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Abstract This work introduces a new property language for describing the
behaviour of low-level hardware-dependent software. The design of the language is
motivated by the industrial success of property languages for hardware verification
by simulation and formal techniques. The new language is constructed to concisely
capture the timed behaviour of the interactions between software and hardware
by means of sequences. In this chapter we present how the proposed verification
language can be used to perform formal verification based on a computational
model called program netlist. We show how the sequence model of the language
is synthesised and combined with the program netlist so that a unified formula
for a decision procedure, e.g., a SAT solver, can be constructed. Furthermore, a
method for coverage analysis of property sets is introduced. The coverage criterion
we propose determines whether or not the property set completely describes the
input/output functional behaviour of a program. The work presents a case study
showing how to use the proposed property language in order to specify an industrial
implementation of a LIN (Local Interconnect Network) bus driver.

5.1 Introduction

Besides continuous advances in methods and algorithms for formal property
checking of hardware designs, also the languages for formulating properties have
played an important role for the adoption of formal verification techniques in
industry in the last years. For instance, SystemVerilog Assertions (SVA) [15] and
Property Specification Language (PSL) [1] allow to concisely specify the behaviour
of the hardware, which is typically described at register transfer level (RTL).
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While being founded in a strictly defined mathematical framework, these property
languages include various syntactic enhancements offering a natural and easy way to
capture temporal behaviours of the design. Current commercial technology allows
for checking assertions using simulation or formal verification engines.

On the other side, for the case of embedded software (SW) there is an increasing
necessity of integrating formal verification also to the verification flows used in
industry. In this work we focus on the verification of hardware-dependent software
which is the part of the software in an embedded system that interacts directly with
the surrounding hardware (HW). There are a number of reasons why we focus
on this kind of software. Hardware-dependent software is a critical component
in embedded systems since all other software layers (e.g., the operating system,
application software, etc.) are built on top of it. Additionally, hardware-dependent
software in embedded systems performs control-intensive tasks with complex
interactions with the hardware and with other software layers, making development
error prone and systems difficult to test. Because of the reactive behaviour of
HW/SW interaction, specification languages and validation methods as they have
been developed for application-level software are in many cases not suitable. This
work proposes a new property language facilitating the specification of hardware-
dependent software behaviour in embedded systems. Similar to property languages
used for hardware, this new language allows to capture the reactive behaviour of the
hardware-dependent software by using sequences describing series of input/output
operations performed by the software at its interfaces.

The property language proposed here can be employed for simulation or
verification purposes. However, in this work we present particularly how this
language can be used in conjunction with a computational model called program
netlist [14] in order to perform formal property checking. A program netlist is a
combinational Boolean model representing compactly all possible execution paths
of a software program. It is built using hardware models of the machine instructions
executed in the program, and is therefore suitable for representing hardware-
dependent software. For generating a program netlist, path-oriented techniques
related to symbolic execution [5] are used. The actual flow of program control
is modelled by additional logic added to the program netlist that enhances the
efficiency of SAT reasoning on program segments and entire paths.

Unlike methods based on symbolic execution in which properties are proven by
traversing explicitly the possible execution paths of a given program, in this work,
we adopt the approach of [14] which employs a SAT solver in order to perform
this traversal. A SAT proof benefits from the control logic in the program netlist
by being able to focus on the execution paths being important for the particular
problem instance and to prune at once entire execution paths that are not relevant.
The effectiveness of this approach has been shown in [14].

In order to use a SAT solver for path traversal it is necessary to create a combined
model containing the logic for the property and the program netlist such that the SAT
solver has “the global view on the verification problem” (instead of having only the
view of the problem for individual execution paths). For the global view, a model
of the input/output sequences of the software is synthesised and integrated to the
model.
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Since formal verification examines every possible input scenario, the usual
coverage criteria evaluating the quality of test cases for software are not suitable
for formal property checking. In case of software property checking, verification
engineers face the same problem as engineers in hardware verification: “Does
my property set cover every aspect of the design?” A number of methods for
coverage analysis attempting to prove that a property set is “complete” have been
successfully applied to hardware designs [4, 6, 9, 11]. In these approaches a set
of safety properties is called a complete specification or simply complete if it
uniquely describes the behaviour of a design. More precisely, these methods prove
the completeness of a property set by means of checking to what extent the property
set uniquely specifies the input and output behaviour of a hardware design. Based
on these results, in this work we develop a method for proving the completeness
of software properties specified in the software property language presented in
this chapter. Such a completeness check is of particular importance for software
property sets because a complete set of properties can, at least in principle, fully
replace classical software tests. A typical source of error when writing software
is that the programmer simply forgets to treat certain input sequences in his
program, causing undefined behaviour when these inputs occur at runtime. Also, a
verification engineer may forget to specify tests (or, in our case, properties) for such
missing input sequences so that the bug can escape verification. The completeness
check presented in this work removes such verification gaps. Because of similarity
between hardware and low-level software, our method for proving the completeness
of software property sets checks whether every input/output sequence is specified
by a property in the set. The checking algorithm leverages the property language
presented in this chapter, which allows for referring to the interfaces of the software
program in order to describe its reactive and sequential behaviour.

