
Chapter 13
From Elementary Pragmatic Model (EPM)
to Evolutive Elementary Pragmatic Model
(E2PM)

Piero De Giacomo, Rodolfo A. Fiorini, and Giulia F. Santacroce

1 Introduction

The Elementary Pragmatic Model (EPM) was developed in the 1970s [9, 31, 37],
following Gregory Bateson’s constructivist participant observer concept in the “sec-
ond order cybernetics”, to arrive to what was called “new cybernetics”, according to
cybernetics classical historical categorization. EPM is a high operative and didac-
tic, versatile tool and new application areas are envisaged continuously [14]. Quite
recently, EPM intrinsic Self-Reflexive Functional Logical Closure contributed to
find an original solution to the dreadful double-bind problem in classic information
and algorithmic theory (i.e. our contemporary systemic tools and classic informa-
tion computational and communication algorithms are totally unable to discriminate
the difference between an optimal encoded information-rich message and a random
jumble of signs that we call “noise” usually) [13, 15]. In turn, this new awareness has
allowed to enlarge our panorama for neurocognitive system behavior understanding,
and to develop information conservation and regeneration systems in a numeric self-
reflexive/reflective evolutive reference framework [13]. Accordingly, new methods
and models to build effective applications and strategies, from new forms of inter-
and trans-disciplinarity, can be conceived conveniently. Rational human thinking
is like a solid archipelago emerging out of an ocean of unaware intuitions. Human
brain is an harmonization machine fed by unaware intuitions to produce learning and
rational awareness about our environment. Our “Eulogic Thought” emerges out of
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a continuous harmonization interaction between Paleologic and Neologic Thought
components. “Emotional Intelligence” (EI) and “Emotional Creativity” (EC) [19]
coexist at the same time with “Rational Thinking”, (RT) sharing the same input
environment information. Different forms of knowledge representations inducing
a non-deductive procedure during inferences exist. For instance, the metaphor is
a representation modality that bypasses deductive procedure. The source of the
metaphor brings a structure exhibiting explicit and implicit attributes of the target.
The metaphor allows direct inferences and learning about new things (target) by ex-
tending what it is already known about the source [1, 2, 24]. Similarly, the process
of hierarchical inheritance in semantics networks allows direct inferences on prop-
erties shared by classes, subclasses and instances of objects without effort of explicit
deduction [6]. Another form of direct inference is heuristics that take advantage of
specialized knowledge to permit inferential short-cuts [4, 18]. Mental imagery also
provides with detailed representation of objects that conveys implicit information
without deductive effort [11]. In logic, diagrammatic notation is the main form of
knowledge representation that excludes a deductive procedure through the process
of spatial inference. EPM provides us with a reliable closed logic starting scheme
to face “unknown known” situations [16, 17]. If we like to use it on more and more
complex applications with ability to capture natural emergent phenomena dynamics,
we need to extend it to be able to face even unpredictable perturbation (“unknown
unknown”) at design level [16, 17]. In this case, an evolutive structure to manage
unexpected dynamics is needed to EPM. To cope with ontological uncertainty ef-
fectively at system level, it is possible to use two coupled irreducible information
management subsystems, based on the following ideal coupled irreducible asymp-
totic dichotomy: Information Reliable Predictability and Information Reliable Un-
predictability. In this way, to behave realistically, overall system must guarantee
both Logical Closure (Reactive Information Management, “to learn and prosper”)
and Logical Aperture (Proactive Information Management, “to survive and grow”),
both fed by environmental “noise” (better . . . from what human beings call “noise”)
[13]. So, a natural operating point can emerge as a new Trans-disciplinary Reality
Level, out of the Interaction of Two Complementary Irreducible Information Man-
agement Subsystems. Building on this idea, it is possible to envisage an Evolutive
Elementary Pragmatic Model (E2PM) able to profit by both classic EPM intrinsic
Self-Reflexive Functional Logical Closure and new evolutive Self-Reflective Func-
tional Logical Aperture.

