
Chapter 7
Synthesizing Code for GPGPUs from Abstract
Formal Models

Gabriel Hjort Blindell, Christian Menne, and Ingo Sander

Abstract Today multiple frameworks exist for elevating the task of writing
programs for GPGPUs, which are massively data-parallel execution platforms.
These are needed as writing correct and high-performing applications for GPGPUs
is notoriously difficult due to the intricacies of the underlying architecture. However,
the existing frameworks lack a formal foundation that makes them difficult to use
together with formal verification, testing, and design space exploration. We present
in this chapter a novel software synthesis tool—called f2cc—which is capable
of generating efficient GPGPU code from abstract formal models based on the
synchronous model of computation. These models can be built using high-level
modeling methodologies that hide low-level architecture details from the developer.
The correctness of the tool has been experimentally validated on models derived
from two applications. The experiments also demonstrate that the synthesized
GPGPU code yielded a 28� speedup when executed on a graphics card with 96
cores and compared against a sequential version that uses only the CPU.

7.1 Introduction

We are experiencing a seemingly never-ending improvement in computational
processing capacity. The past decades have yielded faster, denser, and more complex
chips, and the processing units are increasingly being composed into multi-core
platforms which require complicated communication and scheduling schemes. This
results in an incredible challenge that system developers need to face in managing
the growing complexity of systems. To make matters worse, low-level implemen-
tation details must be considered in order to produce, not only correct, but also
efficient systems. This problem is especially notorious for general purpose graphics
processing units (GPGPUs). GPGPUs are massively parallel execution platforms
that have emerged from the graphics card technology whose processing capacity
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have grown to such an extent that they can be considered affordable small-scale
supercomputers. But the underlying architecture exhibits many intricacies, making
it difficult to exploit. For instance, in order to reach maximum performance it is
paramount that the GPGPUs’s registers, on-chip memories, and caches are used
efficiently, but optimizing the usage of one resource often has a negative impact on
another. Moreover, the convoluted addressing schemes required for distributing data
across the threads are mechanical, tedious, and error-prone to manage manually.
Hence, to manually write applications that are both correct and efficient when
executed on a GPGPU is an extremely challenging and error-prone task.

Although there exist several frameworks for elevating the task of GPGPU
programming, they are all based on programming methodologies that hinder the
use of automated tools for tasks such as verification, testing, and design space
exploration. To mitigate these issues we present in this chapter a novel software
synthesis tool—called f2cc1—that generates GPGPU code from applications which
are represented as abstract formal models. These models have a solid formal
foundation based on the theory of models of computation [15] and are devoid of
low-level details regarding implementation and target architecture, which raises the
level of abstraction for the system developer and enables the use of formal system
design tools. In this case we use ForSyDe for modeling the applications. Hence
f2cc promotes an application design flow that is “correct by construction” [8] by
allowing the system developer to focus on what the system is meant to do rather than
how, which lowers the development cost. Most importantly, f2cc enables system
developers to take advantage of GPGPUs without needing to have extensive and
in-depth knowledge about the underlying architecture.

The chapter makes the following contributions:

• We present a novel software synthesis tool (f2cc) that is capable of generating
GPGPU code from abstract formal models based on the synchronous model
of computation. Using a formal framework for application design enables the
potential to perform verification, testing, and design space exploration in an
automated fashion. Other advantages of the tool include:

– Modeling framework independence. f2cc provides a flexible XMLCC input
format and frontend support which can be extended to support models created
using different formal modeling methodologies.

– Adaptive and stand-alone code. The GPGPU code produced by f2cc adapts
itself to the properties of the graphics card at runtime, and does not depend on
any proprietary libraries in order to be compiled or executed.

– Flexible data type support. f2cc allows the developer to use custom-made
structs as data types in the models, thus facilitating the application design.

1Source code is available at http://forsyde.ict.kth.se/trac/wiki/ForSyDe/f2cc.

http://forsyde.ict.kth.se/trac/wiki/ForSyDe/f2cc
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• We describe the methods and algorithms devised for f2cc, including an O.n/
algorithm for finding a process schedule for synchronous models containing
feedback loops.

• We present experiments that demonstrate the correctness and efficiency of f2cc
for GPGPU code synthesized for a Mandelbrot generator and an industrial-scale
image processor. Compared against the performance of a hand-written CPU
version, the GPGPU code generated by f2cc yielded a speedup of 28� when
executed on a graphics card equipped with 96 cores.

