Chapter 8

A Framework for Distributed,
Loosely-Synchronized Simulation of Complex
SystemC/TLM Models

Christian Sauer, Hans-Martin Bluethgen, and Hans-Peter Loeb

Abstract Today’s virtual prototypes model complex many-core platforms. In
application domains such as network processing, they may comprise hundreds
of processors, which makes simulation speed the key issue due to the single-
threaded execution semantics of SystemC. We propose CoMix, the Concurrent
Model Interface, for the distributed simulation of large-scale SystemC models.
CoMix provides robust communication between simulator peers, enables their loose
synchronization, and manages the overall life cycle. It is an overlay technology
neither requiring modified simulators nor depending on a hosts’ communication
infrastructure. The CoMix framework is small (2k Lines of C++4 Code) and
easily deployable. We quantify its overhead on synthetic benchmarks and observe
reasonable speedups for synthetic benchmarks as well as a large real-world example,
e.g., 3.3X and 4X for a 4-peer simulation.

8.1 Introduction

Enabled by maturing standards, the availability of platform libraries, and wider tool
support, SystemC (SC)-based simulation models are increasingly deployed early
in the design cycle of System-on-Chip (SoC) platforms. Such models facilitate
the development of embedded software for full, highly complex systems, as they
abstract irrelevant details for faster simulation while providing sufficient insights
into the interplay between software and hardware. This way, high-quality software
can be developed sooner and more concurrently to a platform’s hardware. In
addition, these models may serve as entry points into exploration, design, and
verification flows, because they capture the system intent in a functionally correct
way [2].

C. Sauer (<) * H.-M. Bluethgen * H.-P. Loeb
Cadence Design Systems, Munich, Germany
e-mail: sauerc@cadence.com

© Springer International Publishing Switzerland 2016 135
F. Oppenheimer, J.L. Medina Pasaje (eds.), Languages, Design Methods, and Tools

for Electronic System Design, Lecture Notes in Electrical Engineering 361,

DOI 10.1007/978-3-319-24457-0_8

mailto:sauerc@cadence.com

136 C. Sauer et al.

External TGH1 TG#H2
Traffic Gens

A Board — Peer Example Board

Control soc soc soc
[Nx Core1] [Nx Core1] [Nx Corel]

[nxcpu | [Mx Core2] [Mx Core2] [Mx Core1]

Hw vt | (en] (o) fmem (o6 (e ()
Models

Simulator
Instances

eSw
Debugger

Realview gdb Integrated other

Fig. 8.1 Generalized SW development use case for a distributed simulation with heterogeneous
debug and simulation tools

Contemporary SoCs are complex many-core platforms [3]. Especially network
infrastructure, such as radio base stations or routers, may easily comprise multiple
SoCs each with 10s—100s of processor cores along with memories, interconnect
hierarchies, and various accelerator and 10 modules. Models in this domain can
instantiate 10s of thousands of SC objects. Their joint simulation with instruction-
precise processor models makes the speed of the simulation a key issue. With
fixed requirements on abstraction level (e.g., programmer’s view) and modeling
techniques (TLM—transaction level modeling), other ways are needed to improve
simulation speed and to tackle the complexity of the models. Distributing the
SystemC/TLM simulation into multiple parts that run in parallel, potentially on
different simulation hosts, is a promising approach.

Yet, for the model to be widely usable, a suitable solution should support the
generalized use case as in Fig.8.1. A hierarchical simulation model is set up to
run a multi-SoC simulation in a distributed fashion. Its parts run on different
SC simulators and comprise heterogeneous cores which are to be debugged
simultaneously with different tools, be it a core’s native tool chain, standalone 3rd-
party debuggers, or integrated multi-core debuggers. None of these tools nor the
used communication infrastructure must monopolize the execution and block other
tools and simulators from functioning. These requirements exclude prior solutions
relying on IO virtualization of dedicated SoC interfaces [1] or on changes to the SC
simulation engine [12, 15, 17].

We propose CoMix, the Concurrent Model Interface, as orchestrating infras-
tructure for the distributed simulation of large-scale SystemC models. CoMix
provides robust, asynchronous communication between peers, enables their loose
synchronization, and comprehensively manages the overall life cycle. It is a
modular, vendor-independent overlay technology supporting the full range of SC
and TLM communication primitives.

8 Framework for Distributed, Loosely-Synchronized SystemC/TLM Simulations 137

Before going into the key principles of our solution in Sect. 8.3, we overview
SystemC and TLM briefly in Sect. 8.2. Section 8.4 details the implementation of the
CoMix framework and discusses its interaction with the SystemC/TLM simulation
libraries. Section 8.5 evaluates and characterizes CoMix using a set of synthetic
benchmarks as well as a real-world virtual prototype. We compare our approach to
related work (Sect. 8.6) and conclude on its features in Sect. 8.7.

8.2 SystemC and TLM

SystemC [9] is a system modeling language and C++ class library which adds
distinct notions of hierarchy, concurrency, and simulation time to C++-. A system
is composed hierarchically from modules that communicate explicitly via ports/ex-
ports and channels. Its actual function is described within the modules as a collection
of concurrent SC processes which explicitly synchronize on events (notify/wait).
These processes are scheduled cooperatively. Execution is thread-safe as the SC
scheduler runs them sequentially within a single OS thread.

