Chapter 1
Automatic Refinement Checking for Formal
System Models

Julia Seiter, Robert Wille, Ulrich Kiihne, and Rolf Drechsler

Abstract For the design of complex systems, formal modelling languages such as
UML or SysML find significant attention. The typical model-driven design flow
assumes thereby an initial (abstract) model which is iteratively refined to a more
precise description. During this process, new errors and inconsistencies might be
introduced. In this chapter, we propose an automatic method for verifying the
consistency of refinements in UML or SysML. For this purpose, a theoretical
foundation is considered from which the corresponding proof obligations are
determined. Afterwards, they are encoded as an instance of satisfiability modulo
theories (SMT) and solved using proper solving engines. The practical use of the
proposed method is demonstrated and compared to a previously proposed approach.

1.1 Introduction

Due to the increasing complexity of today’s systems and, caused by this, the steady
strive of designers and researchers towards higher levels of abstractions, modelling
languages such as the unified modeling language (UML) [28] or the Systems
Modeling Language (SysML) [33] together with textual constraints, e.g., provided
by the object constraint language (OCL) [32] received significant attention in
computer-aided design. They allow for a formal specification of a system prior to
the implementation. Such an initial blueprint can be iteratively refined to a final
model to be implemented. The actual implementation is then carried out manually,
by using automatic code generation, or a mix of both.

An advantage of using formal descriptions like UML or SysML is that the initial
system models can already be subject to (automatic) correctness and plausibility

J. Seiter (B<)) » U. Kiihne
Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
e-mail: jseiter @informatik.uni-bremen.de; ulrichk @informatik.uni-bremen.de

R. Wille ¢ R. Drechsler

Institute of Computer Science, University of Bremen and Cyber-Physical Systems,
DFKI GmbH, 28359 Bremen, Germany

e-mail: rwille @informatik.uni-bremen.de; drechsle @informatik.uni-bremen.de

© Springer International Publishing Switzerland 2016 3
F. Oppenheimer, J.L. Medina Pasaje (eds.), Languages, Design Methods, and Tools

for Electronic System Design, Lecture Notes in Electrical Engineering 361,

DOI 10.1007/978-3-319-24457-0_1

mailto:jseiter@informatik.uni-bremen.de
mailto:ulrichk@informatik.uni-bremen.de
mailto:rwille@informatik.uni-bremen.de
mailto:drechsle@informatik.uni-bremen.de

4 J. Seiter et al.

checks. By this, inconsistencies and/or errors in the specification can be detected
even before a single line of code has been written. For this purpose, several
approaches have been introduced [3, 11, 12, 30, 31]. They tackle verification
questions such as “Does the conjunction of all constraints still allow the instantiation
of a legal system state?” or “Is it possible to reach certain bad states, good states,
or deadlocks?”. These verification tasks are typically categorized in terms such as
consistency, reachability, or independence [17].

However, these verification techniques are usually carried out on a single model
and, hence, are not sufficient for the typical model-driven design flow in which an
abstract model is generated first and iteratively refined to a more precise description.
Indeed, they enable the detection of errors and inconsistencies in one iteration,
but they need to be re-applied in the succeeding iteration even for minor changes.
Instead, it is desirable to check whether a refined model is still consistent to the
original abstract model. In this way, verification results from abstract models will
also be valid for later refined models.

For the creation of software systems, such a refinement process has already been
established. Here, frameworks such as the B-method [1], Event-B [2], and Z [34]
exist. These methods rely on a rigorous modelling using first-order logic. Exten-
sions, e.g., of Event-B to the UML-like UML-B or translations of UML to B
models, are available in [5, 29], respectively. But since the proof obligations
for a correct refinement in these frameworks are undecidable in general, usually
manual or interactive proofs must be conducted—a time-consuming process which
additionally requires a thorough mathematical background.

Hence, automatic proof techniques are desired. For this purpose, existing solu-
tions proposed in the context of hardware verification and the design and modelling
of reactive systems may be applied. Here, the relation of an implementation and
its specification (comparable to a refined and an abstract system) is traditionally
described by simulation relations on finite state systems (see, e.g., [7, 16, 21, 23]).
There exist algorithms for computing such relations [10, 25]. However, since these
algorithms operate on explicit state graphs, they do require the consideration of
all possible system states and operation calls—infeasible for larger designs. A
similar difficulty occurs when attempting to automatize the verification process
proposed by the B-method. In [20], an extension to the tool ProB has been proposed
which automatically solves all proof obligations created in the refinement process.
However, according to their evaluation, the run-time for the verification grows
exponentially.

As a consequence, an alternative solution is proposed in this chapter which
exploits the recent accomplishments in the domain of model-based verification
(i.e. approaches like [3, 11, 12, 30, 31]) using a symbolic state representation. Based
on a theoretical foundation of refinement, we can prove the preservation of safety
properties from an abstract model to a more detailed model. In contrast to the
existing approaches like in [24], this also includes non-atomic refinements, where
an abstract operation is replaced by a sequence of refined operations. By this, the
consistency of a refined model against an original (abstract) model can be checked
automatically.

1 Automatic Refinement Checking for Formal System Models 5

The remainder of the chapter is structured as follows. The chapter starts with
a brief review on models and their notation in Sect. 1.2. Section 1.3 describes
the addressed problem which, afterwards, is formalized in Sect. 1.4. The proposed
solution is introduced in Sect. 1.5 and its usefulness is demonstrated in Sect. 1.6
where it is applied to several examples and compared to the results from [20]. The
chapter is concluded in Sect. 1.8.

1.2 Models and Their Notation

Modelling languages provide a description of a system to be realized, i.e. proper
description means to formally define the structure and the behaviour of a system.
At the same time, implementation details which are not of interest in the early
design/specification state remain hidden. In the following, we briefly review the
respective description by means of UML and OCL. The approaches proposed in this
chapter can be applied to similar modelling languages (e.g. such as SysML) as well.