The rest of the chapter is organized as follows. Section 7.2 briefly describes
the GPGPU platform and introduces ForSyDe, the formal modeling methodology
currently supported by f2cc. Section 7.3 explains the software synthesis process,
the techniques and methods applied, and its current limitations. Section 7.4 gives the
results from the experiments that were performed to validate the tool. Section 7.5
covers related work and discusses existing frameworks which elevate the task of
GPGPU programming. Lastly, Sect. 7.6 concludes the chapter and Sect. 7.7 lists
future work.

7.2 Background

7.2.1 GPGPUs

GPGPUs are enhanced versions of GPUs [9, 18], which are processing units
specifically designed for rendering image frames. As image rendering is generally
a parallel process where pixels can be generated independent from one another, the
GPU quickly evolved into a massively data-parallel platform. Recognizing this vast
computational resource, program developers urged the manufacturers to augment
the GPU with functionality that would allow execution of applications written in
general-purpose programming languages such as C. When adapted to GPGPUs
applications have often yielded a significant performance increase, at times reaching
orders of magnitudes in speedup [10].

A well-known family of GPGPUs is CUDA [9, 14, 17, 18], which is developed
by NVIDIA. The CUDA platform, as illustrated in Fig. 7.1, consists of clusters
of streaming multiprocessors (SMs) which are connected to a dedicated DRAM
commonly referred to as the global memory. Each SM contains 8 streaming
processors (SPs) or CUDA cores which share the same fetch/dispatch unit, register
file, and instruction cache. The SM also consists of a set of various on-chip
memories: a shared memory, sometimes denoted as scratchpad memory, which is an
application-controlled cache; a constant cache, which retains constant values; and a
texture memory, which is used to cache neighboring cells in a 2D data matrix. With
the DRAM bandwidth usually being the main performance bottleneck, these caches
are used to reduce the amount of traffic to and from the global memory.
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Fig. 7.1 Overview of the NVIDIA CUDA platform [17, 18]

After having copied the input data to the global memory, the GPGPU is accessed
through a kernel invocation which spawns a set of threads to be executed on the
GPGPU. These threads are bundled into thread blocks, which in turn are allocated
onto the SMs. A small set of threads is then randomly selected from each thread
block for execution on the SPs. Thread-context switches are made with virtually
zero overhead, and provided that there is an abundance of threads the GPGPU can
hide long latency operations through continuous thread switching. This makes the
GPGPU a throughput-oriented architecture [9]. All thread blocks allocated to an SM
share the same register file and other resources such as caches. This means that if
a thread block uses too much of any resource, the maximum number of residential
thread blocks per SM will be reduced. Fewer thread blocks means fewer threads
to swap in and out to hide long latency operations, which in turn decreases the
performance. Since the caches are very limited—the sizes are in the order of tens of
kilobytes—meticulous care must be taken to not claim too much of any cache per
thread block, and make optimal use of the allotted slice. Hence the main challenges
of exploiting GPGPUs are as follows:

• Adapting the application to fit the data-parallel execution platform. Even
algorithms that are inherently parallel may need to be redesigned in order to
avoid performance-hampering issues such as thread divergence [14], which may
occur when the code contains branch instructions.

• Determining how to layout the input data and thread configuration. The data
needs to be packaged in such a way that it can be accessed from a thread using
its thread and thread block IDs. Thus, there should be a correlation between the
data layout and the thread configuration.

• Determining which GPGPU resources to use, and how, in order to achieve
optimal performance. The GPGPU contains several resources such as caches
and on-chip memories that can greatly boost performance. However, it is not
always clear how each can be used for a particular application, often forcing new
algorithms to be considered.
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• Determining whether utilizing the GPGPU is beneficial. Even if all performance-
inhibiting problems related to the GPGPU itself are dealt with, it is still possible
that the code runs slower on the GPGPU than on the CPU. For example, the CPU
may be relatively more powerful than the GPGPU, or there may not be enough
computational complexity in the kernel to sufficiently amortize the GPGPU
overhead of moving data between the main RAM and the GPGPU RAM.

7.2.2 ForSyDe

ForSyDe (Formal System Design) [1, 19] is a formal design methodology for
embedded systems. It consists of a set of libraries, currently available in Haskell
and SystemC, that enable modeling of systems at a high level of abstraction where
the functionality of a system is detached from its implementation. The libraries
support several models of computation (MoCs), but in the context of this chapter
only the synchronous MoC is considered. The synchronous MoC is based on the
perfect synchrony hypothesis [3], which assumes that data propagation and process
execution take zero time (i.e., processes produce their output values immediately as
their inputs arrive). This assumption leads to a simple and elegant mathematical
model that fits nicely with a large class of data flow applications and with the
underlying mechanisms of the GPGPU platform. The synchronous MoC is also base
for the family of synchronous languages like Esterel [4] and Lustre [11], for which
mathematical methods exist for performing verification and testing. Another similar
modeling framework is StreamIt [21], where program hierarchy is modeled using
predefined structures.

