
Chapter 5

Modelling of Underpotential Deposition

on Bulk Electrodes

5.1 Introduction

As discussed in Chaps. 2 and 3, a wide variety of experimental techniques have

allowed to obtain a wealth of information of upd systems. This information

concerns:

• Structure of the adsorbed monolayer, as determined by GIXS, surface EXAFS,

X-ray standing waves, SHG, and SPM (AFM, STM) techniques.

• Coverage degree of the different adsorbed species as a function of the applied

potential, as determined from cyclic or linear sweep voltammograms under

quasi-equilibrium conditions (at slow sweep rates), from the integral analysis

of potentiostatic and galvanostatic transients, or from radiometric

measurements.

• Kinetic information, via transient electrochemical techniques, eventually

coupled to some of the other in situ techniques, as long as the time scale of the

evens allows it.

• Chemical information, as the oxidation state of the adsorbate, as obtained from

XANES.

• Ex situ information on structure using LEED, RHEED and chemical compo-

sition (using AES).

It will come out below that depending on the type of property to be analyzed,

there are different theoretical approaches that may be used with interpretative or

predictive purposes.

The first attempt to understand a given problem within upd starts with a model,

that is, a description of the upd problem using mathematical concepts and language.

According to quantum mechanics, the most precise description that we can get

for a system, stems from its wave function Ψ(r,R, t), which can be obtained from

the solution of Schr€odinger equation:
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�h
i

∂Ψ r;R; tð Þ
∂t

¼ ĤΨ r;R; tð Þ ð5:1Þ

where we have emphasized that the wave function is a function of the coordinates of

the light (electrons) the heavy (nuclei) particles, and the time, which were denoted

with r, R and t respectively. Ĥ is the Hamiltonian of the system, which contains the

kinetic energy of all the particles and the potential energy describing the interaction

between them, say U(r,R, t). To the best of our knowledge, the dynamic Eq. (5.1)

has never been solved for an upd system. The closest that has been done to the

problem stated in Eq. (5.1) in the upd field was the resolution of the dynamic

behavior of a system of electrons, with the purpose of calculating the plasmon

spectrum of Au nanoparticles decorated with upd Ag atoms [1]. In the case that Ĥ is

time independent, the previous problem reduces to the resolution of the eigenvalue

equation:

ĤΨ r;Rð Þ ¼ EΨ r;Rð Þ ð5:2Þ

where E corresponds to the energy eigenvalues. In order to make the latter equation

solvable, a further simplification is required: the Born-Oppenheimer approxi-

mation, where the wave function is splitted as:

Ψ r;Rð Þ ¼ ψelec r;Rð Þψnuc Rð Þ ð5:3Þ

where ψelec and ψnuc correspond to wave function of the electrons and nucleus,

respectively. The latter approximation leads to two further equations:

Ĥelψelec r;Rð Þ ¼ Eel Rð Þψelec r;Rð Þ ð5:4Þ
Ĥnucψnuc Rð Þ ¼ Enucψnuc Rð Þ ð5:5Þ

where Ĥel is an operator that contains the kinetic energy of electrons and the

electron–electron and electron-nuclei potential energy interactions. Thus, Ĥel and

the eigenvalues Eel(R) in Eq. (5.4) contain the nuclear coordinates as parameters.

Making some further approximations, many of the computer codes based on

Density Functional Theory (DFT) (see Sect. 5.2 below) are able to solve Eq. (5.4)

quite accurately for a few tens of atoms. Eq. (5.5) is the wave equation for the nuclei

of the system, moving in a potential energy provided by the nuclei-nuclei interac-

tion energy and the potential energy delivered by the eigenvalues Enuc. In most

cases, the inner electrons (core electrons) are frozen to solve Eq. (5.4), so Eq. (5.5)

actually represents the motion of ion cores. For elements heavier than hydrogen and

relatively high temperatures, Eq. (5.5) is usually replaced by its classical version:
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mi
d2Ri

dt2
¼ f i with i ¼ 1, 2, 3 . . . Nð Þ ð5:6Þ

where mi is the mass, the index i runs over the N heavy particles of the system 5

and fi is the force exerted on particle i. The fi can be calculated from the potential

energy of the system U({Ri}) according to:

f i ¼ �∇iU Rif gð Þ ¼ �∂U Rif gð Þ
∂xi

� ∂U Rif gð Þ
∂yi

� ∂U Rif gð Þ
∂zi

ð5:7Þ

where (xi, yi, xi) are the cartesian coordinates of particle i. As stated above, the

potential energy for an arbitrary atomic configuration can be obtained from the

eigenvalues Enuc and the repulsive interaction between the heavy particles. Thus,

the resolution of equations of motion (5.6) using the eigenvalues (5.4) along with

Eqs. (5.7) and (5.4) would allow to describe the time evolution of the system.

Unfortunately, such a resolution can be made, with the most powerful computers

nowadays available, for times of the order of picoseconds for a reduced number of

atoms. Thus, what can quantum mechanics be of aid to the upd problem? As stated

above, Eq. (5.4) can be solved very efficiently with modern computer codes for a

given configuration. The eigenvalues Eel(R), together with the repulsive interaction

between heavy particles yields the potential energyU({R}). Thus, theoreticians can
obtain efficiently equilibrium configurations by solving the problem:

f i ¼ �∇iU Rif gð Þ ¼ 0 ð5:8Þ

With the information resulting from these calculations, relevant (static) physical

quantities can be obtained, like lattice contants, bulk modulus and surface energies,

which can be compared with experiment to check the accuracy of the obtained

results. Some first-principles results are compared with experimental values in

Table 5.1, showing a reasonably good overall agreement. Similarly, the binding

energy of an adatom on a foreign substrate can be obtained with a good accuracy,

and underpotential shifts, as were discussed in Chap. 3, can be calculated quite

Table 5.1 Comparison between theoretical predictions from DFT first-principles calculations

(th) and Experimental Results (exp) for the Lattice Constant a (in Bohr), Bulk Modulus

B (in Mbar), and Surface Energies γ (in eV/Å2) of different metals of relevance in electrochemistry

(Taken from Ref. [2])

Metal ath aexp Bth Bexp γth γexp
Ag 7.61 7.73 1.33 1.04 0.091 0.077

Au 7.75 7.71 2.06 1.67 0.090 0.094

Cu 6.71 6.82 1.80 1.38 0.134 0.111

Pd 7.30 7.35 2.22 1.95 0.128 0.125

Pt 7.44 7.41 2.78 2.83 0.145 0.155
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accurately. A detailed discussion on the application of first-principles calculations

to upd is given in the following Sect. 5.2.

To summarize this introductory discussion on the application of first-principles

calculations to upd, we can state that these methods may deliver essentially

information on static equilibrium properties, like lattice constants and binding

energies. Other electronic properties like densities of states, partial charges of

adsorbates and some basic vibrational properties, in the harmonic approximation,

can also be obtained. Thus, all the analysis is usually restricted to ground-state

properties (0 K) or same elementary vibrational properties.

To move forward to the prediction of other properties of upd system, like those

involving a finite temperature, we get into the realm of statistical mechanics. Using

the two postulates of statistical mechanics [3], it can be shown that the eigenvalues

of Eq. (5.2) may be used to predict any equilibrium property of the system. For

example, considering a system of N particles enclosed in a volume V at temperature

T it can be shown that the average value of a mechanical property A may be

calculated through:

Ah i ¼
X
i

PiAi ð5:9Þ

where the brackets denotes statistical average, the sum runs over all the i energy
states of the system, say Ei; Ai is the value of A at the state i and the probability of

observing it is given by:

Pi ¼ exp �Ei=kBT½ �X
j

exp �E j=kBT
� � ð5:10Þ

The denominator of this equation is the so-called canonical partition function,

usually denoted with Q. The classical versions of Eqs. (5.9) and (5.10) look very

similar, but replacing the state sums by the integrals over momenta (p) and

configurational space (r). In the case of the partition sum, we have:

Q ¼ 1

N!h3N

ð
exp �Ĥ r; pð Þ=kBT
� �

drdp ð5:11Þ

where Ĥ(r,p) is the classical Hamiltonian of the system, h is the Planck constant.

Thus, the probability density becomes:

P r; pð Þ ¼ exp �Ĥ r; pð Þ=kBT
� �ð

exp �Ĥ r; pð Þ=kBT
� �

drdp

ð5:12Þ

Since the Hamiltonian can be usually separated into space and momentum compo-

nents, Ĥ r; pð Þ ¼ K pð Þ þ V rð Þ, Eq. (5.12) can be splitted as:
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P r; pð Þ ¼ exp �K pð Þ=kBT½ �exp �V rð Þ=kBT½ �ð
exp �K pð Þ=kBT½ �dp

ð
exp �V rð Þ=kBT½ �dr

ð5:13Þ

The previous equation may be integrated over the momenta to give:

P rð Þ ¼ exp �V rð Þ=kBT½ �ð
exp �V rð Þ=kBT½ �dr

ð5:14Þ

Which yields the probability density of finding a given configuration independently

from the momentum of the particles. The denominator of this equation is termed

configuration integral, since the integral runs over all possible configurations of the

system.

In the case where the number of particles in a system fluctuates in a constant

volume V, in contact with a reservoir at the chemical potential, μ , the equations for

the partition function (5.11) and probability density (5.14) must be replaced by:

Ξ V; T; μð Þ ¼
X
N

1

N!h3N
exp

μN

kBT

� �ð
exp �Ĥ r; pð Þ=kBT
� �

drdp ð5:15Þ

PN rð Þ ¼ exp �V rð Þ þ μNð Þ=kBT½ �X
N

ð
exp �V rð Þ þ μNð Þ=kBT½ �dr

ð5:16Þ

where we note the occurrence of a new sum over the number of particles. The

present statistical mechanical description is often used to describe the electrochem-

ical interphase, since the latter may be envisaged as an open system with respect to

the particles being absorbed, while the volume under study considered encloses the

immediate neighborhood of the substrate/adsorbate system.

The generalization of Eqs. (5.15) and (5.16) to multicomponents systems is

relatively straightforward, involving sums over the different species involved.1

This is the basis of the theories developed in Sect. 5.4. A word of caution is

necessary here. While, as we say, the generalization of the mathematical form of

the partition function and the probability density is simple, their calculation may be

quite involved, if not impossible in general. There are two ways out of this problem.

One of them is to introduce an extremely simplified mathematical form for the

potential energy function V(r), and thus the integral in Eq. (5.15) can be evaluated,

after some simplifying assumptions. The other way out is to calculate the averages

in Eq. (5.9) without going through the partition functions. Although this may sound

some sort of magic, this can be done by means of the Monte Carlo methods, as

explained in Sect. 5.4. For the reader who is eager to know how this incredibly

useful method works, we can advance that the trick consists in making moves

1A example of multicomponent is given in Chapter 6 in the case of upd on nanoparticles.
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(create or destroy particles, displace them, etc.) on the configuration of the system,

such that the probability of accepting these moves depends on a ratio of probability

densities given in Eq. (5.14) or Eq. (5.16), (i.e. P rið Þ=P r j

� � ¼ exp � V rið Þð½ �Vðr jÞÞ=
kBT�) so that the denominators become simplified.

The structure of the present chapter is as follows: we start with the first-

principles approaches to the study of upd. We then describe the applications of

statistical mechanics and follow with Monte Carlo applications. We end describing

miscellaneous theoretical approaches, not included in the previous items.

5.2 Application of Quantum Mechanical Methods

to Underpotential Deposition

5.2.1 Quantum Mechanical Modeling of Underpotential
Deposition Previous to the Application of Density
Functional Theory

Pioneering modeling on metal adatom formation in electrochemistry using quan-

tum mechanical tools is due to Schmickler [4] and Kornyshev and Schmickler

[5]. These authors used a model for electrosorption based on the Anderson-Newns

model for adsorption from the gas phase. The later topic has been reviewed by

Muscat and Newns [6], and Gadzuk [7], and the application of this model to

electrochemistry has been reviewed by Schmickler and Henderson [8]. Figure 5.1

depicts the main ideas involved in the Anderson-Newns model applied to describe

an adsorbate in contact with a metal at the metal/gas interphase.

In the electrochemical approach [4, 5], the total Hamiltonian of the interface

contains the contributions of the valence electrons of the adatoms, the metal

electrons and the solvent molecules. To give a flavor of this model, we briefly

state its components and the interactions between them, as it was discussed in detail

in Ref. [9], where Schmickler considered the occurrence of charge transitions in

metal adsorbates on foreing metal substrates. Assuming that only one adatom

orbital is interacting with the metal, the Hamiltonian of the system was:

Ĥ ¼
X
σ

εanaσ þ Unaσna-σ þ
X
k

εknk þ
X
k

εknk þ
X
kσ

Vkac
þ
kσcaσ þ V*

kac
þ
aσckσ

 !
þ 1

2

X
ν

hων p2ν þ q2ν
� �

þ
X
ν

hων z�
X
σ

naσ

 !
qνgν

ð5:17Þ
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where ε denotes energy, n are number operators,cþ and c are creation and anhilation
operators, the index a denotes adsorbate, σ is the spin, k labels the electronic states
in the metal, and v labels the solvent modes (vibrational, librational). According to

this notation, εa is the energy level of the adsorbate, U is the repulsive interaction

between two electrons in the same orbital, Vka represent the off-diagonal elements

for electron exchange between metal and adsorbate. The first line in Eq. (5.17) is

that present in the Anderson model mentioned above. The second line contains slow

solvent modes, which are represented as a set of harmonic oscillators of frequencies

ωv, momentum pν, and coordinates qv. The model considers, via the third line of

Eq. (5.17), the coupling of the adsorbate with the slow (vibrational, librational)

modes of the solvent molecules, whose interaction with the adatom is proportional

to the adsorbate charge. The term gv represents the corresponding coupling con-

stants. The allowance of electron exchange between the substrate and the adsorbate

results in a broadening of the energy levels of the latter and produces a shift of their

values with respect to the bulk value. Thus, a partial charge arises naturally as a

consequence of adsorption. Kornyshev and Schmickler [5] evaluated partial charge

transfer coefficients for several systems, considering different broadenings of the

adsorbate level and different degrees of adatom solvation. The upd couples showed

an intermediate behaviour between the extreme cases of adsorption of alkali

and halide ions on mercury. In the case of upd, multiple solutions were found to

Fig. 5.1 Scheme of the

Anderson-Newns used

model to describe the

interaction of an adatom

with a metal substrate. The

electronic states |ki of the
metal interact with the

electronic state of the

adsorbate |ai. The
interaction between them is

represented by a hopping

matrix Vka. εF denotes the
Fermi level of the metal
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exist for the occupation probability<n> of the adsorbate orbital as a function of the

energies of the adsorbate relative to the Fermi level of the metal (see Fig. 5.2).

According to the theoretical analysis, the existence of these multiple solutions

would be associated with a weak interaction of the adsorbate with the metal and a

strong interaction with the solvent, behavior that would be expected in the case of

adsorption on flat terraces. As discussed by Schmickler in his work, the occurrence

of multiple solutions could lead to current spikes in cyclic voltammograms.

Extensions of the present model were the inclusion of the dependence of the

partial charge transfer coefficient on the coverage degree [10], the consideration of

two kinds of ions with opposite charge [11], the treatment of a random adsorbate

layer with arbitrary coverage [Mishra AK, (1999) J Phys Chem B 103:1484] and the

formulation by Schmickler of a unified approach to electrochemical electron and

ion transfer reactions [12], with the subsequent inclusion of spin effects [13]. Recent

work by Santos et al. [14] showed that the combination of the previous type of

electron transfer theory with density functional theory calculations (see below)

gives results that agree very well with experimental data for complex reaction like

hydrogen evolution. In the future, this kind of modeling may provide further insight

into the problem of charge transfer in upd systems.

5.2.2 Early Applications of Density Functional Theory
to Underpotential Deposition

As stated in the Sect. 5.1, the most accurate, but computationally demanding

approach to the study of upd systems is the quantum mechanical one. The early

articles that applied quantum mechanics to understand the upd phenomenon based

on Density Functional Theory (DFT) were those of Leiva and Schmickler [15],

Schmickler [16] and Lehnert and Schmickler [17], within the so-called jelliummodel

for a metal. In the first of these articles, the substrate was modeled as a semi-infinite

positive charge background with a given charge density, and the adsorbate was

represented as a slab of a different, positive charge density, see Fig. 5.3. This work

Fig. 5.2 Total occupancy

of the adatom orbital as a

function of the adsorbate

energy εa (Reprinted with

permission from Ref. [9])
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showed that two different mechanisms are operative in upd systems. One is the fact,

already known, that the electrons flow from the adsorbate, usually having a lower

work function, to the substrate, usually having a larger one. The other mechanism is

related to the surface energy. Metals with a high work function usually tend to have a

high surface energy, a behavior which is also supported by predictions of the jellium

model for high electronic densities [18]. In this way, energy is gained when a

substrate is covered with an adsorbate having a surface energy lower than its own.

This fact explained why most substrates employed in upd have particularly high

surface energies.

In the subsequent improvements of the model, the substrate was represented

through a lattice of local pseudopotentials [19] appropriate to the single crystal

plane, while the adsorbate layer was represented as a thin layer of jellium with a

two-dimensional lattice of pseudopotentials commensurate with the substrate

[16, 17]. Lehnert and Schmickler used local pseudopotentials to describe the

metal ion cores, with the aim of calculating the surface dipole induced by the

adsorbate, the work function of the substrate and the substrate/adsorbate system,

and the relationship between the latter and the upd shift for a number of sp metals.