Definition 1. A model is a tuple m = (C, R) composed of a set of classes C and a
set of associations R. A class ¢ = (A, O,1) € C of a model m is a tuple composed
of attributes A, operations O, and invariants /. An n-ary association r € R of a
model m is a tuple r = (Fengs, Fmur) With association ends repgs € C" for a given set
of classes C and multiplicities rmu. € (INg x IN)" that is defined as a range with a
lower bound and an upper bound.

Example 1. Figure 1.1a shows a model composed of the class Phone which itself
is composed of the attributes A = {credit}, the operations O = {charge}, and the
invariant I = {i1}.

Invariants in the model describe additional constraints which have to be satisfied
by each instantiation of the model. For this purpose, textual descriptions provided
in OCL can be applied. OCL also allows the specification of the behaviour of
operations.

a
Phone
invit: - context Phone::charge()
ﬁ - dit: Int -
credit >= 0 credih. nieger post: credit > credit@pre
charge()

b c

p:Phone p:Phone

credit =15 credit =27

Fig. 1.1 Example of a model and its instantiation. (a) Given model; (b) State oy; (c) State o)

6 J. Seiter et al.

Definition 2. OCL expressions ® are textual constraints over a set of variables V 2
A x R composed of the attributes A of the respective classes, but also further
(auxiliary) variables. An OCL condition ¢ € ® is defined as a function ¢ : V — IB.
They can be applied to specify the invariants of a class as well as the pre- and
post-condition of an operation, i.e. I S ®. An operation o € O is defined as a
tuple 0 = (<, >>) with pre-condition < € @ and post-condition > € P, respectively.
The valid initial assignments of a class are described by a predicate init € .

Example 2. In the model from Fig. 1.1a, the invariant i1 states that credit always has
to be greater or equal to 0. The post-condition of the operation charge ensures that
after invoking the operation, credit is increased.

Any instance of a model is called a system state and is visualized by an object
diagram.

Definition 3. Object diagrams represent precise system states in a model. A system
state is denoted by o and is composed of objects, i.e. instantiations of classes. The
attributes of the objects are derived from the classes and assigned precise values.
Associations are instantiated as precise links between objects.

In order to evaluate a model, it is crucial to particularly consider whether system
states are valid or sequences of system states represent valid behaviour. This requires
the evaluation of the given OCL expressions.

Definition 4. For a system state o and an OCL expression ¢, the evaluation of ¢
in o is denoted by ¢(0). A system state o for a model m = (C,R) is called valid
iff it satisfies all invariants of m, i.e. iff A\ .c-1.(0). An operation call is valid iff
it transforms a system state o, satisfying the pre-condition to a succeeding system
state 0,41 satisfying the post-condition,! i.e. iff <i(0;) and t>(0;, 0,+1). A sequence
of system states is called valid, if all operation calls are valid.

Example 3. Figures 1.1b and ¢ show two valid system states (in terms of object
diagrams) for the model from Fig. 1.1a. This is a valid sequence of system states
which can be created by calling the operation charge.

1.3 Refinement of Models

Using the description means reviewed in the previous section allows for a formal
specification of a system to be implemented. By this, precise blueprints are available
already in the early stages of the design. A rough initial model is thereby created

'The post-condition is a binary predicate, since it can also depend on the source state, which is
expressed using @pre in OCL.

1 Automatic Refinement Checking for Formal System Models 7

first which covers the most important core functionality. Afterwards, a refinement
process is conducted in which a more precise model of the respective components
and operations is created. This refinement process may include

* the addition of new components and relations (i.e. classes and their associations),

 the extension of classes by new attributes,

 the extension of the behavioural description (i.e. the addition of new operations
as well as pre- and post-conditions and the strengthening of existing pre- and
post-conditions), and

* the extension of the constraints (i.e. the addition of new and the strengthening of
existing invariants).

Example 4. Consider the model from Fig. 1.2a representing a simple phone appli-
cation. It consists of a phone with a credit which can be charged by a corresponding
operation. A possible refinement of this model is depicted in Fig. 1.2b. Here, the
post-condition of the operation charge has been rendered more precise, i.e. a
parameter defining the amount of credits to be charged has been added.

Remark. Up to this point, we do not consider the refinement of associations and
operation parameters. This includes the type of association and the multiplicities
of the associations ends. However, this is not due to a technical limitation of
our approach which can easily be extended to further description means. Here,
we decided to focus on the refinement of attributes and operations, considering
in particular non-atomic refinement, as these are the most important modelling
elements in formal system specifications. Other kinds of refinement, e.g. for
operation parameters, can be conducted analogously.

In the following, we denote the abstract model by m* and the refined model by m'".
A refinement is described by a refinement relation defined as follows:

Definition 5. A refinement relation is a pair Ref = (Refy, Refq) with

* Refy, describing the refinement of the states, i.e. Refy, !is a function mapping a
refined state o” to its corresponding abstract state 0¢, and

* Refg describing the refinement of operations, i.e. Refg, is a function mapping an
abstract operation o to a sequence o} - 05 - -+ - - o} € (0" of refined operations.

Example 5. The refinement from the model in Fig. 1.2a to the model in Fig. 1.2b
is described by the relation Ref=(Refy,Refg). That is, each state ¢” in the

a Phone b RPhone
credit: Integer credit: Integer
charge() charge(cr: Integer)
T T
context Phoné::charge() context RPhone::chdrge(cr: Integer)
post: credit > credit@pre post: credit = credit@pre + cr

Fig. 1.2 Refinement step. (a) Abstract model; (b) Refined model

8 J. Seiter et al.

refined model (composed of objects from class RPhone) has one corresponding
state Refy, '(¢") = 0 in the abstract model (composed of objects from class Phone)
such that RPhone.credit = Phone.credit. Furthermore, the operation Phone::charge()
is refined so that Refg (Phone::charge()) = RPhone::charge(cr), i.e. a corresponding
operation with an additional parameter.

