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    Abstract     Numerous bacterial and parasitic pathogens may be transmitted through 
food and included in that group are zoonotic pathogens that not only proliferate 
within domesticated animals but may also be resident within wildlife. As a result of 
wildlife being a pathogen reservoir and the ability of this animal group to easily 
intrude on farms, wildlife contributes to the maintenance of infections on domestic 
farms as well as serves as an environmental source of fresh produce contamination. 
To discern the degree to which wildlife represents a food safety risk, this overview 
fi rst summarizes those documented incidents in which contaminated wildlife has 
been directly or indirectly associated with human illness. It continues with provid-
ing a set of tables that document the results of studies directed at assessing the 
prevalence of bacterial, parasitic, and viral pathogen contamination in mammals, 
birds, and amphibians and reptiles. To understand the strengths and limitations of 
those surveillance studies, discussion is included that describes how sample source, 
cultivation conditions, sample size and number, and specifi city of the detection 
method may impact the data collected. Discussion on factors that contribute to 
pathogen transmission to wildlife are also presented and include the physiological 
state of the animal, behavioral features of the animal that contribute to intra- and 
interspecies interactions, seasonal effects on transmission, and management prac-
tices applied to wildlife or domestic animals. The overview concludes with a section 
directed at discussing other drawbacks to pathogen contamination of wildlife and 
includes contamination of water sources and wildlife serving as a reservoir for anti-
biotic resistance and emerging pathogens.  
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        Introduction 

 Foodborne pathogen contamination of edible horticultural crops, often consumed 
raw or minimally processed (e.g., fruits, nuts, and vegetables), has over the past few 
decades been increasingly linked to foodborne illnesses, outbreaks, and recalls 
(Batz et al.  2012 ; Berger et al.  2010 ). Although there are over 250 pathogens and 
toxins that can be transmitted by food, 31 are classifi ed as major foodborne patho-
gens (Scallan et al.  2011 ), and included among that group are  zoonotic   pathogens or 
pathogens that affect multiple animal species. Moreover, those bacterial and para-
sitic pathogens that contribute to the greatest proportion of illnesses and outbreaks 
in humans ( Campylobacter jejuni , nontyphoidal  Salmonella enterica , Shiga toxin- 
producing  Escherichia coli ,  Listeria monocytogenes ,  Cryptosporidium ) are largely 
attributed to their proliferation within domesticated animals. However, wild animals 
may also serve as a reservoir of zoonotic pathogens affecting humans and domesti-
cated animals. It has been reported that 26 % of human pathogens infect both 
domestic and wild animals (Cleaveland et al.  2001 ) and, therefore, there is concern 
that wildlife contributes to the maintenance of infections on domestic animal farms 
(Liebana et al.  2003 ). Given the ease with which wild animals may intrude and 
defecate in produce fi elds, this group of animals has also raised concern that they 
are a likely environmental source for contamination of fresh produce (Jay-Russell 
 2013 ; Langholz and Jay-Russell  2013 ). 

 Another food safety risk from infection of wild animals by human pathogens is the 
consumption of their meat when the animal is killed and not properly dressed and 
cooked. Moreover, another potential consequence of pathogen contamination of wild-
life is their potential to serve as a reservoir for emerging diseases. For example, 
approximately 75 % of all diseases, including zoonoses which have emerged in the 
last few decades, are of wildlife origin (Jones et al.  2008 ). Based on the concerns 
associated with foodborne pathogens in wildlife populations, this chapter will provide 
an overview of this subject and recount some of the incidents in which contaminated 
wildlife has been directly or indirectly associated with human illness, summarize 
some of the data collected on the prevalence of foodborne pathogens in wildlife, 
briefl y address factors that affect prevalence levels in wildlife, and fi nally touch on 
other drawbacks to pathogen contamination of wildlife that adversely affect humans. 
The material presented in this chapter is not intended to be comprehensive but to pro-
vide a basic understanding of the subject on which subsequent chapters will expand.  

    Illnesses/Outbreaks Attributed to Contamination of Wildlife 

    Direct  Association  : Consumption of Contaminated Meat 

 Prior to the domestication of animals, wild animals served as the major source of 
protein for humans. Today, this proportion has decreased dramatically, but con-
sumption of wild game and reptile meat continues to occur by groups that value 
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these animals for subsistence or sport hunting. As a result, there are multiple reports 
whereby consumption of contaminated meat has been directly linked to human ill-
ness (Table  1.1 ). Additional incidents of infections associated with consumption of 
reptile meat have also been tabulated in the review of Magnino et al. ( 2009 ).

   In some cases, zoonotic pathogens (e.g.,   Brucella    spp.,   Trichinella    spp.) have 
been controlled in domestic livestock herds in developed countries, but continue to 
circulate in wild animal populations and cause human infections via consumption of 
mishandled or undercooked game meat. For example, swine  Trichinella  infection 
has been virtually eliminated in US swine raised in confi nement, but human cases 
are still reported due to transmission via feral swine, bear, and other wild game 
meat. Additionally, concerns have been raised regarding the potential for infected 
wild animals to spread the parasite to domestic swine raised outdoors for “pastured 
pork,” a growing niche market (Burke et al.  2008 ). 

 An important point to acknowledge, however, is that with many of these food-
borne pathogens, the potential for causing illness and the severity of disease will 
depend on the strain. For example, genotypes 1 and 2 of hepatitis E virus are 

   Table 1.1    Examples of reports documenting links between human illnesses/outbreaks and 
consumption of pathogen-contaminated wildlife   

 Source  Pathogen 
 Evidence for linkage between 
wildlife and human illness  Reference 

 Deer jerky   E. coli  O157:H7  PFGE patterns of isolates from the 
patients, jerky, and source deer were 
identical 

 Keene et al. 
( 1997 ) 

 Undercooked 
venison 

 PFGE pattern of the uncooked 
venison isolate was 
indistinguishable from the pattern 
of the clinical isolate 

 Rabatsky-Ehr 
et al. ( 2002 ) 

  Deer sausage   PFGE patterns of isolates from deer 
sausage and patients were identical 

 Ahn et al. 
( 2009 ) 

 Undercooked 
venison 

  E. coli  O103:H2 
and O145:NM 

 PFGE patterns of isolates from 
patients and venison were 
indistinguishable 

 Rounds et al. 
( 2012 ) 

 Uncooked liver 
from wild boar 

 Hepatitis E  Two patients eating the liver 
contracted the illness but none of 
the liver remained for analysis of 
pathogen contamination 

 Matsuda et al. 
( 2003 ) 

 Raw deer meat  DNA sequence from leftover frozen 
deer meat was 99.7–100 % identical 
to the viruses recovered from the 
four human patients 

 Tei et al. ( 2003 ) 

 Wild boar meat  Genotype 3 hepatitis E virus RNA 
was detected in both patient serum 
and wild boar meat 

 Li et al. ( 2005 ) 

 Wild boar meat   Trichinella 
spiralis  

 47 Thai patients became ill after 
eating wild boar meat. Encysted 
 Trichinella  larvae were identifi ed in 
implicated meat 

 Marva et al. 
( 2005 ) 

   PFGE  pulsed-fi eld gel electrophoresis  
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restricted to humans and associated with epidemics in developing countries, whereas 
typically sporadic cases are associated with the zoonotic genotypes 3 and 4 (Meng 
 2011 ). As another example, most human illnesses are caused by only three of the 
serotypes (1/2a, 1/2b, and 4b) of   L. monocytogenes    (Jay-Russell  2013 ).  

    Indirect Association: Contamination of Produce Fields 

 Attention to wild animals serving as a vector for pathogen contamination of produce 
fi elds arose following the highly publicized 2006  Escherichia coli  O157: H7   outbreak 
associated with ready-to-eat packaged baby spinach that was traced to one fi eld in the 
central California coast (Jay et al.  2007 ). In that outbreak, the outbreak strain was 
isolated from both domestic cattle and feral swine sharing rangeland adjacent to the 
implicated spinach  fi eld  . Moreover, evidence of intrusion by the feral swine, includ-
ing tracks, rooting, or feces in crop fi elds and adjacent vineyards, was documented. 

