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1 The Systemic Approach to the Study of Brain Activity

A consistent body of neurophysiological research, performed in the last 20 years
(and particularly in the last decade) has shown that the higher cognitive processes
can not be explained by processes of sequential neural processing. As well known,
past neurophysiologic studies based on the technique of evoked potentials were
based on this assumption. However, the actually available faster, portable and pow-
erful computational tools allowed the development of far more sophisticated sig-
nal processing algorithms. This circumstance led to the availability of the technical
and methodological background needed for the study of electroencephalographic
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correlates of the higher cognitive processes, adopting a non-linear and more sys-
temic approach. Moreover, the integration of neurophysiological studies with brain-
imaging studies (fMRI, PET) marked the beginning of a new approach to neuro-
science, commonly known as Systems Neuroscience (see, for instance, [23]). Within
this context the obtained experimental data allowed us to hypothesize that the mental
activity may be the result of a systemic integration of different network activities, not
necessarily alternative, based on at least four functional wide range nets (brain net-
works, BNet) (see, for instance, [3, 12, 16, 18, 19]). These four BNet handle respec-
tively the inner thoughts and memories of the management, evaluation of external
stimuli and response behaviors, the level of attention and awareness and the assess-
ment of stimulus meaning. The related neurophysiological underlying phenomena
are the expression of a systemic coordination of the activities of a large numbers of
neurons. This coordination can be detected in the scalp EEG signal under the form of
a phase coherence observed in different frequency bands on more or less extensive
areas of the cortex. Some authors attribute to phenomena of phase synchronization
at low frequencies also the classical perturbations of EEG waves observed during
the first 600 ms after the presentation of a stimulus [8, 10, 14]. These bands seem
to correlate with different functions, such as the analysis of the formal characteris-
tics of the stimuli (which occurs locally and which correlate with EEG activity on
higher frequency bands), or the processes of long-distance communication, through
which meaningful information results in the activation of many different functional
areas, more or less extensive, of different networks [12, 20, 24, 25]. Different bands
thus play different roles [17] and broader synchronized activations can generate dif-
ferent system phenomena, such as the emergence of conscious thought processes
[13, 21]. The mutual interaction between different frequency bands generates the
phenomenon of cross-frequency modulation (CfM), that not only supports the syn-
chronization and the coordination of the high-frequency activity of areas even very
far, but may also represent a generalized mode of systems communication and inte-
gration [6].

2 The Cross-Frequency Modulation

As well known, the phenomenon of CfM typically concerns the communication
between two different brain networks—here called, for simplicity, the sender and
the receiver—and consists in the modulation of the amplitude of high-frequency os-
cillations of the receiver by the phase of low-frequency oscillations of the sender.
Such a phenomenon, however, has been sometimes detected also within single net-
works. The CfM appear as characterized by features more or less shared by normal
subjects, while pathological subjects (like schizophrenic ones) are characterized by
different feature patterns (see, for instance, [2]). Thus, while CfM seems to be a
robust organizational principle of systemic integration, it could be used also as a
diagnostic tool.
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Many authors have argued that EEG oscillations in the high-frequency gamma
band are local expression analysis of the specific properties of the stimulus, while
the low-frequency oscillations are primarily an expression of information processes
integration in large functional networks. In this way the integration of the details of
the stimulus in more complex psychological entities would be done. At the same
time the theoretical data and the simulation data lead us to hypothesize in a similar
way that the low-frequency oscillations allow the transmission of information to a
wide distance, with higher speeds than the information integrated by local high-
frequency activities. This would allow the coordinated analysis on a large scale
macro system. These data have an anatomical correspondence in the relation be-
tween the white matter myelinated pathways and the gray matter pathways of the
brain. The phenomenon of CfM, therefore, it is likely to be a key element of the
brain integration [9], featuring the learning process [22], the higher cognitive func-
tions as well as the emergence of consciousness [13, 21]. At the same time it could
represent also a basic mode in which the information is propagated in scale-free
networks, where clusters of the type “small world” are complemented by hub nodes
[7]. This type of model finds in the thalamic-cortical-striatal-thalamic circuits their
anatomical and functional correspondence [26]. In this perspective it has to be also
reminded the heterogeneous structure of the thalamus, in which nuclei, with small-
world architecture, are interconnected and separated by areas containing hub neu-
rons (intra-laminar nuclei).

