
Chapter 6
Exploiting Electronic Design Automation
for Checking Legal Regulations: A Vision

Oliver Keszocze and Robert Wille

Abstract Legal regulations are large and complex documents that require experts
such as lawyers to be understood. Working with these documents is a manual and
time- consuming task. Common use cases are to decide whether a submission is
conform with the regulations or to check whether certain corner cases are possible
in the given set of rules. We envision to address many of these problems by treating
legal regulations in the same manner as system specifications. This allows to apply
sophisticated formal methods from Electronic Design Automation (EDA). For this,
we briefly discuss the process of (semi)-automatically formalizing legal regulations.
Afterwards, we illustrate the correspondence of various problems in the considered
domain (here: regulations on scales and fees for medical doctors) with well-known
EDA problems. We sketch the application of formal methods by means of examples
and envision that in the future, the exploitation of formal methods to analyse legal
regulations will greatly help lawmakers and “end users” alike.

6.1 Introduction

In Electronic Design Automation (EDA), circuits and systems are realised based
on an initially given specification. During the design process, this specification
is implemented using proper hardware or system description languages such as
SystemC [10], System Verilog [11], or VHDL [9]. Due to the strive for higher levels
of abstraction, the application of modelling languages such as the Unified Modeling
Language (UML, [15]) or the Systems Modeling Language (SysML, [19]) found
recent interest in the design of circuits and systems.
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All these developments have in common that they transform a specification,
which is usually provided in a natural language, into a formal representation. At the
same time, the resulting formal descriptions are subject to various correctness
checks for which a variety of (automatic) EDA methods have been proposed in
the past. More precisely, very powerful methods are in practical use today which
check, e.g. the equivalence of two realizations (see, e.g., [2]), prove whether certain
transitions in a system are possible (see, e.g., [1]), or generate test patterns that
identify faults in the physical realization (see, e.g., [7]). These EDA methods
became an integral part of today’s design flow and emerged to powerful tools which
can handle designs of considerable complexity.

At the same time, these methods also provide significant potential to application
areas beyond EDA. In this chapter, we investigate such an application area, namely
the consideration of legal regulations.

Legal regulations can be understood in a similar fashion as a specification for
a technical system. The only difference is that legal regulations describe rules and
requirements of a certain aspect of the daily life instead of something technical
such as a circuit or system. But this difference is just of superficial relevance for
the applied EDA methods. In fact, also legal regulations are initially provided in
natural language which can be formalized (first ideas have been already proposed,
see, e.g., [12, 17]). Based on this formal representation, checks for “correctness”,
e.g. plausibility, uniqueness, the existence of desired scenarios, and many more can
be conducted.

In this chapter, we envision and discuss possible exploitations of existing EDA
methods in order to check legal regulations. For this purpose, we briefly review
a selection of EDA methods and sketch available approaches aiming for the
formalization of legal regulations. Based on that, we discuss and illustrate how
the EDA methods available for the design of circuits and systems together with
a formal representation of legal regulations can be exploited. All considerations are
conducted using the German Regulations on Scales of Fees for Medical Doctors
(German: Gebührenordnung für Ärzte [8]) as an example.

The remainder of this chapter is organized as follows. In Sect. 6.2, we briefly
review EDA methods that are used to verify the correctness and behaviour of
circuits and systems. The reviewed solutions are based on Boolean satisfiability.
Afterwards, in Sect. 6.3, the domain of interest, legal regulations that control how
medical doctors may invoice their services, is introduced. Furthermore, the method
of extracting a formal model from natural language texts is sketched. Then, Sect. 6.4
introduces a variety of applications for EDA methods in this context and explains
them by means of examples. Finally, in Sect. 6.5, the work is concluded.

6.2 Typical Methods for Electronic Design Automation

Every year in the past decades, the design of circuits and systems grew more and
more complex. The resulting complexity eventually motivated the development
of methods for Electronic Design Automation (EDA). Moreover, search spaces
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to be traversed became larger and larger so that, today, methods are in place
which employ dedicated search and learning strategies in order to cope with the
underlying computational complexity. Amongst many other methods, solvers for
Boolean satisfiability (so called SAT solvers; see, e.g., [5, 6]) represent one of
the most popular of these methods. In this section, we briefly review the basics
on Boolean satisfiability, their solving schemes, as well as application areas. This
provides representatives of EDA methods whose application to the domain of legal
regulations is envisioned afterwards.

6.2.1 Boolean Satisfiability and SAT Solvers

The Boolean satisfiability problem (SAT problem) is to determine an assignment ˛
to the variables of a Boolean function f such that f .˛/ evaluates to true or to prove
that no such assignment exists. Often, f is given in Conjunctive Normal Form (CNF).
A CNF consists of a conjunction of clauses. A clause is a disjunction of literals and
each literal is a propositional variable or its negation.