Subsequent DFT calculations within the jellium model used more sophisticated

self-consistent calculations of the electronic density to draw general trends

concerning underpotential deposition on single crystal surfaces. For example,

Leiva and Schmickler [20] analyzed the average electronic density profile for Pb

on Ag(111), as shown in Fig. 5.4. In the bulk of the metal (near to zero) it oscillates

about its average value. There is a maximum at the positions near to the ions and

there is a minimum at the interphase between the Pb overlayer and the Ag(111)

surface. Since the electronic density of Pb is higher than that of Ag there is an

accumulation of electronic charge in the top layer, which rapidly decays to zero

Fig. 5.3 Positive background charge and electronic density profile of the jellium model used to

analyze monolayer adsorption on a foreign substrate. The susbstrate extends over the region x < 0,

while the adsorbate layer is confined to the region 0 � x � d (Reprinted with permission from Ref.

[15])
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outside of the metal surface. Towards the bulk of the metal the electronic density

becomes identical to that for bulk Ag after a few lattice spacing.

Figure 5.4b shows the position of the image plane, measured with respect to the

metal surface, as a function of the surface charge on the metal for Ag(111),

Ag(111)/Pb, and for a surface of Pb(111). The curve for Ag(111)/Pb is close to

that of Pb(111) indicating that a monolayer of Pb on Ag(111) should have almost

the same interfacial capacity as a surface of Pb(111). When the electrode is

negatively charged the excess electrons accumulate mainly in front of the metal

surface, and the image charge is pushed further away from the surface. In contrast,

when the electrode is positively charged the surface electrons withdraw towards the

bulk, and the image plane moves towards the surface.

The same model was used to analyze the electronic surface properties of the upd

system Ag(111)/Tl [21]. Figure 5.5a shows the electronic density before and after

the deposition of a Tl monolayer on Ag(111). The response of the surface electrons

to an external electrostatic field is shown in Fig. 5.5b.
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The jellium model was also used to analyze the lattice constants of adsorbed

metallic incommensurate layers [22], corresponding to upd systems. For surfaces,

the attractive interaction with the neighboring ions is missing, so the lateral pressure

on the electron gas is smaller than in the bulk. Consequently the electronic density

expands in the direction perpendicular to the lattice plane and contracts within the

plane. This results in a shortening of the interplanar distance. When an adsorbate

layer is added to the surface, the interplanar distance increases again.

5.2.3 Density Functional Theory Calculations
for Underpotential Deposition Systems

While local pseudopotentials have been found to deliver reasonably good results for

sp metals, they are not adequate for d metals, which are the most widely used as

substrates in upd. A pioneering step to improve this situation in the field of DFT

calculations applied to upd was given by Kramar et al. [23]. These authors analyzed

the Pt(001)/Cu(2� 2) system using the self-consistent, semirelativistic, all electron

full-potential-linearized plane wave method. In the analysis they considered lattice

parameter relaxation, band structure, partial density of states, electronic density and

work function. This article was pioneering in determining the magnitude of the

Cu-Pt bond, but the Cu cohesive energy was not considered, so that the

underpotential shift was not evaluated. A next step forward was undertaken by

Sánchez and Leiva [24], who analyzed both the binding energy of the adsorbate to

the substrate U bind
S-Mθ

2 and the cohesive energy of the adsorbate Ucoh
S for a number of

systems, thus obtaining the underpotential shift according to:

ΔUupd
S�Mθ

’ 1

ze0
Ucoh

S � U bind
S�Mθ

h i
ð5:18Þ

It is important to note that this equation is approximate and only contains energetic

contributions, so that it is rigorously valid at 0 K. Figure 5.6 shows schematically

the supercell used by these authors to represent the substrate/adsorbate system. The

structure of the substrate was represented by a 5 (111)-planes wide atomic slab, on

which an adsorbate plane was located at each side with (1� 1) adsorption geometry

on the threefold fcc adsorption sites. The supercell is periodically repeated in the

three directions. Two surfaces (top and bottom) were separated by a vacuum region

considered as six times the distance between (111) lattice planes.

Within DFT, the energy of the electronic system illustrated in Fig. 5.6 is

given by:

2 U bind
S�Mθ

is calculated as: U bind
S�Mθ

¼ USþM � USð Þ=NM � Uvac
M , where is USþM is the energy of

substrate + adsorbate, US is the energy of a nacked substrate, NM is the number of M atoms in the

supercell, and Uvac
M is the energy of a single M atom in vacuum.
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U n½ � ¼ Ts n½ � þ UH n½ � þ Ue-nuc n½ � þ Uxc n½ � þ Unuc-nuc ð5:19Þ

where Ts[n] is the functional describing the kinetic energy of a system of non

interacting electrons with density n(r), UH[n] is the Hartree energy, calculated from
the corresponding potential vH(r) and Uxc[n] is the exchange and correlation

energy. The remaining terms correspond to the electron–nuclei (Ue ‐ nuc[n]) and

Fig. 5.6 Schematic illustration of the supercell geometry employed by Sánchez and Leiva, in

order to represent the substrate/adsorbate system. d111 denotes the distance between (111) lattice

planes. The metal slabs representing the system extend over planes perpendicular to the plane of

the page (Reprinted with permission from Ref. [24])
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nuclei–nuclei (Unuc ‐ nuc) electrostatic interactions. The electronic density n(r) is
obtained through the self-consistent solution of the corresponding Kohn-Sham

equations:

�1

2
∇2 þ Vext rð Þ þ VH rð Þ þ Vxc rð Þ

� 	
ψi rð Þ ¼ εiψi rð Þ ð5:20Þ

where Vext, VH and Vxc are the external potential, the Hartree and the exchange-

correlation potentials, respectively, which are given by:

VH rð Þ ¼
ð
dr0

n rð Þ
r� r0j j ð5:21Þ

and

Vxc rð Þ ¼ dExc

dn rð Þ ð5:22Þ

Thus, n(r) is given by:

n rð Þ ¼
Xocc
i

f ið Þ ψi rð Þj j2 ð5:23Þ

where f(i) is the occupation number of state i. The effects of the core electrons and
the nuclei on the valence electrons were replaced by suitable non local, relativistic

pseudopotentials [24]. Table 5.1 shows the work functions for the substrate and

substrate/adsorbate systems obtained by Sánchez and Leiva. Ag(111)/Cu(1� 1)

yields a work function which is lower than that of both bulk metals. This is

reasonable, since the atomic density of Ag(111)/Cu(1� 1) is considerably lower

than that of a Cu(111) surface.

The underpotential shift, calculated according to Eq. (5.18), is also shown in the

fourth column of Table 5.1. A small ΔUupd

S-M ðtheoreticalÞ/eV was obtained for the Au

(111)/Ag(1� 1) system, in agreement with experimental results, and overpotential

deposition (opd) is predicted for Ag(111)/Cu, as found in experiment [26]. How-

ever, for the Au(111)/Cu(1� 1) and Ag(111)/Au(1� 1) systems the theoretical

predictions are at odds with the experimental results. No upd is predicted for Au

(111)/Cu(1� 1), while an underpotential shift of 0.12 V results for Ag(111)/Au

(1� 1). For the later system no upd has been reported in the literature so far. The

case of Au(111)/Cu(1� 1) has been the subject of a long controversy between

experiment and theoretical predictions. Sánchez and Leiva [25] analyzed the

application of different DFT functionals (Local Density Approximation –LDA-

and Gradient Generalized Approximation – GGA) in calculations for different

single crystal surfaces of the system Au(hkl)/Cu. In all cases opd was predicted.

However, a strong change in the work function of the Au(hkl)/Cu(1� 1) system, of
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the order of 1 eV, was obtained upon metal upd monolayer formation. These

authors noted the possibility that anion coadsorption, due to the concomitant shift

of the potential of zero charge of the system, may be providing the extra free energy

required for upd (Table 5.2).

Another important information that can be obtained from the DFT calculations

are the (pseudo)electronic density profiles, and the differential electronic density

plots. The latter may allow to visualize the increase or reduction of electronic

density, as a consequence of bond formation. Accumulation and depletion regions

should lead to an apparent increase of the corrugation of the surface when it is

observed by scanning tunnel microscopy in the constant height mode, if a pure M

surface is taken as a reference. The differential electronic density, δρ(r), is calcu-
lated from:

δρ rð Þ ¼ ρS=M � ρS � ρM ð5:24Þ

where ρS/M, ρS and ρM correspond to the electronic densities of the substrate/

adsorbate system and the separated substrate and adsorbate, respectively. Figure 5.7

presents images of the differential electronic densities, showing the charge

rearrangement that takes places upon bond formation in the system. Figure 5.7a

shows accumulation plots, while Fig. 5.7b shows depletion plots. It is found that

charge accumulates more strongly at the plane between substrate and adsorbate, and

is slightly depleted at the sites corresponding to the first substrate layer.

A further systematic calculation of upd shifts using DFT and first-principles

pseudopotentials was undertaken in 2001 by Sánchez et al. [2]. The excess binding

energies, corresponding to the term in brackets of Eq. (5.18), are given in Table 5.3

for different adsorbates on the fcc (111) face of single crystals of several substrates.
From Table 5.3 it can be observed that for a given substrate, with some notable

exceptions, the excess binding energy tends to decrease for increasing surface

energy of the adsorbate. Conversely, a given adsorbate usually exhibits larger

excess binding energies on high surface energy substrates. These results support

the same general trend already found within the framework of the jellium model,

shown in the first part of this section, that represents the simplest approach to bulk

metals and metal surfaces that takes into account explicitly the electronic

component.

Table 5.2 Calculated and experimental work functions and calculated and experimental

underpotential shift for different systems according to Sánchez and Leiva [24, 25]

System Φtheoretical/eV Φexperimental/eV ΔUupd

S -M ðtheoÞ/eV ΔUupd

S -M ðexpÞ/eV

Cu(111) 5.27 4.94 – –

Ag(111) 4.97 4.74 – –

Au(111) 5.66 5.31 – –

Cu/Ag(111) 4.80 – �0.28 <0 [26]

Ag/Au(111) 5.00 – 0.03 0.04 [27]

Au/Ag(111) 5.32 – 0.12 –

Cu/Au(111) 4.63 – �0.18 0.05 [28]
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5.2.4 Relationship Between Excess Binding Energy
and Surface Energy

Based on the hypothesis that the upd shift is related to the surface energy difference

between substrate and adsorbate, Sánchez et al. [2] considered the thermodynamic

cycle shown in Fig. 5.8. The left part of the figure shows two alternative ways to

generate a free substrate surface and bulk adsorbate material from the substrate/

adsorbate system. On one side, going through the unprimed way (I, II, III), the

process involves: (I) detachment of the M adsorbate monolayer from the

Fig. 5.7 Electronic accumulation (a) and depletion (b) plots for the Ag(111)/Cu(1� 1) systems.

In (a) the darker regions indicate the highest accumulation of the electronic density. In (b) the

darker regions indicate the highest depletion of the electronic density (Reprinted with permission

from Ref. [24])

Table 5.3 Excess binding energies for different adsorbates on different (111) substrates. All

values are given in eV/atom. (Taken from Ref. [2] with permission)

Adsorbate

Surface energy σ eV/Å2
Substrate Ag Au Cu Pd Pt

Ag – 0.17 �0.55 �0.13 �0.15 0.077

Au 0.00 – �0.50 �0.24 �0.40 0.094

Cu �0.38 �0.51 – 0.00 �0.15 0.111

Pd 0.27 0.32 �0.02 – 0.02 0.125

Pt 0.33 0.32 0.06 0.08 – 0.155
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substrate S, (II) dissasemblement of the monolayer into its constituting atoms and

(III) reassemblement of the isolated M atoms to yield the bulk M material. The

energy change calculated along this cycle corresponds to the quantity in the bracket

of Eq. (5.18). The primed path (I0, II0, III0) has the same initial and final states as the

unprimed one, but involves: (I0) compression (expansion) of the adsorbed M

monolayer to fit the lattice parameter of the bulk M material; (II0) setting the

compressed (expanded) monolayer in contact with its bulk material (III0) detach-
ment of the bulk piece of M from the substrate. The excess of binding energy, as

calculated from the primed cycle, results in:

ΔU bind
M ¼ U bind

M � U bind
S�Mθ

h i
¼ ΔUI0 þ ΔUII0 þ ΔUIII0 ð5:25Þ

Neglecting the compression (expansion term), that is, settingΔUI0 � 0, leads to the

following relationship between the binding energy excess and the difference of

surface energies:

ΔU bind
M ¼ f γM; γSð Þ

¼ AM γS � γMð Þ for aS > aM
AS γS � AM=ASð ÞγM½ � þ γM AS � AMð Þ for aS � aM


 ð5:26Þ

where aS y aM denote the lattice parameters and AS and AM are the atomic areas of

substrate and adsorbate, respectively. Figure 5.8b shows the excess of binding energy

as a function of the difference of surface energies between substrate and adsorbate,

f(γM, γS), as plotted according to Eq. (5.26). It is evident that the points scatter

around a straight line with slope one, although the systems Cu(111)/Ag(1� 1) and

Cu(111)/Au(1� 1) deviate strongly from this general trend. This indicates that the

Fig. 5.8 (a) Two alternative pathways to calculate the excess of binding energy of a metal M

adsorbed on a substrate S. For more details see the text. (b) Excess of binding energy vs difference

of surface energies between substrate and adsorbate (Reprinted with permission from Ref. [2])
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approximation ΔUI0 � 0 is not good for these systems. Less meaningful deviations

are observed for the Ag(111)/Cu(1� 1) and Au(111)/Cu(1� 1) systems.

Recently, Greeley [29] has extended the previous work, using DFT calculations

to determine periodic trends in the reversible deposition/dissolution potentials of

admetals on a variety of transition metal substrates. A total of 81 systems were

analyzed using the DACAPO code [30]. Greeley performed calculations involving

adsorbed monomer, dimer and kink adatoms. Calculated underpotential shift results

of that work are given in Table 5.4. For the sake of the analysis we perform below,

we have ordered the metals in the table by increasing cohesive energy.

Since the diagonal terms correspond to metal adsorption on the same material

and should be zero, they can be taken as a measure for the precision of the

calculation method. On the average, we find that the error is of the order of

0.02 eV. From this table, it can be easily visualized that many of the systems

over the main diagonal exhibit positive underpotential shifts. On the contrary, many

systems below the main diagonal exhibit negative values, predicting overpotential

deposition. Remarkable exceptions to this rule are Rh, Ni and Co adsorbates on Pt,

Pt and Co adsorbates on Rh, Cu adsorbate on Au and Pt and Au adsorbates on

Cu. Of all these systems, the most striking result is that of Cu on Au, where upd is

not predicted, at odds with the occurrence of one of the most popular upd systems,

as already discussed in the previous paragraphs.

5.2.5 Density Function Theory Calculations for Expanded
Monolayers

As discussed in Sect. 3.1, and illustrated in Table 3.1, Ag upd on Au(111) yields a

number of expanded structures, as determined by LEED [32]. This work motivated

the study of expanded Ag adlayers adsorbed on Au(111) performed by Sánchez

Table 5.4 DFT-Calculated underpotential shifts in Volts. The values in parenthesis are the

cohesive energies of the corresponding bulk metals (in eV) [31] (Taken from Ref. [29] with

permission)

Adsorbate

Substrate Ir Pt Rh Ni Co Pd Au Cu Ag

Ir (6.94) 0.02 0.20 0.08 0.03 0 0.20 0.12 0.14 0.27

Pt (5.84) �0.16 0.04 �0.16 �0.12 �0.11 0.07 0.12 0.10 0.37

Rh (5.75) �0.03 0.13 �0.02 �0.04 �0.07 0.11 0.11 0.09 0.22

Ni (4.44) �0.12 0.02 �0.10 0 �0.03 0.06 0.07 0.08 0.06

Co(4.39) �0.09 0.11 �0.02 0.02 �0.02 0.09 0.08 0.04 0.04

Pd (3.89) �0.21 �0.02 �0.16 �0.13 �0.11 �0.02 0.11 0.04 0.29

Au (3.81) �0.31 �0.17 �0.42 �0.38 �0.39 �0.1 0.01 �0.18 �0.02

Cu (3.49) �0.21 0.05 �0.26 �0.18 �0.26 0.01 0.07 0 0.05

Ag (2.95) �0.29 �0.13 �0.4 �0.32 �0.39 �0.07 0.04 �0.20 �0.02
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et al. [33]. These first-principles calculations on the stability of expanded Ag

adlayers adsorbed on Au(111) were performed using the SIESTA program [34].

Different structures were considered for the adlayer: p(1� 1), (3� 3), p(
ffiffiffi
3

p � ffiffiffi
3

p
)

R30�, p(2� 2), p(3� 3), and p(4� 4), all adsorbed on Au(111). The corresponding

coverage degrees were θ ¼ 1, 0.44, 0.33, 0.25, 0.11 and 0.07, respectively.

Table 5.5 reports the upd shift and changes in work function values for these

systems, according to Sánchez et al. [33]. These calculations showed that in a

vacuum environment, all Ag expanded monolayers are less stable than the bulk Ag

phase and hence should not present upd. This is a striking discrepancy between

experimental results and theoretical calculations. To rationalize this, it must be

taken into account that DFT calculations consider a vacuum phase environment.