3 An Experimental Study of CfM

A preliminary study was conducted on 8 subjects, 4 males + 4 females, right
handed, aged between 20 and 51 years old (m.: 32.3± 10.3), not suffering of any
psychopathology or neurological disorders. The experimental setting consisted in a
cognitive task to be completed while EEG signal was recording. EEG signal was
recorded at 250 Hz with 256 channels caps by EGI Geodesic equipment. The cog-
nitive task (Cognitive Stress Paradigm—CSP) is a visual paradigm presented on
the screen at 60 cm of distance. The CSP is very similar to the Wisconsin Card
Sort Test where the geometric pictures presented in the 64 cards are substituted
by 64 cartoons. The cartoons concern pictures of landscapes, animals, buildings or
plants presented on one card in groups of 1 to 4 elements with four different back-
ground colors (light blue, orange, yellow, green). The subject had to match these
4× 4× 4 = 64 cards, presented one per time, with four example cards displayed
in the top row of the screen. The matching criteria were the background color, the
number of the elements inside the picture and the class of picture presented (land-
scapes, animals, buildings or plants). The computer chose randomly the matching
criteria (avoiding to get two equal criteria one after the other) which were blind to
the subject and were stable till a specific number of correct responses was reached.
This number varied randomly from 8 to 12. The subject had to infer the criteria
adopted in that moment by the computer which just gave a feedback to the subject
if the response was correct or not. The response had to be given within 5 s. If this
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time limit was overcome, the response was considered as dropped. The task was
stopped when the limit of 64×2 = 128 presented cards was reached or the subject
completed 6 consecutive criteria.

The EEG tracks were processed by means of MatLab and by EEGlab package.
The EEG records were reduced from 256 to 71 channels, and cleaned for muscle
and EOG artifacts. Then an Independent Component Analysis (ICA) was performed
and a dipole best fit computed for each Independent Component (IC). The ICs, with
the best fit dipole inside the brain volume and a residual variance of less than 10%,
were considered for further analysis. This ICs pool was segmented in epochs with a
time lag ranging from −200 to 800 ms (Time 0 = card presentation start time). Tak-
ing into account the subject performance to the previous and to the present trial of
CSP, the epochs were labeled in four different groups: Correct Response after Cor-
rect One, Correct Response after an Error, Error Response after Correct, and Error
Response after an Error. The error after the criteria change was excluded by the
error responses. The pool of the selected ICs of all subjects was grouped by means
of principal component analysis (PCA) and cluster analysis (CA). The statistical
tests non executed by MatLab were done by means of the statistical package SPSS.

The observed parameters have been:

1. behavioral parameters describing the performance to the CSP as it is in the
original WCST: time to complete task, average trial time, number of completed
categories, failures to maintain the set, number of total errors, number of per-
severant errors, drops, number of correct responses, total number of presented
cards;

2. electrophysiological parameters describing the event related EEG perturbation
occurring within 800 ms after the stimulus: the usual ERP waves (Ne, N1, N2, P2,
P3a, P3b);

3. system integration indices (see [6]): the Cross Frequency Modulation Index
(C f MI), the Modulation Phase Angle (MPA) and the Resultant Vector Length
(MV L) and the residual variance of the associated dipole of the selected ICs
(DIPrvcm).

4 Behavioral Data

The mean time to complete the task was 12.0± 2.5 min, and completed categories
were 4.5 ± 1.7 on average, with a mean time of 1.52 ± 0.14 min/category when
the criterion of 6 completed categories was reached. Mean perseverant errors were
7.15 ± 3.3, mean drops 2.18 ± 2.4, mean failures to maintain the set 1.5 ± 1.8.
When six categories were completed a mean of 84.7 ± 7.5 cards were shown.
Mean response time was 1901±523 ms, with significant differences (F3,166 = 25.33;
p < 0.001) between response conditions (Correct on Correct: 1489± 344 ms; Er-
ror on Correct: 1816± 507 ms, Correct on Error: 1996± 428 ms; Error on Error:
2296±451 ms).
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5 Brain Areas Involved in the Event Related
Response to CSP

Globally within the 8 subjects considered in this study, 81 ICs were selected and
they were aggregated by PCA and CA in 9 clusters: only 4 of these 9 clusters
(ACC—anterior cingulate cortex, l-OFC—left orbito frontal cortex, visual cortex
and lPOC—left occipito parietal cortex) presented significant difference in ERSP
in relation to the task performances.