TLM [9] is a modeling library on top of SC, which provides abstractions for
the communication protocol and interfaces between SC modules. Modules may use
sockets (sets of ports and exports) to exchange transactions between initiators and
targets. Such exchange may be split into several phases or timing points, increasing
the temporal resolution of the transfer. Blocking transfers have two timing points,
while non-blocking transfers have at least four timing points. The former are
modeled as a single function call that blocks the initiator’s execution until the result
is available, while the latter enable continued execution, potentially initiating further
transactions before the first one completes (via callbacks, sequencing through the
phase diagram, cf. Fig. 8.4).

TLM also introduces the concept of temporal decoupling, allowing processes
to run ahead of the simulation time up to an upper limit, the quantum. At points of
communication, a SC process may choose to first synchronize its local time with the
global simulation time, i.e., to yield to other processes, or may continue its execution
unsynchronized, maintaining a delta time. Synchronization guarantees correctness
of an access, e.g., to a shared state. Unsynchronized continuation just accesses the
current state accepting the temporal error associated with accessing that state too
early or too late. Temporal decoupling is commonly used in the context of virtual
platform simulations where the software stack does not depend on the low-level
timing details of the hardware, which means the temporal error does not manifest
functionally. Trading off simulation speed and accuracy, the error can be controlled
by the value of the quantum, which depends on the application: A too large value
may harm the system’s function (e.g., trigger a software timeout), while a too small
value yields frequently and slows down the simulation.

138 C. Sauer et al.

8.3 CoMix Fundamentals

CoMix is a modular collaboration infrastructure which allows heterogeneous SC
simulators to concurrently execute a distributed SC/TLM model.

Partitioned SC/TLM Model As a prerequisite, a simulation model, i.e., a hier-
archy of communicating SC modules, must be cut and grouped into parts for the
individual simulators, as shown in Fig. 8.2. In the process, all connection cuts are
assigned a unique identifier (cut id). Such a partitioning does not necessarily have
to be along SC hierarchies [12, 13]. Yet, following natural boundaries of SoCs or IP
subsystems will avoid hierarchy inconsistencies and maintain accessibility for tools.
This may require a structural transformation of the original model. The result is a
collection of SC modules for each part with open ports or sockets representing a cut.
In a sequential simulation, these parts can be instantiated, connected, and simulated
together, e.g., for verification purposes (Fig. 8.2, top).

In the distributed case, the individual parts are loaded into different simulators
(Fig. 8.2, bottom). On each of the simulators a CoMix peer module is inferred and
all open ports are bound to CoMix connectors either directly (TLM sockets) or via
a channel (SC ports). Alternatively this may happen explicitly, coded as part of the
SC netlist.

Network of Peers Before the distributed simulation starts, those peers that share at
least one cut SC/TLM connection establish a direct TCP/IP link for the exchange of
messages. Peers without communication requirements are not connected and do not
synchronize.

Synchronization CoMix follows a loosely timed synchronization scheme that is
similar to the concept of temporal decoupling in TLM. Each simulator advances its
local time up to a configurable quantum, called the sync credit. Once the quantum
has been reached (i.e., available credit has been consumed), synchronization with
connected peers takes place, which means credit is granted to connected peers. The
simulation halts if and only if there is insufficient credit available. Such a scheme
preserves and exploits TLM’s temporal decoupling semantics as each simulator may
advance SC time locally at its own speed during sync intervals. As with TLM,
the temporal error between peers can be controlled by the sync interval. Credits
may be received any time, not just at the end of sync intervals. Thus, depending
on the duration of the sync interval and the load distribution between peers, the
slowest simulator can be expected to never stop its advancement of SC time, which
effectively minimizes the synchronization overhead for the overall execution time.

Communication During the decoupled execution, communication between SC
modules on different peers may take place. Such communication carries a time
stamp that can be used to synchronize with a target’s local simulation time. Recog-
nizing the need for different, application-dependent schemes, CoMix encapsulates
the handling of a connection’s synchronization requirements within the associated
pair of connectors. They may synchronize to the local time, so that a message is

8 Framework for Distributed, Loosely-Synchronized SystemC/TLM Simulations 139

[rommm———— b | f--------------------------------I
1 L
/ﬁ -I
Board A V‘I,Board B ::
1
1
SoC Control SoC SoC SoC

| NxCorel |
|

‘ other

[NxC:)re1] [Nxc?re1] [NxC:::reI]

[mem] [Mx Core n] [Mx Core n] Mx Core n]

Csens) (mem) (o) | | Cmen))

T =L = ik Skt S T lltriorl Lrtired =

- [S — [REp—
4 Interconnect 1

‘mem H Acc ‘

VF1 | [uFn|
(UF1] -~ [vEn]

3

)

FANRVAN

Interconnect n

S @ = i e

| VF1 | | VFn |
\. J ' ST
SIM 1 SIM 2 SIM 3
Board A

SoC SoC SoC SoC
‘ m\‘ [Nx Cr:re 1] [Nx C?re 1] [Nx Core 1]
‘ other ‘ [Mx Core n] [Mx Core n] [Mx Core n]

(mem | aec |

BEao|jczamE) =S =

UEIRE)
W A

Peer

| |

Socket Communication

Fig. 8.2 A model (cf. Fig.8.1) (top) is partitioned manually cutting SC connections, and
distributed across three peers using CoMix (bottom), which handles the communication between
cuts

not processed before its creation time, or may handle it immediately at the time
of its reception. In both cases, the order of transactions within the same stream is
maintained while independent streams may interleave differently towards the same
target.