2 EPM Logical Structure

EPM was conceived as a Boolean model of two binary inputs x0, P, and x1, Q, for
three distinct elements. In two-valued logic there are 2 nullary operators (constants),
4 unary operators, 16 binary operators, 256 ternary operators, and, in general, 22n

n-ary operators. Classically the domain and range of a truth function are {truth,
falsehood}, but they may have any number of truth values, including an infinity
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of these. A concrete function may be also referred to as an operator. EPM “elemen-
tary interaction coordinates” (unary operators) are 22 = 4, and they were named:
(001) Antifunction, (011) Acceptance, (101) Maintenance and (111) Sharing. So,
there are sixteen possible truth functions (binary operators), also called Boolean
functions for two inputs. Any of these functions corresponds to a truth table of a
certain logical connective in classical logic, including several degenerate cases such
as a function not depending on one or both of its arguments. The arity of a func-
tion or operation is the number of arguments or operands the function or operation
accepts. The arity of a relation (or predicate) is the dimension of the domain in the
corresponding Cartesian product. A function of arity “a” thus has arity n = a+ 1,
if considered as a relation. Usually, truth and falsehood is denoted as 1 and 0. An
example of Boolean operations is illustrated in full, for a = 2 in Fig. 13.1. Finally,
EPM can accommodate 28 = 256 ternary operators. Please, note, that in this case,
those 256 values can be thought as EPM power set P(W ), where W = 23 = 8. P(W )
can be even interpreted as EPM intrinsic Self-Reflexive Functional Logical Closure.

Therefore, EPM associated Boolean algebra is B3. The Boolean algebra B3 can
be represented as a cube C3 in three-dimensional Euclidean space R3. This is done
by the “conventional” Left-To-Right (LTR) coordinate mapping c : {0;1}3 → R3,
(Fig. 13.2).

It is well-known that a Boolean algebra can always be visualized by means of
a Hasse diagram that is centrally symmetric (with all complementary pairs of ele-
ments ordered around the center of symmetry) [8]. Furthermore, a finite Boolean
algebra can be partitioned into “levels” L0,L1,L2, which are recursively defined as
follows: L0 = [⊥], and

Lk+1 = {x |∃y ∈ Lk : y� x}. (13.1)

x0

0 0 0 0 0 0 0 0 001 1 1 1 1 1 11

1 0 0 1 1 0 1 0 100 1 1 0 1 0 10

0 1 0 0 1 0 0 1 110 0 1 0 0 1 11

1 1 0 0 0 1 1 1 100 0 0 1 1 1 10

x1 2f0 2f1 2f2 2f3 2f4 2f5 2f6 2f7 2f8 2f9 2f10 2f11 2f12 2f13 2f14 2f15

Fig. 13.1: Example of Boolean operations of arity 2

Hasse diagrams for the Boolean algebra φ({1,2,3}), and for a Boolean algebra
of formulas from the modal logic S5 are shown in Fig. 13.3. It is immediate to map
cube C3 to Hasse diagram on left side of Fig. 13.3. Boolean algebras are locally
finite and their word problem is always decidable (closed logic).
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Fig. 13.2: EPM associated Boolean algebra B3 is represented (LTR) by cube C3 with
its bitstring decoration in R3

3 Extending EPM as a Boolean-Valued Model

To provide EPM with an evolutive structure (open logic), we can follow many dif-
ferent approaches. In previous section, we saw that EPM associated Boolean al-
gebra B3 can be represented LTR by cube C3 in R3. By remembering the notions
of “logical space” proposed by Wittgenstein [43] and of “hypercube” proposed by
Pólya [34], it is straightforward to consider a Boolean-valued model, as the sim-
plest extension of EPM. A Boolean-valued model is a generalization of the ordinary
Tarskian notion of structure from model theory [41]. In a Boolean-valued model,
the truth values of propositions are not limited to “true” and “false”, but instead
take values in some fixed complete Boolean algebra. Boolean-valued models were
introduced by Dana Scott, Robert M. Solovay, and Petr Vopěnka in the 1960s in
order to help understand Paul Cohen’s method of forcing, presented in 1963 [5].
They are also related to Heyting algebra semantics in intuitionistic logic [42]. The
problem of whether a given equation holds in every Heyting algebra was shown to