The previous authors mentioned that at least three different effects, related to

changes in the double layer, may contribute to stabilize these expanded structures:

adsorption of anions, negative shift of the potential of zero charge [32, 35] and the

influence of the electric field on the binding energy [33, 36].

Adsorption of various d-metals (Pd, Pt, Cu, Au) and p-metals (Sn, Pb, Bi) at

different coverages on the Pt(111) surface was studied by means of DFT calcula-

tions by Pasti and Mentus [37] using the PWscf code of the Quantum ESPRESSO

distribution [38]. The Perdew–Burke–Ernzerhof (PBE) [39] functional for the

general gradient approximation (GGA) was employed. Upd shifts were determined

at different coverages between 0.25 and 1, using (2� 2) and
ffiffiffi
3

p � ffiffiffi
3

p� �
R30�

surface structures. A (2� 2) cell was used to model coverages of 1/4 and 1/2 of a

monolayer, while a
ffiffiffi
3

p � ffiffiffi
3

p� �
R30� cell was used to model a clean Pt(111) surface

and coverages of 1/3 and 2/3 of a monolayer.

Table 5.6 shows that the fcc-hollow adsorption site is generally the most stable

one. For the d- and p-metals, the adsorption energy increases in the order fcc� hcp>
bridge > atop.

Table 5.5 Results of DFT calculations for different structures involving Ag adatoms on Au(111)

at different coverage degrees (θ): Underpotential shift (ΔUS�M
theoretical) and change in work function

ΔΦ produced by the adsorbate (Taken from Ref. [33])

Structure of Ag on Au(111) θ ΔUu pd

S�M theoð Þ=eV ΔΦ/eV
p(1� 1) 1 0.03 0.98

(3� 3) 0.44 �0.73 0.90

p(
ffiffiffi
3

p � ffiffiffi
3

p
)R30� 0.33 �1.04 0.89

p(2� 2) 0.25 �1.09 0.89

p(3� 3) 0.11 �0.99 0.88

p(4� 4) 0.07 �1.30 0.88
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5.2.6 Analysis of Substrate and Adsorbate Interaction
Energy

The adsorption energy of adatoms may be formally decomposed as [37]:

Uads θð Þ ¼ US�Mθ þ UM�M ð5:27Þ

whereUS�Mθ is the binding of a free standing adlayer to the substrate,
3 andUM�M is

the binding energy of M atoms in a free standing adlayer, referred to isolated atoms

in vacuum. Due to the nature of metallic bond, both quantities are a function of

coverage degree. Figure 5.9 shows US�Mθ and UM�M as a function of θ as obtained

from the DFT-GGA calculations of Pasti and Mentus [37]. The magnitude of

US�Mθ decreases (the deposit becomes more unstable) with increasing coverages

for all systems, concomitantly with the negative shift of the Pt d-band center in the

formation process of the adsorbed monolayer. On the other hand, the magnitude of

UM�M increases with increasing coverage degrees. In the case of Pd, Pt, Cu and Au

the magnitude of UM�M increases with increasing coverage in the entire coverage

range. In the cases of Sn, Pb and Bi, the magnitude of UM�M passes through a

maximum at an intermediate coverage degree. This can be understood taking into

account the appearance of pronounced repulsive forces due to the adatom sizes at

high coverages.

Table 5.6 Adsorption energies (in eV) for some S/M structures on Pt(111) considering adsorption

at different sites for θ ¼ 0:25, using a 2� 2 motif (Reprinted with permission from Ref. [37])

Adsorbate Uads/eV (fcc) Uads/eV (hcp) Uads/eV (bridge) Uads/eV (atop)

Pd �3.20 �3.17 �3.03 �2.27

Pt �4.41 �4.36 �4.18 �3.17

Cu �3.49 �3.48 �3.35 �2.71

Au �3.15 �3.13 �3.04 �2.58

Sn �4.65 �4.64 �4.39 �3.91

Pb �3.84 �3.83 �3.65 �3.29

Bi �4.38 �4.33 �4.00 �3.35

3Note that this quantity is different from the binding energy of an adsorbate atom, U bind
S-Mθ

used in

Eq. (5.18), which is referred to isolated adsorbate atoms in vacuum. That is:

US�M ¼ USþM � US � Uvac
adlayer

� 

=NM where is USþM is the energy of substrate + adsorbate, US

is the energy of a nacked substrate, NM is the number of M atoms in the supercell, andUvac
adlayer is the

energy of a free standing adlayer in vacuum.
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5.2.7 Growth of Deposits Underpotentially formed on
Stepped Surfaces

Theoretical studies of upd growth on stepped surfaces were undertaken by Danilov

et al. in Ref. [40], performing DFT calculations with the Gaussian 03 program.

These authors employed a scheme to construct additive pair potentials from DFT

calculations. These potentials were then used to simulate the growth of Cu

overlayers on different Pt stepped surfaces. The surfaces analyzed comprised

(111) terraces, with (100) and (110) monoatomic steps, including some kink sites

at these steps, see Fig. 5.10a. Figure 5.11 shows the evolution of the system energy

as a function of the number of Cu atoms deposited onto the stepped Pt(111) surface.

First, the Cu atoms are deposited onto the most active sites, that is, on the kink-

positions, see Fig. 5.10a (black spheres) and step 1 in Fig. 5.11. Then, Cu atoms are

deposited at the (110) and (100) steps sparsely (Fig. 5.10b). This process corre-

sponds to step 2 in Fig. 5.11. A new plateau in the U vs. N curve (step 3 in Fig. 5.11)

appears, corresponding to the formation of a continuous row of Cu atoms at the

step, see Fig. 5.10c, d. Then, Cu atoms are deposited preferentially on the wide

terraces as shown in Fig. 5.10e. Figure 5.10f, g displays a Cu
ffiffiffi
3

p � ffiffiffi
3

p� �
R30�

motif on the Pt terraces. The authors pointed out that the open structures shown in

Fig. 5.9 US�M and UM�M, given in Eq. (5.27) of the text, as a function of θ for different metals

adsorbed on a Pt(111) surface (Results taken from Ref. [37] with permission)
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Fig. 5.10f, g were formed as a result of the mutual repulsion between Cu atoms,

carrying a partial positive charge. It must be emphasized that the present model

leads to open adlayers, without the need of assuming the presence of anions on the

surface. Finally, Cu deposition at terraces builds a Cu(1� 1) epitaxial monolayer,

as show in Fig. 5.10h.

Fig. 5.10 Snapshots of the different surface structures resulting from the quantum-chemical

modeling of Cu deposition onto a stepped Pt(111) single crystal surface. From (a) to (d) Cu

atoms are represented as black spheres, while Pt atoms are represented with gray and white

spheres. From (e) to (h) the Cu atoms at steps are represent with black spheres, while Cu atoms

on terraces are represented with gray, and Pt atoms are represented as white spheres (Reprinted

with permission from Ref. [40])

Fig. 5.11 Change in the energy of the system as copper atoms are deposited on a stepped Pt(111)

surface (Reprinted with permission from Ref. [40])
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5.3 A Statistical-Mechanical Approach to Underpotential

Deposition

Blum and Huckaby developed pioneering work in the field of statistical mechanics

devoted to describe chemisorption of a single type of species at the liquid/solid

interface [41, 42] that was latter extended to the study of complex systems, as we

analyze below.

We will not address the technical details of the models, since they are extensively

explained in the corresponding papers, and a complete review on phase transitions at

electrode interfaces has been given by Blum et al. in Ref. [43].We just point out here

their most relevant features, which are illustrative of the methodology employed. In

this approach, a fluid of N molecules with a spherical hard core σC was considered

interacting with a smooth, hard wall with sticky sites, each of them having q nearest

neighbours. This was called sticky sites model (SSM). The sticky interaction with

the wall Us(r) at the point r ¼ x; y; zð Þ was defined as:

exp �Us rð Þ=kBTð Þ ¼ 1þ λδ zð Þ
X
n1, n2

δ R� n1a1 � n2a2ð Þ ð5:28Þ

where z denotes the distance to the contact plane, located at a distance σC/2 from the

electrode surface. R ¼ x; y; 0ð Þ is the position of the surface plane, δ represents the

Dirac delta function, λ is a parameter that represents the likelihood of adsorption of

an individual atom or molecule onto the sticky site. n1 and n2 are integer numbers,

a1 and a2 are lattice vectors spanning a two-dimensional lattice L. The Hamiltonian

describing the fluid was:

Ĥ ¼ Ĥ 0 þ Ĥ S ð5:29Þ

where Ĥ0 is the Hamiltonian of the system in the absence of the sticky sites on the

hard wall, and ĤS represents the interaction with the sticky sites:

ĤS ¼
XN
i¼1

Us rið Þ ð5:30Þ

The analysis of the partition function of this model showed that the SSM maps for

the adsorption on a flat surface onto a two-dimensional lattice problem with an

arbitrary number of interactions. A further approximation was writing the n-body

correlation g0n(R1 . . .Rn) for the smooth wall problem as a product of pair correla-

tion functions g02 Ri;R j

� � ¼ g02 Ri � R j

�� ��� �
according to:
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g0n R1 . . .Rnð Þ ¼
Y
i jh i

g02 Ri;R j

� � ð5:31Þ

The atoms in the 2-d lattice were assumed to have a nearest-neighbor interaction

w(r), which corresponded to the pair potential of mean force of the adsorbed species

interacting at the distance r:

w rð Þ ¼ �kBTln g2 rð Þ½ � ð5:32Þ

For a constant distance between lattice sites, g2 can be visualized as an interaction

parameter, which can be used to fit experimental results. If the lateral interactions

between the adsorbates are attractive and g2 > g2 criticalð Þ then a first-order phase

transition occurs, which is seen as a sharp spike in the voltammogram. If the

interactions are repulsive then only second order (order-disorder) phase transitions

can occur. Since second-order phase transitions are discontinuous in the first

derivative of coverage, they should be seen as small cusps in the voltammogram.

The relationship between the contact density and the potential bias, referred to

the PZC, was assumed to be given by:

ρ0i 0;Eð Þ ¼ ρ0i 0; 0ð Þexp �zi E� E pzc

� �
=kBT

� � ð5:33Þ

The coverage degree θ was written in terms of Padé approximants for low and high

fugacities f. The latter was given by:

f ¼ ρ0i 0;Eð Þλ ð5:34Þ

Once the coverage is obtained as a function of the electrode potential, cyclic

voltammograms may be constructed calculating the current from:

I ¼ � dθ

dt
¼ � dθ

dE

dE

dt
ð5:35Þ

Adsorption isotherms and cyclic voltammograms for different interaction para-

meters are shown in Fig. 5.12. A sharp peak results for the case g2 ¼ 3:1 which

has a transition, whereas a rather broad peak occurs for the case g2 ¼ 2:3, for which
there is no transition.

The previous modeling was extended to a two-adsorbate system, in order to

investigate the upd of Cu on the Au(l11) surface in the presence of sulfate ions

[44]. According to this formulation, the following sequence of events occurs in the

case of a cathodic potential sweep:
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• I- Formation of a
ffiffiffi
3

p � ffiffiffi
3

p
sulfate phase on the gold substrate. See Fig. 5.13.

• II- Adsorption of Cu ions on the free adsorption sites, yielding a honeycomb

lattice.

• III- Replacement of adsorbed sulfate ions by Cu ions.

The mathematical model was similar to that described above, but the interaction

of the copper ions with the Au(111) surface containing the
ffiffiffi
3

p � ffiffiffi
3

p
sulfate film

was introduced. Denoting with λT, the stickiness parameter for the sites on the

triangular sublattice LT, associated with the sulfate groups, and with λH, the

stickiness parameter for sites on the vacant honeycomb lattice LH, the fugacities

of the copper atoms on the different sites were:

g=3.1 g=3.1

g=2.3
g=2.3
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Fig. 5.12 Adsorption isotherms (left) and voltammograms (right) for two different interaction

parameters as given in the figure. Ψ is a reduced potential referred to the pzc, Ψ ¼ E� E pzc

� �
=

kBT (Reprinted with permission from Ref.[43])

Fig. 5.13 Scheme of the geometrical model used by Huckaby and Blum for the theoretical study

of upd of Cu on Au(111) in the presence of sulfate ions. Gold atoms are represented by large white

disks, the adsorption sites for sulfate and copper are depicted as small black disks, and the adsorbed
sulfate groups are depicted as sets of three lines emerging from the adsorption sites to the

neighboring gold atoms (Reprinted with permission from Ref. [44])
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f T ¼ ρ01 0;Eð ÞλT ð5:36Þ

And

fH ¼ ρ01 0;Eð ÞλH ð5:37Þ

and the equivalent of equation (5.32) becomes:

wH ¼ �kBTln g2 dð Þ½ � ð5:38Þ

for two copper atoms on neighbouring sites of LH, and

wT ¼ �kBTln g2
ffiffiffi
3

p
d

� 
h i
ð5:39Þ

for two copper atoms on neighbouring sites of LT. In this first approach, the

coupling between the two lattices was ignored to make the calculations straight-

forward. The theoretical voltammograms, shown in Fig. 5.14, exhibited features

similar to those of the experimental ones.

The previous model was then extended by Huckaby and Blum to include the

dynamics of the sulfate adsorption-desorption process, assuming a strong

coadsorption of copper with bisulfate [45, 46]. In these articles second nearest

neighbour configurations were also included, and the foot of the voltammetric spike

for Cu upd on Au(111) located at more positive potentials was explained by a

second-order order-disorder hard hexagon surface phase transition. The better

Fig. 5.14 Theoretical voltammogram from Huckaby and Blum [44] corresponding to two first-

order phase transitions (Reprinted with permission from Ref. [44]). The peak couple on the right

corresponds to adsorption/desorption of Cu atoms on/from the adsorption sites left free by a
ffiffiffi
3

p

� ffiffiffi
3

p
sulfate phase on the gold substrate. The peak couple on the left corresponds to replacement of

adsorbed sulfate ions by Cu atoms, leaving a full adsorbed Cu monolayer (or to the reverse

reaction)
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agreement with the experiment introduced by this improved formulation can be

seen in Fig. 5.15.

A further improvement of the model was achieved when kinetic features were

introduced [47], including diffusion reaction kinetics. This extension of the model

to the dynamic regime delivered phenomenological rate constants by fitting the

theory to the experiment and produced a theoretical cyclic voltammogram that was

in fairly good agreement with the experiment, in both the anodic and cathodic

sweeps, as can be seen in Fig. 5.16

The subsequent approaches to upd using statistical mechanics were devoted to

understand the shapes of the voltammogram spikes [48–50] since the simulated

voltammetric profiles obtained frommicroscopic theory or computational modeling

did not agree straightforwardly with the shapes of the experimental spikes. It must

be reminded here that the width of the peaks in Figs. 5.14, 5.15, 5.16 and 5.17 were

tuned by fitting a free parameter, introduced in an error function [44], or in a power

functional form [46, 47]. Also the voltammogram simulated by lattice gas models

exhibits peaks which are considerably sharper than the experimental results, see for

example Fig. 5.35 of Sect. 5.4.3.2.

It was shown by Huckaby and Medved [48] that the rigorous Borgs–Kotecky

theory [51, 52] of finite-size effects near first-order transitions implies that a current

spike from a lattice of a “reasonable” size is about 100 times taller and sharper than
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experimental spikes. Although kinetic effects could be invoked to understand this

discrepancy, many experiments involve very low sweep rates and there is no

indication for kinetic limitations, in the sense that the current profiles obtained in

the anodic and cathodic sweeps are practically the mirror image of each other. The

hypothesis put forward by Huckaby andMedved is that an electrode surface is made

of a huge number of domains (regular arrays of adsorption sites) separated by small

areas of defects (irregular arrays of sites), so that the emerging current spike from

an electrode is the addition of the current spikes from each domain. In Ref. [48]

Huckaby and Medved showed that the lone use of periodic boundary conditions to

simulate voltammograms fail to agree with experiment, so that boundary effects

on the electrode crystals must be of real importance, and therefore, they derived

expressions to obtain the total electrode current density as an average of the current

densities of single crystals having a distribution of sizes and boundary interaction

strengths.

Figure 5.17 shows the agreement between experimental results and the model

prediction for Cu upd on Pt(111). The fitting parameters are the effective

Fig. 5.17 Comparison between experimental results for underpotential deposition of Cu on

Pt(111) from 1 mM Cu2+ and 0.1 M H2SO4 at a scan rate of 1 mV/s [53] (broken line) and the

theoretical modeling of Huckaby and Medvev [48]. The parameters fitted in the theoretical model

were the effective electrovalence of the adsorbed ion γv ¼ 1:981, the reference potential for the

voltammogramEre f ¼ �0:31 V, the interaction parameter between adsorbed species ς ¼ �0:4334
eV and the probability of occurrence of line defects P ¼ 0:1. The latter quantity determines the

distribution of lattice domains sizes on the surface (Reprinted with permission from Ref. [48])
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electrovalence of the adsorbed ion, the reference potential for the voltammogram,

the interaction parameter between adsorbed species (see discussion on the lattice

gas model in Chap. 3, Sect. 3.6), and the probability of occurrence of line defects.

