repositories containing annotated information
about biological processes, molecular functions and cellular components in-
cluding, KEGG pathway2, Reactome pathway database3, the pathway inter-
action database (PID) 4, and Gene Ontology (GO)5. Each Gene Ontology [1]
term t ∈ [1, p] has a set of annotated proteins related to it. The more semanti-
cally similar the gene function annotations between the interacting proteins,

1 http://string-db.org
2 http://www.genome.jp/kegg/
3 http://www.reactome.org/
4 http://pid.nci.nih.gov/
5 http://www.geneontology.org

http://string-db.org
http://www.genome.jp/kegg/
http://www.reactome.org/
http://pid.nci.nih.gov/
http://www.geneontology.org
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the more likely the interaction is physiologically relevant. For each protein
we can build a binary valued indicator feature vector that refers to whether
it contributes in any of the extracted biological terms or not, obtaining in
this way a concurrence matrix C = [ctm] (see Fig. 1). Then we measure the
semantic distance dmn between each pair m,n of analyzed proteins given by:

dmn =
T∑

t=1

|ctm − ctn| m,n ∈ {0, . . . , l}, (8)

where T refers to the number of semantically enriched Gene ontology terms
or pathways used. Then we can obtain the semantic similarity matrix S
whose elements are defined as:

smn = e
−dmn

ν m,n ∈ {0, . . . , l}, (9)

where ν is the dispersion parameter, it controls the width of the Gaussian
”bell” and depends on the data distribution. There are many approaches to
select the spread of the similarity function (ν). We select ν using histogram
analysis of dmn another possible choice is to tune the spread as done in [24].

Fig. 1. Semantic co-association matrix construction.

3. Quantitative and semantic similarities integration. We combine the
quantitative ensemble similarity matrixQ and the semantic similarity matrix
S in a hybrid similarity matrix (or semantically enriched similarity matrix)H
using the Evidence Accumulation Coding approach (EAC ) proposed
by Fred and Jain in [6]. EAC is a clustering ensemble technique that builds
the consensus partition by averaging the co-association matrices [6]. Co-
association matrix based ensemble techniques are based on multiple data
partitions, then apply a similarity-based clustering algorithm (e.g., single
link and normalized cut) to the co-association matrix to obtain the final
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Table 1. The FSM community detection method.

(a) Detect the number of cluster k using modularity measurement [14].
(b) Apply the spectral clustering (e.g., Ng et al. Normalized Spectral Clustering

Algorithm [15]) and obtain the spectral space using top k eigen vectors.
(c) Cluster the resultant spectral space using Fuzzy C-Means [2].
(d) Assign vertices to clusters having members larger than the threshold 
 (see

Eq. 1) .

partition of the data. For each pair of data points, a co-association matrix
indicates whether (or, if fuzzy, how much) they belong to the same cluster.

4. Finally, SE-FSM applies the Fuzzy C-Means Spectral Clustering Modularity
(or FSM ) community detection [11] (see Tab. 1 and Fig. 2) to infer the over-
lapping and semantically significant communities. FSM is derived by the Ng
et al. [15] spectral clustering algorithm [22,5,4] with the main improvement
consisting in the application of the Fuzzy c-means (FCM) algorithm [2] for
clustering in the affine subspace spanned by the first k eigenvectors. In this
work, we automate the parameter tuning in the original FSM [11] using
the spreadability cut measure � introduced in Sec.2 (Eq. 1): after FCM we
remove nodes with membership to discovered communities below a thresh-
old �. This thresholding allows us to aggregate only proteins having strong
memberships, and to remove the noise and possible outliers in communi-
ties. In extreme cases the spreadability thresholding allows us to eliminate
insignificant communities including nodes with low membership only.

Fig. 2. The proposed Semantically Enriched Fuzzy c-means Spectral Modularity (SE-
FSM) community detection method.
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4 Experimental Validation

The experimental validation presented in this paper concerns the analysis of PPI
in immunology networks.

The software was developed in Matlab R2013b(C) under Windows 7(C) 32 bit.
The experiments were performed on a laptop with 2.00 GHz dual-core processor
and 3.25 GB of RAM.

4.1 Application to HIV-1

In this study, we aim at detecting proteins annotated to the biological processes
significantly related to Human immunodeficiency virus-1 (HIV-1) infection in
Homo sapiens extracted from NCBI database6 [19]. HIV-1 is the etiologic agent
of acquired immune deficiency syndrome (AIDS). The number of AIDS-related
deaths was 2.1 million in 2007 alone [19]. In each experiment we applied the
FSM community detection method on the PPI networks induced by the specified
similarity matrices.

Fig. 3. Identified protein-protein interaction communities in HIV-1 biological network
induced by (SE-FSM) community detection method. Bridge nodes significantly anno-
tated to more than one community are framed by diamonds.

We started with the analysis of the PPI networks induced by Q and by
I = [imn]. The obtained communities are highly consistent, and their Rand
index [17] is .95.

6 http://www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions/

http://www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions/
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In order to identify the significant semantic terms annotated to HIV-1 we
considered HIV-1 significant annotations based on biological processes (BP),
molecular functions (MF), and cellular component (CC) of Gene Ontology.

Moreover, we selected the relevant protein pathways from KEGG, Reactome,
and PID. Terms significance (p-value) is based on the hypergeometric test. For

instance, the GO terms enrichment is obtained as P (X = x) =
(gx)(

t−g
r−x)

(tr)
, where t

denotes the total number of genes, g refers to the total number of genes belonging
to the GO category of interest, r the number of differentially expressed (DE)
genes, and x is the number of DE genes belonging to the GO category [16].

The analysis of the PPI HIV-1 infection network inferred from H obtained
three functional communities depicted in Fig. 3, showing proteins induced or ac-
tivated by HIV-1. We validated our results with the cellular proteins induced by
HIV-1 infection reported by QIAGEN 7. We highlight that proteins are assigned
to different significant functional communities:

– proteins member of community C1 participate in many processes, including
apoptosis, cell death, cell cycle and proliferation activities, cell cycle activ-
ities, protein dimerization activity GO:0046983 (MF), amyotrophic lateral
sclerosis (ALS), and prostate cancer KEGG pathways;

– proteins member of community C2 influence the transcription factors
and regulators, STAT transcription factor, DNA-binding, T cell recep-
tor signaling pathway, and Interferon alpha/beta signaling from reactome
RCTM38609 ;

– proteins member of community C3 highly anticipate in viral activities such as
response to virus and inflammatory response and homeostasis GO:0055065
(BP), Chemokine signaling pathway, and cytokine activity GO:0005125
(MF).

Proteins framed by diamonds in Fig. 3, we call bridge nodes, are proteins
that our analysis annotated to more than one community. It is interesting to
note that the information stored in QIAGEN reveal that the bridge nodes we
found participate to the functions of the three communities: For instance, pro-
tein STAT1 participates in protein dimerization activity GO:0046983 (MF) in
community C1; STAT transcription factor and DNA-binding in community C2;
and Chemokine signaling pathway in community C3.

In Tab. 2 we report the Rand indexes comparing the three communities ob-
tained from the PPI networks induced by the similarity matrices Q, S, and H .
We highlight that community C1 is identified by all approaches and its interac-
tions are robust from the biological viewpoint.

It is worth to note that the semantic enrichment can enhance the FSM results,
as proteins can be assigned to their significant functional communities as we
consider their proteomics pathways as well. For instance, if we take into account
the quantitative information only (stored in the similarity matrix Q), protein
CCL3 is assigned to community C2, but, when we consider the similarity matrix

7 http://www.qiagen.com

http://www.qiagen.com
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Table 2. Rand indexes calculated from the results of the analysis performed on the
PPI networks induced by Q, S, and H .

Rand Q S H

Q 1 .84 .90
S .84 1 .78
H .90 .78 1

Fig. 4. Identified protein-protein interaction communities in leukemia biological net-
work induced by (SE-FSM) community detection method. Bridge nodes significantly
annotated to more than one community are framed by diamonds.

S including the information related to the semantically enriched terms such as
GO:0005125 (MF), the same protein CCL3 is assigned to community C3 where
it participates in biological activities with higher relevance than those of C2.

4.2 Application to Leukemia

We applied the aforementioned procedure in analyzing Leukaemia PPI. Leukemia
is a group of cancers that usually begins in the bone marrow and results in high
numbers of abnormal white blood cells. These white blood cells are not fully
developed and are called blasts or leukemia cells. There are four main com-
mon types of leukemia: acute lymphoblastic leukemia (ALL), acute myeloid
leukemia (AML), chronic lymphocytic leukemia (CLL) and chronic myeloid
leukemia (CML). In 2012 leukemia developed in 352,000 people globally and
caused 265,000 deaths. It is the most common type of cancer in children [7] .
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Fig. 5. Significant semantic annotations identified in communities of both HIV-1 and
leukemia using SE-FSM.
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We note that, the communities we discovered using SE-FSM emphasize the
ptoteomics relation reported in many other experimental studies in addition to
agree with the results reported in QIAGEN.

For instance, in Goyama et al. [9] discovered a dual role of RUNX1 in myeloid
leukemogenesis using normal human cord blood cells and those expressing leuke-
mogenic fusion proteins.

Goyama et al. [9] reported that, RUNX1 overexpression inhibited the growth
of normal cord blood cells by inducing myeloid differentiation, whereas a certain
level of RUNX1 activity was required for the growth of AML1-ETO and MLL-
AF9 cells.

Moreover, using a mouse genetic model, they showed that the combined loss
of Runx1/Cbfb inhibited leukemia development induced by MLL-AF9. RUNX2
could compensate for the loss of RUNX1. The survival effect of RUNX1 was
mediated by BCL2 in MLL fusion leukemia.

In addition, Goyama et al. [9] study unveiled an unexpected prosurvival role
for RUNX1 in myeloid leukemogenesis. Inhibiting RUNX1 activity rather than
enhancing it could be a promising therapeutic strategy for AMLs with leuke-
mogenic fusion proteins.

The application of the SE-FSM enabled us to infer the functional relationship
between HIV-1 and leukemia networks. We highlight that, the communities
discovered using our approach, share several significant semantic annotations
like those shown in Fig. 5.

5 Conclusions

The experimental validation performed in this paper demonstrates that the
proposed Semantically Enriched Fuzzy c-means Spectral Modularity (SE-FSM)
community detection method can characterize significant overlapping communi-
ties in PPIs.

We proposed a novel overlapping centrality measure called spreadability and
used it in automating the parameter choice in SE-FSM and identifying nodes
belong to communities with significant fuzzy memberships.

The proposed approach in analyzing PPIs of HIV-1 Homo sapiens infection
network, and Leukemia PPIs network allows us to infer the communities not only
relying on the topological structure of interactome or the biological information,
but also based on the semantic enrichment entailed in Gene Ontology and protein
pathways.

Our proposed approach thus can boost the functional significance of the iden-
tified communities in overlapping protein interaction environments. Moreover, it
allows us to find a significant semantic overlap between the detected communities
of HIV-1 and leukemia networks.
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Abstract. A problem that has been gaining importance in recent years
is that of computing the Abelian periods in a string. A string w has
an Abelian period p if it is a sequence of permutations of a length–p
string. In this paper, we define an approximate variant of Abelian peri-
ods which allows variations between adjacent elements of the sequence.
Particularly, we compare two adjacent elements in the sequence using
δ– and γ– metrics. We develop an algorithm for computing all the δγ–
approximate Abelian periods in a string under two proposed definitions.
We also show a preliminary application to the problem of identifying
genes with periodic variations in their expression levels.

Keywords: Abelian periods, Parikh vectors, motifs, regularities, bio-
logical sequences.

1 Introduction

Finding patterns within long biological sequences is one of the foremost tasks in
bioinformatics [22]. In particular, the classic string pattern matching problem is
concerned with finding a pattern string within a text string. In order to support a
wider range of application, the string matching problem has been extended into
several variants. A well-known variant of the problem is δγ– Matching, which is
very effective in searching for all similar but not necessarily identical occurrences
of a given pattern. In the δγ–matching problem, two integer strings of the same
length match if the corresponding integers differ by at most a fixed bound δ
and the total sum of these differences is restricted by γ. For example, strings
〈3, 8, 5, 4, 6〉 and 〈4, 7, 5, 4, 5〉 δγ–match, for δ = 1 and γ = 3. This problem
has been well-studied (cf. [7,10,12]) due to its applications in bioinformatics
and music information retrieval [7]. Particularly, δγ– matching has been used to
determine if two biological sequences have similar composition [22].

On the other hand, another important problem in string processing, with rel-
evant applications in bioinformatics, is finding periods in strings. Specifically,
periodicity is a key component in the analysis of cell-cycle expression data taken
in time series [24]; this task is carried out with the purpose of identifying genes
with specific regulation behaviour. A string u = u1...p is a period of string

c© Springer International Publishing Switzerland 2015
C. di Serio et al. (Eds.): CIBB 2014, LNCS 8623, pp. 121–130, 2015.
DOI: 10.1007/978-3-319-24462-4_11
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w = w1...n if w is a prefix of uk for a positive integer k. Then, w is conformed by
the concatenation of �n/k� complete instances of u and a prefix of u. In order
to measure regularity of a string w, computing the length of its shortest period
is an important problem. Such period can be calculated by using either Knuth,
Morris and Pratt’s algorithm (KMP) [18] or Breslauer and Galil’s algorithm [6]
for string pattern matching. Another problem of particular interest is computing
all the periods of a string. Because it is important to analyse the abundant cyclic
phenomena in the nature, this problem has important applications in different
fields such as bioinformatics, astronomy, meteorology, biological systems and
oceanography, to name some [4]. However, given that data in the real world may
contain errors, several algorithms to find approximate periods under different
models [1,2,3,20,21] have been developed.

Abelian periods constitute an interesting type of periods. Each occurrence of
an Abelian period has the same multiplicity for each character in the alphabet
disregarding the order of appearance. Because of this flexibility, Abelian peri-
ods are particularly useful in bioinformatics as they can represent consecutive
fragments of a biological sequence with similar composition. The idea of Abelian
periods in strings can be traced back to the problem defined by Erdös of find-
ing the smallest possible alphabet for which an infinite string with no Abelian
squares can be formed [14]. An example of such word on an alphabet of size
5 was given by Pleasants [23] and the proof for an alphabet of size 4 was pre-
sented by Keränen [17]. Later work defines the concept of Abelian periods and
demonstrates some properties found on classical periods [9,5].

The first algorithm for computing Abelian periods was presented by Cum-
mings and Smyth with O(n2) time complexity [13]. Later, Constantinescu and
Ilie proved relevant combinatorial properties of Abelian periods using Fine and
Wilf’s periodicity theorem [9]. Recent work includes increasingly efficient algo-
rithms for computing all the Abelian periods of a string [11,15,16,8,19].
Currently, the most efficient solution has O(n lg lg n) time complexity [19].
However, none of the previous approaches has considered an approximate version
of Abelian periods.

In this paper we define two approaches to approximate Abelian periods un-
der δγ–distance (Section 2). Then, in Section 3, we present an algorithm that
solves both variants of the problem. Furthermore, we show an application of this
algorithm (Sections 2.3 and 3.2). Finally, we present the conclusions in Section 4.

2 Materials and Methods

In this section, we review the definition of Abelian periods. Then, we extend
this definition by using δ– and γ– metrics to restrict the permitted error. In par-
ticular, we first present basic definitions (Section 2.1) and then the formulation
of the new problems (Section 2.2). Finally, we describe the preprocessing of a
gene expression’s time series and its evaluation using the proposed approach to
periodic patterns (Section 2.3).
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2.1 Definitions

A string is a sequence of zero or more symbols from an alphabet Σ; the string
with zero symbols is denoted by ε. Throughout the paper, the alphabet Σ is
assumed to be an ordered set Σ = {a1, . . . , aσ}; the cardinality of the alphabet
is denoted as σ = |Σ|. A text string w = w1...n is a string of length n defined over
Σ. We use wi to denote the i-th element of w; also, wi...j is used as a notation
for the substring wiwi+1 · · ·wj of w, where 1 ≤ i ≤ j ≤ n.

We also define Parikh vectors because the formal definition of Abelian periods
is based on this concept. Let w be a string defined over alphabet Σ. The Parikh
vector of w, denoted by P(w) (or simply P when w is clear from the context), is
a σ–component vector where each P(w)[i], for 1 ≤ i ≤ σ, expresses the number
of occurrences of character ai in w. The length of Parikh vector P , denoted by
|P|, is the sum of its components. Equivalently, |P| is the length of a string
whose Parikh vector is P . Furthermore, given two strings x and y, we say that
P(x) < P(y) if we can obtain y from x by permuting and inserting certain
characters, i.e. P(x)[i] ≤ P(y)[i], for 1 ≤ i ≤ σ and |P(x)| < |P(y)|.

Each Abelian period in a string w is expressed as a pair (h, p). Specifi-
cally, a string w = w1...n has an Abelian period (h, p) if it can be expressed as
u0u1 · · ·uk−1uk, where |P(u0)| = h and |P(u1)| = p, such that P(u0) < P(u1) =
· · · = P(uk−1) > P(uk). Notice that u1,. . ., uk−1 are the full occurrences of the
period. On the other hand, u0 and uk are strings that could constitute other oc-
currences of the period with the addition of certain characters; these strings are
denoted as head and tail, respectively. For example, aabbabab has an Abelian pe-
riod (1, 2) because it can be obtained from the concatenation of u0 = a, u1 = ab,
u2 = u3 = ba and u4 = b. Note that, P(u0) = (1, 0), P(u4) = (0, 1), and
P(u1) = P(u2) = P(u3) = (1, 1) where the first component is the multiplicity of
a and the second is the multiplicity of b.

Now, we define some notions to support δγ– distances in Abelian periods. Let
us consider strings x and y defined over alphabet Σ = {a1, a2, . . . , aσ}. We say
that P(x) δ= P(y) iff maxσi=1 |P(x)[i] − P(y)[i]| ≤ δ and we say that P(x) γ

=
P(y) iff

∑σ
i=1 |P(x)[i] − P(y)[i]| ≤ γ. Note that δ establishes the maximum

difference for the multiplicity of each character while γ establishes the maximum
sum permitted for the differences of the multiplicities of all characters. If both
conditions are satisfied we say that P(x) and P(y) are δγ–equal, denoted as
P(x) δγ

= P(y). The transitive property does not hold for the δγ–equality: for
three given strings x, y and z, the facts that P(x) δγ

= P(y) and P(y) δγ
= P(z)

do not imply that P(x) δγ
= P(z). However, it implies that P(x) and P(z) are

(2δ,2γ)-equal.
Moreover, according to these δ and γ notions, we also say that x is δγ–

extensible to P(y), denoted as P(x) δγ

< P(y), if P(x) may not be δγ–equal to P(y)
but it is possible to obtain a string x′, by inserting certain characters into x, such
that P(x′) δγ

= P(y); furthermore, the length of x must be lower than |P(y)|+ γ.
That is, x is δγ–extensible to P(y) if the following conditions are satisfied: (i)
maxσi=1(P(x)[i]− P(y)[i]) ≤ δ; (ii)

∑σ
i=0 max(0,P(x)[i]−P(y)[i]) ≤ γ; and (iii)
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|P(x)| ≤ |P(y)| + γ. Notice that if x is the empty string, then P(x) δγ

< P(y)
always holds.

2.2 New Problems

We propose two definitions of δγ–approximate Abelian period as the counterparts
of the variants of regular approximate periods.

Definition 1. A string w = w1...n is said to have a δγ–approximate Abelian
period (h, p) if it can be expressed as w = u0u1 · · ·uk−1uk, where |P(u0)| = h and

|P(u1)| = p, such that the following conditions are satisfied: (i) P(u0)
δγ

< P(u1);

(ii) P(u1)
δγ
= P(ui) for 1 < i < k; and (iii) P(uk)

δγ

< P(u1).

In other words, the approximate Abelian period (h, p) refers to the Parikh
vector of the length–p substring that starts at position h+1 in w, where certain
properties are satisfied. Specifically, w can be expressed as w = u0u1 · · ·uk−1uk

such that: the head and the tail, i.e. u0 and uk, are δγ–extensible to P(u1).
Furthermore, P(u1) is δγ-equal to u2, . . ., uk−1. Then, the strings u1, . . ., uk−1

are called the δγ–occurrences of the period (h, p) in w, i.e. the δγ–occurrences
of the Parikh vector of u1 in w.

For example, given δ = 1, γ = 2 and the alphabet Σ = {a, b, c}, the string
bccbacabbabcbcc has a δγ–approximate period (1, 4) as it can be expressed as the
concatenation u0u1u2u3u4 where u0 = b, u1 = ccba, u2 = cabb, u3 = abcbc and
u4 = c. We obtain that P(u1) = (1, 1, 2), P(u2) = (1, 2, 1) and P(u3) = (1, 2, 2),
where the first, second and third component correspond to the multiplicity of
a, b and c, respectively. Notice that these multiplicity vectors are similar; this
is because P(u2) and P(u3) are δγ–equal to P(u1). Furthermore, u0 and u4 are
δγ–extensible to P(u1). It is important to remark that δγ– distance on Parikh
vectors allows to find δγ–occurrences of different lengths; for instance the length
of u2 is 4 while the length of u3 is 5.

Taking into account the aforementioned ideas, we can see that supporting
δ– and γ– distances in Abelian periods allows to find interesting periodic prop-
erties in data from different areas, such as Computational Biology and Music
Segmentation, that would not be found with the traditional definition of Abelian
periods. In order to further extend flexibility of such properties, we next present
an alternative definition of δγ–approximate Abelian period:

Definition 2. A string w = w1...n is said to have a δγ–successively approxi-
mate Abelian period (h, p) if it can be expressed as w = u0u1 · · ·uk−1uk, where
|P(u0)| = h and |P(u1)| = p, such that the following conditions are satisfied: (i)

P(u0)
δγ

< P(u1); (ii) P(ui)
δγ
= P(ui−1) for 1 < i < k; and (iii) P(uk)

δγ

< P(uk−1).

This definition is similar to Definition 1 except for the fact that each substring
is compared with its preceding substring rather than with u1. For example, given
δ = 1, γ = 2 and the alphabet Σ = {a, b, c}, the string bccbacabbabcbcc has a



Approximate Abelian Periods to Find Motifsin Biological Sequences 125

δγ–successively approximate period (0, 3) given that it can be expressed as the
concatenation of u0 = ε, u1 = bcc, u2 = bac, u3 = abb, u4 = abc, u5 = bcc,
and u6 = ε. Notice that P(u4) = (1, 1, 1) is δγ-equal to P(u3) = (1, 2, 0) where
the first, second and third component correspond to the multiplicity of a, b
and c, respectively. Likewise, P(u1)

δγ
= P(u2), P(u2)

δγ
= P(u3), P(u4)

δγ
= P(u5),

P(u0)
δγ

< P(u1) and P(u6)
δγ

< P(u5). Note that both u0 and u6 are empty strings.
The main feature of Definition 2 is that, given that δγ–equality is not transi-

tive, the last occurrences of the period may be greatly degenerated with respect
to its first occurrence; it can be thought that evaluating an Abelian period with
respect to its predecessor is equivalent to a Markov property. Therefore, it is
appropriate to choose the definition of δγ–approximate Abelian period that is
better for the requirements of the specific application problem. To the best of our
knowledge, these are the first two approaches to approximate Abelian periods.

2.3 Identification of Periods in Expression Levels

With the purpose of testing our approach with the identification of approximate
periods in real data, we used a dataset corresponding to expression levels of M.
cerevisiae during the cell cycle [24]. The original microarray data was obtained
at the author’s website, already aggregated and normalized. There are 6178
measured genes in 6 different time-series, each correponding to a different cell-
cycle synchronization experimental method. We selected the CDC15 time series
because its number of points: samples taken in intervals of 10 minutes during 300
minutes for a total of 31 data-points per gene with some missing measurements.
More details can be found in the original publication.

In order to obtain a discrete representation suitable to be searched for approxi-
mate periods, we calculated a string for each gene of the target experiment, each
position of such string correponding to an expression measurement. With the
aim of defining an alphabet for each of those strings and the mapping between
expression values and symbols, we clustered the data corresponding to each gene
using k-means. Each cluster of expression values was assigned a symbol and the
string was generated by taking the time-ordered list of expression values per gene
and replacing each data point by the symbol of its cluster. This string can be
seen as the transitions between expression states of each gene given the observed
data. The number of clusters for each gene’s time series was optimized using the
silhouette coefficient during 100 runs. This preprocessing step was done using R
and the FPC package.

The resulting strings were evaluated using the algorithm proposed in Algo-
rithm 1. The value of the parameters was arbitrarily constrained in the following
way: δ was assigned the value 1 in order to allow small changes in the presence of
expression states between successive periods and γ was assigned 2 as the max-
imum number of overall changes between successive periods. Each string was
evaluated using the following scores: (i) the number of ways that δγ–approximate
Abelian periods can be found with the given parameters; (ii) its Shannon en-
tropy score calculated as S(x) = −∑σ

i=1 P(x)[i]log2P(x)[i]; (iii) the number of
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symbols in its alphabet (previously found by clustering); and (iv) the silhouette
coefficient for such clustering.

3 Results

In this section, we first present a solution to solve both δγ–approximate Abelian
periods variants (Section 3.1) and then present some experimental results
(Section 3.2).

3.1 Algorithm

We first describe an algorithm to compute all the δγ–approximate Abelian peri-
ods in a string (Definition 1). Then, we show how to adapt this algorithm to find
all the δγ–successively approximate Abelian periods of a string (Definition 2).

The pseudocode of the algorithm to compute all the Abelian periods of a string
w = w1...n under Definition 1 is listed in Figure 1. We consider all the possible
values for h, i.e. the length of P(u0) (line 2). These values are established by the
condition (i) of Definition 1, which requires that |P(u0)| ≤ |P(u1)|+ γ. Then, in
the upper limit, we have that |P(u1)| = |P(u0)| − γ. Replacing this expression
in |P(u0)|+ |P(u1)| = n, which constitutes the extreme case, we obtain that the
upper limit for h is �(n+γ)/2�. The lower limit corresponds to the empty string
where h = 0. For p, the length of u1, we also consider all the possible values
according to the given h. Namely, the lower limit for p is max(1, |P(u0)| − γ),
which is also obtained from condition (i) of Definition 1 (line 3). The upper limit
for p is given by the fact that the sum of h and p must not exceed n (line 4).
For each pair (h, p), the strings w1...h and wh+1...h+p correspond to u0 and u1,

respectively. If P(u0)
δγ

< P(u1), then we evaluate if (h, p) is a δγ–approximate
Abelian period by calling the method MatchSubstring() (line 5); in such case,
we add it into the result set R (line 6).

The function MatchSubstring() is illustrated in Figure 2. The parameters
are w1...n wi...j , wk...�, δ and γ. The goal of the function is determining whether
wi...n can be expressed as the concatenation of substrings whose Parikh vectors
δγ–match wk...�; the first of such substrings is wi...j . Let us consider the second
substring. Its initial position is j + 1 while its final position m can vary from
j + |wk...�| − γ to j + |wk...�| + γ; this is because a string that δγ–matches
wk...� has at least |wk...�| − γ characters and at most |wk...�| + γ characters.
However, the former value must be at least j + 1 (the substring composed by
one character) while the latter cannot exceed n (lines 5 − 6). Then, for each of
these possible substrings wj+1...m, we evaluate two conditions: (i) if it is indeed
δγ–equal to wk...�; and (ii) if the string wj+1...n can also be expressed as the
concatenation of substrings whose Parikh vectors δγ–match wk...� where the first
of such substrings is wj+1...m. Condition (ii) is evaluated by recursively calling
MatchSubstring(). If both conditions are satisfied, for any of the substrings
wj+1...m, we conclude that wi...n can also be expressed as the concatenation of
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Algorithm 1. DG-AbelianPeriods Algorithm

Input: w = w1...n defined over Σ = {a1, . . . aσ}, and δ, γ ∈ N

Output: R

1. R ← {}
2. for h← 0 to �(n+ γ)/2� do
3. p← max(1, h− γ)

4. while h+ p ≤ n

5. if (P(w1...h)
δγ

< P(wh+1...h+p) and

MatchSubstring(w1...n, wh+1...h+p, wh+1...h+p, δ, γ)) then

6. R.Add(Pair(h, p))

7. p← p+ 1

8. return R

Fig. 1. DG-AbelianPeriods Algorithm.

substrings whose Parikh vectors δγ–match wk...� where the starting substring is
wi...j (lines 7-10).

The arguments for the first call to MatchSubstring() are w1...n, u1, u1, δ,
γ (Figure 1, line 5). Thus, this special case must be handled accordingly: the
outcome is true if the final index is n. This is because it was already verified that

P(u0)
δγ

< P(u1) and there is just a single δγ–occurrence of the period (namely,
substring u1). Notice that in later calls to MatchSubstring() (Figure 2, line

8), parameter i will take a greater value than parameter ; thus, if P(wi...n)
δγ

<
P(wk...�) then wi...n is a valid uk (Figure 2, line 3). Otherwise, and if j = n, we
conclude that the corresponding (h, p) is not a period in w1...n (Figure 2, lines
3-4).

In order to compute all the δγ–successive approximate Abelian periods in
string w = w1...n (see Definition 2), we can also use the pseudocode listed in
Figures 1 and 2. The only difference is that we must compare each potential δγ–
occurrence or tail of the period with respect to its preceding substring. This can
be achieved by changing the arguments of the call to MatchSubstring() in line
8 of Figure 2. Specifically, the arguments must be w1...n, wj+1...m, wi...j , δ and
γ; hence each substring is compared with respect to the preceding occurrence of
the period, i.e. wi...j , rather than with u1.

3.2 Discussion of the Experimental Results

Each expression string was scored by the number of ways that each possible
δγ-approximate Abelian period could be found in it. The scores were filtered by
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Algorithm 2. MatchSubstring Function

Input: w1...n, wi...j , wk...�, δ, γ

Output: true/false

1. if ( < i and P(wi...n)
δγ

< P(wk...�)) then return true

2. if j = n then

3. if (i = k and j = ) then return true

4. else return false

5. lower ← max(j + |wk...�| − γ, j + 1)

6. upper← min(j + |wk...�|+ γ, n)

7. for m = lower to upper

8. if (P(wj+1...m) δγ
= P(wk...�) and

MatchSubstring(w1...n, wj+1...m, wk...�, δ, γ))

9. return true

10. return false

Fig. 2. MatchSubstring Function.

silhouette coefficient using 0.9 as threshold with the purpose of eliminating un-
certain mappings between symbols and expression levels. The distribution of the
number of possible δγ–approximate Abelian periods does not discriminate cycli-
cally expressed genes. Notwithstanding, the regularities found when the strings
were sorted using this criterion, compared with respect to those present in cycli-
cally expressed genes, suggest to confirm the same regularities in other expression
data sets as future work.

4 Conclusions

We defined approximate Abelian periods in strings under δ– and γ– distances.
The error between adjacent instances of the period is restricted by these met-
rics: δ is used to restrict the error on the multiplicities of each character and γ is
used to restrict the sum of these errors. We solved the problem of finding all the
δγ–approximate Abelian periods in a string under two variants of the problem.
To the best of our knowledge, this problem has not been considered before. It is
useful to find periodic properties of data in several areas, such as Bioinformatics,
Music Segmentation and Complex Event Analysis. We also proposed an appli-
cation of the presented algorithm to analyse gene expression’s time series with
the purpose of identifying periodic changes in expression levels in the cell-cycle
of M. cerevisiae. We obtained encouraging results when compared with already
identified genes.
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Abstract. In the last years, systems and computational biology focused their ef-
forts in uncovering the causal relationships among the observable perturbations 
of gene regulatory networks and human diseases. This problem becomes even 
more challenging when network models and algorithms have to take into ac-
count slightly significant effects, caused by often peripheral or unknown genes 
that cooperatively cause the observed diseased phenotype. Many solutions, 
from community and pathway analysis to information flow simulation, have 
been proposed, with the aim of reproducing biological regulatory networks and 
cascades, directly from empirical data as gene expression microarray data. In 
this contribute, we propose a methodology to evaluate the most important 
shortest paths between differentially expressed genes in biological interaction 
networks, with absolutely no need of user-defined parameters or heuristic rules, 
enabling a free-of-bias discovery and overcoming common issues affecting the 
most recent network-based algorithms. 

Keywords: SEM, disease module, shortest paths, gene expression, metabolic 
pathways. 

1 Introduction 

Biological network analysis is particularly suited to study complex disorders, arising 
from a combination of many different structural and functional perturbations. The key 
problem is to identify causal and target genes having only a minor association with 
the pathology under investigation. Although only slightly associated with the patholo-
gy, the combinatorial effect of those perturbed genes results in a variety of phenotypi-
cal variants, causing huge differences in prognosis, survival and drug response of af-
fected individuals. Therefore, the only reasonable way of analyzing their 
combinatorial effects is to identify perturbed paths or modules that are significantly 
associated with the observed phenotype. The goal is to point out those paths connect-
ing perturbed genes, involved in the observed phenotype, possibly highlighting pre-
viously unknown causal or target genes. Even though there are no straightforward 
rules to extract significant sub-graphs from the original network, two major approach-
es have been successfully applied to solve the problem [1-3]: distance-based and  



132 D. Pepe, F. Palluzzi, and M. Grassi 

 

information flow-based algorithms. The former is based on the idea that genes that are 
physically or functionally proximal tend to be involved in the same biological 
process, an assumption that is often called guilt by association [2]. The latter tries to 
simulate the information propagation in the biological network, by starting a random 
walk from a source node, passing through a number of intermediate nodes, and even-
tually ending in a sink node. The random walk propagation is controlled by the user 
through some defined parameter, such as walk length and edge weights [4, 6].  

Classical distance-based methods have three limitations [3]: (i) they do not consid-
er additional information, other than topology (e.g. gene expression), (ii) they consid-
er only one shortest path per gene pair, (iii) the shortest path may not be the most in-
formative one. In a recent work [4], the first two problems have been addressed using 
a single source k-shortest paths algorithm. On the other hand, the information flow 
model [5] has one important limitation: the weight normalization used to generate 
transition probabilities may cause loss of information, preventing the algorithm from 
detecting important paths, by flattening weights from different sub-graphs to artifi-
cially equal transition probabilities. This problem can be addressed by modifying 
transition probabilities using different damping factors for different nodes, thus rein-
troducing the diversity that has been erased by the normalization procedure. Indeed, 
assigning the proper importance to a given path is an issue also in the Shih and Par-
thasarathy’s k-shortest path algorithm. The k-shortest paths detected are often very 
similar, having the majority of their connections in common. If one only takes into 
account the distance, this may introduce a strong bias towards highly similar shortest 
paths. In order to address this problem, the algorithm introduces a parameter, called 
diversity [4] that is proportional to the unique connections a path has. A path is said to 
be diverse if its diversity is higher than a user-defined threshold called λ. Again, simi-
larly to the damping factor, introduced in the information flow method, the λ parame-
ter must be defined a priori by the user. In this way, the user is forced to evaluate the 
impact of different parameter values only a posteriori, by repeating the same time 
consuming procedure to better tune the parameter itself. Furthermore, the method 
shows how the number of significantly enriched Gene Ontology (GO) [6] terms is not 
always clearly related to λ, especially for high parameter values. 

In the method here illustrated, empirical data directly drive the selection of the 
most important nodes, while each path is evaluated using an annotation-driven model. 
In particular, expression data and metabolic pathways (using KEGG) [7] information 
are integrated to build the interactome. The analysis is similar to that proposed by 
Pepe & Grassi [8] with the relevant difference of the evaluation of equivalent shortest 
paths. Starting from differentially expressed genes (DEGs), extracted from a gene ex-
pression dataset, the proposed pipeline finds the biological context where they act and 
then tries to understand how they are connected by shortest paths. A shortest path be-
tween DEGs can contain other genes of the experiment not necessarily DEGs. This al-
lows detecting genes that can be important as brokers. The point is that more equiva-
lent shortest paths can connect two DEGs and using only topological information, it is 
not possible to detect the best one. The importance of each shortest path can be as-
sessed using Structural Equation Models (SEM) [9]. The penalized goodness of fit 
scores returned by the SEM testing, provide a direct estimation of the importance of 
each shortest path. In this way, we overcome the three limitations of the classical  
distance based methods as: 1) data information are considered together with the  
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topological information, given by “a priori” knowledge enclosed in biological path-
ways; 2) not only a shortest path is considered for each couple of genes as also the 
equivalent ones are included in the analysis; 3) for each couple of DEGs the best 
shortest path is found based on statistical criteria. We not only relieve the user from 
estimating ad-hoc thresholds, but we also provide an objective criterion to assess 
pathway importance on the base of its metabolic function. The fusion of the best 
shortest paths allows detecting the key area in the perturbed network that can explain 
the phenotype studied. Finally, the key network area is fitted with SEM to verify if the 
model proposed outlines well the data observed. The way to detect DEGs and per-
turbed pathways does not change the downstream analysis that we propose here. So 
every existing method could be used. 

2 Material and Methods 

The central part of our method is the selection of a disease module by SEM best 
shortest paths between DEGs. The procedure starts from DEGs and perturbed path-
ways identified, respectively, with a t-test (Benjamini-Hochberg adjustment) and 
through Significance Pathways Impact Analysis (SPIA) [10]. We used the KEGG 
pathway database for the pathway analysis. The significant pathways could be 
represented as directed graph P = {G, V} where G are the set of genes and V are the 
edges that correspond to biological interactions between them. The selected pathways 
were merged to create a single graph with unique nodes, and edges are merged into a 
non-duplicate set. The merging procedure was performed with the function merge-
KEGGgraphs( ) of the R [11] package KEGGgraph [12]. The idea is to understand 
how DEGs are connected in the perturbed pathways to other microarray genes. A nat-
ural way to solve this problem is to select the shortest paths (geodesic distance) be-
tween DEGs. The geodesic distance between two DEGs, gi and gj, is defined as the 
minimum distance between these two genes. The function get.all.shortest.paths( ) of 
the R package igraph [13] was used to compute all shortest paths between each 
couple of DEGs. The problem is that, in many cases, there is not a unique shortest 
path for couple of DEGs, but a set of equivalent shortest path. The goal here is to 
detect the equivalent shortest path that maximize the likelihood of the links between 
the considered genes. To select the best shortest path we employed SEM. 

The first step is to specify a model describing the causal relationships among va-
riables. In general, a SEM in which all the variables are observed can be represented 
as a system of linear equations: 
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The system of linear equations considers every i-th node (Yi) as characterized by uni-
directed relationships with its “parents” set, pa(i) quantified by path coefficients (βij). 
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The covariance structure describes the bi-directed relationships between the unmea-
sured component of the i-th node (Ui) and its “siblings” set, sib(i) quantified by their 
covariances (ψij). In our specific case, every equivalent directed shortest path denotes 
a SEM, where there is an initial node represented by the source DEG connected to a 
destination DEG by intermediate DEGs or other microarray genes. Considering that 
the equivalent shortest paths are induced paths, every shortest path can be represented 
by mk-1 recursive linear equations, where mk is the number of nodes in the shortest 
path k:  

;; )(3)(2)(32)(3)(2)(1)(21)(2 kkkkkkkk UYYUYY +=+= ββ   and so on 

For the estimation of the parameters θ=(βij; ψij) the Maximum Likelihood Estimation 
(MLE), assuming that all the measured expression genes have a multinormal distribu-
tion, are computed by using the R package lavaan [17]. The assessment of the best 
shortest path was obtained taking among the set of equivalent shortest path model, the 
one with the minimum Bayesian information criterion (BIC) [14]: 
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where L(Mk) is the likelihood of the shortest path model Mk, tk is the number of  
parameters of Mk, and n is the sample size. BIC is a penalized likelihood score that 
penalize short path models with many rather than few parameters. This is motivated 
by the idea that genes that functionally important for a given phenotype tend to be 
connected by few intermediate nodes. 

After the selection of the best equivalent shortest paths between each couple of 
DEGs, the next step is to detect a disease module. At this aim, the unique nodes 
(genes) of the selected shortest paths were merged to create a unique graph that 
should represent the final “disease” module. The evaluation of the final module was 
obtained: 1) performing an enrichment analysis on the nodes present in the module, 
and 2) fitting the whole module with SEM. The enrichment analysis was obtained by 
the R package clusterProfiler [15]. While the SEM analysis was performed 
adding, in each structural equation of the whole module, the indicator variable of 
group condition (experimental/control), and testing which genes in the module are in-
fluenced by the different conditions. To note that the output of this last validation pro-
cedure is similar to the t-test with the important difference that the nodes are eva-
luated taking in consideration the model and not singularly. The badness of fit of the 
whole module with (p-1) genes is evaluated by the Standardized Root-Mean-square 
Residual (SRMR), a measure based on the differences between all pairwise sample (s) 
and model (σ) gene-gene and gene-group covariances  
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A value <0.10 is retained for adequate fitting approximation of the model to the data, 
whereas value <0.05 may be considered as a good fit [16]. If the number of genes in 
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the gene set is greater than the number of samples, the shrinkage covariance proposed 
by Schafer and Strimmer [17] is applied to estimate the sample covariances given by 
R package parcor. 

The proposed pipeline was performed using a gene expression experiment availa-
ble on the Gene Expression Omnibus (GEO) database [18], with accession number 
GSE14580 [19]. Two groups were compared, patients affected by ulcerative colitis 
(UC) treated with infliximab (8 samples) against control (6 samples).  

3 Results 

Differential analysis using a t-test with a Benjamini-Hochberg correction, allowed us 
to individuate 1364 differentially expressed genes (DEGs). On these, a pathway anal-
ysis with the SPIA revealed five perturbed KEGG pathways: cytokine-cytokine recep-
tor interaction, cell adhesion molecules, chemokine pathway, antigen processing and 
presentation, complement and coagulation cascades (Table 1). 

Table 1. The KEGG perturbed pathways associated with the response of UC patients treated 
with infliximab. 

