
Chapter 6
Decomposing Dynamical Systems

Marco Giunti

1 Introduction

A dynamical system is a kind of mathematical model that is intended to capture the
intuitive notion of an arbitrary deterministic system, either reversible or irreversible,
with discrete or continuous time or state space [1, 2, 4, 5]. Giunti and Mazzola [3]
generalize the standard notion of a dynamical system by simply taking the state
space M to be a non-empty set, and by requiring for the time set T a quite simple
algebraic structure—namely, a monoid L = (T,+), which they call the time model.
They thus define a dynamical system DSL on a monoid L, which they claim to be
the minimal mathematical model that still captures the intuitive idea of a determin-
istic dynamics; such a model consists of a state space M together with a family,
indexed by T , of functions from M to M, which satisfy an identity and a composi-
tion condition.

Cellular automata are well known examples of dynamical systems with discrete
time set (the non-negative integers Z+) and discrete state space. Wolfram [6] showed
that the state space of a particular finite cellular automaton (rule 9010, see Fig. 6.1)
can be exhaustively decomposed into seventy mutually disconnected constituents.
Each constituent subspace is internally connected, and it turns out to be the state
space of a subsystem of the cellular automaton; the complete dynamics of the
cellular automaton can thus be obtained as the sum of the dynamics of its seventy
constituent systems (see Fig. 6.2).

Wolfram’s example is not peculiar to the quite special case he analyzed. In fact,
I will show in this paper that the state space of any dynamical system DSL on a
monoid L can be exhaustively decomposed into a set of mutually disconnected con-
stituents (Decomposition Theorem, Theorem 1), where each constituent is internally

M. Giunti (�)
ALOPHIS, Applied Logic Philosophy and History of Science,
University of Cagliari, Via Is Mirrionis 1, 09123 Cagliari, Italy
e-mail: giunti@unica.it

© Springer International Publishing Switzerland 2016
G. Minati et al. (eds.), Towards a Post-Bertalanffy Systemics, Contemporary
Systems Thinking, DOI 10.1007/978-3-319-24391-7 6

65

mailto:giunti@unica.it


66 M. Giunti

Fig. 6.1: A finite cellular automaton with 12 cells—rule 9010

Fig. 6.2: The seventy constituent systems of finite CA rule 9010

connected and is the state space of a subsystem of DSL (called a constituent system
of DSL). In addition, constituent systems are themselves indecomposable (Proposi-
tion 6), even though they may very well be complex. Finally, I will show that any
dynamical system DSL is in fact identical to the sum of all its constituent systems
(Composition Theorem, Theorem 2). Constituent systems can thus be thought as
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the indecomposable, but possibly complex, building blocks to which the dynamics
of an arbitrary complex system fully reduces. However, no further reduction of the
constituents is possible, even if they are themselves complex.

2 Dynamical Systems on Monoids

As mentioned above, a dynamical system is a kind of mathematical model that pur-
ports to formally capture the intuitive notion of an arbitrary deterministic system,
either reversible or irreversible, with discrete or continuous time or state space. Let
T = Z+ (non-negative integers), Z (integers), R+ (non-negative reals), or R (reals).
Below is a standard definition of a dynamical system [1, 2, 4, 5].

Definition 1 (DYNAMICAL SYSTEM). DS is a dynamical system := DS is a pair
(M,(gt)t∈T ) such that

1. T is either Z+, Z, R+, or R;

– any t ∈ T is called a duration, and T the time set of DS;

2. M is a non-empty set;

– any x ∈ M is called a state, and M the state space of DS;

3. (gt)t∈T is a family, indexed by T , of functions from M to M;

– for any t ∈ T , gt is called the (state) transition of duration t or, briefly, the
t-transition or the t-advance of DS;

4. for any v, t ∈ T , for any x ∈ M,

a. g0(x) = x;
b. gv+t(x) = gv(gt(x)).

Example 1. The following are all examples of dynamical systems.

1. Discrete time set (T = Z+) and discrete state space: Finite state machines, Turing
machines, cellular automata restricted to finite configurations.1

2. Discrete time set (T = Z+) and continuous state space: Many systems specified
by difference equations, iterated mappings on R, unrestricted cellular automata.