 Other cases that have implicated wild animals as potential sources of contamina-
tion of fi eld crops and subsequent infection of humans have been documented. In 
Finland in 2004, schoolchildren became ill after eating a carrot–white cabbage mix-
ture, with  Yersinia pseudotuberculosis  identifi ed as the likely cause for illness 
(Kangas et al.  2008 ). Traceback of the carrots to the processor and farms growing 
the carrots revealed the presence of this bacterium in one environmental sample 
from the carrot-peeling processing line and from a pooled sample of common shrew 
intestines collected from one of the farms. In Alaska, 63 cases of laboratory- 
confi rmed   C. jejuni  infections   that occurred in 2008 were associated with the con-
sumption of raw shelled peas (Gardner et al.  2011 ). Pulsed-fi eld gel electrophoresis 
(PFGE) patterns of clinical isolates, and pea and Sandhill crane fecal samples taken 
from the implicated pea farm located near a crane stopover and breeding site, were 
indistinguishable. Finally, in Oregon in 2011, 14 cases of laboratory-confi rmed  E. 
coli  O157: H7   infections were associated with consuming strawberries purchased at 
roadside stands or farmers' markets (Laidler et al.  2013 ). A single farm was identi-
fi ed as the source of the contaminated strawberries, and environmental samples con-
taining visible deer pellets that were collected at the farm were indistinguishable 
from the outbreak pattern by PFGE. 

        Prevalence of   Foodborne Pathogens in Wildlife 

  Over  the years, numerous studies have been conducted to address the prevalence of 
bacterial, parasitic, and viral pathogens in wildlife. Initial studies were focused pri-
marily on assessing the degree of contamination resident within an animal’s popula-
tion solely, whereas studies more recently have focused on understanding the factors 
that contribute to the prevalence in wildlife. For this review, nearly 90 % of the data 
items included in Tables  1.2 ,  1.3 , and  1.4 , covering prevalence of foodborne patho-
gens in various groups of animals, were obtained from studies conducted in the past 
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10 years. Results from earlier studies were included to provide an example of a 
particular animal type or pathogen that may not have been addressed in a recent 
study. However, there is the possibility that data from older studies are no longer 
relevant if conditions under which they occurred no longer exist. Additional exam-
ples of the prevalence of foodborne pathogens in wildlife have been reviewed in 
other publications (Simpson  2002 ; Meerburg and Kijlstra  2007 ; Benskin et al.  2009 ; 
Ferens and Hovde  2011 ; Langholz and Jay-Russell  2013 ). In those reviews as well 
as the data presented in Tables  1.2 ,  1.3 , and  1.4 , one observation that is pervasive is 
the wide range of frequency that foodborne pathogens are detected in wildlife. In 
the following section, to understand the limitations and strengths of different stud-
ies, factors that contribute to pathogen detection in wildlife are discussed. 

         Factors Affecting Prevalence Levels in Wildlife 

    Methodology Used for Surveillance 

   Sample source   . One of the common types of samples collected to assess the preva-
lence of foodborne enteric bacterial pathogens in wildlife is fecal pellets. The 
assumption in collecting this type sample is that the enteric pathogen either survives 
in or colonizes the gut of the animal and then is shed with the feces. Studies based 
on this type of sample, however, may be underestimating the prevalence due to a 
number of shortcomings. First and foremost is the possibility that contaminated 
wild animals may only intermittently shed the pathogen as has been reported for 
pigeons (De Herdt and Devriese  2000 ). Negative results may also occur when 
delays in collection of the fecal pellets occur but would vary with the pathogen as 
they have different degrees of susceptibility to desiccation. Moreover, in collecting 
fecal waste, there is the assumption that it represents the population at large and that 
may not be the case, especially if the animals become sick upon infection. 
Additionally, even a trained biologist may not be able to identify the source of the 
fecal material on the ground, which may require another method such as wildlife 
trail cameras or the use of genetic markers to accurately identify feces from differ-
ent animals. Cloaca or rectum swabs are therefore more accurate in assessing 
whether carriage of the pathogen by the animal is occurring, but these require cap-
ture of the animals. Only on rare occasions are the animal's extremities sampled 
(Burt et al.  2012 ) to determine if the animal is serving as a pathogen vector. 

   Cultivation bias .   To detect low levels of bacterial pathogens in a matrix such as 
feces or food, it is common practice to enrich the sample in a culture broth to 
increase their numbers and then qualitatively detect their presence using either 
selective media for colony isolation or a polymerase chain reaction (PCR) assay to 
screen for the pathogen's DNA. Critical to this approach is the assumption that via-
ble pathogen cells will multiply under the enrichment conditions in the allotted time 
frame. Unfortunately, it has been observed that   Salmonella    strains vary in their abil-
ity to grow in enrichment cultures containing bovine feces (Singer et al.  2009 ), with 
strains of serogroups C2 and E more likely to dominate in enrichment culture 
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    Table 1.2    Prevalence of zoonotic pathogens in mammals   

 Pathogen 
 Sample description with % prevalence of total 
number of samples tested in parentheses  Reference 

  Campylobacter 
jejuni  

 Rectal samples from  hares  (4.3 % of 23) in 
woodlands 

 Rosef et al. ( 1983 ) 

 Rectal samples from  rodents  including wood 
mouse and bank vole (0.0 % of 44) in 
woodlands 
 Colon, intestinal, or muscle samples from 
 rodents  including brown rat, house mouse, and 
yellow-necked mouse (4.5 % of 201) on nine 
pig farms and fi ve chicken farms 

 Backhans et al. ( 2013 ) 

  Campylobacter  
spp. 

 Fecal samples from  deer  (19.5 % of 113) in 
Oldman River watershed, Alberta, Canada 

 Jokinen et al. ( 2011 ) 

 Fecal samples from  red deer  (0.0 % of 295), 
 wild boar  (65.5 % of 287), and  other ungulates  
including fallow deer and moufl on (0.0 % of 9) 
in south-central Spain 

 Díaz-Sánchez et al. 
( 2013 ) 

 Rectal swabs of  wild boars  (43.8 % of 121) and 
 Sika deer  (0.0 % of 128) in Japan 

 Sasaki et al. ( 2013 ) 

  Clostridium 
diffi cile  

 Fecal samples from  feral swine  (4.4 % of 161) 
in North Carolina 

 Thakur et al. ( 2011 ) 

 Paws, tail, and snout from  house mouse  (66.0 
% of 53) on pig farm 

 Burt et al. ( 2012 ) 

 Colons from  rats  (13.1 % of 724) in inner-city 
neighborhood of Vancouver, Canada 

 Himsworth et al. ( 2014 ) 

 Enteropathogenic 
 E. coli  (EPEC), 
Shiga toxin- 
producing  E. coli , 
enterohemorrhagic 
 E. coli  

 Fecal samples of  roe deer  (17.3 % of 52) and 
 red deer  (13.6 % of 81) in Belgium 

 Bardiau et al. ( 2010 ) 

 Shiga toxin-
producing  E. coli  
(STEC) 

 Fecal pellets from  rabbits  (20.6 % of 97) 
during summer on 16 dairy and beef farms 

 Schaife et al. ( 2006 ) 

 Tonsil samples from  wild boars  (9.1 % of 153) 
from Geneva, Switzerland 

 Wacheck et al. ( 2010 ) 

 Fecal samples from  red deer  (33.7 % of 264), 
 wild boar  (3.6 % of 301), and  other ungulates , 
including fallow deer and moufl on (33.3 % of 
9) in south-central Spain 