Name pSize NDE pNDE pPERT pGFdr Status 
Cytokine-cytokine receptor in-
teraction 241 27 0,004 0,001 0,007 Activated 

Cell adhesion molecules 
(CAMs) 88 16 0,000 0,266 0,019 Activated 

Chemokine signaling pathway 178 18 0,041 0,001 0,019 Activated 

Antigen processing and pres-
entation 56 11 0,001 0,082 0,019 Activated 

Complement and coagulation 
cascades 

65 11 0,003 0,025 0,019 Inhibited 

pSize is the number of genes in the pathway; NDE is the number of DEGs in the pathway; pNDE is 
the probability of obtaining a number of DE genes on the given pathway at least as large as the ob-
served one; pPERT  is the probability to observe the total accumulated perturbation of the pathway; 
pGFdr is the combination of pNDE and pPERT corrected for the false discovering rate. 

The perturbed pathways are interesting considering that some of them play a  
fundamental role in the symptoms of UC, such as those relative to cytokines and 
chemokines [20]. 

All the perturbed pathways were merged in a unique graph. This allows to under-
stand also how the gene belonging to different pathways interact between them,  
Starting from this graph, in which the DEGs act, the best shortest paths between each 
couple of DEGs were computed, as described in the methods. After merging the 5 
pathways in a unique graph, only 22 DEGs over 83 were present in the perturbed 
network. The number of shortest equivalent paths for each couple of connected DEGs 
was in the range with a minimum value of 2 and a maximum value of 648. The best 
shortest paths were of 53 composed with a minimum of 3 nodes and a maximum  
of 11. The merging of all selected shortest paths gave a putative “disease” module 
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composed by 41 genes and 47 edges, as illustrated in the Figure 1. The information 
about genes are reported in Table 2. 

To identify which molecular functions are involved in the infliximab molecular ac-
tion, GO enrichment analysis on the molecular function (MF) was performed. The 
significant (p-value <0.001) enriched MF terms are illustrated in the Figure 2. The 
main MFs are connected with chemokine and cytokine activity as expected (see Table 
2). In fact the infliximab acts on the expression of the tumor necrosis factor α (TNF-
α), a key proinflammatory cytokine resulted over-expressed in many diseases as 
Crohn’s disease and UC [21]. In addition, the G-protein receptor binding function was 
associated with the intestinal inflammation [22]. 

 
 

 

Fig. 1. The “disease” module obtained by merging of the best shortest paths between every pair 
of DEGs. The green nodes are DEGs, while the yellow nodes represent non-DEGs, present in 
the microarray. 
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Table 2. Description of genes that characterize the best equivalent shortest paths. Entrez id, 
gene symbols and gene name are reported. 

 
ENTREZ ID GENE SYMBOL Gene Name 
6655 SOS2 son of sevenless homolog 2 (Drosophila) 
115 ADCY9 adenylate cyclase 9 
2147 F2 coagulation factor II (thrombin) 
112 Adcy6 adenylate cyclase 6 
6774 Stat3 signal transducer and activator of transcription 3  
2919 CXCL1 chemokine (C-X-C motif) ligand 1  
6772 STAT1 signal transducer and activator of transcription 1, 91kDa 
6464 SHC1 SHC transforming protein 1 
2787 gng5 guanine nucleotide binding protein (G protein), gamma 5 
1230 CCR1 chemokine (C-C motif) receptor 1 
53358 SHC3 SHC transforming protein 3 
3702 ITK IL2-inducible T-cell kinase 
6369 CCL24 chemokine (C-C motif) ligand 24 
2770 Gnai1 guanine nucleotide binding protein (G protein) 
728 C5ar1 complement component 5a receptor 1 
727 C5 complement component 5 
6372 Cxcl6 chemokine (C-X-C motif) ligand 6  
5327 PLAT plasminogen activator, tissue 
3579 CXCR2 interleukin 8 receptor, beta 
2152 F3 coagulation factor III (thromboplastin, tissue factor) 
3055 HCK hemopoietic cell kinase 
2159 F10 coagulation factor X 
7035 TFPI tissue factor pathway inhibitor  
8503 PIK3R3 phosphoinositide-3-kinase, regulatory subunit 3 (gamma) 
2920 CXCL2 chemokine (C-X-C motif) ligand 2 
5567 PRKACB protein kinase, cAMP-dependent, catalytic, beta 
2921 Cxcl3 chemokine (C-X-C motif) ligand 3 
2773 GNAI3 guanine nucleotide binding protein (G protein) 
5624 proC protein C (inactivator of coagulation factors Va and VIIIa) 
5054 SERPINE1 serpin peptidase inhibitor 
5340 plg plasminogen 
3717 Jak2 Janus kinase 2 
4283 Cxcl9 chemokine (C-X-C motif) ligand 9 
6364 CCL20 chemokine (C-C motif) ligand 20 
10663 CXCR6 chemokine (C-X-C motif) receptor 6 
718 LOC653879 similar to Complement C3 precursor; 
2885 GRB2 growth factor receptor-bound protein 2 
1378 CR1 complement component (3b/4b) receptor 1  
4067 LYN v-yes-1 Yamaguchi sarcoma viral related oncogene  
10451 VAV3 vav 3 guanine nucleotide exchange factor 
7056 THBD thrombomodulin 

 
The module obtained was globally evaluated with SEM, adding the effect of the 

group conditions on each gene in the module, as showed in Table 3. The fitting of  
the model was adequate as the SRMR was of 0.073. The results confirms DEGs and 
the enrichment analysis. Many genes associated to the chemokine and cytokine activi-
ties as CXCL1, CXCL2, CXCL3, CXCL6, CXCR2 resulted have an effect (P<0.05, 
with Bonferroni multiple comparison correction) on the molecular mechanisms  
response to the infliximab treatment. 
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Fig. 2. GO molecular functions enriched by the genes present in the module. The x-axis 
represents the number of genes associated with the MF of each bar. The color is associated to 
the significance of the enrichment. 

Table 3. Fitting of gene module with SEM, adding the indicator variable of the group condi-
tion. The analysis revealed which genes are influenced by the indicator variable representing 
the different biological conditions. 

Y ← X Estimate SE z-value P*(>|z|) 

CXCL2  ← group 2.355 0.271 8.687 0 
CXCR6 ← group 0.107 0.403 0.265 1 
Jak2  ← group 0.602 0.428 1.407 1 
STAT1  ← group 0.913 0.23 3.968 0.002972 
GNAI3  ← group 0.417 0.348 1.196 1 
LYN ← group 1.306 0.278 4.703 0.000105 
gng5  ← group -0.259 0.056 -4.648 0.000137 
PIK3R3 ← group 1.095 0.154 7.13 0 
STAT3 ← group 0.909 0.219 4.157 0.001322 
ADCY6  ← group -0.495 0.053 -9.298 0 
PRKACB  ← group -0.881 0.204 -4.309 0.000672 
ADCY9  ← group -0.657 0.068 -9.645 0 
HCK  ← group 1.051 0.152 6.923 0 
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Table 3. (Continued) 

Y ← X Estimate SE z-value P*(>|z|) 

SHC1 ← group 0.2 0.145 1.384 1 
GRB2  ← group 0.51 0.099 5.172 0 
SOS2  ← group -0.842 0.211 -3.998 0.002619 
ITK  ← group 0.525 0.212 2.475 0.546268 
VAV3 ← group -1.31 0.23 -5.697 0 
SHC3  ← group 0.097 0.186 0.524 1 
THBD  ← group 2.074 0.332 6.254 0 
proC  ← group -0.765 0.648 -1.18 1 
SERPINE1 ← group 0.519 0.401 1.294 1 
PLAT  ← group 0.372 0.118 3.147 0.067632 
PLG  ← group -1.014 0.344 -2.95 0.130287 
C3 ← group 1.64 0.54 3.035 0.098621 
CR1  ← group 2.454 0.474 5.178 0 
C5 ← group -1.098 0.651 -1.686 1 
C5AR1 ← group 1.685 0.272 6.184 0 
CXCL9  ← group 1.896 0.211 8.976 0 
CCR1  ← group 0.085 0.605 0.141 1 
GNAI1 ← group -0.224 0.219 -1.023 1 
F3  ← group 2.301 0.219 10.501 0 
F10 ← group 0.211 0.74 0.286 1 
F2  ← group 0.839 0.19 4.417 0.000411 
CXCL1 ← group 5.044 0.48 10.498 0 
CCL20 ← group 2.811 0.284 9.897 0 
CXCL6 ← group 4.083 0.44 9.286 0 
CXCR2  ← group 3.247 0.361 8.986 0 
CXCL3  ← group 4.04 0.389 10.386 0 
TFPI  ← group 1.669 0.181 9.23 0 
CCL24 ← group 2.887 0.301 9.582 0 

Estimate: mean gene differences adjusted by the gene topology of Figure1; SE,: standard error of the 

estimate; z-value: z.test=estimate/SE; P*(>|z|): pvalue (two-sided, adjusted with Bonferroni proce-

dure) 

4 Conclusions 

Nowadays we know that rarely a disease is a consequence of the modification of the 
sequence or expression of a single gene, but rather it is the consequence of the pertur-
bation of molecular interaction networks [1]. The reason is that proteins, nucleic ac-
ids, and small molecules form a dense network of molecular interactions in a cell. A 
critical level of the biological organization is the recognition of functional modules, 
networks composed by molecules which interactions and cooperation execute specific 
functions. In fact, it has been proposed that the biological networks are characterized 
by a modular architecture [23]. The identification of the perturbed modules is a criti-
cal part for the understanding of the biological phenomena. Efficient network reduc-
tion algorithms are proposed for this goal, such as the distance-based and information 
flow-based algorithms. 

The first method is based on the principle that genes physically or functionally 
proximal cooperate for the same biological function. The second simulates the infor-
mation propagation in the biological network, by starting a random walk from a 
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source node, passing through transient nodes, and eventually ending in a sink node. 
The efficiency of these methods, however, depends on the choice of user-defined pa-
rameters, which are time-expensive to tune correctly. Moreover, it is often impossible 
to assess a clear correlation between the parameter and the corresponding outcome. 

In this note, we proposed the identification of modules with the SEM best shortest 
path via the minimum BIC, a penalized likelihood score. Our approach is a mixed 
strategy based on hypothesis-driven of biological knowledge contained in KEGG da-
tabase, and data-driven of the best shortest path between genes, among the set of 
equivalent shortest path. The procedure has been tested on a gene expression experi-
ment, with the goal of clarifying the action of infliximab on patients affected by UC. 
The first step was to find DEGs and then performing pathway analysis to understand 
which pathways were involved in the drug response. The way to obtain DEGs and 
perturbed pathways can be changed on the basis of the preferences of the researcher. 
After identifying perturbed pathways, we considered the network obtained from 
merging significant pathways. We found all the best equivalent shortest paths involv-
ing pairs of DEGs, and then we generated the final module by merging the best short-
est paths. The module obtained was composed by 41 genes and 47 edges. Our results 
were encouraging, considering that we found MF terms associated with chemokines 
and cytokines playing a key role in UC. The procedure tried to find a trade-off be-
tween complexity, an intrinsic characteristic of biological network, and the under-
standing of the role and importance of DEGs from a network point of view. The 
choice to consider one shortest path between two DEGs, with the mixed-approach 
proposed, outline this goal. However, information is surely lost, as there can be other 
ways that connect two DEGs. A possible extension could be to select the k-SEM best 
shortest paths also if in this way it is necessary to choose the k value, a choice that 
could be arbitrary. A better way to improve the procedure is to exploit the potentiality 
of SEM. For example adding in the shortest path equations the indicator variable of 
the group condition, thus minimum BIC score has the best mean differences between 
groups, or reducing the intermediate nodes in composite variable [24]. A further de-
velopment would be to insert the procedure in the pipeline proposed by Pepe & Grassi 
[8], considering the problem of the equivalent shortest path in the generation of the 
pathway model. 
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Abstract. In the identification of living species through the analysis of
their DNA sequences, the mitochondrial “cytochrome c oxidase subunit
1” (COI) gene has proved to be a good DNA barcode. Nevertheless, the
quality of the full length barcode sequences often can not be guaranteed
because of the DNA degradation in biological samples, so that only short
sequences (mini-barcode) are available. In this paper, a prototype-based
classification approach for the analysis of DNA barcode, exploiting a spec-
tral representation ofDNAsequences and amemory-based neural network,
is proposed. The neural network is a modified version of General Regres-
sion Neural Network (GRNN) used as a classification tool. Furthermore,
the relationship between the characteristics of different species and their
spectral distribution is investigated. Namely, a subset of the whole spec-
trum of a DNA sequence, composed by very high frequency DNA k-mers,
is considered providing a robust system for the classification of barcode se-
quences. The proposed approach is compared with standard classification
algorithms, like Support Vector Machine (SVM), obtaining better results
specially when applied to mini-barcode sequences.

Keywords: DNA barcode, Memory-based Neural Networks, GRNN,
Classification.

1 Scientific Background

The identification of living species through the analysis of their DNA sequences
is an open challenge. Because a massive comparison of a large collection of full
genome sequences is not feasible, a bioinformatics approach to this problem is
the analysis of some standard gene regions, containing enough information for
the assignment to the proper taxa. The mitochondrial “cytochrome c oxidase
subunit 1” (COI) gene is a comprehensive species-specific sequence library for
all eukaryotes and it has proved to be a good marker for DNA sequences [8,13];
for this reason, it is considered as a DNA barcode for metazoan genomic.

Anyway, even though DNA barcode approach has proven to be useful for the
identification and taxonomic rank assignment of very different species [6,12,11],
its use can still be difficult if the biological samples are degraded. This is the case
of archival specimen where biological samples can not guarantee the quality of
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the full length barcode sequence (650 bp) recovery. In fact, in many cases, only
short sequences, also known as mini-barcode, are available (about 200 bp) [14].

In this paper, we propose a novel prototype-based classification approach
based on the analysis of DNA barcode. Our method exploits a spectral rep-
resentation of DNA sequences and a memory-based neural network for taxa
estimation: spectral representation uses fixed-length DNA k-mers, whereas the
neural network can store a set of prototypes (groups of k-mers) representing all
the elements of the learning dataset.

In order to perform the barcode sequences classification, we introduce a mod-
ified version of General Regression Neural Network (GRNN) [19] that use, al-
ternatively, a function derived from Jaccard distance and fractional distance
(instead of the euclidean one) to compare learned prototypes against test se-
quences. The proposed approach implements these two kinds of distances and it
is able to perform the classification task, even using only short fragments (200
bp) of the complete barcode sequence.

Finally, we compared our approach with the Support Vector Machine (SVM)
[17] classification algorithm. Results show our method, implementing both Jac-
card and fractional distances, is directly comparable with SVM in terms of clas-
sification metrics (accuracy, precision and recall) when considering full length
sequences, whereas it overcomes SVM classifier when applied to short fragments
of DNA barcode sequences.

2 Materials and Methods

The proposed method is based on two modified versions of the General Regres-
sion Neural Network. In the first subsection the basic principles of the GRNN
are explained; the following two subsections present the proposed modifications,
based on the Jaccard distance and the fractional distance; the last subsection
describes the data sets used.

2.1 The General Regression Neural Network

The General Regression Neural Network [19] is a neural network created for
regression i.e. the approximation of a dependent variable y given a set of sample
(x, y), where x is the independent variable. In the following we will discuss the
single output case, the extension to an output vector y is straightforward and
can be found in [19]. In order to implement our classification tool for DNA
sequences, we obtained the vector representation of the DNA sequences using a
k -mer decomposition [10]. In this representation, sequences are coded by using
fixed size vectors whose components are the number of occurrences of DNA
snippets of k fixed-length, called k -mers. Considering k = 5, as proposed in [10],
we have representing vectors x ∈ �1024.

The GRNN network has a one–pass training phase, it is just the memorization
of all the training couples (xi, yi) each one in a neural unit i of the hidden layer.
Fig. 1 shows a representation of the network: input layer has one neuron for each
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Fig. 1. The representation of the GRNN neural network.

component xj in the input vector xi and the hidden layer has one unit for each
training sample.

During the test phase, when an unknown pattern x′ is presented to the net-
work, each hidden unit is excited according to the similarity of the pattern to
the memorized input sample xi. The excitation level of the neural unit i is given
by:

wi = exp

{
−d(x′,xi)

2σ2

}
(1)

where d(x′,xi) is the distance between x′ and xi, usually euclidean distance,
and σ is the spread factor, representing the only parameter of the GRNN net-
work. The hidden units have two outputs, wi ∗ yi and wi, that are collected
by the summation units. All the contributions of the hidden units are summed
and normalized by the unit in the output layer, in order to obtain the network
output y′:

y′ =
∑

wi ∗ yi∑
wi

. (2)

If we want to use this network as a classification tool we have to change our
point of view: first of all the training couples are of the kind (xi, ch) where ch ∈ C
is the class that is associated to xi and C is the set of h classes. This means that
all the classes must be coded in a real value vector yh were each component yih
is given by:

yih =

{
0 if i �= h
1 if i = h

(3)
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and requires a multiple output network. The σ value is the only parameter of the
GRNN network. There are some studies on the optimal value of σ that can be a
single value for the whole network or a specific value for each hidden unit. In [7]
it is suggested a formula that depends on the maximum distance and number of
patterns in the training set.

2.2 Jaccard Function

During experiments (see Section 3) we found that the euclidean distance used
in the GRNN calculations was not enough “strong” for our purposes: in these
kind of problems we have found that the presence or absence of a k -mer mean a
lot and the euclidean distance does not emphasize this aspect [3].

Jaccard distance is defined among two sets A and B as

J =
‖A ∪B‖ − ‖A ∩B‖

‖A ∪B‖ (4)

where ‖A‖ represents the number of elements of the set A; J ∈ [0, 1] and if J = 1
the two sets have not elements in common.

In this work, we redefine the Jaccard distance as a new function between two
vectors that considers we will define between two vectors is computed consider-
ing the number of components in common between them, so that A and B in
Eq. 4 are the set of the indexes of non-zero components in the vectors. This dis-
tance, however, has still a low contrast for our purposes because the information
related to the magnitude of each component in the vectors is discarded. The
component magnitude can be taken into account again if we do not consider all
the components but only the m biggest components in the vectors.

More formally the sets A and B are defined as the sets of indexes:

s = {s0, s1, ..., sm} (5)

where sj is the index of the x components that satisfies the ordering xsj−1 >
xsj > xsj+1 where x0 = maxl=0,1,...N{xl}

These sets can be compared using the Jaccard distance in Eq. 4.
Since Jaccard distance ranges from 0 to 1, it is necessary to map it in the in-

terval [0,∞), using, for example, the following definition that we call J-function:

Jf(x′,xi) =

⎧⎨⎩
0 if J = 0
‖ 1
logJ ‖ if J ∈ (0, 1)

∞ if J = 1

(6)

This is necessary because wi in eq. 1 should tend to zero if the distance is
large. Moreover changing the distance method from euclidean to this normalised
J-function distance stretches the original theory of the GRNN network; we leave
a formal study of this problem to a future work.
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2.3 Fractional Distances

High-dimensional spaces, such as the one defined by the sized vectors repre-
senting DNA sequences, are affected by the so called curse of dimensionality.
In those spaces, in fact, the euclidean norm used to define the distance tend
to concentrate [4]. That means all pairwise distances between high-dimensional
objects appear to be very similar. In order to overcome this phenomenon, frac-
tional norms can be used in place of euclidean norm [9,1]. Fractional norms are
obtained from the Minkowski family norms defined as:

‖X‖p =

(∑
i

|Xi|p
) 1

p

. (7)

With p = 2, the euclidean norm is obtained; whereas with 0 < p < 1 Minkowski
norms are called fractional norms, which induce fractional distances. In this
work we adopted fractional norms, considering different values of p, in order to
compute Eq. 1 and to limit the effects of the curse of dimensionality.

2.4 Barcode Dataset

We downloaded barcode sequences from the Barcode of Life Database (BOLD)
[15]. In our study, we considered 10 barcode datasets belonging to different
BOLD projects and living organisms. These datasets have been selected ac-
cording to some criteria: we chose only barcode compliant dataset, i.e certified
by BOLD as true barcode sequences, with sequence length not shorter than
500 bp and not longer than 800 bp. Following these criteria, we collected 2212
sequences. A full description of our barcode dataset can be retrieved in [3].

As discussed earlier, it is important to find a subset of the barcode gene
in order to provide an effective identification mechanism for various animal or
bacterial groups [6]. In fact, the recovery of full-length barcode sequence can be a
problem in many cases: for example considering archival specimen, due to DNA
degradation [5], or environmental samples [14]. There are studies, however, that
tries to identify a specific location in the barcode gene, location that are called
mini-barcode [14]. Our work is focused on the same idea but, instead of trying to
identify a specific location in the gene, we explore the possibility of identifying
species using small gene chunks. So that we fixed an amount of genetic material
(200 bp) that could be enough to identify 95% of the species [14] and tried to
understand what happens if this material comes not from a specific location of
the gene, but it is scattered in two chunks of 100 bp (100x2), or in four sub-
sequences of 50 bp (50x4). In both cases we do not check if these subsequences
are overlapping or not, trying to reproduce laboratory conditions.

3 Results

Classification results obtained through our GRNN approach have been evalu-
ated in terms of accuracy, precision and recall scores. We implemented both
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Fig. 2. Classification scores, in terms of accuracy, precision and recall, for the proposed
approach based on the GRNN algorithm. The scores are arranged with regards to the
taxonomic ranks and sequence sizes.

modified versions of GRNN algorithm using J-function and fractional distances,
as explained in Sections 2.2 and 2.3, respectively. We performed two types of
training/testing procedures. In the first scenario, we trained our classifiers with
the whole full length dataset and then we tested it with all the sequence frag-
ments. Our aim was in fact to assess if the GRNN classifier, trained with the
full length sequences, is able to correctly classify the sequence fragments. It is
important to underline that although in the training set (full length) and in the
test set (fragments) there are the same number of sequences, their vector rep-
resentations are completely different. In the second scenario, we adopted a ten
fold cross validation scheme, considering as training set the full length sequences
and as test set corresponding sequence fragments that did not belong to the
training set. In this situation we wanted to assess if the GRNN classifier is able
to classify sequence fragments even if it did not learned the corresponding full
length patterns. Moreover we compared our method with another classifier used
for nucleotide sequences classification [18]: the Support Vector Machine (SVM).
We adopted the SVM implementation provided by the R package e1071, which
is an interface to the libsvm library [2]. We used a Gaussian Radial Basis kernel,

k(x,x′) = exp(−γ ‖x− x′‖2). The parameter C and γ of the Gaussian kernel
has been tuned through a grid search over a set of parameters values: γ ranging
from 10−6 to 103; C ranging from 1 to 103, as suggested by the authors of libsvm.
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Fig. 3. Classification scores, in terms of accuracy, precision and recall, for the SVM
classifier. The scores are arranged with regards to the taxonomic ranks and sequence
sizes.

The best parameter values have been computed minimising the error measure
using a 10-fold cross validation on the training set. The results obtained with
the SVM classifiers have been carried out by means of the same two way train-
ing/testing procedure. In other experiments, not shown here, we also adopted
Classification Tree, from the R package rpart, algorithm and we obtained very
similar results to the ones obtained through SVM. For this reason, we do not
present those results in this paper.

The GRNN outputs obtained using J-function have been obtained comparing
the m = 30 biggest components between the vector prototypes and the test
vectors. This value has been selected after a series of experiments, not presented
here for lack of available space, using for comparison a number of components
ranging from 20 to 50 and a σ value during the training phase ranging from 0.5
to 0.8. We reached a trade off between the best results and the smallest number
of elements by using 30 components and σ = 0.7. A number of components
m > 30 does not give a meaningful improvement in the results.

In the previous version of our work [16], we focused our attention on the
comparison of classification results between the GRNN algorithm with J-function
and the SVM classifier. Those results, arranged according to the test sequence
sizes (full, 200 bp, 50x4 bp, 100x2 bp) and taxonomic ranks (from phylum down
to species), are summarized in the charts shown in Fig. 2 and 3. We demonstrated
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Fig. 4. Classification scores, in terms of accuracy, for the proposed approach based
on the GRNN algorithm implementing fractional distances with different values of
parameter p. The scores are arranged with regards to the taxonomic ranks and sequence
sizes.

that our approach clearly outperforms SVM for the classification of sequence
fragments; considering full length sequences, on the other hand, both GRNN
and SVM classifiers reached very similar high scores, ranging between 100% and
95% of accuracy score.

In this work we analysed the performances of the GRNN algorithm imple-
menting fractional distances in order to classify short barcode sequences of size
200 bp, 100x2 bp and 50x4 bp. Classification results, in terms of accuracy, pre-
cision and recall scores, have been compared with both the GRNN algorithm
using J-function and the SVM classifier.

First of all, considering the first training/testing scenario, we studied how
classification results change with regard to the parameter p of fractional dis-
tances (see Eq. 7). We carried out experiments with p = 0.3, p = 0.5 and p = 0.7
and the classification results, in terms of accuracy score are shown in Fig. 4.
The most interesting result is that the best scores, ranging from 100% at phy-
lum level to about 82% at species level, were obtained with p = 0.7 considering
short fragments of 200 consecutive base pairs. With 50x4 bp and 100x2 bp se-
quence lengths, we obtained slightly lower scores. The analysis of precision and
recall showed very similar scores to the accuracy one, not providing any further
meaningful information: for this reason we did not report those results.
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Table 1. Classification scores, in terms of accuracy, precision and recall, for the pro-
posed approach based on the GRNN algorithm against the SVM classifier. The train-
ing/testing procedure refers to the second scenario, i.e. ten fold cross validation with
full-length sequences as training set and test set composed of the sequence fragments
whose corresponding complete sequences do not belong to the training set.

Experiment trials with fractional distance with p = 0.7, therefore, is able to
overcome the distance concentration phenomenon, as described in Section 2.3.
In order to validate that thesis, we compared classification results obtained with
GRNN using fractional distance (p = 0.7) and euclidean distance (p = 2). This
comparison is presented by means of radar charts in Fig. 5. There it is clear how,
at all taxonomic level and for each sequence length, euclidean distance is unable
to provide acceptable results (accuracy score about 50%).

The comparison between classification results obtained using GRNN with
fractional distance (p = 0.7) and Jaccard distance is summarized in the radar
charts of Fig. 6. Once again the best results, at each taxonomic rank and for all
sequence sizes, were reached by means of fractional distance. The most evident
difference of the performances between those two approaches is at Species level,
where with fractional distance we reached an accuracy score of about 80% against
60% with Jaccard distance.

The last comparison, showed in Fig. 7, was done considering GRNN with
fractional distance (p = 0.7) and Jaccard distance against SVM. As discussed
earlier in this Section, Fig. 3, both approaches implementing GRNN clearly
outperforms the SVM classifier.
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From these results it is evident that SVM is not able to deal with sequence
fragments. In fact, the sequence fragments (mini-barcode) have a vector represen-
tation that is very different from the one computed for the original sequences,
therefore SVM, from this point of view, can not correctly classify those frag-
ments. Otherwise, our approach, considering both the Jaccard distance and the
fractional distance, demonstrate the ability to to provide very reliable classifica-
tion results when dealing with sequence fragments.

Finally, with regards to the second training/testing scenario, we obtained the
classification results summarized in Table 1. We reported only the scores related
to the 200 bp fragments because they are very similar to the ones obtained
with 100x2 and 50x4 bp fragments. In this situation, although with lower scores,
the GRNN algorithm, especially in the case of fractional distances, provides
consistent classification performances and it outperforms the SVM classifier.
Classification scores are lower with respect to the first scenario because the
GRNN has never learned the full length sequences corresponding to the test
fragments. In spite of that, our GRNN approach turned out to be robust enough
to keep on providing acceptable classification scores.

4 Conclusion

In this work we presented a classification methodology for barcode DNA se-
quences based on the General Regression Neural Network algorithm. We intro-
duced two modified versions of GRNN in order to overcome limitations of the
standard euclidean approach: the first one implements the J-function derived
from the Jaccard distance, the second one adopts fractional distances. We ob-
tained very accurate and very robust classifiers with respect to sequence sizes.
We tested our approaches, in fact, considering the so-called mini-barcode, that
is a sequence fragment 200 bp long extracted from the original sequences. Clas-
sification results demonstrate that using fractional distances (with parameter
p = 0.7) allows to reach the best scores in terms of accuracy, precision and re-
call. We compared also our methods with SVM classifier. Classification results at
all taxonomic levels and for each sequence sizes clearly state that our classifiers
outperforms SVM when applied to sequence fragments.
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Abstract. RNA-Seq is a new tool, which utilizes high-throughput se-
quencing to measure RNA transcript counts at an extraordinary accu-
racy. It provides quantitative means to explore the transcriptome of an
organism of interest. However, interpreting this extremely large data
coming out from RNA-Seq into biological knowledge is a problem, and
biologist-friendly tools to analyze them are lacking. In our lab, we de-
velop a Transcriptator web application based on a computational Python
pipeline with a user-friendly Java interface. This pipeline uses the web
services available for BLAST (Basis Local Search Alignment Tool),
QuickGO and DAVID (Database for Annotation, Visualization and Inte-
grated Discovery) tools. It offers a report on statistical analysis of func-
tional and gene ontology annotation enrichment. It enables a biologist
to identify enriched biological themes, particularly Gene Ontology (GO)
terms related to biological process, molecular functions and cellular loca-
tions. It clusters the transcripts based on functional annotation and gen-
erates a tabular report for functional and gene ontology annotation for
every single transcript submitted to our web server. Implementation of
QuickGo web-services in our pipeline enable users to carry out GO-Slim
analysis. Finally, it generates easy to read tables and interactive charts
for better understanding of the data. The pipeline is modular in na-
ture, and provides an opportunity to add new plugins in the future. Web
application is freely available at: www-labgtp.na.icar.cnr.it:8080/
Transcriptator.

Keywords: RNA-Seq, QuickGO, DAVID, web-services, Python.

1 Scientific Background

The advent of new technologies in transcriptome studies such as RNA-Seq changes
the face of traditional biological research approaches. Instead of studying one or
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more genes at a time, researchers now simultaneously measure the genome wide
changes and regulation of genes under a certain condition. RNA-Seq generates
a large amount of biological data in the form of reads. There is a wide array of
methodologies to computationally reconstruct the transcript structure and
quantify it from raw reads [1]. However, interpreting this extremely large data into
biological knowledge is still a challenging and daunting task. A large number of
functional annotation pipelines and databases such as DAVID [2], QuickGO [4],
ESTExplorer [8], FastAnnotator [5] and other methods [7], were independently
developed to address the challenge of functional annotation of the large gene list
coming out fromRNA-Seq experiments. BothDAVID andQuickGOare very com-
prehensive databases and can provide putative functional and gene ontological
term annotation for a transcript, based on sequence similarity to known genes.
These are useful tools for understanding the biological inference of transcriptional
response, as well as newly explored sequences. Despite their complex functional-
ities, both DAVID and QuickGO usually require many manual steps that are of-
ten not easy to implement for biologists who are unfamiliar with command line
input. Previously, researchers also developed web tools such as FASTAnnotator
[5] and ESTExplorer [8]. While ESTExplorer pipeline is specifically designed for
EST analysis that includes the cleaning, assembly and clustering and functional
annotation of ESTs, FASTAnnotator performs the GO term, enzyme and domain
annotations on transcripts. These analyses are not comprehensive as they do not
include annotations for pathways such asKEGG,Panther,BioCarta, and they also
do not provide any information on protein-protein interactions and other function-
alities. They also do not elaborate enrichment analysis for the functional annota-
tion term for the given transcripts data set. The complex plethora of annotation
tools and pipelines produces a confusing situation in front of the end users in de-
ciding the most suitable enrichment tool for their analytic skills [3]. There is a
need to develop a computational automated pipeline, with a user friendly inter-
face which effectively translates assembled reads coming out from RNA-Seq ex-
periments into biological interpretations such as functional annotation and GO
enrichment analysis. We develop a computational pipeline to functional annotate
an individual (differentially expressed) transcript, and carry out GO enrichment
analysis of expression profiles, under the different treatment condition for organ-
isms,which lacks the referenced genome. In this pipeline,we utilize theweb services
available for BLAST, QuickGO and DAVID tool for functional and gene ontology
annotation and enrichment analysis. Our pipeline carries out automated BLAST
run on the Refseq, Swiss-Prot and UniProt-TrEMBL databases to find the most
similar genes/proteins for the assembled transcripts. Then, functional and gene on-
tology annotations are carried out byQuickGo [9] andDAVIDweb services [6]. The
advantage of our pipeline is that it is very easy to use and informative in nature.
It produces functional as well as gene ontological annotation for the given tran-
scripts data set. It integrates the results fromwell establishedDAVIDandQuickGO
tools through web services. Our pipeline also provides a plethora of information
about enriched pathways such as KEGG, Panther, and BioCarta. The pipeline
offers a report on statistical analysis of GO enrichment. It enables a biologist to
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identify enriched biological themes, particularly GO terms related to biological
process, molecular functions and cellular locations. It also provides information
about the SMART, Panther, Prosite, Prodom,PFAMand InterPro domains along
withprotein interactions such asMint,Bind for the annotated transcripts.Through
our pipeline, we are providing an automated protocol to cluster differentially ex-
pressed transcripts based on functional annotation. It is modular in nature, so that
it also provides a space for adding up new plugins in the future. All these utilities
in our pipeline, deliver a platform for the biologist, to understand the humongous
RNA-Seq data in a biological sense and in a straightforward way.

2 Materials and Methods

2.1 Web Interface

Trancriptatorwebapplication is designedusingZKframework (http://www.zkoss.
org/download/zk) andJ2EE(Java2PlatformEnterpriseEdition,www.oracle.com
/technetwork/java/javaee) technologies. The modular and distributed J2EE plat-
form is employed to integrate technologies for the exchange of information between
different applications, such as XML andWeb Services. The implementation of the
graphical user interface (GUI) is obtained using ZK framework, Ajax web applica-
tion open-source, with XUL/XHTML (XML User Interface Language/Extensible
HyperTextMarkupLanguage)built-inbased components. JFASTAlibraryv. 2.1.2
(http://jfasta.sourceforge.net/) is implemented in order to handle FASTA format
files (.fa). BIOJAVA3-ws module (http://www.biojava. org/ docs/api/org/
biojava3/ws) of BIOJAVA v. 3.0.7 API is used to provide analytical and statistical
routines, sequences manipulation -such as BLAST alignment. Lastly, the Jython
interpreter v. 2.5.3. (http://www.jython.org/) is used to integratePythonspipeline
(Fig. 3) code on Javas platform.

Fig. 1. Transcriptator block diagram
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2.2 System Architecture of Transcriptator Pipeline

Trancriptator pipeline consist of three major components: (i) BLAST analysis,
(ii) Gene ontology, (iii) Functional annotation, retrieval and statistical analysis
of the data. It requires various levels of computational hardwares (Fig 2). This
pipeline is embedded in web application written in Java and Python scripts.
The front end user interface of Transcriptator is installed on LAB-GTP server.
It helps the user’s to submit their queries using our web application interface. The
core engine of the pipeline is written in Python, it comprises of the blast analysis
as well as different web services for functional annotation analysis from publicly
available annotation databases such as DAVID and Quick GO. The core engine is
locally installed on a interomics cluster which is connected to LAB-GTP server.
For BLAST analysis, ncbi-blast.2.2.23 stand alone package is installed on the
cluster. SwissProt and UniProt-trEMBL databases (http://www.uniprot.org/)
are also installed for BLAST run. DAVID and Quick-GO webservices are in-
stalled on the cluster for the faster processing of results. The query of FASTA
sequence datasets provided through web application on our web server is directly
transferred to our interomics cluster. Local BLAST analysis is carried out on the
local cluster implying BLAST X run on locally installed SwissProt and UniProt
databases. BLAST results are analysed and top proteins hits id’s are used as
input for DAVID and QUICK-GO web-services to retrieve functional and gene
ontological annotations. The retrieved data is processed and feeded to statistical
analysis section of Transcriptator pipeline core engine. The results are provided
in the form of graphs and tabular reports, and transferred to the LAB-GTP web
server again. From the server, user can access to this information by using the
job IDs provided by the server.

2.3 Pipeline Implementation

The Transcriptator pipeline is written in Python, bash and R scripts. It imple-
ments the web services available for DAVID and QuickGO tools. For DAVID
web-services, it utilizes the available Python client source code. The Python
client for DAVID web-services, which use light-weight soap client suds-0.4 mod-
ule [https://pypi.python.org /pypi/suds] [6]. For QuickGO web-services, BioSer-
vices Python package is implemented in the pipeline [9]. It provides access to
QuickGO and a framework to easily implement web service wrappers (based on
WSDL/SOAP or REST protocols). In this pipeline, the annotation process com-
prises of four main parts: (i)finding the best hit in locally installed SwissProt
and UniProt-Trembl database; (ii) assignment of functional annotation and gene
ontology terms and their enrichment from DAVID; (iii) assignment of GO Slim
terms and their analysis from QuickGO; (iv) integration and summarization of
retrieved results from DAVID and QuickGO web services. Transcriptotator runs
the first step of BLAST search on the local cluster. The second and third steps
of pipeline simultaneously run to accelerate the annotation procedure. The last
step retrieves the results, processes them and generates the statistical reports in
the form of tables and charts.
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Fig. 2. System architecture of Transcriptator Pipeline

Identification of Best Hit. BLASTX program from locally installed ncbi-
blast.2.2.23 stand alone package [10] is used (with threshold E-value 0.001) to
identify the best hits for query sequences on locally installed SwissProt and
UniProt-trEMBL databases (http://www.uniprot.org/). The main goal of the
first step is to find the similar sequences within SwissProt and UniProt-trEMBL
databases for the unannotated query from the user. The output of BLASTX run
is an alignment file in a tsv format. The latter, using a bash script, is transformed
into the protein list, which is the required input file for DAVID and QuickGO
web services.

Assignment ofFunctional andGeneOntologyAnnotation fromDAVID.
Python client source code for DAVID, retrieves the functional and gene ontology
annotation for every single transcript in a query data set. These python scripts take
the input protein list file from previous step and utilize DAVID database to obtain
information in the formofChartReport,ClusterReport,TableReport and Summa-
ryReport. For a given query data set, Python source code implemented within the
Transcriptator pipeline runs with default parameter for DAVID database search
to obtain the enrichment statistics for each functional and GO term. ChartReport
is an annotation-term-focussed view, which lists annotation terms and their asso-
ciated genes under study. It also provides the Fischer exact statistics calculated for
each annotation term and information about the statistically enriched annotation
terms in the query data set. The ClusterReport displays the grouping of similar an-
notation terms along with their associated genes. The grouping algorithm is based
on the hypothesis that similar annotations should have similar gene members.
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Fig. 3. Transcriptator pipeline: the lower panel boxes respectively show the in-
put/output of the web interface, whereas the upper panel represents the steps of the
Transcriptator engine.

Assignment and Analysis of GO Slim Terms from QuickGO. Tran-
scriptator employs BioServices module from Python package, which provides
access to many bioinformatics web services and a framework to easily implement
web service wrappers (based on WSDL/SOAP or REST protocol). BioServices
(bioservices.quickgo.QuickGO) is used to investigate the GO slims in the query
data set. GO slim terms are the list of GO terms that have been selected from
the full set of terms available from the gene ontology projects.

Processing of Retreived Annotation. Both DAVID and QuickGO web ser-
vices can produce large amount of results for the given query data set. It is not
possible for the users to understand and interpret this bulk amount of results in
a simple way. For the integration and summarization of retrieved results from
web-services, Python and R codes in Transcriptator are implemented to parse
the results in simpler format. Transcriptator produces easy to read tables for en-
richment analysis of GO and Functional terms, clustering analysis on transcripts
and annotation assignment for every single transcript. R scripts are specifically
implemented in the pipeline, to generate an interactive chart for the distribution
of functional and GO terms such as biological process, molecular function and
cellular components associated with the query data set of transcripts.
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3 Results

Transcriptator web application provides a user a friendly interface to input unan-
notated transcripts or denovo assembled reads from RNA-Seq experiments in
multi fasta file format. As DAVID web services limit the analyses to 3000 tran-
scripts at time, our web server also allows a user to input up to 3000 transcripts
for annotation. After a successful submission, a unique job ID is generated and
provided as an identifier to start the annotation. All annotation results from
DAVID and QuickGO are obtained through our server and the user can down-
load them using the associated job ID. The results for single job id comprise of
several tables and graphs. The tables are divided into three sections. The first
section contains the table with the list of the best hit proteins with E-value from
the databases for the corresponding transcript. The second section comprises of
the tables generated from the DAVID annotation analysis. It includes four tables:
ChartReport (for enrichment analysis); ClusterReport (for clustering analysis);
TableReport for functional and GO annotation for every single transcripts in the
dataset; SummaryReport with the summary of total annotation for the given
query data set. The third section comprises of the table enlisting the assignment
of GO slim terms on the transcripts. The pipeline also produces charts related to
the distribution of GO terms specifically related to three categories of biological
process, molecular function and cellular components, respectively, for the input
query data set. For each job concluded, the related annotation results (Fig. 4)
will be retained for one week on the Transcriptator server. User can access to
this information by using the job IDs provided by the server.

3.1 Case Study

To demonstrate the utility of Transcriptator in biological studies, we have se-
lected a sample dataset (five hunderd and forty four unannotated transcripts) of
Hydra vulgaris transcriptome, downloaded from European Nucleotide Archieve
(ENA) database (http://www.ebi.ac.uk/ena/). These transcripts are specifically
differentially expressed in response to cadmium treatment (unpublished data of
specific DE transcripts for cadmium treatment). Cadmium is a toxic element.
It accumulates in the organisms body and produce pathogenic changes.To study
the harmful effects of cadmium accumulation in the body, previously researchers
studies the toxicity and chemical stress due to cadmium concentration in non
model organism Hydra [11]. They have shown morphological, developmental
and physical damage in Hydra due to the presence of high concentration of cad-
mium in the organism body. To undermine the molecular mechanism of cadmium
poisoning in Hydra, we have investigated these cadmium specific differentially
expressed transcripts through our pipeline Transcriptator. It annotates these
transcripts for all the functional and gene ontology categories and produces
results table and graphical charts for functional annotations as well as gene
ontology enrichment analysis (Fig 5).