140 C. Sauer et al.

SC Support and Simulator Interaction CoMix supports the full range of Sys-
temC communication primitives, i.e., communication via ports and channels as well
as communication via TLM sockets. A current limitation is the lack of DMI support
between sockets on different hosts. Life cycle management is controlled by the
four simulator callbacks into the CoMix Peer. Interaction towards the simulator is
required in only two cases: (1) if sync credit is lacking, the simulator is starved, and
(2) in the event of SC communication, which is received asynchronously by CoMix
and results in an async_request_update() call [9].

8.4 CoMix Framework

CoMix connects the distributed parts of a simulation, provides robust communi-
cation between peers, enables their loose synchronization, and comprehensively
manages the overall life cycle. The framework is implemented in C++ and only
relies on SC/TLM and Boost’s ASIO library.

Figure 8.3 shows the main building blocks of the framework and their interaction.
A single instance of the CoMix peer manages its enclosing simulation in the
distributed setup. It comprises a multi-socket object, an asynchronous receive queue,
and functions for message routing, life cycle management, and the synchronization
with other peers. This peer is associated with a collection of CoMix connectors that
are bound to the previously open SC ports/sockets of the model. These connectors
translate SC communication into message sequences and vice versa. The peer itself

CoMix Peer
Multi Socket
Async Rx Queue E‘:'
il
_—
= ——— Il
User
TCP/IP Sock Conn=L1(id) SC
: Model
(Part)
[Tcp/iP sock | Conn
Tx Messages
Sock=L2(id)
Life Cycle
TCP/IP Sock | Di T
/IP Socl Discovery (SC Callbacks) Sync
10 Process SC Process

Fig. 8.3 Components of the CoMix framework

O 00NN B W=

8 Framework for Distributed, Loosely-Synchronized SystemC/TLM Simulations 141

handles messages related to synchronization and life cycle management directly.
Within the multisocket class an extra, shared OS thread is introduced which handles
most 10 operations asynchronously to SystemC executed in the main thread. Only
outbound messages are sent synchronously.

8.4.1 CoMix Peer

Most of the CoMix function is encapsulated within the CoMix peer. As an SC object
this class can be integrated into a model like any other module. All peers within one
distributed simulation are identical.

During startup, peers discover each other and form a mesh as required for the
connectivity of the simulation model. For this, the peers run a discovery protocol in
which the peer started first becomes a super peer running on a specified listening
address (IP, port). Others can connect to it, authenticate, and announce their local
cut ids together with their own listening address. The super peer broadcasts this
info to all its other connections. Upon reception of such a message a peer opens
a direct and authenticated connection to the originating address, but only if they
share a cut id. Once all local cut ids are associated with their remote counterpart,
a peer’s setting is considered sane and the connection to the super peer may be
closed. Tables with remote and local cut ids are kept for routing messages locally to
the socket connection (send) or the local CoMix connector (receive), respectively.

Since the reception of a message is asynchronous in a separate OS thread, it
must be explicitly synchronized with the SystemC simulation. This is handled by
the receive queue which guards accesses with locks and asynchronously notifies the
kernel. In the event of written data a SC process is activated, which performs the
lookup and forwards the message to the appropriate connector.

The peer also handles the synchronization of SC time between simulators.
Listing 8.1 shows the pseudo code for one of the synchronization modes, the
fully starved mode. After using up its own credit (6), a peer sends credit to all
of its connected peers (7) and then starves the SC simulation completely within
the inner loop (9) until it received sufficient credits from its peers. While SC is
blocked, asynchronous reception and processing of messages must continue, hence
the asynchronous receive queue is read periodically (12).

Listing 8.1 Fully-starved synchronization scheme
void sync_th () {
while (!canSync(SIM_STOP)) {

wait(sc_time(credit_ns, SC_NS));
send_credit (ALL_PEERS, SYNC_CREDIT, credit_ns);

while (!canSync(QUOTA_SYNC)) {
if (canSync(SIM_STOP)) break;
usleep (interval_us);
nb_recvMessage ();

142 C. Sauer et al.

}

clearSync (QUOTA_SYNC);
}

send_credit (ALL_PEERS, STOP_CREDIT);
sc_stop ();
}

Another synchronization mode is the delta-only mode, partly shown in List-
ing 8.2. In this case, the SC simulator is not starved but continues advancing time
in delta cycles (12) while waiting for sync credit. This way transactions arriving
late may still be processed within the past quota, which can reduce the temporal
error at the initiator side. Explicit reads from the asynchronous receive queue are
not required.

Listing 8.2 Delta-only synchronization scheme

wait(sc_time(credit_ns, SC_NS));
send_credit (ALL_PEERS, SYNC_CREDIT, credit_ns);

while (!canSync(QUOTA_SYNC)) {
if (canSync(SIM_STOP)) break;
usleep (interval_us);
wait (SC_ZERO_TIME) ;

}

The outer loop (4) handles the synchronization at the end of the simulation.
Before a peer stops (19), it sends out stop credit to its peers (18), enabling them
to stop as well. Further life cycle management is achieved by means of SystemC’s
simulation callbacks, which are forwarded to notify peers.