As of today, there are a number of different approaches for formalising properties
of embedded software. Run-time assertions are being used widely for testing [16]
and formal verification [7, 19], of embedded software. For example, high-level pro-
gramming languages like C provide the assert() statement for specifying predicates
over the values of program variables. The main use of run-time assertions is to
describe properties that are valid locally. More specifically, this kind of property is
evaluated only when a program run reaches the location where the involved assert()
statement has been placed. While run-time assertions have the advantage that the
user is not required to learn a new language in order to specify properties, their
main limitation is in what can be expressed. For the case of application software or
for simple transformational code run-time assertions may be sufficient; however,
for hardware-dependent software it is necessary to be able to describe reactive
behaviour, relating to the inputs, outputs and states of the software and hardware
at different points in time. For specifying temporal behaviour, temporal logics such
as CTL and LTL [8, 12] can be used. There exist verification tools such as [10, 13]
that accept temporal formulas directly as PSL. However, although CTL and LTL are
powerful in formulating temporal relationships, they are hard to understand and use
in practice.
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Other tools such as [2, 3], in a similar way, employ automata in order to temporal
specify properties. The use of automata can be convenient in many cases since
they are easier to understand by a designer or verification engineer than temporal
formulas in CTL or LTL. However, except for simple cases, the process of modelling
a property using an automaton is cumbersome and error prone.

Different to the approaches mentioned previously, in this work we present a
new verification language for hardware-dependent embedded software that allows to
specify the temporal behaviour of interactions between software and hardware. The
proposed language is intuitive and easy to use for the verification engineer. It allows
to refer to the interfaces of the software and to describe explicitly the sequences of
input/output operations at these interfaces. It adopts many syntactic elements from
the C language, which makes learning the new language easy for software engineers.
To the best of our knowledge, this is the first work on a property language for
hardware-dependent embedded software with the characteristics mentioned above.

The remainder of the chapter is organised as follows. Section 5.2 reviews the
computational model used in this work. The software PSL is described in Sect. 5.3,
and it is applied to specifying properties for a LIN driver implemented in software,
as presented in Sect. 5.5. In addition, a method for evaluating the completeness of
property sets is described in Sect. 5.4. A conclusion and outline of future work are
given in Sect. 5.6.

5.2 Low-Level Software Model

In this work we show how the language to be presented in Sect. 5.3 can be used
together with a model for hardware-dependent low-level software in embedded
systems, called program netlist, in order to perform formal property checking. We
first review basic characteristics of the program netlist. A complete description of
this model and its generation can be found in [14].

A program netlist is a combinational circuit that compactly represents the
software that is executed on the underlying hardware. In order to generate a program
netlist, the control flow graph (CFG) is extracted from a low-level description of
the software program, like assembly or machine code. Every node in the CFG
represents an instruction of the program and the associated program state (PS).
The PS includes the contents of data memory associated with the variables used in
the program, and the architecture state (AS), defining the state of the processor’s
registers that are visible to the programmer. An edge between two CFG nodes
indicates a possible execution from one instruction to another one. An additional
Boolean signal called active is attached to PS in order to model the control flow of
the program. This signal is propagated alongside the nodes in the program netlist
and helps the SAT solver to efficiently explore the possible execution paths of the
program. The active signal, when set to 1, indicates that a given node (instruction)
belongs to the active execution path. In the case that a node has more than one
successor (e.g., nodes related to jump/branch instructions), exactly one branch is
active at any time.
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Fig. 5.1 Generating the
program netlist (PN)
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The CFG is fully unrolled into an execution graph (EXG). An EXG is a directed
acyclic graph containing all possible execution paths of the program. An execution
path always begins at a start state of the program and ends at an end state. The CFG
is unrolled by unwinding the loops of the program. Figure 5.1 illustrates an example
of unrolling. In order to reduce the complexity of the model, only branches that
are part of at least one possible execution path are processed. A SAT solver can be
used to identify such branches. Unrolling ends when all active branches have been
processed and the end of the program has been reached. In addition, in order to
minimise the size of the model, nodes belonging to identical program locations are
merged. In this manner an EXG is obtained in which a single node may be shared
by different execution paths. Merging is only allowed if it does not insert loops in
the EXG.