Systems are modeled in ForSyDe as hierarchical concurrent process networks,
where processes communicate by means of signals (see Fig. 7.2). Processes are
created using predefined process constructors that take side effect-free functions
and values as arguments. This concept of process constructors leads to a clean
separation between communication and computation: communication and model of
computation is expressed by the process constructor; and computation is specified
by the arguments of the process constructor. For example, Fig. 7.3a shows mooreSY,
a process constructor to create a Moore finite state machine process belonging
to the synchronous MoC. As arguments, mooreSY takes two functions ns and
o and a value s: the function ns specifies the calculation of the next state; the
function o specifies the calculation of the output value; and the value s specifies
the initial state. ForSyDe process constructors can be divided into three categories
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P1 P5i o

s1

s2

s3
s4

s5

Fig. 7.2 Example of a ForSyDe model
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Fig. 7.3 A ForSyDe process constructor takes functions and values as arguments to form a
process of a particular model of computation. Process constructors can be grouped into three
different categories: sequential (mooreSY), combinational (mapSY), and delay process constructors
(delaySY)

as illustrated in Fig. 7.3: sequential (mooreSY), combinational (mapSY), and delay
process constructors (delaySY). These categories exist in all models of computation.

This separation of concerns is exploited when writing the ForSyDe models to text
files. Using GraphML—the input format of f2cc (see Sect. 7.3.1)—the hierarchical
structure of the process network is expressed in XML, and the computation is
given as C code. Hence, the description of the structure is separated from the
description of the computation. We want to point out that other formalisms that
support the synchronous MoC, and provide a similar separation of communication
and computation as ForSyDe, can be used in conjunction with f2cc as described in
Sect. 7.3.1.

7.3 Synthesis Process

To synthesize ForSyDe process networks into a target implementation, an imple-
mentation technique obeying the ForSyDe semantics is required for (1) each process
constructor, (2) the arguments of each process constructors, (3) the process network.
However, this alone is in general not sufficient to yield an efficient implementation.
Thus f2cc also identifies optimizations that can be applied to the model.

f2cc operates by first parsing an input file containing the model and converted
into an internal model representation. Then a series of semantically preserving
optimizations are applied, and lastly the model is synthesized into code. This process
is also illustrated in Fig. 7.4. We will begin by discussing the input format, and then
proceed with examining the internals of f2cc (more details are available in [13]).
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Fig. 7.4 Overview of the synthesis process
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Fig. 7.5 Illustration of the model declared in Listing 7.1

7.3.1 Input Format

Once a model has been designed, it is passed to f2cc in the form of a GraphML file.
Similar output can be generated from ForSyDe-SystemC using introspection [1],
and converting it to GraphML is trivial. GraphML [5] is a standardized format-
based XML in which graphs can be represented in a formal manner, and allows
the process functions to be provided as data annotated to the nodes. The process
functions are defined as side effect-free C functions, meaning they must not
depend on any external state such as global variables or dynamically allocated
memory. An example of such an GraphML file is available in Listing 7.1, whose
model is illustrated in Fig. 7.5. Note that the input file contains no GPGPU-related
information, thereby completely hiding any implementation-specific details about
the target platform from the developer. Moreover, the input format does not require
data types to be specified for signals and processes which do not have a C function
as argument. Instead, the data types for these will be automatically inferred by
f2cc during synthesis (see Sect. 7.3.4). This makes for a very versatile format that
allows models to be created using any formal modeling framework, provided the
models can be converted into the expected input format and hold the same semantic
meaning. Since the format is human-readable the input files can even be written by
hand. If desired, f2cc can also be extended with additional frontends to support for
another input format.
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<?xml version="1.0" encoding="UTF-8"?>
<graphml>
<graph id="test" edgedefault="directed">
<node id="in">
<data key="process_type">InPort</data>
<port name="out" />

</node>
<node id="out">
<data key="process_type">OutPort</data>
<port name="in" />