8.4.2 Connectors

CoMix connectors link open TLM and SC ports of a partitioned design with the
CoMix messaging infrastructure. They are bound to their respective SystemC port
or TLM socket and associated with the CoMix peer. An extensible set of CoMix
connectors exists that can be categorized by:

1. Synchronization of inbound messages. Some connectors contain a payload event
queue for inbound messages, which naturally handles their synchronization to the
local SC time on a per connection and message type basis. For instance, scsignal
value updates or btransport calls may be synchronized; transportdbg calls do not
consume time and are not synchronized.

2. Handling of delta time. Outbound TLM connectors may synchronize a delta-
time before sending a message or just annotate it. Similarly, inbound transactors
may annotate future time as delta time on transactions instead of synchronizing
it locally.

8 Framework for Distributed, Loosely-Synchronized SystemC/TLM Simulations

143

3. SC interfaces. Connectors for the different SC port types and TLM socket types
are specialized from common bases. In some cases, standard-compliant protocol
transformations are required, e.g., for transitioning through approximately timed
communication, see Fig. 8.4.

4. Optimized return paths. Connectors are fully SC/TLM protocol compliant, which

requires signaling back the result of a (potentially erroneous and delayed)
a e
Initiator Target Initiator TTSI TISI Target Initiator Target Initiator TTSI TISI Target
BEGIN_REQ BEGIN_REQ BEGIN_REQ BEGIN_REQ BEGIN_REQ BEGIN_REQ
TLM_ACCEPTED TLM_ACCEPTED TLM_ACCEPTED TLM_COMPLETED TLM_ACCEPTED | TLM_COMPLETED
END_REQ END_REQ END_REQ
TLM_ACCEPTED TLM_ACCEPTED TLM_ACCEPTED
BEGIN_RESP BEGIN_RESP BEGIN_RESP

TLM_ACCEPTED
END_RESP
TLM_ACCEPTED

TLM_COMPLETED

b

TLM_ACCEPTED
END_RESP

TLM_ACCEPTED
END_RESP

TLM_ACCEPTED

TLM_ACCEPTED

TLM_COMPLETED

f

END_RESP

TLM_ACCEPTED

TLM_ACCEPTED
or
TLM_COMPLETED

TLM_ACCEPTED

TLM_ACCEPTED
or
TLM_COMPLETED

Initiator Target Initiator TTSI TISI Target Initiator Target Initiator TTSI TISI Target
BEGIN_REQ BEGIN_REQ BEGIN_REQ BEGIN_REQ BEGIN_REQ BEGIN_REQ
TLM_UPDATED TLM_ACCEPTED TLM_ACCEPTED TLM_COMPLETED TLM_ACCEPTED " TLM_compLeTeED
(END_REQ) (END_REQ)

Je :
TLM_/ . BEGIN_RESP
BEGIN_RESP BEGIN_RESP BEGIN_RESP " TLM_UPDATED
(END_RESP)
TLM_ACCEPTED TLM_ACCEPTED TLM_ACCEPTED or
TLM_COMPLETED
END_RESP END_RESP END_RESP

Initiator Target Initiator TTSI TISI Target Initiator Target Initiator TTSI TISI Target
BEGIN_REQ BEGIN_REQ BEGIN_REQ BEGIN_REQ BEGIN_REQ BEGIN_REQ
TLM_UPDATED TLM_ACCEPTED TLM_ACCEPTED TLM_ACCEPTED TLM_ACCEPTED TLM_ACCEPTED
(BEGIN_RESP) (BEGIN_RESP)
le . END_REQ END_REQ END_REQ
’ TLM_ACCEPTED TLM_ACCEPTED TLM_ACCEPTED
BEGIN_RESP BEGIN_RESP BEGIN_RESP
TLM_UPDATED TLM_UPDATED TLM_ACCEPTED
(END_RESP) (END_RESP)
END_RESP END_RESP END_RESP

TLM_ACCEPTED
TLM_COMPLETED

d

TLM_ACCEPTED

TLM_ACCEPTED
TLM_COMPLETED

or
TLM_COMPLETED

h

or
TLM_COMPLETED

D

~or
TLM_COMPLETED

TLM_ACCEPTED
or
TLM_COMPLETED

o Stop

TLM_ACCEPTED!
or
TLM_COMPLETED

-e> Remote Communication

TTSI = TLM Target SocketInterconnector

Initiator Target Initiator TTSI TISI Target Initiator Target Initiator TTSI TISI Target
BEGIN_REQ BEGIN_REQ BEGIN_REQ BEGIN_REQ BEGIN_REQ BEGIN_REQ
TLM_UPDATED TLM_ACCEPTED TLM_UPDATED TLM_UPDATED TLM_ACCEPTED TLM_UPDATED
(BEGIN_RESP) (BEGIN_RESP) (END_REQ) (END_REQ)

END_REQ
VTLMiACCEPTED
TLM_L BEGIN_RESP BEGIN_RESP BEGIN_RESP
(END_RESP)
or TLM_UPDATED TLM_UPDATED TLM_ACCEPTED
TLM_COMPLETED (END_RESP) (END_RESP)
END_RESP END_RESP or or END_RESP
=12 TLM_COMPLETED TLM_COMPLETED =t

TLM_ACCEPTED
or
TLM_COMPLETED

----»> Additional Transaction

TISI = TLM Initiator Socket Interconnector

Fig. 8.4 Protocol conversion by nb-transport connectors. Variants a-h show different state
transitions between initiator and target for the uncut case (leff) and for the distributed case with

connectors (right)

144 C. Sauer et al.

transaction to the initiator. While this cannot be avoided for, e.g., blocking read
accesses, it may not be required in all applications. In case of writes, for instance,
optimized connectors may skip the status response and instead assert on potential
errors. This way, a blocking write call will never block its initiator.