A program netlist is then obtained from the EXG by replacing every node by its
corresponding instruction cell. An instruction cell is a piece of combinational logic
circuitry describing the functional behaviour of an ISA instruction according to the
specific CPU architecture at hand. Consecutive instruction cells are connected by
buses representing the program state.

A kind of instruction that is especially relevant to this work are load/store
instructions which are used to communicate with the program’s environment, e.g.,
the hardware periphery or other software layers. Instruction cells corresponding
to such kind of instructions are equipped with additional input and output ports
as shown in Fig. 5.2. These ports are called pdata, ploc and pact and represent
respectively, the data value, the accessed location and the active flag indicating
the activeness of the related instruction cell. Depending on whether the instruction
cell reads or writes, pdata is an input or output signal. These three signals of an
instruction cell constitute an access port for I/O memory locations.
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Fig. 5.2 Instruction cell with
ports for accessing the
environment
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In the sequel, we use the term program location to indicate a memory location
storing an instruction, and the term memory location to indicate an address
corresponding to a location of the hardware periphery or a memory variable.

In the program netlist, instructions that access data memory require additional
constraints so that the behaviour of the data memory is also modelled [18]. There-
fore, for each instruction cell that reads from data memory there is a multiplexer
structure that selects the last valid value written to the memory location being read
by the instruction. In the case that a program depends on external events, e.g.,
by means of shared variables/channels, additional access ports of the respective
instruction cell are left open or unconstrained as shown in Fig. 5.2. These access
ports serve as the interfaces of the program, as will be further explained in the next
section.

5.3 Software Property Language

This chapter presents how the interaction between hardware and software can
be described in terms of I/O sequences and how the model of the sequences can be
synthesised and combined with the underlying model of the software in order to
perform formal property checking. As explained earlier, this is necessary in order
to capture the reactive behaviour exhibited by hardware-dependent software. An
additional advantage is that a model of the sequences allows to map the elements of
the language to the elements of the underlying software model in a straightforward
way. Subsequently, we show how a property language can be developed in terms
of such sequences. The current working name for this language is RSPL (Reactive
Software Property Language).

In the following, we introduce the main syntactic elements of RSPL. Since
the programming language C is widely used for embedded software, our property
language adopts many operators and syntax elements from C. For example, RSPL
inherits from C the standard arithmetic, Boolean and comparison operators.
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Fig. 5.3 Read/write attributes

5.3.1 Interfaces of a Hardware-Dependent Program

A property language for hardware-dependent software needs to provide a means for
referring to the interfaces of a given program. In contrast to hardware description
languages, software programs in high-level languages such as C do not explicitly
capture their interfaces in a separate entity. For hardware-dependent software the
elements of the interface correspond a set of addresses identifying, for example,
registers inside hardware peripherals or shared memory locations used for com-
munication with the operating system or with the application code. In view of the
program netlist, such interface elements are modelled by means of access ports
belonging to input/output instruction cells as explained in Sect. 5.2. In RSPL each
of these addresses is assigned a name. In case of compiled machine code these
names can be automatically obtained from the symbol table. Otherwise variable
names can be defined manually by the user to enhance readability of the verification
code. In order to distinguish the action of reading a variable (as input) from the
action of writing a variable (as output), two variable attributes are introduced to
the property language, namely read and write, as depicted in Fig. 5.3. This is the
basis for referring to all input/output operations. Note that an address can be read
and written several times. How this can be handled by the property language and
how the verification engineer can refer to the different read and write instances is
described below in Sect. 5.3.2.

There are also cases in which it is necessary to refer to the programmer-visible
registers, for example when separately verifying a subroutine of a software driver.
In such cases the content of a register can be expressed using the following syntax.

$hName of registeri’ start
$hName of registeri’end

The attributes “start” and “end” indicate the start and the end of the program,
respectively.