</node>

<!-- Processes -->
<node id="inc">
<data key="process_type">ParallelMapSY</data>
<data key="procfun_arg">
<![CDATA[
int func(const int arg) {

return arg+1;
}
]]>

</data>
<data key="num_processes">3</data>
<port name="in" />
<port name="out" />

</node>

<!-- Signals -->
<edge source="in" sourceport="out"

target="inc" targetport="in" />
<edge source="inc" sourceport="out"

target="out" targetport="in" />
</graph>

</graphml>

Listing 7.1 Example of an input file to f2cc

7.3.2 Model Optimizations

In order to take advantage of the parallel nature of GPGPUs, the model needs to
exhibit a certain level of data parallelism which can either be declared implicitly
or explicitly. Implicit data parallelism is declared through a network of processes,
known as a data-parallel component, while explicit data parallelism is declared via
a single processes that semantically entail the functionality of entire data-parallel
components.

There are many patterns of data parallelism. One such pattern is a data-parallel
component that accepts an input array, applies one or more functions on every
element or non-overlapping range of elements, and produces an array as output
(see Fig. 7.6a). While simple, it is an important and powerful pattern that allows
modeling of many embarrassingly parallel problems. We call this the split-map-
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Fig. 7.6 The split-map-merge pattern. (a) Implicit declaration; (b) Explicit declaration

merge pattern: first, the array is split into multiple data sets, then one or more
functions are mapped onto each data set, and lastly the results are merged. We
have devised a special process constructor called parallelMapSY (see Fig. 7.6b)
for explicit declaration of this pattern (which is equivalent to StreamIt’s splitjoin
construct), and support for exploiting it for efficient execution on GPGPUs is already
available in f2cc. Our tool is also capable of combining chains of map processes into
a single map process in order to reduce the amount of function calls, which we refer
to as process coalescing.

Since discovering explicitly declared data parallelism is trivial (the data-parallel
component is contained in a single process), the challenge lies in detecting implicitly
declared data parallelism where a cluster of processes needs to be combined into
a data-parallel component. For the split-map-merge pattern, this is done using an
O.n2/ depth-first algorithm which searches for pairs of split and merge processes.
For a given pair, it then checks whether the data flow is contained between
the two processes, and whether the intermediate processes between the split and
merge processes consist of chains of map processes only. Once identified, the
implicitly declared data-parallel components are replaced by single processes of
the type which corresponds to the explicit declaration of the patterns (e.g., a data-
parallel component arranged as the split-map-merge pattern will be replaced by
a parallelMapSY process). This simplifies the later process schedule and code
generation stages as each such process will constitute a complete and separate
GPGPU kernel. It is possible to add support for exploitation of explicitly declared
patterns of data parallelism while leaving out discovery of implicit declarations. In
such instances, models containing implicit declarations will still be synthesized,
however, the data-parallel component will be executed sequentially on the CPU
instead of in parallel on the GPGPU.

7.3.3 Process Schedule Generation

As order of execution has an impact on the final output, a process schedule must
adhere to the effects of the perfect synchrony hypothesis (i.e., that process execution
and data propagation between processes take zero time). Finding such a schedule for
sequential models is straight-forward—one just needs to traverse the model along
its signals—but diverging data flows and feedback loops complicates this task.
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function FINDSCHEDULE(M) returns schedule for model M
schedule empty list; queue empty queue
visitedG empty set
for each output signal S of M do

add process of S to head of queue
while queue is not empty do

visitedL empty set
P head of queue; remove head from queue
{p_schedule, ip} FINDPARTIALSCHEDULE(P, visitedG,

visitedL, queue)
if ipD “at beginning’’ then

insert p_schedule before head in schedule
else

insert p_schedule after process ip in schedule
add visitedL to visitedG

return schedule

function FINDPARTIALSCHEDULE(P, visitedG, visitedL, queue)
if P 2 visitedG then

return {empty list, P}
if P is a delay element then

add preceding process of P to end of queue
return {P, “at beginning’’}

schedule empty list
ip “at beginning’’
if P 62 visitedL then

add P to visitedL

for each preceding process O of P do
{p_schedule, new_ip} FINDPARTIALSCHEDULE(O,

visitedG, visitedL, queue)
append p_schedule to schedule
if new_ip¤ “at beginning’’ then