Fig. 13.3: Hasse diagrams for the Boolean algebra φ({1,2,3}) on the left side and
for a Boolean algebra of formulas from the modal logic S5 with modality (�,�),
on the right side [10]
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be decidable by S. Kripke in 1965 [28]. The precise computational complexity of
the problem was established by R. Statman in 1979, who showed it was PSPACE-
complete [38] and hence at least as hard as deciding equations of Boolean algebra
(shown NP-complete in 1971 by S. Cook [7]) and conjectured to be considerably
harder. The elementary or first-order theory of Heyting algebras is undecidable [20].
It remains open whether the universal Horn theory of Heyting algebras, or word
problem, is decidable [26]. For the word problem it is known that Heyting alge-
bras are not locally finite (no Heyting algebra generated by a finite nonempty set
is finite), in contrast to Boolean algebras which are locally finite and whose word
problem is decidable. It is unknown whether free complete Heyting algebras exist
except in the case of a single generator where the free Heyting algebra on one gen-
erator is trivially completable by adjoining a new top. A Boolean algebra of order
2n, called Bn, is graded of rank n, [29] and can be represented as a hypercube or
n-cube Cn, in n-dimensional Euclidean space Rn, for n = 0,1,2,3,4, · · · ,∞,n ∈ N.
Our main idea is to achieve EPM open logic model behavior (logic dynamics) by
providing EPM with the asymptotic process of the structured sequence of locally
finite Boolean algebras for n → ∞ theoretically. In Fig. 13.4, the process to obtain
successive n-dimensional hypercubes up to n= 4 is depicted. For n= 4, the Boolean
algebra is represented as a four-dimensional hypercube C4. We again can employ the
“conventional” LTR coordinate mapping c : {0;1}4 →R4. This can be generalized to
any number of dimensions. In fact, the process of sweeping out volumes (Fig. 13.4)
can be formalized mathematically as a Minkowski sum: the n-dimensional hyper-
cube is the Minkowski sum of n mutually perpendicular unit-length line segments,
and is therefore an example of zonotope. Then, n-dimensional hypercubes geomet-
rical information can be projected to convenient projection planes to study the local
behavior of their connection components as graphs. For instance, in Fig. 13.5, the
related Petrie polygon Orthographic projections up to n = 8 are shown. Then, the
graph of the n-hypercube’s edges is isomorphic to the Hasse diagram of the (n−1)-
simplex’s face lattice. This can be seen by orienting the n-hypercube so that two
opposite vertices lie vertically, corresponding to the (n− 1)-simplex itself and the
null polytope, respectively.

Each vertex connected to the top vertex then uniquely maps to one of the (n−1)-
simplex’s facets (n− 2 faces), and each vertex connected to those vertices maps to
one of the simplex’s n− 3 faces, and so forth, and the vertices connected to the
bottom vertex map to the simplex’s vertices. This relation may be used to gener-
ate the face lattice of an (n− 1)-simplex efficiently, since face lattice enumeration
algorithms applicable to general polytopes are more computationally expensive.