Adding details step by step—Ilike in the above example—is common practice
in model-driven design using UML or SysML. Nevertheless, during this manual
process, new errors might be introduced, leading to a refined model that is not
consistent with the abstract model any more. In fact, the refinement sketched above
contains a serious flaw.

Example 6. The refined model in Fig.1.2b allows for a behaviour that is not
specified by the abstract model. It is possible to assign a value equal to or less than
0 to the parameter cr, so that after calling the operation charge, the value of credit
does not change at all or even decreases. This contradicts the behaviour described
in the abstract model which only allows for a strict increase of that attribute. As a
possible repair of this inconsistency, the precondition pre: cr > 0 could be added to
the operation RPhone::charge(cr).

In order to identify and fix inconsistencies of the refinement, designers have to
intensely check the refined model against the abstract original—often a complicated
and cumbersome task which results in a manual and time-consuming procedure.
In the worst case, all components, constraints, and possible executions have to be
inspected. While this might be feasible for the simple model discussed above, it
becomes highly inefficient for larger models. Hence, in the remainder of this chapter
we consider the question “How to automatically check whether a refined model m”
is consistent with respect to the originally given abstract model m“?”

1.4 Theoretical Foundation

This section formalizes the problem sketched above. For this purpose, we exploit
the theoretical foundation of Kripke structures and their concepts of simulation
relations. We show how these concepts can be applied for the refinement of system
models provided e.g. in UML or SysML. This provides the basis for the proposed
solution which is described afterwards in Sect. 1.5.

Since we are considering models mostly in the context of software and hardware
systems, we assume bounded data types and a bounded number of instances in the
following.2 Based on these assumptions, the behaviour of a model can be described
as a finite state machine, e.g. a Kripke structure.

2This restriction is common in many approaches (e.g. [3, 11, 12, 30, 31]) and also justified by the
fact that, eventually, the implemented system will be realized by bounded physical devices anyway.

1 Automatic Refinement Checking for Formal System Models 9

Definition 6. A Kripke structure is a tuple £~ = (S, Sy, AP, £, —) with a finite set
of states S, initial states Sy C S, a set of atomic propositions AP, a labelling function
Z: 8§ — 2P| and a (left-total) transition relation —C S x S.

Using this formalism, we can define the behaviour of a UML or SysML model
and its operations as follows:

Definition 7. A model m = (C,R) induces a Kripke structure .7, =
(S, So,AP, £, —) with

* S being the set of all valid system states of m = (C, R),

* Sp being the set of initial states defined by the predicate init (cf. Definition 2),
ie. So = {o € S| init(0)},

* — being the transition relation including the identity (i.e. ¢ — o) as well as
all transitions caused by executing operations 0 = (<,>) € O of the model
(i.e. 01 — o0, with <(o7) and >(o1, 03)), and

e AP and .Z are defined s.t. .Z can be used to retrieve the values of the attributes
of o in the usual bit-vector encoding.

. . 2 .
We will write o 2 0, to make clear that an operation o transforms a state o; to a
state 0,.

With this formalization, we can make use of known results for finite and reactive
systems. To describe refinements in this domain, simulation relations are usually
applied for this purpose (see, e.g., [7, 10, 16, 21, 23, 25]). In this chapter, we adapt
this concept for the considered formal models. This leads to the following definition
of a simulation relation.

Definition 8. Let &/ = (So/, Sw0,APoy, L, — o) be a Kripke structure of an
abstract model and Z = (S, S0, AP%, L%, —2%) be a Kripke structure of a
refined model with AP O AP,,. Then, a relation H C S5 x S,/ is a simulation
relation iff

1. all initial states in the refined model have a corresponding initial state in the
abstract model, i.e. Vso € Sgzo3s; € Saro with H(so, s7,),

2. all states in the refined model are constrained by at least the same propositions
as their corresponding abstract state, i.e. Vs,s' : H(s,s') = ZLu(s) N AP, =
Z.(s"), and

3. all possible transitions in the refined model have a corresponding transition in
the abstract model leading to a corresponding succeeding state, i.e. Vs,s' :
H(s,s) => s >gt= 3 €Syst.s’ >t and H(t,).

We say that Z# is simulated by 7 (written as % < &), if there exists a simulation
relation.

Example 7. As an illustration of the above definition, Fig. 1.3a shows the general
scheme of a transition between states from a refined model (denoted by s and t)
and a corresponding transition in an abstract model (from s" to #'). The simulation
relation H is indicated by dashed lines. Figure 1.3b on the right shows an example

10 J. Seiter et al.

Fig. 1.3 Simulation relation. (a) Correspondence of states; (b) Example for simulation

for two Kripke structures. The abstract model is the one on the left-hand side and
simulates the refined model on the right-hand side. Initial states are marked by a
double outline. While all corresponding states agree on the atomic proposition p,
the refined model has an additional proposition ¢. It can easily be checked that for
each refined transition, there is a corresponding abstract one.

The simulation relation ensures that a refined model is consistent to an abstract
system, i.e. whatever the refined system does must be allowed by the abstract
system. Besides that, there might be more behaviour allowed in the abstract system
than implemented. If we have #Z < &7, then the traces of % are contained in those
of 7. This also means that globally valid properties of &/ carry over to %, as,
for example, the non-reachability of bad states. Hence, by proving that the applied
refinement Ref (cf. Definition 5) satisfies the properties of a simulation relation H,
the consistency of a refined model can be verified.