3. Continuous time set (T = R) and continuous state space: Systems specified by
ordinary differential equations, many neural networks.

Giunti and Mazzola [3] point out that the standard definition of a dynamical
system (Definition 1) is not fully explicit, for it does not make clear exactly which

1 The state space of a cellular automaton is discrete (i.e. finite or countably infinite) if the cellular
automaton state space only includes finite configurations, that is to say, configurations where all
but a finite number of cells are in the quiescent state. If this condition is not satisfied, the state
space has the power of the continuum.
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structure on the time set T is needed in order to support appropriate dynamics. By
condition 1 of Definition 1, T is either Z+, Z, R+, or R. With respect to the addition
operation, these four models share the structure of a linearly ordered commutative
monoid; but it is by no means obvious that all this structure on T is needed for a
general definition of a dynamical system.

Giunti and Mazzola [3] maintain that the minimal structure on the time set that
makes for a materially adequate definition of a dynamical system is just that of a
monoid. Accordingly, they generalize Definition 1 as follows.

Definition 2 (DYNAMICAL SYSTEM ON A MONOID). DSL is a dynamical system
on L := DSL is a pair (M,(gt)t∈T ) and L is a pair (T,+) such that

1. L is a monoid;

– any t ∈ T is called a duration, T the time set, and L the time model of DS;

2. M is a non-empty set;

– any x ∈ M is called a state, and M the state space of DSL;

3. (gt)t∈T is a family, indexed by T , of functions from M to M;

– for any t ∈ T , gt is called the (state) transition of duration t or, briefly, the
t-transition or the t-advance of DSL;

4. for any v, t ∈ T , for any x ∈ M,

a. g0(x) = x, where 0 is the unity of L;
b. gv+t(x) = gv(gt(x)).

It is interesting to realize that any vector space V SF over a field F (and, even
more generally, any unital left module USR over a ring with unity R) turns out to
be a dynamical system DSL on a monoid L, where appropriate further structure has
been added to both DSL and L. Thus, the theory of dynamical systems on monoids
is a natural generalization of (1) the theory of vector spaces over fields, and (2) the
theory of unital left modules over rings with unity.2

3 Subspaces and Subsystems

If DSL = (M,(gt)t∈T ) is a dynamical system on a monoid L = (T,+), a subspace
of the state space M is any non-empty subset of M which is closed under all
t-transitions gt . More formally,

Definition 3. Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+).

X is a subspace of M := X ⊆ M,X �= /0 and, ∀x ∈ X ,∀t ∈ T,gt(x) ∈ X .

2 My thanks to Tomasz Kowalski for pointing out to me the relation between vector spaces over
fields and dynamical systems on monoids.
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Proposition 1 Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+); let X ⊆ M, and gt/X be the restriction of gt to X.

(X ,(gt/X)t∈T ) is a dynamical system on L iff X is a subspace of M.

Proof. Suppose that (X ,(gt/X)t∈T ) is a dynamical system on L = (T,+); then, by 2
of Definition 2, X �= /0 and, by 3 of Definition 2, ∀x ∈ X ,∀t ∈ T,gt/X(x) ∈ X . As
gt/X is the restriction of gt to X , ∀x ∈ X ,∀t ∈ T,gt(x) = gt/X(x) ∈ X . Hence, as
X ⊆ M, by Definition 3, X is a subspace of M.

Conversely, suppose that X is a subspace of M. Then, by Definition 3, condition 2
of Definition 2 is satisfied. As gt/X is the restriction of gt to X , and by Definition 3,
condition 3 of Definition 2 is satisfied as well. Finally, as DSL is a dynamical system
on L and gt/X is the restriction of gt to X , conditions 4a and 4b of Definition 2 also
hold. Therefore, (X ,(gt/X)t∈T ) is a dynamical system on L = (T,+). ��

A subsystem of a dynamical system DS1L = (M,(gt)t∈T ) on a monoid L = (T,+)
is a dynamical system DS2L = (N,(ht)t∈T ) on the same monoid L, whose state space
N is a subset of M and whose t-transitions are the restrictions to N of the t-transitions
of DS1L . That is to say,

Definition 4. Let DS1L = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+).