ip new_ip
append P to schedule

return {schedule, ip}

Listing 7.2 Process scheduling algorithm

Listing 7.2 shows the algorithm which was devised for f2cc. It is based on a
recursive depth-first search approach: starting from the model outputs, each process
Pis visited by traversing the model in the reverse data flow direction until no further
traversing is possible (if the traversal was done in the forward data flow direction,
then no schedule would be generated for models with no inputs). Partial schedules
are then built and concatenated until the entire model has been traversed, and a set
of visited processes is maintained in order to avoid redundant search and provide
termination when feedback loops (i.e., cyclic data flow) is encountered. However,
the synchronous MoC does not allow feedback loops without using a kind of delay
element, and the placement of the this element within the loop affects the final
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schedule (as illustrated in Fig. 7.7). In this context, a delay element is a process
that for an input sequence hv1; : : : ; vni shifts the sequence in time by inserting
an initial delay value s, thus producing hs; v1; : : : ; vni (in ForSyDe this element
is implemented using the delaySY process constructor). Our scheduling algorithm
handles these situations by effectively acting as if the inbound edges to the delaySY
processes had been removed. Using data structures that can be accessed in constant
time, the algorithm finishes in O.n/ time.

7.3.4 Signal Data Type Inference

Signals are the vessels in the model through which data is propagated from
one process to another. It is therefore appropriate to retain the notion of signals
by implementing them as data containers in the synthesized code, typically as
either global or local C variables. However, the data types of the signals are not
immediately available from the formal model as they are only explicitly specified
as part of the C functions, which only appear in the map processes. Hence the
signals connected to other processes such as delay, split, and merge, the data types
have to be automatically inferred. In f2cc this is done using an algorithm that
recursively traverses the model until signal connected to a map process is found.
This information is then propagated backwards to the original signal, and hence the
data types ripple from signal-to-signal across the model as shown in Fig. 7.8. By
caching the data type found for each signal, the algorithm takes O.n/ time to find
the data types of all signals in a model. Failing to infer the data type for a signal
indicates that the model is invalid, which is also reported by f2cc.

7.3.5 GPGPU Code Generation

In Listing 7.3 we provide the CUDA code generated by f2cc using the GraphML file
given in Listing 7.1 as input. For each data-parallel component, which at this stage
will have been converted into a single-process equivalents, f2cc will generate a set of
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__device__ int finc_func1(const int arg) {
return arg+1;

}

__global__ void finc_kernel(const int* in, int* out, int offset) {
unsigned int gi = (blockIdx.x * blockDim.x + threadIdx.x) + offset;
extern __shared__ int in_cached[];
if (gi < 3) { // Prevents out-of-bound threads from executing

int in_i = threadIdx.x * 1; int global_in_i = gi * 1;
in_cached[in_i + 0] = in[global_in_i + 0];
out[gi] = finc_func1(&in_cached[in_i]);

}
}

void finc_kernel_wrapper(const int* in, int* out) {
int* d_in; int* d_out; struct cudaDeviceProp prop;

// Get GPGPU device information
cudaGetDeviceProperties(&prop, 0);
int max_t_per_b = prop.maxThreadsPerBlock;
int smem_per_sm = (int) prop.sharedMemPerBlock;
int full_utc = max_t_per_b * prop.multiProcessorCount;

// Prepare device and transfer input data
cudaMalloc((void**) &d_in, 3 * sizeof(int));
cudaMalloc((void**) &d_out, 3 * sizeof(int));
cudaMemcpy((void*) d_in, (void*) in, 3 * sizeof(int),

cudaMemcpyHostToDevice);

// Execute kernel
struct KernelConfig c;
if (prop.kernelExecTimeoutEnabled) {

int num_t_left = 3; int offset = 0;
while (num_t_left > 0) {

int num_t_exec = num_t_left < full_utc ? num_t_left : full_utc;
c = calculateBestKernelConfig(num_t_exec, max_t_per_b, 1 * sizeof(int),

smem_per_sm);
finc_kernel<<<c.grid, c.threadBlock, c.sharedMemory>>>(d_in, d_out,

offset);
int num_executed_threads = c.grid.x * c.threadBlock.x;
num_t_left -= num_executed_threads;
offset += num_executed_threads;

}
}
else {

c = calculateBestKernelConfig(3, max_t_per_b, 1 * sizeof(int),
smem_per_sm);

finc_kernel<<<c.grid, c.threadBlock, c.sharedMemory>>>(d_in, d_out, 0);
}

// Transfer result back to host and clean up
cudaMemcpy((void*) out, (void*) d_out, 3 * sizeof(int),

cudaMemcpyDeviceToHost);
cudaFree((void*) d_in);
cudaFree((void*) d_out);