Our results from Transcriptator shows enrichment of Hedgehog signalling
pathway and metal binding biological process functional terms with significant
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Fig. 4. Result files from the Transcriptator. It includes tables for BLAST results, func-
tional and GO enrichment. Graphical chart for GO and functional annotation terms
distribution in input data.

p-value of .009 and .018 respectively (Fig. 4: enrichment table).These results
make biological sense as the Hedgehog (Hh) family of secreted signaling proteins
plays a crucial role in development and morphogenesis of a variety of tissues
and organs in Hydra vulgaris. Fig.6 shows biological process terms distribution
chart generated by transcriptator for the sample data set. For the given data
set. Transcriptator pipeline also provide distribution plots for both molecular
functions as well as cellular components.

Molecular functions distribution plots suggests 42.6 percent of sample dataset
of Hydra transcripts involved in binding function. It also shows transcription reg-
ulator activity (4.6 percent), transporter activity (6.6 percent), catalytic activity
(16.7 percent) and molecular transducer activities (11.5 percent) are enriched in
these transcripts dataset of Hydra in response to the cadmium toxicity (Fig. 7).

For the given query dataset, Transcriptator pipeline also provide cellular com-
ponents distribution plot. Distribution of cellular componets associated to dif-
ferentially expressed transcripts suggests the role of these transcripts in cellular
composition. It also provide some information about other cellular components
such as synapse, macromolecular complex region, organelles and membrane en-
closed regions but unfortunately these cellular compents are not enriched in our
query dataset (Fig 8).
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Fig. 5. List of results obtained from Transcriptator: tabular results for functional and
gene ontology terms enrichments. Graphical distributions plots for GO’s terms and
functional annotations for a given query data set.

Apart for Gene Ontological terms such as biological process, molecular func-
tions and cellular components, Transcriptator pipeline also provides distribution
plots for other different functional terms associatedwith the query dataset, such as
Biocarta pathways, Panther pathways, KEGG pathways, proteins domains such
as InterPro, PFAM, SMART. It also provide SP-PIR-keyword distributions. As
Transcriptator uses DAVID web services, it can provide each and every relevant
functional information related to our query dataset in the the form of distribution
plots as well as summary and enrichments table. for example SP-PIR-keyworddis-
tribution plot (Fig. 9) showsa largenumber of keywordsare associated to the query
dataset, it includes terms like transcription,transducer,alternative splicing, differ-
entiation, dna binding, developmental proteins, g-protein coupled receptor, nu-
cleotide binding, signal and ion transport etc. All these terms associated to the dif-
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Fig. 6. Biological processes distribution in this case study dataset. It shows the signif-
icant biological activities, in which these transcripts (case study dataset) are involved.
For example biological regulation, cellular process, stimulus response activities and
developmental process are enriched within these transcripts.

Fig. 7. Molecular function distribution in this case study dataset. It shows the signifi-
cant molecular function activities, in which these transcripts (case study dataset) are
involved. For example binding, molecular transducer activity, transcription regulator
activity and catalytic activities are enriched within these transcripts.

ferentially expressed transcripts dataset suggest themost possible role of cadmium
toxicity on differentiation, reproduction, developmental as well signal transduc-
tion processes in Hydra vulgaris. Transcriptator pipeline also provides the
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Fig. 8. Cellular components distribution in this case study data set. It shows the signif-
icant cellular components, in which these transcripts (case study dataset) are involved.
For example biological regulation,most of the differentially expressed transcripts from
the query dataset are associated with cell organization. A small number of transcripts
are also involved with structural composition of synapse, macromolecular complex,
membrane and cellular organelle but are not statistically significant.

Fig. 9. SwissProt-PIR keywords distribution: Graphical representation of all the SP-
PIR keywords.
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Fig. 10. Summary table: it provides all the functional and GO terms associated with
the given query dataset.
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Fig. 11. Enrichment Chart: tabular results for functional and gene ontology terms
enrichments. It provides the satistical P-values for the better interpretation of the
results

summary information of all the functional andGOterms associatedwith the queried
dataset alongwith the percentage and counts of transcripts. this information helps
the user to undermine the associated functionalities for the given transcripts.

Through Transcriptator pipeline, for the given query dataset of Hydra tran-
scripts, the complete tabular results for enriched functional and GO terms are
obtained (Fig 11). It shows the different fucntional terms, such as pathways, pro-
tein domains, SP-PIR keywords which are enriched in the given query data set.
It also provide the counts of transcripts and enriched P-values. Transcriptator
pipeline also provide corrected P-values after Bonferroni and Benjamini correc-
tion. False discovery rate and fold enrichments information is also provided for
the given fucntional terms associated with the transcripts dataset. It enables
user to determine the statistical significance for the functionalities associated to
their input transcripts dataset for the better biological interpretation of their
transcriptomic data.

4 Conclusion

Transcriptator is a modular pipeline, which provides flexibility to user to carry
out functional annotation of transcript’s data. It allows users to choose two
distinct types of web services for annotation purposes, as well as different BLAST
databases for BLAST run. All these options help users to optimize their results,
according to their needs. It provides the enrichment score for the functional
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terms and reports each and every annotation present in the given data set in
the form of tables and interactive charts. In future, we will work on the addition
of more modular functionalities and options in the pipeline, for both BLAST
searches and annotation analysis.
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Abstract. A proper ridge estimator of the inverse covariance matrix
is presented. We study the properties of this estimator in relation to
other ridge-type estimators. In the context of Gaussian graphical mod-
eling, we compare the proposed estimator to the graphical lasso. This
work is a brief exposé of the technical developments in [1], focussing on
applications in gene-gene interaction network reconstruction.

Keywords: Gaussian graphical model, Gene-gene interaction networks,
Multivariate normal, Penalized estimation, Precision matrix.

1 Introduction

1.1 Scientific Background

Molecular biology aims to understand the molecular processes that occur in
the cell. That is, which molecules present in the cell interact, and how are the
interactions coordinated? For many cellular process, it is unknown which genes
play what role.

A valuable source of information to uncover gene-gene interactions are
(onco)genomics studies. Such studies comprise samples from n individuals with,
e.g., cancer of the same tissue. Each sample is interrogated molecularly and the
expression levels of many (p) genes are measured simultaneously. The resulting
p-dimensional data vector is denoted Yi,∗ for individual i = 1, . . . , n.

From these data the gene-gene interaction network may be unraveled when
the presence (absence) of a gene-gene interaction is operationalized as a con-
ditional (in)dependency between the corresponding gene pair. Then, under the
assumption of multivariate normality, Yi,∗ ∼ N (0p×1,Σ), the absence of di-
rect gene-gene interactions corresponds to zeros in the inverse covariance matrix
Ω ≡ Σ−1 (also known as the precision matrix, whose elements are propor-
tional to partial correlations). For instance, (Ω)1,2 = 0 ⇔ Y1 ⊥⊥ Y2 |Y3, . . . , Yp.
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Hence, the gene-gene interaction network is found by inversion of the covariance
matrix and (subsequent) determination of its support. When dealing with data,
Σ is estimated by its sample counterpart: S = 1

n

∑n
i=1 Yi,∗YT

i,∗.
In genomics the data are often high-dimensional, in the sense of p > n. In such

situations the sample covariance matrix S is singular and the sample precision
matrix is not defined. But even if p < n and p approaches n, the sample precision
matrix yields inflated partial correlations. Both situations require some form of
regularization to obtain a well-behaved estimate of the precision matrix, and
consequently of the gene-gene interaction network.

1.2 Ridge-Type Covariance Estimators

A penalized covariance estimator traditionally referred to as the ‘ridge estimator’
is:

Σ̂rI (λrI ) = S+ λrI Ip×p for λrI > 0.

It could be considered a ridge estimator in the sense that it is an ad-hoc fix of
the singularity of S, much like how ridge regression was originally introduced [2].

The inverse of Σ̂rI (λrI ) would then form the basis for inference on the gene-gene
interaction network.

Alternatively, a ‘ridge estimator’ popularized by [3] in the field of genomics,
is (cf. [4,5]):

Σ̂rII (λrII ) = (1− λrII )S+ λrIIΓ for λrII ∈ (0, 1].

In this latter expression Γ is a (p × p)-dimensional, symmetric positive definite
(p.d.) target matrix. The target matrix is chosen prior to estimation. Its role is
to serve as a ‘null estimate’ towards which the covariance estimate is shrunken
as λrII tends to one. In the remainder we will mainly consider the following
choice: Γ diagonal with diag(Γ) = diag(S). This represents a reasonable choice
in the absence of any prior knowledge on the Gaussian process. Again, when
determining the support of the precision matrix the inverse of this second ‘ridge
estimator’ could be used.

Neither of the two ridge estimators above is a proper ridge estimator, in the
sense that neither can be formulated as the result from the maximization of a
loss function augmented with what is commonly perceived as the ridge penalty:
the sum of the square of its elements.

1.3 Overview

In Section 2 an alternative ridge estimator for the inverse covariance matrix is
presented. In Section 3 the proposed estimator is compared with the traditional
ridge-type estimators and the graphical lasso. Section 4 illustrates, using oncoge-
nomics data, practical usage of the proposed estimator in a graphical modeling
setting. Section 5 carries some concluding remarks, while Section 6 closes with
a small description of the accompanying software.
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2 Materials and Methods

2.1 An Alternative Ridge Inverse Covariance Estimator

We consider estimation of the inverse covariance matrix with conventional ridge
regularization. The alternative ridge estimator of the inverse covariance matrix
maximizes the following penalized log-likelihood:

Lpen(Ω;S,T, λa) = ln |Ω| − tr(SΩ)− f pen(Ω,T, λa), (1)

where λa is the penalty parameter, T denotes a symmetric p.d. target ma-
trix, and f pen(·, ·, ·) indicates the penalty function. The ridge penalty function
amounts to:

f pen(Ω,T, λa) =
1

2
λatr[(Ω−T)T(Ω−T)]. (2)

In caseT = 0p×p, the penalty function reduces to f pen(Ω,T, λa) = f pen(Ω, λa) =
1
2λa

∑p
j1,j2=1[(Ω)j1,j2 ]

2, which corresponds to the common perception of the
ridge penalty. The penalty function (2) is thus a generalized ridge penalty.

We show (cf. [1]) that there is an explicit solution that maximizes the penalized
log-likelihood (1) with the general ridge penalty (2):

Ω̂ridge(λa) =

{[
λaIp×p +

1

4
(S− λaT)2

]1/2
+

1

2
(S− λaT)

}−1

. (3)

This ridge precision estimator is p.d. when λa ∈ (0,∞) and can be viewed as a
penalized maximum likelihood (ML) estimator. Moreover, in the low-dimensional
case the ridge estimator (2) reduces to S−1 as λa ↓ 0. When λa tends to infinity,

Ω̂ridge(λa) shrinks toT, much like the covariance estimator of [3] shrinks to a user-
specified target. Thus, when T is diagonal and diag(T) = 1/diag(S) the inverse
of estimator (3) mimics the behaviour of the latter. Similarly, choosingT = 0p×p

yields a ridge estimator of the precision matrix that shrinks to the null matrix as
does the inverse of Σ̂rI (λrI ). The explicit form of our ridge estimator (3) allows
us to calculate the moments of the estimator and prove its consistency [1].

2.2 Extracting an Interaction Network

When turning to the application of ridge estimation in Gaussian graphical mod-
eling of gene-gene interaction networks, the proposed estimator (3) yields (after
standardization) an estimate of the partial correlation matrix. In doing so, an
informed choice of the penalty parameter needs to be made. Hereto we utilize
an approximate leave-one-out cross-validation (LOOCV) procedure [6]. Finally,
one needs to decide which elements of the partial correlation matrix are indis-
tinguishable from zero, for which we employ the local false discovery rate (FDR)
procedure of [3].
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3 Results

3.1 Comparison with the Traditional Ridge Estimators

We compare the proposed ridge estimator (3) with the two other ‘ridge esti-

mators’, Σ̂rI (λrI ) and Σ̂rII (λrII ). Analytically, we study the rate of shrinkage
of the estimators. The proposed ridge precision estimator (3) with T = 0p×p

displays slower shrinkage (with increasing penalty parameter) to the null target

than [Σ̂rI (λrI )]
−1. As the target is degenerate, this behaviour is to be preferred.

The opposite is seen when studying the shrinkage rate of estimator (3) with

diag(T) = 1/diag(S) in relation to [Σ̂rII (λrII )]
−1 with Γ = T−1. That is, the

former shrinks faster to T than the latter. Whenever T is close to Ω, faster
shrinkage is desirable. In a simulation study we turn to the comparison of the
risk of the proposed ridge estimator and its contenders. For the scenario’s stud-
ied, the former performs favourably.

3.2 Comparison with the Graphical Lasso

For the application to Gaussian graphical modelling, the inverse covariance ma-
trix is often estimated by means of the graphical lasso [7,8], as it performs au-
tomated edge selection. The lasso precision estimator maximizes (1) under the
alternative penalty f ′pen(Ω,T, λl) = λl‖Ω‖1 = λl

∑p
j1,j2=1 |(Ω)j1,j2 |. To accom-

modate the diagonal target matrix T (with diag(T) = 1/diag(S)) this penalty
function may be replaced by f ′′pen(Ω,T, λl) = ‖Λ ◦Ω‖1 in which ◦ denotes the
Hadamard product and (Λ)j1,j2 = λl when j1 �= j2 and zero otherwise (as is im-
plemented in the glasso-package [9] by the option penalize.diagonal=FALSE).

We compare the proposed ridge and lasso estimators of the standardized preci-
sion matrix, as this forms the basis for inference on the conditional independence
graph (the standardized precision matrix equals the partial correlation matrix
up to the sign of off-diagonal elements). This is done in a data-driven manner,
to avoid bias towards any of the estimators. Five curated breast cancer studies
with gene expression data generated by the same (or comparable) Affymetrix
platform [10] are used for this purpose. The full data set is limited to sets of
genes that map to a pathway (as defined by the KEGG repository [11]). High-
dimensionality is then realized by drawing subsets of the pathway data at sample
sizes n = 5, 10, 25. For each draw the covariance matrix is estimated by means of
lasso and ridge procedures. For both the LOOCV is used to choose their penalty
parameters. The ridge estimate is then subjected to the local FDR procedure to
decide on the presence/absence of gene-gene interactions.

The sensitivity and specificity of the resulting ridge and lasso inferred condi-
tional independencies are compared. Hereto we define a ‘consensus truth’ based
on overlapping edges. The resulting sensitivity and specificity of edge retrieval is
comparable between the proposed ridge and the lasso estimators. An alternative
comparison focusses on the loss of the estimates of the standardized precision
matrix. Then, the proposed ridge estimator clearly yields a lower loss. These
observations are consistent over the sample sizes, pathways, and data sets con-
sidered. Figure 1 visualizes these observations for a particular pathway.
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Fig. 1. The upper panels depict a loss comparison between the alternative ridge and the
corresponding graphical lasso estimators for the mTOR-pathway on the UPP breast
cancer data [10]. The loss is determined with a proxy of the standardized population
precision matrix for the mTOR-pathway. The upper left-hand panel depicts Frobenius
loss while the upper right-hand panel depicts quadratic loss. The lower panels depict
a sensitivity and specificity comparison between the alternative ridge and graphical
lasso estimators, again on the mTOR-pathway data. The evaluation of edge retrieval
sensitivity and specificity requires knowledge of the true conditional dependencies. As
such knowledge is absent we resort to defining a ‘consensus truth’, comprised of those
conditional dependencies that appear in the top 100α% of at least 4 out of the 5 breast
cancer data sets by both methods (graphical lasso and alternative ridge paired with
local FDR edge selection). The parameter α ranges from .005 to .20, corresponding to
what is believed to be biologically plausible (in terms of network density). Sensitivity
(specificity) for a particular combination of n and α is then estimated as the median
sensitivity (specificity) over the generated subsamples over all data sets. The lower left-
hand panel gives sensitivity results while the lower right-hand panel gives specificity
results.
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4 Illustration

In this section we illustrate the reconstruction of a gene-gene interaction network
from gene expression data using our R-implementation (see Section 6 below) of
the proposed ML ridge estimator of the precision matrix. We employ breast
cancer gene expression data by The Cancer Genome Atlas (TCGA) [12] of the
mitogen-activated protein kinases (MAPK) pathway (as defined by KEGG).

For purposes of reproducibility we first provide the R-code that loads and
‘processes’ the data. It starts by activation of the necessary R-packages:

> library(biomaRt)

> library(cgdsr)

> library(KEGG.db)

> library(rags2ridges)

To get a list of all human genes and additional relevant information:

> ensembl = useMart("ensembl", dataset="hsapiens_gene_ensembl")

> geneList <- getBM(attributes=c("external_gene_name",

+ "entrezgene"), mart = ensembl)

> geneList <- geneList[!is.na(geneList[,2]),]

Obtain the entrez IDs [13] of the genes that map to the MAPK pathway:

> kegg2entrez <- as.list(KEGGPATHID2EXTID)

> entrezIDs <- as.numeric(kegg2entrez[which(names(kegg2entrez)

+ %in% "hsa04010")][[1]])

> entrez2name <- match(entrezIDs, geneList[,2])

> geneList <- geneList[entrez2name[!is.na(entrez2name)],]

Specify data set details (repository, TCGA study, samples, and profile):

> tcgaDB <- CGDS("http://www.cbioportal.org/public-portal/")

> cancerStudy <- "brca_tcga"

> caseList <- getCaseLists(tcgaDB, cancerStudy)[1,1]

> mrnaProf <- "brca_tcga_pub_mrna"

Extract the pathway expression data:

> Y <- getProfileData(tcgaDB, geneList[,1], mrnaProf, caseList)

> for (j in 1:ncol(Y)){

+ Y[,j] <- as.numeric(levels(Y[,j])[Y[,j]]) }

> Y <- data.matrix(Y)

Filter no-data samples and genes:

> sRemove <- which(rowSums(is.na(Y)) > ncol(Y)/10)

> Y <- Y[-sRemove,]

> gRemove <- which(colSums(is.na(Y)) > 0)

> Y <- Y[,-gRemove]

> Y <- sweep(Y, 2, colMeans(Y))
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Fig. 2. Upper-panel: cross-validated log-likelihood. Bottom-panel: the inferred con-
ditional independence graph of the MAPK pathway. Dashed lines indicate negative
precision elements while solid lines indicate positive precision elements.
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This concludes the executions in R required to obtain TCGA breast cancer data
of the MAPK pathway as defined by KEGG. The gene expression data comprises
n = 496 samples and p = 259 genes.

Finally, we turn to the reconstruction of the gene-gene interaction network
of the MAPK pathway by means of the proposed ML ridge estimator of the
precision matrix.1 The target we use is T = ϕIp×p, where ϕ denotes the average
of the inverse (nonzero) eigenvalues of S. Under this choice (3) is rotation equiv-
ariant, which is computationally advantageous (see Section 6). First, one needs
to make an informed choice on the penalty parameter λa. This is done via the
approximate LOOCV procedure (in which ϕIp×p is the default target option):

> CVres <- optPenalty.aLOOCV(Y, 0.0001, 0.01, step=100)

The thus obtained cross-validated log-likelihood profile is plotted against the
(logarithm of the) penalty parameter (see the upper-panel of Figure 2). The
cross-validated log-likelihood achieves an optimum close to ln(λa) = −8.112.
This rather small value (little regularization) is due to the relative ‘low-
dimensionality’ of the data.

With the optimal penalty parameter at hand the penalized ML ridge estimate
of the precision matrix is obtained through:

> penPrec <- ridgeS(covML(Y), CVres$optLambda)

The object penPrec contains the desired estimate of the precision matrix that
forms the basis for inferring the conditional independencies in the MAPK path-
way data. Hereto the ML ridge estimate of the precision matrix is standardized
to have a unit diagonal. The local FDR procedure of [3] is then applied to the
off-diagonal elements of this standardized precision matrix. Edges corresponding
to such elements with a posterior probability exceeding 0.95 are considered to
be present in the gene-gene interaction network.

> P0 <- sparsify(penPrec, threshold="localFDR",

+ FDRcut=0.95)$sparsePrecision

The resulting sparsified precision matrix is visualized by its implied conditional
independence graph:

> Ugraph(P0, type="fancy", prune=TRUE)

This gives an impression of the gene-gene interaction network underlying the
MAPK pathway (see the bottom-panel of Figure 2).

5 Conclusion

We have presented a proper ML ridge estimator of the precision matrix, for
which analytical properties can be proven. In a vis-á-vis comparison with other

1 In the remainder of the illustration we use calls related to version 1.3 of our own
R-package [15]. Please note that this package is in continual development so that
certain calls may be depreciated or enhanced in future versions.
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penalized inverse covariance estimators it was shown to yield a lower risk. More-
over, its performance is on a par with the graphical lasso with respect to the
sensitivity and specificity of selected conditional independencies. Hence, the pre-
sented ridge estimator is a strong contender for inverse covariance estimation
from high-dimensional data.

Currently, we are exploring the use of the target matrix T. In this exposé
we have limited ourselves to obvious choices. More sophisticated choices may be
conceived. For instance, it may incorporate prior knowledge on the gene-gene
interaction network as obtained from a pilot experiment or from repositories
such as KEGG.

6 Software

The R [14] package rags2ridges [15] implements the proposed ridge precision
estimator along with functions supporting subsequent graphical modeling. These
additional functions enable, among others, (automated) penalty parameter se-
lection, the evaluation of entropy and fit, support determination, (network) visu-
alization, and network topology evaluation. The proposed estimator is analytic,
making its computation friendly for a given penalty. When the chosen target
implies rotation equivariance (i.e., the estimator leaves the eigenvectors of S
unchanged), the search for an optimal penalty value and subsequent network
extraction also become computationally efficient as the (relatively) expensive
matrix square root can then be circumvented. In this situation only a single
spectral decomposition and a single matrix inversion are required to obtain the
complete solution path over any λa in the feasible domain. See the package doc-
umentation [15] for more information. The package is freely available from the
Comprehensive R Archive Network [16].
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Abstract. Methods for fitting survival regression models with a penal-
ized smoothed hazard function have been recently discussed, even though
they could be cumbersome. A simpler alternative which does not require
specific software packages could be fitting a penalized piecewise expo-
nential model. In this work the implementation of such strategy in Win-
BUGS is illustrated, and preliminary results are reported concerning the
application of Bayesian P-splines techniques. The technique is applied to
a pre-specified model in which the number and positions of knots were
fixed on the basis of clinical knowledge, thus defining a non-standard
smoothing problem.

Keywords: Survival analysis, Hazard Smoothing, Bayesian P-splines,
Piecewise Exponential Model.

1 Background

In bio-statistical applications, non-parametric and semi-parametric methods have
been preferred over parametric ones for assessing the prognostic role of clini-
cal/biological variables over time. The most widely adopted model is the Cox
Model, in which no assumption of the functional form of the hazard function
on time is made: however, such feature becomes a drawback if the interest lies
on investigating the shape of the hazard function or in predictive modeling. To
such ends, several methods for fitting survival models with a smoothed hazard
function have been proposed (e.g.: Gray, R. J. 1992; Hastie, T. and Tibshirani,
R. 1993; Kooperberg, C., Stone C. J. and Truong, Y. K. 1995; and Gamerman,
D. 1991). A first approach was to apply a piecewise exponential (PE) model
including time among predictors, by use of dummy variables. A further devel-
opment was to obtain a smoothed estimate of the hazard function by including
regression splines. This approach implies the definition of the number of basis
and position of spline knots.

The use of penalized splines (P-splines) may be of advantage over other flexible
polynomials, since it avoids an arbitrary definition of the number of spline bases
(by using a high number of bases and eventually knots placed on a grid of equally
spaced points). Furthermore, the degree of smoothing is controlled by regularized

c© Springer International Publishing Switzerland 2015
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estimation, thus reducing the effective number of model degrees of freedom, and,
therefore, giving a systematic method for protecting against overfitting.

Penalized methods for estimating survival models have been proposed in the
frequentist framework by Cai, Hindman and Wand (Cai, J. T., Hyndman, R. J.,
and Wand, M. P. 2002) and Kauermann (Kauermann, G. 2005). The proposals
are based on the relationship between P-splines and mixed model theory (cfr:
Ruppert, D., Wand, M. and Carroll R. J. 2009). As a consequence, mixed model
software routines may be used for estimation. However, the implementation of
such a strategy could be cumbersome, because it requires the maximization of
a likelihood function that includes a complex integral without a closed-form
solution. An alternative is fitting a PE model by penalized GLM estimation
routines, according to the link between the likelihood function of this model
and the GLM family of distributions. It must be noted, however, that in this
approach interval estimates are generally biased under standard large sample
theory: thus, confidence intervals of model parameters and their functions are
derived by a Bayesian approach (Wood, S. 2006).

The application of Bayesian P-splines techniques (Lang, S. and Brezger, A.
2004) in survival analysis has been discussed by Fahrmeir and Hennerfiend
(Fahrmeir, L. and Hennerfiend, A. 2003); dedicated routines are available in
the software package BayesX (Lang, S. and Brezger, A. 2000). In such a context,
point and interval estimates of model parameters and survival functions may be
obtained in a straightforward way from posterior density samples. To this aim
Markov Chain Monte Carlo (MCMC) methods are needed, but they require ef-
ficient sampling algorithms in order to guarantee convergence of Markov chains,
and may be computationally intensive. The estimation method in Fahrmeir and
Hennerfiend’s paper also deals with the approximation of a complex integral
without closed form solution, and in order to solve this problem specific sam-
pling schemes have been adopted for computation. Therefore, a dedicated soft-
ware must be used to fit models in practice. An alternative could be fitting the
PE model with general sampling algorithms for hierarchical (that is, mixed ef-
fects) GLM models: for example, see: Murray, T.A., Hobbs, B.P., Sargent, D.J.,
Carlin, B.P. 2014.

In this work we describe a procedure for estimating a PE model with a flex-
ible specification of the hazard function and/or covariate effects. The particu-
lar assumptions on the shape of the hazard enable the use of general MCMC
sampling routines without sacrificing flexibility. Thus, the described procedure
could be helpful for developing robust parsimonious models for the purposes of
exploratory assessment of prognostic factors, investigation of the hazard function
and prediction.

The illustrated procedure has been applied to survival data from patients
affected by soft tissue sarcoma (cfr: Ardoino, I. et al 2010) where the knots
of the P-splines and the prognostic covariates were specified according to prior
clinical knowledge. Therefore, we focused on flexible modeling of the hazard
function only, since regularized estimation of covariate effects was not relevant
in the present application. The computation was performed through WinBUGS
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(Lunn, D. J. et al 2000), and, thus, the estimates were obtained by GIBBS
sampling with the Adaptive Rejection Sampling (ARS) algorithm (Gilks, W. R.
and Wild, P. 1992). Two relevant issues strictly concerning the implementation
of the Bayesian method were evaluated: the sensitivity of estimates with respect
to the hyper-prior of hazard parameters, and the use of modified penalties for
accounting of unequal spacing of the observed follow-up times. More details
about those points will be given in the methods section. Furthermore, for a
comparison with frequentist methods, the same model was estimated through
generalized additive model (GAM) techniques, via themgcv package of R (Wood,
S. 2006).

In the remainder part of the paper a formal definition of the penalized PE
model is given. Then details are provided on the implementation of Bayesian
estimation method. Results and discussion follow.

2 Methods

2.1 General Form of the Penalized PE Model

In the standard PE model the follow-up time is partitioned into a fixed set of H
intervals: Th=[τh−1 ,τh) ; h=1, . . . , H ; and it is assumed that the time to failure
has an exponential distribution, whose parameter depends on the time interval
and the covariates:

λ(t | Xi) =

(
H∑

h=1

I(t ∈ Th)λh

)
exp(β′Xi) ; i = 1, . . . , n (1)

where: λ(t | Xi) is the parameter of the exponential distribution (hazard); Xi

(p × 1 vector) represents the set of covariates of the i − th subject; λ1, . . . , λH

are the unknow values of the (piecewise constant) baseline hazard function; β is
the p× 1 vector of regression parameters; and I(t ∈ Th) is an indicator function
being equal to 1 if τh−1 ≤ t < τh and 0 otherwise.

Because of the relationship between the likelihood function of the PE model
and the likelihood of a regression model with Poisson error (Aitkin, M., Laird, N.,
and Francis, B. 1983), the PE model may be estimated through GLM methods.
To show the derivation of the GLM model, let ti and δi be, respectively, the
failure time of the i − th subject (i=1, . . . , n) and the corresponding status
at time ti (0=censored, 1=failed). The response variable: Yih; is the status of
subject i within the h − th time interval (0=alive, 1=failed). Furthermore, to
obtain estimates of the hazard through the fitted values of the model, the time
spent in Th by the subject must also be included as offset term. Expression (1)
identifies a subclass of the family of proportional hazard (PH) models, for which:
λ(t | Xi) = λ0(t)exp(β

′Xi). Thus, the likelihood function of the PE model can
be derived from the general PH likelihood:

L(λ,β | t, δ,X) =

n∏
i=1

(
λ(ti | Xi)

)δi
exp
(
− Λ(ti | Xi)

)
;
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where the n × 1 vectors: t and δ, and the n × p matrix X represent the data;

and Λ(t | Xi) =

∫ t

0

λ(s | Xi)ds is the cumulative hazard function.

By substituting the instantaneous and cumulative hazards with the corre-
sponding expressions of the PE model, and by some algebraic simplifications
one obtains:

LPE(λ,β | t, δ,X) =
n∏

i=1

Hi∏
h=1

(
λhexp(β

′Xi)
)yih

exp
(
− λhexp(β

′Xi)Δih

)
;

where Hi is the number of time intervals in which the i− th subject is still alive
or failed; yih represents the status of subject i within Th (0=alive, 1=failed) ;
and Δih = min(ti, τh) − τh−1 is the time spent in Th by the subject. Since yih
can take only 0 or 1 values, the ‘likelihood contribution’ of subject i:

Hi∏
h=1

(
λhexp(β

′Xi)
)yih

exp
(
− λhexp(β

′Xi)Δih

)
;

is proportional to the product of the likelihoods ofHi Poisson variables: Yih, with
mean parameters: μih = λhexp(β

′Xi); and offsets: Δih. According to this prop-
erty, inference on the parameters λ and β of the PE model is usually performed
by estimation of the corresponding GLM model:

Yih ∼ POISSON(μih) ; log(μih) = αh + β′Xi + log(Δih) (2)

where: αh = log(λh) is the the log-hazard in interval h. In order to estimate the
parameters α1, . . . , αH in the GLM model (2), H dummy variables, correspond-
ing to the H intervals Th, must be included among the predictors. For more
details about the relationships shown above, and about the estimation of the
PE model through standard software routines, the reader may consult: Aitkin,
M., Laird, N. and Francis, B. 1983; Lawless, J. F. 2011; and Congdon, P. 2007.

Because of the relationship between a P-spline estimation problem and mixed
model theory (Lang, S. and Brezger, A. 2004) the Bayesian approach is based on
a hierarchical model for expression (2), where penalty terms and parameters are
included in the prior densities. A general expression of a model for regularized
estimation of the hazard function is the following:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Yih ∼ POISSON(μih) ; log(μih) = αh + β′Xi + log(Δih)

β ∼ πβ

α | τ2 ∝ exp
(
− τ2

2
α′Pα

)
; τ2 ∼ πτ

(3)

where P and τ2 indicate, respectively, the penalty matrix (of dimension H ×H)
and the ‘tuning’ parameter that governs the overall amount of smoothing. This
model is equivalent to the general problem of penalized maximum likelihood
estimation of the GLM model (2) (cfr: Lang, S., and Brezger, A. 2004) :
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argmaxα,β LGLM(α, β | t, δ,X)− pτ2(α) ;

where the penalty function pτ2(α) has the form: pτ2(α) = τ2

2 α′Pα. This high-
lights the correspondence between the choice of the penalty function and the
specific form of P in the Bayesian model.

Model (3) is a particular case of the general model in: Fahrmeir, L. and Hen-
nerfiend, A. 2003 (expressions 2 and 3); where a wider class of spline functions
have been considered for modeling the baseline hazard. As in Fahrmeir and Hen-
nerfiend’s paper, the model may be readily extended for penalized estimation
of covariate and time-dependent effects. Concerning the prior densities, several
choices are available and the reader is referred to Ibrahim, J. G., Chen, M. H.
and Sinha, D. 2005 and Congon, P. 2007 for a detailed discussion.

Estimation cannot be undertaken without specifying the penalty matrix P
and the prior densities for β and τ2, thus determining a particular model from
the general expression (3). In our procedure a second-order difference penalty
function and non-informative priors for the parameters have been adopted.
A detailed discussion is provided in the following section.

2.2 Implementation of the Estimation Procedure on the Sarcoma
Case Series

Data were collected from a case series of 192 subjects affected by soft tissue sar-
coma in care at Istituto Nazionale dei Tumori di Milano who underwent surgical
resection of primary localized disease (cfr: Ardoino, et al. 2010). The end-point
of interest was time elapsed form surgery to death from any cause. Time was
measured in months. The model was pre-specified according to prior clinical
knowledge: 1) the time axis was partitioned in fifteen intervals according to the
schedule of patients control visits; 2) predictors were five known prognostic fac-
tors: age, tumor size (continuous) histologic subtype, grading, surgical margins
(categorical). A non linear effect of tumor size was modeled through a restricted
cubic spline with three knots.

To determine a specific expression of the general model (3) non-informative
(diffuse normal) priors for regression coefficients (n=10) and a non-informative
prior for the tuning parameter have been adopted (further details about the
latter will be given in subsequent discussion). The resulting model expression is:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Yih ∼ POISSON(μih) ; log(μih) = αh + βXi + log(Δih)

β ∼MVN10(0, 1000× I10)

α | τ2 ∼MVN15

(
0,

1

τ2
P−1
)
; τ2 ∼ πτ2

(4)

where MVNk indicates a k-dimensional multivariate Gaussian density.
Concerning the expression of the matrix P, as a first choice we followed the

approach of Eilers and Marx (Eilers, P. H. and Marx, B. D. 1996), adopting a
second-order difference penalty function:
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pτ2(α) =
τ2

2

H−2∑
h=1

(
Δ2αh+2

)2
=

τ2

2

H−2∑
h=1

(αh+2 − 2αh+1 + αh)
2 ;

the term Δ2 in the expression above denotes the second-order finite difference
operator. Note that such penalty is coupled with a piecewise constant function
(i.e. the baseline hazard of the PE model) that is equivalent to a B-spline of
degree 0. The penalty function above can be expressed in matrix notation: pτ2(α)

= τ2

2 α′Pα, by specifying:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1
−2 5 −4 1
1 −4 6 −4 1
−1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

−1 −4 6 −4 1
−1 −4 6 −4 1

1 −4 5 2
1 2 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

where the elements outside the second off-diagonals are equal to 0. Due to the
particular structure of P, the prior density for α (expression (4) is equivalent
to a random walk prior of order two (that is, the same order of the difference
penalty). Such prior is frequently represented as a random walk process: αh+2 =
2αh+1−αh+uh ; h = 1, . . . , 13; where the uh are i.i.d. Gaussian errors. Notably,
the random walk prior is essentially an auto-regressive Gaussian density function
with rank-deficient covariance matrix, and, thus, cannot be sampled directly.
An efficient sampling method is based on a decomposition of α in two vectors
provided of a full-rank covariance matrix; for details see: Kneib, T., Fahrmeir,
L. and Denuit, M. 2004.

It must be noted that the second-order difference penalty has been recom-
mended for equally spaced knots (Eilers, P. H., and Marx, B. D. 1996) : how-
ever, this could be inadequate in our application. Therefore, a modified prior
for α, discussed, amongst others, in Fahrmeir, L. and Lang, S. 2001, has been
also adopted. This prior is based on a generalized expression for the random
walk process that allows for unequal time gaps between adjacent variables. In
particular, the expression for the second-order random walk is:

αh+2 =
(
1 +

Dh+2

Dh+1

)
αh+1 − Dh+2

Dh+1
αh + vh ; h = 1, . . . , 13

where Dh denotes the time gap between αh and αh−1. It may be seen that
by setting Dh=1 for each h, the expression above reduces to the ordinary one.
For including the modified prior into the model it is sufficient to insert the
corresponding expression of P into the prior of α in expression (4). For difference
penalties of second-order (or higher) the expression is rather messy: therefore,
for sake of simplicity, it has not been shown here. Finally, it must be noted that



Estimation of a Piecewise Exponential Model 189

the prior of α is again a rank-deficient multivariate Gaussian density. Thus, the
decomposition previously mentioned is required for sampling from the prior.

Concerning the non-informative priors for τ2, it has been pointed out (see:
Fahrmeir, L. and Kneib, T. 2009) that the choice of the density function may
affect posterior estimates: thus, a sensitivity analysis is recommended for ap-
plications. To such aim two common densities in the context of Bayesian reg-
ularization were adopted in our work: a uniform(0,100) prior for 1/τ and an
inverse-gamma(1,1) prior for 1/τ2. The latter one is less diffuse than the former,
and, thus, may be considered as a more informative one.

Before concluding this section, some brief notes on software implememtation
will be given. The code used for specifying the hierarchical model (4) in Win-
BUGS is shown in Appendix A. As usual, the likelihood of the model is defined
in the first part of the code, and the priors are defined in the subsequent part.
In particular, the code for the likelihood is analogous to the code given by Con-
gdon (cfr: Congdon, P. 2007) for the standard PE model, while some examples
of P-spline estimation of GLM models are given in: Crainicenu, C., Ruppert, D.,
and Wand, M. P. 2005. Hobbs, Sargent and Carlin gave JAGS (Plummer, M.
2003) code for for P-spline estimation of PH models (Murray, T.A., Hobbs, B.P.,
Sargent, D.J., Carlin, B.P. 2014). The operations needed for calculating specific
components of the model (such as the penalty matrix P), and for improving the
efficiency of the computation (such as centering continuous variables) were done
in R (R Core Team 2013). One of the main advantages brought by this choice
was the simplification of code writing in WinBUGS. Furthermore, by running
WinBUGS under R via the R2WinBUGS package (Sturtz, S., Ligges, U. and
Gelman, A. 2005), the posterior samples of model parameters and their functions
are automatically imported in R, so that to avoid the cumbersome operations
required for exporting coda files from WinBUGS.

2.3 Statistical Analysis

A total of four Bayesian models were estimated (2 penalties × 2 priors for the
tuning parameter τ2). The two penalties consist in a standard penalty and a
modified version for accounting for the unequally spaced partition of follow-up
time. The different priors were used for performing a sensitivity analysis, as
discussed in the previous paragraph.

To avoid convergence problems the continuous covariates were centered, and
the bases of the restricted spline (used for modeling the effect of tumor size)
were orthogonalized. Results shown in the next section were obtained from one-
chain samples with length 20,000, burn-in 2,000 and thinning by 5. Posterior
means and 95% Credible Intervals were computed for regression coefficients,
baseline hazard functions and survival probabilities at 120 months for some
combination of predictors values. Moreover, the Deviance Information Criterion
(DIC) was computed in order to compare the goodness of fit of the resulting
models (Spiegelhalter, D., J. et al 2002).
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The estimates from each model were compared to the estimates obtained by
penalized estimation via GAM techniques. In this case the optimal amount of
smoothing was determined through a prediction error criterion (Un-Biased Risk
Estimator), which for additive models is essentially equivalent to Mallows Cp.
The UBRE criterion is estimated for a trial set of smoothing parameters, and
the model with optimal value of it is then selected (Wood, S. 2006). MCMC sam-
pling was performed by executing WinBUGS under R via by the R2WinBUGS
package; subsequent calculations were done by R with coda and mgcv packages
added.

3 Results

Bayesian models were fitted without incurring in convergence problems. Stan-
dard diagnostic techniques showed appreciable mixing properties of the Markov
Chains, both for model parameters and for their functions (baseline hazard and
survival probabilities), and autocorrelations rapidly approaching zero. A slower
convergence of autocorrelations was shown only for the tuning parameter τ2, so
that thinning was set to 5 for obtaining the final estimates. For each model the
computation took about 45 minutes on a commercial laptop.

Overall, frequentist and Bayesian estimates of predictor effects (regression
coefficients) were similar (not shown) ; this result was expected since in PH
models such estimates are robust with respect to the functional form of the haz-
ard function. Concerning the use of the modified penalty matrix, the estimates
of regression coefficients, hazard parameters and survival probabilities were very
close to the one obtained with the standard penalty. The estimates of hazard
parameters were reported in Appendix B.

Concerning the hazard function, different behaviors were shown by frequentist
and Bayesian estimates. In Fig. 1 the hazard function estimated by GAM tech-
niques increases in the first half of follow-up period (0-60 months), after which it
is constant. Bayesian estimates (posterior means) showed a two-peaked pattern
with a rather strong decrease in the second half of follow-up (60-120 months).
However, the ones obtained with the uniform prior seemed rather close to the
frequentist ones, except for the second half of follow-up time (where few events
were observed: n=10).

Bayesian estimates resulted to be sensitive to prior densities. Posterior means
obtained with the inverse-gamma prior showed a greater spread than estimates
with the uniform prior. This was due to the different degree of smoothing as
determined by the posterior estimates of τ2 (Fig. 2). The DIC criterion showed
that a slight better fit was obtained with the uniform prior: DIC equal to 662.5
and 664.6 for uniform and inverse-gamma prior respectively.
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Fig. 1. Estimates of baseline hazard function. Panel a: GAM estimates; Panel b: pos-
terior means for uniform prior on the deviance of hazard parameters, with respective
95% Credible Intervals; Panel c: posterior means, 95% CI for gamma-inverse prior.
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Fig. 2. Posterior densities of σ = 1/τ . Left panel: uniform prior; right panel: inverse-
gamma prior.

Estimates of the survival function were reported in Tab. 1. Slight differences
were shown between frequentist and Bayesian estimates. A major similarity was
shown among Bayesian estimates, both posterior means and Credible Intervals.

