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Preface

As part of the celebrations around the opening of the Simons Foundation offices
in New York, the editors were invited to organise a conference on a topic of
their choice. We chose birational geometry and foliation theory as there has been
considerable activity in both areas in the last decade and there has also been
increasing interaction between the two subjects. The conference “Foliation theory in
algebraic geometry” took place September 3–7, 2013, at the recently opened Simons
Foundation’s Gerald D. Fischbach Auditorium.

The conference attracted over seventy participants as well as locals from the New
York area and was a great success. These are the proceedings of the conference. The
talks included both survey talks on recent progress and original research and the
articles are a reflection of these topics.

The articles in this proceedings should be of interest to people working in
birational geometry and foliation theory and anyone wanting to learn about these
subjects.

The editors would like to thank David Eisenbud for the initial invitation to
organise a conference. They would also like to thank the Simons Foundation and
Yuri Tschinkel for hosting the conference and to acknowledge the generous support
of both the Simons Foundation and the NSF, under grant no. DMS 1339299. We
would like to thank the speakers and all of the participants for making the conference
a success. Finally they would like to recognise the invaluable support of Meghan
Fazzi in the organisation of the conference.

London, UK Paolo Cascini
La Jolla, CA, USA James McKernan
Rio de Janeiro, Brazil Jorge Vitório Pereira
27 July 2015
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On Fano Foliations 2

Carolina Araujo and Stéphane Druel

Abstract In this paper we pursue the study of mildly singular del Pezzo foliations
on complex projective manifolds started in [AD13].

Keywords Fano manifolds • Holomorphic foliations • Classification

Mathematical Subject Classification: 14M22, 37F75

1 Introduction

In recent years, techniques from higher dimensional algebraic geometry, specially
from the minimal model program, have been successfully applied to the study of
global properties of holomorphic foliations. This led, for instance, to the birational
classification of foliations by curves on surfaces in [Bru04]. Motivated by these
developments, we initiated in [AD13] a systematic study of Fano foliations. These
are holomorphic foliations F on complex projective manifolds with ample anti-
canonical class �KF . One special property of Fano foliations is that their leaves are
always covered by rational curves, even when these leaves are not algebraic (see,
for instance, [AD13, Proposition 7.5]).

The index �F of a Fano foliation F on a complex projective manifold X is
the largest integer dividing �KF in Pic.X/. In analogy with Kobayachi-Ochiai’s
theorem on the index of Fano manifolds (Theorem 2.2), we proved in [ADK08,
Theorem 1.1] that the index of a Fano foliation F on a complex projective manifold
is bounded above by its rank, �F 6 rF . Equality holds if and only if X Š P

n and
F is induced by a linear projection P

n Ü P
n�rF . Our expectation is that Fano
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2 C. Araujo and S. Druel

foliations with large index are the simplest ones. So we proceeded to investigate
the next case, namely Fano foliation F of rank r and index �F D r � 1. We call
such foliations del Pezzo foliations, in analogy with the case of Fano manifolds. In
contrast to the case when �F D rF , there are examples of del Pezzo foliations with
non-algebraic leaves. For instance, let C be a foliation by curves on P

k induced
by a global vector field. If we take this vector field to be general, then the leaves
of C are not algebraic. Now consider a linear projection  W Pn Ü P

k, with
n > k, and let F be the foliation on P

n obtained as pullback of C via  . It is a
del Pezzo foliation on P

n, and its leaves are not algebraic (see Theorem 3.16(2) for
the complete classification of del Pezzo foliations on P

n). The first main result of
[AD13] says that these are the only examples.

Theorem 1.1 ([AD13, Theorem 1.1]). Let F be a del Pezzo foliation on a complex
projective manifold X 6Š P

n. Then F is algebraically integrable, and its general
leaves are rationally connected.

One of the main ingredients in our study of Fano foliations is the notion of
log leaf for an algebraically integrable foliation. Given an algebraically integrable
foliation F on a complex projective manifold X, denote by Qe W QF ! X the
normalization of the closure of a general leaf of F . There is a naturally defined
effective Weil divisor Q� on QF such that KQF C Q� D Qe�KF (see Definition 3.6
for details). We call the pair . QF; Q�/ a general log leaf of F . In [AD13], we
used the log leaf to define new notions of singularities for algebraically integrable
foliations, following the theory of singularities of pairs from the minimal model
program. Namely, we say that F has log canonical singularities along a general
leaf if . QF; Q�/ is log canonical. By Theorem 1.1, these notions apply to del Pezzo
foliations on projective manifolds X 6Š P

n. In [AD13], we established the following
classification of del Pezzo foliations with mild singularities.

Theorem 1.2 ([AD13, 9.1 and Theorems 1.3, 9.2, 9.6]). Let F be a del Pezzo
foliation of rank r on a complex projective manifold X 6Š P

n, and suppose that F
has log canonical singularities and is locally free along a general leaf. Then

• either �.X/ D 1;
• or r 6 3 and X is a P

m-bundle over Pk.

In the latter case, one of the following holds.

(1) X Š P
1 � P

k, and F is the pullback via the second projection of a foliation
OPk.1/˚i � TPk for some i 2 f1; 2g .r 2 f2; 3g/.

(2) There exist

• an exact sequence of vector bundles 0!K ! E ! Q! 0 on P
k; and

• a foliation by curves C Š q� det.Q/ � TP
Pk .K /, where q W PPk.K /! P

k

denotes the natural projection;

such that X Š PPk.E /, and F is the pullback of C via the relative linear
projection PPk.E / Ü PPk.K /. Moreover, one of the following holds.

(a) k D 1, Q Š OP1 .1/, K is an ample vector bundle such that K 6Š
OP1 .a/

˚m for any integer a, and E Š Q˚K .r D 2/.



On Fano Foliations 2 3

(b) k D 1, Q Š OP1 .2/, K Š OP1 .a/
˚m for some integer a > 1, and E Š

Q˚K .r D 2/.
(c) k D 1, Q Š OP1 .1/˚ OP1 .1/, K Š OP1 .a/

˚.m�1/ for some integer a > 1,
and E Š Q˚K .r D 3/.

(d) k > 2, Q Š OPk.1/, and K is V-equivariant for some V 2 H0
�
P

k;TPk ˝
OPk.�1/� n f0g .r D 2/.

Conversely, given K , E , and Q satisfying any of the conditions above, there
exists a del Pezzo foliation of that type.

The goal of the present paper is to continue the classification of del Pezzo
foliations on Fano manifolds X 6Š P

n having log canonical singularities and being
locally free along a general leaf. In view of Theorem 1.2, we need to understand del
Pezzo foliations on Fano manifolds with Picard number 1. Our main result is the
following.

Theorem 1.3. Let F be a del Pezzo foliation of rank r > 3 on an n-dimensional
Fano manifold X 6Š P

n with �.X/ D 1, and suppose that F has log canonical
singularities and is locally free along a general leaf. Then X Š Qn andF is induced
by the restriction to Qn of a linear projection P

nC1 Ü P
n�r.

Remark 1.4. Codimension 1 del Pezzo foliations on Fano manifolds with Picard
number 1 were classified in [LPT13, Proposition 3.7]. We extended this classifica-
tion to mildly singular varieties, without restriction on the Picard number in [AD14,
Theorem 1.3].

We also obtain a partial classification when r D 2 (Proposition 4.1).

In order to prove Theorem 1.3, we consider a general log leaf . QF; Q�/ of F . Under
the assumptions of Theorem 1.3, . QF; Q�/ is a log del Pezzo pair: it is a log canonical
pair of dimension r satisfying KQF C Q� D .r � 1/L, where L is an ample divisor on
QF. The first step in the proof of Theorem 1.3 consists in classifying all log del Pezzo
pairs. This is done in Section 2.4, using Fujita’s theory of �-genus. Once we know
the general log leaf . QF; Q�/ of F , we consider families of rational curves on X that
restrict to special families of rational curves on QF. The necessary results from the
theory of rational curves are briefly reviewed in Section 2.1. The idea is to use these
families of rational curves to bound the index of X from below. In order to obtain
a good bound, we need to show that the dimension of these families of rational
curves is big enough. Here enters a very special property of algebraically integrable
Fano foliations having log canonical singularities along a general leaf: there is a
common point contained in the closure of a general leaf [AD13, Proposition 5.3].
For our current purpose, we need the following strengthening of this result (see
Definition 2.9 for the notion of log canonical center).

Proposition 1.5. Let F be an algebraically integrable Fano foliation on a complex
projective manifold X having log canonical singularities along a general leaf. Then
there is a closed irreducible subset T � X satisfying the following property. For a
general log leaf . QF; Q�/, there exists a log canonical center S of . QF; Q�/ whose image
in X is T.
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When r > 3, this allows us to show that �X > n, and then use Kobayashi-Ochiai’s
theorem (Theorem 2.2) to conclude that X Š Qn. The classification of del Pezzo
foliations on Qn is established in Proposition 3.18.

Proposition 1.5 still holds in the more general setting of Q-Fano foliations on
possibly singular projective varieties. Since this may be useful in other situations,
we present the theory of foliations on normal projective varieties in Section 3, and
prove a more general version of Proposition 1.5 (Proposition 3.14).

Notation and Conventions We always work over the field C of complex numbers.
Varieties are always assumed to be irreducible. We denote by Sing.X/ the singular
locus of a variety X.

Given a sheaf F of OX-modules on a variety X, we denote by F� the
sheaf HomOX .F ;OX/. If r is the generic rank of F , then we denote by det.F /

the sheaf .^rF /��. For m 2 N, we denote by F Œm� the sheaf .F˝m/��. If G is
another sheaf of OX-modules on X, then we denote by F Œ˝�G the sheaf .F˝G /��.

If E is a locally free sheaf of OX-modules on a variety X, we denote by PX.E /
the Grothendieck projectivization ProjX.Sym.E //, and byOP.1/ its tautological line
bundle.

If X is a normal variety, we denote by TX the sheaf .�1
X/

�.
We denote by Qn a (possibly singular) quadric hypersurface in P

nC1. Given an
integer d > 0, we denote by Fd the surface PP1 .OP1˚OP1 .�d//. If moreover d > 1,
we denote by P.1; 1; d/ the cone in P

dC1 over the rational normal curve of degree d.

2 Preliminaries

2.1 Fano Manifolds and Rational Curves

Definition 2.1. A Fano manifold X is a complex projective manifold whose anti-
canonical class �KX is ample. The index �X of X is the largest integer dividing �KX

in Pic.X/.

Theorem 2.2 ([KO73]). Let X be a Fano manifold of dimension n > 2 and index
�X. Then �X 6 nC 1, and equality holds if and only if X Š P

n. Moreover, �X D n if
and only if X Š Qn � P

nC1.

Families of rational curves provide a useful tool in the study of Fano manifolds.
Next we gather some results from the theory of rational curves. In what follows,
rational curves are always assumed to be proper. A family of rational curves on
a complex projective manifold X is a closed irreducible subset of RatCurvesn.X/.
We refer to [Kol96] for details.

Definition 2.3. Let ` � X be a rational curve on a complex projective manifold,
and consider its normalization f W P1 ! X. We say that ` is free if f �TX is globally
generated.
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2.4. Let X be a complex projective manifold, and ` � X a free rational curve. Let
x 2 ` be any point, and Hx an irreducible component of the scheme RatCurvesn.X; x/
containing a point corresponding to `. Then

dim.Hx/ D �KX � ` � 2:

Notation 2.5. Let X be a Fano manifold with �.X/ D 1, and A an ample line
bundle on X such that Pic.X/ D ZŒA �. For any proper curve C � X, we refer to
A � C as the degree of C. Rational curves of degree 1 are called lines. Note that if
C � X is a proper curve of degree d, then �X D �KX �C

d .

One can use free rational curves on Fano manifolds with Picard number 1 to
bound their index. The following is an immediate consequence of paragraph 2.4
above.

Lemma 2.6. Let X be a Fano manifold with �.X/ D 1. Suppose that there is an
m-dimensional family V of rational curves of degree d on X such that:

• all curves from V pass though some fixed point x 2 X; and
• some curve from V is free.

Then �X > mC2
d .

Remark 2.7. Let V be a family of rational curves on a complex projective mani-
fold X. To guarantee that some member of V is a free curve, it is enough to show
that some curve from V passes through a general point of X. More precisely, let H be
an irreducible component of RatCurvesn.X/ containing V . It comes with universal
family morphisms

where � W U ! H is a P
1-bundle. Suppose that e W U ! X is dominant. Then, by

generic smoothness, there is a dense open subset Xı � X over which e W U ! X
is smooth. On the other hand, by [Kol96, Proposition II.3.4], e is smooth at a point
u 2 ��1.t/ if and only if the rational curve `t D e

�
��1.t/

�
is free.

2.2 Singularities of Pairs

We refer to [KM98, section 2.3] and [Kol13, sections 2 and 4] for details.

Definition 2.8. Let X be a normal projective variety, and � DP
ai�i an effective

Q-divisor on X, i.e.,� is a nonnegativeQ-linear combination of distinct prime Weil
divisors �i’s on X. Suppose that KX C � is Q-Cartier, i.e., some nonzero multiple
of it is a Cartier divisor.
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Let f W QX ! X be a log resolution of the pair .X; �/. There are uniquely defined
rational numbers a.Ei;X; �/’s such that

KQX C f �1� � D f �.KX C�/ C
X

Ei

a.Ei;X; �/Ei:

The a.Ei;X; �/’s do not depend on the log resolution f , but only on the valuations
associated to the Ei’s. The closed subvariety f .Ei/ � X is called the center of Ei

in X. It also depends only on the valuation associated to Ei.
For a prime divisor D on X, we define a.D;X; �/ to be the coefficient of D in��.
We say that the pair .X; �/ is log canonical if, for some log resolution f W QX ! X

of .X; �/, a.Ei;X; �/ > �1 for every f -exceptional prime divisor Ei. If this
condition holds for some log resolution of .X; �/, then it holds for every log
resolution of .X; �/.

Definition 2.9. Let .X; �/ be a log canonical pair. We say that a closed irreducible
subvariety S � X is a log canonical center of .X; �/ if there is a divisor E over X
with a.E;X; �/ D �1 whose center in X is S.

2.3 Polarized Varieties and Fujita’s �-Genus

Definition 2.10. A polarized variety is a pair .X;L / consisting of a normal
projective variety X, and an ample line bundle L on X.

Definition 2.11 ([Fuj75]). The �-genus of an n-dimensional polarized variety
.X;L / is defined by the formula:

�.X;L / WD nC c1.L /n � h0.X;L / 2 Z:

By [Fuj82, Corollary 2.12],�.X;L / > 0 for any polarized variety .X;L /. Next
we recall the classification of polarized varieties with �-genus zero from [Fuj82].

Theorem 2.12 ([Fuj82]). Let X be a normal projective variety of dimension n > 1,
and L an ample line bundle on X. Suppose that �.X;L / D 0. Then one of the
following holds.

(1) .X;L / Š .Pn;OPn.1//.
(2) .X;L / Š .Qn;OQn.1//.
(3) .X;L / Š .P1;OP1 .d//, for some d > 3.
(4) .X;L / Š .P2;OP2 .2//.
(5) .X;L / Š .PP1.E /;OP

P1
.E /.1//, where E is an ample vector bundle on P

1.
(6) L is very ample, and embeds X as a cone over a projective polarized variety of

type (3–5) above.
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2.4 Classification of Log Del Pezzo Pairs

Definition 2.13. Let X be a normal projective variety of dimension n > 1, and �
an effective Q-divisor on X. We say that .X; �/ is a log del Pezzo pair if .X; �/ is
log canonical, and�.KXC�/ � .n�1/c1.L / for some ample line bundle L on X.

Using Fujita’s classification of polarized varieties with�-genus zero, we classify
log del Pezzo pairs in Theorem 2.15 below.

Lemma 2.14. Let .X;L / be an n-dimensional polarized variety, with n > 2. Let
.X; �/ be a log del Pezzo pair such that � ¤ 0 and �.KX C �/ � .n � 1/c1.L /.
Then �.X;L / D 0, and� � c1.L /n�1 D 2.

Proof. We follow the line of argumentation in the proof of [Fuj80, Lemma 1.10].
Since

c1.L
˝t/ � KX C�C c1.L

˝n�1Ct/;

we have that hi.X;L˝t/ D 0 for i > 1 and t > 1 � n by [Fuj11, Theorem 8.1].
Therefore �.X;OX/ D 1 and �.X;L ˝t/ D 0 for 2 � n 6 t 6 �1. Hence, there are
rational numbers a and b such that

�.X;L ˝t/ D �
at2 C btC n.n� 1/�

Qn�2
jD1 .tC j/

nŠ
:

On the other hand, since X is normal, by Hirzebruch-Riemann-Roch,

�.X;L ˝t/ D c1.L /n

nŠ
tn � 1

2.n� 1/ŠKX � c1.L /n�1tn�1 C o.tn�1/:

Thus we have a D c1.L /n and b D n
2
� � c1.L /n�1 C .n� 1/c1.L /n. In particular,

h0.X;L / D �.X;L / D n � 1C c1.L /n C 1

2
� � c1.L /n�1:

One then computes that

�.X;L / D 1 � 1
2
� � c1.L /n�1:

Since� ¤ 0 and�.X;L / > 0, we must have�.X;L / D 0 and� �c1.L /n�1 D 2.
ut

Theorem 2.15. Let .X;L / be an n-dimensional polarized variety, with n > 1. Let
.X; �/ be a log del Pezzo pair such that� is integral and nonzero, and�.KXC�/ �
.n � 1/c1.L /. Then one of the following holds.
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(1) .X;L ;OX.�// Š .Pn;OPn.1/;OPn.2//.
(2) .X;L ;OX.�// Š .Qn;OQn.1/;OQn.1//.
(3) .X;L ;OX.�// Š .P1;OP1.d/;OP1 .2//, for some integer d > 3.
(4) .X;L ;OX.�// Š .P2;OP2.2/;OP2 .1//.
(5) .X;L / Š .PP1 .E /;OP

P1
.E /.1// for an ample vector bundle E on P

1. Moreover,
one of the following holds.

(a) E D OP1 .1/ ˚ OP1 .a/ for some a > 2, and � �Z 	 C f where 	 is the
minimal section and f is a fiber of PP1.E /! P

1.
(b) E D OP1 .2/˚ OP1 .a/ for some a > 2, and� is a minimal section.
(c) E D OP1 .1/˚ OP1.1/˚ OP1 .a/ for some a > 1, and � D PP1.OP1 .1/˚

OP1 .1//.

(6) L is very ample, and embeds .X; �/ as a cone over
�
.Z;M /; .�Z;Mj�Z /

�
,

where Z is smooth and .Z;M ; �Z/ satisfies one of the conditions (3–5) above.

Proof. By [CKP12, Theorem 0.1], we must have �.KX C�/ �Q .n � 1/c1.L /.
If n D 1, then �KX �Q � is ample, and hence .X;L ;OX.�// satisfies one of

conditions (1–3) in the statement of Theorem 2.15.
Suppose from now on that n > 2. By Lemma 2.14, �.X;L / D 0, and so we

can apply Theorem 2.12. Notice that if .X;L / satisfies any of conditions (1–6) of
Theorem 2.12, then �.KX C �/ �Z .n � 1/c1.L / since X n Sing.X/ is simply
connected.

If .X;L / satisfies any of conditions (1–4) of Theorem 2.12, one checks easily
that .X;L ; �/ satisfies one of conditions (1–4) in the statement of Theorem 2.15.

Suppose that .X;L / Š .PP1.E /;OP
P1 .E /

.1// for an ample vector bundle E on
P
1, and write � W X ! P

1 for the natural projection. Then

� 2 ˇ
ˇOX.�KX/˝L ˝1�n

ˇ
ˇ D ˇ

ˇL ˝ ���
det.E �/˝ OP1 .2/

�ˇˇ:

Write E Š OP1 .a1/ ˚ � � � ˚ OP1 .an/, with 1 6 a1 6 � � � 6 an. By the projection
formula, h0

�
X;L ˝ ���

det.E �/ ˝ OP1 .2/
�� D h0.P1;E ˝ det.E �/ ˝ OP1.2//,

hence we must have a1 C � � � C an�1 6 2. This implies that .n; a1; : : : ; an�1/ 2
f.2; 1/; .2; 2/; .3; 1; 1/g. Thus either E satisfies condition (5a-c) in the statement of
Theorem 2.15, or E D OP1 .1/ ˚ OP1.1/, � 2 jOP

P1
.E /.1/j, and hence X satisfies

condition (2) with n D 2.
Finally, suppose that L is very ample, and embeds X as a cone with vertex V

over a smooth polarized variety .Z;M / satisfying one of conditions (3–5) in the
statement of Theorem 2.12. Set m WD dim.Z/ and s WD n � m D dim.V/ C 1.
Let e W Y ! X be the blow-up of X along V , with exceptional divisor E. We have
Y Š PZ.M ˚ O˚s

Z /, with natural projection � W Y ! Z, and tautological line
bundle OY.1/ Š e�L . The exceptional divisor E corresponds to the projection
M ˚ O˚s

Z � O˚s
Z .

Let �Y be the strict transform of � in Y. We are done if we prove that �Y D
���Z for some divisor�Z on Z.
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Write �Y �Z �
��Z C kE for some integral divisor �Z on Z, and some integer

k > 0. Let 	 W Z ! Y be the section of � corresponding to a general surjection
M ˚ O˚s

Z � M . Then 	.Z/ \ E D ;, and N	.Z/=Y Š M˚s. Moreover,
.	.Z/;�Y j	.Z// is log canonical (see, for instance, [Kol97, Proposition 7.3.2]), and,
by the adjunction formula, �.K	.Z/ C�Y j	.Z// �Z .m � 1/c1.OY.1//j	.Z/.

We have h0.Y;OY .kEC ���Z// D h0.Y;OY.�Y// > 1. On the other hand,

h0.Y;OY.kEC ���Z// D h0.Y;OY .k/˝ ��M˝�k ˝OY .�
��Z//

D h0.Z; Sk.M ˚ O˚s
Z /˝M˝�k ˝ OZ.�Z//

D h0.Z; Sk.OZ ˚M˝�1
Z

˚s
/˝ OZ.�Z//:

We claim that h0.Z;M˝�1
Z ˝ OZ.�Z// D 0. Indeed, suppose that h0.Z;M˝�1

Z ˝
OZ.�Z// ¤ 0. Then �KZ �Z �Z C .m � 1/c1.M / since �Y j	.Z/ �Z

�
�j	.Z/

��
�Z ,

and hence �KZ > mc1.M /. Under these conditions, [AD14, Theorem 2.5]
implies that .Z;M ;OZ.�Z// is isomorphic to either .Pm;OPm.1/;OPm.2// or
.Qm;OQm.1/;OQm.1//. This contradicts our current assumption that .Z;M / satisfies
one of conditions (3–5) in the statement of Theorem 2.12, and proves the claim.

Since h0.Z;M˝�1
Z ˝ OZ.�Z// D 0, we must have h0.Y;OY .kE C ���Z// D

h0.Z;OZ.�Z//. Thus, replacing �Z with a suitable member of its linear system if
necessary, we may assume that �Y D ���Z C kE, and hence k D 0. Therefore
.X;L ; �/ satisfies condition (6) in the statement of Theorem 2.15. ut

In dimension 2, we have the following classification, without the assumption that
.X; �/ is log canonical.

Theorem 2.16 ([Nak07, Theorem 4.8]). Let .X; �/ be a pair with dim.X/ D 2

and� ¤ 0. Suppose that�.KXC�/ is Cartier and ample. Then one of the following
holds.

(1) X Š P
2 and deg.�/ 2 f1; 2g.

(2) X Š Fd for some d > 0 and � is a minimal section.
(3) X Š Fd for some d > 0 and � �Z 	 C f , where 	 is a minimal section and f a

fiber of Fd ! P
1.

(4) X Š P.1; 1; d/ for some d > 2 and � �Z 2` where ` is a ruling of the cone
P.1; 1; d/.

3 Foliations

3.1 Foliations and Pfaff Fields

Definition 3.1. Let X be normal variety. A foliation on X is a nonzero coherent
subsheaf F ¨ TX such that
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• F is closed under the Lie bracket, and
• F is saturated in TX (i.e., TX=F is torsion free).

The rank r of F is the generic rank of F . The codimension of F is q D
dim.X/� r.

The canonical class KF of F is any Weil divisor on X such that OX.�KF / Š
det.F /.

Definition 3.2. A foliation F on a normal variety is said to be Q-Gorenstein if its
canonical class KF is Q-Cartier.

Definition 3.3. Let X be a variety, and r a positive integer. A Pfaff field of rank r on
X is a nonzero map 
 W �r

X ! L , where L is a reflexive sheaf of rank 1 on X such
that L Œm� is invertible for some integer m > 1.

The singular locus S of 
 is the closed subscheme of X whose ideal sheaf IS is
the image of the induced map �r

XŒ˝�L � ! OX .

Notice that a Q-Gorenstein foliation F of rank r on normal variety X naturaly
gives rise to a Pfaff field of rank r on X:


 W �r
X D ^r.�1

X/! ^r.T�
X /! ^r.F�/! det.F�/ Š det.F /� Š OX.KF /:

Definition 3.4. Let F be a Q-Gorenstein foliation on a normal variety X. The
singular locus of F is defined to be the singular locus S of the associated Pfaff
field. We say that F is regular at a point x 2 X if x 62 S. We say that F is regular
if S D ;.

Our definition of Pfaff field is more general than the one usually found in the
literature, where L is required to be invertibile. This generalization is needed in
order to treat Q-Gorenstein foliations whose canonical classes are not Cartier.

3.5 (Foliations Defined by q-Forms). Let F be a codimension q foliation on an
n-dimenional normal variety X. The normal sheaf of F is NF WD .TX=F /��. The
q-th wedge product of the inclusion N�

F ,! .�1
X/

�� gives rise to a nonzero global
section ! 2 H0

�
X; �q

XŒ˝� det.NF /
�

whose zero locus has codimension at least 2
in X. Moreover, ! is locally decomposable and integrable. To say that ! is locally
decomposable means that, in a neighborhood of a general point of X, ! decomposes
as the wedge product of q local 1-forms! D !1^� � �^!q. To say that it is integrable
means that for this local decomposition one has d!i^! D 0 for every i 2 f1; : : : ; qg.
The integrability condition for ! is equivalent to the condition that F is closed
under the Lie bracket.

Conversely, let L be a reflexive sheaf of rank 1 on X, and ! 2 H0.X; �q
XŒ˝�L /

a global section whose zero locus has codimension at least 2 in X. Suppose that
! is locally decomposable and integrable. Then the kernel of the morphism TX !
�

q�1
X Œ˝�L given by the contraction with ! defines a foliation of codimension q

on X. These constructions are inverse of each other.
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3.2 Algebraically Integrable Foliations

Let X be a normal projective variety, and F a foliation on X. In this subsection we
assume that F is algebraically integrable. This means that F is the relative tangent
sheaf to a dominant rational map ' W X Ü Y with connected fibers. In this case,
by a general leaf of F we mean the fiber of ' over a general point of Y. We start
by defining the notion of log leaf when F is moreoverQ-Gorenstein. It plays a key
role in our approach to Q-Fano foliations.

Definition 3.6 (See [AD14, Definition 3.10] for details). Let X be a normal
projective variety, F a Q-Gorenstein algebraically integrable foliation of rank r
on X, and 
 W �r

X ! OX.KF / its corresponding Pfaff field. Let F � X be the
closure of a general leaf of F , and Qe W QF ! X the normalization of F. Let m > 1

be the Cartier index of KF , i.e., the smallest positive integer m such that mKF

is Cartier. Then 
 induces a generically surjective map ˝m�r
QF ! Qe�OX.mKF /.

Hence there is a canonically defined effective Weil Q-divisor Q� on QF such that
mKQF C m Q� �Z Qe�mKF .

We call the pair . QF; Q�/ a general log leaf of F .

The next lemma gives sufficient conditions under which the support of Q� is
precisely the inverse image in QF of the singular locus of F . It is an immediate
consequence of [AD13, Lemma 5.6].

Lemma 3.7. Let F be an algebraically integrable foliation on a complex projec-
tive manifold X. Suppose that F is locally free along the closure of a general leaf F.
Let Qe W QF ! X be its normalization, and . QF; Q�/ the corresponding log leaf. Then
Supp. Q�/ D Qe�1.F \ Sing.F //.

Definition 3.8. Let X be normal projective variety, F a Q-Gorenstein algebraically
integrable foliation on X, and . QF; Q�/ its general log leaf. We say that F has log
canonical singularities along a general leaf if . QF; Q�/ is log canonical.

Remark 3.9. In [McQ08, Definition I.1.2], McQuillan introduced a notion of log
canonicity for foliations, without requiring algebraic integrability. If a Q-Gorenstein
algebraically integrable foliation F is log canonical in the sense of McQuillan, then
F has log canonical singularities along a general leaf (see [AD13, Proposition 3.11]
and its proof).

3.10 (The Family of Log Leaves). Let X be normal projective variety, and F
an algebraically integrable foliation on X. We describe the family of leaves of F
(see [AD13, Lemma 3.2 and Remark 3.8] for details). There is a unique irreducible
closed subvariety W of Chow.X/ whose general point parameterizes the closure of
a general leaf of F (viewed as a reduced and irreducible cycle in X). It comes with
a universal cycle U � W � X and morphisms:
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where e W U ! X is birational and, for a general point w 2 W, e
�
��1.w/

� � X is
the closure of a leaf of F .

The variety W is called the family of leaves of F .
Suppose moreover that F is Q-Gorenstein, denote by m > 1 the Cartier index of

KF , by r the rank of F , and by 
 W �r
X ! OX.KF / the corresponding Pfaff field.

Given a morphism V ! W from a normal variety, let UV be the normalization of
U �V W, with induced morphisms:

Then 
 induces a generically surjective map ˝m�r
UV=V ! eV

�OX.mKF /: Thus
there is a canonically defined effective Weil Q-divisor �V on UV such that
det.�1

UV=V/
˝mŒ˝�OUV .m�V/ Š eV

�OX.mKF /. Suppose that v 2 V is mapped to

a general point of W, set Uv WD .�V/
�1.v/, and �v WD .�V/jUv . Then .Uv;�v/

coincides with the general log leaf . QF; Q�/ defined above.

3.3 Q-Fano Foliations

Definition 3.11. Let X be a normal projective variety, and F a Q-Gorenstein
foliation on X. We say that F is a Q-Fano foliation if �KF is ample. In this case,
the index of F is the largest positive rational number �F such that �KF �Q �FH
for a Cartier divisor H on X.

If F is a Q-Fano foliation of rank r on a normal projective variety X, then,
by [Hör14, Corollary 1.2], �F 6 r. Moreover, equality holds if and only if X is a
generalized normal cone over a normal projective variety Z, and F is induced by
the natural rational map X Ü Z (see also [ADK08, Theorem 1.1], and [AD14,
Theorem 4.11]).

Definition 3.12. A Q-Fano foliation F of rank r > 2 is called a del Pezzo foliation
if �F D r � 1.

In [AD13, Proposition 5.3], we proved that algebraically integrable Fano foli-
ations having log canonical singularities along a general leaf have a very special
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property: there is a common point contained in the closure of a general leaf.
We strengthen this result in Proposition 3.14 below. It will be a consequence of
the following theorem.

Theorem 3.13 ([ADK08, Theorem 3.1]). Let X be a normal projective variety,
f W X ! C a surjective morphism onto a smooth curve, and � an effective Weil
Q-divisor on X such that .X; �/ is log canonical over the generic point of C. Then
�.KX=C C�/ is not ample.

Proposition 3.14. Let F be an algebraically integrable Q-Fano foliation on a
normal projective variety X, having log canonical singularities along a general leaf.
Then there is a closed irreducible subset T � X satisfying the following property.
For a general log leaf . QF; Q�/ of F , there exists a log canonical center S of . QF; Q�/
whose image in X is T.

Proof. Let W be the normalization of the family of leaves ofF , U the normalization
of the universal cycle over W, with universal family morphisms � W U ! W and
e W U ! X. As explained in 3.10, there is a canonically defined effective Q-Weil
divisor � on U such that det.�1

U=W/
˝mŒ˝�OU.m�/ Š e�OX.mKF /, where m > 1

denotes the Cartier index of KF . Moreover, there is a smooth dense open subset
W0 � W with the following properties. For any w 2 W0, denote by Uw the fiber of
� over w, and set �w WD �jUw . Then

• Uw is integral and normal, and
• .Uw; �w/ has log canonical singularities.

To prove the proposition, suppose to the contrary that, for any two general points
w;w0 2 W0, and any log canonical centers Sw and Sw0 of .Uw; �w/ and .Uw0 ; �w0/

respectively, we have e.Sw/ ¤ e.Sw0/.
Let C � W be a (smooth) general complete intersection curve, and UC the

normalization of ��1.C/, with induced morphisms�C W UC ! C and eC W UC ! X.
By [BLR95, Theorem 2.1’], after replacing C with a finite cover if necessary,
we may assume that �C has reduced fibers. As before, there is a canonically
defined Q-Weil divisor �C on UC such that KUC=C C �C �Q eC

�KF . Therefore
KUC C�C �Q �

�
C KC C e�

CKF is a Q-Cartier divisor. For a general point w 2 C, we

identify
�
��1

C .w/;�C j��1
C .w/

�
with .Uw; �w/, which is log canonical by assumption.

Thus, by inversion of adjunction (see [Kaw07, Theorem]), the pair .UC; �C/ has log
canonical singularities over the generic point of C. Let w 2 C be a general point, and
Sw any log canonical center of .Uw; �w/. Then there exists a reduced and irreducible
closed subset SC � UC such that:

• Sw D SC \ Uw, and
• SC is a log canonical center of .UC; �C/ over the generic point of C.

Moreover, our current assumption implies that

• dim.eC.SC// D dim.SC/.
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Thus, by [Dem97, Proposition 7.2(ii)], there exist an ample Q-divisor A and an
effective Q-Cartier Q-divisor E on UC such that:

• e�
C.�KF / �Q AC E, and

• for a general point w 2 C, Supp.E/ does not contain any log canonical center
of .Uw; �w/.

Therefore .UC; �CC�E/ is log canonical over the generic point of C for 0 < � � 1.
Notice that e�

C.�KF /� �E is ample since e�
C.�KF / is nef and big, and hence

�.KUC=C C�C C �E/ �Q e�
C.�KF /� �E

is ample as well. But this contradicts Theorem 3.13, completing the proof of the
proposition. ut
Corollary 3.15. Let F be an algebraically integrable Fano foliation on a complex
projective manifold, and . QF; Q�/ its general log leaf. Suppose that F is locally free
along the closure of a general leaf. Then Q� ¤ 0.

Proof. Denote by F the closure of a general leaf of F . If Q� D 0, then F is
regular along F by Lemma 3.7. Hence F is induced by an almost proper map
X Ü W, and F is smooth. In particular . QF; Q�/ is log canonical. But this contradicts
Proposition 3.14. This proves that Q� ¤ 0. ut

3.4 Foliations on P
n

The degree deg.F / of a foliation F of rank r on P
n is defined as the degree

of the locus of tangency of F with a general linear subspace P
n�r � P

n.
By 3.5, a foliation on P

n of rank r and degree d is given by a twisted q-form
! 2 H0

�
P

n; �
q
Pn.qC dC 1/�, where q D n � r. Thus

d D deg.KF / C r:

Jouanolou has classified codimension 1 foliations on P
n of degree 0 and 1. This

has been generalized to arbitrary rank as follows.

Theorem 3.16.

(1) [DC05, Théorème 3.8]. A codimension q foliation of degree 0 on P
n is induced

by a linear projection P
n Ü P

q.
(2) [LPT13, Theorem 6.2]. A codimension q foliation F of degree 1 on P

n satisfies
one of the following conditions.

• F is induced by a dominant rational map P
n Ü P.1q; 2/, defined by q

linear forms L1; : : : ;Lq and one quadratic form Q; or
• F is the linear pullback of a foliation on P

qC1 induced by a global
holomorphic vector field.
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3.17. Let F be a codimension q foliation of degree 1 on P
n.

In the first case described in Theorem 3.16(2), F is induced by the q-form
on C

nC1

� D
qX

iD1
.�1/iC1LidL1 ^ � � � ^ cdLi ^ � � � ^ dLq ^ dQC .�1/q2QdL1 ^ � � � ^ dLq

D .�1/q
� nC1X

iDqC1
Lj
@Q

@Li

�
dL1 ^ � � � ^ dLq

C
qX

iD1

nC1X

jDqC1
.�1/iC1Li

@Q

@Lj
dL1 ^ � � � ^ cdLi ^ � � � ^ dLq ^ dLj;

where LqC1; : : : ;LnC1 are linear forms such that L1; : : : ;LnC1 are linearly indepen-
dent. Thus, the singular locus of F is the union of the quadric fL1 D � � � D Lq D
Q D 0g Š Qn�q�1 and the linear subspace f @Q

@LqC1
D � � � D @Q

@LnC1
D 0g.

In the second case described in Theorem 3.16(2), the singular locus of F is the
union of linear subspaces of codimension at least 2 containing the center Pn�q�2 of
the projection.

3.5 Foliations on Qn

In this subsection we classify del Pezzo foliations on smooth quadric hypersurfaces.

Proposition 3.18. Let F be a codimension q del Pezzo foliation on a smooth
quadric hypersurface Qn � P

nC1. Then F is induced by the restriction of a linear
projection P

nC1 Ü P
q.

Proof. If q D 1, then the result follows from [AD14, Theorem 1.3]. So we assume
from now on that q > 2.

By [AD13, Proposition 7.7], F is algebraically integrable, and its singular locus
is nonempty by [AD14, Theorem 6.1].

Let x 2 Qn be a point in the singular locus of F , and consider the restriction
' W Qn Ü P

n to Qn of the linear projection W PnC1 Ü P
n from x. Let f W Y ! Qn

be the blow-up of Qn at x with exceptional divisor E Š P
n�1, and g W Y ! P

n the
induced morphism. Notice that g is the blow-up of Pn along the smooth codimension
2 quadric Z D '.Exc.'// Š Qn�2. Denote by H the hyperplane of Pn containing
Z, and by F the exceptional divisor of g. Note that g.E/ D H, and f .F/ is the
hyperplane section of Qn cut out by TxQn. The codimension q del Pezzo foliation
F is defined by a nonzero section ! 2 H0

�
Qn; �

q
Qn.q C 1/� vanishing at x. So it

induces a twisted q-form ˛ 2 H0
�
Y; �q

Y˝f �OQ.qC1/˝OY .�qE/
� Š H0

�
Y; �q

Y˝
g�OPn.q C 2/ ˝ OY.�F/

�
. The restriction of ˛ to Y n F induces a twisted q-form
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Q̨ 2 H0
�
P

n; �
q
Pn.qC 2/� such that Q̨z.v1; v2; : : : ; vq/ D 0 for any z 2 Z, v1 2 TzP

n,
and vi 2 TzZ, 2 6 i 6 q. Denote by QF the foliation on P

n induced by Q̨ . There are
two possibilities:

• Either Q̨ vanishes along the hyperplane H of P
n containing Z Š Qn�2, and

hence QF is a degree 0 foliation on P
n; or

• QF is a degree 1 foliation on P
n, and either Z is contained in the singular locus

of QF , or Z is invariant under QF .

We will show that only the first possibility occurs. In this case, it follows
from Theorem 3.16(1) that F is induced by the restriction of a linear projection
P

nC1 Ü P
q.

Suppose to the contrary that QF is a degree 1 foliation on P
n, and either Z

is contained in the singular locus of QF , or Z is invariant under QF . Recall the
description of the two types of codimension q degree 1 on P

n from Theorem 3.16(2):

(1) Either the foliation is induced by a dominant rational map P
n Ü P.1q; 2/,

defined by q linear forms L1; : : : ;Lq and one quadratic form Q; or
(2) it is the linear pullback of a foliation on P

qC1 induced by a global holomorphic
vector field.

In case (2), the closure of the leaves and the singular locus are all cones with vertex
P

n�q�2. Since Z Š Qn�2 is a smooth quadric, we conclude that QF must be of type
(1), Z is invariant under QF , and Q̨ is as in the description of � in 3.17.

Since Z is invariant under QF , we must have fL1 D � � � D Lq D Q D 0g Š
Qn�q�1 � Z. We assume without loss of generality that H D fL1 D 0g. Notice that
fL1 D � � � D Lq D Q D 0g ¨ Z since q > 2. Let LqC1; : : : ;LnC1 2 CŒt1; : : : ; tnC1�
be linear forms such that L1; : : : ;LnC1 are linearly independent. Since Z is invariant
under QF , '� Q̨ vanishes identically along f .F/ D f'�L1 D 0g. It follows from the
description of the singular locus of QF in 3.17 that we must have f'� @Q

@LqC1
D � � � D

'� @Q
@LnC1

D 0g D f'�L1 D 0g. Hence, for i 2 fqC 1; : : : ; nC 1g, '� @Q
@Li
D ai'

�L1
for some complex number ai 2 C. Then � Q̨ 2 . �L1/ �H0

�
P

nC1;�q
PnC1 .qC1/

� �
H0

�
P

nC1;�q
PnC1 .qC 2/

�
. Therefore, QF is induced by a degree 0 foliation on P

nC1.
So QF itself is a degree 0 foliation on P

n, contrary to our assumption. This completes
the proof of the proposition. ut

4 Proof of Theorem 1.3

Let X 6Š P
n be an n-dimensional Fano manifold with �.X/ D 1, and F a del Pezzo

foliation of rank r > 3 on X. By Theorem 1.1, F is algebraically integrable. Let F
be the closure of a general leaf of F , Qe W QF ! X its normalization, and . QF; Q�/ the
corresponding log leaf. By assumption, . QF; Q�/ is log canonical, and F is locally
free along F.
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Let A be an ample line bundle on X such that Pic.X/ D ZŒA �, and set L WD
Qe�A . Then det.F / Š A r�1, and

�.KQF C Q�/ �Z �Qe�KF �Z .r � 1/c1.L /:

By Corollary 3.15, Q� ¤ 0. So we can apply Theorem 2.15. Taking into account
that if QF is singular, then its singular locus is contained in the support of Q� by
Lemma 3.7, we get the following possibilities for the triple . QF;L ; Q�/:
(1)

� QF;L ;OQF. Q�/
� Š .Pr;OPr.1/;OPr.2//.

(2)
� QF;L ;OQF. Q�/

� Š .Qr;OQr .1/;OQr.1//, where Qr is a smooth quadric hyper-
surface in P

rC1.
(3) r D 1 and

� QF;L ;OQF. Q�/
� Š .P1;OP1 .d/;OP1.2// for some integer d > 3.

(4) r D 2 and
� QF;L ;OQF. Q�/

� Š .P2;OP2 .2/;OP2.1//.
(5) . QF;L / Š .PP1.E /;OP

P1
.E /.1// for an ample vector bundle E of rank r on P

1.
Moreover, one of the following holds.

(a) r D 2 and E D OP1 .1/˚ OP1 .a/ for some a > 2, and Q� �Z 	 C f where
	 is the minimal section and f a fiber of PP1 .E /! P

1.
(b) r D 2 and E D OP1 .2/ ˚ OP1 .a/ for some a > 2, and Q� is a minimal

section.
(c) r D 3 and E D OP1 .1/ ˚ OP1 .1/ ˚ OP1 .a/ for some a > 1, and Q� D

PP1.OP1 .1/˚ OP1 .1//.

(6) L is very ample, and embeds . QF; Q�/ as a cone over
�
.Z;M /; .�Z;Mj�Z /

�
,

where .Z;M ; �Z/ satisfies one of the conditions (2–5) above.

First we show that case (1) cannot occur. Suppose otherwise that . QF;L ;OQF. Q�//
Š .Pr;OPr.1/;OPr.2//. By Proposition 3.14, there is a common point x contained
in the closure of a general leaf. Since . QF;L / Š .Pr;OPr.1//, there is an irreducible
.n � 1/-dimensional family of lines on X through x sweeping out the whole X.
Lemma 2.6 together with Theorem 2.2 imply that X Š P

n, contrary to our
assumptions.

Next suppose that we are in case (2) or (5c). Note that Q� is irreducible in either
case (in case (2), QF is a smooth quadric of dimension r > 3 and Q� is a hyperplane
section). By Proposition 3.14, the image T of Q� in X is contained in the closure
of a general leaf of F . There is a family of lines on X, all contained in leaves of
F and meeting T, that sweep out the whole X. In case (2), this corresponds to the
family of lines on QF Š Qr. In case (5c), it corresponds to the family of lines on
fibers of QF ! P

1. Let x 2 T be a general point. Then there is an irreducible .n� 2/-
dimensional family of lines on X through x, and the general line in this family is
free by Remark 2.7. By Lemma 2.6, �X > n. Theorem 2.2 then implies that X Š Qn.
By Proposition 3.18, F is induced by the restriction to Qn of a linear projection
P

nC1 Ü P
n�r.

Cases (3), (4), (5a), and (5b) do not occur since we are assuming r > 3.
Finally suppose that we are in case (6): L is very ample, and embeds . QF; Q�/ as

a cone over the pair
�
.Z;M /; .�Z;Mj�Z /

�
, where .Z;M ; �Z/ satisfies one of the
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conditions (2–5) above. As in the proof of Theorem 2.15, set m WD dim.Z/, s WD r�
m, and let e W Y ! QF be the blow-up of QF along its vertex, with exceptional divisor
E. Then Y Š PZ.M ˚ O˚s

Z /, with natural projection � W Y ! Z. Moreover the
strict transform�Y of Q� in Y satisfies �Y D ���Z . A straightforward computation
gives

KY C ���Z �Z e�.KQF C Q�/C .m � 2/E:

On the other hand, by [AD13, 8.3], there exists an effective divisor B on Y such that

KY C EC B �Z e�.KQF C Q�/:

Therefore

�Y D ���Z �Z .m � 1/EC B:

We conclude that m D 1. Thus QF is isomorphic to a cone with vertex V Š P
r�2

over a rational normal curve of degree d > 2, and Q� is the union of two rulings �1

and�2, each isomorphic to P
r�1.

By Proposition 3.14, there is a log canonical center S of . QF; Q�/ whose image in
X does not depend on the choice of the general log leaf. Either S D V , or S D �i

for some i 2 f1; 2g. If S D V , then the lines through a general point of Qe.V/ sweep
out the whole X. Lemma 2.6 together with Theorem 2.2 then imply that X Š P

n,
contrary to our assumptions. We conclude that the image of V in X varies with
. QF; Q�/, and, for some i 2 f1; 2g, T D Qe.�i/ is contained in the closure of a general
leaf. There is a family of lines on X, all contained in leaves of F and meeting T, that
sweep out the whole X. Let x 2 T be a general point. Since V � �i, and the image
of V in X varies with . QF; Q�/, there is an irreducible .n � 2/-dimensional family of
lines on X through x, and the general line in this family is free by Remark 2.7. By
Lemma 2.6, �X > n. Theorem 2.2 then implies that X Š Qn. By Proposition 3.18,
F is induced by the restriction of a linear projection P

nC1 Ü P
n�r. ut

Using Theorem 2.16 and the same arguments as in the proof of Theorem 1.3,
one can get the following result for del Pezzo foliations of rank 2, without the
assumption that F is log canonical along a general leaf.

Proposition 4.1. Let F be a del Pezzo foliation of rank 2 on a complex projective
manifold X 6Š P

n with �.X/ D 1, and suppose that F is locally free along a general
leaf. Denote by . QF; Q�/ the general log leaf of F , and by L the pullback to QF of the
ample generator of Pic.X/. Then the triple . QF;OF. Q�/;L / is isomorphic to one of
the following.

(1)
�
P
2;OP2 .1/;OP2 .2/

�
;

(2)
�
P
2;OP2 .2/;OP2 .1/

�
;

(3)
�
Fd;OFd.	 C f /;OFd .	 C .dC 1/f /

�
, where d > 0, 	 is a minimal section, and

f is a fiber of Fd ! P
1;

(4)
�
P.1; 1; d/;OP.1;1;d/.2`/;OP.1;1;d/.d`/

�
, where d > 2, and ` is a ruling of the

cone P.1; 1; d/.
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Remark 4.2. There are examples of del Pezzo foliations of rank 2 on Grassmanni-
ans whose general log leaves are . QF; Q�/ D .P2; 2`/ (see [AD13, 4.3]).
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Rational Curves on Foliated Varieties

Fedor Bogomolov and Michael McQuillan

Abstract The article refines and generalises the study of deformations of a
morphism along a foliation begun by Y. Miyaoka, [Mi2]. The key ingredients are
the algebrisation of the graphic neighbourhood, see Fact 3.3.1, which reduces the
problem from the transcendental to the algebraic, and a p-adic variation of Mori’s
bend and break in order to overcome the “naive failure”, see Remark 3.2.3, of the
method in the required generality. Qualitatively the results are optimal for foliations
of all ranks in all dimensions, and are quantitatively optimal for foliations by curves,
for which the further precision of a cone theorem is provided.

Keywords Frobenius (theorem) • (foliated) (log) canonical singularities • Algo-
rithmic resolution • Graphic neighbourhood • Ample (vector) bundle • Frobenius
(map) • Bend and break • p-adic • Rationally connected • Cone of curves
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In a series of papers, notably [B1] and [B2], the first author showed, amongst other
things, that a surprising interplay between the classical Frobenius theorem on the
integrability of vector fields closed under Lie bracket and various algebro-geometric
considerations gave rise to some rather strong restrictions on the “size” of sub-
bundles of the cotangent bundle, with a particular corollary being inequalities for
Chern numbers on algebraic surfaces. In refining this circle of ideas Y. Miyaoka,
[Mi1], established that any quotient of the cotangent bundle of a surface of
general type and positive index was big. Rather more remarkably, Miyaoka, [Mi2],
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subsequently considered the problem of sub-bundles of the tangent bundle with
positive slope along a generic complete intersection of ample divisors, and by
extending Mori’s bend and break technique to “deformations along a foliation”
showed that these hypothesis implied the existence of covering families of rationally
chain connected varieties in the direction of the foliation. The surface case of this
result is particularly clean, since it asserts that either the bundle of top weight forms
KF along the leaves is pseudo-effective, or the foliation is a fibration by rational
curves. Continuing in these directions the second author in extending the results of
the first author on boundedness of moduli of curves of a given genus on surfaces to
curves with boundary employed Miyaoka’s semi-positivity theorem in an essential
way, cf. [M1]. The use of the said theorem therein was to force, under the hypothesis
of a dense parabolic leaf, the existence of a global vector field defining the foliation
on a crude version of what might be considered it’s minimal model, i.e. a normal
algebraic space on which the positive part of the Zariski decomposition of KF

coincides with the push forward of the latter. It was natural however to examine
this question more carefully, not just in terms of a more delicate structure of the
minimal model but to introduce the study of the birational geometry of foliations per
se, cf. [M2, Br2, Br3]. As ever a prerequisite for such a study is the understanding
of sub-varieties on which the cotangent bundle of our foliation is negative.

To fix ideas let us consider a foliation by curves, F , on a smooth variety X.
This is equivalent to giving a rank 1 torsion free quotient of �X , whose Chern
class we denote by KF . Miyaoka’s theorem then asserts that if C is a “sufficiently
movable” curve then either KF � C 	 0 or F is a (possibly singular) fibration by
rational curves. The main problem here is the hypothesis, “sufficiently movable”
which more precisely means that C moves in a family fCt j t 2 Tg covering X such
that generically Ct does not meet the singularities of F , whereas one really wishes
to understand the implications of the hypothesis KF � C < 0 for any curve C. The
difficulties in extending Miyaoka’s method, or its refinement by Shepherd-Barron,
[SB], to this situation are formidable. Firstly one must establish that the hypothesis
imply that the divided symmetric power algebra of KF extends across a finitely
generated extension of Z, [Mi2], or rather more straightforwardly the foliation is
defined by an inseparable scheme quotient in positive characteristic, [SB]. Even then
there is the added complication that C may pass through the foliation singularities
and so Mori’s bend and break technique may not apply. The key to resolving this
problem § 2 lies in finding a F -invariant surface S containing C,1 and so reduce the
study to something more tractable. In finding our surface, however, we necessarily
show that the leaves through C are algebraic curves, and whence reprove Miyaoka’s
theorem in this case without any appeal to reduction in positive characteristic,
thanks to a theorem of Arakelov, [A], all be it that the most satisfying proof of
Arakelov’s theorem is to proceed via positive characteristic, cf. [S].

With this example in mind let us consider a more general situation. We denote
by .X;F / any variety equipped with an integrable (i.e. closed under Lie bracket)

1Concomitantly with the preparation of the original pre-print, c. may 2000, J.-B. Bost, [Bo], used
what may be considered an arithmetic version of this trick which independently led him to discover
the geometric variant, and its higher dimensional generalisations à la § 2.1.
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foliation F . The singularities of X are not our interest, but rather those of F . What
this latter should mean is a measure of how far away the foliation is from being
given everywhere locally by a relatively smooth fibration. To understand this it is
convenient to introduce an ambient smooth space M. The foliation is given by a
sub-sheaf TF of TX of rank r, say, and for any x 2 X we have the residue map,

TF ˝ k.x/ �! TM ˝ k.x/ :

Should this map be an injection onto a subspace of dimension r, then Nakayama’s
lemma forces F to be a bundle in a neighbourhood of x, and better still the
Frobenius theorem goes through verbatim to force F to be given locally by
a relatively smooth fibration. Naturally then we introduce the notion of weak
regularity, 1.1, which requires TF to be a bundle, and put:

sing .F / D fx 2 X j dim .Im fTF ˝ k.x/ �! TM ˝ k.x/g/ < rg :

This variety stratifies naturally according to the rank of the image map, and for
C any curve in X, we denote by r.C/ the generic rank. We may now state,

Main Theorem. (a) Let .X;F / be a weakly regular (integrable) foliated variety
and C a curve in X with TF jC ample then for all x 2 C there is a F -invariant
rationally connected sub-variety Vx 3 x of dimension r.C/.
Here we use reduction modulo p, but only to resolve the problem for a foliation
such that X=F exists as a scheme quotient over C, so in fact,

(b) Notations and hypothesis as above then the minimal degree of the rational curve
connecting any two points in Vx is effectively computable. In particular there is
a rational curve Lx 3 x tangent to F such that for any nef. R-divisor H,

H� Lx 
 2r.C/
H� C

�KF �

r.C/
C
:

The bound, cf. 3.3.1, however, on the degree of rational curves connecting any
two points in item (a) may be much worse. One could reasonably expect, 3.2.2,
that it should be as above with�r.C/�1KF �

r.C/
C replaced by the minimum slope

of TF jC, but this is not proved. In this notation,Fr.C/ is the induced foliation on
the sub-scheme of X where the generic rank is r.C/. It is not immediately clear
that intersecting with the canonical class has any sense for r.C/ < r, but well
definedness will emerge in the course of the proof. One should also note that
there is no need to suppose TF is saturated in TX provided there is closure under
Lie bracket. Without closure under bracket one can of course find a foliation G
corresponding to the minimal sub-sheafTG of TX closed under the same. It may
happen, however, that this is not a bundle in a neighbourhood of our curve
C, although it will certainly be as “ample” as one needs. This poses serious
technical problems akin to the difficulty of doing deformation theory on singular
varieties, and so one only obtains (a) and (b) under the weaker hypothesis that G
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is weakly regular in a neighbourhood of C. This is however perfectly sufficient
to recover Miyaoka’s semi-positivity theorem, where X is supposed normal and
C moves in a large base point free family.
Our study however has so far revealed nothing if r.C/ D 0. For foliations by
curves this is equivalent to our curve being wholly contained in the singular
locus of the foliation. To address this question we have recourse to the notion of
foliated canonical singularities. This class of singularities may be understood
as the maximal one for which birational geometry of foliations makes sense,
equally the precise definition à la Kawamata-Mori et al. is given in § 1.1.
To explain its implications observe that for a curve C with generic rank r.C/
contained in a component Y of the locus where the rank is the same there is an
exact sequence of sheaves,

0 �! Nr.C/ �! TF ˝OY �! TFr.C/

where we take this as the definition of N , and we have,
(c) Let .X;F / be a weakly regular (but not necessarily integrable) foliated variety

with canonical singularities and C a curve with r.C/ the generic rank of the
foliation along C then Nr.C/ ˝ OC has a non-positive rank 1 quotient.

Thus we have established that the rationally connected sub-varieties guaranteed
by (a) exhaust the ampleness of TF jC, and we deduce,

Corollary (4.2.1). Let .X;F / be a variety foliated by curves with foliated Goren-
stein and canonical singularities (1.1.1) then there are countably many F -invariant
rational curves with KF � Li < 0 such that if NE.X/ is the closed cone of effective
curves and NE.X/KF�0 the sub-cone on which KF is positive then,

NE.X/ D NE.X/KF�0 C
X

i

RC ŒLi� :

Better still,

(a) The rays RC ŒLi� are locally discrete in the upper half space NS.X/KF<0.
(b) If .X;F / is not a ruling by rational curves KF � Li D �1, 8i, and Li \

sing.F / ¤ ;. Otherwise, KF � Li 2 f�1;�2g.
(c) Every extremal ray in the half space NS.X/KF<0 is of the form RC ŒLi�.

Whence a smooth foliation either has KF nef or it’s a fibring by rational curves,
and quite generally there are supporting Cartier divisors for extremal rays. Whence,
we have the first step in a minimal model programme for foliations by curves.

For foliations of higher rank, our “p-adic” variation(s) on Mori’s bend and break
procedure, wherein the emphasis is switched from lifting rational curves in positive
characteristic to lifting Frobenius is itself new, and, indeed, necessary since although
bend and break produces, in positive characteristic, as many rational curves as one
needs to establish the rational connectedness in the main theorem, only a limited
number of these admit the characteristic independent degree bound of [MM]. To
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illustrate how “p-adic bend & break” does not proceed via such degree bounds we’ve
added the following non-projective,

Little Theorem (III.4). Let X=C be a proper algebraic space and f W C ! X a
map from a curve such that X is smooth in a neighbourhood of the image and f �TX

is ample, then X is rationally chain connected. Consequently, [D, 4.9], a smooth
proper algebraic space is rationally chain connected iff it admits such a curve.

Whose proof is a lot simpler than the main theorem- twists of f by a sufficiently
large power of Frobenius, and indeed positive characteristic deformations thereof,
lift to characteristic zero by [SGA, Exposé III]. The principle in the main theorem
is the same, but one has to add teeth to the curve in order to construct a suitable
comb in the sense of [K, II.7.7] before the lifting can take place. Subsequent to
acceptance, the second author while participating in the workshop on rationally
connected varieties at the algebraic geometry laboratory named in honour of the
first was amused (and not just because of the aforesaid context) to learn from Jason
Starr’s lectures that [dJS] employs a variation on this theme, i.e. creating enough
deformations by the addition of teeth, to give a much simpler and characteristic free
proof of the main theorem of [GHS], i.e. a rationally connected fibration over a
curve has a section.

It remains to thank M. Spivakovsky for his expertise (and patience) in explaining
the nature of algorithmic desingularisation, and, on the part of the first author: the
Simons Foundation and the University of Nottingham. The article was prepared
within the framework of a subsidy granted to the H.S.E. by the Government
of the Russian Federation for the implementation of the Global Competitiveness
Program, but without Cécile it would have lingered indefinitely in the realm of ‘in
preparation’.

1 Singularities

1.1 Definitions

Our objects of study are foliated varieties, i.e. a normal variety X equipped with
a foliation F , which we denote by .X;F /. On the other hand, we do not wish
to think of this as two separate objects, but rather as a unified whole. As such the
singularities which we wish to study have a priori nothing to do with the space X,
although as suggested above we will make the technically convenient, and rather
mild assumption that X is normal. To proceed further let us note that the precise
definition of a foliation is simply a saturated sub-sheaf of the tangent sheaf, i.e.

TF ,! TX :

If in addition the sub-sheaf TF is closed under Lie bracket, then we say that
.X;F / is integrable. One has of course the classical theorem of Frobenius over the
complex numbers, which asserts that if X is smooth and TF is a sub-bundle of X at
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some point, then closure under Lie bracket is equivalent to the foliation being given
locally as a fibration, whence the appellation.

Now in the study of singularities of a variety per se, the main protagonists are the
cotangent sheaf, and the canonical bundle. The former is the more classical and its
relation with local algebra rather well understood. The latter is rather more recent,
but its study is the essential prerequisite for birational geometry. Since our results
will also encompass the case of the trivial foliation, i.e. simply the study of curves on
varieties, it is not surprising that we will encounter a similar phenomenon. However
rather than the cotangent sheaf of the foliation, we will work with the tangent sheaf,
via which we introduce our first definition, viz:

Definition 1.1.1. A foliated variety .X;F / is said to be weakly regular if it is given
by a sub-bundle TF sitting as a saturated sub-sheaf of the tangent sheaf TX .

This definition is immediately deserving of comment. In the case of the trivial
foliation the definition asserts that the tangent sheaf of the variety is a bundle.
This is a priori strictly weaker than the assertion that the variety is regular, i.e. that
the cotangent sheaf is a bundle. It is however a conjecture of Zariski and Lipmann
that the two are equivalent. At the other extreme if .X;F / is a foliation by curves,
given that X is normal, weak regularity is equivalent to being foliated Gorenstein as
introduced in [M2], and amounts to the foliation being given everywhere by a vector
field. Given that the said vector field is itself allowed to vanish in co-dimension 2,
every foliation by curves on a non-singular variety is weakly regular. On the other
hand, for a singular variety X, the condition is highly non-trivial, and can give a
great deal of information about the foliation, cf. op. cit.

The role of normality of the underlying space in the above is fairly unimportant,
where it really makes its appearance is in the consideration of the canonical sheaf
of the foliation, i.e. the dual of the top exterior power of the tangent sheaf TF .
Naturally we denote this by KF , and follow Kawamata, Mori et al., by introducing
a discrepancy function to measure the singularities. Specifically suppose KF is
“Q-Cartier”. For the moment let us be deliberately vague about what this may
mean, and consider any proper birational map p W . QX; QF /! .X;F / from a foliated
variety to our original variety then for some divisors Ei contracted by p, and rational
numbers ai, we must have:

K QF � p� KF C
X

i

ai Ei

where “�” is some suitable equivalence relation of divisors, such as rational or
numerical. Given that QX is necessarily normal, whence non-singular in co-dimension
1, the numbers ai depend only on Ei considered as prime valuations of the field of
functions of X, and so we may define a map:

a . ;X;F / W fprime valuations E of k.X/�g �! Q
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where of course we implicitly assume that the valuations have non-empty centre, so
that a . ;X;F / is even defined at the level of germs. Finally we are in a position to
introduce the discrepancy of a foliated space, and to make another definition, i.e.

discrep.X;F / WD inf
E

a .E;X;F /

Definition 1.1.2. A foliated space .X;F / is said to have canonical singularities
whenever discrep.X;F / 	 0, and terminal singularities should this inequality be
strict.