The latter quantity determines the distribution of lattice domains sizes on the

surface.

The previous studies were extended by the authors to consider Cu upd on Pt(100)

and to the more complex system Cu upd on Au(111) [49, 50], allowing an

evaluation of interaction parameters between deposited ions.

5.4 Monte Carlo Methods

5.4.1 Introduction and Generalities

The term Monte Carlo (MC) is often used to describe a wide variety of numerical

techniques that are applied to solve mathematical problems by means of the

simulation of random variables (the name MC itself makes a reference to the

random nature of the gambling at MC, Monaco). These methods first emerged in

the late 1940s and 1950s as electronic computers came into use.

Computer simulations generate information at a microscopic level (atomic

positions and momenta, etc.) that has to be converted into macroscopic information

(pressure, internal energy, etc.). As mentioned in Sect. 5.1, a thermodynamic

property A may be calculated through a weighted average in which the weighting

factors are the Boltzmann probabilities of each microscopic state and in which the

sum runs over all of the states of the system (Eq. 5.9).

In practice, it is impossible to calculate a sum over all of the microscopic states
of a system and, hence, we must propose a way to circumvent this problem.

In a first stage, we might be tempted to approximate the calculation of this

average just by randomly generating a sufficiently large number of configurations

and calculating the weighted average of the instantaneous value of the property A

for each one of the generated states.

Two practical problems arise when we consider the calculation of the property A

through this methodology:

1. Most randomly generated configurations will have a very low probability and,

hence, a very small contribution to the average (which makes this a very

inefficient approach).

2. As mentioned before in Sect. 5.1, the evaluation of these probabilities involves

the calculation of the partition function which, for most systems of practical

interest, is very difficult (if not downright impossible).

An elegant solution to these problems was provided by Metropolis and

co-workers of the Los Alamos team [54]. In the Metropolis approach, instead of

randomly accumulating configurations and then evaluating their probability-
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weighed contribution to the desired average, configurations according to their

Boltzmann probability can be accumulated and then a simple arithmetic average

can be taken.

Thereby the problem is not solved, but merely reformulated. Now we need a way

to generate a set of states in which each state appears a number of times that is

proportional to its Boltzmann probability.

The way this is accomplished in the Metropolis approach can be summarized as

follows:

Given a starting configuration i, a new configuration j is generated by means of a

random change (which can be the simple movement, addition or removal of a

particle). This new state j is accepted with a transition probability Pi! j, which is

calculated as follows:

• If the probability of state j is greater than the probability of state i, then the

transition probability is equal to 1 (i.e. the new configuration is automatically

accepted).

• If the probability of state j is smaller than the probability of state i, then the

transition probability is equal to the ratio between the probabilities of states j and
i (Pi! j ¼ P j=Pi).

Or, in a compact form:

Pi! j ¼ min 1;
P j

Pi

� �
ð5:40Þ

where min(a,b) denotes the minimum value between a and b. This way of defining

the transition probabilities allows us to skip the calculation of the partition function

because, when evaluating the ratio between the probabilities (as defined in

Eqs. (5.12) or (5.13)), the partition functions (which are in the denominators of

the r.h.s. of such equations) become simplified.

Taking this into account, the transition probability becomes:

Pi! j ¼ min 1, exp � V j � Vi

� �
=kBT

� �� � ¼ min 1, exp �ΔVi j=kBT
� �� � ð5:41Þ

The chain of states constructed by this way has a limiting distribution equal to the

probability distribution of the corresponding thermodynamic ensemble. This means

that, at the end, a set of configurations is obtained according to Boltzmann statistics

and the expectation value of the property of interest is obtained simply as the

arithmetic average of values from individual accepted configurations.

So far we have said nothing about the way of generating these new configura-

tions in order to construct the required chain of states. The different ways of doing

so will be addressed in the following sections.
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5.4.2 Off-Lattice Monte Carlo

In the Off-Lattice approach to the MC method, when attempting a move, the new

random configurations are chosen from a continuous set, i.e., the atoms are allowed

to move continuously.

Several ways of accomplishing this condition have been proposed. One of the

simplest (and the most used one) is the following one: At the beginning of a MC

move, an atom is randomly selected and given a uniform random displacement

along each one of the coordinate directions, as shown in Fig. 5.18. The maximum

displacement, δrmax, is an adjustable parameter that governs the size of the region.

After the new configuration j is generated, the transition is accepted with a

probability Pi! j as defined in Eq. (5.41). The whole process is then repeated.

The efficiency of the exploration of the configuration space depends on the value

of δrmax in the following way: if it is too small, the energy changes associated with

the transition will be small and a large fraction of moves will be accepted, but the

configuration space will be explored slowly (i.e., consecutive moves will be highly

correlated). If δrmax is too large, then nearly all the trial moves will be rejected (due

to the high probability of overlapping with other atoms) and, again, there is little

movement through the configuration space. To maximize the efficiency of the

exploration, the value of the parameter δrmax is adjusted during the simulation so

as to keep the acceptance ratio close to 50 %.

In the case of a simulation in the Grand Canonical Ensemble, the chemical

potential is fixed while the number of molecules fluctuates. In order to construct the

Fig. 5.18 State j is
obtained from state i by
moving the selected atom

k with a uniform probability

to any point in the shaded

region
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chain of states, the most used method is the one proposed by Norman and Filinov

[55]. In this technique there are three different types of move:

(a) a particle is displaced.

(b) a particle is destroyed (no record of its position is kept).

(c) a particle is created at a random position.

The displacement of a particle is handled using the normal Metropolis method

described above. If a particle is destroyed, the ratio of the probabilities of the two

states is given by:

P j

Pi
¼ exp �ΔVi j � μ

� �
=kBT

� �NΛ3

V
ð5:42Þ

where N is the number of molecules initially in state i, V is the volume of the

system, and Λ is the thermal de Broglie wavelength, defined as

Λ ¼ h2=2πmkBT
� �1=2

. Similarly, for the creation of a particle, the ratio of proba-

bilities is given by:

P j

Pi
¼ exp �ΔVi j þ μ

� �
=kBT

� � V

N þ 1ð ÞΛ3
ð5:43Þ

In both cases of destruction and creation, the final transition probability is calcu-

lated (like in the case of displacement), as min(1,Pj/Pi).

5.4.2.1 Off-Lattice Monte Carlo: Applications to Underpotential

Deposition

Off-Lattice Monte Carlo methods were early applied not to upd but to an

overpotential deposition system: Cu on Ag(111) [56]. We explain now shortly the

motivation for such work. As pointed very often in the literature [57], important

phenomenological criteria exist to determine if the type of deposit to be formed by

metal on metal deposition is a two dimensional or a three-dimensional one. These

criteria are based on the interaction energy of the adsorbate with the substrate,

US�M, the interaction energy of M atoms with a substrate of the same type, UM�M,

and the crystallographic misfit M-S. According to this analysis, three types of

growth modes of a deposit on a foreign surface can be established. In the case

where US�M � UM�M, crystal growth is expected to proceed via a 3D island

growth or a Volmer-Weber mechanism. In the case where US�M 	 UM�M two

possibilities may in turn be distinguished, depending on the misfit with the sub-

strate. If the misfit is small, a layer by layer growth (Frank-van der Merwe) mode

should be expected. On the other hand, if the misfit is large, a 3D growth on top of

predeposited monolayers (Stranski-Krastanov) should occur. Even when a wide

variety of systems appear to fit adequately into the previous scheme, the
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measurements made by Dietterle et al. [58] on Cu deposition on Ag(111) showed

that in this system a particular situation occurs, where the classical view seems to be

challenged. While Cu deposition on Ag(111) presents no upd, a fact that would

indicate that US�M < UM�M ,the formation of a pseudomorphic monolayer can be

observed at low deposition overpotentials. On the other hand, three dimensional

clusters are formed only at higher overpotentials, a situation where the deposition

reaction is considerably accelerated. This fact lead Dietterle et al to suggest that a

“delicate balance of adatom-adatom and adatom-substrate interactions” should take

place, to explain this anomalous behavior.

Going back to the theoretical work of Cu deposition on Ag(111), it involved MC

simulations where, like in most of the work discussed in this section, the

interatomic potentials where those of the embedded atom method, which is

discussed in more detail in Sect. 5.4.4.2. Figure 5.19 shows results from these

simulations, for trajectories corresponding to the motion of a single atom (left) and
of a full monolayer (right).

The binding energy of the Cu atoms was evaluated as a function of the coverage

degree, as shown in Table 5.7. It is found that in all cases the binding energies of Cu

are below the cohesive energy of Cu (3.54 eV), so that overpotential deposition is

predicted.

Off-Lattice MC simulations using EAM potentials have been also found useful

to calculate surface stress changes Δσs upon island and monolayer formation of

metal on foreign substrates. Based on a previous work devoted to study the

Fig. 5.19 MC simulation results for Cu deposited on Ag(111). Left: trajectory of a single Cu

adatom indicated as a thin line; spots show the position of the first layer of Ag atoms. Right:
Atomic positions for a monolayer of Cu adatoms (grey clouds) on a Ag( 111) surface (Ag atoms in

the first layer are shown as black clouds). Dashed lines show arbitrary unit cells (Reprinted with

permission from Ref. [56])
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properties of metallic islands [59], Rojas et al. [60] have developed a model to

calculate Δσs using a statistical mechanical argument.

Using the relationship between the Helmholz free energy and the canonical

partition function:

F ¼ �kBTln Q N;V; Tð Þ½ � ð5:44Þ

and the fact that when the stress tensor is diagonal, we can obtain the surface stress

from the derivative:

σs ¼ ∂F
∂S

� �
N,T

ð5:45Þ

Rojas et al. [60] arrived to the following equation to calculate the surface stress

change of the system:

Δσs ¼ �kBT
NM

S

� �
þ ∂US-M

∂S

� �
N,T

* +
� ∂UM

∂S

� �
N,T

* +
ð5:46Þ

where NM is the number of adatoms, S is the surface, US�M and UM are the

interaction potential energies of the substrate-adsorbate and the substrate system

respectively, and the quantities in brackets are evaluated from an isotropic

stretching and compression of the simulation box in the direction parallel to the

surface for each configuration of the production run.

The relaxation of islands on different substrate/adsorbate systems is illustrated

in Fig. 5.20, together with a scheme of the simulation box. The arrows in the figure
denote the displacement of the atoms in the island with respect to their pseudomor-

phic adsorption sites, and the colors indicate the magnitude of the displacement.

It is interesting to compare in the figure different behaviors: the homoepitaxy Ag

(111)/Ag shows practically no relaxation at the center of the island, while some

inwards relaxation at the borders becomes evident. On the other hand, the

remaining systems present outwards relaxation.

Table 5.7 Average binding energies of Cu adatoms on a Ag(111) surface at different coverages.

The ratio nCu/nAg indicates the ratio of Cu to Ag atoms in the simulation cell. The cohesive energy

of Cu is 3.54 eV (Data taken from Ref. [56] with permission)

Ebind/eV nCu/nAg

2.77 1/36

3.37 36/36

3.38 39/36

3.39 42/36
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Fig. 5.20 Top: scheme of the simulation cell used to study the relaxation of an island of adatoms

on a substrate. Bottom: Atom displacements in a 129-atom island for different systems adsorbate/

substrate. The arrows represent the relaxation with respect to the (1� 1) pseudomorphic config-

uration inÅ. (a) Ag(111)/Ag; (b) Pd(111)/Ag; (c) Pt(111)/Ag; (d) Pt(111)/Ag. Colours also denote
a displacement scale (Reprinted with permission from Ref. [60])
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With quantitative purposes, a misfit may be defined according to:

εmf ¼ asubs � aads
asubs

� 100 ð5:47Þ

where asubs and aads denote the lattice constants of substrate and adsorbate respec-

tively. The values of εmf Pd(111)/Ag, Pt(111)/Ag and Pt(111)/Au are �5.1, �4.3

and �4.1 respectively, something that is reflected by the qualitative behavior

observed in the Fig. 5.20.

The surface stress changes calculated for the adsorption of monolayers is shown

in Table 5.5. In the case of Ag/Pt(111), the result of �4.9 N/m can be compared

with �8.8 N/m, which is the value measured by Grossmann et al. [61]. For the

systems Ag/Pd(111) and Au/Pt(111), large compressive stresses were also obtained

(Table 5.8).

Rojas [62] extended the previous EAM Off-Lattice MC simulations to several

systems, involving Ag, Au, Pt, Pd, and Cu. The results for stress changes are shown

in Table 5.9. While the general trend is that a big adsorbate on a small substrate

yields a compressive stress, and the opposite situation leads to tensile stress, there

are also chemically specific effects. Comparison of these results with previous ones

where relaxation of the adsorbate was not allowed [63], indicated that this effect is

very important for the Cu(111)/Ag and the Cu(111)/Au systems, where misfits are

very large.

Rojas also calculated underpotential shifts for all these systems, as reported in

Table 5.10.

Table 5.8 Surface stress change Δσs for the adsorption of a monolayer as obtained from Monte

Carlo Simulations (Taken form Ref. [60] with permission)

System Δσs/J m�2

Pt(111)/Ag �4.92

Pd(111)/Ag �4.88

Pt(111)/Au �3.24

Table 5.9 Surface stress changes in J/m2 for monolayer adsorption onto different (111) sub-

strates, as calculated from Monte Carlo simulations in Ref. [62]. Columns correspond to adsor-

bates and rows to substrates. The notation (P), (E) or (C) indicates if the adlayer is pseudomorphic

or becomes expanded or compressed with respect to the substrate lattice parameter

Substrate/adsorbate Ag Au Pt Pd Cu

Ag(111) 0 1.1 (P) 3.8 (P) 2.1 (P) 0.6 (C)

Au(111) �1.3 (P) 0 2.7 (P) 1.2 (P) �0.5(C)

Pt(111) �4.9 (P) �3.2 (P) 0 �0.9 (P) �0.3 (P)

Pd(111) �4.9 (P) �2.6 (P) 1.5 (P) 0 0.7 (P)

Cu(111) �0.9 (E) �1.6 (E) �6.8 (P) �6.2 (P) 0
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When the values in Table 5.10 are plotted as a function of surface energy

difference, a linear relationship results, as shown in Fig. 5.21. This follows the

predictions made by the jellium model, see discussion in Sect. 5.2.2, as well as

those from first-principles calculations, see discussion in Sect. 5.2.3 and Fig. 5.8

therein.

Oviedo et al. [64] used EAM Off-Lattice MC to study upd on low dimensional

surface defects. They considered the energetics of the deposition of Ag, Cu and Pd

atoms on a Pt(111) surface with vacancies, steps and holes, as compared with

adsorption in monolayers, bilayers, etc. Some of the 0-D defects considered are

illustrated in Fig. 5.22

The main results for the binding energies obtained are summarized in

Table 5.11.

From these results, it can be concluded that for adsorption of a single atom on

defects, the absolute value of the binding energy (bond strength) increases with the

increase of the coordination (Ustep(0D)<Ukink(0D)<Uvacancy(0D)). On the other

Table 5.10 Deposition potential shifts for different metals on S(111) surfaces. All values are

given in V. Taken from Ref. [62]. Positive values indicate upd, negative ones opd

Substrate/Adsorbate Ag Au Pt Pd Cu

Ag(111) 0 �0.04 �0.44 �0.17 �0.16

Au(111) 0.11 0 �0.46 �0.17 �0.07

Pt(111) 0.36 0.30 0 0.15 0.10

Pd(111) 0.27 0.21 �0.16 0 0.02

Cu(111) 0.14 0.23 �0.04 0.04 0

0.4
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0.2

0.2

0

ΔU
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D
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]
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Esup – E  sup [eV]
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ads subs

Fig. 5.21 Underpotential

deposition shifts vs

difference of average

surface energies between

substrate and adsorbate

(Reprinted with permission

from Ref. [62])
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hand, from the viewpoint of the dimensionality of the phase involved, the absolute

value of binding energy decreases(bond strenght) with the dimensionality

Ustep(1D)>Umonolayer(2D)>Ubulk(3D). Concerning upd, the present results indi-

cate that, starting a negative potential sweep from a positive potential value where

the substrate is naked, as the electrode potential is made more negative, the first

sites to be filled with adsorbate should be the vacancies, followed by kink sites and

steps. Then, monolayer formation would follow and finally the bulk deposit would

appear. All these facts were found to be supported by experimental results, as

discussed in Ref. [65] and shown schematically in Fig. 5.23.

Fig. 5.22 Illustration of some of the 0-D defects considered to deposit atoms in a EAM Off-

Lattice MC simulation. Left: terrace and vacancy sites. Right: Step and kink sites (Reprinted with

permission from Ref. [64])

Table 5.11 Absolute value of binding energies in eV for Ag, Cu and Pd adatom adsorption on

different defects/structures on a Pt(111) surface. 0-D denotes single atom adsorption. 1-D denotes

adsorption along a line. 2-D denotes mono-, bi-, 3- etc layer adsorption, 3-D corresponds to the

cohesive energy (Taken from Ref. [64] with permission)

Dimension of the defect/structure Adsorption type: Ag Cu Pd

0D Terrace 2.69 3.06 3.14

Step 3.25 3.91 3.99

Kink 3.65 4.10 4.16

Vacancy 4.45 4.97 5.09

1D Step 3.47 3.99 4.12

2D Monolayer 3.16 3.69 4.06

bilayer 2.96 3.54 3.91

3-layer 2.90 3.49 3.90

6-layer 2.83 3.44 3.88

3D bulk 2.18 3.50 3.89
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5.4.3 Lattice Monte Carlo

In the Lattice MC method, the particles constituting the system are located on the

points of a lattice. This means that, in order to generate the chain of states implied

by the Metropolis method, the displacement of atoms will take place between lattice

points and, in the case of Grand Canonical simulations, atoms will be created or

destroyed at these lattice points, as we discussed in Fig. 3.14. One of the advantages

of these methods is that they allow dealing with a large number of particles at a

relatively low computational cost.