Table 1. Estimated survival probabilities at 120 months for specific predictor values:
age: 60 year; tumor size: 20 cm; margin resection: microscopic; histology: Liposar-
coma (Lipo), Leiomyosarcoma (Leio), MPNST (MPNST); grading: 1,2,3. For Bayesian
methods, posterior means and 95% Credible Intervals were reported.

hystology grading
GAM UNIFORM PRIOR INVERSE-GAMMA

PRIOR

Est Est Lower Upper Est Lower Upper

grade=1 0.582 0.614 0.418 0.788 0.621 0.422 0.791
Lipo grade=2 0.162 0.211 0.053 0.437 0.216 0.057 0.445

grade=3 0.015 0.035 0.001 0.139 0.036 0.001 0.141

grade=1 0.717 0.734 0.495 0.895 0.740 0.500 0.900
Leio grade=2 0.325 0.379 0.119 0.649 0.386 0.129 0.669

grade=3 0.076 0.120 0.011 0.342 0.126 0.011 0.346

grade=1 0.662 0.679 0.369 0.891 0.680 0.374 0.890
MPNST grade=2 0.248 0.309 0.046 0.636 0.309 0.047 0.643

grade=3 0.041 0.087 0.002 0.324 0.085 0.001 0.311

4 Discussion

Penalized methods for smoothing the hazard function in proportional hazard
models could provide useful tools for the assessment of the effect of prognostic
variables and at the same time for assessing hazard and prediction. The piecewise
exponential model may offer a simple alternative both in the frequentist and
in the Bayesian framework. However, in the former one standard large sample
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results cannot guarantee the expected properties of estimates and it would be
necessary to resort to non standard theory.

As a practical alternative we used a Bayesian method for estimating a PE
model with a smoothed hazard function. Efficient computation was obtained
with a standard sampling algorithm (ARS) and a popular software in a non-
standard smoothing problem: in fact number and positions of knots were fixed
according to relevant clinical knowledge. The reason of such efficiency is related
to the particular features of the PE model: 1) the link with the widespread GLM
family of distributions; 2) a simple expression of the hazard function which pre-
serves flexibility without requiring restrictive distributional assumptions. Fur-
thermore, results obtained with a modified version of the penalty matrix showed
no sensible differences with respect to the standard procedure of estimation.
Consequently, the standard procedure could be robust with respect to unequally
spacing of the partition of the follow-up time.

Our results showed a different behavior between the hazard functions esti-
mated by GAM and Bayesian P-splines methods, as a double peak was observed
only in the latter case. It is worth of note that a double peaked hazard func-
tion over time is in agreement with previous findings with several frequentist
approaches in the therapy follow-up of different solid tumor pathologies, so con-
sistent interpretation of risk dynamics may be derived from them linked to the
hypothesis of cancer dormancy. However, these first results deserve further ex-
ploration, since in the present work few hyper-priors for hazard parameters were
assessed. Moreover, since fewer events were observed in the second half of follow-
up, this could have limited the interpretation of the results in later follow-up
time. A more extensive evaluation could be properly carried out in a simulation
setting. For future assessments, measures of model fit would be needed in or-
der to compare the various alternative hyper-priors. In our case a preliminary
comparison according to the DIC criterion showed that a slightly better fit was
obtained by assuming a uniform density with respect to a rather informative
inverse-gamma density.

As expected by cumulative function estimation, a major degree of robustness
to prior specification was shown by the estimated survival function. The differ-
ences between frequentist and Bayesian point estimates may be explained by
the fact that posterior density of survival probabilities were rather asymmetric.
Therefore, the comparison should be extended, e.g. to maximum posterior den-
sity estimates. Overall, the proposed method can extend in a practical way the
tools available for the flexible modeling of survival functions allowing the study
of the disease dynamics in complex frameworks like cancer follow-up studies.
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A WinBUGS Code for Estimation of the Penalized PE
Model

Note: the log-hazard parameters (alpha) in model (4) have been reparameter-
ized in order to obtain samples from the random walk prior (see the section:
Implementation of the estimation procedure on the sarcoma case series). Thus,
two new sets of parameters appear in the code below. The first set includes two
elements, namely alpha.unp[1] and alpha.unp[2], that must not be sub-
jected to penalized estimation. The latter set include 13 penalized parameters:
alpha.pen[1:13]. For more details, see Kneib, T., Fahrmeir, L. and Denuit,
M. 2004.

# CONSTANTS:

# N : overall number of time intervals in which the n subjects are

# alive or failed

# T : number of time intervals (15)

#

# PARAMETERS:

# alpha.unp[1:2] : unpenalized log-hazard parameters

# alpha.pen[1:13] : penalized log-hazard parameters

# beta[1:10] : regression coefficients

# tau.square : tuning parameter

#

# VARIABLES:

# age ([1:N]) : patient age

# t.size1, t.size2 ([1:N]) : spline bases for tumor size

# Dhist2 Dhist9 ([1:N]) : dummy variables for histology

# Dgrad2, Dgrad3 ([1:N]) : dummy variables for grading

# Dmarg2 ([1:N]) : dummy variable for surgical margins

# timespent[1:N] ([1:N]) : offset term (delta ih)

#

# psi.unp[1:N] : fixed coefficients for alpha.unp[2]

# psi.pen[1:N,1:(T-2)] : fixed coefficients for alpha.pen

model {

### likelihood ###

for (i in 1:N) {

y[i]∼ dpois( theta[i] ) ;

theta[i] <- timespent[i] *

exp( random[i] +

beta[1]*age[i] + beta[2]*t.size1[i] +

beta[3]*t.size2[i] + beta[4]*Dhist2[i] +

beta[5]*Dhist3[i] + beta[6]*Dhist4[i] +
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beta[7]*Dhist9[i] + beta[8]*Dgrad2[i] +

beta[9]*Dgrad3[i] + beta[10]*Dmarg[i] ) ;

random[i] <- alpha.unpen[1] + alpha.unpen[2]*psi.unp[i] +

alpha.pen[1]*psi.pen[i,1] + alpha.pen[2]*psi.pen[i,2] +

alpha.pen[3]*psi.pen[i,3] + alpha.pen[4]*psi.pen[i,4] +

alpha.pen[5]*psi.pen[i,5] + alpha.pen[6]*psi.pen[i,6] +

alpha.pen[7]*psi.pen[i,7] + alpha.pen[8]*psi.pen[i,8] +

alpha.pen[9]*psi.pen[i,9] + alpha.pen[10]*psi.pen[i,10] +

alpha.pen[11]*psi.pen[i,11] + alpha.pen[12]*psi.pen[i,12] +

alpha.pen[13]*psi.pen[i,13] ) ;

}

### priors ###

for (i in 1:10) {
beta[i]∼ dnorm(0,0.0001) ;

}

alpha.unpen[1]∼ dflat() ;

alpha.unpen[2]∼ dflat() ;

# multivariate gaussian prior for the penalized parameters

for (i in 1:(T-2)) {
mu.vec[i] <- 0 ;

for (j in 1:(T-2)) {
prec.mat[i,j] <- equals(i,j)*tau.square ;

}
}
alpha.pen[1:(T-2)] ∼ dmnorm(mu.vec[],prec.mat[,]) ;

# hyperprior

tau.square <- pow(sigma,-2) ;

sigma∼ dunif(0,100) ;

}
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B Bayesian Estimates of Hazard Parametersl

Table 2. Posterior means and respective standard deviations of the parameters of the
baseline hazard function (exp(αh) ; h=1, . . . , 15) are reported in columns 2-5. The
estimates were obtained by adopting two hyper-priors for the the tuning paramater
(uniform and inverse-gamma) and two penalties accounting for equal and unequal
spacing of the partition of follow-up time. The corresponding 15 time intervals are
shown in column 1; interval length (in months) is reported in parenthesis.

Interval

UNIFORM PRIOR INVERSE-GAMMA PRIOR

equal unequal equal unequal
Est (SD) Est (SD) Est (SD) Est (SD)

0-4 (4) 0.0019 (0.0009) 0.0020 (0.0009) 0.0017 (0.0009) 0.0017 (0.0009)

4-8 (4) 0.0021 (0.0009) 0.0022 (0.0009) 0.0019 (0.0009) 0.0019 (0.0009)

8-12 (4) 0.0024 (0.0010) 0.0025 (0.0010) 0.0026 (0.0012) 0.0027 (0.0012)

12-16 (4) 0.0026 (0.0010) 0.0027 (0.0010) 0.0026 (0.0012) 0.0027 (0.0012)

16-20 (4) 0.0029 (0.0012) 0.0029 (0.0011) 0.0034 (0.0015) 0.0034 (0.0015)

20-24 (4) 0.0030 (0.0012) 0.0029 (0.0011) 0.0035 (0.0015) 0.0034 (0.0015)

24-30 (6) 0.0029 (0.0011) 0.0029 (0.0011) 0.0027 (0.0012) 0.0028 (0.0012)

30-36 (6) 0.0029 (0.0011) 0.0029 (0.0010) 0.0025 (0.0012) 0.0025 (0.0011)

36-42 (6) 0.0029 (0.0011) 0.0029 (0.0011) 0.0024 (0.0011) 0.0024 (0.0011)

42-48 (6) 0.0029 (0.0011) 0.0030 (0.0011) 0.0027 (0.0013) 0.0027 (0.0012)

48-54 (6) 0.0031 (0.0012) 0.0031 (0.0012) 0.0036 (0.0018) 0.0037 (0.0017)

54-60 (6) 0.0031 (0.0012) 0.0030 (0.0012) 0.0038 (0.0018) 0.0038 (0.0018)

60-72 (12) 0.0029 (0.0012) 0.0029 (0.0011) 0.0035 (0.0016) 0.0035 (0.0015)

72-96 (24) 0.0026 (0.0011) 0.0025 (0.0010) 0.0022 (0.0011) 0.0023 (0.0011)

96-120 (24) 0.0025 (0.0013) 0.0022 (0.0013) 0.0018 (0.0012) 0.0017 (0.0012)
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Abstract. Several approaches have been proposed for the analysis of
DNA microarray datasets, focusing on the performance and robustness
of the final feature subsets. The novelty of this paper arises in the use
of q-values to pre-filter the features of a DNA microarray dataset iden-
tifying the most significant ones and including this information into a
genetic algorithm for further feature selection. This method is applied to
a lung cancer microarray dataset resulting in similar performance rates
and greater robustness in terms of selected features (on average a 36.21%
of robustness improvement) when compared to results of the standard
algorithm.

Keywords: DNA microarrays, Evolutionary algorithms, t-test, q-values,
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1 Scientific Background

DNA microarray technology has been widely used for gene expression profil-
ing and prediction of cancer. Analysis of such data involves facing a problem
commonly referred to as the curse of dimensionality [9] where each sample is
described by thousands of features (genes) with few samples - often fewer than
a hundred - available. Several approaches have been proposed to identify rele-
vant genes with good performance in classifying the disorder under investigation.
However, these approaches lack a desirable feature when identifying gene expres-
sion profiles - robustness. A common feature of such methods is instability of
results with high variability of identified features when repeated executions of
the algorithm are made. To tackle this problem, recent works have proposed
different methodologies that try to achieve robust feature subset selections with
good performance rates in test data [7,10].

Use of statistical tests with multiple features against some null hypothesis is
common practice with the expectation that a proportion of such features would
be incorrectly considered significant [8]. In such circumstances it is important
to use some form of false discovery rate technique to either adjust the p-values
[1] or use a different measure which takes into account false positives such as

c© Springer International Publishing Switzerland 2015
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the q-value [8]. Use of such a measure allows focus to be placed on features
which can be considered to satisfy a null hypothesis in further analysis. In the
original paper [8] this methodology reduced the number of features identified in
the Hedenfalk dataset from 605 to 162 within a total feature set of 3170.

In this paper a modified t-test and q-values [8] are incorporated into a fea-
ture selection procedure similar to the genetic algorithm (GA) described in [7]
with the purpose of identifying genes that are significant in differentiating lung
cancer microarray expressions. In their approach, biological information from
KEGG [5,6] database was included into the GA resulting in more robust feature
subsets with good performance rates. The expectation of introducing a subset of
genes, selected using q-values, into the GA would be for better and more robust
solutions than the original results from the GA.

The rest of the paper is structured as follows: Section 2 describes the dataset
used in this study as well as the methodology applied; Section 3 shows the
results obtained in this work and a comparison to previous results of one similar
approach; and Section 4 provides some conclusions.

2 Materials and Methods

A freely available1 high dimensional biomedical dataset has been used through-
out this work, comprising 181 tissue samples of two types of lung cancer, malig-
nant pleural Mesothelioma (MPM) and Adenocarcinoma (ADCA) [4]. Samples
are unbalanced with 31 corresponding to MPM and 150 ADCA, described in
each case by 12533 genes. The Affymetrix ID for the lung cancer DNA microar-
ray dataset is hgu95a and the R package “hgu95a.db” [2] was used to manage and
pre-process biological information related to this microarray. For the analysis,
the dataset was separated into training and test sets, comprising 80 samples and
101 samples respectively with care taken to keep the same proportion of both
MPM and ADCA classes.

The novelty of this approach is the introduction of a more robust statistical
method with the expectation of an improvement in the robustness of the final
obtained subset of features with direct biological relevance, evidenced by the
maintaining of good generalisation in the validation results.

2.1 Significance Testing

A permutation based modified t-test [8] was used to evaluate the null hypoth-
esis that there is no difference in expression between the two different groups
(MDM and ADCA) accounting for the different variance within each group. The
two sample t-statistic for a given gene is expressed as in (1), and the p-values
estimated as per (2). In this case x̄1 and x̄2 represent the means of group 1
and group 2, with s21 and s22 being the respective variances. B is the number
of re-samples taken for the modified t-test (a value of B=100 was used), n the

1 http://cilab.ujn.edu.cn/datasets.htm

http://cilab.ujn.edu.cn/datasets.htm
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number of features and t the value for a given t-statistic (t0b1 to t0bn are the set
of null statistics calculated using the resampling procedure).

t =
x̄1 − x̄2√
s21
n1

+
s22
n2

(1)

pi =

B∑
b=1

#
{
j :
∣∣t0bj ∣∣ ≥ |ti| , j = 1, . . . , n

}
n×B

(2)

This approach has as the null hypothesis that there is no difference in expres-
sion between the two genes and that the t-statistic holds to the same distribution
across both [8].

Using the p-values from this study, an FDR-based significance measure, q-
values [8], was used to select only those genes significant at the 5% level for
inclusion in the model estimation stage. These q-values are an important tool
in determining significance of features, and particularly so in genome studies, as
they explicitly and systematically account for multiple testing, and allow for a
more accurate determination of the expected false-positives from the inclusion
of a particular feature.

2.2 Model Estimation

In this paper, the strategy proposed in [7] is used with some slight changes. The
strategy consists of two separate stages:

– The 228 pathways identified as related to lung cancer disease are analysed
to produce a ranking which allows selection of the most promising pathways
to be further analyzed. In contrast to the first stage in [7] only the train-
ing dataset of 80 samples is analysed by applying a 10-fold cross-validation
strategy. The purpose at this stage is to obtain an accuracy measure and
identify the number of keywords for each pathway using a text-mining pro-
cedure, following the same process as [7] but refined using genes identified
as significant in Section 2.1.

fitness(x) = (1− λ− β)(1 −ACC(x)) + λ
k

100
+ βscore(x), (3)

score(x) =

(
1− i

M

)
+
(
1− j

N−M

)
2

, (4)

– Using pathways identified from the first stage as being of importance, a ge-
netic algorithm is applied using the fitness function from (3) where λ, β ∈
[0, 1) and λ + β < 1, k is the number of selected features, 100 is a normal-
ization factor due to the limited number of active features in a chromosome,
and function score(x) which estimates the biological relevance of the selected
features. This function has been modified to (4) where M and N are normal-
ization factors representing the number of significant genes on the pathway
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and total number of significant genes on all pathways respectively. i is the
number of selected significant genes included in the pathway being analysed
and j the number of selected significant genes not in the pathway such that
i+ j = k. To obtain the accuracy rate for (3), Linear Discriminant Analysis
(LDA) [3] is used by applying 10-k-fold cross validation to each chromosome
analysed within the GA execution.

– The final step validates the performance of the selected model by performing
LDA on the training data and applying the results to the larger test dataset
to obtain the prediction accuracy. LDA was chosen in order to make a fair
comparison to results previously published in [7] as well as for its simplicity.

3 Results

The predictive capability and the number of relevant keywords were calculated
for each of the 228 pathways. Table 1 details the best pathways according to
Accuracy (Acc) values using the genes identified as being significant at q < 0.05
as the first sorting criterion, and the number of keywords found during the
text mining of the pathway descriptions in the KEGG database as the second
criterion. Bold rows correspond to pathways which ranked in the top 10 found in
[7] during the first stage. Those in bold-italic are the six best pathways selected
to be analysed on the second stage of the methodology previously. Of note is
that the top 10 pathways from the original work are ranked in the overall top 27
pathways (< 12% of total), and pathway “04610” being the only one exhibiting
minimal decline in ranking.

Instead of selecting the best pathways using this ranking as previously done,
for comparative purposes the six best pathways from the previous work were
selected [7] for analysis using the modified GA presented in Section 2.2 using
the test/train datasets for model estimation and validation. This stage of the
analysis was repeated 100 times for each of the six pathways to obtain estimates
of the model accuracy.

Table 2 shows on average a perfomance comparison using the GA approach
published in [7] and our proposal in this paper. In terms of prediction accuracy,
both approaches obtain similar performance (approximately 95% depending on
the analysed pathway). However, the main advantage of the present approach
arises while analyzing the robustness of the subset of features selected. This
robustness measure is obtained by averaging each gene frequency of appearance
over the 100 GA executions, discarding those genes that do not appear more
than 5% of the time. In this sense, it should be highlighted that in two out of six
pathways analysed, a 78.33% and 59.93% of improvement is reached in terms of
robustness (pathways “04010” and “04514” respectively). Pathway “04530” is the
one with lowest improvement (just 11.86%), while for the remaining pathways
the robustness was approximately increased by a 20%.

The top eleven final selected features for each of the pathways as shown in
Table 4 can be directly compared to those obtained in [7]. Consistency is
apparent in these as at least four genes are present in the previous work
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Table 1. Pathways ranked by prediction ability using significant genes and number
of keywords found. Bold rows correspond to pathways which ranked in the top 10
according to [7] (See the text for more details).

Rank Code Pathway #Genes Acc #Genes 0.05 Acc 0.05 #Keywords

1 04020 Calcium signaling
pathway

246 0.933 28 0.9975 0/1116

2 04144 Endocytosis 244 0.99 32 0.99 0/506

3 04650 Natural killer cell
mediated cytotoxicity

172 0.915 13 0.9875 3/871

4 04010 MAPK signaling
pathway

423 0.935 37 0.9875 2/609

5 04062 Chemokine signaling
pathway

254 0.945 29 0.9875 1/901

6 04141 Protein processing in
endoplasmic reticulum

181 0.908 14 0.9875 1/458

7 01100 Metabolic pathways 970 0.975 146 0.9875 0/116

8 00230 Purine metabolism 148 0.93 19 0.9875 0/271

9 04270 Vascular smooth muscle
contraction

149 0.973 28 0.9875 0/891

10 00240 Pyrimidine
metabolism

83 0.975 15 0.9875 0/150

11 04510 Focal adhesion 320 0.955 42 0.985 1/824

12 05200 Pathways in cancer 557 0.96 63 0.9825 11/4504

20 04530 Tight junction 158 0.965 27 0.9775 1/545

25 04360 Axon guidance 166 0.975 22 0.975 0/427

27 04514 Cell adhesion
molecules (CAMs)

154 0.95 25 0.975 0/921

45 04610 Complement and
coagulation cascades

73 0.978 14 0.965 3/660

Table 2. Comparison of original approach and proposed approach. Columns 2-4 show
the mean of each of No. of Genes, genes in pathway and significant genes in pathway
with standard deviations. Additionally, column 5 shows the robustness of results and
the last column the accuracy.

Pathway #Genes #Genes in
pathway

#Genes significant
in pathway

Robustness Accuracy

O
ri
gi
n
al

G
A 04144 4.43±1.00 2.87±1.22 1.75±1.19 0.1225 0.9568±0.0229

04530 4.22±1.05 2.79±1.11 2.04±1.04 0.14125 0.9630±0.0248
04514 3.96±1.07 2.32±1.29 1.49±0.95 0.135 0.9463±0.025
04610 3.85±1.02 2.94±1.24 1.63±1.00 0.24455 0.9398±0.0197
04010 4.04±1.29 1.71±1.09 0.88±0.83 0.086667 0.9445±0.0275
05200 3.86±1.52 1.51±1.20 0.68±0.79 0.079 0.9450±0.0249

O
u
r
m
od

i-
fi
ed

G
A

04144 4.82±1.31 3.96±1.54 3.66±1.63 0.148 0.9590±0.0201
04530 4.63±1.54 3.94±1.64 3.86±1.57 0.158 0.9732±0.0192
04514 5.59±1.55 4.94±1.79 4.89±1.76 0.21591 0.9458±0.0261
04610 4.29±1.04 3.94±1.23 3.12±1.21 0.29846 0.9439±0.02
04010 3.54±1.14 2.58±1.33 2.28±1.32 0.15455 0.9431±0.0302
05200 3.08±1.24 1.63±1.28 1.34±1.20 0.098182 0.932±0.0261
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Table 3. Frequency of selection for the most frequently picked features in each pathway
previously identified [7] as important. The notes column highlights whether the gene is
significant in pathway (*), not significant but in pathway (**) or out of pathway(***).

ID Symbol Probe Set ID Freq.
(%)

Note

2520 CLTB 32522_f_at 13 **
1035 KDR 1954_at 14 *
633 ERBB3 1585_at 15 *
1182 ERBB3 2089_s_at 16 *
11052 PARD3 40973_at 16 *
2521 CLTB 32523_at 22 *
12020 DAB2 479_at 22 *
9758 SH3GLB1 39691_at 27 *
967 NTRK1 1892_s_at 28 *
3893 RAB11FIP5 33882_at 41 *
9863 AP2M1 39795_at 43 *

(a) Lung Pathway 04144

ID Symbol Probe Set ID Freq.
(%)

Note

6335 PRKCZ 362_at 13 *
7453 MYH11 37407_s_at 14 *
12312 MYH11 773_at 14 *
3916 CLDN3 33904_at 15 *
4174 ACTG1 34160_at 19 *
8537 CLDN7 38482_at 20 *
11052 PARD3 40973_at 23 *
8393 RRAS 38338_at 26 *
2039 PRKCD 32046_at 32 *
3844 SPTAN1 33833_at 33 *
5301 CLDN4 35276_at 57 *

(b) Lung Pathway 04530

ID Symbol Probe Set ID Freq.
(%)

Note

1248 PECAM1 268_at 24 *
1718 HLA-DOA 31728_at 25 *
3173 NEO1 33169_at 25 *
3916 CLDN3 33904_at 25 *
8509 ICAM2 38454_g_at 25 *
10372 ICAM3 402_s_at 27 *
8537 CLDN7 38482_at 29 *
1143 CDH2 2053_at 30 *
8508 ICAM2 38453_at 34 *
4217 PVRL3 34202_at 38 *
5301 CLDN4 35276_at 66 *

(c) Lung Pathway 04514

ID Symbol Probe Set ID Freq.
(%)

Note

6581 F3 36543_at 11 *
5783 PROS1 35752_s_at 13.00 *
6821 SERPINA1 36781_at 14 *
8496 CD46 38441_s_at 14 *
12146 VWF 607_s_at 22 *
12211 SERPINE1 672_at 23 **
9474 C1R 39409_at 36 *
5727 CFI 35698_at 45 *
8178 SERPINE1 38125_at 59 **
5853 CFB 35822_at 67 *
9843 SERPING1 39775_at 68 *

(d) Lung Pathway 04610

ID Symbol Probe Set ID Freq.
(%)

Note

6700 CD14 36661_s_at 6 *
620 PDGFB 1573_at 7 *
957 MECOM 1882_g_at 7 *
5104 FGF9 35081_at 9 *
3250 MAPK13 33245_at 11 *
5997 HSPA6 35965_at 14 *
909 RRAS2 1838_g_at 16 *
8393 RRAS 38338_at 16 *
5356 FLNC 35330_at 17 *
967 NTRK1 1892_s_at 23 *
667 FGF9 1616_at 44 *

(e) Lung Pathway 04010

ID Symbol Probe Set ID Freq.
(%)

Note

8813 FADD 38755_at 6 *
12200 GAS1 661_at 6 ***
6616 BIRC2 36578_at 7 *
411 RARB 1381_at 8 *
7849 SEMA3C 377_g_at 8 ***
8370 ALDH1A2 38315_at 9 ***
5104 FGF9 35081_at 10 *
967 NTRK1 1892_s_at 11 *
1136 JUP 2047_s_at 13 *
10532 STAT5A 40458_at 14 *
667 FGF9 1616_at 16 *

(f) Lung Pathway 05200

(those highlighted in bold). Furthermore, because of the use of q-values to limit
features to those which exhibit significant difference in expression, this approach
yields results that contains a larger number of significant selected genes belong-
ing to the top 11 features of a given pathway. These significant genes are also
picked by the GA with greater frequency than those shown in the previous work,
and thus the robustness of the present method should be higher, as indeed is as
seen in Table 2.
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Table 4. Frequency of selection for the most frequently picked features in each pathway
previously identified [7] as important. The notes column highlights whether the gene is
significant in pathway (*), not significant but in pathway (**) or out of pathway(***).

ID Symbol Probe Set ID Freq.
(%)

Note

2520 CLTB 32522_f_at 13 **
1035 KDR 1954_at 14 *
633 ERBB3 1585_at 15 *
1182 ERBB3 2089_s_at 16 *
11052 PARD3 40973_at 16 *
2521 CLTB 32523_at 22 *
12020 DAB2 479_at 22 *
9758 SH3GLB1 39691_at 27 *
967 NTRK1 1892_s_at 28 *
3893 RAB11FIP5 33882_at 41 *
9863 AP2M1 39795_at 43 *

(a) Lung Pathway 04144

ID Symbol Probe Set ID Freq.
(%)

Note

6335 PRKCZ 362_at 13 *
7453 MYH11 37407_s_at 14 *
12312 MYH11 773_at 14 *
3916 CLDN3 33904_at 15 *
4174 ACTG1 34160_at 19 *
8537 CLDN7 38482_at 20 *
11052 PARD3 40973_at 23 *
8393 RRAS 38338_at 26 *
2039 PRKCD 32046_at 32 *
3844 SPTAN1 33833_at 33 *
5301 CLDN4 35276_at 57 *

(b) Lung Pathway 04530

ID Symbol Probe Set ID Freq.
(%)

Note

1248 PECAM1 268_at 24 *
1718 HLA-DOA 31728_at 25 *
3173 NEO1 33169_at 25 *
3916 CLDN3 33904_at 25 *
8509 ICAM2 38454_g_at 25 *
10372 ICAM3 402_s_at 27 *
8537 CLDN7 38482_at 29 *
1143 CDH2 2053_at 30 *
8508 ICAM2 38453_at 34 *
4217 PVRL3 34202_at 38 *
5301 CLDN4 35276_at 66 *

(c) Lung Pathway 04514

ID Symbol Probe Set ID Freq.
(%)

Note

6581 F3 36543_at 11 *
5783 PROS1 35752_s_at 13.00 *
6821 SERPINA1 36781_at 14 *
8496 CD46 38441_s_at 14 *
12146 VWF 607_s_at 22 *
12211 SERPINE1 672_at 23 **
9474 C1R 39409_at 36 *
5727 CFI 35698_at 45 *
8178 SERPINE1 38125_at 59 **
5853 CFB 35822_at 67 *
9843 SERPING1 39775_at 68 *

(d) Lung Pathway 04610

ID Symbol Probe Set ID Freq.
(%)

Note

6700 CD14 36661_s_at 6 *
620 PDGFB 1573_at 7 *
957 MECOM 1882_g_at 7 *
5104 FGF9 35081_at 9 *
3250 MAPK13 33245_at 11 *
5997 HSPA6 35965_at 14 *
909 RRAS2 1838_g_at 16 *
8393 RRAS 38338_at 16 *
5356 FLNC 35330_at 17 *
967 NTRK1 1892_s_at 23 *
667 FGF9 1616_at 44 *

(e) Lung Pathway 04010

ID Symbol Probe Set ID Freq.
(%)

Note

8813 FADD 38755_at 6 *
12200 GAS1 661_at 6 ***
6616 BIRC2 36578_at 7 *
411 RARB 1381_at 8 *
7849 SEMA3C 377_g_at 8 ***
8370 ALDH1A2 38315_at 9 ***
5104 FGF9 35081_at 10 *
967 NTRK1 1892_s_at 11 *
1136 JUP 2047_s_at 13 *
10532 STAT5A 40458_at 14 *
667 FGF9 1616_at 16 *

(f) Lung Pathway 05200

4 Conclusion

In this work, a lung cancer disease microarray dataset has been analysed in order
to obtain a subset of genes with good predictive performance by using a previ-
ously published genetic algorithm modified to include a significance test based
on the use of q-values. It has been shown that the inclusion of this information
into the GA, to identify those genes having a significant difference in expres-
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sion, has yielded results that are similar in performance to the original method
but exhibiting improved robustness in terms of the selected features with an
improvement between 11.86%-78.33% (average 36.21%). This higher robustness
observed is achieved as the search in the GA is now guided to genes previously
identified as significant without discarding the potential utility of other genes.
Moreover, these results are consistent with the original ones since in the top 11
most selected genes, 4 to 6 genes were also included within the results in the
original work. Further work should consider a deeper biological analysis of these
results and also further investigation of the predictive abilities of pathways either
alone or in combination with those genes identified as significant in this study.

Acknowledgments. Theauthors acknowledge support throughGrantsTIN2010-
16556 fromMICINN-SPAINandP08-TIC-04026 (JuntadeAndalucía), all ofwhich
include FEDER funds.

References

1. Benjamini, Y., Hochberg, Y.: Controlling the False Discovery Rate: A Practical
and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 57(1), 289–300
(1995)

2. Carlson, M.: hgu95a.db: Affymetrix Human Genome U95 Set annotation data (chip
hgu95a) (2011)

3. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley (2000)
4. Gordon, G.J., Jensen, R.V., Hsiao, L.-L., Gullans, S.R., Blumenstock, J.E., Ra-

maswamy, S., Richards, W.G., Sugarbaker, D.J., Bueno, R.: Translation of mi-
croarray data into clinically relevant cancer diagnostic tests using gene expression
ratios in lung cancer and mesothelioma. Cancer Res. 62(17), 4963–4967 (2002)

5. Kanehisa, M., Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Res. 28(1), 27–30 (2000)

6. Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M.:
Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic
Acids Res. 42(Database issue), D199–D205 (2014)

7. Luque-Baena, R.M., Urda, D., Gonzalo Claros, M., Franco, L., Jerez, J.M.: Ro-
bust gene signatures from microarray data using genetic algorithms enriched with
biological pathway keywords. J. Biomed. Inform., January 2014

8. Storey, J.D., Tibshirani, R.: Statistical significance for genomewide studies. Proc.
Natl. Acad. Sci. U.S.A. 100(16), 9440–9445 (2003)

9. West, M.: Bayesian factor regression models in the large p, small n paradigm. In:
Bernardo, J.M., Dawid, A.P., Berger, J.O., West, M., Heckerman, D., Bayarri, M.,
Smith, A.F. (eds.) Bayesian Stat. 7 - Proc. Seventh Val. Int. Meet., pp. 723–732.
Oxford University Press (2003)

10. Xu, J.-Z., Wong, C.-W.: Hunting for robust gene signature from cancer profiling
data: sources of variability, different interpretations, and recent methodological
developments. Cancer Lett. 296(1), 9–16 (2010)



 

 

 

 

 

Special Session: Computational 
Intelligence Methods for Drug Design 

 

 

 

 

 



Drug Repurposing by Optimizing Mining

of Genes Target Association

Aicha Boutorh1, Naruemon Pratanwanich2, Ahmed Guessoum1,
and Pietro Liò2

1 University of Science and Technology Houari Boumediene
Laboratory for Research in Artificial Intelligence (LRIA)

Algiers, Algeria
{aboutorh,aguessoum}@usthb.dz

2 University of Cambridge
Artificial Intelligence Group of the Computer Laboratory

Cambridge,United Kingdom
{np394,Pietro.Lio}@cam.ac.uk

Abstract. A major alternative strategy for the pharmacology indus-
try is to find new uses for approved drugs. A number of studies have
shown that target binding of a drug often affects not only the intended
disease-related genes, leading to unexpected outcomes. Thus, if the per-
turbed genes are related to other diseases this permits the reposition-
ing of an existing drug. Our aim is to find hidden relations between
drug targets and disease-related genes so as to find new hypotheses of
new drug-disease pairs. Association Rule Mining (ARM) is a well-known
data mining technique which is widely used for the discovery of inter-
esting relations in large data sets. In this study we apply a new com-
putational intelligence approach to 288 drugs and 267 diseases, forming
5018 known drug-disease pairs. Our method, which we call Grammati-
cal Evolution ARM (GEARM), applies the GE optimization technique
on the set of rules learned using ARM and which represent hidden rela-
tionships among gene targets. The results produced by this combination
show a high accuracy of up to 95 % for the extracted rules. Likewise, the
suggested approach was able to discover interesting pairs of drugs and
diseases with an accuracy of 92 %. Some of these pairs have previously
been reported in the literature while others can serve as new hypotheses
to be explored.

Keywords: Association Rule Mining, Grammatical Evolution, Opti-
mization, Drug Repositioning, Genes.

1 Background

Finding new uses for approved drugs, referred to as drug repositioning, can re-
duce the cycle time of drug discovery since their side effects in a clinical environ-
ment have already been studied. The currently available computational power
has been exploited to improve the effectiveness and efficiency of drug discovery.
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In this respect, Association Rule Mining is a well-known data mining technique
which is widely used for the discovery of interesting relations in large data sets.

Most of the previous methods exploit the similarities between drugs on one
side and between diseases on the other, independently, and assume at the mean
time that similar drugs are likely to combat similar diseases and vice versa.
Under this assumption, new pairs of drugs and diseases can be linked. Similar-
ity measures are therefore the key for this method. Earlier attempts employed
used either drug-based measurements or disease-based measures measurements
to predict new therapeutic purposes (Hansen et al 2009 ), (Cheng et al 2013)
Recently, repositioning techniques have incorporated the similarity of both chem-
ical and pathological perspectives in a single framework (Fukuoka et al 2013 ),
(Gottlieb et al 2011) A recent comprehensive work combined all of those drug
and disease similarities into one score to infer novel drug indications
(Gottlieb et al 2011).

Other techniques are based on finding the set of genes and pathways under-
lying drug and disease interactions (Li and Lu 2013, Lamb et al 2006).

Our work combines the advantages of these two strategies in a unified frame-
work. In order to formulate new hypotheses of new drug-disease pairs, we propose
a data mining method to find the relationships between drug targets and disease
targets as a set of association rules by means of grammatical evolution. Having
done this, we use the set of rules as a basis for the extraction of new potential
drug-disease pairs. Taking benefit from the definition of fitness functions in as-
sociation rule mining, we exploit the fact that similar drugs that have the same
targets are likely to combat the same disease since they seem to have similar
hidden patterns. Moreover, we can make assumptions about genes underlying
each new drug-disease pair. This should advance our understanding and lead
towards the testing of drugs in the lab.

Our aim is to extract hidden relationships between drug targets and disease
targets in the form of X → Y, called an association rule , (This is not to be
understood as a logical implication, but rather as the existence of an association
between the two), and utilize the set of rules as underlying mechanisms to find
new potential drug-disease pairs.

The existing algorithms for mining association rules are mainly based on
the approach suggested by Agrawal et al. (1994) called the Apriori algorithm.
A limitation of this algorithm is that it works in two phases and has a very high
computational cost. This makes the evolutionary algorithm techniques suitable
for the optimization of this process. Genetic algorithms (GA) and genetic pro-
gramming (GP) are the evolutionary algorithms the most frequently used to
extract association rules (Sharma and Tivari 2012)( Luna et al 2012).

Despite GP has been successfully used to generate ARs in different data sets,
there are still limitations to evolving association rules using this type of machine
learning algorithms. First, the GP algorithm implementation that was used in-
volves building expression trees. The genetic operations are performed on trees,
which has high complexity (hence execution time). In particular, when using
more complex data, more complicated GP trees will be generated.
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In response to these concerns, we have used grammatical evolution (GE) to
extract the set of rules. GE is a variation on genetic programming that addresses
some of the drawbacks of GP. By using a grammar, substantial changes can be
made to the way rules are constructed through simple manipulations of a speci-
fied grammar. Furthermore, GE manipulates a string of digits to perform genetic
operations instead of a tree. This obviously substantially improves the execution
time of the strategy and increase its flexibility. These features are important
improvements that GEARM introduces over other techniques.

2 The Data

We have collected drug-gene data, disease-gene data, and known drug-disease
data from a previous study (Zhao and Li 2012). These data sets were originally
taken from DrugBank, OMIM, and CTD databases respectively.

Online Mendelian Inheritance in Man (OMIM) is a compendium of genes and
their related genetic phenotypes including human diseases (Amberger et al 2009).

The Comparative Toxicogenomics Database (CTD) is a curated database from
the literature. It provides information about relationships between chemicals and
gene targets and their relationships to diseases(Davis et al 2013 ).

In terms of data preprocessing, we have prepared two binary matrices: (1)
a drug-target matrix, and (2) a disease-target matrix. The two matrices are
merged and illustrated in Table.1, where each row represents a drug and its
corresponding disease respectively and columns are all the genes of interest.

Each entry in the table indicates the existence of an association where 1 means
the gene is a target of the corresponding drug (disease), and 0 otherwise. Note
that the sets of genes (Gx) in the columns of the two matrices are not necessarily
the same. However, the two matrices have the same number of rows since a row
represents a known drug-disease (DR,DI) association.

Table 1. (1)The binary matrix of n drug-target genes for each known pair of Drug-
Disease (DR,DI)x. (2)The binary matrix of m disease-target genes for each known pair
of Drug-Disease (DR,DI)x.

n Drug Target Genes m Disease Target Genes

K Pairs G1 G2 ... Gn G1 G2 ... Gm

(DR,DI)1 0 1 ... 1 1 1 ... 0

(DR,DI)2 1 1 ... 0 0 0 ... 1

(DR,DI)3 0 0 ... 1 0 1 ... 1

... ... ... ... ... ... ... ... ...

(DR,DI)k 0 1 ... 0 1 0 ... 1
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3 The GEARM Methodology for Drug Repositioning

To generate an interpretable set of rules, a suitable grammar must be defined
which specifies the antecedent and the consequent of each rule both as combi-
nations of genes.

In this study, the set of known drug-disease pairs (DR,DI) represents the
set of transactions (the transaction database) D= { (DR,DI)1; (DR,DI)2;
...;(DR,DI)k }, while genes (G) represent the items I = {G1, G2, ..., Gx}.

Each antecedent and consequent is a subset of I depending on whether the
genes are drug or disease targets.

We will use Context-Free Grammars to represent the association rules that
can be generated between drug and disease targets. Formally, a Context-Free
Grammar is defined as a quadruple (S, N, T, P), where:

– S is the start symbol of the grammar.
– N is the set of non-terminal symbols.
– T is the set of terminal symbols which are the elements that appear at the

end of the process when all the non-terminals are substituted by applying
corresponding production rules. Only non-terminals can appear on the left-
hand side of the production rules, whereas the right-hand side may consist
of any combination of terminals and/or non-terminals.

– P is the set of production rules.

Grammatical Evolution Association Rule Mining (GEARM) was first defined
in a previous study on the problem of gene-gene interaction
(Boutorh and Guessoum 2014). The general form of the grammar for the asso-
ciation rules between drug and disease targets is defined as follows:

G = {S,N, T, P}
S = {Rule}
N = {Rule,Antecedent, Consequent, T arget Ant, Target Cons}
T = {Ga1, Ga2, ...., Gan, Gc1, Gc2, .., Gcm}
P = {< Rule >::=< Antecedent >< Consequent >
< Antecedent >::=< Target Ant > | < Target Ant >< Antecedent >
< Consequent >::=< Target Cons > | < Target Cons >< Consequent >
< Target Ant >::= Ga1|Ga2|...|Gan
< Target Cons >::= Gc1|Gc2|...|Gcm}

The Gai and Gcj used in the grammar are genes. We have used Gai to denote
a gene used in the antecedent and Gcj to denote a gene used in the consequent,
respectively. There are two possible types of rules:

1. Disease → Drug : where the genes of the antecedent are disease targets and
the genes of the consequent are drug targets, and the rule means that if the
Gai is related to a specific disease, then the corresponding drug is applied
on the Gcj .
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2. Drug → Disease: where the genes of the antecedent are drug targets and the
genes of the consequent are disease targets, and the rule means that if the
drug is applied on Gai, then the corresponding disease affected the Gcj .

We have randomly divided the data set into four parts, and used 3/4 from it
for the training and the remaining 1/4 for the tests.

Each rule R with support and confidence higher than the minimum support
and minimum confidence respectively, is evaluated first on the training dataset
by calculating its fitness (using Equation (1)).

Since the process of finding association rules returns many rules, the defini-
tion of a good measure of fitness is necessary to greatly alleviate this burden.
The support and confidence are fundamental criteria for measuring rule quality.
We define our fitness by combining the two measures, in order to find the rules
whose support and confidence are both larger than those of the other rules.

Fitness(R) = (a ∗ Support(R)) + (b ∗ Confidence(R)) (1)

The support of the rule is the proportion of genes in the data set which are
both in the antecedent and the consequent of this rule, i.e are targets of both
the drug and disease, whereas the confidence is a measure of the rule strength
(Equation (2)).

Confidence(X → Y ) =
Support(X ∪ Y )

Support(X)
(2)

The weights a and b are two parameters decided empirically by selecting the
values that gave the best results after executing the program many times with
different values of a and b . We have ended up with a = b = 0.5 The best set
of rules is then checked against the test data set to measure its accuracy which
is defined using the True Positive (TP), True Negative (TN), False positive (FP)
and False Negative as indicated in Equation (3)

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

3.1 GEARM Process

All the details related to the grammatical evolution technique are described in
( O’Neill and Rayen 2003). The GEARM process that we introduce here is cap-
tured in Fig.1.

The GEARM process starts by defining specific parameters.
The parameters of the genetic algorithm were chosen based on different com-

binations of population and generation size. Below is the set of values that have
led to the best performance:
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Fig. 1. GEARM process: Step 1: Definition of the parameters of GEARM. Step 2: Di-
viding the datasets. Step 3: generating a set of association rules from the training data.
Step 4: Calculate the fitness of the rules. Step 5: Select the best rules for crossover and
mutation. The steps 3-5 are running for Max G before the best set of rules is obtained.
Step 6 : Generate the accuracy for the best set of rules according to the test set data.