DS2L is a subsystem of DS1L := DS2L = (N,(ht)t∈T ) is a dynamical system on
L, N ⊆ M and, ∀t ∈ T , ht = gt/N.

Obviously, by Definition 4, any dynamical system DSL on a monoid L is a sub-
system of itself. Furthermore, the following proposition holds.

Proposition 2 Let DS1L = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+).

DS2L is a subsystem of DS1L iff DS2L = (N,(ht)t∈T ), N is a subspace of M, and
∀t ∈ T , ht = gt/N.

Proof. The thesis easily follows from Definitions 4, 3 and Proposition 1. ��
The concept of a subsystem allows us to introduce a quite general notion of

a simple system. In this acceptation, a dynamical system is simple if it does not
possess any proper subsystem; otherwise, it is complex.

Definition 5. Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+).

DSL is simple := DSL does not have any subsystem but itself.

Example 2. Let DSL = ({x},(idt)t∈Z+), where x is an arbitrary object and, ∀t ∈ Z+,
idt is the t-th iteration of the identity function on {x}. Then, DSL is a dynamical
system on L = (Z+,+) and DSL is simple.

Definition 6. Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+).

DSL is complex := DSL is not simple.
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4 Past and Future

Let DSL = (M,(gv)v∈T ) be a dynamical system on a monoid L = (T,+). The family
of state transitions (gv)v∈T allows us to introduce purely dynamical concepts of past
and future as follows. Let 0 be the unity of L, t ∈ T −{0}, and x ∈ M.

Definition 7. The t-past of x := Pt(x) := {y : y ∈ M and gt(y) = x}.

Definition 8. The t-future of x := Ft(x) := {y : y ∈ M and gt(x) = y}.

Definition 9. The past of x := P(x) :=
⋃

t∈T−{0} Pt(x).

Definition 10. The future of x := F(x) :=
⋃

t∈T−{0} Ft(x).

Analogous definitions can be given for a set of states X ⊆ M. Let 0 be the unity
of the time model L = (T,+), and t ∈ T −{0}.

Definition 11. The t-past of X := Pt(X) := {y : y ∈ M and ∃x ∈ X such that
gt(y) = x}.

Definition 12. The t-future of X := Ft(X) := {y : y ∈ M and ∃x ∈ X such that
gt(x) = y}.

Definition 13. The past of X := P(X) :=
⋃

t∈T−{0} Pt(X).

Definition 14. The future of X := F(X) :=
⋃

t∈T−{0} Ft(X).

5 Constituent Subspaces and the Decomposition Theorem

By Definitions 14 and 3, any subspace X of the state space M of a DSL on L contains
its future F(X). However, X may not contain its past P(X), as the following example
shows.

Example 3. Let DSL = (Z,(st)t∈Z+), where Z are the integers, Z+ the non-negative
integers and, for any t ∈ Z+, st is the t-th iteration of the successor function on Z.
Then, in the first place, DSL is a dynamical system on L = (Z+,+). Furthermore,
Z+ is a subspace of Z; however, P(Z+) �⊆ Z+.

Whenever X also contains P(X), X is called temporally complete.

Definition 15. Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+).

X is a temporally complete subspace of M := X is a subspace of M and P(X)⊆X .

Definition 16. Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+), x1,x2 ∈ M, and n ∈ Z+−{0}.

For any n ∈ Z+−{0}, the ternary relation x1 is temporally n-connected with x2

in M is recursively defined below.
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1. x1 is temporally 1-connected with x2 in M iff x1 �= x2 and ∃t ∈ T such that
gt(x1) = x2 or gt(x2) = x1;

2. x1 is temporally (n+1)-connected with x2 in M iff x1 �= x2 and ∃x3 ∈ M such that
x3 �= x1, x3 �= x2, x1 is temporally n-connected with x3 in M and x3 is temporally
1-connected with x2 in M.

Lemma 1 (ATTRACTION LEMMA) Let DSL =(M,(gt)t∈T ) be a dynamical system
on a monoid L = (T,+), and x∗ ∈ M.