Connectors were designed such that they can be created and configured dynamically
by a factory and configuration infrastructure [14]. This enables setting their cut ids
through a parameter interface from a suitable design description, which may also
comprise the partitioned design.

8.4.3 CoMix Multisocket

The communication between peers is based on TCP/IP sockets which are accessed
via the boost asio library. The CoMix multisocket holds a set of connections and
a TCP acceptor. It also manages the shared OS thread for the asynchronous 10
operations. Messages exchanged over socket connections are translated into boost
property trees. Using this standard format ensures that arbitrary message types with
widely differing content can be handled robustly in a generic way. At the lowest
level of the socket IO library, functions are available for easy serialization of these
data structures to character streams and vice versa.

8.4.4 Framework Characteristics

One design goal of our framework was to keep code complexity as low as possible
by using standard libraries for both stability and maintainability. Although CoMix
provides a powerful feature set, its complexity in terms of lines of code with 2k LoCs
remains fairly low, cf. Table 8.1. The SC library, for instance, has 40X as much code.
The framework is extensible and even supports, e.g., interfaces to non-SystemC
tools, such as (remote) debuggers or traffic generators, by means of specialized peers
and connectors.

Table 811 Code size of the CoMix Lines of code

CoMix framework compared B 572

to the SC/TLM library (as ase

reported by cloc) Peer 275
Connectors, btransport(), and signal 492
Connectors, nbtransport(), other 648
CoMix total 1.987

SystemC & TLM (2.3.0) 78.359

8 Framework for Distributed, Loosely-Synchronized SystemC/TLM Simulations 145
8.5 Case Study and Results

We apply the CoMix framework to the domain of packet processing and deploy
it to a complex real-world many-core platform used for software development. In
addition, we report achievable speedups and quantify the temporal error using a set
of synthetic benchmarks.

8.5.1 Setup and Measurements

CoMix was tested using an integrated regressable test bench which starts and
controls parallel execution of peers in individual shells. Peers run on different
processors. Simulations were carried out on virtual machines using 2—4 host CPUs
running CentOS as well as on a dedicated Intel-Xeon servers with four cores running
RHEL.

We measure the application’s runtime as the wall clock difference between
end- and start-of-simulation callbacks. In distributed settings, we report the overall
execution time as runtime of the slowest peer. Speedups are calculated dividing non-
distributed by distributed runtime.

The computation-to-runtime ratio is calculated as the wall clock time a system
spends between issuing transactions, divided by the overall runtime. For the
synthetic benchmarks, this, e.g., is the time a producer spends in the loop body,
outside of the (blocking) send-transaction call. As a more directly measurable
variant, we also look at the number of transactions per second (wall clock) as an
indication of the communication/computation ratio. The more computation a model
performs per transaction, the fewer transactions are handled per second. In settings
with constant total numbers of transactions, the throughput is also indicative of the
overall runtime.

As an indication for the accumulated temporal error, we measure the overall SC
time required for the execution of a particular software task (e.g., communicating
a fixed number of tokens). The overall temporal error is calculated as the relative
difference in SC time between distributed and non-distributed runs. A distributed
simulation may require extra SC simulation time because initiators are waiting (i.e.,
are blocked) for responses from targets while their SC time advances.

8.5.2 Achievable Speedup

In order to quantify the overhead of our solution, we first look at a synthetic
benchmark which combines a producer (P) and consumer (C) in one simulation
part. The producer has a token-generating process that can be adjusted in its
computational load (i.e., SC and host time consumption) per token, and issues a

146 C. Sauer et al.

Fig. 8.5 Speedups for the 4
synthetic benchmark

distributed to N = 2..4 peers

compared to the uncut 35
simulation (N = 1) N=4

0 20 40 60 80 100
Comp./Runtime [%]

token at the end of each iteration. The consumer receive tokens and verifies their
sequence and inter arrival time without consuming SC time, it too can be adjusted
in its computational load. Connectors are fully TLM compliant, which requires back
signaling (cf. Sect. 8.4.2). Four of these parts are chained in a ring (P1-C2.P2-C3.P3-
C4.P4-C1) and distributed onto up to four simulators, resulting in a symmetric
load scenario. An additional parameter is the sync interval of the distributed parts
which is kept constant for the measurement of the speedup (cf. Fig.8.5). For the
four simulator setting, for instance, a reasonable speedup of up to 3.2 is achieved
depending on the computation to communication ratio. As expected, the figure
confirms that no or only little speed can be gained for communication dominated
settings (0-20 %).