– population size (N) = 200 individuals; generation size (NB) = 500;
– crossover rate = 0.9; mutation rate = 0.01.

The GE parameters have also been defined related to the performance of the
method. The chosen value for the minimum chromosome size ensures that at
least one gene will appear in the antecedent and one in the consequent, so that
no part of the rule will be empty. On the other hand, a maximum chromosome
size limits the number of genes in the antecedent and the consequent to 3 genes
maximum. The codon size is related to the number of genes used in this study.

– wrap count = 2;
– codon = 1850;
– minimum chromosome size = 4;
– maximum chromosome size = 12.

The algorithm begins by generating an initial population of N vectors of inte-
gers (N individuals), where the size of each vector is randomly generated between
(minimum chromosome and maximum chromosome).
All the integer values of the vectors are also generated randomly and are less
than the specified codon.

Each individual (i.e. vector) is transformed into an association rule by using
the integer values to select a production rule to replace the non-terminal symbol
according to the formula A = C mod Na, where C is an integer of the vector, Na
is the number of alternatives of the current non-terminal and A is the selected
alternative to replace the non-terminal symbol.
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Figure 2 explains in detail an example of the mapping process. The integers
of the vector can be wrapped again T times if the end of the genome (the vector)
is reached while the mapping process is still incomplete. The mapping process
will end when all the non-terminal symbols are replaced by terminals i.e genes,
forming a rule which is the final output.

Fig. 2. The mapping process from an integer vector (genotype) to an association rule
(phenotype): the grammar in the right is used to define the alternative that substitutes
the current non-terminal by applying the mod operation on each integer in the vector
until the output is made up of only terminal elements. G-DR: Genes target Drug.G-DI :
Genes target Disease. Gx : a specific gene.

The generated set of rules is then evaluated on the training data. The fitness
is recorded using the two data matrices explained in Section 2.

The best rules are selected for crossover and mutation which are performed
on the vector of integers (genomic level). The new generation is then used in the
cycle for NB generations after which GEARM stops.

At the end of the process, the set of best rules is selected as the optimal
association rules set. This best GEARM set is tested on the test data set and
the accuracy is computed (see Fig.1).

3.2 Extracting Drug-Disease Pairs

After generating all the sets of rules, we aim to find the (drug, disease) pairs
related to each rule. To that end we propose to take into consideration the min-
imum number of drugs/diseases related to each gene in the antecedent and the
consequent of the rule.

Let us illustrate the idea with an example.
Given the rule if G1 and G2 and G3 Then G4 and G5 which is related to the
type disease −→ drug.In order to find the (drug, disease) pairs:

– We first look for diseases that target the three genes of the antecedent part
at once. Let us suppose they are DI1 and DI2.
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– Then we look for the drugs that target the two genes of the consequent part
also at once. Let us suppose it is DR1.

The pairs that can be deduced should combine all the found drugs and dis-
eases. Thus the generated pairs will be ( DR1, DI1) and (DR1,DI2).

4 Results

We have applied the GEARM approach to predict new (drug, disease) combina-
tions. Table 2 gives a summary of the evaluation of the generated sets of rules.
Table 3 gives the number of generated drug-disease pairs.

From the generated rule set, we were able to find some already known pairs
and to discover others that are unknown. We are working on the preparation of
all the details to make the data available to the research community.

For the results we have reached, we can mention a few found pairs.
The known pairs (Icosapent, Breast Cancer) and (Icosapent, Colorectal Can-

cer) of (drug, disease) were found from the rule (if PIK3CA and TP53 then
PTGS2) of the gene data related to Disease −→ Drug. this same rule can lead
to discover new pairs by combining all the disease and drug target genes. It is
known that:

– Genes (PIK3CA) and (TP53) are targeted Breast Cancer and Colorectal
Cancer diseases.

– Gene (PTGS2) is targeted by the Icosapent drug and Dihomo-linolenic
acid drug .

In addition to the known pairs that have been found, we have discovered two
other pairs (Dihomo-linolenic acid, Breast Cancer) and (Dihomo-linolenic acid,
Colorectal Cancer) as new pairs of drug-disease.

The rule (if ADRB1 and VEGFA then IL6) related to Drug −→ Disease,
can find three different pairs, two of which are known, (Carvedilol, Inflamma-
tory Bowel), (Carvedilol, Rheumatoid Arthritis ), and one is new (Carvedilol,
Diabetes Mellitus ). The pairs have been discovered by combining all the drugs
and diseases that target all the genes present in the generated rule.

– Genes (VEGFA) and (ADRB1) target the drug Carvedilol
– Gene (IL6) target Inflammatory Bowel, Rheumatoid Arthritis and Diabetes

Mellitus diseases.

Table 2. The evaluation results of the generated rules: Number of Rules (Nb Rules),
Average Fitness (Avr Fit), Average Accuracy (Avr Accr).

Nb Rules Avr Fit Avr Accr

Dis −→ Drg 200 0.389 0.921

Drg −→ Dis 200 0.270 0.959
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Table 3. The generated Drug-Disease pairs: Number of known pairs (Nb KwnP),
Number of unknown pairs (NB UnkwnP).

Nb KwnP NB UnkwnP Accuracy

Dis −→ Drg 156 634 92 %

Drg −→ Dis 261 1151 92 %

5 Conclusion

We have presented in this paper the application of GEARM (the grammatical
evolution association rule mining approach) to the problem of drug repositioning.

The sets of rules that have been generated were based on the disease target
genes and the drug target genes. The results we have reached show the power of
GEARM to find some existing pairs of drug-disease and to extract discovering
new unknown pairs which can be a new indication for a drug. The work is still
in progress and the approach is under more study to ameliorate its performance
and to exploit the drug-disease pairs it can generate.
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Abstract. Docking is a key computational method for structure-based design of 
starting points in the drug discovery process. Recently, the use of non-
parametric machine learning to circumvent modelling assumptions has been 
shown to result in a large improvement in the accuracy of docking. As a result, 
these machine-learning scoring functions are able to widely outperform  
classical scoring functions. The latter are characterized by their reliance on a 
predetermined theory-inspired functional form for the relationship between the 
variables that characterise the complex and its predicted binding affinity.   

In this paper, we demonstrate that the superior performance of machine-
learning scoring functions comes from the avoidance of the functional form that 
all classical scoring functions assume. These scoring functions can now be di-
rectly applied to the docking poses generated by AutoDock Vina, which is ex-
pected to increase its accuracy. On the other hand, as it is well known that the 
assumption of additivity does not hold in some cases, it is expected that the de-
scribed protocol will also improve other classical scoring functions, as it has 
been the case with Vina. Lastly, results suggest that incorporating ligand- and 
protein-only properties into a model is a promising avenue for future research. 

Keywords: molecular docking, scoring functions, random forest, chemical 
informatics, structural bioinformatics. 

1 Introduction 

Protein-ligand docking is a key computational method for structure-based drug de-
sign. Docking predicts the preferred conformation and binding affinity of a ligand 
molecule, typically a small organic molecule, as bound to a protein pocket. Such pre-
diction is not only useful to anticipate whether a ligand binds to a protein target, but 
also to understand how it binds. The latter is subsequently important to improve the 
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been shown [4][5] to play a key role in the accuracy of scoring functions. For instance, 
RF-Score [4], the first scoring function using Random Forest (RF) [7] as the regression 
model, was found to outperform a range of widely-used classical scoring functions by a 
large margin. RF-Score has recently been used [2] to discover a large number of innova-
tive binders of antibacterial targets. This machine-learning scoring function has now been 
incorporated [9] into a large-scale docking tool for prospective virtual screening, which is 
freely available at http://istar.cse.cuhk.edu.hk/idock/. There is also a recent version of 
RF-Score [1] incorporating interatomic distance-dependent features to improve the char-
acterization of the complex. 

The benefits of taking a machine learning approach to this problem have now been 
demonstrated in many studies. However, there have been a few criticisms as well. For 
example, the use of  oversimplified features in the original version of RF-Score has 
been pointed out as suboptimal [14], although it is worth noting that this fact did not 
prevent the method from outperforming classical scoring functions [4] or achieving 
high hit rates in prospective virtual screening [2]. Furthermore, the combination of 
machine learning and these features was claimed to learn target properties, which 
would hamper generalisation to test set complexes with targets dissimilar from those 
in the training set, a conjecture that was subsequently rebutted [5]. A corollary of this 
criticism is that there is something about RF-Score features that could prevent the 
model from predicting well those ligands that are not similar to those in the training 
set. In the parlance of machine learning, the object of this criticism has therefore been 
in the selected scheme for data representation. 

In this paper, we demonstrate that the superior performance of machine-learning 
scoring functions comes exclusively from the avoidance of the assumed functional 
form of classical scoring functions. By fixing the remaining design variables (i.e. 
using the same features, training set and test set), any performance difference must 
necessarily come from the choice of regression model. Moreover, in this case the used 
training data and features are identical, so will be the domain of applicability of the 
resulting scoring functions. Thus, performance differences between these models will 
tend to be similar when applied to the same target and ligand types. This research will 
be carried out in the context of AutoDock Vina [13] as the classical scoring function, 
whereas RF will be the adopted non-parametric machine learning technique (other 
techniques are of course possible, but comparing to other techniques is out of the 
scope of the paper and has been done in the past, e.g. [3]).  

2 Methods 

2.1 Model 1 – AutoDock Vina 

The AutoDock series [13][12][11] is arguably the most widely used docking software 
by the research community. AutoDock Vina significantly improved [13] the average 
accuracy of the binding mode predictions offered by AutoDock 4 [11], while running 
two orders of magnitude faster with multithreading. Vina was an exciting develop-
ment, not only because of its remarkable pose generation performance in terms of 
both effectiveness and efficiency, but also because it is an open source tool.  

Vina assumes a theory-inspired functional form. While this form also takes the form 
of a sum of intermolecular energy terms, unlike other classical scoring functions, it  
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is not linear with respect to the set of parameters or weights. Indeed, Vina’s score for 
the kth conformer (ek) is given by the estimated free energy of binding to the target 
protein and calculated as: 

  = ,  = , , ,                          

Now because this study focuses on co-crystallized ligands, there is only one conform-
er per molecule (k=1) and thus the intramolecular contribution cancels out giving:       

                                  = ,                         where 

,  = , + , + + ℎ +   = (−0.035579, −0.005156, 0.840245, −0.035069, −0.587439, 0.05846) 

 

e1 is the predicted free energy of binding reported by Vina when re-scoring the struc-
ture of a protein-ligand complex. To compare to binding affinities (pKd or pKi), the 
predicted free energy of binding in kcal/mol units is converted into pKd with  
pKd=-0.73349480509e1 (see for instance [9] for an explanation of how this conversion 
factor is derived). The values for the six weights were found by minimising the differ-
ence between predicted and measured binding affinity using a nonlinear optimisation 
algorithm (this process was not detailed in the original publication [13]). The first 
three terms (Gauss1, Gauss2, Repulsion) account for steric interactions, the fourth 
term (Hydrophobic) is the contribution of hydrophobic effects, and the fifth term 
(HBonding) accounts for hydrogen bonding (this includes metal ions, which in Vina 
are treated as hydrogen bond donors). Nrot is the number of active rotatable bonds 
between heavy atoms in the ligand and it is included in the denominator of the func-
tional form to penalize ligand flexibility. Expressions and further details for the five 
ek,inter terms can be found in [13][9]. 

2.2 Model 2 – MLR::Vina 

This is a Multiple Linear Regression (MLR) model using the six unweighted Vina 
terms as features. In order to make the problem amenable to MLR, we made a grid 
search on the w6 weight and thereafter ran MLR on the remaining weights as 
explained in the next section. The scoring function is the calibrated MLR model. 

2.3 Model 3 – RF::Vina 

While Vina’s ability to predict binding affinity is among the best provided by classical 
scoring functions, it is still limited by the assumption of a functional form. To investigate 
the impact of this modelling assumption, we used RF to implicitly learn the functional 
form from the data. A RF is an ensemble of many different decision trees randomly gen-
erated from the same training data. RF trains its constituent trees using the CART algo-
rithm [6]. As the learning ability of an ensemble of trees improves with the diversity of 
the trees [7], RF promotes diverse trees by introducing the following modifications in 
tree training. First, instead of using the same data, RF grows each tree without pruning 
from a bootstrap sample of the training data (i.e. a new set of N complexes is randomly 
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selected with replacement from the N training complexes, so that each tree grows to learn 
a closely related but slightly different version of the training data). Second, instead of 
using all features, RF selects the best split at each node of the tree from a typically small 
number (mtry) of randomly chosen features. This subset changes at each node, but the 
same value of mtry is used for every node of each of the P trees in the ensemble. RF per-
formance does not vary significantly with P beyond a certain threshold and thus P=500 
was set as a sufficiently large number of trees. In contrast, mtry has some influence on 
performance and thus often constitutes the only tuning parameter of the RF algorithm. In 
regression problems, the RF prediction is given by arithmetic mean of all the individual 
tree predictions in the forest. Here we built a RF model with the six Vina features using 
the default number of trees (500) and values of the mtry control parameter from 1 to all 6 
features. The selected model was that with the mtry value providing the lowest RMSE on 
Out-of-Bag (OOB) data. 

2.4 Model 4 – RF::VinaElem 

This is essentially model 3 using a total of 42 features: the 36 RF-Score features [4] in 
addition to the 6 Vina features. Therefore, for a given random seed, a RF for each mtry 
value from 1 to 42 is built and that with the lowest RMSE on OOB data is selected as 
the scoring function. RF-Score features are elemental occurrence counts of a set of 
protein-ligand atom pairs in a complex. To calculate these features, atom types are 
selected so as to generate features that are as dense as possible, while considering all 
the heavy atoms commonly observed in PDB complexes (C, N, O, F, P, S, Cl, Br, I). 
As the number of protein-ligand contacts is constant for a particular complex, the 
more atom types are considered the sparser the resulting features will be. Therefore, a 
minimal set of atom types is selected by considering atomic number only. Further-
more, a smaller set of interaction features has the additional advantage of leading to 
computationally faster scoring functions. In this way, the features are defined as the 
occurrence count of intermolecular contacts between elemental atom types i and j: 
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where dkl is the Euclidean distance between the kth protein atom of type j and the lth 
ligand atom of type i calculated from a structure; Kj is the total number of protein 
atoms of type j and Li is the total number of ligand atoms of type i in the considered 
complex; Θ is the Heaviside step function that counts contacts within a dcutoff neigh-
bourhood. For example, x7,8 is the number of occurrences of protein nitrogen atoms 
hypothetically interacting with ligand oxygen atoms within a chosen neighbourhood. 
This representation led to a total of 81 features, of which 45 are zero due to the lack of 
proteinogenic amino acids with F, P, Cl, Br and I atoms. Therefore, each complex was 
characterized by a vector with 36 integer-valued features. 

3 Experimental Setup 

The PDBbind benchmark [8] is an excellent and common choice for validating generic 
scoring functions. It is based on the 2007 version of the PDBbind database, which  
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contains a particularly diverse collection of protein-ligand complexes, assembled through 
a systematic mining of the entire Protein Data Bank, which led to a refined set of 1300 
protein-ligand complexes with their corresponding binding affinities. The PDBbind 
benchmark essentially consists of testing the predictions of scoring functions on the 2007 
core set, which comprises 195 diverse complexes with measured binding affinities span-
ning more than 12 orders of magnitude, while training in the remaining 1105 complexes 
in the refined set. In this way, a set of protein-ligand complexes with measured binding 
affinity can be processed to give two non-overlapping data sets, where each complex is 
represented by its feature vector x(n) and its binding affinity y(n): 

( ){ } ( ){ } idn
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This benchmark has the advantage of permitting a direct comparison against the per-
formance of 16 classical scoring functions on the same test set [8]. Furthermore, using a 
pre-existing benchmark, where other scoring functions had previously been tested, en-
sures the optimal application of such functions by their authors and avoids the danger of 
constructing a benchmark complementary to the presented scoring function. 

4 Results and Discussion 

Performance is commonly measured [8] by the Standard Deviation (SD), Root Mean 
Square Error (RMSE), Pearson correlation (Rp) and Spearman rank-correlation (Rs) be-
tween predicted and measured binding affinity. SD is included to permit comparison to 
previously-tested scoring functions in this benchmark. RMSE reflects the ability of the 
scoring function to report an accurate binding affinity number, whereas Rs shows how 
well it can rank bound ligands according to binding strength. Rp simply shows how linear 
the correlation is and thus it is a less relevant indicator of the quality of the prediction. In 
the remaining of the section, a series of tests are presented and discussed. 
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where )(np is the predicted binding affinity given the feature vector )(nx , a and b are 

the intercept and coefficient of the linear correlation between 
N
n

np 1
)( }{ =  and 

N
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on the test set, )(ˆ np  is the fitted value of )(np , and 
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4.1 MLR Is Better at Calibrating the Additive Functional Form of Vina’s SF 

101 versions of model 2 were generated using all the w6 values from 0 (no influence 
of Nrot) to 1 (maximum influence of Nrot) with a step size of 0.01. Since the best mod-
els were always between 0.005 and 0.020, we carried out a second grid search in this 
range with step size 0.001. The best of these models (w6= 0.012) provided a test set 
performance with significantly lower error and higher correlation than Vina (see 
models 1 and 2 in Figure 2). This means that MLR is more suitable to calibrate Vina’s 
scoring function than the originally used nonlinear optimisation algorithm. 

  

Fig. 2. Performance on the 195 test set complexes in the PDBbind benchmark: model 1 (left) 
and model 2 (right). Model 1 is AutoDock Vina, whereas model 2 is trained on 1105 of the 
1300 complexes used in Vina (i.e. removing the 195 test set complexes that were in Vina’s 
training set) and using the same six Vina features. Both models assume an additive functional 
form, but differ on the way the weights are estimated from data: an undisclosed nonlinear opti-
mization algorithm (left) and MLR (right). 

4.2 Vina’s Assumed Functional Form Is Detrimental for Its Performance 

Both the linear (model 2) and nonlinear (model 1) optimisation approaches to training 
Vina assume a quasi-additive functional form. By looking at Figures 2 and 3, it is  
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clear that model 3 performs much better than models 1 and 2. Note that model 3 uses 
exactly the same features and data sets as the other two models. The only difference 
between these models is that model 3 implicitly constructs the functional form from 
the data using RF for regression, whereas the other two Vina models assume a priori 
form for how the features are combined to form the scoring function. Therefore, these 
results demonstrate that this performance improvement is entirely due to the avoid-
ance of this commonly-used modelling assumption. 

 

Fig. 3. Performance on the 195 test set complexes in the PDBbind benchmark: model 2 (left) 
and model 3 (right). Models 2 and 3 were trained on the same data and used the same represen-
tation (1105 complexes and six Vina features, respectively), but used different regression mod-
els (MLR in model 2 and RF in model 3). Unlike RF, MLR implicitly assumes a functional 
form for the scoring function. 

4.3 Incorporating Ligand Properties Increases Performance Further 

Unlike the remaining fixed Vina features, which encode properties of the protein-
ligand complex, Nrot is exclusively a property of the ligand (the number of rotatable 
bonds, effectively an estimation of the flexibility of the ligand). When model 3 is run 
with five features (all but Nrot), test set error increases from a best RMSE of 1.67 to 
1.74 (Rs correlation drops from 0.741 to 0.706; see Figure 4). This result shows that it 
is advantageous to add Nrot as a model feature. More broadly, this suggests that incor-
porating ligand properties into the model, such as those that are routinely used  
in ligand-based QSAR models, may enhance performance further. Likewise, features 
encoding protein properties could also extend the capabilities of generic scoring  
functions. 
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Fig. 4. Performance on the 195 test set complexes in the PDBbind benchmark: model 3 (left) 
and model 5 (right). Models 3 and 5 were trained on the same data and used the same regres-
sion model (RF). However, model 5 uses one feature less (Nrot). 

4.4 Incorporating Protein-Ligand Features also Increases Performance 

Lastly, model 4 performed even better than model 3 (Figure 5). This shows that add-
ing the 36 features from the original RF-Score is beneficial for performance, all other 
factors being equal. The best test set performance of model 4 was RMSE=1.51, 
Rp=0.803 and Rs= 0.798. 

 

Fig. 5. Performance on the 195 test set complexes in the PDBbind benchmark: model 3 (left) 
and model 4 (right). Models 3 and 4 were trained on the same data and used the same regres-
sion model (RF). However, model 4 uses 36 intermolecular features in addition to the six Vina 
features used by model 3. 



228 H. Li et al. 

4.5 Model 4 Performs Significantly Better than any Classical Scoring Function 

Figure 6 compares the performance of models 1-4 given by RMSE, Rp and Rs. 

 

Fig. 6. Performance of each model according to RMSE (left), Rp (middle) and Rs (right). 

Models 2-4 were trained on the same 1105 complexes and tested on the 195 com-
plexes in the 2007 core set (Vina is model 1 and was originally trained on all 1300 
complexes, so we only tested it on the core set). Models 3 and 4 are stochastic be-
cause they are based on RF (a randomized algorithm). Hence, to assess the variability 
in their response, the same set of 10 random seeds is used to generate 10 versions of 
the model. The performance of each version is summarized by the boxplots in Figure 
6. Because model 1 is off-the-shelf software and model 2’s MLR is deterministic, 
these only provide one set of predictions which are shown as horizontal lines in  
Figure 6. These results demonstrate that circumventing Vina’s assumed functional 
form and expanding its set of intermolecular features lead to a large improvement in 
performance. This improvement can be appreciated in Figure 7. 

 

Fig. 7. Performance on the 195 test set complexes in the PDBbind benchmark: AutoDock Vina 
(model 1; left) and RF::VinaElem (model 4; right). RF::VinaElem constitutes a remarkable 
improvement on the key requirement of predicting binding affinity. 
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Next, the performances of RF::VinaElem and AutoDock Vina are compared 
against that of a broad range of scoring functions on the PDBbind benchmark [8]. 
Using a pre-existing benchmark, where other scoring functions had previously been 
tested, ensures the optimal application of such functions by their authors and avoids 
the danger of constructing a benchmark complementary to the presented scoring func-
tion. Table 1 reports the performance of all scoring functions on the independent test 
set, with RF::VinaElem obtaining the best performance. In contrast, classical scoring 
functions tested on the same test set obtained significantly higher SD/RMSE errors 
and lower correlations with measured binding affinities. It is noteworthy that 
AutoDock Vina is among the most accurate classical scoring functions, which is not 
surprising given its status as the most widely-used docking software as evidenced by 
number of citations. 

Table 1. Performance of scoring functions on the PDBbind benchmark. These are ordered by 
highest rank-correlation (Rs) with ties resolved by smaller error (SD). The presented scoring 
function obtained the best results on this benchmark. 

Scoring Function Rs Rp SD 
RF::VinaElem 0.798 0.803 1.51 
X-Score::HMScore 0.705 0.644 1.83 
DrugScoreCSD 0.627 0.569 1.96 
AutoDock Vina 0.608 0.554 1.99 
DS::PLP1 0.588 0.545 2.00 
SYBYL::ChemScore 0.585 0.555 1.98 
GOLD::ASP 0.577 0.534 2.02 
SYBYL::G-Score 0.536 0.492 2.08 
DS::LigScore2 0.507 0.464 2.12 
DS::LUDI3 0.478 0.487 2.09 
GOLD::ChemScore 0.452 0.441 2.15 
DS::PMF 0.448 0.445 2.14 
SYBYL::D-Score 0.447 0.392 2.19 
GlideScore-XP 0.435 0.457 2.14 
DS::Jain 0.346 0.316 2.24 
GOLD::GoldScore 0.322 0.295 2.29 
SYBYL::PMF-Score 0.273 0.268 2.29 
SYBYL::F-Score 0.243 0.216 2.35 

5 Conclusions and Future Prospects 

The use of non-parametric machine learning is a particularly promising and still largely 
unexplored approach to develop generic scoring functions. This study has shown that 
assuming a predetermined functional form and restricting to a small set of intermolecular 
features are the main reasons for the large difference in performance between classical 
and machine-learning scoring functions. Thus, the latter will eventually translate into 
more successful docking applications. Importantly, this study strongly suggests that other 
classical scoring function should experience similar performance gains once an assumed  
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functional form is circumvented using non-parametric machine learning. Finally, the 
results also suggest that incorporating ligand- and protein-only properties into the scoring 
function is a promising path to future improvements. 
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Abstract. Docking is a computational technique that predicts the preferred con-
formation and binding affinity of a ligand molecule as bound to a protein pock-
et. It is often employed to identify a molecule that binds tightly to the target, so 
that a small concentration of the molecule is sufficient to modulate its biochem-
ical function. The use of non-parametric machine learning, a data-driven ap-
proach that circumvents the need of modeling assumptions, has recently been 
shown to introduce a large improvement in the accuracy of docking scoring. 
However, the impact of pose generation error on binding affinity prediction is 
still to be investigated. 

Here we show that the impact of pose generation is generally limited to a 
small decline in the accuracy of scoring. These machine-learning scoring func-
tions retained the highest performance on PDBbind v2007 core set in this com-
mon scenario where one has to predict the binding affinity of docked poses in-
stead of that of co-crystallized poses (e.g. drug lead optimization). Neverthe-
less, we observed that these functions do not perform so well at predicting the 
near-native pose of a ligand. This suggests that having different scoring func-
tions for different problems is a better approach than using the same scoring 
function for all problems. 

Keywords: molecular docking, scoring functions, random forest, chemical 
informatics, structural bioinformatics. 

1 Introduction 

Protein-ligand docking is a key computational method in structure-based drug design. 
Docking predicts the preferred conformation and binding affinity of a ligand molecule 
as bound to a protein pocket. Such prediction is not only useful to anticipate whether 
a ligand binds to a protein target, but also to understand how it binds or how strongly 
it binds. Docking is often utilized to identify a molecule that binds tightly to the tar-
get, so that a small concentration of the molecule is sufficient to modulate its  
biochemical function. 
                                                           
* Corresponding author. 
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large improvement in the accuracy of scoring functions. RF-Score [4], the first scor-
ing function using Random Forest (RF) [6] as the regression model, was found to 
outperform a range of widely-used classical scoring functions by a large margin. RF-
Score has recently been used [2] to discover a large number of innovative binders of 
antibacterial targets and has now been incorporated [8] into a large-scale docking tool 
for prospective virtual screening (http://istar.cse.cuhk.edu.hk/idock/). To avoid con-
founding factors introduced by pose generation, these studies on scoring accuracy are 
carried out on data consisting of large sets of X-ray structures of protein-ligand com-
plexes. However, scoring of the docked poses of a molecule is required in those cases 
where the experimentally-determined pose is not available.  

In this paper, we study the impact of pose generation error on classical and ma-
chine-learning scoring functions. Furthermore, we investigate which of these scoring 
functions is more suitable for predicting the near-native pose (i.e. the most similar 
docked pose to the co-crystallized pose). The numerical experiments will be per-
formed with AutoDock Vina [12], as the classical scoring function, and RF-Score [1, 
4] as the machine-learning scoring function. Investigating the generalisation of these 
results to other non-parametric machine learning techniques previously applied to this 
problem, such as SVR in [3], is out of the scope of this study, although expected to 
yield similar outcomes.  

2 Methods 

2.1 Model 1 – AutoDock Vina 

The AutoDock series [12][11][10] is arguably the most widely used docking software 
by the research community. AutoDock Vina significantly improved [12] the average 
accuracy of the binding mode predictions offered by AutoDock 4 [10], while running 
two orders of magnitude faster with multithreading. Vina was an exciting develop-
ment, not only due to its remarkable pose generation performance, both in terms of 
effectiveness and efficiency, but also because it is an open source tool that aids dock-
ing method development.  

Vina’s score for the kth pose of a molecule is given by the estimated free energy of 
binding to the target protein and calculated in Vina as: 
 

  = ,  = , , ,                                                 

 
where ,  = , + , + + ℎ+  ,  = , + , + + ℎ+  = −0.035579,  = −0.005156,  = 0.840245,  = −0.035069,  = −0.587439, = 0.05846 
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e1 is the predicted free energy of binding reported by Vina when re-scoring the 
structure of a protein-ligand complex. As usual, to compare to binding affinities (pKd 
or pKi), the predicted free energy of binding in kcal/mol units is converted into pKd 
with pKd=-0.73349480509e1 (see for instance [8] for an explanation of how this con-
version factor is derived). The values for these weights were found by minimising the 
difference between predicted and measured binding affinity using a nonlinear optimi-
sation algorithm (this process was not detailed in the original publication [12]).  Fur-
ther details on each of these Vina terms can be found in [8], including the expressions 
for intermolecular and intramolecular energetic terms (respectively distinguished with 
‘r’ and ‘a’ subscripts above).  

2.2 Model 2 – MLR::Vina 

In studies based on structural data, there is only one 3D geometry or pose of the 
molecule (k=1), the co-crystallized ligand, and thus the intramolecular contributions 
in equation 1 cancel out. This means that, once a co-crystallized ligand is redocked, 
each of the resulting poses is described by 11 Vina terms. Here, a MLR model, 
effectively a classical scoring function, is built using the 11 unweighted Vina terms as 
features. In order to make the problem amenable to MLR, we made a grid search on 
the w6 weight and thereafter run MLR on the remaining weights as explained in the 
next section. 

2.3 Model 3 – RF::Vina 

While Vina’s ability to predict binding affinity is among the best provided by classi-
cal scoring functions, it is still limited by the assumption of additivity in its functional 
form. Random Forest (RF) [6] can be used to circumvent modeling assumptions. We 
therefore built a RF model with the 11 Vina features using the default number of trees 
(500). Instead of using all features, RF selects the best split at each node of the tree 
from a typically small number (mtry) of randomly chosen features. The mtry value 
with the lowest RMSE on Out-of-Bag (OOB) data is selected.  

2.4 Model 4 – RF::VinaElem 

This is essentially model 3 using a total of 47 features: the 36 RF-Score features [4] in 
addition to the 6 Vina features. Therefore, for a given random seed, a RF for each mtry 
value from 1 to 47 is built and that with the lowest RMSE on OOB data is selected as 
the scoring function. RF-Score features are elemental occurrence counts of a set of 
protein-ligand atom pairs in a complex. To calculate these features, atom types are 
selected so as to generate features that are as dense as possible, while considering all 
the heavy atoms commonly observed in PDB complexes (C, N, O, F, P, S, Cl, Br, I). 
As the number of protein-ligand contacts is constant for a particular complex, the 
more atom types are considered the sparser the resulting features will be. Therefore, a  
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minimal set of atom types is selected by considering atomic number only. Further-
more, a smaller set of interaction features has the additional advantage of leading to 
computationally faster scoring functions. In this way, the features are defined as the 
occurrence count of intermolecular contacts between elemental atom types i and j: 
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where dkl is the Euclidean distance between the kth protein atom of type j and the lth 
ligand atom of type i calculated from a structure; Kj is the total number of protein 
atoms of type j and Li is the total number of ligand atoms of type i in the considered 
complex; Θ is the Heaviside step function that counts contacts within a dcutoff neigh-
bourhood. For example, x7,8 is the number of occurrences of protein nitrogen atoms 
hypothetically interacting with ligand oxygen atoms within a chosen neighbourhood. 
This representation led to a total of 81 features, of which 45 are zero due to the lack of 
proteinogenic amino acids with F, P, Cl, Br and I atoms. Therefore, each complex was 
characterized by a vector with 36 integer-valued features. 

3 Experimental Setup 

3.1 The PDBbind Benchmark 

The PDBbind benchmark [7] is an excellent and common choice for validating ge-
neric scoring functions. Based on the 2007 version of the PDBbind database, it con-
tains a particularly diverse collection of protein-ligand complexes from a systematic 
mining of the entire Protein Data Bank. This procedure led to a refined set of 1300 
protein-ligand complexes along with their binding affinities. The PDBbind bench-
mark essentially consists of testing the predictions of scoring functions on the 2007 
core set, which comprises 195 diverse complexes with measured binding affinities 
spanning more than 12 orders of magnitude, while using the remaining 1105 refined 
set complexes for training (i.e. both sets have no complexes in common). In this way, 
a set of protein-ligand complexes with measured binding affinity can be processed to 
give two non-overlapping data sets, where each complex is represented by its feature 
vector x(n) and its binding affinity y(n): 
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3.2 Performance Measures 

Performance is commonly measured [7] by the Root Mean Square Error (RMSE), 
Pearson correlation (Rp) and Spearman rank-correlation (Rs) between predicted and 
measured binding affinity. RMSE reflects the ability of the scoring function to report 
an accurate binding affinity estimation, whereas Rs shows how well it can rank bound  
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ligands according to binding strength. Rp simply shows how linear the correlation is 
and thus it is a less relevant indicator of the quality of the prediction. Their expres-
sions are:  
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where f  is the scoring function, )(np  is the predicted binding affinity given the  

feature vector )(nx , )(ny  is the corresponding measured binding affinity, N is the num-
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The Root-Mean Square Deviation (RMSD) quantifies how different the 3D geome-
try of the redocked pose is from the corresponding co-crystallized pose of the same 
ligand molecule (i.e. the pose generation error).  
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where Na is the number of heavy atoms, ))()()( n
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t zyx ，，（  is the 3D coordinate of the 

nth heavy atom of the docked pose. 

4 Results and Discussion 

4.1 Redocking the Ligand of Each Test Set Complex 

In this study, each of the 1300 co-crystallized ligands was redocked into the binding 
site of its target protein using Vina with default settings. Previously, a script was writ-
ten to automatically define the search space by finding the smallest cubic box that 
covers the entire ligand and subsequently extending the box by 10Å in all the three  
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dimensions. For each molecule, Vina returned a maximum number of nine docked 
poses, of which the one with the best Vina score was used. A second script was writ-
ten to compute their RMSD with respect to the corresponding co-crystallized pose.  
Because we aimed at investigating the impact of pose generation error on the predic-
tion of binding affinity, a second test set was defined where each of the 195  
complexes has its ligand re-docked and its binding affinity predicted by the scoring 
functions previously trained on the 1105 crystal structures. As a baseline, these scor-
ing functions were also tested on the co-crystallized ligands of the same 195 com-
plexes. It is noteworthy that, in redocked poses, Vina achieved a relatively small pose 
generation error in the test set (52% of the ligands had a docked pose with RMSD < 2Å). 

4.2 Pose Generation Error Slightly Worsens Binding Affinity Prediction 

Models 2-4 were trained on the same 1105 complexes and tested on the 195 complex-
es in the 2007 core set (Vina is model 1 and was originally trained on all 1300 com-
plexes, so we only tested it on the core set). While this training set is composed by 
crystal structures, there are two versions of the test set: the “crystal” test set with 195 
crystal structures and the “docked” test set with 195 re-docked structures (one per 
complex, generated as explained in the previous subsection). All models were tested 
on both versions of the test set. 

Models 3 and 4 are stochastic because they are based on RF (a randomized algo-
rithm). Hence, to assess the variability in their response, the same set of 10 random 
seeds were used to generate 10 versions of the model (a different seed per training 
run). The performance of each model on each test set version, i.e. on co-crystallized 
poses and redocked poses of the same complexes, is summarized by the boxplots in 
Figure 2. This performance is measured as the Root Mean Square Error (RMSE), 
Pearson’s correlation coefficient (Rp) and the Spearman’s rank-correlation coefficient 
(Rs) between measured and predicted binding affinity. 

Results in Figure 2 show that pose generation error introduces a small degradation 
in the ability of models 2-4 to rank-order complexes according to predicted binding 
affinity in all scoring functions (this can be seen in all three plots). In contrast, Vina 
performed much better on docked poses in terms of RMSE. The latter is a curious 
result and we are unable to explain it with the information provided in the original 
paper [12]. On the other hand, it is remarkable that the best scoring function, 
RF::VinaElem still achieves such a high performance despite pose generation error 
(see Figure 3). Importantly, since model 3 use the same features as model 1 and a 
subset of its training set (Vina is trained on all 1300 complexes in PDBbind v2007 
refined set, whereas model 3 trains on the 1105 left after removing the 195 complexes 
in the v2007 test set), RF::Vina performs remarkably better at predicting binding af-
finity than the widely-used Vina while having the same applicability domain. 
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Fig. 2. Performance of each scoring function on the PDBbind v2007 core set test set with co-
crystallized ligands (left of each plot) and the same set of test complexes with the re-docked 
ligand with the lowest Vina score instead (right). Three performance measures are presented: 
RMSE (top), Rp (middle) and Rs (bottom). Co-crystallized and docked ligands are re-scored 
with Vina (black), MLR::Vina (red), RF::Vina (green) and RF::VinaElem (blue). 
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Fig. 3. Performance on the 195 test set complexes in the PDBbind benchmark: AutoDock Vina 
(model 1; left) and RF::VinaElem (model 4; right). RF::VinaElem constitutes a remarkable 
improvement on the key requirement of predicting binding affinity when re-scoring redocked 
poses.  

 

 

Fig. 4. RMSD from redocking the 195 test set complexes in the PDBbind benchmark: 
AutoDock Vina (model 1; left) and RF::VinaElem (model 4; right). The y-axis shows the abso-
lute error in predicting pKd for each complex. These results show that both scoring functions 
are particularly robust to pose generation error. The Rp and Rs stated at the top of these plots 
quantifies how little the RMSD of the complex generally influences binding affinity prediction, 
at least when using these scoring functions (these correlations must not be confused with those 
between predicted and measured pKd in Figure 3). 
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4.3 Dependency of RMSD with Binding Affinity Prediction 

Next, we compare the RMSD of the redocked pose with the individual absolute error 
in its binding affinity prediction by Vina and RF::VinaElem (note that the square root 
of the summation of the square of these errors is the RMSE introduced in section 3.2). 
It is widely believed that the higher the pose generation error the larger the error on 
predicting that pose will be. Figure 4 plots this information for each scoring function. 
Strikingly, both scoring functions are particularly robust to pose generation error, with 
accurate prediction still being obtained in poses with RMSDs of almost 15. This is 
likely to be connected to uncertainty associated to relating a static crystal structure of 
the complex with its measured pKd which is the outcome of the dynamic process of 
binding, as discussed by Ballester et al. [1] On the other hand, it is noteworthy that, 
while some complexes are very well predicted (pKd error ~ 0), some other have errors 
of more than 7 orders of magnitude (see left plot in Figure 4). However, the perform-
ance over all the test complexes remains high (see Figure 3). 

4.4 Native Pose Prediction vs Binding Affinity Prediction 

Next, we assess the ability of each scoring function to predict the near-native pose of 
a molecule as bound to a target (see Table 1). Interestingly, results show that the least 
accurate predictor of binding strength in this study (Vina) is the best at predicting 
which docked pose is geometrically the closest to the co-crystallized pose. In contrast, 
the presented scoring functions, all better at binding affinity prediction, perform much 
worse than Vina at native pose prediction. This suggests that these two tasks, binding 
affinity prediction and native pose prediction, might not be optimally covered by a 
unique scoring function.  

Table 1. Percentage of test set complexes where the pose with the highest binding affinity as 
predicted by a scoring function (1-4 here) also has the lowest RMSD: 

1 - Vina 2 - MLR::Vina 3 - RF::Vina 4 - RF::VinaElem 
48% 30% 27% 30% 

5 Conclusions and Future Prospects 

This study has revealed that errors in pose generation generally introduce a small decline 
in the accuracy of machine-learning scoring functions. Despite this, RF::VinaElem re-
tained the highest performance on PDBbind v2007 core set in the common scenario 
where one has to predict the binding affinity of docked poses instead of those for co-
crystallized poses (usually because a crystal structure of the ligand is not available). Nev-
ertheless, we observed that the presented RF-based scoring functions do not perform 
particularly well at predicting the near-native pose of a ligand. In the future, we intend to 
investigate scoring functions tailored to this related problem as well as further investigat-
ing why the RMSD of a pose generally has such a small influence on binding affinity 
prediction.  
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Abstract. The problem of Haplotype Assembly is an essential step
in human genome analysis. It is typically formalised as the Minimum
Error Correction (MEC) problem which is NP-hard. MEC has been
approached using heuristics, integer linear programming, and fixed-
parameter tractability (FPT), including approaches whose runtime is ex-
ponential in the length of the DNA fragments obtained by the sequencing
process. Technological improvements are currently increasing fragment
length, which drastically elevates computational costs for such methods.
We present pWhatsHap, a multi-core parallelisation of WhatsHap, a
recent FPT optimal approach to MEC. WhatsHap moves complexity
from fragment length to fragment overlap and is hence of particular in-
terest when considering sequencing technology’s current trends. pWhat-
sHap further improves the efficiency in solving the MEC problem, as
shown by experiments performed on datasets with high coverage.

1 Introduction

The differences among genomes of distinct individuals of the same species are
called polymorphisms. Given two DNA sequences, a Single Nucleotide Polymor-
phism (SNP) is a variation of a single nucleotide occurring at a specific position
in the two sequences. SNPs may occur in genomes of different individuals of the
same species or in different copies of chromosomes of the same individual. The
different forms that a chromosome may exhibit are called alleles. The Human
genome consists of two copies of each chromosome, i.e. it is diploid. Each copy
comes from one of the two parents.

Genomic data obtained from a sequencing experiment of a human genome is
a mixture of the two copies of the chromosomes in the form of many DNA frag-
ments, called reads, which may exhibit one of the forms, i.e. alleles, of parental
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chromosomes. Haplotyping is the task of phasing the SNPs, i.e., determining
which one of the two alleles they come from.

Haplotyping is an essential task for genome annotation and for several kinds of
downstream (comparative) genome analyses, such as finding patterns in human
genetic variations for population genomics, or associating genetic variants to
diseases, response to drugs, and environmental effects.