If X is a temporally complete subspace of M, x ∈ X, and x is temporally
n-connected with x∗ in M, then x∗ ∈ X.

Proof. By induction on n ∈ Z+−{0}. The base of the induction follows from 1 of
Definition 16 and from Definitions 15, 14, 13, 12, and 11. The step of the induction
is a straightforward consequence of 2 of Definition 16. ��
Proposition 3 Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+), and x∗ ∈ M. Let X be a temporally complete subspace of M, and DSXL =
(X ,(gt/X)t∈T ).

If x ∈ X, and x is temporally n-connected with x∗ in M, then x is temporally
n-connected with x∗ in X.

Proof. By induction on n ∈ Z+−{0}. The base of the induction follows from the
definition of temporal n-connectedness (1 of Definition 16), Proposition 1, and the
Attraction Lemma (Lemma 1). The step of the induction is a direct consequence of
the definition of temporal n-connectedness (2 of Definition 16). ��
Proposition 4 Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+), x1,x2 ∈ M, and n ∈ Z+−{0}.

If x1 is temporally n-connected with x2 in M, then x2 is temporally n-connected
with x1 in M.

Proof. By induction on n ∈ Z+−{0}. The base of the induction immediately fol-
lows from 1 of Definition 16. The step of the induction easily follows from 2 of
Definition 16. ��
Definition 17. Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+), and x1,x2 ∈ M.

x1 is temporally connected with x2 in M := x1 �= x2 and ∃n ∈ Z+−{0} such that
x1 is temporally n-connected with x2 in M.

Definition 18. Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+).

X is temporally connected in M := X ⊆ M and, ∀x1,x2 ∈ X , if x1 �= x2, then x1

is temporally connected with x2 in M.

Definition 19. Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+).

X is a constituent subspace of M := X is a temporally complete subspace of M
and X is temporally connected in M.
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Definition 20. Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+).

The decomposition of M into its constituent subspaces := CM := {X : X is a
constituent subspace of M}.

In order to prove the Decomposition Theorem (Theorem 1 below), we need three
more definitions and the x-Constituent Lemma (Lemma 2 below).

Definition 21. Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+), x ∈ M, and n ∈ Z+.

For any n ∈ Z+, the set Xn
x ⊆ M is recursively defined below.

1. X0
x = {x};

2. Xn+1
x = P(Xn

x )∪Xn
x ∪F(Xn

x ).

Definition 22. Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+), and x ∈ M.

Xx :=
⋃

n∈Z+ Xn
x ; Xx is called the x-constituent of M.

Note that, by Definition 22, ∀z ∈ Xx,∃n ∈ Z+ such that z ∈ Xn
x . We then define:

Definition 23. Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+), x ∈ M, and z ∈ Xx.

The level of z := lev(z) := the minimum n such that z ∈ Xn
x .

Note that, by Definitions 23, 22, and by 2 of Definition 21, ∀z ∈ Xx, ∀m ∈ Z+, if
m ≥ lev(z), then z ∈ Xm

x .

Lemma 2 (x-CONSTITUENT LEMMA) Let DSL = (M,(gt)t∈T ) be a dynamical
system on a monoid L = (T,+), and x ∈ M.

Xx is a constituent subspace of M, that is to say,

1. Xx is a subspace of M;
2. Xx is a temporally complete subspace of M;
3. Xx is temporally connected in M.

Proof. We prove the three theses below.

1. Thesis 1: Xx is a subspace of M.
2. By the definitions of subspace (Definition 3) and F(z) (Definition 10), it suffice

to prove: ∀z ∈ Xx,F(z)⊆ Xx;
3. suppose: lev(z) = n ∈ Z+;
4. by 3 and the definition of lev(z) (Definition 23): z ∈ Xn

x ;
5. by 4 and by the definitions of F(z) and F(Xn

x ) (Definition 10 and 14): F(z) ⊆
F(Xn

x );
6. by 5 and by the definitions of Xn+1

x and Xx (2 of Definition 21 and Definition 22):
F(z)⊆ F(Xn

x )⊆ Xn+1
x ⊆ Xx.
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1. Thesis 2: Xx is a temporally complete subspace of M.
2. By the definitions of temporally complete subspace (Definition 15), by thesis 1

and by the definitions of P(Xx) and P(z) (Definitions 13 and 9), it suffice to prove:
∀z ∈ Xx,P(z)⊆ Xx;