Then, the Hasse diagram for any Bn can be seen as (n− 1)-dimensional vertex-
first projections of these hypercubes. Although Hasse diagrams are simple as well
as intuitive tools for dealing with finite posets, it turns out to be rather difficult to
draw “good” diagrams. The reason is that there will in general be many possible
ways to draw a Hasse diagram for a given poset.
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Fig. 13.4: (0)—A point is a hypercube of dimension zero. (1)—If one moves this
point one unit length, it will sweep out a line segment, which is a unit hypercube
of dimension one. (2)—If one moves this line segment its length in a perpendicular
direction from itself; it sweeps out a two-dimensional square. (3)—If one moves
the square one unit length in the direction perpendicular to the plane it lies on, it
will generate a three-dimensional cube. (4)—If one moves the cube one unit length
into the fourth dimension, it generates a four-dimensional unit hypercube (a unit
tesseract)

The simple technique of just starting with the minimal elements of an order and
then drawing greater elements incrementally often produces quite poor results: sym-
metries and internal structure of the order are easily lost. In Fig. 13.6 this issue is
demonstrated by considering the power set of a 4-element set ordered by inclusion
( ⊆) of a 4-cube or tesseract. There are four different Hasse diagrams for this partial
order. Each subset has a node labelled with a binary encoding that shows whether

Line segment Square Cube 4-cube (tesseract)

5-cube (penteract) 6-cube (hexeract) 7-cube (hepteract) 8-cube (octeract)

Fig. 13.5: N-dimensional Hypercube Petrie polygon Orthographic projections from
n = 1 up to n = 8, as graphs
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Fig. 13.6: Hasse diagrams (see text). The (a) first diagram on the left makes clear
that the power set is a graded poset. The (b) second diagram has the same graded
structure, but by making some edges longer than others, it emphasizes that the four-
dimensional cube is a union of two three-dimensional cubes. The (c) third diagram
shows some of the internal symmetry of the structure. In the (d) fourth diagram, on
the right, the vertices are arranged like the fields of a 4×4 matrix

a certain element is in the subset (1) or not (0). Therefore, whether the diagram is
Hasse or Aristotelian depends on our choice of the projection axis [10, 32]. For a
full definition of these structures, by a theoretical perspective, one should look to
Judson, at least [27]. Finally, please, note, that the power set P(Bn) of any locally
finite Boolean algebra Bn can be thought even as a Self-Reflective Functional Log-
ical Closure for the power set P(Bn−1) of preceding locally finite Boolean algebra
P(Bn−1). According to brand new Computational Information Conservation Theory
(CICT), this property is fundamental to achieve overall model systemic resilience
and antifragility behaviour) [13, 16, 17].

3.1 Ontological Uncertainty Modeling

To behave realistically (i.e. to capture natural event dynamics), system must guar-
antee both Logical Closure (to get RT, to learn and prosper) and Logical Aperture
(to get EI and EC, to survive and grow), both fed by environmental noise (better
. . . from what human beings call “noise”) [13]. All the while almost everything,
classically approached and traditionally studied, about social life focuses on the
“normal”, particularly with “bell curve” methods of inference that tell you close to
nothing about natural events. Why? Epistemic uncertainty sources are still treated
with the traditional approach of risk analysis only, which provides an acceptable
cost/benefit ratio to producer/manufacturer, but in some cases it may not represent
an optimal solution to end user [16, 17]. In fact, deep epistemic limitations reside in
some parts of the areas covered in decision making. In fact, the bell curve ignores
large deviations, cannot handle them, yet makes us confident that we have tamed
uncertainty [40]. On the other end, almost everything in social life is produced by
rare but consequential shocks and jumps. As the experiences of the 1970s, 1980s,
1990s and 2000s have shown, unpredictable changes can be very disorienting at en-
terprise level. These major changes, usually discontinuities referred to as fractures
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in the environment rather than trends, will largely determine the long-term future
of organization. They need to be handled, as opportunities, as positively as possi-
ble. Model developers must concentrate on not ignoring or double counting uncer-
tainties and clearly documenting the process in which they represent and quantify
uncertainties. Traditionally, uncertainties are characterized as epistemic, if the mod-
eler sees a possibility to reduce them by gathering more data or by refining models.
Uncertainties are categorized as aleatory if the modeler does not foresee the possi-
bility of reducing them. From a pragmatic standpoint, it is useful to categorize the
uncertainties within a model, since it then becomes clear as to which uncertainties
have the potential of being reduced. Influences of the two types of uncertainties
in reliability assessment, codified design, performance-based engineering and risk-
based decision-making are always present. More importantly, epistemic uncertain-
ties may introduce dependence between events, which may not be properly noted if
their character is not correctly modeled. Unfortunately, decision theory, based on a
“fixed universe” or a model of possible outcomes (closed logic), ignores and min-
imizes the effect of events that are “outside model”. In fact, human made systems
can be quite fragile to unexpected perturbation because Statistics can fool you [39].
While the advantage of differentiating between natural (aleatoric) and epistemic un-
certainty in analysis is clear, the necessity of distinguishing between them is not,
at operational or operative level. As a matter of fact, epistemic and aleatory uncer-
tainties are fixed neither in space nor in time. What is aleatory uncertainty in one
model can be epistemic uncertainty in another model, at least in part. And what
appears to be aleatory uncertainty at the present time may be cast, at least in part,
into epistemic uncertainty at a later date [21]. It is much better to consider ontolog-
ical uncertainty [30] as an emergent phenomenon out of a complex system [16, 17].
Then, our ontological perspective can be thought only as an emergent, natural op-
erating point out of, at least, the interaction dichotomy of two coupled irreducible
complementary ideal asymptotic concepts: (a) reliable predictability (closed logic
subsystem) and (b) reliable unpredictability (open logic subsystem). From top-level
management perspective, the reliable predictability concept can be referred to tradi-
tional system reactive approach (fixed logic subsystem) and operative management
techniques, while the reliable unpredictability concept can be associated to system
proactive approach (open logic subsystem) and strategic management techniques
(Fig. 13.7).