When SNP phasing is performed directly on raw sequencing reads, it is re-
ferred to as haplotype assembly or read-based phasing. In this case, reads are first
mapped to a reference genome and are then assigned to one of the two haplotypes
based on the SNPs they cover. For each SNP position, reads that indicate differ-
ent alleles must be assigned to different haplotypes. The result is a partition of
the reads in two classes according to their originating haplotype. Unfortunately,
in real data, such a partition may not exist, due to sequencing errors and also
due to reads being misplaced in the mapping phase. For this reason, the task of
haplotype assembly becomes a computational optimisation problem where one
has to minimise the number of adjustments to the data needed to define a bi-
partition that is then a candidate to represent the correct haplotypes. In the
literature, several optimisation problems that formalise haplotype assembly are
considered. Minimum Fragment Removal (MFR) removes the minimum number
of conflicting fragments and hence focuses on mapping errors (that is, misplaced
reads in the mapping phase). Minimum Error Correction (MEC), asks for the
minimum number of characters (nucleotides) to be corrected in the input reads.
Minimum Error Removal (MER) removes a minimum number of characters from
the reads, where removed characters are handled as if the read would not cover
these positions at all. MEC and MER have been proved to be equivalent [11],
and, since they can be reduced from MAX-CUT [9], are NP-hard. Published
algorithms to solve MEC include statistical/heuristic approaches, integer linear
programming, or are exact fixed-parameter tractable algorithms [10], whose com-
plexity is exponential in the number of SNPs per read. Due to ever-increasing
read lengths, leading to more SNPs per read, provided by evolving sequencing
biotechnologies, methods that are exponential in the read length will perform
worse with future-generation longer reads.

In this paper, we present an optimised, parallel implementation of What-
sHap, which was introduced by some of the authors in [20]. WhatsHap focuses
on solving wMEC, a weighted version of MEC. Our choice of WhatsHap is
due to the fact that, remarkably, it is the first exact fixed-parameter tractable
algorithm for solving wMEC which, instead of being exponential in read length,
is instead exponential only in the sequencing coverage, i.e. the maximum num-
ber of different reads that cover a single SNP position. This makes WhatsHap
particularly appealing with respect to the other currently available proposals, in
the light of developments of future generation sequencing techniques, which will
provide longer reads.

In wMEC, each SNP value comes with an associated confidence degree, which
can be set to a combination of the confidence of the base call for that specific po-
sition, i.e. which allele the read comes from, and of the confidence of the mapping
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of the whole read within the chromosome. The confidence degree associated to
each SNP is used as the cost of flipping/ignoring that SNP value in order to
remove errors. In this way, by minimising the total weight of corrected SNPs,
the optimisation problem corrects the most probable sequencing and mapping
errors and can be viewed as a maximum likelihood approach. This improves the
accuracy of WhatsHap in comparison to methods that solve the unweighted
MEC problem. The weighted variant of MEC was first suggested by [12], and
in [21] the authors proposed a heuristic for a special case of wMEC where they
also present experiments show that wMEC is more accurate than MEC.

WhatsHap is still a computationally demanding algorithm. Experimental
results show that single-chromosome datasets with a coverage up to 20 can be
treated in about 2 hours on a single core of an Intel Xeon E5-2620 CPU. The
analysis of a whole genome may require the solution of several independent
instances of the haplotype assembly problem. In this context, the possibility a
high-performance parallel WhatsHap appeared worth exploring.

The main contribution of this paper is to introduce pWhatsHap, an opti-
mised parallel version of WhatsHap. We will focus on the parallelisation of the
single chromosome haplotype assembly instance on a multi-core machine. Whole-
genome approaches can be built on top of “embarrassingly parallel” instances of
pWhatsHap on a range of different architectures.

pWhatsHap has been engineered by relying upon skeletons and parallel de-
sign patterns provided by the FastFlow framework [2], a methodological approach
that allows WhatsHap to be parallelised with minimal changes to the original
sequential code, while minimising the usage of typically slow classical mutual
exclusion mechanisms.

Obtained results show a clear performance increase, allowing us to handle
larger data sets, with bigger coverage, such as the ones that will be provided by
future generation sequencing technologies.

Haplotype assembly and WhatsHap will be recapped in the next two sec-
tions, then pWhatsHap and obtained performance results will be presented.

2 wMEC Model for Haplotype Assembly

The input dataset for this problem is a set of reads mapped to a reference genome.
Arbitrarily re-labelling the alleles to 0 and 1 for each SNP position, the input data
is represented as a matrix, having a row for each read and a column for each SNP
position. Each element of the matrix reports the value of a given SNP in a read.

More formally, the input dataset is represented as an n ×m matrix F , with
n the number of reads and m the number of SNP sites. The elements fi,j of F
take values from the set {0, 1,−}, telling whether, at position j, the read i has
the SNP value of the allele 0, or of the allele 1. A value of “−” indicates that
the respective read does not cover the SNP position. In this case, we say that
the read is not active at that position. In addition, a confidence value (or weight)
vi,j is associated to each active fi,j as part of the input to the problem. The
weight vi,j is the confidence degree of the correctness of the value of fi,j , and in
the optimisation problem wMEC, it represents the cost of flipping fi,j .
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A conflict between two reads rp and rq is a SNP position where the two
reads are active and have different values. In the absence of errors, a conflict
between two reads implies that the two reads come from different alleles. In this
framework, a correct haplotype assembly consists of a bipartition of the rows of
F (the reads), into two conflict free sets R and S. Each conflict free set contains
the complete set of reads assigned to the same haplotype. Unfortunately, such a
bipartition into conflict free sets usually does not exist in real data sets due to
sequencing and mapping errors. The problem thus becomes that of detecting a
minimum-weight set of error corrections that allow for a conflict free bipartition.
For instance, without correcting errors, no conflict-free bipartition exists for
(the rows of) the following 3 × 2 matrix F of coverage 3 (see column 2), where
subscripts are the costs vi,j :

F =

⎛⎝19 19
03 18
− 08

⎞⎠
However, the minimum cost, conflict-free bipartition R = {1, 2}, S = {3} can
be obtained by correcting f2,1, i.e. flipping it to 1 at a cost of 3.

Several heuristic approaches to solve MEC have been put forward in the last
ten years, such as the greedy approaches of [19,15] to assemble the haplotype
of a genome, a method to sample a set of likely haplotypes under the MEC
model [7], and the much faster follow-up to [7], based on the definition of a graph,
analogously to [9], and an iterative greedy heuristic to optimise the MAX-CUT
of that graph [6]. The latter outperforms [19,15] while showing similar accuracy
to [7]. In [18], reducing MEC to MAX-SAT and using a (heuristic) MAX-SAT
solver has been proposed.

All of the abovementioned tools are heuristics – they provide no guarantee
on the quality of the solution. To solve the MEC problem to optimality, sev-
eral exact algorithms have been proposed. To this end, integer linear program-
ming techniques have been developed [11,8]. Fixed-parameter tractable (FPT)
algorithms are another way of approaching the MEC problem and have been
employed in [13]. However, as noted, these approaches have an exponential com-
plexity in the number of SNPs per read or in the read length, which is going to
increase soon and fast with emerging sequencing technologies. Most recently, this
problem has been overcome by WhatsHap [20] which is a FPT algorithm with
coverage as the cost parameter. It is thus better suited to the current develop-
ment trends of sequencing technologies. Shortly after WhatsHap, an equivalent
algorithm formulated in terms of belief propagation was independently proposed
by Kuleshov [14]. The next section recaps WhatsHap.

3 WhatsHap

WhatsHap is a sequential algorithm, based on dynamic programming, that
takes as input the fragment matrix F (one row per read, one column per SNP
position, and values in {0, 1,−}) and a set of confidence values associated to the
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active positions of the reads, as described in the previous section. It computes,
with a dynamic programming method, a minimum-cost conflict-free bipartition
of the set of reads.

WhatsHap builds a cost matrix C with as many columns as F (i.e., one
column for each SNP). C is constructed incrementally, one column at a time.
Let Fj be the set of all reads that are active in the j-th column, let (R,S)
be one of the possible bipartitions of Fj , and let C(j, (R,S)) be the entry for
(R,S) in the j-th column of C. Then, WhatsHap computes the minimum cost
C(j, (R,S)) of making (R,S) conflict free, for all possible (R,S).

In general, a read spanning several consecutive positions will induce dependen-
cies across columns, because a single readmust be consistently assigned to the same
allele throughout all the positions at which it is active (see read 2 in the example
of section 2). Therefore, when computing the cost of the bipartitions of Fj for the
construction of the j-th column ofC,WhatsHap also needs to consider the (min-
imum) cost inherited by the construction of compatible partitions in Fj−1.

Entries C(1, (R,S)) in the first column of C, with (R,S) a bipartition of F1,
only depend on the cost of making R and S conflict free (clearly, no inheritance
from previous columns). R ⊆ F1 can be made conflict free by flipping all 0s in
f1,k, with rk ∈ R, into 1s, at a cost that is equal to the sum of all the weights
associated to the 0s that must be flipped, denoted as W (1)1R. Alternatively, R
can be made conflict free by flipping all 1s into 0s, payingW (1)0R. That is, taking
the most advantageous alternative,

C(1, (R,S)) = min{W (1)1R,W (1)0R}+min{W (1)1S,W (1)0S}.

When considering the j-th column, both the contribution of the column itself
(computed in the same way as for the first column), and the cost of a compatible
bipartition inherited from previous columns must be taken into account.

Consider, for instance, C(j, (R,S)), with j > 1 and (R,S) a bipartition of
Fj . The local contribution of column j is, again, just the cost of the best way
to make R and S conflict free over the column j of F (first row in the formula
below). To this cost, the cost of keeping (R,S) consistent on all the columns
i < j has to be added. This cost is the minimum cost of C(j − 1, (R′, S′)), for
any (R′, S′) which is “compatible” with (R,S).

A partition (R,S) defined at j and one (R′, S′) defined at j−1 are compatible,
written (R,S) ∼= (R′, S′), if each element in Fj ∩ Fj−1, i.e. the reads active in
both j and j− 1, is assigned to the same subset in both (R,S) and (R′, S′). It is
important to note that, because of the incremental way of proceeding, the cost
in the immediately preceding column j − 1 summarises all the corrections made
in columns 1 to j − 1 for keeping (R′, S′) conflict free. Summing up,

C(j, (R,S)) = min{W (j)1R,W (j)0R}+min{W (j)1S,W (j)0S}+
min{C(j − 1, (R′, S′)) | (R′, S′) ∼= (R,S)}

The schema of the generic j-th step of the algorithm consists of defining all
the possible (R,S) at j and then performing the following three steps:
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(a) determine the minimum local cost for making the j-th column conflict free
by flipping some bits on the column according to their weights and the various
correction possibilities;

(b) select the minimum-cost partition amongst those computed at step/column
j − 1 which are compatible with the current partition;

(c) fill in entry C(j, (R,S)) with the sum of the outcomes of (a) and (b).
Once the whole matrix C is computed, the result of the wMEC problem is

identified by the conflict-free partition (R∗, S∗) of minimum cost in the last
column. The actual solution will also comprise all the minimum-cost corrections
made throughout the construction of the matrix, which have assigned each read
in F to partitions compatible with (R∗, S∗).

The complexity ofWhatsHap algorithm is dominated by the maximum num-
ber of bipartitions that must be taken into account at a column. The number of
possible bipartitions of the reads at column j is 2|Fj|, and therefore the complex-
ity is exponential in the amount of active reads that can be found at a position.
This critical (i.e. exponential) parameter is therefore the sequencing coverage
(see [20] for details).

We conclude this section with a few implementation details of WhatsHap
that are relevant for its paralellisation.

In the construction of the j-th column of C, the possible bipartitons of Fj

are considered according to a Gray code enumeration, i.e. their binary encodings
are ordered in a way that the next entry differs from the previous one by only
one bit, e.g. 0001 and 0011, where 0 and 1 indicate the assignment of an active
read to either R or S. This implies that two subsequent partitions differ in the
position of a single read r that moves from set R to set S (or vice versa). This
allows for an efficient incremental computation, since, accounting only for the
impact of moving r, the computation of the cost of the next partition can be
obtained in constant time from the cost of the previous one because updating
the values of W (j)1R,W (j)0R,W (j)1S ,W (j)0S requires constant time.

4 pWhatsHap: High-Performance Haplotype Assembly

The development of a parallel solution for a given problem can be addressed ei-
ther by developing a parallel algorithm from scratch, or by parallelising an exist-
ing sequential algorithm. Our work follows the second approach, where the time
complexity of WhatsHap is a strong motivation for choosing this path. Indeed,
WhatsHap is the first algorithm solving wMEC with a complexity which is expo-
nential only in the sequencing coverage. As explained, solving the weighted version
of the problem caters to its accuracy and exhibiting a complexity independent of
the length of the fragments makes it particularly suitable for the current trends
in sequencing technology, which will provide fragments of increasing length.

We will here focus on pWhatsHap, a parallel version of WhatsHap for a
single chromosome. The Multiple instances of haplotype assembly needed for a
whole genome are fully independent. Such independent runs can be executed con-
currently in an embarrassingly parallel fashion, exhibiting best scalability when
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executed on truly independent platforms (e.g. clusters or cloud resources) where
there is no performance degradation due to the concurrent usage of resources,
which instead may happen on multi-core architectures. For instance, multiple
instances of pWhatsHap could be supported by cloud infrastructures, rightly
considered enabling technologies for bioinformatics and computational biology
that provide a large amount of computing power and storage in an elastic and
on-demand fashion.

Our pWhatsHap targets multi-core architectures and relies upon the Fast-
Flow parallel programming framework [2].

4.1 Technological Background

After decades of increasing clock-frequency and instruction-level parallelism in
single core architectures, the current trends for providing high-end performances
have steadily focused on increasing the number of cores per chip. Since current
multi-core architectures are de-facto small-scale on-chip parallel machines, the
most effective way to increase their performance is to use thread-level parallelism.
However, legacy sequential code does not necessarily benefit from multi-core ar-
chitectures, where single-core complexity and clock are typically lower than tra-
ditional single-core, and sequential code may perform even worse. Furthermore,
parallel programs are inherently more difficult to write than sequential ones due
to concurrency issues. Developers, including bioinformatics scientists, are then
facing the challenge of achieving a trade-off between high-end performances and
time to solution in developing applications and algorithms on current and forth-
coming multi-core platforms.

Parallel software engineering addressed this challenge via high-level language
extensions and coding patterns aimed at simplifying the porting of sequential
codes to parallel architecture, while guaranteeing the efficient exploitation of
concurrency [5]. Parallel design patterns (PDP) [16] have been recognised to
have the potential to induce a radical change in the parallel programming sce-
nario, allowing parallel programs to fully exploit the high parallelism provided by
hardware vendors, simplifying programmer’s tasks, and making whole applica-
tion development more efficient. PDPs provide tested and efficient parallel pat-
terns as composable building blocks, which eliminate the need of implementing,
tuning and maintaining ad-hoc solutions. The machinery available to application
developers is then at a higher level of abstraction with respect to traditional ap-
proaches, such as the Message Passing Interface (MPI), where the programmer
is fully responsible for the parallel behaviour of an application.

The FastFlow parallel framework provides algorithm skeletons and parallel
design patterns, enabling a good trade-off between performance, sequential code
reuse and time to solution.

Our multi-core parallelisation of WhatsHap is based on FastFlow and ex-
ploits the physical shared memory of the underlying architecture, making it un-
necessary to move data between threads, a typical source of overhead. However,
if this greatly simplifies the parallelisation, it also introduces data sharing and
concurrent access related problems. Parallel patterns provided by the FastFlow
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framework solve these problems by defining clear dependencies among different
parts of the computations, hence avoiding costly synchronisations.

FastFlow has been demonstrated to be effective in parallelising and redesign-
ing several sequential and concurrent applications, e.g. [1,3,17], and offers an
important methodological approach for the parallelisation of WhatsHap with
minimal changes to the original sequential code.

4.2 Parallel WhatsHap

WhatsHap follows a dynamic programming approach based on recording so-far
computed results in the incremental construction of the solution, i.e. the matrix of
all the possible conflict-free partitions of minimum cost. In seeking for a possible
decomposition of the algorithm into sub-problems to be solved in parallel by dif-
ferent executors, two obvious alternatives are possible: a vertical decomposition,
where each executor builds a number of columns, i.e. they solve different parts
of the genome, and a horizontal decomposition, where each executor builds some
of the entries of the current column (combinations of the two alternatives could
also be considered). The former would constitute a substantial departure from the
original structure of WhatsHap, whose incremental approach induces linear de-
pendencies on columns: each one depends on the results of the previous one, i.e.,
the minimum-cost compatible partitions of the previous step (see p. 249). Such
dependencies make a vertical decomposition difficult, left for future work.

This paper focusses on a horizontal decomposition: each executor evaluates a
subset of the possible bipartitions (R,S) of the set Fj of reads that are active
in column j.

The first step in the design of pWhatsHap has been to profile the performance
of WhatsHap by measuring the time cost of generating the j-th column in the
minimum cost matrix C (see p. 249). The time required in the construction of
a typical column of a given dimension, i.e. the number of possible bipartitions
of the column, depends on the coverage, i.e. the number of active fragments of
that column (there are ∼ 2c bipartitions for a coverage c). The cost of building
columns with a coverage less than 15 is minimal (< 1ms), and does not justify the
overhead of a parallel construction. The situation is different for c > 15, where
the cost of building columns varies from a few milliseconds to a few seconds.
In these cases it may be worth adopting an adaptive partitioning, varying the
number of executors according to the dimension of the column.

Fig. 1 illustrates the first steps of the parallel construction of the columns of
a minimum cost matrix C (Fig. 1(b)) for a fragment matrix F (Fig. 1(a)), with,
e.g., read f1 being 0 in SNP 1 with confidence 5 and read f2 covering SNPs
1 and 2. In Fig. 1(b), C(1, (R,S)) (left matrix) is built by considering all the
possible bipartitions (R,S) of the reads active on SNP 1, i.e. f1, f2 and f3, which
are represented as binary strings and Gray-code ordered (first three columns).
The set of all possible bipartitions is split between two executors (thick horizontal
line). Each executor builds C starting from the respective entry points (marked
by As) and, in order to maintain as much as possible the original structure of
the sequential algorithm, processes bipartitions in Gray code order (see p. 250).
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Fig. 1. (a): First two columns of a fragment matrix F with associated weights.
(b): The (parallel) construction of the cost matrix C(j, (R,S))

A bit of care was necessary to properly identify the entry points A in the Gray
code sequence.

The costs in C(1, (R,S)) (column c1) only depend on making the current par-
titions conflict free, e.g. for ({f1, f2, f3}, ∅) (first row) by flipping f1 to 1 (last
three columns) at a cost of 5 (column c1), so that R is conflict free and S empty.
In general, for the construction of Cj , the j-th column of C with coverage cj and
k executors, each executor processes approximately 2cj/k possible bipartitions
(R,S) of Fj , with k dynamically depending on cj (and on the hardware config-
uration). In this phase, each executor computes its own bipartitions in parallel
with all other k − 1 executors (map phase, see Fig. 2).

The construction of Cj depends on the minimum costs of the bipartitions in
Cj−1 which are “compatible” with those in Cj , i.e. all those partitions in Cj−1

which “agree” on the values of common reads, i.e. f2 and f3 in Fig. 1(b). This
information is recorded on a suitable table (central matrix), where each executor
over-writes the currently discovered best cost. This may induce write conflicts
(W s in the figure), which have been addressed by constructing local copies of
the table for each executor, and then managing their merging by means of a
sequential reduction phase, executed in pipeline with the map phase (Fig. 2).
The information recorded in the table is then used to determine the costs in the
next column (right matrix) as the sum (Σ) of the minimum cost of compatible
bipartitions (m(c1)) and minimal corrections on the current bipartition (c2).
Concurrent read accesses (Rs) are of no particular concern.

Interestingly, if more than one minimum exists, the interplay of relative exe-
cution speed among parallel executors, may cause non-determinism in the last
overwritten minimum, thus providing different solutions of equal minimum cost
over different executions. Comparison of different optimal solutions is left as
future work.

4.3 Implementation Details

The parallel construction of each column of the minimum cost matrix C has
been implemented by using two FastFlow patterns pipeline and task-farm-with-
feedback (Fig.2). The pipeline pattern consists of a 2-stage pipeline whose first
stage is a task-farm pattern, with workers (W s) connected both to the scheduler
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Fig. 2. The FastFlow skeleton used in pWhatsHap. Each entity is a concurrent thread.
The Emitter (S) produces and schedules tasks towards a pool of Workers (W s). Each
Worker sends results to the Reducer (R) and asks for new tasks from S.

thread (S ) and the second stage of the pipeline (R). The first stage implements
the map phase of the proposed parallelisation, where a given number (chunksize)
of the bipartitions of the fragment set F are computed by each worker in parallel.

The second stage of the pipeline consists of a simple sequential node called
Reducer (R), which receives tasks from all workers (i.e. locally produced re-
sults) and then updates the matrix C with the minimum cost found (reduction
phase on all inputs received). By using these patterns it is possible to exploit:
i) Emitter–Workers pipeline parallelism: the Emitter computes all possible bi-
partitions sending disjoint sub-partitions to Workers using a dynamic scheduling
policy; ii) parallelism among Workers: computation of local minimum costs in
parallel; and iii) Workers–Reducer pipeline parallelisms: the Reducer receives
multiple results in chunks from each worker.

The proposed parallelisation is quite direct and, importantly, requires minimal
changes to the original sequential WhatsHap code. Furthermore, a high degree
of parallelisation is involved due to the many entries of the large fragment table
F corresponding to many (small) tasks that can be executed in parallel on the
available cores.

5 Experimental Results

In this section we report the results of experiments showing how effective the pro-
posed parallelisation is. All the experiments were run using a workstation hosting
two E5-2695 Ivy Bridge Intel Xeon processors, each with 12 cores, 64Gbytes of
main memory, Linux Red Hat 4.4.7 with kernel 2.6.32. Each core has two hard-
ware contexts and thus a total of 48 threads are directly supported in hardware.
The compiler used was gcc 4.8.2 with optimisation level –O3. For each experi-
ment, CPU frequency was set to the maximum value possible for the considered
platform (2.40 GHz, no turbo boost). The parallel version was executed using the
shell command numactl --interleave=all to exploit all the available memory
bandwidth of the 2 NUMA nodes of the hardware platform.
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Table 1. Overall speedup and columns
considered for each data sets.

Time (S)max.
cov.

n. col.
TSeq TPar

Speedup
TSeq
TPar

20 23,000 534 171 3.12

22 9,000 568 160 3.55

24 2,600 581 188 3.09

26 600 523 150 3.49

Table 2. Speedup of the single column
and % of columns with coverage ≥ 18.

Time (S)max
cov

col. with
cov. ≥ 218 TSeq TPar

Speedup

( TSeq
TPar

)
20 77% 439 88 5.00

22 86% 485 87 5.59

24 83% 503 96 5.25

26 80% 422 70 6.06

Since this paper aims at long reads, synthetic data sets with maximum cover-
age of 20, 22, 24 and 26 have been generated and used in the presented experi-
ments. Such coverages correspond to quite large data sets. These data sets were
produced by generating a single data set with an average coverage of 30 mapped
to human genome, and then pruned to smaller coverage data sets (see [20] for
details on the construction). Time performance was evaluated by measuring the
time elapsed in the computation of subsets (i.e. a given number of columns) of
each data set. The dimension of each subset was chosen to guarantee that the
entire produced output could be stored in main memory.

First, we ran a set of tests aimed at determining the time spent when comput-
ing columns of different coverage.We found that, on the considered platform, it is
worth parallelising only columns with a coverage ≥ 18, which we call higher cov-
erage. Columns with coverage of 18 have an average computation time of about
7.4ms. Columns with a coverage of less than 18 (lower coverage) are processed
in less than 1ms on average.

For higher coverage columns, we found that the best execution time was ob-
tained by using all the cores of the platform (24), in particular by using 23
worker threads for the map phase and 1 thread for the reduction phase. Con-
versely, columns with lower coverage were computed using the same parallel
pattern but with just 1 worker thread for the entire map phase (see Fig. 2). In
this case the parallel skeleton is reduced to a pipeline of 2 sequential stages.

The experimental results obtained from running both the original sequential
WhatsHap and the new parallel pWhatsHap are summarised in Table 1. For
instance, for the data with maximum coverage of 20 (column max. cov.), we
considered a subset of 23, 000 contiguous columns (n. col.). The WhatsHap
execution time was 534s (Tseq) while the pWhatsHap time was 171s (Tpar),
thus obtaining an overall improvement of 3.12 (Speedup). For all coverages, the
amount of main memory used was fixed to ∼ 63GB in all the tested cases. The
overall obtained improvement ranges from 3 to 3.5 (see also Fig. 3. Left).

Since it has been observed that the fraction of sequential computation
(including both the construction of columns with lower coverage and inherently
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Fig. 3. Left: total execution time varying the maximum columns coverage. Right:
Average execution time for computing a single column with a given coverage.

sequential parts of the application) amounts to about 20% of the overall com-
putation time (see Table 2), from Amdahl’s law [4] it follows that the maximum
possible speedup would be at most 5.0 1.

The results obtained considering only the columns with higher coverage (i.e.
the ones we compute in parallel) are summarised in Table 2. In this case, the
overall speedup ranges from 5 to 6 times.

The average execution time for computing a single column for several differ-
ent coverages is reported in Fig. 3. Right (logarithmic scale). The per-column
gain obtained, is always in the range 5 - 6.1, both for the smallest coverage (18),
which has a very small computation time (∼ 7ms), and for the biggest coverage
(26), which requires more than 2s of sequential execution for each column. The
fact that we obtained almost the same speedup for very different computation
granularities, clearly demonstrates that the limited scalability is not due to the
overhead introduced by the parallel run-time code. Instead, we found that the
limiting factor is mainly the extensive and non-regular memory access pattern
exhibited by WhatsHap, which does not allow the memory hierarchy of the
chosen platform to be fully exploited in concurrent executions. This seems to
be connected to the fact that the computation for higher-coverage columns is
memory bound. However, further investigation is needed in order to clearly un-
derstand how, and if, it is possible to suitably re-organise WhatsHap’s data
structures to overcome this issue.

6 Final Considerations

pWhatsHap aims at further stretching the capabilities of the computational
analysis of DNA sequences, targeting high-coverage data sets of long fragments.
The performed experiments clearly demonstrated the validity of the proposed

1 Let f be the fraction of the algorithm that is strictly sequential, 1/5 here,
then the theoretical maximum speedup that can be obtained with n threads is
S(n) = 1

f+ 1
n
(1−f)

, i.e. 5 with n → ∞.
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parallelisation of WhatsHap, with an overall speedup of more than 3× for such
a fine-grained parallelism problem. Thanks to the design pattern methodology
adopted for the parallelisation, such results have been obtained with minimal
modifications to the original sequential code. Critical parts of the sequential
algorithm amenable to further optimisation have been identified in the process,
paving the way for future enhancements of the parallel algorithm. An extensive
experimentation on human data sets is planned for future work.
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Abstract. Biological data analysis is typically implemented using a deep pipe-
line that combines a wide array of tools and databases. These pipelines must 
scale to very large datasets, and consequently require parallel and distributed 
computing. It is therefore important to choose a hardware platform and underly-
ing data management and processing systems well suited for processing large 
datasets. There are many infrastructure systems for such data-intensive compu-
ting. However, in our experience, most biological data analysis pipelines do not 
leverage these systems.  

We give an overview of data-intensive computing infrastructure systems, and 
describe how we have leveraged these for: (i) scalable fault-tolerant computing for 
large-scale biological data; (ii) incremental updates to reduce the resource usage 
required to update large-scale compendium; and (iii) interactive data analysis and 
exploration. We provide lessons learned and describe problems we have encoun-
tered during development and deployment. We also provide a literature survey on 
the use of data-intensive computing systems for biological data processing. Our re-
sults show how unmodified biological data analysis tools can benefit from infra-
structure systems for data-intensive computing. 

Keywords: data-intensive computing, biological data analysis, flexible pipe-
lines, infrastructure systems. 

1 Introduction 

Recent advances in instrument, computation, and storage technologies have resulted 
in large amounts of biological data [1]. To realize the full potential for novel scientific 
insight in the data, it is necessary to transform the data to knowledge through data 
analysis and interpretation. 

Biological data analysis is typically implemented using a deep pipeline that com-
bines a set of tools and databases [2]. Biological data analysis is diverse and special-
ized, so the pipelines have a wide range of resource requirements. Examples include 
the 1000 Genomes project [3] with a dataset of 260 TB analyzed on supercomputers 
and warehouse-scale datacenters; the many databases [4] and web servers [5] built for 
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a specific type of biological process or organism; and simple analyses run using pre-
defined Galaxy pipelines [6]. An important challenge when building data analysis 
tools and pipelines is therefore to choose a hardware platform and underlying data 
management and processing systems that satisfies the requirements for a specific data 
analysis problem. 

A data analysis and exploration tool architecture typically has the following com-
ponents: 

• A front-end that provides the user interface used by the data analysts, including: 
web applications, pipeline managers [6], web services [7], and low-level interfaces 
such as file systems, and cloud APIs [8, 9]. 

• Data analysis and interpretation services including: specialized servers, search 
engines, R libraries such as BioConductor [10], and tool collections such as Galaxy 
Toolsheds [11]. 

• Infrastructure system for data management including: file systems, databases, and 
distributed data storage systems. 

• Infrastructure system for parallel and distributed computing including: queuing 
systems [12], and the Hadoop software stack [13]. 

• Hardware platform, such as virtual machines, dedicated servers, small clusters, 
supercomputers, and clouds. 

In this paper, we focus on the choice of data management and processing infra-
structure systems. In our experience, most biological data analysis uses a file system 
in combination with a centralized database for data storage and management, and is 
run either on a single machine or on a small cluster with a queuing system such as 
Open Grid Engine [12]. This platform has four main advantages. First, the file sys-
tem-, and database interfaces are stable, and the technology is reliable. Second, many 
clusters for scientific computing are designed to use a network file system and to run 
jobs on a cluster using a queuing system. Third, the developers are familiar with these 
systems and interfaces. Fourth, there are already hundreds of analysis tools imple-
mented for this platform. 

An alternative infrastructure must therefore provide better scalability, performance, 
or efficiency. Or, it must provide services not available on the standard platform. We 
give an overview data-intensive computing systems, and describe how these can be 
leveraged for biological data analysis. We describe how we used these systems to 
transparently extended flexible biological data analysis frameworks with data inten-
sive computing services. We provide lessons learned, and describe the problems we 
have encountered during development and deployment of the extended pipelines. In 
addition, we provide a literature survey on the use of data-intensive computing sys-
tems in biological data processing.  

Our results make it easier to choose data-intensive computing platforms and infra-
structure systems for biological data analysis. First, our systems provide data analysis 
services not available on the standard platform. Second, they do not require modify-
ing biological analysis tools. We believe this combination is essential to increase the 
use of data-intensive systems in biological data processing. 
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2 Related Work 

There are several specialized infrastructure systems developed for data-intensive 
computing. Many of these were initially developed and deployed at companies such 
as Google, Yahoo, Facebook, and Twitter, and then later implemented as open source 
systems. There are also many new systems under development in academia, the open 
source community, and the industry. We provide a short description of the features 
provided by these systems. We limit our description to the most widely used systems 
and omit many emerging systems, and systems that provide a traditional file system 
or SQL interface. 

Data intensive computing systems are often built on a distributed file systems such 
as Hadoop Distributed File System (HDFS) [14, 15] that provide reliable storage on 
commodity component hardware and high aggregate I/O performance. A HDFS clus-
ter co-locates storage and computation resources to avoid the bandwidth bottleneck of 
transferring large datasets over the network to and from the computation nodes. The 
main advantage of HDFS for biological data analysis is that the architecture is 
demonstrated to scale to peta-scale datasets [14, 15], and it is widely used for data-
intensive computing in other fields. The main disadvantage is that HDFS does not 
provide a traditional file system interface, so it is necessary to either rewrite the many 
data analysis tools that use a POSIX file system interface, to incur an overhead for 
moving data between HDFS and a local filesystem, or incur the overhead of third-
party library such as fuse-dfs [16]. In addition, it is not yet a common platform in 
scientific computing, so it may be necessary to purchase and build a new cluster with 
storage distributed on the compute nodes instead of a dedicated storage system. 

MapReduce [8, 13] is a widely used programming model and infrastructure system 
for data-intensive parallel computation. It provides fault-tolerant computation on a 
HDFS-like file system, and makes it easy to write scalable applications since the sys-
tem handles data partitioning, scheduling and communication. Biological data analy-
sis applications, especially for next-generation sequencing data, have already been 
implemented using MapReduce ([17] and [2] provides examples and references). The 
main advantage of MapReduce is that it scales to peta-scale datasets. In addition, most 
cloud platforms provide a MapReduce interface. The main disadvantage is that the 
MapReduce programming model may be too restrictive for some biological applica-
tions. 

HBase [18, 19] is a column based storage system that provides in-memory caching 
for low latency random data access, and efficient compression. Biological data analy-
sis applications can use HBase to store data accessed interactively, to implement cus-
tom data structures, or to structure data for more efficient compression. Compared to 
relational databases, HBase does not provide an advanced query engine nor ACID 
properties. Other systems must implement these on top of HBase if such properties 
are needed by an application. 

An alternative for low-latency query processing is Spark [9, 20]. It offers a richer 
programming model than MapReduce, including iterative operations. It is well suited 
to implement machine learning algorithms, and interactive data analysis. Spark uses 
the Scala programming language, which may be unfamiliar to many developers but 
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bindings exists for Java and Python. Compared to the systems discussed above Spark 
has just recently become a top-level Apache project, but it is rapidly being adopted by 
many other open-source and commercial systems. 

Several high-level programming models are built on top of MapReduce to make it 
easier to write data analysis programs, including Pig [21], Hive [22], Cascading [23]  
and Cassandra [24]. To our knowledge, these are not widely used for biological data 
analysis (see also the discussion in section 4).  

Other data-intensive computing systems for Hadoop, HBase, and Spark includes, 
Cloudera Impala [25] and Drill [26] that both provide a low-latency SQL query en-
gine (inspired by Dremel [27]), Storm [28] for stream processing, and the Mahout 
[29] library of machine learning algorithms. To our knowledge, these are also not 
widely used for biological data analysis (see also the discussion in section 4). 

There are many frameworks for specifying and running biological data analysis 
pipelines. The most widely used systems is Galaxy [6]. It has been integrated with the 
Hadoop software stack [30].  

Table 1. Our use of data-intensive computing systems for biological data processing. 

System Problem Solution Issues 
Troilkatt Scalable analysis 

pipelines 
HDFS: scalable storage 
MapReduce: I/O intensive 
pipeline processing 

Memory manage-
ment 

GeStore Incremental up-
dates for analysis 
pipelines 

HBase: data structures for 
generating incremental 
updates 

Hadoop 
MapReduce job 
startup time 

Mario Tuning of analy-
sis pipelines 

MapReduce: I/O intensive 
pipeline processing 
HBase: sparse data struc-
ture, low- latency reads and 
writes 

Performance tun-
ing HBase 

3 Transparent Data-Intensive Computing 

We have extended several data-intensive computing systems to provide services for 
biological data analysis. In this section, we answer the following questions: 

• Why did we choose a particular infrastructure system? 
• What problems did the system solve? 
• What are the main limitations of the systems for our use? 
• What are the lessons learned during development and deployment? 

We have used three clusters, with 5, 10, and 64 nodes, for development and deploy-
ment of our systems over a period of five years. All were built for data-intensive 
computing with storage distributed on the compute nodes. We chose the Hadoop 
software stack, including HDFS for distributed storage and processing. Hadoop is the 
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mostly used data-intensive computing platform, and it has a very active development 
community. By using Hadoop, we have benefited from improvements to the infra-
structure systems, and the addition of new infrastructure systems such as Spark to the 
ecosystem. In this section, we describe achievements, issues, and lessons learned. 

3.1 Troilkatt 

Troilkatt is a system for batch processing of large-scale collections of gene expression 
datasets. We use Troilkatt to process data for the IMP integrated data analysis tool 
[31]. We built Troilkatt in order to scale our gene expression dataset integration pipe-
line to process all gene expression datasets for several organisms in NCBI GEO [32]. 
The pipelines comprise tools for data cleaning, transformation, and signal balancing 
of these datasets. The integrated data compendium for organisms such as human have 
ten thousands of datasets. The raw data, pipeline results, and intermediate data in a 
compendium use tens of terabyte of storage space. 

Troilkatt provides infrastructure services for automated genomics compendium 
management. It consists of five main components (Fig. 1). First, the large genomics 
compendia maintained by Troilkatt are stored and processed on a cluster. Second, 
Troilkatt leverages the Hadoop software stack for reliable storage and scalable fault-
tolerant data processing. Third, the Troilkatt runtime system provides data manage-
ment including versioning and a library of tools for downloading and processing data. 
Fourth, Troilkatt can execute a large collection of external tools and scripts for data 
processing. Finally, a command line based user interface provides an administrator 
interface for managing compendium content and steering data processing, 

 

Fig. 1. Troilkatt architecture. 

The IMP pipeline processing is well suited for data-intensive systems since most pipe-
line tools are I/O intensive. The data is stored in HDFS. We use MapReduce for parallel 
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processing and HBase for meta-data storage. We chose MapReduce since the processing 
must scale to several tens of terabytes of data. We use one Mapper task per dataset for 
each pipeline tool, since the datasets can be processed independently and hence in paral-
lel. In addition, many tools in the IMP pipeline process one row in a gene expression 
table at a time, and are therefore well suited for the MapReduce programming model. 

Initially we considered using Hadoop streaming (MapReduce with unmodified bi-
naries). However, many biological analysis tools require specifying multiple meta-
database files as command line arguments, which is not possible with Hadoop 
Streaming. To solve this problem, Troilkatt allows specifying multiple input files as 
command line arguments using environment variables. 

We achieved a system that efficiently executes pipelines for processing large-scale 
integrated compendia. We did not have to implement data communication between 
tasks, nor data locality aware mapping of tasks to compute nodes. Our main issue was 
large in-memory data structures in two pipeline tools. Hadoop MapReduce is run in a 
JVM, so the maximum heap size must be set at system startup time. The memory 
usage of the largest tasks therefore limits the number of tasks that can be run in paral-
lel on each node. To achieve a good trade-off between memory usage and parallelism, 
we had to divide the expression datasets by their memory usage and processes simi-
larly sized datasets together in a separate MapReduce job.  

Since all datasets can be processed in parallel, and most organisms have hundreds 
or thousands of datasets, the parallelism in the pipeline exceeded the available com-
pute resources even on the biggest 64-node cluster. We can therefore efficiently uti-
lize a much larger cluster. The raw datasets are larger than the available storage on the 
clusters. We must therefore periodically delete raw data downloaded from public 
repositories. A full update of the dataset therefore requires re-downloading tens of 
terabytes of data from public repositories. In addition, we share the clusters with other 
non-MapReduce jobs. A cluster management system such as Mesos [33] may there-
fore improve the performance of Troilkatt jobs and improve resource utilization. 

3.2 GeStore 

GeStore [34] is a framework for adding transparent incremental updates to data pro-
cessing pipelines. We use GeStore to incrementally update large-scale compendia 
such as the IMP compendia described in the previous section. GeStore is integrated 
with Troilkatt and Galaxy [35]. We built GeStore since the processing time for a full 
compendium update can be several days even on a large computer cluster, making it 
impractical to frequently update large compendia. GeStore adds incremental updates 
to unmodified pipeline tools by manipulating the input and output files of the tools.  

GeStore must detect changes in, and merge updates into, compendia that can be 
tens of terabytes in size. GeStore must also maintain and generate incremental updates 
of meta-databases, such as UniProt [36].  These can be hundreds of gigabytes in size. 
We use HBase for data storage and MapReduce for generating input files and merging 
output files. HBase provides high-throughput random data accesses required for effi-
cient change detection and merging. GeStore stores meta-database entries as HBase 
rows, and it updates entries by creating a new version of an HBase table cell. The 
HBase timestamps enable efficient table scans to find entries that have changed in a 
period and hence are part of an incremental update. In addition, the flexible schema of 
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HBase tables is utilized to reduce the work required to maintain plugins when file 
structure or databases change, allowing several years of database versions to be stored 
in the same HBase table. 

 

Fig. 2. GeStore architecture. 

GeStore provides a plugin system to support many biological tools and file formats 
(Fig. 2). To add incremental updates for a new tool the plugin maintainer implements 
a plugin. The plugin specifies how to partition input and meta- data files into entries, 
which part of an entry are required for the analysis done by a tool, and how to com-
pare the entries to detect updates. In addition, the plugin contains code for writing 
entries to an incremental input file, and merging incremental output with previous 
output data. These plugins are relatively small in size; less than 300 lines of code in 
our most complex plugin. 

We achieved up to 82% reduction in analysis time for compendium updates when 
using GeStore with an unmodified biological data analysis pipeline ([34] has addi-
tional experimental results). We found HBase to be well suited for the data manage-
ment requirements of GeStore. File generation and merging scales to large datasets 
since we use MapReduce for data processing.  In addition, we reduce storage space 
requirements by storing multiple meta-databases versions in HBase instead of storing 
all versions as separate files. 

The overhead introduced by GeStore is high for incremental updates of small da-
tasets, since the startup time of Hadoop MapReduce jobs is tens of seconds. A system 
with lower startup time, such as Spark, will significantly reduce this overhead. 
GeStore overhead can also be large if the implemented plugin is not able to properly 
detect incremental updates. 

3.3 Mario 

Mario [37] is a system for interactive iterative data processing. We have designed 
Mario for interactive parameter tuning of biological data analysis pipeline tools. For 
such interactive parameter tuning, the pipeline output should quickly be visible for the 
pipeline developer. Mario combines reservoir sampling, fine-grained caching of de-
rived datasets, and a data-parallel processing model for quickly computing the results 
of changes to pipeline parameters. It uses the GeStore approach for transparently add-
ing iterative processing to unmodified data analysis tools. 
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Fig. 3. Mario architecture. 

The Mario architecture consists of four main components: storage, log-
ic/computation, the web server and the client/UI (figure 3). The system runs on a 
cluster of computers, with the master process at the cluster frontend, and the workers 
at the compute nodes. These are co-located with HBase master at the cluster frontend 
and the HBase region servers at the compute nodes. The web server and the MySQL 
server can be located on the cluster frontend, or on separate computers. The user runs 
the Mario controller, and data visualization and analysis tools on her computer. 