3. suppose: lev(z) = n ∈ Z+;
4. by 3 and the definition of lev(z) (Definition 23): z ∈ Xn

x ;
5. by 4 and by the definitions of P(z) and P(Xn

x ) (Definitions 9 and 13): P(z) ⊆
P(Xn

x );
6. by 5 and by the definitions of Xn+1

x and Xx (2 of Definition 21 and Definition 22):
P(z)⊆ P(Xn

x )⊆ Xn+1
x ⊆ Xx.

1. Thesis 3: Xx is temporally connected in M.
2. By the definition of temporally connected subset (Definition 18) and by the

definition of the relationship of temporal connectedness (Definition 17), theses 3
is equivalent to:
for any x1,x2 ∈ Xx, if x1 �= x2, then ∃n ∈ Z+ −{0} such that x1 is temporally
n-connected with x2 in M;

3. we prove 2 by double induction, first on the level of x2, and second on the level
of x1;

a. Base of the induction. Suppose: lev(x1) = 0 and lev(x2) = 0;
b. by 3a and by the definitions of level and X0

x (Definitions 23 and 1 of Defini-
tion 21): x1,x2 ∈ X0

x = {x};
c. by 3b: x1 = x2;
d. thus, by 3c, 2 is vacuously satisfied.

a. Step of the induction on the level of x2. Suppose: lev(x1) = 0, and 2 holds
for any x2 such that lev(x2)≤ m ∈ Z+;

b. by 3a: x1 = x;
c. by 3b and 3a, it suffice to prove: for any z2 ∈ Xx, if lev(z2) = m+1 and x �= z2,

then ∃k ∈ Z+−{0} such that x is temporally k-connected with z2 in M;
d. suppose: lev(z2) = m+1 and x �= z2;
e. by 3d: z2 ∈ Xm+1

x = P(Xm
x )∪Xm

x ∪F(Xm
x );

f. by 3e and 3d: z2 ∈ P(Xm
x ) or z2 ∈ F(Xm

x ), but z2 �∈ Xm
x ;

g. by 3f: ∃x∗2 ∈ Xm
x ,∃t ∈ T −{0} such that gt(z2) = x∗2 or gt(x∗2) = z2;

h. by 3g and by the definition of level (Definition 23): lev(x∗2)≤ m;
i. by 3h, 3a, and 3b: if x �= x∗2, ∃n ∈ Z+ − {0} such that x is temporally

n-connected with x∗2 in M;
j. case: x = x∗2;

i. by 3j and 3g: ∃t ∈ T −{0} such that gt(z2) = x or gt(x) = z2;
ii. by 3(j)i, 3d, and by the definition of temporal n-connectedness (1 of Def-

inition 16): x is temporally 1-connected with z2 in M; [3c is thus proved
for case 3j]

k. case: x �= x∗2;
i. by 3f and 3g: z2 �= x∗2;



74 M. Giunti

ii. by 3k and 3i: ∃n ∈ Z+−{0} such that x is temporally n-connected with
x∗2 in M;

iii. by 3(k)i, 3g, and by the definition of temporal n-connectedness (1 of Def-
inition 16): x∗2 is temporally 1-connected with z2 in M;

iv. by 3(k)iii, 3(k)ii, 3d, and by the definition of temporal n-connectedness (2
of Definition 16): x is temporally (n+ 1)-connected with z2 in M. [3c is
thus proved]

a. Step of the induction on the level of x1. Suppose: lev(x2) = r ∈ Z+, and 2
holds for any x1 such that lev(x1)≤ m ∈ Z+;

b. by 3a, it suffice to prove: for any z1 ∈ Xx, if lev(z1) = m+1 and z1 �= x2, then
∃k ∈ Z+−{0} such that z1 is temporally k-connected with x2 in M;

c. suppose: lev(z1) = m+1 and z1 �= x2;
d. by 3c: z1 ∈ Xm+1

x = P(Xm
x )∪Xm

x ∪F(Xm
x );