However, determining a simulation relation requires a strict step-wise correspon-
dence between the transition in the refined model and in the abstract one. But
refinements of UML or SysML models often include the replacement of a single
abstract operation by a sequence of refined operations (also known as non-atomic
refinement [6]). In order to formalize this, we need a more flexible relation. This is
provided by the notion of divergence-blind stuttering simulation (dbs-simulation).

Definition 9. Given two Kripke structures % and </ with AP4 2 AP, arelation
H C S% x S, is a divergence blind stuttering simulation (dbs-simulation) iff

1. V5o € Szods;, € S0 with H(so, 5),

2. Vs,s' 1 H(s,s') = Z#(s) NAPy = Loy(s'), and

3. each possible transition in the refined model corresponds to a sequence of 0 or
more abstract transitions, i.e. Vs,s' : H(s,s’) and s —4 ¢, then there exist
1.ty ..., (n > 0)such that s’ = 1y and Vi < n : t; =4 t;, | A H(s,) and
H(s',1).

We say that & is dbs-simulated by .o, written as #Z <qps 7, if there exists a

dbs-simulation.

Compared to the original simulation relation, this definition is less precise with
respect to the duration of specific operations. But, it still guarantees that the
functional behaviour of the refined model is consistent with the behaviour of the

1 Automatic Refinement Checking for Formal System Models 11

a b
S/:[O
AN
H N~ H
! AN (n=0)
AY
§—>1
=1 —1 t— 1,
\ K » -
| , - P
Hi // - //’H
| - -
‘///// /// (i’l>1)
S —> 1

Fig. 1.4 dbs—simulation relation. (a) Correspondence of states; (b) Example for dbs-simulation

abstract model—even in the absence of a (step-wise) one-to-one correspondence of
the transitions. In particular, if the properties of the dbs-simulation are satisfied, a
bad state unreachable in .7 is also unreachable in Z.

Example 8. In Fig. 1.4, the dbs-simulation relation is illustrated. The general
scheme of corresponding states and transitions is shown in Fig. 1.4a. In Fig. 1.4b,
the abstract model on the left-hand side dbs-simulates the refined model on the
right-hand side. Note that the transition from the initial state of the refined model
is a stuttering transition, since it corresponds to an empty sequence of transitions in
the abstract model.

The above definitions provide the formal foundation for consistency checks
of refinements. By referring to dbs-simulation, we can preserve safety properties
from an abstract model to a refined model. Hence, by proving that the actually
applied refinement Ref (c.f. Definition 5) indeed satisfies the properties of a dbs-
simulation H (cf. Definition9), the consistency of the refinement is shown. In the
next section, we describe how the refinement for UML or SysML models can
efficiently be checked.

1.5 Proposed Solution

In this section, we present the proposed solution to automatically check the refine-
ment of the model m? to the model m". As outlined above, we particularly require
that the applied refinement Ref satisfies the properties of a dbs-simulation H.
For this purpose, all (valid) system states as well as all possible operation calls
in those states need to be considered. Naive schemes, e.g., relying on enumer-
ating all possible scenarios are clearly infeasible for this purpose. Hence, we
propose an approach that maps the problem to an instance of satisfiability modulo
theories (SMT) and, afterwards, exploits the efficiency of corresponding solving
techniques (such as [9]).

12 J. Seiter et al.

To this end, we represent arbitrary system states and transitions for the abstract
model m® as well as the refined model m" together with their invariants and the
refinement relation Ref in terms of bit-vectors and bit-vector constraints. In the
same way, the verification objectives proving that the applied refinement Ref indeed
ensures dbs-simulation are encoded and checked automatically. In the following,
the resulting verification objectives are briefly sketched. Then, we illustrate how to
encode these in SMT.

1.5.1 Verification Objectives

As motivated in Sect. 1.3, we are interested in the relation between abstract
operations and their possibly non-atomic refinements. These operation refinements
are given as operation sequences according to Definition 5. By this, the refinement
check is reduced to the question of whether there is a sequence of operation
calls in the refined model that corresponds to a single call in the abstract model
(according to the given refinement relation), but violates the requirements of the
abstract operation. Unsatisfiability of such an instance shows that no such sequence
exists and, hence, the refinement is correct. Otherwise, a counterexample showing
the inconsistency is provided.

Based on this intuitive notion of refinement, we derive three verification objec-
tives that prove the correspondence of an abstract operation and its refined oper-
ations and are sufficient to prove dbs-simulation. By this, the preservation of
safety properties is guaranteed and the refinement is proven consistent. The three
objectives read as follows:

1. Check whether all initial states in the refined model indeed correspond to the
respective initial states in the abstract model, i.e.

Yoy : init(of) = init(Refy' (07)).

This check is illustrated in Fig. 1.5a.

2. For each step o} of the refined operation which transforms a refined state o7,
check whether this step does not lead to a succeeding state o} which is
inconsistent to its corresponding abstract states. In fact, the succeeding state o
either has to correspond to the unchanged abstract state or to its abstract state
which results after applying the corresponding abstract operation o, i.e. for each
step o]

,

o'
a .r r. a _r r 4 r
VYo, 0{,0; Refs (0 0]) Ao| = o)

= (Refz'(03) = 07 V (9pu(0) A e (0, Refz ' (03))))

1 Automatic Refinement Checking for Formal System Models 13

a Ga b G(l GU oa GU
0 1 1 2
I AN I I
I I I I
Refz | Refz | \\ Refz \/ | Refz | Refz
1 I AN I I
r r r r r
Op Gl *)r ('52 Gl *)r ('52
o1 o1
C “ 04
51 2)
NS -7
RN PR
Refs | NN -7 | Refy
| N N . , |
N SO P s ,
r r R ro r r
O ——> 9 Oj —> %11 Ok—1 ——> Ok
o} 0 Ok—1

Fig. 1.5 Verification objectives. (a) Initialization; (b) Single step correspondence; (¢) Chaining of
refined steps

is checked. This check is illustrated in Fig. 1.5b. These two objectives are already
sufficient to prove dbs-simulation. Nevertheless, a third objective is additionally
checked.