Necessarily in the case of the trivial foliation, KF and KX coincide, so that
the definitions of canonical and terminal do like wise. However when the rank of
the foliation differs from the dimension of X this is absolutely not so (Fig. 1). For
example, consider the vector field @ D x @

@x � y @
@y in a neighbourhood of the origin

in C
2. One may easily draw this, viz:

Fig. 1 A canonical but not terminal foliation singularity

The underlying space X is certainly smooth, and as such has terminal singularities
in the usual sense (Fig. 2). However the pair .X;F / is our object of study and this
has discrepancy zero, i.e. it is properly canonical without being terminal. One can
go further, and consider the vector field @ D x @

@x C y @
@y . Again this is easily drawn,

the underlying space is as before, but now the discrepancy is actually �1, for the
foliated space. Actually these two examples are fairly representative of what can
happen for an underlying smooth space X of dimension 2 together with a foliation by
curves. Canonical singularities here are a slight generalisation, or more accurately
the functorial correction, of so-called reduced singularities or those of Poincaré-
Dulac type, cf. [M2], and every foliation by curves on a surface may be resolved to
one with canonical singularities. Furthermore, as a moment’s reflection on our initial
example shows, this is best possible, i.e. unlike the trivial case one cannot resolve
to a birational model with terminal singularities. Ultimately, however, one gains a
rather better feeling for the definition and its interplay with the singularities of the
underlying space by considering blow ups in foliation equivariant centres. This of
course means that we specify a sub-variety Y of X, together with its sheaf of ideals
IY and over an affine open subset U of X ask that for all derivations @ 2 �.U;TF /,
@.IY/ � IY . This definition behaves well with respect to localisation, so it easily
globalises, and we have:
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Fig. 2 A log-canonical but not canonical foliation singularity

Lemma 1.1.3. Let p W QX D BlY.X/! X be a blow up of a foliated variety .X;F /

in a F -equivariant centre Y then for QF the induced foliation we have a natural
map,

p� TF �! T QF :

Proof. The question is local, so we may assume that X is affine, say SpecA, and
IY is just the sheafication of an ideal I of A. The assertion is then simply that if
@ 2 Der.A/ lies in the tangent sheaf of the foliation then the a priori meromorphic
vector field p� @ is in fact holomorphic. This is easily verified, since locally a
function f on QX is of the form g

hd where d is a non-negative integer, g 2 Id, and
h being in I, where naturally we think of ourselves as looking at functions on the
h 6D 0 part, then of course:

@.f / D @
� g

hd

�
D h @g � dg @h

hdC1

and since Id is also F equivariant, @.f / is a function as required. �

As a simple illustration of the lemma consider a foliation by curves .X;F / with
underlying space X non-singular. Locally the foliation is given by a vector field
@, and where @ vanishes is the singular locus of F . Any point x in the singular
locus is of course F equivariant, so in a neighbourhood of x the discrep is always
less than or equal to zero. Consequently under such hypothesis if a “singularity”
is “terminal” then the vector field is non-zero, i.e. the foliation is locally a smooth
fibration. The essence of this conclusion extends, as we shall see, to arbitrary weakly
regular integrable foliations. However it is not a classification of arbitrary terminal
singularities, which can be found in [MP]. In any case to justify the above remark
regarding weakly regular foliations we will need a further lemma, viz:

Lemma 1.1.4. Let p W . QX; QF / ! .X;F / be the blow up of a foliated variety
(in characteristic zero) in a F -equivariant centre Y as in Lemma 1.1.3, and let
� W .X#;F #/! . QX; QF / be its normalisation then in fact � is F -equivariant, i.e. we
have a natural map,

�� p� TF �! TF # :
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Proof. The assertion precisely regards the locus where X# is not isomorphic to QX.
Better still since X# is S2 we only require to show the existence of the map in co-
dimension 1, so let D# in X# be an irreducible divisor with generic point 
#, and D,
respectively 
, the image of the same in QX. Now if the foliation were generically
transverse to D, then 1.2.1, on completion in D it would, around 
, be a smooth
projection onto a formal affinoid Y. The generic point of the latter is, however, the
image of 
, so Y would be smooth, and whence QX would already be normal at 
.
Thus, without loss of generality, the foliation leaves D invariant, so by [BM] the
germ of � around 
 can be realised by a sequence of blow ups in QF invariant centres,
and we conclude by 1.1.3. �

Unlike the previous lemma, characteristic zero is essential here in order to deduce
that the centres of the local blowing ups are equivariant under the foliation. Indeed
in characteristic p > 0 the singular curve

xp C ylxp�1 C yl D 0; p − l > 1

admits the smooth vector field l.1 C xp�1/@x C xp�2y@y. Applying the lemma to
arbitrary Gorenstein foliations by curves implies that either the foliation is locally
integrable by the usual Frobenius type procedure or it has at best a canonical
singularity. The difficulty in extending such considerations to arbitrary foliations
relies on identifying suitable invariant centres. We will come back to this, and a more
precise discussion of the above remarks on integrability in § 1.2. For the moment
let us complete this introduction to singularities by way of some remarks on the
condition KF is “Q-Cartier”.

The most obvious sense of this is of course to consider the open embedding
j W .Xsm;Fsm/ ,! .X;F / of the locus where say both X and F are smooth, and
to demand that there is a positive integer m such that j� K˝m

Fsm
is a Cartier divisor.

This is rather strong, and so we term it Q-foliated Gorenstein, and of course foliated
Gorenstein if we can take m D 1. Equally for two-dimensional normal algebraic
spaces, the definition of “Q-Cartier” can be understood in a linguistically abusive,
though not mathematically abusive, sense via Mumford’s intersection theory. These
remarks are, however, all rather parenthetical since we will be almost exclusively
concerned with foliations which satisfy the Gorenstein condition.

1.2 Towards an Ideal Situation

We now wish to concentrate on how to ameliorate the singularities of a foliated
variety in a neighbourhood of a curve. In this section we will concentrate on
foliations by curves. This not only provides some calculations essential to the
general case, but also illustrates the key features of what we are after without
the technical complications that arise in the higher rank case. The ideal of course
would be to find a neighbourhood of the curve, birationally, where the foliation is
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everywhere integrable. In absolute generality this is impossible, indeed it is even so
on smooth surfaces. Nevertheless the impossibility only occurs for curves invariant
by the foliation. Since we intend to allow arbitrary singularities on the underlying
space X we will consider an embedding X ,! M of our variety into a smooth variety.
In addition everything will be arbitrarily local, so let’s just work in the analytic
topology. Observe that for a vector field @ on X and x 2 X it is completely unclear
from the definition whether @ ¤ 0 in TX ˝ k.x/ implies @ ¤ 0 in TM ˝ k.x/. Indeed
this difficulty is at the root of the Zariski-Lipmann conjecture. Whence although
it may depend on the embedding let’s call @ non-singular at x if @ is non-zero in
TM˝k.x/, and observe the following straightforward generalisation of the Frobenius
theorem.

Lemma 1.2.1. Let x be a non-singular point of a Gorenstein foliation by curves
.X;F / then there is a map � W X ! Y of analytic spaces around x such that �� �Y

is the conormal bundle of F in X, and � is relatively smooth.

Proof. We proceed in the obvious way. Namely if I is the ideal of X in M we have
the usual short exact sequence,

I=I2 �! �MjX �! �X �! 0 :

By the non-singularity hypothesis there is a vector field @ on M, non-vanishing at
x, with @.I/ � I which induces our given foliation on X, where of course we permit
as much localisation as we need. Now let z1; : : : ; zn be coordinate functions on M,
then without loss of generality @.z1/ D 1, as usual we may put,

yi D
1X

nD0

.�1/n zn
1 @

n zi

nŠ
; 2 
 i 
 n

and one easily checks @yi D 0. Consequently we just put Y to be the image of X in
C

n�1 under the map, .y2; : : : ; yn/ W M ! C
n�1. �

Now we would like to obtain this situation around any point of a suitable curve C
in X. The definition of suitable here is that C is not invariant by the foliation, so in
particular the singular locus of the foliation meets C in a bunch of points. Let us
concentrate on one of them, i.e. denote by X a sufficiently small neighbourhood of
the point. It may of course happen that C is singular at such a point. The point is F
equivariant so we are happy to blow up in it, so that whether self evidently or by a
minor adaptation of Lemma 1.1.4 we note:

Fact 1.2.2. Notations as above, there is a sequence of varieties,

X D X0  � X1  � � � �  � Xn D QX
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where Xi ! Xi�1 is obtained by blowing up in a foliation equivariant centre, or
by normalisation, such that the proper transform of C in QX is non-singular at the
induced foliation singularities.

Of course we like such sequences since they are “unramified” in the foliation
direction by virtue of Lemmas 1.1.3 and 1.1.4, so now we want to use a similar
sequence, starting with C smooth at sing.F /, to get into the local integrability
situation of Lemma 1.2.1.

Consequently let x1; : : : ; xn be coordinates on our ambient smooth space M, and
suppose C is given by x2 D � � � D xn D 0. We of course consider a vector field @ on
M which leaves the ideal I of X invariant, and restricts to our given foliation on X
which is supposed Gorenstein. Necessarily we are supposing that @ is singular at the
origin, we write @ D ai

@
@xi

, index notation, and consider how @ transforms around

C under the blow up p W QM ! M in the origin. We have a new coordinate system
x1 D 
1, xi D 
1 
i, with C transforming to 
2 D � � � D 
n D 0. Putting �i to be
the multiplicity of ai at the origin, ai D Qai x�i

1 , and understanding this notation in the
natural way when some ai D 0, we obtain:

p�@ D Qa1 
�11
@

@
1
C

nX

iD2
.Qai 


�i�1
1 � Qa1 
�1�11 
i/

@

@
i
:

Better still, we also have,

mult0.QaijC/ D mult0.aijC/ � �i :

Now we distinguish two cases. In the first a1 ¤ 0, then on replacing p by
a sequence of blow ups invariant in the pull-back of @ (so even invariant by the
foliation in the case of canonical singularities) we have without loss of generality,

p�@ D 
�11
@

@
1
C

nX

iD2
bi
@

@
i
:

Furthermore some bi is not identically zero on C, so that possibly after some
more blow ups of the same form, the pull-back of @ is a regular, and non-singular
derivation along the proper transform of C. In the case that a1 is identically zero, the
same conclusion is even more immediate. Now let us summarise these reflections
by way,

Definition 1.2.3. Call a foliation F on a variety X smoothly integrable at a point
x 2 X if it arises as in Lemma 1.2.1.

Whence,

Proposition 1.2.4. Let C be a non-invariant curve in a Gorenstein foliated variety
.X;F / then there is a neighbourhood .X0;F0/ of C together with a proper
birational map p W . QX0; QF0/! .X0;F0/ such that QF0 is smoothly integrable around
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every point of the proper transform of C, and better still there is a natural map by
pulling back, p� TF0 ! T QF0

.

1.3 General Case

We now wish to study arbitrary integrable and weakly regular foliations around
curves. Our only restriction will be that the curve is not contained in the singular
locus of the foliation. The study again being local this statement is to be understood
in terms of the foliation not having full rank in the tangent space of some smooth
variety M into which X is embedded. The tricky thing here is that a singular point x
may no longer be foliation invariant. Indeed by definition they are invariant precisely
when the map at the residue field level, TF˝k.x/! TM˝k.x/ is zero, so we have to
do a little more work to identify invariant centres. To this end, and much as before,
let x1; : : : ; xn be coordinates on M and write,

@i D
nX

jD1
aij

@

@xj
; 1 
 i 
 r ; 1 
 j 
 n

where r is the rank of the foliation. It goes without saying that the @i leave the
ideal IX of X in M invariant, and induce our given weakly regular foliations F .
Not surprisingly the matrix A D Œaij� of functions on X will play a key role, let
us denote by s the dimension of the image of TF ˝ k.x/ in TM ˝ k.x/ around our
point of study x. Observe that by row and column reduction of matrices we may find
s � .n � s/ and .r � s/ � .n � s/ matrices B, D of functions in the maximal ideal at
x such that without loss of generality A has the form,

�
I B
0 D

�

Equally, for the same reason, there is a r�.n�r/matrix of meromorphic functions
A0, such that,

A D
h
I
::: A0

i
:

Now with these notations let us pause to consider the case of r D s and the
Frobenius theorem in this context. This time let’s start with the definition, viz:

Definition 1.3.1. A foliated variety .X;F / is said to be smoothly integrable at x 2
X, if there is a relatively smooth map � W X ! Y in a neighbourhood of x such that
���Y generates the conormal bundle of F .

Then of course we have,
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Lemma 1.3.2. Notations as above if s D r at x 2 X, then .X;F / is smoothly
integrable at x.

Proof. Proceeding as in Lemma 1.2.1 we can actually choose our coordinate
functions on M, such that A0 is not only a matrix of functions around x, but in
fact the first row is identically zero. Now let us consider invariance under Lie
bracket. By the invariance of I under the lifting of our various vector fields, this
may simply be calculated in M and restricted to X. Consequently understanding A0
as a .r � 1/� .n� r/ matrix of functions, we obtain a .r � 1/� .r � 1/ matrixƒ of
functions on X around x such that,

h
0
:::
@A0
@x1

i
D ƒ

h
I
::: A0

i

which of course forces @
@x1

A0 to be identically zero on X. Consequently if we let

X1 be the image of X in C
n�1 under the map .x2; : : : ; xn/ W M ! C

n�1, and � the
induced map then � is relatively smooth and there is a foliation F1 on X1, closed
under Lie bracket of rank .r � 1/ which induces our given foliation, so that we may
conclude by induction. �

We can now turn to the situation of s < r and see how far this discussion can be
pushed. Allowing a meromorphic A0, shows that at the first stage of the induction
procedure (assuming of course s ¤ 0) that there are .s � 1/ meromorphic vector
fields on X1, which together with @=@x1 generate our given foliation. Proceeding by
induction gives a preferred coordinate system such that,

@i D @

@xi
; 1 
 i 
 s @i D

X

j>s

aij
@

@xj
; i > s

with the aij holomorphic functions of xsC1; : : : ; xn which all vanish at the origin.
We have thus identified, locally, a suitable foliation invariant centre, viz: xsC1 D
� � � D xn D 0. By way of our curve, C, passing through our singular point, we first
consider its image under .xsC1; : : : ; xn/ W M ! C

n�s, and ask whether the curve
itself is singular there or not. Arguing exactly as in 1.2.2 we may via a sequence of
equivariant blow ups pass without loss of generality to the situation where the image
of C is given by xsC2 D � � � D xn D 0.

Now for a curve C whose tangent space does not generically factor through that
of the foliation, we may proceed more or less as in the case of foliations by curves,
namely, blow up in centres of the type we have identified until such times as the rank
increases. Once the rank increases change coordinates in the obvious way, resolve
any singularities on the new projection of our curve, then blow up in some foliation
equivariant centres until we increase the rank again. Consequently we obtain,

Proposition 1.3.3. Let C be a curve in a weakly regular foliated variety .X;F /

whose tangent space does not generically factor through F and which is not
contained in the singular locus of F then there is a neighbourhood .X0;F0/ of
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C together with a proper birational map p W . QX0; QF0/ ! .X0;F0/ such that QF0 is
smoothly integrable at every point in the proper transform of C, and pull-back of
derivations yields a natural map p� TF0 ! T QF0

.

2 Algebraisation

2.1 The Graphic Neighbourhood

Let us concentrate our attention in this section on a curve C inside a foliated variety
.X;F / with the foliation of rank r, integrable, and with weakly regular singularities
where additionally we will suppose that C is neither contained in the singularities
nor does its tangent space factor through TF . Now by the considerations of § 1.2–
3, we may find an open neighbourhood X0 of C (either formally or in the analytic
topology) together with a proper birational map (in the category of analytic spaces)
p W QX0 ! X0 such that the induced foliation QF0 is smoothly integrable in a
neighbourhood V of the proper transform QC of C. At this point we wish to consider
the induced foliation F # on V � B, where B is the normalisation of C, in a
neighbourhood of the graph � of the natural map from B to QC. The tangent bundle
of F # is simply the pull-back of that of QF0, and is of course smoothly integrable
around � . Whence let us take a union of �˛ , ˛ 2 A, of small open analytic sets
covering � , and denote by �˛ W �˛ ! Z˛ the relatively smooth map of analytic
spaces which yields F #j�˛ . Further for each ˛, we have an ideal I˛ of functions
on �˛, generated by functions on Z˛ vanishing on � . Necessarily the I˛ patch
and define a smooth analytic sub-variety F of [�˛ of dimension r C 1, such that
the normal bundle of � in F, N�jF , is isomorphic to T QF j� (Fig. 3). Rather more
intuitively what we have done is create an analytic space F by adding to each point
of B the germ of the locally smooth integrable sub-variety through each point of QC
guaranteed by 1.3.3, while equipping F with a map � to B, and 	 to X, i.e.

V

Γ

B

ρ

F

σ x ρ

X

B

ρ

(σxρ)(Γ)

(σ x ρ)(F)

Fig. 3 The graphic neighbourhood
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With this in mind we can deliver the coup de grâce to the transcendental nature
of our problem by way of,

Fact 2.1.1. If TF jC is ample then the Zariski closure of 	 � � .F/ is of dimension
.rC 1/, and as such every F -integrable sub-variety through a point of .	 � �/.�/
is algebraic.

Proof. Since F comes equipped with a projection to B which pushes forward an
integrable sub-variety to a point, it is wholly sufficient to prove the claim on the
Zariski closure. Equally both X and B are algebraic, so all we need show is that for
any line bundle L on F there is a constant C.L/ such that h0.F;L˝n/ 
 CnrC1, for
all positive integers. Better still if OF is the completion of F along C, we have an
injection H0.F;L˝n/ ,! H0. OF;L˝n/, so we might as well just consider OF, and this
is essentially a trivial exercise. Specifically for m 2 N, let Fm be the mth infinitesimal
thickening, and observe by construction that there is a map TF j� ! N�jF which is
generically an isomorphism, so N�jF is ample. On the other hand, we have the usual
exact sequence,

0 �! H0.�;Symm N_
�jF ˝ L˝n/ �! H0.FmC1;L˝n/ �! H0.Fm;L

˝n/ :

Necessarily the first group vanishes for m 
 C.L/n, where the constant C.L/ is of
the form 0 .j deg� Lj/, and whence,

h0. OF;L˝n/ 

CnX

kD0
h0.�;Symk N_

�jF ˝ L˝n/ 
 CnrC1

where the last inequality may involve a slightly different constant, but nevertheless
only depends on L as required. �

Lest there be any confusion let us make,

Remark 2.1.2. Evidently the role of the analytic topology is only for convenience
of exposition, since the above is really a proposition about formal schemes.

2.2 Cleaning Up

We will continue to concentrate on the example of the previous section. Thanks
to 2.1.1, we have obtained an algebraic variety W of dimension r C 1, fibred over
B by �, together with a section s of �, such that every fibre of W over B projects to
a F -invariant sub-variety of X through the corresponding point of C. Even better
our bundle of derivations TF on X, lifts naturally to a bundle of OB-derivations,
which we will continue to denote by TF , on W since after all dualising coherent
sheaves are compatible with flat pull-back. Now intuitively we’d like to think of
W=B as relatively smooth in a neighbourhood of s.B/ with relative tangent bundle
TF . However, for the reasons detailed in § 1.2, this is potentially rather false around
points where F is not smoothly integrable. Whence we seek to resolve W to QW in
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such a way that TF will admit a map to T QW=B around the section, and such that in a
neighbourhood of the section the fibration will be smooth. In light of Lemma 1.1.3,
what is therefore required is equivariant desingularisation with respect to TF viewed
as a bundle of derivations. Considered with respect to a fixed smooth embedding
W ,! M we have as ever a stratification of the singularities by closed sub-schemes
Ws defined as,

Ws D fw 2 W j dim .Im fTF ˝ k.w/ �! TM ˝ k.w/g/ 
 sg :

Now let Y ,! W be a smooth centre in which we may wish to blow up in order to
carry out the desingularisation algorithm of [BM]. For y 2 Y, there exists a unique
s such that y 2 WsnWs�1, where by convention W�1 is empty. We may apply the
discussion pre-Proposition 1.3.3, to find a coordinate system x1; : : : ; xn on M in
the analytic topology with respect to which a basis of TF around y is given by,

@i D @

@xi
; 1 
 i 
 s; @i D

nX

jDsC1
aij

@

@xj
; s < i 
 r

where aij D aij.xsC1; : : : ; xn/. Furthermore we have a locally smooth map, � W
W ! Z around y, given by .xsC1; : : : ; xn/. By construction the algorithmic
desingularisation procedure respects � , so we may find functions f1; : : : ; fm of
xsC1; : : : ; xn which generate IY ˝ OW;y, where the local ring is understood formally
or analytically. With these preliminaries in mind for any derivation @ of TF over an
open subset U containing y, our explicit choice of coordinates imply,

@ .IY/ � m .y/ :

Since this holds for all @ and all y 2 Y, we see that Y is in fact F equivariant.
Blowing up in Y therefore leaves TF as a bundle of derivations on the blow up, and
so we may continue with the algorithmic desingularisation procedure to obtain a
F -equivariant resolution QW of W. Our section s necessarily lifts to a section Qs of
QW which immediately forces QW to be relatively smooth in a neighbourhood of Qs.B/.

Changing notations slightly, we have therefore established,

Better Fact 2.2.1. Let .X;F / be a weakly regular foliated variety of rank r and
f W B ! X a map from a smooth curve such that f � TF is ample, and f .B/ is not
contained in the singularities of F nor generically tangent to F , then there is a
smooth algebraic variety W of dimension .r C 1/, equipped with projections 	 , �
to X and B, respectively, together with a section s of � such that if Wb denotes the
smooth sub-variety passing through s.b/ then 	.Wb/ is an F -invariant sub-variety
through f .b/. In addition there is a natural map, 	� TF ! TW=B in a neighbourhood
of the section.
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2.3 Complements

Firstly we consider the case where our curve C is not contained in the singularities
but may be generically tangent to F . Again let B be the normalisation of C, and
continue to denote by F the induced foliation on the product X�B, with � the graph
of B. We observe that � is now a curve which is NOT generically tangent to F , but
TF j� is ample if it were already so for TF jC. Passing to a modification QX � B of our
product around � , as in 1.3.3 we obtain a neighbourhood V of the proper transform
Q� on which the induced foliation QF is smoothly integrable. Whence by 2.1.1 there is
a F -invariant sub-variety Wx through every point x of� of dimension the rank ofF .
Projecting forward to X gives a F -invariant sub-variety W � C of the appropriate
dimension. The equivariant desingularisation arguments of II.2 go through verbatim
to yield a resolution QW such that T QW is ample on the proper transform QC of C, and
indeed we may even take the later isomorphic to B should we wish.

Let us finally consider the case where our curve C is contained in the singular
locus, and let s be the generic rank of F along C. Denote therefore by Y a
component of Xs containing C. The coordinate system pre-Proposition 1.3.3 imply
that Y is F -invariant so let G be the induced foliation of rank s. The immediate
thing to note is that G is not necessarily weakly regular. However at a point y of
C where the rank drops to t < s we are guaranteed a space of derivations of Y of
dimension s�t if C is not tangent to G , respectively s�t�1 otherwise, which are not
identically zero. The resolution procedure of § 1.3 therefore goes through verbatim,
and we make neighbourhoods of the normalisation B of C exactly as before which
are equivariant under TF . Since Y is also TF -equivariant, and the new foliation is
generically a quotient of TF , we therefore have:

Final Fact 2.3.1. Let s be the generic rank of F along C, then for every point
x 2 C there is a smooth algebraic variety Wx of dimension s together with a map
	 W Wx ! X such that 	 .Wx/ 3 x is a F -equivariant sub-variety. Better still if
f W B! C is the normalisation then either,

(a) TFs is not generically tangent to C, and the Wx are the fibres of a smooth variety
� W W ! B through a section s, and there is a natural map, 	� TF ! TW=B,
generically an isomorphism around B.

(b) TFs is generically tangent to C, Wx is independent of x and contains a copy
of B such that there is a map of pairs .W;B/ ! .X;C/ and a natural map
	� TF ! TW, generically an isomorphism around B.
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3 Deformation Theory

3.1 The Set Up

We have thus reduced our initial highly transcendental problem to an algebraic one,
either to produce rational curves in a smooth variety in which there is a curve on
which the ambient tangent space is ample, or to find rational curves in a family
of varieties over a curve in which there is a section on which the relative tangent
space is ample. The latter is less standard and implies the former by the graph
construction à la 2.3 so we will concentrate upon it. Nevertheless, the former, i.e.
the little theorem of the introduction, presents such noteworthy simplification that
we devote § 3.4 to it. We will of course be following Mori’s method of reduction
modulo p, so in this section we make our set up with the necessary precision, and
summarise the appropriate minor variations that we require from [K], specifically
§ 1.2 and 2.3.

To this end let B be a smooth projective curve over a field k of arbitrary
characteristic, let q W C ! B be a finite morphism from another curve, � W X ! B
a projective flat family and f W C=B ! X=B a morphism of B-schemes (with
respect to the structure maps q and �) where X=B is supposed relatively smooth in a
neighbourhood of f .C/. We wish to study the scheme of B-morphisms, HomB.C;X/
in a neighbourhood of f . The next proposition contains all that we will need,

Proposition 3.1.1. Notations as above then,

(a) The tangent space of HomB.C;X/ at f is isomorphic to, H0.C; f � TX=B/.
(b) The dimension of every irreducible component of HomB.C;X/ at f is at least,

h0.C; f � TX=B/� h1.C; f � TX=B/ :

(c) The deformations of f are unobstructed if H1.C; f � TX=B/ D 0. In particular
should this occur HomB.C;X/ is smooth at f .

(d) If Z � X has co-dimension at least 2, and H1.C; f � TX=B.�c// D 0 8 geometric
points c of C then a generic g 2 HomB.C;X/ has image disjoint from Z.

Proof. For part (a), we wish to consider the graph � of f in the relative product
C �B X and calculate its conormal bundle. To this end consider the commutative
diagram,

C

C C xB X

C x X B

B x B

q x π

q xB π

Δq x q

id x f

id xB f

id

q
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where by definition the vertical square is Cartesian, and � is the image of id �B

f . This in turn leads to a commutative diagram of exact sequences of sheaves
on � , viz:

where the notation I�;� means the ideal of whatever sub-scheme inside the other. Now
the middle row is exact because of the natural splitting of �C�X , while the middle
column is exact for general nonsense. Specifically X is by hypothesis smooth around

� , so �C�X is a bundle, the conormal sheaf I�;B�B=I2�;B�B

��! �B is also a bundle,

and the map from �B to �C�X is not zero, so it must be an injection of sheaves.
Whence the left-hand column is in fact exact, and so also is the bottom row by the
9 lemma, and/or a trivial diagram chase. From which we conclude an isomorphism
via the splitting of the middle row,

I�;C�BX=I2�;C�BX
��! ��n�C�BX ˝ O�

��! �X=B ˝ O�

which proves (a). Better still C �B X is non-singular around � by hypothesis, �
is itself smooth, so the deformations are generically unobstructed which proves
(b) and (c). To prove (d), we start by taking a smooth open neighbourhood U
of f in HomB.C;X/. For any geometric point c 2 C, and for g in a possibly
smaller U, we have by hypothesis, H1.C; g� TX=B.�c// D 0. Consequently if
HomB.C;X; gjc/ is the space of morphisms taking c to g.c/, then a minor variation
of the previous argument forces U \ HomB.C;X; gjc/ to be smooth around g of
dimension h0.C; g� TX=B/� dim .X=B/. On the other hand,

fg 2 U j g.C/\ Z ¤ 'g D
[

c2C

[

x2Z

fg 2 U j g.x/ D zg :
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So that this space has dimension at most,

h0.C; g� TX=B/� dim .X=B/C dim C �B Z 
 dim U � 1

which completes the proof of (d). �

3.2 Bend and Break

We begin with a simple lemma,

Lemma 3.2.1. Let E be an ample vector bundle on a smooth curve C over a field
of positive characteristic, then there is a sufficiently high power Fn W C! C, of the
absolute Frobenius F such that for all geometric points c of C,

H1.C;F�
n E.�c// D 0 :

Proof. Fix an ample divisor D on C, and using Fn to denote as large a power of
Frobenius as we require, we obtain by Riemann-Roch global sections of F�

n E .�D/.
Consequently for E of rank more than 1 we obtain a dévissage of bundles,

0 �! E0 �! F�
n E �! E00 �! 0

where E0 is ample of rank 1. Moreover E00 is ample, and the proposition is clear for
line bundles via Serre-duality, so for some high power of Frobenius Fm and c 2 C
any geometric point we obtain a short exact sequence,

0 �! F�
m E0.�c/ �! F�

mCnE.�c/ �! F�
m E00.�c/ �! 0

where by induction the kernel and cokernel are acyclic. �

We return to the notation of the previous section, viz: B, C smooth projective
curves, q W C! B, � W X ! B the structure maps, with the latter family flat, and f W
C=B! X=B a map of B-schemes such that X is smooth in a neighbourhood of f .C/.
Moreover let everything be over a field, k, of positive characteristic p, f � TX=B ample,
and f not contained in a fibre of B. Now consider a rational map—so, implicitly, well
defined in co-dimension 2—� W X ��! X1 of B-schemes such that

(a) X1 is smooth and geometrically irreducible over k.
(b) � is an honest morphism over a Zariski open U1 � X1.
(c) � is generically smooth.

Consequently there is a (unique) torsion free quotient T1 of TX=B which coincides
with ��TX1=B over U1, so, in particular, T1 is a vector bundle in co-dimension 2.
As such, if g W Cm ! X is a generic deformation of a sufficiently large power of
the geometric Frobenius Cm ! C of our given curve composed with f then by
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Proposition 3.1.1.(d) and Lemma 3.2.1 we may suppose that its image is contained
in the locus where T1 is a bundle, and we write

0! T1 ! g�TX=B ! T1 D g�T1 ! 0

for the resulting exact sequence of bundles on Cm.
Next, let O.1/ be the tautological bundle on P.TX=B/, and Q 3 " > 0 such that

f �O.1/.�"Œc�/ is ample for Œc� the fibre over a closed point c 2 C. Furthermore,
observe, that for any bundle, E, in positive characteristic the pull-back F�E by the
absolute Frobenius is canonically a direct summand of the p-th symmetric power,
so by the commutativity of Proj with base change (and provided the power Fm of
Frobenius in the definition of g is sufficiently large) for any line bundle L on Cm of
degree, ` < pm",

(d) g�TX=B ˝ L_ (and whence T1 ˝ L_) is generated by global sections.
(e) H1.Cm; g�TX=B ˝ L_/ D 0.

In particular, therefore, the space of deformations (relative to B) of g which fix
the intersection with ` generic fibres of � is unobstructed and projects to a positive
dimensional space of deformations of �g in X1 fixing ` generic points. To these
deformations, we can apply (uniformly in the moduli of g) Mori’s bend and break,
cf. [K, II.5]. In doing so (and bearing in mind that our interest is to obtain rational
curves in the fibres of B) we can, conveniently, eschew some technicalities by
observing that everything we’ve said so far is stable under any base change B0 ! B,
so, without loss of generality B (whence also C) isn’t rational, and we obtain:

Fact 3.2.2. There is a covering family hp W P1 � Mp ! X of B-trivial rational
curves, whose projection �hp covers X1 such that for H1 ample on X1 and m 2 Mp

��H1 �hp.m/ P
1 
 2pm

`
��H1 �f C

By way of concluding this section, let us make the following clarifying

Remark 3.2.3. It seems more than reasonable that the degree bound in 3.2.2
should hold for any ample bundle on X rather than just those that come from X1.
Nevertheless in trying to extend the proof, [MM], of the bound to this more
general context one gets stuck by the (highly unlikely under the above hypothesis)
possibility that a priori it may require many more blow ups to resolve certain rational
maps to X rather than X1. In consequence, we only get the weaker statement 3.2.2,
and whence a certain amount of technical complication in the next section.
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3.3 Finding Rationally Connected Varieties

We now consider, in characteristic zero, our data of maps q W C ! B, � W X ! B,
�1 W X1 ! B, � W X� ! X1 and f W C=B! X=B with all the previous hypothesis on
smoothness ampleness, etc., and proceed to show that the fibres of X=B are rationally
chain connected. None of our hypothesis are changed by supposing X non-singular,
so let’s throw that in for good measure. As usual we take our given data over C and
find an integral affine Z-scheme, S, of finite type over which everything is defined
and our initial characteristic zero situation corresponds to the generic fibre. So in
fact we’ll actually use C, B, X, q, � , f , etc., for S-schemes and maps thereof, and
rather abusively denote the generic fibre by the sub-script C. In any case for �min

the minimal slope of the H-N filtration of f �TX=B, we can, for p� 0, take the " > 0
prior to item (d) of § 3.2 to be any rational number less than �min. Consequently,
given ı > 0, for a closed point s of S with residue field of sufficiently large positive
characteristic, we may apply 3.2.2 to conclude the existence of a component Wı of
the Chow scheme of X1 parametrising 1-cycles with B-trivial rational components
of degree at most 2H1��f C

�min
C ı such that the map from the universal family Cı over

Wı to X1;s is dominant. Since this holds for all s in an open set, there is in fact such
a component over the generic fibre. Better still since this must be true for all ı > 0,
and there are at most finitely many such components, there is a component W of the
Chow scheme parametrising 1-cycles with rational components of degree at most
2

H1��f C
�min

such that the universal family C dominates X1.
We now apply these considerations inductively beginning with � D idX , so we

have, cf. [K, IV.4.13], an equivalence relation, �, between points of X defined by
x � y iff they are joined by a chain of rational curves in W. In positive characteristic,
there might be separability issues about the quotient map defined by such a relation,
but, by the above, we are in characteristic zero, so we can find a map well defined in
co-dimension 1, � W XC ��! X1;C, where X1;C is a smooth, with any two points of a
generic fibre connected by a chain of curves in WC. In particular the generic fibre of
� is rationally chain connected, and everything extends to a diagram of B-schemes,

X X1

B

π π1

ν

which satisfy the hypothesis § 3.2.(a)–(c) when specialised to any closed point s 2 S
of sufficiently large characteristic. Consequently, X1 is covered by rational curves of
degree at most d1 WD 2

H1��f C
�min

, and we again have a quotient �1 W X1� ! X2 given
by the equivalence of points joined by a rational curve of degree at most d1.

Now by 3.2.2 these curves have some further good properties which are best
exploited by working p-adically. Again bearing in mind that our goal is the rational
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connectedness of the fibres of XC ! BC (or, better, in the first instance the fibres of
X�! X2) we can, without loss of generality, suppose the following

(a) S is the spectrum of a complete D.V.R., V , with quotient field K of characteristic
0, and closed point s 2 S enjoying an algebraically closed residue field, k, of
characteristic p.

(b) Replace � W X� ! X1 by an (everywhere defined, smooth over an open sub-
scheme of X1 surjecting onto S) map of smooth projective S-varieties whose
specialisation to k satisfies all of § 3.2.(a)–(e).

(c) Every smooth closed fibre of � admits a very free (i.e. pull-back of the tangent
bundle relative to � is ample) rational curve.

(d) The generic rational curve, �hp.m/ W P1k ! X1˝k, of 3.2.2 (which by the degree
bound is necessarily separable) lifts to a rational curve, � W P1S ! X1.

Of which, (d) merits a little precision, to wit: prior to applying (a),(b) or (c) we
can assume that the images of the Mp (albeit Ms0 , as s0 ranges over closed points
would be better notation) of 3.2.2 are Zariski dense in a sub-variety, M0, of S-rational
curves of degree at most d1. Throwing away closed subsets of S as necessary, we
can therefore suppose that for generic s0, M0

s0 meets the locus where M0=S is smooth,
so that on subsequently applying step (a) for k.s0/ ,! k and suitable V , the generic
k-point of Ms is also a smooth point of M0

s so it lifts to a S-point of M0 by [SGA,
Exposé III, 5.2].

In the same vein, for M0 as above, and prior to applying step (a), consider the
diagram in which the left- and right-hand squares are fibred

X ←−−−− Xbig ←−−−− Xres ←−−−− Xm

ν

⏐
⏐

⏐
⏐

νbig

⏐
⏐

νres

⏐
⏐

ν
m

X1 ←−−−− P1
S×M P1

S×M ←−−−− P1
S×m

and �0
res is the algorithmic resolution of [BM] applied to X0

big over the function field
of M0 extended over S (which here is still finite type over Z), so that by the generic
smoothness of �, �0

res D �0
big over the generic point of X1. As such, the locus of

m0 2 M0 where the right-hand vertical is not smooth over k.m0/ is closed, non-
dense, in M0. Consequently, by the same reasoning that we applied above to get
item (d), we can assume all of (a)–(d) together with the existence of a diagram

X ←−−−− X

ν

⏐
⏐

⏐
⏐

ν

X1
θ←−−−− P1

S
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which is a fibre square not just generically, but even over the generic point of P1k ; is
a modification over a closed set not dominating the generic point of P1k otherwise;
and all varieties therein are smooth S-schemes. Now by 3.2.2 �0

k has a section, 	k,
and, indeed, a covering family of such, and we choose some very free (relative to �0)
rational curves, �i W Ci ! X0, in some large number n, to be specified, of generic
fibres of �0

k, through points 	k.xi/ D �i.ci/with the aim of constructing a smoothing,
[K, II.7.1], over k, of the comb [K, II.7.7]

� WD 	k _i �i W C WD P
1
k

a

i

Ci=xi � ci ! X0
k

to a rational curve � 0 W P1k ! X0 such that .� 0/�TX0=k is ample. Essentially this is
[K, IV.6.10], but our needs are a little different so we spell it out. To begin with �0
may be supposed smooth in a neighbourhood of C, so by [K, II.7.9] a smoothing
� W Y=T ! X0

k over some smooth k-curve T with special fibre � exists. Further
provided n � 0 by [K, II.7.10.1]—applied to ��TX0

k=P
1
k
.�D/ for D an effective

Cartier divisor on Y which misses the Ci—the restriction .�t/
�TX0

k=P
1
k

to the generic
fibre Yt is ample, while �0jYt is finite, thus .�0�t/

�TP1=k is ample too, so by the
obvious exact sequence we have what we want with � 0 D �t, and whence

Fact 3.3.1. There is a map � 0
S W P1S ! X0 to the smooth locus of X0=S such that

.� 0
S/

�TX0=S is ample relative to S.

Proof. Denote by O: completion in fibres over s, and apply [SGA, Exposé III.5.8] to
� 0 to obtain O� 0 W P1OS ! OX0, specialising to � 0, in order to conclude from the existence
of the Hilbert-scheme/S and the fact that being ample is open. �

Exactly what the bound, d2, on the degree, with respect to an ample divisor H on
X, of the resulting rational curves in X0

K may be is not so clear, but it’s manifestly
a linear function (depending only on �=B) of the H-degree of the curves hp.m/
of 3.2.2—m generic, and again, an unfortunate notational confusion of s with p—
which although, Remark 3.2.3, we don’t know how this varies with p, it doesn’t
matter since p is just some fixed large prime affording (a)–(d). As such, in principle,
it’s effectively computable, and more importantly it has no dependence on the fibre
over B which we specialised to in item (b), so that on returning to the situation over
B the fibres of X=B� ! X2=B are connected by chains of rational curves of degree
at most d2, and we conclude by the obvious induction that the fibres of X=B are
rationally chain connected. Alternatively, if one wants to be less constructive about
it, then one could just start with X=B�! X1=B the MRC-fibration/B of [K, IV.5.9]
and argue as above.
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3.4 Scholion: Algebraic Spaces

In this section we prove the little theorem of the introduction. By way of a much
simpler variant of the arguments of the previous section we can, without loss
of generality, start with a D.V.R. S of mixed characteristic as (even notationally)
encountered in item (a) of § 3.3 (albeit the previous technically convenient
conditions of completeness and algebraically closed residue field no longer serve
any purpose); a smooth irreducible curve C=S, and a S-map f W C ! X to a
proper algebraic space such that X is S-smooth in a neighbourhood of the image
and f �TX=S is ample relative to S. Denoting by the sub-script k specialisation to
the closed fibre, consider the problem of trying to lift the composition of f with a
large, to be specified, power Fm W C.m/

k ! Ck of the geometric Frobenius- where,
for obvious reasons, we’ve changed from a sub-script m to a super-script. Now, as
it happens, [SGA, Exposé III.7.4], all curves over k can be lifted to S, but since
C.m/

k is just a conjugate variety, this is trivial. Next we require the items (d) and
(e) (over k) of § 3.2, but the change is purely notation, i.e. O.1/ the tautological
bundle on P.TX=S/, and otherwise everything as per op. cit., with of course m� 0.
Consequently, just as in 3.3.1, [SGA, Exposé III.5.8] applies again to yield a
morphism f .m/ W C.m/=S ! X=S lifting fkF.m/ with ( on replacing g by f .m/ and
S by B) the pleasing features (d) & (e) of § 3.2, but now over all of S. In particular, if
we now specialise to the generic fibre, K, then we not only have many deformations
of f .m/K , but Proposition 3.1.1.(d) is valid too, i.e. a generic deformation, g of fm
misses any co-dimension 2 sub-set we care to specify, and, of course, § 3.2.(d)–
(e) hold (over K) for g up to the notational issue of replacing B by K. As such if
� W XK� ! X1 is a K-map satisfying § 3.2.(a)–(b) (with item (a) over K, so (c)
is automatic) then we have everything (i.e. § 3.2.(a)–(e)) we need to run bend and
break (relative to �) over K, and whence

Fact 3.4.1. There is a covering family h� W P1K�M� ! XK of rational curves whose
projections �.h�/ cover X1.

To which we could also add the degree bound of 3.2.2 for H1 a nef. divisor on
X1, but since things needn’t be projective this may well be an empty statement.
Nevertheless, we can conclude that XK is rationally chain connected by a similar, and
much easier, induction to that of § 3.3. Specifically, start with � D idX , apply 3.4.1
to get a covering family, define � to be the equivalence of points joined by chains
in this family, then take � W X� ! X1 to be the quotient by �, etc. Given that this
absolute case is so much easier than the previous relative case, let us again offer a
clarifying

Remark 3.4.2. The obstruction to doing much that same thing relative to B instead
of the trickier reduction to 3.2.2 via 3.3.1 is that B need not be rational, and should
this occur it’s simply impossible to lift the composition

C.m/
k

F.m/�����! Ck
qk�����! Bk
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as B=S-schemes. Conversely, if B were rational then this could be done, and
everything would be as above, but to take B rational may well cause the loss of
B-smoothness about the image of f and Proposition 3.1.1 would collapse. As such
projectivity is being employed in the main theorem not just in the algebraisation
lemma, 2.1.1, but also the proof § 3.2–3.3 of rational connectedness.

4 Principal Results and Corollaries

4.1 The Main Theorem

Consider a weakly regular integrable foliated variety .X;F /. The discussion of the
previous chapters shows that if C is a curve in X, and TF jC is ample then through
every point x 2 C there is a rationally chain connected variety whose dimension is
the generic rank along C and whence by [K&] rationally connected, F -invariant
sub-variety Vx with appropriate bounds on the degree of the connecting curves.
It therefore remains to discuss the case of curves contained in the singular locus
of F in more detail which is where the hypothesis of canonical singularities will
intervene. To illustrate the principle idea let’s suppose for the moment X is non-
singular, and F is a foliation by curves. Denote by Z any sub-scheme contained in
the singular locus of F considered scheme theoretically (i.e. if locally @ D ai

@
@xi

,
then the ideal of the singular locus is that generated by the ai). Observe that we have
maps,

IZ

Z

ΩX

IZ IZ
2 K IZ IZ

2

D

d

K Ising(F) K IZ

X

We claim that the total composite of the maps on the right factors through IZ=I2Z ,
and better still defines an OZ-linear map, which we will denote by D. The linearity
is automatic by the Leibniz rule, and this in turn automatically forces the said
factorisation. Let’s observe some simple facts about this map. Firstly suppose
W � Z then we get maps for either sub-scheme, and a natural commutative diagram,
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Now suppose we’re considering a singular point x, with coordinate functions
x1; : : : ; xn, and say @ a derivation defining the foliation at the point, then of course,
@ DP

i
ai

@
@xi

, but ai � aij xj 2 m2, the square of the ideal at the point, with aij

constants. In this case D is just the linear transform of the residue of the cotangent
bundle given by,

D W �X ˝ k.x/ �! �X ˝ k.x/ W dxi 7! aij dxj :

This map may of course be zero, but a moments thought shows that this cannot
happen if the singularities are canonical. Indeed for general Z, we can just use the
maps in the middle row together with the natural map from IZ=I2Z to the cotangent
bundle to define a map, again denoted D, from �X ˝ OZ to �X ˝ OZ.KF / which
at every point is as above. Whence in turn for each 1 
 n 
 dim X we obtain via
symmetric functions a global section, Sn 2 �.Z;OZ.nKF //. The issue is therefore
whether Sn is zero or not. If not this contradicts the ampleness of TF on taking Z to
be our curve, so what we’ll show is that if Sn is zero for all n, the singularity is not
canonical. It is wholly sufficient to prove this at a singular point, so say notations as
above with x the origin. If all the symmetric functions vanish then the matrix Œaij� is
nilpotent. Linear changes of coordinates conjugate the matrix, so we can suppose:

@ D
n�1X

iDk

xi
@

@xiC1
C ı

where ı 2 m2 TX;x. We blow up in the origin, and look on the xn ¤ 0 patch, i.e.
change coordinates to xn D 
n, xi D 
i 
n, i < n. Denote the blow up by p W QX ! X,
then we have:

p� @ D
n�2X

iDk


i
@

@
iC1
C p� ı.modm2 TX;0/

where m continues to denote the maximal ideal at the origin. Superficially it may
appear that we have reduced the complexity of the matrix, this may not however be
the case since we can only guarantee,

p� ı D
n�1X

iD1
ai 
n

@

@
i
.modm2 TX;0/
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and so the dimension of the eigenspace may not increase. Now writing things rather
more invariantly we have a new linear map,

QD W �QX ˝ k.0/ �! �QX ˝ k.0/

with QD d
n D 0, and all the terms, Qı say, that we have lumped under the appellation
modm2 enjoy the additional property of being divisible by 
n, with the exception of
a term of the form � P

i¤n


n�1 
i
@
@
i

. So let’s blow up in the origin again, but this

time look at the 
n�1 ¤ 0 patch on the blow up, i.e. put 
n�1 D �n�1, 
i D �i �n�1, so
that denoting the blow up morphism again by p, and the maximal ideal of the new
origin still by m, we have,

p� @ D
n�3X

iDk

�i
@

@�iC1
C

n�2X

iD1
ai �n

@

@�i
.modm2 TX;0/

where the sums are understood to be zero if k < n � 3 or 1 < n � 2, respectively.

The new linear map
�
D, say, still has characteristic polynomial zero, but has at least

one more eigenvector than D, so by induction, we conclude that our singularity
could not have been canonical. Evidently to conclude the main theorem in this
case it is sufficient that the singularities are canonical in dimension 1, i.e. canonical
outside of a bunch of points. Furthermore by embedding in a smooth manifold, and
using Lemma 1.1.4 to control any non-normality that the blow up procedure may
introduce, we see that the hypothesis that X is smooth is not really essential, and
whence arrive to our theorem in the case of foliations by curves.

The general situation is rather more delicate. We start as ever with a weakly
regular foliated variety .X;F / of rank r, and a curve C in X with s the generic rank
of F along C. We have for Y a component of Xs containing C an exact sequence of
the form,

0 �! N �! TF ˝ OY �! TY

where the image has rank s, and all the maps are generically of the same rank after
tensoring with OC. Consequently if f W B ! C is the normalisation, then there is a
rank r� s sub-bundle N of f � TF saturating the map on the left. This bundle admits
a rather clean geometric description as follows, viz: we can find a neighbourhood V
of the proper transform QC of C in some F -equivariant modification of Y such that
the induced foliation G is smoothly integrable with tangent bundle TG , say, and so
N must be the kernel of the map of bundles f � TF !! f � TG . Now let I be the
ideal sheaf of QC in the ambient modification QX of X, then we have an O QC linear map,

D W I =I 2 �! I =I 2 ˝ Ker fTF ! TG g_ :
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This map is not in general extendable to �V , but no matter, since TF ! TG is a
surjection of bundles around QC, should E be the double dual of f � I =I 2 we in fact
have an induced map of bundles,

D W E �! E˝ N_ :

Finally letting L be the tautological bundle on P.N_/we have a map, D W E! E˝L,
and global sections given by symmetric functions Sd 2 H0.P.N_/;Ld/. On the other
hand, these functions are non-zero if and only if, in our usual coordinate system, the
matrix aij of functions in xsC1; : : : ; xn is non-nilpotent for each s < i 
 r. The
identical analysis to before shows this is not possible for canonical singularities,
and whence we get our desired global section over B of Symd N_ for some d.

4.2 Foliations by Curves

In the case of foliations by curves there are some particularly beautiful corollaries of
the main theorem, since the canonical bundle and cotangent bundle of the foliation
now coincide. In particular let .X;F / be a variety foliated by curves, then à la Mori
we introduce the closed cone NE.X/ inside NS1.X/R generated by effective curves
and consider the sub-cone,

NE.X/KF�0 WD f˛ 2 NE.X/ j KF � ˛ 	 0g :

Then we obtain,

Theorem 4.2.1. Let .X;F / be a variety foliated by curves with foliated Gorenstein
and foliated canonical singularities then there are countably many F invariant
rational curves Li with, KF � Li < 0 such that,

NE.X/ D NE.X/KF�0 C
X

i

RCŒLi� :

Better still,

(a) The rays RCŒLi� are locally discrete in the upper half space, NS1.X/KF<0.
(b) If .X;F / is not a ruling by rational curves KF � Li D �1, 8i.
(c) Otherwise, �2 
 KF � Li 
 �1.
(d) Every extremal ray R of NE.X/ (i.e. ˛ C ˇ 2 R, ˛; ˇ 2 NE.X/ ) ˛; ˇ 2 R)

lying in the half space NS1.X/KF<0 is of the form RCŒLi�.

Proof. Everything in the corollary except (b) and (c) follows verbatim from the
demonstration of the corresponding theorem for KX , as found in [K], Theorem
III.1.2. To prove (b) and (c) consider an embedding of X in a smooth ambient
manifold M. Observe firstly that the foliation defines a quasi-section (i.e. a section
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in co-dimension 2) of P.�1
X/! X. Let QX be the closure of this section, and M the

tautological restricted to it. Further let L be the normalisation of any one of our Li,
then L maps to QX, by Qf say, and:

M�Qf L D �2 � Ramf

where f W L! Li ,! X is the corresponding map. Moreover we put,

ssing.F /.L/ D KF �f L �M�Qf L 	 0

which is precisely the contribution of the locus where F is singular in the sense of
§ 1.2. Now if Li is singular at x 2 X, then in fact x is a singular point of f , so by
a sequence of F -equivariant blow ups we can assume that Li D L (remember KF

cannot change). Whence,

�1 	 KF �f L D ssing.F /.L/ � 2 	 �2

and �2 is obtained only if L does not pass through the singularities of F .
Consequently F must be smoothly integrable in a neighbourhood of L, and
we can apply the algorithmic decomposition procedure once more to obtain a
desingularisation X# of X which is F -equivariant around L. However the classical
Frobenius theorem now forces L to have flat, whence trivial normal bundle in X#.
Consequently L moves in a dim X � 1 family which covers X#. Should C be any
curve in this family, KF � C D KF � L < 0, so there is an F -invariant rational sub-
curve of bounded degree through the generic point of X as required. �

We may also observe from the proof that to have an extremal ray on a foliated
variety which is not a fibration in rational curves requires singularities, and so we
even have,

Corollary 4.2.2. Let .X;F / be an everywhere smooth foliation by curves which is
not a fibration in rational curves then KF is nef.

There is yet another case where usual Mori theory considerations, cf. [K], yield
a theorem of some interest. Call HR 2 NS1.X/ a supporting function of an extremal
ray R if HR is nef., and HR� ˛ D 0 iff ˛ 2 R, then:

Theorem 4.2.3. Hypothesis as in IV:2:1, and R � NE.X/ an extremal ray in the
half space NS1.X/KF < 0 then there is a Q-Cartier divisor HR which is a supporting
function for R, and moreover n HR � KF is ample for n 2 N sufficiently large.
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Local Structure of Closed Symmetric
2-Differentials

Fedor Bogomolov and Bruno De Oliveira

Abstract In this article we provide a description of the local structure of closed
symmetric 2-differentials on a complex surface. The main technical result of the
article is that a sum of two local singular analytic functions which both are constant
along two different smooth holomorphic foliations can be locally holomorphic
only if both functions have at most meromorphic singularities. As a corollary we
proof that locally a product of two singular closed differentials on a surface is
holomorphic only if the singularities of the differentials are at most exponents of
local meromorphic functions.

Keywords Symmetric differential • Essential singularity • Foliation
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1 Introduction

In the authors’ previous work on symmetric differentials and their connection to the
topological properties of the ambient manifold, a class of symmetric differentials
was introduced: closed symmetric differentials [BoDeO11, BoDeO13]. Closed
symmetric differentials are characterized by the possibility to locally decompose
the differential as a product of closed holomorphic 1-differentials in a neighborhood
of a point of the manifold. The property of being closed is conjecturally described
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by a nonlinear differential operator (in the case of dimension 2 and degree 2 this
differential operator comes from the Gaussian curvature, see section 3.1).

In this article we give a description of the local structure of closed sym-
metric 2-differentials on complex surfaces, with an emphasis towards the local
decompositions as products of 1-differentials. Recall that there is a general obstruc-
tion for a symmetric 2-differential to have a decomposition as a product of
1-differentials around a point x in the complex surface X, it might be impossible
to order the two foliations defined by w near x (we then say that w is not locally
split at x). This obstruction can be removed via a ramified covering of X, hence the
results will be given for symmetric differentials that are locally split.

We show that a closed symmetric 2-differential w of rank 2 (i.e., defines two
distinct foliations at the general point) has a subvariety Bw � X outside of which
w is locally the product of closed holomorphic 1-differentials. The main result,
Theorem 3.6, gives a complete description of a (locally split) closed symmetric
2-differential in a neighborhood of a general point of Bw. A consequence of the main
result is that the differential w still has a local decomposition into a product of closed
1-differentials (in a generalized sense) at the points of Bw. The closed 1-differentials
involved in the local decompositions might have to be multi-valued and acquire
singularities along Bw. Note that if we were considering local decompositions of a
locally split holomorphic symmetric 2-differential into a product of 1-differentials
(not necessarily closed), then the 1-differentials involved can be chosen to be
holomorphic, i.e., no singularities need to occur. On the other hand, it is also true that
by multiplying one of the 1-differentials by an arbitrary function and the other by its
inverse, that arbitrary singularities can occur in the decomposition. An important
feature of decompositions of symmetric 2-differentials of rank 2 as products of
closed 1-differentials is that they are unique up to multiplicative constants, hence
there is no ambiguity on the singularities that occur.

The singularities that occur in the decomposition of a closed holomorphic
symmetric 2-differential w when we require that the 1-differentials are closed can be
essential singularities along the locus Bw. A key feature of Theorem 3.6 giving the
local structure of w around points in Bw is that we have a control on these essential
singularities, they come from exponentials of meromorphic functions acquiring
poles of a bounded order along Bw. Before describing the nature of the bound, we
need to describe our result characterizing the locus Bw. In the case w is locally split
(always the case after a ramified cover), we show that any irreducible component of
Bw must be simultaneously a leaf of both foliations defined by w. The bound on the
order of the poles along an irreducible component of Bw is the order of contact of
both foliations along that irreducible component.

This article addresses the case of closed symmetric 2-differentials, we expect
that a straightforward generalization of our methods will provide similar results on
the local structure of closed symmetric differentials of arbitrary degree and give
control of the singularities that occur on the decompositions as product of closed
1-differentials.
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2 General Set Up

A symmetric differential w 2 H0.X; Sm�1
X/ on a complex manifold X defines at

each point where w.x/ ¤ 0 a cone in tangent space TxX with vertex the origin and
defined at infinity (Pn�1) by a variety of degree m. If X is a complex surface then
one gets a distribution of d .d 
 m/ lines, which will be integrable, defining a
non-singular d-web at the general point. In higher dimensions the cones will not be
necessarily union of hyperplanes and even if they are hyperplanes their distributions
need not be integrable. Here, we should note that the class of symmetric differentials
that is studied in this work, closed symmetric differential (see below), will in all
dimensions be connected to webs on the manifold.

Definition 2.1. A symmetric differential w 2 H0.X; Sm�1
X/ is split if it has a

decomposition:

w D  1 : : :  m

where the  i are meromorphic 1-forms or equivalently if w D �1 : : : �m, with �i 2
H0.X; �1

X ˝ Li/, where Li are line bundles on X.

Geometrically being split means that the symmetric differential defines hyper-
plane distributions and moreover they can be numbered consistently globally.

Definition 2.2. A symmetric differential w on X has rank r if at a general point
x 2 X w.x/ defines r distinct hyperplanes in TxX.

Definition 2.3. A symmetric differential w on X is said to have a holomorphic
closed decomposition if:

(1) w D �1 : : : �m ; �i closed holomorphic 1-forms

and a holomorphic closed decomposition at x if x has an analytic neighborhood
where (1) holds.

Definition 2.4. A symmetric differential w 2 H0.X; Sm�1
X/ is said to be:

1) closed, if w has an holomorphic closed decomposition at a general point x 2 X.
2) of the 1st kind, if w has holomorphic closed decompositions at all x 2 X.

Remarks. 1) The class of closed symmetric differentials of the 1st kind plays a
special role in the motivation for considering closed symmetric differentials as
a class of symmetric differentials having a stronger connection to the topology
of the ambient manifold. We expand on this point below.

2) Our definitions of closed and 1st kind coincide with the usual definitions when
m=1, i.e., holomorphic 1-forms. Our definition of closed asks for a holomorphic
1-form to be locally exact somewhere which by the identity principle implies
it is locally exact everywhere and hence closed in the usual sense. Hence, for
m D 1 our notions of closed and 1st kind coincide.
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3) If the degree m > 1, then closed no longer implies of the 1st kind. This has far
reaching geometric consequences and the main results of this work concern the
locus where this failure comes from and the structure of the closed symmetric
differentials near this locus.

Definition 2.5. The locus of X where a closed symmetric differential w fails to be
of the 1st kind at, Bw D fx 2 Xj w has no holomorphic closed decomposition at xg,
will be called the breakdown locus of w.

A key feature of holomorphic closed decompositions is that they have rigidity
properties. The level of rigidity has to do with a familiar notion in the theory of
webs, the Abelian rank of a web.

Definition 2.6. Given the germ wx 2 Sm�1
X;x with the holomorphic closed decom-

position

(2) wx D �1 : : : �m

where �i 2 �1
X;cl;x (�1

X;cl is the sheaf of closed holomorphic 1-forms on X), we call
an m-tuple .f1; : : : ; fm/ 2Mm

x satisfying:
mX

iD1
fi�i D 0 with dfi ^ �i � 0:

an Abelian relation of the decomposition (2). The Abelian rank of the decomposition
(2) is the dimension of the C-vector space consisting of all Abelian relations of (2).
The Abelian rank of a closed symmetric differential w 2 H0.X; Sm�1

X/ is the
Abelian rank of any holomorphic closed decomposition at the general point of x.

Remarks. 1) The definition of Abelian rank of a closed symmetric differential w
is well defined, since there is an analytic subvariety of R � X such that all holo-
morphic closed decompositions of wx, 8x 2 X nR, have the same Abelian rank.

2) It is a classical result of web theory that the Abelian rank of a decomposition
(2) is finite if rank(w)=m, with upper bounds depending on the dimension and
degree (for dimension 2 this is a result of G.Bol and also W.Blaschke see, for
example, [ChGr78, He01] and [He04] for information on webs).

3) A general germ of a closed symmetric differential has trivial Abelian rank.
We concentrate our attention to the case of trivial Abelian rank which is the

generic case and holds trivially for all closed symmetric 2-differentials (and rank 2).

Proposition 2.1. Let X be a connected manifold and w 2 H0.X; Sm�1
X/ be a closed

symmetric differential with an holomorphic closed decomposition w D �1 : : : �m.
If the Abelian rank of w is trivial, then all holomorphic closed decomposition w D

1 : : : 
m of w on X have the closed 1-forms 
i D ci�i with ci 2 C

� and
Qm

iD1 ci D 1.

Proof. Suppose w D 
1 : : : 
m is an holomorphic closed decomposition of w and
assume the 
i are ordered such that 
i ^ �i D 0. The condition 
i ^ �i D 0 in
conjunction with 
i and �i being closed implies that 
i D fi�i with fi 2M.X/ and
dfi ^ �i D 0. Moreover �1 : : : �m D 
1 : : : 
m gives:
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(3)
mY

iD1
fi D 1

Pick a simply connected open set U � X where fijU 2 O�.U/. Taking the logarithm
and differentiating (3) restricted to U and using the identity principle we obtain:

(4)
mX

iD1

dfi
fi
D 0

but dfi^�i D 0, hence dfi D gi�i with gi 2M.X/ and dgi^�i D 0. It follows that
(4) gives rise to the Abelian relation at a general point x 2 X:

mX

iD1
.
gi

fi
/x.�i/x D 0

The Abelian rank of w being trivial implies that the .gi/x D 0 and hence dfi D 0 on
X, i.e., fi D ci 2 C

�.�
A consequence of this proposition, see below, is the decomposition of symmetric

differentials of the 1st kind with Abelian rank 0 into a product of twisted closed
holomorphic 1-forms �i 2 H0.X; �1

X;cl ˝ C�i/. In [BoDeO13] we use such decom-
positions to characterize the origins and the geometric implications of symmetric
2-differentials of the 1st kind.