 Díaz-Sánchez et al. 
( 2013 ) 

 Fecal and rectal swabs from  roe deer  (52.5 % 
of 179),  wild boars  (8.4 % of 262), and  foxes  
(1.9 % of 260) from northwest Spain 

 Mora et al. ( 2012 ) 

 Fecal samples of  ungulates  (19.4 % of 160) in 
Idaho 

 Gilbreath et al. ( 2009 ) 

 Fecal samples from  roe deer  (73.3 % of 30) and 
 red deer  (70.0 % of 30) from a national park in 
Germany 

 Eggert et al. ( 2013 ) 

(continued)
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 Pathogen 
 Sample description with % prevalence of total 
number of samples tested in parentheses  Reference 

  E. coli  O157:H7  Colon stool samples from  rodents  including 
brown rat, wood mice, and house mouse (21.0 
% of 19) on beef cattle farm 

 Čížek et al. ( 1999 ) 

 Fecal samples from  white-tailed deer  (0.2 % of 
1608) in Nebraska 

 Renter et al. ( 2001 ) 

 Rectroanal mucosal swabs from  roe deer  (0.0 
% of 20),  red deer  (1.5 % of 206),  fallow deer  
(0.0 % of 6), and  moufl on  (0.0 % of 11) during 
hunting season in southwestern Spain 

 García-Sánchez et al. 
( 2007 ) 

 Fecal samples from  wild boars  (3.3 % of 212) 
in southwest Spain 

 Sánchez et al. ( 2010 ) 

 Buccal swabs, colonic feces, rectal-anal swabs, 
and tonsils from  feral swine  (40.0 % of 30) on a 
cattle ranch in California 

 Jay-Russell et al. 
( 2012 ) 

 Fecal samples from  rodents  (0.2 % of 1043) in 
13 agricultural systems (nine produce farms, 
three cow-calf rangeland operations, and one 
beef feedlot) 

 Kilonzo et al. ( 2013 ) 

  E. coli  O157:H7, 
sorbitol-
fermenting 

 Fecal samples from  red deer  (1.1 % of 264) 
during hunting season in south-central Spain 

 Díaz et al. ( 2011 ) 

 Non-O157 STEC  Fecal samples from  wild boars  (5.2 % of 212) 
in southwest Spain 

 Sánchez et al. ( 2010 ) 

 Fecal samples in  ruminants , including red deer, 
roe deer, fallow deer, and moufl on (23.9 % of 
243) in southwest Spain 

 Sánchez et al. ( 2009 ) 

 Rectal swabs from several types of  rodents  (4.8 
% of 145) in city parks in Buenos Aires, 
Argentina 

 Blanco Crivelli et al. 
( 2012 ) 

 Atypical EPEC  Fecal samples from  coyotes  (4.9 % of 103) in 
leafy greens production region at U.S.–Mexico 
border 

 Jay-Russell et al. 
( 2014 ) 

  Listeria 
monocytogenes  

 Tonsil samples from  wild boars  (17.0 % of 
153) from Geneva, Switzerland 

 Wacheck et al. ( 2010 ) 

  Mycobacterium 
bovis  

 Tissue from  ferrets  (17.9 % of 548) and  stoats  
(1.6 % of 62) in New Zealand 

 Ragg et al. ( 1995 ) 

 Tissue rom  hedgehogs  (5.8 % of 69) in 
tuberculosis-endemic areas of New Zealand 

 Lugton et al. ( 1995 ) 

Table 1.2 (continued)

(continued)
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Table 1.2 (continued)

 Pathogen 
 Sample description with % prevalence of total 
number of samples tested in parentheses  Reference 

  Salmonella  spp.  Intestinal samples from  mice  (5.1 % of 175) on 
six swine farms 

 Barber et al. ( 2002 ) 

 Tonsil samples from  wild boars  (12.4 % of 
153) from Geneva, Switzerland 

 Wacheck et al. ( 2010 ) 

 Fecal samples from  coyotes  (32.0 % of 103) in 
leafy greens production region at U.S.–Mexico 
border 

 Jay-Russell et al. 
( 2014 ) 

 Fecal swabs from  raccoons  in rural (7.8 % of 
28), forested (8.7 % of 332), and suburban (5.7 
% of 278) areas of western Pennsylvania 

 Compton et al. ( 2008 ) 

 Fecal samples from  deer  (0.0 % of 113) in 
Oldman River watershed, Alberta, Canada 

 Jokinen et al. ( 2011 ) 

 Fecal samples from  white-tailed deer  (1.0 % of 
500) in southeastern Nebraska 

 Renter et al. ( 2006 ) 

 Fecal samples from  rodents  including rats, 
mice, and voles on 13 production-infected (5.2 
% of 135) and non-infected (0.0 % of 68) farms 
(fi ve pig and eight cattle) and surrounding areas 
without production animals (0.0 % of 22) 

 Skov et al. ( 2008 ) 

 Fecal or cloacal swabs from  Diprotodontia , 
including koala, wombats, and possums (1.7 % 
of 291) 

 Parsons et al. ( 2010 ) 

 Fecal samples from  coyotes  (5.0 % of 40),  deer  
(1.9 % of 104),  elk  (2.6 % of 39),  wild pigs  (2.4 
% of 41),  rabbits  (0.0 % of 57),  raccoons  (0.0 
% of 2), and  skunks  (30.7 % of 13) in major 
produce region of California 

 Gorski et al. ( 2011 ) 

 Fecal samples from  feral swine  (5.0 % of 161) 
in North Carolina 

 Thakur et al. ( 2011 ) 

 Fecal and lymph node samples from  wild boars  
(41.1 % of 543) at 93 locations in Australia 

 Cowled et al. ( 2012 ) 

 Colon, intestinal, or muscle samples from 
 rodents  including brown rat, house mouse, and 
yellow-necked mouse (0.0 % of 184) on nine 
pig farms and fi ve chicken farms 

 Backhans et al. ( 2013 ) 

 Fecal samples from  red deer  (0.3 % of 295), 
 wild boar  (1.2 % of 333), and  other ungulates , 
including fallow deer and moufl on (0.0 % of 9) 
in south-central Spain 

 Díaz-Sánchez et al. 
( 2013 ) 

 Rectal or cloacal swabs of  deer  (0.0 % of 73) 
from the Eastern Shore of Virginia 

 Gruszynski et al. ( 2013 ) 

 Fecal samples from  rodents  (2.9 % of 1043) in 
13 agricultural systems (nine produce farms, 
three cow-calf rangeland operations, and one 
beef feedlot) 

 Kilonzo et al. ( 2013 ) 

 Intestines, spleens, and livers from  rodents  
including rats and mice (10.2 % of 88) on 13 
pig farms 

 Andrés-Barranco et al. 
( 2014 ) 

(continued)
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Table 1.2 (continued)

 Pathogen 
 Sample description with % prevalence of total 
number of samples tested in parentheses  Reference 

  S.  Enteritidis  Liver, spleen, and intestines of four types of 
 rodents  on  Salmonella -infected (75.3 % of 483) 
and non-infected (0.0 % of 232) poultry farms 

 Henzler and Optiz 
( 1992 ) 

  Yersinia 
enterocolitica  

 Tonsil samples from  wild boars  (34.6 % of 
153) from Geneva, Switzerland 

 Wacheck et al. ( 2010 ) 

  Rodents  including mice and rats on pig (8.2 % 
of 110) or chicken (0.0 % of 55) farm 

 Backhans et al. ( 2011 ) 

 Colon, intestinal, or muscle samples from 
 rodents  including brown rat, house mouse, and 
yellow-necked mouse (4.8 % of 189) on nine 
pig farms and fi ve chicken farms 

 Backhans et al. ( 2013 ) 

 Hepatitis E  Sera from  brown rats  (76.8 % of 108) in inner 
city of Baltimore, Maryland, urban and rural 
regions of Hawaii, and New Orleans, Louisiana 

 Kabrane-Lazizi et al. 
( 1999 ) 

 Sera were immunologically assayed for RNA 
from  wild boar  (12.1 % of 1029),  red deer  (5.3 
% of 38), and  roe deer  (0.0 % of 8) in The 
Netherlands 

 Rutjes et al. ( 2010 ) 

 Sera were immunologically assayed from  Yezo 
deer  (34.8 % of 520) in Hokkaido, Japan 

 Tomiyama et al. ( 2009 ) 

 Sera were immunologically assayed from 
 white-tailed deer  (62.7 % of 142) in Northern 
Mexico 

 Medrano et al. ( 2012 ) 

 Nipah virus  Sera from  large fl ying foxes  (32.8 % of 253) 
and  small fl ying foxes  (11.1 % of 117) in 
Malaysia 

 Rahman et al. ( 2013 ) 

 Urine from  Lyle’s fl ying foxes  (1.8 % of 2696) 
from seven colonies in central Thailand 

 Wacharapluesadee et al. 
( 2010 ) 

  Cryptosporidium  
spp. 