e. by 3d and 3c: z1 ∈ P(Xm
x ) or z1 ∈ F(Xm

x ), but z1 �∈ Xm
x ;

f. by 3e: ∃x∗1 ∈ Xm
x ,∃t ∈ T −{0} such that gt(z1) = x∗1 or gt(x∗1) = z1;

g. by 3f and by the definition of level (Definition 23): lev(x∗1)≤ m;
h. by 3g and 3a: if x∗1 �= x2, ∃n ∈ Z+−{0} such that x∗1 is temporally n-connected

with x2 in M;
i. case: x∗1 = x2;

i. by 3i and 3f: ∃t ∈ T −{0} such that gt(z1) = x2 or gt(x2) = z1;
ii. by 3(i)i, 3c, and by the definition of temporal n-connectedness (1 of Def-

inition 16): z1 is temporally 1-connected with x2 in M; [3b is thus proved
for case 3i]

j. case: x∗1 �= x2;
i. by 3e and 3f: z1 �= x∗1;

ii. by 3j and 3h: ∃n ∈ Z+−{0} such that x∗1 is temporally n-connected with
x2 in M;

iii. by 3(j)i, 3f, and by the definition of temporal n-connectedness (1 of Defi-
nition 16): x∗1 is temporally 1-connected with z1 in M;

iv. by 3(j)iii, 3(j)ii, 3c, by the definition of temporal n-connectedness (2
of Definition 16), and by commutativity of temporal n-connectedness
(Proposition 4, applied twice): z1 is temporally (n+ 1)-connected with
x2 in M. [3b is thus proved]

��

Theorem 1 (DECOMPOSITION THEOREM) Let DSL = (M,(gt)t∈T ) be a dynam-
ical system on a monoid L = (T,+), and CM be the decomposition of M into its
constituent subspaces.

CM is a partition of M, that is to say,

1. for any X ,Z ∈ CM, if X �= Z, then X ∩Z = /0;
2.

⋃
X∈CM

X = M.
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Proof. We prove the two theses below.

1. Thesis 1: for any X ,Z ∈ CM , if X �= Z, then X ∩Z = /0.
2. Suppose for reductio: ∃X ,Z ∈ CM : X �= Z and X ∩Z �= /0;
3. we show below:

a. Z ⊆ X ;
b. X ⊆ Z;

i. Thesis 3a: Z ⊆ X .
ii. Suppose for reductio: Z �⊆ X ;

iii. by 3(b)ii: ∃z : z ∈ Z and z �∈ X ;
iv. as, by 2,X ∩Z �= /0, suppose: z∗ ∈ X ∩Z;
v. by 2: Z is temporally connected in M;

vi. by 3(b)iv and 3(b)iii: z �= z∗;
vii. by 3(b)vi, 3(b)v, 3(b)iv, 3(b)iii and by the definitions of temporally con-

nected subset (Definition 18), temporal connectedness (Definition 17) and
temporal n-connectedness (Definition 16): there is n ∈ Z+−0 such that z∗
is temporally n-connected with z in M;

viii. by 2: X is a temporally complete subspace of M;
ix. by 3(b)viii, 3(b)vii, 3(b)iv, and by the Attraction Lemma (Lemma 1): z∈X ,

contrary to 3(b)iii.
i. Thesis 3b: X ⊆ Z.

ii. the proof of thesis 3b is completely analogous to the proof of thesis 3a.

4. by 3a and 3b: X = Z, contrary to 2.

1. Thesis 2:
⋃

X∈CM
X = M.

2. by the definitions of CM (Definition 20), constituent subspace of M (Defini-
tion 19), temporally complete subspace of M (Definition 15), and subspace of
M (Definition 3):

⋃
X∈CM

X ⊆ M;
3. by the definition of Xx (Definition 22), and by the x-Constituent Lemma

(Lemma 2): ∀x ∈ M,x ∈ Xx ∈ CM;
4. by 3: M ⊆⋃

X∈CM
X ;

5. by 4 and 2:
⋃

X∈CM
X = M.