Corollary 2.2. Let X be a complex manifold and w 2 H0.X; Sm�1
X/ be of the 1st

kind with trivial Abelian rank. Then there is a finite unramified cover f W X0 ! X
(unnecessary if w is split) for which f �w has a decomposition:

f �w D �1 : : : �m

where �i 2 H0.X0; �1
X0;cl ˝ C�i /, where the C�i are local systems of rank 1 on X0

such that C�1 ˝ : : :˝ C�m ' C.

Proof. The differential w being of first kind implies that locally w is split, but
w might fail to be globally split. This failure is measured by the monodromy
coming from the local ordering of the foliations, i.e., we obtain a representation
	 W �1.X; x/ ! Sm. Associated to this representation we get an unramified cover
f W X0 ! X with degree a factor of mŠ such that f �w is split.

From now on we assume that w is split on X. The differential w being of the 1st
kind gives that there is a Leray covering U D fUig of X where

wjUi D �1i : : : �mi

with �ki 2 H0.Ui; �
1
X;cl/. Since the differential w is split, we can order the f�kig

such that �ki ^ �kj D 0 on the intersections Ui \ Uj. Proposition 2.1 implies that on
Ui \Uj

(5) �ki D ck;ij�kj
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with ck;ij 2 C
� and

Qm
kD1 ck;ij D 1. The m collections fck;ijg for k D 1; : : : ;m are

elements in Z1.X;C�/ and give rise to the rank 1 local systems which we denote by
C�k and satisfy C�1 ˝ : : : ˝ C�m ' C (we remark that the isomorphism classes of
these local systems are completely determined by w). It follows from (5) that each
collection for a fixed k, f�ikg, gives a section �k 2 H0.X; �1

X;cl˝C�k/ and the result
holds.�

The presence of twisted closed holomorphic 1-forms �i 2 H0.X; �1
X;cl ˝ C�i /

has implications on both the topology and geometry of the manifold X. On the
topological side one observes that the cohomology exact sequence associated to
the short exact sequence 0 ! C� ! O ˝ C� ! �1

X;cl ˝ C� ! 0 implies that
H1.X;C�/ 	 h0.X; �1

X;cl ˝ C�/ (hence in particular �1.X/ must infinite). On the
geometric side, if X is compact Kähler the presence of non-torsion, i.e., L� D O˝C�
non-torsion, twisted closed holomorphic 1-forms implies that X is fibered over
curves of genus g 	 1 as follows from the work of Beauville, Lazarsfeld-Green,
and Simpson (see [GrLa87], [Be92, Si93], and [Ar92]).

3 Local Structure of Closed 2-Differentials on Surfaces

3.1 Differential Operator for Closed Symmetric 2-Differentials

A symmetric differential of degree 2 on a complex surface can be viewed as a
generalized complex counterpart of a Riemannian metric on a real surface. We
are going to use this fact to motivate the differential operator characterizing closed
symmetric 2-differentials.

Let w 2 H0.X; S2�1
X/ on a complex surface X. There is an open cover of X,

U D fUig by local holomorphic charts, where

wjUi D ai.z/.dz1i/
2 C bi.z/dz1idz2i C ci.z/.dz2i/

2

On each of these open sets we get the holomorphic functions detwjUi D ai.z/ci.z/�
bi.z/2=4 which together form an element of H0.X;O.2KX//, called the discriminant
of w.

Definition 3.1. The discriminant divisor Discw of w 2 H0.X; S2�1
X/ is the divisor

of zeros of the section fdetwjUigi2I of O.2KX/. The core discriminant divisor of w
is Disc0w D Discw � 2.w/0.
Geometrically, the support of Discw corresponds to the set of points where w.x/
either vanishes or defines one single line in TxX. To better understand the support
of Disc0w we give a new characterization of the divisor Disc0w. Let U D fUigi2I be
an open covering of X such that wjUi D hi Owi with hi 2 O.Ui/ and Owi vanishes
only in codimension 2. The divisor Disc0w can described via the local information
Disc0w \Ui D Disc Owi . By definition Supp.Disc0w/ � Supp.Discw/, moreover a point
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x 2 Supp.Discw/ nSupp.Disc0w/ is such that w.x/ D 0 but Owi.x/ defines two distinct
lines in TxX. A more detailed characterization of the irreducible components of the
divisors Discw and Disc0w is given in section 3.2.

Let x 2 X nDisc0w, then the germ wx of w at x splits, wx D �1�2 with �i 2 �1
X;x.

Say x 2 Ui with Ui as above, wjUi D hi Owi, then x 2 X n Disc0w implies that the
discriminant of Owi does not vanish at x and therefore Owi (and hence w) splits at x,
Owix D O�1 O�2. Moreover, since the discriminant of Owi is nonzero at x, then O�1 ^
O�2.x/ ¤ 0, which implies that x has a neighborhood Ux with holomorphic a chart
.z1; z2/ such that:

(1) wjUx D g.z/dz1dz2

with g 2 O.Ux/. The condition that wjUx has a closed holomorphic decomposition,
wjUx D g.z/dz1dz2 D �1�2 with �i closed holomorphic 1-forms, is equivalent to

(2) g.z/ D f1.z1/f2.z2/

(�i ^ dzi � 0 implies that �i D fi.zi/dzi). The condition (2) can be characterized

via the nonlinear differential equation @2ln g.z/
@z1@z2

D 0.
It follows from the Brioschi’s formula for the Gaussian curvature in terms of

the 1st fundamental form [Sp99], that the differential operator giving the Gaussian

curvature for a metric in the form ds2 D f .x/dx1dx2 is K.ds2/ D � 2f @
2ln f .z/
@x1@x2

. Hence
the symmetric differential in (1) is closed if and only if KC.wjUx/ D 0, where KC is
the operator obtained from K by replacing x1; x2 by z1; z2.

A symmetric 2-differential cannot be put locally in the form (1) everywhere,
but this is not a problem since the differential operator K for the Gaussian curvature
works for metrics whose 1st fundamental form is arbitrary (works formally if the 1st
fundamental form is degenerate, i.e., with discriminant zero at some points). Hence
KC works for any symmetric 2-differential (for a general symmetric 2-differential
w, KC.w/ will be a meromorphic function with poles along the discriminant locus).
If w is a symmetric 2-differential satisfying KC.w/ D 0, then KC.wjUx/ D 0 with
Ux � X nDisc0w as in 2.1 and hence it by our previous paragraph w is closed. Hence
we obtain:

Proposition 3.1. Let w 2 H0.X; S2�1
X/ be of rank 2 on a X a connected complex

surface, then w being closed is equivalent to:

KC.w/ D 0

Moreover, KC.w/ D 0 is equivalent to w is of the 1st kind on X n Disc0w.
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3.2 Characterization of the Breakdown Locus Bw

In this section w is a closed symmetric 2-differential of rank 2. We start by showing
that the breakdown locus Bw has no isolated points and then proceed to show that
Bw is an analytic subvariety of codimension 1 and to characterize geometrically its
components.

Lemma 3.2. Bw has no isolated points.

Proof. It is enough to show that if w is of the 1st kind in a punctured ball B�, then
it is of the 1st kind on the whole ball B. Let w 2 H0.B; S2�1

B
/ be of the 1st kind on

the punctured ball B�. According to Corollary 2.2,

wjB� D �1�2
with .�1; �2/ 2 H0.B�; �1

X;cl ˝ .C� ˚ C
�
� //. The triviality of the fundamental

group of B
� implies that C� ' C

�
� ' C and hence the �i can be chosen to be

in H0.B�; �1
X;cl/. Again using �1.B�/ D feg, it follows by integration that � D dfi

with fi 2 O.B�/. Hartog’s extension theorem implies that exist Ofi 2 O.B/ extending
the fi and hence w is of the 1st kind on B with w D dOf1dOf2.�

Proposition 3.1 tell us that that:

Corollary 3.2. Bw � Supp.Disc0w/.

To proceed we need to give a geometric description of the irreducible compo-
nents of both discriminant loci. The support of the discriminant divisor decomposes
into:

Supp.Discw/ D Nw [ Sw

where Nw and Sw are the union of all irreducible components of Discw of respectively
odd and even multiplicities. The locus Nw corresponds to the points where w fails to
split at. For the support of the core discriminant divisor we have:

Supp.Disc0w/ D Nw [ Cw [ Rw

It follows from the characterization of Disc0w given after Definition 3.1 that any
x 2 Supp.Disc0w/ is in the closure of the locus of points y 2 X such that Owi.y/
defines a single line in TyX (where wjUi D hi Owi with y 2 Ui, hi 2 O.Ui/ and
Owi is a symmetric 2-differential vanishing at most in codimension 2). Note that
Definition 3.1 gives directly that the divisor Nw is fully contained in Supp.Disc0w/,
since only even multiples of irreducible components are subtracted from .Discw/ to
obtain .Disc0w/.

The divisor Cw consists of the union of all irreducible components of
Supp.Discw/ which are leaves simultaneously of the two foliations defined by
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the f Owigi2I (a 2-differential defines two foliations where it splits). We will call the
irreducible components of Cw the common leaves of w. The divisor Rw consists of
all the irreducible components of Supp.Disc0w/ that are not in Nw or Cw. These will
be the components for which at their general point x the two different foliations
given by f Owigi2I define leaves that are tangent at x but that do not coincide).

Theorem 3.4. Bw D Nw [ C00
w, where C00

w is a union of curves contained in Cw.

Proof. The locus Nw is contained in Bw since the differential w splits on any x … Bw.
Set X0 D X n Nw, C0

w D Cw \ X0 and R0
w D Rw \ X0 and get:

Supp.Disc0w/\ X0 D C0
w [ R0

w

The desired result then follows if we show that the breakdown locus BwjX0
is an

union of irreducible components of C0
w (with C00

w being the closure of this union).
By construction X0 is the open subset of X where w is locally split. Hence given

any x 2 X0, there exists an open neighborhood Ux of x where wjUx D �1�2, �i 2
H0.Ux; �

1
X/. We can shrink Ux so that we can decompose �i D hi O�i with hi 2

O.Ux/ and the O�i 2 H0.Ux; �
1
X/ are either nowhere vanishing or vanish only at x.

Frobenius’ theorem (if O�i.y/ ¤ 0, then 9Uy open neighborhood of y where O�i D
fidui, fi; ui 2 O.Uy/), then implies that the set S � X0 consisting of the points x
where w fails to have a neighborhood Ux where wjUx D gdz1dw1 with g 2 O.Ux/

and dz1, dw1 nowhere vanishing is discrete.
Consider the irreducible decomposition

C0
w [ R0

w D
[

iDI

C0
w;i [

[

jDJ

R0
w;j

where I; J are countable and C0
w;i and R0

w;j are the irreducible components of C0
w

and R0
w, respectively. Below, we will first show that the irreducible components R0

w;j
intersect BwjX0

only inside S, i.e., R0
w;j\BwjX0

� S[S
iDI C0

w;i. Second, we will show
that the irreducible components C0

w;i are such that C0
w;i � BwjX0

or C0
w;i \ BwjX0

� S.
These two results (and Corollary 3.2) imply that BwjX0

DS
iDI0 C0

w;i[S0, with S0 � S
and I0 � I. The result then follows since S0 � S

iDI0 C0
w;i. The discreteness of S andS

iDI0 C0
w;i being an analytic subvariety of X0 implies that if x 2 S0 is not contained inS

iDI0 C0
w;i, then x has a neighborhood Ux such that Ux \Bw D x, but by Lemma 3.2

Bw has no isolated points.

Claim: R0
w;j \ BwjX0

� S [S
iDI C0

w;i

Before proceeding, note that by the definition of the set S it follows that any
x 2 X0 n S has a neighborhood Ux with g; z1; z2;w1 2 O.Ux/ such that

wjUx D gdz1dw1

and � D .z1; z2/ W Ux ! � ��, � a disc centered at 0, is a biholomorphism with
�.x/ D .0; 0/.
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We will show that any x 2 R0
w;j \ ŒX0 n .S [S

iDI C0
w;i/� cannot lie in Bw.

Let Ux be a neighborhood of x as in the previous paragraph. Consider the leaf
L D fz1 D 0g of w on Ux passing through x. By hypothesis x is not in a common leaf
of w, hence L cannot be a common leaf of w which implies that L 6� Supp.Disc0w/.
If L � Supp.Disc0w/ then dz1 ^ dw1 D 0 on L making L a leaf of dw1 also, hence a
common leaf for w. Hence L n ŒSupp.Disc0w/ \ L/� ¤ ;

Pick y 2 L but not in Supp.Disc0w/, then by Proposition 3.1 there is a (connected)
neighborhood Uy of y where wjUy D f .z1/g.w1/dz1dw1 with f ; h 2 O.Uy/ (f .z1/
denotes a function f .z1; z2/ depending only on z1). Let �0 be a disc centered at 0
such that �0 � z2.y/ � �.Uy/ and Wx D z�1

1 .�
0/.D ��1.�0 ��//. The function f

has a clear holomorphic extension Of 2 O.Uy [Wx/, with Of jWx.z1; z2/ D f .z1; z2.y//.
The same reasoning applied to h will not give an extension of h to Wx [ Uy,

so instead we use the extension of f and consider the function Oh D g
Of . Clearly,

OhjUy D h hence Oh is a function of w1 alone. The function OhjWx is holomorphic since

the irreducible components of the polar divisor .OhjWx/1 if they exist must be some
of the irreducible components of the divisor of zeros of Of which will be a union of
curves fz1 D cg and hence intersect non-trivially Uy but this intersection must be
empty since hjUy D h is holomorphic.

It follows from the previous two paragraphs that the closed holomorphic
decomposition of w at Uy, wjUy D f .z1/h.w1/dz1dw1, propagates to give the
closed holomorphic decomposition on the neighborhood Wx of x, wjWx DOf .z1/Oh.w1/dz1dw1, making x 62 Bw.

Claim: C0
w;i � BwjX0

or C0
w;i \ BwjX0

� S.

In addition to the properties, described two paragraphs above, that we can
guarantee for an open neighborhood Ux of x 2 X0 n S, we can equally guarantee
the existence of an open neighborhood U0

x � Ux and w2 2 O.U0
x/ such that

�0 D .w1;w2/ W U0
x ! �0 ��0 is a biholomorphism.

Consider the subsets C�
w;i D C0

w;i \ .X0 n S/ and Vi D C�
w;i \ .X n Bw/.

The set C�
w;i is connected since by the local parametrization theorem [De12]

an irreducible component of an analytic variety punctured by a discrete set is
connected. The subset Vi consisting of all points of C�

w;i where w has a local
holomorphic decomposition is clearly open in C�

w;i. We proceed to show that Vi

is also closed in C�
w;i. Since C�

w;i is connected, Vi being both open and closed implies
the desired result that the irreducible components C0

w;i are such that C0
w;i � BwjX0

(when Vi D ; and use Bw closed) or C0
w;i \ BwjX0

� S (when Vi D C�
w;i).

Let x 2 C�
w;i be an accumulation point of Vi. Pick y 2 Vi \ U0

x, with U0
x as in two

paragraphs above. Since C�
w;i is a common leaf of w, y 2 Lx D fz1 D 0g D fw1 D

0g. Hence y has a neighborhood Uy such that �.Uy/ � �00 � z2.y/ and �0.Uy/ �
�00 � w2.y/, �00 a disc centered at 0, where wjUy D gdz1dw1 D f .z1/h.w1/dz1dw1
with f ; h 2 O.Uy/. The functions f and h are clearly extendable to Of 2 O.z�1

1 .�
00/[

Uy/ and Oh 2 O.w�1
1 .�

00/ [ Uy/. By construction Wx D z�1
1 .�

00/ \ w�1
1 .�

00/ is a
connected open set containing x and y and gjWx\Uy D Of OhjWx\Uy , hence gjWx D Of OhjWx

giving a holomorphic decomposition of w on the neighborhood Wx of x, i.e., x 2 Vi.



Local Structure of Closed Symmetric 2-Differentials 63

3.3 Monodromy at Bw

Let w 2 H0.X; S2�1
X/ be closed of rank 2 and Bw D P

j2J, J countable, be the
irreducible decomposition of the breakdown locus Bw. Let U D fUig be a Leray
covering of X n Bw where

wjUi D �1i�2i

with �ki 2 H0.Ui; �
1
X;cl/, k D 1; 2. The Abelian rank of a closed symmetric 2-

differential of rank 2 is trivial, it follows then from Proposition 2.1 that if Ui\Uj ¤
;, then

�
�1i

�2i

�
D gij

�
�1j

�2j

�

with gij 2 G D
��

c 0

0 c�1
�
;

�
0 c

c�1 0

�
j c 2 C

�
	

. The collection fgijg gives a 1-cocycle

with values in the group G, i.e., fgijg 2 Z1.U ;G/. Hence given x0 2 XnBw, we obtain
a representation � W �1.X n Bw; x0/! G.

If w is split, then Im� � G0, with G0 D f
�

c 0

0 c�1
�
;8c 2 C

�g � G (this follows

from being able to get a consistent ordering of the foliations on all the Ui). Since G0
is Abelian we get a representation, �w W �1.X nBw/! G0, that is independent of the
base point and factors through H1.X n Bw;Z/, and gives:

N�w W H1.X n Bw;Z/! G0

Associated with each irreducible component Bj, let �ij 2 H1.X n Bw;Z/ be the class
of a simple loop around Bij (boundary to a disc transversal to Bj centered at a general
point of Bj) which can have either orientation.

Definition 3.2. Let w 2 H0.X; S2�1
X/ be split, closed of rank 2 and Bw DP

j2J Bj,
J countable, be the irreducible decomposition of the breakdown locus Bw. To each
irreducible component Bj we associate the monodromy index M.Bj;w/ D fc; c�1g,
if N�w.�j/ D

�
c 0

0 c�1
�

, with N�w and �j as above.

3.4 Local Form at Bw

The goal of this section and the main result of this article is to give the general
form of a split closed symmetric 2-differential of rank 2 w at the general point
of an irreducible component of the breakdown locus Bw. We will see that the
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closed decompositions of w can acquire essential singularities and have non-trivial
monodromy at the breakdown locus Bw. We will show that the essential singularities
have an algebraic feature, they come from exponential functions with meromorphic
functions with poles along Bw as exponents. Moreover, we will give a bound on the
order of the poles of the meromorphic functions appearing as exponents. The bounds
come from the order of contact of the two foliations of w along the irreducible
components of Bw.

We start with some examples of closed symmetric 2-differentials for which Bw is
non-empty.

Example (Non-split). Let z1 be a holomorphic coordinate of Cn and f 2 O.Cn/, set
w D z1.dz1/2 � .df /2 . The differential is non split at all points in fz1 D 0g but it is
closed since any point y 2 X n fz1 D 0g has a neighborhood Uy where

p
z1 exists

and hence w has a holomorphic exact decomposition wjUy D d. 2
3
z
3
2

1 C f /d. 2
3
z
3
2

1 � f /.

If the differential is locally split at x, then a 2nd layer of the failure of w to have
a holomorphic closed decomposition at x is due to the monodromy in the factors of
the closed decompositions (not the monodromy of the foliations) around Bw.

Example (Monodromy of the Closed Decompositions). Let B � C
2 be a sufficiently

small open ball about the origin where 1 C z2 is invertible. Consider w D
.1 C z2/˛dz1dŒz1.1 C z2/�. Recall that the differential w has a holomorphic closed
decomposition at a point x 2 B if and only if we can decompose .1 C z2/˛ as
a product of holomorphic functions of z1 and z1.1 C z2/ near x. At points in the
complement of fz1 D 0g we have the decomposition .1C z2/˛ D z�˛

1 Œz1.1C z2/�˛ ,
but at points in fz1 D 0g the functions involved are multi-valued, hence no
holomorphic closed decomposition of w is possible at x 2 fz1 D 0g. In fact this
monodromy is infinite if ˛ 62 Q, meaning that even after finite ramified coverings
the symmetric differential would not have an exact decomposition along the pre-
image of fz1 D 0g.

If the differential is both locally split at x and no monodromy occurs, then w
a 3rd level of failure to have a holomorphic closed decomposition is due to the
singularities of the 1-differentials on the decomposition.

Example (Meromorphic Singularities). w D .dz1/2 C z1z2dz1dz2 D dz1.dz1 C
z1z2dz2/ has the common leaf L D fz1 D 0g. The differential w is closed
because the 1-form dz1 C z1z2dz2 has an integrating factor, 1

z1
, which is a function

of z1. This integrating factor produces the closed meromorphic decomposition

w D d. z21
2
/. 1z1

dz1 C z2dz2/. Note that since the Abelian rank of w is trivial any
other closed decomposition of w would differ just by multiplicative constants hence
meromorphic singularities would be always present in the closed decompositions
of w.

Example (Essential Singularities). This example shows that even essential singu-

larities can occur, w D e
z2

1Cz1z2 dz1dŒz1.1 C z1z2/�. The 1-differentials in the split
closed decomposition are unique up to multiplicative constants, as it was shown in
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Proposition 2.1, and the constants will cancel each other so in fact the decomposition
is unique and has the form

w D e
z2

1Cz1z2 dz1dŒz1.1C z1z2/� D e
1
z1 dz1e

� 1
z1.1Cz1z2/ dŒz1.1C z1z2/�

with essential singularities occurring on the closed 1-forms at fz1 D 0g.
Lemma 3.5. Let X be a complex 2-manifold, w 2 H0.X; S2�1

X/ be split of rank 2
and L be an irreducible component of a common leaf of w. Then there is an m 2 N

such that the general point x of L has a neighborhood Ux with a holomorphic chart
.z1; z2/ where

wjUx D f .z1; z2/dz1dŒz1.1C zm
1 z2/�

Proof. The differential w being split implies that every point x 2 X has an open
neighborhood Ux such that wjUx D �1�2, �i 2 H0.X; �1

X/. By shrinking Ux we
can factor the 1-forms �i in the form �i D fi O�i with fi 2 O.Ux/ and O�i either
non-vanishing or vanishing only at x. Since by Frobenius theorem a non-vanishing
1-form in dimension 2 is integrable, it follows that there is a discrete set S � X such
that all x 2 X n S have a neighborhood Ux where

(3) wjUx D hdvdr

with h; v; r 2 O.Ux/, v.x/ D r.x/ D 0, dv and dr nowhere zero on Ux.
Let x be a general point of L, using the notation of (3) we have L \ Ux D fv D

0g D fw D 0g with:

r D vu

with u a unit on Ux. After shrinking Ux we can assume there is a holomorphic local
chart on Ux, .v1; v2/ such that v1 D v. Consider the series expansion u.v1; v2/ DP1

iD0;jD0 cijv
i
1v

j
2 and let m D minfij9j > 0 s.t. cij ¤ 0g (the Taylor series of u must

involve v2 since dv ^ dr 6� 0). Then decompose u as

u.v1; v2/ D s.v1/C vm
1 .t.v2/C v1g.v1; v2//

where s.v1/ D P1
iD0 ci0v

i
1 is a holomorphic function in v1 with s.0/ ¤ 0 and

hence a unit in a neighborhood of 0. Note t.0/ D 0 and more importantly t.v2/
is not constant. Hence dt.v2/ is non-vanishing at the general point of L \ Ux. If
dt.v2/.x/ D 0, then change x to make dt.v2/.x/ ¤ 0.

Set z1 D v1s.v1/ and z2 D t.v2/Cv1g.v1;v2/
s.v1/mC1 . By construction dz1.x/ ¤ 0,

dz2.x/ ¤ 0 and dz1 ^ dz2.x/ ¤ 0 and

r D z1.1C zm
1 z2/

giving the desired wjUx D f .z1; z2/dz1dŒz1.1C zm
1 z2/� with f D h

s.v1/Cv1s0.v1/
.
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Observing that m D ordfv1D0g. @r
@v2
/ � 1, it follows that m is independent of the

choice of v and r with dv and dr non-vanishing such that w D hdvdr and
the choice of holomorphic chart .v1; v2/ with v1 D v. The independence of m
on the above choices plus the connectedness of L minus a discrete set of points
implies that any other general point of L would give the same m and hence m is
naturally associated to the irreducible component L.�

Definition 3.3. An irreducible component L of a common leaf of w 2 H0.X; S2�1
X/

of rank 2 is said to have order of contact m, O.L;w/ D m, if in a neighborhood
Ux of the general point x 2 L w is of the form as in Lemma 3.5, i.e., wjUx D
f .z1; z2/dz1dŒz1.1C zm

1 z2/�.

Theorem 3.6. Let X be a complex 2-manifold, w 2 H0.X; S2�1
X/ be split, closed

of rank 2 and L an irreducible component of a common leaf of w. Then the general
point x in L has a neighborhood Ux where wjUx has a decomposition of the form:

wjUx D zk
1.1C zm

1 z2/
˛ef .z1/eg.z1.1Czm

1 z2//dz1dŒz1.1C zm
1 z2/�

where:

i) m D O.L;w/, k D ordL.w/0 (.w/0 is the divisorial zero of w) and ˛ D log c
2� i C k

for some k 2 Z and c 2 M.L;w/.
ii) f and g are meromorphic functions on �� with poles of order at most m at 0.

Remark. The local form of wjUx in the theorem can be rewritten as the following
decomposition of wjUx as the product of two closed 1-differentials (in a generalized
sense since they might be multi-valued) with singularities along L:

wjUx D .zˇ1 ef .z1/dz1/.Œz1.1C zm
1 z2/�

˛eg.z1.1Czm
1 z2//dŒz1.1C zm

1 z2/�/

with ˛ C ˇ D ordL.w/0 and ˛, f and g as in the theorem.

Proof. According to the Lemma 3.5 the general point x 2 L has a neighborhood Ux

with a holomorphic coordinate chart .z1; z2/ such that x D .0; 0/, L\Ux D fz1 D 0g
and wjUx D v.z1; z2/dz1dŒz1.1C zm

1 z2/� with v 2 O.Ux/.
We claim that if we shrink Ux the divisor of zeros of wjUx is .v/0 D kL and hence

wjUx D zk
1 Qw

with Qw 2 H0.Ux; S2�1
X/ a nowhere vanishing closed symmetric differential of the

form:

(4) Qw D Qv.z1; z2/dz1dŒz1.1C zm
1 z2/�

with Qv.z1; z2/ 2 O�.Ux/.
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By shrinking Ux we can make .v/0 a finite union of irreducible components all
passing through x. The differential w being closed implies (Theorem 3.4) that all
y 2 Ux n L have a neighborhood Uy such that vjUy D f .z1/g.z1.1 C zm

1 z2//. This
implies that if an irreducible component of .v/0 is not L, then it must be a level
set of z1 or z1.1C zm

1 z2/ not passing through x, a contradiction. It follows then that
.v/0 D kL for some k 2 N and (4) holds.

Note that we have the equality M.L; Qw/ D M.L;w/, this can be seen, for example,
by noting that the factor on the local holomorphic decompositions of w and Qw
corresponding to the foliation dŒz1.1C zm

1 z2/� does not change (the 1-cocycle with
values in C

� corresponding to this foliation remains unchanged) hence the index
remains unchanged.

The neighborhood Ux can be chosen to be the bi-disc Ux D ��1 � ��2 , �i > 0,
relative to the coordinate chart .z1; z2/. On Ux we have two maps �1 W Ux ! C

given by �1.z1; z2/ D z1 and �2 W Ux ! C given by �2.z1; z2/ D z1.1C zm
1 z2/.

Let U D fUigiD1;:::;k, k 2 N, be a Leray open covering of the punctured disc
��
�1

. The Leray covering fUi ���2giD1;:::;k of Ux n fz1 D 0g is such that one has the
holomorphic closed decompositions on its open sets:

(5) QwjUi���2 D Mfi.z1/Mgi.z1.1C zm
1 z2//dz1dŒz1.1C zm

1 z2/�

where Mfi D ��
1 fi with fi 2 O.Ui/ and Mgi D ��

2 gi with gi 2 O.U0
i/ .Ui � U0

i D
�2.Ui ���2//. The existence of such closed decomposition on the whole open sets
Ui���2 is guaranteed since the open sets are simply connected and the fibers of both
�1jUi���2 and �2jUi���2 are connected (assuming �1 and �2 are sufficiently small).

Since w is a symmetric differential of degree 2 and rank 2, the Abelian rank of w
is trivial which due to Proposition 2.1 implies that on the intersections Ui \ Uj:

(6) fi D cijfj gi D c�1
ij gj

The collection fcijg defines a 1-cocycle in Z1.U ;C�/ defining a representation of � W
�1.�

�
�1
/ ! C

�. There is a natural homomorphism �L W �1.��
�1
/ ! H1.X n Bw;Z/

sending the class of a simple loop � around the origin oriented positively to the class
of a simple loop �L around the irreducible component L (as in Definition 3.2). By
construction, �.�/ is one of the diagonal entries of N�w.�L/, i.e., �.�/ 2 M(L,w) D
fc; c�1g.

To simplify notation rescale the coordinates so that Ux D � � �, � the unit
disc centered at 0 and set the covering U of �� to be fU�1;U0;U1g with Ui D
.0; 1/ � . .2i�1/

3
� � �; .2iC1/

3
C �/, � > 0 sufficiently small, if expressed in polar

coordinates.
Consider the universal covering map e W H� ! ��, z ! ez, with H� D fz 2

CjRez < 0g, and the open covering of H�, QU D f QUjgj2Z where the QUj D .�1; 0/�
.
.2j�1/
3
� � �; .2jC1/

3
C �/. Note that e W QUj ! UŒj�, with Œj� 2 f�1; 0; 1g and j � Œj�

mod 3, is a biholomorphism.
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Let fQfjgj2Z 2 C0. QU ;O�/ be the 0-cochain defined by Qfj D fŒj� ı e 2 O�. QUj/.
The co-boundary ıfQfjg gives a 1-cocycle with values in C

�, fQcjj0g 2 Z1. QU ;C�/,
since Qfj D Qcjj0 Qfj0 on QUj \ QUj0 . The space H� being simply connected implies that
fQcjj0g 2 B1. QU ;C�/. Hence there is a collection fQcjg 2 C0. QU ;C�/ such that Qcj0 Qfj D QcjQfj
on QUj \ QUj0 giving:

(7) fQcjQfjg DW F 2 O�.H�/

The function F, due to Qcjj0 D cŒj�Œj0 � and the discussion following (6), satisfies the
special transformation law

F.zC 2�i/ D �.�/F.z/

Since e.
log �.�/
2�i /z is function with the same transformation law as F, it follows that:

F D e.
log �.�/
2�i /zOf .ez/

with Of 2 O�.��/.
The above implies that if we set ci D Qci, i D �1; 0; 1, then

cifij OUi
D .z log �.�/

2�i Of /j OUi

with z
log �.�/
2�i representing the principal branch of the power function and OUi D

.0; 1/ � . .2i�1/
3
�;

.2iC1/
3
�/ (if expressed in polar coordinates). The same reason-

ing can be done with respect to the collection fgigiD�1;0;1 using the collection
fc�1

i giD�1;0;1 2 C0.U ;C�/ to obtain

c�1
i gij OUi

D .z� log �.�/
2�i Og/j OUi

with Og 2 O�.��/ and z� log �.�/
2�i representing the principal branch of power function.

Finally, using the above descriptions of the collections fci fig and fc�1
i gig it

follows that we can rewrite the local holomorphic closed decompositions described
in (5) by changing Mfi and Mgi to respectively ciMfi and c�1

i Mgi and obtain the global
decomposition of Qw on�� ��:

(8) Qwj���� D .1C zm
1 z2/

� log �.�/
2�i Of .z1/Og.z1.1C z1z2//dz1dŒz1.1C zm

1 z2/�

recall that by construction �.�/ 2 M.L;w/. Note that behind the global decomposi-
tion (8) there is a closed decomposition of Qw on Ux but it involves the multi-valued

functions and functions with singularities along L, Qw D .z
log �.�/
2�i

1
Of .z1/dz1/.Œz1.1 C

zm
1 z2/��

log �.�/
2�i Og.z1.1C z1z2//dŒz1.1C zm

1 z2/�/.
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The next goal is to understand the singularities that are possible for the functions
Of ; Og 2 O�.��/. To achieve this goal, we use the fact that the product of Of .z1/ with
Og.z1.1C zm

1 z2// extends to a holomorphic function on � �� since it satisfies:

(9) Of .z1/Og.z1.1C zm
1 z2//j���� D Ov.z1; z2/j����

where Ov.z1; z2/ D Qv.z1; z2/.1C zm
1 z2/

log �.�/
2�i 2 O�.� ��/.

The functions Of and Og do not necessarily have a well- defined logarithm on ��,
since f�; g� W �1.��/ ! �1.C

�/ are not necessarily trivial. However, if we set
k1 D f�.�/ 2 �1.C�/ D Z and k2 D g�.�/ 2 �1.C�/ D Z with � a simple loop
around 0 positively oriented, then Of .z/ D zk1 Mf .z/ and Og.z/ D zk2 Mg.z/ are such that the
functions Mf ; Mg 2 O�.��/ have well- defined logarithmic functions, f D log Mf ; g D
log Mg 2 O.��/.

It follows from (9) that Of .z/Og.z/ D Ov.z; 0/ and hence Of .z/Og.z/ 2 O.��/ extends
to a holomorphic function on� which forces k2 D �k1 (.Of Og/� W �1.��/! �1.C

�/
is trivial since it factors through Ov.z; 0/� W �1.�/ ! �1.C

�/ and .Of Og/�.�// D
f�.�/C g�.�/). This implies that decomposition (8) can be rewritten as:

(10) Qw D .1C zm
1 z2/

� log �.�/
2�i �k1ef .z1/eg.z1.1Cz1z2//dz1dŒz1.1C zm

1 z2/�

We are now interested in the singularities of f ; g 2 O.��/. It follows from (9)
that:

(11) f .z1/C g.z1.1C zm
1 z2// D log Ov.z1; z2/

where log Ov.z1; z2/ 2 O.Ux/. To derive conditions on f ; g 2 O.��/ from (11)
consider the Laurent series expansions:

f .z1/ D
1X

iD�1
aiz

i
1

g.z1.1C zm
1 z2// D

1X

iD�1
biŒz1.1C zm

1 z2/�
i

for the sum f .z1/C g.z1.1C zm
1 z2// to be holomorphic we must have

(12)
�1X

iD�1
aiz

i
1 C

�1X

iD�1
biŒz1.1C zm

1 z2/�
i DW r.z1; z2/
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with r.z1; z2/ holomorphic. To simplify our notation, we quickly note that for r.z1; 0/
to be holomorphic we must have bi D �ai 8i < 0 from which it follows that

r.z1; z2/ D
�1X

iD�1
aiz

i
1Œ1 � .1C zm

1 z2/
i�

Consider the expansion 1 � .1 C zm
1 z2/i D P1

kD1 c.i/k zkm
1 zk

2. Of the coefficients

c.i/k we will only use the fact that they are all non-vanishing and r.z1; z2/ DP�1
iD�1

P1
kD1 aic

.i/
k ziCkm

1 zk
2.

Reorganizing the terms of the last expansion of r.z1; z2/, one obtains:

r.z1; z2/ D
1X

jD�1
.

1X

kDminf1;p j
m qg

aj�kmc.j�km/
k zk

2/z
j
1

The holomorphicity of r.z1; z2/ implies that 8j 
 �1 the functions

sj.z2/ D
1X

kD1
aj�kmc.j�km/

k zk
2

must vanish, which using the non-vanishing of the c.i/k implies that

ai D 0 8i < �m

this jointly with the equality bi D �ai 8i < 0 gives the desired result ii) stating that
f and g are meromorphic functions with poles of order at most m at the origin.�
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Abstract This survey reports on recent developments regarding the global structure
of complex varieties which occur in the minimal model program.
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1 Introduction

This article is an extended version of two overview talks given by the authors
in September 2013 at the Simons conference on “Foliation theory in algebraic
geometry”. We survey some recent developments regarding the global geometry of
complex algebraic varieties with singularities occurring in the theory of minimal
models. In other words, we are primarily interested in varieties with canonical
or Kawamata log terminal (klt) singularities. More generally, we are interested in
varieties X carrying a Q-divisor such that .X;D/ is klt, or perhaps log-canonical.

A typical problem is to understand the structure of complex projective varieties
X with numerically trivial canonical class KX . These are the minimal models of
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manifolds Y with Kodaira dimension �.Y/ D 0. If X happens to be smooth, which
is rare in minimal model theory, then powerful methods from analysis, such as
existence results for Kähler-Einstein metrics, can be applied to study the structure of
X. In the singular case, however, new methods have to be developed, and we describe
some steps along this way. For this, a good understanding of differential forms on
varieties with canonical or klt singularities is required. Such an understanding is
essential also in other circumstances, including moduli problems. Arguing along
these lines, we show how the classical Decomposition Theorem for Kähler mani-
folds with vanishing first Chern class generalises to the singular case, to give a set
of canonically defined foliations whose global geometry still needs to be explored.

In a similar vein, we recall a famous theorem of Yau, which asserts that any com-
pact Kähler manifold with vanishing first and second Chern class is an étale quotient
of a torus. Again, the proof of this result relies on the existence of a Kähler-Einstein
metric. In case where X is projective and has canonical singularities we will prove
an analogous statement, where the quotient is étale in codimension one. In a certain
sense, this statement can be seen as saying that the foliations constructed above
are trivial, and that the second Chern class might be understood as an obstruction
against their triviality. The proof requires a good understanding of the difference of
the algebraic fundamental group of X and that of its smooth locus. In particular, we
need to understand the geometric meaning of the flatness of the smooth locus of X.

1.1 Outline of the Paper

We give a short description of the content of the paper. As it might have become
clear, there are two main technical tools: the theory of good (=reflexive) differentials
and the study of fundamental groups. Part I is devoted to the study of differential
forms, with the technical core, the Extension Theorem, described in Section 2 and
the applications being given in the subsequent Sections 3–7. Part II first discusses
algebraic fundamental groups of varieties with klt singularities in Section 8,
followed in Sections 9 and 10 by applications to varieties whose regular part is
flat and to varieties with trivial canonical and trivial second Chern class. Finally,
we mention how the topological main result completes the structure theory of
Nakayama-Zhang on polarised endomorphisms.

1.2 Notation and Global Assumptions

Throughout the paper, we work over the complex number field. We use standard
notation and follow the conventions of minimal model theory, as introduced in
[Har77, KM98]. We will frequently consider quasi-étale morphisms, a concept
which might be non completely standard: A finite, surjective morphism of normal
varieties � W X ! Y is called quasi-étale if � is étale in codimension one.
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Part I: Extension of Differential Forms and Applications

2 Reflexive Differentials and the Extension Theorem

2.1 Statement of Result

We define the notion of reflexive differentials and state the main results of the paper
[GKKP11] in this section. As there are other surveys available, we restrict ourselves
to the minimal amount of material needed in later chapters and refer the reader to
[Keb13a] for a more detailed introduction.

Definition 2.1. Let X be a normal variety or normal complex space. The sheaf of
reflexive differentials on X is defined to be

�
Œp�
X WD

�^p�1
X

���
;

where �1
X is the sheaf of Kähler differentials. If D is a reduced Weil divisor on X

and if �1
X.log D/ denotes the sheaf of Kähler differentials with logarithmic poles

along D, then

�
Œp�
X .log D/ WD �^p�1

X.log D/
���
:

Notation 2.2. Let X be a normal variety or normal complex space. Given a coherent
sheaf A on X and a positive number m, set A Œm� WD .A ˝m/��. If f W X0 ! X is any
morphism, then f Œ��.A / WD .f �.A /��.

Notation 2.3. Let X be a normal variety or normal complex space and D a Q-Weil
divisor on X. A log resolution of the pair .X;D/ is a birational morphism� W QX ! X
such that QX is smooth, the exceptional locus E has pure codimension one and the set
��1.supp D/ [ E is a divisor with simple normal crossing support. By Hironaka’s
theorem, log resolutions always exist.

In a simplified form, the main result of [GKKP11] can be stated as follows.

Theorem 2.4 ([GKKP11, Theorem 1.4]). Let X be a quasi-projective variety such
that .X; 0/ is klt. Let � be a log resolution of .X; 0/ and let p be any number. Then
���p

QX D �
Œp�
X . Equivalently, ���p

QX is reflexive. ut
In the most general version, we consider a log-canonical pair .X;D/. Then there

exists a smallest closed algebraic set N such that .X;D/ is klt outside N. The set N
is called the non-klt locus of .X;D/.

Theorem 2.5 ([GKKP11, Theorem 1.5]). Let X be a quasi-projective variety
carrying a Q-Weil-divisor D such that .X;D/ is log-canonical, with non-klt locus
N � X. Let � W QX ! X be a log resolution with exceptional set E, and let QD � QX be
the largest reduced divisor contained in ��1.N/. Then ���p

QX.log QD/ D �Œp�
X .log D/,

for all numbers p. ut
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We refer to both theorems as “extension theorems”. In fact, Theorem 2.5 can
be restated as follows. Given any open set U 
 X with preimage QU D ��1.U/,
Theorem 2.5 asserts that the restriction

H0
� QU; �p

QX.log QD/�
„ ƒ‚ …
DH0

�
U; ���

p
QX
.log QD/

�
! H0

� QU n E; �p
X.log QD/�

„ ƒ‚ …
DH0

�
U; �

Œp�
X .log D/

�

is surjective, and hence isomorphic.

2.2 Related Results

Building on results of Steenbrink-van Straten, [SvS85], Flenner proved in [Fle88]
a version of Theorem 2.4 for p 
 codim Xsing, for all normal varieties and without
any assumption on the nature of the singularities. Namikawa showed Theorem 2.4
for p 2 f1; 2g, provided that X has canonical Gorenstein singularities, [Nam01,
Section 1]. For further discussions we refer to [GKKP11].

We would like to emphasise that Theorems 2.4 and 2.5 are optimal if we want to
have extension for all p. For examples and details, see [GKKP11, Section 3]. Rela-
tions to the notion of Du Bois singularities and pairs are discussed in [GK13, GK14].
Relations to h-differentials, the sheafification of Kähler differentials in Voevodsky’s
h-topology, are discussed in [JH13].

2.3 Extension in the Analytic Category

The Extension Theorems 2.4 and 2.5 are stated and proved in the algebraic
category. In fact, the proof heavily uses parts of the minimal model program
and certain vanishing theorems which are presently unavailable in the analytic
category. However, there seems no reason why the Extension Theorem should
not hold analytically. There is no problem to define notions as klt, log-canonical
in the analytic category. In [GKP13a] a holomorphic version of Theorem 2.5 is
established, provided the pair .X;D/ is locally algebraic. This is to say that every
point p 2 X admits an open Euclidean neighbourhood U which is open in a quasi-
projective variety Y such that DjU is the restriction of a divisor on Y. Following a
famous algebraisation result of M. Artin, [Art69, Theorem 3.8], examples for locally
algebraic spaces are provided by complex spaces with isolated singularities. Other
examples are given by Moishezon spaces. The best known result in the analytic
category reads as follows.

Theorem 2.6 ([GKP13a, Section 2]). Let X be a normal complex locally algebraic
variety carrying a Q-divisor D such that .X;D/ is log-canonical, with non-klt locus
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N � X. Let � W QX ! X be a log resolution with exceptional set E. Let QD be
the largest reduced divisor contained in ��1.N/. Then ���p

QX.log QD/ is reflexive for
all p. ut

As pointed out, we expect that the Extension Theorems hold in full generality in
the analytic category.

Conjecture 2.7. Theorem 2.6 holds without the assumption that X is locally
algebraic.

3 Kodaira-Akizuki-Nakano Vanishing and the Poincaré
Lemma

3.1 KAN Type Vanishing Results for Reflexive Differentials

Recall the statement of the classical Kodaira-Akizuki-Nakano Vanishing Theorem.

Theorem 3.1 ([AN54]). Let X be a smooth projective variety and let L be an
ample line bundle on X. Then

Hq
�
X; �p

X ˝L
� D 0 for pC q > n, and(3.1.1)

Hq
�
X; �p

X ˝L �1� D 0 for pC q < n.(3.1.2)

ut
Assertions (3.1.1) and (3.1.2) are equivalent via Serre duality. Ramanujam

[Ram72] gave a simplified proof of Theorem 3.1 and showed that it does not hold
if one only requires L to be semi-ample and big. Esnault and Viehweg generalised
Theorem 3.1 to logarithmic differentials, [EV86].

We ask for generalisations of Kodaira-Akizuki-Nakano vanishing to singular
varieties, using reflexive differentials. In full generality, Kodaira-Akizuki-Nakano
vanishing has been established for sheaves of reflexive differentials on varieties
with quotient singularities, see [Ara88], as well as on toric varieties, see [CLS11,
Theorem 9.3.1].

For varieties with more general types of singularities, vanishing results of KAN
type are restricted to special values of p and q. It turns out that even for spaces with
isolated terminal Gorenstein singularities, Theorem 3.1 does not hold for arbitrary
pC q > n, respectively pC q < n. We begin the discussion with one generalisation
of Assertion (3.1.2).

Theorem 3.2 ([GKP13a, Proposition 4.3]). Let X be a normal projective variety
of dimension n, let D be an effective Q-divisor on X such that .X;D/ is log-
canonical, and let L 2 Pic.X/ be an ample line bundle. Then
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H0
�
X; �Œp�

X .logbDc/˝L �1� D 0 for all p < n, and(3.2.1)

H1
�
X; �Œp�

X .logbDc/˝L �1� D 0 for all p < n � 1.(3.2.2)

If .X;D/ is additionally assumed to be dlt, then Hq
�
X; L �1� D 0 for all q < n. ut

There are analogous generalisations of Assertion (3.1.1).

Theorem 3.3 ([GKP13a, Proposition 4.5]). Let X be a normal projective variety
of dimension n, let D be an effective Q-divisor on X such that .X;D/ is klt, and let
L 2 Pic.X/ be an ample line bundle. Then

Hq
�
X; !X ˝L

� D 0 for all q > 0, and(3.3.1)

Hn
�
X; �Œp�

X ˝L
� D 0 for all p > 0.(3.3.2)

ut
Example 3.4. The paper [GKP13a] exhibits a klt space X of dimension 4 and an
ample line bundle L such that

H2
�
X; �Œ1�

X ˝L �1� ¤ 0 and H2
�
X; �Œ3�

X ˝L
� ¤ 0:

It follows that Kodaira-Akizuki-Nakano does not hold in full generality on a klt
space, even when the space has only Gorenstein, terminal singularities. The example
given in [GKP13a] starts with the threefold Y WD P.TP2 /. Set QX D P.OY ˚ OY.1//

and let � W QX ! X be the contraction of the divisor E D P.OY//. Then p D �.E/ is
a terminal Gorenstein singularity. The calculations for the cohomology groups are
lengthy. We refer the reader to [GKP13a] for details.

3.2 Relation to the Poincaré Lemma for Reflexive
Differential Forms

Needless to say, the Poincaré lemma is fundamental in the theory of complex
manifolds. It is therefore natural to ask to which extent it holds also for reflexive
differentials on singular. Results in this direction have been obtained by several
authors, including Campana-Flenner, Greuel and Reiffen. The singularities dis-
cussed in their work are often isolated, rational or holomorphically contractible.
A rather complete list of references is found in Jörder’s paper [Jö14]. For locally
algebraic klt spaces, the Poincaré lemma holds in degree one.

Theorem 3.5 ([GKP13a, Theorem 5.4]). Let X be a normal complex space and D
an effective Q-divisor on X such that .X;D/ is analytically klt and locally algebraic.
Let 	 2 H0

�
X; �Œ1�

X

�
be a closed holomorphic reflexive one-form on X. Then every
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p 2 X has an open neighbourhood U (in the Euclidean topology) and a holomorphic
function f 2 OX.U/ such that 	 jU D dfU. ut

The notion of analytic klt spaces, which is rather self-explaining, is properly
introduced in [GKP13a]. Notice that it is not difficult to construct counterexamples
to Theorem 3.5 if .X;D/ is only assumed to be log-canonical.

In his Freiburg Ph.D. thesis [Jö14] Jörder found a topological condition1

which guarantees the validity of the Poincaré lemma in degree one, for normal,
locally algebraic, complex spaces. Besides various other results, he showed that
for projective varieties of dimension at least four with only one isolated rational
singularity p, any failure of the Poincaré lemma in degree three yields

H2
�
X; �Œq�

X ˝L �1� 6D 0; for any ample line bundle L over X.

He also shows that the local divisor class groups of the singular points are
obstructions to KAN type vanishing. In Example 3.4, it is the latter that give the non-
vanishing, whereas the Poincaré lemma does hold everywhere. We refer the reader
to [Jö14] for details. Poincaré lemmas in the context of h-differentials are also
discussed there.

4 Varieties with Trivial Canonical Classes

4.1 Decomposition of Kähler Manifolds with Vanishing
First Chern Class

We recall the famous structure theorem for Kähler manifolds with vanishing first
Chern class.

Theorem 4.1 ([Bea83] and References There). Let X be a compact Kähler
manifold whose canonical divisor is numerically trivial. Then there exists a finite
étale cover X0 ! X such that X0 decomposes as a product

X0 D T �
Y

�

X�

where T is a compact complex torus, and where the X� are irreducible and simply
connected Calabi-Yau- or holomorphic-symplectic manifolds. ut
Remark 4.2. Let X be a compact, simply connected Kähler manifold. We call X
“Calabi-Yau” if !X Š OX and h0

�
X; �p

X

� D 0 for all p 62 f0; dim Xg. We call

1Vanishing of a local intersection cohomology group.
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X “irreducible holomorphic-symplectic”, if !X Š OX and if there exists a non-
degenerate two-form whose wedge powers generate the ring of differential forms.

4.2 Decomposition of the Tangent Sheaf

Important as it is, the class of manifolds with vanishing first Chern class is too small
from the point of view of birational classification of projective (or compact Kähler)
manifolds. There, we are generally more interested in the structure of manifolds X
with Kodaira dimension zero, �.X/ D 0. Conjecturally, any such X possesses a good
minimal model X0, which is Q-factorial, has terminal singularities and a numerically
trivial canonical divisor KX0 �num 0. Given one such X0, a theorem of Kawamata,
[Kaw85b, Theorem 1.1], asserts that there exists a positive number m such that
OX.mKX0/ Š OX0 . We aim to prove a structure theorem for these varieties. Building
on the Extension Theorem 2.4, the following infinitesimal analogue of Theorem 4.1
has been established in [GKP11].

Theorem 4.3 ([GKP11, Theorem 1.3]). Let X be a normal, projective variety
with at worst canonical singularities. Assume that the canonical divisor of X is
numerically trivial, KX � 0. Then, there exists an Abelian variety A, a projective
variety QX with at worst canonical singularities, a quasi-étale cover f W A � QX ! X,
and a decomposition

TQX Š
M

Ei

such that the following holds.

(4.3.1) The Ei are integrable saturated subsheaves of TQX, with trivial determinants.

Further, if g W OX ! QX is any quasi-étale cover, then the following properties hold
in addition.

(4.3.2) The sheaves .g�Ei/
�� are slope-stable with respect to any ample polarisa-

tion on OX.
(4.3.3) The irregularity of OX is zero, h1

� OX; O OX
� D 0.

Idea of Proof. Parts of the proof follow ideas of Bogomolov, [Bog74]. Consider a
normal projective variety X as in Theorem 4.3. Set n WD dim X. From the work of
Kawamata [Kaw85a] we obtain a quasi-étale cover f W A � X0 ! X where A is an
Abelian variety, where !X0 Š OX0 and q.X0/ D 0, even after further quasi-étale
covers of X0. Thus we will assume from now on that q.X/ D 0, and we are allowed
to pass to quasi-étale covers if we wish to do so.

Instead of decomposing TX directly, we first show that there exists a decomposi-
tion in the ring of reflexive forms: given any number p and any reflexive form 	 2
H0

�
X; �Œp�

X

�
, we show that there exists a complementary form � 2 H0

�
X; �Œn�p�

X

�

such that 	 jXreg ^ � jXreg is a nowhere-vanishing top-form, defined on the smooth
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locus Xreg. In other words, we show that the natural pairing given by the wedge
product,

(4.3.4)
^
W H0

�
X; �Œp�

X

� �H0
�
X; �Œn�p�

X

� �! H0
�
X; !X

� Š C;

is non-degenerate. For this, we express the Pairing (4.3.4) in terms of Dolbeault
cohomology. The Extension Theorem 2.4 and the fact that canonical singularities
are rational allows to compare the relevant cohomology groups with those that exist
on a resolution QX of singularities. Non-degeneracy of (4.3.4) comes out of non-
degeneracy of the Serre duality pairings on QX.

In order to construct a decomposition of the tangent sheaf, recall from Miyaoka’s
work [Miy87a, Miy87b] that the tangent sheafTX is slope-semistable with respect to
any polarisation. Assuming that there exists a polarisation h where TX is not stable,
consider a destabilising subsheaf E ¨ TX . It follows that the slope of E vanishes,
�h.E / D 0, and it is easy to deduce from there that c1.E / D 0.

Passing to the minimal dlt model, we can assume that X is Q-factorial,
[BCHM10]. Using Q-factoriality and q.X/ D 0, we conclude that detE Š OX ,
perhaps after passing to another étale cover. If r WD rankE , we obtain a subsheaf

detE Š OX � �Œr�
X :

In other words, we have constructed a reflexive differential form 	 2 H0
�
X; �Œr�

X

�
.

Using the existence of a complementary form � 2 H0
�
X; �Œr�

X

�
, one can show by

linear algebra that E is a direct summand of TX . ut
The proof of Theorem 4.1 uses the existence of a Ricci-flat Kähler-Einstein

metric quite heavily. In the singular setting, the necessary differential-geometric
tools, namely a Kähler-Einstein metric on the smooth locus of X with good boundary
behaviour near the singularities, are not available so far—see [EGZ09] for recent
developments in this direction. In order to pass from the infinitesimal decomposition
of Theorem 4.3 to a physical decomposition of the variety as in Theorem 4.1,
we would therefore propose to use different, more algebraic methods. The main
problem is to show that the leaves of the foliation are algebraic, and then to analyse
the structure of the closure of the leaves.

The following would be a conjectural analogue of Theorem 4.1. Together with
the (conjectural) existence of good minimal models, a positive answer to this
conjecture would give a rather satisfying structure theory for projective manifolds
with vanishing Kodaira dimension.

Problem 4.4. Let X be a normal, Q-factorial, projective variety with canonical
singularities and trivial canonical class KX . Suppose that q. OX/ D 0 for all quasi-
étale covers OX ! X. Then, there exists a quasi-étale cover X0 ! X, such that X0 is
birational to a product

X0 �biratl

Y

�

X0
�;
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where the varieties X0
� are Q-factorial, with only canonical singularities, trivial

canonical classes and the additional property that the tangent sheaf is strongly stable,
that is, stable for any ample polarisation, even after passing to further quasi-étale
covers.

4.3 Strongly Stable Varieties

Whether or not Problem 4.4 has a positive solution, canonical varieties with
linearly trivial canonical divisor and strongly stable tangent bundle will be important
building blocks in any structure theory for varieties of Kodaira dimension zero. In
analogy to the distinction between irreducible complex-symplectic and Calabi-Yau
manifolds, one can distinguish the following two basic types.

Definition 4.5. Let X be a normal projective variety with KX Š OX , having at worst
canonical singularities.

(4.5.1) We call X Calabi-Yau if H0
� QX; �Œq�

X

� D 0 for all numbers 0 < q < dim X
and all quasi-étale covers QX ! X.

(4.5.2) We call X irreducible holomorphic-symplectic if there exists a reflexive 2-
form 	 2 H0

�
X; �Œ2�

X

�
such that 	 is everywhere non-degenerate on Xreg,

and such that for all quasi-étale covers f W QX ! X, the exterior algebra of
global reflexive forms is generated by f �.	/.

We expect that the dichotomy known from the smooth case will also hold for
singular varieties.

Conjecture 4.6. Let X be a projective variety with canonical singularities. If
!X Š OX and if TX is strongly stable, then X is either Calabi-Yau or irreducible
holomorphic-symplectic, in the sense of Definition 4.5.

Remark 4.7. The converse of Conjecture 4.6 is known to hold: The tangent sheaf
of any Calabi-Yau or irreducible symplectic variety is strongly stable, [GKP11,
Proposition 8.20].

In the smooth case, Calabi-Yau- and irreducible complex-symplectic manifolds
are distinguished by their holonomy representation. As this depends again on the
Ricci-flat Kähler metric, we cannot use holonomy in the singular setting. However,
the following theorem does provide some evidence that the conjecture might in fact
still be true.

Theorem 4.8 ([GKP11, Propositions 8.15 and 8.21]). Conjecture 4.6 holds if the
dimension of X is no more than five. ut

Theorem 4.8 has been shown using stability properties of wedge powers of TX .
In fact, one way to attack Conjecture 4.6 is to observe that in the smooth case,
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the classes of Calabi-Yau and irreducible holomorphic-symplectic manifolds are
distinguished by stability properties of

V2TX .

Proposition 4.9. Let X be a simply connected compact Kähler manifold with
c1.X/ D 0. Fix an ample polarisation h. Then the following holds.

(4.9.1) The manifold X is Calabi-Yau if and only if TX and
V2TX are both h-stable.

(4.9.2) The manifold X is irreducible symplectic if and only if TX is h-stable and
^2TX is h-semistable but not h-stable.

Idea of Proof. Using the Decomposition Theorem 4.1 and the smooth version of
Theorem 4.3, we need only to show that the wedge power

V2TX of a Calabi-Yau
manifold X is h-stable. If not, consider a destabilising subsheaf S �V2TX , say of
rank r. Since detS D OX , we obtain the non-vanishing

H0
�
X;

r̂ 2̂

TX
� ¤ 0:

However—using holonomy and representation theory—it is a standard fact,
although possibly never stated explicitly in the literature, that, with n D dim X,

H0
�
X; T ˝m

X

� D
(
1 if m is a multiple of n

0 otherwise.

If m is a multiple of n, the section comes from the direct summand OX D .�aKX/ �
T ˝m

X . This contradicts the above non-vanishing, since^r^2TX is a direct summand
of some T ˝m

X . ut
To prove Conjecture 4.6 along these lines, a solution to the following problem

would be needed.

Problem 4.10 ([GKP11, Problem 8.11]). Let X be a normal projective variety of
dimension n > 1 with KX Š OX , having at worst canonical singularities. Assume
that the tangent sheaf TX is strongly stable. Then show that the following holds.

(4.10.1) For any odd numbers q ¤ n and any quasi-étale cover QX ! X, we have
H0

� QX; �Œq�
QX

� D 0.
(4.10.2) If there exists a quasi-étale cover g W X0 ! X and an even number 0 <

q < n such that H0
�
X0; �Œq�

X0

� 6D 0, then there exists a reflexive 2-form

	 0 2 H0
�
X0; �Œ2�

X0

�
, symplectic on the smooth locus X0

reg, such that for any

quasi-étale cover f W QX ! X0, the exterior algebra of global reflexive forms
on QX is generated by f �.	 0/. In other words,

M

p

H0
� QX; �Œp�

QX
�
D C



f �.	/

�
:
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It is shown in [GKP11, Proposition 8.21] that Problem 4.10 implies Conjec-
ture 4.6. As indicated above, Problem 4.10 has been solved if dim X is at most
five, [GKP11, Proposition 8.15]. It is certainly true if X is smooth, [GKP11,
Proposition 8.13]. We expect that in (4.10.2), it will be unnecessary to pass to the
cover QX.

4.4 The Fundamental Group

The fundamental group �1.X/ of a compact Kähler manifold X with c1.X/ D 0 is
almost Abelian. In other words, there exists an Abelian subgroup in �1.X/ of finite
index. The proof of this result does not require the Structure and Decomposition
Theorem 4.1, but nevertheless uses the existence of a Ricci-flat metric. A long-
standing problem asks whether the same is true if only �.X/ D 0.

Conjecture 4.11. Let X be a projective (compact Kähler) manifold with �.X/ D 0.
Then �1.X/ is almost Abelian.

If X0 is a minimal model of X, a result of Takayama [Tak03, Theorem 1.1], asserts
that �1.X/ Š �1.X0/. This leads us to conjecture the following.

Conjecture 4.12. Let X be a normal projective variety with at most terminal (canon-
ical) singularities. If KX �num 0, then �1.X0/ is almost Abelian. If additionally
q. QX/ D 0 for any quasi-étale cover QX ! X, then �1.X/ is finite.

The following result in this direction has been established. The proof relies on
Campana’s work, [Cam95], and on the methods introduced in Section 4.2.

Theorem 4.13 ([GKP11, Proposition 8.20]). Let X be a normal, n-dimensional,
projective variety with at worst canonical singularities. If KX is torsion and if
�.X;OX/ ¤ 0, then �1.X/ is finite, of cardinality

j�1.X/j 
 2n�1

j�.X;OX/j :

ut
Theorem 4.14 ([GKP11, Corollary 8.25]). Let X be a normal projective variety
with at worst canonical singularities. Assume that dim X 
 4, and that the canonical
divisor KX is numerically trivial. Then �1.X/ is almost Abelian, that is, �1.X/
contains an Abelian subgroup of finite index. ut

The case n D 3 has been shown previously in [Kol95, 4.17.3].
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5 Rationally Connected Varieties

5.1 Pluriforms on Rationally Connected Varieties

Rationally connected and rationally chain connected varieties play a prominent role
in the structure theory of algebraic varieties. It is a basic fact that a rationally
connected projective manifold X does not carry any pluriform, that is

(5.0.1) H0
�
X; .�1

X/
˝m

� D 0 8m 2 N
C:

We refer the reader to [Kol96, IV.3.8] for a thorough discussion of this result. The
key of the proof is the existence of many rational curves C � X such that the
restricted tangent bundle TXjC is ample.

A well-known conjecture of Mumford asserts that (5.0.1) actually characterises
rationally connected manifolds. This has been proven in dimension three by Kollár–
Miyaoka–Mori, [KMM92, Thm. 3.2]. For an asymptotic version in any dimension,
see [Pet06, CDP12]. As an immediate consequence of the Extension Theorem 2.4,
the vanishing result (5.0.1) generalises to reflexive p-forms on spaces which support
klt pairs.

Theorem 5.1 ([GKKP11, Theorem 5.1]). Let X be a normal, rationally chain-
connected projective variety. If there exists a Q-divisor D on X such that .X;D/ is
klt, then H0

�
X; �Œp�

X

� D 0 for all 1 
 p 
 dim X. ut
Remark 5.2. At this point, the following remark might be useful. Let X be a normal,
rationally chain-connected projective variety. If there exists a Q-divisor D on X such
that .X;D/ is klt, then X is in fact rationally connected, cf. [HM07, Cor. 1.5].