 Scats from  wombats  (0.0 % of 55) on stream 
banks in riparian corridors in Australia 

 Borchard et al. ( 2010 ) 

 Fecal samples from  coyotes  (22.2 % of 18), 
 mountain lions and bobcats  (0.0 % of 11), and 
 opossums  (25.0 % of 68) in the Monterrey Bay 
region of California 

 Oates et al. ( 2012 ) 

 Colon, intestinal, or muscle samples from 
 rodents  including brown rat, house mouse, and 
yellow-necked mouse (11.0 % of 155) on nine 
pig farms and fi ve chicken farms 

 Backhans et al. ( 2013 ) 

 Fecal samples from 11 types of  rodents  (26.0 % 
of 285) in 13 agricultural systems (nine 
produce farms, three cow-calf rangeland 
operations, and one beef feedlot) 

 Kilonzo et al. ( 2013 ) 

(continued)
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 Pathogen 
 Sample description with % prevalence of total 
number of samples tested in parentheses  Reference 

  Giardia  spp.  Scats from  wombats  (0.0 % of 55) on stream 
banks in riparian corridors in Australia 

 Borchard et al. ( 2010 ) 

 Fecal samples from  coyotes  (38.9 % of 18), 
 mountain lions and bobcats  (18.2 % of 11), and 
 opossums  (14.7 % of 68) in the Monterrey Bay 
region of California 

 Oates et al. ( 2012 ) 

 Colon, intestinal, or muscle samples from 
 rodents  including brown rat, house mouse, and 
yellow-necked mouse (13.5 % of 155) on nine 
pig farms and fi ve chicken farms 

 Backhans et al. ( 2013 ) 

 Fecal samples from 11 types of  rodents  (24.2 % 
of 285) in 13 agricultural systems (nine 
produce farms, three cow-calf rangeland 
operations, and one beef feedlot) 

 Kilonzo et al. ( 2013 ) 

  Toxoplasma gondii   Brain and heart tissue from six types of  rodents  
(11.9 % of 101) on three organic pig farms 

 Kijlstra et al. ( 2008 ) 

 Sera were immunologically analyzed from  roe 
deer  (52.0 % of 73) and  red deer  (0.0 % of 7) 
in Belgium 

 De Craeye et al. ( 2011 ) 

 Brain samples from  red foxes  (18.8 % of 304), 
 roe deer  (5.0 % of 20), and  red deer  (0.0 % of 
13) in Belgium 

 De Craeye et al. ( 2011 ) 

 Colon, intestinal, or muscle samples from 
 rodents  including brown rat, house mouse, and 
yellow-necked mouse (0.0 % of 147) on nine 
pig farms and fi ve chicken farms 

 Backhans et al. ( 2013 ) 

 Sera were immunologically analyzed from  roe 
deer  (46.4 % of 222) in an agro-system in 
France 

 Candela et al. ( 2014 ) 

  Trichinella  spp.  Colon, intestinal, or muscle samples from 
 rodents  including brown rat, house mouse, and 
yellow-necked mouse (0.0 % of 160) on nine 
pig farms and fi ve chicken farms 

 Backhans et al. ( 2013 ) 

Table 1.2 (continued)

 mixtures than strains of serogroups B or C1 (Gorski  2012 ). To circumvent this limi-
tation due to culture bias, it was recommended that analysis of environmental sam-
ples includes multiple enrichment protocols (Gorski  2012 ); however, there still 
remains the possibility that the  Salmonella  strain would not be detected if it was 
incapable of outcompeting indigenous fecal bacteria and growing to suffi cient num-
bers for detection through traditional protocols. 

 Another complication in the detection of pathogens can occur when using cul-
tural cultivation conditions prior to PCR as was reported for a study of wild mule 
deer and elk in Idaho (Gilbreath et al.  2009 ). In this case, loss of the hybridizable  stx  
genotype occurred in up to 80 % of subcultured isolates of Shiga toxin-producing 
 E. coli  (STEC). The question therefore remains as to whether the instability of these 
genes would have occurred under fi eld conditions and, hence, the risk of human ill-
ness associated with these organisms compared to stable STEC isolates. 
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    Table 1.3    Prevalence of zoonotic pathogens in birds   

 Pathogen 
 Sample description with % prevalence of total number of 
samples tested in parentheses  Reference 

  Campylobacter  
spp. 

 Fecal samples from  gulls  (13.7 % of 205) from three 
coastal locations in Ireland 

 Moore et al. 
( 2002 ) 

 Cloacal swabs from  yellow-legged gull chicks  (10.4 % of 
182) in northeast Spain 

 Ramos et al. 
( 2010 ) 

 Fecal samples from  gulls  (33.3 % of 3),  geese  (26.2 % of 
80), and  ducks  (42.1 % of 38) in Oldman River watershed, 
Alberta, Canada 

 Jokinen et al. 
( 2011 ) 

 Fecal samples from  black swan  (45.0 % of 80),  Canada 
geese  (40.0 % of 80),  duck  (29.0 % of 80), and  gulls  (59.0 
% of 80) from New Zealand 

 Moriarty et al. 
( 2011 ) 

 Oropharyngeal and cloacal swabs from  common tern 
chicks  (0.6 % of 179) during the breeding season in New 
Jersey 

 Rivera et al. 
( 2012 ) 

 Fecal samples from  European starlings  (50.4 % of 113) on 
dairy cattle farm in NE, Ohio 

 Sanad et al. 
( 2013 ) 

 Cloacal samples from  griffon vultures  (1.0 % of 97) in 
eastern Spain 

 Marin et al. 
( 2014 ) 

  Campylobacter 
jejuni  

 Fecal samples or cloacal swabs from  graylag geese  (0.0 % 
of 219),  rock pigeons  (3.0 % of 200), and  mallards  (20.0 
% of 5) in Norway 

 Lillehaug 
et al. ( 2005 ) 

 Cloacal samples from feral  pigeons  (69.1 % of 94) in 
public parks and gardens in Madrid, Spain 

 Vázquez et al. 
( 2010 ) 

 Fecal samples from  California gulls  (1.2 % of 159) in 
southern California 

 Lu et al. 
( 2011 ) 

 Cloacal swab samples from urban  pigeons  (48.3 % of 
1800) in coastal area of southern Italy 

 Gargiulo et al. 
( 2014 ) 

 Fecal and cloacal samples from ten species of  wild birds  
(8.1 % of 781) in New Jersey, Delaware, and Pennsylvania 

 Keller and 
Shriver ( 2014 ) 

 Fecal samples from 15 species of  wild birds  (7.4 % of 
446) from two ruminant farm sites in Virginia and 
Maryland 

 Pao et al. 
( 2014 ) 

 Fecal or cloacal samples from  American crows  (55.1 % of 
127) in California 

 Weis et al. 
( 2014 ) 