6 Correlation Study About CfM Effect Relationship
with Neurophysiology and Task Performance

In the whole group of nine clusters the CfM parameters were related to the task
performance and neurophysiologic parameters by a correlation study (Tables 2.1,
2.2, 2.3, and 2.4).

Table 2.1: Correlation of task performance parameters with CfM parameters and the
IC-Dipole Residual Variance

N = 170 Computed Computed on Computed on
on ICs continuous data segmented data

ERP parameter IC-Dipole Modu- Resul. Mod. Modu- Resul. Mod.
Residual lation vector phase lation vector phase
variance index length angle index length angle

Categories 0.391a – – – – – –
Correct responses −0.189b −0.177b – – – – –
Cards −0.261a −0.233a – 0.223a – –
Attempts to 1st category −0.567a – 0.187b −0.228a −0.164b −0.166b –
Drops −0.554a – −0.161b – – –
Failures to maintain set −0.292a −0.206a – – −0.166b – –
Errors – – – 0.230a 0.163b –
Perseverant errors – −0.286a −0.185b 0.243a – –
Response mean time −0.239a −0.600a – 0.186b −0.262a – –
Time to complete task −0.604a – 0.186b −0.262a – –

a The correlation is significant at the 0.01 level (2-tails)
b The correlation is significant at the 0.05 level (2-tails)

7 Modulation Delay (Phase Angle)

The parameter with the highest number of significant correlations has been the
Phase Angle computed on continuous data (MPAcd), which appears to be higher
(this could mean to represent a more delayed CfM effect) when the attempts to



22 P.L. Marconi et al.

1st category are lower (R = −0.228; p = 0.003), the cards number is higher
(R = −0.223; p = 0.004), the time to complete the task is shorter (R = −0.262;
p = 0.001), but also when errors (R = −0.230; p = 0.003) and perseverant errors
(R = −0.243; p = 0.001) are higher. Theses data can be interpreted as indicating
that the presence of errors leads to a delay in modulation per modulating frequency,
as the number of structures and the length of involved pathways increase.

Table 2.2: Correlation of neurophysiologic parameters with task performance
parameters

N = 170 Amplitude
Ne N1 N2 P2 P3a P3b

Categories – – – – – –
Correct responses 0.216a 0.256b 0.194a – – –
Cards 0.161b 0.210a – −0.254a – –
Drops – 0.153b – – – –
Failures to maintain set 0.160b 0.218a 0.185b – – –
Perseverant errors – 0.215a – 0.296a – –
Global time – 0.173b – −0.091b – –
Errors – – −0.236a – – –
Response mean time – 0.171b – – – –
Cards per condition 0.166b 0.226a – −0.215a −0.156b 0.159b

Response time per condition −0.168b −0.178b – 0.158b 0. 165b 0.175b

a The correlation is significant at the 0.01 level (2-tails)
b The correlation is significant at the 0.05 level (2-tails)

Table 2.3: Correlation of neurophysiologic parameters with task performance
parameters

N = 170 Latency
P2 P3a ERP1−800 power

Categories −0.213a – –
Correct responses – – –
Cards – – –
Drops – – –
Failures to maintain set – – –
Perseverant errors – – –
Global time – – –
Errors 0.160b – –
Response mean time – – –
Cards per condition – – −0.159b

Response time per condition – −0.196b

a The correlation is significant at the 0.01 level (2-tails)
b The correlation is significant at the 0.05 level (2-tails)
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Table 2.4: Correlation of neurophysiologic parameters with C f M parameters and
the IC-Dipole Residual Variance