It is natural to suspect that the vanishing (5.0.1) should also hold for pluriforms,
that is, for section in reflexive tensor powers, H0

�
X; .�1

X/
Œm�

�
. Somewhat surpris-

ingly, this is not always the case. This emphasises the fact that the statement of the
Extension Theorem is not true for pluriforms. On the positive side, the following is
known to hold.

Theorem 5.3 ([GKP13a, Theorem 1.3]). Let X be a normal, rationally connected,
projective variety. If X is factorial and has canonical singularities, then

H0
�
X; .�1

X/
Œm�

� D 0 for all m 2 N
C; where .�1

X/
Œm� WD �

.�1
X/

˝m
���
: ut

Remark 5.4 (Relation Between Theorems 5.1 and 5.3). Let X be a normal space.
Assume that there exists a Q-divisor D on X such that .X;D/ is klt. If X is factorial,
then X has canonical singularities, cf. [KM98, Cor. 2.35].

Remark 5.5 (Necessity of the Assumption that X is Canonical). There are examples
of rational surfaces X with log terminal singularities whose canonical bundle is
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torsion or even ample, cf. [Tot12, Example 10] or [Kol08, Example 43]. Since
H0

�
X; OX.mKX/

� � H0
�
X; .�1

X/
Œm�dim X�

�
, these examples show that the assumption

that X has canonical singularities cannot be omitted in Theorem 5.3.

The proof of Theorem 5.3 uses the notion of semistable sheaves on singular
spaces, where semistability is defined respect to a movable curve class ˛. We take
the opportunity to correct an error in the proof given in [GKP13a]. An essential
point in the proof is the fact that the reflexive tensor product of ˛-semistable
sheaves is again ˛-semistable. In [GKP13a, Fact A.13], we referred to [CP11] for a
proof, where however only the case that ˛ is in the interior of the movable cone is
established. The gap has been closed in [GKP14, Sect. 1.1.2 and Thm. 4.2].

Now, arguing by contradiction, one proceeds by analysing the maximal desta-
bilising subsheaf S of a reflexive tensor power .�1

X/
Œm�. The factoriality is used to

conclude that detS is a line bundle. This is important for calculations involving
the restriction detS jC: without the factoriality assumption, detS jC might contain
torsion, which kills the argument. In fact, if S is a coherent sheaf on a smooth
curve, then the positivity of c1.S / does not imply ampleness of S . Instead, one
might have S D A˚ T with A a negative line bundle and T a (large) torsion sheaf.

Remark 5.6 (Theorem 5.3 in the Q-Factorial Setting). If X is not factorial in Theo-
rem 5.3, but still Q-factorial, then not only the proof of Theorem 5.3 fails, but also
the statement itself is false. A counterexample is given in [GKP13a, Example 3.7],
by exhibiting a rationally connected surface S such that H0

�
S; .�1

S/
Œ2�

� ¤ 0.
Two recent preprints of Wenhao Ou, [Ou13, Ou14], describe the structure of

rationally connected surfaces and threefolds with canonical singularities carrying a
non-zero pluriform.

Following [Cam95] in the smooth case, a refined Kodaira dimension can be
defined also in the singular case.

Definition 5.7. Let X be a normal, Q-factorial, projective variety. Set

�C.X/ WD maxf�.detF / jF � �Œp�
X a coherent subsheaf and 1 
 p 
 ng:

Obviously, �C.X/ 	 �.X/. Unfortunately, �C.X/ does not behave well bira-
tionally, even when X has canonical singularities. In fact, [GKP13a, Example 3.7]
exhibits a rational surface X supporting a rank-one, reflexive subsheaf L � �

Œ1�
X

such that L Œ2�/ D OX � .�1
X/
Œ2�. Thus �C.X/ 	 0, whereas �C. OX/ D �1 for any

desingularisation OX of X.

5.2 The Tangent Bundle of Rationally Connected Varieties

As already mentioned, a rationally connected manifold X carries many rational
curves C such that TXjC is ample. It is natural to ask whether this generalises to
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klt varieties: assume that .X; �/ is klt or that X has only canonical singularities. If
X is rationally (chain) connected, can one find rational curves C through the general
point of X such that TXjC is ample?2 The answer is negative in general.

Proposition 5.8. Let .X; �/ be klt and rationally connected. Suppose that
H0.X; .�1

X/
Œm�/ ¤ 0 for some m. Then there is no irreducible curve C through

the general point of X, such that TXjC is ample. In particular, there does not exist a
rational curve C not meeting the singular locus of X such that TX jC is ample.

Proof. Fix a non-zero form ! 2 H0
�
X; .�1

X/
Œm�

� ¤ 0. Suppose to the contrary and
assume that there is an irreducible curve C through the general point p of X, such
that TXjC is ample. The form ! defines a morphism

� W .T ˝m
X /�� DW T Œm�

X ! OX:

Restricting to C and observing that C passes through a general point of X, we obtain
a non-zero morphism

�C W T Œm�
X jC ! OC:

On the other hand, since TXjC is ample, so is T ˝m
X jC D .T ˝m

X /jC. Using the

generically injective map T ˝m
X jC ! T Œm�

X jC, we conclude that T Œm�
X jC is ample.

Hence �C D 0, a contradiction. ut

5.3 Related and Complementary Results

In contrast to the non-existence of differential forms on rationally chain connected
spaces non-existence of Kähler-differentials modulo torsion holds without any
assumption as to the nature of the singularities.

Theorem 5.9 ([Keb13b, Theorem 4.1]). Let X be a reduced, projective scheme.
Assume that X is rationally chain connected. Then H0

�
X; �

p
X=tor

� D 0, for all p.
ut

We do not assume that X is irreducible. The statement of Theorem 5.9 becomes
wrong if one replaces �

p
X=tor with Kähler differentials. Examples are given in

[Keb13b, Section 4]. There are related results for h-differentials, [JH13].

2Observe that the sheaf TX need not be locally free. We refer the reader to [Anc82, Section 2] for
the definition of ampleness for arbitrary coherent sheaves.
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6 The Lipman-Zariski Conjecture

The Lipman-Zariski Conjecture [Lip65, page 874], originally stated as a question,
asserts that a normal variety X whose tangent sheaf TX is locally free, is smooth.
Besides work of Lipman, the first results in this direction concern hypersurfaces
and homogeneous complete intersections, and are due to Scheja-Storch [SS72,
Chapter 9] and Hochster [Hoc75]. Generalising previous results by Steenbrink and
van Straten, [SvS85], Flenner [Fle88] proved the Lipman-Zariski Conjecture if the
singular locus of X has codimension at least 3. Källström established the conjecture
for complete intersections, [Kä11].

As a consequence of the Extension Theorem 2.4, we obtain the conjecture in the
klt case, where the singular locus is of codimension two in general.

Theorem 6.1 ([GKKP11, Theorem 6.1]). Let X be a normal, projective klt vari-
ety. In other words, assume that .X; 0/ is klt. If the tangent sheaf TX is locally free,
X is smooth.

Idea of Proof. Like most other proofs of special cases of the Lipman-Zariski
Conjecture, Theorem 6.1 is shown by lifting differential forms to a resolution of
singularities. In our case, the Extension Theorem 2.4 allows to do that. We argue
by contradiction and assume that X is singular while TX is locally free. Choose the
so-called functorial or canonical resolution � W QX ! X, which is a log resolution
that commutes with smooth morphisms, see [Kol07]. By possibly shrinking X, we
may assume that TX is locally free; choose a basis �1; : : : ; �n. These vector fields
lift by [GKK10, Corollary 4.7] to logarithmic vector fields

Q�j 2 H0
� QX; TQX.� log E/

�
:

Choose the dual basis outside E to obtain differential forms

!j 2 H0
� QX n E; �1

QX
�
; for all 1 
 j 
 n:

By the Extension Theorem 2.4, the !j are actually holomorphic forms on all of QX.
The identity !i. Q�j/ D ıi;j therefore holds everywhere on QX. However, the Q�j are
tangent to the exceptional divisor, providing a contradiction. ut

6.1 Further Generalisations

Recently, Graf, Graf-Kovács [GK13] and Druel [Dru13] generalised Theorem 6.1 to
the log-canonical case. Druel’s proof is independent of the Extension Theorem and
instead uses foliation theory, while Graf-Kovács use an Extension Theorem for Du
Bois pairs. Finally, we mention that Jörder proved the Lipman-Zariski Conjecture
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in case where TX has a local basis of commuting vector fields [Jö13], and in case
where there exists holomorphic C

� action with non-negative weights whose fixed
point locus is not contained in the singular locus of X, [Jö14].

7 Bogomolov-Sommese Vanishing and Hyperbolicity
of Moduli Spaces

The Extension Theorem 2.5 has been applied to prove hyperbolicity properties
of moduli spaces. One of the further key ingredients is a generalisation of the
Bogomolov-Sommese Vanishing Theorem to singular varieties. Since these matters
are explained in quite some detail in the survey paper [Keb13a], we only recall the
most important results here.

The most general version of the Bogomolov-Sommese vanishing is due to Graf
[Gra13], generalising [GKKP11, Theorem 7.2]. We refrain from stating the most
general form, which works in the context of “Campana orbifolds” or “C-pairs”, but
just cite the following, more intuitive version.

Theorem 7.1 ([Gra13, Theorem 1.3]). Let .X;D/ be a normal, projective, log-
canonical pair. Assume that A � �Œp�

X .logbDc/ is a reflexive sheaf of rank 1. Then
�.A / 
 p. ut

It applies to moduli problems in the following way.

Theorem 7.2 ([KK10, Corollary 1.3]). Let f ı W Xı ! Yı be a smooth projective
family of canonically polarised varieties, over a quasi-projective manifold Yı of
dimension dim Yı 
 3. Then either

(7.2.1) �.Yı/ D �1 and Var.f ı/ < dim Yı, or
(7.2.2) �.Yı/ 	 0 and Var.f ı/ 
 �.Yı/.

Remark 7.3. Recall that by definition, �.Yı/ D �.KY C D/, where Y is a smooth
projective compactification and D D Y n Yı.

Idea of Proof. Consider the case where Y WD Yı is projective and KY linearly
trivial. By Miyaoka’s work [Miy87a, Miy87b], the sheaf of differential forms,
�1

Y will then be semistable with respect to any polarisation. Now, if there was a
family f ı W Xı ! Yı of positive variation, it has been shown by Viehweg-Zuo
that a suitable symmetric product of �1

Y contains a positive subsheaf, violating
semistability.

If Yı is not projective, then it can be compactified to Y by adding a boundary
divisor D with simple normal crossings. Assume for simplicity that KY CD �num 0

and that the Picard-Number of Ymin is one, so that any line bundle is either
numerically trivial, ample or anti-ample. In this setting, Bogomolov-Sommese
vanishing can be used to replace Miyaoka’s semistability argument, which is not
available in the presence of boundary divisors: by Viehweg-Zuo, the existence
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of a non-trivial family would imply that �1
Y.log D/ is not semistable. However,

any maximally destabilising subsheaf would automatically be ample, violating
Bogomolov-Sommese.

If the simplifying assumptions are not satisfied and if dim Yı 
 3, then one can
apply the minimal model program to come to a singular space Ymin with numerically
trivial log-canonical class. With sufficient technical work, the Extension Theorem
allows to work on these spaces, and to adopt the ideas sketched above. ut

Theorem 7.2 is in fact a consequence of the following more general result.

Theorem 7.4 ([JK11, Theorem 1.5]). Let f W Xı ! Yı be a smooth family of
canonically polarised varieties over a smooth quasi-projective base. If Yı is special
in the sense of Campana, then the family f is isotrivial. ut
Remark 7.5. In case where Yı is compact, a somewhat weaker version of Theo-
rem 7.2 has been shown in all dimensions by Patakfalvi, [Pat12]. Generalisations
of Theorems 7.2 and 7.4 to all dimensions are contained in a preprint by Campana-
Paun, [CP13], and in the upcoming PhD thesis of Behrouz Taji.

Part II: Local Fundamental Groups and Étale Covers

8 Étale Covers of a klt Space and Its Smooth Locus

8.1 Finiteness of Obstructions to Extending Finite Étale
Covers from the Smooth Locus

Working with a singular complex algebraic variety X, one is often interested in
comparing the set of finite étale covers of X with that of its smooth locus Xreg. More
precisely, one may ask the following.

Question 8.1. What are the obstructions to extending finite étale covers of Xreg to
X? How do the étale fundamental groups of X and of its smooth locus differ?

Our motivation to consider this question came from the study of varieties with
canonical singularities and numerical trivial canonical classes and vanishing second
Chern class in a suitable sense. This will be discussed in the subsequent Section 9.

Remark 8.2. If X is normal, then it is a basic fact that the natural push-forward map
between étale fundamental groups,

(8.4.1) O�� W O�1. QXreg/! O�1. QX/;

is surjective. Question 8.1 therefore asks for conditions to guarantee injectivity.
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Building on recent boundedness theorem of Hacon-McKernan-Xu for Q-Fano klt
pairs, [HMX12, Corollary 1.8], Chenyang Xu recently gave a complete answer for
klt spaces with isolated singularities.

Theorem 8.3 ([Xu12, Theorem 1]). Let 0 2 .X; �/ be an analytic germ of an
algebraic klt singularity. Then the algebraic local fundamental group O� loc

1 .X; 0/ is
finite. ut

In the setting of Theorem 8.3, recall that 0 2 X admits a basis of neighbourhoods
U which are homeomorphic to the topological cone over the link Link.X; 0/ The
local fundamental group of 0 2 X is defined as the usual topological fundamental
group of the link, that is, O� loc

1 .X; 0/ WD �1
�

Link.X; s/
�
. The algebraic local

fundamental group is its profinite completion.

Problem 8.4. It is an open question whether an analogue of Theorem 8.3 holds for
the local fundamental group, [Kol11, Question 26] and [Xu12, Conjecture 1].

Building on Xu’s result, the paper [GKP13b] establishes the following answer to
Question 8.1. Recall from the Section 1.2 that a finite surjective morphism f W X !
Y between normal varieties is quasi-étale, if it is étale outside a set of codimension
two. Equivalently, if f is étale over the smooth locus of Y.

Theorem 8.5 ([GKP13b, Theorem 1.4]). Let X be a normal, complex, quasi-
projective variety. Assume that there exists a Q-Weil divisor � such that .X; �/
is klt. Then, there exists a normal variety QX and a quasi-étale, Galois morphism
� W QX ! X, such that the following, equivalent conditions hold.

(8.5.1) Any finite, étale cover of QXreg extends to a finite, étale cover of QX.
(8.5.2) The natural map O�� W O�1. QXreg/ ! O�1. QX/ of étale fundamental groups

induced by the inclusion of the smooth locus, � W QXreg ! QX, is an
isomorphism. ut

A few remarks and comments are perhaps in order. First of all, in Theorem 8.5
and throughout this paper, Galois morphisms are assumed to be finite and surjective,
but need not be étale. Second, despite appearance to the contrary, Theorem 8.5 does
not imply that the kernel of the push-forward morphism (8.4.1) is finite for all klt
spaces. A counterexample is discussed in [GKP13b, Section 14.2]. Third, we point
out that the variety QX of Theorem 8.5 is not unique. In fact, it is shown in [GKP13b,
Section 14.3] by way of example that a unique, minimal choice of QX cannot exist in
general.

8.2 Generalisations

Theorem 8.5 is in fact a corollary of the following, more general and much more
involved result. In essence, Theorem 8.6 asserts that in any infinite tower of
quasi-étale Galois morphisms over any sequence of increasingly smaller and smaller
subsets of X, all but finitely many of the morphisms must in fact be étale.
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Theorem 8.6 ([GKP13b, Theorem 2.1]). Let X be a normal, complex, quasi-
projective variety of dimension dim X 	 2. Assume that there exists a Q-Weil divisor
� such that .X; �/ is klt. Suppose further that we are given a descending chain of
dense open subsets X � X0 � X1 � � � � , a closed reduced subscheme S � X
of codimension codimX S 	 2, and a commutative diagram of morphisms between
normal varieties,

(8.6.1)

where the following holds for all indices i 2 N.

(8.6.2) The morphisms �i are the inclusion maps.
(8.6.3) The morphisms �i are quasi-finite, dominant and étale away from the

reduced preimage set Si WD 
�1
i .S/red.

(8.6.4) The morphisms 
i are finite, surjective, Galois, and étale away from Si.

Then, all but finitely many of the morphisms �i are étale. Further, if S is not empty,
then there exists an open subset Sı 
 S and a number NS 2 N

C, both depending
only on X and S, such that the following holds.

(8.6.5) Setting S0 WD S n Sı, we have dim S0 < dim S.
(8.6.6) Given any index i 2 N and any point y 2 
�1

i .Sı/, the ramification index of

an

i at y is bounded by NS, that is, r
�

an

i ; y
�
< NS. ut

The setup of Theorem 8.6 is illustrated in Fig. 1. To better understand its meaning
and its relation to Theorem 8.5, it is useful to consider Theorem 8.6 in the special
case where X D X0 D X1 D X2 D � � � D Y0, where the morphisms �i are finite and
surjective, and where the morphisms 
i are of the form


i D
(

IdX if i D 0
�1 ı � � � ı �i�1 ı �i if i > 0

Under these assumptions, Theorem 8.6 reduces to the following.

Theorem 8.7 ([GKP13b, Theorem 1.1]). Let X be a normal, complex, quasi-
projective variety. Assume that there exists a Q-Weil divisor � such that .X; �/
is klt. Assume we are given a sequence of quasi-étale morphisms,

(8.7.1)

If the composed morphisms �1 ı � � � ı �i W Yi ! X are Galois for every i 2 N
C, then

all but finitely many of the morphisms �i are étale. ut
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Y0

η0

Y1

η1

γ1

Y2

η2

γ2

X0 S X1
ι1 X2

ι2

Fig. 1 Setup of Theorem 8.6. The figure shows the setup for the main result, Theorem 8.6,
schematically. The morphisms 
i are Galois covers over a sequence X 	 X0 	 X1 	 � � � is
increasingly small open subsets of X. The morphisms �i between these covering spaces are étale
away from the preimages of S. In Theorem 8.6, the set S is of codimension two or more. This
aspect is difficult to illustrate and therefore not properly shown in the figure

Remark 8.8. By purity of the branch locus, the assumption that all morphisms �i

of Theorem 8.7 are quasi-étale can also be formulated in one of the following,
equivalent ways.

(8.8.1) All morphisms �1 ı � � � ı �i are étale over the smooth locus of Y0.
(8.8.2) All morphisms �i are étale over the smooth locus of Yi�1.

Theorem 8.5 quickly follows from Theorem 8.7 by assuming to the contrary:
if no cover of X satisfied the conclusion of Theorem 8.5, we could inductively
construct a tower of morphisms that are étale over the smooth loci, but not
everywhere étale. Passing to the appropriate Galois closures, we can always achieve
that the morphisms are Galois over X.

8.3 Idea of Proof

The main idea for the proof of Theorem 8.6 is roughly formulated as follows.
If X has isolated singularities, then Theorem 8.6 can be easily deduced from
Xu’s work and nothing new needs to be done. If the singularities of X are not
isolated, we employ Verdier’s topological triviality of algebraic morphisms, [Ver76],
in order to construct a suitable Whitney stratification. Then argue inductively,
stratum-by-stratum, using cutting-down-arguments to reduce to the case of isolated
singularities.
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8.4 Immediate Applications

An array of morphisms as in Theorem 8.6 can inductively be constructed by
fixing a point p of a klt space X, by choosing Weil divisors Di � Yi that are Q-
Cartier near the preimages of p and taking the associated index-one-covers for the
morphisms �i. The assertion that almost all morphisms �i are étale then implies
that the divisors in question were Cartier near the preimages of p. This way, one
constructs a “simultaneous index-one cover” for all divisors that are Q-Cartier in a
neighbourhood of p.

Theorem 8.9 ([GKP13b, Theorem 1.9]). Let X be a normal, complex, quasi-
projective variety. Assume that there exists a Q-Weil divisor � such that .X; �/ is
klt. Let p 2 X be any closed point. Then, there exists a Zariski-open neighbourhood
Xı of p 2 X, a normal variety QXı and a quasi-étale, Galois morphism � W QXı ! Xı,
such that the following holds for any Zariski-open neighbourhood U D U.p/ 
 Xı
with preimage QU D ��1.U/.

(8.9.1) If QD is any Q-Cartier divisor on QU, then QD is Cartier.
(8.9.2) If D is any Q-Cartier divisor on U, then .# Gal.�// �D is Cartier. ut

Remark 8.10 ([GKP13b, Remark 1.10]). Under the assumptions of Theorem 8.9,
there exists a number N 2 N

C such that N � D is Cartier, whenever D is a Q-Cartier
divisor on X.

For applications on the global structure of Kähler space, as given below in the
algebraic setting, it is highly desirable to extend the results presented in this section
to the analytic category.

9 Flatness Criteria and Characterisation of Torus Quotients

9.1 Extension Results for Flat Sheaves

We aim to apply Theorem 8.5 to the study of flat sheaves on klt spaces. Since
we are dealing with singular spaces, we do not attempt to define flat sheaves via
connections. Instead, a flat sheaf F will always be an analytic, locally free sheaf,
given by a representation of the fundamental group. More precisely, we will use the
following definition.

Definition 9.1. If Y is any complex space, and G is any locally free sheaf on Y, we
call G flat if it is defined by a representation of the topological fundamental group
� W �1.Y/ ! GLrankG .C/. A locally free, algebraic sheaf on a complex algebraic
variety Y is called flat if and only if the associated analytic sheaf on the underlying
complex space Yan is flat.
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Now consider a normal variety X and a flat, locally free, analytic sheaf F ı,
defined on the complex manifold Xan

reg. We aim to extend F ı across the singularities,
to a coherent sheaf that is defined on all of X. Unlike in the algebraic case, where
extension over subsets of codimension two is easy, the extension problem for
coherent analytic sheaves is generally hard. For flat sheaves, however, a fundamental
theorem of Deligne, [Del70, II.5, Corollary 5.8 and Theorem 5.9], asserts that F ı
is algebraic, and thus extends to a coherent, algebraic sheaf F on X. If the algebraic
fundamental groups of X and Xreg agree, the following theorem shows that Deligne’s
extended sheaf F is again locally free and flat.

Theorem 9.2 ([GKP13b, Section 11.1]). Let X be a normal, complex, quasi-
projective variety, and assume that the natural inclusion map between étale
fundamental groups, O�� W O�1. QXreg/! O�1. QX/, is isomorphic. If F ı is any flat, locally
free, analytic sheaf defined on the complex manifold Xan

reg, then there exists a flat,
locally free, analytic sheaf F on Xan such that F ı D F jXan

reg
.

Sketch of Proof. Set Y WD Xan and Yı WD Xan
reg. The sheaf F ı then corresponds

to a representation �ı W �1.Yı/ ! GL
�
rankF ;C

�
. We need to show that this

representation is induced by a representation of �1.Y/. This is trivially true if the
natural, surjective push-forward map of fundamental groups, �� W �1.Yı/ ! �1.Y/
was known to be isomorphic. Our assumptions, however, guarantee only that the
induced map O�� between profinite completions is an isomorphism.

Write G WD img.�ı/. As a finitely generated subgroup of the general linear
group, G is residually finite by Malcev’s theorem. Consequently, the profinite
completion morphism a W G ! OG is injective. The remaining proof is now purely
group-theoretic. ut

A combination of Theorems 8.5 and 9.2 immediately gives the following
consequence.

Theorem 9.3 ([GKP13b, Theorem 1.13]). Let X be a normal, complex, quasi-
projective variety. Assume that there exists a Q-Weil divisor � such that .X; �/
is klt. Then, there exists a normal variety QX and a quasi-étale, Galois morphism
� W QX ! X, such that the following holds. If G ı is any flat, locally free, analytic
sheaf on the complex space QXan

reg, there exists a flat, locally free, algebraic sheaf G

on QX such that G ı is isomorphic to the analytification of G jQXreg
. ut

9.2 Flatness Criteria

Theorem 9.3 can be used to show that many classical flatness criteria for semistable
vector bundles, cf. [UY86, Kob87, Sim92, BS94], generalise to spaces with klt
singularities, at least after passing to a suitable quasi-étale cover whose étale
fundamental group coincides with that of its smooth locus.
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9.2.1 Chern Classes on Singular Spaces

In view of the applications, we are mostly interested in flatness criteria for
semistable sheaves with vanishing first and second Chern classes. The literature
discusses several competing notions of Chern classes on singular spaces, all of
which are technically challenging, cf. [Mac74, Alu06]. We will restrict ourselves to
the following elementary definition, which suffices in our case. We refer the reader
to [GKP13b, Section 4] for more details.

Definition 9.4. Let X be a normal variety and E a coherent sheaf of OX-modules.
A resolution of .X;E / is a proper, birational and surjective morphism � W QX ! X
such that the space QX is smooth, and such that the sheaf ��.E /=tor is locally free. If
� is isomorphic over the open set where X is smooth and E

ı
tor is locally free, we

call � a strong resolution of .X;E /.

The existence of a resolution of singularities combined with a classical result of
Rossi, [Ros68, Thm. 3.5], shows that resolutions and strong resolutions of .X;E /
exist.

Definition 9.5. Let X be a normal, n-dimensional, quasi-projective variety and E
be a coherent sheaf of OX-modules. Assume we are given a number i 2 N

C such
that X is smooth in codimension i and such that E is locally free in codimension i.
Given any resolution morphism � W QX ! X of .X;E / and any set of Cartier divisors
L1; : : : Ln�i on X, we use the following shorthand notation

ci.E / � L1 � � �Ln�i WD ci.F / � .��L1/ � � � .��Ln�i/ 2 Z:

where F WD ��E =tor, and where ci.F / denote the classical Chern classes of the
locally free sheaf F on the smooth variety QX.

9.2.2 Flatness Criteria

Using the above definitions, we generalise a famous flatness criterion of Simpson,
[Sim92], to the klt setting.

Theorem 9.6 ([GKP13b, Theorem 1.19]). Let X be an n-dimensional, normal,
complex, projective variety, smooth in codimension two. Assume that there exists
a Q-Weil divisor D such that .X;D/ is klt. Let H be an ample Cartier divisor on
X, and E be a reflexive, H-semistable sheaf. Assume that the following intersection
numbers vanish

(9.6.1) c1.E / � Hn�1 D 0; c1.E /
2 � Hn�2 D 0; and c2.E / � Hn�2 D 0:

Then, there exists a normal variety QX and a quasi-étale, Galois morphism
� W QX ! X, such that .��E /�� is locally free and flat, that is, .��E /�� is given
by a linear representation of �1. QX/.
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Idea of Proof. The proof of Theorem 9.6 uses cutting-down arguments to reduce to
the case of a smooth surface S � Xreg, where Simpson’s flatness criterion [Sim92]
can be applied. Hamm and Goreski-MacPherson’s version of the Lefschetz theorem
[GM88, II.1.2] implies that the sheaf E jS extends to a flat sheaf that is defined on
all of Xreg. Boundedness and some vanishing results for singular spaces identify this
sheaf with E jXreg . An application of Theorem 9.3 finishes the proof. ut

9.3 Characterisation of Torus Quotients

As a classical consequence of Yau’s theorem [Yau78] on the existence of Kähler-
Einstein metrics, any Ricci-flat, compact Kähler manifold X with vanishing second
Chern class is covered by a complex torus, cf. [LB70, Thm. 12.4.3] and [Kob87,
Ch. IV, Cor. 4.15]. Using the flatness criteria discussed above, we generalise this
result to the singular case, when X has terminal or canonical singularities.

To this end, recall from Theorem 6.1 that a klt space is smooth if and only if its
tangent sheaf is locally free. Theorem 9.3 therefore implies the following criterion
to guarantee that a given variety has quotient singularities and is a quotient of an
Abelian variety.

Theorem 9.7 ([GKP13b, Corollary 1.15]). Let X be a normal, complex, quasi-
projective variety. Assume that .X;D/ is klt for some Q-divisor D. If TXreg is flat,
then QX is smooth and X has only quotient singularities. If X is additionally assumed
to be projective, then there exists an Abelian variety A and a quasi-étale Galois
morphism A! QX. ut

With sufficient amount of technical work, the flatness criterion of semistable
sheaves with vanishing first and second Chern classes, Theorem 9.6, will then imply
the following.

Theorem 9.8 ([GKP13b, Theorem 1.16]). Let X be a normal, complex, projective
variety of dimension n with at worst canonical singularities. Assume that X is
smooth in codimension two and that the canonical divisor is numerically trivial,
KX � 0. Further, assume that there exist ample divisors H1; : : : ;Hn�2 on X and a
desingularisation � W QX ! X such that c2.TQX/ � ��.H1/ � � ���.Hn�2/ D 0. Then,
there exists an Abelian variety A and a quasi-étale, Galois morphism A! X. ut

There are, in fact, necessary and sufficient conditions for a variety to be a
torus quotient, cf. [GKP13b, Section 12]. In dimension three, Theorem 9.8 has
been established by Shepherd-Barron and Wilson in [SBW94], and our proof of
Theorem 9.8 follows their line of reasoning. The article [SBW94] also asserts an
variant of Theorem 9.8 for threefolds with canonical singularities.
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10 Applications to Endomorphisms of Algebraic Varieties

In this final section we discuss an application of Theorem 8.7 to polarised
endomorphisms of algebraic varieties. First we provide the relevant definition.

Definition 10.1. Let X be a normal, complex, projective variety. An endomorphism
f W X ! X is called polarised if there exists an ample Cartier divisor H and a positive
number q 2 N

C such that f �.H/ � q � H.

In [NZ10], Nakayama and Zhang study the structure of varieties admitting
polarised endomorphisms. They conjecture in [NZ10, Conjecture 1.2] that any
variety of this kind is either uniruled or covered by an Abelian variety, with a quasi-
étale covering map. They prove the conjecture in [NZ10, Theorem 3.3] under an
additional assumption concerning fundamental groups of smooth loci of Euclidean-
open subsets of X, which turns out to be an immediate consequence of Theorem 8.7.
The following result is thus established.

Theorem 10.2 ([NZ10, Conjecture 1.2] and [GKP13b, Theorem 1.20]). Let
X be a normal, complex, projective variety admitting a non-trivial polarised
endomorphism. Assume that X is not uniruled. Then, there exists an Abelian variety
A and quasi-étale morphism A! X. ut

Theorem 10.2 has consequences for the structure theory of varieties with
endomorphisms. The following results have been shown in [NZ10], conditional
to the assumption that [NZ10, Conjecture 1.2] = Theorem 10.2 holds true. The
definition of the invariant q] is recalled below.

Theorem 10.3 ([NZ10, Theorem 1.3] and [GKP13b, Theorem 13.1]). Let f W
X ! X be a non-isomorphic, polarised endomorphism of a normal, complex,
projective variety X of dimension n. Then �.X/ 
 0 and q].X; f / 
 n. Furthermore,
there exists an Abelian variety A of dimension dim A D q].X; f / and a commutative
diagram of normal, projective varieties,

A

fA
��

Z

fZ
��

!
��

�
�� V

fV
��

�
�� X

f

��
A Z

!

flat, surjective

��
�

biratl.

�� V
�

finite, surjective, quasi-étale

�� X;

where all vertical arrows are polarised endomorphism, and every fibre of !
is irreducible, normal and rationally connected. In particular, X is rationally
connected if q].X; f / D 0.

Moreover, the fundamental group �1.X/ contains a finitely generated, Abelian
subgroup of finite index whose rank is at most 2 � q].X; f /. ut
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Remark 10.4 ([NZ10, page 992f]). In the setting of Theorem 10.3, the number
q].X; f / is defined as the supremum of irregularities q. QX0/ D h1

� QX0; OQX0

�
of a

smooth model QX0 of X0 for all quasi-étale morphism � W X0 ! X admitting an
endomorphism f 0 W X0 ! X0 with � ı f 0 D f ı � .

Even for general ramified endomorphisms f W X ! X it is known that X
is uniruled. For this fact and further information we refer to [AKP08]. It would
definitely be interesting to establish both theorems for polarised endomorphisms of
Kähler varieties.
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Geometric Structures and Substructures
on Uniruled Projective Manifolds
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Abstract In a series of works on uniruled projective manifolds starting in the
late 1990’s, Jun-Muk Hwang and the author have developed the basics of a
geometric theory of uniruled projective manifolds arising from the study of varieties
of minimal rational tangents (VMRTs), i.e., the collection at a general point of
tangents to minimal rational curves passing through the point. From its onset,
our theory is a cross-over between algebraic geometry and differential geometry.
While we deal with problems in algebraic geometry, the heart of our perspective is
differential-geometric in nature, revolving around foliations, G-structures, differen-
tial systems, etc. and dealing with various issues relating to connections, curvature
and integrability.

The current article is written with the aim of highlighting certain aspects in the
geometric theory of VMRTs revolving around the theme of analytic continuation
of geometric structures and substructures. For the parts of the article where
adequate exposition already exists, we recall fundamental elements and results in
the theory essential for the understanding of more recent development and provide
occasional examples for illustration. The presentation will be more systematic on
sub-VMRT structures since the latter topic is relatively new. We will discuss various
perspectives concerning sub-VMRT structures, and indicate how the subject has
intimate links with other areas of mathematics including several complex variables,
local differential geometry and Kähler geometry.
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Uniruled projective manifolds play an important role in algebraic geometry. By the
seminal work of Mori [Mr79], rational curves always exist on a projective manifold
whenever the canonical line bundle fails to be numerically effective, and by
Miyaoka-Mori [MM86] any Fano manifold is uniruled. While much knowledge
is gained from Mori theory in the case of higher Picard numbers, the structure of
uniruled projective manifolds of Picard number 1 is hard to grasp from a purely
algebro-geometric perspective. In a series of works on uniruled projective manifolds
starting with Hwang-Mok [HM98], Jun-Muk Hwang and the author have developed
the basics of a geometric theory of uniruled projective manifolds arising from the
study of varieties of minimal rational tangents (VMRTs), i.e., the collection at a
general point of the variety of tangents to minimal rational curves passing through
the point. The theory was from its onset a cross-over between algebraic geometry
and differential geometry. While we dealt with classical problems in algebraic
geometry and axiomatics were derived from basics in the deformation theory of
rational curves, the heart of our perspective was differential-geometric in nature,
revolving around tautological foliations, G-structures, differential systems, etc., and
dealing with various issues relating to connections, curvature, integrability, etc.,
while techniques from several complex variables on analytic continuation were
brought in to allow for a passage from transcendental objects defined on open sets
in the Euclidean topology to algebraic objects in the Zariski topology.

Given any uniruled projective manifold X, fixing a polarization and minimizing
degrees of free rational curves we obtain a minimal rational component K. Basic
to .X;K/ is the double fibration � W U ! K, � W U ! X, where � W U ! K
is the universal family whose fibers are (unparametrized) minimal rational curves,
and � W U ! X is the evaluation map. At a general point x 2 X a point on
the fiber Ux corresponds to a minimal rational curve with a marking at x, and the
VMRT Cx.X/ � PTx.X/ is the image of Ux under the tangent map. The double
fibration and the VMRT structure � W C.X/ ! X, C.X/ � PT.X/, endowed with a
tautological foliation, set the stage on which the basics of our geometric theory have
been developed.

In this article, by a geometric structure we mean a VMRT structure
� W C.X/! X or its restriction to a connected open set U on X, and by a geometric
substructure we mean a sub-VMRT structure $ W C.S/ ! S, C.S/ � PT.S/, on a
complex submanifold S of some open subset of X, C.S/ WD C.X/ \ PT.S/, which
among other things is assumed to dominate S. For a VMRT structure � W C.X/! X,
of principal importance here is the tautological foliation on C.X/ transported from
the fibration � W U ! K by means of the tangent map, and solutions to various
questions concerning the tautological foliation have strong implications leading to
rigidity phenomena or characterization results on uniruled projective manifolds.
As to sub-VMRT structures, a basic question is whether the tautological foliation
on C.X/ is tangent to C.S/, and an affirmative answer to the question leads to
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rational saturation for germs of submanifolds inheriting certain types of sub-VMRT
structures and characterization of various classes of special uniruled projective
subvarieties.

There is a wide scope of phenomena and problems concerning geometric
structures and substructures in complex geometry, and those on uniruled projective
manifolds arising from the consideration of minimal rational curves in particular,
and the current article is an exposition on selected aspects of such phenomena
and problems arising from VMRTs. Concerning geometric structures we will be
exclusively concerned with those arising from or directly related to known uniruled
projective manifolds, especially rational homogeneous spaces of Picard number 1,
leaving aside the topic of general VMRT structures, for which the reader is referred
to two expository articles of Hwang [Hw12, Hw15] (and references therein) on
VMRTs from the perspective of Cartanian geometry. For geometric substructures
our focus will be on sub-VMRT structures on rational homogeneous spaces of
Picard number 1 modeled on certain admissible pairs .X0;X/ of such manifolds,
while results will also be formulated for sub-VMRT structures on uniruled projec-
tive manifolds in general satisfying various notions of nondegeneracy related to the
second fundamental form (cf. Mok [Mk08a], Hong-Mok [HoM10, HoM13], Hong-
Park [HoP11], Hwang [Hw14b], Zhang [Zh14], Mok-Zhang [Mz15]). An overview
on the topic of germs of complex submanifolds on uniruled projective manifolds
will be given in the article.

The current article is written with the aim of highlighting certain aspects in
an area of research arising from the study of geometric structures modeled on
varieties of minimal rational tangents. As a number of surveys and expository
articles are available at different stages on various aspects in the development of
the subject (Hwang-Mok [HM99a], Hwang [Hw01], Kebekus-Sola Conde [KS06],
Mok [Mk08b], Hwang [Hw12, Hw15]), for the parts of the article where adequate
exposition already exists, we are contented with recalling fundamental elements
and results in the theory which are essential for the understanding of more recent
development and with providing examples occasionally for the purpose of illustra-
tion. The presentation will be more systematic in the last section on sub-VMRT
structures since the latter topic is relatively new. At the end of the section, we will
discuss various perspectives concerning sub-VMRT structures, and indicate how
the subject, a priori arising from the study of uniruled projective manifolds and their
subvarieties, has intimate links with other areas of mathematics including several
complex variables, local differential geometry, and Kähler geometry. Already on this
topic there is the prospect of exciting cross-fertilization of ideas and methodology,
and the subject will thrive with further investigation on problems intrinsic to the
study of VMRTs and also with applications to be explored on these and other related
areas of mathematics.
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1 Minimal Rational Curves on Uniruled Projective
Manifolds

1.1 Minimal Rational Components and the Universal Family

For a projective variety W � P
N we denote by Chow.W/ the Chow space of all

cycles C on W, and by ŒC� 2 Chow.W/ the member corresponding to the cycle C.
Each irreducible component of Chow.W/ is projective. For two projective varieties
Y and Z we denote by Hom.Y;Z/ the set of all morphisms from Y to Z. Through the
use of Hilbert schemes, Hom.Y;Z/ is endowed the structure of a complex space such
that each of its irreducible components is projective (cf. Kollár [Ko96, Chapter 1]).

By a rational curve on a projective manifold X we mean a nonconstant holo-
morphic map f W P

1 ! X, which will be denoted by Œf � when regarded as
an element of Hom.P1;X/. A rational curve Œf � is said to be free if and only if
the vector bundle f �TX on P

1 is semipositive, i.e., isomorphic to a direct sum of
holomorphic line bundles O.ak/ of degree ak 	 0. The basic objects of our study are
the uniruled projective manifolds, i.e., projective manifolds that are “filled up” by
rational curves. Equivalently a projective manifold X is uniruled if and only if there
exists a free rational curve on X. A smooth hypersurface X � P

n of degree
 n�1 is
uniruled by projective lines, and those of degree n are uniruled by rational curves of
degree 2. By Mori-Miyaoka [MM86] any Fano manifold is uniruled. For the basics
on rational curves in algebraic geometry we refer the reader to Kollár [Ko96].

Let X be a uniruled projective manifold. Fixing an ample line bundle L on X, let
f0 W P1 ! X be a free rational curve realizing the minimum of deg.h�L/ among
all free rational curves Œh� 2 Hom.P1;X/. Let LH � Hom.P1;X/ be an irreducible
component containing Œf0� and H � LH be the subset consisting of free rational
curves. LH is quasi-projective and H � LH is a dense Zariski open subset. Since
each member Œf � 2 H is a free rational curve, there is no obstruction in deforming
f W P1 ! X, and, passing to normalization if necessary, H will be endowed the
structure of a quasi-projective manifold. Any member f W P1 ! X of H must be
generically injective (i.e., f must be birational onto its image) by the freeness of f
and by the minimality of deg.f �L/ among free rational curves. Thus, Aut.P1/ acts
effectively on H by the assignment .�; Œf �/ 7! Œf ı �� for � 2 Aut.P1/ and Œf � 2 H.
Since Aut.P1/ acts effectively on H, the quotient K WD H=Aut.P1/ is a complex
manifold. There is a canonical morphism ˛ W H ! Chow.X/ defined by ˛.Œf �/ D
Œf .P1/� mapping K onto a Zariski open subset Q of some irreducible subvariety Z
of Chow.X/. The mapping ˛ is invariant under the action of Aut.P1/ and it descends
to a bijective holomorphic map � W K ! Q. Hence, � is a normalization, and K is
a quasi-projective manifold. We call K a minimal rational component on X. There
is a smallest subvariety B � X such that every member of K passing through any
point x"X � B is a free rational curve. We call B � X the bad locus of .X;K/.

On a uniruled projective manifold .X;K/ equipped with a minimal rational
component we have a universal P1-bundle � W U ! K called the universal family
of K, where U D H=Aut.P1I 0/, and � W U ! K is the canonical projection which



Geometric Structures and Substructures on Uniruled Projective Manifolds 107

realizes U as the total space of a holomorphic fiber bundle with fibers isomorphic
to Aut.P1/=Aut.P1I 0/ Š P

1. We have canonically the evaluation map � W U ! X,
and we write Ux WD ��1.x/. From the Bend-and-Break Lemma of Mori [Mr79] it
follows that a general member � of a minimal rational component K corresponds
to a standard rational curve, i.e., � is the equivalence class modulo the action of
Aut.P1/ of some Œf � 2 Hom.P1;X/ such that f �T.X/ Š O.2/ ˚ O.1/p ˚ Oq for
some p; q 	 0, 1 C p C q D n WD dim.X/. Note that any standard rational curve
f W P1 ! X is immersive and generically injective. In the sequel, to avoid clumsy
language the term “minimal rational curve” will sometimes also be used to describe
the image of a minimal rational curve belonging to H under the canonical map
ˇ W H! K.

1.2 Varieties of Minimal Rational Tangents
and the Tautological Foliation

Let .X;K/ be a uniruled projective manifold X equipped with a minimal rational
component. Denote by � W U ! K the universal family over K, and by � W U ! X
the accompanying evaluation map. By definition � W U ! K, as a holomorphic fiber
bundle with fibers isomorphic to P

1, is equipped with a tautological foliation whose
leaves are the fibers of �. Let x 2 X be a general point and u 2 Ux, corresponding to
a minimal rational curve with a marking at x. Let f W P1 ! X be a parametrization
of �.u/ 2 K,bf W P1 ! U its tautological lifting such thatbf .0/ D u (hence f .0/ D x).
If f is an immersion at 0 we define �x.u/ D Œdf .T0.P1//� 2 PT0.X/. For a general
point x 2 X this defines the tangent map �x W Ux Ü PTx.X/, which is a holomorphic
immersion at a general point of Ux corresponding to a standard rational curve with
a marking at x, and denote by Cx.X/ � PTx.X/ the strict transform of �x, so that
�x W Ux Ü Cx.X/ is a priori a generically finite dominant rational map, and � W
C.X/ ! X is equipped at general points with a multi-foliation F transported from
the tautological foliation on U by means of the tangent map � W U Ü PT.X/.

Standard rational curves play a special role with regard to the tangent map.
To simplify the notation we will state the following result for embedded standard
rational curves `. The general case, in which standard rational curves are known
only to be immersed, can be stated with a slight modification. For an embedded
minimal rational curve ` we have T.X/j` Š O.2/ ˚ O.1/p ˚ Oq, and we denote
by P` D O.2/˚O.1/p the positive part of T.X/j`. For the normal bundle N`jX for
` � X we have N`jX Š O.1/p˚Oq. From the deformation theory of rational curves
we have (cf. Mok [Mk08b, (2.4), Lemma 2]).

Lemma 1.2.1. At a general point x 2 X, and a point u 2 Ux corresponding to a
standard rational curve ` with a marking at x, the tangent map �x is a holomorphic
immersion at u. Assuming that �x.u/ WD Œ˛� is a smooth point of the VMRT Cx.X/,

we have d�x.u/ W Tu.Ux/
Š�! TŒ˛�.Cx.X// � TŒ˛�.PTx.X// Š Tx.X/=C˛. More

precisely, assuming for convenience that ` � X is embedded, we have Tu.Ux/ D
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�.`;N`jX ˝mx/, where mx is the maximal ideal sheaf at x on `, and TŒ˛�.Cx.X// D
P˛=C˛, where P˛ D P`;x is the fiber at x of the positive part P` � T.X/j`, and for
� 2 Tu.Ux/ D �.`;N`jX ˝ mx/, we have d�x.u/.�/ D @˛.�/ C C˛ 2 P˛=C˛ Š
TŒ˛�.Cx.X//.

We note that since �.x/ D 0, the partial derivative @˛.�/ is well-defined. Moreover,
while the isomorphism TŒ˛�.PTx.X// Š Tx.X/=C˛ depends on the choice of
˛ 2 Tx.X/ representing ŒTx.`/� 2 PTx.X/, there is a canonical isomorphism
TŒ˛�.PTx.X// ˝ LŒ˛� Š Tx.X/=C˛, where L denotes the tautological line bundle
over PTx.X/, hence the formula for d�x.u/.�/ 2 TŒ˛�.Cx.X// � TŒ˛�.PTx.X// is
independent of the choice of ˛ 2 Tx.`/.

By Hwang-Mok [HM99a, HM01] at a general point �x W Ux Ü Cx.X/ is
birational (cf. (2.1)), and it is a morphism by Kebekus [Ke02]. Finally, Hwang-
Mok [HM04b] proved that the tangent map is a birational finite morphism, hence
�x W Ux ! Cx.X/ is the normalization. There is a smallest subvariety B0 � B of X
such that every member of K passing through any point x�X � B0 is a free rational
curve immersed at the marked point x and �x W Ux ! Cx.X/ is a birational finite
morphism. We call B0 � X the enhanced bad locus of (X;K). In some cases, e.g., in
the case of a projective submanifold X � P

n uniruled by projective lines it is easily
seen (from the positivity of T.X/j` � T.Pn/j` Š O.2/˚O.1/n�1 in the latter case)
that at a general point x 2 X every projective line ` passing through x is a standard
rational curve, and it has been thought for some time that this may actually be the
case in general. Recently, Casagrande-Druel [CD12] found examples of uniruled
projective manifolds .X;K/ equipped with minimal rational components in a more
generalized sense (in the sense that the general VMRT Cx.X/ is projective) on which
the VMRT at a general point is actually singular, and Hwang-Kim [HK13b] has
now obtained examples where K is a bona fide minimal rational component in the
sense of (1.1). This means that for general results in the differential-geometric study
of VMRT structures one has to deal with singularities which are smoothed out by
normalization.

By the VMRT structure on .X;K/ we will mean the fibered space of VMRTs
� W C.X/! X, C.X/ � PT.X/. In the sequel we will speak of the VMRT structure
� W C.X/ ! X on X, being understood that we are talking about a subvariety
C.X/ � PT.X/ which projects onto a Zariski open subset of X. By the birationality
of the tangent map we can now speak of the tautological foliation on a VMRT
structure � W C.X/ ! X, and the extent to which the latter foliation is determined
by the fibered space of VMRTs will play an important role in the rest of the article.

1.3 The Affine and Projective Second Fundamental Forms

The second fundamental form in affine or projective geometry will be essential in the
geometric study of VMRTs. For generalities let V be a finite-dimensional complex
vector space and denote by � W V � f0g ! P.V/ the canonical projection onto
the projective space P.V/. For any subset E � P.V/ we denote by eE WD ��1.E/
the affinization of E. In terms of the Euclidean flat connection on V , for a complex
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submanifold S on some open subset of V we have the second fundamental form
	 WD 	SjV . If A � P.V/ is a subvariety and 
 2 eA is a smooth point we have
the second fundamental form 	
 WD 	eAjV;
, 	
 W S2T
.eA/ ! V=T
.A/ WD NeAjV;
.
We have always 	
.
; 
/ D 0 for any 
 2 T˛.eA/. Thus, considered as a vector-
valued symmetric bilinear form, the kernel of 	
 always contains C
. Passing
to quotients we have the projective second fundamental form, denoted by 	Œ
� W
S2TŒ
�.A/ ! TŒ
�.P.V//=TŒ
�.A/ WD NAjP.V/;Œ
� which is equivalently defined by the
canonical projective connection on P.V/. (We will use the same notation 	 for both
the Euclidean and the projective second fundamental forms. The subscript, either

 2 eA or Œ
� 2 A will indicate which is meant.) Here TŒ
�.P.V// Š V=C
;TŒ
�.A/ Š
T
.eA/=C
, and the two normal spaces NeAjV;
 Š NAjP.V/;Œ
� are naturally identified.
The projective second fundamental form 	Œ
� is the differential at 
 of the Gauss map,
hence the Gauss map is generically injective on A if and only if Ker 	Œ
� D 0 for a
general point Œ
� of each irreducible component of A. We note that from projective
geometry, the Gauss map on a nonlinear projective submanifold A � P.V/ is always
generically injective.

2 Analytic Continuation Along Minimal Rational Curves

2.1 Equidimensional Cartan-Fubini Extension

Let S be an irreducible Hermitian symmetric space. Denoting by O.1/ the positive
generator of the Picard group Pic.S/ Š Z, S admits an embedding � W S ,!
P.�.S;O.1//�/ and as such S is uniruled by projective lines. When S is of rank
	 2, it is endowed with a particular type of G-structure. To explain this we start
by recalling the notion of G-structures and flat G-structures. Let n be a positive
integer, V be an n-dimensional complex vector space, and M be any n-dimensional
complex manifold. In what follows all bundles are understood to be holomorphic.
The frame bundle F.M/ is a principal GL.V/-bundle with the fiber at x defined as
F.M/x D Isom.V;Tx.M//.

Definition 2.1.1. Let G � GL.V/ be any complex Lie subgroup. A holomorphic
G-structure is a G-principal subbundle G.M/ � F.M/. An element of Gx.M/ will
be called a G-frame at x. For G ¨ GL.V/ we say that G.M/ defines a holomorphic
reduction of the tangent bundle to G. We say that a G-structure G.M/ on M is flat
if and only if there exists an atlas of charts f'˛ W U˛ ! Vg such that the restriction
G.U˛/ of G.M/ to U˛ is the product G � U˛ � GL.V/ � U˛ in terms of Euclidean
coordinates on U˛ given by the chart '˛ W U˛ ! V .

As a first example we consider the hyperquadric Qn � P
nC1 defined as the

zero of a nondegenerate homogeneous quadratic polynomial. The projective second
fundamental form 	 of Qn � P

nC1 defines a section in �.Qn; S2T�
Qn ˝ O.2//,

O.2/ being isomorphic to the normal bundle NQnjPnC1 of Qn � P
nC1. The twisted
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symmetric bilinear form 	 is everywhere nondegenerate, thereby equipping small
open sets of Qn with holomorphic metrics

P
g˛ˇ.z/dz˛ ˝ dzˇ in terms of local

coordinates, unique up to multiplication by nowhere zero holomorphic functions.
This gives a holomorphic conformal structure on Qn. Here we have a reduction of
the frame bundle to the complex conformal group CO.nIC/ D C

��O.n;C/, O.n;C/
being the complex orthogonal group with respect to a nondegenerate complex
symmetric bilinear form.

Another example is the Grassmannian G.p; q/ of p-planes in a complex vector
space W0 Š C

pCq, where we have a tautological vector bundle F on G.p; q/ given by
Fx D E � W0 for x D ŒE� 2 G.p; q/. Writing V D W=F, where W D W0�G.p; q/ is
a trivial vector bundle on G.p; q/, we have a canonical isomorphism TG.p;q/ Š U˝V ,
U D F�, yielding a Grassmann structure on G.p; q/. U and V are called the
(semipositive) universal bundles on G.p; q/. Here, for a pq-dimensional manifold
M on which the holomorphic tangent bundle T.M/ Š A ˝ B, where A resp. B
is a holomorphic vector bundle of rank p resp. q, representing tangent vectors
on X as matrices through tensor product decomposition, we have a reduction of
the frame bundle from GL.pq;C/ to the subgroup H � GL.pq;C/ which is the
image of GL.p;C/� GL.q;C/ in GL.pq;C/ under the homomorphism ˆ given
by ˆ.C;D/.X/ D CXDt. We refer the reader to Manin [Ma97] for Grassmann
structures appearing in gauge field theory.

For generalities on Hermitian symmetric spaces we refer the reader to Wolf
[Wo72]. Any irreducible Hermitian symmetric space S of the compact type and of
rank 	 2 carries a canonical S-structure, which is a G-structure for some complex
reductive linear subgroup G ¨ GL.T0.S//, as follows. Write S D G=P as a complex
homogeneous space, where G is a connected complex simple Lie group, and P � G
is a maximal parabolic subgroup. Let P D L � U be the Levi decomposition of P,
where U � P is the unipotent radical and L � P is a Levi factor. Equip S with a
canonical Kähler-Einstein metric g and write S D Gc=K, where Gc is the identity
component of the isometry group of .S; g/ and K � Gc is the isotropy subgroup
at a reference point 0 2 S. Identifying 0 2 S with eP 2 G=P Š S, in the Levi
decomposition P D L �U, L can be identified with KC � GL.T0.S// by means of Lie
group homomorphismˆ W P! GL.T0.S// given by ˆ.�/ WD d�.0/ 2 GL.T0.S//,

ˆjL W L
Š�! KC. On the other hand, U D exp.m�/ WD M�, where m� is the Lie

algebra of holomorphic vector fields on S vanishing to the order	 2 at 0, thus d�.0/
is the identity map on T0.S/whenever � 2 M�. In other words, U D M� D Ker.ˆ/.
Let 
 be a nonzero highest weight vector of the isotropy representation of KC

on T0.S/. Since M� acts trivially on T0.S/, the G-orbit of Œ
� 2 PT0.S/ gives
a homogeneous holomorphic fiber subbundle W � PT.S/ whose fiber W0 over
0 is the KC-orbit of Œ
�, i.e., the highest weight orbit. Writing V D T0.S/ and

considering at x 2 S the set of all linear isomorphisms ' W T0.S/
Š�! Tx.S/ such

that '.eW0/ D eWx, where eW0 consists of all nonzero highest weight vectors at 0,
etc., we have a reduction of the frame bundle on S from F.S/ to some G.S/ ¨ F.S/
defining a G-structure with G D KC. This canonical KC-structure is also called the
canonical S-structure.
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Flatness of the canonical KC-structure is not obvious. That this is the case is seen
from the Harish-Chandra decomposition. The integrable almost complex structure
on S is defined by ad.j/ of a certain element j in the one-dimensional center z of
the Lie algebra k of K. Writing g for the Lie algebra of G we have a decomposition
g D mC ˚ kC ˚ m�, where kC is the Lie algebra of KC Š L, and mC resp. m� is
the eigenspace of ad.j/ corresponding to the eigenvalue i resp.�i. Writing MC WD
exp.mC/, the mapping MC � KC �M� 7! G given by .a; b; c/ 7! abc is injective,
leading to the identification of a Zariski open subset W of S with the vector space
mC through the mapping mC 7! exp.mC/P, yielding Harish-Chandra coordinates
.z1; � � � ; zn/, n D dim.S/. The Abelian Lie subalgebra mC � g is the Lie algebra
of constant vector fields in the coordinates .z1; � � � ; zn/. The invariance of W under
the vector group MC of Euclidean translations shows that WjW DW0 �W, i.e., the
KC-structure on S is flat.

The Harish-Chandra coordinates link immediately to the structure of minimal
rational curves on S. A highest weight vector 
 2 eWx yields readily a copy of
sl.2;C/ which in standard notations is of the form Ce� ˚ CŒe�; e��� ˚ Ce�� in
terms of root vectors e� 2 mC, e�� 2 m� with respect to suitably chosen Cartan
subalgebras, Œe�; e��� 2 kC. Exponentiating one gets a copy of PSL.2;C/, and the
orbit of x under the latter group exhausts all the rational curves of degree 1 passing
through W as x runs over W and Œ
� runs over Wx. Thus, intersections of minimal
rational curves with a Harish-Chandra coordinate chart are given by affine lines `
such that PTx.`/ 2Wx for x 2 `. Moreover,W is nothing other than C.S/ � PT.S/,
the VMRT structure on S (cf. (1.2)). Examples of VMRTs C0.S/ are given in the case
of hyperquadrics Qn, n 	 3, by C0.Qn/ D Qn�2 � PT0.Qn/ Š P

n�1, eC0.Qn/ [ f0g
being the null-cone of the holomorphic conformal structure, and in the case of the
Grassmannian G.p; q/I p; q 	 1; by C0.G.p; q// D &.Pp�1 � P

q�1/ � P.Cp ˝ C
q/,

& being the Segre embedding given by &.Œu�; Œv�/ D Œu˝ v�, with the image being
projectivizations of decomposable tensors.

The use of Harish-Chandra coordinates allows us to give a differential-geometric
and complex-analytic proof (cf. Mok [Mk99]) of the following classical result of
Ochiai on S-structures.

Theorem 2.1.1 (Ochiai [Oc70]). Let S be an irreducible Hermitian symmetric
space of the compact type and of rank 	 2 equipped with the canonical S-structure.

Let U � S be a connected open subset and f W U
Š�! V � S be a biholomorphic

map preserving the canonical S-structure. Then, there exists F 2 Aut.S/ such that
FjU � f . As a consequence, any simply connected compact complex manifold X
admitting a flat S-structure must necessarily be biholomorphic to S.

We refer the reader to [Mk99] and to Mok [Mk08b, (4.2), especially Lemma 4]
for detailed discussions on Ochiai’s Theorem from a geometric perspective. Denot-
ing by K the minimal rational component of projective lines on S with the
accompanying VMRT structure C.S/ � PT.S/, the key issue is to show that f
sends a connected open subset of a minimal rational curve onto an open subset
of a minimal rational curve, i.e., writing f] WD Œdf �, FS for the tautological foliation
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on S, C.U/ WD C.S/ \ PT.U/, etc., we have to show that f]�.FSjC.U// D FSjC.V/.
Granting this, taking U to be a Euclidean ball in Harish-Chandra coordinates so that
`\U is either empty or connected for Œ`� 2 K, and by O � K the subset consisting
of all Œ`� 2 K such that ` \ U ¤ ;, f W U ! S induces a holomorphic map
f ] W O ! K. Then, by the method of Mok-Tsai [MT92], Hartogs extension holds
true for O, and we conclude that f ] extends meromorphically to ˆ W K Ü K. We
extend f analytically to F beyond U by defining F.x/ to be the intersection of the
lines ˆ.Œ`�/, as ` ranges over minimal rational curves passing through x. Arguing
also with f �1 we get a birational extension of f to F W S Ü S which transforms
minimal rational curves to minimal rational curves, and that is enough to imply that
in fact F 2 Aut.S/, cf. [Mk99, (2.4)]. We have

Proof that f]�.FSjC.U// D FSjC.V/. We use Harish-Chandra coordinates.
Restricted to such a Euclidean chart W, eC.S/jW D eCx � W for any x 2 W, where
eCx WD eCx.S/. To prove f]�.FSjC.U// D FSjC.V/ it suffices to show d2f .˛; ˛/ 2
Cdf .˛/ for ˛ 2 eCx; x 2 U. We may assume df .x/ D idTx.S/. For ˇ 2 eCx, we have
d2f .˛; ˇ/ D @˛.df .ě//, where ě stands for the constant vector field on U such that
ě.x/ D ˇ. Since eCjU D eCx � U, @˛.df .ě// is the tangent at ˇ to some curve on eCx,
hence d2f .˛; ˇ/ 2 Pˇ D Tˇ.eCx/, and by symmetry d2f .˛; ˇ/ 2 P˛ \ Pˇ. To show
d2f .˛; ˛/ 2 C˛ note that for the second fundamental form 	 of eCx � Tx.S/, we
have Ker.	˛/ D C˛, and it remains to show d2f .˛; ˛/ 2 Ker.	˛/. Fix ˛ 2 eCx and
let ˇ D ˛.t/; ˛.0/ D ˛; vary holomorphically on eCx in the complex parameter t.
Writing 
 D d

dt

ˇ̌
tD0˛.t/ 2 P˛ , from d2f .˛; ˛.t// 2 P˛ it follows that d2f .˛; 
/ D

d
dt

ˇ̌
tD0d

2f .˛; ˛.t// 2 P˛. On the other hand, d
dt

ˇ̌
tD0d

2f .˛.t/; ˛.t// D 2d2f .˛; 
/.
Interpreting d2f .ˇ; ˇ/ 2 Pˇ as a vector field on eCx, we have r
.d2f .ˇ; ˇ// 2 P˛
for the Euclidean flat connection r on Tx.S/, hence 	˛.
; d2f .˛; ˛// D 0. Varying

 2 P˛, we conclude that d2f .˛; ˛/ 2 Ker.	˛/ D C˛, as desired. �

A Harish-Chandra coordinate chart flattens the VMRT structure on S on the chart.
Although the existence of such coordinates in the Hermitian symmetric case is a
very special feature among uniruled projective manifolds, in (2.2) we will explain
how the same argument applies in general on a uniruled projective manifold .X;K/
endowed with a minimal rational component. The gist of the matter is that, for the
computation at a general point x 2 X, and at a smooth point Œ˛� 2 Cx.X/, denoting by
` the standard minimal rational curve passing through x such that Tx.`/ D C˛, and
assuming that ` is embedded for convenience, what one needs is simply a choice
of holomorphic coordinates on a neighborhood U of x such that the positive part
P` D O.2/˚O.1/p � O.2/˚O.1/p˚Oq D T.X/j` is a constant vector subbundle
of T.X/j` on U \ ` in terms of the standard trivialization of T.X/j` induced by
the holomorphic coordinates, and such choices of holomorphic coordinates exist in
abundance.