��
Given a set X and a property Φ such that X has Φ , X is minimal with respect to

Φ := there is no Y such that Y ⊂ X and Y has Φ ; X is maximal with respect to Φ :=
there is no Y such that Y ⊃ X and Y has Φ . It is then immediate to show:

Corollary 1 Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+), X be a constituent subspace of M, and Φ be the property of being a con-
stituent subspace of M.

X is both minimal and maximal with respect to Φ .

Proof. The thesis is an immediate consequence of the definitions of minimality,
maximality, Definition 20, and thesis 1 of Theorem 1. ��



76 M. Giunti

6 Constituent Subsystems

Definition 24. Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+).

CSXL is a constituent subsystem of DSL := X ∈ CM and CSXL = (X ,(gt/X)t∈T ).

Proposition 5 Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+).

If CSXL is a constituent subsystem of DSL, then CSXL is a subsystem of DSL.

Proof. Suppose CSXL is a constituent subsystem of DSL. Thus, by Definitions 24, 20,
19, and 15, X is a subspace of M. Hence, by Definition 24 and Proposition 2, CSXL

is a subsystem of DSL. ��
Definition 25. Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+).

The decomposition of DSL into its constituent subsystems := (CSXL)X∈CM .

Note that a constituent subsystem of a dynamical system DSL on a monoid L may
very well be complex, as the following example shows.

Example 4. Let us consider the dynamical system of Example 3. Recall that DSL =
(Z,(st)t∈Z+) is a dynamical system on (Z+,+), where st is the t-th iteration of the
successor function on Z. In fact, the only constituent subsystem of DSL is DSL itself;
however, (Z+,(st/Z+)t∈Z+) �= DSL is a subsystem of DSL. Thus, DSL is not simple,
that is to say, DSL is complex.

Definition 26. Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+).

DSL is indecomposable := DSL does not have any constituent subsystem but
itself.

Definition 27. Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+).

DSL is decomposable := DSL is not indecomposable.

Example 5. The first example below is a complex indecomposable system, while the
second one is decomposable.

1. Let DS1L = (Z,(st)t∈Z+), where st is the t-th iteration of the successor function
on Z. DS1L is a dynamical system on L = (Z+,+), and DS1L is complex and
indecomposable (see Example 4).

2. Let DS2L = (Z,(idt)t∈Z+), where idt is the t-th iteration of the identity function
on Z. DS2L is a dynamical system on L = (Z+,+), and DS2L is decomposable.
(Hence, DS2L is complex as well.)

Proposition 6 Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+).

If CSXL is a constituent subsystem of DSL, then CSXL is indecomposable.
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Proof. Suppose CSXL is a constituent subsystem of DSL and, for reductio, that CSXL

is decomposable. Let M1 and M2 be the state spaces of two distinct constituent
subsystems of CSXL . Then, in the first place, M1 is a temporally complete subspace
of X . Let x1 ∈M1 and x2 ∈M2. As M1 is a temporally complete subspace of X , by the
Attraction Lemma (Lemma 1), thesis 1 of the Decomposition Theorem (Theorem 1),
and by the definitions of temporal n-connectedness (Definition 17) and temporal
connectedness (Definition 17), x1 is not temporally connected with x2 in X . On the
other hand, as CSXL is a constituent subsystem of DSL, X is temporally connected in
M, and thus x1 is temporally connected with x2 in M. Furthermore, X is a temporally
complete subspace of M; hence, by Proposition 3, x1 is temporally connected with
x2 in X . Contradiction. ��

7 Composition of Disjoint Dynamical Systems

Definition 28. Let DS1L = (M1,(gt
1)t∈T ) and DS2L = (M2,(gt

2)t∈T ) be two dynami-
cal systems on the same monoid L = (T,+).

DS1L and DS2L are disjoint := M1 ∩M2 = /0.

Proposition 7 Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L =
(T,+).

If CSXL and CSZL are distinct constituent subsystems of DSL, then CSXL and CSZL

are disjoint.