N = 170 Computed Computed on Computed on
on ICs continuous data segmented data

ERP parameter IC-Dipole Modu- Resul. Mod. Modu- Resul. Mod.
residual lation vector phase lation vector phase
variance index length angle index length angle

Ne amplitude – −0.343a – – – – –
N1 amplitude – −0.317a – −0.168b −0.375a – –
N2 amplitude – −0.281a −0.228a −0.187b −0.367a – –
P2 amplitude – 0.179b – – 0.437a – –
P3a amplitude −0.215a – – – 0.423a – –
P3b amplitude −0.202a – – – 0.396a – –

N2 latency 0.205a 0.166b – – 0.282a 0.307a –
P2 latency −0.157b – – – – – –
P3a latency 0.173b – – 0.258a – – –
P3b latency – – – 0.220a – – –

ERP1−800 power – – – – 0.611a – –

a The correlation is significant at the 0.01 level (2-tails)
b The correlation is significant at the 0.05 level (2-tails)

8 Number of Brain Resources Involved (Dipole Residual
Variance)

However the mean cluster residual variance of the matched IC dipoles (DIPrvcm) has
the strongest relationships with the task performance and a high DIPrvcm is corre-
lated with a higher number of completed categories (R =+0.391; p < 0.001), with
a lower number of drops (R =−0.554; p < 0.001) and attempts to complete the 1st
category (R = −0.567; p < 0.001), with a lower frequency of failure to maintain
the set (R =+0.292; p < 0.001), and a shorter time to complete task (R =−0.604;
p < 0.001). This means that the single dipole model for those cluster ICs was less
probable in spite of a multiple dipole model when the best performances are ob-
served.

The presence of a higher number of completed categories was related also to a
shorter latency of P2 wave of ERPs (R = −0.213; p = 0.005) (Table 2.2), which in
turn is related to a higher DIPrvcm (R = −0.157; p < 0.040), (Table 2.3). The pres-
ence of a higher DIPrvcm relates with a lower amplitude of P3a and P3b, as well
as a longer latency of N2 and P3a and a shorter latency of P2. This means that the
lagN2 −P2 is shorter and the lagP2 −P3a longer, and can be interpreted as the com-
bined effect of more than one modulating frequency band, a hypothesis that it is
coherent with the involvement of many dipoles.
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9 Activation of Salience Network (Event Related Modulation
Index and N1-P2-N2 Triplet)

The CfM Index computed on continuous data (C f MIcd) resulted to be higher when
the perseverant errors were lower (R =−0.286; p < 0.001) and the mean response
time is shorter (R = −0.600; p < 0.001). On the other hand the presence of higher
frequency of perseverant errors appeared to be linked to a lower value of C f MIcd

(Table 2.1), while the same index computed on segmented data (C f MIsd) gave no
significant results (Table 2.1). The same condition of low frequency of persever-
ant errors was linked also with a lower response on the N1 wave (R = +0.215;
p = 0.005) (less deep negativity) and P2 wave (R = −0.296; p < 0.001) (less high
positivity) on ERP profile (Table 2.2). The presence of a higher C f MIcd and C f MIsd

was related to an enhancing effect on N1, P2 and N2 waves (Table 2.3) (C f MIcd : N1,
R = −0.317, p < 0.001; P2 R = +0.179, p = 0.019; N2 R = −0.281; p < 0.001)
(C f MIsd : N1 R = −0.375, p < 0.001; P2 R = +0.437, p < 0.001; N2 R = −0.367;
p < 0.001). These data are coherent with a synchronization effect of C f M on early
EEG events before 300 ms after the card exposure, which leads to an augmented am-
plitude of the EEG oscillations described by the triplet N1-P2-N2. This triplet usually
is correlated with the orienting reaction to novelty or error and to the salience attribu-
tion process. We can see also an increase of N2 latency (the third peak of the triplet)
in relation to both C f MIcd (R = +0.166, p < 0.031) and C f MIsd (R = +0.282,
p < 0.001), a fact which suggests that this synchronization effect may be related
to a decrease in the modulating frequency, which in turn can explain the slowing
of response reaction when the C wave oscillation (orienting response) increases
(Tables 2.2 and 2.3). The higher Pearson R found with parameters computed on
segmented data may suggest that this C f M may be actually related to the new stim-
ulus reaction.