}

void executeModel(const int* in1, int* out1) {
// Declare and alias signal array variables with model input/output arrays
const int* vmodel_in_to_inc_in = in1;
int* vinc_out_to_model_out = out1;

// Execute processes
finc_kernel_wrapper(vmodel_in_to_inc_in, vinc_out_to_model_out);

}

Listing 7.3 CUDA code generated for the input file given in Listing 7.1. Note that the code has
been manually edited and shortened in order to fit this chapter
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wrapper functions (see Fig. 7.9). The C function that implements the computational
part of the data-parallel component—we will from now on call this the data
function—is wrapped by a kernel function. The kernel function is responsible for
providing the input data based on the thread block and thread IDs, managing the
shared memory, and preventing out-of-bound threads from executing. In the case of
the split-map-merge pattern, utilizing shared memory is done by first copying all
the data required by the data function from global memory to the shared memory,
and then passing the appropriate pointer to the data function. The kernel function is
then wrapped inside an invoker function, which manages memory transfers between
the CPU and GPGPU and sets up the thread configuration. The thread configuration
is decided at runtime such that the size of the thread blocks is the maximum size
supported by the graphics card (since the number of concurrent thread blocks per
SM is limited to 8 at a time, it is necessary to use as large thread blocks as possible
in order to achieve optimal performance). However, if the generated code makes use
of shared memory then the threads may require more shared memory than available,
which reduces the number of thread blocks per SM and thus inhibits performance.
To prevent this an algorithm is employed which incrementally decreases the thread
block size and calculates the amount of unused shared memory for that size. This
continues until either the amount reaches zero, or until the number of thread blocks
per SM becomes greater than 8 (upon which the configuration with the least waste
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is selected). Some GPGPU execution environments may also enforce a maximum
execution time for each kernel invocation, and f2cc embeds additional code for
handling such situations when generating the invoker function.

7.3.6 Process Execution and Data Propagation

Executing the processes is straight-forward: the code simply needs to invoke the
processes’ C functions (if the process is of such type) with the appropriate parame-
ters according to the generated process schedule. Data propagation is then done via
a set of C variables—one for each signal—which are passed as parameters to the
C functions. Part of the future work will be to identify and remove redundant signal
variables, which will reduce the number of signal-to-signal copying operations and
thus increase performance. Delay element values are stored in static C variables
as these need to be retained between model invocations. For signals consisting of
multiple values, the tool builds the necessary arrays and manages the addressing
such that each process gets the correct input value.

7.3.7 Limitations

So far we have focused on supporting discovery and exploitation of the split-map-
merge pattern. Hence f2cc does not yet provide full support for all process types that
are available in ForSyDe, but the process type support as well as the recognition and
exploitation of additional patterns of data parallelism can be extended by defining
new process types, adding recognition of the new process types in the frontends,
and extending the backend to synthesize the appropriate C or GPGPU code for each
process type.

The synthesized GPGPU code also does not make full use of all available CUDA
resources. Currently only the shared memory is considered, but this is simply
because the potential resource usage is dependent on the pattern of data parallelism
being exploited. In the case of the split-map-merge pattern, there is little or no gain
in using the shared memory, or any other resource for that matter. Hence, these
resources can be put to better use when additional patterns are available.

Another significant drawback is that no cost analysis is currently performed of
whether it is actually beneficial to offload parallel computations onto the GPGPU.
This means that, depending on the performance of the GPGPU and CPU, the
generated CUDA code may run slower than if had been executed sequentially on
the CPU.



7 Synthesizing Code for GPGPUs from Abstract Formal Models 129

Problem
size

(pixels)

Execution time (s)

Pure C impl. C + GPGPU impl.

HW Syn. PC PC & SM

10,000 1.33 1.33 0.10 0.10
40,000 5.30 5.30 0.24 0.24
90,000 11.92 11.91 0.47 0.47

160,000 21.19 21.19 0.80 0.80
250,000 33.09 33.10 1.21 1.22
360,000 47.66 47.66 1.72 1.73
490,000 64.87 64.86 2.33 2.34
640,000 84.72 84.72 3.03 3.04
810,000 107.23 107.21 3.82 3.84

1,000,000 132.39 132.42 4.71 4.73

Maximum measured standard deviation: 2.53%
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Problem
size

(pixel
domains)

Execution time (s)

Pure C impl. C + GPGPU impl.