These lattice models are of widespread use in studies of adsorption on surfaces.

If the crystallographic misfit between the involved atoms is not important, it is a

good approximation to assume that the adatoms adsorb on defined discrete sites on

the surface, given by the positions of the substrate atoms. In principle, it must be

kept in mind that continuum Hamiltonians should be much more realistic in those

cases where epitaxial growth of an adsorbate leads to incommensurate adsorbed

phases or to adsorbates with large coincidence cells. On the other hand, the use of

fixed rigid lattices restricts enormously the number of possible configurations for

the adsorbate and its use may be justified on the basis of experimental evidence or

continuum computer simulations that predict a fixed lattice geometry.

Fig. 5.23 Formation of low

dimensional structures in

upd systems at different

substrate inhomogeneities

in the undersaturation

range, depending on

electrode potential

(Reprinted with permission

from Ref. [65])
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5.4.3.1 Simulation of Relatively Simple Underpotential

Deposition Systems

Pioneering application of lattice MC simulations to upd systems was undertaken by

Van Der Eerden et al. [66]. These authors performed MC simulations using an

Ising-type model (see Chap. 3), where the adsorbate atoms were assumed to have a

diameter greater than the distance between two neighbouring adsorption sites on the

substrate surface. Thus, each adatom is assumed to occupy only one adsorption site,

but at the same time, due to exclusion effects, it blocks (first) neighbouring

adsorption sites and prevents them from being occupied by other adatoms. This

modeling has been denominated 1/n adsorption, where n ¼ 1=θmax. The cases

considered were n¼ 2 for a square lattice and n¼ 4 for an hexagonal lattice.

These authors investigated the occurrence of phase transitions as a function of the

quantity ω ¼ ς=kBT, where ς is the interaction between two neighboring adsor-

bates, as defined in Chap. 3. Figure 5.24 shows the behavior of the isotherms for

different values of ω for a square lattice with n¼ 2. A smooth behaviour is found

for θ vs μ/kBT at low ω s, untilω ¼ 1:4. Above this value, a hysteresis, characteristic
for the occurrence of a phase transition becomes evident. We use this word to

denote that the isotherms present separated upper and lower branches, yielding two

coverages at the same chemical potential, one of which corresponds to a metastable

state.

Using this procedure, the authors determined critical ω values for the systems

considered. In the case of the square lattice, the MC simulations yielded

ωcritical ¼ 1:3. Comparison of the MC simulations with experimental results for

the system Pb upd on Ag(100) are shown in Fig. 5.25, where it is found a good

agreement for ω ¼ 0:6, which is a value well below the critical one, so that

according to this modelling a first-order phase transition should be excluded for

this system.

–2.0 –1.0

m / kT

ω

ω

θ

0

0.5

1.0

1.0 2.0

2.0

= 20 incomplete order

1.6 1.4 1.2 1.0 0.8 0.6

0

Fig. 5.24 Simulation of

adsorption isotherms for

adsorption with exclusion

effects on a square lattice.

It is assumed that the

adsorbate blocks two sites

on the lattice substrate.

(n¼ 2, see discussion in the

text) (Reprinted with

permission from Ref. [66])
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As will be discussed in Sect. 5.4.4.2, the proper description of metallic binding

requires the use of many-body potentials, where the embedded atom method has

shown to be a reasonable alternative for many electrochemical applications. At first

sight, this seems difficult to compute with a lattice model. To solve this problem in a

computationally efficient way, the adsorption (desorption) of a particle may be

considered at a site embedded in a certain environment surrounding it, as shown in

Fig. 5.26 for a square lattice, which may be used to represent adsorption on a (100)

fcc surface. The adsorption site for the particle is located in the central box, and the
calculation of the interactions is limited to a circle of radius R. The adsorption

energy for all the possible configurations of the environment of the central atom are

calculated previous to the simulation, so that during the MC simulation the most

expensive numerical operations are reduced to recover the index that characterizes

the configuration surrounding the particle at the adsorption site.

–4.0 –2.0

θ

0

0.5

1.0

2.0 4.00

Fig. 5.25 Simulated

isotherms for n¼ 2

adsorption on a square

lattice with ω ¼ 0:6 (○);

experimental results for upd

of Tl(●) and Pb(□) on Ag

(100) (Reprinted with

permission from Ref. [66])

Fig. 5.26 Environment of

12 sites surrounding an

adsorption site. These may

be employed for the

calculation of the

adsorption/desorption

energies of an adsorbate

atom on a substrate for a

cutoff radius corresponding

to the distance between

third-nearest neighbors. The

particle is adsorbed on the

central box (13) and the

remaining sites may be

occupied by adsorbate or

substrate-like atoms. A total

number of 311

configurations results
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In the case of the electrochemical system, potentiostatic control is in many cases

applied to fix the chemical potential of species at the metal/solution interface. Since

the natural counterpart of potentiostatic experiments are Grand Canonical Monte

Carlo (GCMC) simulations, where the chemical potential μ is one of the parameters

fixed in the simulations, this was the methodology chosen by Giménez and Leiva

[67] to study the formation and growth of low dimensionality phases on surfaces

with defects. This work is somehow a lattice model version of the Off-Lattice

problem analyzed in Sect. 5.4.2. To simulate (100) surfaces, the system was

represented by a square lattice with N adsorption sites, as that shown in Fig. 5.26.

Different arrangements of the substrate atoms allowed for the simulation of various

types of surface defects. Within the procedure described in Sect. 5.4.1 (Metropolis

algorithm), thermodynamic properties were obtained after proper equilibration

steps as average values of instantaneous magnitudes stored along a simulation

run. A key result is the average coverage degree of the adsorbate atoms hθMi at a
given chemical potential μ. To emulate different surface defects, substrate islands

of various sizes and shapes were made by means of the MC-related technique

denominated simulated annealing. Within this approach, a given number of sub-

strate atoms is set on the surface, and a MC simulation is started at a very high

initial temperature T0, of the order of 104 K. The system is later cooled down

according to a logarithmic law (Tnþ1 ¼ Tnαa), where αa is a positive constant lower
than one and Tn is the temperature at the nth iteration step. A given number of MC

steps, say NMCS, are run at each temperature and the simulation is stopped when the

desired Tf is reached. By setting different NMCS, various kinds of structures may be

obtained, as shown in Fig. 5.27.

Fig. 5.27 Different island types obtained from simulated annealing simulations, used to obtain

surfaces with different types of defects. The number of Monte Carlo steps NMCS increases from

upper left to down right.NMCS ¼ 20� 2m�1, where m is the ordinal number of the configuration in

the figure (Reprinted with permission from Ref. [67])
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The shape of the adsorption isotherms obtained with the different islands types

turned out to be strongly sensitive to the structure of the surface, as shown on the

left of Fig. 5.28. The isotherms obtained with more perfect surfaces (less steps)

were steeper, becoming closer to the behavior expected for a first-order phase

transition, which is shown on the right of the figure. We remind from the discussion

performed in Chap. 3, that the voltammetric profiles are the derivatives of the

isotherms, so that rounded isotherms lead to wider voltammetric peaks. Thus, we

see that increasingly imperfect surfaces will lead to wider voltammograms. This is

in rule with the theoretical modelling by Huckaby and Medved [48] that we

presented at the end of Sect. 5.3.

In a further contribution, Gimenez et al. [68] considered several systems involv-

ing Ag, Au, Pt and Pd. It was found that, taking into account some general trends,

such systems can be classified into two large groups. The first one comprises Au

(100)/Ag, Pt(100)/Ag, Pt(100)/Au and Pd(100)/Au, which have favorable binding

energies as compared with the homoepitaxial growth of adsorbate-type atoms, as

shown in Table 5.12. These are systems where underpotential deposition is

expected, see Eq. (3.5) of Chap. 3.

Fig. 5.28 Left: Adsorption isotherms for the decoration of monoatomic steps of Au defective

surfaces with Ag upd. The Au surface structures considered were the final states of simulated

annealing runs similar to those of Fig. 5.27 with m¼ 1, 5, 9, 13 and 16, resulting in the number of

Monte Carlo Steps reported in the figure. The temperature was 300 K. Right: Adsorption isotherms

for Ag upd on a perfect Au(111) surface, at different temperatures (Reprinted with permission

from Ref. [67])

Table 5.12 Excess of chemical potential μS
M � μM

M in eV. Negative values of this quantity indicate

underpotential deposion, while positive values indicate overpotential deposition, see Eq. (3.5).

Values taken from Ref. [68]

Subs/Ads Ag Au Pt Pd

Ag 0.00 0.08 0.53 –

Au �0.17 0.00 0.54 0.14

Pt �0.55 �0.42 0.00 –

Pd – �0.26 – 0.00
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For this type of systems, when the simulations are performed in the presence of

substrate-type islands emulating surface defects, the islands remain almost

unchanged, and the adsorbate atoms successively occupy kink sites, step sites and

the complete monolayer. This is illustrated in Fig. 5.29 for the surface atomic

arrangement of Ag on a Pt(100) surface with Pt islands. The corresponding adsorp-

tion isotherms are shown in Fig. 5.30.

The partial coverage degrees for step and kink sites in Fig. 5.30 were defined

relative to the total number of step and kink sites available respectively. The

sequential filling of kink sites, steps and the rest of the surface can be appreciated

clearly in the partial isotherms.

The second group of systems, as considered by Gimenez et al. [68] is composed

of Ag(100)/Au, Ag(100)/Pt, Au(100)/Pt, and Au(100)/Pd, for which monolayer

adsorption is more favorable on substrates of the same nature than on the

Fig. 5.29 Snapshots of the final state of the surface at three different chemical potentials

(�4.27 eV, �3.44 eV, and �3.06 eV) for Ag decoration of a Pt(100) surface with Pt islands.

The average island size is about 48 atoms. Note that the islands remain essentially unchanged

(Reprinted with permission from Ref. [68])

Fig. 5.30 Isotherms corresponding to the system of Fig. 5.29. θ , θs and θk denote total, step and

kink coverages respectively (Reprinted with permission from Ref. [68])
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considered substrates (see Table 5.11) . When simulations are carried out in the

presence of islands of substrate-type atoms, it is found that they tend to disintegrate,

yielding 2D alloys with adsorbate atoms. This is illustrated in Fig. 5.31 for Pt

deposition on Ag(100). For this second type of systems, the partial adsorption

isotherms do not evidence any particular sequential filling, as can be observed in

Fig. 5.32.

A detailed analysis of the environment of adatoms and substrate atoms at

different adatom coverage degrees was found very helpful to understand the two

types of behaviors described above.

More recently, Gimenez et al. [69] have shown that MC simulations with pair

potential interactions between nearest neighbors may also yield the two types of

behaviors described above, opening the way to a less demanding computational

modeling. These authors have also extended this modeling to consider on-top

adsorption of anions in upd systems [70].

Fig. 5.31 Snapshots of the final state of the surface at three different chemical potentials (�5.74,

�5.32 and �5.21 eV) for Pt decoration of Ag islands on Ag(100). Average island size 53 atoms.

Note the progressive disintegration of the Ag islands (Reprinted with permission from Ref. [68])

Fig. 5.32 Isotherms corresponding to the system of Fig. 5.32. θ , θs and θk denote total, step and

kink coverages respectively (Reprinted with permission from Ref. [68])

242 5 Modelling of Underpotential Deposition on Bulk Electrodes



5.4.3.2 Simulation of Cu Underpotential Deposition on Au(111)

in Sulfate-Containing Electrolytes

We devote a special section to the analysis of Cu upd on Au(111) in the presence of

sulfate ions, since the work developed by Zhang et al. [71] represents an interesting

example of the application of the lattice MC technique to complex upd systems. As

we have seen in Chap. 2, (Fig. 2.2) the voltammogram obtained for upd of Cu on Au

(111) in the presence of sulfate anions presents two pairs of peaks, see also Fig. 5.35

below. From now on, the pair of peaks at more positive potentials will be labeled as

#1 and the pair at more negative potentials as #2. According to experimental

information [71–73], these correspond to transitions between a full monolayer

(ML) of Cu at more negative potentials, an ordered
ffiffiffi
3

p � ffiffiffi
3

p� �
mixed copper

and sulfate phase at intermediate potentials, and a disordered low-coverage phase at

more positive potentials. Inspired in the model proposed by Blum and Huckaby

described in Sect. 5.3, these authors assumed that sulfate coordinates the (unrecon-

structed) triangular Au(111) surface through three of its oxygen atoms, with the

fourth S–O bond pointing away from the surface. The Cu atoms were assumed to

compete for the same adsorption sites as the sulfate. In order to obtain the config-

uration energies of the coadsorbed particles required for the MC simulation, the

following three-state lattice-gas Hamiltonian was proposed:

Ĥ cð Þ ¼ �~μC

X
i

cCi � ~μS

X
i

cSi

�
X
n

Φ nð Þ
SS

Xnð Þ

i; jf g
cSi c

S
j þΦ nð Þ

CC

Xnð Þ

i; jf g
cCi c

C
j þΦ nð Þ

SC

Xnð Þ

i; jf g
cSi c

C
j þ cCi c

S
j

24 35�Ĥ 3

ð5:48Þ

where�~μk denotes the change in the chemical potential of species k (k¼ S (sulfate)

or C (copper)) when one i particle is removed from the bulk solution and adsorbed

on the surface, cki the occupation number (0 or 1) of site i by the species k, (n)

indicates the rank of neighborhood between sites (first, second, etc), and �Φ nð Þ
km is

the pairwise interaction energy between particles of type k and m that are first

neighbors. The term Ĥ3 denotes three-particle interactions between sulfates, involv-

ing all second-neighbor equilateral triangles.

The lattice gas parameters were fitted by an iterative process, where they were

finally fixed to yield reasonable agreement of the theoretical predictions with the

shapes of the observed adsorption isotherms and voltammetric profiles, as well as

with the dependences of the CV peak positions on the electrolyte composition in

experiments. The interactions involved in Eq. (5.48) are shown in Fig. 5.33.

Part of the fitting involved the so-called ground-state configurations, which

corresponded to the sets of most stable configurations at 0 K for given electro-

chemical potentials ~μC and ~μS. This allowed the construction of phase diagrams as a
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function of ~μC and ~μS, which are useful to interpreted the results of simulations,

discussed below. Figure 5.34 shows such a diagram and their corresponding

ground-state configurations.

The different phases in Fig. 5.34 are identified with the notation X � Yð ÞθSθC ,
where θC and θS denote the sulfate and copper coverages respectively. For example,

1� 1ð Þ00 denotes an empty surface, 1� 1ð Þ01 denotes a surface covered by a Cu

monolayer,
ffiffiffi
3

p � ffiffiffi
3

p� �1=3
2=3

indicates a surface covered by a mixture of sulfate at

θS ¼ 1=3and Cu atθC ¼ 2=3, etc. It must be noted that the latter, which is the phase

observed experimentally in the potential region between peaks #2 and #1, occupies

a wide region in the ground-state diagram of Fig. 5.34. A detailed discussion

of the occurrence of different phases in terms of the interactions of Eq. (5.48) is

given in Ref. [71], we just point out here some general features to understand the

idea behind the modeling.

The electrochemical potentials, which correspond to the axis on the right of
Fig. 5.34 , are related to the bulk concentration of species k and electrode potential

E according to:

~μS ¼ μ0S þ RTln
S½ �
S½ �0 � zSFE ð5:49Þ

Fig. 5.33 The relative positions of Cu (●) and sulfate (Δ) corresponding to the effective

interactions in Eq. (5.48). Free adsorption sites are denoted by ○. The number underneath each

bond representation is the corresponding effective interaction energy used in Ref. [71], given in

kJ/mol. The interactions are invariant under symmetry operations on the lattice (Reprinted with

permission from Ref. [71])
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~μC ¼ μ0C þ RTln
C½ �
C½ �0 � zCFE ð5:50Þ

where zS and zC are the effective electrovalences of sulfate and copper, respectively,
und the superscript denote reference conditions. Thus, large ~μS positive values

correspond to high sulfate concentrations or large positive potentials (zS is a

negative quantity). On the other hand, large ~μC positive values correspond to high

Cu2+ concentrations or large negative potentials (zC is a negative quantity). This is

the reason why the pure Cu phase 1� 1ð Þ01 appears at large positive ~μC values and

rather negative ~μS. The converse situation (large positive ~μS and negative ~μC) leads

the pure sulfate phase,
ffiffiffi
3

p � ffiffiffi
3

p� �1=3
0

.