Mario must efficiently produce random samples from a stream for reservoir sam-
pling, implement a cache of fine-grained pipeline tool results, and implement parallel 
pipeline stage processing. We use HBase as storage backend due to its low-latency 
random read and write capability, its ability to efficiently store sparse data structures, 
and its scalability. Mario stores all intermediate data records produced during pipeline 
execution in HBase, and uses the cached data to quickly find the data records that 
must be updated when pipeline tool parameters are changed. Mario also uses HBase 
for data provenance and single-pass reservoir sampling. The iterative processing in 
Mario is similar to Spark Streaming [38]. Mario splits the data randomly into many 
small parts and distributes these on the cluster nodes. Mario process the parts in paral-
lel. However, it only process a small subset at a time since there are many more parts 
than processor cores. Mario therefore iteratively updates the output data.  

We achieved a system for iterative parallel processing that adds less than 100ms of 
overhead per pipeline stage, and that does not add significant computation, memory, 
or storage overhead to compute nodes (additional experimental results are in [37]). 
We found HBase to be very well suited for efficiently storing and accessing the sparse 
data-structures used by Mario.  

Our main issue was to configure HBase to achieve the required performance.  
We chose a configuration where HBase region servers allocate 12GB DRAM on the 
cluster nodes, and we traded reliability for improved write latencies by keeping write-
ahead logs in memory (and periodically flushing these to disk). The reduced reliabil-
ity is acceptable for Mario since it can recompute the intermediate data stored in 
HBase at low cost, if needed. 
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4 Discussion 

We have assumed that data-intensive computing systems are not widely used for bio-
logical data processing. We base this assumption on our own experience, and discus-
sions we have had with bioinformatics users, model developers, and infrastructure 
maintainers. In this section, we verify this assumption by conducting a literature sur-
vey. We do not conduct a comprehensive survey, but we still believe our results pro-
vides insights into the usage of data-intensive computing systems for biological data 
processing by showing the interest for such systems in the bioinformatics literature. 
The results for the searches described in this section are in Supplementary materials 
(http://bdps.cs.uit.no/data/cibb14-supplementary.pdf). [2, 17] provides additional 
references to articles that describe biological data analysis using data-intensive  
systems. 

4.1 Data-Intensive Computing Articles in BMC Bioinformatics 

We first examined Software articles published in BMC Bioinformatics. It is a popular 
and important journal for bioinformatics analysis tool articles. We also examined 
Genome Biology and the Web Server and Database special issues of Nucleic Acids 
Research, but these journals have few infrastructure articles compared to BMC Bioin-
formatics. The Software articles in that journal also provide detailed implementation 
details and list of required libraries. We used this information to determine whether 
the described software uses data-intensive computing systems.  

We first got a list of articles from the BMC Bioinformatics website 
(http://www.biomedcentral.com/bmcbioinformatics/content) by setting Article types 
to Software, and Sections to All sections. We examined the 23 Software articles pub-
lished between August 2014 and November 2014. Of these, two used a HPC platform, 
one used a data warehouse, and the remaining were implemented for a server or a 
desktop computer. The results show that most software articles in BMC Bioinformat-
ics describe user interfaces, or data analysis and interpretation services. However, the 
software in many articles used tools such as BLAST [39] that are ported to both HPC 
and data-intensive computing platforms. In addition, these articles usually do not 
describe the backend processing systems used to generate the analyzed data. These 
may therefore use data-intensive computing systems. To get results that are more 
specific for our analysis we refined our search to find articles that describe infrastruc-
ture systems. 

We used the Advanced Search in the Bioinformatics website (http://www. 
biomedcentral.com/bmcbioinformatics/search). We searched in All fields for “infra-
structure”, and set Include to Software. This search returned 142 articles in total. We 
examined 15 articles published between November 2013 and November 2014. Of 
these, eight described software run on a single server or a desktop computer, six used 
a cluster for either file storage or as a computational resource, and one  
system [40] used data-intensive computing techniques. These results indicate that 
data-intensive computing systems are not widely used for biological data analysis 
infrastructures. 
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4.2 Articles About Specific Data-Intensive Computing Systems 

In this section, we examine articles describing specific data-intensive computing sys-
tems. We want to find which systems that are used for biological data processing, and 
what these systems are used for. We searched for specific keywords and manually 
filtered the articles in the returned results to exclude articles that do not describe the 
system we searched for. We set Include to All article types to increase the number of 
articles in the search results. The search results includes articles published before 
December 2014. 

We first searched for “Hadoop” since it is the most widely used data-intensive 
computing platform. The search returned 24 articles. Of these, the software in 14 
articles used systems in the Hadoop stack; three articles describe virtual machine 
images or provisioning systems that include Hadoop, and the remaining only mention 
Hadoop in related work. The Hadoop systems were used for search, integrated analy-
sis, data integration, machine learning, and distributed analysis of different data types 

We also searched for the Hadoop alternative Azure [41]. There were six articles 
discussing Azure. The software described in two articles used Azure in combination 
with MapReduce. Two articles propose to use Azure for processing and storage, one 
describes a virtual machine provisioning systems, and one is a review article.  

We then searched for the names of the data-intensive computing systems described 
in section 2. For MapReduce we found 54 articles. In order to remove articles that just 
mention MapReduce in the citations, we refined the MapReduce search by limiting 
the search to Title+Abstract+Text. This reduced the number of articles to 27. Of the-
se, 12 describe software that used Hadoop MapReduce and three software that used 
the MapReduce programming model. Most of these articles are also in the Hadoop 
search results discussed above. We found four HBase articles; of which two [40, 42] 
describe software that used HBase as a storage backend for sequencing data. The 
remaining two mention HBase in related work. We found two Spark articles.  One 
described how they implemented distributed processing of next-generation sequenc-
ing data [43] using Spark. Cassandra, Hive, and Mahout were not used by the soft-
ware in any articles in the search results, but are discussed in the related work in two 
articles. We did not find Impala in any articles. 

We also searched for the Pig, Cascading Drill, and Storm systems, but these return 
many false positives. We therefore refined the search to: “Pig Apache”, “Cascading 
SQL”, “Drill Apache”, and “Storm Apache”.  Pig and Cascading are both discussed 
in the related work in two articles. We did not find any articles for Drill and Storm. 

The above results show that MapReduce is the most popular system for data-
intensive biological data processing, and that most MapReduce tool implementations 
use the Hadoop stack. We also found a few articles where HBase and Spark were 
used. MapReduce, Spark, and HBase are all core systems. We did not find any Bioin-
formatics articles that described tools that use higher-level systems. This may suggest 
that the services and abstractions provided by these are not well suited for biological 
data. The systems that were not mentioned in any articles (Impala, Drill, and Storm) 
are all recently developed, and may therefore have been unstable when the bioinfor-
matics tools described in the articles were implemented.  
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4.3 Usage Trends  

We also examined whether data-intensive computing systems are becoming more 
used for biological data analysis. To answer this question we counted the number of 
articles mentioning MapReduce and Hadoop. The MapReduce design [44] was pub-
lished in 2004, the open-source Hadoop MapReduce project [13] was started in 2005, 
and Hadoop became popular around 2008. Since then, an increasingly number of 
articles mention MapReduce and Hadoop each year, especially in the last two years 
(Table 2). The results indicate that data-intensive computing systems are becoming 
more popular for biological data processing, but that it takes a few years from the 
systems become popular until bioinformatics tools use them. 

Table 2. Number of articles per year for keywords MapReduce and Hadoop (many articles are 
in both results). 2014 does not include articles published in November and December. 

Year Hadoop MapReduce
2009 1 1 
2010 4 7 
2011 4 7 
2012 4 8 
2013 4 15 
2014 7 14 
Total 24 52 

5 Conclusion 

We have transparently extended flexible biological data analysis frameworks to uti-
lize data intensive computing infrastructure systems. Our results show that even  
unmodified biological data analysis tools can benefit from these for: (i) scalable fault-
tolerant computing for large-scale data; (ii) incremental updates in order to reduce the 
resource usage required to update large-scale data compendium; and (iii) interactive 
data analysis and exploration.  

We have identified several limitations of the infrastructure systems we used. How-
ever, by using new systems recently added to the Hadoop ecosystem we can remove 
many of these limitations. We will therefore continue using these systems to extend 
biological data processing pipelines with new services for making data analysis more 
efficient and for improving the quality of the analysis results.  

We believe that centralized storage system performance is becoming a bottleneck 
for large-scale biological data processing, and that it will become necessary to use 
data-intensive computing infrastructure systems and a platform with distributed  
storage to avoid this bottleneck. The systems presented in this paper motivate and 
make the transition to such platforms and infrastructure systems easier for two rea-
sons. First, they provide data analysis services that are not available on the standard 
HPC platform. Second, it is not necessary to modify the biological analysis tools.  
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We believe the combination of novel services and backward compability is essential 
to increase the use of data-intensive systems in biological data processing. 

Troilkatt, GeStore and Mario are all open source:  

• https://github.com/larsab/troilkatt 
• https://github.com/EdvardPedersen/GeStore 
• http://bdps.cs.uit.no/code/mario/ 
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Abstract. Many computational and systems biology challenges, in par-
ticular those related to big data analysis, can be formulated as optimiza-
tion problems and therefore can be addressed using heuristics. Beside
the typical optimization problems, formulated with respect to a single
target, the possibility of optimizing multiple objectives (MO) is rapidly
becoming more appealing. In this context, MO Evolutionary Algorithms
(MOEAs) are one of the most widely used classes of methods to solve
MO optimization problems. However, these methods can be particularly
demanding from the computational point of view and, therefore, effective
parallel implementations are needed. This fact, together with the wide
diffusion of powerful and low-cost general-purpose Graphics Processing
Units, promoted the development of software tools that focus on the par-
allelization of one or more computational phases among the steps charac-
terizing MOEAs. In this paper we present a fine-grained parallelization
of the Fast Non-dominating Sorting Genetic Algorithm (NSGA-II) for
the CUDA architecture. In particular, we will discuss how this solution
can be exploited to solve multi-objective optimization task in the field
of computational and systems biology.

Keywords: Graphics Processing Units, CUDA-accelerated architecture,
Multi-objective optimization, Computational and Systems Biology.

1 Introduction

Several computational and systems biology tasks, such as feature classification,
gene clustering, tag SNP selection, pathway analysis, sequence alignment, struc-
ture prediction, sub-network enrichment and protein-protein interaction analysis
can be faced with multi-objective (MO) optimization approaches. In general, al-
most all optimization problems are multi-objective and the objectives under
consideration typically conflict with each other, i.e., fully optimizing a solution
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with respect to a particular objective leads to unacceptable results with respect
to all the other objectives. A reasonable method to tackle multi-objective opti-
mization problems is (i) to investigate a set of solutions, each of which satisfies
all objectives at an acceptable level without being dominated by any other so-
lution, and then (ii) to choose from this set the “best one” incorporating in the
optimization process high level information related to the particular situation
considered.

Over the last decades, the application of Genetic (or Evolutionary) Algorithms
(GAs or EAs) to find the set of non-dominated solutions (known as Pareto
optimal solutions) in multi-objective optimization problems has been largely
investigated [1]. Indeed, GAs [2] are suited to solve this class of problems because
their population based approach can lead, in a unique run, to an ensemble of
solutions - the Pareto optimal set - which can be later investigated for trade-offs.

The Pareto optimal set in fact is composed by solutions that are all non-
dominated with respect to each other: this means that while moving from one
Pareto solution to another, there is always a certain amount of sacrifice in one
or more objectives to achieve a certain amount of gain in the other(s). Pareto
optimal solution sets are preferred to single solutions because they can be prac-
tical in real-life problems as in computational and systems biology applications,
where the final solution is always a trade-off.

Jones et al. [3] reported that 90% of the approaches to multi-objective (MO)
optimization aim to approximate the true Pareto front for the underlying prob-
lem. A majority of these use a meta-heuristic technique, and 70% of all meta-
heuristics approaches are based on evolutionary approaches. Here the attention is
focused on the Fast Non-dominated Sorting Genetic Algorithm [4], called NSGA-
II because it is an improvement of one of the first proposed MO Evolutionary
Algorithms (MOEAs), the NSGA algorithm, presented in [5].

In particular, we focus on the real-coded NSGA-II, i.e. the case in which
the individual solutions in the population are represented by a vector of real
variables. The extension to the binary-coded algorithm is straightforward and
implies only the addiction of two coding-decoding functions to pass from the
binary to the real representation and vice-versa.

The paper is structured as follows. Section 2 provides a description of the
sequential NSGA-II algorithm, followed by Related Works in Section 3. Section
4 outlines our implementation in CUDA, whose performance are presented in
Section 5. Section 6 concludes.

2 The NSGA-II Algorithm

The structure of this algorithm is similar to other MOEAs: in the schema, the
general steps of such kind of algorithms are drawn and, for each of them, the
particular operations executed by the NSGA-II algorithm are indicated and are
described in detail in the following.

– Initialization: creation of the first population P1 extracting a random set of
NS candidate solutions: P1 = xi for i = 1, . . . , NS .
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– Objective evaluation (P1): theK objective functions f(xi) = fi are computed
for each i = 1, . . . , NS in the P1 population.

– Fitness assignment (P1): assign a fitness value to each solution (xi) in the P1

population based on its objective function value fi and other feasibility cri-
teria. This is the first distinctive step characterizing the NSGA-II algorithm,
where this operation coincides with the non-dominated sort. Moreover, in
NSGA-II, in addition to fitness value, a second parameter called crowding
distance is computed for each individual: this is a measure of how close an
individual is to its neighbours and is used as a secondary selection criterion
to favourite the choice of more diverse solutions among those with the same
fitness value (i.e., in the same front). This is the second distinctive step of
NSGA-II. Both of them are described below in more details.

– for (t = 1 to Ngen)
• Selection: randomly select NS solutions from the Pt population by us-
ing a binary tournament selection (NS random couples of solutions are
extracted and then one individual for each couple is chosen) with a com-
parison operator based on the fitness value and, in NSGA-II, in case of
same fitness value, on the computed crowding distance.

• Crossover (genetic operator): combine the NS selected solutions through
a crossover operator to generate the Qt population; NSGA-II uses the
Simulated Binary Crossover (SBX) operator [6].

• Mutation: apply a random mutation to each of the solutions in the Qt

population; NSGA-II uses polynomial mutation [6].
• Objective evaluation (Qt): the K objective functions f(xi) = fi are com-
puted for each i = 1, . . . , NS in the Qt population.

• Merge: Pt and Qt populations are merged into a unique Rt population
of size 2 ∗NS .

• Fitness assignment Rt: assign each solution xi in the Rt population to
a front, based on the non-dominated sorting method described below.
Compute the crowding distance for each individual.

• Filling: select NS solutions from the 2 ∗ NS in the Rt population to
generate the Pt+1 population; in NSGA-II the new generation is filled
by keeping whole fronts starting from the first one until the front which
would make the population size exceed is reached; at this point the indi-
viduals in the front are sorted in decreasing crowding distance order and
the missing individuals that fulfil the Pt+1 population are kept starting
from the first one in the front.

Non-dominated Sort
A solution A dominates another solution B if and only if fi(A) ≤ fi(B) for all
the K objective functions and fj(A) < fj(B) for at least one of the objective
functions (i.e. i, j ∈ {1, . . . ,K}). With this definition the Non-dominated sort
subdivides the solutions into fronts. The first front is made up by the individuals
which are not dominated by any other in the population.

Then, the subsequent fronts are computed in an iterative loop where, at each
iteration, the individuals belonging to the last determined front are subtracted
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from the domination count of the individuals dominated by them; in this way the
next front will be composed by those individuals for which the domination count
becomes null, i.e., those individuals which are not dominated by any other in
the population except from those which have already been assigned to superior
fronts.

The algorithm used for this operation is the fast non-dominated sort described
in [4], that reduces the computational complexity of the original NSGA algorithm
from O(KN3

S) to O(KN2
S).

Crowding Distance Computation
Crowding distance computation is a parameter-less diversity preservation
method introduced with the NSGA-II algorithm to ensure diversity in the pop-
ulation of solutions. It is an intra-front measure, and the basic idea is to find a
measure of the objective space around an individual which is not occupied by
any other solution in the same front.

3 Related Works

GPU-based MOEAs have been introduced to multi-objective optimization on
regression testing in [7], where NSGA-II is implemented in OpenCL to solve a
multi-objective test suite minimization problem. In this study, which considers
only binary representation, the objective computation is turned into a matrix
multiplication that can be implemented on GPU easily and more efficiently.

The algorithm proposed in [8] focuses instead on test case prioritization, a
problem for which binary representation is not suitable. In this implementation
framework on CPU+GPU architecture, the CPU manages the NSGA-II evolu-
tion process, except objective evaluation and crossover which are parallelized on
the GPU.

The NSGA-II implementation proposed in the present paper is based on the
works presented in [9] and [10].

In [9] a parallel MOEA based on the CUDA platform is presented. In par-
ticular, the CUDA implementation is limited to the objective evaluation and
the crossover operation, while our goal was to extend this approach to move
most of the algorithm on the GPU, i.e., also the selection, mutation and part
of the fitness assignment operation (the dominance checking). Also [10] presents
an interesting CUDA parallelization of a binary and real-coded NSGA-II of the
selection, crossover and mutation operators, that was considered in our work.

The main aspect to consider in fact, according to the evaluation discussed in
[9] and confirmed by our experiments, is that more than 95% of the execution
time of the NSGA-II algorithm is spent in performing the two procedures of
dominance checking and non-dominated sort, which are very time consuming.
In particular sorting solutions based on the dominance covers more than 90% of
the total computation time and is the hardest operation to parallelize, because of
its iterative nature. Therefore, the key role that a suitable parallelization of this
step could play in the overall improvement of the performance of the algorithm
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results obvious and this is our goal. At the best of our knowledge the present
work is the first result presenting a full parallelization of the NSGA-II algorithm
for the CUDA platform.

4 CUDA Implementation of NSGA-II

Being this algorithm a milestone in the field of evolutionary multi-objective
optimization, several implementations are available in different languages and
development environments, as for example in Matlab [11].

The C implementation of the multi-objective NSGA-II provided by the Kan-
pur Genetic Algorithms Laboratory (KanGAL) at Indian Institute of Technol-
ogy, Kanpur (KanGAL Group)1 has been used as the starting point for the
parallelization proposed in this work.

We decided to keep the main loop of the program, which iterates over the gen-
erations, on the CPU and to offload computations on the GPU launching one
(or more) kernels for each step involved in the iteration. This choice is justified
by the fundamental limit that it is not possible to create synchronization barri-
ers among different thread blocks, thus each time a synchronization is required
between threads in different blocks the computation must be split into different
kernels.

Listing 1.1. The pseudocode of the CUDA implementation of NSGA-II

s e t pa rame te r s ( . . . ) ;

ma l l o c ho s t ( Pt host , popsize , Rt host , 2∗ pops i ze ) ;
mal loc dev ( Pt dev , popsize , Rt dev , 2∗ pops i ze ) ;

upload ( Pt dev , Pt host , popsize , Rt dev , Rt host , 2∗ pops i ze ) ;
i n i t i a l i z e ( Pt dev , pops i ze ) ;
eva luate ( Pt dev , popsize , 0 , pops i z e ) ;
non dominated sort ( Pt dev , Pt host , popsize , pops i z e ) ;

f o r ( t=2 to max gen ) {
s e l e c t i o n a nd c r o s s o v e r ( Pt dev , popsize , Rt dev , 2∗ pops i ze ) ;
mutation ( Rt dev , 2∗ popsize , popsize , pops i z e ) ;
eva luate ( Rt dev , 2∗ popsize , popsize , pops i z e ) ;
merge (Rt dev , 2∗ popsize , 0 , Pt dev , pops i ze ) ;
non dominated sort ( Rt dev , Rt host , 2∗ popsize , pops i z e ) ;
f i l l ( Pt dev , popsize , Rt dev , Rt host , 2∗ pops i ze ) ;

}

download ( Pt host , Pt dev , popsize , Rt host , Rt dev , 2∗ pops i ze ) ;

f r e e h o s t ( Pt host , Rt host ) ;
f r e e d ev ( Pt dev , Rt dev ) ;

The pseudocode of our implementation is presented in Listing 1.1. As re-
gards the GPU implementation of the operations (i.e. initialize, evaluate, muta-
tion, merge, non dominated sort, selection and crossoverand fill), we preferred
to exploit the cuRAND, cuBLAS, Thrust and Nvidia Performance Primitives

1 http://www.iitk.ac.in/kangal/codes.shtml

http://www.iitk.ac.in/kangal/codes.shtml
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(NPP) libraries when possible and convenient. Otherwise, custom kernels were
developed. For the sake of brevity we present only the pseudocode of the
non dominated sort in Listing 1.2.

Listing 1.2. The pseudo-code of the CUDA implementation of the functions for Non-
dominated sort and crowding distance computation

non dominated sort (pop , pop host , popsize , num ind ) {
/∗ S dev and n dev computation not shown ∗/
/∗ copy o b j e c t i v e s on the host f o r crowding d i s t anc e comp ∗/
/∗ i n i t i a l i z e crowding d i s t anc e to 0 ∗/
/∗ 1 s t f r on t computed

( i ) th r e sho l d i ng n dev to f i nd z e ro s
( i i ) copying t h e i r i n d i c e s in f e l emen t s

and t h e i r count in f s i z e ∗/

a s s i g n c r owd d i s t ( pop host , popsize , pop−>f c oun t e r ) ;

wh i l e ( f s i z e [ pop−>f c oun t e r ]>0 &&
f o f f s e t [ pop−>f c oun t e r+1]<num ind ) {

c a l c n ex t f r o n t<<<grid , block>>>(n dev , S dev , popsize ,
f e l ements dev , f s i z e d ev , f o f f s e t d ev , pop−>f c oun t e r ) ;

a s s i g n c r owd d i s t ( pop host , popsize , pop−>f counte r −1);
cudaDeviceSynchronize ( ) ;

}
/∗ copy back the computed crowding d i s t anc e on the dev ice ∗/

}

c a l c n e x t f r o n t (n , S , s i z e , f e l ements , f s i z e , f o f f s e t , f r on t ) {
S loc , n l o c = n [ t i d ] ; // t i d=thread ’ s id
index , new f ront=0;

f o r ( k=0 to f s i z e [ f ront −1] ) {
S l oc = S [ f e l emen t s [ f o f f s e t [ f ront −1]+k ]∗ s i z e+t id ] ;
n l o c −= S loc ;
new f ront += ( ( n l o c==0) ∗ ( S l o c==1) ) ;

}

i f ( new f ront ) {
index = atomicAdd( f s i z e+f ront , 1 ) ;
f e l emen t s [ f o f f s e t [ f r on t ]+ index ] = t id ;

}
n [ t i d ] = n l oc ;

}

In Listing 1.1, the variables Pt dev, Pt host, and Rt dev, Rt host are, respec-
tively, the parent and mixed (parent + child) populations on the device and
on the host, while popsize is the number of solutions composing the popula-
tion. The set parameters function sets the problem and simulation parameters.
The malloc host/free host and malloc dev/free dev functions allocate/free the
data structures containing the populations and the auxiliary arrays respectively
on the device global memory and on the host. The upload/download functions
copy such data structures respectively from the host to the device memory and
vice-versa.

It is worth noting that the NSGA-II sequential implementation is based on
list-like data structures that, in order to efficiently port the algorithm on a CUDA
architecture, was converted from arrays-of-structs to structs-of-arrays, avoiding
the use of lists.
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As said before, the most interesting function is the non dominated sort, be-
cause in literature we did not find previous attempts to parallelize the ranking
of non-dominated solutions through the fast non-dominated sorting procedure.
This is the core of NSGA-II and, although it is the hardest to parallelize because
of its iterative nature, it occupies alone more than 90% of the total computational
time needed by the algorithm. Three are the most important parts:

1. Dominance checking with computation of the S matrix: Sij = 1 if j domi-
nates i, 0 otherwise. The n array contains the sum of the rows of S : nj is
the number of elements dominating j.

2. first front identification, i.e. the elements for which n == 0.

3. other fronts identification. It is an iterative cycle: at each iteration, a kernel
on the device determines the next front based on the current one while a
function on the host computes the crowding distance among its elements. A
page-locked mapped memory is used.

5 Results

There are many problems in the field of computational and systems biology
that can be fruitfully addressed using multi-objective optimization. In particu-
lar, we identified three examples, tag single nucleotide polymorphisms (SNPs)
selection, sub-network enrichment and protein-protein interaction that have con-
cerns about multiple objectives to achieve and that create sets of Pareto-optimal
solutions.

For example, while performing SNP genotyping, the extent of linkage disequi-
librium is a critical factor to consider for optimizing the coverage of the analysis.
A subset of SNPs (called tag SNPs), indeed, is sufficient for capturing alleles of
bi-allelic and even multi-allelic variants. Selecting tag SNPs can be formulated
as a multi-objective optimization problem that minimizes the total amount of
tag SNPs, maximizes tolerance for missing data, enlarges and balances the de-
tection power of each allele class. The use of NSGA-II to solve this problem
has been demonstrated to grant enough flexibility to extract different sets of
tag SNPs for different platforms and scenarios [12]. Compared to conventional
methods, this method explores larger search space and requires shorter conver-
gence time. In particular, a small number of additional tag SNPs can provide
sufficient tolerance and balanced power given the low missing and error rates of
today’s genotyping platforms.

Multi-objective optimization can be successfully applied also to systems bi-
ology for the analysis of network, in particular when omics data are mapped
on graphs to enable their integration. A well-established approach to data in-
tegration, in fact, is to exploit gene/protein networks to map multi-omic infor-
mation, allowing their statistical analysis relying on pathways. Nonetheless, few
approaches have been recently described in literature and a small number of
software packages are available. An example of this kind of approach is the work
of Mosca et al. [13], which exploits multi-objective optimization procedure in
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order to drive the identification of sub-networks that are enriched according to
several statistical estimators.

The network-based analysis of omic data with MO optimization described
in [13] can be applied to different types of experimental designs and biological
interactions. For example, this approach can be used to perform network-based
comparisons among several data sets: using transcriptomic data from many types
of tumours its possible to identify strong and coherent differential expressed
pathways. On the other hand, it is possible to identify sub-networks of genes
that accumulate the highest number of mutations/variations in cancer cell line.
The possibility of exploiting NSGA-II to optimize the selection of vertices with
specific omic peculiarities allows the identification of sub-networks that play
significant biological processes in tumours.

The last example we present concerning the use of NSGA-II to predict protein
contact maps. The algorithm proposed by Marquez et al. [14] provides a set of
rules to infer whether there is contact between a pair of residues or not. Such rules
are based on a set of specific amino acid properties. These properties determine
the particular features of each amino acid represented in the rules. Considering
the capability of the algorithm to explore the space using a MOEA approach,
this method shows better accuracy and coverage rates than other contact map
predictor algorithms.

Simulations on benchmark multi-objective optimization problems have been
executed, to provide a fair comparison of results. In particular, we considered the
benchmarks described in [4]: a single real variable, called SCH1 and presented
in Equation 1, and a multiple real variables problem called KUR and described
in Equation 2.

f1(x) = x2

f2(x) = (x− 2)2
(1)

f1(x1, x2, x3) = −10
3∑

i=1

e
−0.2
√

x2
i+x2

i+1

f2(x1, x2, x3) =

3∑
i=1

(
∣∣x0.8

i

∣∣+ 5 sin(x3
i ))

(2)

We compared preliminary results obtained with our CUDA implementation
to that provided by using the NSGA-II C implementation published on the
KanGAL website.

As regards the qualitative assessment of results, we show the plots of the
Pareto-front to which our CUDA implementation converged in order to compare
them to the Pareto-front provided by the KanGAL implementation for both the
problems.

In the SCH1 case we can see that our results (Figure 1) are fully coincident
not only with those of the equivalent sequential implementation (not shown) but
also with those of the KanGAL implementation (Figure 2). The convergence rate
is maintained and the two implementations behave exactly in the same way.
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Fig. 1. Final Pareto set of optimal solutions of the SCH1 problem, where our CUDA
implementation converged in 200 generations. The horizontal axis reports the first
objective function values, the vertical axis reports the second objective function values

Fig. 2. Final Pareto set of optimal solutions of the SCH1 problem, where the KanGAL
implementation converged in 200 generations. The same axes as Figure 1 are maintained

The KUR problem is the second considered: it results clear, looking at Fig-
ures 3 and 4, that our implementation does not converge to a well distributed
front as the KanGAL implementation. The causes of this behaviour are under
investigation. The algorithm seems to converge to the correct Pareto set; the
inhomogeneity should probably be attributed to the step of the algorithm at
which the individuals in the mixed population are chosen by the fill procedure
to form the next generation parent population.
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Fig. 3. Final Pareto set of optimal solutions of the KUR problem, where our CUDA
implementation converged in 200 generations. The horizontal axis reports the first
objective function values, the vertical axis reports the second objective function values

Fig. 4. Final Pareto set of optimal solutions of the KUR problem, where the KanGAL
implementation converged in 200 generations. The same axes as Figure 3 are maintained

As regards the performance, they are shown in Table 1 for the SCH1 problem,
because those of the KUR problem are very close. As said before, the KanGAL
implementation is strictly sequential and not suited for parallelization, in par-
ticular because it uses (two) lists as data structures. The first list contains the
elements in the population not yet ranked, while the second contains the current
front being determined. Each element is picked from the first list and compared
to all other elements and, if it is not dominated by anyone, it is pushed in the
second list. When all elements have been compared, the second list constitutes
the front.
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Using a Nvidia GeForce GTX 580 device, our implementation provides
speedups of about 7-10x against the KanGAL implementation running on an
Intel Xeon E5645 CPU, which at the time of the purchase had almost the same
price. It is worth noting that no CUDA streams are used in these runs and the
computational resources of the graphics card (e.g. in terms of the number of
cores per Streaming Multiprocessor) limit the full exploitation of the parallelism
of the implementation.

An interesting result is that our parallelization compared with a sequential
implementation of the fast non-dominated sorting procedure derived from the
KanGAL one that uses arrays instead of lists presents speedups of the order of
130x.

Table 1. Execution times (in milliseconds) of the proposed CUDA implementation,
compared to the NSGA-II implementation using lists or arrays. tot is the time of
execution of a complete generation of the genetic algorithm, sort is the time of the
non dominated sort function (see Listing 1.2) and other is the time of all other functions
involved in a generation (see Listing 1.1).

Population NSGA-II with lists NSGA-II with array NSGA-II in CUDA
tot sort other tot sort other tot sort other

1024 7.7 7.2 0.5 48.1 47.7 0.5 2.1 1.5 0.6
2048 29.6 28.6 1.0 558.0 557.0 1.0 7.3 6.5 0.8
4096 116.5 114.5 2.0 2340.5 2338.5 2.0 17.9 17.0 0.9

6 Conclusion

Many bioinformatics and systems biology challenges can be formulated as op-
timization problems and therefore can be addressed using heuristics. This is
particularly true if we consider the possibility of optimizing multiple objectives.

In this paper we presented our effort on designing a parallel version of the
NSGA-II algorithm for the CUDA architectures. This is not a trivial tasks,
since the algorithm is made up by different computational steps and each one
needs to be optimized in a customized way. Preliminary results shows interesting
performance figures, considering that the present work represents a first attempt
to parallelize the whole Fast Non-dominating Sorting Genetic Algorithm (NSGA-
II) for the CUDA platform. Moreover, it is worth noting that, even if we have not
yet considered constrained optimization problems, this implementation provides
also the possibility of constraint handling.
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Abstract. Modeling and simulation techniques have been used extensively to 
study the complexities of brain circuits. Simulations of bio-realistic networks 
consisting of large number of neurons require massive computational power 
when they are designed to provide real-time responses in millisecond scale. A 
network model of cerebellar granular layer was developed and simulated here 
on Graphic Processing Units (GPU) which delivered a high compute capacity at 
low cost. We used a mathematical model namely, Adaptive Exponential leaky 
integrate-and-fire (AdEx) equations to model the different types of neurons in 
the cerebellum. The hypothesis relating spatiotemporal information processing 
in the input layer of the cerebellum and its relations to sparse activation of cell 
clusters was evaluated. The main goal of this paper was to understand the com-
putational efficiency and scalability issues while implementing a large-scale 
microcircuit consisting of millions of neurons and synapses.  The results sug-
gest efficient scale-up based on pleasantly parallel modes of operations allows 
simulations of large-scale spiking network models for cerebellum-like network 
circuits. 

Keywords: Graphic Processing Units, cerebellum, computational Neurosci-
ence,·neuron, synapse, adaptive Exponential Leaky Integrate and Fire Model. 

1 Introduction 

Computational modeling allows us to investigate behavior of the neurons and to frame 
or test hypothesis about their operations. Neural modeling at the level of ion-channel 
kinetics using Hodgkin-Huxley models had been useful in characterizing single neuron 
behavior. It is, however, computationally intensive to model large networks of neurons 
due to the number of simultaneous differential equations that must be evaluated and 
due to the abundant system parameters that need to be specified for the neuron being 
modeled.  In order to perform information theoretic analysis of the spike responses, 
massive amount of data from simulations involving thousands of neurons are required. 
Well-known simulators such as NEURON[1]and GENESIS[2] are used widely  
for detailed biophysical simulations of single neurons or for the simulations of small  
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network of neurons.  Due to the computational overhead of the complex neuronal dy-
namics addressed by them, they fail to perform large-scale simulations in the timescale 
of the real network of brain. Hence they have been extended to support distributed 
simulations of biologically realistic network models[3,4]and are run in multi-CPU 
environments like multi-core processors and Beowulf clusters. Simulation with spiking 
neurons gained prominent importance in the computational neuroscience community to 
study the neuronal dynamics of large-scale microcircuits.  Spiking Neural Network 
simulators like NEST[5] and SpikeNET[6]have also followed the same trajectory but 
used different computational models. Most of these simulators support networks of 
realistic connectivity employing multi-threading and message-passing interfaces on 
clusters of computers. With the newer multi-core processors designed as numeric com-
puting engines and with their general purpose programming interfaces, recent comput-
er hardware have shown significant efficiency improvements. Highly parallel pro-
grammable processors like GPUs deliver a high compute capacity at low cost. GPUs 
are enhanced with a greater arithmetic capability, streaming memory bandwidth and 
with a richer set of APIs. GPUs provide computing power that is easily and cheaply 
accessible to individuals who cannot afford clusters and supercomputers. Simple spik-
ing neural network models such as Integrate and fire models without bio-realistic  
features were simulated in the older generation GPUs [7]. Another study focused on 
simulating a large scale Izhikevich-based realistic spiking network models having 105 
neurons and 107 synaptic connections on GPUs[8]. More recent works proved the po-
tential power of GPGPU techniques in real-time simulation of the different regions of 
the brain such as basal ganglia circuitry[9]and cerebellum[10]. The studies have 
demonstrated the use of GPU for neural network simulations. 

We constructed a bio-realistic spiking network of neurons of the cerebellar granu-
lar layer. Since cerebellum contains more than half of the total population of the neu-
rons in the entire brain, the implications of large-scale simulation become pertinent. 
Due to the ‘embarrassingly’ parallel architecture of different layers of neurons in the 
cerebellum and due to the modular connection geometry between them, we chose this 
model as a candidate for parallel simulation. Cerebellum is known to be involved in 
timing and in controlling the ordered and precise execution of motor sequences [11].  
Input layer of the cerebellum has been studied for combinatorial operations. Due to its 
role in motor articulation control, cerebellar modeling is a main area of focus for 
many real-time robotic applications. Cerebellar granular layer consists of a large 
number of neurons that receive information from mossy fibers and spatially encode 
information which then converges onto Purkinje neurons via parallel fibers. The 
abundance, fast response time and modular architecture of the granular layer neurons 
of the cerebellum offered an opportunity as well as a challenge to this modeling pro-
cess. A simple spiking neuron model in NEURON was tuned previously to predict 
how spikes were processed in the cerebellar granular layer network [12].  Biophysi-
cally realistic models of granule cells [11],[13,14]  and Golgi cells [15] are available 
to map and test the known behaviors of granular layer neurons. Our goal was to un-
derstand and implement feasible fast models on GPUs. In this paper, individual gran-
ule neurons, Golgi neurons and their excitatory-inhibitory synapses were modeled.  
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A realistic large-scale model of the cerebellum granular layer [16] was reconstructed. 
The network was simulated on a Tesla K20C GPU with 2496 cores and SM 3.5  
support running at 0.71 GHz. This study aimed to model and analyze a cerebellar 
network of granular layer neurons on GPUs in order to study the computational rele-
vance of such implementations and to understand the role of parallelism in spatio-
temporal encoding in the input layer of the cerebellum and.  

2 Materials and Methods 

2.1 Single Neuron and Synapse Modeling 

Membrane and synaptic properties of two types of neurons in the granular layer were 
modeled using phenomenological models. Single neurons were modeled using adap-
tive exponential leaky integrate and fire model,  a two-dimensional integrate and-fire 
model that combines an exponential spike mechanism with an adaptation equation, 
which was able to correctly predict timing of 96% of the spikes (±2 ms) and closely 
reconstructed the behavior as seen in a detailed conductance-based model [17]. The 
equations (1) and (2) of the model were able to generate different firing patterns and 
were used to simulate firing dynamics for single neurons in the network simulations 
[18]. 

 = ∗( ) ∗ ∗                                         (1) = ∗ ( − ) −                                                                 (2) 

                                  > 0 , =  &  = +  

The AdEx model is an extended integrate-and-fire model where the passive proper-
ties of the neuron and the action potential mechanisms are combined with the adapta-
tion variable w. In the model,  represents the membrane voltage, C is the membrane 
capacitance,   is the leak conductance,   is the resting potential,   is the slope 
factor,   is the threshold potential,  is the reset potential,  is the synaptic 
current,   is the time constant,   is the level of sub-threshold adaptation and b 
represents the spike triggered adaptation. The first equation describes the dynamics of 
the action potential generation while the second equation describes adaptation in the 
firing rate of the neuron. The equation followed the dynamics of an RC circuit until  
reaches . The neuron fires on crossing this threshold voltage and the downswing of 
the action potential was replaced by a reset of membrane potential V to a lower value, . 

Granule cells in the cerebellum receive on an average 1 to 4 excitatory connections 
via mossy fiber (MF) inputs and 0 to 4 inhibitory inputs through Golgi cell synapses 
[14]. Variation in number of synaptic inputs affects spike responses in neurons.  
Bringing these synaptic behaviors [19] to artificial spiking neurons was essential in  
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understanding the various network dynamics. Excitatory synapses were modeled us-
ing AMPA receptor dynamics and inhibitory synapses were modeled using GABA 
receptor dynamics [20] as indicated in equations (3) and (4). 

=       ×  –  ×   –.              .                                 (3)                                              = ( −    )  ×   

    =  ×  – ×   –..                                                  (4)                                             = ( −    )  ×   

 
The synaptic currents     and      were modeled via ohmic conductance 

  and    multiplied by the difference between the membrane potential  
and the reversal potential of the synapses, which is represented by    for AMPA 
synapses and    for GABA synapses respectively. The maximal conductance   and  were adjusted to  match the number of spikes experimental-
ly [14]. 

2.2 Glomerular Organisation of the Granular Layer Network 

Mossy fibers provide excitatory inputs to the granule cells through glutamatergic 
synapses and Golgi cell axons inhibit granule cell firing through GABAergic synap-
ses. These synapses are located inside a glomerular structure [21]. Specific connection 
geometry exist between mossy fibers, granule cells and Golgi cells in the granular 
layer [22]. In this model, a 3D volume of the granular layer with 100 μm edge length 
contained granule cells with density 4 x 10 6 / mm3 (Fig. 1). Each granule neuron 
model received one to four excitatory connections from mossy fibers synapses and 
one to four inhibitory connections through Golgi cells [23].  The number of glomeruli 
were estimated using the convergence-divergence ratio of the mossy fiber-granule cell 
connections [24]. Each glomerulus received a mean of 53 dendrites from different 
granule cells and each granule cell had an average of 4 dendrites, each dendrites not 
extending to glomeruli farther than 40 μm.  

Approximately, 2000 granule cells were inhibited by a Golgi cell.  The length of 
the different axes of the cube was varied to incorporate increased or decreased volume 
of the 3D space while maintaining the geometric properties and convergence-
divergence ratio.  
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Fig. 1. Glomerular organization of the granular layer network model. Neurons were recon-
structed within a spatial cube containing granule cell density 4 x 106 / mm 3 (LHS). Connectivi-
ty between mossy fibers, granule cell dendrites and Golgi cell axon are as indicated (RHS).  

 

 

Fig. 2. GPU re-implementation of the granular layer network.(A) The Granular layer was mod-
eled as a 3D cube with the volume occupied by the granule cells, Golgi cells and mossy fibers 
following precise connection rules. The connection geometry and neuron parameters were sent 
to the GPU for parallel simulation. The spike responses were collected for 2D visualization. (B) 
CPU and GPU task subunits for the simulator. 

2.3 Simulation Background  

The simulations were performed by activating a specific set of glomeruli or by acti-
vating entire glomeruli contained in the 3D space. Spike input of frequency 100 Hz 
were applied to the mossy fiber granule cell relay and the simulations were performed 
for different time windows ranging from 100 ms to 3 sec. Both in  vitro like (1 spike 
per burst) and in vivo like (5 spike per burst) inputs were applied. The number of ex-
citatory and inhibitory inputs to the granule cell was calculated at runtime depending 
on the connection rules and dynamics of the network.  
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2.4 Parallel Implementation  

The cerebellar network reconstructed was both homogeneous and embarrassingly 
parallel. Standard fourth-order Runge-Kutta method was used for the numerical inte-
gration of the voltage equation of the neuron model. All neurons shared the same 
model equations and used the same integration steps for the computations. In order to 
achieve automatic scalability and increased efficiency, we adopted a single instruction 
multiple data paradigm for the simultaneous execution of different parts of the net-
work on graphic processing units. Data-parallel processing mapped data elements to 
parallel processing threads. The essential serial components of the simulation such as 
initialization of the inputs and simulation parameters, network construction etc. were 
performed on an Intel Xeon CPU with 8 cores running on 2.6 GHz clock speed. The 
3D network was constructed in the CPU and the neurons and connection information 
were sent as 1D arrays to the NVIDIA GPU: Tesla K20C with 2496 cores and 5 GB 
of DRAM. The parallelization can be summarized as follows. 