Proof. By the definition of constituent subsystem (Definition 24), both X and Z
are constituent subspaces of M. Therefore, by Theorem 1, X ∩Z = /0; thus, by the
definition of disjoint subsystems (Definition 28), CSXL and CSZL are disjoint. ��

Any two disjoint dynamical systems on the same monoid L can always be com-
posed into a single dynamical system on L by means of the composition operation
⊕, which is defined below.

Definition 29. Let DS1L = (M1,(gt
1)t∈T ) and DS2L = (M2,(gt

2)t∈T ) be two disjoint
dynamical systems on the same monoid L = (T,+).

The composition of DS1L and DS2L := DS1L ⊕DS2L := (M1 ∪M2,(gt
1 ⊕ gt

2)t∈T )
where, ∀t ∈ T , ∀x ∈ M1 ∪M2, gt

1 ⊕gt
2(x) := gt

1(x), if x ∈ M1; gt
1 ⊕gt

2(x) := gt
2(x), if

x ∈ M2.

Proposition 8 Let DS1L = (M1,(gt
1)t∈T ) and DS2L = (M2,(gt

2)t∈T ) be two disjoint
dynamical systems on the same monoid L = (T,+).

1. DS1L ⊕DS2L is a dynamical system on L;
2. ⊕ is commutative.

Proof. Thesis 1 easily follows from the definitions of composition (Definition 29)
and dynamical system on a monoid (Definition 2). As for thesis 2, it is an immediate
consequence of Definition 29. ��
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As shown below, the composition operation can be generalized to any family of
mutually disjoint dynamical systems on a given monoid L.

Definition 30. Let L = (T,+) be a monoid.
(DSXL)X∈D is a family indexed by D of mutually disjoint dynamical systems

on L := (DSXL)X∈D = ((X ,(gt
X )t∈T ))X∈D is a family, indexed by D, of dynamical

systems on L, and D is a set of mutually disjoint sets (i.e., for any X ,Z ∈D, if X �= Z,
then X ∩Z = /0).

Let (DSXL)X∈D = ((X ,(gt
X )t∈T ))X∈D be a family, indexed by D, of mutually dis-

joint dynamical systems on a given monoid L = (T,+). As D is a set of mutu-
ally disjoint sets, D is a partition of

⋃
X∈D X . Consequently, ∀x ∈ ⋃

X∈D X , there is
exactly one X ∈ D such that x ∈ X . Thus, let us define the function χ as follows:

Definition 31. χ :
⋃

X∈D X → D, ∀x ∈⋃
X∈D X , χ(x) = the X ∈ D such that x ∈ X .

We can now generalize the composition operation as follows.

Definition 32. Let (DSXL)X∈D = ((X ,(gt
X )t∈T ))X∈D be a family, indexed by D, of

mutually disjoint dynamical systems on a given monoid L = (T,+).

∑
X∈D

DSXL = (
⋃

X∈D

X ,( ∑
X∈D

gt
X )t∈T ),where

∀t ∈ T,∀x ∈
⋃

X∈D

X , ∑
X∈D

gt
X (x) = gt

χ(x)(x).

Proposition 9 Let (DSXL)X∈D = ((X ,(gt
X )t∈T ))X∈D be a family, indexed by D, of

mutually disjoint dynamical systems on a given monoid L = (T,+).
∑X∈D DSXL is a dynamical system on L.

Proof. The thesis follows from the definitions of generalized composition (Defini-
tion 32), χ function (Definition 31), and dynamical system on a monoid
(Definition 2). ��

8 The Composition Theorem

Let DSL = (M,(gt)t∈T ) be a dynamical system on a monoid L = (T,+), and
(CSXL)X∈CM = ((X ,(gt/X)t∈T ))X∈CM be the decomposition of DSL into its con-
stituent subsystems (see Definitions 25 and 24). By Definition 30, (CSXL)X∈CM is
a family, indexed by CM , of mutually disjoint dynamical systems on L. Thus, the
generalized composition operation applies to (CSXL)X∈CM , and it holds:

Theorem 2 (COMPOSITION THEOREM)

( ∑
X∈CM

CSXL) = DSL
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Proof. The thesis is a straightforward consequence of the definition of general-
ized composition (Definition 32), the Decomposition Theorem (Theorem 1), and
Proposition 9. ��
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