According to Eqs. (5.49) and (5.50) the electrochemical potentials ~μS and ~μC are

linearly related, so that when a potential scan is applied to the system, this moves

along a straight line in Fig. 5.34b. Three of these lines are depicted there. The

equation describing this straight line has the form ~μC ¼ constantþ ~μSzC=zS. Let us
consider for example a trajectory along the line labeled with 1, where the potential

scan is initiated on the upper left side of the plot. The system starts with the pure Cu

phase 1� 1ð Þ01 and ends up in the pure sulfate phase
ffiffiffi
3

p � ffiffiffi
7

p� �1=5
0

, coming across

two mixed Cu/sulfate phases. At the lines delimiting the phases, phase transitions

Fig. 5.34 Ground-state configurations (a) and ground-state diagram (b), as given in Ref. [71] for

the system Cu/Au(111) in the presence of sulfate. The free adsorption sites are denoted by ○, and

adsorbed Cu and sulfate are denoted by ● and Δ, respectively (Reprinted with permission from

Ref. [71])
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are expected to take place, with drastic changes in the composition of the surface

structure. These changes in the surface composition are due to the electrochemical

adsorption/desorption of species, involving charge transfer and eventually leading

to peaks in the cyclic voltammograms, as shown in the simulation below.

Since the adsorbed particles are restricted to adsorb on N well defined lattice

sites, the coverage can be easily calculated from θk ¼
X
i

cki =N and the charge

flowing upon adsorption of the species of type k is qk ¼ �e0zkθk. Sulfate coverage
θ2S adsorbed on top of the complete Cu monolayer in the negative-potential

region was represented in terms of the Cu coverage θC and the sulfate coverage

in the first layer θS by the equation:

θ2S ¼ αθC
1

3
� θS

� �
ð5:51Þ

where α was a fitting parameter, expected to be between zero and one. If the latter

were the case, a full Cu monolayer would be covered by 1/3 of a monolayer of

sulfate.

Considering a very low sweep rate so as to assume quasi-equilibrium conditions,

the voltammetric current was calculated from the coverage degrees and their partial

derivatives (obtained from coverage fluctuations [74] in the MC simulations)

according to:

i ¼ e0F
z2S 1� αθCð Þ ∂θS

∂~μS

� 

~μC

þ zC zC � 2

3
αzSθS

� �
∂θC
∂~μC

� 

~μS

þ

zS 2zC þ αzS
1

3
� θS

� �
� αzCθC

� 	
∂θS
∂~μC

� 

~μS

8>><>>:
9>>=>>;

dE

dt
ð5:52Þ

Figure 5.35 shows experimental and room-temperature simulated voltammograms.

Given the complexity of the system, it can be stated that a good overall agreement is

found.

Besides the simulations devoted to comparison with the experimental data,

Zhang et al. performed a finite-size scaling analysis. This is useful at the time of

identifying the order of the phase transitions involved. On the basis of the equiv-

alence of the lattice gas hamiltonian (Eq. 5.48) with the generalized triangular-

lattice model of Blume–Emery–Griffiths [75], the authors concluded that the

transition at peak #1 is a first-order phase transition, while the transition at peak

#2 is a second-order one. These predictions were checked performing simulations

with different system sizes (finite size scaling analysis).
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5.4.4 Kinetic Monte Carlo Applications

5.4.4.1 Introduction

Although MC methods are often used to obtain static, or equilibrium properties of

model systems as described above, this technique may also be utilized to study

dynamical phenomena. This leads to the formulation currently denominated

dynamic Monte Carlo or kinetic Monte Carlo (KMC).

The foundations of dynamical MC simulations have been discussed by Fichthorn

and Weinberg [76] in terms of the theory of Poisson processes, and we give here a

bird’s eye view on this methodology. There are many physical systems where the

events of interest can be described at a coarse-grained, mesoscopic level, assuming

that the complex microscopic behavior leads to various possible transitions that

we can enumerate E¼ {el,e2, . . . ,en }, which can be characterized by average

transition rates R¼ {rl,r2, . . . ,rn }.
As an example, we chose the diffusional trajectories of an adatom on a (100)

single crystal surface, as shown in Fig. 5.36. We assume that we monitor a number

of trajectories where the adatom is initially trapped in the central adsorption site,

ending at one of the four neighboring adsorption sites. At relatively low tempera-

tures, the trajectories will look like those on the left plot, where the adatom spends a

long time (in the atomic scale) at the central site and finally diffuses to some of its

four neighboring sites through trajectories close to the minimum energy path. If the

experiment (eventually the simulation) is made several times, the scape of the atom

from the central site to each of its neighbors will be characterized by a set average

times, say {τ1, τ2, τ3, τ4}. Due to the symmetry of the system chosen for this

example, all these average scape times will be equal, but they may be generally

different (for instance if the environments of the various sites are different). Thus,

Fig. 5.35 Experimental (dot–dashed) and lattice MC simulated (solid) CV current densities. The

left-hand vertical scale shows the current density for a scan rate of 2 mV/s, whereas the right-hand

scale shows the current density normalized by the scan rate, in units of elementary charges per mV

and Au(111) unit cell (Reprinted with permission from Ref. [71])
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the fine grain problem on the left of the figure may be replaced by coarse grain

problem on the right, where the adatom may undergo four different transitions,

E¼{el,e2, . . . ,e4} , at four different average rates R¼ {1/τ1, 1/τ2, 1/τ3, 1/τ4}. These
ideas may be generalized to more complex problems, as long as the kind of events

involved fulfills some features. If each of these events satisfies the conditions

necessary to be a Poisson event,4 the probability density of times between succes-

sive events will have the following exponential form:

f tð Þ ¼ 1

τi

� �
exp �t=τi½ � ð5:53Þ

One interesting property of Poisson processes is that an ensemble of independent

Poisson processes will behave as one, large Poisson processes. In the example of

diffusion above, this means that if we have (simultaneously with diffusion) other

phenomena occurring like adatom adsorption, adatom desorption, etc, that can be

considered themselves as Poisson processes, the whole behavior of the system

(diffusion + adsorption + desorption) may be treated as a single Poisson process.

Thus, our vector of events will look like

E ¼ ediff1 , ediff2 , . . . , e ad1 , e ad2 . . . , edes1 , edes2 , . . .
� � ð5:54Þ

where the upper indices have an obvious meaning: ediff1 is a diffusion event of type

1, ead1 is an adsorption event, edes2 a desorption event, etc. Thus, the vector of events

E contains all the events that may occur at a given instant (configuration) of the

system.

Fig. 5.36 Illustration of how the fine grained motion found in deterministic trajectories, i.e. from

molecular dynamics (left) can be converted into effective or average rates (right)

4 Poisson processes in a nutshell: if Nt(t) is a random variable characterizing the observation of a

number of certain events during a time interval t, Poisson processes are characterized by: (a)

Nt 0ð Þ ¼ 0, (b) Nt(t1) and Nt(t2) are independent if t1 and t2 are disjoint intervals. (c) The probability
of observing a single event in the interval h increases linearly with h. (d) The probability of

observing two or more events in the interval h increases with a power larger than one.
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Similarly, the rates vector will be:

R ¼ 1=τ diff1 , 1=τ diff2 , . . . , 1=τ ad1 , 1=τ ad2 , . . . , 1=τdes1 , 1=τdes2 , . . .
� � ð5:55Þ

Or alternatively:

R ¼ v diff1 , vdiff2 , . . . , v ad1 , v ad2 , . . . , vdes1 , vdes2 , . . .
� � ð5:56Þ

where we have defined the average rates vi ¼ 1=τi A way to visualize the last

equation is to draw a line, where the average rate of each process is represented

by a segment on this line, as it is shown in Fig. 5.37 for three processes. Let us

represent the event vector with E ¼ e1; e2; e3f g and the velocity vector with

R ¼ v1; v2; v3f g.
Since no two Poisson events may occur simultaneously, we can make the status

(configurations) of the system advance by choosing one of the events whose rates

are shown in the figure. To do that, the whole velocity segment may be applied into

the interval [0,1], and a random number η may be generated to select the event to

happen. It is observed from the figure that the random number resulted in the

occurrence of a process whose velocity is v3.
Thus, what it must be done is to allow event e3 to happen. If the processes under

consideration were e1 :¼ diffusion of a particle, e2 :¼ adsorption of a new particle,

e3 :¼ desorption of the particle, we would have to desorb the particle. The new

configuration of the system would be an empty surface, and the new event vector

would only contain a single element, corresponding to particle adsorption. Of

course, in a real system we have many particles that may diffuse, desorb, adsorb,

etc, and the event and rates vectors are very large, but this is the main idea. Upon

updating the configuration of the system, we must update the time in the simulation,

that is, we must add to the accumulated time a time increment representing the

event that has just occurred. To do that, we appeal to an equation similar to

Fig. 5.37 Illustration of the way in which a given process is selected in a kinetic Monte Carlo

simulation where only three processes may occur. The probability of each process to occur is

represented on a straight line by a segment proportional to its rate vi. The sum of all the segments is

normalized to unit length, so that the occurrence of a process can be selected by generating a

random number vS between 0 and 1, and then choosing the process corresponding to the segment on

which the random number is found to fall. Here vS falls in the segment corresponding to the rate v3
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Eq. (5.53), but taking into account that we are considering all the events of the

system. Now, the overall rate is vt ¼ v1 þ v2 þ v3 and Eq. (5.53) turns into:

f tð Þ ¼ vtexp vtt½ � ð5:57Þ

To generate time increments distributed according to the previous equation, we

must use:

Δt ¼ �1

vt
ln vSð Þ ð5:58Þ

where vS is a uniform random number between 0 and 1. Note that random numbers

close to zero lead to large time steps, while random numbers close to 1 yield

short ones.

We see that according to the KMC method, the sampling of the system must

involve transition probabilities based on a reasonable dynamic model of the phys-

ical phenomena involved. The transition probabilities should reflect a “dynamic

hierarchy” related to the processes taking place in the system. With this aim, the

rates vi are usually taken from some suited version of absolute rate theory, adapted

to surface diffusion, electron transfer, etc.

Since in principle all the processes that may potentially occur must be included

in the vector R, the application of KMC methods is restricted to lattice models of

the system.

5.4.4.2 Electrochemical Phase Formation for an Ideal Frank-van der

Merwe System

To illustrate the application of the KMC method, we discuss the system Au(hkl)/

Ag. This is a typical example for M upd on a foreign substrate S, with strong M-S

interaction but negligible M-S misfit (the lattice parameters are 4.09 Å and 4.08 Å
for Ag and Au, respectively). Thus, the Frank-van der Merwe or layer by layer

growth mechanism is expected to operate in this system, in contrast with the

Stranksi-Krastanov growth mode, expected for systems with relatively large misfits

[57], or the Volmer-Weber mechanism, expected for systems where the interaction

with the substrate is relatively weak, as compared with the adsorbate-adsorbate

interaction. As discussed in the literature [77] and in Chaps. 2 and 3 of the present

book, these systems exhibit a number of complex features, like surface reconstruc-

tion, even in the absence of adsorbate, and different expanded phases. However, a

simplified model as that we will discuss here, has been shown to be useful to

understand some of the experimental observations, and may also be helpful to

understand other upd related problems. Giménez et al. [77] have modeled nucle-

ation and growth of Ag upd on Au(100) and Au(111) by KMC. We discuss their

modeling in some detail, since it is illustrative of how this methodology may be

implemented to study upd deposition phenomena.
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Model for the Substrate

As stated above, the KMC methodology requires a finite number of processes

taking place, so that a lattice model for the substrate appears as the best alternative.

Thus, square and hexagonal lattices were selected to represent the Au(100) and

Au(111) substrates respectively. Figure 5.38 shows the square lattice used to

represent the former surface. There, the lattice consists of 1600 adsorption sites

inserted between two Au steps, to simulate both island growth on a surface and at

step borders. The image of the simulation cell is repeated periodically in the vertical

direction (periodic boundary conditions).

Interactions Between the Particles of the System

The choice of proper interatomic potentials is a key issue in computer simulations.

This is particularly the case in upd systems, which are characterized by metallic

many-body interactions. Several methods are available to calculate the total energy

of a many-particle metallic system, with a computational effort similar to that of a

pair potential. Among them, it is worth mentioning the EAM [78], the N-body
potentials of Finnis and Sinclair [79], the second-moment approximation [80] and

the glue model [81]. The article here discussed used the EAM because it showed to

reproduce important characteristics of the metallic binding. The EAM considers

that the total energy Utot of a metallic system made of N particles may be calculated

as the sum of energies Ui corresponding to single particles according to:

Fig. 5.38 Simulation box employed to study Ag nucleation and growth upon upd on a Au(100)

surface. The system has periodic boundary conditions in the vertical direction (Reprinted with

permission from Ref. [77])
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Utot ¼
XN
i¼1

Ui ð5:59Þ

Ui is written as:

Ui ¼ Fi ρh, i
� �þ 1

2

X
j6¼i

Vij rij
� � ð5:60Þ

where Fi is the so-called embedding function, which represents the energy resulting

from embedding atom i in the electronic density ρh,i at the position at which this

atom is located. ρh,i is obtained from the superposition of the individual electronic

densities ρj(rij);

ρh, i ¼
X
j 6¼i

ρ j rij
� � ð5:61Þ

while ρj represents an attractive, many-body electronic contribution, the second

term in Eq. (5.60) represents the repulsion between ion cores. The latter is described

through a pair potential Vij(rij), which depends only on the distance between the

cores rij with the form:

Vi j ri j
� � ¼ Zi rij

� �
Z j rij
� �

=rij ð5:62Þ

where the Zi(rij) represent an effective charge, dependent on the nature of the atom

i. The functions Fi(ρh,i) and Vij(rij) have been parameterized to fit experimental data

for the isolated metals like cohesive energies, elastic constants, bulk lattice con-

stants and bimetallic properties like dissolution enthalpies of binary alloys.

Dynamic Hierarchy: Calculations of Rates for the Different Events

As stated in the introduction, KMC requires establishing a dynamic hierarchy,

which allows the construction of the rate vector R (Eqs. 5.55 and 5.56). Thus, the

rates of the events that may take place must be clearly determined. In the present

case of study, surface phase formation, the following events may occur: (a) adatom

formation (adsorption) (b) adatom oxidation (desorption) (c) adatom diffusion. If

one is interested in the particular study of the formation/disappearance of the upd

phase, processes (b) or (a) may alternatively be neglected with respect to the

complementary one. For example, the study of Ref. [77] was focused on the

deposition of Ag on Au(100) and Au(111), so that the dissolution rate was

neglected and the deposition rate was used as a parameter. On the other hand, the

diffusion rate was calculated using the EAM potentials. With this purpose, the

diffusion of a Ag adatom on a Au surface was considered in different possible

environments as illustrated in Fig. 5.39. The initial and the final positions of the
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diffusing atom are embedded in an environment of six neighboring sites, which

may be free or occupied by Ag or Au atoms, thus yielding a total number of

36¼ 729 configurations. Figure 5.39 shows three sample environments and the

corresponding energy curves along the diffusion paths. The diffusion rates were

calculated from these curves according to [82]:

vdiff ¼ 2v exp �Ea=kBT½ � ð5:63Þ

where v is the attempt frequency and Ea is the activation energy as calculated from a

trajectory between the initial and the final state, using the EAM potentials.

Details on the organization of the KMC procedure and a description of how the

algorithm may be coded, including the storage and search algorithms that are used,

are described for example in the Appendix of the manuscript by Drews et al. [83].

Fig. 5.39 (a)–(c) Sample environments considered for the diffusional motion of a Ag atom on a

Au(100) surface. (d) Potential energy as a function of the distance along the diffusion path for the

environments shown in (a)–(c) (Reprinted with permission from Ref. [77])
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The steps of the KMC algorithm can then be summarized as:

1. A random number, vS1 , is chosen from a uniform distribution in the range (0,1).

2. All the possible Nt events are determined and their rates vi calculated.
3. A transition event is selected from the event vector, by selecting the first index s

for which
Xs
j¼1

vi=
XNt

j¼1

vi 
 vS1 .

4. The even selected is allowed to occur.

5. All vi that have changed as a result of making the move are updated.

6. The time in the simulations is advanced Δt where Δt is:

Δt ¼ � 1XNt

j¼1

vi

ln vS2ð Þ ð5:64Þ

wherevS2 is a second random number, also chosen from a uniform distribution in the

range (0,1).

The previous modeling was used to analyze the different behavior of Ag

nucleation and growth found on Au(100) and Au(111) faces. The KMC simulations

indicated the nucleation and growth should take place with the characteristic time

of tenths of seconds in the case of the Au(100) face and of the order of milliseconds

in the case of the Au(111) face. Therefore, if Ag is deposited at intermediate rates

on both surfaces, island growth is predicted to occur on Au(100) but not on Au

(111), as found in experiment [84, 85]. These features are illustrated in Fig. 5.40.

Fig. 5.40 Snapshots of Ag upd growth on Au(100) (left) and Au(111) surfaces (Right). Note the
occurrence and the absence of islands in the first and the second case respectively (Reprinted with

permission from Ref. [77])
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Another valuable information that can be obtained with this simulation tech-

nique is the number of islands formed as a function of coverage degree at different

adsorption rates, as illustrated in Fig. 5.41.

The present methodology has been very recently extended by Treeratanaphitak

et al. [86, 87] to account for collective surface diffusion processes, in addition to

nearest-neighbor hopping, including atom exchange and step-edge atom exchange,

allowing the study of polycrystalline metal electrodeposition. Thus, the combina-

tion of EAM potentials with KMC appears as a very promising tool for studying the

present and other related phenomena, like for example the formation of surface

alloys.