3. Check whether the joint effect of the refined operation sequence adheres exactly
to the specification of the abstract operation. That is, for each operation o“ and
its refinement o7 . . . 0},

o} oy,
a r r r . a r r r r r
Voi,0(,0,...004 Refs(of,0() Ao] — 0, ...00 = 014,

= (<l(,a (07) A D>ga(of, Refgl(a,:+1)))

is checked. This check is illustrated in Fig. 1.5¢c. This check particularly considers
the common UML or SysML refinement which often refines a single abstract
operation into a sequence of refined operations.

Together, these three objectives represent the verification tasks to be solved by
the respective solving engine. Next, we illustrate how they are encoded as an SMT
instance.

1.5.2 Basic Encoding

In order to represent arbitrary system states and transitions in an SMT instance, we
use an encoding similar to the ones previously presented, e.g., in [3, 11, 12, 30]
and particularly in [31]. Here, systems states (basically defined by the values of
their attributes) and links are represented by corresponding bit-vector variables.
Invariants are represented by corresponding SMT constraints. By this, it is ensured

14 J. Seiter et al.

that the solving engine only considers systems states o composed of objects
satisfying all invariants of the underlying class, i.e. I.(0).

In order to encode transitions caused by operation calls, bit vectors ; € BMNd(0D]
are created for each step 7 in the refined model. Depending on the assignment to ,
the respective pre-conditions and post-conditions have to be enforced. This can be
realized by a constraint

w; = enc(0) = <,(0]) A>o(0],0/4,),

where enc(o) represents a unique binary representation of the operation o, i.e. a
number from 0 to |O,| with enc(id) = 0. Furthermore, to ensure that only legal
values can be assigned to a vector @, we use a constraint w < |O,|.

We further introduce auxiliary predicates that reflect the relationship between
an abstract operation and its refined steps. For this purpose, the operation refine-
ment Ref, is utilized:

stepi(oa,oj) & Refq(0”) =01:02...0t Noj = 0;

[Refq (0"
step(0”, 0}) & \/ step;(0”, 0}).

i=1

Here, step;(0”, o;) evaluates to true iff the refined operation o; is the ith step in the
refinement of 0%, while step(o?, o)) reflects that o; occurs in any position in the
refinement of o“.

In order to encode the chaining of the refined operation steps according to the
scheme in Fig. 1.5¢, we define the predicate chain:

!
chain(o%) & /\ (step;(0%, 0]) A w; = enc(o}) V i > |Refq(0%)| A @; = enc(id)).

i=1

In the above formula, in order to cover all abstract operations in one instance, the
refined operation sequences are brought to the same maximal length / by filling up
the sequence with the identity function for operations where |Refq(0)| < 1. We
thereby make use of the maximum number of steps according to Refg, i.e. [=
max{|Refq (0%)| | 0* € 0“}. Next, the above “ingredients” are put together in order
to encode the verification objectives of a refinement.

1.5.3 Encoding the Verification Objectives

While the encodings from above ensure a proper representation of the models, sys-
tem states, and execution of operations in an SMT instance, finally the verification
objectives from Sect. 1.5.1 are encoded. In order to prove (1), we encode its negation

1 Automatic Refinement Checking for Formal System Models 15

and check for unsatisfiability, i.e.
dog, oy : Refs (0, 03) A init(o)) A —init(oy). (L.1)

To check (2), we try to determine a refined operation call that cannot be matched
with one of the schemes in Fig. 1.5b. Hence, instead of encoding (2) for each
individual refined operation, we let the solving engine choose a refined step that
violates the requirements, i.e.

dof,05,01,05,0, 0" Refs(0],0]) Aw; = enc(o”)
A step(o”, 0") A Refs (03, 07)
A= (of =05 V < (0]) A >pa(of, 05)). (1.2)

That is, we check that, given a pair of corresponding states and an operation call
in the refined state, whether it is possible that the reached refined state neither
corresponds to the original abstract state nor does it satisfy the specification of
the abstract operation. In case this instance is unsatisfiable, objective (2) has been
proven.

Finally, for (3) we need to check whether we can determine an instantiated
sequence of refined operation calls, such that their joint effect does not adhere to
the specification of the respective abstract operation. For this purpose, we use the
chain predicate as defined in the previous section to construct the unrolled operation
sequence, i.e.

Joi', 05,00 ...0/,,,0% 0] ...0] :Refs (o], 07) A chain(o”) A Refs (07,07,)
A= (< (0]) A oalof, 074 1)) - (1.3)

That is, we are searching for a chain of / 4+ 1 refined states and connected by !/
operation calls such that there are no corresponding abstract states which satisfy the
pre- and post-conditions of the respective abstract operation. Unsatisfiability proves
that no such chain exists and, hence, objective (3) holds.

1.6 Evaluation

The approach presented in this chapter has been implemented in Java, using the
SMT solver Boolector [9] as underlying solving engine. In order to evaluate the
applicability and scalability of our approach, we have applied it to two systems
based on examples presented in [1]. For the sake of comparison, these examples
have additionally been verified using the previously proposed B method following
a manual as well as an automatic scheme [20].