Example 1. Let f D .x1_x2_x3/.x1_x2/.x2_x3/. Then x1 D 1 D x2 D 1; x3 D 0 is
a satisfying assignment for f . The value of x1 ensures that the first clause becomes 1
while x2 ensures this for the second as does x3 for the third clause.

The SAT problem is one of the central NP-complete problems. In fact, it was
the first known NP-complete problem as was proven by Cook in 1971 [3]. Despite
this proven complexity, SAT algorithms are nowadays capable of handling practical
problem instances of considerable size, i.e. SAT instances which are composed
of hundreds of thousands of variables, millions of clauses, and tens of millions
of literals. Most of these SAT solvers are based on backtracking algorithms and
use three essential procedures: (1) the decision heuristic assigns values to free
variables, (2) the propagation procedure determines implications resulting from the
last assignment(s), and (3) the conflict analysis tries to resolve conflicts that occur
during the search by clever backtracking schemes. Advanced techniques such as
efficient Boolean constraint propagation [14] and conflict analysis [13] are common
in state-of-the-art SAT solvers (see, e.g., [5, 6]) and strongly contribute to their
effectiveness.

6.2.2 Applications in EDA

The efficiency as well as the clever traversal schemes of SAT solvers have found
numerous application for many computationally complex problems—including
several EDA problems. In the following, just a selection is briefly sketched:
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Fig. 6.1 Miter structure
Original
Circuit

Revised
Circuit

1

i1
i2
i3

• Equivalence Checking
During the design process, the originally determined circuit is usually revised
a couple of times (e.g. for the purpose of optimization). After each revision,
it is important to prove whether or not the revised circuit is still functionally
equivalent to the original one. This problem can be addressed by formulating
the resulting equivalence checking problem by means of a so-called miter
structure [2]. Here, it is made sure that always the same input assignments
are applied to both circuits. Furthermore, XORs are added to corresponding
output pairs in order to detect possible differences. Figure 6.1 shows the resulting
structure. Then, if at least one XOR evaluates to 1 (determined by an additional
OR operation), the two circuits are not equivalent. As this obviously represents a
satisfiability problem (“Does there exist an assignment to the inputs of the circuits
such that the output of the miter structure evaluates to true?”), the resulting
SAT instance can easily be formulated. Then, all possible inputs assignments
are symbolically considered which guarantees that a possible assignment leading
to different outputs is determined when it exists.

• Reachability Analysis
Recent developments of formally specifying complete systems using description
languages allow for further automated analysis. One particular problem is to
check whether certain states of the system, desired or undesired, are reach-
able [1]. The procedure is to symbolically translate all possible transitions of
the system into a SAT formulation. Afterwards, a clause representing the state of
interest is added. If the whole SAT formulation is satisfiable, the given state is
reachable. In case of undesired behaviour, this indicates a bug in the system.

• Automatic Test Pattern Generation (ATPG)
As a final example, ATPG considers the determination of an assignment to all
primary inputs of a given circuit which, based on a given fault model, will show
a possible erroneous behaviour at the primary outputs of this circuit [7]. This
problem can also be formulated as a corresponding SAT problem (“Does an
assignment showing the erroneous behaviour exist?”). ATPG is an interesting
example, since existing EDA methods for this problem are capable of handling
circuits and systems composed of several hundreds of thousands of components.
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6.3 Formal Representation of Legal Regulations

Usually, legal regulations are provided in natural language. But in order to exploit
EDA methods for checking them, a formal representation is required. Recently,
researchers investigated several strategies and schemes how to efficiently formalize
legal regulations (see, e.g., [12, 17]). Besides that, many software tools exist in
which legal regulations (e.g. tax code) have (manually) been incorporated in order
to support “end users” (e.g. citizens preparing their tax returns). In this section,
we discuss existing formalizations of legal regulations which, eventually, provide
possible inputs for EDA-inspired verification methods. We exemplary focus on
legal regulations from the domain of doctoral fees, namely the German Regulations
on Scales of Fees for Medical Doctors (German: Gebührenordnung für Ärzte [8],
abbreviated as GOÄ in the following).

The GOÄ specifies how doctors are supposed to generate invoices for their
services. The GOÄ eventually defines which services can be accounted and to what
extent. As an example, Fig. 6.2a shows a particular regulation from the GOÄ.1

Medical doctors, hospitals, etc., are supposed to prepare their invoices according
to these regulations.

However, before the submitted invoices are indeed paid, corresponding authori-
ties check whether the resulting invoices are in line with the regulations of the GOÄ.
Due to the large amount of regulations, this is usually performed automatically

Fig. 6.2 Considered domain and problem. (a) A GOÄ rule describing a mutual exclusion of
services (German sentence in parentheses). (b) Simplified domain of the GOÄ. (c) Resulting DSL
expression

1Note that all regulations in the GOÄ are originally provided in German. However, in order to
describe the proposed ideas, all examples have been translated.
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by software tools. To this end, a formal representation of the respective GOÄ
regulations has to be available.