  Clostridium 
diffi cile  

 Tissue from dead  house sparrows  (65.7 % of 35) on a 
commercial pig farm in The Netherlands 

 Burt et al. 
( 2012 ) 

 Enteropathogenic 
 E. coli  

 Fecal samples from  ducks  (54.0 % of 50) from a poultry 
farm in India and cloacal samples from domestic  pigeons  
(6.0 % of 100) from seven fanciers in India 

 Farooq et al. 
( 2009 ) 

 Cloacal or fecal swabs from 15  avian host sources  (15.3 % 
of 412) from fi ve locations in British Columbia, Canada 

 Chandran and 
Mazumder 
( 2014 ) 

 Shiga toxin-
producing 
 E. coli  

 Fecal samples from  wild birds , comprised of 24 species 
(1.6 % of 244) from cattle and pig farms in Denmark 

  Nielsen et al. 
( 2004 )  

 Fecal samples from  ducks  (0.0 % of 50) from a poultry 
farm in India and cloacal samples from domestic  pigeons  
(9.0 % of 100) from seven fanciers in India 

 Farooq et al. 
( 2009 ) 

 Cloacal or fecal swabs from 15  avian host sources  (22.6 % 
of 412) from fi ve locations in British Columbia, Canada 

 Chandran and 
Mazumder 
( 2014 ) 

(continued)



 Pathogen 
 Sample description with % prevalence of total number of 
samples tested in parentheses  Reference 

  E. coli O157:H7   Fecal samples from  gulls  (0.0 % of 3),  geese  (1.2 % of 
80), and  ducks  (2.6 % of 38) in Oldman River watershed, 
Alberta, Canada 

  Jokinen et al. 
( 2011 )  

 Fecal or intestinal contents from  European starlings  (1.2 
% of 430) from 150 dairy farms in northern Ohio 

 Williams et al. 
( 2011 ) 

 Cloacal swab samples from  urban pigeons  (7.8 % of 
1800) in coastal area of southern Italy 

 Gargiulo et al. 
( 2014 ) 

  Salmonella  spp.  Fecal samples from  birds  (7.9 % of 38) from six swine 
production facilities in Illinois 

  Barber et al. 
( 2002 )  

 Fecal samples or cloacal swabs from  graylag geese  (0.5 % 
of 219),  rock pigeons  (0.0 % of 200), and  mallards  (0.0 % 
of 5) in Norway 

 Lillehaug 
et al. ( 2005 ) 

 Fecal samples from  barn swallows  (0.0 % of 500+) in 
northern, central, and southern Sweden 

 Haemig et al. 
( 2008 ) 

 Cloacal swabs from  birds  (55 species) at or near 
 Salmonella -infected (1.5 % of 185) and non-infected (0.0 % 
of 1004) cattle and pig farms in Denmark and surrounding 
areas without production animals (0.0 % of 278) 

 Skov et al. 
( 2008 ) 

 Fecal or cloacal swabs of  birds  (0.0 % of 689) in Australia  Parsons et al. 
( 2010 ) 

 Cloacal swabs from  yellow-legged gull chicks  (17.0 % of 
182) in northeast Spain 

 Ramos et al. 
( 2010 ) 

 Gastrointestinal tract samples from  European starlings  (2.5 % 
of 81) in three cattle-concentrated animal feeding operations 

 Carlson et al. 
( 2011 ) 

 Fecal samples from  birds  (6.6 % of 105) in major produce 
region of California 

 Gorski et al. 
( 2011 ) 

 Fecal samples from  gulls  (66.7 % of 3),  geese  (10.0 % of 
80), and  ducks  (7.9 % of 38) in Oldman River watershed, 
Alberta, Canada 

 Jokinen et al. 
( 2011 ) 

 Fecal samples from  black swan  (0.0 % of 80),  Canada 
geese  (0.0 % of 80),  duck  (0.0 % of 80), and  gulls  (0.0 % 
of 80) from New Zealand 

 Moriarty et al. 
( 2011 ) 

 Oropharyngeal and cloacal swabs from  common tern chicks  
(0.6 % of 179) during the breeding season in New Jersey 

 Rivera et al. 
( 2012 ) 

 Rectal or cloacal, or carapace swabs of  geese  (0.0 % of 7) 
and  gulls  (29.8 % of 47) from the Eastern shore of Virginia 

 Gruszynski 
et al. ( 2013 ) 

 Cloacal samples from  griffon vultures  (52.6 % of 97) in 
eastern Spain 

 Marin et al. 
( 2014 ) 

 Fecal samples from 47 different species of  birds  (4.0 % of 
672) on 41 pig farms in Northeast Spain 

 Andrés-
Barranco et al. 
( 2014 ) 

 Cecal samples from  migratory birds , including brown-
headed cowbirds, common grackles, and cattle egrets 
(14.9 % of 376) during fall migration in Texas 

 Callaway 
et al. ( 2014 ) 

  Fecal swabs  from  waterfowl , including Franklin's gull, 
kelp gull, grey gull, and Andean goose (6.1 % of 758) 
from eight sites in fi ve Chilean regions 

  Fresno et al. 
(2013) 

 Fecal samples from  gulls  (17.2 % of 360) from three 
landfi ll sites and on the Eastern shore of Virginia 

 Gruszynski 
et al. ( 2014 ) 

 Fecal samples from 15 species of  wild birds  (0.2 % of 446) 
from two ruminant farm sites in Virginia and Maryland 

 Pao et al. 
( 2014 ) 

Table 1.3 (continued)
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 Pathogen 
 Sample description with % prevalence of total number of 
samples tested in parentheses  Reference 

  Salmonella  
Oranienburg 

 Fecal samples from  wild turkeys  (22.5 % of 71) from a 
home garden fertilized with raw horse manure 

 Jay-Russell 
et al. ( 2013 ) 

  S.  Typhimurium  Cloacal swab samples from urban  pigeons  (0.9 % of 1800) 
in coastal area of southern Italy 

 Gargiulo et al. 
( 2014 ) 

  Cryptosporidium  
spp. 

 Fecal samples from  gulls  (0.0 % of 205) from three coastal 
locations in Ireland 

 Moore et al. 
( 2002 ) 

 Fecal samples from  Canada geese  (23.4 % of 209) from 
ten sites in Ohio and Illinois 

 Zhou et al. 
( 2004 ) 

 Fecal samples from  black swan  (2.5 % of 80),  Canada 
geese  (5.0 % of 80),  duck  (1.3 % of 80), and  gulls  (0.0 % 
of 80) from New Zealand 

 Moriarty et al. 
( 2011 ) 

 Fecal samples from  gulls  (0.0 % of 145) in the Monterrey 
Bay region of California 

 Oates et al. 
( 2012 ) 

 Fecal samples from  common tern chicks  (72.2 % of 54) 
during breeding season in New Jersey 

 Rivera et al. 
( 2012 ) 

  Giardia   Fecal samples from  gulls  (2.1 % of 145) in the Monterrey 
Bay region of California 

 Oates et al. 
( 2012 ) 

Table 1.3 (continued)

    Sample size and number   . Depending on the wild animal and its typical fecal 
mass, the prevalence of zoonotic enteric pathogens may be underestimated. This 
situation may occur when fecal amounts per assay are less than 0.10 g and pathogen 
shedding intensity is low. Under these conditions, there occurred an artifi cial down-
ward bias for the prevalence by well over 50 % (Atwill et al.  2012 ). Such a situation 
would explain why double sampling improved the detection of methicillin-resistant 
  Staphylococcus aureus    carriage in 4 different types of wild animals in Spain 
(Concepción Porrero et al.  2013 ). 