8.5.3 Synchronization Interval

We look at a distributed producer-consumer benchmark (P1-C2) to analyze the
sensitivity on the sync interval and report transactions/s in Fig. 8.6. Both parts have
identical, generation-rate independent background task loads that are scheduled at
1/10th of the production interval. The throughput is impacted by the sync interval.
Fine-grain synchronization limits the throughput, caused by the increased numbers
of sync messages (also shown in the diagram) saturating the communication

8 Framework for Distributed, Loosely-Synchronized SystemC/TLM Simulations 147

400 25
Transactions/s
350 =
20
— 300 5
< S
= 250 3
~ t 15 %
) =
S 200 =
=) (7]
o]
& 150 10 8
c n
g g
F 100 S
L 5 g
50 a
Syncs/Transaction
0 0
0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Sync Interval / Production Interval

Fig. 8.6 Sensitivity of the simulation speed and throughput (transactions/s), on the sync interval
(normalized to the production interval)

channel. For sync intervals set around the generation rate, some instability can be
observed. Maximum throughput is reached for sync intervals set about 3X of the
production interval. In this case, throughput is limited by the computational load
of the background tasks, the latency of the communication channel, and by the
temporal error. Larger sync intervals moderately increase temporal error further,
leading to a slight degradation (cf. next section). For this measurement, connectors
are used which do not synchronize transactions to the local time, as explained next.

8.5.4 Temporal Error

In settings with generation-rate independent computational tasks, the temporal error
increases the overall runtime as these tasks continue to be executed, e.g., while the
initiator is waiting for a response. But the computational background load also slows
down the advancement of SC time which effectively lowers the temporal error up
to a point where there is none. In contrast, an idle system, i.e., without background
load, will always fast forward to the end of a synchronization interval, which means
a response is never received before the end of the quota, so that the temporal error
solely depends on the sync interval.

These effects can be modulated and (to some extent) compensated for by the
schemes used for peer-to-peer and per-transaction synchronization, as Fig. 8.7
shows for the P1-C2 benchmark. With symmetric background task loads for
producer and consumer (top), the temporal error has an upper bound that is relatively
independent on the per-transaction synchronization scheme of the connector, fine-
grain synchronization lowers the temporal error.

148 C. Sauer et al.

200%
180%
160%
S 140%
=
w 120%
© 100%
=]
g- 80% Synchronizing Connector
K 60% ~ P E |
40% Connector w/o sync‘ing
20%
0%
0 2,5 3 3,5 4 4,5 5
Sync Interval / Production Interval
400%
Synchronizing Connector
350%
300%
Connector w/o sync‘ing
fully-starved-mode
. 250%
e
by
® 200%
[=]
Qo
g
= 150%
100%
Connector w/o sync‘ing
50% [0 cq—0— - mm = @ mrm == @ — = 'y
K el
4 .\ .’
& Synchronizing, w/o return path
0% Cadk—t——t——t =W =t =t bk - -
0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Fig. 8.7 Temporal errors for a symmetric load setting (top) and with idle consumer (bottom)

In cases of asymmetric loads (bottom, here with idle consumer), the smaller sync
intervals cause the same temporal error as before. Above 1.6X, the temporal error
increases linearly with the size of the sync interval for the synchronizing connector
due to the end-of-quota effect, while the not-synchronizing connector remains at
the constant level. However, this only is the case for the delta-only simulator
synchronization, which handles late transactions still within the past quota. The
fully-starved mode leads to the same error as the syncing connector. For our write-
only setting, the temporal error is always negligible if the return path is avoided.

8 Framework for Distributed, Loosely-Synchronized SystemC/TLM Simulations 149

Table 8.2 Elaboration r.eport SystemC primitive Slice | Platform

for a real packet processing

platform with four slices and sc_modules 1037 4745

some other functions sc_ports 1459 6680

resulting in about 5k sc_signals 916 3962

instantiated SC modules sc_semaphores 8193 | 32772
sc_methods 436 2094
sc_threads 892 4410
sc_events 3645 | 17514

tlm2_initiator_sockets | 1984 9457
tlm2_target_sockets 2280 | 10784

4,50
= 4,00 '___-__._té
° /./._____-_’_.7
)
Q
& 3,50
Q.
5
© 3,00
(]
Q.
v 2,50

2,00 " "

0 100 200 300 400 500 600 700

Sync Period [in 1000 Processor Instructions]

Fig. 8.8 Speedup for the real-world case study over the sync ratio

8.5.5 Packet Processing Platform

In a second step we apply CoMix to a real-world packet processing platform.
The model has a considerable complexity as shown by its elaboration report in
Table 8.2. For the purpose of this book chapter, we distribute a set of four slices
into a simulation with four parts. Each of the parts comprises several 10s of binary-
translating processor models that are busy running embedded software in temporally
decoupled execution. The four parts are connected along write-only IO ports.

We vary the synchronization interval and run 10 simulations per data point
to mitigate any load deviations on the simulation hosts. Figure 8.8 shows the
speedup over the synchronization interval for the given setting expressed in
processor instructions (CPI=1) and normalized to the clock frequency. Starting
with about 380k instructions, a speedup of 4X is reached for the given setting, a
computation dominated simulation setup with sparse communication and only loose
synchronization between the parts.

150 C. Sauer et al.

8.6 Related Work

PDES Synchronization Policy Parallel discrete event simulation (PDES) is
researched for several decades. SystemC is a discrete event simulator with
unpredictable communication. According to Fujimoto [7] distributed SystemC
simulation techniques can be categorized by their synchronization into conservative
and optimistic approaches. Conservative schemes [4, 5, 12, 15] require the simulator
to be aware of the minimum duration between two communication events in
order to ensure temporal correctness while optimistic schemes [10] speculate
on their future state. The former schemes impose high communication and
synchronization overhead, especially with unpredictable communication (minimum
sync period must be assumed), while the latter depend on checkpointing and
rollback mechanisms in cases of incorrect speculation.

