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Formal Concept Analysis in Statistical
Hypothesis Testing
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1 Introduction

Hypothesis Testing consists of solving some kind of statistical test regarding the
equality of group-referred parameters. Usually, this kind of procedure can be sub-
divided in three main steps: hypothesis definition, application of algebraic trans-
formations over sampled parameters and conclusion. Solvers may present a wide
variety of solution’s patterns related to students’ ability to solve the entire prob-
lem. The relation between the response patterns and the capability of each solver to
master each part of the exercise could be mapped through a partial order and con-
veniently represented using the theoretical framework of Formal Concept Analysis
(FCA) [1, 2] whose main concepts are introduced below.

The first basic notion of FCA is the formal context defined as a triple (G,M, I)
where G is a set of objects, M is a set of attributes and I is a binary relation between
the set of objects and the set of attributes. A formal context is usually represented
by a Boolean matrix where each row is an object and each column is an attribute.
Whenever a 1 is present in the entry (g,m), it means that the relation gIm for the
specific g and m holds. Between objects and attributes of a formal context a Ga-
lois connection is defined. For all the sets A ⊆ G and B ⊆ M, the following two
transformations define the Galois connection:

A′ := {m ∈ M|gIm,∀g ∈ A} (10.1)

B′ := {g ∈ G|gIm,∀m ∈ B} (10.2)
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In words, A′ is the collection of all the attributes that all the objects in A have in
common. Dually B′ is the collection of all the objects that possess all the attributes
in B. It is now possible to introduce the fundamental notion of formal concept, that
is a pair (A,B) that satisfies the following two conditions: A = B′ and B = A′. The
extent A of the formal concept contains exactly those objects of G that have all the
attributes in B; the intent B of the formal concept includes exactly those attributes
satisfied by all the objects in A. A sub-concept super-concept relation is then defined
in the following way:

(A1,B1)≤ (A2,B2)→ A1 ⊆ A2 (10.3)

or equivalently:
(A1,B1)≤ (A2,B2)→ B1 ⊇ B2 (10.4)

In words, a concept is of a lower level when it has a larger extent (or equivalently a
smaller intent). The concepts of a context form a complete lattice [3] that is called
the concept lattice of (G,M, I). The intents of a concept lattice are closed under
intersection i.e. each intersection of sets of attributes is included in the lattice. In the
present application the set of objects of our context consists of the response patterns
to an exercise of “Hypothesis Testing for Paired Samples t-test”, while the set of
attributes consists of the subcomponents of the exercise that each pattern involves.
In the Methods section we will go into more details about how the exercise has been
divided in its subcomponents.

So far we introduced the deterministic part of the theoretical framework con-
ceived for the present work. In evaluating knowledge some sort of probabilistic
model has to be used in order to account for the variability of observed data. We de-
cided to refer to the general framework of Item Response Theory and, more specif-
ically, to the Rash Model [4].

The use of the simple logistic model was functional to obtain a probabilistic eval-
uation of the occurrence of each single response pattern observed to the task ad-
ministered to the students. The application of the Rash simple logistic model, for
dichotomous items allowed us to map each single deterministically detected items’
structure obtained from the FCA solution into a probabilistic measurement system.
This system, more realistically, conveys information about the probability to observe
each specific response pattern, as the number of observations becomes sufficiently
large. In details, the simple logistic model plays a fundamental role in discovering
the measurement level of two parameters involved in items solution: the ability of
a person to solve a problem and the difficulty of the asked items. We can now in-
troduce some formalism to expose the mathematical structure of the Rasch’s simple
logistic model. The basic assumption of the model imposes that the probability to
obtain a right solution of the proposed problem, for each respondent, can be related
to the difficulty of the item and to the ability of the respondent. The more an in-
dividual is able the higher is the probability to obtain the correct solution to the
problem, given the specific item difficulty. The mathematical relationship involved
in the estimate of both the parameters of the Rasch model could be covered by the
formula:
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P(Xni = 1|βn,δi) =
e(βn−δi)

1+ e(βn−δi)
(10.5)

Where

– Xni refers to response (X) elicited by the subject n to item i;
– βn refers to the ability of subject n;
– δi refers to difficulty of item i;
– Xni = 1 refers to a correct response of the item;
– e, indicates the base of the natural logarithm (i.e., e = 2.718282).