 Surveillance of wildlife in many studies has been conducted with samples 
obtained by trapping the animals or collecting samples from hunters. Although such 
sampling is assumed to be representative of a population, Hoye et al. ( 2010 ) sug-
gested that it likely involved selection bias, making it diffi cult to develop statisti-
cally valid estimates of pathogen prevalence. Hence, to enhance the design and 
interpretation of wildlife surveys, these investigators also provided estimates of the 
number of animals that should be sampled to achieve the study's objective (estab-
lishing absence of infection or an estimate of pathogen prevalence).  

  Specifi city of detection    method   . A number of methods for detecting enteric food-
borne pathogens in wildlife have been used and vary in their specifi city relative to 
the organism present. Culture-based assays, for example, are often only capable of 
specifying the bacteria growing on a specifi c agar by its genus (i.e.,   Campylobacter    
spp.,   Salmonella  spp  ., etc.), hence it is not possible to know if the pathogen is patho-
genic. More recent studies that are conducted often employ advanced assays to 
characterize the phenotypic and genotypic properties of organisms isolated from 
wildlife so that these isolates can be compared to isolates associated with human 
illness. Another purpose for molecular characterization of wildlife isolates is for 
comparison to isolates obtained from domestic animals or to isolates obtained over 

1 Overview: Foodborne Pathogens in Wildlife Populations
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     Table 1.4     Prevalence of zoonotic pathogens in amphibians and reptiles   

 Pathogen 
 Sample description with % prevalence of total 
number of samples tested in parentheses  Reference 

  Campylobacter  spp.  Cloacal samples from  European pond turtle  (0.0 % 
of 83) and  red-eared terrapin  (0.0 % of 117) in 11 
natural ponds in eastern Spain 

 Marin et al. ( 2013 ) 

 Fecal samples from  bullfrogs  (0.0 % of 164) from 
Belgium and The Netherlands 

 Martel et al. ( 2013 ) 

  Mycoplasma  spp.  Oral and cloacal swabs from  tortoises  (36.7 % of 
30) in Italy 

 Lecis et al. ( 2011 ) 

  Salmonella  spp.  Cloacal swabs of free-ranging  alligators  (2.8 % of 
71) in southeast Texas and south Louisiana 

 Scott and Foster 
( 1997 ) 

 Fecal samples from  reptiles  (41.5 % of 94) and 
 amphibians  (0.0 % of 72) in Spain 

 Briones et al. 
( 2004 ) 

 Fecal or cloacal swabs of  frogs  (0.0 % of 106), 
 lizards  (10.7 % of 298),  crocodiles  (3.0 % of 33), 
 snakes  (0.0 % of 48), and  turtles  (0.0 % of 64) in 
Australia 

 Parsons et al. 
( 2010 ) 

 Oral and cloacal swabs from  tortoises  (10.0 % of 
30) in Italy 

 Lecis et al. ( 2011 ) 

 Cloacal swabs and cecal contents from  cane toads  
(41.4 % of 58) in Grenada 

 Drake et al. ( 2013 ) 

 Cloacal and ventral swabs as well as washes from 
 frogs  (1.2 % of 331),  lizards  (9.0 % of 59),  newts  
(0.0 % of 5),  salamanders  (0.0 % of 6),  snakes  
(59.0 % of 39), and  toads  (5.0 % of 20) in a 
produce-growing region of the California Central 
Coast 

 Gorski et al. ( 2013 ) 

 Cloacal swab samples from  caimans  (13.9 % of 
21),  turtles  (21.2 % of 32),  green iguanas  (15.2 % 
of 23),  other lizards  (25.2 % of 38), and  snakes  
(24.5 % of 37) from French Guiana 

 Gay et al. ( 2014 ) 

 Fecal samples from  bullfrogs  (0.0 % of 164) from 
Belgium and The Netherlands 

 Martel et al. ( 2013 ) 

 Cloacal swabs from  wild green iguanas  (57.4 % of 
47) in Grenada 

 Sylvester et al. 
( 2014 ) 

extended periods of time. Hence, isolates obtained from different animals, but hav-
ing similar or identical molecular profi les, can be evidence that transmission 
between the two groups occurred (Williams et al.  2011 ), whereas isolates with simi-
lar profi les obtained at different time points can be evidence that they are persistent 
in the environment (Gorski et al.  2011 ). Detection of viruses and parasites in ani-
mals, however, often rely on immunological assays to detect antibodies in the serum 
that have been expressed when the pathogen invades the animal's system. The draw-
back to immunological assays, however, is that immunity may extend for periods 
long after the pathogen is eliminated from the animal. Examples of studies that have 
employed serotyping and molecular characterization of isolates recovered from 
wildlife as a means to measure their potential to serve as a reservoir of infection for 
humans or animals are listed in Table  1.5 .

M.C. Erickson
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       Host Attributes That Impact Contamination by Pathogens 

   Physiological    state     of host . Prevalence of foodborne pathogens within a wildlife 
population is often not uniform but is infl uenced by the physiological state of the 
individuals. One phenotypic variable that differentiates a population into distinct 
groups is age, with younger animals being more susceptible to infection than adults. 
As examples, carriage of  Clostridium diffi cile  was more common in younger urban 
Norway rats than in their adult counterparts (Himsworth et al.  2014 ), and 
  Campylobacter   ’s prevalence in feral swine (Jay-Russell et al.  2012 ) and in Canada 
geese (Keller and Shriver  2014 ) was greater in younger versus older animals. 
Similarly, when prevalence in both domestic and wild animals was investigated 
using multiple logistic regression models, it was determined that young animals 
were approximately twice as likely to shed   Cryptosporidium    and   Giardia    in their 
feces than adults (Oates et al.  2012 ). In these cases, establishment of the pathogen in 
the young animal's gut maybe due to the presence of an immature gut microbiota 
which, when mature, would in older animals outcompete the pathogen and prevent 
colonization. This relationship, however, has not been observed in all cases. For 
example, the percentage of carriers of pathogenic  E.   coli    (EPEC, EHEC, and STEC) 
by wild cervids (red and roe deer) did not differ between adult and juvenile/sub- 
adult animals (Bardiau et al.  2010 ), whereas in pteropid bats, a greater number of 
adults were seropositive for Nipah virus than juveniles or pups (Rahman et al.  2013 ). 

 Another characteristic of individuals within an animal population that is associ-
ated with different degrees of pathogen prevalence is the sex of the animal. In the 
case of feral swine sampled in Geneva, Switzerland, 71 % of females carried one or 
more foodborne pathogens compared to 53 % of males (Wacheck et al.  2010 ). 
Similarly, more feral swine females were positive for   Campylobacter    than were 
males in a study conducted in California (Jay-Russell et al.  2012 ). In contrast, in 
another study conducted in California that included both domestic and wild ani-
mals, but no feral swine, males were 1.2 times more likely to be  Giardia  spp.-posi-
tive than were females (Oates et al.  2012 ). Sex, however, was not a notable variable 
for prevalence of pathogenic  E. coli  in roe and red deer (Bardiau et al.  2010 ), nor 
was it associated with the seroprevalence of Nipah virus in bats (Rahman et al. 
 2013 ). A higher rate of seropositivity to Nipah virus was observed in nursing bats 
which was attributed to the increased stress that they have experienced in reproduc-
tive and nursing activities, which in turn likely increased their risk for infection 
(Rahman et al.  2013 ). Pathogen prevalence differences between sexes may also be 
attributed to behavioral differences that occur between the sexes. For example, in a 
wild pig population in Australia, transmission of   Salmonella    was more common 
between males than females and was attributed to the previous observations that 
adult male pigs have larger home ranges than females, and were more often found 
associating in small male groups in the study area (Cowled et al.  2012 ). 