For a uniruled projective manifold .X;K/ equipped with a minimal rational
component, we introduced in Hwang-Mok [HM99a] differential systems on the
VMRT structure C.X/ � PT.X/ and on K, and in [HM01] we gave a full proof of
Cartan-Fubini extension using such differential systems. The machinery introduced
was used at the same time to prove birationality of the tangent map �x W Ux Ü Cx.X/
at a general point x 2 X under the assumption that the Gauss map is generically
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injective, a result which was later on improved to yield that �x is a birational
morphism, i.e., �x is the normalization map (cf. (1.1)). Restricting to Cartan-Fubini
extension, we proved in [HM01]

Theorem 2.1.2 (Hwang-Mok [HM01]). Let .Z;H/ and .X;K/ be two Fano man-
ifolds of Picard number 1 equipped with minimal rational components. Assume that
Cz.Z/ is positive-dimensional at a general point z 2 Z and that furthermore the
Gauss map is an immersion at a general point of each irreducible component of
Cz.Z/. Let f W U ! V be a biholomorphic map from a connected open subset
U � Z onto an open subset V � X. If f] D Œdf � sends each irreducible component
of C.Z/jU to an irreducible component of C.X/jV biholomorphically, then f extends
to a biholomorphic map F W Z ! X.

We refer the reader to expositions on the differential systems in [HM99a, Mk08b]
and [Hw12]. Here we will just describe briefly such distributions and their links to
analytic continuation. Let x 2 X be a general point, and ` � X be a standard minimal
rational curve passing through x, which we assume to be embedded for notational
convenience. Let u 2 Ux be the point corresponding to the minimal rational curve
` marked at x. Since ` is standard, there exists a neighborhood O of x in U such
that the tangent map � is a biholomorphism of O onto a complex submanifold S of
some open subset of PT.X/. Holomorphic distributions can now be defined on S,
as follows. $ WD �jS W S ! X is a submersion, and the kernels of d$ defines an
integrable distribution J � T.S/. In what follows on a coordinate chart U � X,
0 2 U a reference point, we consider the standard trivializations T.U/ Š U�T0.U/,
T.T.U// Š T.U/ � T.T0.U// Š .U � T0.U// � .T0.U/ � T0.U//, thus at .x; 
/ 2
Tx.U/, 
 2 T0.U/ is simultaneously used to describe two different vectors, viz., as
coordinates for a tangent vector at x and as coordinates for a vector at .x; 
/ 2 Tx.U/
tangent to Tx.U/. To avoid confusion we will write 
 for the first meaning, and 
0 for
the second, thus 
0 is a “vertical” tangent vector. Writing Tx.`/ D C˛, and denoting
the fibers $�1.x/ by Sx, we have TŒ˛�.Sx/ D P0̨ =C˛0. Define now P � T.S/ by
PŒ˛� D d$�1.P˛/. Then, P � T.S/ is a holomorphic distribution of rank 2pC 1,
p WD dim.Cx.X//, P � J .

On the other hand, writing Kst � K for the Zariski open subset consisting of
standard minimal rational curves, we have on Kst a holomorphic distribution D �
T.Kst/, defined as follows. For Œ`� 2 K, TŒ`�.K/ D H0.`;N`jX/, where N`jX stands
for the normal bundle of ` in X. When Œ`� 2 Kst, we have N`jX Š O.1/p˚Oq, noting
that Q D O.1/p is the (strictly) positive part of the normal bundle N`jX . Q � N`jX
is characterized by the fact that Q˝ O.�1/ is spanned by �.`;N`jX ˝ O.�1// Š
C
2p, hence intrinsically defined, i.e., independent of the choice of Grothendieck

decomposition. The assignment Œ`� 7! �.`;O.1/p/ defines a distribution D on Kst

of rank 2p. We have

Proposition 2.1.1 (Hwang-Mok [HM01]). Denoting by � W S ! K the canonical
projection, we have P D d��1.D/. As a consequence ŒF ;P � � P , i.e., F lies on the
Cauchy characteristic of the distribution P . Moreover, assuming that for a general
point x 2 X, the projective second fundamental form 	 on Cx is nondegenerate at a
general smooth point Œ˛� 2 Cx. Then, F � P is exactly the Cauchy characteristic
of P .



114 N. Mok

For the proof of the proposition we refer the reader to Hwang-Mok [HM99a,
Corollary 3.1.5] and to Mok [Mk08b, (5.1), Proposition 5]. It suffices here to make
a couple of remarks. First, given any holomorphic distribution W � T.M/ on a
complex manifold, there is a holomorphic bundle homomorphism � W ƒ2W !
T.M/=W such that for any 
; 
 2 �.M;W/ and for x 2 M, we have Œ
; 
�.x/ mod
W D �.
; 
/.x/. We call � the Frobenius form of W � T.M/. Denote now by ' the
Frobenius form of P jS � T.S/ and by  the Frobenius form of D � T.Kst/. From
the fact that � W S ! Kst is a holomorphic submersion and from P jS D d��1.D/,
for 
 2 S and u; v 2 S
 it follows readily that  .d�.u/; d�.v// D ˇ.'
.u; v//

where the bundle isomorphism ˇ W T.S/
ı
P jS Š�! ��.T.Kst/=D/ is naturally

induced by d� . From F D .d�/�1.0/ it now follows readily that ŒF ;P � � P .
The Frobenius form ' and equivalently the Frobenius form  can furthermore be
computed in terms of the second fundamental forms 	 of Cx.X/ � PTx.X/ for a
general point x 2 X, and the last statement of Proposition 2.1.1 follows from the
computation.

Proposition 2.1.1 yields immediately that the tangent map �x W Ux Ü Cx is a
birational map for a general point. Moreover, the Cartan-Fubini Extension Principle

holds true. In fact, given f W U
Š�! V such that f].C.X/jU/ D C.Z/jV as in the

hypothesis of Theorem 2.1.2, denoting P by P.X/ and the analogous distribution
on C.Z/ by P.Z/, obviously f]�.FX/ lies on the Cauchy characteristic of P.Z/,
and from the characterization of the Cauchy characteristic as in Proposition 2.1.1

it follows that the local VMRT-preserving map f W U
Š�! V actually preserves the

tautological foliation. That the foliation-preserving property implies the extendibil-

ity of f to a biholomorphism F W X
Š�! Z was established in [HM01] by a

combination of techniques of analytic continuation in several complex variables and
the deformation theory of rational curves.

On top of being intrinsic, the approach in [HM01] introduced into the subject
differential systems on VMRT structures C.X/ � PT.X/ and on minimal rational
components K. So far the distribution D � T.Kst/ has not been much studied.
Especially, when a uniruled projective manifold X carries some extra geometric
structure, e.g., a contact structure, the distribution D � T.Kst/ can be further
enriched leading to an enhanced differential system on Kst, and it is tempting
to believe that in certain cases this could lead to uniqueness or rigidity results
concerning K. The case where X carries a contact structure is especially interesting
in view of the long-standing conjecture that a Fano contact manifold of Picard
number 1 is homogeneous.

For applications of Cartan-Fubini extension in the equidimensional case we refer
the reader to [HM01] and [HM04b]. Here we only note that in [HM04b] we obtained
a new solution to the Lazarsfeld Problem, viz., proving that for S WD G=P a
rational homogeneous space of Picard number 1 other than the projective space,
any finite surjective holomorphic map f W S ! X onto a projective manifold X
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must necessarily be a biholomorphism. The proof there was based on Cartan-Fubini
extension applied to VMRTs of the uniruled projective manifold X. Our original
proof in [HM99b] was an application of our geometric theory of VMRTs at an
early stage of its development relying heavily on Lie theory, especially on results
concerning G-structures of Ochiai [Oc70] (Theorem 2.2.1 here) in the symmetric
cases and those concerning differential systems on G=P of Yamaguchi [Ya93] in
the non-symmetric cases. In [HM04b] the geometric theory on VMRTs was more
self-contained, and we succeeded in entirely removing the detailed knowledge about
G=P from the solution of Lazarsfeld’s Problem.

2.2 Cartan-Fubini Extension
in the Non-Equidimensional Case

Generalizing the arguments for the differential-geometric proof of Ochiai’s
Theorem, Hong-Mok [HoM10] established the following non-equidimensional
Cartan-Fubini extension theorem.

Theorem 2.2.1 (Hong-Mok [HoM10, Theorem 1.1]). Let .Z;H/ and .X;K/ be
two uniruled projective manifolds equipped with minimal rational components.
Assume that Z is of Picard number 1 and that Cz.Z/ is positive-dimensional at
a general point z 2 Z. Let f W U ! X be a holomorphic embedding defined
on a connected open subset U � Z. If f respects varieties of minimal rational
tangents and is nondegenerate with respect to .H;K/, then f extends to a rational
map F W Z ! X.

Here we say that f respects VMRTs if and only if df .eCz.Z// D eCf .z/.X/ \
df .Tz.Z//, i.e., f].Cz.Z// D Cf .z/.X/ \ f].PTz.Z//, where f] is the projectivization
of df . The holomorphic embedding f W U ! X is said to be nondegenerate
with respect to .K;H/ if (a) its image f .U/ is not contained in the bad locus of
.X;K/, and (b) at a general point z 2 U and a general smooth point ˛ 2 eCz.Z/,
df .˛/ is a smooth point of eCf .z/.X/ such that the second fundamental form 	.
; 
/

of eC f .z/.X/ � Tf .z/.X/ at df .˛/, when restricted in 
 to the vector subspace
Tdf .˛/.df .eCz.Z/// � Tdf .˛/.eC f .z/.X// and regarded as a family of linear maps on
Tdf .˛/.eCf .z/.X// in 
, has common kernel Cdf .˛/. Thus,

.�/
˚

 2 Tdf .˛/.eCf .z/.X// W 	.
; 
/ D 0 for any 
 2 Tdf .˛/.df .eCz.Z///

� D Cdf .˛/ :

Alternatively (�) means that on Cf .z/.X/, considering the projective second fun-
damental form 	f].Œ˛�/ of f].Cz.Z// � Cf].Œ˛�/.X/ at f].Œ˛�/, the common kernel
of 	. � ; 
/; 
 2 Tf].Œ˛�/.Cf .z/.X//, reduces to 0. Using the arguments of analytic
continuation along minimal rational curves as developed in Hwang-Mok [HM01],
the key issue that we settled in Hong-Mok [HoM10] was to prove that f maps a
germ of minimal rational curve on .Z;H/ into a germ of minimal rational curve
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on .X;K/. Equivalently we showed that the image f]�.FZ/ on f].C.Z/jU/ � C.X/
agrees with the restriction of FX to f].C.Z/jU/ as holomorphic line subbundles of
T.C.X//jf].C.Z/jU/ . We prove Theorem 2.2.1 along the line of a proof of Ochiai’s
Theorem (Theorem 2.1.1) using the Euclidean flat connection and Harish-Chandra
coordinates as explained, showing that, in the case where Z and X are Hermitian
symmetric and using Harish-Chandra coordinates, for the Hessian d2f .
; 
/ we have
d2f .˛; ˛/ 2 Cdf .˛/ when evaluated at a point z 2 Z and at a vector ˛ 2eCz.Z/ under
the nondegeneracy condition on the second fundamental form as stated.

When Z and X are irreducible Hermitian symmetric spaces of the compact type
and of rank 	 2 the proof is the same as in Mok [Mk99]. In general, one makes use
of special coordinate systems, as follows. Let z 2 Z be a general point and ˛ 2eCz.Z/
be a smooth point such that df .˛/ is a smooth point of eC f .z/.X/. Let ` � Z be the
minimal rational curve with a marking at z, and assume that z is a smooth point of
` for convenience. Let z0 2 ` be a smooth point close to z. Write Tz0.`/ D C˛0. Let
D � Cz0.Z/ be a smooth neighborhood of Œ˛0� on Cz0.Z/, and O be a neighborhood
of 0 in C

p such that the assignment t D .t1; � � � ; tp/ 7! Œ˛0
t � 2 D, ˛0

0 D ˛0, defines
a biholomorphism from O onto D. Consider now the family of minimal rational
curves parametrized by O given by a holomorphic map ˆ W P1 �O ! Z such that
ˆ.0; t/ D z0 for t 2 O, ˆ.s; 0/ 2 `0

0 WD ` and such that, for t 2 O, 't.s/ WD ˆ.s; t/
parametrizes the minimal rational curve `0

t passing through z0 such that Tz0.`0
t/ D

C˛0
t , ˛

0
t 2 D. We may assume that z D '0.s0/ for some s0 2 �, ˆj���O is an

embedding and that 'tj� is an embedding for t 2 O.
Consider a holomorphic coordinate chart on a neighborhood U of z0 in Z,

z 2 U, in which the minimal rational curves near `0
0 D ` passing through

z0 are represented on the chart as open subsets of lines through the origin. For
each general point w 2 Z, let Vw be the union of minimal rational curves
passing through w. Thus, † WD ˆ.� � O/ � Vz0 . Writing the parametrization
as ˆ.s; t/ D s. 1.t/; � � � ;  n.t// D s .t/ in terms of the chosen Euclidean
coordinates, observe that † is smooth along '0.��/ and that for w 2 '0.��/ we
have Tw.†/ D Span

˚
. .0/;

@ 

@t1
.0/; � � � ; @ 

@tp
.0/

�
, which is independent of s. We call

this the tangential constancy of † along the minimal rational curve `. From the
basics in the deformation theory of rational curves this implies that VMRTs are
tangentially constant (in an obvious sense) along `. The latter applies to all minimal
rational curves at the same time when there is a coordinate system in which all
minimal rational curves are represented by affine lines, which is in particular the
case for Harish-Chandra coordinates in the Hermitian symmetric case, and that was
the reason underlying the differential-geometric proof of Ochiai’s Theorem.

In general for the computation at z 2 ` � Z, we have to resort to the special
coordinates arising from some nearby point z0 lying on `, as described in the above.
Compared to Riemannian geometry, the latter may be taken as an analogue of
normal geodesic coordinates at z0 in which minimal rational curves passing through
z0 appear as radial lines. Since other minimal rational curves intersecting with the
chart need not be represented as affine lines, an elementary approximation argument
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was needed to carry through the proof, as was done in Hong-Mok [HoM10,
Lemma 2.7].

Recently Hwang [Hw14b] has a generalized formulation of non-equidimensional
Cartan-Fubini extension, as follows.

Theorem 2.2.2 (Hwang [Hw14b, Theorem 1.3]). Let .Z;H/ and .X;K/ be two
uniruled projective manifolds with minimal rational components. Assume that Z is
of Picard number 1 and that Cz.Z/ is positive-dimensional at a general point z 2 Z.
Let f W U ! X be a holomorphic embedding defined on a connected open subset
U � Z. Suppose f].C.X/jU/ � C.Z/ and

˚

 2 Tf].Œ˛�/.Cf .z/.X// W 	.
; 
/ D 0 for any 
 2 Tf].Œ˛�/.f].Cz.Z///

� D 0 ;

then f extends to a rational map F W Z ! X.

Hwang [Hw14b] made use of differential systems and Lie brackets of holo-
morphic vector fields more in the spirit of the proof in Hwang-Mok [HM01] and
does not require the use of adapted coordinates, and the proof is therefore more
intrinsic, although the original proof in Hong-Mok [HoM10] also applies to give the
same statement. One motivation for the more generalized formulation is that even
when dim.Z/ = dim.X/, Theorem 2.2.2 exceeds the equidimensional Cartan-Fubini
extension in Theorem 2.1.2. The context applies, by the method of Hwang-Kim
[HK13a] to equidimensional maps given by suitable double covers branched over
Fano manifolds of Picard number 1 of large index.

3 Characterization and Recognition of Homogeneous VMRT
Structures

3.1 Uniruled Projective Manifolds Equipped with Reductive
Holomorphic G-Structures

Just as the flat Euclidean space (as a germ) is characterized among Riemannian
manifolds by the vanishing of the curvature tensor, flat G-structures are charac-
terized by the vanishing of certain structure functions (Guillemin [Gu65]). For
k 	 1, a G-structure G.X/ � F.X/ is k-flat at x if and only if there exists a
germ of biholomorphism f W .XI x/ ! .VI 0/ such that f�G is tangent to the flat
G-structure G0 D G � V along G0

0 to the order 	 k. When a given G-structure on
X is k-flat at every point, there is a naturally defined structure function ck which
measures the obstruction to .kC 1/-flatness, which is a holomorphic 2-form taking
values in some quotient bundles of tensor bundles of the form T.X/ ˝ SkT�.X/.
G acts on these quotient bundles. In the event that G ¨ GL.V/ is reductive,
by identifying the latter quotient bundles with G-invariant vector subbundles of
T.X/ ˝ SkT�.X/, the structure functions concerned correspond to holomorphic
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sections �k of Hom
�
ƒ2T.X/;T.X/ ˝ SkT�.X/

�
. In this case for proving flatness

it suffices to check the vanishing of a finite number of �k. Concerning uniruled
projective manifolds endowed with reductive G-structures we have the following
result of Hwang-Mok [HM97].

Theorem 3.1.1 (Hwang-Mok [HM97]). Let X be a uniruled projective manifold
admitting an irreducible reductive G-structure, G ¨ GL.V/. Then, X is biholo-
morphic to an irreducible Hermitian symmetric space of the compact type and of
rank 	 2.

We refer the reader to Hwang-Mok [HM99a] and Mok [Mk08b, (4.3)] for
discussions on G-structures on uniruled projective manifolds surrounding the above
theorem, and will be contented here with some remarks on the proof of the theorem.
When a G-structure G � F.X/ is defined we have an associated homogeneous
holomorphic fiber subbundle W � PT.X/, where the fibers Wx � PTx.X/
are highest weight orbits. The first step of the proof consists of showing that
W agrees with the VMRT structure C.X/ � PT.X/, and the proof is based on
Grothendieck’s classification of G-principal bundles on P

1 (Grothendieck [Gro57]).
The identification C.X/ DW implies that every minimal rational curve is standard,
and that Cx.X/ agrees with the VMRT of an irreducible Hermitian symmetric space
S of the compact type of rank r 	 2, i.e., the G-structure is an S-structure.
After that it remains to check the vanishing of structure functions interpreted as
elements �k 2 �

�
X;Hom.ƒ2T.X/;T.X/ ˝ SkT�.X/

�
. When �k is restricted to

elements of the form ˛ ^ 
, where ˛ 2 eCx.X/ and 
 2 P˛ , then �k.˛; 
/ D 0

follows by restricting to standard minimal rational curves ` and checking degrees of
summands in Grothendieck decomposition basing on T.X/j` Š O.2/˚O.1/p˚Oq,
Tx.`/ D C˛ (assuming ` to be embedded to simplify the notation), noting that for

 2 P˛, ˛ ^ 
 2 ƒ2T.X/j` belongs to a direct summand of degree 3, while all direct
summands of .T.X/˝ SkT�.X//j` are of degree
 2. The flatness of the G-structure
results from the fact that f˛ ^ P˛ W ˛ 2 eCx.X/g spans ƒ2Tx.X/, cf. Hwang-Mok
[HM98, (5.1), Proposition 14].

3.2 Recognizing Rational Homogeneous Spaces of Picard
Number 1 from the VMRT at a General Point

For a rational homogeneous space S D G=P of Picard number 1, denoting by
O.1/ the positive generator of Pic.S/ Š Z we identify S � P.�.S;O.1//�/ as
a projective submanifold via the minimal embedding by O.1/, and equip S with
the minimal rational component on S consisting of projective lines on S. We are
interested in characterizing a given uniruled projective manifold in terms of its
VMRTs as projective submanifolds. Especially we have the following Recognition
Problem for rational homogeneous spaces of Picard number 1 formulated in Mok
[Mk08c].
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Definition 3.2.1. Let S D G=P be a rational homogeneous space of Picard number
1, and C0.S/ � PT0.S/ be the VMRT of S at 0 D eP 2 S. For any uniruled projective
manifold X of Picard number 1 equipped with a minimal rational component K,
we denote by Cx.X/ � PTx.X/ the VMRT of .X;K/ at a general point x 2 X.
We say that the Recognition Problem for S is solved in the affirmative if any uniruled
projective manifold X of Picard number 1 must necessarily be biholomorphic to S
whenever

�
Cx.X/ � PTx.X/

�
is projectively equivalent to

�
C0.S/ � PT0.S/

�
.

Cho, Miyaoka and Shepherd-Barron [CMS02] proved the characterization of
the projective space P

n among uniruled projective manifolds by the fact that for
a minimal rational curve ` we have K�1

X � ` D n C 1, i.e., equipping X with some
minimal rational component, the assumption Cx.X/ D PTx.X/ at a general point x 2
X implies that X is biholomorphic to P

n. The purpose of the Recognition Problem
was to deal with the characterization of S D G=P different from a projective space,
i.e., where C0.S/ ¨ PT0.S/ at 0 D eP. The following theorem gives our current
state of knowledge on the Recognition Problem for rational homogeneous spaces of
Picard number 1.

Theorem 3.2.1 (Mok [Mk08c], Hong-Hwang [HH08]). Let G be a simple com-
plex Lie group, P � G be a maximal parabolic subgroup corresponding to a long
simple root, and S WD G=P the corresponding rational homogeneous space of
Picard number 1. Then, the Recognition Problem for S is solved in the affirmative.

We refer the reader to Mok [Mk08b, (6.3)] for an exposition revolving around
the Recognition Problem and the proof of Theorem 3.2.1. Here in its place we
will explain the principle underlying our approach and give some highlights on
how the principle applies in the proof of the theorem. The first geometric link
between VMRT structures and differential geometry was the author’s proof of
the Generalized Frankel Conjecture (Mok [Mk88]) in Kähler geometry which
characterizes compact Kähler manifolds of semipositive holomorphic bisectional
curvature. In particular, if X is a Fano manifold of Picard number 1 admitting a
Kähler metric g of semipositive holomorphic bisectional curvature, then by [Mk88]
it must be biholomorphic to an irreducible Hermitian symmetric space S of the
compact type. Regarding X as a uniruled projective manifold, it was proven that
the VMRT structure C.X/ � PT.X/ on X is invariant under holonomy of a metric
gt; t > 0; obtained from g by the Kähler-Ricci flow. (This was the core result of
[Mk88] even though the term VMRT had not been introduced at that point.) In the
absence of a Kähler metric with special properties, it was a challenge to introduce
some notion of parallel transport that makes sense in the general setting of a uniruled
projective manifold equipped with a minimal rational component K and hence with
the associated VMRT structure � W C.X/! X, C.X/ � PT.X/.

Our study of the Recognition Problem actually went back to the work Mok
[Mk02] concerning the conjecture of Campana-Peternell [CP91] on compact com-
plex manifolds with nef tangent bundle (cf. (3.3)), where we devised a method for
reconstructing a Fano manifold X of Picard number 1 with nef tangent bundle from
its VMRT Cx.X/ � PTx.X/ in the very special case where dim.Cx.X// D 1. In the
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general case where the VMRT of .X;K/ at a general point x 2 X is congruent to
that of the model, i.e., C0.S/ � PT0.S/, S D G=P, a priori there is a subvariety
E � X, where Cy.X/ is not known to be congruent to the model for y � E. The key of
the affirmative solution in the Hermitian symmetric case is a removable singularity
theorem in codimension 1, viz., the assertion that for each irreducible component H
of E which is a hypersurface of X, a general point y on H is a removable singularity
for the VMRT structure. Note that in the Hermitian symmetric case the orbit of
C0.S/ � PT0.S/ is parametrized by an affine-algebraic variety M � C

N . In a
neighborhood U of y in X, the VMRT structure can be described by a holomorphic
map ' W U�E ! M � C

N , and saying that the S-structure has a removable
singularity at y is the same as saying that the vector-valued holomorphic map has
a removable singularity. Once we have proven a removable singularity theorem
in codimension 1, it follows by Hartogs extension that the S-structure extends
holomorphically to X, and we conclude that X Š S by Theorem 3.1.1, as desired.

In what follows, to simplify the notation we assume that standard rational curves
are embedded. To prove the removable singularity theorem for VMRT structures
in the Hermitian symmetric case we introduce a method of parallel transport of
VMRTs. Note that every curve on X must intersect a hypersurface since X is of
Picard number 1. Starting with a standard rational curve ` 6� E and considering
the lifting b̀� PT.X/j`, we transport the second fundamental form 	Œ˛� of Cx.X/ �
PTx.X/ at ŒTx.`� WD Œ˛� over x 2 ` \ .X�E/ to the second fundamental form
	Œˇ� of Cy.X/ � PTy.X/ at ŒTy.`/� WD Œˇ� over y 2 ` \ H. Observing that the

second fundamental form 	 along b̀ gives a holomorphic section of a holomorphic
vector bundle V (of rank WD r) which is holomorphically trivial [Mk08c, (6.1),
Proposition 6], which results from the fact that ` is a standard rational curve, we
have a parallel transport in the sense that Vjb̀ Š C

r � b̀, and that an element

 2 VŒ˛� is transported to �.Œˇ�/ 2 VŒ˛� for the unique holomorphic section

� 2 �.b̀;V/ such that �.Œ˛�/ D 
. This already yields a removable singularity
theorem for VMRT structures in the case of the hyperquadric, since the smooth
hyperquadric Qn�2 Š C0.Qn/ � PT0.Qn/ Š P

n�1 cannot be deformed to a singular
hyperquadric unless its second fundamental form at a general point also degenerates.
In the general case of S-structures more work is required, e.g., in the case where the
VMRT C0.S/ is itself an irreducible Hermitian symmetric space of rank	 2, parallel
transport of the second fundamental form along b̀ implies a parallel transport of the
VMRT structure of Cx.X/, in a neighborhood of Œ˛� to a neighborhood of Œˇ� on
Cy.X/. Here Cx.X/ is regarded itself as a uniruled projective manifold equipped with
the minimal rational component H consisting of projective lines in PTx.X/ lying on
Cx.X/, and the parallel transport of the VMRT structure of .Cx.X/;H/ is shown to be
enough to force a removable singularity theorem of S-structures in codimension 1.

In [Mk08c] the argument was carried through also in the contact case, where on
top of parallel transport of the second fundamental form we also introduced parallel
transport of the third fundamental form, and resort to the work of Hong [Ho00] on
the characterization of contact homogeneous spaces which replaces Theorem 3.1.1.
When the VMRT of X at a general point is congruent to C0.S/ � PT0.S/ for a Fano
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homogeneous contact manifold S of Picard number 1 other than an odd-dimensional
projective space, the linear span of VMRTs on X defines a meromorphic distribution
D of co-rank 1 on X, and parallel transport of the third fundamental form by the
same principle as explained in the last paragraph is made possible by the splitting
type Dj` Š O.2/ ˚ O.1/r ˚ Or ˚ O.�1/. The argument was generalized in the
other long-root cases by Hwang-Hong [HH08], in which analogues of the results of
[Ho00] were obtained to solve the Recognition Problem in the affirmative for the
remaining long-root cases.

Remarks.

(a) In [Mk88], in the event that Cx.X/ D PTx.X/ and the tangent map �x W Ux Ü
Cx is not a biholomorphism at a general point, we proved that there exists a
hypersurface H � PT.X/ which is invariant under holonomy of .X; gt/; t > 0

sufficiently small. A posteriori this situation does not occur.
(b) In Mok [Mk08b, (6.3), Conjecture 6], S D G=P should have been “a Fano

homogeneous space of Picard number 1” (instead of “a Fano homogeneous
contact manifold of Picard number 1”). The Recognition Problem was expected
to be always solved in the affirmative for S D G=P of Picard number 1.

3.3 Rationale, Applications and Generalizations
of the Recognition Problem

The original motivation of the Recognition Problem was an attempt to tackle
the Campana-Peternell Conjecture in [CP91], which may be regarded as a gen-
eralization of the Hartshorne Conjecture, or as an algebro-geometric analogue of
the Generalized Frankel Conjecture in Kähler geometry. It concerns projective
manifolds X with nef tangent bundle. Especially, under the assumption that X is
Fano and of Picard number 1, according to the Campana-Peternell Conjecture X
is expected to be biregular to a rational homogeneous space, i.e., X Š G=P, where G
is a simple complex Lie group, and P � G is a maximal parabolic subgroup. In Mok
[Mk02] we took the perspective of reconstructing X from its VMRTs, and solved the
problem in the very special case where X admits a minimal rational component K
for which VMRTs are one-dimensional, and where in addition b4.X/ D 1. The latter
topological condition was removed by Hwang [Hw07], leading to

Theorem 3.3.1 (Mok [Mk02], Hwang [Hw07]). Let X be a Fano manifold of
Picard number 1 with nef tangent bundle. Suppose X is equipped with a minimal
rational component for which the variety of minimal rational tangents at a general
point x 2 X is one-dimensional. Then, X is biholomorphic to the projective
plane P

2, the 3-dimensional hyperquadric Q3, or the 5-dimensional Fano contact
homogeneous space K.G2/ of type G2. In particular, X is a rational homogeneous
space.
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Here we note that a weaker condition than the nefness of the tangent bundle
was used in the proof of the theorem, viz., only the nefness of the restriction of the
tangent bundle T.X/ to rational curves was used. The latter implies that deformation
of rational curves is unobstructed, and hence the minimal rational component K is a
projective manifold, and we have the universal family � W U ! K accompanied
by the evaluation map � W U ! X which is also a holomorphic submersion.
When VMRTs are one-dimensional, under the nefness assumption one shows easily
that the fibers Ux of � W U ! X are smooth rational curves. It was proven in
[Mk02] that for the P

1-bundle � W U ! K the direct image of the relative tangent
bundle T� gives a rank-3 bundle which is stable, yielding by an application of the
Bogomolov inequality that �x W Ux ! PTx.X/ is of degree d 
 4 under the additional
assumption b4.X/ D 1, and for the equality case we resorted to the existence result
of Uhlenbeck-Yau [UY86] on Hermitian-Einstein metrics on stable holomorphic
vector bundles over projective manifolds to arrive at a contradiction, leaving behind
the options d D 1; 2; 3. These options do exist as is given in the statement of
Theorem 3.3.1. The Recognition Theorem now enters, allowing us to recover the
hyperquadric Q3 from the VMRT in case d D 2, and to recover the five-dimensional
Fano contact homogeneous space K.G2/ in case d D 3. They served as prototypes
for the Recognition Problem for the Hermitian symmetric case and the Fano contact
case as solved in the affirmative in Mok [Mk08c].

While Theorem 3.3.1 concerns a very special case of the Campana-Peternell
Conjecture, it is worth noting that there is no assumption on the dimension of X
itself. It is tempting to think that for VMRTs which are of dimension 2 one could
identify the possible VMRTs for X of Picard number 1 and of nef tangent bundle,
and recover X through the Recognition Problem. It appears for the time being
conceptually difficult to devise a strategy for a solution of the Campana-Peternell
Conjecture for Fano manifolds of Picard number 1 along the lines of thought in
Theorem 3.3.1 since in the short-root case VMRTs are only almost homogeneous.
Since a key element in the proof of Theorem 3.3.1 was a bound on the degree of the
tangent map it would be meaningful to try to get an a priori bound of dim.X/ in
terms of dimensions of VMRTs under the nefness assumption on the tangent bundle.

Another reason for introducing the Recognition Problem was to give a con-
ceptually unified proof of the deformation rigidity under Kähler deformation
of rational homogeneous spaces S D G=P of Picard number 1. The rigidity
problem was taken up in Hwang-Mok [HM98], Hwang [Hw97], and Hwang-Mok
[HM02, HM04a, HM05], according to an underlying classification scheme for
X D G=P in terms of complexity into the Hermitian symmetric case [HM98], the
Fano contact case [Hw97], the remaining long-root cases [HM02], and the short-
root cases [HM04a, HM05]. As it turned out, the case of the seven-dimensional Fano
homogeneous contact manifold F

5, i.e., the Chow component of minimal rational
curves on the hyperquadric Q5, was missed in Hwang [Hw97] and again in Hwang-
Mok [HM02], and it was later found by Pasquier-Perrin [PP10] that F

5 admits
a deformation to a G2-horospherical variety X5. The corrected statement about
the rigidity problem under Kähler deformation of rational homogeneous spaces
S D G=P of Picard number 1 is given by
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Theorem 3.3.2. Let S D G=P be a rational homogeneous space of Picard number
1 other than the 7-dimensional Fano homogeneous contact manifold F

5. Let � W
X ! � WD ft 2 C; jtj < 1g be a regular family of projective manifolds such that the
fiber Xt WD ��1.t/ is biholomorphic to S for t ¤ 0. Then, X0 is also biholomorphic
to S.

There was a general scheme of proof adopted in the series of articles mentioned
on the rigidity of S D G=P under Kähler deformation. Note that X0 is a uniruled
projective manifold equipped with the minimal rational component K0 whose
general point is a free rational curve of degree 1 with respect to the positive generator
O.1/ of Pic.X0/ Š Z. The general scheme consists first of all of a proof that
at a general point x0 of the central fiber X0, the VMRT Cx0 .X0/ � PTx0 .X0/ is
projectively equivalent to the VMRT Cxt.Xt/ � PTxt .Xt/ at any point xt 2 Xt for t ¤
0, i.e., projectively equivalent to the VMRT C0.S/ � PT0.S/ of the model manifold
S D G=P at the reference point 0 D eP. We may call this the invariance of VMRTs
(at a general point) under Kähler deformation. Shrinking � around 0 and rescaling
the variable t if necessary, the comparison of VMRTs on different fibers was done
by choosing xt D 	.t/ for a holomorphic section 	 W �! X where 	.0/ avoids the
bad set B of .X0;K0/. The VMRTs C	.t/.Xt/, t 2 �, are images of the tangent map
�	.t/ W U	.t/.Xt/ Ü C	.t/.Xt/, where the set fU	.t/.Xt/ W t 2 �g constitutes a regular
family of projective manifolds. With some oversimplification in most long-root
cases the latter fact allows us to deduce U	.0/ Š U0.S/ by an inductive argument.

For the inductive argument we recall that the tangent map �0 W U0.S/ Š�! C0.S/ is
a biholomorphism and note that in the long-root case U0.S/ Š C0.S/ � PT0.S/ is a
Hermitian symmetric space of the compact type of rank
 3. An inductive argument
applies in the long-root case when C0.S/ is irreducible but there are cases where
C0.S/ is reducible, as for example, the Grassmannian G.p; q/ of rank	 2 where the
VMRT is given by the Segre embedding & W Pp�1 � P

q�1 ! P
pq�1. In the latter

case invariance of VMRTs under Kähler deformation was established in [HM98]
by cohomological considerations in the deformation of projective subspaces of Xt

associated to factors of C0.G.p; q// Š P
p�1 � P

q�1. After the invariance of VMRTs
under deformation has been established, which in the short-root cases involves
explicit descriptions of the VMRTs (which are only almost homogeneous) and
their deformations, properly speaking the geometric theory of VMRTs enters in the
study of the tangent map. In [HM98] it was proven in a general setting for uniruled
projective manifolds of Picard number 1 that the distributionW spanned by VMRTs
is not integrable, while sufficient projective-geometric conditions were given for the
integrability of W forcing the tangent map �x0 to be an isomorphism at a general
point x0 2 X0 in [HM98]. In the other long root cases the VMRTs of the model
manifold are linearly degenerate, and we made use of the more general result that
W must be bracket generating for a uniruled projective manifold X of Picard number
1 to reach the same conclusion in [HM02]. Here we say that a distribution W on X
is bracket generating to mean that the tangent subsheaf generated by W from taking
successive Lie brackets is the tangent sheaf. The same resoning was applied to the
short-root cases in [HM04a] and [HM05]. In the cases of [HM05], the VMRTs of
the model spaces are linearly nondegenerate.
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For the long-root case to conclude X0 Š S one makes use of results from
differential systems, viz., Ochiai’s theorem [Oc70] in the Hermitian symmetric case
and Yamaguchi’s result on differential systems [Ya93] for long-root cases other
than the symmetric and contact cases. (In the contact case [Hw97] uses a simpler
argument.) There is one short-root case of type F4 in which the VMRT is linearly
degenerate which was treated in [HM04a] along the line of [HM02], while the most
difficult case of the rigidity problem was the short-root cases of the symplectic
Grassmannian Sk;` (cf. below) and the remaining F4 short-root case, where the
VMRTs are linearly nondegenerate. In the latter cases it was after establishing
invariance of VMRTs that the real difficulty emerges, viz., the key issue was how
one can recover S from its VMRTs. It was tempting to give a unified argument
on rigidity under Kähler deformation (with one exception) as a consequence of
(a) invariance of VMRTs under deformation and (b) an affirmative solution of the
Recognition Problem. Such a unified scheme of proof would apply to the central
fiber X0 as a separate uniruled projective manifold equipped with the minimal
rational component K without using the fact that it is the central fiber of a family
such that the other fibers are biholomorphic to the model manifold S D G=P. In
the exceptional case of the seven-dimensional Fano homogenous contact manifold
F
5 (cf.Theorem 3.3.2) rigidity under Kähler deformation fails precisely because (a)

fails.
While the affirmative solutions of the Recognition Problem in the long-root cases

give a unified explanation of the phenomenon of deformation rigidity (with one
exception) in those cases, the same problem for the short-root cases remains unre-
solved. An important feature for the primary examples of symplectic Grassmannians
X D Sk;` is the existence of local differential-geometric invariants which cannot
possibly be captured by the VMRT at a general point. To explain this we describe
the symplectic Grassmannian. Consider a complex vector space W of dimension
2` equipped with a symplectic form !. Let k be an integer, 1 < k < `, and
consider the subset Sk;` � Gr.k;W/ of k-planes in W isotropic with respect to !.
Let x D ŒE� 2 Sk;` be an arbitrary point. Suppose A.k�1/ resp. B.kC1/ are vector
subspaces of W of dimension k � 1 resp. k C 1 such that A.k�1/ � E � B.kC1/.
Suppose furthermore that B.kC1/ is isotropic with respect to !. Let � � Gr.k;W/
be the rational curve consisting of all k-planes F such that A.k�1/ � F � B.kC1/.
Then, !jF � 0 for every ŒF� 2 � , hence � � Sk;`: For a minimal rational curve
� as described we have Tx.�/ D C�, where � 2 Hom.E;W=E/ D Tx.Sk;`/ such
that �jA.k�1/ � 0 and Im.�/ D B.kC1/=E: The set of all ŒTx.�/� 2 PTx.Sk;`/ thus
described is given by Sx WD

˚
Œa ˝ b� W 0 ¤ a 2 E�; 0 ¤ b WD ˇ C E 2

W=E; !jECCˇ

� � 0. Thus, writing Qx D E?=E we have Sx D �.P.E�/ � P.Qx//,
where � W P.E�/ � P.Qx//! P.E� ˝ Qx/ is the Segre embedding. The assignment
E! E�˝Qx defines a holomorphic distribution D on Sk;` which is invariant under
the symplectic group Sp.W; !/ D Aut.Sk;`/:
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The minimal rational curves � � Sk;` described in the above are special. In the
definition of a minimal rational curve containing the k-plane ŒE� in place of requiring
! to be isotropic on B.kC1/ it suffices to have B.kC1/ D E C Cˇ, where 0 ¤ ˇ 2
A?�E, A D A.k�1/. In fact, writing E D A.k�1/CCe and assuming ˇ 2 W �E, the
condition that E WD A.k�1/CC� is isotropic with respect to ! for any � 2 CeCCˇ

is equivalent to the requirement that ˇ 2 A?. Thus, the VMRT Cx.Sk;`/ at x is given
by Cx.Sk;`/ D

˚
Œa˝ b� W 0 ¤ a 2 E�; 0 ¤ b WD ˇCE 2 W=E; !.ˇ; ˛/ D 0 for any

˛ such that a.˛/ D 0
�
, and the locus of tangents of the ‘special’ minimal rational

curves at x is given by Sx.Sk;`/ D Cx.Sk;`/\PDx: The distribution D ¨ T.Sk;`/ is not
integrable. Observing that .W; !/ induces a symplectic form $x on Qx D E?=E,
dim.Qx/ D 2.` � k/, the Frobenius form 'x W ƒ2Dx ! Tx.Sk;`/=D is determined
in a precise way by $x (cf. Hwang-Mok [HM05, Proposition 5.3.1]), so that for
0 ¤ a; a0 2 E�; b; b0 2 Qx, 'x.a ˝ b; a0 ˝ b0/ ¤ 0 if and only if $x.b; b0/ ¤ 0.
The symplectic form $ on Qx cannot be recovered from the VMRTs alone, in fact
there exists a uniruled projective manifold Z of Picard number ¤ 1 with isotrivial
VMRTs Cz.Z/ � PTz.Z/ projectively equivalent to Cx.Sk;`/ � PTx.Sk;`/ such that
the analogous distribution D, is integrable (cf. Hwang [Hw12]). Here PDz � PTz.Z/
is retrieved from Cz.Z/ � PTz.Z/ as the linear span of the locus where the second
fundamental form is degenerate.

It remains to recognize X Š Sk;` for a uniruled projective manifold X of Picard
number 1 such that the VMRT Cx.X/ � PTx.X/ is projectively equivalent to
Cx.Sk;`/ � PTx.Sk;`/. While one of the original motivations of the Recognition
Problem is to prove rigidity under Kähler deformation in a conceptually uniform
manner this has so far not been possible for the short-root cases. Reasoning in
the opposite direction, the method of proof of rigidity under Kähler deformation
in Hwang-Mok [HM05] may give a hint to the solution of the Recognition Problem
for Sk;`, which is conceptually an important problem in its own right. In Hwang-Mok
[HM05] we obtained a foliation on the central fiber in the deformation problem by
means of the Frobenius form ' W ƒ2D! T.X/=D associated to the specific VMRT
structure. Recall that in [HM05] we considered a regular family � W X ! � of
Kähler manifolds with Xt WD ��1.t/ Š Sk;` for t ¤ 0, and, using estimates of
vanishing orders and dimensions of linear spaces of vector fields we studied also
the possibility that the Frobenius form is a priori degenerate on D � X, leading to
a meromorphic fibration on the central fiber X0 by Grassmannians, from which we
reached a contradiction by showing that the underlying space of such a meromorphic
fibration must be singular. In the case of the Recognition Problem for the symplectic
Grassmannian one has to first get local models for isotrivial VMRTs modeled on
Cx.Sk;`/ � PTx.Sk;`/ depending on the rank of some skew-symmetric bilinear form
$x on a 2.`�k/-dimensional vector space Qx at a general point x 2 X, where Qx can
be retrieved from the VMRT and $x is determined by the Frobenius form 'x. The
construction and parametrization of local models are by themselves a challenging
problem requiring new ideas on the local study of differential systems arising from
these specific VMRTs. In the case of X D X0 being the central fiber of a regular
projective family � W X ! �, there is a priori at most one model up to equivalence
when the rank of ! is fixed at a general point, and the existence of such a model was
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finally shown to contradict the smoothness of X0 unless the rank of $x is maximal
at a general point, in which case we showed X0 Š Sk;`.

Regarding the exceptional case of S D F
5 for rigidity under Kähler deformation

of rational homogeneous spaces of Picard number 1 as stated in Theorem 3.3.1,
Hwang [Hw14a] has established the following result giving two alternatives for the
central fiber.

Theorem 3.3.3 (Hwang [Hw14a]). Let � W X ! � be a regular family of
projective manifolds over the unit disk �, and denote by Xt WD ��1.t/ the fiber
over t 2 �. Suppose Xt is biholomorphic to F

5 for each t 2 � � f0g, then the
central fiber is biholomorphic to either F5 or to the G2-horospherical variety X5 in
Pasquier-Perrin [PP10].

Paradoxically, the failure of rigidity under Kähler deformation in the exceptional
case of S Š F

5, coupled with Hwang’s result above, lends credence to an important
general principle in the geometric theory of VMRTs, viz., that in the case of
a uniruled projective manifold X of Picard number 1, the underlying complex
structure should be recognized by its VMRT at a general point. In [Hw14a],
Theorem 3.3.3 was proven precisely by identifying two alternatives for a general
VMRT on the central fiber and by recovering the complex structure of X0 by means
of solving the associated Recognition Problem in the affirmative.

For S D F5 D G=P with a reference point 0 D eP 2 S, denoting by D ¨ T.S/ the
unique G-invariant proper holomorphic distribution on S, to be called the minimal
distribution, the VMRT C0.S/ � PD0.S/ is projectively equivalent to the image of

 W P1�P1 ! P

5, where, writing �i; i D 1; 2; for the canonical projection of P1�P1
onto its i-th factor, 
 is the embedding given by ��

1 O.1/˝��
2 O.2/. Moreover, it can

be proven that for the regular family � W X ! �, letting D[ be the distribution on
X j�� such that D[jXt � T.Xt/ agrees with the minimal distribution on Xt for t ¤ 0,
D[ extends across the central fiber to give a meromorphic distribution D on X . In
the proof of Theorem 3.3.3, taking a holomorphic section 	 W �.�/ ! X for some
� > 0 such that 	.0/ is a general point of X0, and considering the regular family
� W E ! �.�/ of projective submanifolds of Et WD 	�C	.t/.Xt/ � 	�

PD	.t/ Š P
5,�

E0 � P
5
�

is proven to be projectively equivalent to either
�

.P1 � P

1/ � P
5
�

or
to

�
† � P

5
�
, where † WD P.O.�1/ ˚ O.�3// is a Hirzebruch surface embedded

into P
5 by some ample line bundle. In the latter case the VMRT as a projective

submanifold at a general point of X0 is projectively equivalent to the VMRT of the
seven-dimensional G2-horospherical variety X5 in the notation of Pasquier-Perrin
[PP10]. Hwang then solved the Recognition Problem for X5 by resorting to the
obstruction theory for the construction of an appropriate connection on the central
fiber X0. This involves G-structures for a certain non-reductive linear group and the
proof in Hwang [Hw14a] is a tour de force.
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4 Germs of Complex Submanifolds of Uniruled
Projective Manifolds

4.1 An Overview

Let .X;K/ be a uniruled projective manifold equipped with a minimal rational
component, and � W C.X/ ! X, C.X/ � PTX , be the associated VMRT structure.
We are interested in studying germs of complex submanifolds of X in relation to
the VMRT structure. Since very little on the topic has been discussed in earlier
surveys, we will be more systematic here with the exposition. In Mok [Mk08a]
we examined the question of characterizing Grassmannians G.p0; q0/ � G.p; q/ of
rank r D min.p0; q0/ 	 2 realized as complex submanifolds by means of standard
embeddings. The fundamental analytic tool was the non-equidimensional Cartan-
Fubini extension developed in full generality in Hong-Mok [HoM10] as stated in
Theorem 2.2.1, which was applied in [HoM10] to yield characterization theorems
on standard embeddings for pairs of rational homogeneous spaces .X0;X/ of Picard
number 1, X0 � X, where X is defined by a Dynkin diagram marked at a long simple
root, and X0 is nonlinear and obtained from a marked sub-diagram. This result, and
generalizations by Hong-Park [HoP11] to the short-root case and to the case of
maximal linear subspaces, will be the focus in (4.2), where the geometric idea of
parallel transport of VMRTs along minimal rational curves will be explained. In
(4.3) we explain an application in Hong-Mok [HoM13] of the methods of (4.2) to
homological rigidity of smooth Schubert cycles with a few identifiable exceptions,
where the rigidity statement was reduced to the question whether local deformations
of a smooth Schubert cycle Z � X must be translates �.Z/ of Z, � 2 Aut.X/. The
latter question was answered in the affirmative in Hong-Mok [HoM13] in most cases
by using the rigidity of VMRTs as projective submanifolds under local deformation
of Z coupled with the argument of parallel transport of VMRTs. We explain the
complex-analytic argument of [HoM13] which deduces parallel transport of VMRTs
along minimal rational curves in the case of homogeneous Schubert cycles from the
compactness of the moduli of the homogeneous submanifold C0.Z/ � C0.X/. In
(4.4) we introduce the notion of sub-VMRT structures given by $ W C.S/ ! S,
C.S/ WD C.X/ \ PT.S/, for complex submanifolds S and discuss the rigidity
result of Mok-Zhang [Mz15] for sub-VMRT structures which strengthens those in
(4.2) from [HoM10] and [HoP11]. In (4.5) we formulate a rigidity result for sub-
VMRT structures on general uniruled projective manifolds .X;K/, and formulate
the Recognition Problem for the characterization of classes of uniruled projective
subvarieties on .X;K/ in terms of sub-VMRT structures. We consider in (4.6)
examples of sub-VMRT structures related to Hermitian symmetric spaces, and
discuss analytic continuation of sub-VMRT structures for special classes of uniruled
projective subvarieties.

It is worth noting that [Mk08a] originated from a method of proof of Tsai’s
Theorem [Ts93] concerning proper holomorphic maps between bounded symmetric
domains of rank 	 2 in the equal rank case, and as such the study of sub-VMRT
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structures is at the same time a topic in local differential geometry in a purely
transcendental setting. In (4.7) we explore various links of VMRT substructures to
algebraic geometry, several complex variables, Kähler geometry and the geometry
of submanifolds in Riemannian geometry, and describe some sources of examples,
including those from holomorphic isometries of Mok [Mz15] and from the classifi-
cation of sub-VMRT structures in the Hermitian symmetric case of Zhang [Zh14].

4.2 Germs of VMRT-Respecting Holomorphic Embeddings
Modeled on Certain Pairs of Rational Homogeneous
Spaces of Sub-Diagram Type and a Rigidity Phenomenon

Let .Z;H/ and .X;K/ be uniruled projective manifolds equipped with minimal
rational components with positive-dimensional VMRTs. When Z is of Picard
number 1, given a VMRT-respecting holomorphic embedding f of a connected open
subset U � Z into X satisfying some genericity condition and a nondegeneracy
condition for the pair

�
f].Cz.Z// � Cf .z/.X/

�
expressed in terms of second

fundamental forms, non-equidimensional Cartan-Fubini extension (Theorem 2.2.1)
gives an extension of f .U/ to a projective subvariety Y � X such that dim.Y/ D
dim.U/. In the case of irreducible Hermitian symmetric spaces S of rank 	 2, for
which Ochiai’s Theorem on S-structures serves as a prototype for equidimensional
Cartan-Fubini extension, and more generally in the case of rational homogeneous
spaces X D G=P of Picard number 1, one expects to be able to say more about
the projective subvariety Y � X. This was first undertaken in Mok [Mk08a] in
the special case of Grassmannians of rank 	 2. For a pair .X0;X/ of rational
homogeneous spaces of Picard number 1 obtained from marked Dynkin diagrams,
the works of Hong-Mok [HoM10] and Hong-Park [HoP11] yielded the following
characterization theorem. Here we have a holomorphic equivariant embedding
ˆ W X0 D G0=P0 ,! G=P D X and a mapping F W X0 ! X is said to be a standard
embedding if and only if F D � ı ˆ for some � 2 Aut.X/. We have the following
result due to [HoM10] in the long-root case and [HoP11] in the short-root case.

Theorem 4.2.1 (Hong-Mok [HoM10, Theorem 1.2], Hong-Park [HoP11, Theo-
rem 1.2]). Let X0 D G0=P0 and X D G=P be rational homogeneous spaces associ-
ated to simple roots determined by marked Dynkin diagrams .D.G0/; �0/; .D.G/; �/
respectively. Suppose D.G0/ is obtained from a sub-diagram of D.G/ with �0 being
identified with � . If X0 is nonlinear and f W U ! X is a holomorphic embedding
from a connected open subset U � X0 into X which respects VMRTs at a general
point x 2 U, then f is the restriction to U of a standard embedding of X0 into X.

For finite-dimensional complex vector spaces E Š E0 and subvarieties A � PE,
A0 � PE0, we say that

�
A � PE

�
is projectively equivalent to

�
A0 � PE0�

if and only if there exists a projective linear isomorphism ‰ W PE
Š�! PE0

such that ‰.A/ D A0. To compare to Theorem 2.2.1, in what follows we will
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write Z for X0. Write S WD f .U/, which is a complex submanifold of some open
subset of X. Obviously for z 2 U,

�
Cz.Z/ � PTz.Z/

�
is projectively equivalent to�

f].Cz.Z// � f].PTz.Z//
�
, i.e.,

�
Cf .z/.S/ � PTf .z/.S/

�
. Here and henceforth we write

Cf .z/.S/ for Cf .z/.X/ \ PTf .z/.S/, which is the same as f].Cz.Z// by the hypothesis
that f respects VMRTs. (We will also write C.S/ WD C.X/ \ PT.S/.) Write ƒz D
Œdf .z/� W PTz.Z/

Š�! PTf .z/.S/ for the projective linear isomorphism inducing the
projective equivalence. In the long-root case, by the proof of Hong-Mok [HoM10,
Proposition 3.4], denoting by D.Z/ � T.Z/ the holomorphic distribution spanned

by VMRTs, ƒzjPDz.Z/ can be extended to ˆz D Œd�.z/� W PTz.X/
Š�! PTf .z/.X/

for some � 2 Aut.X/ such that �.z/ D f .z/. Thus, given the germ of VMRT-
respecting holomorphic map f W U ! X, Z0 WD �.Z/ gives a rational homogeneous
submanifold Z0 � X such that Cf .0/.Z0/ D Cf .0/.S/ and the proof of Theorem 4.2.1
consists of fitting S into the model Z0. (We remark that in the statement of [HoM10,
Proposition 3.4], in place of V D Tx.X/ and W WD Tx.Z/ one could have replaced
V by the linear span Dx.X/ of eCx.X/ and W by the linear span Dx.Z/ of eCx.Z/. The
arguments for the proof of [HoM10, Proposition 3.4] actually yield the following
stronger statement, which we will use in what follows. If B0 D C \ PW 0 is another
linear section such that

�
B0 � PW 0� is projectively equivalent to

�
B � PW

�
, then

there is h 2 P such that B0 D hB. In other words, in place of h 2 Aut.Cx.X// the
proof actually gives h 2 P. The latter fact was used in [HoM10] in the process of
fitting S into a model Z0 D �.Z/.)

For the proof of Theorem 4.2.1 the strategy was to compare the germ of manifold
S at some base point with the model complex submanifold Z0 D �.Z/ � X. In the
ensuing discussion, replacing f by ��1 ı f we will assume without loss of generality
that Z0 D Z, so that C0.S/ D C0.Z/. Starting with the base point 0 D f .0/ 2 S
and considering the union V1 of minimal rational curves on Z passing through 0,
preservation of the tautological foliation, i.e., f]�.FZ/ D FXjC.S/, as in the proof
of non-equidimensional Cartan-Fubini extension (Theorem 2.2.1) implies that the
germ .SI 0/ contains .V1I 0/. By the repeated adjunction of minimal rational curves,
we have 0 � V1 � � � � � Vm D Z. In order to prove that S is an open subset of Z
it suffices to prove inductively that the germ .SI 0/ contains .VkI 0/ for each k 	 1,
V0 D f0g. For k 	 1 the statement .SI 0/ � .VkI 0/ is the same as saying that
Cxk�1 .S/ D Cxk�1 .Z/ for any xk�1 2 Vk�1 \ S sufficiently close to 0. The inductive
argument was done in [Mk08a] and [HoM10] by means of parallel transport of
VMRTs along minimal rational curves, as follows. Assume .SI 0/ � .VkI 0/. If for
a general point x 2 S \ Vk, x D f .z/, we have f].Cz.Z// D Cf .z/.Z/, then .SI x/
contains the germ .V1.x/I 0/, where V1.x/ is the union of all rational curves on Z
passing through x D f .z/ 2 S \ Vk. At a point x D xk 2 S \ .Vk � Vk�1/ we
have a line ` joining some point x0 D xk�1 2 S \ Vk�1 to x, and we know that
S D f .U/ and Z share a nonempty connected open subset of the rational curve `,
which contains both x0 and x. From Cx0.S/ D Cx0.Z/ it follows that Cx.S/ and Cx.Z/
are tangent to each other at x. The argument of parallel transport of VMRTs along
minimal rational curves consists of the following statement established in the long-
root case by Hong-Mok [HoM10, Proposition 3.6] using the theory of Lie groups
and representation theory.
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Proposition 4.2.1. Let .Z;X/ be a pair of rational homogeneous spaces of Picard
number 1 marked at a simple root, X D G=P; 0 D eP. Suppose � 2 P and C0.�.Z//
and C0.Z/ are tangent to each other at a common smooth point Œ˛� 2 C0.�.Z// \
C0.Z/, then C0.�.Z// D C0.Z/.

For a proof of Proposition 4.2.1 which works in both the long-root and the short-
root cases we defer to (4.3). Returning to Theorem 4.2.1 for the short-root case, by
Hong-Park [HoP11, Proposition 2.2] the existence of ' 2 P such that Z0 WD '.Z/
is tangent to S WD f .U/ at f .0/ D 0 holds true in the short-root case excepting in
the case of certain pairs .Z;X/ where X is a symplectic Grassmannian and Z is a
Grassmannian. For the short-root case other than the exceptional pairs .Z;X/ Hong-
Park proceeded along the line of Hong-Mok [HoM10], but for the verification of the
nondegeneracy condition they resort to explicit description of VMRTs as projective
submanifolds as given in Hwang-Mok [HM04a] and [HM05].

To describe the exceptional pairs .Z;X/ recall that for X D Sk;` � Gr.k;W/,
there is an invariant distribution D � T.X/ given by D D U ˝ Q, where U and Q
are homogeneous vector bundles over X with fibers Ux D E� and Qx D E?=E at x D
ŒE� 2 X. Recall that Cx.Sk;`/\PDx.Sk;`/ D Cx.Sk;`/\P.Ux˝Qx/ D &.PUx�PQx/,
where & W PUx � PQx ! P.Ux ˝ Qx/ denotes the Segre embedding given by
&.Œu�; Œq�/ D Œu˝ q�. Fix now isotropic subspaces 0 ¤ F1 � F2 and consider Z � X
consisting of all (isotropic) k-planes E such that F1 � E � F2. Then, Z � X D
Sk;` � Gr.k;W/ is a Grassmannian, and T.Z/ D U0 ˝ Q0, where U0

x D .E=F1/� �
Ux, and Q0

x D F2=E � E?=E D Qx. We have rank.U0/ D k � dim F1 WD a,
rank.Q0/ D dim F2 � k WD b. Then, writing x D ŒE� 2 X, for any a-plane Ax � Ux

and any b-plane Bx � Qx,
�
&.PAx � PBx/ � P.Ax ˝ Bx/

�
is projectively equivalent

to
�
&.PU0

x�PQ0
x/ � P.Ux˝Qx/

�
. Recall that .W; !/ induces a symplectic form$x

on Qx D E?=E (cf. (3.3)). By definition $x vanishes on Q0
x D F2=E. If we choose

now Bx � Qx to be such that $xjBx 6� 0, then any projective linear isomorphism

ƒx W P.Ax ˝ Bx/
Š�! P.U0

x ˝ Q0
x/ such that ƒ.&.PAx � PBx// D &.PU0

x � PQ0
x/

cannot possibly extend to an element of the parabolic subgroup Px of G at x since
$x is invariant under Px.

For the solution of the special case .Z;X/ above for the symplectic Grassmannian
X D Sk;` it is sufficient to embed X into the Grassmannian Gr.k; 2`/ and solve the
problem for .Z;Gr.k; 2`//. The end result is that S D F.U/ is still an open subset
of a sub-Grassmannian Z0 in Gr.k; 2`/ which lies on X D Sk;`. We observe that
the proof yields the following. If we start with f W .ZI 0/ ! .Sk;`I 0/ such that f
respects VMRTs, and suppose f].C0.Z// D �.PAx � PBx/, then we have necessarily
$xjBx � 0.

Hong-Park [HoP11] considered in addition the cases involving maximal linear
subspaces Z D X0, as follows.

Theorem 4.2.2 (Hong-Park [HoP11, Theorem 1.3]). Let X D G=P be a rational
homogeneous space associated to a simple root and let Z � X be a maximal linear
subspace. Let f W U ! X be a holomorphic embedding from a connected open
subset U � Z into X such that P.df .Tz.U/// � Cf .z/.X/ for any z 2 U. If there
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is a maximal linear space Zmax of X of dimension dim.U/ which is tangent to f .U/
at some point x0 D f .z0/; z0 2 U, then f .U/ is contained in Zmax, excepting when
.ZmaxIX/ is given by .a/ X is associated to .B`; ˛i/; 1 
 i 
 `� 1, and Zmax is P`�i;
.b/ X is associated to .C`; ˛`/ and Zmax is P

1; .c/ X is associated to .F4; ˛1/ and
Zmax is P2.

The maximal linear subspaces … � C0.X/ break into a finite number of
isomorphism types under the action of the parabolic subgroup P on C0.X/ (cf.
Landsberg-Manivel [LM03]). The assumption that there is a maximal linear space
Zmax of X of dimension dim.U/ which is tangent to S WD f .U/ at some point x0 WD
f .z0/ 2 S implies that PTx0 .S/ D PTx0.Zmax/, which forces PTx.S/ � Cx.X/ to be a
maximal linear subspace of the same type for any x D f .z/ 2 S. Here the question is
whether the tautological foliation FX on PT.X/, regarded as a holomorphic line
subbundle, is tangent to PT.S/ and hence restricts to C.X/ \ PT.S/ D C.S/.
An affirmative answer to the latter question implies that S is an open set on a
projective linear subspace obtained by adjoining projective lines at a single base
point. Obviously f]�.FZ/ need not agree with FXjS. In fact, trivially any immersion
between projective spaces respects VMRTs.

Suppose ˛ 2 df .Tz0 .U//. To show that FXjS defines a foliation on S, in place
of requiring the nondegeneracy condition Ker 	˛. � ; df .Tz0.Z/// D C˛ it suffices
to have Ker 	˛. � ; df .Tz0.Z/// � df .Tz0 .Z//, which was checked to be the case for
Z D X0 being a maximal linear subspace, in which case Ker 	˛. � ; df .Tz0.Z/// D
df .Tz0.Z// with the exceptions as stated in the theorem. For the exceptional cases
(a)–(c), counter-examples had been constructed by Choe-Hong [CH04].

We note that Theorem 4.2.2, while formulated in terms of a holomorphic
embedding f W U ! X, concerns only the germ of complex submanifold .SI x0/,
where S D f .U/. Here f plays only an auxilliary role. In fact, any germ of
biholomorphism h W .UI z0/ ! .SI x0/ satisfies the condition P.dh.Tz.U/// �
Ch.z/.X/ whenever h is defined at z 2 U. As such Theorem 4.2.2 may be regarded as
a result on geometric substructures.