10 Error State Management (Non Event Related Modulation
Index and Ne)

The Ne wave and early negativity are usually related with the error condition. This
circumstance (Table 2.2) appears to be less evident (less negative) when correct
responses occur (R =+0.216, p = 0.005) and it appears to be enhanced (more neg-
ative) by a modulating effect of C f MIcd computed on continuous data (R =−0.343,
p < 0.001) (Table 2.4). The non significant correlation with the C f MIcd computed
on segmented data (Table 2.4) may suggest a stimulus independent dynamics in such
a modulation. It remains here open the question if it can be related to the previous
feedback received. Differently from what was found with the N1-P2-N2 triplet, when
enhanced the Ne appears to correlate with shorter response time (Table 2.4).
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11 Considerations About Experimental Data

When interpreting the previously presented data, we have to take into account the
fact that the present study has considered parameters relative to the whole epoch
of 5000 ms of inter stimulus time-lag (Cross frequency Modulation and Behav-
ioral Parameters) and parameters relative to the time-lag 0–800 ms after the card
onset. Subjects are exposed (during the 5 s of between-cards time lag) to two im-
portant stimuli: the card onset, with the consequent orienting, salience and response
processing, and the computer reward, occurring 300 ms after the subject response.
Responses occurred on average about 1900 ms after the card onset, with a response
mean time varying significantly in respect to the context of the previously received
reward and to the quality of present response.

Thus our results (especially those linked to neurophysiologic data) are focused
mainly on orienting reaction and salience attribution (concerning the salience net-
work activities), and just the early phases only of the response processing. Moreover
C f M parameters may represent two kind of conditions: one condition may be linked
to the card presentation, grouped by previous response and present performance, and
the other may be linked to a general subject attitude toward error risk management,
independent from card onset.

Taking into account this framework, the error management as an attitude to ex-
pect to deal with an error risk (Ne) seems related more to a stimulus independent
attitude then to an event related reactivity. Moreover the presence of an error con-
text seems to correlate with a delay in cross frequency modulation effect alike if, in
such a context, more resources and longer pathway could be involved. The involve-
ment of more brain resources as a prerequisite to best performances has a correlate
with the increase of residual variance value when best task performances are ob-
served. This attributes to this parameter a meaning supplementing its more obvious
one: i.e. in spite of the fact that a lower value of it is considered as a good match
for the IC associated dipole, we have, however, that in experimental settings the
residual variance can be influenced by the number of dipoles generating that IC. In
other words such a hypothesis implies that an EEG IC may be not concerning just
only one dipole but it can be produced by the integrated action of many neighboring
dipoles. This result is congruent with other experimental evidences, which support
the theory that more complex cognitive actions imply the activation and synchro-
nization of many brain structures. Moreover in such conditions, it is possible that
the C f M activity may act through different EEG bands (Delta, Theta, Alfa) on many
EEG high frequency bands.

Finally the focusing of neurophysiologic parameters on ERPs occurring in the
first 500 ms implies that the action of the salience network is more evidenced then
the activity of other BNets, as it could be shown by the involvement of the N1-P2-N2

triplet and by the modulation of such activity more likely done by a new stimulus
related C f M.
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In any case these results confirm the role of C f M in Brain Network activation
and modulation. At the same time they highlight the fact that this phenomenon has
an inner complexity and modulation in relation to the type of action and to the
complexity of processing.

12 Computer Simulations

The existence of a tight interconnection between theory and experiments, which
characterizes the systems neuroscience, induced us to resort to computer simula-
tions of neural network activity in order to support the validity of the hypotheses
concerning phenomena such as the C f M. In these simulations we used the Integrate-
and-Fire neuron models, which are computationally simple enough while, at the
same time, being endowed with a good level of plausibility. In logical terms, the
dynamical rule of this kind of neurons can be written under the form :

i f v(t)< s then v(t +Δ t) = v(t)+ [I(t)+a−bv(t)]Δ t (2.1)

i f v(t)> s and v(t)< A then v(t +Δ t) = A (2.2)

i f v(t)> s and v(t) = A then v(t +Δ t) = c (2.3)

Here v(t) is the membrane potential, s a threshold, A the spike amplitude, and
c the resting potential. As shown by a number of authors (see [4, 5]) networks
made by these neurons exhibit, in presence of a suitable percentage of excitatory
and inhibitory connections, globally synchronized oscillations and multistability
phenomena.