4 Concluding Remarks

Now, traditional EPM can be thought as a reliable starting subsystem (closed
logic, operative management, Fig. 13.7) to initialize a process of continuous self-
organizing and self-logic learning refinement (open logic, strategic management
subsystem, Fig. 13.7). As already described in previous sections, this method can
capture natural logic dynamics behavior, as function of specific unpredictable per-
turbation, unknown at system design level. Though the hypercube logical geometry
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PROACTIVE Approach
STRATEGIC management
(Reliable unpredictability)

OPERATING POINTX2

X10 REACTIVE Approach
OPERATING management
(Reliable predictability)

Fig. 13.7: Operating Point can emerge as a new Trans-disciplinary Reality Level,
based on the Interaction of Two Complementary Irreducible Management Subsys-
tems

seems to be a straight-forward method to depict the logical relations in propositional
logic, further research must be planned to go beyond this first approach of the no-
tation. Future studies ought to validate empirically the contribution of this logical
geometry approach to the understanding of logical relationships, notably in educa-
tional settings. The intuitive character of the related algebra to apprehend logical
relations must be tested in comparison with classical methods of learning. Through
the hypercube geometric algebra, we propose a notation that goes beyond a for-
mat distinction and constructed with the purpose to facilitate inferences either on a
diagrammatic representation, or a lexical one. The latter particularly allows opera-
tions on complex propositions within hypercube with more than three dimensions,
mentally difficult to imagine. This algebra, by posting directly configurations in
which a complex proposition is true, can explicitly represent all mental models, in
the sense of Johnson-Laird [25], necessary for the apprehension of a proposition in
all its complexity. In agreement to Morineau [33], we think that this algebra could
represent a tool for assisting work activities that involve inductive reasoning, like
problem- and case-based reasoning in medical diagnosis [12], and subject profiling
in psychiatry and psychotherapy [3, 22, 23]. More specifically, from a biomedical
engineering perspective, fault diagnosis task [35] and troubleshooting on logical
networks [36] could be areas of application for reliable testing and validation of
the presented EPM extension as “Evolutive Elementary Pragmatic Model” (E2PM).
E2PM presents a relevant contribute to models and simulations offering an example
of new forms of evolutive behavior inter- and trans-disciplinarity modeling.
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