Thus far, this formal representation is created manually—using a Domain-
Specific Language (DSL) as well as a proper model which represents the structure
of the respective processes (i.e. the performed services and the instances in time in
which these services have been provided.2) Fig. 6.2b provides a sketch of the applied
model: All possible services that doctors may perform are grouped by different
criteria (e.g. consultations, days, or quarters) and collected in a single case. Each
case is then related to a patient. A single service may require multiple consultations
and a doctor may perform multiple services in a single consultation.

With this background, the original regulation from Fig. 6.2a can formally be
represented as shown in Fig. 6.2b. Note that this expression is not uniquely deter-
mined and may look completely different, depending on the software developer’s
preferences. With formalizations like that, software tools checking invoices can
easily be developed.

While this approach still requires significant manual effort in order to create
the respective formal descriptions, another approach formalizing the corresponding
GOÄ regulations has been proposed in [12]. Here, a (semi-) automatic method
is proposed which is composed of two steps. In the first step, the sentences are
preprocessed and grouped, while the second step uses methods from Natural
Language Processing (NLP, [4, 16]) to create the DSL expression.

In the first preprocessing step, synonyms are normalized. Given a knowledge
base (filled e.g. by an expert from the domain), words like “service” and “GOÄ
position” can be matched in order to simplify the analysis. Afterwards, the
sentences are simplified by shortening long enumerations. These enumerations
do not carry any information in the NLP step besides “an amount of services”.
Therefore, terms such as “services 12345, 23456, 34567, and 98765” are reduced
to placeholder-terms, e.g. by hash-tag-like identifiers such as “01234567.0”. These
are still understood as a number by NLP tools while not resulting in a complicated
structure that renders the further analysis impossible. Further simplifications such
as removing long descriptions of equipment are conducted as well.

After these preprocessing steps, actual natural language processing of the regula-
tions (still provided in natural language) are performed. Here, established techniques
from the domain of natural language processing such as typed dependencies [4] are
employed. Typed dependencies create a relationship between words of a sentence
and, furthermore, type them with respect to their grammatical relation. For example,
the words “the” and “service” have a determiner dependency (short: det) with
each other. All typed dependencies of a sentence eventually form a graph based
on which a translation into a formal representation can automatically be conducted

2Note that further issues such as particular doctors and their qualification as well as special
equipment are not considered in the following.
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Fig. 6.3 Typed dependencies of the sentence shown in Fig. 6.2a

in many cases. The general idea is illustrated by means of the GOÄ rule of Fig. 6.2a.
The corresponding typed dependency graph of the original German sentence,
obtained using the tool ParZu [16], is shown in Fig. 6.3.

This analysis provides, e.g., the following information:

• The main reference, i.e. which service is of interest, is determined. This can be
obtained by analysing the subject subj of the sentence.

• Other references to services might be found by following pn-app paths in the
graph.

• A negation of the sentence is indicated by an adv path from the root note of the
sentence to the word “not”.
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Fig. 6.4 Automatically generated formal notation of the sentence from Fig. 6.2a

Eventually, this enables an automatic derivations of a formal representation from
a given legal regulation. In case of the considered sentence, a formal notation
as sketched in Fig. 6.4 is created using OCL [18]. Note that other means of
formal description are possible as well. Using the techniques described in [12],
approximately 60 % of the regulations given in the GOÄ can automatically be
formalized this way. The quality of the results heavily depends on the initial
knowledge base used for determining synonyms and simplifying sentences.

6.4 Applying EDA Methods to the Formal Representation

As reviewed in the previous section, formal representations of legal regulations
already exist and are applied, e.g. in order to check the validity of invoices. Similar
application areas exist, e.g. in the domain of tax returns, applications to federal
agencies in general, etc. However, all corresponding software tools basically check
certain instances of invoices, tax returns, applications, etc., only. Exploiting the
EDA methods reviewed in Sect. 6.2, much more potential exist. In fact, as for the
design of circuits and systems, there is no guarantee that legal regulations are free of
contradictions by themselves. The following example illustrates a possible problem:

Example 2. Consider the following four (simplified) GOÄ regulations:

• “Service A is not to be billed together with service C while, at the same time, it
forces billing the service B”.

• “Service B forces billing the service C”.
• “Service C forces billing the service D”.
• “Service D forces billing the service A”.