5.3.2 Sequences of Variables

The sequence is the key concept of our language; it is inspired by sequences in
hardware property languages like SVA [15]. A sequence in SVA is constructed using
the delay operator # which specifies the relative clock cycles (delay) between two
events. However, we cannot directly import the semantics of sequences from SVA,
since a sequence in SVA is defined over cycles which are relative to a global time
reference such as a hardware clock. Models used for software (and in particular
the program netlist) are not accurate with respect to hardware clock cycles, but



90 B. Bao et al.

Fig. 5.4 Element accessor

rather instruction-accurate. Therefore, sequences are defined relative to the ordering
of instruction executions. As illustrated in Fig. 5.4 we provide users with a way
to define the individual elements of a sequence. Several such elements may be
combined using Boolean operators in order to form sequences. We call the symbol
# the element accessor for sequences and the natural number n represents the n-
th element of a sequence. Since not every instruction accesses the interface of the
program, the element n is the n-th occurrence of the associated interface variable
along an execution path of a program (as opposed to the n-th instruction along
that path). A software tool evaluating properties written in our language needs
to map the elements of a sequence to the respective access ports in the program
netlist. Because of the merging mechanism used to generate a program netlist, an
input/output instruction cell can belong to several different execution paths. In other
words, along an execution path an access port might be the i-th sequence element
of a variable, whereas along another path, it may correspond to the j-th (j ¤ i)
sequence element of the same variable.

In the following we present an algorithm to map elements of sequences to
the corresponding access ports in the program netlist. This algorithm is the basis
for building the property logic for a SAT-based proof engine. To simplify the
presentation, in the sequel, we only consider the memory locations of input/output
variables, not their symbol names, since this relationship can be established easily
through the symbol table. We use the term memory location to refer to both, an input
or output variable as defined in Sect. 5.3.1, if the use is clear from the context.

The first step in the algorithm is a topological sorting of the nodes in the
execution graph. We assign every node a unique index m, with m 2 N, so that
along every execution path the (instruction) node indexed with i is executed earlier
than the node indexed with j, if i < j. In the sequel, we refer to a node by its index in
the topological order. Each memory location Lock is associated with a set of nodes
accessing this location, i.e., W D fi1; i2; : : : ; ijWjg with ij < ijC1 and 1 � j < jWj.
The access port APij for a node ij is composed of pdataij , pactij , and plocij D Lock,
corresponding to the signal names in Fig. 5.2.

Given a memory location Lock, to map the n-th element (1 � n � jWj) of
Lock’s sequence to an access port APij , the challenging task is to find the index ij of
the node related to this element. The function comp_index(n), depicted in pseudo-
code notation in Algorithm 2, performs this task. It is generated for every memory
location Lock. Function port_mapping() of Algorithm 3 is based on comp_index().
It connects the n-th element of the sequence to an access port in the program netlist.

The formulation of function comp_index() is based on the fact that at any time
exactly one execution path of a program is active. An active path is characterised
by the nodes in the program netlist whose active flags are asserted. In summary,
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Algorithm 2 Compute index of the node associated with n-th sequence element
1: function COMP_INDEX(n)
2: if n D 1 then
3: if pacti1 D true then
4: return i1
5: else if pacti2 D true then
6: return i2
7: . . .

8: else if pactijWj
D true then

9: return ijWj

10: else
11: return 0

12: end if
13: else
14: if pactin D true ^ compindex.n � 1/ < in then
15: return in
16: else if pactinC1

D true ^ compindex.n � 1/ < inC1 then
17: return inC1

18: . . .

19: else if pactijWj
D true ^ compindex.n � 1/ < ijWj then

20: return ijWj

21: else
22: return 0

23: end if
24: end if
25: end function

Algorithm 3 Map sequence to access port
1: function PORT_MAPPING(n)
2: if compindex.n/ D i1 then
3: return pdatai1
4: else if compindex.n/ D i2 then
5: return pdatai2
6: . . .

7: else if compindex.n/ D ijWj then
8: return pdataijWj

9: else
10: return UNDEFINED
11: end if
12: end function

comp_index() works as follows: To determine the n-th element of a sequence along
any execution path, we first check the active flag of the node with index in, this is
the very first node that could be the n-th element of a sequence. We also examine
whether the .n � 1/-th element along that path exists already, by checking whether
the index of the node associated with .n � 1/-th element is smaller than the index of
the current node. If both conditions are met, then the n-th element of the sequence is
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known to exist and the respective index can be returned. Otherwise we move on to
the next candidate until a node related to the element we search is found or does not
exist. With the comp_index function we can test whether an element of a sequence
exists on a given path (by testing whether the result of comp_index is zero). The
function is also used for verifying the execution order (cf. Sect. 5.3.3) of sequence
elements that are related to different memory locations (variables).