For unpredictable communication Peeters et al. [13] propose a hybrid synchro-
nization scheme which (1) depends on write-exclusive access to shared memory for
functional consistency, (2) avoids expensive frequent synchronization by accepting
a temporal error in otherwise asynchronous communications, and (3) synchronizes
explicitly at regular system-wide intervals using a blocking double handshake
protocol. Similarly, our CoMix uses explicit synchronization intervals, but peers
may grant different sync credits to each other which are received asynchronously
and non-blocking. Sync messages must not be acknowledged explicitly. Shared
memory and write-exclusive access is not required for functional consistency. Com-
munication events from peers are received asynchronously but their processing is
scheduled by the SC scheduler maintaining the single-threaded execution semantics
of SystemC. CoMix customizable connectors support the full range of SC and TLM
interfaces.

The conservative lookahead technique in [17] requires communication to be
known ahead of time by at least on synchronization period, i.e., to be predictable.
This avoids causality issues due to communication arriving late (as long as the
return path is ignored [17]). In such a confined setting, CoMix does behave similarly
accurate and without timing error (cf. Fig. 8.7).

SystemC Kernel Modifications Most prior approaches suggest changes to a the
simulation kernel for adding communication, synchronization, or parallelization
support, e.g., [4, 6, 10, 12, 15-17]. However, this causes a severe maintenance
problem for evolving simulator versions and is not feasible in settings with het-
erogeneous, potentially commercial tools without source code access. Others avoid
kernel modifications by providing add-on libraries which interact with the simulator
only through the regular SystemC language interface [8, 13]. This interaction
depends on the synchronization scheme and might be tight, e.g., per delta cycle
as in [8], or rather loose. Our CoMix is such an overlay technology, interacting with
the simulation engine only in cases of inbound communication events or explicit
synchronization.

8 Framework for Distributed, Loosely-Synchronized SystemC/TLM Simulations 151

Peer-to-peer Protocols and Host Systems Several communication protocols are
used for passing messages between peers, including MPI [5, 13], CORBA, and
SOAP [11]. We use regular TCP/IP sockets similar to, e.g., [16] to limit the
dependency on other libraries and a leaner protocol stack. Most related approaches
use SMP machines as simulation hosts, e.g., [8, 10, 12, 15], potentially depending on
SMP properties, such as shared memories and caches [13]. Our CoMicx is intended
for the use in load sharing facilities and geographically distributed settings, similar
to [16]. However, CoMix recognizes the potential for optimizations and is factored
for the support of other communication protocols.

SC/TLM Primitives and Modeling Styles Especially the kernel modifying
approaches may impose special coding styles. Mello et al. [12], for instance, depend
on approximately timed modeling semantics in their models. Others require thread
safety, at least on distribution boundaries [15]. Both, kernel modifying approaches
and overlay solutions often do not support the full spectrum of SystemC and TLM
communication primitives [13, 17] or require explicit clocks [11]. Trams et al. [16]
is limited to signal communication semantics. In [17], the partly supported TLM
communication must not consume SC time. CoMix does not impose modeling
restrictions and supports the full range of SC and TLM communication primitives
by means of connectors for dedicated port/socket types.

8.7 Conclusion

We have presented CoMix, the Concurrent Model Interface, which enables the
distributed simulation of large-scale SystemC-based virtual prototypes. CoMix
provides robust communication between peers, enables their loose synchronization,
and comprehensively manages the overall life cycle. Its modular design supports
various synchronization strategies for peers and their communication, which may
be chosen depending on a platform’s specific requirements. CoMix’ asynchronous
10 infrastructure integrates into SystemC efficiently and avoid blocking third-party
tools, such as embedded software debuggers.

For a set of synthetic, token-passing benchmarks we have shown the benefits
of CoMix to be a trade-off between local computation and communication and
the synchronization interval. The temporal error caused by the distribution can
be lowered if double-synchronized round-trips are avoided by skipping the return
path or not synchronizing it. These results were confirmed on a complex real-
world platform, where we found speedups of up to 4X in a four part simulation
for the given application. To date, CoMix is used in virtual prototypes of many-
core network processing systems comprising several hundred instruction-precise
processor models.

Acknowledgements In parts, this work has been supported by Lei Lang, Eric Frejd (Ericsson AB,
Sweden), and Linmu Cui (Cadence, Germany).