By applying the logistic model we were able to estimate the probability, for each
subject, to partially or entirely solve the inferential problem and, conjointly, the
probability associated to all the identified FCA solution’s patterns. When the ability
parameter βn is higher than the related parameter δi the probability P(Xni = 1|βn,δi)
of a correct response exceed 0.5; in the opposite case, the solution probability be-
comes smaller then 0.5. Both of the parameters estimated by the model identify a
conjoint system of measurement of the collected dataset with respect to the psy-
chological attitude of examinees and the complexity of the test to which they was
exposed. The derived scale constitute a measure of a single latent trait.

It is now possible to introduce the specific application we carried out to test the
applicability of the introduced elements.

2 Methods

2.1 Sample and Procedure

Participants were 256 students of the Psychometrics course 120 students were
recruited at the University of Padua, while the remaining 136 students were re-
cruited at the University of Cagliari. Students were asked to solve an “Hypothesis
Testing for Paired Samples t-test” exercise. No time limit was imposed. Students
were asked to solve the exercise in a paper and pencil way in order to allow the ex-
act location of an error throughout the exercise. All participants attended the same
theoretical and practice lessons on the topic during their Psychometrics course. Fur-
thermore, both theoretical and practical lessons were carried out by the same teacher
in both universities. Thus, given the fact that the sample size is almost the same for
Padua and Cagliari, that the practical and theoretical lessons were exactly the same
(same slides, same exercises, same text books) conducted by the same teacher, we
can reasonably hypothesize the absence of substantial differences between the two
groups.

The proposed exercise was initially subdivided into six main parts. After prelimi-
nary analysis through the Rash model, the following four parts were used to describe
the whole exercise:
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1. Hypothesis generation and formal expression;
2. Calculation of the test statistic t;
3. Identification of the critical value of test statistic t;
4. Assumption of the correct decision.

Each part of the exercise was evaluated independently from the others, i.e., a
“wrong” conclusion coherent with the obtained calculated value of the t statistics
and with the critical value of the statistic was right scored. The scoring procedure
assume that a local independence for each part of the problem exists.

2.2 Analysis

The first part of the analysis involved the construction of the formal context which
had the four parts of the exercise as the attributes and the response patterns as ob-
jects. Figure 10.1 displays the implications existing among different patterns with
respect to the attributes dimension of the FCA solution.

<1>

Reduced I={CONCL}
Reduced E={Object 4}

<2>

I={CONCL, H}
Reduced E={Object 14}

<10>
I={T COMPL, T CRIT}
Reduced E={Object 19}

<7>

I={H, T COMPL}
Reduced E={Object 15}

<9>

I={H, T CRIT}
Reduced E={Object 8}

<8>

I={CONCL, T COMPL}
Reduced E={Object 17}

<6>

I={CONCL, T CRIT}
Reduced E={Object 11}

<11>

I={CONCL, H, T COMPL}
Reduced E={Object 23}

<14>

I={H, T COMPL, T CRIT}
Reduced E={Object 24}

<12>

I={CONCL, T COMPL, T CRIT}
Reduced E={Object 22}

<13>

I={CONCL, H, T CRIT}
Reduced E={Object 20}

<15>

<5>

Reduced I={H}
Reduced E={Object 1}

I={}
Reduced E={Object 0}

<4>

Reduced I={T CRIT}
Reduced E={Object 3}

<3>

Reduced I={T COMPL}
Reduced E={Object 5}

I={CONCL, H, T COMPL, T CRIT}
Reduced E={Object 26}

<16>

Fig. 10.1: The graphical representation of the implications among the parts of the
exercise. In each node of the lattice a formal concept including a set of objects
(response patterns) and a set of attributes (parts of the exercise) is represented.
The four parts of the exercise are named as follows: H = hypothesis formula-
tion and formal expression; T COMPL = calculation of the test statistic t; T
CRIT = identification of the critical value of the test statistic t; CONCL = assumption
of the correct conclusion
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We then applied the Rasch simple logistic model to the context by means of both
the RUMM 2020 and R statistical software. Through these analysis two main issues
were obtained: on the one hand, it was possible to evaluate each part of the exer-
cise in terms of its own difficulty (i.e. a location on the difficulty continuum was
obtained for each item); on the other hand, through the evaluation of the residuals of
the model, the ideal learning path moving from knowing nothing to knowing every-
thing was found among different alternatives. The residual of a pattern indicates the
discrepancy between the observed pattern and the expectations given by the model.
The higher the residual, the greater is the discrepancy between the pattern and the
model. Through this information it can be identified a path that minimizes the resid-
uals, i.e. a set of steps that best represent the ideal learning process of a student.