With the ability of obtaining the index ij of the node related to the n-th element
of a sequence, it is straightforward to map the n-th element of the sequence to the
access port APij . Function port_mapping depicted in Algorithm 3 performs this task.

In the remainder of this paper, for simplicity, we use the term variable for both,
an element of an input/output sequence, or the state of a register at the start node/end
node of the program.

5.3.3 Execution Order

Besides being able to relate software accesses to the same location at different points
in time, in many cases it is also important to specify a temporal order of accesses
to different memory locations. For instance, in order to issue a new transaction,
a peripheral device may require that its driver first write the configuration/data
register of the device at memory location Loc1, and then set the start flag at memory
location Loc2; not maintaining this order could result in undefined behaviour of
the device. Obviously, the property specification “Loc_1’write#1 == Config_Data &&
Loc_2’write#1 == Start” is insufficient for this requirement, since this statement does
not define which of the two accesses, “Loc_1’write#1” and “Loc_2’write#1” is to be
executed first by the software driver.

In RSPL, temporal ordering of accesses to different locations can be specified
using the execution order section in a property. A user may specify an execution
order between an input and an output, two inputs related to two different memory
locations and two outputs related to two different memory locations. Checking
the execution order is implemented by comparing the results of the functions
comp_index for the respective sequence elements. Taking the example from above, if
the returned value of the function comp_index for “Loc_1’write#1” is smaller than the
returned value of this function for “Loc_2’write#1”, then “Loc_1’write#1” is executed
first. The syntax definition and an example of an execution_order specification are
given in Fig. 5.5.

5.3.4 Safety and Liveness Properties

So far, we introduced the basic concepts and building blocks of the property
language. In this section, we will present how to use them to build a property, and
we will discuss what kinds of properties we can specify.
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Fig. 5.5 Execution order

Fig. 5.6 Safety- /liveness-property

A property begins with the keyword property, followed by a valid identifier.
The general structure of the property body follows an assumption/guarantee style.
The body consists of two optional sections, execution_order and assume, and one
mandatory section, prove. The assume part specifies the circumstances under which
the assertion as specified in the execution_order and prove parts is to be checked.
If we denote the assumption part by a predicate a, the prove part by c and the
execution order part by o. Then a property p is translated to a Boolean formula
p WD a ! .c ^ o/.

Given a property p, we can instruct the property checker to check it as a safety
property or as a liveness property. As illustrated in Fig. 5.6, a safety property is
indicated by the keyword “always”, and a liveness property is indicated by the
keyword “eventually” .
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The semantic of “safety/liveness” is defined by evaluating the execution paths
of a program. In contrast to Kripke models used in LTL or CTL model checking,
the program netlist contains a finite number of paths of finite length. This greatly
simplifies the evaluation of safety and liveness properties. A safety property
“always p” means that on every execution path (from a start state to an end state of
the program), the property p holds. This is similar to the LTL property G p, however,
applied to a finite-length path. A liveness property “eventually p” means that there
exists at least one execution path on which the property p holds. This is similar
to the meaning of the CTL property EGp. It is straightforward to check the safety
property using a SAT solver. In order to check a liveness property, we check the
safety property “always :p”. In case this property holds, we may conclude that the
corresponding liveness property fails.

5.3.5 Syntax Extensions

With the language elements presented so far, we are able to capture the reactive
behaviour of the software programs considered by our technique. We now present
a number of extensions to the syntax that do not increase expressiveness but make
property notation easier and more compact.

In the following, a variable var represents either an input (with attribute read) or
an output (with attribute write). The symbol ‰ represents an arbitrary comparison
operator, and expr represents any valid expression at either side of a comparison
operator. The accessors depicted in Fig. 5.7 can be used to access a range of
sequence elements related to a variable var. Every element is compared with the
expression expr; if all comparison operations evaluate to true, then the result of this
statement is true, otherwise it evaluates to false.

The dual case is handled by the accessor depicted in Fig. 5.8: it evaluates to true
if the comparison operations return true at least N times in sequence.