5.4.4.3 Other Simple Metal Deposition Systems Involving a Foreign

Substrate

The previous formalism has also been used to tackle other upd-related deposition

phenomena. Rather than simulating specific systems, a useful approach is some-

times to vary one or more of the parameters of the model applied and analyze how

they affect the properties emerging from the simulation. The utility of this approach

is twofold: on one side, it can be expected that if a simulation reflects the experi-

ment results, its parameters may be close to those of the experimental system. This

allows getting information that is not directly available from the experiment. On the

other hand, the parameters of the simulation may be tuned to get a given result, like

for example a uniform distribution of islands on a substrate. In this way, the

simulation becomes a useful tool for system design.

Concerning the first type of application mentioned above, Giménez et al. [88]

have used KMC to analyze three different situations for adatom deposition rates, as

Fig. 5.41 KMC results for

the number of islands as a

function of the coverage

degree for Ag upd on Au

(100) at different deposition

rates v, as indicated in the

figure. Each curve

represents an average over

six simulation runs

(Reprinted with permission

from Ref. [77])
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illustrated in Fig. 5.42: (a) a case where the deposition rate is the same on any

adsorbate-free sites on the substrate (Model A); (b) a case where deposition is only

allowed on sites characterized by adsorbate-free surroundings (Model B); (c) a

more general case where deposition at edge sites and terraces is allowed at different

rates (Model C). In the last two cases, the coverage vs time curves were fitted to a

stretched exponential law θ ¼ 1� exp �tα=kBT½ �ð Þ, with the finding that the param-

eter α can be used as a diagnose criterion to differentiate between the two cases.

While in model B, α was found to be always smaller than 1, in model C, α was

found to vary between 1.1 and 2.4, depending on the deposition rates assumed. This

predictions may be contrasted with those of Avrami’s model [89], where the

exponent α is 2 or 3, depending on whether the nucleation is progressive or

instantaneous.

Drews et al. [90] have also used KMC simulations to investigate nucleation and

early stages of growth during metal electrodeposition on a foreign substrate. A

negative overpotential was assumed (overpotential deposition). The authors also

chose conditions where the kinetics of attachment of atoms to the electrode surface

is rate-limiting, that is, low overpotentials. A negative overpotential was assumed

(overpotential deposition). Adatom diffusion, characterized by a diffusion jump

frequency w, was not only considered on the substrate, but also on a monolayer and

on a bilayer of M. Adatom deposition was allowed on both the substrate or the metal

M via a Tafel kinetics, at a deposition rate vdep. Some of the information obtained

from the simulation was concerned with cluster density, average cluster size, and

average cluster height. It was found that the energy barrier for metal-on-substrate

surface diffusion had the strongest effect on the cluster density in the parameter

regimes investigated, while the energy barrier for metal-on-metal surface diffusion

had a weak effect.

In a subsequent article, Drews et al. [83] have used KMC to study the influence

of the presence of metal seed clusters and other parameters on the cluster size

Fig. 5.42 Scheme of the mechanisms for atom deposition considered in Ref. [88]: (a) Particle

adsorption occurs on all unoccupied sites at the same rate k. (b) Particle adsorption occurs only at

sites without neighboring adsorbates at the rate k. (c) Particles are considered to be discharged

preferably at sites with neighboring adatoms at a rate k2 and at a lowest rate, k1, at those sites

without neighboring adatoms (Reprinted with permission from Ref. [88])
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distribution of deposits. According to these simulations, it was found that the best

conditions for producing a uniform size distribution is an initial high number of

seed clusters, a low applied potential and a low metal-surface diffusion energy

barrier.

Although metal deposition on a foreign substrate was also assumed to occur

under overpotential conditions as in the previous case, it is worth mentioning here

the KMC work of Stephens and Alkire [91] concerning nucleation and growth at

monatomic step edges. It was found that the propensity of the deposit to grow at

step edges or to form islands on the surface may be measured by the adimensional

quantity Λ, which was defined as:

Λd ¼ 1

L

ffiffiffiffiffiffiffiffi
D

vde p

s
ð5:65Þ

where D is the diffusion coefficient, vdep is the deposition rate of adatoms and L is

half the distance between steps. Since the denominator represents a diffusion length

of the incoming atoms, it can be expected that ifΛd � 1, atoms being deposited will

diffuse around the surface easily, with the result that most of the deposit would

grow at the step edges. On the other hand, if Λd 	 1, the surface diffusion rate is

small in comparison to the deposition rate, so that atoms will tend to stay near the

site of deposition. The results of the simulation reflected this interpretation, as can

be observed for example in Fig. 5.43, which was obtained from simulations for

homoepitaxial growth. There, we can see the transition from regions of instanta-

neous nucleation Λd > 1ð Þ to progressive nucleation Λd < 1ð Þ. In fact, in the first

case we see little formation of clusters at large values of Λd, since the simulations

show very little formation of clusters other than the growth at the step edges. In the

Fig. 5.43 Cluster density

plotted as a function of Λd

and time. Time is

represented by the amount

of deposit on the surface

(Reprinted with permission

from Ref. [91])
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second case, for small values of Λd, the cluster density shows an approximately

linear relationship with respect to time, consistent with progressive nucleation.

Figure 5.44 shows snapshots of these simulations, for different Λd, as well as for

different jump frequencies w different heights of the diffusion energy barriers.

There, it can be observed the transition from island formation to border decoration

upon Λd increase. On the other hand, the far left column of this figure shows results

obtained with a low jump frequency and low surface diffusion energy barriers that

may be contrasted with the results shown on the far right column, which shows

results obtained with a high jump frequency and high energy barriers. It is apparent

that in the former case large, facetted clusters are formed, while in the latter much

less smooth and smaller clusters result.

Although the results we have shown above in Figs. 5.43 and 5.44 were for a

homoepitaxial system, it was found that heteroepitaxial growth follows the same

principles that govern the cluster density, step edge growth, and other deposit

characteristics.

New advances in related KMC simulations, have been undertaken recently. As

mentioned above, Treeratanaphitak et al. [86, 87] have extended the EAM-KMC

methodology to include atom exchange and other phenomena. Another interesting

improvement of KMC is the introduction of the first passage time algorithm [92] to

replace the computationally demanding simulation of diffusion hops in KMC by

larger jumps when particles are far away from step-edges or other particle. This

innovation has allowed to analyze different categories of deposition systems:

homoepitaxy, heteroepitaxy, multi-layer, step edge, and confined regions [93].

5.4.4.4 Kinetic Monte Carlo Analysis of Cu Underpotential

Deposition on Au(111)

Similarly to the discussion done in Sect. 5.4.3.2 of this chapter, we discuss

separately the work of Brown et al. [94] on the application of KMC techniques to

complex upd systems. As we have seen in Sect. 5.4.3.2, an effective lattice-gas

Hamiltonian was developed for the Au(111)/Cu system in the presence of sulfate

anions. As pointed out above in Sect. 5.4.4.1 a dynamic hierarchy, involving the

calculation of different transitions rates, is necessary for the implementation of the

KMC procedure. It is illustrative to see how Eq. (5.48) can be used, along with some

considerations, to construct such a hierarchy. At first, it is relevant to consider

which processes are to be taken into account. In the present model these processes

were, for both species, Cu and sulfate: (a) adsorption, (b) desorption, (c) one-step

lateral diffusion. To proceed to assignation of rates, since these are related to

processes involving single particles, it is more useful to consider the free energy

associated with a single adsorbed particle of species X (X¼ S (Sulfate) or C

(Copper)) occupying site i for a specific configuration of neighbors and to formulate

the lattice-gas Hamiltonian:
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Fig. 5.44 Snapshots of simulation outputs after deposition of one-quarter equivalent monolayers

of KMC simulated deposition, for several of the simulated parameter regimes. From top to bottom,
the snapshots correspond to increasing Λd values. From left to right, correspond to increasing jump

frequencies and surface diffusion energy barriers (Reprinted with permission from Ref. [91])
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Ĥ i X;Γð Þ ¼ �~μX �
X
n

Φ nð Þ
XS

Xnð Þ

j ið Þ
cSj þ Φ nð Þ

XC

Xnð Þ

j ið Þ
cCj � δX,SΦ

tð Þ
SS

Xnð Þ

Δ ið Þ
cSj c

S
k

24 35 ð5:66Þ

where the symbols have the same meaning as in Sect. 5.4.3.2. The sum
X nð Þ

j ið Þ runs

over all adsorption sites j that are that are nth neighbors of site X, the sum
X nð Þ

Δ ið Þ
runs over all second-neighbor equilateral triangles involving site i, the factor δI,S is
unity when X¼ S and zero otherwise, and the index Γ runs over all possible

arrangements of neighboring adsorbate particles within the maximum interaction

range from site i. The index X may also take the value 0 (unoccupied site), in which

case Ĥ i 0;Γð Þ ¼ 0, regardless of the arrangement of the neighbors.

Let us now consider the desorption-adsorption process in terms of the hamilto-

nian (Eq. 5.66). With this purpose, we appeal to a representation of the free energy

profile of the reaction in terms of the Butler-Volmer approximation [95], as

depicted in Fig. 5.45. To analyze the adsorption of a particle, we move from right

to left of the figure. Three different situations are considered for the ad-state. The

most simple initial case, labeled with I, is an adsorbed particle without neighbors, in

a condition where ~μX ¼ 0. Under this condition Ĥ i X;Γð Þ ¼ 0, the free energy

profile is completely symmetric, with a free energy barrier of magnitude Δ�
0(X). The

next initial ad-case is labeled with II in the figure, and corresponds to an initial

adsorbed particle without neighbors, but in the presence of an electrochemical

potential ~μI 6¼ 0. In this case Ĥ i X;Γð Þ ¼ �~μI. The most general case is that denoted

with III, where the single-particle Hamiltonian is Ĥi(X,Γ). In this case, the free-

energy barrier for adsorption is changed to:

Fig. 5.45 Butler-Volmer-

type free-energy barrier

scheme for considering

adsorption/desorption of

particles. Three different

cases are analyzed, as

discussed in the text

(Reprinted with permission

of Ref. [94])
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Δ*
i X;Γð Þ ¼ Δ*

0 Xð Þ þ αĤ i X;Γð Þ ð5:67Þ

where α a is the so-called symmetry factor, usually assumed to be close to 1/2.

Thus, if the effective interactions of the ad-state are negative, the free energy

activation barrier will be lowered by the amount given by the second term on the

rhs of Eq. (5.67). Through this equation, we have solved a kinetic problem by using

a thermodynamic expression, given by Eq. (5.66). A free parameter Δ�
0(X), which

depends on the species being adsorbed, has emerged from the ansatz (Eq. 5.67).

To get the activation energies for surface diffusion between neighboring sites i

and j, the ansatz proposed was:

eΔ*
i j X;Γð Þ ¼ eΔ*

0 Xð Þ þ 1

2
max Ĥ i X;Γð Þ, Ĥ j X;Γð Þ� � ð5:68Þ

where the max[x, y] is a function that selects the maximum value between x and y

and eΔ*
0 Xð Þ is a new parameter to be chosen.

The parameters introduced in Eq. (5.66) to calculate Ĥi(X,Γ) were not those

presented in Sect. 5.4.3.2 but an improved version of them, which were also

reported in Ref. [94]. The phase diagram obtained with this improved set of

parameters is shown in Fig. 5.46, along with a cyclic voltammogram for Cu upd

onto Au(111) surface.

Rather than on voltammograms, the KMC simulations were focused on

potentiostatic transients, motivated by experimental results that were discussed in

Chap. 2 [96–98]. H€olzle et al. [97] measured current transients in potential-step

Fig. 5.46 (a) Improved ground-state phase diagram for the system Cu/Au(111) in the presence of

sulfate anions, as presented in Ref. [94]. The structure of the different phases can be found in Fig. 5.35

of Sect. 5.3.2. The dotted line represents the isotherm used to simulate the potential-step experiments.

It was chosen to match the transition potentials observed in experiments. (b) Cyclic voltammogram

for Cu upd onto Au(111) surface, taken from Ref. [71]. Note the correlation between the peaks in the

voltammograms (A/A0 andB/B0) in figure (b), with the crossings in the phase boundariesmarkedwith

arrows in figure (a) (Reprinted with permission from Refs. [94] and [71])
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experiments performed at both transitions marked with A/A0 and B/B0 in Fig. 5.46a,
with both positive-going and negative-going steps. Figures 5.47 and 5.48 show

simulated potential steps for the B/B0 and A/A0 transitions respectively. In the first

case, it must be remarked that both transients reflect nucleation and growth mech-

anisms. As observed in the experimental data, the broad maximum becomes

stronger and it shifts to shorter times as the size of the step is increased. In the

second case, Fig. 5.48, it is remarkable that the transients are very different for

positive and negative potential steps. While the positive step present current

transients that are non-monotonic (left), the negative steps lead to monotonically

decreasing transients, which do not present to a simple functional form. Snapshots

of a simulation of this type of negative step shows that equilibration after the step

occurs in a disordered phase with a relatively high sulfate coverage (see Fig. 5.49).

Fig. 5.47 KMC simulation of potential steps across the transition between the 1� 1ð Þ01 andffiffiffi
3

p � ffiffiffi
3

p� �1=3
2=3

phases. Left: Potential step in the positive direction, as illustrated by the arrow B0 in
Fig. 5.46a. Right: Potential step in the negative direction, as illustrated by the arrow B in Fig. 5.46b

(Reprinted with permission from Ref. [94])

Fig. 5.48 KMC simulation of potential steps across the transition between the
ffiffiffi
3

p � ffiffiffi
3

p� �1=3
2=3

and

1� 1ð Þ00 phases. Left: Potential step in the positive direction, as illustrated by arrow A0 in

Fig. 5.46a. Right: Potential step in the negative direction, as illustrated by arrow A in Fig. 5.46b

(Reprinted with permission from Ref. [94])
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The sulfate present collapses first with incoming copper atoms to form a domain of

the phase
ffiffiffi
3

p � ffiffiffi
3

p� �1=3
1=3

, metastable at the potential where the step was made (see

Fig. 5.46a). This phase is filled later with Cu to yield finally the stableffiffiffi
3

p � ffiffiffi
3

p� �1=3
2=3

phase (see Fig. 5.49).

The authors pointed out that the fact that different dynamic paths can give

current profiles qualitatively similar to those observed experimentally indicates

that more study of the copper upd system is desirable. However, it must be

recognized that these studies represented an important step forward in the under-

standing of this puzzling system.

5.5 Miscellaneous Models Applied to Underpotential

Deposition

We devote this section to different models that have been applied to model upd, but

which have not yet evolved to develop a wide branch of theoretical work.

5.5.1 Quantum Mechanical Semiempirical Calculations

Before the availability of DFT programs, much quantum mechanical work was

based on semiempirical approximations. This was for example the case of the semi-

empirical atom superposition and electron delocalization molecular orbital (ASED-

MO) technique [99, 100]. This method became very popular at the end of the 1980s

and the beginning of the 1990s, and found a number of applications to upd.

Mehandru and Anderson [101] used this method to consider the behavior of quarter

of a monolayer and a half-monolayer of Pb atoms adsorbed on Au(100) in rela-

tionship to the binding and orientation of the oxygen molecule on these surfaces.

Fig. 5.49 Series of snapshots after a negative-going potential step to 20 mV below the transition

between the low coverage and mixed layers, see arrow A in Fig. 5.46a. Note the high concentra-

tion of sulfate species at 0 s, the predominance of phase
ffiffiffi
3

p � ffiffiffi
3

p� �1=3
1=3

at 0.25 s and the

predominance of the
ffiffiffi
3

p � ffiffiffi
3

p� �1=3
2=3

at 1 s. The circles were drawn to focus on some compact,

representative domains (Reprinted with permission from Ref. [94])
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Lopez et al. calculated the stability of different Ni upd structures as a function of

surface coverage and electric potential applied to the Pt(111) surface [102], and

they also investigated the influence of different surface structures on coadsorbed

water decomposition [103]. In the first case, the information obtained was related to

the most favorable binding site and the growth mechanism of the metal deposit,

which was accompanied by a molecular orbital analysis. Lopez et al. used the same

methodology to consider the possible structures of copper electrodeposits on Pt

(100) and Pt(111) clusters under different applied electric potentials [104].

5.5.2 Orientational Ordering of Adsorbed Monolayers

We have seen in Chaps. 2 and 3 that Tl and Pb monolayers adsorbed on Ag(111)

surfaces form incommensurate, hexagonal monolayers that are compressed com-

pared to the bulk metals by 0.1–3.2 % and rotated from the substrate [011] direction

in several degrees. A similar observation has been made for Tl and Pb adsorbed on

Au(111). To study these systems, Mola and Blum [105] and Mola et al. [106, 107]
have set up a model for the adsorption energy of a hexagonal close packed

monolayer deposited on a substrate surface of the same structure but different

lattice constant as a function of the epitaxy angle between the principal axis. The

underpotentially deposited Pb on the (111) surface of silver was the subject of

these studies, but the model could easily be extended to other similar cases of

different geometry. Figure 5.50 shows the geometrical arrangement that these

authors employed to represent this system. The substrate S was considered to be

described as a hexagonal lattice with lattice constant a, set equal to 1 for conve-

nience, while the adsorbate defined a superimposed hexagonal arrangement of

Fig. 5.50 Portion of a

geometric arrangement as

that used by Mola and Blum

[105] to study the upd

deposition of Pb on Ag

(111). Filled circles: points
of the substrate lattice.