Table 6.1a summarizes these regulations in a more compact fashion. The first
column refers to the respective services, while the remaining columns provide the
services which are mutually exclusive to them and the services which are forced to
be billed in addition to them.
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Table 6.1 Exemplary
constraints for services

(a) Inconsistent model

Service Excludes Forces

A C B

B – C

C – D

D – A

(b) Erroneous model

Service Excludes Forces

A C B

B – C

C A,B –

D C –

(c) Example for invoice optimization

Service Costs $ Excludes

A 40 –

B 50 C

C 20 –

D 80 A,B

Obviously, this would be a set of contradictory legal regulations, since

• the billing of any service (A,B,C, or D) eventually forces the presence of all other
services while,

• at the same time, service A forbids the existence of service C

While it is simple to detect contradictions for simple regulations as shown here, it
surely becomes a crucial tasks when dozens or even hundreds of such regulations
(usually written in hard language) have to be considered.

Using EDA methods, contradictions even in large (formalized) legal regulations
could easily be detected. In fact, these methods do not care whether the corre-
sponding formal representation has been derived from a hardware specification or
a legal regulation. For them, legal regulations can be seen as a “specification” of
how certain (real world) processes may be implemented in practice. As for circuits
and systems, the goal of the methods is to detect the existence of contradictions or
unwanted descriptions. While, in the domain of legal regulations, contradictions can
not always be prevented (due to case-by-case decisions, trade-offs between certain
rights, etc.), in particular in fields such as billings, tax returns, etc., a high degree
on uniqueness is desired. In these cases, EDA methods may provide the basis for
helpful tools to detect contradictions as discussed in Example 2. More precisely:

Example 3. Consider again the four GOÄ regulations from Example 2 and assume
that corresponding formal representations (denoted by Booleans A;B;C;D) have
been derived from them. Then, EDA methods allow to symbolically consider all
possible applications scenarios and, by this, can proof, e.g. whether this set of
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regulations is free of contradictions. In other words, the SAT problem “Does there
exist at least one scenario which satisfies all regulations?” can be formulated. In a
simplified form, this translates into the formulation

.A H) C ^ B/ ^ .B H) C/ ^ .C H) D/ ^ .D H) A/

for which SAT solvers can prove that no satisfying solutions exist. That is, not all
regulations can be satisfied at the same time.

In a similar fashion, many other questions concerning legal regulations can be
addressed by EDA methods. For example:

• Checking for desired/undesired interpretations of the given regulations. As an
example, consider the regulations for services A, B, and C as shown in Table 6.1b.
The intention of these regulations is to have two services excluding each other
while services A and B force the billing of certain other services. Note that service
B forces to also put service C on the invoice. Unfortunately, service C cannot be
billed together with the other two services. This basically makes it impossible for
service B to be ever billed. A formal model applied to an EDA method sketched
above could find this inconsistency and present it to the corresponding authority.
The authority then would probably decide that the intention was to have service
B be mutually exclusive with service C and, therefore, move the C entry from the
“Forces” to the “Excludes” column.

This application is similar to the reachability analysis as reviewed in Sect. 6.2.
• Fixing of certain properties. Legal regulations are usually updated on a regular

basis. Consider an update that introduces the constraint that service A must not
be invoiced together with service B. When introducing this change (which, in
real world documents, will not be as easily describable as this artificial example),
one wants to ensure that it does not change any other rules. This means that no
invoice that was legal before the update becomes invalid afterwards (while, at
the same time, preserving the intended change). For checking this, a miter-like
structure (see Sect. 6.2) can be employed. In this application, the “outputs” of
interest are the valid invoices.

• Automated optimization of invoices, i.e. determine an application of regulations
which leads to the best possible outcome for the doctor. As an example, consider
the constraints as shown in Table 6.1c (which additionally provides the costs of
a particular service). In this simple example, one can easily validate by hand that
billing service C, and D yields the biggest outcome. For larger sets of regulations,
this becomes an infeasible task for humans. A variant of this problem is to find the
maximum amount of money that can be invoiced while staying within a certain
budget.

• Automated checks whether a given invoice is consistent with the regulations. This
helps the doctor as well as the officials deciding on the invoice at hand.

• The automated generation of DSL expressions (such as shown in Fig. 6.2c),
which are used in software to check documents for validity. This does not
only significantly reduce the development costs of software applications, but it
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also ensures that the expressions are correct by eliminating the possibility of
introducing errors in the creation/programming.

6.5 Conclusion

Formal descriptions of legal texts greatly improve the daily work for experts. This
ranges from the direct end user of these regulations (such as a doctor as seen in
the examples) to lawyers creating such texts. Applicants have the means to check
whether their documents are valid before handing them in, thereby saving a lot of
work on both sides. Decision makers such as politicians now have further means
that aid them in understanding the full impact of their regulations. This is of great
importance as it is difficult to completely anticipate the consequences of (parts of)
regulations even for experts such as lawyers. We envision that in the near future, for
most legal texts, formal descriptions will be available or work on formalizing them
is in progress.
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