 In general, susceptibility of animals to infection by foodborne pathogens 
increases with diminished health or increased stress, both of which compromise the 
immune system. For example, when wild animals are sampled during the hunting 
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season and would be under increased stress, there is a greater likelihood that the 
pathogen would be present if the animal was recently exposed to the pathogen. 
Hence, studies that rely on this method of collection may be measuring prevalence 
that would not be typical throughout the year. Good health and decreased stress, 
however, do not always translate into reduced pathogen prevalence in wildlife. In 
the wild pig population in Australia, better conditioned (fatter) pigs were associated 
with an increased probability of infection (Cowled et al.  2012 ). To explain this sta-
tistic, the authors suggested that the better body conditions of these pigs actually 
enabled them to travel farther and forage more effectively and widely for food, and 
in turn be exposed to more pathogens. 

 Another factor that affects the effi cacy of an animal's immune system to combat 
colonization by foodborne pathogens is the exposure dose. For example, European 
starlings transiently excreted  E. coli  O157:H7 following a low-dose inoculation, but 
when exposed to a population greater than 5.5 log, shedding occurred in 50 % of the 
birds for more than 3 days (Kauffman and LeJeune  2011 ). Similarly, exposures to 
high pathogen dosages have resulted in both rats and pigeons fecally shedding  E. 
coli  O157:H7 for longer periods of time than if exposed to smaller dosages (Čížek 
et al.  2000 ). 

 Although immunity to pathogens is usually considered benefi cial from an indi-
vidual standpoint, when the animal population is only partially immune and exposed 
to a new source of the pathogen, the pathogen may actually survive within the popu-
lation for longer periods of time and increase the risk of spread to non-infected 
animals. Such a situation has been proposed as the scenario leading to the outbreak 
of Nipah virus in Malaysia during 1998–1999 (Epstein et al.  2006 ). More specifi -
cally, it was hypothesized that Nipah virus-infected fruit bats were attracted to fruit 
trees surrounding a large intensive pig farm and led to an initial infection that died 
out quickly. In the subsequent year, reintroduction of the virus into a partially 
immune population resulted in prolonged circulation on the farm, and when these 
infected pigs were sold from the affected farm and transported to other areas where 
there was a high density of smaller intensive pig farms and a high human density, a 
large outbreak occurred in humans, stimulating an investigation.  

    Hosts' behavioral features     that contribute to intra- and interspecies interactions 
and pathogen transmission . Contamination of wildlife by foodborne pathogens 
requires that the wild animal fi rst be exposed to a pathogen source which is often 
related to the animal’s behavior patterns and food choices. Once pathogen transmis-
sion to the wild animal has occurred, that animal may then serve as a vehicle for 
intra- or inter-species transmission to other non-infected animals, but the extent to 
which that occurs will be dependent on the animal’s behavioral patterns and whether 
the infection is self-limiting or not. Multiple examples illustrating the relationship 
between behavioral attributes and the observed or perceived potential for pathogen 
transmission between wildlife are presented in Table  1.6 .

   In general, pathogenic  E.   coli    is found in many wild animals at a low prevalence 
due to limited intra-species interactions (Nielsen et al.  2004 ). Moreover, when wild 
animals are contaminated, the animal has likely been living close to domestic ani-
mals whose infection is perpetuated by their high-density living conditions (Díaz- 

1 Overview: Foodborne Pathogens in Wildlife Populations
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Sánchez et al.  2013 ). Hence, when conditions of low stocking density were 
encountered in rangeland beef cattle, it was speculated that those conditions were 
responsible for the lack of interspecies transmission of   Cryptosporidium    from 
infected cattle to susceptible rodents (Kilonzo et al.  2013 ). 

 In cases when pathogen prevalence is low in a wildlife population, the contribu-
tion of these animals to persistence on source farms and to transmission between 
farms is minimal compared to animals, such as red deer and feral swine, whose gut 
is colonized by  E. coli  O157:H7 (Díaz-Sánchez et al.  2013 ) and   Campylobacter    
(Jay-Russell et al.  2012 ), respectively. In either case, however, infected wild ani-
mals that are extremely mobile amplify the likelihood of transmission by 
 disseminating the pathogen through uncontrolled routes. An example is migratory 
birds that often associate with cattle (brown-headed cowbirds, common grackles, 
and cattle egrets); such birds become infected with   Salmonella    and  E. coli  O157:H7 
while migrating (Callaway et al.  2014 ). In other situations, wildlife behavior has 
become less of an issue as expansion of agriculture into wildlife habitats has created 
new opportunities for spillover of pathogens from domestic animals to wildlife or 
vice versa (Jones et al.  2013 ). A good example would be the emergence of Nipah 
virus in Malaysia where intensifi cation of the pig industry combined with fruit pro-
duction occurred in an area already populated by Nipah virus-infected fruit bats 
(Epstein et al.  2006 ).  

   Climatic (seasonal)    impact    on pathogen prevalence in wildlife . Many surveys on 
pathogen prevalence in wildlife have been conducted by collecting samples at dif-
ferent times of the year or over multiple years to determine if fl uxes in prevalence 
occur in response to climatic or environmental changes. Through knowledge of 
seasonal preferences, pathogen transmission dynamics may be better understood 
and could assist in defi ning effective interventions for disease management. 

 One study addressing a seasonal preference in disease transmission of Nipah 
virus was conducted in Central Thailand, with differences observed between the 
Malaysian and Bangladesh strains (Wacharapluesadee et al.  2010 ). The Bangladesh 
strain was almost exclusively detected during April to June, whereas the Malaysian 
strain was found dispersed during December to June; however, the cause for these 
differences could not be determined. In another study, seasonal shedding patterns 
were observed in wild rodents, with fewer rodents trapped during the spring and 
summer months shedding   Cryptosporidium    oocysts than rodents trapped during 
autumn (Kilonzo et al.  2013 ). In this case, higher prevalences in autumn may have 
been linked to the breeding cycles of the animals, since most of the animals give 
birth during the warmer months of the year and begin to disperse in autumn (Ziegler 
et al.  2007 ). Behavior may have also contributed to the seasonal prevalence patterns 
observed in Canada geese, with prevalence of pathogenic  E.   coli    being positively 
correlated with prevailing warmer seasonal temperatures, being higher in the spring 
and summer and lower during the fall and winter (Kullas et al.  2002 ). In this case, it 
was hypothesized that during the fall and winter, the daily movement patterns of the 
birds largely occurred on dry upland harvested grain fi elds located outside of town 
and away from habitats contaminated with mammalian sources of  E. coli . In con-
trast, during the spring and summer, the birds did not move far from their nests 
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during breeding and these areas consisted of small water impoundments and littoral 
zones that easily become fouled. A similar scenario was offered as an explanation 
for the dominance of   Salmonella   -positive birds or rodents detected in the winter 
compared to the summer in that wildlife moved closer to farms in winter in search 
of food and shelter (Skov et al.  2008 ). 

 Long-term climatic fl uxes may also impact on the degree of pathogen prevalence 
in wildlife over successive years. Moreover, the impact of this variable may be more 
evident in wildlife where population turnover is greater. For example, the sharp 
declines in  T. gondii  seropositive roe deer from one year to another were partly 
explained by the replacement of seropositive individuals with new seronegative 
ones (Candela et al.  2014 ).  