The first example describes an access control system (AC) which is employed
to grant access to a building when presented with an authorized ID by a user.
Two refinement steps have been modelled, a correct and an erroneous one, which
are depicted in Fig. 1.6 together with the abstract model. All types of refinement

16 J. Seiter et al.

pre: self.auth->includes(p.card_id)
post: p.valid = self

b [context RBuilding::check(p: RPerson)j

1
RBuilding
a auth: Sequence(Integer)
Building check(id: Integer)
auth: Sequence(Integer) |
RPerson
| card_id: Integer
Person sit: RBuilding
card_id: Integer valid: RBuilding
sit: Building pass(b: RBuilding)
pass(b: Building) T
T

. context RPerson::pass(b: RBuilding)
context Person::pass(b: Building) pre: self.sit <> b
pre: self.sit <> b pre: self.valid = b
pre: b.auth->includes(self.card_id) post: self.sit=b
post: self.sit=b post: self.valid <> b
C

context RRPerson::enter(b: RRBuilding)
pre: self.sit <> b

pre: self.valid = b

pre: b.log->excludes(self)

post: b.log->includes(self)

1
RRPerson

card_id: Integer RRBuilding
sit: RRBuilding auth: Sequence(Integer)
valid: RRBuilding log: Sequence(RRPerson)
enter(b: RRBuilding) check(p: RRPerson)
leave(b: RRBuilding) :

T

pre: self.sit = b pre: self.auth->includes(p.card_id)

pre: b.log->includes(self) post: pvalid = b
post: self.sit <> b
post: self.valid <> b

context RRPerson::leave(b: RRBuilding) context RRBuilding::check(p: RRPerson) j

Fig. 1.6 Access control system. (a) Abstract model; (b) First refinement; (¢) Second refinement

presented in this chapter have been applied to this model, i.e. attribute refinement as
well as atomic and non-atomic operation refinement.

Table 1.1 provides the sizes of the three models (denoted by ACO, AC1, and
AC2), i.e. the number of classes, attributes, operations, and OCL constraints are
listed. As can be seen, the abstract model (ACO) and the two refined models
(AC1, AC2) are relatively small regarding the number of UML elements. Only the
number of OCL constraints increases slightly as the added and refined operations
are extended.

In order to compare our work to the traditional B approach, we re-modelled
this example in B and verified the refinement manually, using the event-B tool

1 Automatic Refinement Checking for Formal System Models 17

Table 1.1 Size of examples Model |#Classes |#Attributes | #Operations #Constraints

ACO 2 3 1 3
ACI 2 4 2 6
AC2 2 5 3 10
MPCO |2 2 4 12
MPC1 |2 6 12 40
MPC2 |2 8 16 52
MPC3 |2 8 16 60

Rodin. The first refinement step led to a total of 14 proof obligations that had to
be discharged. While five of them could be proven fully automatically and some
further proofs needed only minor effort, the remaining ones required rather complex
interactions like manually entered hypotheses or case splitting. Furthermore, the
event-B model required additional invariants. This became particularly crucial for
the second refinement which, due to the non-atomic nature of the refinement
conducted here, could not be modelled in a straight-forward fashion in event-B.

In contrast, both steps could be automatically verified in negligible time by the
approach proposed in this chapter. The non-atomic refinement did not lead to an
increased run-time in this case.

The second example is a mechanical press controller (MPC), which has also been
used to evaluate the automatic verification approach in [20] with the tool ProB. It
describes a mechanical press with a motor, a clutch, and a door which interact in
such a way as to guarantee a safe use. As in [20], we have modelled the first three
refinement steps in UML and verified them with the proposed SMT-based approach.
Here, the refinement contains the introduction of new attributes and constraints as
well as atomic operation refinement. All three refinement steps have been proven to
be correct.

Again, the size of the abstract model and its refinements is shown in Table 1.1
(denoted by MPCO, MPC1, MPC2, and MPC3). In contrast to the first example,
the amount of attributes and operations as well as the number of OCL constraints
increases. Especially the growing number of operations is important, since, for the
SMT-based approach, each of these operations has to be verified according to the
criteria presented earlier.

Table 1.2 shows the run-times of our experiments compared to those of ProB.
The first two columns indicate which models have been verified against each other.
The third and fourth columns contain the run-times of ProB without and with XSB
Prolog taken from [20]. In [20], the ProB tool has already been compared to an
automatic refinement verification approach based on CSP (namely [18]) which was
clearly outperformed by ProB.

Again, the proposed approach proved the correctness of all three refinement steps
in negligible time whereas the run-time of ProB was much larger. Also, with and
without XSB Prolog, ProB’s run-time increased drastically with every step in the

18 J. Seiter et al.

Table 1.2 Experimental results

Run-time
Abstract | Refined | ProB (s) ProB+XSB (s) SMT-based (s)
ACO AC1 - - <0.01
ACl1 AC2 - - <0.01
MPCO MPCl1 6.28 2.85 <0.01
MPCl1 MPC2 70.57 26.66 <0.01
MPC2 MPC3 |333.85 |136.12 <0.01

refinement process. A similar development has not been observed for the SMT-
based method so far.

These experiments confirm that our approach is robust in such a way that it
is applicable to various types of models and refinements. Neither errors in the
refinement process nor the type of operation refinement—atomic or non-atomic—
have a significant influence on the run-time.

1.7 Discussion: Extraction of a Refinement Relation

While the approach presented in Sect. 1.5 serves very well to prove the consistency
of a given refinement relation, it may not always be applicable. In order to
verify a refinement step, a refinement relation is necessary; otherwise, none of the
verification objectives can be checked. However, such a relation may not be present
in case that several designers are involved in the modelling process or the refinement
process has not been documented.

In this case, methods to extract a refinement relation from the given models are
required. The goal of such an extraction is not to obtain any arbitrary relation, but
a correct relation based on the criteria presented in Sect. 1.5.1. In the following, we
will discuss some related approaches from the literature before sketching some ideas
how such an extraction could be realized in the setting of this chapter.