Our simulations, differently from what can be generally found in literature, deal
with networks in which each neuron is characterized by a “personalized” set of
parameter values, initially chosen in a random way. The global network behavior,
however, is influenced not so much by the inhomogeneity of the neurons, but rather
by the nature of their interconnections, chiefly by the presence or absence of long-
range interconnections. In this regard, an important feature of the connections is
given by the degree of each unit, identified with the number of connections (or links)
related to the unit itself. We must remind that the scale-free networks, already quoted
above, are characterized (see [1]) by the fact that the probability distribution of the
degree k of their units P(k) depends on k through a law of the form:

P(k) = k−γ (2.4)

These networks, as already mentioned, are characterized by the presence of a small
number of hubs, that is units with high degree, and a large number of units with
small degrees. Some researchers (cfr. [9]) suggested that the phenomenon of CfM is
a direct consequence of the scale-free character of the biological networks, because
the typically large distances between the hubs should favor an information trans-
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mission based on large wavelengths (therefore long-ranged) and small frequencies,
whose phase should necessarily modulate the short-range high-frequency signals.
But the main question is: how the neural networks acquire a scale-free nature?
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Fig. 2.1: Strong gap junctions (activation vs time)
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Fig. 2.2: Absence of gap junctions (activation vs time)

To answer we performed a number of simulations including not only synaptic
interconnections between neurons but also gap junctions. Without entering into
technical details (see [15]), we mention that in our simulations, following the
method of Lewis and Rinzel [11], the gap junctions act on a neuron through two
influences: by directly sending the spikes and by sending a signal dependent on the
difference between the membrane potentials of the two involved neurons. Concern-
ing the synaptic efficacies, we postulated an Hebbian law of variation, dependent
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Fig. 2.3: Weak gap junctions (activation vs time)

on spike correlations, including also a spontaneous decay and a saturation effect.
The dynamical contributions of the synapses and gap junctions were both weighted,
but with different coefficients, so as to allow to investigate the effect on network
dynamics of strong, weak, and absent gap junctions. Without showing the results
of all simulations performed, we will limit here to present the snapshots of average
network activities in three different simulations, all performed on networks of 100
neurons, whose initial connections were given at random.

As it is possible to see from Fig. 2.1, a strong influence of gap junctions leads
towards a stable attractor, with a constant value of average activity. However after
100 time steps the network achieved a scale-free structure with γ = 1.28055. In
the case of absence of gap junctions we see from Fig. 2.2 a seemingly noisy average
activity, characterized, however, by the presence of different frequency components.
In this case the network achieved a strongly scale-free structure with γ = 1.847489.
Finally Fig. 2.3 shows that, in presence of a weak effect of gap junctions, a globally
oscillatory state characterizes the network dynamics, while the scale-free features
practically disappeared (we obtained a modest γ = 0.3550416).

These results seem to evidence that the gap junctions could act as modulators of
the network structure and, therefore, of the nature of global activity it can support.
It remains to be found what are the physiological processes implementing such a
modulation activity. Answering this question would be equivalent to understand in
what circumstances we could expect a normal operation of C f M.

13 Conclusions

In principle, it would be possible that a network, with synaptic weights varying as a
function of the inner activity according to an Hebbian-like law, could reach a scale-
free structure, if supported by a suitable influence of gap junctions. This would open
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the way to a conception of the C f M as an almost universal systemic feature of the
normal operation of most systems (not only of neural networks). If this would be the
case, then this model could be exported also to more complex systems such as social
networks, in which micro-social units with interpersonal high density relationships
similar to “small world” architectures can be integrated in macro-social structures in
which the small world elements are mutually functionally integrated by individuals
with the ability to “hubbing” through low frequency collective activities.
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