  Management practices applied to wildlife or domestic animals that infl uence 
pathogen prevalence in wildlife . To minimize the transmission of enteric pathogens 
from wildlife to production sites (both animal and produce), efforts to control access 
of wildlife into those sites have been studied but with variable results. Furthermore, 
the type of management will vary depending upon whether the wild animal species 
is an invasive species causing environmental and economic damage or if it is con-
sidered an endangered or threatened species and is protected. When animals such as 
starlings that are not protected are targeted, as they are in the United States and 
Australia, management focuses on lethal control that includes chemical toxicants 
and shooting. Even in these situations, however, these methods are not always fool-
proof as evident in an Australian study that found a chemical toxicant to be ineffec-
tive because of poor bait acceptance (Bentz et al.  2007 ). When the target wild animal 
for control is a species of conservation concern, managing that animal's activities 
becomes more complex. Examples of non-lethal management techniques include 
non-lethal chemical repellants (Glahn et al.  1989 ), exclusionary devices (Khan et al. 
 2012 ), and frightening devices (Berge et al.  2007 ). As an example of the effective-
ness of exclusionary devices, bats contacted date palm sap at a 2 % frequency when 
the food source was protected by a bamboo,  dhoincha , jute stick, or polythene skirt 
compared to a frequency of 83 % when the date palm sap was not protected by a 
skirt (Khan et al.  2012 ). Enhanced effi cacy of any of these management tools, how-
ever, generally requires that they be used in tandem or switched on a regular basis 
(Berge et al.  2007 ). In addition, direct  management   tools are not always the most 
effective means by which to reduce prevalence or sharing of pathogens between 
domestic and wild animals. For example, Mentaberre et al. ( 2013 ) determined in 
Northeastern Spain that cattle removal was more effi cient than the culling of wild 
boar by hunting or trapping as a means of reducing the prevalence of shared sero-
types of   Salmonella   . 

 In many cases, management of the pathogen prevalence of wildlife requires a sys-
tems approach. For example, to understand potential inter-species transmission path-
ways among wild and domestic ungulates in Kenya,  E.   coli    collected from feces were 
genetically compared (VanderWaal et al.  2014 ). Under the assumption that when two 
individuals shared the same genetic subtype of this organism, they were part of the 
same transmission chain, the zebra was identifi ed as an animal bridging distinct trans-
mission networks. Therefore, these investigators hypothesized that interventions tar-
geted at the zebra would diminish transmission among discrete networks.   

1 Overview: Foodborne Pathogens in Wildlife Populations



22

    Other Drawbacks to Pathogen Contamination of Wildlife 
That Impact Humans 

     Contamination of Water  Sources   

 Although the focus of this chapter to this point has been primarily aimed at the 
contribution of wildlife to the direct spread of enteric foodborne pathogens to either 
animal production facilities or produce fi elds, wildlife may also indirectly impact 
these sites through contamination of water sources that would subsequently be used 
in agricultural production. In fact, the number of studies addressing this latter route 
of contamination is much greater than those addressing the direct routes for patho-
gen transmission. Support for this route of contamination stems fi rst from the results 
of studies revealing that enteric foodborne pathogens are in surface and irrigation 
waters. For example, a study of ten irrigation ponds in Georgia revealed that nine of 
the ponds were contaminated with  C. jejuni  at some point during the year, with an 
overall prevalence of 19.3 % (Gu et al.  2013b ),  E. coli O157  was found in all ponds 
occasionally, but mainly in summer and fall (Gu et al.  2013a ), and   Salmonella    was 
found in 39 % of pond samples (Aminabadi et al.  2013 ). The presence of pathogens 
in surface water is not unique to Georgia as  Salmonella  was also detected in 7.1 % 
of surface waters in a major produce region of California (Gorski et al.  2011 ) and in 
94 % of surface irrigation water sources in New York (Jones et al.  2014 ). In a later 
study of water and sediment from leafy green produce farms and streams on the 
Central California coast,  Salmonella  was detected in 6.2 % of water and 4.3 % of 
sediment samples, and  E. coli  O157 was detected in 13.8 % of water and 1.7 % of 
sediment samples (Benjamin et al.  2013 ). In all these cases, it is presumed that con-
tamination of these water sources by wildlife could occur either directly or through 
storm runoff of adjacent contaminated lands. 

 An additional line of evidence for pathogen contamination of waterways and 
irrigation ponds by wildlife is through two avenues of exploration. First, studies 
have documented either directly or indirectly (through global positioning collars) 
that wildlife accesses water sources and engages in behavior that would lead to 
contamination of the water (Hampton et al.  2006 ; Cooper et al.  2010 ). In the second 
approach, pathogen isolates obtained from water and wildlife fecal samples have 
been compared by serotyping and molecular subtyping to determine their similarity. 
Similar serotypes of   Salmonella    have been isolated from both water and wildlife 
samples (Gorski et al.  2011 ; Jokinen et al.  2011 ; Aminabadi et al.  2013 ). Molecular 
typing by restriction fragment length polymorphism of  C. jejuni  isolates from water 
has revealed clustering with duck and geese isolates (Jokinen et al.  2011 ). Not all 
studies, however, have established a relationship between pathogen isolates in water 
and wildlife. For example, Gorski et al. ( 2013 ) detected  Salmonella  in both wildlife 
and associated water samples; however, the PFGE of the isolates did not match. In 
another study,  Campylobacter  was detected in shorebird excreta but was not found 
in the water samples collected from locations presumed to be impacted by these 
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birds (Ryu et al 2014). These latter results suggest that large numbers of animals 
may be needed to impact the water quality especially if the animal has low resident 
populations of a given pathogen. Large resident pathogen populations in a water-
way, however, are not always indicative of a large public health risk. Many patho-
gen parasite lineages, such as  Cryptosporidium  and  Giardia , are host specifi c and 
not zoonotic to the human population at large. However, such parasites could still 
cause opportunistic infections in animals and humans. Hence, the signifi cance of 
wildlife contamination of water sources with foodborne pathogens must be deter-
mined on a case-by-case basis.   

    Reservoir for Antibiotic  Resistance   

 Over the past two decades, a growing concern has arisen regarding antimicrobial 
resistance in pathogenic and commensal bacteria. These concerns extend to wildlife 
as antibiotic-resistant pathogenic bacteria have been associated with wildlife 
(Bardiau et al.  2010 ; Drake et al.  2013 ; Fresno et al.  2013 ; Gorski et al.  2013 ; Sasaki 
et al.  2013 ; Sylvester et al.  2014 ) and is evidence of transmission from environmen-
tal sources or animals that have been exposed to antibiotic therapy. Unfortunately, 
the presence of antibiotic-resistant pathogens in wildlife only serves to perpetuate 
this human health problem, especially as limited options are available to effectively 
control these animal populations.  

     Reservoir for Emerging  Pathogens   

 Pathogens, including those of foodborne origin, have an extremely high evolution-
ary potential given their large populations, high genetic variation, and short genera-
tion times. Given that approximately 75 % of emerged diseases, including zoonoses, 
were of wildlife origin (Jones et al.  2013 ), efforts are being intensifi ed to focus on 
these animals as the driving forces (i.e., climate change, agricultural expansion, 
urbanization, and habitat destruction) continue to have an impact. The emergence of 
Nipah virus, for example, revealed the interplay between several of those driving 
forces (Daszak et al.  2013 ; Hayman et al.  2013 ). Another example for which wild-
life has appeared to play a role in the evolution of foodborne pathogens is with 
enterohemorrhagic  E. coli  (EHEC) O157 (Jenke et al.  2012 ). By sequencing 
O157:H7/H- isolates, it was determined that deer occupied an intermediate position 
between O55:H7 and both sorbitol-fermenting (SF) and non-SF O157 branches. 
Based upon a study of Díaz et al. ( 2011 ), it also appeared that free-ranging red deer 
has been a possible reservoir of Stx-negative derivatives of SF O157:H7.    
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    Summary 

 Additional research and monitoring of foodborne pathogen carriage by wildlife is 
needed to better elucidate transmission cycles, temporal–spatial fl uctuations, and 
emerging strains with the goal of reducing potential risks to public health. Given the 
large number of wildlife species as well as the large number of foodborne patho-
gens, this task may be daunting. To date, numerous studies have already been con-
ducted to investigate the prevalence of foodborne pathogens in many of the wildlife 
species that could interface with humans or their agricultural activities. To ensure 
that available resources applied to future surveillance have the greatest impact, pri-
oritizing the pathogens and wildlife as to their need for surveillance using risk 
assessment systems, such as the Wildtool described by Tavernier et al. ( 2011 ), 
should be considered.     
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