 

BEGIN SIMULATION 
ReadSimulationParameters(); 
SetNeuronsAndSynapses();                                                            Serial Code                        
CreateConnectionGeometry(); 
SimulateGolgiGranuleComplex() 
 BEGIN 
  Forall  (neurons in 3D volume)                           
  Until the end of simulation time 
    EXCLUSIVE  BEGIN 

    Foreach synapse()  
      CalculateSynapticCurrent();                             
    SimulateGranuleCellsWithMF()                                           Parallel Code                    
    UpdateVoltage();                                              
    Foreach spike() 
      ModelReset(); 

   EXCLUSIVE END 
  Barrier; 
  PackResponses(); 
 END 
 SaveResponse(); 
VisualiseResponseTrains();                                                         Serial Code                         

END SIMULATION 

 
The network of granule cells with 1 to 4 random MF connections with and without 

inhibition from Golgi cells were then parallel simulated in the GPU (Fig. 2: A & B). 
The spike responses of the cells were copied back to the CPU and were visualized as 
2D raster plots. Each neuron was mapped to one thread of execution in the parallel 
GPU blocks and both thread level and block level parallelism were explored. The 
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memory requirement for CPU and GPU processes were calculated at runtime and the 
number of thread blocks were allocated in a scalable manner.   

In a traditional CPU, if T time units were required to process each neuron, the time 
complexity of the entire simulation became directly proportional to M * N * T where 
M is the number of time steps and N is the number of neurons.  In the GPU imple-
mentation, for P threads running  in parallel where P==N, the total computations for 
N neurons takes only T time units and hence the total time required  became directly 
proportional to M, the number of time steps, which was a constant. The time com-
plexity of the algorithm was significantly reduced, when executed in parallel. 

3 Results and Discussion 

3.1 Single Neuron Simulations and Neuronal Firing Dynamics 

The adaptive exponential leaky-integrate and fire model (AdEx) generated firing pat-
terns depending on the parameters of the model equations [18].  The scaling and  
bifurcation parameters of the spiking neuron model were fine-tuned to match the elec-
trophysiological recordings of the granule and Golgi neurons using current clamp 
protocol.  Basic electro-responsiveness properties of both granule neurons and Golgi 
neurons (Fig. 3A & B) showed the increased firing rate and decreased first spike la-
tency progressively with the injected current.  Golgi cells showed spontaneous pace 
maker activity with a frequency between  1 and 8 Hz at room temperature [25] while 
granule cells showed no such spontaneous activity at rest but showed regular repeti-
tive firing at current injection [26]. 

Dynamics of the synapses added significant computational overhead towards the 
overall time required for completing the simulation. The modeled granule cells con-
tained 1 to 4 mossy fiber excitatory connections and 1 to 4 Golgi cell inhibitory con-
nections. The synaptic dynamics with excitatory and inhibitory inputs were modeled 
using AMPA and GABA kinetics and the maximal conductance value was adjusted to 
suit the firing patterns [12] of granule cells during in-vitro (1 spike/burst) and in-vivo 
(5 spikes/burst) like inputs (Fig. 4: A &B). It was observed that two or more mossy 
fibers excitation was required to produce a spike output in granule cell. Also, increase 
in excitation increased the number of spikes while the increase in inhibition reduced 
the number of spikes.  In order to apply tactile inputs which are seen essential for fine 
motor control, mossy fiber burst input was also applied to the cells (Fig.  4: C).  Simu-
lations allowed comparing the effect of these different types of inputs to the network.  

For fidelity analysis, single neuron simulations were performed on CPUs and on 
GPUs and the firing patterns and the frequency of responses were compared. Even 
though both simulations produced similar numerical reconstructions, single neuron simu-
lations took more time in GPU than in CPU. CPU simulations took 163.21 ms for a sin-
gle granule cell and 172.35 ms for a single Golgi cell while the GPU simulations took 
741.24ms and 1466.51ms respectively with inputs run for a total of 1000ms duration.  
The result indicated that CPU simulation was approximately 6x faster while GPU simula-
tion was near real-time speeds compared to the biological neuron. The difference in per-
formance time for a single neuron was consequential because CPU is faster on a per-core 
basis. We presume the delay to arithmetic pipelines and to the need of concurrent threads 
to sufficiently utilize the parallelism capabilities of the GPU.   
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3.2 Center-Surround Excitation in the Granular Layer 

The distributed processing and plasticity capabilities of the neural network have been 
known to be dependent on spatial organization [27]. It has been observed that the 
activation of mossy fiber bundles to granular layer happens on an average in a center-
surround manner with decreasing excitation from the center to the periphery for burst 
stimulation during the sensory inputs [16]. The same activation pattern was also ob-
served when mossy fibers were stimulated with an electrode at specific locations[28]. 
Center surround structure of the granular layer determines the geometry of activation 
of the overlying Purkinje neurons of the molecular layer[11].  Centre-surround hy-
pothesis was tested by giving strong excitation in the centre of the granular layer  
volume and progressively less excitation moving to the periphery (Fig. 5). 5% of 
glomeruli at the center received 4 MF inputs, 30 % of the surrounding glomeruli re-
ceived 3 MF inputs, 55% received 2 MF inputs and the remaining 10% in the outer 
layer received 1 MF input.  Granule cell responses to in vivo inputs (burst of 5 spikes 
at 500 Hz) in the centre showed bundle of spikes with shorter delay while the spike 
bursts in the surround showed reduced spike rate and longer delay[12]. Neurons in the 
centre responded to spike bursts over a broader frequency region while varying the 
frequency of the inputs.  

3.3 Parallel Network Simulation 

A network of granule cells with 1 to 4 random MF connections with and without inhi-
bition from Golgi cells were simulated for 1000 ms time with in vivo burst-like input. 
We considered instantaneous post-synaptic current and hence white Gaussian noise 
was added to the network. Simulating a volume containing 4096 granule cells and 27 
Golgi cells on GPU for 1000 ms took 3492.76 ms to complete the computations and 
memory transfers while the same in a single CPU took 2534445.25 ms.  The GPU 
simulation was found to be 3.4 times slower than biological neural circuits while the 
single CPU simulation was 2534 times slower than biological networks. The results 
indicated the advantage of using GPUs for simulations of large network of neurons. A 
raster plot of spike responses during the simulation is shown (Fig.6: A). Scalability of 
the network implementation was tested by increasing the volume of the cube and 
measuring the computational time required to complete the simulation. Both CPU and 
GPU time taken for the network was calculated to justify the use of GPUs for large 
network simulations (Fig.  6: C). 550000 neurons were simulated in GPU and the 
running time linearly increased with the problem size (Fig.  6: B).  

Since each neuron in the granular layer processes the input independent of other 
neurons in the same layer, our embarrassingly parallel approach of computations took 
little communication of results between tasks.  Hence, no special algorithms were 
needed to get a working solution.  A single large volume of the granular layer was 
divided into many smaller volumes which are handled by different simultaneously 
executing blocks of the GPU.  Each neuron was mapped to one thread of execution 
and the simulations of a network of granular layer neurons were performed with  
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Fig. 3. Single cell electroresponsive properties of granule and Golgi cell. A) Firing patterns of 
granule and Golgi cell for 10 pA input current. B) The frequency of both granule and Golgi cell 
firing increased with the increase in current injection while the first spike latency is decreased. 

 
N-parallel threads in a single block. Both block level and thread-level parallelisms 
were used for the simulations. For single neurons and network of size less than 1024, 
only thread-level parallelism was used. For networks of larger size, different concur-
rent blocks were launched.  The thread assignment was a multiple of the warp size 
such that warp scheduling problem was avoided.  GPU allowed automatic scalability 
with the increase in size of the granular layer network without modifications in the 
program.  

Optimal GPU implementation not only depended on parallelization of the underly-
ing algorithm or computations but also on memory optimizations and thread man-
agement[29]. 

Sufficient Parallelism: GPUs gave better performance improvements than CPUs 
only when sufficient parallelism was employed to hide the latency of the arithmetic 
pipelines. This was evident from the running time obtained while simulating single 
neurons on CPUs and GPUs. Since a single neuron was mapped to a single thread in 
the GPU simulation, the minimum network size was selected as 1024 to sufficiently 
exploit the parallelism in a single block of the GPU. This utilized the maximum num-
ber of threads allocated on a single block in a Tesla K20C GPU card. 
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Fig. 4. Simulated response of granule neurons for various inputs. The inputs were provided 
starting at 20 ms. A) Granule cell responses for in vitro inputs (1 spike/burst). The MF inputs 
were increased from 1 to 4 in the figures from left to right. B) Granule cell responses for in- 
vivo inputs (5 spikes/burst, inter-spike interval 10 ms). The MF inputs were increased from 1 to 
4 in the figures from left to right. C) Granule cell responses for tactile inputs (5 spikes/burst, 
inter-spike interval 10ms, inter-burst interval 100 ms). 

 

 

Fig. 5. Network simulation with center-surround excitation. Glomeruli were activated in a 
center-surround manner. A) The glomeruli in the center received four excitatory and the excita-
tion is reduced progressively going to the periphery.  B) The network was simulated with in 
vivo inputs (5 spikes /burst) and the spike responses were shown as the raster plot. 
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Fig. 6. A): Raster plot of granule cell firing patterns with white Gaussian noise in the network. 
In vivo like input (5 spikes per burst, inter spike interval 10 ms) was provided to the glomerulus 
through mossy fibers. B) The granular layer network was simulated with 550000 neurons with 
the granular layer volume increased from 125µm3 to 125mm3. The GPU runtime was found to 
be increasing linearly with the increase in network size. (C) A similar network was simulated 
entirely in a single CPU and the running time was compared. GPUs outperformed CPUs and 
took significantly lesser time to finish the simulation. 

 
Minimizing Warp Divergence. Since all the neurons were simulated for almost same 
timescales and each neuron received on an average of 4 MF synapses, the wrap diver-
gence and thread wait were not major issues in our current implementation. 
 
Size of Thread Block and Occupancy: The kernel, SimulateGranuleCellsWithMF() 
which was ranked first for optimization based on execution time was chosen for per-
formance improvement since the percentage of total GPU compute time spent execut-
ing instances of this kernel was found to be 70%. The register usage was limited by 
managing register spill-over using local memory (L1). LMEM is slower than regis-
ters. A 100% occupancy was not the aim of GPU optimizations since it slowed small 
network models although it improved runtime on large-scale network models. 

4 Conclusion 

We were able to reconstruct a cerebellum granular layer microcircuit in order to charac-
terise the activity of a network of neurons sparsely activated by synaptic inputs in the rat 
cerebellum for the analysis of spatio-temporal geometry affecting signal activation in a 
central neural circuit. Even though we performed our simulations on a single high end 
GPU device, this study was a precursor for scaling up of the network model to include 
different layers of the cerebellum with greater number and more types of neurons to be 
simulated on clusters of GPUs. GPU based simulations may need to focus on lesser 
communications and pleasantly parallel or embarrassingly parallel schemes may be apt 
for large-scale neural simulations rather than fine-grained parallelization. Fixed time-step 
was more suited for such event-related simulations since variable time-step integration 
for several neurons caused performance decreases. Occupancy had to be pre-estimated 
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as 100% occupancy was not favorable for small networks since it increased runtime.  
Sufficient parallelism was essential to compensate latency delays in arithmetic pipe-
lines, which was observed for single neuron and small-sized network simulations.  

Extending the current cerebellar model including the molecular and Purkinje layer 
neurons together with the presently modeled granular layer neurons will make the 
network a right candidate to explore the other forms of parallelism with dependent 
computations. As a work in progress, we have started investigating a large-scaled 
network model on multi-GPU machines. Further studies may be necessary to under-
stand the inherent parallelism and spatial recoding in cerebellar circuits from recon-
structed network models.  
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Abstract. Long-range chromosomal associations between genomic re-
gions, and their repositioning in the 3D space of the nucleus, are now
considered to be key contributors to the regulation of gene expressions
and DNA rearrangements. Recent Chromosome Conformation Capture
(3C) measurements performed with high throughput sequencing tech-
niques (Hi-C) and molecular dynamics studies show that there is a large
correlation between co-localization and co-regulation of genes, but these
important researches are hampered by the lack of biologists-friendly anal-
ysis and visualisation software. In this work we present NuChart-II, a
software that allows the user to annotate and visualize a list of input
genes with information relying on Hi-C data, integrating knowledge data
about genomic features that are involved in the chromosome spatial or-
ganization. This software works directly with sequenced reads to identify
related Hi-C fragments, with the aim of creating gene-centric neighbour-
hood graphs on which multi-omics features can be mapped. NuChart-II
is a highly optimized implementation of a previous prototype developed
in R, in which the graph-based representation of Hi-C data was tested.
The prototype showed inevitable problems of scalability while working
genome-wide on large datasets: particular attention has been paid in or-
der to obtain an efficient parallel implementation of the software. The
normalization of Hi-C data has been modified and improved, in order to
provide a reliable estimation of proximity likelihood for the genes.

Keywords: Systems Biology, Parallel Computing, Hi-C data, Neigh-
bourhood Graph, Chromosome Conformation Capture.

1 Scientific Background

The representation and interpretation of omics data is complex, also consider-
ing the huge amount of information that are daily produced in the laboratories
all around the world. Sequencing data about expression profiles, methylation
patterns, and chromatin domains are difficult to describe in a systemic view.
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The question is: how is it possible to represent omics data in an effective way?
This problem is critical in these years that see an incredible explosion of the
available molecular biology information. In particular, the integration and the
interpretation of omics data in a systems biology way is complex, because ap-
proaches such as ontology mapping and enrichment analysis assume as prereq-
uisite an independent sampling of features, which is clearly not satisfied while
looking at long-range chromatin interactions.

In this context, recent advances in high throughput molecular biology tech-
niques and bioinformatics have provided insights into chromatin interactions on
a larger scale, which can give a formidable support for the interpretation of multi-
omics data. The three-dimensional conformation of chromosomes in the nucleus
is important for many cellular processes related to gene expression regulation, in-
cluding DNA accessibility, epigenetics patterns and chromosome translocations
[1]. The Chromosome Conformation Capture (3C) technology [2] and the sub-
sequent genomic variants (Chromosome Conformation Capture on-Chip [3] and
Chromosome Conformation Capture Carbon Copy [4]) are revealing the corre-
lations between genome structures and biological processes inside the cell and
permit to study the nuclear organisation at an unprecedented resolution.

The combination of high-throughput sequencing with the above-mentioned
techniques (generally called Hi-C), allows the characterisation of long-range
chromosomal interactions genome-wide [5]. Hi-C gives information about coupled
DNA fragments that are cross-linked together due to spatial proximity, providing
data about the chromosomal arrangement in the 3D space of the nucleus. If used
in combination with chromatin immunoprecipitation, Hi-C can be employed for
focusing the analysis on contacts formed by particular proteins.

In a previous work [6], we developed an R package called NuChart, which
allows the user to annotate and statistically analyse a list of input genes with
information relying on Hi-C data, integrating knowledge about genomic features
that are involved in the chromosome spatial organisation. NuChart works di-
rectly with sequenced reads to identify the related Hi-C fragments, with the
aim of creating gene-centric neighbourhood graphs on which multi-omics fea-
tures can be mapped. Gene expression data can be automatically retrieved and
processed from the Gene Expression Omnibus and ArrayExpress repositories to
highlight the expression profile of genes in the identified neighbourhood. The
Hi-C fragment visualisation provided by NuChart allows the comparison of cells
in different conditions, thus providing the possibility of novel biomarkers identi-
fication. Although this software has been proved to be a valid support for Hi-C
analysis, the implementation relying on the R environment is a limiting factor
for the scalability of the algorithm, which can not cover large genomic regions
due to the high computational effort required. Moreover, its overhead in manag-
ing large data structures and its weaknesses in exploiting the full computational
power of multi-core platforms make NuChart unfit to scale up to larger data
sets and highly precise data analysis (which requires many iterations of graph
building process).
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Normalization. 3C-based techniques employed for the characterization of the
nuclear organization of genomes and cell types have widespread among scien-
tific communities, fostering the development of a number of systems biology
methods designed to analyse such data. Particular attention is given to the de-
tection and normalisation of systematic biases: the raw outputs of many genomic
technologies are affected both by technical biases, arising from sequencing and
mapping, and biological factors, resulting from intrinsic physical properties of
distinct chromatin states, that make difficult to evaluate the outcomes.

Yaffe and Tanay [7] proposed a probabilistic model based on the observation
of the genomic features. This approach can remove the majority of systematic
biases, at the expense of very high computational costs, due to the observation
of paired-ends reads spanning all possible fragment end pairs. Hu et al [8] pro-
posed a parametric model based on a Poisson regression. This is a simplified, and
less computationally intensive normalisation procedure than the one described
by Yaffe and Tanay, since it corrects systematic biases in Hi-C contact maps at
the desired resolution level, instead of modelling Hi-C data at the fragment-end
level. The drawback here is that the sequence information is blurred within the
contact map. The first NuChart prototype solved this issue by exploiting Hu et
al. solution to assign a score to each read, identifying half of the Hi-C contact
instead of normalizing the contact map, thus preserving the sequence informa-
tion. NuChart-II leverage this solution proposing an ex-post normalisation, that
is used to estimate a probability of physical proximity between two genes.

Among the related works, the majority of applications rely on the creation
of contact maps for the interpretation of Hi-C data, combining Principal Com-
ponent Analysis and Hierarchical Clustering with this representation. The vi-
sualization and exploration of Hi-C data assumes a dramatic importance when
analysing Hi-C data. To the best of our knowledge, no other tool proposes a gene-
centric, graph-based visualization of the neighbourhood of a gene, as NuChart-II
does.

Parallel Computing Tools. Over the years, research on loop parallelism has
been carried on using different approaches and techniques that vary from au-
tomatic parallelisation to iterations scheduling. In this paper we elected Fast-
Flow [10] as a viable tool for re-writing NuChart. We then compared the results
we have obtained, against OpenMP and TBB, which represent to a major extent
the most widely used and studied frameworks for loop parallelisations.

Intel Threading Building Blocks (TBB) [12] is a library that enables support
for scalable parallel programming using standard C++. It provides high-level
abstractions to exploit task-based parallelism, independently from the underly-
ing platform details and threading mechanisms. The TBB parallel_for and
parallel_foreach methods may be used to parallelise independent invocation
of the function body of a for loop, whose number of iterations is known in ad-
vance.

OpenMP [13] uses a directive based approach, where the source code is anno-
tated with pragmas (#pragma omp) that instruct the compiler about the paral-
lelism that has to be used in the program. In OpenMP, two directives are used
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to parallelise a loop: the parallel directive declares a parallel region which will
be executed concurrently by a pool of threads; the for directive is placed within
the parallel region to distribute the loop iterations to the threads executing the
parallel region.

FastFlow is a parallel programming environment originally designed to sup-
port efficient streaming on cache-coherent multi-core platforms [10]. It is realised
as a pattern-based C++ framework that provides a set of high-level program-
ming patterns (aka algorithmic skeletons). FastFlow exposes a ParallelFor pat-
tern [11] to easily deal with loop parallelism.

2 Materials and Methods

Here we present NuChart-II, an improved C++ version of the first R proto-
type software, which enables the user to annotate and visualize Hi-C data in
a gene-centric fashion, integrating knowledge data about genomic features that
are involved in the chromosome spatial organisation. In the development of this
new version of the software, particular attention has been paid at optimising
the data structures employed for the management of the information concern-
ing the neighbourhood graph, in order to facilitate the parallel implementation
of the algorithm. The computational effort required for the generation of large
graphs can now be easily addressed according to the parallelism the application
exhibits, properly exploiting the computational power offered by modern multi-
core architectures. The re-engineering of the software has been conducted on top
of FastFlow, using the ParallelFor pattern.

The general idea behind this package is to provide a complete suite of tools
for the analysis of Hi-C data. A typical Hi-C analysis will start with the pre-
processing of FASTQ files with HiCUP, which produces paired-ends reads files
in SAM (or BAM) format 1. These SAM files represent the main input of
NuChart-II, along with a list of genes positions along the chromosome and an
interval of genomic coordinates that should be analysed in terms of Hi-C con-
tacts for the creation of the neighbourhood graph. Hi-C data are analysed using
a gene-centric approach: if a Hi-C connection between two genes is present – i.e.
there is a paired-ends read that supports their proximity in the nuclear space
– an edge is created between their representative vertices.

The scalability aspect assumes crucial importance in NuChart-II: while the
previous R implementation was not suitable to perform thorough explorations
due to bottlenecks in memory management and limitations in the exploitation
of the available computational resources, the novel algorithm is fully scalable
and can be used for exploring Hi-C contact genome-wide. This is functional to
our objective of creating a snapshot of the general organisation of the DNA in
the nucleus, which is essential, for example, to exploit chromosome conformation
data in cytogenetics analysis or to create a metrics of the distance between the
different fragment in terms of contacts.

1 see the HiCUP documentation for more details:
http://www.bioinformatics.babraham.ac.uk/projects/hicup/

http://www.bioinformatics.babraham.ac.uk/projects/hicup/
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The novel implementation presented here refines the normalisation, which is
now conducted during the edges weighing phase: the weight of an edge is the
result of the normalisation process. The weight assumes the role of a “confidence
score” that qualifies the reliability of each gene–gene contact represented on
the neighbourhood graph. Local scores are then rescaled in order to obtain a
likelihood of existence for each edge.

2.1 Neighbourhood Graph Construction

We recall that a graph is a formal mathematical representation of a collection of
vertices (V ), connected by edges (E) that model a relationship among vertices.
In this context, vertices represent Genes – i.e. an ordered set of human genes
taken from the NCBI RNA reference sequences collection – labelled with genes
names. Two genes g1, g2 ∈ V are connected if there exist a paired-ends Hi-C read
encompassing both of them. We define this paired-ends Hi-C read as a connec-
tion, meaning a spatial relationship between two genes. If a connection between
two genes g1, g2 exists, then exists an edge e = (g1, g2) ∈ E. Edges weights –
resulting from the normalisation phase described below – provide a likelihood of
actual physical proximity for the adjacent genes. The neighbourhood graph can
be defined as the induced subgraph obtainable starting from a given root vertex
v, and including all vertices adjacent to v and all edges connecting such vertices,
including the root vertex.

Graph Construction. The graph construction starts from one or more root
genes and proceeds until all the nodes of the graph have been visited, or up to
the desired “distance” from the root, that determines the levels of the resulting
graph: a search at level 1 yields all the genes directly adjacent to the root (which
is at level 0); a search at level i returns all directly adjacent genes for each gene
discovered up to level i− 1, starting from the root.

The procedure exhibits a typical data-parallel behaviour, in which any arbi-
trary subset of Hi-C reads can be processed independently from each other. This
means it can be parallelised in a seamless way by processing those parts elected
as main computational cores within a ParallelFor loop pattern, whose seman-
tic amounts to execute in parallel the instructions inside the loop, provided they
are independent from each other.

Algorithm 1.1 Graph Construction (pseudo-code)

1 ParallelNeighboursGraph (root, L MAX, NTH) {
2 Q = Γ = Graph := ∅
3 C[NTH] = V[NTH] = E[NTH] := ∅
4 lv := 0
5

6 push root in Q
7 while (Q not ∅ and lv < L MAX) {
8 pop q from Q
9 // find Hi−C Reads for q

10 ParallelFor (r in Reads) {
11 if (r in q[Start, Stop] and r.Chr == q.Chr)
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12 add r to C[thid]
13 }
14 // find neighbour genes for q
15 ParallelFor (c in C[thid]) {
16 intra := 0
17 for each (g in Genes) {
18 if (g in c.PairedEnd[Start, Stop]) {
19 add g to V[thid]
20 add (q, g) to E[thid]
21 intra := intra + 1
22 }
23 }
24 HandleIntergenicCase(Genes,intra)
25 }
26 // level synchronisation
27 Γ := BuildPartialGraph(V[thid], E[thid])
28 for each (thid in [0, NTH]) {
29 for each (v in V[thid]) { // next level vertices
30 if (not v.Visited)
31 push v in Q
32 }
33 }
34 lv := lv + 1
35 C[thid] = V[thid] = E[thid] := ∅
36 }
37 Graph := BuildGraph(Γ )
38 }

Taking inspiration from the work of Hong et al. [14], the algorithm proceeds as
a Breadth First Search. At the end of each level iteration, the parallel execution
is synchronized: at this point thread-local next-level containers are processed
and a partial graph is constructed with the genes discovered at the current BFS
level. The definitive graph is built in batch at the end of the BFS execution.

The Hi-C reads exploration phase and the genes discovery have been split, in
order to avoid mixing the working sets involved in the two phases. This helps
minimising the cache thrashing and permits to obtain substantial performance
improvements. The pseudo-code of the parallel graph construction is reported
in listing 1.1: this high-level approach required some adjustment to the BFS
procedure, and the introduction of new thread-local containers needed to han-
dle concurrent write accesses to shared data structures. Specifically, C [NTH],
V [NTH] and E [NTH] are used to store per-thread data, where NTH is the num-
ber of threads in use and thid identifies thread’s own container, such that 0 ≤
thid < NTH. Q represents our working queue that contains the genes to be pro-
cessed at the next level exploration. L MAX determines the maximum distance
from the root that has to be reached. Γ is used at every level synchronisation to
store partial graphs, that will be merged into a definitive graph at the very end
of the graph construction process.

The algorithm starts searching for those Hi-C paired-ends reads whose first pair
fragment’s start coordinate falls within a gene coordinates. This yields a list of
reads containing only chromosome fragments where neighbour genes may be lo-
cated (rows 10–13): upon this list the search for neighbours takes place, using NTH
independent threads over the set of connections (rows 15–24). Each thread looks
for genes whose coordinates overlap the second pair fragments’ coordinates.When
a gene matches the test, the new found gene is added to the thread-local vertices
set and an edge is created between the considered vertex and the new one.
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Inter-genic cases are optionally handled: when no genes are found among the
set of selected reads (i.e intra == 0), the search may be expanded to the closest
proximal genes (after and before genes), possibly located within a predefined
distance from the second pair fragment’s coordinates: when an after gene and a
before gene are found (or either one of the two), an edge between the considered
vertex and the proximal genes is created, with the proximal genes added to the
thread-local vertices set.

The synchronisation starts when all nodes at the current level have been
explored: a partial graph Γ , which is initially empty, is updated using nodes and
edges discovered during the current exploration, while the working queue Q is
set up for the successive level exploration by adding all and only vertices not
already visited. At the end of the exploration the full graph is built in batch, by
processing partial graphs stored in Γ (row 37).

Edges Weighing. This phase encompasses the normalisation process, which is
needed in order to remove systematic biases arising from sequencing and map-
ping.

Algorithm 1.2 Edges Weighing (pseudo-code)

1 . . .
2 ParallelFor(edge in Edges) {
3 LenM = GCcM = MapM := ∅ // genomic features matrices
4 X = Y = β := ∅
5 Conv := false
6

7 // populate genomic features matrices
8 . . .
9

10 X := RegressorsMatrix(LenM, GCcM)
11 Y := BuildContactMap(edge.Chr1, edge.Chr2)
12

13 while (not Conv) {
14 ApplyLinkFunction(Y)
15 β := ApplyGLM(Y, X, MapM)
16 Conv := CheckConvergence(β)
17 }
18

19 edge.Weight := f(β)
20 }

We recall that an edge e = (g1, g2) ∈ E, with g1 ∈ V and g2 ∈ V , exists if
there is a paired-ends Hi-C read that connects the two genes. For each edge,
a contact map (Y ) is constructed directly modelling the read count data at a
resolution level of 1 megabase. Hi-C data matrix is symmetric, thus we consider
only its upper triangular part, where each point of Yi,j denotes the intensity
of the interaction between positions i and j. Using local genomic features that
describe the chromosome (fragment length, GC-content and mappability) we can
set up a generalized linear model (GLM) with Poisson regression, with which we
estimate the maximum likelihood of the model parameters. This likelihood is
then expressed as a the weight of the edge that qualifies the reliability of a
gene–gene contact.



NuChart-II : A Graph-Based Approach for Analysis 305

The model is given by the formula (Y |X) = g{XTβ}. Here β denotes the
parameter vector to be estimated and g denotes a known link function. The
contact map incorporates the information about the independent variables of
our model (i.e. the expected value μ = e(Y |X)); chromosome length and GC-
content act as regressors (i.e. the coefficients of the linear combination g(XTβ).
This model is used to count the occurrences in a fixed amount of space: for this
reason the Poisson distribution is used. With the best-fit coefficients returned
by the linear regression the weight is computed, so that the edge contains an
estimate of the physical proximity, plus the genomic information for both genes,
which are preserved and not blurred within the contact map.

The edges weighing phase is an embarrassingly parallel application, where any
arbitrary subset of the edges can be processed independently from each other by
mean of a parallel loop pattern. This data-parallelism can be properly exploited to
boost up performances and drastically reduce execution time, by just calling the
function listed in algorithm 1.2 within Fastflow’s ParallelFor. The GLM with
Poisson regression has been implemented adopting the Iteratively Weighted Least
Squares algorithm(IWLS)proposedbyNelder andWedderburn [15] using theGNU
Scientific Library [16]. Listing 1.2 reports a pseudo-code of the function.

The regression is run until a convergence criterion is met. In our case we
check that the absolute value of the χ2 (chi-squared) difference at each iteration
is less than a certain threshold τ : |χ2 − χ2

old)| < τ . A linear function of the
best-fit coefficients stored in β yields the weight of the edge. We then rescale
each “local” weight using the feature scaling method and obtain a probability
for each connection to exist.

3 Results

The novel makings of NuChart-II have been exploited to verify how Hi-C can be
used for citogenetics studies. In particular, we focused on Philadelphia transloca-
tion, which is a specific chromosomal abnormality that is associated with chronic
myelogenous leukaemia (CML). The presence of this translocation is a highly
sensitive test for CML, since 95% of people with CML have this abnormality,
although sometimes it occurs also in acute lymphoblastic leukaemia (ALL) and
in acute myelogenous leukaemia (AML). The result of this translocation is that
a fusion gene is created from the juxtaposition of the ABL1 gene on chromo-
some 9 (region q34) to part of the BCR (”breakpoint cluster region”) gene on
chromosome 22 (region q11). This is a reciprocal translocation, creating an elon-
gated chromosome 9 (called der 9), and a truncated chromosome 22 (called the
Philadelphia chromosome). The Hi-C technique can be used to study such kind
of translocations, and subsequently answer to questions such as “are this kind of
chromosomal translocations occurring between nearby chromosomes?”, just by
exploiting NuChart-II.

With NuChart-II we compared the distance of some couples of genes that are
known to create translocation in CML/AML. In particular, our analysis relies
on data from the experiments of Lieberman-Aiden [9], which consist in 4 lines
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of karyotypically normal human lymphoblastoid cell line (GM06990) sequenced
with Illumina Genome Analyzer, compared with 2 lines of K562 cells, an ery-
throleukemia cell line with an aberrant karyotype. Starting from well-established
data related to the cytogenetic experiments, we tried to understand if the Hi-C
technology can successfully be applied in this context, by verifying if transloca-
tions that are normally identified using Fluorescence in situ hybridization (FISH)
can also be studied using 3C data.

We studied 5 well known couples of genes involved in translocations and we
analysed their Hi-C probability contacts in physiological and diseased cells. For
validating the presence of an edge in the graph, we used the p-value function as
a test for quantifying the statistical significance of our experiments. Considering
a p < 0.05 threshold, we see that ABL1 and BCR (fig. 2) are distant 2 or 3
contacts in sequencing runs concerning GM06990 with HindIII as digestion en-
zyme (SRA:SRR027956, SRA:SRR027957, SRA:SRR027958, SRA:SRR027959),
while they are in close contact in sequencing runs related to K562 with diges-
tion enzyme HindIII (SRA:SRR027962 and SRA:SRR027963). Therefore, there
is a perfect agreement between the positive and the negative presence of Hi-C
contacts and FISH data. This implies from one side that the DNA conforma-
tion in cells is effectively correlated to the disease state and also that Hi-C can
be reliable in identifying these cytogenetic patterns. At the same way, AML1
and ETO (fig. 4) are in close proximity in leukaemia cells (SRA:SRR027962
and SRA:SRR027963), while they are far 2 or 3 contacts in normal cells
(SRA:SRR027956, SRA:SRR027957, SRA:SRR027958, SRA:SRR027959). Con-
sidering the translocation CBFβ-MYH11 (fig. 3), they are distant 2 or 3 con-
tacts in GM06990, while are proximal in K562. We had no appreciable results for
NUP214 and DEK translocation and for PML and RARα translocation, which
however are more rare in this kind of disease.

These results are of utmost importance for the biomedical community: with the
decreasing of sequencing costs, the Hi-C technique can be an effective diagnostic
option for cytogenetic analysis, with the possibility of improving the knowledge on
chromosomal architecture nuclear organisation. For example, Hi-C can be used to
infer non trivial risk markers related to aberrant chromosomal conformation, like
the Msc5a loci for breast cancer, which is known to play a critical role in the re-
organization of a portion of chromosome 9 by CTCF proteins.

Performance. NuChart-II has been completely re-engineered, with the aim to
solve the memory issues that burdened the R prototype: both the graph construc-
tion and the edgeweighing phases are bounded to thememory size required to hold
the data. Concerning the graph construction, it has been tuned to properly use the
memory hierarchy and fully exploit cache localitywhileminimising cache trashing:
this now permits to obtain execution times which are incomparable with respect
to the R prototype, completing the exploration of the whole genes set in about 113
seconds, that results in a graph of 18450 nodes and 588635 edges. It is worth not-
ing that the original R prototype could not perform such wide exploration, since
a neighbourhood graph built up to the 3rd level took about 5 days to complete,
resulting in a graph of less than 9000 nodes.
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During the weighing task, each worker thread gets a bunch of edges to work
on, according to the grain size, and a reference to a static collection of data
containing the genomic features to be used within the process. This task per-
forms tight loops doing Floating Point arithmetic calculations on data that fit
the L3 cache and can benefit from compiler optimization and vectorization. On
the other hand, a number of dynamic memory allocations are necessary dur-
ing the execution of the normalisation step. The use of a memory allocator not
designed for parallel programming causes a serialization of the operations that
leads to a reduction of the total execution time. This memory overhead is anyway
balanced by the heavy calculation performed by each worker thread: the imple-
mentation with FastFlow shows a quasi-linear speedup, and when compared
against OpenMP and Intel TBB implementations, the recorded performance is
substantially similar. Figure 1 shows some results concerning the sole weighing
phase, in terms of speedup and execution time: the three frameworks reach ap-
proximately similar levels of speedup and scalability as the number of working
threads increases, while Intel TBB begins to suffer for memory allocations when
the number of threads is greater than 24, causing its performance to flatten.
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Fig. 1. Execution time and speedup for the weighing phase of gene LMO2 according
to Dixon et al. SRA:SRR400264 experiment: 12361 edges processed.

Outputs. NuChart-II provides both textual output and graphic visualization:
textual and tabular outputs are useful to examine the genomic regions explored,
and comprise a) a list of all the edges resulting from the graph construction,
with the weight calculated for each edge; b) a list of all discovered genes, with
the level (i.e. the distance from the root) where the gene has been found; c) a
more verbose output of the execution, that reports in detail all the edges of the
graph, showing all the genomic information about the two linked genes.
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Fig. 2. Neighbourhood graph with genes ABL1 and BCR, according to Lieber-
manAiden’s SRA:SRR027956 (left) and SRA:SRR027962 (right) experiments.

Fig. 3. Neighbourhood graph with genes CBFB and MYH11 according to Lieber-
manAiden’s SRA:SRR027959 (left) and SRA:SRR027963 (right) experiments.

NuChart-II supports plotting with iGraph and GraphViz : these tools perform
nicely with small-to-medium sized graphs, but cannot provide useful representa-
tion of huge graphs with more than ten thousand edges (as it happens when the
deepness of the graph increases or inter-genic contacts are expanded). We are
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Fig. 4. Neighbourhood graph with genes AML1 and ETO according to Lieber-
manAiden’s SRA:SRR027962 experiment.

working on viable solutions to address this problem and exploit novel techniques
for interactive and dynamic graph visualisation.

4 Conclusion

The added value of this software is to provide the possibility of analysing Hi-C
data in a multi-omics context, by enabling the capability of mapping on the graph
vertices expression data, according to a particular transcriptomics experiment,
and on the edges genomic features that are known to be involved in chromosomal
recombination, looping and stability.

The novel implementation of the NuChart-II allows the software to scale
genome-wide, which is crucial to exploit its full capability for a correct analysis,
interpretation and visualisation of the data produced using the Hi-C technique.
We think that the possibility of having suitable descriptions of how genes are
localised in the nucleus, enriched by genomic features that can characterise the
way they are able to interact, can be extremely useful in the years to come for
the interpretation of multi-omics data.

We are studying solutions to further improve the new software, in order to
address the visualisation problem and make all information easily accessible by
direct interaction with the graph.
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6. Merelli, I., Liò, P., Milanesi, L.: NuChart: an R package to study gene spatial
neighbourhoods with multi-omics annotations. PLoS One 8(9), e75146 (2013)

7. Yaffe, E., Tanay, A.: Probabilistic modeling of Hi-C contact maps eliminates sys-
tematic biases to characterize global chromosomal architecture. Nature Genet-
ics 43, 1059–1065 (2011)

8. Hu, M., Deng, K., Selvaraj, S., Qin, Z., Ren, B., Liu, J.S.: HiCNorm: removing
biases in Hi-C data via Poisson regression. Bioinformatics 28(23), 3131–3133 (2012)

9. Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T.,
et al.: Comprehensive mapping of long-range interactions reveals folding principles
of the human genome. Science 326, 289–293 (2009)

10. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-level
and efficient streaming on multi-core. In: Pllana, S., Xhafa, F. (eds.) Programming
Multi-core and Many-core Computing Systems. Parallel and Distributed Comput-
ing, ch. 13. Wiley (2014)

11. Danelutto, M., Torquati, M.: Loop parallelism: a new skeleton perspective on data
parallel patterns. In: Aldinucci, M., D’Agostino, D., Kilpatrick, P. (eds.) Proc.
of Intl. Euromicro PDP 2014: Parallel Distributed and network-based Processing,
IEEE, Torino (2014), http://calvados.di.unipi.it/storage/paper files/

2014 ff looppar pdp.pdf

12. “Intel Threading Building Blocks”, project site (2013),
http://threadingbuildingblocks.org

13. Dagum, L., Menon, R.: OpenMP: An industry-standard api for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

14. Hong, S., Oguntebi, T., Olukotun, K.: Efficient parallel graph exploration on multi-
core cpu and gpu. In: Proceedings of the 2011 International Conference on Parallel
Architectures and Compilation Techniques, PACT 2011, pp. 78–88. IEEE Com-
puter Society, Washington, DC (2011),
http://dx.doi.org/10.1109/PACT.2011.14

http://calvados.di.unipi.it/storage/paper_files/2014_ff_looppar_pdp.pdf
http://calvados.di.unipi.it/storage/paper_files/2014_ff_looppar_pdp.pdf
http://threadingbuildingblocks.org
http://dx.doi.org/10.1109/PACT.2011.14


NuChart-II : A Graph-Based Approach for Analysis 311

15. Nelder, J.A., Wedderburn, R.W.M.: Generalized linear models. Journal of the
Royal Statistical Society, Series A, General 135, 370–384 (1972)

16. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M., Rossi, F.:
Gnu Scientific Library: Reference Manual. Network Theory Ltd., February 2003,
http://www.worldcat.org/isbn/0954161734

http://www.worldcat.org/isbn/0954161734


Erratum to: A New Feature Selection
Methodology for K-mers Representation

of DNA Sequences

Giosuè Lo Bosco1,2 and Luca Pinello3,4

1 Dipartimento di Matematica e Informatica,
Universitá degli studi di Palermo, Italy

2 Dipartimento di Scienze per l’Innovazione e le Tecnologie Abilitanti,
Istituto Euro Mediterraneo di Scienza e Tecnologia, Palermo, Italy
3 Department of Biostatistics, Harvard School of Public Health,

Boston, MA, USA
4 Department of Biostatistics and Computational Biology,

Dana-Farber Cancer Institute, Boston, MA, USA

Erratum to:
Chapter “A New Feature Selection Methodology
for K-mers Representation of DNA Sequences” in:
C. di Serio et al. (Eds.): Computational Intelligence Methods
for Bioinformatics and Biostatistics, LNCS,
DOI: 10.1007/978-3-319-24462-4_9

The original version of this chapter contained an error. The names of the authors
Giosuè Lo Bosco and Luca Pinello were inverted in the original publication. The
original chapter was corrected.

The updated original online version for this chapter can be found at
DOI: 10.1007/978-3-319-24462-4_9

© Springer International Publishing Switzerland 2017
C. di Serio et al. (Eds.): CIBB 2014, LNCS 8623, p. E1, 2015.
DOI: 10.1007/978-3-319-24462-4_26

http://dx.doi.org/10.1007/978-3-319-24462-4_9
http://dx.doi.org/10.1007/978-3-319-24462-4_9


Author Index

Agapito, Giuseppe 3
Aldinucci, Marco 245, 298
Angelini, Claudia 76

Baker, Simon 89
Ballester, Pedro J. 219, 231
Biganzoli, Elia M. 183
Bongo, Lars Ailo 259
Boracchi, Patrizia 183
Boutorh, Aicha 209
Bracciali, Andrea 245

Cannataro, Mario 3
Cassandra, Raffaele 156
Chambers, Simon 199
Chicco, Davide 19
Ciceri, Eleonora 19

D’Agostino, Daniele 273
De Feis, Italia 76
Del Prete, E. 33
Dess̀ı, Nicoletta 44
Dess̀ı, Stefania 44
Diwakar, Shyam 285
Dotolo, S. 33
Drocco, Maurizio 298

Ernstsen, Martin 259
Evangelista, Daniela 156

Facchiano, A. 33
Fiannaca, Antonino 142
Franco, Leonardo 199

Galdi, Paola 57
Grassi, Mario 131
Guarracino, Mario R. 156
Guessoum, Ahmed 209
Guo, Yufan 89
Guzzi, Pietro H. 3

Hamey, Fiona Kathryn 68

Iuliano, Antonella 76

Jarman, Ian 199
Jerez, Jose M. 199

Korhonen, Anna 89

La Rosa, Massimo 142
Leung, Kwong-Sak 219, 231
Li, Hongjian 219, 231
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