3 Results

Table 10.1 displays both the location of the four parts of the exercise in terms of
difficulty, and the residual analysis on the observed response patterns.

Table 10.1: The items’ locations and the residual values of each response pattern

Items difficulty Exercise part Location

I1: Hypothesis generation and formal expression −0.422
I2: Calculation of the test statistic t 0.402
I3: Identification of the critical value of test statistic t −0.223
I4: Assumption of the correct decision 0.062

Pattern/Item I1 I2 I3 I4 Residual

1 0 0 0 0 0.903
2 0 0 0 1 −2.179
3 0 0 1 0 −0.944
4 0 1 0 0 −1.714
5 1 0 0 0 −0.609
6 0 0 1 1 0.594
7 0 1 0 1 0.195

Residual analy-
sis

8 1 0 0 1 −1.276

9 0 1 1 0 1.254
10 1 0 1 0 0.298
11 1 1 0 0 −1.587
12 0 1 1 1 0.774
13 1 1 0 1 4.016
14 1 0 1 1 0.086
15 1 1 1 0 1.205
16 1 1 1 1 −0.972

The higher the location, the more difficult is the item. The patterns are presented in a Boolean form
in which a 1 in an entry means that the pattern includes the item
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From the table it can be argued that the simplest part of the proposed exercise is
the generation of the hypothesis and its formal expression, while the more difficult
part is the calculation of the t statistics. It is noteworthy that the identification of the
critical value of the test statistics appears to be less difficult than the assumption of
the correct decision. With respect to the residual analysis, it can be highlighted that
an ideal learning path includes the steps going from the empty set to the complete
exercise through the mastering of item 1, then items 1 and 3, then items 1, 3 and 4.
This path is included in the formal context and it is the one that both minimizes the
residual of the model, and follows the difficulty order displayed by items locations.

Fig. 10.2: The graphical representation of the results obtained through the analysis
of the residuals. The highlighted nodes of the lattice represent the ideal learning path
from the empty set (at the top of the figure), to the whole exercise (at the bottom)

Figure 10.2 displays the learning path depicted by the analysis of residuals. It can
be seen how the path follows the increasing difficulty rate of the four parts of
the exercise. By following the highlighted path the ideal sequence of concepts is
learned. On the other hand, the present representation could be used as a reference
point for calibrating an adaptive knowledge assessment tool. In fact, both the lattice
and the path could be intended as the set representation of the implications exist-
ing among the parts of the exercise. Thus, if a student cannot formulate the correct
hypothesis about the exercise, it would be almost certain that he/she will fail in com-
puting the test statistic. The represented learning path is a total order. Through the
FCA approach each partial order among items can be represented and implemented
into an algorithm for the adaptive assessment of knowledge.
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4 Discussion

The present work confirms the possibility of describing the solution process of a sta-
tistical exercise in terms of a number of steps that conduct from the total incapability
to solve the exercise to a complete mastery of it. This process could be conveniently
represented through the FCA and adequately described, from a probabilistic point of
view, by the Rasch model. The use of FCA could play an important role in both algo-
rithmically describe the solution process, and in planning specific teaching strategies
accounting for the increasing difficulty of the proposed arguments and the logical
sequence of exercise solution [5]. From the results it is possible to conclude that a
reasonable solution to improve the ability of students to solve the proposed exercise
may involve two main steps: the first one referring to the formal and logical part of
the inferential process (hypothesis formulation, identification of the critical value of
the test statistics, decision); while a second step of the learning process could be de-
voted to the more operational part of the exercise (i.e., the calculation of the value
of the t statistics). The second part should follow the first one in order to maximize
the probability of observing a correct answer to the exercise.

The presented approach could be fruitfully applied in adaptive knowledge assess-
ment of students. More specifically, the implications obtained either a priori from
theoretical consideration, or from a set of observed data, could be used to calibrate
an algorithm that moves within the formal context by asking each time the more
informative item. The procedure could allow to both improve assessment efficiency,
and to precisely identify what exactly a student knows and what are his/her critical
learning steps. Some software are already available for completing this task, but
none of them refer to the FCA for detecting the specific relations among items [6–8].

Future works could investigate in more detail both the applicability of the method
to other problem types [9] and to consider more sophisticated probabilistic models
such as the partial credit [4].
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