152 C. Sauer et al.

References

1. Bailey, B., Martin, G.: Virtual prototypes and mixed abstraction modeling. In: ESL Models
and their Application, pp. 173-224. Springer, Berlin (2010)

2. Bailey, B., McNamara, M., Balarin, F., Stellfox, M., Mosenson, G., Watanabe, Y.: TLM-Driven
Design and Verification Methodology. Lulu Enterprises, Raleigh, NC (2010)

3. Benini, L., Flamand, E., Fuin, D., Melpignano, D.: “P2012: Building an ecosystem for
a scalable, modular and high-efficiency embedded computing accelerator,” In: Design,
Automation & Test in Europe Conference & Exhibition (DATE 2012), pp. 983-987, 12-16
March 2012. doi:10.1109/DATE.2012.6176639. http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=6176639&isnumber=6176405 (2012)
in Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 983-987, 12—
16 (2012) doi: 10.1109/DATE.2012.6176639 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&
arnumber=6176639&isnumber=6176405

4. Combes, P., Caron, E., Desprez, F., Chopard, B., Zory, J.: Relaxing Synchronization in a
parallel systemC kernel. International Symposium on Parallel and Distributed Processing with
Applications (ISPA) (2008)

5. Cox, D.R.: RITSim: distributed systemC simulation. Master’s thesis, Rochester Institute of
Technology (2005)

6. Ezudheen, P., Chandran, P., Chandra, J., Simon, B., Ravi, D.: Parallelizing systemC kernel for
fast hardware simulation on SMP machines. In: 23rd Workshop on Principles of Advanced and
Distributed Simulation (PADS) (2009)

7. Fujimoto, R.M.: Parallel and distributed simulation. In: Proceedings of the Winter Simulation
Conference (1999)

8. Huang, K., Bacivarov, 1., Hugelshofer, F., Thiele, L.: Scalably distributed systemC simulation
for embedded applications. In: International Symposium on Industrial Embedded Systems
(SIES’08) (2008)

9. IEEE SystemC Language Reference Manual. IEEE Std 1666-2011 pp. 1-638 (2012)

10. Jones, S.: Optimistic parallelisation of systemC. Technical Report, University Joseph Fourier,
MoSiG DEMIPS (2011)

11. Meftali, S., Dziri, A., Charest, L., Marquet, P., Dekeyser, J.L.: SOAP based distributed
simulation environment for system-on-chip (SoC) design. In: Forum on Specification and
Design Languages (FDL) (2005)

12. Mello, A., Maia, 1., Greiner, A.; Pecheux, F.: “Parallel simulation of systemC TLM
2.0 compliant MPSoC on SMP workstations,” In: Design, Automation & Test in
Europe Conference & Exhibition (DATE 2010), pp. 606-609, 8-12 March 2010.
doi:10.1109/DATE.2010.5457136. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&
arnumber=5457136&isnumber=5456897 (2010)

13. Peeters, J., Ventroux, N., Sassolas, T., Lacassagne, L: “A systemc TLM framework for
distributed simulation of complex systems with unpredictable communication,” In: 2011
Conference on Design and Architectures for Signal and Image Processing (DASIP), pp. 1-
8, 24 November 2011. doi:10.1109/DASIP.2011.6136847. http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=6136847&isnumber=6136840 (2011)
in Design and Architectures for Signal and Image Processing (DASIP), 2011 Conference
on, pp. 1-8, 2-4 (2011) doi: 10.1109/DASIP.2011.6136847 http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=6136847&isnumber=6136840

14. Sauer, C., Loeb, H.P.: A lightweight infrastructure for the dynamic creation and configuration
of virtual platforms. In: 3rd Workshop on Virtual Prototyping of Parallel and Embedded
Systems (VIPES) along with Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS XV) (2015)

15. Schumacher, C., Leupers, R., Petras, D., Hoffmann, A: “parSC: synchronous parallel SystemC
simulation on multi-core host architectures,” In: 2010 IEEE/ACM/IFIP International Confer-
ence on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 241-246,

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6176639&isnumber=6176405
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6176639&isnumber=6176405
http://dx.doi.org/10.1109/DATE.2012.6176639
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6176639&isnumber=6176405
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6176639&isnumber=6176405
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5457136&isnumber=5456897
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5457136&isnumber=5456897
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6136847&isnumber=6136840
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6136847&isnumber=6136840
http://dx.doi.org/10.1109/DASIP.2011.6136847
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6136847&isnumber=6136840
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6136847&isnumber=6136840

8 Framework for Distributed, Loosely-Synchronized SystemC/TLM Simulations 153

24-29 October 2010. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5751508&
isnumber=5751486 (2010)

16. Trams, M.: Conservative distributed discrete event simulation with systemC using explicit
lookahead. Technical Report, www.digital-force.net (2004)

17. Weinstock, J.H., Schumacher, C., Leupers, R., Ascheid, G., Tosoratto, L: “Time-decoupled
parallel SystemC simulation,” In: Design, Automation and Test in Europe Conference and
Exhibition (DATE 2014), pp. 1-4, 24-28 March 2014. doi:10.7873/DATE.2014.204. http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6800405&isnumber=6800201 (2014)

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5751508&isnumber=5751486
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5751508&isnumber=5751486
www.digital-force.net
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6800405&isnumber=6800201
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6800405&isnumber=6800201

	8 A Framework for Distributed, Loosely-Synchronized Simulation of Complex SystemC/TLM Models
	8.1 Introduction
	8.2 SystemC and TLM
	8.3 CoMix Fundamentals
	8.4 CoMix Framework
	8.4.1 CoMix Peer
	8.4.2 Connectors
	8.4.3 CoMix Multisocket
	8.4.4 Framework Characteristics

	8.5 Case Study and Results
	8.5.1 Setup and Measurements
	8.5.2 Achievable Speedup
	8.5.3 Synchronization Interval
	8.5.4 Temporal Error
	8.5.5 Packet Processing Platform

	8.6 Related Work
	8.7 Conclusion
	References