Fig. 5.7 Access a range of elements (universal)

Fig. 5.8 Access a range of elements (existential)
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The function exists tests whether a sequence element exists on an execution
path. In a safety property exists (var#1) checks whether var#1 exists for every
execution path, whereas in a liveness property it checks whether this element can be
generated/consumed at least once during the execution of the program. This function
can also be used to check whether the assume part of a property always evaluates to
false due to non-existing sequence elements. Again, a SAT-based property checker
can implement these checks using comp_index().

5.4 Completeness of Property Sets

The completeness of a set of properties for a hardware design can be proven by
using design-independent approaches such as [4, 6]. Our approach strongly relates
to [4], which is explained in more detail in Sect. III-D of [17]. This method proves
that two models of a design satisfying a set of properties fpig are sequentially
equivalent in terms of input/output sequences. What input and output values are
considered and at what time points (clock cycles) is specified by the user in
terms of so-called determination conditions. For example, a “data” signal needs
to be uniquely determined by the design whenever a corresponding “valid” signal
is asserted. A complete property set fulfils this determination condition if every
property specifies the expected “data” value at the time points when the “valid”
signal becomes asserted. Note that a property set can be checked for completeness
independently of any design implementation for which this set of properties holds,
because only relationships between signal names in the properties are checked. This
idea can also be transferred to software properties written in RSPL and results in the
following definition for completeness of a set of properties:

Definition 5.1. A set of RSPL properties is called complete, iff

1. there exists a property with a matching assume part for every possible input
sequence applied to the program, and

2. every property uniquely specifies every output sequence produced by the pro-
gram under the input sequences specified in the assume part.

Testing the two conditions of Definition 5.1 can be directly implemented in two
checks called Determination Test and Case Split Test.

5.4.1 Determination Test

Unlike hardware that generates output sequences for every time point (clock
cycle), the low-level software may produce output sequences of varying length,
depending on the input sequences applied to the program. For instance, depending
on configuration data given by the program’s environment, a software driver may
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perform burst write operations with 2 or 4 beats of data transfer, causing sequences
with 2 or 4 elements, respectively. If we use design-independent methods, the
completeness checker needs to know how many elements of sequences should
every property at least specify. Denoting these values for every output in every
property is tedious and error-prone. Therefore, for checking completeness of RSPL
property sets, we give up on the design independence of a completeness criterion.
Instead, we make use of the software model to determine how long the checked
sequences are on each program execution.

In order to ensure that every output signal is uniquely determined by the
property set, we perform two steps. First, we ensure that every property describes
every element of all output sequences that are produced under all matching input
sequences specified in the assumption part of the property. We solve this problem
with the help of the design under verification, M, and the comp_index function. For
simplicity, in the following we assume that the properties are written in a causal
form, expressed as an implication between a cause (property assumption) and an
effect (property commitment). This causal form is given if the input sequences are
specified in the assume part of the property and the expected output behaviour is
specified in the prove and execution_order parts. Given a property p WD a !
.c ^ o/, by syntactic analysis, we can identify the maximum sequence length k
of any output sequence specified in the property. Then we check whether k is the
maximum element generated by the software model M under the assumption a.
For this purpose, we resort to the comp_index(k+1) function with respect to the
assumption a: If this function returns a non-zero value, it means that the program
can output a sequence with at least kC1 elements. The property under consideration
does not specify this output sequence element, hence, we have detected a verification
gap. Similarly, if a property does not at all mention some output produced by the
program, we can detect this by checking for non-zero return of comp_index(1) for
that output. A list of all possible outputs of a program can be easily obtained when
synthesising the model of the program.

Once we have certified that every property describes every possible element of
all output sequences, we check whether these output sequences are determined
uniquely, i.e., whether, along any execution path, the property specifies exactly
one value for every element of the output sequence. This can be done for every
property independently of the software model. Let p be a property containing a set of
signals fvig (composed of a set of inputs fxj W j 2 N; j � mg and a set of outputs fon W
n 2 N; n � lg) and corresponding sequence elements fvkvi

i W kvi 2 N¤0; kvi � tvig.
We create a copy p0 of p by considering a copied set fv0

ig of the variables appearing
in the property and imposing the property on the copied variable set. The property p
determines the outputs fong uniquely, iff the following formula is a tautology

.p ^ p0 ^
m̂

jD0

txj^

kxj D1

.x
kxj

j D x0
j
kxj // !

l̂

nD0

ton̂

kon D1

.o
kon
n D o0

n
kon /
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5.4.2 Case Split Test

The case split test checks whether the property set covers every possible input
sequence. Given a set of properties pi with their respective assumption parts ai,
the case split test is conducted by proving that the formula

W
i ai is a tautology.