In the long-root and nonlinear case of admissible pairs .Z;X/, in which
case C0.Z/ � PT0.Z/ is homogeneous and nonlinear, given a germ of VMRT-
respecting holomorphic immersion f W .ZI z0/ ! .XI x0/ the condition
Ker 	˛

� � ;T˛.eCx0 .Z//
� � P˛ \ df .Tz0 .Z//, where P˛ D T˛.eCx0 .X//, forces

Ker 	˛
� � ;T˛.eC0.Z//

� D C˛ since the projective second fundamental form on
the nonlinear homogeneous projective submanifold Cz0.Z/ � PTz0.Z/ itself is
everywhere nondegenerate. The same implication holds true in the short-root case
provided that Œ˛� 2 Cx0 .X/ \ P.df .Tz0 .Z// is a general point of both Cx0 .X/ and
f].Cz0.Z//. Thus, in the nonlinear case of admissible pairs .Z;X/ one can examine
the question of rational saturation for a germ of complex submanifold endowed
with a certain type of geometric substructure (e.g., a sub-Grassmann structure)
without the assumption of the existence of an underlying holomorphic map. We
will show that this is indeed possible, and we will introduce a variation of the notion
of nondegeneracy for that purpose. This will be taken up in (4.4) and (4.5).
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4.3 Characterization of Smooth Schubert Varieties
in Rational Homogeneous Spaces of Picard Number 1

Characterization of standard embeddings between certain pairs of rational homo-
geneous spaces .X0;X/ of Picard number 1 was achieved by means of non-
equidimensional Cartan-Fubini extension and parallel transport of VMRTs along
minimal rational curves. In Hong-Mok [HoM13] this approach was further adopted
to deal with a problem of homological rigidity of smooth Schubert cycles on
rational homogeneous spaces. Recall that a Schubert cycle Z � X on a rational
homogeneous space X D G=P is one for which the G-orbit of G � ŒZ� in Chow.X/
is projective. Suppose S � X is a cycle homologous to the Schubert cycle Z, the
homological rigidity problem is to ask whether S is necessarily equivalent to Z
under the action of Aut.X/. We note that by the extremality of the homology class
of a Schubert cycle among homology classes of effective cycles, S is reduced and
irreducible.

We reformulate the homological rigidity problem so as to relate it to the
geometric theory of uniruled projective manifolds modeled on VMRTs, as follows.
To start with, considering the irreducible component Q of Chow.X/ containing the
point ŒS�, there always exists a closed G-orbit in Q, and as such it contains a point
corresponding to some Schubert cycle, and thus Q must contain ŒZ� itself by the
uniqueness modulo G-action of Schubert cycles representing the same homology
class. The homological rigidity problem would be solved in the affirmative if we
established the local rigidity of Z. In Hong-Mok [HoM13] we dealt with the case of
smooth Schubert cycles. When X D G=P is a rational homogeneous space defined
by a Dynkin diagram D.G/ marked at a simple root, and Z � X is defined by a
marked sub-diagram, then Z � X is a Schubert cycle (cf. [HoM13, §2, Example 1]).
In [HoM13] we proved

Theorem 4.3.1 (Hong-Mok [HoM13, Theorem 1.1]). Let X D G=P be a rational
homogeneous space associated to a simple root and let X0 D G0=P0 be a
homogeneous submanifold associated to a sub-diagram D.G0/ of the marked
Dynkin diagram D.G/ of X. Then, any subvariety of X having the same homology
class as X0 is induced by the action of Aut0.X/, excepting when .X0;X/ is given by

(a) X D .Cn; f˛kg/; ƒ D f˛k�1; ˛bg; 2 
 k < b 
 n;
(b) X D .F4; f˛3g/; ƒ D f˛1; ˛4g or f˛2; ˛4g;
(c) X D .F4; f˛4g/; ƒ D f˛2g or f˛3g,
where ƒ denotes the set of simple roots in D.G/nD.G0/ which are adjacent to the
sub-diagram D.G0/.

When X D G=P is defined by the marked Dynkin diagram .D.G/; �/, where � is
a long simple root, it was established in [HoM13, Proposition 3.7] that any smooth
Schubert cycle Z on X is a rational homogeneous submanifold corresponding to
a marked sub-diagram of .D.G/; �/, hence Theorem 4.3.1 in the long-root case
exhausts all smooth Schubert cycles up to G-action. When � is a short simple
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root, this need not be the case, and we refer the reader to [HoM13, Theorem 1.2]
for results on the homological rigidity problem for the symplectic Grassmannian
pertaining to smooth Schubert cycles which are not rational homogeneous subman-
ifolds.

Parallel transport of VMRTs along a minimal rational curve was used in an
essential way in [HoM13] for the proof of Theorem 4.3.1. Using a complex-analytic
argument, we established in [HoM13, Proposition 3.3] a proof of Proposition 4.2.1
applicable to the case of Schubert cycles Z � X D G=P corresponding to marked
sub-diagrams as in Theorem 4.3.1, as follows. (We say that .Z;X/ is of sub-diagram
type.)

Proof of Proposition 4.2.1. Consider the point ŒZ� in Chow.X/ corresponding to the
reduced cycle Z. Since Z � X is a Schubert cycle, the G-orbit of ŒZ� in Chow.X/ is
projective. From this and the fact that Z � X is a rational homogeneous submanifold
one deduces that the P-orbit of ŒZ� in Chow.X/ is also projective. Given this, the
failure of Proposition 4.2.1 would imply the existence of a holomorphic family $ W
Q ! � of projective submanifolds Qt � C0.X/, ŒQt� 2 Q, parametrized by a
projective curve � , such that all members Qt contain Œ˛� and such that they all
share the same tangent space V D TŒ˛�.C0.Z//. Consider the holomorphic section 	
of $ W M ! � corresponding to the common base point Œ˛� 2 Qt for all t 2 � .
The assumption that TŒ˛�.Qt/ D V for all t 2 � would imply that the normal bundle
N of 	.�/ in Q is holomorphically trivial, which would contradict the negativity
of the normal bundle resulting from the existence of a canonical map � W Q !
C0.X/ collapsing 	.�/ to the single point Œ˛� (cf. Grauert [Gra62]). This proves
Proposition 4.2.1 by argument by contradiction. �

4.4 Sub-VMRT Structures Arising from Admissible Pairs
of Rational Homogeneous Spaces of Picard Number 1
and a Rigidity Phenomenon

Consider the Grassmann manifold G.p; q/ of rank r D min.p; q/ 	 2. We have
T.G.p; q// D U˝V where U (resp. V) is a semipositive universal bundle of rank p
(resp. q). Let W � G.p; q/ be an open subset and S � W be a complex submanifold
such that T.S/ D A ˝ B, where A � UjS (resp. B � VjS/ is a holomorphic vector
subbundle of rank p0 (resp. q0) such that r0 D min.p0; q0/ 	 2. Thus, by assumption
S inherits a G.p0; q0/-structure, and the question we posed was whether S is an open
subset of a projective submanifold Z � G.p; q/ such that Z is the image of G.p0; q0/
under a standard embedding. When the natural Grassmann structure (of rank r0 	 2)
on S is flat, then, given any x0 2 S, there exists an open neighborhood O of x0 on S,

an open neighborhood U of 0 2 G.p0; q0/, and a biholomorphic mapping f W U Š�!
O such that f preserves G.p0; q0/-structures, equivalently f].C.G.p0; q0//jU/ D C.S/
where C.S/ WD C.G.p; q//\PT.S/. This is the situation dealt with in Mok [Mk08a]
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where it was proven that S is indeed an open subset of a sub-Grassmannian Z �
G.p; q/ which is the image of G.p0; q0/ under a standard embedding. The question
here is whether the flatness assumption is superfluous.

One can contrast Grassmann structures with holomorphic conformal structures.
Let n 	 4 and .SI 0/ be an m-dimensional germ of complex submanifold on
the hyperquadric Qn, 3 
 m < n. We say that .SI 0/ inherits a holomorphic
conformal structure if and only if the restriction of the standard holomorphic
conformal structure on Qn to .SI 0/ is nondegenerate. Here examples abound, indeed
a generic germ of complex submanifold .SI 0/ inherits such a structure. On a small
coordinate neighborhood W of 0 the holomorphic conformal structure is given by
the equivalence class (up to conformal factors) of a holomorphic metric g, i.e., a
nondegenerate holomorphic covariant symmetric 2-tensor g D P

g˛ˇ.z/dz˛ ˝ dzˇ

in local coordinates, and the latter restricts to a holomorphic conformal structure
on .SI 0/ if and only if g is nondegenerate on T0.S/. The case of the pair
.G.p0; q0/IG.p; q// is very different. In the latter case, denoting by W a coordinate
neighborhood of 0 2 G.p; q/, it is a priori very special that .SI 0/ � .WI 0/ inherits
a G.p0; q0/-structure. Indeed, for a general p0q0-dimensional linear subspace … �
T0.G.p; q//, the intersection C0.G.p; q// \ P.…/, if nonempty, is of codimension
pq� p0q0 in C0.G.p; q// Š P

p�1 � Pq�1, of dimension pC q� 2. Thus the expected
dimension of intersection is strictly less than that of a G.p0; q0/-structure, i.e.,
p0Cq0�2, as soon as .p0; q0/ ¤ .p; q/. (For an example of low dimension, consider a
generic four-dimensional complex submanifold S � W � G.2; 3/. The intersection
C0.G.p; q//\ PT0.S/ is expected to be of codimension 2 in C0.G.2; 3// Š P

1 � P
2,

i.e., a curve, while it is a surface C0.S/ Š C0.G.2; 2// Š P
1 � P

1 when S
inherits a G.2; 2/-structure.) In view of the excessive intersection of VMRTs with
projectivized tangent spaces it is perceivable that rigidity already follows from
excessive intersection of VMRTs with projectivized tangent spaces and from the
specific forms of the intersections, and that the flatness assumption is unnecessary.

In the case of Grassmann structures or other G-structures modeled on irreducible
Hermitian symmetric spaces of rank 	 2, by Guillemin [Gu65] we could resort
to proving the vanishing of a finite number of obstruction tensors to demonstrate
flatness, but the method of G-structures is ill-adapted even for rational homogeneous
spaces. In its place we examined the tautological foliation on VMRT structures and
raised the question whether the restriction to PT.S/ already defines a foliation.
In the special and simpler case of linear model submanifolds such a question
was formulated and solved by Hong-Park [HoP11] (Theorem 4.2.2 in the above).
For the general formulation of rigidity phenomena on complex submanifolds we
introduce the notion of admissible pairs of rational homogeneous spaces of Picard
number 1, as follows (cf. Mok-Zhang [Mz15, Definition 1.1]). Recall that for a
holomorphic immersion � W M ! N between complex manifolds we write �] for
the projectivization of the differential d� W T.M/! T.N/ of the map.

Definition 4.4.1. Let X0 and X be rational homogeneous spaces of picard number
1, and i W X0 ,! X be a holomorphic embedding equivariant with respect to a homo-
morphism of complex Lie groups ˚ : Aut0.X0/! Aut0.X/. We say that (X0;XI i) is
an admissible pair (of rational homogeneous spaces of Picard number 1) if and only
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if (a) i induces an isomorphism i�: H2.X0;Z/;
Š�! H2.X;Z/; and (b) denoting by

O(1) the positive generator of Pic.X/ and by �: X ,! P.� .X;O.1//�/ WD P
N the

first canonical projective embedding of X, � ı i: X0 ,! P
N embeds X0 as a (smooth)

linear section of �.X/.

Next we introduce the notion of a sub-VMRT structure modeled on an
admissible pair .X0;X/ of rational homogeneous spaces (cf. Mok-Zhang [Mz15,
Definition 1.2]).

Definition 4.4.2. Let .X0;X/ be an admissible pair of rational homogeneous spaces
of Picard number 1, W � X be an open subset, and S�W be a complex submanifold.
Consider the fibered space � W C.X/ ! X of varieties of minimal rational tangents
on X. For every point x 2 S define Cx.S/ WD Cx.X/\PTx.S/ and write$ W C.S/! S
for $ D �

ˇ
ˇ
C.S/ ;$

�1.x/ WD Cx.S/ for x 2 S. We say that S � W inherits a sub-
VMRT structure modeled on .X0;X/ if and only if for every point x 2 S there
exists a neighborhood U of x on S and a trivialization of the holomorphic projective

bundle PT.X/jU given by ˆ W PT.X/jU Š�! PT0.X/�U such that .1/ ˆ.C.X/jU/ D
C0.X/ �U and .2/ ˆ.C.S/jU/ D C0.X0/ � U.

The definition that S � W inherits a sub-VMRT structure modeled on the
admissible pair .X0;X/ can be reformulated as requiring

(�) For any x 2 X there exists a projective linear isomorphism ƒx W PTx.X/
Š�!

PT0.X/ such that ƒx.Cx.X// D C0.X/ and ƒx.Cx.S// D C0.X0/.

With an aim to generalize the characterization theorems of Hong-Mok [HoM10]
and Hong-Park [HoP11] on standard embeddings between rational homogeneous
spaces of Picard number 1 we introduced in Mok-Zhang [Mz15, Definition 5.1] the
notion of rigid pairs .X0;X/, as follows.

Definition 4.4.3. For an admissible pair .X0;X/ of rational homogeneous spaces
of Picard number 1, we say that .X0;X/ is rigid if and only if, for every complex
submanifold S of some open subset of X inheriting a sub-VMRT structure modeled
on .X0;X/, there exists some � 2 Aut.X/ such that S is an open subset of �.X0/.

We are now ready to state one of the main results of Mok-Zhang [Mz15].

Theorem 4.4.1 (Mok-Zhang [Mz15, Main Theorem 1]). Let .X0;X/ be an
admissible pair of sub-diagram type of rational homogeneous spaces of Picard
number 1 marked at a simple root. Suppose X0 � X is nonlinear. Then, .X0;X/ is
rigid.

Combining with Hong-Park [HoP11] on the maximal linear case, the question
on rigidity of sub-VMRT structures modeled on admissible pairs .X0;X/ of
rational homogeneous spaces of Picard number 1 is completely settled (cf. [Mz15,
Corollary 1.1]).

Corollary 4.4.1. An admissible pair .X0;X/ of rational homogeneous spaces of
Picard number 1 of sub-diagram type is a rigid pair excepting when X0 � X is
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a non-maximal linear subspace, or when X0 � X is a maximal linear subspace Zmax

given by .a/ X is associated to .B`; ˛i/; 1 
 i 
 ` � 1, and Zmax is P
`�i; .b/ X is

associated to .C`; ˛`/ and Zmax is P1; or .c/ X is associated to .F4; ˛1/ and X0 is P2.

For the study of rigidity of admissible pairs .X0;X/ of rational homogeneous
spaces of Picard number 1, Zhang [Zh14, Main Theorem 2] classified all such pairs
in the case where X is an irreducible Hermitian symmetric space of the compact
type and X0 � X is nonlinear. (The linear cases for all rational homogeneous spaces
X of Picard number 1 have been enumerated in Hong-Park [HoP11].) From the
classification Zhang established

Theorem 4.4.2 (Zhang [Zh14, Main Theorem 2]). An admissible pair .X0;X/ of
irreducible Hermitian symmetric space of the compact type is non-rigid whenever
.X0;X/ is degenerate for substructures.

The key issue in the proof of Theorem 4.4.1 is to show that the tautological
foliation FX on C.X/ is tangent to the total space C.S/ of the sub-VMRT structure.
Pick any x 2 S and any Œ˛� 2 Cx.S/, and denote by ` the minimal rational
curve passing through x such that Tx.`/ D C˛. From the sub-VMRT structure
$ W C.S/ ! S regarded as a holomorphic fiber bundle over S, there exists a
holomorphic vector field � on some neighborhood U of x on S such that �.x/ D ˛

and such that �.y/ 2 eCy.S/ whenever y 2 U. The integral curve of � passing
through x gives a smooth holomorphic curve � on S tangent to ` at x such that
the lifting L� of � to PT.S/ lies on C.S/. At the point Œ˛� 2 Cx.S/ the difference
between TŒ˛�. L�/ and TŒ˛�. L̀/, where L̀ denotes the tautological lifting L̀ � C.X/ of
`, gives a vector 
 2 TŒ˛�.Cx.X//. In view of the flexibility in the choice of � ,
the vector 
 is only well-defined modulo TŒ˛�.Cx.S// Š .P˛ \ Tx.S//

ı
C˛. Let

D.X/ � T.X/ be the G-invariant distribution spanned at each point x 2 X by
eCx.X/. There is a vector-valued symmetric bilinear form �Œ˛� W S2TŒ˛�.Cx.X// !
TŒ˛�.PTx.X//

ı
.TŒ˛�.Cx.X// C TŒ˛�.P.Tx.S/ \ Dx.X//, given by �Œ˛� D � ı 	Œ˛�, � W

TŒ˛�.PTx.X//
ı

TŒ˛�.Cx.X// ! TŒ˛�.PTx.X//
ı
.TŒ˛�.Cx.X//C TŒ˛�.P.Tx.S/ \ Dx.X///

being the canonical projection. Here TŒ˛�.PTx.X//
ı

TŒ˛�.Cx.X// is the normal space
of the inclusion Cx.X/ � PTx.X/ at Œ˛� 2 Cx.S/ � Cx.X/ and 	 denotes the
projective second fundamental form of the said inclusion. For both the second
fundamental form 	 and the variant � , we use the same notation when passing to
affinizations eCx.X/ � Tx.X/. The context will make it clear which is meant.

Obviously �Œ˛�.
1; 
2/ D 0 whenever 
1; 
2 2 TŒ˛�.Cx.S//. For the proof that
FX is tangent to C.S/ it suffices to show that for 
 2 TŒ˛�.Cx.X// as defined in
the last paragraph we have actually 
 2 TŒ˛�.Cx.S//. In [Mz15] we show that
�Œ˛�.
; 
/ D 0 whenever 
 2 TŒ˛�.Cx.S// and derive the rigidity of the pairs .X0;X/
in Theorem 4.4.1 by checking that �Œ˛�.
; 
/ D 0 for all 
 2 TŒ˛�.Cx.S// implies
that 
 2 TŒ˛�.Cx.S//. We say in this case that .Cx.S/; Cx.X// is nondegenerate for
substructures (cf. Definition 4.5.2 in the next subsection), noting that Tx.S/\Dx.X/
is the linear span ofeCx.S/. The checking is derived from statements about the second
fundamental form 	 concerning nondegeneracy of Hong-Mok [HoM10] and the
proof of Theorem 4.4.1 is completed by means of parallel transport of VMRTs
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along minimal rational curves and the standard argument of adjunction of minimal
rational curves (cf. (4.2) and (4.3)). In the Hermitian symmetric case the proof that
�Œ˛�.
; 
/ D 0 for 
 2 TŒ˛�.Cx.S// results from a differential-geometric calculation
with respect to the flat Euclidean connection in Harish-Chandra coordinates, and the
general case is derived from adapted coordinates in the same setting as in [HoM10]
as explained in (4.2).

Our arguments apply to uniruled projective manifolds to give a sufficient
condition for a germ of complex submanifold to be rationally saturated, making it
applicable to study sub-VMRT structures in general. This will be explained in (4.5).

For the formulation of sub-VMRT structures and nondegeneracy for substruc-
tures, one has to make use of the distribution on X spanned by VMRTs. In the event
that the distribution D.X/ � T.X/ spanned by VMRTs is linearly degenerate, the
proof that FX is tangent to C.S/ relies on the fact that the kernel of the Frobenius
form ' W ƒ2D.X/! T.X/=D.X/ contains the linear span of

˚
˛ ^ P˛ W ˛ 2eCx.X/

�
,

where P˛ D T˛.eCx.X//, a basic fact about distributions spanned by VMRTs that
was established in Hwang-Mok [HM98, (4.2), Proposition 10].

4.5 Criteria for Rational Saturation and Algebraicity of Germs
of Complex Submanifolds

Let now .X;K/ be a uniruled projective manifold equipped with a minimal rational
component K. Using a generalization of the argument of Theorem 4.4.1 and the
method of analytic continuation by the adjunction of (open subsets of) minimal
rational curves of Hwang-Mok [HM01], Mok [Mk08a] and Hong-Mok [HoM10],
Mok-Zhang [Mz15, Theorem 1.4] also obtained a general result on the analytic
continuation of a germ of complex submanifold S on X when S inherits a certain
geometric substructure. For its formulation, letting B0 be the enhanced bad set of
.X;K/ we consider a complex submanifold S � W of an open subset W � X�B0.
Writing C.S/ WD C.X/jS\PT.S/ and$ WD �jC.S/ W C.S/! S we defined in [Mz15,
Definition 5.1] the notion of a sub-VMRT structure, as follows.

Definition 4.5.1. We say that$ WD �jC.S/ W C.S/! S is a sub-VMRT structure on
.X;K/ if and only if (a) the restriction of $ to each irreducible component of C.S/
is surjective, and (b) at a general point x 2 S and for any irreducible component �x

of Cx.S/, we have �x 6� Sing. Cx.X//.

Given a sub-VMRT structure $ W C.S/ ! S of � W C.X/ ! X, there is
some integer m 	 1 such that over a general point x 2 S, Cx.S/ has exactly m
irreducible components and such that $ is a submersion at a general point �k of
each irreducible component �k;x of Cx.S/. We introduce now the notions of proper
pairs of projective subvarieties and nondegeneracy for substructure for such pairs
(cf [Mz15, Definitions 5.2 & 5.3]).
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Definition 4.5.2. Let V be a Euclidean space and A � P.V/ be an irreducible
subvariety. We say that .B;A/ is a proper pair if and only if B is a linear section of
A, and for each irreducible component � of B, � 6� Sing.A/.

For a uniruled projective manifold X and a complex submanifold S � W �
X�B inheriting a sub-VMRT structure $ W C.S/ ! S as in Definition 4.5.1, at a
general point x 2 S, .Cx.S/; Cx.X// is a proper pair of projective subvarieties. We
introduce now the notion of nondegeneracy for substructures for .B;AIE/. Here for
convenience we assume that A is irreducible. When applied to sub-VMRT structures
this means that the VMRT Cx.X/ at a general point on the ambient manifold X is
assumed irreducible.

Definition 4.5.3. Let V be a finite-dimensional vector space, E � V be a vector
subspace and .B;A/ be a proper pair of projective subvarieties in P.V/, B WD A \
P.E/ � A � P.V/ . Assume that A is irreducible. Let 
 2 eB be a smooth point of
both eA and eB , and let 	 W S2T
 .eA/ ! V=T
 .eA/ be the second fundamental form
of eA in V with respect to the Euclidean flat connection on V . Write V 0 � V for the
linear span of eA and define E0 WD E\V 0. Define by � W V=T
.eA/! V=.T
.eA/CE0/
the canonical projection and � W S2T
 .eA/ ! V=.T
.eA/C E0/ by � WD � ı 	 . For
the proper pair .B;A/, B D A \ P.E/, we say that .B;AIE/ is nondegenerate for
substructures if and only if for each irreducible component � of B and for a general
point � 2 � , we have

˚

 2 T�.eA/ W �.
; 
/ D 0 for any 
 2 T�.eB/

� D T�.eB/:

In case E0 D E\V 0 is the same as the linear span of eB we drop the reference to E,
with the understanding that the projection map � is defined by using the linear span
of eB as E0. In the case of an admissible pair .X0;X/ of rational homogeneous spaces
of Picard number 1, writing D.X/ � T.X/ for the G-invariant distribution spanned
by VMRTs at each point x 2 X, D.X/ \ T.X0/ is the same as the G0-invariant
distribution on X0 spanned by VMRTs. (When the Dynkin diagram is marked at a
long simple root, D.X/ and D.X0/ are the minimal nonzero invariant distributions,
but the analogue fails for the short-root case.) In order to adapt the arguments for
rational saturation to the general situation of sub-VMRT structures, we need to
introduce an auxiliary condition on the intersection C.S/ D C.X/

T
PT.S/, to be

called Condition (T), which is automatically satisfied in the case of admissible pairs
(X0,X). We have

Definition 4.5.4. Let $ W C.S/ ! S, C.S/ WD C.X/ \ PT.S/, be a sub-
VMRT structure on S � X � B0 as in Definition 4.5.1. For a point x 2 S,
and Œ˛� 2 Reg.Cx.S// \ Reg.Cx.X//, we say that (Cx.S/; Œ˛�), or equivalently
.eCx.S/; ˛/, satisfies Condition (T) if and only if T˛.eCx.S// D T˛.eCx.X// \ Tx.S/.
We say that $ W C.S/ ! S satisfies Condition (T) at x if and only if .eCx.S/; Œ˛�/
satisfies Condition (T) for a general point Œ˛� of each irreducible component of
Reg.Cx.S// \ Reg.Cx.X//. We say that $ W C.S/! S satisfies Condition (T) if and
only if it satisfies the condition at a general point x 2 S.

Theorem 4.5.1 (Mok-Zhang [Mz15, Theorem 1.4]). Let .X;K/ be a uniruled
projective manifold X equipped with a minimal rational component K with asso-
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ciated VMRT structure given by � W C.X/ ! X. Assume that at a general point
x 2 X, the VMRT Cx.X/ is irreducible. Write B0 � X for the enhanced bad locus of
.X;K/. Let W 0 � X�B0 be an open set, and S � W be a complex submanifold such
that, writing C.S/ WD C.X/jS \ PT.S/ and $ WD �

ˇ̌
C.S/; $ W C.S/ ! S is a sub-

VMRT structure satisfying Condition (T) Suppose furthermore that for a general
point x on S and for each of the irreducible components �k;x of Cx.S/, 1 
 k 
 m,
the inclusion �k;x � Cx.X/ at a general smooth point �k of �k;x is nondegenerate
for substructures. Then, S is rationally saturated with respect to .X;K/. In other
words, S is uniruled by open subsets of minimal rational curves belonging to K.

When X is of Picard number 1, by a line ` on X we mean a rational curve ` of
degree 1 with respect to the positive generator of Pic.X/ Š Z. We say that .X;K/ is a
uniruling by lines to mean that members of K are lines. We prove for these uniruled
projective manifolds a sufficient condition for the algebraicity of germs of sub-
VMRT structures on them. Recall that a holomorphic distribution D on a complex
manifold M is said to be bracket generating if and only if, defining inductivelyD1 D
D, DkC1 D DkC ŒD;Dk�, we have DmjU D T.U/ on a neighborhood U of a general
point x 2 M for m sufficiently large. By a distribution we will mean a coherent
subsheaf of the tangent sheaf. We have

Theorem 4.5.2 (Mok-Zhang [Mz15, Main Theorem 2]). In the statement of
Theorem 4.5.1 suppose furthermore that .X;K/ is a projective manifold of Picard
number 1 uniruled by lines and that the distribution D on S defined at a general
point x 2 X by Dx WD Span.eCx.S// is bracket generating. Then, there exists an
irreducible subvariety Z � X such that S � Z and such that dim.Z/ D dim.S/.

Thus, the subvariety Z � X, which is rationally saturated with respect to K, is
in particular uniruled by minimal rational curves belonging to K. Z � X is thus a
uniruled projective subvariety. We say that S admits a projective-algebraic extension.
Note that the hypothesis that D is bracket generating is trivially satisfied when D is
linearly nondegenerate at a general point.

Modulo Theorem 4.5.1, which yields rational saturation for sub-VMRT struc-
tures under a condition of nondegeneracy for substructures, for the proof of
Theorem 4.5.2 we reconstruct a projective-algebraic extension of S by a process of
adjunction of minimal rational curves as in Hwang-Mok [HM98], Mok [Mk08a]
and Hong-Mok [HoM10]. As opposed to the situation of these articles where
the adjunction process is a priori algebraic, the major difficulty in the proof of
Theorem 4.5.2 lies in showing that, starting from a transcendental germ of complex
manifold .SI x0/ on X�B0 equipped with a sub-VMRT structure $ W C.S/ ! S
obtained from taking intersections with tangent subspaces, the process of adjoining
minimal rational curves starting with those emanating from x0 and tangent to S is
actually algebraic . For this purpose we introduce a method of propagation of sub-
VMRT structures along chains of special minimal rational curves and apply methods
of extension of holomorphic objects in several complex variables coming from the
Hartogs phenomenon (cf. Siu [Si74]), viz., we show that for the inductive process
of propagation of the germ .SI x0/ along chains of rational curves, the obstruction
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in essence lies on subvarieties of codimension 	 2 on certain universal families
of chains of rational curves. Crucial to this process is a proof of the following
“Thickening Lemma” which allows us to show that the sub-VMRT structure $ W
C.S/ ! S can be propagated along a general member of certain algebraic families
of standard rational curves which are defined inductively.

Proposition 4.5.1 (Mok-Zhang [[Mz15], Proposition 6.1]). Let .X;K/ be a unir-
uled projective manifold equipped with a minimal rational component, dim.X/ WD
n, and $ W C.S/ ! S be a sub-VMRT structure as in Theorem 1.4, dim.S/ WD s.
Let Œ˛� 2 C.S/ be a smooth point of both C.S/ and C.X/, $.Œ˛�/ WD x, and Œ`� 2 K
be the minimal rational curve .which is smooth at x/ such that Tx.`/ D C˛, and
f W P` ! ` be the normalization of `, P` Š P

1. Suppose (Cx.s/, [˛]) satisfies
Condition (T) in Definition 4.5.4. Then, there exists an s-dimensional complex
manifold E, P` � E, and a holomorphic immersion F W E ! X such that FjP` � f ,
and such that F.E/ contains an open neighborhood of x in S.

In relation to Theorem 4.5.2 there is the problem of recognizing special classes
of uniruled projective subvarieties, which we formulate as

Problem 4.5.1 (The Recognition Problem for Sub-VMRT Structures). Let X be
a uniruled projective manifold endowed with a minimal rational component K, and
ˆ be a class of projective subvarieties Z � X which are rationally saturated with
respect to .X;K/. Denote by B0 the enhanced bad locus of .X;K/. We say that the
Recognition Problem for the class ˆ � Chow.X/ is solved in the affirmative if one
can assign to each x 2 X�B0 a variety of linear sections ‰x � Chow.Cx.X// in
such a way that a sub-VMRT structure $ W C.S/ ! S of � W C.X/ ! X admits a
projective-algebraic extension to a member Z of ˆ if and only if ŒCs.S/� 2 ‰s for a
general point s 2 S.

As an example, let X be the Grassmannian G.p; q/; p; q 	 2; identified as a
submanifold of some PN by means of the Plücker embedding. Suppose 2 
 p0 
 p,
2 
 q0 
 q and let ˆ to be the class of linear sections Z D G.p; q/ \ …,
… � P

N a projective linear subspace, such that Z is the image of a standard
embedding of G.p0; q0/ into G.p; q/. Then, by Theorem 4.5.1, the Recognition
Problem is solved for ˆ by taking ‰x at x 2 X to consist of linear sections
&.P.Ux/ � P.Vx// \ P.U0

x ˝ V 0
x/ where T.G.p; q// Š U ˝ V , where & denotes

the Segre embedding, and U0
x � Ux (resp. V 0

x � Vx) runs over the set of
p0-dimensional (resp. q0-dimensional) vector subspaces of Ux (resp. Vx). Another
example is the Recognition of maximal linear subspaces. The result of Hong-Park
[HoP11] (Theorem 4.2.1 here) says that maximal linear subspaces on X D G=P
can be recognized with only a few exceptions. By making use of a quantitative
version of nondegeneracy for substructures the Recognition Problem for maximal
linear subspaces can be solved in the affirmative on certain linear sections of rational
homogeneous spaces. As an example we have the following result in the case of
linear sections of Grassmannians taken from Mok-Zhang [Mz15, Corollary 9.1].
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Proposition 4.5.2. Consider the Grassmannian G.p; q/, 3 
 p 
 q, of rank p 	 3.
Let Z � G.p; q/ be a smooth linear section of codimension
 p� 2, H be the space
of projective lines on Z, and E � Z be the bad locus of .Z;H/. Let .SI x0/ be a germ
of complex submanifold on Z�E such that PT.S/ � C.Z/jS and PT.S/ contains a
smooth point of C.Z/jS. Suppose PTx.S/ � Cx.Z/ is a maximal linear subspace for
a general point x 2 S. Then, S � Z is a maximal linear subspace.

By the very nature of the notion of sub-VMRT structures, viz., by taking linear
sections with tangent subspaces, the Recognition Problem concerns primarily the
recognition of a global linear section Z of a projective manifold X uniruled by
projective lines from the fact that VMRTs of Z at a general point is a linear section of
the VMRT of X with special properties. We may say that this amounts to recognizing
certain global linear sections from sub-VMRTs which are special linear sections of
VMRTs. In a direction beyond the current article, one could define higher order
sub-VMRT structures by considering minimal rational curves which are tangent to
the submanifold S to higher orders. There for instance one could raise the problem
of recognizing the intersection of a sub-Grassmannians with a number of quadric
hypersurfaces in terms of second order sub-VMRT structures.

In (4.6) we will discuss some concrete examples to which Theorems 4.5.1 and
4.5.2 apply.

4.6 Examples of Sub-VMRT Structures Related to Irreducible
Hermitian Symmetric Spaces of the Compact Type

Theorem 4.5.1 gives sufficient conditions for proving that certain sub-VMRT
structures are rationally saturated. In the event that the sub-VMRT structure $ W
C.S/ ! S satisfies Condition (T) and it is furthermore linearly nondegenerate
for substructures at a general point, it shows that the sub-VMRT structure arises
from some uniruled projective subvariety. Here are some examples of sub-VMRT
Structures to Which Theorems 4.5.1 and 4.5.2 apply

(a) Let X be an irreducible Hermitian symmetric space of the compact type and of
rank 	 2 other than a Lagrangian Grassmannian equipped with the minimal
rational component K of projective lines. Let Œ˛� 2 Cx.X/ and consider
SŒ˛� WD Cx.X/ \ P.P˛/, where P˛ D T˛.eCx.X//. Then SŒ˛� � P.P˛/ is linearly
nondegenerate. Note here that a Lagrangian Grassmannian is equivalently an
irreducible symmetric space GIII.n; n/, n 	 2, of type III for which the VMRTs
are Veronese embeddings � W P.V/ ! P.S2V/ for V Š C

n for some n 	 2,
given by �.Œv�/ D Œv˝ v�, in which case the analogue of SŒ˛� is the single point
Œ˛� since the image of the Veronese embedding contains no lines. SŒ˛� is the
cone over a copy of the VMRT of CŒ˛�.X/. It can be proven that the proper pair
(SŒx�; Cx.X/) is nondegenerate for substructures excepting in the cases where
X D Qn. n > 3, or X D G.2; g/, g > 2. Thus, by Theorem 4.5.1, excepting
the latter cases, any complex submanifold S � W on an open subset W � X
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carrying a sub-VMRT structure $ W Cx.S/ ! S with fibers
�
Cx.S/ � Cx.X/

�

projectively equivalent to
�
SŒ˛� � P.P˛/

�
is rationally saturated and in particular

uniruled by projective lines. By the linear nondegeneracy of SŒ˛� in P.P˛/,
Theorem 4.5.2 applies to show that S � W admits a projective-algebraic
extension. As a model let x 2 X and consider the union V of all projective
lines on X passing through x. Then V � X is a projective subvariety inheriting
a sub-VMRT structure modeled on

�
SŒ˛� � P.P˛/

�
.

We note that in the case where X is the Grassmannian G.p; q/ of rank r D
min.p; q/ 	 2, TG.p;q/ Š U ˝ V , where U resp. V is a universal bundle of rank
p resp. q, and Cx.X/ D &

�
P.Ux/ � P.Vx/

�
for the Segre embedding & , so that,

writing ˛ D u˝ v we have SŒ˛� D P.Cu˝ Vx/ [ P.Ux ˝ Cv/ is the union of
two projective subspaces of dimension p� 1 resp. q� 1 intersecting at a single
point. This gives an example of a sub-VMRT structure $ W C.S/ ! S with 2
irreducible components in each fiber Cx.S/. Both components have to be taken
into account at the same time in order to have linear nondegeneracy in PTx.S/
so that one can apply the last statement in Theorem 4.5.2 when r > 3.

(b) The following are particular cases of examples discussed in Mok-Zhang
[Mz15,�9]. Embed the Grassmann manifold G.p; q/; p; q 	 2; into the
projective space by the Plücker embedding ' W G.p; q/ ! P.ƒp

C
pCq/ WD P

N

and thus identify G.p; q/ as a projective submanifold. Consider a smooth
complete intersection X D G.p; q/ \ .H1 \ � � � \ Hm/ of codimension k,
where for 1 
 i 
 m, Hi � P

N is a smooth hypersurface of degree ki,
k WD k1 C � � � C km. Let ı be the restriction to X of the positive generator of
H2.G.p; q/;Z/ Š Z. If k 
 pC q � 1 then c1.X/ D .pC q � k/ı 	 ı and X is
Fano. If k 
 p C q � 2 then c1.X/ 	 2ı. For the latter range X is uniruled by
the minimal rational component K of projective lines on X and the associated
VMRT Cx.X/ of X at a general point of X is the intersection of Cx.G.p; q// D
&.Pp�1 � P

q�1/, where & stands for the Segre embedding, of codimension
k, with k hypersurfaces in PTx.X/ of degrees .1; � � � ; k1I � � � I 1; � � � ; km/, and
dim.Cx.X// D .p � 1/ C .q � 1/ � k D .p C q � 2/ � k 	 0. Suppose now
2 
 p0 < p, 2 
 q0 < q, and suppose X0 WD G.p0; q0/\ .H1 \ � � � \Hm/ is also
smooth. We have c1.X0/ D .p0 C q0 � k/ı 	 2ı if and only if k 
 p0 C q0 � 2,
in which case the pair

�
Cx.X0/ � Cx.X/

�
consists of projective submanifolds of

PT.X/ of the form
�
C0.G.p0; q0//\ J � C0.G.p; q//\ J

�
for some subvariety

J � PT0.X/ of codimension k at a reference point 0 2 G.p0; q0/ � G.p; q/.
Consider now a germ of complex submanifold .SI x0/ on X, and assume that by
intersecting with projectivized tangent spaces we have a sub-VMRT structure
$ W C.S/ ! S over S, where over a general point x 2 S, the pair

�
Cx.S/ �

Cx.X/
�

is projectively equivalent to
�
C0.G.p0; q0// \ Jx � C0.G.p; q// \ Jx

�

for some projective subvariety Jx � PT0.X/ of codimension k, and where
Cx.S/ � PTx.S/ is linearly nondegenerate. If k 
 min.p0 � 2; q0 � 2/, we
show that the sub-VMRT structure $ W C.S/ ! S satisfies the hypotheses
of Theorem 4.5.2 and must hence extend to a projective subvariety Z � X,
dim.Z/ D dim.S/ D p0q0 � k which is uniruled by projective lines. This gives
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examples of germs of complex submanifolds on a uniruled projective manifold
with variable VMRTs for which the arguments for proving algebraicity of
Theorem 4.5.2 are applicable to prove analytic continuation of S to a projective
subvariety. We note also that nondegeneracy for substructures fails in general
if we consider S as a germ of complex submanifold on G.p; q/ instead of X. In
fact, it already fails in general for S � G.p0; q0/, S WD G.p0; q0/ \ H (hence a
fortiori for S � G.p; q/) when H is a smooth hypersurface of G.p; q/).

Complete intersections give examples of complex submanifolds Y � G.p; q/
uniruled by projective lines for which the isomorphism type of Cy.Y/ � Cy.G.p; q//
at a general point can be described, but this precise information is not necessary
for the application of Theorem 4.5.2. The same argument in fact applies to
any projective submanifold Y � G.p; q/ uniruled by projective lines under the
assumption that c1.Y/ D .pC q � k/ı 	 2ı.

4.7 Perspectives on Geometric Substructures

While a first motivation on the study of the geometric theory on uniruled projective
manifolds was to tackle problems in algebraic geometry on such manifolds, as the
theory was developing, it was clear that our theory carries a strong differential-
geometric flavor. It was at least in part developed in a self-contained manner basing
on the study of the double fibration arising from the universal family, the tautological
foliation and associated differential systems, and the axiomatics of the theory were
derived from the deformation theory of rational curves. Varieties of minimal rational
tangents appear naturally as the focus of our study, in the context of the VMRT
structure � W C.X/ ! X. While basic results in the early part of the theory, such
as those on integrability issues concerning distributions spanned by VMRTs and on
Cartan-Fubini extension, have led to solutions of a number of guiding problems,
the theory also takes form on its own. It is legitimate to raise questions regarding
the VMRTs themselves, such as the Recognition Problem and problems on the
classification of isotrivial VMRT structures on uniruled projective manifolds.

One may develop the theory of sub-VMRT structures in analogy to the study
of Riemannian submanifolds in Riemannian manifolds, where rationally saturated
subvarieties may be taken as weak analogues to geodesic subspaces and, at least in
cases of rational homogeneous spaces of Picard number 1, certain cycles such as
(possibly singular) Schubert cycles can be taken as strong analogues. Concerning
problems in algebraic geometry that may be treated by the study of sub-VMRT
substructures, first of all it is natural to extend the characterization of smooth
Schubert varieties in rational homogeneous spaces of Picard number 1 to the case
of singular Schubert varieties, where one has to examine sub-VMRT structures
$ W C.S/ ! S with singular sub-VMRTs and to study parallel transport in
such broader context. In view of the application of equidimensional Cartan-Fubini
extension to prove rigidity of finite surjective holomorphic maps (Hwang-Mok
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[HM01],[HM04b]), it is tempting to believe that non-equidimensional Cartan-
Fubini extension can have implications for rigidity of certain non-equidimensional
maps between uniruled projective varieties.

Cartan-Fubini extension can be taken as a generalization of Ochiai’s Theorem
in the context of S-structures (i.e., G-structures arising from irreducible Hermitian
symmetric spaces S of the compact type and of rank 	 2) from an entirely
different angle, viz., from the perspectives of local differential geometry and several
complex variables. The proof itself reveals the interaction of these aspects with
algebraic geometry, notably with Mori’s theory on rational curves. The study of
sub-VMRT structures on a uniruled projective manifold in Mok [Mk08a] was first
of all motivated by the desire to understand the heart of a rigidity phenomenon in
several complex variables, viz., the rigidity of proper holomorphic maps between
irreducible bounded symmetric domains of the same rank r 	 2, established by
Tsai [Ts93] by considering boundary values on certain product submanifolds, as was
done in Mok-Tsai [MT92], and applying methods of Kähler geometry. Regarding a
bounded symmetric domain � of rank 	 2 as an open subset of its dual Hermitian
symmetric space S of the compact type by means of the Borel embedding,� carries
a VMRT structure by restriction. The gist of the arguments of [Mk08a] consists of
exploiting boundary values of the map, from which one shows that the mapping
respects VMRTs because of properness and because of the decomposition of @�
[Wo72] into the disjoint union of boundary faces of different ranks, and rigidity
of the map results from non-equidimensional Cartan-Fubini extension as was later
developed in full generality by Hong-Mok [HoM10]. For a proper holomorphic map
f W � ! �0 where r0 D rank.�0/ > rank.�/ D r the theory has yet to be
further developed. In some very special cases they have led to VMRT-respecting
holomorphic maps (Tu [Tu02]), but in general to a different form of geometric
structures where VMRTs are mapped into vectors tangent to rational curves of
degree 
 r0 � r C 1 < r0, a context which was first discussed by Neretin [Ne99]
in the case of classical domains of type I (which are dual to Grassmannians). The
study of proper holomorphic mappings will remain a source of motivation for the
further study of VMRTs or more general geometric substructures.

Another source of examples with sub-VMRT structures, somewhat surprisingly,
is the study of holomorphic isometries of the complex unit ball into an irreducible
bounded symmetric domain� of rank 	 2. Denote by � � S the Borel embedding
of � as an open subset of its dual Hermitian symmetric space S of the compact
type. There, the construction in Mok [Mz15] shows that, given a regular boundary
point q 2 Reg.@�/, and denoting by Vq the union of minimal rational curves
passing through q, the intersection † WD Vq \ � is the image of a holomorphic
isometric embedding of BpC1, p D dim.C0.S//. These were the examples which
inherit, excepting in the case of Lagrangian Grassmannians, singular sub-VMRT
structures $ W C.Z/ ! Z which are nondegenerate for substructures excepting the
cases of hypequadrics and rank-2 Grassmannias as in (4.5). The dimension pC 1 is
the maximal possible dimension n for a holomorphic isometry f W .Bn; g/! .�; h/,
where g resp. h are canonical Kähler-Einstein metrics normalized so that minimal
disks are of Gaussian curvature �2, and, questions on uniqueness and rigidity in
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the case of n D p C 1 have led to the study of normal forms of tangent spaces
of Tx.Z/ and interesting questions on the reconstruction of complex submanifolds
from their sub-VMRT structures. Another exciting area where sub-VMRT structures
enter is the study of geometric substructures on a quotient X� D �=� of a bounded
symmetric domains � by a torsion-free discrete subgroup � � Aut.�/, where
X� is a quasi-projective manifold inheriting by descent an S-structure, which is
equivalently a VMRT structure.

Taking VMRT structures as an area of research in its own right, it is necessary
to examine more examples of interesting sub-VMRT structures. In the Hermitian
symmetric case Zhang [Zh14] has now completely classified such pairs .X0;X/ and
determined those which are nondegenerate for substructures. In addition, beyond
the standard example of the holomorphic conformal structure on Qn; n 	 3,
where germs of complex submanifolds with variable Bochner-Weyl curvature
tensors abound, for the other admissible pairs in the Hermitian symmetric case
where nondegeneracy for substructures fails, Zhang [Zh14] constructed examples
of nonstandard complex submanifolds modeled on .X0;X/ (cf. Theorem 4.4.2
in the current article). At the same time, new cases (not of sub-diagram type)
of admissible pairs .X0;X/ which are nondegenerate for substructures have been
identified. These admissible pairs in the Hermitian symmetric case, said to be of
special type, are not Schubert cycles and the argument of parallel transport fails (cf.
Proposition 4.2.1 used in the sub-diagram cases). It will be interesting to classify
in general admissible pairs .X0;X/ of rational homogeneous spaces of Picard
number 1. Moreover, there are many interesting uniruled projective subvarieties
such as Schubert cycles on X D G=P, for which the theory of sub-VMRT structures
apply, and they may provide new sources for the study of the Recognition Problem
for sub-VMRT structures and for formulating other geometric problems in the
theory.
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Foliations, Shimura Varieties, and the
Green-Griffiths-Lang Conjecture

Erwan Rousseau

Abstract Foliations have been recently a crucial tool in the study of the degeneracy
of entire curves on projective varieties of general type. In this note, considering the
Green-Griffiths locus, we explain how to deal with the case where there is no natural
foliation to start with. As an application, we show that for most quotients of classical
bounded symmetric domains, the Green-Griffiths locus is the whole variety.

Keywords Entire curves • Foliations • Shimura varieties

Mathematical Subject Classification: Primary: 32Q45, 32M15; Secondary:
37F75

1 Introduction

Foliations are known to play an important role in the study of subvarieties of
projective varieties. One beautiful example is the proof of the following theorem
of Bogomolov.

Theorem 1.1 ([Bog77]). Let X be a projective surface of general type such that
c21 > c2. Then X has only finitely many rational or elliptic curves.

The numerical positivity c21 > c2 gives the existence of global symmetric tensors
on X and reduces the problem to the study of rational or elliptic algebraic leaves
of foliations on a surface of general type. This result fits into the general study of
hyperbolic (in the sense of Kobayashi) properties of algebraic varieties as illustrated
by the famous Green-Griffiths-Lang conjecture

Conjecture 1.2. Let X be a projective variety of general type. Then there exists a
proper Zariski closed subset Y ¨ X such that for all non-constant holomorphic
curve f W C! X, we have f .C/ � Y.
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Although this is still largely open, even for surfaces, McQuillan has extended
Bogomolov’s theorem to transcendental leaves proving Green-Griffiths-Lang con-
jecture for surfaces of general type with positive second Segre number c21 � c2
[McQ0].

Due to ideas which can be traced back to Bloch, it is now classical that algebraic
differential equations can be used to attack such problems as follows. Holomorphic
maps f W U � C! X canonically lift to projectivized jets spaces fŒk� W U ! P.JkX/:
Let A be an ample line bundle on X, pk W P.JkX/ ! X the natural projection and
Bk;l � P.JkX/ be the base locus of the line bundle OP.JkX/.l/ ˝ p�

k A�1. We set
Bk D T

l2N Bk;l and GG D T
k2N pk.Bk/, the Green-Griffiths locus. The strategy is

based on the fundamental vanishing theorem

Theorem 1.3 (Green-Griffiths, Demailly, Siu-Yeung). Let f W C ! X be a non-
constant holomorphic curve. Then fŒk�.C/ � Bk for all k. In particular, we have
f .C/ � GG.

On the positive side of this strategy, there is the recent result by Demailly which
for our purposes can be stated as follows.

Theorem 1.4 ([De11]). Let X be a projective variety of general type. Then for some
k o 1, Bk ¤ P.JkX/:

In other words, all non-constant holomorphic curves f W C ! X in a projective
variety of general type satisfy a non-trivial differential equation P.f ; f 0; : : : ; f k/ � 0.

On the less optimistic side, it is recently shown in [DR] that one cannot hope
GG ¤ X in general.

From [DR] Theorem 1.3, one can extract the following criterion

Theorem 1.5. Let X be a projective variety endowed with a holomorphic foliation
by curves F . If the canonical bundle of the foliation KF is not big then GG D X.

This produces examples of (hyperbolic!) projective varieties of general type
whose Green-Griffiths locus satisfies GG D X (see [DR] for details).

Example 1.6. Let X D C1 �C2 a product of compact Riemann surfaces with genus
g.Ci/ 	 2. Then X is of general type, hyperbolic and GG D X:

Example 1.7. Let X D � � �=� be a smooth compact irreducible surface
uniformized by the bi-disc. X is naturally equipped with 2 non-singular foliations
F and G with Kodaira dimension �1. Then X is of general type, hyperbolic
and GG D X:

Example 1.8. Let X D �n=� be a (not necessarily compact) quotient of the
polydisc by an arithmetic lattice commensurable with the Hilbert modular group.
Then X any compactification satisfies GG D X:

In all previous examples we have natural foliations on the manifold that one
uses in a crucial way to obtain that the Green-Griffiths locus is the whole manifold.
It is therefore tempting to think that the absence of these natural foliations could be
an obstruction to the Green-Griffiths locus covering the whole manifold. In fact
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in [DR], using analytic techniques inspired by [Mok], we show that projective
manifolds uniformized by bounded symmetric domains of rank at least 2 satisfy
GG D X.

The goal of this note is to study the example of quotients of irreducible classical
bounded symmetric domains, also in the non-compact case, using the arithmetic
data of the Shimura varieties associated to these quotients.

2 Arithmetic Lattices in Classical Groups

Let D be an irreducible symmetric bounded domain in C
N and � a torsion-free

lattice in the simple real Lie group G D Aut0.D/. Let X be a compactification
of X D D=� . Let us recall the description of the irreducible classical bounded
symmetric domains D D G=K:

• DI
p;q D fZ 2 M.p; q;C/=Iq � Z�Z > 0g;

• DII
n D fZ 2 DI

n;n=Zt D �Zg;
• DIII

n D fZ 2 DI
n;n=Zt D Zg;

• DIV
n D fZ 2 SL.2n;C/=ZtZ D I2n;Z�JnZ D Jng:

The group G can be described as follows:

• DI
p;q: G is the special unitary group of a hermitian form on C

pCq of signature
.p; q/, q 
 p.

• DII
n : G is the special unitary group of a skew-hermitian form on H

n.
• DIII

n : G is the special unitary group of a skew-symmetric form on R
2n.

• DIV
n : G is the special unitary group of a symmetric bilinear form on R

nC2 of
signature .n; 2/.

Each of the ˙ symmetric/hermitian forms is isotropic, and if t D rankR.G/, the
maximal dimension of a totally isotropic subspace is t D q; Œ n

2
�; n; 2 in the cases

I; II; III; and IV , respectively.
A deep theorem of Margulis states that if rankR.G/ 	 2, then any discrete

subgroup � � G is arithmetic. That means that there is an algebraic Q-group G

with � � GQ � GR D G and a rational representation � W GQ ! GL.VQ/ such that
��1.GL.VZ// and � are commensurable.

So, from now on, we suppose that we are in the situation where G is a Q-group
such that GR D G is one of the above classical real Lie group and of real rank at
least 2.

We shall prove that in this situation the Green-Griffiths locus GG.X/ D X (except
in a few cases that we cannot deal with yet described below).

Let us explain the idea to prove such a result. Recall that in the case of the
polydisc D D �r, we used in an essential way the existence of natural holomorphic
foliations on the manifold coming from factors of the polydisc.
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So, to prove such a result for quotients of irreducible domains (e.g., Siegel
modular varieties), we need to find something which replaces the existence of
natural foliations. The idea is to use, instead of foliations on D, the existence of many
embedded polydiscs. This is motivated by the polydisc theorem [Mok, ch.5, thm.1]
which tells that there exists a totally geodesic submanifold E of D such that .E; gjD/
is isometric to a Poincaré polydisc .�t; g�t/, and D D K:E where K is a maximal
compact subgroup of G and g is the Bergman metric. If M � G is the hermitian
subgroup associated to E, to deduce that the restriction � \M induces the existence
of an algebraic subvariety we need some arithmetic conditions. In particular, it is
sufficient that M comes from a reductive Q-subgroup M � G (see, for example,
[hunt]). So, one reduces the problem to the existence of Q-subgroups inducing a
dense subset of subvarieties whose universal cover are polydiscs.

Let us recall the classification of classical Q-groups of hermitian type. They are
obtained by restriction of scalars G D ReskjQG0 for an absolutely simple G0 over k a
totally real number field. The classification is the following (see [DWM] and [PR]):

(1) Unitary type:

U.1) G
0 D SU.V; h/, where V is an n-dimensional K-vector space, Kjk an

imaginary quadratic extension, and h is a hermitian form. Then G.R/ ŠQ
SU.p�; q�/; where .p�; q�/ are the signatures at infinite places.

U.2) G
0 D SU.V; h/ where D is a division algebra of degree d 	 2, central

simple over K with a Kjk-involution and V is an n-dimensional right
D-vector space with hermitian form h. Then G.R/ Š Q

SU.p�; q�/:

(2) Orthogonal type:

O.1) G
0 D SO.V; h/, V a k-vector space of dimension n C 2, h a symmetric

bilinear form such that at an infinite place �, h� has signature .n; 2/ and
G

0
�.R/ Š SO.n; 2/:

O.2) G
0 D SU.V; h/, V a right D-vector space of dimension n, h is a skew-

hermitian form, D is a quaternion division algebra, central simple over k,
and at an infinite place �, either
(i) D� Š H and G

0
�.R/ Š SO.n;H/, or

(ii) D� Š M2.R/ and G
0
� Š SO.2n� 2; 2/:

(3) Symplectic type:

S.1) G
0 D Sp.2n; k/ and G0.R/ Š Sp.2n;R/

S.2) G
0 D SU.V; h/, where V is an n-dimensional right vector space over a

totally indefinite quaternion division algebra, and h is a hermitian form on
V . Then G

0.R/ Š Sp.2n;R/.

We shall prove the following result.

Theorem 2.1. Let X D D=� be an irreducible arithmetic quotient of a bounded
symmetric domain of real rank at least 2. If X is of type U:1, O:1 (n 	 4), O:2/.i/,
S:1, or S:2 then the Green-Griffiths locus GG.X/ D X:

In other words, the only cases remaining are U:2 and O:2/.ii/:
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3 The Case of Siegel Modular Varieties

An interesting case is the case of Siegel modular varieties corresponding to the
symplectic case S:1 in the above classification. The proof of the following result
will be very explicit giving the ideas of the general result.

Theorem 3.1. Let X D D=� , where D D DIII
n and � � Sp.2n;R/ commensurable

with Sp.2n;Z/, n 	 2, then the Green-Griffiths locus GG.X/ D X:

Proof. There is a totally geodesic polydisc�n ,! D,

z D .z1; : : : ; zn/! z� D diag.z1; : : : ; zn/

of dimension n consisting of diagonal matrices fZ D .zij/=zij D 0 for i ¤ jg � D.
This corresponds to an embedding Sl.2;R/n ,! Sp.2n;R/: M D .M1; : : : ;Mn/ !
M� D



a� b�
c� d�

�
; where Mi D



ai bi

ci di

�
; and a� D diag.a1; : : : ; an/ is the

corresponding diagonal matrix.
More generally, taking A 2 Gl.n;R/ one can consider the map �n ,! DIII

n ,
given by

z D .z1; : : : ; zn/! Atz�A:

In order to take quotients, one defines

�A WD fM 2 Sl.2;R/n=



At 0

0 A�1
�

M�



At 0

0 A�1
��1
2 �g:

Indeed we have a modular embedding

'A W �n=�A ! X:

Considering a totally real number field K=Q of degree n with the embedding
K ,! R

n, ! ! .!.1/; : : : ; !.n//, the matrices A D .!
.j/
i / where !1; : : : ; !n is a

basis of K have the property that �A is commensurable with the Hilbert modular
group of K [Fr79].

These matrices A are obviously dense in Gln.R/.
Now, take a global jet differential of order k, P 2 H0.X;EGG

k;mT�
X
/: Taking the pull-

back, '�
A P we obtain a k jet differential on a manifold uniformized by a polydisc.

Therefore, from Example 1.8, we obtain that 'A.�
n=�A/ � GG.X/: By density, we

finally get

GG.X/ D X:

ut
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4 The Isotropic Case

The case of Siegel modular varieties is a particular case of the situation where G is
isotropic and rankQ.G/ 	 2.

Theorem 4.1. If rankQ.G/ 	 2 then the Green-Griffiths locus GG.X/ D X:

Proof. Let G D SU.D; h/, where D is a division algebra over Q and h is a non-
degenerate hermitian or skew hermitian form on Dm. rankQ.G/ coincides with the
Witt index of h, i.e., with the dimension of a maximal totally isotropic subspace in
Dm see [PR]. Let H0

1 D< v > be a totally isotropic subspace of dimension 1 on D.
Then we can find v0 such that H1 D< v; v0 > is a hyperbolic plane, i.e., with respect

to a properly chosen basis hjH is given by the matrix



0 1

1 0

�
. Since rankQ.G/ 	 2

we can find a second hyperbolic plane H2 � H?
1 . Then

N Š SU.D; hjH1 / � SU.D; hjH2/

is a subgroup of G. Therefore we have found a Q-group N D N1 � N2 � G.
�N WD � \ NQ is an arithmetic subgroup giving a subvariety

'N W X�N D DN=�N ,! X� WD X;

whose universal cover DN is a product D1 � D2 corresponding to N1.R/ � N2.R/
� GR:

Now, take a global jet differential of order k, P 2 H0.X;EGG
k;mT�

X
/: Taking the pull-

back, '�
NP we obtain a k jet differential on a manifold uniformized by a product.

Therefore we obtain that 'N.X�N / � GG.X/:
Consider g 2 GQ then we have a subvariety

'gNg�1 W X�gNg�1 D g.DN/=�gNg�1 ,! X� WD X:

Since G is connected GQ is dense in G D GR (see Theorem 7.7 in [PR]). We
finally get

GG.X/ D X:

5 Proof of Theorem 2.1

As the proof of the two previous results made clear, the key point is to find a product
of Q-groups in G. If G D SU.V; h/ is of type U:1, since G is simple, G is compact
at all but one infinite place where G.Kv/ D SU.p; q/. We can diagonalize h and
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find as above two planes H1;H2 where h is of signature .1; 1/. The corresponding
Q-group is N1 D SU.hjH1/ � SU.hjH2/ such that N1.R/ Š SU.1; 1/ � SU.1; 1/ Š
SL2.R/ � SL2.R/:

Of course, the same reasoning can be applied when G is of type O:1 (with n 	
4) replacing the hermitian form by the symmetric bilinear form. This provides a
Q-subgroup N2 such that N2.R/ Š SO.1; 2/� SO.1; 2/ Š SL2.R/ � SL2.R/.

Now suppose G D SU.V; h/ is of type O:2/i/. Recall that the real rank is equal
to rankR.G/ D Œ n

2
�. So our hypothesis on the real rank implies n 	 4. We can

therefore find again two planes H1;H2 and a Q-subgroup N3 D SU.hjH1/�SU.hjH2/;
such that N3.R/ Š SO.2;H/ � SO.2;H/ Š SL2.R/ � SL2.R/ (modulo compact
factors SU.2/).

Finally if G D SU.V; h/ is of type S:2, the hypothesis on the real rank implies
n 	 2. So we can find two spaces H1;H2 one-dimensional over the quaternion
algebra and consider as before the Q-subgroup N4 D SU.hjH1/ � SU.hjH2/; such
that N4.R/ D Sp.2;R/� Sp.2;R/ Š SL2.R/ � SL2.R/: ut
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On the Structure of Codimension 1 Foliations
with Pseudoeffective Conormal Bundle

Frédéric Touzet

Abstract Let X be a projective manifold equipped with a codimension 1 (maybe
singular) distribution whose conormal sheaf is assumed to be pseudoeffective. By
a theorem of Jean–Pierre Demailly, this distribution is actually integrable and thus
defines a codimension 1 holomorphic foliationF . We aim at describing the structure
of such a foliation, especially in the non-abundant case: It turns out thatF is the pull-
back of one of the “canonical foliations” on a Hilbert modular variety. This result
remains valid for “logarithmic foliated pairs.”

Keywords Holomorphic foliations • Pseudoeffective line bundle • Abundance

Mathematical Subject Classification: 37F75

1 Introduction

In this paper, we are dealing with special class of codimension 1 holomorphic
foliations. To this goal, let us introduce some basic notations.

Our main object of interest consists of a pair .X;D/ where X stands for a
connected complex manifold (which will be fairly quickly assumed to be Kähler
compact) equipped with a codimension 1 holomorphic (maybe singular) distribution
D D Ann ! � TX given as the annihilator subsheaf of a twisted holomorphic non-
trivial one form

! 2 H0.X; �1
X ˝ L/:

Without any loss of generalities, one can assume that ! is surjective in codimen-
sion 1, in other words that the vanishing locus Sing ! has codimension at least 2.
This set will be also denoted by Sing D.
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The line bundle L is usually called the normal bundle of D and denoted by ND .
Here, we will be particularly interested in studying its dual N�

D , the conormal
bundle of D in the case this latter carries some “positivity” properties.

We will also use the letter F (as foliation) instead of D whenever integrability
holds, i.e: ŒD;D� � D.

In this context and unless otherwise stated, a leaf of F is an ordinary leaf of the
induced smooth foliation on X n Sing F .

Assuming now that X is compact Kähler, let us review some well-known
situations where integrability automatically holds.