HW Syn. Basic PC PC & SM

1,000,000 0.38 0.40 0.10 0.08 0.09
2,000,000 0.77 0.81 0.15 0.11 0.13
3,000,000 1.15 1.21 0.21 0.14 0.17
4,000,000 1.53 1.62 0.26 0.17 0.21
5,000,000 1.92 2.02 0.31 0.21 0.25
6,000,000 2.30 2.42 0.36 0.24 0.29
7,000,000 2.68 2.82 0.41 0.27 0.33
8,000,000 3.06 3.22 0.47 0.30 0.37
9,000,000 3.45 3.62 0.52 0.34 0.41

10,000,000 3.83 4.03 0.57 0.37 0.45

Maximum measured standard deviation: 0.86%
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Fig. 7.10 Experimental data. HW stands for hand-written, and “Syn.” refers to the code generated
by f2cc, where PC and SM indicates whether process coalescing or shared memory on the GPGPU
was used, respectively. (a) Test results from the Mandelbrot model; (b) Test results from the image
processing model

7.4 Experiments

To validate the correctness and efficiency of f2cc, the tool was applied on models
derived from two applications: a Mandelbrot generator, and an industrial-scale
image processor. For each model, a pure C implementation of the final code and
multiple implementations where the data-parallel components are executed on the
GPGPU were generated and evaluated (see Fig. 7.10). The output and performance
of the synthesized C code was compared with a hand-written C version which was
executed by a single thread on the CPU. The C code and GPGPU code was compiled
using g++ v.4.6.1 and nvcc release 3.2 v0.2.1221, respectively, with all optimizations
disabled. The test cases were executed on an Intel Core i7-2600 at 3.40 GHz, 16 GB
DDR3 RAM at 1333 MHz, and an NVIDIA Quadro 600 with 96 CUDA cores, 1 GB
DDR3 RAM. Each test case was run 10 times and then an arithmetic mean average
was calculated from the results.
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7.4.1 Mandelbrot Tests

Generating Mandelbrot images is a task exhibiting an abundance of data parallelism.
Each pixel coordinate is converted into a corresponding coordinate within a
rectangular coordinate window in the complex plane. From the complex coordinate
an integer value is computed which determines to whether the coordinate is part of
the Mandelbrot set. In these tests, the window was bounded by .� 1

4
;� 1

4
/ and . 1

4
; 1
4
/.

Its model consists of a single data-parallel component, and when expressed using
parallelMapSY the model shrinks to a single process. The performance results of the
synthesized C and GPGPU code are given in Fig. 7.10a. We see that the synthesized
C code performs equally with the hand-written C version, and the synthesized
C + GPGPU code performs 28� better. The relatively low speedup for small input
data sizes is due to the restricted amount of computations which can be offloaded
to the GPGPU. As the input data size increases, so does the extent to which the
GPGPU overhead can be amortized. Since there is very little input data reuse and no
data sharing, using shared memory has no impact on the performance. The output of
the synthesized C code was exactly equal to that of the hand-written version, but for
the GPGPU code the integer values were slightly different for some coordinates. We
believe this discrepancy to be caused by the floating point units whose architecture
differ between the GPGPU and CPU.

7.4.2 Image Processing Tests

The second model was derived from an existing industrial-scale image processor
application provided by XaarJet AB, a company specializing in piezoelectric drop-
on-demand ink-jet printing. At its core, the model consists of a single data-parallel
component composed of 3 data-parallel segments. Using the parallelMapSY process
constructor and process coalescing, this model also shrinks to a single process. The
details of the C functions will not be covered as not to disclose any industry secrets.
The performance results are given in Fig. 7.10b. Again, the synthesized C code is
on par with the hand-written version, and the synthesized C + GPGPU code is 10�
faster. This relatively low speedup is due to lack of computational complexity in
the model, and the continued slope indicates that greater speedup is achievable
with even larger problem sizes. Furthermore, as the input data size per thread is
much greater than in the Mandelbrot model, the performance of the synthesized
GPGPU code is reduced when the shared memory is used since doing so will limit
the number of thread blocks that can simultaneously reside in an SM, which in turn
lowers performance. Like with the Mandelbrot tests, the synthesized code produces
slightly different output when executed on the GPGPU compared to the CPU. Since
floating point operations are involved, we again believe the differing architectures
of FPUs between the CPU and GPGPU to be the cause.



7 Synthesizing Code for GPGPUs from Abstract Formal Models 131

7.5 Related Work

Existing GPGPU programming frameworks can generally be divided into three
categories: declarative-based frameworks, where code to execute on the GPGPU is
marked by annotations; library-based frameworks, where the core is implemented as
programming libraries; or domain-specific languages (DSLs), where the framework
is embedded into an existing programming language.