Open circles: points of the
adsorbate lattice (Reprinted

with permission from Ref.

[105])
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lattice constant b. Coordinate systems (x,y) and (x’,y’) were defined for A and S,

respectively so that the vectors (m,n) and (r,s) with integer components define the

positions of the point lattices A and S. Assuming a common origin for both

coordinates, the angle θ defines the epitaxy angle.

The representation of a lattice point X ¼ m; nð Þ of the adsorbate lattice on the

substrate system, say X0 ¼ x0, y0ð Þ is given by:

X0 ¼ bM θð ÞX ð5:69Þ

where the matrix relating the components in the two systems, which are shown in

Fig. 5.50, has a simple form:

M θð Þ ¼ 2ffiffiffi
3

p sin π=3þ θð Þ sin θð Þ
sin θð Þ sin π=3� θð Þ

� 	
ð5:70Þ

The points at which the two lattices in Fig. 5.50 overlap define a coincidence lattice.

These points, that we label within the adsorbate lattice withRc ¼ xc; ycð Þ, fulfill the
relationship:

d xc; scð Þ ¼ x2c þ y2c � xc yc
� �1=2 ¼ hb ð5:71Þ

where d(xc, sc) is the distance of the pointRc to the center of the coordinates and h is
an integer number. Using Eqs. (5.69), (5.70) and (5.71) we get:

xc
yc

� 	
¼ b

2ffiffiffi
3

p sin π=3þ θð Þ sin θð Þ
sin θð Þ in π=3� θð Þ

� 	
h
0

� 	
ð5:72Þ

which leads to the angle:

θ ¼ sin �1 2xc � yc

2 x2c � y2c þ xcyc
� �1=2

" #
ð5:73Þ

Considering the approximate experimental value of b ¼ 1:2010, Mola and Blum

[105] calculated the values of h, xc and yc compatible with it, as well as the

corresponding θ, finding the best agreement with experiment for h¼ 28,

b¼ 1.2000 and θ ¼ �4:43�.
Extensions of this model were developed by Mola et al. [106, 107], expanding

the potential energy per surface atoms in a Fourier series:

V Rð Þ ¼
X
G

VGexp iG 
 Rð Þ ð5:74Þ

where G denotes 2-dimensional reciprocal lattice vectors and R indicates the

position of an adatom.
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The binding energy per adatom was evaluated considering up to three or four

harmonics in Eq. (5.74), finding a good agreement between the calculated θ values
and the experimental ones.

5.5.3 Entropic Contribution to Underpotential Deposition
Shift: Lattice Dynamics Analysis

Entropic contributions to underpotential shift (see definition in Chap. 1) have been

seldom considered in the literature [108]. Pioneering work in the modeling of

entropic contributions to underpotential shift was undertaken by Oviedo

et al. [109] by means of lattice dynamics. In this approach, the Hamiltonian of

the system, which takes into account potential and kinetic contributions to the

energy of the system in normal coordinates ξ and momentum _ξ is written as:

Ĥ ξ; _ξ
� � ¼ U 0ð Þ þ 1

2

X
i

f iξ
2
iþ

1

2

X
i

Mi
_ξ
2

i ð5:75Þ

where U(0) is the energy of the system when all atoms are in their equilibrium

positions, fi denotes an effective force constant andMi represents the effective mass

of particle i. The energy of the system was calculated using the EAM , as discussed

in Sect. 5.4.4.2, and the quasi-harmonic lattice dynamic method (EAMLD) devel-

oped by Barrera and co-workers [110]. Within this approximation, it is assumed

that the Helmholtz energy of a crystal at a temperature T can be written as the sum

of static and vibrational contributions:

F ¼ Ustat þ Fvib Tð Þ ð5:76Þ

where Ustat is the potential energy of the static lattice in a given configuration and

Fvib is the sum of the harmonic vibrational contributions from all normal modes.

For a periodic structure, the vibrational frequencies υj(q) (q being a wave vector

defined in the reciprocal lattice of the system) are obtained by diagonalization of the

dynamic matrix, so that Fvib is given by:

Fvib ¼
X3N
j¼1

X
q

1

2
hυ j qð Þ þ kBTln 1� exp � hυ j qð Þ

kBT

� �� �� 	
ð5:77Þ

where the first term is the zero-point energy at T¼ 0 K. For a macroscopic crystal,

the sum over q becomes an integral over a cell in reciprocal space, which can be

evaluated by taking successively finer uniform grids until convergence is achieved.

The normal mode frequencies υj(q) depend on the interactions among the atoms in

the solid, as described by the EAM.
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The vibrational contribution to the entropy is in turn given by:

Svib ¼ kB
X3N
j¼1

X
q

�ln 1� exp � hυ j qð Þ
kBT

� �� �
þ hυ j qð Þ=kBT

exp � hυ j qð Þ
kBT

� 

� 1

h i
24 35 ð5:78Þ

The specific heat at constant volume may be obtained from the previous equation

considering the thermodynamic relationship ∂S=∂Tð ÞV ¼ CV=T. Figure 5.51

shows the supercells used to perform the lattice dynamics analysis for several

systems, including the (111), (100) and (110) faces of different substrate/adsorbate

combinations containing Ag, Au, Pt, Pd and Cu. A 1� 1 commensurate structure

was assumed for all systems.

Figure 5.52 shows the entropic contribution to underpotential shifts for the

systems analyzed, as function of the crystallographic misfit. The misfit was defined

as in Eq. (5.47), but without the factor 100, so that the systems included in this

figure are in the range 12% < εmf < 14%. The first relevant information concerns

the magnitude of the entropic contribution to upd shift, where it is found that this

quantity is rarely largen than 20 meV, which translated into the electrochemical

scale means changes at the most of the order of 20 mV. It can be observed that plots

for all single crystal faces present a positive slope, so that negative and positive

misfits roughly correspond to negative and positive entropic contributions, respec-

tively. This has the following physical explanation: when an adsorbate is

Fig. 5.51 Diagram of the supercells employed to represent the substrate (single crystal face) +

adsorbate system for the lattice dynamic analysis described in the text. It consists of a 14-layer

basis (12 inner substrate layers plus two external adsorbate ones). (a) Slabs and their images in the

z-direction. (b) Top view of the surface. Periodic boundary condition in x-, y- and z-directions
were applied (Reprinted with permission from Ref. [109])
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compressed to fit on a smaller substrate, its motion becomes more restricted

delivering a negative contribution to upd shift. This general trend is modulated by

specific chemical effects, but it seems to be valid in a first approximation. Exper-

imental entropy shifts will very likely differ quantitatively from the values reported

in Fig. 5.52, since the calculations assumed pseudomorphic structures, and real

systems with a large misfit will relax this condition either by adopting incommen-

surate structures or via the occurrence of surface defects in the monolayer.

5.5.4 Application of Molecular Dynamics and Related
Techniques to Underpotential Deposition

Molecular Dynamics (MD) is a computer simulation technique that allows gener-

ating trajectories in the phase space of a given system. This procedure is performed

by numerically solving the classical equations of motion (Eq. 5.6) and (Eq. 5.7),

presented in the introduction of this chapter and can be summarized as:
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Fig. 5.52 Entropic contribution to the underpotential shift as a function of the crystallographic

misfit. The adsorption of M (M¼Ag, Au, Pt, Pd, Cu) is considered on different substrates. (a)

(111), (b) (100) and (c) (110) corresponding to the three single crystal surfaces studied. The inset

shows the symbols employed to represent the different adsorbates on a given substrate. On each

line representing a substrate, the adsorbates were, from left to right: Ag, Au, Pt, Pd and Cu

(Reprinted with permission from Ref. [109])
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mi
d2Ri

dt2
¼ f i with f i ¼ �∇iU Rf gð Þ ð5:79Þ

In the quantum mechanical approach we took in the introduction of this chapter the

set {Ri} represented the position of nuclei or core ions, which were in principle

treated separately from electrons. In a more approximate description often used, the

{Ri} represent the position of the atoms, viewed as a whole. Each atom is not

viewed as composed of a nucleus and electrons, but considered as a whole entity,

which interacts with other atoms via an effective potential. This is, for example, the

case of the Lennard-Jones interaction potential, where the interaction between

particles 1 and 2 is given by:

vLJ12 R12ð Þ ¼ 4εLJ
σLJ
R12

� �12

� σLJ
R12

� �6
" #

ð5:80Þ

where εLJ is the depth of the potential well, σLJ is the finite distance at which the

inter-particle potential is zero and R12 ¼ R2 � R1j j. The potential energy for such a
system can be written asU Rð Þ ¼ 1

2

X
i 6¼ j

vLJi j Ri j

� �
. In order to continue the discussion

of the method, we introduce the atomic momenta p ¼ p1, p2, p3, . . . pNð Þ. Thus,
the kinetic energy of the system (K ) can be written as:

K pð Þ ¼
XN
i¼1

pij j2
2mi

ð5:81Þ

The total energy may then be written as a sum of kinetic and potential terms H¼K
+U. The time integration algorithm most commonly used in molecular dynamics is

probably the so-called Verlet algorithm. The general idea behind this algorithm is to

write third-order Taylor expansions for the positions ri t� Δtð Þ, in different time

directions. If we consider that, for particle i, vi is the velocity, ai is the acceleration,
and bi is the third derivative of ri with respect to t, we can write:

Ri tþ Δtð Þ ¼ Ri tð Þ þ vi tð ÞΔtþ 1

2
ai tð ÞΔt2 þ 1

6
bi tð ÞΔt3 þ O Δt4

� � ð5:82Þ

Ri t� Δtð Þ ¼ Ri tð Þ � vi tð ÞΔtþ 1

2
ai tð ÞΔt2 � 1

6
bi tð ÞΔt3 þ O Δt4

� � ð5:83Þ

By adding the two expressions, we obtain:

Ri tþ Δtð Þ ¼ 2Ri tð Þ � Ri t� Δtð Þ þ ai tð ÞΔt2 þ O Δt4
� � ð5:84Þ

Since we are dealing with Newton’s equations of motion, ai(t) is just the force

divided by the mass, and the force is, in turn, a function of the complete set of

atomic coordinates {Ri}, as established in Eq. (5.79).
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Molecular or atom dynamics simulation as discussed above is a deterministic

technique that allows the prediction of the “real” trajectories of motion at real time.

However, to capture many relaxation processes, the integration time step must be

very small, of the order of 10�15 s, and therefore the period of time explored cannot

usually overcome the nanoseconds, something that makes the technique not suited

for many physical problems involved in crystallization. Furthermore, in some cases

not all the degrees of freedom considered are relevant for the process under study.

Taking metal deposition as an example, in some cases the simulator may interested

in the structure of the deposit being formed. While the coordinates of the discharged

metal atoms are relevant for this purpose, not so the coordinates of the solvent

molecules, since they rather participate as thermal bath where the depositing ions

are immersed. One of the options to solve this situation was discussed in Sect. 5.4.4.

Another, intermediate possibility is Langevin dynamics (LD), which was developed

to follow the trajectories of ions or neutral atoms in a fluid at relatively low

computational cost. The algorithm for LD is closely related to MD and is concep-

tually simple: the motion of the i-th atom with mass mi is governed by Langevin

equation:

mi
d2Ri

dt2
¼ f i � γi

d2Ri

dt2
þ f irand ð5:85Þ

where the terms on the rhs of Eq. (5.85) denote: fi is the force as calculated in

ordinary MD, the second term corresponds to an average frictional force with a

macroscopic friction coefficient given by γi, and firand is a random Gaussian force

obeying the fluctuation-dissipation theorem [111]. Ermak’s algorithm [112] pro-

vides a way to treat properly both the systematic dynamic and the stochastic

elements of Langevin equation.

Schmickler et al. [113, 114] have developed a simulation method combining MD

and LD to study systems of interest in upd. A scheme of this simulation method is

shown in Fig. 5.53. The simulation system consists of three principal parts. The

bottom part, labelled A, contains several layers of metal atoms arranged in an fcc
lattice (or similar) containing 400 atoms per layer; the three bottom layers are kept

fixed, the others are mobile and obey ordinary deterministic MD. The interaction

between these metal atoms is calculated from the EAM [78]. In the electrolyte

solution, only the metal ions are modeled explicitly as particles contained in the

regions B and C. Their motion is described using LD. In region C, the concentration

of the particles is kept constant by adding or removing particles, as required. In

contrast, region B contains a variable number of particles and can thus represent a

depletion layer for metal deposition. The particles in the solution do not interact

with each other, but experience a constant background. Switching between LD and

MD occurs at the interface B and A, allowing atom adsorption/desorption at rates

that depend on the background chemical potential μ0.
Schmickler et al. [113] used the present methodology to study Ag upd on Au

(111) surfaces and Ptopd on Au(111) surfaces. In a subsequent work, Mariscal

et al. [114] used this methodology to analyze the decoration of Au islands on
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Au(111) surface by Ag atoms, and the deposition of Ni on Au(111) and Pt(111)

surfaces. Snapshots of a simulation of the former system are shown in Fig. 5.54

Very recently, MD simulations have also been used along with the two-phase

thermodynamic (2PT) method to study the entropic contribution to monolayer upd

formation [115]. We explain briefly the idea behind this application. In the canon-

ical thermodynamic ensemble, all thermodynamic functions can be calculated from

Fig. 5.53 Scheme of the simulation method developed in Ref. [113] to study the deposition of

metal atoms on a foreign surface, as described in the text (Reprinted with permission from Ref.

[113])
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the partition function Q. In the case of entropy, the relationship between entropy

and the partition function is given by:

S ¼ kBT
∂lnQ
∂T

þ kBlnQ ð5:86Þ

The thermodynamic properties of pure metals are in many cases calculated on the

basis of a harmonic oscillator model using statistical mechanics [116]. Within the

harmonic approximation, the partition function can obtained from the vibrational

density of states DOS(v) of the system according to:

lnQ ¼
ð1
0

DOS vð ÞW vð Þdν ð5:87Þ

where v is the frequency of normal modes and W(v) corresponds to a weighting

function given by W vð Þ ¼ �hv=2kBT � ln 1� exp �hv=2kBTð Þ½ �. The density of

states (DOS) may be calculated from the Fourier transform of the velocity auto-

correlation function [117]. The harmonic approximation may be a reasonable

approach for bimetallic systems with negligible mobility and misfit [109]. However,

in bimetallic upd systems like Pb/Au, characterized by a high adatom diffusivity

Fig. 5.54 Snapshots of a MD-LD simulation of Ag decoration of a Au island on a Au(111) surface

(Reprinted with permission from Ref. [114])
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and misfit, this approach may no longer be valid because of the significant

anharmonic nature of the frequency modes. Furthermore, in very small

bidimensional clusters the translational contribution may become important. This

is the reason for the development of a more sophisticated approach including

translational contributions, like the 2PT model. Within this model, the thermody-

namic properties are determined from the sum of static, translational, and vibra-

tional contributions. In the case of entropy:

S ¼ Stras þ Svibra ð5:88Þ

This is possible by dividing the DOS distribution into solid-like and gas-like

components:

DOS vð Þ ¼ DOSsolid vð Þ þ DOSgas vð Þ ð5:89Þ

The gas component is determined based on the DOS at zero frequency and ensures

that all of the diffusive modes are included in this component. Once the gas-like

component is determined, the solid-like component can be obtained from the

difference between the total DOS and the gas-like DOS. So, the 2PT method allows

the computation of anharmonic effects explicitly. The studies of Ref. [115] dem-

onstrated that very small Pb clusters on Au(111) surfaces show an entropic contri-

bution to their stability. This is expected from the observation of their DOS, as

shown in Fig. 5.55, where the increasing translational contribution for smaller

clusters is marked with arrows in the figure.

The entropic contribution of small clusters to underpotential shift, calculated

using the 2PT method is shown in Table 5.13, together with the energetic and free

energy contributions. It can be observed that the largest contribution to the upd shift

stems from the vibrational part, being the translational practically negligible, even

for the smallest clusters.

Fig. 5.55 Density of states

corresponding to Pb clusters

of different sizes on a Au

(111) surface at 300 K as is

indicated in the legend. The

curves have been

normalized by dividing by

the number of Pb atoms

(Reprinted with permission

from Ref. [115])
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67. Giménez MC, Leiva EPM (1999) Electrochim Acta 45:699
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70. Giménez MC, Ramirez-Pastor AJ, Leiva EPM (2010) J Chem Phys 132:184703

71. Zhang J, Sung YE, Rikvold PA, Wieckowski A (1996) J Chem Phys 104:5699

72. Hachiya T, Honbo H, Itaya KJ (1991) Electroanal Chem 315:275

73. Magnussen OM, Hotlos J, Beitel G, Kolb DM, Behm RJ (1991) J Vac Sci Technol B 9:969

74. Binder K (1986) In: Binder K (ed) Monte Carlo methods in statistical physics, 2nd edn.

Springer, Berlin

References 275



75. Blume M (1966) Phys Rev 141:517; Capel HW (1966) Physica 32:966; Blume M, Emery VJ,

Griffiths RB (1971) Phys Rev A 4: 1071

76. Fichthorn KA, Weinberg WH (1991) J Chem Phys 95:1090
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