D D F as soon as:

1. N�
D D O.D/ where D is an integral effective divisor. This is related to the fact

that d! D 0 (regarding ! as a holomorphic one form with D as zeroes divisor).
2. Kod .N�

D/ 	 0 where Kod means the Kodaira dimension. Actually, in this
situation, one can get back to the previous one passing to a suitable branched
cover.

In this setting, it is worth recalling the classical result of Bogomolov Castel-
nuovo De Franchis which asserts that one has always Kod .N�

D/ 
 1 and when
equality holds, D D F is a holomorphic fibration over a curve.

In fact, integrability still holds under weaker positivity assumptions on N�
D ,

namely if this latter is only supposed to be pseudoeffective ( psef ). This is a result
obtained by Demailly in [de].

For the sequel, it will be useful to give further details and comments on this
result.

First, the pseudoeffectiveness property can be translated into the existence of a
singular metric h on N�

D with plurisubharmonic (psh) local weights. This means that
h can be locally expressed as

h.x; v/ D jvj2e�2'.x/

where ' is a psh function.
The curvature form T D i

�
@@' is then well defined as a closed positive current

representing the real Chern class c1.N�
D/ and conversely any closed .1; 1/ positive

current T such that fTg D c1.N�
D/ (here, braces stand for “cohomology class”) can

be seen as the curvature current of such a metric.
What actually Demailly shows is the following vanishing property:

rh�! D 0:
More explicitly, ! is closed with respect to the Chern connection attached to ND

endowed with the dual metric h�.
This somehow generalizes the well-known fact that every holomorphic form on

compact Kähler manifold is closed.
Locally speaking, this equality can be restated as

(1) 2@' ^ ! D �d!
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if one looks at ! as a suitable local defining one form of the distribution.
Equality (1) provides three useful information:
The first one is the sought integrability: ! ^ d! D 0, hence D D F .
One then obtains taking the @ operator, that T is F -invariant (or invariant by

holonomy of the foliation), in other words, T ^ ! D 0.
One can also derive from (1) the closedness of 
T , where 
T is a globally defined

positive .1; 1/ form which can be locally expressed as


T D i

�
e2'! ^ !:

In some sense, 
T defines the dual metric h� on ND whose curvature form is �T
and is canonically associated with T up to a positive multiplicative constant.

Note that, as well as T, the form 
T has no reasons to be smooth. Nevertheless, it
is well defined as a current and taking its differential makes sense in this framework.

By closedness, one can also notice that 
T is indeed a closed positive F
invariant current.

Now, the existence of two such invariant currents, especially 
T which has
locally bounded coefficients, may suggest that this foliation has a nice behavior,
in particular from the dynamical viewpoint, but also, as we will see later, from the
algebraic one. Then it seems reasonable to describe them in more detail.

As an illustration, let us give the following (quite classical) example which also
might be enlightening in the sequel.

Let S D D�D

�
be a surface of general type uniformized by the bidisk. Here,

� � Aut D2 is a cocompact irreducible and torsion free lattice which lies in the
identity component of the automorphism group of the bidisk.

The surface S is equipped with two “tautologically” defined minimal foliations by
curves Fh and Fv obtained, respectively, by projecting the horizontal and vertical
foliations of the bidisk (recall that “minimal” means that every leaf is dense and
here, this is due to the lattice irreducibility).

Both of these foliations have a psef and more precisely a semipositive conormal
bundle. For instance, if one considers F D Fh, a natural candidate for 
T and T is
provided by the transverse Poincaré’s metric 
Poincaré, that is the metric induced
by projecting the standard Poincaré’s metric of the second factor of D � D.

In this example, it is straightforward to check that T D 
T is F invariant. We have
also T ^ T D 0. This implies that the numerical dimension �.N�

D/ is equal to one.
By minimality, and thanks to Bogomolov’s theorem this equality certainly does not
hold for Kod N�

D . In fact, this is not difficult to check that this latter is negative.
Maybe this case is the most basic one where abundance does not hold for the

conormal. One can then naturally ask whether this foliation is in some way involved
as soon as the abundance principle fails to be true. It turns out that (at least when
the ambient manifold X is projective) the answer is yes, as precised by the following
statement:
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Theorem 1. Let .X;F/ be a foliated projective manifold by a codimension
1 holomorphic foliation F . Assume moreover that N�

F is pseudoeffective and
Kod N�

F D �1, then one can conclude that F D ‰�G where ‰ is a morphism of
analytic varieties between X and the quotient H D D

n=� of a polydisk, (n 	 2/,
by an irreducible lattice � � .Aut D/n and G is one of the n tautological foliations
on H.

Remark 1.1. Note that the complex dimension n of H may differ (and will differ
in general) from that of X. However, one can ask if both coincide whenever the
foliation F is regular. These considerations are motivated by the description of
regular foliations on surface of general type due to Marco Brunella in [brsurf],
section 7. These latters have pseudoeffective conormal bundle and split into two
cases:

• Either F is a fibration,
• either F is a transversely hyperbolic minimal foliation on a surface S whose

universal covering QS is a fibration by disks over the disk, each fiber being a leaf
of the lift foliation QF .

This last situation (extended to singular foliations) is the one described in Theorem 1
above (this point will be justified in Sect. 5). Brunella has conjectured that QS is the
bidisk. If so, it is then readily seen that F is the projection of the horizontal or
vertical foliation. To the best of our knowledge, this problem is still unsolved, and
one can only assert that F comes from one of the tautological foliations on a (maybe
higher dimensional) polydisk.

One can extend the previous theorem for “logarithmic foliated pairs” in the
following sense:

Theorem 2. The same conclusion holds replacing the previous assumptions on N�
F

by the same assumptions on the logarithmic conormal bundle N�
F ˝ O.H/ where

H DP
i Hi is reduced and normal crossing divisor, each component of which being

invariant by the foliation and replacing H by its Baily–Borel compactification H
BB

.

Remark 1.2. In the logarithmic case, compactification is needed because, unlike
to the non-logarithmic setting, there may exist among the components of H some
special ones arising from the possible existence of cusps in H (this will be discussed
in Sect. 10).

Let us give the outline of the proof. For the sake of simplicity, we will take
only in consideration the non-logarithmic situation corresponding to Theorem 1.
The logarithmic case follows mutatis mutandis the same lines although we have to
overcome quite serious additional difficulties.

The first step consists in performing and analyzing the divisorial Zariski decom-
position of the pseudoeffective class c1.N�

F / using that we have at our disposal the
two positive closed invariant currents T, 
T and their induced cohomology class fTg
and f
Tg.
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Actually, the existence of such currents yields strong restriction on the Zariski
decomposition. Without entering into details, this basically implies that this latter
shares the same nice properties than the classical two dimensional Zariski decom-
position.

Once we have obtained the structure of this decomposition, one can solve by a fix
point method (namely, the Shauder–Tychonoff theorem applied in a suitable space
of currents) the equation

(2) T D 
T C ŒN�

where ŒN� is some “residual” integration current. More precisely, among the closed
positive currents representing c1.N�

F /, there exists one (uniquely defined) which
satisfies the equality (2) (with 
T suitably normalized).

This equality needs some explanations. Indeed, it really holds when the positive
part in the Zariski decomposition is non-trivial, that is when N�

F has positive
numerical dimension. From now on, we focus only on this case, regardless for
the moment of what occurs for vanishing Kodaira dimension.

We also have to be precise what is N: it is just the negative part in the Zariski
decomposition and it turns out that N is a Q effective F invariant divisor.

Then, outside Supp N, near a point where the foliation is assumed to be regular
and defined by dz D 0, (2) can be locally expressed as

�z'.z/ D e2'.z/

where ' is a suitably chosen local potential of T depending only on the transverse
variable z and �z is the Laplacean with respect to the single variable z. This is
the equation giving metric of constant negative curvature, which means that F
falls into the realm of the so-called transversely projective foliations and more
accurately the transversely hyperbolic ones. Equivalently, those can be defined by a
collection of holomorphic local first integral valued in the disk such that the glueing
transformation maps between these first integrals are given by disk automorphisms.
In that way, it gives rise to a representation

� W �1.X n Supp N/! Aut D:

Remark 1.3. We need to remove Supp N because the transversely hyperbolic
structure may degenerate on this hypersurface (indeed, on a very mildly way as
recalled in Sect. 3).

Let G be the image of the representation: it is the monodromy group of the
foliation and faithfully encodes the dynamical behavior of F . More precisely, one
can show that there are two cases to take into consideration:

Either G is a cocompact lattice and in that case, F is a holomorphic fibration,
Kod N�

F D 1 and coincides with the numerical dimension.
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Either G is dense (w.r.t the ordinary topology) in Aut D and the foliation is quasi-
minimal (i.e: all leaves but finitely many are dense). Moreover, Kod N�

F D �1. Of
course, we are particularly interested in this last situation.

To reach the conclusion, the remaining arguments heavily rely on a nice
result of Kevin Corlette and Carlos Simpson (see [corsim]) concerning rank two
local systems on quasiprojective manifolds, especially those with Zariski dense
monodromy in SL.2;C/.

Roughly speaking, their theorem gives the following alternative:

(1) Either such a local system comes from a local system on a Deligne–Mumford
curve C.

(2) Either it comes from one of the tautological rank two local systems on a what
the authors call a “polydisk Shimura DM stack” H (this latter can be thought as
some kind of moduli algebraic space uniformized by the polydisk, in the same
vein than Hilbert Modular varieties).

Remark 1.4. In the setting of transversely hyperbolic foliations, as we do not
really deal with rank 2 local but rather with projectivization of these, one can
get rid of the DM stack formalism, only considering the target spaces C or H
with their “ordinary” orbifold structure (which consists of finitely many points).
Moreover, in the full statement of Corlette-Simpson, one needs to take into account
some quasiunipotency assumptions on the monodromy at infinity. Actually, these
assumptions are fulfilled in our situation and are related to the rationality of the
divisorial coefficients in the negative part N.

This paper is a continuation of the previous work [to] where one part of the
strategy outlined above has been already achieved (namely, the construction of
special metrics transverse to the foliation).

Note also that the description of transversely projective foliations on projective
manifolds was recently completed in [lptbis]. However, there are several significant
differences between our paper and loc.cit (and in fact, the techniques involved in
both papers are not the same):

• In our setting, the transverse projective structure is not given a priori,
• [lptbis] also deals with irregular transversely projective foliations (ours turn out

to be regular singular ones).
• When the monodromy associated with the transverse projective structure is

Zariski dense in PSL.2;C/, the factorization theorem D, item (2) and (3) of
[lptbis] can be made more precise for the class of foliations considered here.
Namely, pull-back of a Ricatti foliation over a curve (item (2)) is replaced by pull-
back of a foliation by points on a curve, that is F is a fibration, and analogously,
item (3) can be reformulated changing “pull-back between representations” by
“pull-back between foliations,” as precised by Theorems 1 and 2 above.

Remark 1.5. To finish this introduction, maybe it is worth noticing an analogy
(at least formal) between our results and the description of singular reduced
foliations on surfaces not satisfying the abundance principle with respect to the
foliated canonical bundle KF and which has been achieved in [brsub] (the final and
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one of the most impressive steps in the Brunella–Mendes–McQuillan’s classification
of singular foliations on projective surfaces).

Indeed, it turns out that this class of foliations satisfied the assumptions of
Theorem 2. However, this is not a priori obvious and can be actually deduced
from the existence of the so-called Monge–Ampère transverse foliation (see [brsub],
section 4), a highly non-trivial result!

2 Positive Currents Invariant by a Foliation

In this short section, we review some definitions/properties (especially intersection
ones) of positive current which are invariant by holonomy of a foliation. They will
be used later.

2.1 Some Basic Definitions

Let F be a codimension 1 holomorphic foliation on a complex manifold X defined
by ! 2 H0.X; �1

X ˝ L/.

Definition 2.1 (see also [brbir, to]). Let T be a positive current of bidegree .1; 1/
defined on X. T is said to be invariant by F , or F -invariant, or invariant by
holonomy of F whenever

(1) T is closed
(2) T is directed by the foliation, that is T ^ ! D 0.

Notice that when T is a non-vanishing smooth semi-positive .1; 1/ form, we fall
into the realm of the so-called transversely hermitian foliations.

Definition 2.2 (see[to]). Let x 2 X be a singular point of F . We say that x is an
elementary singularity if there exists near x a non-constant first integral of F of
the form

f D f �11 : : : f
�p
p

where fi 2 OX;x and �i is a positive real number .
Equivalently, df

f is a local defining logarithmic form of F with positive residues.

Definition 2.3. Let T be a closed positive .1; 1/ current on X. Then T is said to be
residual if the Lelong number �H.T/ of T along any hypersurface H is zero.

Let X be compact Kähler, and T a .1; 1/ positive current on X, and fTg 2
H1;1.X;R/ its cohomology class . By definition, this latter is a pseudoeffective class
and admits, as such, a divisorial Zariski decomposition (a fundamental result due
to [bo, na], among others):

fTg D N C Z
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where N is the “negative part,” an R effective divisor, whose support is a finite
union of prime divisor N1; ::Np such that the family fN1; ::;Npg is exceptional (in the
sense of [bo]) and Z, the “positive part” is nef in codimension 1 (or modified nef ).
This implies in particular that the restriction of Z to any hypersurface is still a
pseudoeffective class.

(For a precise definition and basic properties of Zariski decomposition useful for
our purpose, see [to] and the references therein).

2.2 Intersection of F -Invariant Positive Currents

Let X be a Kähler manifold equipped with a codimension 1 holomorphic foliation
F which carries a .1; 1/ closed positive T current invariant by holonomy.

Proposition 2.4. Assume that near every point, T admits a local potential locally
constant on the leaves. Let S be an other closed positive current invariant by F ,
then fSgfTg D 0
Proof. Let .Ui/i2I be an open cover of X such that T D i

�
@@'i, 'i psh locally

constant on the leaves. On intersections, one has @'i � @'j D !ij where !ij is a
holomorphic one form defined on Ui \ Uj vanishing on the leaves (i.e., a local
section of the conormal sheaf N�

F considered as an invertible subsheaf of �1
X). Let


 a .1; 1/ be closed smooth form such that f
g D fTg. One can then write on each
Ui (up refining the cover) 
 D i

�
@@ui, ui 2 C1.Ui/, such that @ui � @uj D !ij. As a

consequence, the collection of i
�
@ui ^ S, with S any closed invariant current, gives

rise to a globally well-defined .1; 2/ current whose differential is 
^ S. This proves
the result. ut
Remark 2.5. As pointed out by the referee, this proposition still holds true without
requiring positivity assumptions on S or T.

Remark 2.6. One can slightly improve this statement replacing X by X n S where S
is an analytic subset of codimension	 3 (it will be useful in the sequel).

To this goal, we use that H1.Ui n S;N�
F / D 0 (for a suitable cover). This means

that one can find on each Ui an holomorphic one form �i such that @'i � @'j D
!ij C�i ��j. Indeed, take an open cover .Vk/ of Ui n S such that @'i D @'k C 
k

where 'k is psh and 
k a holomorphic one form both defined on Vk. By vanishing
of the cohomology, one has 
k � 
l D !k � !l where !k is an holomorphic form
vanishing on the leaves. Then the 
k�!k’s glue together on UinS into a holomorphic
one form whose extension through S is precisely �i. Taking 
 and S as previously,
one obtains that the current defined locally by .@ui � �i/ ^ S is globally defined.
Then, the same conclusion follows taking the @ differential instead of the differential
and applying the @@ lemma. ut
Proposition 2.7. Assume that the singular points of F are all of elementary type
(as defined above). Let S;T be F -invariant positive currents. Assume moreover that
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S is residual, then the local potentials of S can be chosen to be constant on the leaves
and in particular

(1) fSgfTg D 0
(2) fSg and fTg are collinear assuming in addition that T is also residual.

Proof. By Proposition 2.4, it suffices to show that one can choose the local
potentials of T to be locally constant on the leaves to prove the first item.

Let x 2 Sing F and F be an elementary first integral of X near x. One can
assume that

F D
pY

iD1
fi
�i

with �1 D 1. Following the main result of [pa2], the (multivaluate) function F
has connected fibers on U n Z.F/ where U is a suitable arbitrarily small open
neighborhood of x and Z.F/ D fQ fi D 0g. Let T � U be a holomorphic curve
transverse to F which cuts out the branch f1 D 0 in x1, a regular point of F and
such that f1jT sends biholomorphically T onto a disk Dr D fjzj < rg. Let G be the
closure in S1 D fz D 1g of the group generated by fe2i��kg; k D 1; : : : ; p; thus,
either G is the whole S1 or is finite.

Up shrinking U, one can assume that, on U, T D i
�
@@' where ' is psh. Let

'1 D 'jT and T1 D i
�
@@ '1.

Set

H D fh 2 Aut.T /jh.z/ D gz; g 2 Gg:

(here, and in the sequel we identify T and Dr). The fibers connectedness property
remains clearly valid if one replaces U by the saturation of T by F in U (still
called U).

Thus T1 is H-invariant, that is h�T1 D T1 for very h 2 H. One can also obtain
a subharmonic function  1 H-invariant when averaging '1 with respect to the Haar
measure dg on the compact group G [ra, th 2.4.8]:

 1.z/ D
Z

G
'1.gz/dg

Note that i
�
@@ 1 D T1; then, by H invariance,  1 uniquely extends on U as a psh

function  locally constant on the leaves and such that

T D i

�
@@ :

Indeed, this equality obviously holds on U nZ.F/ (where the foliation is regular)
and then on U as currents on each side do not give mass to Z.F/. This proves the
first part of the proposition.
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The assertion .2/ is a straightforward consequence of the Hodge’s signature
theorem if one keeps in mind that fSg2 D fTg2 D fSgfTg D 0. ut
Remark 2.8. Actually, the same conclusion (and proof) holds under the weaker
assumption that every singular point of F contained in Supp S \ Supp T is of
elementary type, instead of requiring all the singular points to be elementary.

3 Foliations with Pseudoeffective Conormal Bundle

Throughout this section, X is a compact Kähler manifold carrying a codimension 1
(maybe singular) holomorphic foliation whose conormal bundle N�

F is pseudoeffec-
tive (psef for short). The study of such objects has been undertaken in [to] and in
this section, we would like to complete the results already obtained.

3.1 Some Former Results

Before restating the main theorem of [to] and other useful consequences, let us recall
what are the basic objects involved (see [to], INTRODUCTION for the details).

Let T D i
�
@@ ' be a positive .1; 1/ current representing c1.N�

F /. One inherits
from T a canonically defined (up to a multiplicative constant) .1; 1/ form 
T with
L1

loc coefficients which can be locally written as


T D i

�
e2'! ^ !

where ! is a holomorphic one form which defines F locally. It turns out that

d
T D 0

in the sense of currents (lemma 1.6 in [to]). We can then deduce that T and 
T

are both positive F -invariant currents, in particular the hypersurface Supp N (or
equivalently the integration current ŒN�) is invariant by F . Moreover, using that

T represents a nef class, one can show that the positive part Z is a non-negative
multiple of f
Tg (Proposition 2.14 of [to]). Then, in case that Z 6D 0, one can
normalize 
T such that f
Tg D Z.

Here is the main result of [to] (Théorème 1 p.368):

Theorem 3.1. Let fNg C Z be the Zariski decomposition of the pseudoeffective
class c1.N�

F /, then there exists a unique F -invariant positive .1; 1/ current T with
minimal singularities (in the sense of [bo]) such that
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(1) fTg D c1.N�
F /

(2) T D ŒN� if Z D 0 (euclidean type).
(3) T D ŒN�C 
T if Z 6D 0 (hyperbolic type)

Actually, the existence of such a current provides a transverse invariant metric
for F (with mild degeneracies on Supp N [ Sing F ), namely 
T , whose curvature
current is �T. This justifies the words “euclidean” and “hyperbolic.”

To each of these transversely invariant hermitian structure, one can associate
the sheaf of distinguished first integrals I" " D 0; 1 depending on whether this
structure is euclidean or hyperbolic.

It will be also useful to consider the sheaf I"d log derived from I" by taking
logarithmic differentials.

These two locally constant sheaves have been introduced in [to] (Définition 5.2)
respectively, as “faisceau des intégrales premières admissibles” and “faisceau des
dérivées logarithmiques admissibles.” Then, we will not enter into further details.
Strictly speaking, they are only defined on X n Supp N .

As a transversely homogeneous foliation, F admits a developing map � defined
on any covering � W X0 ! X n Supp N where ��I" becomes a constant sheaf [to,
section 6, and the references therein].

Recall that � is just a section of ��I" (and in particular a holomorphic first
integral of the pull-back foliation ��F ). One also recovers a representation

r W �1.X n Supp N/! ="

uniquely defined up to conjugation associated with the locally constant sheaf I" and
taking values in the isometry group =" of U", U0 D C; U1 D D.

One can now restate theorem 3 p.385 of [to].

Theorem 3.2. The developing map is complete. That is, � is surjective onto C

(euclidean case) or D (hyperbolic case).

One can naturally ask if the fibers or � are connected, a question raised in [to].
A positive answer would give useful information on the dynamic ofF . This problem
is settled in the next section.

3.2 Connectedness of the Fibers

Let � W X0 ! X n Supp N be a covering such that the developing map � is defined
on X0.

Let K be an invariant hypersurface of F : In a sufficiently small neighborhood of
K [ Sing F , we get a well-defined logarithmic 1 form 
K defining the foliation and
which is a (semi) local section of I"d log and such that K [ Sing F is contained in
the polar locus of 
K (Proposition 5.1 of [to]). The main properties of 
K are listed
below and are directly borrowed from loc.cit. They will be used repeatedly and
implicitly in the sequel.
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• The residues of 
K are non-negative real numbers. To be more precise, the germ
of 
K at x 2 K [ Sing F can be written as


K D
nxX

iD1
�i

dfi
fi
:

where the fi 2 OX;x are pairwise irreducible and the �i’s are 	 1.
In particular, the multivaluate section e

R

K D Q

fi�i of I" is an elementary first
integral of F .

• If fi D 0 is a local equation of a local branch Nfi of Supp N, then �i D �fi.Nfi /C1
where �fi.Nfi/ stands for the weight of Nfi in N and �i D 1 otherwise. Thus, e
K

is univaluate and reduced (as a germ of OX;x) if and only if x … Supp N.
• The local separatrices at x (i.e., the local irreducible invariant hypersurfaces

containing x) are exactly those given by fi D 0.
• x is a regular point of F if and only if nx D 1 and f1 is submersive at x.

Our aim is to show that the fibers of � are connected if one allows to identify
certain components contained in the same level of �. On the manifold X, this
corresponds to identify some special leaves in a natural way. To clarify this, one
may typically think of the fibration defined by the levels of f D xy on C

2. All the
fibers are connected. However, if we look at the underlying foliation, the fiber f �1.0/
consists in the union of two leaves that must be identified if one wants to make the
space of leaves Hausdorff. Observe also that, when blowing up the origin, these two
special leaves intersect the exceptional divisor E on the new ambient manifold QC2 .
Coming back to our situation, one may think that leaves which “intersect” the same
components of Supp N must be identified. This indeed occurs if we replace the
general X0 by the basic previous example QC2 n E.

More precisely, we proceed as follows: For p 2 X0, denote by Cp the connected
component of ��1.�.p// containing p. Let p; q 2 X0. Define the binary relation R
by pRq whenever

(1) Cp D Cq

or
(2) �.p/ D �.q/ and there exists a connected component H of Supp N such that on

any sufficiently small neighborhood of H, .
H/1 \ �.Cp/ 6D ; and .
H/1 \
�.Cq/ 6D ;.

We will denote by R the equivalence relation generated by R and AR and the
saturation of A � X0 by R.

Remark 3.3. The saturation .Cp/R of a connected component of a fiber of � is
generically reduced to itself. In fact, as a consequence of the above description of

K , this holds outside a countable set of components which projects by � onto a
finite set of leaves of F whose cardinal is less or equal to the number of irreducible
components of .
K/1 with K D Supp N.
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Consider now the quotient space X0=R endowed with the quotient topology;
as an obvious consequence of our construction, � factorize through a surjective
continuous map � W X0=R! U".

Using that the singularities of F are elementary and [to] (Lemme 6.1, corollaire
6.2), we get the

Lemma 3.4. The saturation VR of an open set V is open in X0.

Remark 3.5. When X0 is Galoisian, any deck transformation � of X0, r is compatible
with the equivalence relation above in the following sense: there exists a unique set
theoretically automorphism � of X0=R such that �ı� D �ı� ı'R where 'R W X0 !
X0=R denotes the canonical projection. Observe also that � is a homeomorphism,
by definition of the quotient topology.

The following result somewhat teaches us that, modulo these identification, the
fibers of � are connected.

Theorem 3.6. The map � W X0=R! U" is one to one.

As a straightforward consequence, we obtain the

Corollary 3.7. Suppose that the negative part N is trivial, then the fibers of � are
connected.

The proof is in some sense close to that of the completeness of � which makes
use of a metric argument (see [to]). In this respect, it will be useful to recall the
following definition (see [mo]).

Definition 3.8. Let F be a regular transversely hermitian codimension 1 holomor-
phic foliation on a complex manifold X. Let h be the metric induced on NF by the
invariant transverse hermitian metric. Let g be an hermitian metric on X and gN the
metric induced on NF by g via the canonical identification TF

? ' NF .
The metric g is said to be bundle-like (“quasi-fibrée” in French terminology)

if gN D h.

Remark 3.9. Because of the “codimension 1” assumption on F , one can notice
that, when F is transversely hermitian, any hermitian metric on X is conformally
equivalent to a bundle-like one .

The following property is used in [to] (Lemme 6.3):

Proposition 3.10 (cf [mo], Proposition 3.5 p.86). Let F be a transversely hermi-
tian foliation equipped with a bundle like metric g. Let � W I ! X be a geodesic arc
(with respect to g). Assume that � is orthogonal to the leaf passing through �.t0/
for some t0 2 I. Then, for every t 2 I, � remains orthogonal to the leaf passing
through �.t/.

Remark 3.11. In our setting, it is also worth recalling (loc.cit) that �.�/ is a
geodesic arc of U" endowed with its natural metric ds" depending on the metric
type of NF (euclidean or hyperbolic).
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Proof of Theorem 3.6. It is the consequence of the following sequence of obser-
vations. Consider firstly a bundle-like metric g defined on the complement of
E D Supp N [ Sing F in X: For p 2 X n E and " > 0, B.p; "/ stands for the
closed geodesic ball of radius " centered at p. This latter is well defined if " is small
enough (depending on p).

According to [to], prop 5.1, there exists a logarithmic 1 form 
 with positive
residues defining the foliation near E D Supp N [ Sing F (keep in mind that 
 is
just a semi-local section of the sheaf I"d log mentioned above). Let C1; : : : ;Cp be the
connected component of E. Pick one of these, says C1. Following [pa2], there exists
an arbitrary small connected open neighborhood U1 of C1 such that the fibers of
f1 D exp

R

 (defined as a multivaluate function) on U1n.
/1 are connected and one

can also assume that the polar locus 
1 is connected. This latter can be thought as
the “singular fiber” of f1. Actually, assumptions of theorem B of [pa2] are fulfilled:
this is due to the fact that the residues of 
 are positive equal to 1 on the local
branches of .
/1 intersecting C1 not contained in C1, noticing moreover that this set
S1 of local branches is non-empty (see [to], Proposition 5.1 and 5.2), a fundamental
fact for the following. Let D1 � C1 be the union of irreducible codimension 1
components; in other words, D1 is the connected component of Supp N contained
in C1. Remark that S1 D f �1

1 .0/when extending f1 through S1nD1. Observe also that
S1 is not necessarily connected, as the “negative” component D1 has been removed.
This justifies the definition of the previous equivalence relation R.

Let W1 b V1 b U1 be some open neighborhood of C1. One can perform the
same on each component and we thus obtain open set Wi b Vi b Ui i D 1 : : : p
with fi; Si similarly defined.

Let U D S
i Ui; V D S

i Vi; W D S
i Wi. Up to shrinking Ui, Vi and Wi, one

can assume that the following holds:

(1) Ui \Uj D ;; i 6D j
(2) There exists ˛ > 0 such that for every m 2 X nW, B.m; ˛/ is well defined.
(3) Let x 2 Vi n Supp N, and fi;m a determination of fi at m, then the image of

Ui n Supp N by fi contains the closed geodesic ball (euclidean or hyperbolic) of
radius ˛ centered at fi;m.m/, with fi;m any germ of determination of fi in m.

Indeed, one can exhibit such Vi (the only non-trivial point) in the following
way. Pick x 2 Si such that F is smooth on a neighborhood of x and take a small
holomorphic curve

� W fjzj < "g ! Ui; �.0/ D x

transverse to F such that property (3) holds for every y 2 Im � (this means that ˛
can be chosen independently of y). This is possible because fi (more exactly any of
its determinations) is submersive near x. By [to] (Corollaire 6.2), the saturation of
C D Im.�/ by FjUi is also an open neighborhood of Ci and one can take Vi equal to
it. Note also that the property (3.2) mentioned above does not depend on the choice
of the determination, as others are obtained by left composition through a global
isometry of U".
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Lemma 3.12. The quotient space X0=R is Hausdorff (with respect to the quotient
topology).

Proof. Suppose that X0=R is not Hausdorff. Using Lemma 3.4 and Remark 3.3, one
can then find two points p; q belonging to the same fiber of � such that fpgR 6D fqgR
and a sequence .pn/; pn 2 X0 converging to p such that

(1) fpngR coincide with the connected component of ��1.�.pn// containing pn and
such that fpngR does not intersect the singular locus of the pull-back foliation
��F (in other words, � is submersive near every point of fpngR).

(2) For every neighborhood V of q, there exists n such that fpngR \ V 6D ;.
Equivalently, up passing to a subsequence, one can find .qn/; qn 2 fpngR
converging to q. In particular, lim

n!C1�.qn/ D �.q/ D �.p/.
Without any loss of generality, we may also assume that � is submersive near p
and q.

Let �n W Œ0; 1�! fpngR be a continuous path joining pn to qn.
Let t 2 Œ0; 1� and pn.t/ D �.�n.t//. In Œ0; 1�, consider the open sets O1

n D p�1
n .Un

W/ and O2
n D p�1

n .V/.
One can choose n big enough such that the following constructions make sense.
If pn.t/ … W, there exists a unique geodesic arc in B.pn.t/; ˛/ orthogonal

to the leaves which lifts in X0 to a path joining �n.t/ to a point rn.t/ such that
�.rn.t/ D �.p/.

In that way, one can define a map

˛n W O1
n ! X0=R

setting ˛n.t/ D frn.t/gR: Note that ˛n is locally constant.
Now suppose that pn.t/ 2 Vi for some i and denote by ��1 the local inverse of

the covering map � sending pn.t/ to �n.t/. Keeping track of the conditions imposed
on Vi b Ui, there exists a path in Ui n Supp N starting from pn.t/ such that the
analytic continuation of � ı ��1 has �.p/ as ending value. This path lifts in X0 to a
path joining �n.t/ to a point sn.t/.

Remark 3.13. Note that the point sn.t/ depends on the choice of this path. However,
as a consequence of the connectedness of the fibers of fi, the equivalent class
fsn.t/gR is uniquely defined.

This allows us to define a map

ˇn W On
2 ! X0=R

setting ˇn.t/ D fsn.t/gR which is also obviously locally constant.
Moreover, by Remark 3.13, ˛n and ˇn coincide on On

1 \ On
2.

We have thus constructed a locally constant map from Œ0; 1� to X0=R sending 0
to fpgR and 1 to fqgR. This provides the sought contradiction. ut
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End of the Proof of the Theorem 3.6. By Lemma 3.4, the map � is a local homeo-
morphism. Moreover, X0=R is Hausdorff. Hence, X0=R carries, via �, a uniquely
defined connected Riemann surface structure which makes � analytic.

Moreover the pull-back by � of the metric ds" is complete (this is a straightfor-
ward consequence of the proof of Theorem 3.2). Hence, it turns out that � is indeed
an analytic covering map. The space U" being simply connected, one can conclude
that � is actually a biholomorphism. ut

This allows us to recover (modulo further information postponed in the sequel
(see Sect. 5) a result due to Carlos Simpson who has proved in [sim1] (among other
things).

Theorem 3.14. Let ! be a holomorphic one form on X Kähler compact and let
� W QX ! X be a covering map such that

g W QX ! C

obtained by integration of ! is well defined. Then we get the following alternative:

(1) ! factors through a surjective morphism X ! B on a compact Riemann surface
B,

(2) the fibers of g are connected.

Proof. Let �.N�
F / be the Kodaira dimension of the conormal bundle of the foliation

F defined by !.
If �..N�

F // D 1, one can apply the Castelnuovo–De Franchis theorem on a
suitable ramified cyclic covering and show thatF define a fibration over an algebraic
curve B (see [Reid]); moreover (loc.cit, see also [brme]), this dimension can’t
exceed one. Then one can assume that �..N�

F // D 0; this is equivalent to say that
c1.N�

F / has zero numerical dimension (see Theorem 4, Sect. 5) and this implies that
U" D U0 D C. Let I be the sheaf on X whose local sections are primitives of !.
In restriction to the complement of Supp N we thus have I D I0.

Keeping the previous notations, one can take X0 equal to QX n g�1.H/, setting
H D Supp N. In particular, one can conclude when N is trivial (Corollary 3.7).

We will denote by g0 the restriction of g to X0. This is nothing but the developing
map considered previously, in particular, the image of g0 is C. Let A D fa 2
C such that g�1.a/ \ ��1.H/ 6D ;g. Following Theorem 3.6, the fiber g�1.x/ is
connected whenever x … A. We want to show that the same holds true if x 2 A.
Actually this easily results from the definition of R, Theorem 3.6 and the following
fact: for every point y 2 H, there exists a continuous path � W Œ0; 1� ! H such that
�.0/ D y and �.1/ belongs to a local separatrix which is not a local branch of H [to,
Proposition 5.1 and 5.2].
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4 Uniformization and Dynamics

We keep the same assumptions and notations of the previous section, in particular,
unless otherwise stated, X still denotes compact Kähler manifold carrying a
codimension 1 foliation such that N�

F is pseudoeffective.
The Hermitian transverse structure of the foliation F , as explicited in [to]

and recalled in Sect. 3, may degenerate on the negative part with very “mild”
singularities, as described in loc.cit.

Hence, one can guess that this kind of degeneracy will not deeply affect the
dynamics of leaves in comparison with the usual case: transversely Riemannian
foliations on (real) compact manifolds. Let us recall some properties in this setting
(see [mo]).

– The manifold is a disjoint union of minimals (recall that a minimal is a
closed subset of X saturated by the foliation and minimal with respect to these
properties).

– When the real codimension F is equal to 2, a minimal M falls into one of the
following three types:

(1) M is a compact leaf.
(2) M coincides with the whole manifold.
(3) M is a real hypersurface.

Now, let’s come back to our situation.
Recall that =" denotes the isometry group of U", " 2 f0; 1g (keep in mind that

U0 D C and U1 D D). The locally constant sheaf I" induces a representation

r W �1.X n Supp N/! =":

Let G be the image of the representation r and G its closure (with respect to the
usual topology) in =".

Let � W X0 ! U" be the associated developing map. For the sake of convenience,
we will assume that the covering � W X0 ! X n Supp N is Galoisian and as such
satisfies the following equivariance property

� ı � W r.�/ ı �

where � in the right side is an element of �1.X n Supp N/, in the left one is the
corresponding deck transformation.

Definition 4.1. The group G is called the monodromy group of the foliation F .

We would like to recover the aforementioned dynamical properties for regular
foliations. As we deal with singular foliations, we will have to modify slightly the
usual definition of a leaf, taking into account the identifications made in a previous
section.
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For this purpose let c 2 U" and recall that ��1.c/ D .��1.c//R, that is
coincide with its saturation by the equivalence relation R (Theorem 3.6). Let
Fc D �.��1.c//; as a consequence of the previous construction, we have Fc D Fc0

if and only if there exists g 2 G such that c0 D g.c/ (see Remark 3.5). Let
C1; : : : :; Cp be the connected components of Supp N such that .
Ci/1 \ Fc 6D ;
and let Lc D Fc [i Ci. Of course, this family of components depends on the choice
of c.

Definition 4.2. A subset of X of the form Lc is called modified leaf of the
foliation F .

Definition 4.3. A subset M is called modified minimal of the foliation whenever
M is the closure of a modified leaf and is minimal for the inclusion.

By Remark 3.3, all modified leaves, except a finite number, are indeed ordinary
leaves.

The family fLcg defines a partition of X. Let X=F be the associated quotient
space which, in some sense, represents the space of leaves. One obtains a canonical
bijection

‰ W X=F ! U"=G

induced by Lc ! c.
One can translate the previous observations into the following statement.

Theorem 4.4. The map‰ is a homeomorphism w.r.t. the quotient topology on each
space.

By compactness of X, we obtain the

Corollary 4.5. The group G is cocompact, i.e: U"=G is a (non-necessarily Haus-
dorff) compact space for the quotient topology.

With this suitable definition of the leaves space X=F , one can observe that the
dynamic behavior of F is faithfully reflected in those of the group G. The next step
is then to describe its topological closure G.

Assume firstly that U" D D and G is affine (i.e: G fix a point in @D). We want to
show that this situation can’t happen.

In this case, G does not contain any non-trivial elliptic element. In particular, this
means that F D e

R

H is a well-defined (univaluated) holomorphic first integral of

the foliation on a neighborhood V of H D supp N. Furthermore, one can notice
that the zero divisor of the differential dF coincides with the negative part N. Using
again that G is affine, one eventually obtains that F is defined by a section of N�

F ˝
O.�N/˝ E without zeroes in codimension 1 where E is a flat line bundle (take the
half plane model instead of D). This contradicts the fact that the positive part Z is
non-trivial.

Once this case has been eliminated, the remaining ones can be easily described
as follows (taking into account that G is cocompact):
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Proposition 4.6. Up to conjugation in =", the topological closure G has one of the
following forms:

(1) G D G and then is a cocompact lattice.
(2) The action of G is minimal and

(a) either " D 0 and G contains the translation subgroup of =0,
(b) either " D 1 and G D =1.

(3) " D 0 and G contains the subgroup of real translation, T D ft˛; ˛ 2
Rg.t˛.z/ D zC ˛/ and more precisely

(a) either G D hT; ti,
(b) either G D hT; t; si
with t.z/ D zC ai for some real a 6D 0 and s.z/ D �z.

When considering the foliation viewpoint, this latter description leads to the

Theorem 3. The topological closure of every modified leaf is a modified minimal,
the collection of those modified minimals forms a partition of X, moreover

(1) in case (1) of Proposition 4.6, modified leaves coincide with their closure and
F defines, via ‰, a holomorphic fibration over the curve U"=G;

(2) in case (2) of Proposition 4.6, X is the unique modified minimal;
(3) in case (3) of Proposition 4.6, every modified minimal is a real analytic

hypersurface.

Remark 4.7. It is worth noticing that the existence of a closed modified leaf implies
that the other ones are automatically closed (case 1 of the previous theorem).

Corollary 4.8. Assume that F is not a fibration, then the family of irreducible
hypersurfaces invariant by F is exceptional and thus has cardinal bounded by the
picard number �.X/.

Proof. Assume that there exists a non-exceptional family of invariant hypersurfaces.
One can then find a connected hypersurface K D K1 [ K2 [ : : : [ Kr invariant by
F such that the family of irreducible components fK1; : : : ;Krg is not an exceptional
one. By virtue of Proposition 5.2 of [to], K is necessarily a modified leaf and F is
tangent to a fibration by Remark 4.7. ut

5 Kodaira Dimension of the Conormal Bundle

As previously, F is a codimension 1 holomorphic foliation on a compact Käbler
manifold X such that N�

F is pseudoeffective. We adopt the same notations as before.
In [to] (see Remarque 2.16 in loc.cit), it has been proved that for ˛ D c1.N�

F /, the
numerical dimension �.˛/ takes value in f0; 1g depending on the metric type of NF ;
0 corresponds to the Euclidean one and 1 to the hyperbolic one (see Theorem 3.1).
Moreover, we always have
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�.N�
F / 
 �.˛/

where the left member represents the Kodaira dimension of N�
F . This is a common

feature for line bundles (see [na]) that can be directly verified in our case. Indeed, we
always have �.N�

F / 
 1 (cf. [Reid]) and when ˛ D fNg (in particular, N DP
i �iDi

is a Q effective divisor), ŒN� is the only positive current which represents fNg. This
latter property implies that �.N�

F / 
 �.N/ D 0.
Among the different cases described in Theorem 3, we would like to characterize

those for which abundance holds, that is �.N�
F / D �.˛/.

Theorem 4. Let ˛ D c1.N�
F /. Then, �.˛/ D �.N�

F / in both cases:

(1) " D 0 (Euclidean type).
(2) " D 1 (Hyperbolic type) and G is a lattice.

Moreover, in the remaining case " D 1 and G dense in=1, we have �.N�
F / D �1

and �.˛/ D 1.

Proof. Let us firstly settle the case " D 1 and G D =1.
Assume that �.N�

F / 	 0. Consider in first place the simplest situation h0.N�
F / 6D

0; this means that the foliation is defined by a holomorphic 1 form !. Taking local
primitives of !, we can equip the foliation with a transverse projective structure
different from the hyperbolic one (attached to " D 1). By means of the Schwarzian
derivative, one can thus construct, as usual, a quadratic differential of the form

F! ˝ !

where F is a meromorphic first integral of F . For obvious dynamical reasons, F is
automatically constant and this forces local first integrals g 2 I1 to be expressed in
the form g D e�f (modulo the left action of =1). In particular the monodromy group
G must be Abelian and this leads to a contradiction.

In the more general setting, the same conclusion holds with the same arguments,
considering a suitable ramified covering � W X1 ! X such that the pull-back
foliation is defined by a holomorphic form.

Concerning the case 2) of Theorem 4, we know that F is a fibration over
the compact Riemann surface S D D=G. For n � 0 one can then find two
independent holomorphic sections s1; s2 of KS

˝n (with respect to the hyperbolic
orbifold structure). One must take care that the map‰ is not necessarily a morphism
in the orbifold sense. Indeed, the local expression of ‰ along Supp N is given, up
to left composition by an element of =", as a multivaluate section of I" of the form
f �11 : : : :f �r

r (see Remark 3.3). Hence, it fails to be an orbifold map through Supp N
unless the �i are integers. However, the fact that they are > 1 (as pointed out in
loc.cit) guarantees that s1 and s2 lift (via ‰) to 2 independent holomorphic sections
of N�

F
˝n, whence �.N�

F / D 1.
The remaining case .1/ is a bit more delicate to handle. Here, the Kodaira

dimension �.N�
F / is directly related to the linear part GL of G. Namely, �.N�

F / D 0
if and only if GL is finite. This occurs in particular when F is a fibration.
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One can then eliminate this case and suppose from now on that the generic leaf
of F is not compact. Assume firstly that N is an effective integral divisor (a priori,
it is only Q effective). This means that the foliation is defined by a twisted one
form ! 2 H0.X; �1 ˝ E/ with value in a numerically trivial line bundle E, that is
E 2 Pic� .M/ WD fL 2 Pic .M/jc1.L/ D 0 2 H2.M;R/g. Note that the zeroes divisor
of ! is precisely N and the theorem will be established once we will prove that E is
actually a torsion line bundle.

To this aim, remark that the dual E� is an element of the so-called Green–
Lazarsfeld subset

S1.X/ D fL 2 Pic� such that H1.X;L/ 6D 0g:

In the sequel, it will be useful to consider H1.X;C�/ as the parameterizing space
of rank one local systems and to introduce the set

†1.X/ D fL 2 H1.X;C�/ such that H1.X;L/ 6D 0g:

When L is unitary, S1.X/ and †1.X/ are related as follows:

L 2 †1.X/ if and only if L 2 S1.X/[ �S1.X/

where L D L˝OX is the numerically trivial line bundle defined by L (see [beau], a)
Proposition 3.5).

When X is projective, Simpson has shown that the isolated points of †1.X/
are torsion characters [sim]. This has been further generalized by Campana in the
Kähler setting [camp].

We proceed by contradiction. Assume that �.N�
F / 6D 0, in other words, E is not

torsion.
This can be translated into the existence of a flat unitary connection

ru W E! �1.E/

whose monodromy representation has infinite image H in the unitary group U.1/.
As mentioned before, H is nothing but the linear part GL of the monodromy group
G attached to the foliation.

Keeping track of Simpson’s result, E D ker ru is not isolated in †1.X/, hence,
following [beau], one can conclude that the existence of a holomorphic fibration
with connected fibers over a compact Riemann surface of genus g 
 1 such that
E 2 p�.H1.B;C�/, up replacing X by a finite étale covering.

From ru! D 0 and the fact that E comes from a line bundle on B, one can
conclude that ! restricts to a holomorphic closed one form on open sets p�1.V/, V
simply connected open set in B.

Let F be a smooth fiber of p and � < Aut.H1.F;C// the monodromy group
associated with the Gauss–Manin connection. Let D be the line spanned by !jF in
H1.F;C/ (recall that the foliation is not tangent to the fibration).
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One can observe that D is globally � invariant (actually, H is just the induced
action of � on D). By [del], Corollaire 4.2.8, or the fact that the connected

component of �
Zar

is semi-simple (see loc.cit), one can then infer that H is finite.
The fact that N is in general only effective over Q does not really give troubles.

One can easily reduce this case to the previous one, working on a suitable ramified
covering. ut
Remark 5.1. Deligne’s results quoted above are stated in an algebraic setting but the

semi-simplicity of �
Zar

remains true in the Kähler realm, as pointed out in [camp].

6 The Non-abundant Case

We are dealing with the non-abundant case: �.N�
F / D �1 < �.N�

F / D 1. From
now on, we will also assume that the ambient manifold X is projective.

As a consequence of Theorem 4, we know that F is a quasi-minimal foliation
(i.e: all but finitely many leaves are dense).

The foliation F falls into the general setting of transversely projective foliations.
For the reader convenience, we now recall some definitions/properties concerning
these latters.

6.1 Transversely Projective Foliations, Projective Triples

We follows closely the presentation of [lope] (see also [lptbis]) and we refer to
loc.cit for precise definitions. A transversely projective foliation F on a complex
manifold X is the data of .E;r; 	/ where

• E! X is a rank 2 vector bundle,
• r a flat meromorphic connection on E and
• 	 W X ! P D P.E/ a meromorphic section generically transverse to the

codimension one Riccati foliation R D P.r/ and such that F D 	�R.

Let us assume (up to birational equivalence of bundles) that E D X � P
1 is the

trivial bundle (this automatically holds when X is projective by GAGA principle), 	
is the section fz D 0g so that the Riccati equation writes

� D dzC !0 C z!1 C z2!2

with !0 defining F . Setting z D z2
z1

we get the sl2-connection (i.e., trace free)

r W Z D



z1
z2

�
7! dZ C



˛ ˇ

� �˛
�

Z
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where



˛ ˇ

� �˛
�
WD


� 1
2
!1 �!2
!0

1
2
!1

�
:

Note that

r � r D 0 , � ^ d� D 0 ,
8
<

:

d!0 D !0 ^ !1
d!1 D 2!0 ^ !2
d!2 D !1 ^ !2

Change of triples arise from birational gauge transformations of the bundle fixing
the zero section

(3)
1

z
D a

1

z0 C b

where a; b are rational functions on X, a 6� 0:

8
<

:

!0
0 D a!0

!0
1 D !1 � da

a C 2b!0
!0
2 D 1

a

�
!2 C b!1 C b2!0 � db

�

A projective structure is thus the data of a triple .!0; !1; !2/ up to above equiva-
lence.

Remark 6.1. Once !0 and !1 are fixed, !2 is completely determined.

Definition 6.2. The transversely projective foliation F has regular singularities
if the corresponding connection has at worst regular singularities in the sense of
[Deligne].

Let us make this more explicit in the case we are concerned with.
Pick a point x 2 X and assume first that x … Supp N. Over a small neighborhood

of x, consider the Ricatti equation dzC df where f is a distinguished first integral
of F .

Consider now the hypersurface H D Supp N along which F is defined by the
logarithmic closed form 
H . Let us define the Ricatti equation over a neighborhood
of H as

(4)
dz

zC 1 C 
C :

Note that one recovers the original foliation on the section z D 0.
Let fF D 0g be the local equation at p of the polar locus of 
C corresponding to

residues equal to one. Performing the birational transformation ofP1 bundle z! Fz,
one obtains the new Ricatti equation dzCF
CCz.
C� dF

F /without pole on fF D 0g.
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This latter property enables us to glue together these local models with gluing local
bundle automorphisms of the previous form (3). Note that these transformations
preserve the section fz D 0g. In this way, we have obtained a P

1 bundle equipped
with a Riccati foliation (in this setting, this means a foliation transverse to the
general fiber) which induced the sought foliation F on a meromorphic (actually
holomorphic) section. By [gro], this P

1 is actually the projectivization of a rank 2
vector bundle.

Without additional assumptions on the complex manifold X, nothing guarantees
that this Riccati foliation P

1 bundle is the projectivization of a rank 2 meromorphic
flat connection.

However, when X is projective, one can assume that (birationally speaking) this
P
1 bundle is trivial and that the resulting Riccati foliation is then defined by a global

equation

(5) � D dzC !0 C z!1 C z2!2

hence defined as the projectivization of the rank two meromorphic flat connection.

r W Z D



z1
z2

�
7! dZ C



˛ ˇ

� �˛
�

Z:

It is worth noticing that � has regular singular poles, thanks to the local
expression given by (4).

Let .r/1 be this polar locus. From flatness, we inherit a representation of
monodromy

rr W �1.X n .r/1/! SL.2;C/

whose projectivization gives the original representation

r W �1.X n Supp N/! PSL.2;C/

attached to the transversely hyperbolic foliation F . In particular, one can assume
that the image of rr lies in SL.2;R/ (if one takes the Poincaré upper half plane
model H instead of the disk).

As we are dealing with regular singularities, note also that one can recover r
from rr (Riemann–Hilbert correspondence).

Remark 6.3. As we work up to birational equivalence of connection, .r/1 does not
necessarily coincide with Supp N. We may have added some “fakes” poles around
which the local monodromy (associated with r) is˙Id.

Let U be a dense Zariski open subset of X which does not intersect .r/1 and
denote by �U W �1.U/ ! SL.2;R/ the monodromy representation of the flat
connection r restricted to U. We want to show that the representation �r does
not come from a curve in the following sense:
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Theorem 6.4. Let C be a quasiprojective curve and let

�C W �1.C/! PSL.2;C/

a representation. Then there is no morphism

' W U ! C

such that �U factors projectively to �C through '.

Proof. Up removing some additional points in C one can realize �C as the
monodromy projectivization of a regular singular rank 2 connection rC defined on
the projective closure C. Let RX be the Riccati foliation defined by (5) and RC the
one defined by P.rC/. They respectively lie on P

1 bundles EX , EC over X and C.
We proceed by contradiction. The existence of the morphism � can be translated

into the existence of a rational map of P1 bundles‰ W EX Ü EC such that

RX D ‰�RC :

In particular, we obtain that ‰X
�RC D F , where ‰X denotes the restriction of

‰ to X (identified with the section fz D 0g). The foliation F being a quasi-minimal
foliation, this implies that‰X is dominant (otherwise, F would admit a rational first
integral). Moreover, as the image of r lies in PSL.2;R/, one can assume that the
same holds for �C (this is true up to finite index). In particular none of the leaves
RC is dense (the action of PSL.2;R/ on P

1 fix a disk). This contradicts the quasi-
minimality of F . ut

We are now ready to give the proof of the main Theorem 1 of the introduction.

Proof of Theorem 1. By [to], iv) of Proposition 2.14, the defining form 
H has
rational residues. As a by-product, the local monodromy of the rank two local
system defined by r D 0 around .r/1 is finite (and more precisely takes values
in a group of roots of unity). Keeping in mind Theorem 6.4, one can now apply
the main theorem of [corsim] (rigid case in the alternative) which asserts that there
exists an algebraic morphism ˆ between X n .r/1 and the orbifold space H such
that r D ˆ��i, 1 
 i 
 p D Dim h where �i is the ith tautological representation
� D �orb

1 .X/ ! �i defined by the projection onto the ith factor. Actually these
representations are related to one another by field automorphisms of C.

Note that there may exist other “tautological” representations of � of unitary type
(hidden behind the arithmetic nature of �) but they are not relevant in our case, as
rr takes values in SL.2;R/ (see [corsim] for a thorough discussion).

Actually, the theorem of Corlette and Simpson only claims a priori the existence
of a morphism which factorizes representations and where foliations are not
involved, hence we have to provide an additional argument which allows passing
from representation to foliations, as stated by Theorem 1.
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To achieve this purpose, consider the n codimension 1 foliations Fj, j D 1; : : : ; n
on H. These are obtained from the codimension 1 foliations dzj D 0 on the polydisk
D

p after passing to the quotient (this makes sense as � acts diagonally on D
p).

These p foliations give rise by pull-back p transversely hyperbolic foliations ˆ�Fj

on X n .r/1. Note that ˆ�Fi has the same monodromy representation than F but
might a priori differ from this latter.

Remark that one can recoverˆ from the datum of Fj by choosing in a point x 2 X
n germs of distinguished first integrals Z.Fj/ ; j D 1; : : : p attached to Fj and taking
their analytic continuation along paths in X n .r/1 starting at x. More precisely, the
analytic continuation of the p� uple .Z.F1/; : : : ;Z.Fp/ defines a map X n .r/1 to
H which is nothing but ˆ.

Actually, ˆ extends across .r1/ n Supp N (as an orbifold morphism). This
is just a consequence of the Riemann extension theorem, keeping in mind that
distinguished first integrals take values in D and that the local monodromy around
extra poles of .r/1 is projectively trivial. By the same kind of argument, one can
extend ˆ through Supp N using that the finiteness of the local monodromy around
this latter. The only difference with the previous case lies in the fact that ˆ extends
as an analytic map between X and the underlying analytic space of the orbifold H,
but not as a map in the orbifold setting (this phenomenon occurs when this local
monodromy is not projectively trivial).

To get the conclusion, we are going to modifyˆ into an algebraic map

‰ W X ! H

in order to have F D ‰�Fi.
For convenience, H will be regarded as a quotient of the product Hp of p copies

of the upper Poincaré’s upper half plane.
Let ri W �1.X n supp N/! PSL.2;R/ the monodromy representation associated

with ˆ�Fi. One knows that r and ri coincide up to conjugation in PSL.2;C/. In
other words, there exists ˛ 2 PSL.2;C/ such that for every loop � of �1.X n
supp N/; ri.�/ D ˛r.�/˛�1.

As the image of r is dense in PSL.2;R/, the conjugating transformation ˛
lies in the normalizer of PSL.2;R/ in PSL.2;C/ which is the group generated
by PSL.2;R/ and the inversion �.z/ D 1

z . We then have two cases to examine,
depending on whether one can choose ˛ 2 PSL.2;R/ or not.

– If ˛ 2 PSL.2;R/, take p germs of distinguished first integrals associated to
ˆ�Fj j 6D i andF in x 2 Xn.r/1 and consider their analytic continuation along
paths. This induces an analytic orbifold map X n .r/1 to H which analytically
extends to the whole manifold X using the same lines of argumentation as
previously. This defines the sought morphism ‰.

– Otherwise, one can assume that ˛ D � . We do the same work as before except
that we replace the germ of distinguished first integral fx of F by � ı fx. We thus
obtain a well-defined map
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X n .r/1 ! H

which is no longer holomorphic (it’s antiholomorphic on the “ith” component).
Let ' W Hp ! H

p defined by '.z1; : : : ; zp/ D .z1; : : : ; zi; �.zi/; ziC1; : : : ; zp/ and
� 0 D '�'�1 . As ' is an isometry, � 0 is still a lattice. We then obtain, passing
to the quotient, a map

‰2 W H! H0 D H
p=� 0

One can now easily check that ‰ D ‰2 ı ‰1 (more exactly its extension to
the whole X) has the required property by changing the complex structure on H as
described above. ut

7 The Logarithmic Setting

We begin this section by collecting some classical results about logarithmic 1 form
for further use.

7.1 Logarithmic One Forms

We follow closely the exposition of [brme]. Let X be a complex manifold and
H a simple normal crossing hypersurface which decomposes into irreducible
components as H D H1 [ : : :Hp. A logarithmic 1 form on X with poles along
H is a meromorphic 1 form ! with polar set .!/1 such that ! and d! have at most
simple poles along H. In other words, if f D 0 is a local reduced equation of H,
then f! and fd! are holomorphic. This latter properties are equivalent to say that
f! and df ^ d! are holomorphic. By localization on arbitrarily small open subset,
one obtains a locally free sheaf on X denoted by�1

X.log H/.
If .z1; : : : ; zn/ is a local coordinate system around x 2 X such that H is locally

expressed as z1 : : : zk D 0, then every section of �1
X.log H/ around x can be

written as

(6) ! D !0 C
kX

iD1
gi

dzi

zi

where !0 is a holomorphic 1 form and each gi is a holomorphic function.
Equivalently, one can locally write ! as

! D !i C gi
dzi

zi
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where gi is holomorphic and !i is a local section of�1
X.log H/ whose polar set does

not contain Hi D fzi D 0g.
Despite that this decomposition fails to be unique, we have a well-defined map

(the so-called Residue map):

Res W �1
X.log H/!

pM

iD1
OHi

summing on i the maps

ResHi W ! ! gijHi
:

We will also denote by Res the induced morphism

H0.�1
X.log H/˝ L/!

pM

iD1
H0.Hi;OLi/

for global logarithmic form twisted by a line bundle L (setting O.Li/ WD O.LjHi /).

7.2 A Class of Twisted Logarithmic Form

From now on, we will suppose that there exists on X Kähler compact, with fixed
Kähler form � a globally defined twisted logarithmic form ! 2 H0.�1

X.log H/˝L/,
assuming moreover that the dual bundle L� is pseudoeffective.

Let h be a (maybe singular) hermitian metric on L� with positive curvature
current‚h 	 0. In a local trivialization LjU ' U �C, we thus have

h.x; v/ D jvj2e�2'.x/:

Hence,

T D i

�
@@'

is a positive current representing c1.L�/ D �c1.L/ with divisorial Zariski decom-
position

fTg D fNg C Z:

In the sequel we will assume that ResHi.!/ 6D 0 for every component Hi of H.
The following lemma is straightforward and will be used repeatedly in the

remainder of this section.
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Lemma 7.1. Let ! 2 H0.�1
X.log H/ ˝ L/ be a twisted logarithmic form whose

polar locus is exactly H. Assume that L� 2 Pic.X/ is pseudoeffective and denote by
N its negative part. Set Li D LjHi (H D H1 [H2 : : : [ Hp).

Then

• either Li is the trivial line bundle,
• either Li

� is not pseudoeffective and Hi � Supp N.

As a by-product, one obtains the

Lemma 7.2. Let C be a connected component of H, then the following alternative
holds:

a) C is contained in Supp N.
b) For any irreducible component HC of C, HC \ Supp N D ; and Z:fHCg D 0.

Such a C is then called a non-exceptional component.

From now on, we fix a current T representing c1.L�/.
By definition of the negative part, T has non-vanishing Lelong’s numbers along

Supp N.
In particular, the local potentials ' of T are necessarily equal to�1 on connected

component of H satisfying the item a) in Lemma 7.2.
Assume now that HC � C fulfills the properties of point .2/. In this case, L is

trivial restricted to HC (Lemma 7.1). Then,

(1) either the restrictions of ' on HC are local pluriharmonic functions,
(2) either these restrictions are identically �1.

Following the previous numerotation, HC is said to be of type .1/ or .2/. Note
that, by connectedness, every irreducible component of C has the same type. This
allows us to define connected components of H of type .1/ and .2/ with respect
to T, noticing that any connected component belongs to one (and only one) of these
types.

Definition 7.3. Let T be a closed positive current such that fTg D c1.N�
F /.

The boundary divisor H is said to be of type .1/ (resp. type .2/) with respect to T
if each of its connected components is of type .1/ (resp. of type (2)) and when both
situations occur, H is said to be of mixed type (with respect to T).

Lemma 7.4. Let C � H be a connected component of type .1/. Assume that Z 6D 0.
Then there exists a non-negative real number � and an integral effective divisor D,
Supp D D C such that fDg D �Z.

Proof. By pluriharmonicity of the local 'jH , h restricts on H to a unitary flat
metric g. We denote by rg� the .1; 0/ part of the Chern connection associated with
the dual metric g�. This expresses locally as

rg� D @'jH C d

and @'jH is a holomorphic 1 form.
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Fix j0 2 f1; : : : ; pg. The norm aj0j0 D fResHj0
.!/; fResHj0

.!/g
g�

defined on Hj0

is locally given by

e2'jH jgj0 j2

which is obviously plurisubharmonic. This implies that aj0j0 is indeed constant.
Similarly, one can deduce that ajj0 D fResHj.!/;ResHj0

.!/g
g�

is constant along
every connected component of Hj0 \ Hj.

Locally, one can write

! D ! D !0 C
pX

jD1
gj

dfj
fj

where fj0 is the local expression of a global section of O.Hj0 / vanishing on Hj0 .
Consider a smooth metric on .Hj0 / with local weight �. One can then easily check
that the local forms

!� D !0 C
X

j6Dj0

gi
dzj

zj
C 2gj0@�

glue together along Hj0 in a section !j0 of �1
Hj0
.log Dj0 / ˝ E1 ˝ Lj0 where Dj0 DS

j6Dj0
Hj0 \Hj is a simple normal crossing hypersurface on Hj0 and E1 is the sheaf

of germs of smooth functions in Hj0 .
The hermitian product

f!i;ResHj0
.!/g

g�
D e2'jH gj0 ^ !�

is well defined as a current on Hj0 . One may compute its differential with respect to
the @ operator. Using that

1

2i�
@.

dzi

zj
/ D Œzj D 0� (the integration current along zj D 0/

and that the ajj0’s are constant, one easily gets that

1

2i�
@.f!i;ResHj0 .!/

gg�/

represents in cohomology the intersection class

.
X

j

ajj0fHjg/fHj0g:
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In particular Stokes theorem yields that .
P

j ajj0fHjgfHj0g/f�g/n�2 D 0. Sum-
ming up on all j0, we obtain the following vanishing formula

.
X

i;j

aijfHigfHjg/f�gn�2 D 0:

Thanks to Cauchy–Schwartz’s inequality and the fact that fHigfHjgf�gn�2 	 0 if
i 6D j, one can promptly deduce that

hIƒ;ƒi 	 0

where I is the intersection matrix fHigfHjgf�gn�2, hi is the standard Hermitian

product on C
p, andƒ denotes the vector

0

B
@

p
a11
:::p
app

1

C
A.