1.7.1 Existing Approaches

In the past, different approaches to retrieve traceability or refinement information
have been proposed. Several works focus on information retrieval techniques
[4, 19, 22]. Here, the basic idea is to identify textual similarities which may refer to
the same concepts. Some of these works focus on relations between different levels
of abstraction, e.g. between code and documentation. However, since information
retrieval relies on textual similarities, re-naming model elements is a huge problem
which might well occur during refinement. Egyed presents a structural analysis

1 Automatic Refinement Checking for Formal System Models 19

to determine traceability links in [15]. He uses abstraction rules to map classes,
attributes, and association. This method works on UML only without considering
OCL constraints specifying the operations’ behaviour. Briand et al. discuss the use
of information gathered by monitoring the designer’s modifications as a means to
retrieve traceability links in [8]. Like in the approaches mentioned so far, the model’s
behaviour is not considered in particular.

The authors of [14] propose an adaptation of the algorithm from [26] by
Robinson. They apply Robinson’s approach to Z refinements and encode it in a
model checker. Another extension of the same algorithm can be found in [27],
relying on the same mechanism. A relation R containing all potential mappings is
step-wise reduced by incorrect mappings until either a correct relation is determined
or the all mappings have been removed. Although these approaches do in fact
consider the specified behaviour, depending on the variation of the algorithm, the
whole system has to be simulated. Since in the beginning R contains all pairs of
states, the method does not scale to larger systems.

1.7.2 SMT-Based Relation Extraction

The related approaches discussed above are either of heuristic nature—and therefore
incomplete—or they try to solve the problem in an exact way. In the latter case,
representing the refinement relation explicitly is infeasible for larger models. Since
the encoding of the refinement verification in SMT has proven very successful in
terms of scalability, the question is if this approach could also be used to extract a
correct refinement relation.

To understand the complexity of the problem, it is useful to view it in the context
of automatic synthesis. Verifying a model wrt. some specification is conceptually
easier than synthesizing a model which satisfies this specification. In our case, this
is reflected in the complexity of the SMT encoding needed to solve the respective
problem. The verification of a given refinement relation can be encoded in a purely
existentially quantified formula, that checks or falsifies the existence of some pairs
of states which violate the refinement relation. Intuitively, the extraction of a correct
relation demands one quantifier more: Does there exist some relation such that for
all pairs of states it verifies the refinement of our models? Thus, the problem cannot
be solved in a complete manner using a quantifier-free SMT encoding.

While there are some solvers that support quantified formulae—such as
Z3 [13]—the run-time and memory foot-print increase significantly with each
additional quantifier alternation. Alternatively, a two-stage approach can be used
that relies solely on quantifier-free encodings:

1. Find some pair of states and a relation which proves their refinement
2. Check if the found relation is a correct refinement relation
3. If yes, we are done. Otherwise continue with step 1

20 J. Seiter et al.

In the sketched algorithm, possible relations are enumerated by the underlying
solver until a correct refinement is found. The verification in step 2 has already
been solved in this chapter. The algorithm terminates in case of success or if no
more relation can be found in step 1. In the latter case, we can be sure that the two
models do not represent a correct refinement.

The effectiveness of the sketched approach critically depends on the first step. In
the worst case, the algorithm will enumerate a huge number of incorrect relations
that will be rejected by the second step. Additional constraints can help to reduce
the number of iterations, but will in the same time increase the complexity of the
first step. As a promising direction, sequence diagrams—representing test cases of
the refined model—can be used to narrow down the set of candidate relations. If
a correct refinement exists, it must also be applicable on a feasible run of the two
models. This approach is subject to ongoing and future research.

1.8 Conclusions

In this chapter, we proposed an automatic approach which proves refinements of
UML or SysML class diagrams. By this, we are considering the typical model-
driven design flow which usually assumes an initial (abstract) model that is
iteratively refined to a more precise representation. Based on a theoretical founda-
tion, we introduced an SMT encoding checking whether the respective refinement
relation represents a dbs-simulation and, hence, preserves (safety) properties from
the abstract model to the refined model. We compared our approach to the tool ProB,
which performs automatic refinement verification on B models. An experimental
evaluation has shown that the SMT-based technique can verify refinements much
faster and scales better than the B-based method.

For future work, we plan to extend our approach in order to support more
modelling elements such as refinement of associations or parameters.

Acknowledgements This work was supported by the Graduate School SyDe (funded by the
German Excellence Initiative within the University of Bremen’s institutional strategy), the German
Federal Ministry of Education and Research (BMBF) within the project SPECifIC under grant no.
01IW13001, as well as the German Research Foundation (DFG) within the Reinhart Koselleck
project under grant no. DR 287/23-1 and a research project under grant no. WI 3401/5-1.

References

1. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University Press,
New York (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn. Cambridge
University Press, New York (2010)

10.

11.

12.

17.

18.

19.

20.

21.

22.

23.

Automatic Refinement Checking for Formal System Models 21

. Anastasakis, K., Bordbar, B., Georg, G., Ray, .. UML2Alloy: A challenging model

transformation. In: International Conference on Model Driven Engineering Languages and
Systems, pp. 436-450. Springer, New York (2007)

. Antoniol, G., Canfora, G., Casazza, G., Lucia, A.D., Merlo, E.: Recovering traceability links

between code and documentation. IEEE Trans. Softw. Eng. 28, 970-983 (2002)

. Ben Ammar, B., Bhiri, M.T., Souquieres, J.: Incremental development of UML specifications

using operation refinements. Innov. Syst. Softw. Eng. 4(3), 259-266 (2008). doi:10.1007/
$11334-008-0056-1

. Boiten, E.A.: Introducing extra operations in refinement. In: Formal Aspects of Computing,

Springer London, pp. 1-13. Springer, London (2012)

. Braunstein, C., Encrenaz, E.: CTL-property transformations along an incremental design

process. Int. J. Softw. Tools Technol. Transfer 9(1), 77-88 (2006). doi:10.1007/
$10009-006-0007-9

. Briand, L.C., Labiche, Y., Yue, T.: Automated traceability analysis for uml model refinements.