Declarative-based frameworks include hiCUDA [12] and OpenMP-to-GPGPU
[16]. In hiCUDA parallelizable C code is annotated with pragma directives which
control dynamic memory allocation, thread configuration, work distribution per
thread over loops, and more. The hiCUDA compiler then processes the code
to generate GPGPU kernels based on the annotations. The framework therefore
relieves the developer from having to produce the data addressing schemes, handle
the CPU-GPGPU data transfers, and manage the shared memory. Consequently,
hiCUDA relies on the developer to identify and tweak the code for execution on
the GPGPU. In OpenMP-to-GPGPU the existing OpenMP pragma notations are
used to identify parallelizable code, but these miss the information about thread
blocks and shared memory. In both cases, the frameworks completely lack a formal
foundation and are thus unsuitable for automated verification and testing.

Library-based frameworks include Thrust [2] and SkePU [7], which are both
implemented in CCC and provide a set of skeletons (a skeleton is akin to the notion
of process constructors used in ForSyDe, see Sect. 7.2.2). The developer provides
the computation part to the skeletons, and the skeletons then decide the appropriate
thread configuration, memory management, and other execution-related details.
Unlike Thrust, SkePU is also capable of generating code for multi-core CPUs,
OpenCL, and single-threaded C code. But although the use of skeletons provides
a more formal base than pragmas, they are not based on a well-defined model of
computation, and can therefore not be analyzed using existing mathematical tools.
Moreover, the skeletons do not extend into the rest of the application.

Two GPGPU-oriented DSLs, both embedded in Haskell (a purely functional
programming language), include Accelerate [6] and Obsidian [20]. Accelerate also
uses the notion of skeletons by providing a collection of arrays and array operations
that can be offloaded on a GPGPU. In order to compile into an application that
can be executed on a GPGPU, Accelerate comes with a Haskell-to-CUDA compiler
which translates Accelerate-based Haskell programs into CUDA-annotated C code.
Obsidian is similar to Accelerate but instead provides a collection of combinators
that allow array functions to be converted into GPGPU kernels. Through the
combinators, the developer gains access to use of the shared memory and insertion
of synchronization barriers, but this requires the developer to know when and how
to use the combinators in order to match the underlying architecture of the GPGPU.
Moreover, neither is based on a well-defined MoC, which again inhibits automated
verification and testing.
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7.6 Conclusion

In this chapter we have presented f2cc, a software synthesis tool which is capable
of synthesizing abstract formal models based on the synchronous model of com-
putation into GPGPU code. Unlike existing frameworks which elevate the task of
GPGPU programming, f2cc operates on abstract formal models which enables the
potential to apply automated tools on the applications for verification, testing, and
design space exploration. Through experimental validation, we have shown that the
tool produces correct and high-performing GPGPU code from its input models.

7.7 Future Work

Future work will primarily focus on integrating the results of Attarzadeh Niaki [1]
to achieve a completely automated flow from ForSyDe-SystemC to GPGPU code.
Another consideration is more efficient signal handling methods to eliminate redun-
dant memory transfers between execution of separate data-parallel components.

In addition, the number of recognizable and exploitable patterns of data par-
allelism that can be executed on the GPGPU will be expanded. For example, a
common pattern is reduction data parallelism, which is illustrated in Fig. 7.11.
Generating efficient implementations of reduction patterns is more difficult com-
pared to split-map-merge patterns because it requires more efficient use of the
shared memory. Moreover, a naïve implementation will also lead to so-called thread
divergence which hampers performance when executed on the GPGPU. Another
pattern of data parallelism is a variant of the split-map-merge pattern where parts
of the input data is used by multiple processes. A common instance is where the
input data is formed as a 2-dimensional array which is then divided into slices
that partially overlap one another (see Fig. 7.12). Efficient implementations of such
patterns often require use of additional resources such as constant cache and texture
memory.

Lastly, we also want to extend f2cc to make better judgement of when it is
beneficial to use the GPGPU. Initial work has been done by Ungureanu [22] to

Fig. 7.11 Reduction data
parallelism
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Fig. 7.12 A 2-dimensional
input data set, where each
slice A1 through A9 consists
of 4� 4 elements and
partially overlaps with its
neighboring slices

A1 A2 A3

A4 A5 A6

A7 A8 A9

include the relative costs of executing a particular process on a specific target
platform, but it is still at an experimental stage where the costs are computed and
annotated by hand.
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