In particular, I is non-negative and from elementary bilinear algebra, one can
produce an effective integral divisor D whose support is C and such that

fDg2f�gn�2 D 0:

Keeping in mind that we have also Z2f�gn�2 	 0 and ZfDg D 0, one concludes
by Hodge’s signature theorem that fDg is a multiple of Z.

Let f!;!gh� be the norm of ! with respect to the dual metric h�. This is a well-
defined (a priori non-closed) positive current on X n H which locally expressed as


 D i

�
e2'! ^ !

(By a slight abuse of language, we also denote by ! the restriction of the global
twisted 1 form ! to a trivializing open set).

Following [de], we inherit from the dual metric h� a Chern connection whose
.1; 0/ part @h� acts on ! as

@h�! D @! C 2@' ^ !

on a trivializing chart.
Note that the resulting .2; 0/ form (well defined outside H) has L1loc coefficients.

Theorem 5. Let X be a compact Kaḧler manifold and ! a non-trivial section of
�1

X.log H/˝L with L� pseudoeffective. Assume that either Z D 0 (T is then unique
and equal to ŒN�), either Z > 0, and H is of type (2), then, outside the polar locus
H, the following identity holds (in the sense of current):

(7) @h�! D 0:
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In particular, ! is Frobenius integrable (! ^ d! D 0); moreover, 
 and T D
i
�
@@' are closed positive F -invariant currents, respectively, on X nH and X, where

F is the codimension 1 foliation defined by !.

Remark 7.5. • When H D ;, this theorem has been established in [de] and this
statement is just a generalization to the logarithmic setting of the invariance
properties of currents recalled in Sect. 3.1.

• By invariance of H, it is enough to prove the invariance of T on X nH to get the
invariance on the whole X (see [to], Remarque 2.2).

The proof of Theorem 5 is divided into two parts, each one corresponding to a
particular “numerical property” of the positive part Z and the type of the boundary
hypersurface H.

7.3 The Case Z D 0

In this situation N is a Q effective divisor.
Assume firstly that N is an integral effective divisor.
We have

! 2 H0.X; �1
X.log H/.�N/˝ E/

with E a numerically trivial line bundle.
Consider the canonical injection

� W �1
X.log H/.�N/˝ E ,! �1

X.log H/˝ E

where the first term is regarded as the sheaf of logarithmic 1 forms with respect to
H whose zeroes divisor is contained in N.

Let rE be the unique unitary connection on E and rEi its restriction on Hi. By
flatness of Ei, one can infer that

rEi ResHi.�.!// D 0

As a by-product, and using that @ commutes with rE, one obtains that


 D rE! 2 H0.X; �2
X ˝ E/

In particular, one obtains that the differential d of the well-defined .2; 1/ current
.rE!/ ^ � ^ �n�2 is a positive .2; 2/ form, namely �
 ^ 
 ^ �n�2. By Stokes
theorem, this latter is necessarily identically zero. In other words,

(8) rE �.!/ D 0:
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The proof above is the same of that presented in [brbir], p.81 (see also [brme]
and the references therein). We have just replaced L trivial by L numerically trivial.

For some suitable open covering U , ! is defined by the data of local logarithmic
one forms !U 2 H0.U; �1

X ˝ log H/, U 2 U with the glueing condition fU!U D
gUVfV!V , gUV 2 O�.U \ V/ such that jgUV j D 1 and fU D 0 is a suitably chosen
local equation of N.

The vanishing property (8) can be rephrased as

@.fU!U/ D 0 for every U

which finally gives (7), using that T D ŒN�, the integration current on N.
Note that @h� expresses locally as @C dfU

fU
is indeed a meromorphic logarithmic

flat connection on L.
Consider now the general case where N is only effective over Q. By ramified

covering trick and after suitable blowing-up, we obtain a Kähler manifold OX,
dim OX D dim X equipped with a generically finite morphism  W OX ! X such
that  �.N/ is an integral effective divisor and OH D  �1.H/ a normal crossing
hypersurface. Let us give some details about this construction (already implicitly
used in Sect. 5): first, select F 2 Pic.X/ and a positive integer m such that mN is
integral and mF D mN . Consider V D P.O ˚ O.F//. Let Y � V be the image
of X under the multivaluate map X 3 x ! Œ1 W m

p
s.x/� where s is a section of

mF vanishing exactly on mN. Y is then a singular ramified covering of X whose
embedded desingularization gives the sought OX (one of the connected components
of the strict transform). It is well known that the Kähler property remains stable
under projective bundle and blowing-up of smooth centers (see, for instance, [voi],
I.3), thus ensuring that OX is still Kähler.

One can then assert that ��! 2 H0. OX; �1
OX.log OH/ ˝ OL/. where OL 2 Pic X is

numerically equivalent to ��.N/. Let rOh be the logarithmic connection on OL defined
by a metric Oh whose curvature current is �Œ �N�. In other words, rOh is the pull-
back by of the logarithmic connectionrh� . By the computation performed above,
we have rOh �! D 0. For obvious functoriality reasons, this can be restated as
 �.rh�!/ D 0, which eventually leads to rh�! D 0. ut

7.4 The Case H of Type (2)

For j D 1; : : : p, let us fix a smooth metric gj on O.Hi/ with local weight �j.
For " > 0, we thus obtain a smooth metric on O.Hj/ with local weight �j" D
Log .jf j2 C "e2�j/.

The .1; 1/ positive form 
 WD i
�

e2'!^! is well defined as a current on the whole
X n Supp H, but failed to be integrable along the boundary divisor H. To cure this,
take a smooth section � of�1;0

X ˝ L (a sheaf in the C1 category), and consider
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� D i

�
e2'� ^�

which is well defined as a positive current on the whole X (making again the
confusion between� and its writing on a trivializing chart).

Let us compute @� as a current. This latter decomposes as:

�@� D AC B

where

A D ie2'@� ^�

and

B D i..@e2'/� ^� � e2'� ^ @�/

each of the summand being a well-defined current on X.
An easy calculation yields

i� @@ .�/ D i@A � 2e2'� ^� ^ @@ ' � e2'.2@' ^�C @�/ ^ .2@' ^�C @�/

C@.e2'� ^ @�/C e2'@� ^ @�

Hence, by Stokes theorem,

(9) hi�@@� ^ �n�2; 1i D 0 D hT1 ^ �n�2; 1i C hT2 ^ �n�2; 1i C h� ^ �n�2; 1i

where

T1 D �2e2'� ^� ^ @@ '

and

T2 D �e2'.2@' ^�C d�/ ^ .2@' ^�C d�/

are both positive .2; 2/ currents (which make sense, according to [de]) and

� D e2'@� ^ @�:

Actually, one performs the same computation as in [de] except that the final
expression contains the residual term � arising from the holomorphicity defect of�.

Let U be an open cover of X such that each U 2 U is equipped with local
coordinates .z1; ::; zn/ in such a way that !jU can be written as
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(10) !jU D !0 C
pX

jD1
gj

dfj
fj

where ffj D 0g is a local equation of Hj and fj coincides with one of the coordinates
zk whenever Hj \U 6D ;.

For " > 0, set

!U
" D !0 C

pX

jD1
gj'j;"

dfj
fj

where 'j;" D jfjj2
jfj j2C"e2�j

. One can remark that for each j, the 'j;"’s glue together on

overlapping charts and thus define a global smooth function of X. One can see !U
"

as a smooth section of�1
X˝L which approximates! (on U) in the following sense:

(1) lim
"!0

!U
" D ! weakly as a current.

(2) For every K b U n H, !U
" converges uniformly to ! on K when " goes to 0.

Before mentioning other properties, we introduce the following notation:
Let T a current of bidegree (p; q) defined on U with L1loc coefficient written as

T D
X

I;J

FI;JdzI ^ dzJ

in standard multiindices notation with respect to the coordinate system .z1; ::zn/.
We define

kTkK D supI;JkFI;JkL1.K/

the L1 norm being evaluated with respect to the Lebesgue measure d� D jdz1 ^
dz1 : : : :dzn ^ dznj. Now, the key point is to notice that

(11) sup
">0

k@.!U
" / ^ @.!U

" /kK < C1

for every K b U.
Indeed, the choice of 'i;" allows us to “get rid” of the non-integrable terms dzi

zi
^ dzi

zi
which could appear after passing to the limit.

Moreover,@!U
" ^ @!" converges uniformly to 0 on every K b U n H.

Let . U/ be a partition of unity subordinate to the open cover U . Set

�" D
X

U

 U!
U
" :
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Note that this defines a smooth section of �1
X ˝ L whose restriction to U shares

the same properties than !"U.
In particular, we get

(12) lim
"!0

e2'@�" ^ @�" D 0 in the weak sense:

Actually this is obvious on K b X (where the convergence is even uniform) and
this extends to the whole X, thanks to (11) and the fact that ' D �1 on U \H and
is upper-semicontinuous (as a plurisubharmonic function).

In order to conclude, replace� by �" in (9) and �; T1; T2 by the corresponding
�"; T1"; T2", keeping in mind that lim

"!0
�" D 0, and that T1" and T2" are positive

current which converges on X n H, respectively, to

S1 D �2e2'! ^ ! ^ @@ '
and

S2 D �e2'.2@' ^ ! C d!/ ^ .2@' ^ ! C d!/

Passing to the limit when " goes to 0, one can infer that S1 D S2 D 0, whence
the result. ut
Corollary 7.6. Let X be a compact Kähler manifold and ! 2 H0.�1

X.log H/˝ L/
a non-trivial twisted logarithmic 1 form with poles on a simple normal crossing
hypersurface H. Assume that L� is pseudo-effective. Then ! is integrable and there
exists an F invariant positive current representing L�, where F is the foliation
defined by !. In particular, the integration current ŒN� is F invariant, where N is
the negative part in the Zariski’s divisorial decomposition of c1.L�/.

Proof. One can assume that ! has non-trivial residues along the irreducible
components of H. The only remaining case to deal with is Z 6D 0 and among the
connected components of C, there exists at least one of type (1) with respect to a
given closed positive current T representing c1.N�

F /. By making use of Lemma 7.4,
one can change T into another representing positive current T 0 such that H becomes
type (2) with respect to T 0.

8 Pseudoeffective Logarithmic Conormal Bundle
and Invariant Metrics

Let .X;D/ be a pair consisting of a compact Kähler manifold X equipped with
a codimension 1 holomorphic distribution D. We assume that there exists a
D-invariant hypersurface H (i.e: H is tangent to D) such that

L D N�
D ˝O.H/

is psef.
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From the normal crossing and invariance conditions, D is defined by a twisted
logarithmic one form ! 2 H0.X; �1

X.log H/˝L/with non-vanishing residues along
H (see, for instance, Lemma 3.1 in [brme]).

As a consequence of Corollary 7.6, D is integrable and we will call F the
corresponding foliation.

The following definitions are borrowed from the terminology used in the study
of log singular varieties, even if the setting is somewhat different.

Definition 8.1. Let F be a foliation like above. Let H D H1 [ : : : : [ Hp the
decomposition of H into irreducible components.

F is said to be of

(1) KLT type (with respect to H) if there exist p rational numbers 0 
 ai < 1,
i D 1; : : : ; p such that

c1.N
�
F /C

X

i

aifHig

is a pseudoeffective class.
(2) strict Log-Canonical type (with respect to H) if the condition above is not

satisfied.

8.1 Existence of Special Invariant Transverse Metrics
for KLT Foliations

Here, we assume that the foliation F is of KLT type. This means (see definition
above) that c1.N�

F /C
P

i �ifHig is pseudoeffective where the �i’s are real numbers
such that 0 
 �i < 1.

Definition 8.2. Set ƒ D .�1; : : : ; �p/ and Hƒ DP
�iHi .

ƒ will be called a KLT datum.

By definition of pseudoeffectiveness, there exists on N�
F a singular metric h

which locally can be expressed as

h.x; v/ D jvj2e�2'.x/CP
2�i log jfi j

where ' is a locally defined psh function such that

Tƒ D i

�
@@ '

is a globally defined positive current representing c1.N�
F /C fDg, the ffi D 0g’s are

local reduced equation of Hi and ! is a local defining one form of F . On ND , the
dual metric h� can be represented by the positive .1; 1/ form
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Tƒ D
i

�
e2'�2P

i �i log jfi j! ^ !

with locally integrable coefficients, which is unique up to multiplication by a
positive constant once Tƒ has been fixed (cf [to] Remarque 1.4, Remarque 1.5).

Let CF be the cone of closed positive current Tƒ such that fTƒg D c1.N�
F / CfHƒg.

We are going to establish a similar statement to that of Theorem 3.1.

Theorem 8.3. Let fNƒg C Zƒ be the Zariski decomposition of the pseudoeffective
class c1.N�

F /C fHƒg and Tƒ 2 CF .
Then, both Tƒ and 
Tƒ are closed F invariant positive currents. Moreover, Tƒ

can be chosen in such a way that

(1) Tƒ D ŒNƒ� if Zƒ D 0 (euclidean type).
(2) Tƒ D ŒN�C 
Tƒ if Zƒ 6D 0 (hyperbolic type) (
Tƒ being normalized such that
f
Tƒg D Zƒ).

Proof. Let Tƒ in CF . The closed positive current S D TƒCP
i.1��i/ŒHi� represents

c1.N�
F /C fHg. As a by-product of Theorem 5, we obtain that

.2@' � 2
X

�i
dfi
fi
/ ^ ! D �d! D 0

which implies the closedness and F invariance of Tƒ and 
Tƒ .
The remainder follows the same line of argumentation as in [to] (which corre-

sponds to ƒ D 0). From F -invariance of Tƒ, one can deduce that ŒNƒ� is also F -
invariant and that the same holds for any closed positive current representing Zƒ.
Note that the theorem is proved when Zƒ D 0.

We investigate now the nature of the singularities of the foliations. Outside H,

T has a local expression of the form ie‰! ^ ! with ‰ psh and thus admits local
elementary first integrals (Théorème 2 of [to]). Near a point on H, the same holds
replacing 
T by ��
T where � is a suitable local branched covering over H (we use
that �i < 1) and one can then again conclude that F admits a local elementary first
integral (this property is clearly invariant under ramified covering).

By Proposition 2.7, f
TƒgfWg D 0 for any closed F invariant positive current
W. In particular, this holds whenever W D 
T� or fWg D Zƒ. By Hodge’s signature
theorem, one can then infer that Zƒ is a multiple of f
Tƒg and after normalization,
that f
Tƒg D Zƒ whenever Zƒ 6D 0. In this case, we have

fTƒg D fNƒg C f
Tƒg:

From now on, we assume that Zƒ 6D 0. By the normalization process above, 
T

is then uniquely determined by the datum of Tƒ 2 CF .
Let CZƒ be the cone of closed positive currents T such that fTg D Zƒ.
By Banach–Alaoglu’s theorem, CZƒ is compact with respect to the weak topology

on current.
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From (8.1), one inherits a map

ˇ W CZƒ ! CZƒ

defined by ˇ.T/ D 
TCŒNƒ�. Remark that the point .2/ of the theorem is equivalent
to the existence of a fix point for ˇ. This fix point will be produced by the Leray–
Schauder–Tychonoff’s theorem once we have proved that ˇ is continuous. This
can be done following the same approach than [to] (Démonstration du lemme 3.1,
p.371). We briefly recall the idea (see loc.cit for details): Let .Tn/ 2 CZƒ

N converging
to T such that the sequence ˇ.Tn/ is convergent. One has to check that

lim
n!C1ˇ.Tn/ D ˇ.T/:

Locally, one can write Tn D i
�
@@ 'n and ˇ.Tn/ D i

�
e2'n !^!Q

i jfi j2�i
. By plurisub-

harmonicity, one can suppose, up extracting a subsequence, that .'n/ is uniformly
bounded from above on compact sets and converges in L1loc to a psh function ' which
necessarily satisfies

i

�
@@ ' D T:

By Lebesgue’s dominated convergence, one obtains that e2'n !^!Q
i jfi j2�i

converges

in L1loc to e2' !^!Q
i jfi j2�i

. This obviously implies that

lim
n!C1ˇ.Tn/ D ˇ.T/:

ut
The main information provided by the proof above are:

• The F -invariant positive current 
Tƒ represents the positive part Zƒ when this
latter is non 0.

• For every F -invariant positive current S, one has f
TƒgfSg D 0, in particular
f
Tƒg2 D 0:

This is enough to get an analogous statement to that of [to], Proposition 2.14 and
Corollaire 2.15.

Proposition 8.4. Let F be a KLT foliation with KLT datum ƒ D .�1; : : : ; �p/. Let
„ be a .1; 1/ positive current F -invariant (for instance, „ D Tƒ). Let’s consider
the Zariski’s decomposition.

˛ D fN.˛/g C Z.˛/

with ˛ D f„g (e.g: ˛ D c1.N�
F /C fHƒg/:
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Then the following properties hold:

a) the components Di of the negative part N.˛/ are hypersurfaces invariant by
the foliation; in particular, Z.˛/ can be represented by an F invariant closed
positive current.

b) Z.˛/ is a multiple of f
Tg.
c) Z.˛/ is nef and Z.˛/2 D 0.
d) The decomposition is orthogonal: fN.˛/gZ.˛/ D 0. More precisely, for every

component Di of N.˛/, one has fDigZ.˛/ D 0.
e) In H1;1.M;R/, the R vector space spanned by the components fDig of fN.˛/g

intersects the real line spanned by f
Tg only at the origin.
f) The decomposition is rational if X is projective and ˛ is a rational class (e.g.,
˛ D c1.N�

F /C fHƒg).
g) Every .1; 1/ closed positive current which represents ˛ is necessarily

F -invariant.
h) Let A be a hypersurface invariant by the foliation and A1; : : : ;Ar its irreducible

components; the family fA1; : : : ;Arg is exceptional if and only if the matrix
.mij/ D .fAigfAjgf�gn�2

/ is negative, where � is a Kähler form on X.

Proof. This is essentially a consequence of the Hodge’s signature theorem (see [to]
for the details).

In this setting one can introduce, exactly on the same way as [to] Définition 5.2
(see also Sect. 3), the locally constant sheaves I" and I"d log attached to the transverse
metric structure given by Theorem 8.3. Strictly speaking, those sheaves are only
defined on the complement of H [ Supp Nƒ.

Let P be the set of prime divisor of X. To each P 2 P , one can associate non-
negative numbers �D, �D defined by the decompositions

Nƒ D
X

D2P
�DD:

Hƒ D
X

D2P
�DD:

Following again exactly the same lines of argumentation of [to] p.381–384, one
can establish the following proposition similar to proposition 5.1 and proposition 5.2
of loc.cit:

Proposition 8.5. Let K1; : : : ;Kr be a finite family of irreducible hypersurfaces
invariant by F . Set K D K1 [ K2 : : : [ Kr. Then there exists on a sufficiently
small connected neighborhood of K [ Sing .F/ a uniquely defined section 
K of
I"d log such that the polar locus .
K/1 contains K [ Sing .F/ with the following
additional properties:

(1) For every i D 1; : : : ; r, the residue of 
K along Ki is equal to 1C �Ki � �Ki and
equal to 1 on the other components of .
K/1. In particular the residues of 
K

are non-negative real numbers.
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(2) If K is connected, fK1; : : : :;Krg is an exceptional family if and only if the germ
of .
K/1 along K does not coincide with K.

Remark 8.6. As the foliation only admits singularities of elementary type, the set
of separatrices at any point x 2 K [ Sing F coincide locally with the poles of 
K

(see [to], Remarque 4.1).

8.2 Existence of Special Invariant Transverse Metrics for Strict
Log-Canonical Foliations

Let F be a strict Log-Canonical foliation. As usual, fNgCZ will denote the Zariski’s
divisorial decomposition of c1.N�

F /C fHg.

8.2.1 The Case Z=0

In this situation, c1.N�
F /˝O.H/ is represented by a unique positive current, namely

T D ŒN�.
Let Hb be the union of non-exceptional components (see Lemma 7.2). Hb will be

called the boundary part of H. Note that Hb is non-empty, otherwise the foliation
would be a KLT one. On X n Hb, F admits an invariant transverse metric 
. The
semi-positive .1; 1/ form 
 involved in the statement of Theorem 5 is well defined
as a current on X nHb. Indeed, it can be expressed locally as


 D i

�
e2 

Q! ^ Q!
jFj2 Q

i jfij2�i

where the fi D 0’s are defining equations of the components Hi of H contained
in Supp N, with 0 
 �i < 1, F D 0 is a defining equation of Hb,  is a
plurisubharmonic function such that i

�
@@ D ŒN� �P

i �iŒHi� and Q! is a local
generator of N�

F (i.e. a local defining holomorphic 1 form of F without zeroes
divisor). On a neighborhood Vx of a point x 2 Hb where z1; ::znx D 0 is a local
equation of Hb, the closedness property (7) shows that the foliation is defined by a
closed logarithmic form of the form

! D
nxX

iD1
˛i

dzi

zi

and that

(13) 
 D i

�
! ^ !:

(for suitable choice of zi’s) where the ˛i’s are non-zero complex numbers.
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Because of this local expression, one can observe that Sing Fb WD Sing F n Hb

is a compact analytic subset of X n Hb. Contrarily to the KLT case, this current 

does not extend to X for the simple reason that it cannot be extended through Hb.

The archetypal example is provided by logarithmic foliations on the projective
space P

n, that is foliations defined by a logarithmic form !. Such a form is
automatically closed whenever the polar locus .!/1 is normal crossing and thus
induces the euclidean transverse metric 
 D i

�
! ^!, only defined outside the polar

locus. In this example, it is also worth noticing that Hb is ample, a phenomenon
which does not occur for KLT foliations: in the KLT situation, the class fDg of any
divisor whose support is F -invariant has numerical dimension at most 1, thanks to
Proposition 8.4. Another important difference lies in the fact that the number of
F -invariant hypersurfaces is arbitrarily high (compare with Proposition 9.8).

Coming back to our setting, 
 defined an euclidean transverse structure to which
one can associate as before a locally constant sheaf of distinguished first integrals
I0 and the corresponding sheaf of logarithmic differentials I0d log. These latters are
defined a priori on the complement of Supp N[H. Near a point x 2 Hb, the foliation
admits as first integral the multivaluate section

P
i ˛i log zi of I0 whereas these

multivaluate sections take the form of elementary first integral
Q

f �i
i , �i > 0 at

a neighborhood of x 2 Supp N.
Thanks to this euclidean structure, one can easily exhibit a section 
K of I0 on a

neighborhood of K[Sing Fb where K D Supp N whose polar locus .
K/1 contains
Supp N.

Lemma 8.7. .
K/1 does not coincide with K along K.

Proof. Suppose that equality holds. Then

.
X

i

�ifNig/
2 D 0

where the Ni’s stand for the irreducible components of Supp N and �i > 0 is
the residue of 
N along Ni. Moreover, F D je

R

N j is a function defined near

Supp N, constant on the leaves and such that the family fF < "g forms a basis
of neighborhoods of Supp N.

Let " > 0 and  W R ! Œ0;1/ continuous non-identically zero such that  
vanishes outside .0; "/. Set g D  ı F (this makes sense as " is chosen small
enough). This guarantees that g
 is an F invariant closed positive current S such
that fSgfNig D fSg2 D 0, thanks to Remark 2.8. By Hodge’s signature theorem,P

i �ifNig is proportional to fSg. This latter being a nef class (S has no positive
Lelong numbers), we get the sought contradiction. ut
Definition 8.8. Let V be an open neighborhood of Hb; a hermitian metric g defined
on V nHb is said to be complete at infinity if g is the restriction of a complete metric
on X n Hb.
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Lemma 8.9. There exists a bundle like metric on X n .Hb [ Supp N [ Sing F/
inducing the invariant transverse metric 
 which is complete at infinity.

Proof. Keeping the notation above, for x 2 Hb, one puts on Vx the metric with poles
gx D i

Pnx
lD1

dzl
zl
^ dzl

zl
C hx where hx is a smooth hermitian metric on Vx. Let h be a

smooth hermitian metric on X nHb which is the restriction of a hermitian metric on
X. By partition of unity subordinate to the cover of X determined by X nHb and the
collection of Vx, these models glue together in a complete hermitian metric defined
on X n Hb. Thanks to the expression of 
 given in (13), this latter is conformally
equivalent on X n .Hb [ Supp N [ Sing F/ to a metric g fulfilling the conclusion of
the lemma. ut

8.2.2 The Case Z 6D 0

As we shall see later, this situation is described by the Theorem 2 of the introduction.
We first collect some observations useful in the sequel.

Lemma 8.10. Let C be a connected component of H which is not contained in
Supp N, and let C1; : : : ; Cr be its irreducible components.

Then, the intersection form fCigfCjgf�gn�2 is negative definite and in particular
fC1; : : : :; Crg forms an exceptional family.

Proof. Suppose by contradiction that the intersection matrix is not negative. Then,
thanks to Remark 7.2 and Hodge’s signature theorem, one can exhibit r non-negative
real numbers�1; : : : ; �r with at least one positive, such that

Pr
iD1 �ifCig is collinear

to Z.
In particular, one can represent Z by the integration current �ŒD�, where � > 0

and D D Pr
iD1 �iCi. With the help of Lemma 7.4, this implies that for any other

connected component C 0

of H not supported on Supp N, one can extract an effective
divisor D0 supported exactly on C 0

such that fD0g and Z are collinear. Then F turns
out to be a KLT foliation: a contradiction. ut

Like the previous situation, we will denote by Hb the union of these connected
components and will call it the boundary component.

Lemma 8.11. Let T a closed positive current representing Z. Then T has no Lelong
numbers along Hb and the local psh potentials of T are necessarily equal to �1
on H.

Proof. The fact that the local potentials are �1 on Hb is a consequence of
Lemma 7.4 together with Lemma 8.10. In particular, T is necessarily invariant
according to Theorem 5. Let T be a positive closed current, fTg D Z. Assume
by contradiction that T has some non-vanishing Lelong numbers on a connected
component C of Hb. Let C1; : : : ; Cr be the irreducible components of C, and �i the
Lelong number of T along Ci. We first claim that there doesn’t exist two indices
i 6D j such that �i D 0, �j 6D 0, and Ci \ Cj 6D 0. Otherwise this would imply that
ZfCigf�n�2g > 0, a contradiction with Lemma 7.2. One can then easily deduce that
�i 6D 0 for each i. Let
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T D
C1X

iD1
�iŒKi�C R

the Siu’s decomposition of T.
Remark that from the F -invariance of T, one can infer that each hypersurface Ki

is also F invariant whenever �i 6D 0 and that the same holds for the residual part R.
By virtue of Theorem 5, F admits in a neighborhood of C an invariant current


 D 
T which can be locally written


 D i

�
e2 

! ^ !
Q

j jfjj2˛j

with fj D 0 a reduced equation of Cj, ! a defining form of F , 0 
 ˛j < 1, and  a
psh function.

This implies (see the proof of Theorem 8.3) that the singularities of the foliation
near C are of elementary type, more precisely of the form

F D uf1ˇ1 : : : frˇr

where u is some unit and the ˇi’s are non-negative real numbers. Suppose that
for some i, Ki ª C. By remark 4.1 of [to], Ki\C D ; and in particular fKigfCjg D 0
for every j. Moreover, fRgfCjg D 0 according to Remark 2.8. Hence, the equality

ZfCjg D 0

can be reformulated as

.
X

i

�ifCig/fCjg D 0

which contradicts Lemma 8.10. ut
Remark 8.12. By Theorem 5, 
 D 
T is well defined as a closed positive current on
X n Hb but a priori does not extend through Hb as a current. We will actually show
that this extension really holds but this requires further analysis and the proof is
postponed to the last section. Moreover, we will explain how we can ensure that the
invariant transverse metric associated with 
 is hyperbolic, a key property to reach
the conclusion of Theorem 2.

9 Settling the Case of KLT Foliations

In this section, we aim at discussing abundance properties of the logarithmic
conormal bundle N�

F ˝O.H/ for KLT foliations (defined in the previous chapter).
The ambient manifold is again assumed to be Kähler compact.
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Here, Kod.L/ stands for the Kodaira dimension of a line bundle L and �.L/ for
its numerical Kodaira dimension.

One firstly recalls the statement of Bogomolov’s theorem (see [brme] and the
references therein).

Proposition 9.1. Let X be a compact Kähler manifold X and H � X a normal
crossing hypersurface. Assume that for some L 2 Pic.X/, there exists a non-
trivial twisted logarithmic form ! 2 H0.X; �1

X.log H/ ˝ L/. Then Kod.L�/ 
 1;
moreover, when equality holds, ! is integrable and the corresponding foliation is a
meromorphic fibration.

Corollary 9.2. Let F be a codimension 1 foliation on a compact Kähler mani-
fold X. Let H be a normal crossing hypersurface invariant by F . Then Kod.N�

F ˝
O.H// 
 1 and F is a meromorphic fibration when equality holds.

By virtue of Corollary 7.6 and item 8.4) of Proposition 8.4, this upper bound
remains valid in the numerical setting:

Proposition 9.3. Let F be a codimension 1 foliation on a projective manifold X.
Let H be a normal crossing hypersurface invariant by F . Then �.N�

F ˝O.H// 
 1,
where � stands for the numerical dimension.

Definition 9.4. Let ƒ D .�1; : : : ; �p/ be a KLT datum, A � X a prime divisor, and
C a connected component of H.

• We will denote by m.A/ the multiplicity of A along Hƒ: m.A/ D �i if A D Hi,
m.A/ D 0 otherwise.

• C is said to be exceptional if its irreducible components form an exceptional
family.

Lemma 9.5. Let C be a connected component of H, then the following properties
are equivalent

• C is exceptional.
• C is contained in Supp N.

Proof. Assume that C is exceptional and suppose by contradiction that C is not
contained in Supp N. This implies, using Lemma 7.1, that C \ H is empty and L D
N�
F˝O.H/ is trivial in restriction to each irreducible component of C. The foliation

F is defined by a logarithmic form ! 2 H0.X; �.log H/˝ L/ whose residues along
the irreducible components of C are nowhere vanishing. Pick a point x 2 C which
meets np branches of C and such that 
C1 has extra components (not supported in
C) at p (this is made possible by Proposition 8.5) and consider a local holomorphic
coordinate patch z D .z1; : : : ; zn/; z.x/ D 0 such the equation of C is given by
z1 : : : znx D 0 and such that the logarithmic form 
C is expressed near x as


C D
nxX

iD1
˛i

dzi

zi
C df

f
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where f D 0 is a reduced equation of the additional poles and the ˛i’s are positive
real numbers. On the other hand,

! D !0 C
nxX

iD1
gi

dzi

zi

in a trivializing neighborhood of p where!0 is a holomorphic 1 form and the gi’s are
units. As ! and 
C define the same foliation, there exists a meromorphic function
U such that U
C D !. One can then easily check that U D fV with V holomorphic
and this forces the residue gi to vanish on fzi D 0g \ ff D 0g: a contradiction. The
converse implication is obvious. ut

9.1 The Case Z 6D 0

Let fNgC Z be the Zariski decomposition of c1.N�
F /CfHg and assume that Z 6D 0.

Fix an arbitrarily small " > 0 and consider an arbitrary non-exceptional compo-
nent C of H. Up renumerotation of indices, one can write C D H1 [ : : :[Hl; l 
 p.
Keeping track of Proposition 8.4, one can extract from C, using Hodge’s signature
theorem, a Q effective divisor D DPl

iD1 �iHi with the following properties:

(1) For every 1 
 i 
 l, one has 0 < �i < 1.
(2) there exists a positive integer p such that �1 D 1

p .
(3) there exists a real number �, 0 < � < " such that fDg D �Z.

Combining these observations with Lemma 9.5, one obtains the following state-
ment:

Proposition 9.6. Let F be a KLT foliation and assume that Z 6D 0.
Then one can find a KLT datumƒ which enjoys the following properties:

(1) Supp.Nƒ/ D Supp.N/.
(2) Zƒ is a non-trivial multiple of Z.
(3) For any non-exceptional connected component C � H, there exist a prime

divisor HC � C and a positive integer p such that m.HC/ D 1 � 1
p .

We are now ready to prove the main theorem of this section (which corresponds
to Theorem 2 of the introduction).

Theorem 6. Let F be a KLT foliation on X projective. Assume moreover that Z 6D
0. Then,

(1) Either F is tangent to the fibers of a holomorphic map f W X ! S onto a
Riemann surface and the abundance principle holds:

Kod.N�
F ˝O.H// D �.N�

F ˝O.H// D 1:
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This case occurs in particular whenever there exists at least one non-
exceptional component C 2 H,

(2) either F D ‰�G where ‰ is a morphism of analytic varieties between X and
the quotient H D D

n=� of a polydisk, (n 	 2/ by an irreducible lattice � �
.Aut D/n and G is one of the n tautological foliations on H.

Proof. Let ƒ be a KLT datum satisfying the properties given by the previous
proposition and consider the transversely hyperbolic structure attached to this
latter. The strategy remains essentially the same as in the proof of Theorem 1. In
particular, the first step consists in relating the monodromy of the foliation inherited
from the hyperbolic transverse structure with its dynamical properties. Assume
firstly that each component of H is exceptional and therefore it is contained in
Supp N. In this case, we do exactly the same and prove the same as the situation
“N�

F pseudoeffective,” starting from the fibers connectedness of the developing
map studied in paragraph 3.2, then establishing the same results proved in Sects. 5
and 6 which finally leads to the same conclusion. One more time, the projectivity
assumption is only needed to get item (2) which corresponds to the non-abundant
situation

Kod.N�
F ˝O.H// D �1; �.N�

F ˝O.H// D 1:

One needs to modify slightly the previous construction when there exist non-
exceptional components. Indeed, on such a component C, the hyperbolic transverse
metric is likely to degenerate; moreover, C is not connected by any exterior leaf
in the sense that every separatrix of F passing through x 2 C is a local branch
of C (consequence of Proposition 8.5). In Sect. 3, one had to remove supp .N/
(where the transverse metric also degenerates) to define properly the developing
map �. However, if one looks thoroughly at the arguments developed in the same
section, the fact that � is both complete and has “connected fibers” (in the sense of
Theorem 3.6) heavily relies on the existence of connecting exterior leaf in supp N. If
one comes back to our current setting, the developing map is now defined on some
covering of X n .suppN [ H/. The point is that one can extend the basis of this
covering and in that way get rid of the inexistence of connecting leaves. This can be
done as follows: Let fC1; : : : ; Crg be the set of non-exceptional components. For each
Ci, select a prime divisor HCi � C such that m.HCi/ D 1� 1

pi
for some positive integer

pi. By Proposition 8.5, F admits locally around each HCi and away from Sing F a

(multivaluate) section of I1 of the form fi
1
pi where fi D 0 is a suitable reduced

equation of HCi . Set QHi D HCi n Sing F and A D S QHi (note that Sing F \ HCi is
precisely the union of intersection loci of HCi with the other components of Ci).

Using this observation, one can construct an infinite Galoisian ramified covering

� W X0 ! .X n .H [ Supp N// [ A:

such that ��I1 becomes a constant sheaf and which ramified exactly over each HCi

with order pi. In particular the developing map � (defined as a section of ��I1) is
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submersive along ��1.A/. This allows us to prove that � is complete (its image is
the whole Poincaré disk) using exactly the same arguments as [to], théorème 3.

Keeping the same notations as Sect. 3.2, one defines a binary relation R on X0
setting pRq if

(1) Cp D Cq

or
(2) �.p/ D �.q/ and there exists a connected component K of Supp N such that

.
K/1 \ �.Cp/ 6D ; and .
K/1 \ �.Cq/ 6D ; near K
or

(3) There exists i 2 f1; : : : ; rg such �.p/ D �.q/ 2 HCi

We denote by R the equivalence relation generated by R.
Similarly to Proposition 3.2, one can prove that the map � W X=R onto D is

one to one. The notion of modified leaf remains the same as Definition 4.2 except
that we include now as modified leaves each non-exceptional component. Taking
into account this slight modification the statement of Theorem 3 remains valid. In
particular, one can conclude that F is a fibration provided there exists at least one
non-exceptional component.

Following the same line of argumentation as in the beginning of the proof of
Theorem 4, one can also conclude that Kod.N�

F ˝O.H// D 1. ut

9.2 The Case Z D 0

Here, we aim at proving the analogue of Theorem 4 item 1), namely

Theorem 9.7. Let F be a KLT foliation on X Kähler. Assume moreover that Z D 0.
Then,

Kod.N�
F ˝O.H// D �.N�

F ˝O.H// D 0:

Proof. In this situation, N is an effective divisor over Q. From the fact that the
integration current ŒN� is the only closed positive current which represents the
class fNg, one easily infers that H is contained in Supp N. Let Ni, i D 1; : : : ; l
be the irreducible components of Supp N. One can then exhibit a KLT datum
ƒ D .�1; : : : ; �p/ 2 Q

p such that

c1.N
�
F /C fHƒg D fNƒg

where Nƒ 
 N is Q effective. This KLT datum induces a transverse euclidean metric
in the sense of Theorem 8.3. Let G � =.C/ be the monodromy group attached to
this transverse structure (recall that is defined as the image of the representation
r W �1.X n Supp N/ ! =.C// associated with the locally constant sheaf I0. One
proceeds on the same way that the proof of Theorem 4 (" D 0): When the generic
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leaf of F is compact, the linear part of G is finite and abundance holds for N�
F ˝

O.H/. Otherwise, by performing a suitable covering ramified over Supp N, one can
suppose, after desingularization, that the foliation is given by a holomorphic section
of �1

X ˝ L (thanks to the fact that N� � H� D P
i �iNi where each �i is a rational

> �1) where L is a flat line bundle such that Kod .N�
F ˝O.H// D 0 whenever L is

torsion. This actually holds for exactly the same reasons that loc.cit. ut
Note also that the statement of Corollary 4.8 remains valid:

Proposition 9.8. Let F be a KLT foliation on a compact Kähler manifold X.
Assume that F is not a fibration, then the family of irreducible hypersurfaces
invariant by F is exceptional and thus has cardinal bounded from above by the
Picard number �.X/.

10 Dealing with Strict Log-Canonical Foliations

10.1 The Case Z D 0

The next result shows that the abundance principle holds true for this class of
foliations.

Theorem 7. Let F be a strict log-canonical foliation on a projective manifold X.
Assume moreover that Z D 0. Then the Kodaira dimension of N�

F ˝O.H/ is equal
to zero.

Proof. We will make use of information collected in Sect. 8.2.1. We will also closely
follow the presentation made in [coupe] as well as some results of loc.cit (especially
paragraph 3.2, section 4, and the references therein). From the existence of the
euclidean transverse structure (namely, the locally constant sheaf I0), one inherits a
representation

' W � ! =.C/

setting � D �1.X n .Supp N [H//.
If � belongs to � , then we can write '.�/.z/ D 'L.�/C �.�/ where

'L W � ! S1 � C
� D GL.1;C/

is a homomorphism and

� W � ! C

is a 1-cocycle with values in C'L , that is C with its structure of � module induced
by the linear representation 'L.
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As usual, we will call the image G of ' the monodromy group of the foliation.
Clearly, abundance holds whenever the linear part GL D Im.'L/ of G is finite.

As previously, one can define a developing map � attached to I0, that is � is a
section of ��I0 where � W X0 ! Xn.Supp N[H// is a suitable Galoisian covering.

One can then define the same equivalence relation R as in Sect. 3.2 and conclude
similarly that the induced map

� W X0=R! C

is one to one and onto. Actually the proof proceeds in the same way, using
Lemma 8.7 and replacing compactness of X by the existence of a complete bundle-
like metric, as stated by Lemma 8.9.

Like in Sect. 4, this enables us to claim that G faithfully encodes the dynamic of
F and in particular that GL is finite whenever the topological closure of leaves are
hypersurfaces of X.

Henceforth, we proceed by contradiction assuming jGLj D C1. One can notice
in addition that small loops around the components of Hb give rise to infinite additive
monodromy. In other words, the subgroup of translations of G is also infinite. In
particular, G has no fixed points. At the cohomological level, this means that

H1.�;C'L/ 6D 0:

From a result directly borrowed from [coupe] (Theorem 4.1), one can deduce
that there exists a morphism f of X n .Supp N [ H// onto an orbifold curve C and
a representation 'C of the orbifold fundamental group of C in =.C/ such that the
following diagram commutes:

Up performing some suitable blowing-up at infinity, one can assume that f
extends to a holomorphic fibration

Qf W X ! C:

Looking at the diagram above, one can observe that the sheaf I0 extends through
the neighborhood of a generic fiber QF as a constant sheaf. In particular, the foliation
admits a holomorphic first integral on such a neighborhood. This latter is necessarily
constant on QF by compactness of the fibers. Hence, one obtains that F is tangent to
the fibration, whence the contradiction. ut
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10.2 The Case Z 6D 0

This last possible situation requires some little bit more involved analysis.
Let C � Hb be a boundary connected component and D1; : : : ;Dl its irreducible

component admitting, respectively, the reduced equations f1 D 0; ::; fl D 0.
On a neighborhood of Dk the foliation is represented by a twisted one form !k

valued in a line bundle trivial on Dk, which locally expresses as

!k D !0 C
lX

iD1
�i

dfi
fi

where!0 is holomorphic and for each i, �i is a non-vanishing holomorphic functions
on fi D 0.

For notational convenience, we will assume that Dk \ Dj is connected (maybe
empty) for every k; l. Note that the quotient of residues �kj D �k

�j
on the non empty

intersections Dk\Dj is intrinsically defined as a non-zero complex number and also
that �lk D 1

�kl
.Setting �kl D 0 when Dk \ Dl D ;, this leads to the following

intersection property:

For every k;
lX

jD1
�kjDj:Dk D 0:

Lemma 10.1. Let k 2 f1; : : : ; lg. Then, there exist p 	 2 integers fi1; : : : ; ipg 2
f1; : : : ; lg such that

(1) k D i1 D ip
(2) Dij \ Dij�1 6D ; for every 2 
 j 
 p.

(3)
Qp�1

jD1 �ijijC1
6D 1.

Proof. Assume the contrary. This means that there exist l non-zero complex
numbers �1; �l such that �ij D �i

�j
as soon as Di \ Dj 6D ;. Hence, for every j,

we obtain that

.

lX

iD1
�ifDig/fDjg D 0

which contradicts the negativity of the intersection matrix fDigfDjgf�n�2g. ut

10.2.1 Reduction to Dimension 2

We begin by the following local statement.
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Proposition 10.2. Let F be a foliation defined on .Cn; 0/ by some meromorphic
form ! D !0C�1 dz1

z1
C�2 dz2

z2
, with !0 holomorphic,�1; �2 2 C

�. Then there exists a

germ of submersive holomorphic map u D .u1; u2/ of .Cn; 0/ onto .C2; 0/ such that
F D u�F 0 where F 0 is a foliation on .C2; 0/ defined by !0 D !00C �1 du1

u1
C �2 du2

u2
.

Moreover, there exist units vi such that ui D zivi.

Proof. Suppose that n > 2. Consider the holomorphic 1 form � D z1z2! D
z1z2!0C�1z2dz1C�2z1dz2. Note that the vanishing locus Sing .�/ of� is precisely
the codimension 2 analytic subset fz1 D 0g\fz2 D 0g. One can write !0 DP

i aidzi

where the ai’s are holomorphic functions and remark that Z D @
@zn
� z1an

�1

@
@z1

is a
non-vanishing vector field belonging to the kernel of � and tangent to Sing .�/.
Consequently, there exists a diffeomorphism � 2 Diff.Cn; 0/ preserving the axis
fz1 D 0g and fz2 D 0g such that ��Z D @

@zn
. One can thus assume that Z D @

@zn
.

Keeping in mind that � is Frobenius integrable (� ^ d� D 0), this easily implies,
up multiplying by a suitable unit, that� does not depend on the zn variable. We then
obtain the result by induction on n. ut

Pick a point x 2 C contained in the pure codimension 2 locus of Sing F . i.e: x
belongs to some intersection Di \ Dj and x … Dk for each k … fi; jg.

Following the previous proposition, in a suitable local coordinates system z D
.z1; : : : ; zn/, z.x/ D 0, Di D fz1 D 0g, Dj D fz2 D 0g the foliation F is defined by
a holomorphic one form only depending on the .z1; z2/ variable

� D �1z2dz1 C �2z1dz2 C z2z1!0

with �1, �2 two non-zero complex numbers whose quotient �1
�2

is precisely �ij and
!0 an holomorphic one form.

Thanks to Theorem 5 and Sect. 8.2.2, F admits near p two invariant currents T
and 
 (recall that this latter is a priori only defined in the complement of Di [Dj D
fz1z2 D 0g).

It is worth keeping in mind that the local potentials of T are automatically equal
to �1 on Di [ Dj despite the fact that T has no non-vanishing Lelong numbers
along Di [Dj.

We are therefore reduced to study a germ foliation in .C2; 0/ defined by a
logarithmic form

! D !0 C �1 dz1
z1
C �2 dz2

z2

with non-vanishing residues �1, �2 such that there exists in addition a psh function
 satisfying the following properties:

(1) T D i
�
@@ is an F invariant current. Moreover D �1 on the axis z1z2 D 0

but T has no atomic part (i.e: Lelong numbers) along fz1z2 D 0g.
(2) 
 D i

�
e2 ! ^ ! is an F invariant current in the complement of fz1z2 D 0g.
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Lemma 10.3. Let F be a germ a foliation in .C2; 0/ satisfying the above properties.
Then F is linearizable; more precisely, there exists a germ a biholomorphism ˆ 2
Diff.C2; 0/ preserving each axis such thatˆ�F is defined by the form �1

dz1
z1
C�2 dz2

z2
.

Moreover, � D �1
�2

is positive real number.

Proof. Putting the two properties mentioned in (10.2.1) together, one can infer that
T is a positive current without atomic part on the separatrices fz1z2 D 0g which is
non-zero on every neighborhood of x. According to [br], this implies that �1

�2
is a

real number. One has to discuss the following cases which might occur and which
depend on the value of � D �1

�2
.

• � < 0. One knows (see [brbir]) that F is linearizable; indeed, either �� …
N

�[ 1
N�

and then belongs to the Poincaré domain, either the foliation singularity
admits a Poincaré Dulac’s normal form which is linearizable thanks to the
existence of two separatrices. In particular, one can assume that F is defined by
! D �1

dz1
z1
C �2 dz2

z2
, a closed logarithmic 1 form. By assumptions, there exists

 psh such that 
 D i
�

e2 ! ^ ! is closed as a current. This easily implies that
 is actually constant on the leaves.
Note also that F D z1z2� is a multivaluate first integral of F with connected
fibers on U n fz2 D 0g where U is a suitable neighborhood of the origin
and that F.U n fz2 D 0g D C (thanks to � < 0). Therefore, there exists a
subharmonic function Q defined on C such that Q ı F D  . Keeping in mind
that a bounded subharmonic function on C is actually constant and applying
this principle to e Q , one obtains that  is constant, which obviously contradicts
property (10.2.1).

• � > 0. The linearizability of the foliation is equivalent to that of the germ of
holonomy diffeomorphism

h.z/ D e2i��zC hot; � D �1

�2

evaluated on a transversal T D .C; 0/ of fz1 D 0g (see [MM]). This one does
not hold automatically and is related to diophantine property of � (Brujno’s
conditions).
Assume that h is non-linearizable and let Dr D fjzj < rg, r > 0 small enough.
We want to show that this leads to a contradiction with the existence of the
invariant current 
. Following Perez-Marco [pe], there exists a totally invariant
compact subset Kr with empty interior (the so-called hedgehog) which verifies
the following properties:

(1) Kr contains 0, is connected, is totally invariant by h: h.Kr/ D Kr and is
maximal with respect to these properties.

(2) Kr \ @Dr 6D ;.

Let 0 < r < r0 for which the above properties hold.
The following argument is adapted from [brsurf, preuve du lemme 11, p.590].



210 F. Touzet

Let � be a rectifiable curve contained in T n f0g. Its length with respect to the
metric form g D e' jdzj

jzj is given by

lg.�/ D
Z

�

e'.z/

jzj dH

where H denotes the dimension 1 Hausdorff measure.
Because that 
 is invariant by the foliation, one gets

lg.�/ D lg.h ı �/:

Using the existence and properties of Kr , Kr0 stated above, one can easily
produce a sequence of rectifiable curves

�n W Œ0; 1�! fr 
 jzj 
 r0g

with j�n.0/j D r; j�n.1/j D r0 and such that lg.�n/ converges to 0. Up extracting
a subsequence, �n converge, with respect to the Hausdorff distance, to a compact
connected subset K not reduced to a point contained in a polar subset, which
provides, like in [brsurf], loc.cit the sought contradiction. ut

Remark 10.4. We have shown that every singularity of F is actually elementary.

10.2.2 Dulac’s Transform and Extension of the Positive Current �T

Through the Boundary Components

Let F be a foliation given on a neighborhood of 0 2 C
2 by the 1 logarithmic form

! D �1 dz1
z1
C �2 dz2

z2
; �1�2 > 0 .Siegel domain/

Let T1 be the transversal fz2 D 1g and T2 the transversal fz1 D 1g. The foliation
induces a multivaluate holonomy map, the Dulac’s transform, defined as

d� W T1 ! T2
z1 ! z2 D z1�

where � D �1
�2

.
One now makes use of property 10.1 stated in Lemma 10.1 above. Let D be a

component of C. Up renumerotation, one can assume that D D D1 and that there
exists D2; : : : ;Dp. such that Di \ Di�1 6D ; for every 2 
 i 
 p, D1 \ Dp 6D ; and
Qp�1

jD1 �ijijC1
6D 1.

For every i 2 f1; : : : ; pg, let Ti ' .C; 0/ be a germ a transversal to F in a regular
point mi of Di.
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Equip .T1;m1/ with a holomorphic coordinate z, z.m1/ D 0 . Denote by S
 the
invariant positive current 
T restricted to T1. For any Borel subset B of T1, let �B.S
/

be the mass of S
 on B, i.e: �B.S
/ D
R

B
i
�

e2'.z/dz^dz
jzj2 . Note that this mass is finite

whenever B is compact subset of T1 n fm1g.
When composing Dulac’s transforms, one gets a multivaluate holonomy trans-

formation of T1 which can be written as h.z/ D zrU.z/ where r D �12�23 : : : ::�p1 is
positive real number strictly greater than 1 (up reversing the order of composition)
and U is a bounded unit on each angular sector such that lim

z!0
U.z/ exists and equal

to 1 up doing a change of variables z ! �z. Up iterating h and thus replacing r by
rn, one can also assume that r > 2.

By a slight abuse of notation, we will identify h with one of its determinations on
a sector of angle< 2� , that is S�1;�2 D fz 2 T1j�1 < arg z < �2; 0 < �2��1 < 2�g.

Consider � > 0 small enough and for every integer n > 0, let An 2 T1 be the

annulus f �rnC1

2
< jzj < 2�rng.

For � D �2 � �1 2�0; �Œ, consider the annular sector An;�1;�2 D S�1;�2 \ An.
One can easily check that h.An;�1;�2 / contains an annular sector of the form

AnC1;�10;�2
0 with �2

0 � �10 > 2.�2 � �1/.
From these observations and the fact that S
 is invariant by h, one deduces that

�An.S
/ 
 1
2n�1 �A1.S
/. As f0 < jzj < �g D S

n An, S
 has finite mass on T1 n f0g.
Consequently, the closed positive current 
T well defined only a priori on X nHb

extends trivially on the whole X as a closed positive current. This extension will be
also denoted by 
T .

10.2.3 Existence of an Invariant Transverse Hyperbolic Metric,
Monodromy Behavior at Infinity and Consequences on the
Dynamics

Every singularity of the foliation has elementary type and then, according to
Proposition 2.7 and Remark 2.6,

f
TgfSg D 0

for every F invariant closed positive current S.
The positive part Z of c1.N�

F ˝O.H// is represented by an F invariant positive
current, one can then make use of Hodge’s index theorem to conclude that

f
Tg D Z

up normalization of 
T by a multiplicative positive number.
This last property enables us to give an analogous statement to that of Proposi-

tion 8.4:
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Proposition 10.5. Let F be a strict Log-Canonical foliation on a Kähler mani-
fold X. Suppose moreover that Z 6D 0. Let„ be a .1; 1/ positive current F -invariant.

˛ D fN.˛/g C Z.˛/

with ˛ D f„g (for instance, ˛ D c1.N�
F /C fHg).

Then the following properties hold:

(1) the components Di of the negative part N.˛/ are hypersurfaces invariant by
the foliation; in particular, Z.˛/ can be represented by an F invariant closed
positive current.

(2) Z.˛/ is a multiple of f
Tg.
(3) Z.˛/ is nef and Z.˛/2 D 0.
(4) The decomposition is orthogonal: fN.˛/gZ.˛/ D 0. More precisely, for every

component Di of N.˛/, one has fDigZ.˛/ D 0.
(5) In H1;1.M;R/, the R vector space spanned by the components fDig of fN.˛/g

intersects the real line spanned by f
Tg only at the origin.
(6) The decomposition is rational if X is projective and ˛ is a rational class (e.g:

˛ D c1.N�
F /C fHg).

(7) Every .1; 1/ closed positive current which represents ˛ is necessarily F -
invariant.

(8) Let A be a hypersurface invariant by the foliation and A1; : : : ;Ar its irreducible
components; the family fA1; : : : ;Arg is exceptional if and only if the matrix
.mij/ D .fAigfAjgf�gn�2/ is negative, where � is a Kähler form on X.

Doing the same than in the proof of Proposition 8.3, one can prove that there exists
a closed positive current T representing c1.N�

F ˝O.H// such that

(14) T D ŒN�C 
T

As previously, this means that NF comes equipped with a transverse hyperbolic
metric with degeneracies on K D supp N [Hb. This provides a representation

r W �1.X n K/! Aut.D/:

Write N as a positive linear combination of prime divisors

N D
pX

iD1
Ni

As previously, one denotes by I1 the corresponding locally constant sheaf of
distinguished first integrals. Like in the previous cases, there are multivaluate
sections of I1 around Supp N given by elementary first integrals f�11 : : : :f

�p
p with fi

a local section of O.�Ni/ and �i non-negative real number such that �i D �iC 1 if
Ni 
 H and �i D �i otherwise (see item (1) of Proposition 8.5). By the point (10.5)
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of the proposition above, the exponents �i’s are indeed rational whenever X is
projective. In particular, the monodromy around the local branches of Supp N is
finite Abelian.

It remains to analyze the behavior of such first integral near the boundary
component Hb. Roughly speaking, one may think of the leaves space of F as a (non-
Hausdorff) orbifold hyperbolic Riemann surface with finitely many orbifolds points
(corresponding to the components of the negative part) and cusps (corresponding to
the components of Hb). This is made more precise by the following statement:

Lemma 10.6. Let ' 2 PSL.2;C/ be a homography such that '.D/ D H. Then,
around each x 2 Hb, there exist a local coordinate system z D .z1; : : : ; zn/ and
positive real numbers ˛1; : : : ; ˛p such that Hb is defined by z1 : : : :zp D 0 and

f .z/ D �i.
pX

jD1
˛j log zj/

is a multivaluate section of '�.I1/. In particular, the foliation is defined on a
neighborhood of x by the logarithmic form with positive residues

(15) ! D
pX

iD1
˛i

dzi

zi

Proof. Assume firstly that x … Sing F .
The identity (14) can be locally expressed by an equation involving only one

variable z (which parameterizes the local leaves space and such that Hb D fz D 0g),
namely

�'.z/ D e2'

jzj2 :

which is nothing but the equation of negative constant curvature metric near the
cuspidal point z D 0. In particular, the foliation admits as first integrals multivaluate
sections of �.I1/ of the form f .z/ D �i˛ log zC h.z/ where h is holomorphic and
˛ > 0. Up right composition by a diffeomorphism of .C; 0/, one can then assume
that

(16) f .z/ D �i˛ log z

(the transverse invariant hyperbolic metric is then given by 
T D i
�

dz^dz
jzj2.log jzj/2 ).

The general case easily follows from the Abelianity of the local monodromy on
the complement of the normal crossing divisor fz1 : : : zp D 0g. ut
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Lemma 10.7. The representation � has dense image.

Proof. Let ! be the logarithmic form given by (15). Note that ! is nothing but the
meromorphic extension of a section of�id.'�.I1// near Hb and is uniquely defined
up to multiplication by a real positive scalar.

Consequently, the monodromy representation '�r restricted to U n C, where
U is a small neighborhood of a connected component C of Hb takes values in
the affine group Aff of PSL.2;R/ D Aut.H/ and the image GC contains non-
trivial translations (thanks to the existence of non-trivial residues). Moreover, GC
does not contain only translations, otherwise this would mean that ! extends as a
logarithmic form on the whole U with poles on C and this obviously contradicts
Lemma 8.10. Denote by G the image of '�r. The observations easily imply the
following alternative:

(1) Either G � Aff,
(2) either the topological closure G of G is PSL.2;R/.

By an argument already used in Sect. 4, the first case forces the positive part Z to
vanish and then yields a contradiction.

The monodromy group of the foliation is thus dense in Aut.D/. By using a
bundle-like metric complete at infinity in the spirit of Lemma 8.9 (here, it is
convenient to choose local model of the form gx D i

Pnx
lD1

dzl^fdzl

jzlj2.log jzlj/2 C hx near

x 2 Hb). Following the same line of argumentation as in Sect. 10.1, one can show
that the dynamical behavior of F is completely encoded by G and in particular that
F is a quasi-minimal foliation. ut
Remark 10.8. As an illustration of this monodromy behavior, it may be relevant to
keep in mind the example of modular Hilbert modular foliations (see [pemen] for a
thorough discussion on this subject). In this case, one may think of Hb as the excep-
tional divisors arising from the resolution of cusps by toroidal compactification (see
[eh]). The affine monodromy near Hb is here related to the isotropy groups of the
cusps (the maximal parabolic subgroup of the lattice defining the Hilbert modular
surface) which decomposes as additive monodromy around H and multiplicative
monodromy along H.

Remark 10.9. Like in the non-logarithmic and KLT case, the local monodromy at
infinity remains quasi-unipotent. The new phenomenon, here, is that it is no more
finite monodromy around the components of Hb (because of the log terms in the
local expression of distinguished first integrals).

10.2.4 Proof of the Main Theorem

It is namely the Theorem 2 of the introduction. Recall that F is a strict Log-
Canonical foliation with non-vanishing positive part Z. From now on, we will
assume that the ambient manifold X is projective.
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Thanks to the transverse hyperbolic structure together with the quasi-minimality
of F , one can conclude by the use of the Schwarzian derivative “trick” (see the
proof of Theorem 4) that � WD Kod.N�

F ˝ O.H// D �1. Indeed, if � 	 0, up
doing a suitable ramified covering, one can assume that the foliation is defined by a
logarithmic form ! with normal crossing poles, hence closed.

Thanks to the moderate growth of distinguished first integrals,F is a transversely
projective foliations with regular singularities and the corresponding Riccati folia-
tion does not factor through a Ricatti foliation over a curve for exactly the same
dynamical reasons as those already observed in Sect. 6.1.

One can then similarly claim that there exists ‰ a morphism of analytic varieties
between X nHb and the quotient H D D

n=� of a polydisk (n 	 2/ by an irreducible
lattice � � .Aut D/n such that F D ‰�G where G is one of the n tautological
foliations on H.

To get the final conclusion, one extends ‰ to an algebraic morphism

‰ ! H
BB

thanks to Borel’s extension theorem [bor].
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The corrections are given below:

Chapter 1
In the original version of Chapter 1, in page 4, fourth paragraph should be read as
below:

Given a sheaf F of OX-modules on a variety X, we denote by F� the
sheaf HomOX .F ;OX/. If r is the generic rank of F , then we denote by det.F /

the sheaf .^rF /��. For m 2 N, we denote by F Œm� the sheaf .F˝m/��. If G is
another sheaf of OX-modules on X, then we denote by F Œ˝�G the sheaf .F˝G /��.

On page 12, under section 3.3, “Hör 13” in second paragraph should be read as
“Hör 14”. Also, “Hör 13” in the reference list is now changed as “Hör 14”.

The online version of the original chapter can be found under
http://dx.doi.org/10.1007/978-3-319-24460-0_1

Chapter 2
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On page 37, line 6, “I.3.4” should be read as “1.3.3”.

On page 46, line 5, “II.1.1” should be read as “2.1.1”.

The online version of the original chapter can be found under
http://dx.doi.org/10.1007/978-3-319-24460-0_2

Chapter 5
On page 108, line 16, “Cx.X/” has been changed as “�x W Ux Ü Cx.X/”.

On page 123, last seven lines have been replaced as:

In the other long root cases the VMRTs of the model manifold are linearly
degenerate, and we made use of the more general result that W must be bracket
generating for a uniruled projective manifold X of Picard number 1 to reach the
same conclusion in [HM02]. Here we say that a distribution W on X is bracket
generating to mean that the tangent subsheaf generated byW from taking successive
Lie brackets is the tangent sheaf. The same resoning was applied to the short-root
cases in [HM04a] and [HM05]. In the cases of [HM05], the VMRTs of the model
spaces are linearly nondegenerate.

On page 134, section 4.4.1, “i” in the second line has been italicized.

On page 135, “i” in the first line has been italicized.

On page 138, in fourth paragraph, third from the last line “CS” has been changed as
“C.S/”.

On page 138, Definition 4.5.4 has been updated with the below text:

Definition 4.5.4. Let $ W C.S/ ! S, C.S/ WD C.X/ \ PT.S/, be a sub-
VMRT structure on S � X � B0 as in Definition 4.5.1. For a point x 2 S,
and Œ˛� 2 Reg.Cx.S// \ Reg.Cx.X//, we say that (Cx.S/; Œ˛�), or equivalently
.eCx.S/; ˛/, satisfies Condition (T) if and only if T˛.eCx.S// D T˛.eCx.X// \ Tx.S/.
We say that $ W C.S/ ! S satisfies Condition (T) at x if and only if .eCx.S/; Œ˛�/
satisfies Condition (T) for a general point Œ˛� of each irreducible component of
Reg.Cx.S//\ Reg.Cx.X//. We say that $ W C.S/! S satisfies Condition (T) if and
only if it satisfies the condition at a general point x 2 S.

The online version of the original chapter can be found under
http://dx.doi.org/10.1007/978-3-319-24460-0_5
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