5.4.3 Completeness Criterion

Theorem 5.1. If and only if a set of RSPL properties fpig passes both the Determi-
nation Test and the Case Split Test, then the property set is complete according to
Definition 5.1.

Proof. The theorem is true by Definition 5.1 because the Case Split Test checks
for fulfilment of condition 1 of Definition 5.1 and the Determination Test checks for
fulfilment of condition 2. ut

5.5 Case Study

The property language developed in this work has been successfully applied to
specifying properties for an industrial software driver for a LIN master node. The
software was developed by Infineon Technology AG. Note that the focus of the
work is on the challenges of specifying complete sets of properties for this type of
software, not on the proving techniques. The properties shown in this case study
have already been proven earlier [14], based on a manual construction of checker
automata which were added to a program netlist model of the software. In this work
we present the formulation of these properties in RSPL.

The hardware peripheral controlled by the software driver is a UART (Universal
Asynchronous Receiver/Transmitter), connected to the physical LIN bus lines.
A LIN bus is composed of one master node and several slave nodes. Data is
transmitted on the LIN bus in so-called frames. A frame is composed of several
fields: a header, up to 8 bytes of data, and a checksum. The master node is
responsible for sending the header field which is composed of a break field
indicating the start of new frame, a sync byte field used for synchronisation, and
an identifier (ID) field. Slave nodes evaluate the identifier field and, if there is a
match, then the corresponding slave node either sends or receives data. The LIN
driver code under consideration implements a master node. It supports six fixed-
valued IDs. It can send or receive 2, 4 or 8 bytes of data for each of the six IDs. Data
is communicated with the application software through shared memory locations
that serve as the interface of the LIN driver.

We now consider a first property in Fig. 5.9 specifying the transmission of a
frame, according to the protocol specification for the LIN bus. For reasons of space,
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Fig. 5.9 LIN_TX_Frame_2_Bytes

we show only the case for data length of 2 bytes. Furthermore, for readability, we use
the names of variables and constants instead of their memory addresses. Variables
data1 and data2 store the payload data provided by the application software. The
s_id are shared variables storing the ID that needs to be transferred to the slave task.
The symbol uart refers to the Tx/Rx buffer of the UART.

In the following, the prefix “C_” indicates a constant value. C_ID0 identifies a
2-byte transmission. CHECKSUM abstracts the “checksum” computation.

We also need to define an execution_order section in the property in order to
specify that the data must be available before it is transmitted.

Note that a program that does not support C_ID0 at all may nevertheless fulfil the
property in Fig. 5.9. We therefore need to check the liveness property in Fig. 5.10 in
order to make sure that at some point in time a C_ID = frame is indeed sent to the
UART.

Figure 5.11 shows the use of the exists function in a property that checks whether
the driver is capable of transmitting 8-byte data frames.

Obviously, the safety property in Fig. 5.9 does not completely specify the entire
program. It specifies only the case that the LIN master transmits 2 bytes of data
to a slave. The case split test presented in Sect. 5.4 identifies the missing cases by
checking whether there exists a corresponding property for every value of s_id.
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Fig. 5.10 LIN liveness

Fig. 5.11 LIN liveness 2

The comments section of this property shows an example of a failing determi-
nation test for a sequence element, where this statement states that the value of
“uart’write#4” could be either 0 or 1. Thus, the value of this variable is not unique:
Suppose that “uart’write#4” is a Boolean variable, then the expression in the
statement evaluates to true. Hence, the property proves nothing about this variable.

5.6 Conclusion

In this chapter we presented the concept and the basic framework of a software
property language for reactive low-level embedded software. The language is based
on a computational model for this type of software, called program netlist. The
language allows to easily express the I/O behaviour of the software by using
temporal sequences. Furthermore, properties can be synthesised and combined with
the program netlist into a single model allowing to perform formal verification.
Taking advantage of the temporal description we defined a completeness criterion
for a set of properties. We showed how to use the elements of the language to
formally and completely specify a LIN master node.

The future development of the proposed property language will include exten-
sions in order to support compositional verification for cases where the overall
verification of a program needs to be partitioned to improve scalability. Additionally,
the concept of functions or macros will be introduced for structuring and re-using
verification code.
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