Inf. Softw. Technol. 51, 512-527 (2009)

. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and arrays. In:

Tools and Algorithms for Construction and Analysis of Systems, pp. 174—177. Springer, Berlin
(2009)

Bulychev, P., Konnov, L.V., Zakharov, V.A.: Computing (bi)simulation relations preserving
CTL for ordinary and fair kripke structures. In: Mathematical Methods and Algorithms,
vol. 12, pp. 59-76. Institute for System Programming, Russian Academy of Science (2006)
Cabot, J., Claris6, R., Riera, D.: Verification of UML/OCL class diagrams using constraint
programming. In: IEEE International Conference on Software Testing Verification and
Validation Workshop, pp. 73-80 (2008)

Cadoli, M., Calvanese, D., Giacomo, G.D., Mancini, T.: Finite Model Reasoning on UML
Class Diagrams Via Constraint Programming. In: R. Basili, M.T. Pazienza (eds.) AI*IA.
Lecture Notes in Computer Science, vol. 4733, pp. 36—47. Springer, Berlin (2007)

. De Moura, L., Bjgrner, N.: Z3: An efficient smt solver. In: Proceedings of the Theory and Prac-

tice of Software, 14th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’08/ETAPS’08, pp. 337-340. Springer, Berlin/Heidelberg
(2008). URL http://dl.acm.org/citation.cfm?id=1792734.1792766

. Derrick, J., Smith, G.: Using model checking to automatically find retrieve relations. Electron.

Notes Theor. Comput. Sci. 201, 155-175 (2008)

. Egyed, A.: Consistent adaptation and evolution of class diagrams during refinement. In:

Fundamental Approaches to Software Engineering (2004)

. Glabbeek, R.: The linear time - branching time spectrum. In: J. Baeten, J. Klop (eds.) CON-

CUR ’90 Theories of Concurrency: Unification and Extension. Lecture Notes in Computer
Science, vol. 458, pp. 278-297. Springer, Berlin/Heidelberg (1990)

Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, independence and consequences in
UML and OCL models. In: Tests and Proofs, pp. 90-104. Springer, Berlin (2009)

Goldsmith, M., Roscoe, B., Armstrong, P.: Failures-Divergence Refinement - FDR2 User
Manual (2005)

Hayes, J.H., Dekhtyar, A., Osborne, J.: Improving requirements tracing via information
retrieval. In: IEEE International Requirements Engineering Conference (2003)

Leuschel, M., Butler, M.: Automatic Refinement Checking for B. In: International Conference
on Formal Engineering Methods (2005)

Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S., Probst, D.: Property preserving
abstractions for the verification of concurrent systems. Form. Method. Syst. Des. 6(1), 11-44
(1995)

Natt och Dag, J., Regnell, B., Carlshamre, P., Andersson, M., Karlsson, J.: A feasibility study
of automated natural language requirements analysis in market-driven development. Requir.
Eng. 7,20-33 (2002)

Nejati, S., Gurfinkel, A., Chechik, M.: Stuttering abstraction for model checking. In: Software
Engineering and Formal Methods, pp. 311-320. Springer, Berlin (2005)

http://dl.acm.org/citation.cfm?id=1792734.1792766

22

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

J. Seiter et al.

Pons, C., Garcia, D.: Practical verification strategy for refinement conditions in UML models.
In: Advanced Software Engineering: Expanding the Frontiers of Software Technology. IFIP
International Federation for Information Processing, vol. 219, pp. 47-61. Springer, Berlin
(2006)

Ranzato, F., Tapparo, F.: Computing stuttering simulations. In: Concurrency Theory (CON-
CUR). Lecture Notes in Computer Science, vol. 5710, pp. 542-556. Springer, Berlin (2009)
Robinson, N.J.: Finding abstraction relations for data refinement. Technical Report, Software
Verification Research Center, The University of Queensland (2003)

Robinson, N.J.: Incremental derivation of abstraction relations for data refinement. In: Formal
Methods and Software Engineering. IEEE Computer Society, Los Alamitos (2003)
Rumbaugh, J., Jacobson, 1., Booch, G.: The Unified Modeling Language reference manual.
Addison-Wesley Longman, Essex (1999)

Snook, C., Butler, M.: UML-B: formal modeling and design aided by UML. ACM Trans.
Softw. Eng. Methodol. 15(1), 92-122 (2006)

Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying UML/OCL models
using Boolean satisfiability. In: Design, Automation and Test in Europe, pp. 1341-1344. IEEE
Computer Society, New York (2010)

Soeken, M., Wille, R., Drechsler, R.: Verifying dynamic aspects of UML models. In: Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1-6 (2011)

Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with UML.
Addison-Wesley Longman, Boston, MA (1999)

Weilkiens, T.: Systems Engineering with SysML/UML: Modeling, Analysis, Design. Morgan
Kaufmann, San Francisco, CA (2008)

Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-Hall, Upper
Saddle River, NJ (1996)

	1 Automatic Refinement Checking for Formal System Models
	1.1 Introduction
	1.2 Models and Their Notation
	1.3 Refinement of Models
	1.4 Theoretical Foundation
	1.5 Proposed Solution
	1.5.1 Verification Objectives
	1.5.2 Basic Encoding
	1.5.3 Encoding the Verification Objectives

	1.6 Evaluation
	1.7 Discussion: Extraction of a Refinement Relation
	1.7.1 Existing Approaches
	1.7.2 SMT-Based Relation Extraction

	1.8 Conclusions
	References

